
Jackson

Shelve in
Programming Languages/Java

User level:
Beginning–Intermediate

www.apress.com

SOURCE CODE ONLINE

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Beginning Java 8 Games Development
Beginning Java 8 Games Development, written by Java expert and author 
Wallace Jackson, teaches you the fundamentals of building a highly illustrative 
game using the Java 8 programming language. In this book, you’ll employ open 
source software as tools to help you quickly and efficiently build your Java game 
applications. You’ll learn how to utilize vector and bitmap graphics; create sprites 
and sprite animations; handle events; process inputs; create and insert multimedia 
and audio files; and more.

Furthermore, you’ll learn about JavaFX 8, now integrated into Java 8 and which 
gives you additional APIs that will make your game application more fun and 
dynamic, so your game can run on PC using Java SE 8, on mobile using Java ME 8, 
and on embedded using Java SE 8 Embedded and Java ME 8 Embedded versions.

After reading and using this tutorial, you’ll come away with a cool Java-based 2D 
game application template that you can re-use and apply to your own game-making 
ambitions or for fun.

• How to develop games using Java 8
• How to employ vector-based graphics or bitmap graphics
• How to create your 2D game sprites
• How to animate those game sprites
• How to handle events to process player input
• How to optimize and implement digital audio assets

RELATED

9 781484 204160

54999
ISBN 978-1-4842-0416-0



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For your convenience Apress has placed some of the front 
matter material after the index. Please use the Bookmarks 

and Contents at a Glance links to access them. 
 
 

 
 

 



v

Contents at a Glance

About the Author���������������������������������������������������������������������������������������������������������������� xix

About the Technical Reviewer�������������������������������������������������������������������������������������������� xxi

Acknowledgments������������������������������������������������������������������������������������������������������������ xxiii

Introduction����������������������������������������������������������������������������������������������������������������������� xxv

Chapter 1: Setting Up a Java 8 Game Development Environment■■ ��������������������������������������1

Chapter 2: Setting Up Your Java 8 IDE: An Introduction to NetBeans 8.0■■ �������������������������19

Chapter 3: A Java 8 Primer: An Introduction to Java 8 Concepts and Principles■■ ������������43

�Chapter 4: An Introduction to JavaFX 8: Exploring the Capabilities  ■■
of the Java 8 Multimedia Engine��������������������������������������������������������������������������������������75

�Chapter 5: An Introduction to Game Design: Concepts, Multimedia,  ■■
and Using Scene Builder�������������������������������������������������������������������������������������������������101

�Chapter 6: The Foundation of Game Design: The JavaFX Scene Graph  ■■
and the InvinciBagel Game Infrastructure����������������������������������������������������������������������123

�Chapter 7: The Foundation of Game Play Loop: The JavaFX Pulse System  ■■
and the Game Processing Architecture��������������������������������������������������������������������������145

�Chapter 8: Creating Your Actor Engine: Design the Characters for Your Game  ■■
and Define Their Capabilities������������������������������������������������������������������������������������������165

�Chapter 9: Controlling Your Action Figure: Implementing Java Event Handlers  ■■
and Using Lambda Expressions��������������������������������������������������������������������������������������187

�Chapter 10: Directing the Cast of Actors: Creating a Casting Director Engine  ■■
and Creating the Bagel Actor Class��������������������������������������������������������������������������������207

�Chapter 11: Moving Your Action Figure in 2D: Controlling the X and Y  ■■
Display Screen Coordinates��������������������������������������������������������������������������������������������229



■ Contents at a Glance

vi

�Chapter 12: Setting Boundaries for Your Action Figure in 2D: Using the  ■■
Node Class LocalToParent Attribute�������������������������������������������������������������������������������251

�Chapter 13: Animating Your Action Figure States: Setting the Image  ■■
States Based on KeyEvent Processing���������������������������������������������������������������������������273

�Chapter 14: Setting Up the Game Environment: Creating Fixed Sprite  ■■
Classes Using the Actor Superclass�������������������������������������������������������������������������������299

�Chapter 15: Implementing Game Audio Assets: Using the JavaFX  ■■
AudioClip Class Audio Sequencing Engine���������������������������������������������������������������������323

�Chapter 16: Collision Detection: Creating SVG Polygons for the Game Actors  ■■
and Writing Code to Detect Collision������������������������������������������������������������������������������343

�Chapter 17: Enhancing Game Play: Creating a Scoring Engine,  ■■
Adding Treasure and an Enemy Auto-Attack Engine������������������������������������������������������393

Index����������������������������������������������������������������������������������������������������������������������������������455



xxv

Introduction

The Java Programming Language is currently the most popular object-oriented (OOP) programming language in 
the world today. Java runs on everything from SmartWatches to HD Smartphones to Touchscreen Tablets to eBook 
Readers to Game Consoles to SmartGlasses to Ultra-High Definition (UHD) 4K Interactive Television Sets, with even 
more types of consumer electronics devices, such as those found in the automotive, appliances, health care, digital 
signage, security, and the home automation market, increasingly adopting the open source Java platform for use in 
their hardware devices as time goes on.

Since there are literally billions of Java compatible consumer electronics devices, owned by billions of users all 
over the world, it stands to reason that developing popular Java 8 Games for all of these people could be an extremely 
lucrative undertaking, given that you have the right game concept, artwork, game design, and optimization work 
process, of course.

Java 8 (and its multimedia engine, JavaFX 8) code can run on just about every operating system out there, 
including Windows XP; Vista, 7, 8, and 9; all Linux distributions; 32-bit Android 4 and 64-bit Android 5; Open Solaris; 
Macintosh OS/X, iOS; Symbian, and Raspberry Pi – it’s only a matter of time before the other popular OSes add 
support for this popular open source programming language. Additionally, every popular Internet browser has Java 
built in! Java provides the ultimate flexibility in installing software, as an application, or in the browser as an applet. 
You can even drag a Java application right out of the browser, and have it install itself on that user’s desktop! Java 8 is a 
truly remarkable technology.

There are a plethora of embedded and desktop hardware support levels currently for Java 8 (and for JavaFX 8.0) 
including the full Java SE 8, Java SE 8 Embedded, Java ME (Micro Edition) 8, and Java ME 8 Embedded, as well as  
Java EE 8 for Enterprise Application Development. Talk about being able to “code once, deliver everywhere!” That is the 
dream of every programmer, and Oracle is making it a reality with the powerful Java 8 multimedia programming platform.

This book will go a long way toward helping you to learn exactly how to go about developing Java 8 games, using 
the Java programming language in conjunction with the recently added JavaFX 8.0 multimedia engine. These Java 8 
game applications will be able to run across a plethora of Java compatible consumer electronics devices. Developing 
Java 8 game applications that play smoothly across all of these different types of consumer electronics devices 
requires a very specific work process, including asset design, game code design, and optimization, all of which I will 
be covering during this book.

I wrote the Beginning Java 8 Game Development title from scratch, using a real-world client game project that I 
am actually working on, and will be delivering to the public sometime in 2015. I am targeting those readers who are 
Beginning Game Developers, and who had not coded in Java 8 and JavaFX 8.0. These readers are technically savvy, but 
they are not that familiar with object-oriented computer programming concepts and techniques. Since Java is now at 
Version 8u40, this book will be more advanced than many of the other Java books out there. Java 8 has added some 
very advanced features, such as the JavaFX 8.0 API, which gives Java 8 its own multimedia engine, supporting SVG, 2D, 
3D, audio, and video media.

I designed this book to contain a comprehensive overview of the optimal Java 8 game development work 
process. Most beginning Java application development books only cover the language, however. If you really want to 
become that well-known Java game application developer that you seek to become, you will have to understand as 
well as master all of the areas of game design, including multimedia asset creation, user interface design, Java 8  
Programming, JavaFX 8.0 class usage, and data footprint, memory, and CPU usage optimization. Once you’ve 
mastered these areas – hopefully, by the end of this book, you will be able to create the memorable user experience 
that will be required to create popular, best-selling Java 8 games. You can do it; I know you can!



■ Introduction

xxvi

Java 8 games are not only developed using the NetBeans 8.0 Integrated Development Environment (IDE) alone, 
but also in conjunction with the use of JavaFX 8 and several other different types of new media content development 
software packages. For this reason, this book covers the installation and use of a wide variety of other popular 
open source software packages, such as GIMP 2.8 and Audacity 2.0.6, in conjunction with developing Java 8 game 
applications using the NetBeans 8.0 IDE and the JavaFX new media engine, which brings the “wow factor” to the Java 
programming language.

I am architecting this book in this fashion so that you can ascertain precisely how your usage of new media 
content development software will fit into your overall Java 8 game development work process. This comprehensive 
approach will serve to set this unique book title distinctly apart from all of those other Java 8 game application 
development titles that are currently out on the market. The book starts out in Chapter 1 with downloading and 
installing the latest Java 8 JDK as well as the NetBeans 8.0 IDE, along with several popular open source content 
development applications.

In Chapter 2, you will learn about NetBeans 8.0, and create your first Java 8 game application, and look at useful 
NetBeans features, such as code completion and code profiling. In Chapter 3, you will learn about the fundamentals 
of the Java 8 programming language, which you’ll be implementing to create a Java 8 game during the remainder of 
the book.

In Chapter 4, you will learn all about the JavaFX 8.0 new media engine (API) and how its impressive features 
can take your Java 8 game development and place it into the stratosphere. In Chapter 5, you will learn all about the 
JavaFX 8 FXML (Java FX Markup Language) and about the underlying concepts of developing new media assets such 
as digital audio, digital images, digital video, 2D scalable vector graphics (SVG), and 3D geometry, for use with Java 8 
games. In Chapter 6, you will learn about game design concepts, and create the foundation for your Java 8 game, its 
user interface, and a splashscreen. Thus the first third of this book is foundational material, which you’ll need to be 
able to understand how NetBeans 8.0, Java 8, JavaFX 8.0, and various new media asset types supported by the JavaFX 
engine function together as a platform.

In Chapter 7 we will start to create the various game engines, starting with the game play loop 60 FPS timing 
engine, and we will learn about the JavaFX 8 Animation, Timeline, KeyFrame, KeyValue, Interpolator, and 
AnimationTimer classes, which allow the Java 8 game to tap into the JavaFX pulse event timing engine that gives Java 8 
its multimedia power.

In Chapter 8, we will create your game Actor and Hero Java abstract classes, the Actor engine, if you will, which 
will allow us to create the different types of game play components that we will need for the Java 8 game. This will 
teach you how to create custom foundational classes for a game project, and you will look at the Node, SVGPath, 
Shape, Image, and ImageView classes as we incorporate these JavaFX class (object) types into our Java 8 Game  
Actor design.

In Chapter 9, you will learn how to add interactivity to your Java 8 Game projects, using event handling. We will 
add an event processing engine, which will process all of the different types of action, key, mouse, and drag events 
that you are likely to utilize in your Java 8 game development work process in the future when you create your own 
custom games.

In Chapter 10, you will learn about Java List, Set, and Array classes. These are called Java collections, and we will 
create a custom Actor management engine, which we will call the CastingDirector class, during this chapter. This will 
allow you to automate the task of keeping track of the cast of your game for each level, and will be used for collision 
detection.

In Chapter 11 we will start coding our primary Actor class for the InvinciBagel character, and add Java 8 code that 
controls movement on the screen, so that we can start to work on fusing character animation with game player key 
use so that we can allow our game players to control the InvinciBagel character completely. This involves “wiring up” 
the Bagel class to the GamePlayLoop (game play timing class created in Chapter 7) class, so we can start working in 
the fourth dimension of time.

In Chapter 12 you will use your Actor and Hero abstract classes that you created in Chapter 8 to create the 
InvinciBagel primary character and his Bagel.java class, as well as learn how to implement code that sets the 
boundaries for your Java 8 game, so that the Actor does not go off the screen, forcing him stay inside of the field of play 
for the game.



■ Introduction

xxvii

In Chapter 13 you will add different InvinciBagel sprite image states into your Java 8 game, and when these are 
combined with the movement you coded in Chapters 11 and 12, allow your InvinciBagel character to run, jump, fly, 
land, wait impatiently to be moved, and even turn sideways to evade bullets.

In Chapter 14, you will create a series of Prop classes that will allow you to place fixed props and obstacles into 
your Java 8 game levels. You will learn how to use one digital image asset to create four different scenery props, using 
the JavaFX ability to flip and mirror your image assets around either (or both of) their X and Y axes.

In Chapter 15, you’ll implement your Java 8 game audio engine, using the JavaFX AudioClip class, which allows 
digital audio sequencing to be integrated into your Java 8 game play, taking it an order of magnitude higher, by 
stimulating the aural senses of your game player. You’ll learn how to optimize digital audio assets so well, that you will 
not have to use any lossy compression, giving you perfect audio samples, and showing you exactly how much of the 
system’s memory your audio assets will be using.

In Chapter 16, we’ll start getting into advanced topics, such as designing collision polygons using SVG data and 
the GIMP 2.8 and PhysicsEditor software packages. We will also learn about the JavaFX Bounds and Node classes, 
and how collision detection is accomplished for Java 8 game development, using the .getBoundsInLocal() and 
.getBoundsInParent() method calls, in conjunction with the Node.intersects() and Shape.intersect() method calls.

In Chapter 17, we will pull everything together, and focus solely on implementing your game play. You will 
create Actor subclasses for Treasure, Projectile, and Enemy, and create an auto-attack engine that will turn a game 
player’s PC or mobile device into his or her adversary. We look at the most advanced topics, such as physics and AI, 
during this chapter, after which you will have enough of a foundation to create your own Java 8 games, using your own 
intellectual property!

This book attempts to be the most comprehensive Java 8 game application development programming title on 
the market, by covering most, if not all, of the major Java 8 and JavaFX classes that will need to be used to create Java 8 
Game Applications. Some of these include the Image, ImageView, Group, Node, StackPane, Scene, Stage, Application, 
ListArray, HashSet, Arrays, AudioClip, MediaPlayer, URL, Button, Shape, HBox, SVGPath, Insets, AnimationTimer,  
and more.

If you’re looking for the most comprehensive, up-to-date overview of the Java 8 programming language for 
games, including JavaFX 8.0 and NetBeans 8.0 IDE all seamlessly integrated with new media content development 
work processes, as well as a “soup to nuts” knowledge about how to optimally use these technologies in conjunction 
with the leading open source new media game content design and development tools, then this book will really be of 
significant interest to you.

It is the intention of this book to take you from being a Beginner in Java 8 game application development to a 
solid intermediate knowledge level regarding Java 8, NetBeans 8, and JavaFX 8.0 game application development. 
Be advised that this book, even though it’s ostensibly a Beginner title, contains a significant amount of technical 
knowledge. All of the work processes that are described during the book may well take more than one read through 
to assimilate into an application development knowledge base (your quiver of technical knowledge). It will be well 
worth your time, however, rest assured.



1

Chapter 1

Setting Up a Java 8 Game 
Development Environment

Welcome to the book Beginning Java 8 Games Development! Let’s get started by creating a solid development software 
foundation for use with this book. The core of this foundation will be Java SDK (Software Development Kit) 8, 
also called JDK (Java Development Kit) 8. I will also set you up with NetBeans IDE 8.0 (Integrated Development 
Environment), which will make coding Java 8 games much easier. After that, I will introduce you to the latest open-
source new media content creation software packages for digital illustration (Inkscape), digital imaging (GIMP [GNU 
Image Manipulation Program]), digital video (EditShare Lightworks), digital audio (Audacity), and 3D modeling and 
animation (Blender). At the end of the chapter, I will also suggest some other professional-level software packages 
that you should consider adding to the professional game development workstation that you will be creating over the 
course of this chapter.

To get the best results from all this free, professional-level software, you will want to have a modern, 64-bit 
workstation with at least 4GB of system memory (6GB or 8GB would be even better) and a multicore processor 
(central processing unit [CPU]), such as an AMD FX-6300 (hexa-core), AMD FX-8350 (octa-core), or Intel i7 (quad-
core). Workstations such as these have become commodity items and can be purchased at Walmart or Pricewatch.com 
at an affordable price.

The first thing that you will do in this chapter is make sure that you have removed any of the outdated versions 
of Java, such as Java 7 or Java 6, or any outdated versions of NetBeans, such as NetBeans 7 or NetBeans 6. This involves 
uninstalling (removing or deleting completely) these older development software versions from your workstation.

You will do this using the Windows program management utility Programs and Features, which can be found 
in the Windows operating system (OS) Control Panel suite of Windows OS Management Utilities. There are similar 
utilities on the Linux and Mac platforms, if you happen to be using one of these less commonly used OSs. Because 
most developers use Windows 7, 8, or 9, you will be using the Windows 64-bit platform for the examples in this book.

Next, I will show you where exactly to go on the Internet to get these software packages, so get ready to fire up 
your speedy Internet connection so that you can download nearly a gigabyte of all-new game content production 
software! After you download the latest versions of all this software, you will install the programming and content 
development packages and configure them for use with this book.

The order in which you perform these software installations is important, because Java JDK 8 and Java 8 Runtime 
Environment (JRE) form the foundation of NetBeans IDE 8.0. This is because NetBeans IDE 8.0 was originally coded 
using the Java programming language, so you will see just how incredibly professional a piece of software can be using 
this language. Thus, the Java 8 software will be the first software you install.

After you install Java 8, you will then install NetBeans 8.0, so that you have a graphical user interface (GUI), on 
top of the Java programming language, which will make the Java software development work process easier. After you 
have these two primary software development tools installed, you will get a plethora of new media content creation 
software packages, which you can use in conjunction with Java 8 and NetBeans 8.0 to create 2D and 3D games.

https://Pricewatch.com


Chapter 1 ■ Setting Up a Java 8 Game Development Environment

2

Prepare a Workstation for Java 8 Game Development
Assuming that you already have a professional-level workstation in place for new media content development and 
game development, you need to remove all the outdated JDKs and IDEs and make sure that you have the latest V8 
(not the drink, silly!) Java and NetBeans software installed on your system and ready to go. If you are new to this and 
do not have a game-appropriate workstation, go to Walmart or Pricewatch.com, and purchase an affordable  
multicore (use a 4-, 6- or 8-core) 64-bit computer running Windows 8.1 (or 9.0 if it is available) that has 4GB, 6GB,  
or 8GB of DDR3 (1333 or 1600 memory access speed) system memory at the very least and a 750GB, or even 1TB,  
hard disk drive.

The way that you remove old software is through the Windows Control Panel and its set of utility icons, one of 
which is the Programs and Features icon (Windows 7 and 8), displayed in Figure 1-1. Note that in earlier versions of 
Windows, this utility icon may be labeled differently, probably as something like Add or Remove Programs.

Figure 1-1.  Use the Programs and Features utility icon to uninstall or change programs on your computer workstation

Click the Programs and Features link, or double-click the icon in previous versions of Windows, to launch the 
utility. Then, scroll down to see if you have any old versions of the Java development tools (Java 5, Java 6, or Java 7) 
installed on your workstation. Note that if you have a brand new workstation, you should find no preinstalled versions 
of Java or NetBeans on your system. If you do find them, return the system, as it may have been used previously!

As you can see in Figure 1-2, on my Windows 7 HTML5 development workstation, I had an older version of Java, 
Java 7, installed (on November 29, 2013), taking up 344MB of space. To remove a piece of software, select it by clicking 
it (it will turn light blue), and then click the Uninstall button, shown at the top of the figure. I left the tool tip, which 
says, “Uninstall this program,” showing in the screenshot so that you can see that if you hover your mouse over 
anything in the Programs and Features utility, it will tell you what that feature is used for.



Chapter 1 ■ Setting Up a Java 8 Game Development Environment

3

Once you click the Uninstall button, the utility will remove the older version of Java. If you want to keep your old 
Java project files, make sure to back up your Java project files folder (if you have not done so already, that is). Make 
sure that you back up your workstation’s hard disk drive regularly so that you do not lose any of your work.

Also make sure that you uninstall all versions of Java; in my case, there were 64-bit Java 7 update 45 and Java 
SDK 7u45, used to run or execute IDEs, such as NetBeans (or Eclipse), that were coded using the Java programming 
language.

Next, you will want to ascertain if there are any older versions of the NetBeans IDE on your workstation. In my 
case, as you can see in Figure 1-3, there was indeed a NetBeans 7 IDE installation currently on my 64-bit Windows 7 
workstation. I selected this for removal and then clicked the Uninstall/Change button, shown at left, which brought 
up a custom Uninstall Summary dialog, shown at right.

Figure 1-2.  Select any version of Java older than the current version (Java 8), and click the Uninstall button at the top

Figure 1-3.  Find and select any version of NetBeans that is older than version 8.0; also, uninstall old GlassFish versions

Manufacturers (in this case, the NetBeans development team) can create custom Uninstall Summary dialogs for 
their products to use during the uninstall process, as you can see here. This dialog allows you to select whether you 
want to uninstall GlassFish Server 4 and the NetBeans UserDir Configuration folder. Because you are installing new 
versions of NetBeans and GlassFish, select both check boxes, and then click the Uninstall button.



Chapter 1 ■ Setting Up a Java 8 Game Development Environment

4

Downloading Java JDK 8 and NetBeans 8.0
Now that the outdated versions of Java and NetBeans have been removed from your workstation, you will need to go 
on the Internet, to the Oracle and NetBeans web sites, respectively, to get the latest development SDKs and IDEs.  
I will show you how to do this using Google’s search engine (I am using this method in case the download links,  
or URLs, ever change) as well as demonstrate what the direct download URLs are currently, at the time of writing  
this book.

Let’s get Java 8 first, as that is the foundation for everything that you are going to be doing as you read through 
this book. A Google search for Java JDK 8 will give you the search result that Oracle’s Java Downloads page, which is 
located in the Oracle Technology Network section, as shown at the top of the screenshot in Figure 1-4. The URL for 
this page is currently www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html. It 
is important to note that this URL could change at any time in the future and that you can always use Google Search 
to find the latest one. Before you can download the 170MB SDK installer file for Windows 7/8 64-bit, you will need 
to click the radio button next to the Accept License Agreement option shown at the top left of the Java 8 download 
table. Once you accept the license agreement, these 11 OS-specific links will become activated for use.

Figure 1-4.  Google the term “Java JDK 8,” open the JDK 8 Downloads page, and select Accept License Agreement

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html


Chapter 1 ■ Setting Up a Java 8 Game Development Environment

5

Be sure to match the Java JDK 8 software that you download to your OS and bit level (x86 signifies a 32-bit-level OS). 
Most modern-day workstations use a 64-bit Linux, Mac, Solaris (Oracle), Windows 7, or Windows 8 OS. This will be 
specified with the x64 delineation after the name of the OS.

To find out the bit level of the OS, on Windows 7, open the Start Menu, right-click the Computer entry, and 
select the Properties option, at the bottom of the context-sensitive menu. On Windows 8, you click Start (a window 
pane icon at the bottom left of your desktop if you are in Windows 7 desktop mode) and then the down-arrow icon 
at the bottom left, then click the PC Settings purple gear icon and finally the PC Info entry at the bottom left of the 
screen. In both use cases, there should then be a text entry that says System type and either 32-bit Operating System 
or 64-bit Operating System.

Now that you have downloaded the Java JDK 8 installer, the next thing that you need to do is download is 
NetBeans IDE 8.0. Do a Google search for the term NetBeans 8.0, as is shown at the top of Figure 1-5,  
and click the Download search result option, which will take you to the NetBeans IDE 8.0.1 Download page  
(currently https://netbeans.org/downloads). If you want to keep both tabs open in the browser, as I did, then  
right-click the Download link, and select the Open link in new tab option.

Figure 1-5.  Google the term “NetBeans 8.0,” open the NetBeans IDE 8.0.1 Download page, and download all versions

https://netbeans.org/downloads


Chapter 1 ■ Setting Up a Java 8 Game Development Environment

6

The file will be named using the format jdk-version-platform-bitlevel, so find the latest version (in this case, it 
was jdk-8u25-windows-x64). Right-click it, and select the Run as administrator option so that the installer has all the 
OS “permissions” that it needs to create folders, transfer files into them, and the like.

Once you are on the NetBeans IDE 8.0 Download page, select the language and platform (OS) that you are using 
from the drop-down menus at the top right of the page. I chose English and Windows. Now, you can click one of the 
three Download buttons at the bottom of the page to download a NetBeans IDE 8.0 that supports JavaFX 8 new media 
(and that will therefore support game development) programming language (application programming interface 
[API]). You will learn more about what an API is in Chapter 3, when I cover the Java programming language in detail.

If you are only going to develop Java SE (Standard Edition) and JavaFX applications (games) for individuals, then 
click the first button. If you are going to develop Java EE (Enterprise Edition) and JavaFX applications (games) for 
enterprise (business), then click the second button. If you are going to develop both JavaFX and HTML5 applications 
(games), which is what I do for my business, then you click the fifth Download button, and download the “All” version 
of NetBeans IDE 8.0. This version will allow you to develop in all the programming languages supported by NetBeans!

Because the NetBeans IDE is free, and your workstation hard disk drive can handle huge amounts of data, I 
recommend that you install this 204MB All version of the IDE, in case you ever find that you need any of the other 
capabilities that NetBeans IDE 8.0 is able to provide for you as a software developer (Java EE, Java ME, PHP, HTML5, 
Groovy, GlassFish, Tomcat, C++). This is an extra 120MB if you are going to install the client-side, or Java SE IDE, 
version, but is less than 20MB of extra disk space if you are going to install the server-side, or Java EE IDE, version.

Once you click the Download button, the software download will commence. After it is finished, you will be 
ready to install Java 8 and then NetBeans IDE 8.0. Finally, to complete the setup of your comprehensive Java 8 game 
development workstation, you will get some ancillary new media content tools. You will be able to use the workstation 
as you read through this book (and thereafter) to create epic Java 8 game deliverables! This is getting exciting!

Installing the Java 8 Software Development Environment
NetBeans IDE 8.0 requires Java to be installed in order to function (run), so you will need to install the JDK and JRE 
first. Because you want to develop games using the latest and most feature-filled version of Java, so you are going to 
be installing Java 8, which was released in 2014. Installing the latest version of software ensures that you have the 
newest features and the fewest bugs possible. Make sure to check often that you are using the latest version of all your 
software packages; after all, these are open source and free to download, upgrade, and use!

The first step is to find where you downloaded your installer files to on your system. The default should be set to 
the Download folder in Windows. I downloaded mine to a C:/Clients/Java8 folder, as you can see in Figure 1-6.

Figure 1-6.  Find the JDK 8 install file on your hard disk drive, right-click it, and select Run as administrator



Chapter 1 ■ Setting Up a Java 8 Game Development Environment

7

Figure 1-7.  Click Next in the Welcome dialog to advance to the Select Features to Install dialog, and then click the  
Next button

Figure 1-8.  Java 8 installation will extract and copy install files (left) and then suggest the installation directory (right)

As you can see, the installer will install 180MB of software into the C:\ProgramFiles\Java\jdk1.8.0_25 folder 
on your workstation. Click the Next button to start the installation process, which will extract the installation files and 
then copy them onto your system, using an animated progress bar, as displayed in Figure 1-8 (left).

After the Java SDK is installed on your system, you will get the JRE installation dialog, which is presented in 
Figure 1-8 (right). Make sure that you accept the default installation location for this JRE; it should be installed in the 
\Java\jre8 folder. It is best to allow Oracle (Java SDK) to put the software in an industry standard folder location, as 
other software packages that you will be using that use this JRE, such as NetBeans IDE 8.0, will be looking for it there 
first. Click the Next button to install the JRE.

The installation will show a progress bar during the install, as seen in Figure 1-9 (left). When it is finished, 
it will display the Successfully Installed dialog, shown in Figure 1-9 (right). If you want to access tutorials, API 
documentation, developer guides, version release notes, and so on, you can click the Next Steps button.

Once you launch the installer, you will see the Welcome dialog, shown in Figure 1-7 (left). Click the Next button 
to advance to the Select Features to Install dialog, shown in Figure 1-7 (right), and accept the defaults.



Chapter 1 ■ Setting Up a Java 8 Game Development Environment

8

Figure 1-9.  During installation a progress bar shows you what is installing (left) and then gives you a completed  
dialog (right)

Figure 1-10.  The Welcome to the NetBeans IDE 8.0 Installer dialog

Installing NetBeans IDE 8.0
Now, you are ready to install NetBeans, so locate your netbeans-8.0-windows file (see Figure 1-6. Right-click it, and 
select the Run as administrator option to launch the installer. Once it is launched, you will see the dialog shown in 
Figure 1-10, which gives you a Customize button that you can use to customize the install.



Chapter 1 ■ Setting Up a Java 8 Game Development Environment

9

Click the Next button to begin the default (full) installation, and you will get the NetBeans IDE 8.0 License 
Agreement dialog, shown in Figure 1-11 (left). Select the I accept the terms in the license agreement check box, and 
click the Next button to advance to the JUnit License Agreement dialog, shown in Figure 1-11 (right).

Figure 1-11.  Accept the terms of the license agreement, click the Next button (left), and then do the same for  
JUnit (right)

Figure 1-12.  Accept the default installation directory suggestions for NetBeans IDE (left) and GlassFish 4.0 (right)

In the JUnit License Agreement dialog, presented in Figure 1-11 (right), click the radio button next to the I accept 
the terms in the license agreement statement, and click the Next button to proceed with the installation. The next 
two installer dialogs, illustrated in Figure 1-12, will allow you to specify where NetBeans 8.0 and GlassFish 4.0 will be 
installed on your system. I suggest accepting the default installation locations in these two dialogs as well. As you will 
notice, the NetBeans installer has found your Java installation in its default location as well.

Once you accept these default installation locations and click the Next button to advance through these dialogs, 
you will get a Summary dialog, shown in Figure 1-13 (left). This dialog contains an Install button, which will trigger 
the installation that you have set up over the previous five NetBeans IDE 8.0 installation dialogs.



Chapter 1 ■ Setting Up a Java 8 Game Development Environment

10

During the installation, you will see the Installation dialog, and its progress bar, illustrated in Figure 1-14, which 
will tell you exactly what percentage of the installation has been completed as well as which IDE files are currently 
being extracted, and installed, on your workstation.

Figure 1-13.  Select the Check for Updates check box, and click the Install button (left) and the Finish button (right)

Figure 1-14.  The Installation progress dialog, showing the percentage of install complete

When the installation process is complete, you will see the Setup Complete dialog, which is shown in Figure 1-13 
(right). Now, you are ready to develop Java 8 and JavaFX applications (games) on your workstation.

Next, let’s download five of the most popular free open-source new media content development software 
packages so that you have all the tools that you will need for a Java 8 games development business!

After that, you will take a look at some other impressive open-source software that I use on my workstation. 
That way, if you want to, you can put together the ultimate software development workstation before you have even 
finished this chapter, creating an incredibly valuable content production workstation for the cost of the hardware  
(and OS) alone!



Chapter 1 ■ Setting Up a Java 8 Game Development Environment

11

Installing New Media Content Production Software
There are a number of “genres” of new media elements, or assets, as I call them, that are supported in JavaFX, which 
is the new media engine in Java 8 (and Java 7) and thus what you will be using as the foundation for your Java 8 game 
development. The primary genres of new media, for which you will be installing the leading open-source software in 
the remainder of this chapter, include digital illustration, digital imaging, digital audio, digital video, and 3D.

Downloading and Installing Inkscape
Because JavaFX supports 2D, or vector, technology, commonly used in digital illustration software packages, such as 
Adobe Illustrator and FreeHand, you will download and install the popular open-source digital illustration software 
package known as Inkscape.

Inkscape is available for the Linux, Windows, and Mac OSs, just like all the software packages that you are 
installing in this chapter, so you can use any platform you like to develop games!

To find the Inkscape software package on the Internet, go to Google Search, and type in Inkscape, as shown in 
Figure 1-15, at the top left. Click the Download link (or right-click, and open in a separate tab), and click the icon that 
represents the OS that you are using. The Penguin signifies Linux (far-left icon), the Window signifies Windows (center 
icon), and the stylized apple signifies Mac (far-right icon).

Figure 1-15.  Google the term “InkScape,” go to the Inkscape Download page, and click the icon that matches your OS

If you want to use the 64-bit Windows version of Inkscape, scroll down, and take a look at the text links below 
these three icons to access that particular OS download. Once you have downloaded the software, right-click it and 
Run as administrator, and install the software on your workstation. If you have a previous version of Inkscape, the 
installation will upgrade it to the latest version; you do not need to use the Programs and Features utility that you 
used earlier in the chapter to uninstall your SDK and IDEs, which do not upgrade previous versions, like new media 
production software packages tend to do.



Chapter 1 ■ Setting Up a Java 8 Game Development Environment

12

After the software is installed, create a Quick Launch icon on your taskbar so that you can launch Inkscape with 
a single click of the mouse. Next, you will install a popular digital imaging software package, called GIMP, which will 
allow you to create “raster,” or pixel-based (bitmap), artwork for your games in JPEG, PNG, or GIF digital image file 
formats supported by JavaFX. Raster images are different from vector, or shape, illustrations, so you will need GIMP.

Downloading and Installing GIMP
JavaFX also supports 2D images that use raster image technology, which represents images as an array of pixels and 
is commonly used in digital image compositing software packages, such as Adobe Photoshop and Corel Painter. In 
this section, you will download and install the popular open-source digital image editing and compositing software 
package called GIMP. This software is available for the Linux, Windows, Solaris, FreeBSD, and Mac OSs.

To find the GIMP software on the Internet, go to Google Search, and type in GIMP, as demonstrated in Figure 1-16.

Figure 1-16.  Google the term “GIMP,” go to the GIMP Downloads page, and click the Download GIMP link



Chapter 1 ■ Setting Up a Java 8 Game Development Environment

13

Click the Download link (or right-click, and open it in a separate tab), and click Download GIMP 2.8.14 (or the 
latest version that represents the OS that you are using). The Downloads page will automatically detect the OS that 
you are using and give you the correct OS version; in my case, it is Windows. Download and install the latest version of 
GIMP, and then create a Quick Launch icon for your workstation taskbar, as you did for Inkscape. Next, you will install 
a powerful digital audio editing and audio effects software package, called Audacity.

Downloading and Installing Audacity
JavaFX supports digital audio sequencing, which uses digital audio technology. Digital audio represents analog audio 
by taking digital audio samples. Digital audio content is commonly created using digital audio composition and 
sequencer software packages, such as Propellerhead Reason and Cakewalk Sonar. In this section, you will download 
and install the popular open source digital audio editing and optimization software package known as Audacity. 
Audacity is available for the Linux, Windows, and Mac OSs, so you can use any OS platform that you like to create and 
optimize digital audio for your Java 8– and JavaFX–based games.

To find the Audacity software package on the Internet, use the Google search engine, and type in Audacity, as 
shown in Figure 1-17, at the top left. Click the Download link (or right-click, and open in a separate tab), and click 
Audacity for Windows (or the version that represents the OS that you are using).

Figure 1-17.  Google the term “Audacity,” go to the Audacity Download page, and click a link matching your OS

Download and install the latest version of Audacity (currently, it is 2.0.6), and then create a Quick Launch Icon for 
your workstation taskbar, as you did for Inkscape and GIMP. Next, you will install a powerful digital video editing and 
special effects software package, called EditShare Lightworks.



Chapter 1 ■ Setting Up a Java 8 Game Development Environment

14

Downloading and Installing EditShare Lightworks
JavaFX also supports digital video, which uses raster pixel-based motion video technology. Raster represents video 
as a sequence of frames, each of which contains a digital image based on an array of pixels. Digital video assets are 
usually created using digital video editing and special effects software packages, such as Adobe After Effects and Sony 
Vegas. In this section, you will download and install open-source digital video editing software known as Lightworks.

EditShare’s Lightworks used to be a paid software package until it was made open source. You will have to register 
on the Lightworks web site to download and use the software. This package is available for Linux, Windows, and Mac 
OSs. To find Lightworks on the Internet, go to Google Search, and type in Lightworks, as shown in Figure 1-18, at the 
top left. Click the Download link (or right-click, and open in a separate tab), and click the appropriate Download 
button and the tab that represents the OS that you are using. The Downloads page will automatically detect the OS 
that you are using and select the correct OS tab; in my case, Windows.

Figure 1-18.  Google the term “Lightworks,” go to the Lightworks Downloads page, and click the tab that matches  
your OS

Register on the Lightworks web site, if you have not done so already. Once you are approved, you can then 
download and install the latest version of Lightworks. Install the software, and create a Quick Launch icon for your 
taskbar, as you did for the other software. Next, you will install a 3D modeling and animation package, called Blender.



Chapter 1 ■ Setting Up a Java 8 Game Development Environment

15

Downloading and Installing Blender
JavaFX has recently moved to support 3D new media assets that are created outside the JavaFX environment, which 
means that you will be able to create 3D models, textures, and animation, using third-party software packages, such 
as Autodesk 3D Studio Max or Maya and NewTek Lightwave 3D. In this section, you will download and install the 
popular open-source 3D modeling and animation software package known as Blender. Blender is available for the 
Linux, Windows, and Mac OSs, so you can use any OS platform that you like to create and optimize 3D models, 3D 
texture mapping, and 3D animation for use in your Java 8 and JavaFX games.

To find the Blender software on the Internet, using the Google search engine, type in Blender, as shown in 
Figure 1-19. Click the correct download link to download and install Blender, and then create the Quick Launch icon.

Figure 1-19.  Google the term “Blender,” go to the Blender Download page, and click the tab for your OS



Chapter 1 ■ Setting Up a Java 8 Game Development Environment

16

Other Open-Source Software Packages of Interest
There are a number of other professional-level open-source software packages that I use in my new media content 
production business that I thought I would let you know about, in case you had not heard about them. These will add 
even more power and versatility to the new media production workstation that you have built up to this point. It is 
important to note that you have already saved yourself thousands of dollars that would have otherwise been spent 
on similar paid content production software packages in the process of doing all this extensive downloading and 
installing. I guess you could say my motto is, “Do it right the first time, and be sure to go all the way,” so let me tell you 
about some of the other free, and even some of the more affordable, new media content production software packages 
that I have installed on my own content production workstations.

One of the best values in open-source software, aside from the EditShare Lightworks package, which used to 
cost six figures back in the day, is a business productivity software suite that was made open source by Oracle after 
it acquired Sun Microsystems. Oracle transferred its OpenOffice software suite over to the popular Apache open-
source project. OpenOffice 4.1 is an entire office productivity software suite that contains six full-fledged business 
productivity software packages! Because your content production agency is actually a full-fledged business concern, 
you should probably know about this software, as it is an exceptionally solid open-source software offering. You can 
find it at www.openoffice.org; this popular business software package has been downloaded by savvy professionals 
such as yourself more than a hundred million times, so it’s no joke, as they say!

A great complement to the Audacity digital audio editing software is Rosegarden MIDI sequencing and music 
composition and scoring software, which can be used for music composition and printing out the resulting scores for 
music publishing. Rosegarden, currently in version 14.02, and being ported from Linux to Windows, can be found via 
Google Search or at www.rosegardenmusic.com.

Another impressive audio, MIDI, and sound design software package is Qtractor If you are running the Linux 
OS, be sure to download and install this professional-level digital audio synthesis software package by doing a Google 
search or going to https://Qtractor.SourceForge.net.

For 3D character modeling and animation, be sure to check out the 3D software packages from DAZ Studio  
(www.daz3d.com) when you have the chance. The current version of DAZ Studio Pro is 4.6, and yes, it is free! You have 
to log in and sign up, like you did for EditShare Lightworks, but that is a small price to pay! There is also a free  
3D modeling software package on this web site, called Hexagon 2.5, and a popular terrain generation software 
package for less than 20 dollars, called Bryce 7.1 Pro. The most expensive software on the DAZ Studio web site is 
Carrara (150 dollars) and Carrara Pro (285 dollars). DAZ Studio makes most of its revenue selling character models 
of one type or another, so take a look, as it is a force to be reckoned with in the 3D content (virtual) world!

Another impressive (and free, for the basic version) world generation software package is Terragen 3.2, from 
Planetside Software, in the United Kingdom. You can download the basic version from https://planetside.co.uk  
as well as join its forum. I have used this software in a couple of my Android application development books, so I 
know it works well for multimedia applications and games. It is also used by professional filmmakers, as the level of 
quality is pristine.

Caligari TrueSpace 7.61 is also excellent, free 3D modeling and animation software. The program, which is 
“free and alive!” according to the Caligari web site (https://Caligari.us), from which you can still download it, 
used to cost nearly a thousand dollars when it was first developed by Roman Ormandy, the founder of the Caligari 
Corporation (later purchased by Microsoft). A professional-level 3D modeling and animation software package, this 
program had millions of users in its heyday. It is a really cool piece of software, with a fun-to-use user interface (UI), 
so be sure to grab it!

Another 3D rendering software you should take a look at is POV-Ray (Persistence of Vision Raytracer), which 
works with any 3D modeling and animation software package to generate impressive 3D scenes, using advanced  
ray-traced rendering algorithms. The most recent version on the POV-Ray web site (www.povray.org), 3.7, is 64 bit 
and multicore (multithreaded) compatible, and it can be downloaded for free!

Bishop3D is a cool 3D modeling software package that was specifically designed for use with POV-Ray. The 
software can be used to create custom 3D objects, which can then be imported into POV-Ray (and then into JavaFX) 
for use in your games. The most recent version, an 8MB download, is 1.0.5.2, for Windows 7. The software can be 
found at www.bishop3d.com and can currently be downloaded for free!

http://www.openoffice.org/
http://www.rosegardenmusic.com/
https://Qtractor.SourceForge.net
http://www.daz3d.com
https://planetside.co.uk
https://Caligari.us
http://www.povray.org/
http://www.bishop3d.com/


Chapter 1 ■ Setting Up a Java 8 Game Development Environment

17

Yet another free 3D modeling software worth investigating is Wings 3D. This software can be used to create 
custom 3D objects, which can then be imported into JavaFX for use in your games. The most recent version, a 64-bit, 
16MB download, is 1.5.3 and was released in April 2014, for Windows 7, Mac OS X, and Ubuntu Linux. The software 
can be found at www.wings3d.com and can currently be downloaded for free!

For UI design prototyping, the free software package Pencil 2.0.6, from Evolus, allows you to easily prototype UI 
designs before you create them in Java, Android, or HTML5. The software is located at http://pencil.evolus.vn and 
is available for Linux, Windows, and Mac OSs.

Next, you will take a look at how I organize some of the basic OS utilities and open-source software on my taskbar.

Organizing Quick Launch Icons in Your Taskbar Area
There are certain OS utilities, such as the calculator, text editor (Notepad), and file manager (Explorer), for which 
I create Quick Launch icons on my taskbar, as these utilities are used frequently in programming and new media 
content development work processes. I also keep as Quick Launch icons a wide range of new media development, 
programming, and office productivity applications. Figure 1-20 displays a dozen of these, including everything that 
you just installed, in the order in which you installed it, as well as a few others, such as OpenOffice 4.1, DAZ Studio Pro 4.6, 
and Bryce 7.1 Pro.

Figure 1-20.  Make taskbar Quick Launch icons for key system utilities, NetBeans 8.0, and new media production 
software

There are a couple of ways to create these Quick Launch icons: you can drag programs from the start menu and 
drop them onto the taskbar, or you can right-click icons on the desktop or in the Explorer file manager and select 
Pin this program to taskbar from the context-sensitive menu. Once icons are on the taskbar, you can change their 
position simply by dragging them to the left or to the right.

Congratulations, you have just set up a new media Java 8 game development workstation that is highly optimized 
and that will allow you to create any new media Java 8 game that you or your clients can imagine!

Summary
In this first chapter I made sure that you have everything that you need to develop standout Java 8 games, including 
the latest versions of Java 8, JavaFX, and NetBeans 8.0 as well as all the latest open-source new media software.

You started by downloading and installing the latest Java JDK 8 and NetBeans IDE 8.0 software. Then, you did the 
same for a plethora of professional open-source new media tools.

In the next chapter, I will show you how to use NetBeans 8.0 to create a Java 8 project.

http://www.wings3d.com/
http://pencil.evolus.vn/


19

Chapter 2

Setting Up Your Java 8 IDE: An 
Introduction to NetBeans 8.0

Let’s get started here in Chapter 2 by considering NetBeans IDE 8.0, because that is the primary piece of software 
that you will be using to create your Java 8 games. Even though Java JDK 8 is the foundation for your Java 8 games, as 
well as for NetBeans 8.0, you will start your journey by learning about NetBeans, as it is the “front end,” the window 
through which you look at your Java game project.

NetBeans 8.0 is the official IDE for Java JDK 8, and, as such, it is what you will be using for this book. That is not 
to say you cannot use another IDE, such as Eclipse or IntelliJ, which are the official IDEs for Android 4.x (32 bit)  
and Android 5.x (64 bit) respectively, but I prefer to use NetBeans 8.0 for my new media application and game 
development for the Java 8, JavaFX 8, HTML5, CSS3 (Cascading Style Sheets 3), and JavaScript software development 
markup and programming paradigms.

This is not only because NetBeans 8.0 integrates JavaFX Scene Builder, which you will be learning about in 
Chapter 5 of this book, but also because it is an HTML5 IDE, too, and I create everything I design for my clients using 
Java 8, JavaFX 8, Android 4.x, or Android 5.x as well as HTML5. I do this so that the content works across (on) closed, 
or proprietary, OSs and platforms. I prefer open-source software and platforms, as you observed in Chapter 1.

First, you will take a look at what is new in NetBeans 8.0. This version of NetBeans was released at the same time 
as Java 8, and the version number synchronization is no coincidence. You will discover why you will want to use 
NetBeans 8.0 rather than an older NetBeans version, such as NetBeans 7.4 or earlier.

Next, you will examine the various attributes of NetBeans IDE 8.0 that make it an invaluable tool for Java 8 game 
development. You will not be able to get hands-on experience with all its features in the chapter, but you will be 
exploring all the cool things that it can do for you over the course of this book (you will need to put an advanced code 
base into place to really give some of the features a workout).

Finally, you will learn how to create your Java 8 and JavaFX project, using NetBeans 8.0 so that you progress 
toward creating the Java 8 game that you will be developing as you read through this book.

Primary Attributes of NetBeans 8.0: An Intelligent IDE
Assuming that you already have a professional-level workstation in place for new media content and game development, 
you need to remove all the outdated JDKs and IDEs and make sure that you have the latest V8 Java and NetBeans 
software installed on your system and ready to go. If you are new to this and do not have a game-appropriate 
workstation, go to Walmart or PriceWatch.com, and purchase an affordable multicore (use a 4-, 6- or 8-core) 64-bit 
computer running Windows 8.1 (or 9.0 if it is available) that has 4GB, 6GB, or 8GB of DDR3 (1333 or 1600 memory 
access speed) system memory at the very least and a 750GB, or even 1TB, hard disk drive.



Chapter 2 ■ Setting Up Your Java 8 IDE: An Introduction to NetBeans 8.0

20

NetBeans 8.0 Is Smart: Put Your Code Editing into Hyperdrive
Although it is true that an IDE is like a word processor, only geared toward writing code text rather than creating 
business documents, a programming integrated development environment such as NetBeans does a lot more for your 
programming work process than a word processor does for your document-authoring work process.

For instance, your word processor does not make suggestions in real time regarding the content that you are 
writing for your business, whereas the NetBeans IDE will actually look at what you are coding while you are writing 
that code and will help you write your code statements and constructs.

One of the things that NetBeans will do is finish lines of code for you as well as apply color to the code statements 
to highlight different types of constructs (classes, methods, variables, constants, references, and the like) (for more 
details, see Chapter 3). NetBeans will also apply the industry standard for code indenting to make your code much 
easier to read (for both yourself and the other members of your game application development team).

In addition, NetBeans will provide matching code structure brackets, colons, and semicolons so that you do 
not get lost when you are creating complex, deeply nested, or exceptionally dense programming constructs. You will 
be creating constructs such as these as I take you from Java 8 game beginner to Java 8 game developer, and I will point 
out Java 8 code that is dense, complex, or deeply nested as you encounter it.

NetBeans can also provide bootstrap code, such as the JavaFX game application bootstrap code that you will be 
creating a bit later in this chapter (see the section “Creating Your Java 8 Project: The InvinciBagel”), as well as code 
templates (which you can fill out and customize), coding tips and tricks, and code refactoring tools. As your Java code 
becomes more complex, it also becomes a better candidate for code refactoring, which can make the code easier to 
understand, easier to upgrade, and more efficient. NetBeans can also refactor your code automatically.

In case you are wondering, code refactoring is changing the structure of existing computer code to make it more 
efficient or scalable without changing its external behavior, that is, what it accomplishes. For instance, you could take 
Java 6 or Java 7 code and make it more efficient by implementing Lambda Expressions, using Java 8.

Furthermore, NetBeans offers pop-up helper dialogs of various types, containing methods, constants, asset 
references (see Chapter 3), and even suggestions regarding how to construct the code statement, for example, 
when it might be appropriate to use the powerful new Java 8 Lambda Expressions feature to make your code more 
streamlined and multithread compatible.

NetBeans 8.0 Is Extensible: Code Editing with Many Languages
Another thing that your word processor cannot do is allow you to add features to it, which NetBeans can do using its 
plug-in architecture. The term that describes this type of architecture is extensible, which means that if needed, it can 
be extended to include additional features. So, if you wanted to extend NetBeans 8.0 to allow you to program using 
Python, for instance, you could. NetBeans 8.0 can also support older languages, such as COBOL and BASIC, in this 
fashion as well, although with the majority of popular consumer electronics devices using Java, XML, JavaScript, and 
HTML5 these days, I am not really sure why anyone would want to take the time do this. I did a Google search for this, 
however, and there are people coding in Python and COBOL in NetBeans 8.0, so there is real-world proof that the IDE 
is indeed extensible.

Probably because of its extensibility, NetBeans IDE 8.0 supports a number of popular programming languages, 
including C, C++, Java SE, JavaScript, XML, HTML5, and CSS on the client side and PHP, Groovy, Java EE, and 
JavaServer Pages (JSP) on the server side. Client-side software is run on the device that the end user is holding 
or using (in the case of an iTV); server-side software runs remotely, on a server, and talks to the end user over the 
Internet or a similar network while the software is running on the server. Client-side software is more efficient, as it 
is local to the hardware device that it is running on and thus is more scalable: no server is involved to experience 
overload as more and more people use the software at any given point in time.



Chapter 2 ■ Setting Up Your Java 8 IDE: An Introduction to NetBeans 8.0

21

NetBeans 8.0 Is Efficient: Organized Project Management Tools
A good programming IDE needs to be able to manage projects that can grow to become quite massive, involving more 
than a million lines of code contained in hundreds of folders in the project folder hierarchy and thousands of files 
and new media assets. For this reason, project management features must be extremely robust in any mainstream 
IDE. NetBeans 8.0 contains a plethora of project management features that allow you to look at your Java 8 game 
development project, and its corresponding files and their interrelationships, in a number of different ways.

There are four primary project management views, or “panes” that you can use to see the different types of 
interrelationships in your project. (I call them panes, as the entire IDE is in what I call a window). I jumped ahead 
(to the end of the chapter, once your Java 8 game project has been created) and created the screenshot presented in 
Figure 2-1. This screenshot displays the four project management panes opened in this new project so that you can 
see exactly what they will show you.

Figure 2-1.  Project management panes, at the left of the IDE, include Projects, Files, Services, and Navigator

The Projects pane, at the left of the screen, shows the Java Source Packages and Libraries that make up your 
(game) project. The next pane over is the Files pane, which has the project folder and file hierarchy on your hard 
disk drive. The Services pane contains the databases, servers, repositories, and build hosts, if they are used in the 
project (these are primarily server-side technologies, and technologies used with a development team, so I am not 
going to go into these in detail).

The Projects pane should always be left open (as you will see in Figures 2-7 through 2-21). The Projects pane 
provides you with a primary access point for all the project source code and assets (content) in your Java 8 game 
project. The Files pane shows not only the project folder and file hierarchy, but also the data and FXML markup 
(JavaFX) or Java 8 code hierarchy inside each file.

The Navigator pane (bottom) shows the relationships that exist inside your Java code structures. In this case, 
these are the InvinciBagel class, the .start() method, and the .main() method (for further information,  
see Chapter 3).



Chapter 2 ■ Setting Up Your Java 8 IDE: An Introduction to NetBeans 8.0

22

NetBeans 8.0 Is User Interface Design Friendly: UI Design Tools
NetBeans 8.0 also has Design a GUI drag-and-drop design tools for a plethora of platforms, including Java SE, Java 
EE, Java ME, JavaFX, and Java Swing as well as C, C++, PHP, HTML5, and CSS3. NetBeans provides visual editors that 
write the application’s UI code for you, so all you have to do is make the visual on the screen look like what you want 
it to look like in your game application. Because games use the JavaFX new media (game) engine, you will be learning 
about the JavaFX Scene Builder, an advanced FXML-based visual design editor, in Chapter 5 of this book.

JavaFX has the Prism game engine as well as 3D (using OpenGL ES [OpenGL for Embedded Systems]) support, 
so I will be focusing quite a bit on the JavaFX Scene Graph and JavaFX APIs. The assumption here is that you will want 
to build the most advanced Java 8 games possible, and leveraging the JavaFX engine, which is now a part of Java 8 
(along with Lambda Expressions), is going to be the way to accomplish this. The fastest way to develop a game is to 
leverage advanced code and programming constructs that the Java 8 and JavaFX environments generously give you 
for your use in creating cutting-edge applications (in this case, games) that contain powerful new media elements.

NetBeans 8.0 Is not Bug Friendly: Squash Bugs with a Debugger
There is an assumption across all computer programming languages that the negative impact to your programming 
project of a “bug,” or code that does not do exactly what you want it to, increases in magnitude the longer it remains 
unfixed, so bugs must be squashed as soon as they are “born.” NetBeans bug-finding code analysis tools, and 
integrated NetBeans Debugger, and integration with the third-party FindBugs project, which, as you now know from 
experience (Audacity), can be found on the SourceForge web site (http://findbugs.sourceforge.net) (if you want 
the stand-alone version), all supplement the real-time, “as you type” code-correcting and efficiency tools I discussed 
earlier (see the section “NetBeans 8.0 Is Smart: Put Your Code Editing into Hyperdrive”).

Your Java code will not be very complicated until a bit later in the book, so I will cover how these tools work when 
you need to use them, once your knowledge base is a bit more advanced.

NetBeans 8.0 Is a Speed Freak: Optimize the Code with a Profiler
NetBeans also has something called a Profiler, which looks at your Java 8 code while it is running and then tells you 
how efficiently it uses memory and CPU cycles. This allows you to refine your code and make it more efficient in its 
use of key system resources, which is quite important for Java 8 game development, as this will affect the smoothness 
of game play on systems that are not as powerful (e.g., on single- and dual-core CPUs).

This Profiler is a dynamic software analysis tool, as it looks at your Java code while it is running, whereas the 
FindBugs code analysis tool is a static software analysis tool, as it simply looks at your code in the editor, when it is 
not compiled and running in system memory. The NetBeans Debugger will allow you to step through your code while 
it is running, so that tool can be viewed as a hybrid that ranges from a static (editing) to a dynamic (executing) code 
analysis mode.

After you create the foundation for your Java 8 (JavaFX) game engine (in the following sections), you will run 
the Profiler to see how it works inside NetBeans IDE 8.0. I am going to present as many key features of NetBeans as 
possible up front so that you get comfortable with this software.



Chapter 2 ■ Setting Up Your Java 8 IDE: An Introduction to NetBeans 8.0

23

Creating Your Java 8 Game Project: The InvinciBagel
Let’s get down to business and create the foundation for your game. I am going to demonstrate how to create an 
original game so that you can see the process involved in developing a game that does not yet exist, as opposed to 
most game programming books, which replicate games that are already on the market. I got permission from my 
client Ira Harrison-Rubin, cartoonist/author/humorist for the BagelToons franchise, to let readers to see the process 
of creating his InvinciBagel cartoon game during the course of this book.

Click the Quick Launch icon on your taskbar (or double-click the icon on your desktop) to launch NetBeans 8.0, 
and you will see the NetBeans start-up screen, illustrated in Figure 2-2. This screen contains a progress bar  
(in red) and will tell you what is being done to configure the NetBeans IDE for use. This involves loading the various 
components of the IDE into your computer system memory so that they can be used smoothly and in real time 
during development.

Figure 2-2.  Launch NetBeans 8.0, using the Quick Launch icon

After NetBeans IDE 8.0 has been loaded into your system memory, the NetBeans 8.0 start page will be displayed 
on your screen, as shown in Figure 2-3. Click the “x” at the right of the Start Page tab to close this page.



Chapter 2 ■ Setting Up Your Java 8 IDE: An Introduction to NetBeans 8.0

24

This will display what I term the virgin IDE, with no projects active. Enjoy this now, as soon you will be filling this 
IDE with panes for your project components (you can see part of this empty IDE in Figure 2-4, which contains menus 
and shortcut icons and not much else).

Figure 2-3.  Close the Start Page tab, at the top left of the screen, by clicking the “x” at the right of the tab to reveal 
NetBeans IDE 8.0

Figure 2-4.  Showing virgin NetBeans 8.0 IDE (left) and a JavaFX New Project dialog (right)



Chapter 2 ■ Setting Up Your Java 8 IDE: An Introduction to NetBeans 8.0

25

In case you are wondering, the start page displays every time you start the NetBeans IDE, and if you wanted to 
open the Start Page tab later on, perhaps to explore the Media Library section (demos) and tutorials, you can! To 
open the start page at any time, you use the NetBeans IDE 8.0 Help menu and the Start Page submenu. For future 
reference, I usually notate a menu sequence like this: Help ➤ Start Menu.

The first thing that you will want to do in NetBeans IDE 8.0 is create a new InvinciBagel game project! To 
accomplish this, you will use the NetBeans 8.0 New Project series of dialogs. This is one of those helpful Java 
programming features that I mentioned earlier (see the section “NetBeans IDE 8.0 Is Smart: Put Your Editing into 
Hyperdrive”) that creates a bootstrap project with the correct JavaFX libraries, .main() and .start() methods, and 
import statements (for more details, see Chapter 3).

Click the File menu, at the top-left corner of the DE, as displayed in Figure 2-4 (left), and then select New Project 
(the first menu item). Note that to the right of this selection, there is a keyboard shortcut given (Ctrl+Shift+N), in case 
you want to memorize it.

If you want to use this keyboard short-cut to bring up the New Project series of dialogs, hold down the CTRL and 
Shift keys on your keyboard (both at the same time), and while they are depressed (held down), press the N key. This 
will do the same thing as using the File ➤ New Project menu sequence.

The first in the series is the Choose Project dialog, shown in Figure 2-4 (right). Because you are going to use the 
powerful JavaFX new media engine in your game, select JavaFX from the list of programming language categories in 
the Categories pane, and because a game is a type of application, select JavaFX Application from the Projects pane.

Remember that Oracle made JavaFX a part of Java 7 and Java 8, so a JavaFX game is also a Java game, whereas 
before Java 7 (in Java 6), JavaFX was its own separate programming language! The JavaFX engine had to be recoded as 
a Java (7 and 8) API (set of libraries) for it to become a seamless part of the Java programming language. The JavaFX 
API replaces AWT (Abstract Windowing Toolkit) and Swing, and although these older UI design libraries can still be 
used in Java projects, they are normally used only by legacy (older) Java code so that those projects can compile and 
run in Java 7 and 8. You will be compiling and running the new project you are creating here a bit later in this chapter.

Note that there is a Description pane below the other panes that will tell you what your selections will give you. 
In this case, that would be a new Java application with enabled JavaFX features; here, “enabled” indicates that the 
JavaFX API libraries will be included (and started) in the Java application project’s class and methods, as you will soon 
see in the code (for further information on what the code means, see Chapter 3).

Click the Next button to advance to the next dialog in the series, which is the Finding Feature dialog, shown in 
Figure 2-5. This dialog displays a progress bar while it is “Activating JavaFX 2,” which equates to installing the JavaFX 
API libraries in your project code infrastructure. You will find that sometimes JavaFX 8 is still referred to as JavaFX 2 
(2.3 was the latest version of JavaFX before people started using the name JavaFX 8, probably to sync up with Java 8).  
I have also seen discussion of a JavaFX 3, which is now being called JavaFX 8, and because JavaFX is now a part of Java 8,  
I am going to refer to it simply as JavaFX for the duration of this book.

Figure 2-5.  Step 2: Finding Feature dialog, showing the progress bar for the process of activating JavaFX



Chapter 2 ■ Setting Up Your Java 8 IDE: An Introduction to NetBeans 8.0

26

Once the Finding Feature dialog has activated JavaFX for your game project, you will get the Name and 
Location dialog, which is presented in Figure 2-6. Name your project InvinciBagel, and leave the default Project 
Location, Project Folder, JavaFX Platform, and Create Application Class settings the way that NetBeans 8.0 has 
configured them.

Figure 2-6.  Name the project InvinciBagel, and leave the other settings as they are

It is usually a good idea to let NetBeans 8.0 do things for you. As you can see, NetBeans creates the logical  
C:\Users\user\My Documents\NetBeansProjects folder in your user folder and My Documents subfolder for the 
Project Location data field.

For your Project Folder data field, NetBeans again logically creates a subfolder named InvinciBagel, below the 
NetBeansProjects folder, just like you would do yourself.

For the JavaFX Platform drop-down menu, NetBeans 8.0 defaults to the very latest JDK 8, which is also known as 
JDK 1.8, and has the latest JavaFX 8 (which was supposed to be JavaFX 3.0).

Because you are not creating multiple applications that will share libraries, leave the Use Dedicated Folder for 
Storing Libraries check box unchecked. Finally, select Create Application Class, which will be named InvinciBagel 
and will be in the invincibagel package; for the reason, the complete path and class name will be as follows: 
invincibagel.InvinciBagel (following the packagename.ClassName Java naming paradigm and style).

(You will be learning more about packages and classes and methods in the Chapter 3, but you are ultimately 
going to be exposed to some of this information here, as NetBeans 8.0 will be writing some of the bootstrap Java 
code that will provide you with the foundation for your InvinciBagel Java 8 game. I will go over some of the basic 
components of the Java code shown in Figure 2-7, but I am primarily going to focus on the NetBeans IDE 8.0 in this 
chapter and concentrate on the Java 8 programming language in Chapter 3.)



Chapter 2 ■ Setting Up Your Java 8 IDE: An Introduction to NetBeans 8.0

27

As you can see in the figure, NetBeans has written the package statement, seven JavaFX import statements, the 
class declaration, and the .start() and .main() methods. NetBeans 8.0 colors Java key programming statement 
words blue and comments gray. Data values are orange and input/output is green.

Before you can run this bootstrap code, to make sure that NetBeans 8.0 wrote code for you that actually works, 
you will need to compile it into an executable format, which is run in your system memory.

Figure 2-7.  Examine the bootstrap JavaFX code that NetBeans created for you, based on the New JavaFX Application dialog



Chapter 2 ■ Setting Up Your Java 8 IDE: An Introduction to NetBeans 8.0

28

Figure 2-8.  Click the Run menu, at the top of the IDE, and then select Compile File, or press the F9 function key

Compiling Your Java 8 Game Project in NetBeans 8.0
In showing you how to compile your Java 8 code before you run (test) it, I am demonstrating the “long way” here so 
that you are exposed to every step of the compile/run Java 8 code-testing process. Click the Run menu, and then 
select Compile File (the eleventh menu item) to compile your Java code, or use the F9 keyboard shortcut, as indicated 
at the right of the selection, as seen in Figure 2-8. Now your project is ready to run!



Chapter 2 ■ Setting Up Your Java 8 IDE: An Introduction to NetBeans 8.0

29

It is also important to note here that NetBeans will compile the project code when you use the File ➤ Save menu 
sequence (or the CTRL-S keyboard shortcut), so if you were to use the Save feature of the NetBeans IDE right after 
the bootstrap code is created, you would not have to undertake the compilation process that I just showed you, as this 
process is done “automagically,” (not manually) every time you save a game project.

Also shown in the figure, right above the Compile progress bar, is a highlighted a block of code that was visible 
in Figure 2-7 but that I have collapsed, using the minus icon at the left of the code editor pane. You can see three 
uncollapsed minus icons in the middle of the code editor pane (under the InvinciBagel class) as well as three 
collapsed icons at the top of the code editor pane for the two comments and the import statement code block.  
A minus icon turns into a plus icon so that a collapsed code view can be expanded. Now that you have looked at how 
to compile your project in NetBeans as well as how to collapse and expand the views of logical blocks (components)  
of your project code, it is time to run the code.

Running Your Java 8 Game Project in NetBeans 8.0
Now that you have created and compiled your bootstrap Java 8/JavaFX game project, it is time to run or execute  
the bootstrap code and see what it does. You can do this by using the Run ➤ Run Project menu sequence  
(see Figure 2-8), or you can use the shortcut icon at the top of the IDE (resembling a video transport play button), 
displayed in Figure 2-10.

Figure 2-9 illustrates the Compile progress bar, which will appear at the bottom of the IDE during compilation.

Figure 2-9.  The Compile progress bar is shown at the bottom of the screen, along with expand and collapse icon 
functionality



Chapter 2 ■ Setting Up Your Java 8 IDE: An Introduction to NetBeans 8.0

30

Once you run the compiled Java code, a window will open with your software running in it, at the right of the 
screen, as seen in Figure 2-11. Currently, the program uses the popular “Hello World!” sample application.

Figure 2-10.  Click the Run Project shortcut icon (green play button), at the top middle of the IDE (tool tip pop-up shown)

Figure 2-11.  Drag the separator bar upward to reveal the Compile Output area of the IDE (running the application 
seen at right)



Chapter 2 ■ Setting Up Your Java 8 IDE: An Introduction to NetBeans 8.0

31

Click the divider line between the code editor pane and the Output tab, at bottom, and, holding down the 
mouse button, drag this divider line upward, revealing the Output tab contents, as demonstrated in Figure 2-11.

The Output tab will contain different types of output in NetBeans, such as compile operation output from Ant, 
run operation output (shown in the figure), profiler operation output (which you will be exploring in the next section), 
and even output from the application itself.

You may have noticed in Figure 2-10 that the code for this bootstrap Java 8/JavaFX application contains a 
(System.out.println("Hello World!"); Java statement in line 25, so if you wanted to see the application that 
you are currently running print to the Output pane (sometimes referred to in programming circles as the Output 
Console), click the Say “Hello World” button in the “Hello World!” application (running on top of the IDE).

Once you click this button, “Hello World!” will appear in the Output tab, under the red text that says it is 
executing the InvinciBagel.jar file. A .jar (Java Archive) file is the distributable format for your Java application. 
Part of the compile process is creating this file, so if your compiled version works, you can have the .jar file ready to 
distribute if your application design and programming are complete!

A .jar file does not contain your actual Java 8 code, but rather a compressed, encrypted “Java byte stream” 
version of the application, which the JRE can execute and run (like NetBeans 8.0 is doing now). The path that is 
attached to the front of the InvinciBagel.jar file tells you where the compiled .jar file resides and where NetBeans 
is accessing it from currently to run it. On my system this location was C:\Users\user\Documents\NetBeansProjects\
InvinciBagel\dist\run1331700299\InvinciBagel.jar.

Let’s take a look at some of the other Output tab text to see what NetBeans did to get to the point where it could 
run the .jar file for this project. First, the compiler deletes and rebuilds the build-jar-properties file, in the  
\NetBeansProjects\InvinciBagel\build folder, based on the unique attributes of your game application.

Next, Ant creates a \NetBeansProjects\InvinciBagel\dist\ distribution folder to hold project .jar files and 
then, detecting JavaFX usage, launches ant-javafx.jar to add JavaFX capabilities to the Ant build engine, which 
will create the .jar file. Finally, you will see a warning to change the manifest.custom.codebase property from an 
asterisk value (which means “everything”) to a specific value. I may get into the manifest and permissions area of 
application development later in the book, after you are a bit more advanced. JavaFX is then launched, and the  
.jar file is built.

Ant is the build engine, or build tool, that creates your .jar file. Other build engines, such as Maven and Gradle, 
can also be used in NetBeans, because as you now know, NetBeans is extensible!

Ant is used in the Eclipse IDE as well and is an Apache open-source project that has been around for a very long 
time. To learn more about the Ant build system and what it does, visit the Ant web site (http://ant.apache.org).

Next, you will explore the profiling capabilities in NetBeans 8.0, which can analyze your code at runtime and 
let you know how efficiently (or inefficiently) your Java 8 code is running. This is important for a game, especially an 
arcade game or any game that is moving sprites around in real-time on a user’s screen. You will be learning game 
concepts and design in Chapter 6 of this book.

Profiling Your Java 8 Game Project in NetBeans 8.0
To launch the Java 8 code profiling utility, using the Profile menu at the top of the IDE, select Profile Project 
(InvinciBagel) (the first menu item), as illustrated in Figure 2-12, or use the Profile Project shortcut icon, which is 
visible in the collapsed screen view given in Figure 2-13 (you can tell that I collapsed the screenshot by the Java code 
line numbering in the code editor pane, which contains only lines 1 and 38, the first and last numbers in the range;  
I removed lines 2–37, using Photoshop).

http://ant.apache.org/


Chapter 2 ■ Setting Up Your Java 8 IDE: An Introduction to NetBeans 8.0

32

As you can see in both the Profile menu and the Profile Project icon tool tip, at the top of the screen, the keyboard 
shortcut for the Profile Project tool is ALT+F2 (hold down the ALT key on your keyboard, and press the F2 function 
key, at the top left of the keyboard, simultaneously).

Figure 2-12.  Click the NetBeans IDE 8.0 Profile menu, and select the Profile Project (InvinciBagel) menu option

Figure 2-13.  The shortcut icon for the Profile Project utility, with tool tip (screen collapsed)



Chapter 2 ■ Setting Up Your Java 8 IDE: An Introduction to NetBeans 8.0

33

In this dialog, you can select a Quick profile or an Advanced profile, which has graphical instruments that show 
the performance visually. As you can see, this is the option selected as well as the Profile only project classes option 
from the Instrumentation Filter drop-down menu. Leave Use defined Profiling Points selected to get NetBeans 8.0 
to do the maximum amount of profiling work possible. Note as well the Overhead gauge (indicator) at the bottom of 
the dialog, indicating a 50 percent value.

The first time that you run the NetBeans profiling tool, it needs to calibrate your workstation, as every 
workstation will have different characteristics, such as the amount of memory and number of CPU cores, or 
processors.

Figure 2-14.  Set the filter, using the drop-down menu in the Profile Project dialog, and select the Advanced 
(instrumented) output setting

Profiling Your Java 8 Game Application CPU Usage
Using the Profile Project menu item or shortcut icon will open the Profile InvinciBagel (your game project’s name) 
dialog, as shown in Figure 2-14. Let’s click the center CPU button at the left of the dialog, which will put the dialog in 
Analyze Performance (selection characteristics) mode. You will look at profiling memory use a bit later on (see the 
section “Profiling Your Java 8 Game Application Memory Usage”). The Monitor (button) option enables real-time 
thread monitoring, which can be used while you write your Java code.



Chapter 2 ■ Setting Up Your Java 8 IDE: An Introduction to NetBeans 8.0

34

There is also a warning, saying that you should disable dynamic CPU frequency switching (this is typically 
referred to as overclocking), which is a common feature these days.

Because I want to test for slower CPU speeds, I did not bother to do this, as it involves going into the system 
BIOS (Basic Input/Output System) on the workstation motherboard and is not something for beginners to be playing 
around with.

Ultimately, the most thorough way to test a game application is across a wide range of different OSs and hardware 
configurations, but I wanted to show you this profiling feature, as it is a great way to get a good baseline on your 
application performance, which you can then improve on as you refine your code (and then run the profiler again and 
again, comparing the results with the original baseline measurements).

Once you click the OK button, NetBeans IDE 8.0 will calibrate its profiling tool relative to your system hardware 
characteristics, which should not take long at all on a fast, modern-day, multicore workstation.

If you are running the Windows OS (as seen here, in the 64-bit Windows 7 version), you will probably get a 
Windows Firewall has blocked some features of this program Windows Security Alert dialog. You want to have 
all the features of NetBeans 8.0 at your disposal, so let’s look at how to allow access to the Java SE 8 platform in 
Windows next.

Figure 2-15.  The first time you profile, a calibration is performed

Figure 2-15 displays the Calibration Information dialog, which suggests that only NetBeans run on your 
workstation during the calibration process and tells you how to calibrate again in the future (if you change the 
system hardware configuration), using the Profile ➤ Advanced Commands ➤ Manage Calibration Data menu 
sequence.



Chapter 2 ■ Setting Up Your Java 8 IDE: An Introduction to NetBeans 8.0

35

After you allow access to the Java 8 platform SE binary, the NetBeans 8.0 profiling tool can (and will) run and 
will generate basic profiling telemetry results. You will take a closer look at these in the following sections, which 
deal how to analyze profiling results and what they reveal in terms of how your application uses memory and CPU 
resources.

Analyzing the NetBeans IDE 8.0 Game Project CPU Profiling Tool Results
The NetBeans Profiler essentially looks at memory usage and the CPU time used to execute your code. The less 
memory used, and the faster the CPU times (which equates to fewer CPU processing cycles required to execute code), 
the better optimized your application is. The Profiler also looks at code- (software-) related things, such as method 
calls and thread states, which you will be learning about over the course of this book.

Figure 2-16.  Allow Java features to be used by clicking Allow access

Unblocking the Java 8 Platform Binary via the Windows Firewall
If you get the dreaded Blocked Features network dialog, presented in Figure 2-16, select the Allow Java Platform SE 
binary to communicate on Private networks, such as my home or work network check box, and then click the Allow 
access button, which will allow the Java 8 platform SE binary to communicate through the Windows firewall.



Chapter 2 ■ Setting Up Your Java 8 IDE: An Introduction to NetBeans 8.0

36

At the top of the Profiler tab is the Controls section, with Stop (Terminate) Profiled Application, Reset Collected 
Profiling Results Buffer, Garbage Collection, Modify Profiling Session, and VM Telemetry Overview icons.

Below these is the Status section, showing the type of profiling you have selected (in this case, CPU), the 
configuration (Analyze Performance), and the Status (Running).

The Profiling Results section contains icons that open tabs in the code editor section regarding profiling data 
results (reports), and the View section does the same thing for virtual memory (VM) telemetry, threads, and thread 
lock contention. You will be looking at some of these in the next section, when you profile memory usage (you are 
currently profiling CPU usage).

You can save snapshots of various points in time during your code profiling sessions in the Saved Snapshots 
section. The Basic Telemetry section shows statistics regarding the profiling session, including number of methods, 
filter settings, threads running, and memory usage.

Figure 2-17.  Profile’s Basic Telemetry section, at the left of the IDE, under the Profile tab, shows methods, threads, and 
total and used memory

After you run the NetBeans 8.0 Profiler, you will see that a Profiler tab has been added to your Projects, Files, 
and Services tabs, at the left of the IDE, as illustrated in Figure 2-17. You examined these other three tabs earlier in 
the chapter (see the section “NetBeans 8.0 Is Efficient: Organized Project Management Tools”), so let’s explore the 
Profiler tab now.



Chapter 2 ■ Setting Up Your Java 8 IDE: An Introduction to NetBeans 8.0

37

As you can see, you are able to open your code hierarchy, including the .main() method, the .start() method, 
and the .handle() method, and see a visual representation of their percentage of total CPU time used as well as the 
actual CPU time used, in milliseconds, which is the time value that is employed in Java programming for both Java 8 
and JavaFX and even for HTML5, JavaScript, and Android application development.

Finally, as you can see in the Output pane at the bottom of the figure, there is also text output, just like when this 
Output pane is used for displaying the compiled, run, and executed code, showing what the Profiler is doing as well. 
After the “Hello World!” that you generated by clicking your application’s Say “Hello World” button, you can see the 
Profiler agent Initializing, caching classes, and so on. There are a ton of tabs and options in this area of NetBeans, and 
I cannot cover every single one of them in this basic NetBeans overview chapter, so play around with what you see on 
your screen!

Figure 2-18.  NetBeans Profiler output, shown in the cpu tab, at the top right, and the Output tab, at the bottom right

Click the Live Results icon in the Profiling Results section, and open a live profiling result tab, shown in 
Figure 2-18, at the top, labeled with the CPU time (2:12:09 pm).



Chapter 2 ■ Setting Up Your Java 8 IDE: An Introduction to NetBeans 8.0

38

Profiling Your Java 8 Game Application Memory Usage
Let’s take a look at Memory Profiling next. Click the Profile Project icon, and open the Analyze Memory dialog, 
presented in Figure 2-19. As you can see, if you select Record stack trace for allocations, the Profiler uses more 
system overhead.

Figure 2-19.  Select the Memory section of the Profile InvinciBagel dialog and select Record stack trace for allocation

Once the memory profiler is running, use a Window ➤ Profiling ➤ VM Telemetry Overview menu sequence, 
shown in Figure 2-20 (top), to open the VM Telemetry Overview tab (bottom). This tab shows memory allocated  
and memory used. You can hover the mouse over the visual bar to get an exact reading at any point in time.  
In programming terms, hovering a mouse over something will be accessed in your code using “mouse-over.”



Chapter 2 ■ Setting Up Your Java 8 IDE: An Introduction to NetBeans 8.0

39

Figure 2-20.  Use the Window ➤ Profiling menu sequence to access the visual profiling tabs

Check out some of the other visual report tabs in the Window ➤ Profiling menu sequence. Presented in Figure 2-21 
are the Threads tab, showing all 11 threads (see the Basic Telemetry pane, at the left of the screen), including what each thread 
is doing (what code the thread is running), and the VM Telemetry tab, which displays virtual memory usage over time.



Chapter 2 ■ Setting Up Your Java 8 IDE: An Introduction to NetBeans 8.0

40

Figure 2-21.  Use the Window ➤ Profiling menu sequence to access the Threads and VM Telemetry tabs



Chapter 2 ■ Setting Up Your Java 8 IDE: An Introduction to NetBeans 8.0

41

The NetBeans Profiler is something that you learn how to use over time, first through experimentation and then, 
as you become familiar with what Profiler can do, by using it with your own projects as they become increasingly 
complex and observing what your code base does regarding threads, CPU usage, and memory allocation and usage. 
NetBeans Profiler is a powerful and useful tool of this that is going to serve as the code development foundation for 
your Java 8 game development. I included it in this chapter to give you a solid overview, as this knowledge base will 
help you leverage the software, using it to its fullest potential and capabilities.

Clearly, this is an advanced IDE and software development tool that cannot be covered in one short chapter 
(maybe in a book; however, this is not a NetBeans 8.0 games development title), so you will be learning more about 
what NetBeans 8.0 can do for you in just about all the chapters in this book, as NetBeans 8.0 and Java 8 (and JavaFX 8) 
are inexorably intertwined.

Summary
In this second chapter, you learned about NetBeans IDE 8.0, which will serve as the foundation and primary tool for 
your Java 8 game development work process. This IDE is where your Java 8 (and JavaFX 8) code is written, compiled, 
run, tested, and debugged as well as where your new media (image, audio, video, 3D, font, shape, and so on) assets 
are stored and referenced, using your NetBeansProject folder and its subfolders.

You started by taking a look at NetBeans 8.0 and the high-level features that make it the official IDE for Java 8 
and that help programmers develop code quickly, efficiently, and effectively (i.e., make code that is bug free) the first 
time. After this overview, you created your Java 8 game project, using as a model a real-world game project that I am 
working on for a major client.

You went through the New Java Application series of dialogs and created a JavaFX framework for your game, 
which will allow you to use new media assets, such as images, audio, video, and 3D. Then, you explored how to 
compile and run an application, using NetBeans 8.0. You also studied the Output tab and how that is used for 
compiler output, runtime output, and profiling output, which you considered next.

You examined both CPU profiling and memory profiling in NetBeans 8.0; learned how to set up and start up the 
Profile Project tool; and studied some of the output, statistics, and visual reports that the NetBeans Profiler can create 
for you, based on your Java 8 game project.

In the next chapter, I will present an overview of the Java 8 programming language to make sure that you are up to 
speed on how Java 8 works; a Java primer chapter, if you will.



43

Chapter 3

A Java 8 Primer: An Introduction  
to Java 8 Concepts and Principles

Let’s build on the knowledge you gained about NetBeans IDE 8.0 in the previous chapter by exploring the basic 
concepts and principles behind the Java 8 programming language. Java JDK 8 will be the foundation for your Java 
8 games, as well as for your NetBeans IDE 8.0, so it is important that you take the time to study this chapter, a Java 8 
“primer” that gives you an overview of this internationally popular computer (and device) programming language.

You will of course learn about more advanced concepts, such as Lambda Expressions, and about other Java 8 
components, such as the recent JavaFX multimedia engine, as you progress through the book, so be aware that this 
chapter will cover the most foundational Java programming language concepts, techniques, and principles, spanning 
the three major versions of Java SE currently in widespread use today, on computers, iTVs, and handheld devices.

These versions of Java, used by billions of users, include Java 6, which is used in the 32-bit Android 4.x OS and 
applications; Java 7, which is used in the 64-bit Android 5.x OS and applications; and Java 8, which is used across 
many popular OSs, such as Microsoft Windows, Apple OS X, Oracle Solaris, and a plethora of popular Linux “distros,” 
or distributions (custom Linux OS versions, such as SUSE, Ubuntu, Mint, Mandrake, Fedora, and Debian).

You will start with the easiest concepts, the highest level of Java, and progress to the more difficult ones, the 
guts of the Java programming constructs. You will begin, with a study of Java syntax, or lingo, including what Java 
keywords are, how Java delimits its programming constructs, and how to comment your code. Examining this first 
will give you a head start at being able to read Java code, as it is important to be able to discern the Java code from the 
commentary regarding that code (which is usually written by the author of the Java code using comments).

Then, you will consider the top-level concept of APIs, as well as what a package is, and how you can import and 
use the preexisting code that is provided by Java packages. These Java packages are a part of the Java 8 API, and it is 
important to note that you can create custom Java packages of your own, containing your games or applications.

After that, you will consider the constructs that are held inside of these Java packages, which are called Java 
classes. Java classes are the foundation of Java programming, and can be used to build your applications (in this case, 
your Java 8 games). You will learn about the methods, variables, and constants that these classes contain, as well as 
what superclasses and subclasses are, and what nested classes and inner classes are, and how to utilize them.

Finally, you will discover what Java objects are, and learn how they form the foundation of Object Oriented 
Programming (OOP). You will also come to know what a constructor method is, and how it creates the Java 
object, by using a special kind of method called a constructor method that has the same name as the class that it is 
contained in. Let’s get started—we have a lot of ground to cover!

The Syntax of Java: Comments and Code Delimiters
There are a couple of things regarding syntax, meaning how Java writes things in its programming language, that you 
need to consider right off of the bat. These primary syntax rules are there to allow the Java compiler to understand 
how you are structuring your Java code. Java compilation is the part of the Java programming process, in which the 



Chapter 3 ■ A Java 8 Primer: An Introduction to Java 8 Concepts and Principles 

44

JDK compiler (program) turns your Java code into bytecode that is executed or run by a Java Runtime Engine (JRE). 
This JRE, in this case it is JRE 8, is installed on your end user’s computer system. The Java compiler needs to know 
where your Java code blocks begin and end, where your individual Java programming statements or instructions 
begin and end within those Java code blocks, and which parts of your code are Java programming logic, and which 
parts are comments to yourself, or comments (notes) to other members of your game project programming team.

Let’s start with comments, as this topic is the easiest to grasp, and you have already seen comments in your 
InvinciBagel game bootstrap Java code, in Chapter 2. There are two ways to add comments into Java code: single-line, 
also referred to as “in-line,” comments, which are placed after a line of Java code logic, and multiple--line, or “block,” 
comments, which are placed before (or after) a line of Java code or a block of Java code (a Java code structure).

The single-line comment is usually utilized to add a comment regarding what that line of Java logic, which I like 
to call a Java programming “statement,” is doing, that is, what that line of Java code is there to accomplish within your 
overall code structure. Single-line comments in Java start with the double forward slash sequence. For instance, if 
you wanted to comment one of the import statements in the InvinciBagel bootstrap code that you created in Chapter 2, 
you would add double forward slashes after the line of code. This is what your Java code would look like once it has 
been commented (see also Figure 3-1, bottom right):
 
import javafx.stage.Stage // This line of code imports the Stage class from JavaFX.stage package 

Figure 3-1.  Multiline comments ( first five lines of code, at the top) and single-line comments (last three lines of code, at 
the bottom)

Next, let’s take a look at multiline comments, which are shown at the top of Figure 3-1, above the package 
statement (which you will be learning about in the next section). As you can see, these Java block comments are done 
differently, using a single forward slash next to an asterisk to start the comment and the reverse of that, an asterisk 
next to a single forward slash, to end the multi-line comment.

As you can see in the InvinciBagel.java code editing tab in NetBeans 8.0, just as I lined up the single-line 
comments to look pretty (cool) and organized, so too the Java convention in block commenting is to line up the 
asterisks, with one as the beginning comment delimiter and one as the ending comment delimiter.



Chapter 3 ■ A Java 8 Primer: An Introduction to Java 8 Concepts and Principles 

45

Definition■■  A  “convention” in Java programming is the way that most, if not all, Java programmers will implement a 
Java construct. In this case, this is the way that the Java code block commenting is styled.

There is a third type of comment, called a Javadoc comment, which you will not be using in your Java 8 game 
development, as your code is intended to be used to create a game, and not to be distributed to the public. If you were 
going to write a Java game engine for use by others to create games, that is when you would use Javadoc comments to 
add documentation to your Java 8 game engine. A Javadoc comment can be used by the javadoc.exe tool in the JDK 
to generate HTML documentation for the Java class containing Javadoc comments, based on the text content that you 
put inside the Javadoc comment.

A Javadoc comment is similar to a multiline comment, but it uses instead two asterisks to create the opening 
Javadoc comment delimiter, as shown here:
 
/**  This is an example of a Java Documentation (Javadoc) type of Java code comment.
     This is a type of comment which will automatically generate Java documentation!
*/
 

If you wanted to insert a comment right in the middle of your Java statement or programming structure  
(which you should never do as a professional Java programmer), use the multiline comment format, like so:
 
import  /* This line of code imports the Stage class */  javafx.stage.Stage;
 

This will not generate any errors, but would confuse the readers of this code, so do not comment your code in 
this way. The following single line comment way of commenting this code, using the double forward slash, would, 
however, generate compiler errors in NetBeans 8.0:
 
import  // This line of code imports the Stage class  javafx.stage.Stage
 

Here, the compiler will see only the word import, as the single-line comment goes to the end of the line, 
compared with the multiline comment, which is specifically ended using the block comment delimiter sequence 
(asterisk and a forward slash). So, the compiler will throw an error for this second improperly commented code, 
essentially asking, “Import what?”

Just as the Java programming language uses the double forward slash and slash-asterisk pairing to delimit the 
comments in your Java code, so too a couple of other key characters are used to delimit Java programming statements 
as well as entire blocks of Java programming logic (I often call these Java code structures).

The semicolon is used in Java (all versions) to delimit or separate Java programming statements, such as the 
package and import statements seen in Figure 3-1. The Java compiler looks for a Java keyword, which starts a Java 
statement, and then takes everything after that keyword, up to the semicolon (which is the way to tell the Java 
compiler, “I am done coding this Java statement”), as being part of the Java code statement. For instance, to declare 
the Java package at the top of your Java application, you use the Java package keyword, the name of your package, and 
then a semicolon, as follows (see also Figure 3-1):
 
package invincibagel;
 

Import statements are delimited using the semicolon as well, as can be seen in the figure. The import statement 
provides the import keyword, the package and class to be imported, and, finally, the semicolon delimiter, as shown  
in the following Java programming statement:
 
import javafx.application.Application;
 



Chapter 3 ■ A Java 8 Primer: An Introduction to Java 8 Concepts and Principles 

46

Next, you should take a look at the curly { braces ({. . .}) delimiter, which, like the multiline comment delimiter, 
has an opening curly brace, which delimits (that is, which shows a compiler) the start of a collection of Java 
statements, as well as a closing curly brace, which delimits the end of the collection of Java programming statements. 
The curly braces allow you to use multiple Java programming statements inside a number of Java constructs, 
including inside of Java classes, methods, loops, conditional statements, lambda expressions, and interfaces, all of 
which you will be learning about over the course of this book.

As illustrated in Figure 3-2, Java code blocks delimited using curly braces can be nested (contained) inside of 
each other, allowing far more complex Java code constructs. The first (outermost) code block using curly braces is 
the InvinciBagel class, with other constructs then nested as follows: the start() method, the .setOnAction() method, 
and  the handle() method. You will be examining what all this code does as this chapter progresses. What I want you 
to visualize now (with the help of the red squares in Figure 3.2) is how the curly braces are allowing your methods 
(and class) to define their own code blocks (structures), each of which is a part of a larger Java structure, with the 
largest Java structure being the InvinciBagel.java class itself. Note how each opening curly brace has a matching 
closing curly brace. Note as well the indenting of the code, such that the innermost Java code structures are indented 
the farthest to the right. Each block of code is indented by an additional four characters or spaces. As you can see, 
the class is not indented (0), the start() method is 4 spaces in, the .setOnAction() method is 8 spaces in, and the 
handle() method is 12 spaces in. NetBeans 8.0 will indent each of your Java code structures for you! Also notice that 
NetBeans 8.0 draws very fine (gray) indentation guide lines in the IDE so that you can line up your code structures 
visually, if you prefer.

Figure 3-2.  Nested Java code blocks for the InvinciBagel class, start method, setOnAction method, and handle method

The Java code inside each of the red squares begins with a curly brace and ends with a curly brace. Now that you 
are familiar with the various Java 8 code commenting approaches, as well as how your Java 8 game programming 
statements need to be delimited, both individually and as Java code blocks, you will next study the various Java code 
structures themselves—how they are used, what they can do for your applications and games, and which important 
Java keywords are employed to implement them.



Chapter 3 ■ A Java 8 Primer: An Introduction to Java 8 Concepts and Principles 

47

Java APIs: Using Packages to Organize by Function
At the highest level of a programming platform, such as Google’s 32-bit Android 4, which uses Java SE 6; 64-bit 
Android 5, which uses Java SE 7; and the current Oracle Java SE platform, which was recently released as Java SE 
8, there is a collection of packages that contain classes, interfaces, methods, and constants and that together form 
the API. This collection of Java code (in this case, the Java 8 API) can be used by application (in this case, game) 
developers to create professional-level software across many OSs, platforms, and consumer electronics devices, such 
as computers, laptops, netbooks, notebooks, tablets, iTV sets, game consoles, smartwatches, and smartphones.

To install a given version of an API level, you install the SDK (Software Development Kit). The Java SDK has a 
special name, the JDK (Java Development Kit). Those of you who are familiar with Android (Java SE on top of Linux) 
OS development know that a different API level is released every time a few new features are added. This is because 
these new hardware features need to be supported, not because Google’s executives feel like releasing a new SDK 
every few months. Android has 24 different API levels, whereas Java SE has only eight, and only three of Java’s API 
levels (Java 6, Java 7, Java 8) are in use currently.

Java SE 6 is used with Eclipse ADT (Android Developer Tools) IDE to develop for 32-bit Android (versions 1.5 
through 4.5); Java SE 7 is used with IntelliJ IDEA to develop for 64-bit Android (version 5.0 and later); and Java 8 is 
used with the NetBeans IDE to develop for JavaFX and Java 8 across the Windows, Mac OS X, Linux, and Oracle Solaris 
OSs. I have three different workstations that are optimized for each of these Java API platforms and IDE software 
packages so that I can develop applications for Android 4 (Java 6), Android 5 (Java 7), and JavaFX (Java 8) at the same 
time. Fortunately, you can get a powerful Windows 8.1 hexacore or octacore 64-bit AMD workstation on PriceWatch.
com for a few hundred dollars!

Besides API level (the SDK you installed and are using), the highest-level construct in the Java programming 
language is the package. A Java package uses the package keyword to declare the application’s package at the top of 
your Java code. This must be the first line of code declared, other than comments (see Figure 3-1; see also Chapter 2). 
The New Project series of dialogs in NetBeans that you used in Chapter 2 will create your package for you and will 
import other packages that you will need to use, based on what you want to do in your application. In this case, these 
are JavaFX packages, so you can use the JavaFX new media engine.

As you may have ascertained from the name, a Java package collects all the Java programming constructs. These 
include classes, interfaces, and methods that relate to your application, so the invinciBagel package will contain all your 
code, as well as the code that you imported to work with your code, to create, compile, and run the InvinciBagel game.

A Java package is useful for organizing and containing all your own application code, certainly, but it is even 
more useful for organizing and containing the SDK’s (API’s) Java code, which you will use, along with your own Java 
programming logic, to create your Java 8 applications. You can use any of the classes that are part of the API that you 
are targeting by using the Java import keyword, which, in conjunction with the package and class that you want to 
use, constitutes an import statement.

The import statement begins with the import keyword, followed by the fully qualified class name, which is the 
package name, any subpackage name, and the class name as a complete naming reference path (the full proper 
name for the class). A semicolon terminates an import statement. As you have already seen in Figure 3-1, the import 
statement used to import the JavaFX EventHandler class from the javafx.event package should look just like this:
 
import javafx.event.EventHandler;
 

The import statement tells the Java compiler that you will be using methods (or constants) from the class that is 
referenced, using the import keyword, as well as which package the class is stored in. If you use a class, method, or 
interface in your own Java class, such as the InvinciBagel class (see Figure 3-2), and you have not declared the class 
for use, using the import statement, the Java compiler will throw an error until you add the required import statement 
at the top of the class (after the Java package declaration statement, and before the Java class declaration statement).

http://pricewatch.com/
http://pricewatch.com/


Chapter 3 ■ A Java 8 Primer: An Introduction to Java 8 Concepts and Principles 

48

Note■■  I t is possible to use, instead of the Java import keyword, the fully qualified class name, that is, to preface the 
class name with the package name, right inside your Java code. Convention dictates using the import statement; how-
ever, line 20 in Figure 3-2 could be written as javafx.scene.control.Button btn = new javafx.scene.control.
Button(); if you wanted to buck standard Java programming convention.

Java Classes: Logical Java Constructs to Build On
The next logical Java programming construct beneath the package level is the Java class level, as you saw in the import 
statement, which references both the package that contains the class and a class itself. Just as a package organizes all 
the related classes, so too a class organizes all its related methods, variables, and constants and, sometimes, other 
nested classes.

Thus, the Java class is used to organize your Java code at the next logical level of functional organization, and so 
your class will contain Java code constructs that add functionality to your application. These may include methods, 
variables, constants, nested classes, or inner classes.

Java classes can also be used to create Java objects. Java objects are constructed, using your Java class, and have 
the same name as the Java class and as that class’s constructor method.

As you saw in Figure 3-2, you declare your class, using a Java class keyword, along with a name for your class. You 
can also preface the declaration with Java modifier keywords, which you will be studying later in this chapter (see the 
section “Java Modifier Keywords: Access Control and More”). Java modifier keywords are always placed before (or in 
front of) the Java class keyword, using the following format:
 
<modifier keywords> class <your custom classname goes here>
 

One of the powerful features of Java classes is that they can be used to modularize your Java game code so 
that your core game application features can be a part of a high-level class that can be subclassed to create more 
specialized versions of that class. Once a class has been subclassed, it becomes a superclass, in Java class hierarchy 
terminology. A class will always subclass a superclass using a Java extends keyword. If a class does not extend a given 
superclass in this way, then it automatically extends the Java masterclass: java.lang.Object. This is so that every class 
in Java can create an object by implementing a constructor method.

Using a Java extends keyword tells the compiler that you want the superclass’s capabilities and functionality 
added (extended) to your class, which, once it uses this extends keyword, becomes a subclass. A subclass extends the 
core functionality that is provided by the superclass. To extend your class definition to include a superclass, you add to 
(or extend, no pun intended) your existing class declaration, using the following format:
 
<modifier keywords> class <your custom classname> extends <superclass>
 

When you extend a superclass with your class, which is now a subclass of that superclass, you can use all the 
superclass’s features (nested classes, inner classes, methods, variables, constants) in your subclass, without having 
them all explicitly written (coded) in the body of your class, which would be redundant (and disorganized).



Chapter 3 ■ A Java 8 Primer: An Introduction to Java 8 Concepts and Principles 

49

Note■■  I f any of the data fields or methods in the superclass that you are extending (or, if you prefer, subclassing) have 
been declared using the private access control keyword, those variables (or constants) and methods are reserved for use 
only by (or within) that superclass, and thus will not be accessible to your subclass. The same rules apply to nested and 
inner classes; these class structures cannot use any code declared as private in the Java constructs that contain them  
(or that are above them, if you will).

The body of your class is coded inside the curly braces (see Figure 3-2, outermost red box), which follow your 
class (and javafx.application.Application superclass, in this case) declaration. This is why you learned about Java 
syntax first, and you are building on that with the class declaration and the Java syntax that holds the class definition 
(variables, constants, methods, constructor, nested classes) constructs.

As you can see in the figure, the InvinciBagel class extends an Application superclass from the JavaFX package. 
The inheritance diagram (a tool I will be using throughout the book to show you where things come from in the 
overall Java and JavaFX API schemas) for your current superclass-to-subclass hierarchy will therefore look like this:
 
> java.lang.Object
  > javafx.application.Application
    > invincibagel.InvinciBagel
 

By extending the javafx.application package and its Application class, you will give the InvinciBagel class 
everything it needs to host (or run) the JavaFX application. The JavaFX Application class “constructs” an Application 
object so that it can use system memory; call an .init() method, to initialize anything that may require initializing; and 
call a .start() method (see Figure 3-2, second-outermost red box), which puts things into place that will ultimately be 
needed to fire up (start) an InvinciBagel Java 8 game application.

When the end user finishes using the InvinciBagel game application, the Application object, created by 
the Application class, using the Application() constructor method, will call its .stop() method and remove your 
application from system memory, thus freeing up that memory space for other uses by the your end-users. You will 
be learning about Java 8 methods, constructors, and objects soon, as you are progressing from the high-level package 
and class constructs, to lower-level method and object constructs, and so you are moving from a high-level overview 
to lower levels. You may be wondering if Java classes can be nested inside each other, that is, if Java classes contain 
other Java classes. The answer is yes, they certainly can (and do)! Let’s take a look at the concept of Java nested  
classes next.

Nested Classes: Java Classes Living Inside Other Classes
A nested class in Java is a class that is defined inside of another Java class. A nested class is part of the class in which 
it is nested, and this nesting signifies that the two classes are intended to be used together in some fashion. There 
are two types of nested classes: static nested classes, which are commonly referred to simply as nested classes, and 
nonstatic nested classes, which are commonly referred to as inner classes.

Static nested classes, which I will refer to as nested classes, are used to create utilities for use with the class that 
contains them, and are sometimes used only to hold constants for use with that class. Those of you who develop 
Android applications are very familiar with nested classes, as they are quite commonly employed in the Android API, 
to hold either utility methods or Android constants, which are used to define things such as screen density settings, 
animation motion interpolation curve types, alignment constants, and user interface element scaling settings. If you 
are looking for an understanding regarding the concept of static, it can be thought of as fixed, or not capable of being 
changed. A photograph is a static image, whereas video is not static. We’ll look at this concept often during this book.



Chapter 3 ■ A Java 8 Primer: An Introduction to Java 8 Concepts and Principles 

50

A nested class uses what is commonly referred to in Java as dot notation to reference the nested class “off of” 
its master, or parent, containing class. For instance, MasterClass.NestedClass would be the referencing format that 
would be used to reference a nested class via its master class (containing class) name, using generic class type names 
here. If you created an InvinciBagel SplashScreen nested class to draw the splash screen for your Java game, it would 
be referenced in your Java code as InvinciBagel.SplashScreen, using this Java 8 dot notation syntax.

Let’s take a look at, for example, the JavaFX Application class, which contains a Parameters nested class. This 
nested class encapsulates, or contains, the parameters that you can set for your JavaFX application. Thus, this 
Application.Parameters nested class would be a part of the same javafx.application package as your Application 
class and would be referenced as javafx.application.Application.Parameters, if you were using an import statement.

Similarly, the constructor method would be written as Application.Parameters(), because the constructor 
method must have the exact same naming schema as the class that it is contained in. Unless you are writing code for 
other developers, which is when nested classes are most often used (such as the JavaFX Application class or the many 
nested utility or constant provider classes which you will find in the Android OS), you are far more likely to utilize 
non-static nested classes (commonly referred to as Java inner classes).

A nested class can be declared by using the Java static keyword. A Java keyword is also sometimes called a Java 
modifier. Therefore, if you were to do an InvinciBagel.SplashScreen nested class, the InvinciBagel class and its 
SplashScreen nested class declaration (Java 8 programming structure) would look something like this:
 
public class InvinciBagel extends Application {
    static class SplashScreen {
        // The Java code that creates and displays your splashscreen is in here
    }
}
 

It is important to note if you use, for example, import javafx.application.Application.Parameters to import 
a nested class, you can reference that nested class within your class, using just the Parameters class name, rather than 
the full class name path that shows your class’s code how to travel through a parent class to its nested class via the 
Application.Parameter (ClassName.NestedClassName) dot notation syntax reference.

As you will see many times throughout this book, Java methods can also be accessed using the dot notation. So, 
instead of using ClassName.NestedClassName.MethodName, you could, if you had used the import statement to 
import this nested class, simply use NestedClassName.MethodName. This is because the Java import statement has 
already been used to establish the full reference path to this nested class, through its containing class, and so you do 
not have to provide this full path reference for the compiler to know what code construct you are referring to!

Next, let’s take a look at nonstatic nested classes, which are usually referred to as Java inner classes.

Inner Classes: Different Types of Nonstatic Nested Classes
Java inner classes are also nested classes, but they are not declared using the static keyword modifier before the class 
keyword and class name, which is why they are called nonstatic nested classes. Thus, any class declaration that is 
inside another class that does not use the static (keyword) modifier would be termed an inner class in Java. There are 
three types of inner classes in Java: member class, local class, and anonymous class. In this section, you will discover 
what the differences are between these inner classes, as well as how they are implemented .

Like nested classes, member classes are defined within the body of the containing (parent) class. You can 
declare a member class anywhere within the body of the containing class. You would declare a member class if you 
wanted to access data fields (variables or constants) and methods belonging to the containing class without having to 
provide a path (via dot notation) to the data field or method (ClassName.DataField or ClassName.Method).  
A member class can be thought of as a nested class that does not use the Java static modifier keyword.

Whereas a nested class is referenced through its containing, or top-level, class, using a dot notation path to the 
static nested class, a member class, because it is not static, is instance specific, meaning that objects (instances) 
created via that class can be different from each other (an object is a unique instance of a class), whereas a static 



Chapter 3 ■ A Java 8 Primer: An Introduction to Java 8 Concepts and Principles 

51

(fixed) nested class will only have one version, which does not change. For instance, a private inner class can only be 
used by a parent class that contains it. The SplashScreen inner class coded as a private class would look something 
like this:
 
public class InvinciBagel extends Application {
    private class SplashScreen {
        // The Java code that creates and displays your splashscreen is in here
    }
}
 

Because this class is declared as private, it is for your own application usage (the containing class’s usage, 
specifically). Thus, this would not be a utility or constant class for use by other classes, applications, or developers. 
You can also declare your inner class without using the private access modifier keyword, which would look like the 
following Java programming construct:
 
public class InvinciBagel extends Application {
    class SplashScreen {
        // The Java code that creates and displays your splashscreen is in here
    }
}
 

This level of access control is called package or package private and is the default level of access control 
applied to any class, interface, method, or data field that is declared without using one of the other Java access control 
modifier keywords (public, protected, private). This type of inner class can be accessed not only by the top-level, 
or containing, class, but also by any other class member of the package that contains that class. This is because the 
containing class is declared public, and the inner class is declared package private. If you want an inner class to be 
available outside the package, you declare it to be public, using the following Java code structure:
 
public class InvinciBagel extends Application {
    public class SplashScreen {
        // The Java code that creates and displays your splashscreen is in here
    }
}
 

You can also declare an inner class protected, meaning that it can only be accessed by any subclasses of the 
parent class. If you declare a class inside a lower-level Java programming structure that is not a class, such as a method 
or an iteration control structure (commonly called a loop), it would technically be referred to as a local class. A local 
class is only visible inside that block of code; thus, it does not allow (or make sense to use) class modifiers, such as 
static, public, protected, or private. A local class is used like a local variable, except that it is a complex Java coding 
construct rather than a simple a data field value that is used locally.

Finally, there is a type of inner class called an anonymous class. An anonymous class is a local class that has not 
been given a class name. You are likely to encounter anonymous classes far more often than you are local classes. 
This is because programmers often do not name their local classes (making them anonymous classes); the logic local 
classes contain is only used locally, to their declaration, and so these classes do not really need to have a name—they 
are only referenced internally to that block of Java code.

Java Methods: Core Java Function Code Constructs
Inside classes, you generally have methods and the data fields (variables or constants) that these methods use. 
Because we are going from outside to inside, or top-level structures to lower-level structures, I will cover methods 
next. Methods are sometimes called functions in other programming languages. Figure 3-2 provides an example 



Chapter 3 ■ A Java 8 Primer: An Introduction to Java 8 Concepts and Principles 

52

of the .start() method, showing how the method holds the programming logic that creates a basic “Hello World!” 
application. The programming logic inside the method uses Java programming statements to create a Stage object 
and a Scene object, place a button on the screen in a StackPane object, and define event-handling logic, such that 
when the button is clicked, the bootstrap Java code writes the “Hello World!” text to your NetBeans IDE output area.

The method declaration starts with an access modifier keyword, either public, protected, private, or package 
private (which is designated by not using any access control modifier at all). As you can see in the figure, the .start() 
method has been declared, using the public access control modifier.

After this access control modifier, you will need to declare the method’s return type. This is the type of data that 
the method will return after it is called, or invoked. Because the .start() method performs setup operations but does 
not return a specific type of value, it uses the void return type, which signifies that the method performs tasks but does 
not return any resulting data to the calling entity. In this case, the calling entity is the JavaFX Application class, as the 
.start() method is one of the key methods (the others being the .stop() and .init() methods) provided by that class to 
control the life cycle stages of a JavaFX application.

Next, you will supply the method name, which, by convention (programming rules), should start with a 
lowercase letter (or word, preferably a verb), with any subsequent (internal) words (nouns or adjectives) starting 
with a capital letter. For instance, a method to display the splash screen would be named .showSplashScreen() or 
.displaySplashScreen() and because it does something but does not return a value, would be declared using  
this code:
 
public void displaySplashScreen() { Java code to display splashscreen goes in here }
 

If you need to pass parameters, which are named data values that have to be operated on within the body of the 
method (the part inside the curly braces), these go inside the parentheses that are attached to the method name. In 
Figure 3-2 the .start() method for your bootstrap “HelloWorld!” JavaFX application receives a Stage object, named 
primaryStage, using the following Java method declaration syntax:
 
public void start(Stage primaryStage) { bootstrap Java code to start Application goes in here }
 

You can provide as many parameters as you like, using the data type and parameter name pairs, with each pair 
separated by a comma. Methods can also have no parameters, in which case the parameter parentheses are empty, 
with the opening and closing parentheses right next to each other, for example, .start(), and .stop().

The programming logic that defines your method will be contained in the body of the method, which, as 
discussed previously, is inside the curly braces that define the beginning and the end of the method. The Java 
programming logic that is inside methods can include variable declarations, program logic statements, and iterative 
control structures (loops), all of which you will be leveraging to create your Java game.

Before moving on, let’s focus on one other Java concept that applies to methods, namely, overloading Java 
methods. Overloading a Java method means using the same method name, but different parameter list configurations. 
What this means is that, if you have defined more than one method with the same name, Java can figure out which of 
your (overloaded) methods to use by looking at the parameters that are being passed into the method being called 
and then using that parameter list to discern which of the methods (that have the same name) to use by matching the 
parameter list data types and names and the order in which they appear. Of course, your parameter list configurations 
must all be unique for this Java method overloading feature to work correctly.

You will be learning how to use and how to code Java methods over the course of this book, beginning in Chapter 4, 
so I am not going to spend too much time on them here, other than to define what they are and the basic rules for how 
they are declared, and used, inside Java classes.

One specialized kind of method that I am going to cover in detail,  however, is the constructor method. This is a 
type of method that can be used to create objects. Java objects are the foundation of OOP, so you will be taking a look 
at constructor methods next, as it is important to do so before learning about the Java object itself, which you will 
study later in the chapter (see the section “Java Objects: Virtual Reality, Using Java Constructs“).



Chapter 3 ■ A Java 8 Primer: An Introduction to Java 8 Concepts and Principles 

53

Creating a Java Object: Invoking a Class’s Constructor Method
A Java class can contain a constructor method with the exact same name as the class that can be used to create Java 
objects using that class. A constructor method uses its Java class like a blueprint to create an instance of that class in 
memory, which creates a Java object. A constructor method will always return a Java object and thus does not use any 
of the Java return types that other methods will typically use (void, String, and so on). A constructor method is invoked 
by using the Java new keyword, because you are creating a new object.

You can see an example of this in the bootstrap JavaFX code shown in Figure 3-2 (ll. 20, 28, and 30), where new 
Button, StackPane, and Scene objects are created, respectively, by using the following object declaration, naming, 
and creation Java code structure:
 
<Java class name> <your object instance name> = new <Java constructor method name> <semicolon>
 

The reason that a Java object is declared in this way, using the class name, the name of the object you are 
constructing, the Java new keyword, and the class’s constructor method name (and parameters, if any) in a single 
Java statement terminated with a semicolon, is because a Java object is an instance of a Java class.

Let’s take a look at, for example, the Button object creation from line 20 of your current Java code. Here, via the 
part of the Java statement on the left-hand side of the equals operator, you are telling the Java language compiler that 
you want to create a Button object named btn, using the JavaFX Button class as the object blueprint. This declares the 
Button class (object type) and gives it a unique name.

The first part of creating the object is thus called the object declaration. The second part of creating your Java 
object is called the object instantiation, and this part of the object creation process, seen on the right-hand side of the 
equals operator, involves a constructor method and the Java new keyword.

To instantiate a Java object, you invoke the Java new keyword, in conjunction with an object constructor method 
call. Because this takes place on the right-hand side of the equals operator, the result of the object instantiation is 
placed in the declared object, which is on the left-hand side of the Java statement. As you will see a bit later in the 
chapter, when I discuss operators (see the section “Java Operators: Manipulating Data in the Application”), this is 
what an equals operator does, and a useful operator it is.

This completes the process of declaring (class name), naming (object name), creating (using a new keyword), 
configuring (using a constructor method), and loading (using the equals operator) your very own custom Java object.

It is important to note that the declaration and instancing parts of this process can be coded using separate lines 
of Java code as well. For instance, the Button object instantiation (see Figure 3-2, l. 20) could be coded as follows:
 
Button btn;
btn = new Button();
 

This is significant, because coding an object creation in this way allows you to declare an object at the top of your 
class, where each of the methods inside the class that use or access these objects can see the object. In Java, unless 
declared otherwise, using modifiers, an object or data field is only visible inside the Java programming construct 
(class or method) in which it is declared.

If you declare an object inside your class, and therefore outside all the methods contained in the class, then all 
the methods in your class can access (use) that object. Similarly, anything declared inside a method is local to that 
method and is only visible to other members of that method (Java statements inside the method scope delimiters). If 
you wanted to implement this separate object declaration (in the class, outside the methods) and object instantiation 
(inside the .start() method) in your current InvinciBagel class, the first few lines of Java code for your InvinciBagel 
class would change to look like the following Java programming logic:
 
public class InvinciBagel extends Application {
     Button btn;
     @Override
     public void start(Stage primaryStage) {
        btn = new Button();



Chapter 3 ■ A Java 8 Primer: An Introduction to Java 8 Concepts and Principles 

54

        btn.setText("Say 'Hello World'");
        // The other programming statements continue underneath here
     }
}
 

When the object declaration and instantiation are split up, they can be placed inside (or outside) methods as 
needed for visibility. In the preceding code, other methods of your InvinciBagel class could call the .setText() method 
call shown without the Java compiler’s throwing an error. The way the Button object is declared in Figure 3-2, only the 
.start() method can see the object, and so only the .start() method can use this btn.setText() method call.

Creating a Constructor Method: Coding an Object’s Structure
A constructor method is more a method for creating objects in system memory, whereas other methods (or functions, 
if using a different programming language) are usually used to perform calculation or processing of one type or 
another. The constructor method’s use in creating Java objects in memory, rather than performing some other 
programming function, is evidenced by the use of the Java new keyword, which creates a new object in memory. For 
this reason, a constructor method will define the structure of an object as well as allow the calling entity to populate 
the object structure with custom data values, using the constructor method’s parameter list.

You will create a couple of sample constructor methods in this section to learn the basics of how this is done as 
well as what a constructor method usually contains. Let’s say you are creating an InvinciBagel object for your game, 
so you declare a public InvinciBagel() constructor method, using the following Java code structure:
 
public InvinciBagel() {
    int lifeIndex = 1000;  // Defines units of lifespan
    int hitsIndex = 0;    //  Defines units of damage ("hits" on the object)
    String directionFacing = "E";        // Direction that the object is facing
    Boolean currentlyMoving = false;  //  Flag showing if the object is in motion
}
 

This constructor method, when called using an InvinciBagel mortimer = new InvinciBagel(); Java method 
call, creates an InvinciBagel object named mortimer, with 1,000 units of life and no hits, that is facing east and that is 
not currently moving.

Next, let’s explore the concept of overloading the constructor method, which you learned about earlier  
(see the section “Java Methods: Java Core Function Code Constructs”), and create another constructor method that 
has parameters that allow you to define the lifeIndex and directionFacing variables of the InvinciBagel object while 
you are creating it. This constructor method looks like this:
 
public InvinciBagel(int lifespan, String direction) {
    int lifeIndex;
    int hitsIndex;
    String directionFacing = null;
    Boolean currentlyMoving = false;
    lifeIndex = lifespan;
    directionFacing = direction;
}
 



Chapter 3 ■ A Java 8 Primer: An Introduction to Java 8 Concepts and Principles 

55

In this version the lifeIndex and hitsIndex variables at the top are initialized to 0, the default value for an 
integer, so you do not have to use lifeIndex = 0 or hitsIndex = 0 in the code. The Java programming language 
accommodates method overloading, so if you use an InvinciBagel bert = new InvinciBagel(900, "W"); method 
call to instantiate the InvinciBagel object, the correct constructor method will be used to create the object. The 
InvinciBagel object named bert would have a lifeIndex of 900 units of life and no hits on its life, would be facing 
West, and would not be currently moving.

You can have as many (overloaded) constructor methods as you like, so long as they are each 100 percent unique. 
This means that overloaded constructors must have different parameter list configurations, including parameter list 
length (the number of parameters) and parameter list types (order of data types). As you can see, it is the parameter 
list (length, data types, order) that allows a Java compiler to differentiate overloaded methods from one another.

Java Variables and Constants: Values in Data Fields
The next level down (progressing from API, to package, to class, to method, to the actual data values that are being 
operated on in Java classes and methods) is the data field. Data values are held inside something called a variable; if 
you fix, or make permanent, the data, it is called a constant. A constant is a special type of variable (which I will cover 
in the next section), because declaring a constant correctly is a bit more involved (advanced) than declaring a Java 
variable.

In the Java lingo, variables declared at the top of a class are called member variables, fields, or data fields, 
although all variables and constants can be considered data fields, at a fundamental level. A variable declared inside a 
method or other lower-level Java programming structure declared inside a class or method, is called a local variable, 
because it can only be seen locally, inside the programming constructs delimited by curly braces. Finally, variables 
declared inside a parameter list area of a method declaration or method call are, not surprisingly, called parameters.

A variable is a data field that holds an attribute of your Java object or software that can (and will) change over 
the course of time. As you might imagine, this is especially important for game programming. The simplest form of 
variable declaration can be achieved by using a Java data type keyword, along with the name that you want to use for 
the variable in your Java program logic. In the previous section, using the constructor method, you declared an integer 
variable named hitsIndex to hold the damage, or hits, that your InvinciBagel object will sustain during game play. You 
defined the variable data type, and named it, using the following Java variable declaration programming statement:
 
int hitsIndex; // This could also be coded as: int hitsIndex = 0; (the default Integer is Zero)
 

As you also saw in that section, you can initialize your variable to a starting value, using an equals operator, along 
with a data value that matches up with the data type declared: for example:
 
String facingDirection = "E";
 

This Java statement declares a String data type variable and names it facingDirection, on the left side of the 
equals operator, and then sets the declared variable to a value of “E,” which signifies the direction East, or right. This 
is similar to how an object is declared and instantiated, except that the Java new keyword and constructor method 
are replaced by the data value itself, because now a variable (data field) is being declared instead of an object being 
created. You will learn about the different data types (I have already covered Integer, String, and Object) later in 
chapter (see the section “Java Data Types: Defining Data in Applications”).

You can also use Java modifier keywords with variable declarations, which I will do in the next section, when I 
show you how to declare an immutable variable, also known as a constant, which is fixed, or locked, in memory and 
which cannot be altered.

Now that I am almost finished going from the largest Java constructs to the smallest (data fields), I will start to 
cover topics that apply to all levels (classes, methods, variables) of Java. These concepts will generally increase in 
complexity as you progress to the end of this Java 8 primer chapter.



Chapter 3 ■ A Java 8 Primer: An Introduction to Java 8 Concepts and Principles 

56

Fixing Data Values in Memory: Defining a Data Constant in Java
If you are already familiar with computer programming, you know that there is often a need to have data fields that 
will always contain the same data value and that will not change during the duration of your application run cycle. 
These are called constants, and they are defined, or declared, using special Java modifier keywords that are used 
to fix things in memory so that they cannot be changed. There are also Java modifier keywords that will restrict (or 
unrestrict) object instances, or access to certain classes inside or outside a Java class or package (which you will be 
examining in detail in the next section). 

To declare Java variables fixed, you must use a Java final modifier keyword. “Final” means the same thing as 
when your parents say that something is final: it is fixed in place, an FOL (fact of life), and not going to change, ever. 
Thus, the first step in creating a constant is to add this final keyword, placing it in front of the data type keyword in 
your declaration.

A convention, when declaring a Java constant (and constants in other programming languages), is to use 
uppercase characters, with underscored characters between each word, which signifies a constant in your code.

If you want to create screen width and screen height constants for your game, you do so like this:
 
final int SCREEN_HEIGHT_PIXELS = 480;
final int SCREEN_WIDTH_PIXELS  = 640;
 

If you want all the objects created by your class’s constructor method to be able to see and use this constant, you 
add the Java static modifier keyword, placing it in front of the final modifier keyword, like this:
 
static final int SCREEN_HEIGHT_PIXELS = 480;
static final int SCREEN_WIDTH_PIXELS = 640;
 

If you want only your class, and objects created by this class, to be able to see these constants, you declare the 
constants by placing the Java private modifier keyword in front of the static modifier keyword, using this code:
 
private static final int SCREEN_HEIGHT_PIXELS = 480;
private static final int SCREEN_WIDTH_PIXELS = 640;
 

If you want any Java class, even those outside your package (i.e., anyone else’s Java classes), to be able to see 
these constants, you declare the constants by placing the Java public modifier keyword in front of the static modifier 
keyword, using the following Java code:
 
public static final int SCREEN_HEIGHT_PIXELS = 480;
public static final int SCREEN_WIDTH_PIXELS = 640;
 

As you can see, declaring a constant involves a significantly more detailed Java statement than declaring a simple 
variable for your class! Next,  you will take a deeper look at Java modifier keywords, as they allow you to control things 
such as access to your classes, methods, and variables as well as locking them from being modified and similar high-
level Java code control concepts that are fairly complicated.

Java Modifier Keywords: Access Control and More
Java modifier keywords are reserved Java keywords that modify the access, visibility, or permanence (how long 
something exists in memory during the execution of an application) for code inside the primary types of Java 
programming structures. The modifier keywords are the first ones declared outside the Java code structure, because 
the Java logic for the structure, at least for classes and methods, is contained within the curly braces delimiter, which 
comes after the class keyword and class name or after the method name and parameter list. Modifier keywords can be 
used with Java classes, methods, data fields (variables and constants), and interfaces.



Chapter 3 ■ A Java 8 Primer: An Introduction to Java 8 Concepts and Principles 

57

As you can see at the bottom of Figure 3-2, for the .main() method, created by NetBeans for your InvinciBagel 
class definition, which uses the public modifier, you can use more than one Java modifier keyword. The .main() 
method first uses a public modifier keyword, which is an access control modifier keyword, and then a static modifier 
keyword, which is a nonaccess control modifier keyword.

Access Control Modifiers: Public, Protected, Private, Package Private
Let’s cover access control modifiers first, because they are declared first, before nonaccess modifier keywords or 
return type keywords, and because they are easier to understand conceptually. There are four access control modifier 
levels that are applied to any Java code structure. If you do not declare an access control modifier keyword, a default 
access control level of package private will be applied to that code structure, which allows it to be visible, and thus 
usable, to any Java programming structure inside your Java package (in this case, invincibagel).

The other three access control modifier levels have their own access control modifier keywords, including public, 
private, and protected. These are somewhat aptly named for what they do, so you probably have a good idea of how 
to apply them to either share your code publicly or protect it from public usage, but let’s cover each one in detail 
here, just to make sure, as access (security) is an important issue these days, inside your code as well as in the outside 
world. I will start with the least amount of access control first!

Java’s Public Modifier: Allowing Access by the Public to Java Program Constructs
The Java public access modifier keyword can be used by classes, methods, constructors, data fields (variables and 
constants), and interfaces. If you declare something public, it can be accessed by the public! This means that it can be 
imported and used by any other class, in any other package, in the entire world. Essentially, your code can be used in 
any software that is created using the Java programming language. As you will see in the classes that you use from the 
Java or JavaFX programming platforms (APIs), the public keyword is most often used in open-source programming 
Java platforms or packages that are employed to create custom applications, such as games.

It is important to note that if a public class that you are trying to access and use exists in a package other than your 
own (in your case, invincibagel), then the Java programming convention is to use the Java import keyword to create an 
import statement that allows use of that public class. This is why, by the time you reach the end of this book, you will 
have dozens of import statements at the top of your InvinciBagel.java class, as you will be leveraging preexisting Java 
and JavaFX classes in code libraries that have already been coded, tested, refined, and made public, using the public 
access control modifier keyword, so that you can create Java 8 games with them to your heart’s content!

Owing to the concept of class inheritance in Java, all the public methods and public variables inside a public 
class will be inherited by the subclasses of that class (which, once it is subclassed, becomes a superclass). Figure 3-2 
offers an example of a public access control modifier keyword, in front of the InvinciBagel class keyword.

Java’s Protected Modifier: Variables and Methods Allow Access by Subclass 
The Java protected access modifier keyword can be used by data fields (variables and constants) and by methods, 
including constructor methods, but cannot be used by classes or interfaces. The protected keyword allows variables, 
methods, and constructors in a superclass to be accessed only by subclasses of that superclass in other packages (such 
as the invincibagel package) or by any class within the same package as the class containing those protected members 
(Java constructs).

This access modifier keyword essentially protects methods and variables in a class that is intended to be (hoped 
to be used as) a superclass by being subclassed (extended) by other developers. Unless you own the package that 
contains these protected Java constructs (which you do not), you must extend the superclass and create your own 
subclass from that superclass to be able to use the protected methods.



Chapter 3 ■ A Java 8 Primer: An Introduction to Java 8 Concepts and Principles 

58

You may be wondering, why would one want to do this, protecting Java code structures in this way? When you 
are designing a large project, such as the Android OS API, you will often want to have the higher-level methods 
and variables not be used directly, right out of, or from within, that class, but rather within a more well-defined 
subclass structure.

You can achieve this direct usage prevention by protecting these methods and variable constructs from being 
used directly such that they become only a blueprint for more detailed implementations in other classes and are not 
able to be used directly. Essentially, protecting a method or variable turns it into a blueprint or a definition only.

Java’s Private Modifier: Variables, Methods, and Classes Get Local Access Only
The Java private access control modifier keyword can be used by data fields (variables or constants) and by methods, 
including constructor methods, but cannot be used by classes or interfaces. The private modifier can be used by 
a nested class; however, it cannot be used by an outer or the primary (topmost) class. The private access control 
keyword allows variables, methods, and constructors in a class to be accessed only inside that class. The private 
access control keyword allows Java to implement a concept called encapsulation, in which a class (and objects created 
using that class) can encapsulate itself, hiding its “internals” from outside Java universe, so to speak. The OOP concept 
of encapsulation can be used in large projects to allow teams to create (and, more importantly, debug) their own 
classes and objects. In this way, no one else’s Java code can break the code that exists inside these classes, because 
their methods, variables, constants, and constructors are private!

The access modifier keyword essentially privatizes methods or variables in a class so that they can only be 
used locally within that class or by objects created by that class’s constructor method. Unless you own the class 
that contains these private Java constructs, you cannot access or use these methods or data fields. This is the most 
restrictive level of access control in Java. A variable declared private can be accessed outside the class if a public 
method that accesses a private variable from inside the class, called a public .get() method call, is declared public and 
thus provides a pathway (or doorway) through that public method to the data in the private variable or constant.

Java’s Package Private Modifier: Variables, Methods, and Classes in Your Package
If no Java access control modifier keyword is declared, then a default access control level, which is also referred to as 
the package private access control level, will be applied to that Java construct (class, method, data field, or interface). 
This means that these Java constructs are visible, or available, to any other Java class inside the Java package that 
contains them. This package private level of access control is the easiest to use with your methods, constructors, 
constants, and variables, as it is applied simply by not explicitly declaring an access control modifier keyword.

You will use this default access control level quite a bit for your own Java applications (game) programming, as 
usually you are creating your own application in your own package for your users to use in its compiled executable 
state. If you were developing game engines for other game developers to use, however, you would use more of the 
access control modifier keywords I have discussed in this section to control how others would use your code.

Nonaccess Control Modifiers: final, static, abstract, volatile, synchronized
The Java modifier keywords that do not specifically provide access control features to your Java constructs are termed 
nonaccess control modifier keywords. These include the often used final, static, and abstract modifier keywords as 
well as the not so often used synchronized and volatile modifier keywords, which are employed for more advanced 
thread control and which I will not be covering in this beginner-level programming title, except to describe what they 
mean and do, in case you encounter them in your Java universe travels.

I will present these concepts in the order of their complexity, that is, from the easiest for beginners to wrap their 
mind around to the most difficult for beginning OOP developers to wrap their mind around. OOP is like surfing, in 
that it seems very difficult until you have practiced doing it a number of times, and then suddenly you just get it!



Chapter 3 ■ A Java 8 Primer: An Introduction to Java 8 Concepts and Principles 

59

Java’s final Modifier: Variables, Methods, and Classes That Cannot Be Modified
You have already explored the final modifier keyword as it is used to declare a constant, along with a static keyword. 
A final data field variable can only be initialized (set) one time. A final reference variable, which is a special type of 
Java variable that contains a reference to an object in memory, cannot be changed (reassigned) to refer to a different 
object; the data that are held inside the (final) referenced object can be changed, however, as only the reference to the 
object itself is the final reference variable, which is essentially locked in, using a Java final keyword.

A Java method can also be locked using the final modifier keyword. When a Java method is made final, if the Java 
class that contains that method is subclassed, that final method cannot be overridden, or modified, within the body 
of the subclass. This basically locks what is inside the method code structure. For example, if you want the .start() 
method for your InvinciBagel class (were it ever to be subclassed) always to do the same things that it does for your 
InvinciBagel superclass (prepare a JavaFX staging environment), you use the following code:
 
public class InvinciBagel extends Application {
     Button btn;
 
     @Override
     public final void start(Stage primaryStage) {
        btn = new Button();
        // The other method programming statements continue here
     }
}
 

This prevents any subclasses (public class InvinciBagelReturns extends InvinciBagel) from changing anything 
regarding how the InvinciBagel game engine (JavaFX) is set up initially, which is what the .start() method does for 
your game application (see Chapter 4). A class that is declared using a final modifier keyword cannot be extended, or 
subclassed, locking that class for future use.

Java’s Static Modifier: Variables or Methods That Exist in a Class (Not in Objects)
As you have already seen, the static keyword can be used in conjunction with the final keyword to create a constant. 
The static keyword is used to create Java constructs (methods or variables) that exist independently, or outside, any 
object instances that are created using the class that static variables or static methods are defined in. A static variable 
in a class will force all instances of the class to share the data in that variable, almost as if it is a global variable as far as 
objects created from that class are concerned. Similarly, a static method will also exist outside instanced objects for 
that class and will be shared by all those objects. A static method will not reference variables outside  itself, such as an 
instanced object’s variables.

Generally, a static method will have its own internal (local or static) variables and constants and will also take in 
variables, using the method parameter list, and then provide processing and computation, based on those parameters 
and its own internal (static local) constants if needed. Because static is a concept that applies to instances of a class, 
and is thus at a lower level than any class itself, a class would not be declared using a static modifier keyword.

Java’s Abstract Modifier: Classes and Methods to Be Extended and Implemented
The Java abstract modifier keyword has more to do with protecting your actual code than with code that has been 
placed in memory (object instances and variables, and so on) at runtime. The abstract keyword allows you to specify 
how the code will be used as a superclass, that is, how it is implemented in a subclass once it is extended. For this 
reason, it applies only to classes and methods and not to data fields (variables and constants).



Chapter 3 ■ A Java 8 Primer: An Introduction to Java 8 Concepts and Principles 

60

A class that has been declared using the abstract modifier keyword cannot be instanced, and it is intended to be 
used as a superclass (blueprint) to create (extend) other classes. Because a final class cannot be extended, you will not 
use the final and abstract modifier keywords together at the class level. If a class contains any methods that have been 
declared using the abstract modifier keyword, the class must itself be declared an abstract class. An abstract class does 
not have to contain any abstract methods, however.

A method that has been declared using the abstract modifier keyword is a method that has been declared for 
use in subclasses but that has no current implementation. This means that it will have no Java code inside its method 
body, which, as you know, is delineated in Java by using curly braces. Any subclass that extends an abstract class 
must implement all these abstract methods, unless the subclass is also declared abstract, in which case the abstract 
methods are passed down to the next subclass level.

Java’s Volatile Modifier: Advanced Multithreading Control over Data Fields
The Java volatile modifier keyword is used when you are developing multithreaded applications, which you are not 
going to be doing in basic game development, as you want to optimize your game well enough so that it only uses one 
thread. The volatile modifier tells the Java virtual machine (JVM), which is running your application, to merge the 
private (that thread’s) copy of the data field (variable or constant) that has been declared volatile with the master copy 
of that variable in system memory.

This is similar to the static modifier keyword, the difference being that a static variable (data field) is shared by 
more than one object instance, whereas a volatile data field (variable or constant) is shared by more than one thread.

Java’s Synchronized Modifier: Advanced Multithreading Control over Methods
The Java synchronized modifier keyword is also used when you are developing multithreaded applications, which 
you are not going to be doing for your basic game development here. The synchronized modifier tells the JVM, which 
is running your application, that the method that has been declared synchronized can be accessed by only one thread 
at a time. This concept is similar to that of synchronized database access, which prevents record access collisions. 
A synchronized modifier keyword likewise prevents collisions between threads accessing your method (in system 
memory) by serializing the access to one at a time so that parallel (simultaneous) access to a method in memory by 
multiple threads will never occur.

Now that you have studied primary Java constructs (classes, methods, and fields) and basic modifier keywords 
(public, private, protected, static, final, abstract, and so on), let’s journey inside the curly braces now, learning about 
the tools that are used to create the Java programming logic that will eventually define your game app’s game play.

Java Data Types: Defining Data Type in Applications
Because you have already learned about variables and constants encountered in a few of Java’s data types, let’s explore 
these next, as it is not too advanced for your current progression from easy to more difficult topics!

There are two primary data type classifications in Java: primitive data types, which are the ones that you are the 
most familiar with if you have used a different programming language, and reference (object) data types, which you 
will know about if you have used another OOP language, such as Lisp, Python, Objective-C, C++, or C# (C Sharp).

Primitive Data Types: Characters, Numbers, and Boolean (Flags)
There are eight primitive data types in the Java programming language, as  shown in Table 3-1. You will be using 
these as you work your way through the book to create your InvinciBagel game, so I am not going to go into detail 
regarding each one of them now, except to say that Java boolean data variables are used for flags or switches (on/off), 
char is used for Unicode characters or to create String objects (an array of char), and the rest are used to hold numeric 



Chapter 3 ■ A Java 8 Primer: An Introduction to Java 8 Concepts and Principles 

61

values of different sizes and resolutions. Integer values hold whole numbers, whereas a floating point value holds 
fractional (decimal point value) numbers. It is important to use the right numeric data type for a variable’s scope, or 
range, of use, because, as you can see in Binary Size column in Table 3-1, large numeric data types can use up to eight 
times more memory than the smaller ones.

Table 3-1.  Java Primitive Data Types, Along with Their Default Values, Size in Memory, Definition, and Numeric Range

Data Type Default Binary Size Definition Range

boolean false 1 bit True or false value 0 to 1 (false or true)

char \u0000 16 bit Unicode character \u0000 to \uFFFF

byte 0 8 bit Signed integer value –128 to 127 (256 total values)

short 0 16 bit Signed integer value –-32768 to 32767 (65,536 total values)

int 0 32 bit Signed integer value –2147483648 to 2147483647

long 0 64 bit Signed integer value –9223372036854775808 to 
9223372036854775807

float 0.0 32 bit IEEE 754 floating point value ±1.4E-45 to ±3.4028235E+38

double 0.0 64 bit IEEE 754 floating point value ±4.9E-324 to 
±1.7976931348623157E+308

Reference Data Types: Objects and Arrays
(OOP languages also have reference data types, which provide a reference in memory to another structure 
containing a more complex data structure, such as an object or an array. These more complex data structures are 
created using code; in the case of Java, this is a class. There are Java Array classes of various types that create arrays of 
data (such as simple databases) as well as the constructor method in a Java class, which can create the object structure 
in memory, containing both Java code (methods) and data (fields).

Java Operators: Manipulating Data in the Application
In this section, you will learn about some of the most commonly used operators in the Java programming language, 
especially those that are the most useful for programming games. These include arithmetic operators, used for 
mathematical expressions; relational operators, used to ascertain relationships (equal, not equal, greater than, less 
than, and so on) between data values; logical operators, used for boolean logic; assignment operators, which do 
the arithmetic operations and assign the value to another variable in one compact operation (operator); and the 
conditional operator, also called a ternary operator, which assigns a value to a variable, based on the outcome of a 
true or false (boolean) evaluation.

There are also the conceptually more advanced bitwise operators, used to perform operations at the binary data 
(zeroes and ones) level, the logic of which is beyond the beginner scope of this book and the use of which is not as 
common in Java game programming as these other, more mainstream types of operators, each of which you will be 
using over the course of this book to accomplish various programming objectives in your game play logic.



Chapter 3 ■ A Java 8 Primer: An Introduction to Java 8 Concepts and Principles 

62

Java Arithmetic Operators
The Java arithmetic operators are the most commonly used in programming, especially in arcade type games, in 
which things are moving on the screen by a discrete number of pixels. Many more complex equations can be created 
using these basic arithmetic operators, as you have already learned in math class, from primary school through college.

The only arithmetic operators shown in Table 3-2 that you may not be that familiar with are the modulus 
operator, which will return the remainder (what is left over) after a divide operation is completed, and the increment 
and decrement operators, which add or subtract 1, respectively, from a value. These are used to implement your 
counter logic. Counters (using increment and decrement operators) were originally used for loops, (which I will be 
covering in the next section); however, these increment and decrement operators are also extremely useful for game 
programming (point scoring, life span loss, game piece movement, and similar progressions).

Table 3-2.  Java Arithmetic Operators, Their Operation Type, and a Description of the Arithmetic Operation

Operator Operation Description

Plus + Addition Adds the operands on either side of the operator

Minus – Subtraction Subtracts the right-hand operand from the left-hand operand

Multiply * Multiplication Multiplies the operands on either side of the operator

Divide / Division Divides the left-hand operand by the right-hand operand

Modulus % Remainder Divides the left-hand operand by the right hand-operand, returning remainder

Increment ++ Add 1 Increases the value of the operand by 1

Decrement -- Subtract 1 Decreases the value of the operand by 1

To implement the arithmetic operators, place the data field (variable) that you want to receive the results of the 
arithmetic operation on the left side of the equals assignment operator and the variables that you want to perform 
arithmetic operations on the right side of the equals sign. Here is an example of adding an x and a y variable and 
assigning the result to a z variable:
 
Z = X + Y;   // Using an Addition Operator
 

If you want to subtract y from x, you use a minus sign rather than a plus sign; if you want to multiply the x and y 
values, you use an asterisk rather than a plus sign; and if you want to divide x by y, you use a forward slash instead of 
a plus sign. Here is how those operations look:
 
Z = X - Y;    // Subtraction Operator
Z = X * Y;   //  Multiplication Operator
Z = X / Y;  //   Division Operator
 

You will be using these arithmetic operators quite a bit, so you will get some great practice with these before you 
are finished with this book! Let’s take a closer look at relational operators next, as sometimes you will want to compare 
values rather than calculate them.



Chapter 3 ■ A Java 8 Primer: An Introduction to Java 8 Concepts and Principles 

63

Java Relational Operators
The Java relational operators are used to make logical comparisons between two variables or between a variable 
and a constant, in some circumstances. These should be familiar to you from school and include equals, not equal, 
greater than, less than, greater than or equal to, and less than or equal to. In Java, equal to uses two equals signs side 
by side between the data fields being compared and an exclamation point before an equals sign to denote “not equal 
to.” Table 3-3 shows the relational operators, along with an example and a description of each.

Table 3-3.  Java Relational Operators, an Example in Which A = 25 and B = 50, and a Description of the  
Relational Operation

Operator Example Description

== (A == B) not true Comparison of two operands: if they are equal then the condition equates to true

!= (A != B) is true Comparison of two operands: if they are not equal the condition equates to true

> (A > B) not true Comparison of two operands: if left operand is greater than right operand, equates 
to true

< (A < B) is true Comparison of two operands: if left operand is less than right operand, equates  
to true

>= (A >= B) not true Compare two operands: if left operand is greater or equal to right operand equates 
to true

<= (A <= B) is true Compare two operands: if left operand less than or equal to right operand, equates 
to true

The greater than symbol is a right-facing arrow-head, and the less than symbol is a left-facing arrow-head. 
These are used before the equals sign to create greater than or equal to and less than or equal to relational operators 
respectively, as you can see at the bottom of Table 3-3.

These relational operators return a boolean value of true or false, and as such are also used in control (loop) 
structures in Java quite a bit, and are also used in gameplay programming logic as well to control the path (result) that 
the gameplay will take. For instance, let’s say you want to determine where the left edge of the game screen is so that 
the InvinciBagel does not travel right off of the screen when he is moving to the left. Using this relational comparison:
 
boolean changeDirection = false; // Create boolean variable changeDirection, initialize to false
changeDirection = (invinciBagelX <= 0); //  boolean changeDirection is TRUE if left side reached
 

Notice that I have used the <= less than or equal to (yes, Java supports negative numbers too), so that if the 
InvinciBagel has gone past the (x=0) left side of the screen the changeDirection boolean flag will be set to the 
value of true, and the sprite movement programming logic can deal with the situation, by changing the direction of 
movement (so InvinciBagel bounces off of the wall) or stopping the movement entirely (so the InvinciBagel sticks to 
the wall).

You will be getting a lot of exposure to these relational operators during this book as they are quite useful in 
creating gameplay logic, so we are going to be having a lot of fun with these soon enough. Let’s take a look at logical 
operators next, so we can work with Boolean Sets and compare things in groups, which is also important for games.



Chapter 3 ■ A Java 8 Primer: An Introduction to Java 8 Concepts and Principles 

64

Java Logical Operators:
The Java logical operators are similar to the boolean operations (union, intersection, etc.) that you learned about 
in school, and allow you to determine if both boolean variables hold the same value (AND), or if one of the boolean 
variables is different (OR), from the other. There’s also a NOT operator that reverses the value of any of the compared 
boolean operands. Table 3-4 shows Java’s three logical operators, and an example of each, along with a description.

Table 3-4.  Java Logical Operators, an Example in Which A = True and B = False, and a Description of Logical Operation

Operator Example Description

&& (A && B) is false A logical AND operator equates to true when BOTH operands are the same value.

|| (A || B) is true A logical OR operator equates to true when EITHER operand is the same value.

! !(A && B) is true A logical NOT operator reverses the logical state of the operator (or set) it is 
applied to.

Let’s use logical operators to enhance the game logic example in the previous section by including the direction 
in which the InvinciBagel is moving on the screen. The existing facingDirection String variable will control the 
direction the InvinciBagel is facing (and moving in, if in motion). You can now use the following logical operator to 
determine if the InvinciBagel is facing left (W, or West); if the travelingWest boolean variable is true; AND if the hit 
(or passed) boolean variable on the left-hand side of the screen, hitLeftSideScrn, is also equal to true. The modified 
code for doing this will include two more boolean variable declarations and initializations and will look like this:
 
boolean changeDirection = false; // Create boolean variable changeDirection, initialize to false
boolean hitLeftSideScrn = false; // Create boolean variable hitLeftSideScrn, initialize to false
boolean travelingWest = false;   // Create boolean variable travelingWest, initialize to false
hitLeftSideScrn = (invinciBagelX <= 0); //  boolean hitLeftSideScrn is TRUE if left side reached
travelingWest = (facingDirection == "W") // boolean travelingWest is TRUE if facingDirection="W"
changeDirection = (hitLeftSideScrn && travelingWest) // Change Direction, if both equate to TRUE
 

To find out if the InvinciBagel is facing (or traveling, if also moving) West, you create another travelingWest boolean 
variable and initialize it (set it equal) to false (because your initial facingDirection setting is East). Then, you create a 
boolean variable called hitLeftSideScrn, setting that to the (invinciBagelX <= 0) relational operator statement.

Finally, you create a relational operator statement with the travelingWest = (facingDirection == "W") logic, 
and then you are ready to use the changeDirection boolean variable with your new logical operator. This logical 
operator will make sure that both the hitLeftSideScrn and travelingWest boolean variables are set to true, using the 
changeDirection = (hitLeftSideScrn && travelingWest) logical operation programming statement.

Now, you have a little practice declaring and initializing variables and using relational and logical operators to 
determine the direction and location of a primary game piece (called a sprite in arcade games; for more on game 
design lingo, see Chapter 6). Next, let’s take a look at assignment operators.

Java Assignment Operators
The Java assignment operators assign a value from a logic construct on the right-hand side of the assignment operator 
to a variable on the left-hand side of the assignment operator. The most common assignment operator is also the 
most commonly used operator in the Java programming language, the equals operator. The equals operator can 
be prefaced with any of the arithmetic operators to create an assignment operator that also performs an arithmetic 
operation, as can be seen in Table 3-5. This allows a more “dense” programming statement to be created when the 
variable itself is going to be part of the equation. Thus, instead of having to write C = C + A , you can simply use C+=A 
and achieve the same end result. You will be using this assignment operator shortcut often in your game logic design.



Chapter 3 ■ A Java 8 Primer: An Introduction to Java 8 Concepts and Principles 

65

Finally, you are going to take a look at conditional operators, which also allow you to code powerful game logic.

Java Conditional Operators
The Java language also has a conditional operator that can evaluate a condition and make a variable assignment 
for you, based on the resolution of that condition, using only one compact programming construct. The generic Java 
programming statement for a conditional operator always uses the following basic format:
 
Variable = (evaluated expression) ? Set this value if TRUE : Set this value if FALSE ;
 

So, on the left-hand side of the equals sign, you have the variable, which is going to change (be set), based on 
what is on the right-hand side of the equals sign. This conforms to what you have learned thus far.

On the right-hand side of the equals sign, you have an evaluated expression, for instance, “x is equal to 3,” 
followed by a question mark and then two numeric values that are separated from each other, using the colon, and, 
finally, a semicolon to terminate the conditional operator statement. If you wanted to set a variable y to a value of 25 
if x is equal to 3, and to 10 if x is not equal to 3, you would write that conditional operator programming statement by 
using the following Java programming logic:
 
y = (x == 3) ? 25 : 10 ;
 

Next, you are going to look at Java logic control structures that leverage the operators you just learned about.

Java Conditional Control: Decision Making or Loops
As you have just seen, many of the Java operators can have a fairly complex structure and provide a lot of processing 
power, using very few characters of Java programming logic. Java also has several more complicated conditional 
control structures, which can automatically make decisions or perform repetitive tasks for you, once you have set 
up the conditions for those decisions or task repetitions by coding the Java logic control structure.

Table 3-5.  Java Assignment Operators, What Each Assignment Is Equal to in Code, and a Description of the Operator

Operator Example Description

= C=A+B Basic assignment operator: Assigns value from right-hand operand to 
left-hand operand

+= C+=A equals C=C+A ADD assignment operator: Adds right-hand operand to left-hand 
operand; puts result in left-hand operand

-= C-=A equals C=C-A SUB assignment operator: Subtracts right-hand operand from left-hand 
operand; puts result in left-hand operand

*= C*=A equals C=C*A MULT assignment operator: Multiplies right-hand operand and left-hand 
operand; puts result in left-hand operand

/= C/=A equals C=C/A DIV assignment operator: Divides left-hand operand by right-hand 
operand; puts result in left-hand operand

%= C%=A equals C=C%A MOD assignment operator: Divides left-hand operand by right-hand 
operand; puts remainder in left-hand operand



Chapter 3 ■ A Java 8 Primer: An Introduction to Java 8 Concepts and Principles 

66

In this section, you will first explore decision-making control structures, such as the Java switch-case 
structure and the if-else structure. Then, you will take a look at Java’s looping control structures, including for, 
while, and do-while.

Decision-Making Control Structures: Switch-Case and If-Else
Some of the most powerful Java logic control structures allow you to define decisions that you want your program 
logic to make for you as the application is running. One such structure offers a case-by-case, “flat” decision matrix; the 
other has a cascading (if this, do this; if not, do this; if not, do this; and so on) type of structure that evaluates things in 
the order in which you want them examined.

Let’s start by looking at the Java switch statement, which uses the Java switch keyword and an expression at the 
top of this decision tree and then uses the Java case keyword to provide Java statement blocks for each outcome for 
this expression’s evaluation. If none of the cases inside a switch statement structure (curly braces) are called (used) 
by the expression evaluation, you can also supply a Java default keyword and Java statement code block for what you 
want done.

The variable used in the case statements can be one of four Java data types: char (character), byte, short, or int 
(integer). You will generally want to add a Java break keyword at the end of each of your case statement code blocks, 
at least in the use case, in which the values being switched between need to be exclusive, and only one is viable (or 
permissible) for each invocation of the switch statement. The default statement, which is the “if any of these do not 
match” is the last of the statements inside of the switch, and does not need this break keyword.

If you do not furnish a Java break keyword in each of your case logic blocks, more than one case statement can 
be evaluated in the same pass through your switch statement. This would be done as your expression evaluation tree 
progresses from top (first case code block) to bottom (last case code block or default keyword code block). So if you 
had a collection of Boolean “flags” such as hasValue, isAlive, isFixed, and so on, these could all be processed on one 
single “pass” by using a switch-case statement structure that does not use any break statements at all.

The significance of this is that you can create some fairly complex decision trees, based on case statement 
evaluation order, and whether you put this break keyword at the end of any given case statement’s code block.

The general format for your switch-case decision tree programming construct would look like this:
 
switch(expression) {
    case value1 :
        programming statement one;
        programming statement two;
        break;
    case value2 :
        programming statement one;
        programming statement two;
        break;
    default :
        programming statement one;
        programming statement two;
}
 

Let’s say you want to have a decision in your game as to which InvinciBagel death animation is called when 
the InvinciBagel is hit (shot, slimed, punched, and so on). The death animation routine (method) would be called, 
based on the InvinciBagel’s state of activity when he or she is hit, such as flying (F), jumping (J), running (R), or idle 



Chapter 3 ■ A Java 8 Primer: An Introduction to Java 8 Concepts and Principles 

67

(I). Let’s say these states are held in a data field called ibState, of the type char, which holds a single character. The 
switch-case code construct for using these game-piece state indicators to call the correct method, once a hit has 
occurred, would be:
 
switch(ibState) {            // Evaluate ibState char and execute case code blocks accordingly
    case 'F' :
        deathLogicFlying();  // Java method controlling death sequence if InvinciBagel flying
        break;
    case 'J' :
        deathLogicJumping(); // Java method controlling death sequence if InvinciBagel jumping
        break;
    case 'R' :
        deathLogicRunning(); // Java method controlling death sequence if InvinciBagel running
        break;
    default :
        deathLogicIdle();    // Java method controlling death sequence if InvinciBagel is idle
 

This switch-case logic construct evaluates the ibState char variable inside the evaluation portion of the switch() 
statement (note that this is a Java method) and then provides a case logic block for each of the game-piece states 
(flying, jumping, running) and a default logic block for the idle state (which is a logical way to set this up).

Because a game piece cannot be idle, running, flying, and jumping at the same time, you need to use the break 
keyword to make each of the branches of this decision tree unique (exclusive).

The switch-case decision-making construct is generally considered more efficient, and faster, than the if-else 
decision-making structure, which can use just the if keyword for simple evaluations, like this:
 
if(expression = true) {
    programming statement one;
    programming statement two;
}
 

You can also add an else keyword to make this decision-making structure evaluate statements that would need to 
execute if the boolean variable (true or false condition) evaluates to false rather than true, which makes this structure 
more powerful (and useful). This general programming construct would then look like this:
 
if(expression = true) {
    programming statement one;
    programming statement two;
} else {                         // Execute this code block if (expression = false)
    programming statement one;
    programming statement two;
}
 

In addition, you can nest if-else structures, thereby creating if{}-{else if}-{else if}-else{} structures. If these 
structures get nested too deeply, then you would want to switch (no pun intended) over to the switch-case structure, 
which will become more and more efficient, relative to a nested if-case structure, the deeper the if-else nesting goes. 
For example, the switch-case statement that you coded earlier for the InvinciBagel game, if translated into a nested 
if-else decision-making construct, would look like the following Java programming structure:
 
if(ibState = 'F') {
    deathLogicFlying();
} else if(ibState = 'J') {
      deathLogicJumping();



Chapter 3 ■ A Java 8 Primer: An Introduction to Java 8 Concepts and Principles 

68

  } else if(ibState = 'R') {
        deathLogicRunning();
    } else {
          deathLogicIdle();
}
 

As you can see, this if-else decision tree structure is quite similar to the switch-case that you created earlier, 
except that the decision code structures are nested inside each other rather than contained in a flat structure. As 
a rule of thumb, I would use the if and if-else for one- and two-value evaluations and a switch-case for three-value 
evaluation scenarios and greater. I use this switch-case structure extensively in my books covering Android.

Next, let’s take a look at the other types of conditional control structures that are used extensively in Java, the 
looping programming structures. These allow you to execute a block of programming statements a predefined 
number of times (using the for loop) or until an objective is achieved (using a while or a do-while loop).

Looping Control Structures: While, Do-While, and For
Whereas the decision tree type of control structure is traversed a fixed number of times (once all the way through, 
unless a break [switch-case] or resolved expression [if-else] is encountered), looping control structures keep 
executing over time, which, with respect to the while and do-while structures, makes them a bit dangerous, as an 
infinite loop can be generated, if you are not careful with your programming logic! The for loop structure executes for 
a finite number of loops (the number is specified in the definition of the for loop), as you will soon see in this section.

Let’s start with the finite loop, covering the for loop first. A Java for loop uses the following general format:
 
for(initialization; boolean expression; update equation) {
    programming statement one;
    programming statement two;
}
 

As you can see, the three parts of the evaluation area of the for loop are inside the parentheses, separated by 
semicolons, as each contains a programming statement. The first is a variable declaration and initialization, the 
second is a boolean expression evaluation, and the third is an update equation showing how to increment the loop 
during each pass.

To move the InvinciBagel 40 pixels diagonally on the screen, along both X and Y, the for loop is as follows:
 
for(int x=0; x < 40; x = x + 1) {   // Note: an x = x + 1 statement could also be coded as x++
    invinciBagelX++;  // Note: invinciBagelX++ could be coded invinciBagelX = invinciBagelX + 1;
    invinciBagelY++;  // Note: invinciBagelY++ could be coded invinciBagelY = invinciBagelY + 1;
}
 

In contrast, the while (or do-while) type of loop does not execute over a finite number of processing cycles, but 
rather executes the statements inside the loop until a condition is met, using the following structure:
 
while(boolean expression) {
    programming statement one;
    programming statement two;
}
 



Chapter 3 ■ A Java 8 Primer: An Introduction to Java 8 Concepts and Principles 

69

To code the for loop to move the InvinciBagel 40 pixels, using a while loop structure, looks like this:
 
int x = 0;
while(x < 40) {
    invinciBagelX++;
    invinciBagelY++;
    x++
}
 

The only difference between a do-while loop and a while loop is that, with the latter, the loop logic programming 
statements are performed before, instead of after, the evaluation. Thus, using a do-while loop programming 
structure, the previous example would be written as follows:
 
int x = 0;
do {
    invinciBagelX++;
    invinciBagelY++;
    x++
} while(x < 40);
 

As you can see, the Java programming logic structure is inside curly braces, following the Java do keyword, 
with the while statement after the closing brace. Note that the while evaluation statement (and therefore the entire 
construct) must be terminated with a semicolon.

If you want to make sure that the programming logic inside the while loop structure is performed at least one 
time, use the do-while, as the evaluation is performed after the loop logic is executed. If you want to make sure that 
the logic inside the loop is only executed after (whenever) the evaluation is successful, which is the safer way to code 
things, use the while loop structure.

Java Objects: Virtual Reality, Using Java Constructs
I saved the best, Java objects, for last, because they can be constructed in one fashion or another using all the concepts 
that I have covered thus far in the chapter and because they are the foundation of OOP language (in this case, Java 8). 
The fact is, everything in the Java 8 programming language is based on Java’s Object superclass (I like to call it the 
masterclass), which is in the java.lang package, so an import statement for it would reference java.lang.Object, the full 
pathname for the Java Object class.

Java objects are used to “virtualize” reality by allowing the objects you see all around you in everyday life, or, 
in the case of your game, objects you are creating out from your imagination, to be realistically simulated. This is 
done by using the data fields (variables and constants) and the methods that you have been learning about in this 
chapter. These Java programming constructs will make up the object characteristics, or attributes (constants); states 
(variables); and behaviors (methods). The Java class construct organizes each object definition (constants, variables, 
and methods) and gives birth to an instance of that object, using the constructor method for the class that designs and 
defines the object via the various Java keywords and constructs.

Creating an InvinciBagel Object: Attributes, States, and Behavior
Let’s put together an example of an InvinciBagel object that shows how constants define characteristics, variables 
define states, and methods define behaviors. We will do this using Java coding constructs that you have learned about 
thus far in the chapter, including constants, variables, and methods that you have already defined, to some extent.



Chapter 3 ■ A Java 8 Primer: An Introduction to Java 8 Concepts and Principles 

70

Let’s start with characteristics, which are things about an object that will not change and which are thus 
represented using constants, variables that will not (cannot) change. An important bagel characteristic is the type 
(flavor). We all have our favorites; mine are plain, egg, rye, onion, and pumpernickel. Another characteristic is the size 
of bagel; as we all know, there are minibagels, normal-size bagels, and giant bagels.
 
private static final String FLAVOR_OF_BAGEL = "Pumpernickel";
private static final String SIZE_OF_BAGEL = "Mini Bagel";
 

Thus, constants are used to define the characteristics, or attributes, of an object. If you are defining a car, boat, 
or plane, the color (paint), engine (type), and transmission (type) are attributes (constants), as they generally do not 
change, unless you are a mechanic or own a body shop!

Things about an object that will change, such as its location, orientation, how it is traveling (flying, driving, 
walking, running), and so on are called states and are defined using variables, which can constantly change in real 
time, based on what is happening in real life. These variables will allow any Java object to mimic, or virtualize, the 
real-world object that they are creating in your Java universe’s virtual reality. This is, of course, especially true in 
games, which is why the topic of this book, Java and games, is especially relevant and applicable.

There will be more states (variables) than attributes (constants) for the InvinciBagel, as it is the game piece and 
will be especially active trying to save its hole and score points. Some of the states that you will want to define as 
variables include screen (x, y) location, orientation, travel direction, travel type, hits taken, and life span used.
 
public int invinciBagelX = 0;                    // X screen location of the InvinciBagel
public int invinciBagelY = 0;                   //  Y screen location of the InvinciBagel
public String bagelOrientation = "side";       //   Defines bagel orientation (front, side, top)
public int lifeIndex = 1000;                  //    Defines units of lifespan used
public int hitsIndex = 0;                    //     Defines units of damage (hits taken)
public String directionFacing = "E";        //      Direction that the object is facing
public String movementType = "idle"        //  Type of movement (idle, fly, run, jump)
public boolean currentlyMoving = false;   //   Flag showing if the object is in motion
 

As you progress through this book and create the InvinciBagel game, you will be adding attributes, states, and 
behaviors that will make the InvinciBagel, as well as its game environment and game play, more realistic, fun, and 
exciting, just as you would do in real life. In fact, you are using Java objects and Java constructs to model, a realistic 
virtual world in which InvinciBagel players can triumph over evil and shoot cream cheese balls at delicious targets.

Let’s look at a couple of the methods that you might develop to control the InvinciBagel behavior. You will be 
creating complex methods over the course of this book to accomplish game play objectives, so I am just going to give 
you an idea here of how methods provide behaviors to objects for the purpose of demonstrating how objects can be 
created that reflect how real-world objects function.

For your game play of the InvinciBagel, the main behaviors will be 2D movement around the screen, relative to 
the x (width) and y (height) dimension, which will access, use, and update the integer invinciBagelX, invinciBagelY, 
and the boolean currentlyMoving data fields discussed previously; the InvinciBagel character’s orientation (front 
facing, sideways, facing down, and so on), which will access, use, and update the bagelOrientation String field; 
the life expectancy of the InvinciBagel, which will access, use, and update the lifeIndex variable; the health of the 
InvinciBagel, which will access, use, and update the hitsIndex variable; the direction (East or West) in which the 
InvinciBagel is traveling, which will access, use, and update the directionFacing String variable; and the type of 
movement (flying, jumping, running, idle) that the InvinciBagel is using , which will access, use, and update the 
movementType String variable.

Here is how you declare these methods (behaviors) and pseudocode regarding what they are going to do:
 
public void moveInvinciBagel(int x, int y) {
    currentlyMoving = true;
    invinciBagelX = x;
    invinciBagelY = y;



Chapter 3 ■ A Java 8 Primer: An Introduction to Java 8 Concepts and Principles 

71

}
 
public String getInvinciBagelOrientation() {
    return bagelOrientation;
}
 
public void setInvinciBagelOrientation(String orientation) {
    bagelOrientation = orientation;
}
 
public int getInvinciBagelLifeIndex() {
    return lifeIndex;
}
 
public void setInvinciBagelLifeIndex(int lifespan) {
    lifeIndex = lifespan;
}
 
public String getInvinciBagelDirection() {
    return directionFacing;
}
 
public void setInvinciBagelDirection(String direction) {
    directionFacing = direction;
}
 
public int getInvinciBagelHitsIndex() {
    return hitsIndex;
}
 
public void setInvinciBagelHitsIndex(int damage) {
    hitsIndex = damage;
}
 
public String getInvinciBagelMovementType() {
    return movementType;
}
 
public void setInvinciBagelMovementType(String movement) {
    movementType = movement;
}
 

The convention is to create .get() and .set() methods, as is done here. These allow your Java code to easily 
access your object states (variables). Now, it is time to install all these attributes (constants), states (variables), 
and behaviors (methods) into a blueprint for your object. As mentioned earlier, this is done using the Java class 
programming structure.



Chapter 3 ■ A Java 8 Primer: An Introduction to Java 8 Concepts and Principles 

72

Creating an InvinciBagel Blueprint: Create the GamePiece Class
Let’s install all this InvinciBagel virtualization code into a GamePiece class to create a class and constructor method 
that is intended for game-piece objects:
 
public class GamePiece
 
  private static final String FLAVOR_OF_BAGEL = "Pumpernickel"; // Flavor (or type) of bagel
  private static final String SIZE_OF_BAGEL = "Mini Bagel";    // Size (classification) of bagel
 
  public int invinciBagelX = 0;                    // X screen location of the InvinciBagel
  public int invinciBagelY = 0;                   //  Y screen location of the InvinciBagel
  public String bagelOrientation = "side";       //  Define bagel orientation (front, side, top)
  public int lifeIndex = 1000;                  //   Defines units of lifespan used
  public int hitsIndex = 0;                    //    Defines units of damage (hits taken)
  public String directionFacing = "E";        //  Direction that the bagel object is facing
  public String movementType = "idle";       //   Type of movement (idle, fly, run, jump)
  public boolean currentlyMoving = false; //    Flag showing if the object is in motion
 
  public void moveInvinciBagel(int x, int y) {        // Movement Behavior
      currentlyMoving = true;
      invinciBagelX = x;
      invinciBagelY = y;
  }
 
  public String getInvinciBagelOrientation() {        // Get Method for Orientation
      return bagelOrientation;
  }
 
  public void setInvinciBagelOrientation(String orientation) {     // Set Method for Orientation
      bagelOrientation = orientation;
  }
 
  public int getInvinciBagelLifeIndex() {             // Get Method for Lifespan
      return lifeIndex;
  }
 
  public void setInvinciBagelLifeIndex(int lifespan) {             // Set Method for Lifespan
      lifeIndex = lifespan;
  }
 
  public String getInvinciBagelDirection() {          // Get Method for Facing Direction
      return directionFacing;
  }
 
  public void setInvinciBagelDirection(String direction) {         // Set Method for Direction
      directionFacing = direction;
  }
 
  public int getInvinciBagelHitsIndex() {             // Get Method for Hits (damage)
      return hitsIndex;
  }
 



Chapter 3 ■ A Java 8 Primer: An Introduction to Java 8 Concepts and Principles 

73

  public void setInvinciBagelHitsIndex(int damage) {           // Set Method for Hits (damage)
      hitsIndex = damage;
  }
 
  public String getInvinciBagelMovementType() {         // Get Method for Movement Type
      return movementType;
  }
 
  public void setInvinciBagelMovementType(String movement) {   // Set Method for Movement Type
      movementType = movement;
  }
}
 

It is important to note that these constants, variables, and methods are for demonstration of how the class, 
method, and data field keywords let developers create (virtualize) their game components. As you develop the game, 
these will probably change, as game development is a process of refinement, in which you will be constantly changing 
and enhancing the Java code base to add features and capabilities.

Now, all you have to do is add your GamePiece() constructor method, which will create a new object with 
the initialized variable settings that you want the default GamePiece to contain. Then, you will create the second 
overloaded constructor method. This second constructor method will allow parameters to be passed into a 
constructor method so that you can provide custom (nondefault) settings to these same variables (states). In this way, 
if you call GamePiece(), you get a default object; if you call GamePiece(parameter list here), you get a custom object.

Creating a GamePiece() Constructor: Overloading a GamePiece
Finally, let’s create the constructor method (two, actually), which takes the states (variables) from the GamePiece class 
and creates a default object. You will use this object to create the custom overloaded constructor method. The first 
constructor method will employ the package private access control method, using no access modifier keyword, so 
that any code in the invincibagel package can call this constructor method. Then, you will set your default variables, 
using the following Java code:
 
GamePiece() {
  invinciBagelX = 0;
  invinciBagelY = 0;
  bagelOrientation = "side";
  lifeIndex = 1000;
  hitsIndex = 0;
  directionFacing = "E";
  movementType = "idle";
  currentlyMoving = false;
}
 

The overloaded constructor method will have parameters declared in the method parameter list area for those 
variables that are logical to allow variations for upon object creation. The only two that are not logical to allow 
variations for are hitsIndex (a new object will not have sustained any damage points and will thus need to be 0) and 



Chapter 3 ■ A Java 8 Primer: An Introduction to Java 8 Concepts and Principles 

74

currentlyMoving (a new object will not be moving when it appears, even if that is only for a fraction of a second) 
variables, which you will initialize, as you did for the default constructor. The other five variables (states) will be set using 
parameters passed in via a parameter list, using an equals assignment operator. This is done using the following code:
 
GamePiece(int x, int y, String orientation, int lifespan, String direction, String movement) {
  invinciBagelX = x;
  invinciBagelY = y;
  bagelOrientation = orientation;
  lifeIndex = lifespan;
  hitsIndex = 0;
  directionFacing = direction;
  movementType = movement;
  currentlyMoving = false;
}
 

I bolded the variables in the parameter list, as well as where they are used inside the constructor method, to set the 
states (variables) for the object. These variables are declared at the top of the GamePiece class, which you have used 
to design, define, and create the GamePiece object. This second constructor method can be said to overload the first 
constructor method, because it uses the exact same method call (method name), with a different parameter list (full of 
parameters, versus empty or no parameters). This gives you the default object constructor method as well as a custom 
object constructor method, so in your game logic, you can create a default GamePiece or a custom GamePiece.

Summary
In this third chapter you took a look at some of the more important concepts and structures found in the Java 8 
programming language. Certainly, I cannot cover everything in Java in one chapter, so I stuck with concepts, constructs, 
and keywords that you will be using to create a game over the course of this book. Most Java books are 800 pages or more, 
so if you want to get really deep into Java, I suggest Beginning Java 8 Fundamentals by Kishori Sharan (Apress, 2014).

You started by taking a high-level view of Java, considering its syntax, including Java comments and delimiters, 
APIs, and the Java packages that a Java API contains. You also studied Java classes, including nested classes and 
inner classes, as the Java packages contain Java classes. You then went the next level down in Java, to the method, 
which is like the function in other programming languages, as well as to a special kind of Java method called a 
constructor method.

Next, you explored how Java represents data, using fields, or data fields, examining the different types, such as 
constants, or fixed data fields, and variables, or data fields that can change their values. After that, you took a closer 
look at Java modifier keywords, including the public, private, and protected access control keywords and the final, 
static, abstract, volatile, and synchronized nonaccess control modifier keywords.

After finishing with the basic code structures and how to modify them, you moved on to the primary Java data 
types, such as boolean, char, byte, int, float, short, long, and double and then explored the Java operators that are 
used to process, or bridge, these data types over to your programming logic. You studied arithmetic operators, for use 
with numeric values; logical operators, for use with boolean values; relational operators, to consider relationships 
between data values; conditional operators, which allow you to establish any conditional variable assignments; and 
assignment operators, which let you assign values to (or between) variables.

Then, you looked at Java logic control structures, including decision-making control structures (I like to call 
them decision trees) and looping, or iterative, logic control structures. You learned about the Java switch-case 
structure, the if-else structure, the for loop structure, and the do-while loop structures. Finally, you examined 
Java objects and discovered how to define object attributes, states, and behaviors, using a Java class, methods, and 
constructor methods.

In the next chapter, I will give you an overview of the JavaFX multimedia engine, and its classes and capabilities, 
as you will be leveraging JavaFX to add media elements to your games, such as images, video, and audio, and to 
control your games, using JavaFX object constructs (classes), such as the Stage, Scene, and StackPane.



75

Chapter 4

An Introduction to JavaFX 8: Exploring  
the Capabilities of the Java 8 
Multimedia Engine

Let’s build on the knowledge of the Java programming language that you gained in the previous chapter here in 
Chapter 4, by learning about the capabilities, components, and classes that make up the JavaFX 8 multimedia engine. 
This amazing JavaFX 8 API was added to Java 8 using the javafx package that you saw in Chapters 2 and 3, which was 
released with Java 8. The JavaFX 8 package is significant to game programming because it contains advanced forms 
of classes that you will want to harness for game programming, including classes for organizing game components, 
using a scene graph; classes for user interface layout and design; classes for 2D digital illustration (also called vector 
graphics); and classes for digital imaging (also called raster graphics); 2D animation; digital video; digital audio; 3D; 
a web engine (WebKit); and much more, all of which I will be covering in this chapter, so that you know exactly what 
you have available to you, now that these JavaFX 8 libraries have been added into the Java 8 programming language.

The rationale for going into such detail is not only so that you know what JavaFX 8.0 can do for your Java 8 game 
development, but also so that you have an overview of how the various components of this JavaFX multimedia engine 
are put together. You will learn about the JavaFX Quantum Toolkit, the Prism rendering technology, the WebKit web 
engine, the Glass Windowing Toolkit, the audio and video Media engine, and the Scene Graph API.

The reason you will need this high-level overview of how JavaFX works before you actually start to use it in your 
games is because it is a fairly complex set of APIs (I like to call it an engine). This is due to the power that it brings to 
implementing user interface (UI) and user experience (UX) “wins” in your Java 8 applications (in this case, games). 
So, bear with me in these foundational chapters detailing how to master your IDE (NetBeans 8.0), your programming 
language (Java 8), and this new media engine (JavaFX 8) that is now a part of the Java 8 programming platform that is 
rapidly growing in power and popularity internationally.

Once you have examined how JavaFX 8.0 comes together at the highest level (just like you did in Chapter 3), you will 
consider some of those key classes that you might be using to construct Java 8 games, such as the Node class as well as 
the Stage, Scene, Group, StackPane, Animation, Layout, Shape, Geometry, Control, Media, Image, Camera, Effect, 
Canvas, and Paint classes. You have already studied the JavaFX Application class (see Chapters 2 and 3), so now you 
will focus on the classes that can be used to build complex multimedia projects, such as Java 8 games.

Finally, you will take an in-depth look at the bootstrap JavaFX application that you generated in Chapter 2, and at 
how the Java .main() method and the JavaFX .start() method create the primaryStage Stage object, using the Stage() 
constructor method, and, inside of that, create your Scene object named scene, using the Scene() constructor 
method. You will explore how to use methods from the Stage class to set the scene and title and show the Stage as 
well as how to create and use the StackPane and Button class (objects), and add an EventHandler to a Button.



Chapter 4 ■ An Introduction to JavaFX 8: Exploring the Capabilities of the Java 8 Multimedia Engine 

76

Overview of JavaFX: From Scene Graph Down to OS
As in the previous chapter, on Java 8, I am starting this overview of JavaFX at the highest level, with the Scene Graph 
API and with visual editing tools, which are contained in a JavaFX application called Scene Builder, which we will 
not be using (Scene Builder is for application UI design not game design); we will use GIMP instead. As you observed 
in Chapter 1 (see Figure 1-5), Scene Builder is integrated into NetBeans 8.0 (JavaFX is listed as being supported 
specifically for use in NetBeans, primarily because Scene Builder has been made an integral part of NetBeans GUI).

As Figure 4-1 demonstrates, these JavaFX application-building tools exist “on top of” the JavaFX 8 API (a 
collection of javafx packages, such as javafx.scene and javafx.application), which is what ultimately allows you to 
build (using Scene Graph) and UI design (using Scene Builder) your JavaFX new media creations (in this case, a Java 8 
game). Note that the JavaFX 8.0 API is connected (here, using steel bearings, to denote plugs) not only to Scene Graph 
and Scene Builder, above it, but also to Java JDK 8 and the Quantum Toolkit, below it. As you can see, Java JDK 8 (and 
APIs) then connects the JavaFX new media engine to NetBeans, the JVM, and the various platforms that Java currently 
supports as well as to future platforms, such as Android 4 (32-bit Android), Android 5 (64-bit Android) and iOS.

Figure 4-1.  How JavaFX 8 is stratified, from the Scene Graph at the top down through Java 8, NetBeans 8.0, JVMs, and OSs

The Quantum Toolkit, which is connected to the JavaFX 8.0 API, ties together all the powerful new media 
engines that you are going to be learning about. The Quantum Toolkit also handles the thread management for all of 
these, so your game code, and your game’s new media (audio, video, 3D, and so on), can use separate processors on 
the dualcore, quadcore, hexacore and octacore CPUs that are so commonplace in today’s computers and consumer 
electronics devices.

The Glass Windowing Toolkit controls window management for JavaFX 8.0, and is responsible for all of the 
discrete areas on the display screen, such as the stage and pop-up windows, including dialogs. Glass also manages 
the event processing queue, passing events up to JavaFX for processing, and sets up timers.

As you can see in the figure, there is also a WebKit engine and a Media (player) engine, which are managed by 
the Quantum Toolkit. The WebKit engine renders your HTML5 and CSS3 web content, and the media player media 
playback engine plays your digital audio and digital video assets, respectively.

The most important new media engine below the Quantum Toolkit is the Prism (game) engine, which renders 
2D content, using Java 2D, and 3D content, using either OpenGL (Mac, Linux, Embedded OSs) or DirectX if your 
users are on the Windows Vista, Windows 7, or Windows 8.1 platform. Windows XP support was discontinued in April 
2014, as most computers and consumer electronics devices out now are 64-bit capable (XP was 32-bit only).



Chapter 4 ■ An Introduction to JavaFX 8: Exploring the Capabilities of the Java 8 Multimedia Engine 

77

Prism bridges the powerful 3D game engines (DirectX, OpenGL) that are on the major OS platforms as well as on 
consumer electronics (embedded) devices so JavaFX 8.0 can offload complex rendering task processing to graphics 
processing unit (GPU) hardware from NVIDIA (GeForce), AMD (ATI Radeon), and Intel. This makes JavaFX (and thus 
Java 8) games faster and allows games to use less CPU processing power for rendering game assets to the screen. This 
in turn allows more CPU processing power be used for game play logic, such as AI and collision detection. You will be 
learning about these areas of game design after you master the JavaFX engine in this fourth chapter of the book.

It is important to note that game developers do not need to understand the inner workings of the Quantum 
(threading), Glass (windowing), or Prism (rendering) engines to be able to take advantage of their amazingly powerful 
features. Throughout the book, you are going to be focusing on the top level (Scene Graph and Scene Builder) as 
well as the JavaFX and Java 8 API levels of the diagram. I will also be covering the NetBeans IDE 8.0 level, which you 
learned about in Chapter 2 but which you will also be exploring much further during the remainder of this book.

As for the lower levels of the diagram, NetBeans 8.0 will generate a Java bytecode file that is read by the custom 
JVM for each of the OS platforms. The JVM, illustrated at the bottom of the figure, can be installed for any given OS 
platform by downloading a Java 8 JRE, which you already encountered in Chapter 1, when you installed it as part  
of Java JDK 8.

This JVM layer lets your game be installed as an application across all popular OS platforms as well as on 
embedded devices, which are also moving to support JavaFX 8. Furthermore, you can generate your Java 8 game as a 
Java applet, which can be embedded in a web site, and there is even a deployment model, in which the application 
can be dragged out of the web site and onto your desktop, where it is installed as a full-fledged Java 8 application.

In addition, there is already a way to run JavaFX 8 applications on iOS 8, and Android 4.4 and 5.0. If you are 
interested in the latest information on this, simply google “JavaFX on Android,” or “JavaFX on iOS,”; you can bet that 
by 2015, Android 5.0 and Chrome OS devices will be running JavaFX applications “natively,”  meaning that you will 
someday (soon) be able to export Java (and JavaFX engine) applications directly to Android 5.0, using IntelliJ, or to 
Chrome OS, using NetBeans 8.0. You should eventually be able to “code once, run everywhere” with this Java 8 and 
JavaFX 8.0 dynamic duo! Oracle recently released Java 8 SE Embedded, Java 8 ME and Java 8 ME Embedded versions, 
all of which support JavaFX.

Note■■  T he JetBrains IntelliJ IDEA is now the official IDE used for creating 64-bit Android 5.0 applications. This 
IDE is examined in my Android Apps for Absolute Beginners, 3rd Edition (Apress, 2014), which covers developing 32-bit 
Android 4.0 applications, using an Eclipse IDE and Java 6, and 64-bit Android 5.0 applications, using an IntelliJ IDEA  
and Java 7.

Let’s start at the top of the diagram, and take a look at the JavaFX Scene Graph and the javafx.scene package, 
which implements Scene Graph in the JavaFX API (you will look at Scene Builder in the next chapter).

JavaFX Scene Package: 16 Core Java 8 Classes
The first thing I want to do after our high-level overview is present one of the most important JavaFX packages, the 
javafx.scene package. In Chapters 2 and 3, you discovered that there is more than one JavaFX package. As you saw 
in Chapter 3 (see Figure 3-1), the InvinciBagel game application uses four different JavaFX packages. The javafx.
scene package contains 16 powerful Java 8 classes (remember, JavaFX was recoded in Java 8), including the Camera, 
ParallelCamera and PerspectiveCamera, Cursor and ImageCursor, LightBase, PointLight, and AmbientLight 
classes; the Scene Graph classes (Node, Parent, Group, and SubScene); and some utility classes (see Figure 4-2).



Chapter 4 ■ An Introduction to JavaFX 8: Exploring the Capabilities of the Java 8 Multimedia Engine 

78

I have grouped these 16 javafx.scene package classes logically. The Scene class is inside the Scene Graph section 
of the diagram, because Scene objects, which are created using the Scene class, contain Scene Graph objects, which 
are created using these four Scene Graph–related classes (Node, Parent, Group, SubScene) and their subclasses. I will 
be covering the Scene Graph classes in detail later in the chapter (see the section “JavaFX Scene Graph: Organizing 
Scenes, Using Parent Nodes.”

Scene Graph architecting classes in JavaFX start at the highest level, with a Node superclass, and its Parent class, 
and include the Group and SubScene classes, which are subclasses of the Parent class. These core classes are used 
to create the JavaFX Scene Graph hierarchy and to organize and group objects that have been created using the other 
JavaFX classes in the JavaFX packages.

There are three Scene utility classes, as I call them, which allow you to take a snapshot (like a screenshot) of 
your scene or any of its Scene Graph nodes at any time as well as to turn SceneAntialiasing on and off if you are using 
3D primitives in a scene. The other half (eight) of the classes in the javafx.scene package are used for scene lighting, 
scene cameras, and cursor control for your scene. I will be discussing these classes later in the chapter (see the section 
“JavaFx Scene Content: Lights, Camera, Cursor, Action!”), after you take a look at the Scene Graph classes, which 
create, group, manage, and manipulate your JavaFX scene content. Thus, I will be covering the javafx.scene package 
classes shown in the figure, from the left-hand side of the diagram to the right-hand side, in the order in which you are 
most likely to use them, from least to most.

JavaFX Scene Class: Scene Size and Color and Scene Graph Nodes
The two primary classes in the javafx.scene package are the Scene class and the Node class. I will be covering the 
Node class and its Parent, Group, and SubScene subclasses in the next section, as those classes, along with their 
subclasses (such as the StackPane class used in the InvinciBagel class) are used to implement the Scene Graph 
architecture in JavaFX. Also, in a sense (and in my diagram) the Node class and its subclasses can be viewed as being 
below the Scene class, although the Node class is not a subclass of the Scene class. In fact, the Node (Scene Graph) 
class and subclasses, or rather the objects created using these classes, are contained inside the Scene object itself.

For this reason, you will first consider how the Scene class, and its Scene() constructor method, is used to create 
Scene objects for JavaFX applications. This section will provide reinforcement of what you learned in Chapter 3 
regarding overloading constructor methods, as there needs to be several different ways to create a Scene object.

Figure 4-2.  The javafx.scene package and its 16-core Scene Graph, Scene utility, Lighting, Camera, and Cursor classes



Chapter 4 ■ An Introduction to JavaFX 8: Exploring the Capabilities of the Java 8 Multimedia Engine 

79

The Scene class is used to create a Scene object, using the Scene() constructor class, which takes between one 
and five parameters, depending on which of the six (overloaded) constructor methods you choose to use. These 
include the following constructor methods, along with their six different (and thus overloaded) parameter list data 
field configurations:
 
Scene(Parent root)
Scene(Parent root, double width, double height)
Scene(Parent root, double width, double height, boolean depthBuffer)
Scene(Parent root, double width, double height, boolean depthBuffer, SceneAntialiasing aAlias)
Scene(Parent root, double width, double height, Paint fill)
Scene(Parent root, Paint fill)
 

The constructor currently used in your bootstrap Java and JavaFX code is the second one, called as follows:
 
Scene scene = new Scene(root, 300, 250);
 

If you wanted to add a black background to the scene, you would select the fifth overloaded constructor method, 
using a Color.BLACK constant from the Color class (this is a Paint object, because Color is a Paint subclass) as your 
fill data (in this case, a fill Color). You would do this by using the following Scene() object constructor method call:
 
Scene scene = new Scene(root, 300, 250, Color.BLACK);
 

Note that the root object is a Parent subclass, called the StackPane class, created using the StackPane() 
constructor method (two lines above the Scene() constructor method call) by using the following line of Java code:
 
StackPane root = new StackPane();  // StackPane subclassed from Parent, so Parent root satisfied
 

As you can see, any class can be used in the constructor that is a subclass of the object (class) type that is declared 
(required) for that constructor parameter position (data). You are able to use Color and StackPane objects in your 
parameter list because they have superclass origins from the Paint and Parent classes, respectively.

In case you are wondering, the Boolean depthBuffer parameter is used for 3D scene components. Because 
these scene components are 3D and have depth (a z component, in addition to 2D x and y components), you will 
need to include this parameter, and set it to a value of true, if you are creating 3D scenes or combining 2D and 3D 
scene components. Finally, the SceneAntialiasing object (and class) that is passed in the parameter list for the fourth 
constructor method provides real-time smoothing for 3D scene components.

JavaFX Scene Graph: Organizing Scenes, Using Parent Nodes
A scene graph, which is not unique to JavaFX and which can be seen in quite a few new media content creation 
software packages, is a data structure that resembles an upside-down tree, with the root node at the top and branch 
nodes and leaf nodes coming off the root node. The first time I saw a scene graph approach to design was when I was 
3D modeling using a software package on the Amiga called Real 3D from Realsoft Oy. This approach has been copied 
by many 3D, digital video, and digital imaging software packages since then and now is a part of how JavaFX organizes 
content and scenes. For this reason, many of you may be familiar (and comfortable) with this design paradigm.

JavaFX Scene Graph data structure allows you not only to architect, organize, and design your JavaFX scene and 
its content, but also to apply opacity, states, event handlers, transformations, and special effects to entire logical 
branches of the Scene Graph hierarchy if you set up the Scene Graph correctly. Figure 4-3 shows the basic Scene 
Graph tree, with the root node at the top and branch and leaf nodes below it.



Chapter 4 ■ An Introduction to JavaFX 8: Exploring the Capabilities of the Java 8 Multimedia Engine 

80

The root node is the topmost node, which is why it is called the root, even though it is at the top, not the bottom, 
like a root would be in the plant world. A root node has no parent, that is, nothing above it in the Scene Graph 
hierarchy. A root node is itself a parent to the branch nodes and leaf nodes below it.

The next most powerful (and complex) construct in the Scene Graph tree is the branch node, which uses the 
javafx.scene.Parent class as its superclass and which can contain children (this is logical, as it extends a class aptly 
named Parent). A branch node can contain other branch nodes, as well as leaf nodes, so it can be used to create some 
very complicated and powerful Scene Graph hierarchy (or Scene Graph architecture) constructs.

The last level in the hierarchy is the leaf node. A leaf node is the end of the branch and, as such, cannot have 
children. It is important to note that leaf nodes can come directly off the root node, as you can see in Figure 4-3. 
Branch nodes can be created by using the Parent, Group, or SubScene classes (see Figure 4-2) or any of their 
subclasses, such as the WebView, PopupControl, Region, Pane, or StackPane class.

Examples of leaf nodes include JavaFX classes (as objects), which can be configured using parameters, such as 
shapes, text, or an ImageView, but which are design or content components, in and of themselves, and have not been 
designed to have children (child objects).

A leaf node will therefore always contain a JavaFX class that has not been subclassed (extended) from the Parent 
class, and that has not itself been specifically designed to have child elements (child objects) within it, or below it, in 
the JavaFX Scene Graph hierarchy.

The four subclasses of the Parent class can all be used as branch nodes and include the Group class, for grouping 
child (leaf node) objects, so that opacity, transforms, and effects can be applied to them; the Region class, for 
grouping child (leaf node) objects to form screen layouts, which can also be styled using CSS; the Control class, which 
can be used to create custom user interface elements (called controls in JavaFX); and the WebView class, which is 
used to contain the JavaFX WebEngine class (this class renders HTML5 and CSS3 content into a WebView).

JavaFX Scene Content: Lights, Camera, Cursor, Action!
Next, let’s take a look at the eight classes listed in the center column in Figure 4-2. They provide powerful multimedia 
tools for controlling your application’s cursor as well as custom lighting special effects and custom camera capabilities 
for your 2D and 3D JavaFX applications (in this case, games, but they could also be e-books, or iTV shows, or anything 
else that requires the powerful new media capabilities that JavaFX offers via the Java language).

The more generalized classes (Cursor, LightBase, Camera) in the figure are parent classes, and the more 
specialized ones (ImageCursor, PointLight, ParallelCamera, and so on) listed after each of those are the subclasses 
of those parent classes. Except the LightBase class, that seems to be stating the obvious!

As you may have guessed (correctly), the JavaFX Cursor class can be used to control the application cursor 
graphic (arrow, hand, closed hand, crosshair, and so on) being used at any given time. The ImageCursor subclass can 
be used to define and supply a custom image-based cursor as well as an x and a y location within the custom cursor 
image that defines where its point (also called the cursor hot spot) is located.

Figure 4-3.  JavaFX Scene Graph hierarchy, starting with the root node and progressing to branch and leaf nodes



Chapter 4 ■ An Introduction to JavaFX 8: Exploring the Capabilities of the Java 8 Multimedia Engine 

81

The LightBase class, and its PointLight and AmbientLight subclasses, can be used to light your scenes. These 
classes are primarily used for 3D scenes, and they require 3D capabilities on any platform that the game is running 
on, which is not really a problem these days, as most of the major CPU manufacturers also make (and include) GPUs. 
Also, it is important to note that the Prism game engine will simulate a 3D environment (GPU), using 3D processing 
emulation, if one is not available on the platform that is rendering the game. In addition, if you set it up correctly, you 
can use the lighting classes with your 2D games or use lighting with a hybrid 2D-3D game.

The Camera class, and its ParallelCamera and PerspectiveCamera subclasses, can be used to photograph 
or video your scene in 3D and 2D (and hybrid) game applications. Two of the camera classes, Camera and 
ParallelCamera, do not require that 3D (GPU) capabilities be present on the platform that is playing your JavaFX 
application (in this case, a game).

The subclasses of the Camera class provide two different, specialized types of cameras. The ParallelCamera class 
can be used for rendering scenes without any depth perspective correction, which in the 3D industry is called an 
orthographic projection. What this means is that this class is perfect for use with 2D scenes (and for 2D games).

The PerspectiveCamera class has a much more complex camera, used for 3D scenes, which will support 3D 
viewing volumes. Like the LightBase class and its subclasses, the PerspectiveCamera class requires 3D capabilities on 
the hardware platform that the application (or game) is running on.

The PerspectiveCamera class has a fieldOfView attribute (state or variable), which can be used to change its 
viewing volume, just like a real camera zoom lens, when you zoom it in from wide angle. The default setting for 
the fieldOfView attribute is an acute angle of 30 degrees. If you remember your geometry from high school, you 
can visualize this field of view by looking down the y (vertical) axis at the camera. As you might expect, there are 
.getFieldOfView() and .setFieldOfView(double) method calls to control this camera class attribute.

Next, let’s take a closer look at the Scene utility classes. After that, you will examine some of the javafx.scene 
subpackages, such as javafx.scene.text, javafx.scene.image, javafx.scene.shape, and javafx.scene.layout.

JavaFX Scene Utilities: Scene Snapshots and Antialiasing
Finally, you should take a quick look at the three utility classes, shown in the right-hand column in Figure 4-2, as 
they can be used to improve the quality of scene output on the user’s device’s screen (using antialiasing) as well as to 
provide screen capture capabilities to either your user (for social media sharing) or your game play logic itself.

Let’s investigate the SceneAntialiasing class first. Antialiasing is a digital imaging industry term that references 
an algorithm that smoothes jagged edges where two colors come together, usually on a diagonal line or in the 
circular area of an image composite. An image composite is two separate images placed in layers to form one 
image. Sometimes, the edges between the image components of these two (or more) image layers will need to be 
smoothed. Smoothing (antialiasing) is required so that a final composite looks like it is one seamless image, which 
is the intention of the artist or game designer. Interestingly, you are already implementing the JavaFX “layer engine” 
in your InvinciBagel application, using the StackPane class (panes are layers). The “layer stack” image-compositing 
approach is common in games as well as in software, such as Photoshop and GIMP.

The SceneAntialiasing class offers antialiasing processing (algorithm) to 3D scenes so that they can be 
composited over your 2D scene background, whether that is the default, Color.WHITE, or any other color value; a 
2D image (creating a hybrid 2D-3D application); or anything else, for that matter. The SceneAntialiasing class allows 
you to set the static SceneAntialiasing data field to a value of DISABLED (turn antialiasing off) or BALANCED (turn 
antialiasing on). The balanced option gives a balance of quality and performance, which simply means that the more 
processing power the device’s hardware brings to the table, the more antialiasing quality will be processed.

Next, let’s explore the SnapshotParameters class (object), which is used to set up (contain) a rendering attribute 
parameter that will be used by the SnapshotResult class (object). The parameters include the type of Camera 
(parallel or perspective) object to be used; whether the depthBuffer (used for 3D) is on (true for 3D) or off (false for 
2D); a Paint object, used to contain the image data; a Transform object, used to contain any transform data; and a 
Rectangle2D object, used to define the viewport area to be rendered (i.e., the snapshot dimensions).

You will be looking at all these javafx.scene subpackage classes and concepts in this chapter as well as using 
many of them over the course of this book. Much of the functionality that you will be tapping into for your Java 8 game 
development will be found in these JavaFX 8.0 subpackages.



Chapter 4 ■ An Introduction to JavaFX 8: Exploring the Capabilities of the Java 8 Multimedia Engine 

82

The SnapshotResult class (and, more important, the object created using this class) contains your resulting 
snapshot image data, the parameters that generated it, and the source node in the scene graph that it was generated 
from. For this reason, the three methods supported by the class should be obvious: the .getImage() method will get 
a snapshot image, the .getSource() method gets the source node information, and the .getSnapshotParameters() 
method will get the SnapshotParameters object contents.

Scene Subpackages: The 13 Other Scene Packages
You may be thinking, “Whew! That was a lot to cover in that javafx.scene package overview!,” and indeed the core 
javafx.scene package has a lot of classes in it, covering scene creation; scene graph organization; and scene utilities, 
such as lighting, cameras, cursors, and screenshots (or should we call these sceneshots?). There is a lot more in the 
javafx.scene package, in subpackages, as I call them, or packages that are below the javafx.scene package, referenced 
using another dot and another package name (description). In fact, there are 13 more javafx.scene packages (see in 
Table 4-1), covering things such as drawing, painting, charting, UI design, imaging, special effects, media (audio and 
video) playback, input-output, text, shapes (2D geometry), transforms, and web page (content created with HTML5, 
JavaScript and CSS3) rendering. You are going to explore these scene package classes in this section.

Table 4-1.  Thirteen Second-Level JavaFX Scene Subpackages, Their Primary Functions, and a Description of Classes

Package Name Functions Description of Contents

javafx.scene.canvas Drawing Canvas class (and Canvas object); for a custom drawing surface

javafx.scene.chart Charting Chart classes: PieChart, LineChart, XYChart, BarChart, AreaChart, 
BubbleChart

javafx.scene.control UI controls UI control classes: Button, Menu, Slider, Label, ScrollBar, TextField

javafx.scene.effect Special effects Special effects classes: Glow, Blend, Bloom, Shadow,  
Reflection, MotionBlur

javafx.scene.image imaging Digital imaging classes: Image, ImageView, WritableImageView, 
PixelFormat

javafx.scene.input Input (Events) Classes related to getting input from the user into the JavaFX application

javafx.scene.layout UI layouts UI layout container classes: TilePane, GridPane, FlowPane, Border

javafx.scene.media Media player Media playback classes: MediaPlayer, MediaView, Track, 
AudioTrack, AudioClip

javafx.scene.paint Painting Paint classes: Paint, Color, LinearGradient, RadialGradient, Stop, 
Material, and so on

javafx.scene.shape Geometry 2D and 3D geometry classes: Mesh, Shape, Shape3D, Arc, Circle, 
Line, Path, and so on

javafx.scene.text Text and font Text rendering and font rendering classes: Font, Text, TextFlow,  
and so on

javafx.scene.transform Transforms Transform classes: Transform, Scale, Rotate, Shear, Translate, Affine

javafx.scene.web WebKit Web support classes: WebView, WebEvent, WebEngine, HTMLEditor



Chapter 4 ■ An Introduction to JavaFX 8: Exploring the Capabilities of the Java 8 Multimedia Engine 

83

Let’s start with the packages that have the fewest classes. The table lists subpackages alphabetically, but the 
first one, javafx.scene.canvas, coincidentally contains only one class, the Canvas class, which, as its name suggests, 
is employed to create a Canvas object that is used as a canvas for you to create things with! The next subpackage 
listed is javafx.scene.chart; this has charting classes, such as PieChart, LineChart, XYChart, BarChart, AreaChart, and 
BubbleChart, for use in business applications, which is a different book entirely, so I will not be covering charting.

The next subpackage, javafx.scene.control, offers all the UI control (“widget,” in Android) classes, such as 
Button, Menu, CheckBox, RadioButton, DatePicker, ColorPicker, ProgressBar, Slider, Label, Scrollbar, and TextField 
and about eight dozen others. Because there are approximately a hundred classes in javafx.scene.control, I am not 
even going to attempt to cover it here; an entire book could probably be written about this subpackage! If you want 
to review these classes, simply reference “javafx.scene.control” on Google or on the Oracle Java website, and you can 
peruse what these classes can do for days on end. For this subpackage, “reference” is the key word, as you will want to 
reference this package and its classes individually at the time you need to implement a given UI element.

The next subpackage, javafx.scene.effect, provides all the special effects classes, almost two dozen of them. 
These can be very useful for Java 8 game development, so this is one of the few subpackages that I am going to cover in 
detail in this section.

The javafx.scene.image subpackage is used to implement digital imagery within JavaFX, and it has the Image, 
ImageView, WritableImage, PixelFormat, and WritablePixelFormat classes. The ImageView class is what you will 
normally use to hold your digital image assets, and the more advanced PixelFormat classes let you create digital 
imagery on a pixel-by-pixel basis if you want to do more advanced (algorithmic) pixel-based digital image creation.

The javafx.scene.input subpackage includes classes that are used to get input from the JavaFX application’s user. 
This input is processed using the event handling capabilities, which you will be examining in great detail over the course 
of this book and which you have already experienced in your JavaFX application, in Chapter 3 (see Figure 3-2, ll. 22 to 24).

The javafx.scene.layout subpackage contains classes that are used to create UI design layouts and that 
can be used for your screen layout designs as well. These layout classes include classes that control and manage 
backgrounds; add and style borders; and provide UI pane management, such as StackPane, TilePane, GridPane, 
FlowPane, and AnchorPane. These UI classes offer automatic screen layout algorithms for the UI controls in 
JavaFX. The Background class (and subclasses) furnishes screen background utilities, and the Border class (and its 
subclasses) supplies screen border utilities, which can be used for spicing up the graphics design for your UI screens.

The javafx.scene.media subpackage holds classes that are used for the playback of audio or video media, 
including the Media, MediaPlayer, and MediaView classes. The Media class (or object, actually) references and 
contains the media (audio or video) asset, MediaPlayer plays that asset, and MediaView (in the case of video) displays 
the asset. This subpackage also has a Track superclass and AudioTrack, VideoTrack, and SubtitleTrack subclasses 
as well as the AudioClip, AudioEqualizer, and EquilizerBand classes, which provide advanced audio (equalizer) 
controls and short-form audio clips, or snippets of audio that are perfect for use in games. You will be using the 
AudioClip class later in the book  (see Chapter 15).

The javafx.scene.paint subpackage contains a Stop class and the Paint superclass and its Color, ImagePattern, 
LinearGradient, and RadialGradient subclasses as well as the Material superclass and its PhongMaterial subclass. 
Those of you who are familiar with 3D content production will recognize this Phong shader algorithm, which will 
allow different surface looks (plastic, rubber, and so on) to be simulated. The Material and PhongMaterial classes 
need 3D capabilities to be present on the playback hardware to function successfully, just like the SceneAntialiasing, 
PerspectiveCamera, and LightBase class (and subclasses). The Paint class creates your Paint object, the Color class 
colors this object (fills it with a color), the LinearGradient and RadialGradient classes fill the Paint object with color 
gradients, and the Stop class lets you define where gradient colors start and stop inside the gradients. Finally, there is 
an ImagePattern class, which can fill a Paint object with a tileable image pattern (this can be quite useful for games).

The javafx.scene.shape subpackage provides classes for 2D geometry (commonly referred to as shapes) as well 
as for 3D geometry (commonly referred to as meshes). A Mesh superclass and its TriangleMesh subclass handle 
3D geometry, as do the Shape3D superclass and its Box, Sphere, Cylinder, and MeshView subclasses. The Shape 
superclass has many more subclasses (11); these are 2D geometry elements and include the Arc, Circle, CubicCurve, 
Ellipse, Line, Path, Polygon, Polyline, QuadCurve, Rectangle, and SVGPath classes. A path support, a path being 
defined as an open shape (I like to call it a spline, as I am a 3D modeler), is also supplied by the PathElement 
superclass and its ArcTo, ClosePath, CubicCurveTo, HLineTo, LineTo, MoveTo, QuadCurveTo, and VLineTo 
subclasses, which allows you to draw spline curves to create your own custom shapes!



Chapter 4 ■ An Introduction to JavaFX 8: Exploring the Capabilities of the Java 8 Multimedia Engine 

84

The javafx.scene.text subpackage has classes for rendering text shapes and fonts into your scenes. This includes 
the Font class, for employing any fonts that you may want to use that are not a JavaFX system font, as well as the 
Text class, for creating a text node that will display the text values using this font. There is also a specialized layout 
container class, called TextFlow, which is used to flow text, much like you would see done on a word processor.

The javafx.scene.transform subpackage offers classes for rendering 2D and 3D spatial transformations, such 
as the Scale, Rotate, Shear, Translate, and Affine (3D rotation) subclasses of the Transform superclass. These can 
be applied to any Node object in the Scene Graph. This allows anything in your scene graph (text, UI controls, shapes, 
meshes, images, media, and so on) to be transformed in any way that you like, which affords JavaFX game developers 
a ton of creative power. In case you are wondering, translation is linear movement of an entire object; shear is linear 
movement on a 2D plane in two different directions or movement in one direction when another part of the 2D 
plane is fixed. Imagine moving the top of a plane, while the bottom remains fixed, such that the square becomes a 
parallelogram, or moving the top and bottom of the same plane (a square) in different directions.

The javafx.scene.web subpackage furnishes classes for rendering web assets into a scene, using a collection of 
classes, including WebView, WebEvent, WebEngine, WebHistory, and HTMLEditor. The WebEngine (see, other 
people call things engines as well) class, as you might imagine, does the processing for showing HTML5 + CSS3 +  
JS in JavaFX, and the WebView class creates the node for displaying the WebEngine output in the Scene Graph. 
The WebHistory class (object, ultimately) holds the session history (from WebEngine instantiation to removal from 
memory) for the web pages visited, and WebEvent bridges the JavaScript web event processing with the JavaFX  
event processing.

Now that you have looked at a plethora of important and useful classes (objects) in the javafx.scene package and 
its related subpackages, let’s take a look at the 15 top-level JavaFX packages to get a better idea of the key capabilities 
that JavaFX offers for application development (focusing of course, on those that can be used for game development).

Other JavaFX Packages: The 15 Top-Level Packages
There are 15 top-level packages (javafx.packagename being what I consider a top-level package), some of which 
have subpackage levels as well, as you have seen with the javafx.scene package and subpackages. Table 4-2 gives an 
overview of these packages and describes their contents.

Table 4-2.  JavaFX Top-Level Packages, Their Primary Functions, and a Description of Their Functional Classes

Package Name Functions Description of Contents

javafx.animation Animation Timeline, Transition, AnimationTimer, Interpolator, KeyFrame, KeyValue

javafx.application Application Application (init, start, stop methods), Preloader, Parameters, Platform

javafx.beans JavaFX beans Java interfaces that define the most generic form of observability

javafx.collections Collections Java collections that define the most generic form of observability

javafx.concurrent Threading Threading classes: Task, Service, ScheduledService, WorkerStateEvent

javafx.css CSS Classes related to implementing CSS in JavaFX

javafx.embed Embeds Embeds deprecated Java Swing and Java AWT GUI paradigms

javafx.event Event handler Event handling classes: Event, ActionEvent, EventType, WeakEventHandler

javafx.fxml FXML FXML

javafx.geometry 3D geometry 3D geometry classes

(continued)



Chapter 4 ■ An Introduction to JavaFX 8: Exploring the Capabilities of the Java 8 Multimedia Engine 

85

I have discussed some of these  already, such as the javafx.application package (see Chapters 2 and 3) and the 
javafx.scene package (see the section “JavaFX Scene Package: Sixteen Powerful Java 8 Classes”). There are a few other 
JavaFX packages that you should take a closer look at here, as they (along with the javafx.scene package) contain 
classes that you will want to use in your Java 8 game development (still others, such as the javafx.print, javafx.fxml, 
javafx.beans, and javafx.embed packages are not likely to be used in your Java game design and development work 
process); these are javafx.animation, javafx.stage, javafx.geometry, javafx.concurrent, and javafx.event. Let’s take 
an in-depth look at what these packages provide for your game development objectives next.

JavaFX Animation for Games: Using javafx.animation Classes
The javafx.animation package contains the Animation superclass, which has the Timeline and Transition subclasses 
as well as the AnimationTimer, Interpolator, KeyFrame, and KeyValue classes. Animation is an important design 
element in Java 8 games, and these animation classes are already coded for us, thanks to JavaFX, so all you have to do 
to add animation to your games is use them properly!

The JavaFX Animation Class: The Foundation for Animation Objects
The Animation class (or object, actually) provides the core functionality of animation in JavaFX. The Animation 
class contains two (overloaded) Animation() constructor methods; these are Animation() and Animation(double 
targetFramerate), and they will create in memory the Animation object, which will control an animation and its 
playback characteristics and life cycle.

The Animation class contains the .play() method, the .playFrom(cuePoint) or .playFrom(Duration time) 
method, and a .playFromStart() method. These methods are used to start playback for the Animation object. There 
are also the .pause() method, which can pause the animation playback, and a .stop() method, to stop animation 
playback. The .jumpTo(Duration time) and .jumpTo(cuePoint) methods are used to jump to predefined positions 
in an animation.

You can set the animation playback speed (also called the frame rate or frames per second [FPS]) by using the 
rate property. The cycleCount property (variable) allows you to specify how many times an animation will loop, 
and a delay property lets you specify a delay time before the animation starts. If your animation is looping, this delay 
property will specify the delay time between loops, which can help you create some realistic effects.

You can specify a seamless animation loop by setting the cycleCount attribute or property (variable) to 
INDEFINITE and then using the autoReverse property (set to false), or you can use pong (back and forth) animation 
looping by specifying the true value for the autoReverse property. You can also set the cycleCount to a numeric value 
(use 1 if you want the animation to play only one time) if you do not want the animation to loop indefinitely.

The .setRate() method sets the animation playback rate property, the .setDelay() method sets the delay 
property, and the .setCycleCount() and .setCycleDuration() methods control the cycling characteristics. There 
are also similar .get() methods to “get” the currently set values for these Animation object variables (properties, 
attributes, parameters, or characteristics; however you prefer to look at these data fields is fine).

Package Name Functions Description of Contents

javafx.print Printing Printing classes

javafx.scene Scene control Classes related to scene creation, organization, control, and realization

javafx.stage Stage creation Stage creation classes

javafx.util JavaFX utility JavaFX utility classes

netscape.javascript JavaScript Allows Java code to invoke JavaScript methods and examine  
JavaScript properties

Table 4-2.  (continued)



Chapter 4 ■ An Introduction to JavaFX 8: Exploring the Capabilities of the Java 8 Multimedia Engine 

86

You can assign an action to be executed when the animation has completed playback, using the onFinished 
property loaded with an ActionEvent object. The action will be executed when the animation reaches the end of each 
loop, and, as you can imagine, some very powerful things can be triggered in a game with this particular capability.

There are also read-only variables (properties), which you can “poll” at any time to find the status, currentTime, 
currentRate, cycleDuration, and totalDuration for each Animation object. For example, you can use the currentTime 
property to see the position of the playback head (frame pointer) at any point in time in the animation playback cycle.

The JavaFX TimeLine Class: An Animation Subclass for Property Timeline Management

The JavaFX Timeline class is a subclass of the JavaFX Animation superclass, so its inheritance hierarchy starts with the 
Java 8 masterclass, java.lang.Object, progressing down to the Timeline class, as follows:
 
> java.lang.Object
  > javafx.animation.Animation
    > javafx.animation.Timeline
 

A Timeline object can be used to define a special kind of Animation object that is composed of JavaFX values 
(properties) of the object type WritableValue. Because all JavaFX properties are of that type, this class can be used to 
animate anything in JavaFX, which means that its use is limited only by your imagination.

As mentioned earlier, Timeline animations are defined using KeyFrame objects, created via the KeyFrame class, 
which both creates and manages these objects. A KeyFrame object is processed by a Timeline object, according to a 
time variable (accessed via KeyFrame.time) and properties to be animated, which are defined using the KeyFrame 
object’s values variable (accessed via KeyFrame.values).

It is important to note that you need to set up your KeyFrame objects before you start running the Timeline 
object, as you cannot change a KeyFrame object within a running Timeline object. This is because it is put into system 
memory once it has been started. If you want to change a KeyFrame object in a running Timeline object in any way, 
first, stop the Timeline object; then, make the change to the KeyFrame; and, finally, start the Timeline object again. 
This will reload the Timeline object and its revised KeyFrame objects into memory with their new values.

The Interpolator class interpolates these KeyFrame.values in the Timeline object, based on the timeline 
direction. Interpolation is a process of creating in-between (or tween) frames, based on the beginning and ending 
values. In case you are wondering how the direction is inferred, it is kept in the rate and the read-only currentRate 
property of the Animation superclass (which is a part of the extended Timeline subclass).

Inverting the value of the rate property (i.e., making it negative) will reverse (toggle) the playback direction; the 
same principle holds when reading the currentRate property (a negative value signifies the reverse, or backward, 
direction). Finally, the KeyValue class (object) is used to hold the values inside the KeyFrame object.

The JavaFX Transition Class: An Animation Subclass for Transition  
Effects Application

The JavaFX Transition class is a subclass of the JavaFX Animation superclass, so its inheritance hierarchy starts with 
the Java 8 masterclass, java.lang.Object, progressing down to the Transition class, as follows:
 
> java.lang.Object
  > javafx.animation.Animation
    > javafx.animation.Transition
 

The Transition class is a public abstract class, and, as such, it can only be used (subclassed or extended) to 
create transition subclasses. In fact, ten of these subclasses have already been created for you to use to create your 
own transition special effects; these are the SequentialTransition, FadeTransition, FillTransition, PathTransition, 
PauseTransition, RotateTransition, ScaleTransition, TranslateTransition, ParallelTransition, and 
StrokeTransition classes. As a subclass of Animation, the Transition class contains all the functionality of Animation.



Chapter 4 ■ An Introduction to JavaFX 8: Exploring the Capabilities of the Java 8 Multimedia Engine 

87

Chances are you will end up using the ten custom transition classes directly, as they provide the different types  
of transitions you are likely to want to use (fades, fills, path based, stroke based, rotate, scale, movement, and so on).  
I am going to move on to the AnimationTimer class next, as we will be using this class for our game engine during  
the book.

The JavaFX AnimationTimer Class: Frame Processing, Nanoseconds, and Pulse
The JavaFX AnimationTimer class is not a subclass of the JavaFX Animation superclass, so its inheritance hierarchy 
starts with the Java 8 masterclass, java.lang.Object, and looks like this:
 
> java.lang.Object
  > javafx.animation.AnimationTimer
 

What this means is that the AnimationTimer class is scratch coded specifically to offer AnimationTimer 
functionality to JavaFX and that it is not related to the Animation (or Timeline or Transition) class or subclasses in any 
way. For this reason, the name of this class may be somewhat misleading if you are mentally grouping the class in with 
the Animation, Interpolator, KeyFrame, and KeyValue classes that occupy the javafx.animation package with it, as is 
has no relation to these classes whatsoever!

Like the Transition class, the AnimationTimer class has been declared a public abstract class. Because it is 
an abstract class, it can only be used (subclassed or extended) to create AnimationTimer subclasses. Unlike the 
Transition class, it has no subclasses that have been created for you; you have to create your own AnimationTimer 
subclasses from scratch, which we will be doing later on in the book to create our GamePlayLoop.java class.

The AnimationTimer class is deceptively simple, in that it has only one method that you must override or replace, 
contained in the public abstract class: the .handle() method. This method provides the programming logic that you 
want to have executed on every frame of the JavaFX engine’s stage and scene processing cycle, which is optimized to 
play at 60FPS (this is perfect for games). JavaFX uses a pulse system, which is based on the new Java 8 nanosecond 
unit of time (previous versions of Java used milliseconds).

JavaFX Pulse Synchronization: Asynchronous Processing for Scene  
Graph Elements

A JavaFX pulse is a type of synchronization (timing) event, one that synchronizes the states of the elements that are 
contained within any given Scene Graph structure that you create for your JavaFX applications (games). The pulse 
system in JavaFX is administered by the Glass Windowing Toolkit. Pulse uses high-resolution (nanosecond) timers, 
which are also available to Java programmers using the System.nanoTime() method, as of the Java 8 API.

The pulse management system in JavaFX is capped or throttled to 60FPS. This is so that all the JavaFX threads 
have the “processing headroom” to do what they need to do. A JavaFX application will automatically spawn up to 
three threads, based on what you are doing in your application logic. A basic business application will probably only 
use the primary JavaFX thread, but a 3D game will also spawn the Prism rendering thread, and if that game uses 
audio or video, or both, which it usually will, it will spawn a media playback thread as well.

You will be using audio, 2D, 3D, and possibly video in the course of your game development journey, so your 
JavaFX game application will certainly be multithreaded! As you will see, JavaFX has been designed to be able to 
create games that take advantage of multithreading and nanosecond timing capabilities and 3D rendering hardware 
(Prism) support.

Whenever something is changed in the Scene Graph, such as a UI control positioning, a CSS style definition, or 
an animation playing, a pulse event is scheduled and is eventually fired to synchronize the states of elements on the 
Scene Graph. The trick in JavaFX game design is to optimize pulse events so that they are focusing on the game play 
logic (animation, collision detection, and so on); thus, you will minimize the other changes (UI control location, CSS 
style changes, and so on) the pulse engine looks at. You will do this by using the Scene Graph as a fixed design system, 
meaning that you will use the Scene Graph to design your game structure but will not manipulate nodes in real time 
on the Scene Graph, using dynamic programming logic, as the pulse system will perform the updates.



Chapter 4 ■ An Introduction to JavaFX 8: Exploring the Capabilities of the Java 8 Multimedia Engine 

88

A JavaFX pulse system allows developers to handle events asynchronously, like a batch processing system 
that schedules tasks on the nanosecond level, instead of once a day, like batch processing schedulers from the old 
mainframe computer days. Next, let’s examine how to schedule code in a pulse, using a .handle() method.

Harnessing the JavaFX Pulse Engine: Extending the AnimationTimer Class to 
Generate Pulse Events

Extending the AnimationTimer class is a great way to get the JavaFX pulse system to process your code for each pulse 
that it processes. Your real-time game programming logic will be placed inside the .handle(long now) method and 
can be started and stopped at will by using the other two AnimationTimer methods, .start() and .stop().

The .start() and .stop() methods are called from the AnimationTimer superclass, although the two methods can 
be overridden as well; just be sure eventually to call super.start() and super.stop() in your override code methods. 
If added as an inner class inside your current JavaFX public void .start() method structure,  the code structure might 
look as follows (see Chapter 3, Figure 3-2):
 
public void start(Stage primaryStage) {
    Button btn = new Button;
    new AnimationTimer() {
        @Override
        public void handle(long now) {
            // Program logic that gets processed on every pulse that JavaFX processes
        }
    }.start();
}
 

The above programming logic shows how an AnimationTimer inner class would be constructed as well as how 
Java dot chaining works. The .start() method call to the AnimationTimer superclass is appended to the end of the new 
AnimationTimer(){. . .} code construct so that the entire AnimationTimer creation (using new), declaration (using the 
curly braces), and execution (using a .start() method call) are chained to the AnimationTimer object construct.

If you want to create a more complex AnimationTimer subclass for something central to your game logic, such 
as Collision Detection, it would be a better idea (Java code design approach) to make this game logic its very own 
custom AnimationTimer subclass.

This is especially true if you are going to be creating more than one AnimationTimer subclass to do pulse  
event–controlled high-speed processing. That’s right, you can have more than one AnimationTimer subclass running 
at the same time (just do not get carried away and use too many AnimationTimers). You can accomplish this with the 
extends keyword, creating your own AnimationTimer class, called GamePlayLoop, using the following class definition:
 
public class GamePlayLoop extends AnimationTimer {
    @Override
    public void handle(long now) {
        // Program logic that gets processed on every pulse that JavaFX processes
    }
    @Override
    public void start() {
        super.start();
    }



Chapter 4 ■ An Introduction to JavaFX 8: Exploring the Capabilities of the Java 8 Multimedia Engine 

89

    @Override
    public void stop() {
        super.stop();
    }
}
 

Next, let’s investigate the JavaFX Stage class (object),which is passed into your InvinciBagel .start() method!

JavaFX Screen and Window Control: Using javafx.stage Classes
The javafx.stage package contains classes that can be considered top level, in terms of the display for your JavaFX 
application (in this case, a game). This display is at the top of the resulting game play, because it shows your game’s 
scenes to the end user of your application. Inside the Stage object are Scene objects, and inside these are Scene Graph 
Node objects, which contain the elements that make up an application.

In contrast, the classes that are in this package could be considered fairly low level, from an OS perspective; 
these are the Stage, Screen, Window, WindowEvent, PopupWindow, Popup, DirectoryChooser, and FileChooser 
classes as well as the FileChooser.ExtensionFilter nested class. These classes can be used to interface with the 
device’s display hardware, and the OS software’s windowing management, file management, and directory (folder) 
management functionality.

To get a description of the display hardware that is being used by the device that a JavaFX application is running 
on, you will want to use the Screen class. This class supports multiscreen (commonly referred to as second screen) 
scenarios, using the .getScreens() method, which can access an ObservableList object that will contain a list (array) 
with all the currently available screens. A primary screen is accessed using the .getPrimary() method call. You 
can get the physical resolution for the primary screen hardware by using a .getDpi() method call. There are also 
.getBounds() and .getVisualBounds() method calls for usable resolution.

The Window superclass, and its Stage and PopupWindow subclasses, can be used by the JavaFX end user to 
interact with your application. As you saw in Chapter 3 (see Figure 3-2), this is done using the Stage object named 
primaryStage, which is passed into your .start() method, or using a PopupWindow (dialog, tool tip, context menu, 
notification, and so on) subclass, such as a Popup or PopupControl object.

You can use the Stage class to create secondary stages within your JavaFX application programming logic.  
A primary Stage object is always constructed by the JavaFX platform, using the public void start(Stage primaryStage) 
method call, as you have already seen in Chapters 2 and 3 in the bootstrap JavaFX application created by NetBeans.

All JavaFX Stage objects must be constructed using, and modified inside the primary JavaFX application thread, 
which I discussed in the previous section. Because a stage equates to a window on the OS platform it is running 
on, certain attributes or properties are read-only, as they need to be controlled at the OS level; these are Boolean 
properties (variables): alwaysOnTop, fullScreen, iconified, and maximized.

All Stage objects have a StageStyle attribute and a Modality attribute, which can be set using constants. The 
stageStyle constants are StageStyle.DECORATED, StageStyle.UNDECORATED, StageStyle.TRANSPARENT, and 
StageStyle.UTILITY. The Modality constants are Modality.NONE, Modality.APPLICATION_MODAL, and Modality.
WINDOW_MODAL. In the next section, I will show you how to do something really impressive using the StageStyle 
attribute and the TRANSPARENT constant that will make your JavaFX applications stand out from everyone else’s in 
the marketplace.

The Popup class can be used to create custom pop-up notifications, and even custom game components, from 
scratch. Alternately, you can use the PopupControl class, and its ContextMenu and Tooltip subclasses, to provide 
these predefined (coded) JavaFX UI controls.

The DirectoryChooser and FileChooser classes give support for passing through the standard OS file selection 
and directory navigation dialogs into your JavaFX applications. The FileChooser.ExtensionFilter nested class offers a 
utility for filtering the files that will come up in the FileChooser dialog, based on file type (file extension).

Next, let’s take your current InvinciBagel Stage object to the next level and make it a windowless (floating) 
application. This is one of the impressive features of JavaFX that cannot be matched by Flash or other game engines.



Chapter 4 ■ An Introduction to JavaFX 8: Exploring the Capabilities of the Java 8 Multimedia Engine 

90

Using a JavaFX Primary Stage Object: Creating a Floating Windowless Application
Let’s make the primary Stage for your InvinciBagel application transparent so that the Button UI control floats right 
on top of the OS desktop. This is something that JavaFX can do that you do not see very often, and it allows you to 
create 3D applications that float on top of the OS desktop (for 3D virtual objects, this is called a windowless  
ActiveX control).

This is accomplished by using the StageStyle.TRANSPARENT constant, in conjunction with the .initStyle() 
method, from the Stage class. As Figure 4-4 demonstrates, I also used the technique I told you about in Chapter 3 
(a technique that does not follow the proper Java coding convention regarding declaring an import statement for 
classes you are planning to use). In line 35 of the code, I reference the constant by using the fully qualified class 
name (package.subpackage.class.constant), javafx.stage.StageStyle.TRANSPARENT, inside the primaryStage.
initStyle(StageStyle style) method call. This is done via the following line of Java code:
 
primaryStage.initStyle(javafx.stage.StageStyle.TRANSPARENT);
 

As you can, I clicked the primaryStage Stage object in NetBeans IDE 8.0, in the code editing area, and it shows 
(tracks) the usage of that object in the code. The Stage object is set up (displaying title, style, and scene), using the 
.setTitle(), .initStyle(), .setScene(), and .show() method calls.

I am going to leave the .setTitle() method call in the code, but make a mental note that once you get this 
windowless application treatment working, the title bar is part of the window’s “chrome,” or UI elements, and when 
these are gone (including the title bar), this setting of the title will amount to a moot point.

If you have been worrying about memory optimization, at this point in the application development work 
process, you would remove the .setTitle() method call, because the title would not be shown using a StageStyle.
TRANSPARENT constant for the StageStyle attribute.

Figure 4-4.  Call an .initStyle() method with the StageStyle.TRANSPARENT constant, off the primaryStage Stage object



Chapter 4 ■ An Introduction to JavaFX 8: Exploring the Capabilities of the Java 8 Multimedia Engine 

91

Next, use the Run icon (or Run menu), and run the application. As Figure 4-5 illustrates, what you are trying to 
achieve did not work: the window chrome elements are gone, and the transparency value is not evident.

There must be something else in the processing pipeline that is not yet defining its background using the 
transparency value. Transparency is defined using a hexadecimal value of #00000000, which signifies that all 
AARRGGBB (alpha channel, red, green, blue) color and opacity values are turned off. You will need to start thinking 
about the JavaFX components of your application as layers (currently, these are stage-scene-stackPane-button). 
You will be learning about digital imaging concepts such as color depth, alpha channels, layers, blending, and all the 
technical information that relates to processing pixels in a 2D plane as the book progresses.

The next thing you should try to set to this transparent value is the next level down in the JavaFX Scene Graph 
hierarchy from the stage, which contains the Scene Graph itself. The next most top-level component, as discussed 
previously, is the Scene object, which also has a background color value parameter or attribute.

Like the Stage class (object), the Scene class (object) does not have a style constant of TRANSPARENT, so you will 
have to approach setting the Scene object’s background to a transparency value in a different way, using a different 
method and constant. One thing you should know is that everything in JavaFX that writes itself to the screen will in 
some way support transparency to allow multiple-layer compositing in JavaFX applications.

If you read the Scene class documentation, you will notice that there is a method, .setFill(Color value), that 
takes a Color (class or object) value, so let’s try that next. As Figure 4-6 shows, I called the .setFill() off the Scene object 
named scene, using a scene.setFill(Color.TRANSPARENT); statement, which NetBeans helps me construct!

Figure 4-5.  Run the project to see if the Stage object is transparent; clearly, something is set to White



Chapter 4 ■ An Introduction to JavaFX 8: Exploring the Capabilities of the Java 8 Multimedia Engine 

92

Run the application again, to see if the transparency is showing yet. As you can see in Figure 4-7, it is not!

Figure 4-6.  Call the .setFill() method with the Color.TRANSPARENT constant, off the Scene object named scene



Chapter 4 ■ An Introduction to JavaFX 8: Exploring the Capabilities of the Java 8 Multimedia Engine 

93

Because you are using a StackPane object to implement layers in the InvinciBagel application, this is the next 
level up that you need to try to set a transparency value for. Evidently, JavaFX uses a Color.WHITE default background 
color value for all its objects. If I were on the JavaFX design team, I would be arguing for this to be changed to the 
Color.TRANSPARENT constant, but, of course, this might confuse new users, as alpha channel and compositing layers 
are advanced concepts.

The javafx.scene.layout.StackPane class is subclassed from the javafx.scene.layout.Region class, which has a 
.setBackground() method for setting the Background (class or object) value. Again, a TRANSPARENT value constant 
must be available, as you always need to set background values as transparent, especially for Java 8 game design.

Interestingly, things are not always as straightforward and consistent as you would want them to be in Java 
programming, as, to achieve exactly the same end result (installing a transparent background color/image plate 
for the design element), you have used thus far three different method calls, passing three custom object types: 
.initStyle(StageStyle object), .setFill(Color object), and .setBackground(Background object).

Figure 4-7.  Run the project to look at the transparent Stage object; something is still set to White



Chapter 4 ■ An Introduction to JavaFX 8: Exploring the Capabilities of the Java 8 Multimedia Engine 

94

This time, you are going to call the .setBackground(Background value) method, with yet another Background 
class (object) constant, EMPTY. As Figure 4-8 illustrates, NetBeans will help you find the constant once you call the 
method off the StackPane object named root, using the following Java statement: root.setBackground(Background.
EMPTY);. NetBeans provides a method selector drop-down and, once you select a method, an information dialog 
showing you the origin (superclass) of the method as well as what it does and an in-depth description. In this 
case, null (nothing), or zero Color fill, or zero Image set equates to TRANSPARENT. You are now ready to test your 
windowless (transparent) application version by using the run project work process.

Figure 4-8.  Call a .setBackground() method with a Background.EMPTY constant, off the StackPane object named root

As you can see in Figure 4-9, you have now achieved your objective, and just the Button object is visible on the 
desktop. I pulled the top of NetBeans IDE 8.0 down a bit so that you can see how great this works and still see the 
three lines of Java code that you added to achieve this end result. Using 2D, 3D, and alpha channels, some crazy-cool 
applications can be created via this StageStyle.TRANSPARENT capability, so I thought I would show it to you early on 
in the book and get some JavaFX application Java coding experience into this JavaFX overview chapter.



Chapter 4 ■ An Introduction to JavaFX 8: Exploring the Capabilities of the Java 8 Multimedia Engine 

95

Now that you have explored the javafx.stage package, let’s examine the javafx.geometry package next!

JavaFX Bounds and Dimensions: Using javafx.geometry Classes
Even though the term “geometry” technically applies to 2D and 3D assets, these are contained in a javafx.scene.shape 
package, which I covered earlier (see the section “Scene Subpackages: The 13 Other Scene Packages”). The javafx.
geometry package could be considered more of a utility package, containing foundational classes for building 2D 
and 3D constructs from scratch. As such, the package offers classes such as a Bounds superclass and its BoundingBox 
subclass as well as Insets, Point2D, Point3D, Dimension2D, and Rectangle2D geometry content creation utility classes.

All the classes in the javafx.geometry package, except the BoundingBox class, were extended directly from the 
java.lang.Object master class, meaning that they were each developed (coded) from scratch for providing points (also 
called vertices), rectangles, dimensions, boundaries, and insets (inside boundaries) for use as geometric utilities for 
JavaFX application development.

Figure 4-9.  Windowless JavaFX application seen at the top; completed Java and JavaFX code that achieves it seen in the IDE



Chapter 4 ■ An Introduction to JavaFX 8: Exploring the Capabilities of the Java 8 Multimedia Engine 

96

The Point2D and Point3D classes (objects, ultimately) hold x, y coordinates for a 2D point on a 2D plane or x, y, 
z coordinates for a 3D point in 3D space. These Point objects will be used to build more complex 2D or 3D structures 
made up of a collection of points, such as a 2D path or a 3D mesh. The Point2D and Point3D constructor method calls 
are not overloaded, and they use the following standard formats, respectively:
 
Point2D(double X, double Y)
Point3D(double X, double Y, double Z)
 

The Rectangle2D class (object) can be used to define a rectangular 2D area, often referred to as a plane, and has 
many uses in graphics programming, as you might well imagine. A Rectangle2D object has a starting point in the 
upper left-hand corner of the rectangle specified, using an x and a y coordinate location as well as a dimension 
(width by height). A constructor method for a Rectangle2D object has the following standard format and is not 
overloaded:
 
Rectangle2D(double minX, double minY, double width, double height)
 

In addition, a Dimension2D class (object) specifies only the width and height dimensions and does not place the 
dimensions (which would make it a rectangle) on the screen using an x, y location. This class’s constructor method 
is as follows:
 
Dimension2D(double width, double height)
 

The Insets class (object) is like a Dimension2D class, in that it does not provide a location value for the inset 
but does offer offsets for a rectangular inset area, based on top, bottom, left, and right offset distances. The Insets 
method is in fact overloaded, so you can specify an equidistant inset or a customized inset, using the following code:
 
Insets(double topRightBottomLeft)
Insets(double top, double right, double bottom, double left)
 

The Bounds class is a public abstract class and will never be an object, but instead is a blueprint for creating 
Node boundary classes, such as its BoundingBox subclass. The Bounds superclass also allows a negative value, 
which is used to indicate that a bounding area is empty (think of it as null, or unused). A BoundingBox class uses 
the following (overloaded) constructor methods to create a 2D (first constructor) or 3D (second constructor) 
BoundingBox object:
 
BoundingBox(double minX, double minY, double width, double height)
BoundingBox(double minX, double minY, double minZ, double width, double height, double depth)
 

Next, let’s take a look at Event and ActionEvent processing in JavaFX, as this will add interactivity to your games.



Chapter 4 ■ An Introduction to JavaFX 8: Exploring the Capabilities of the Java 8 Multimedia Engine 

97

JavaFX Input Control for Games: Using javafx.event Classes
Because games are interactive by their very nature, let’s take a look at the javafx.event package next; it provides us 
with the Event superclass and its ActionEvent subclass, for handling ACTION events, such as UI element use and 
animation KeyFrame processing. Because you are going to be using ActionEvent in your JavaFX games (applications), 
I am describing its class inheritance hierarchy here, as this will show you the origins of the Event class as well:
 
Java.lang.Object
  > java.util.EventObject
    > javafx.event.Event
      > javafx.event.ActionEvent
 

Your InvinciBagel game application is already using this ActionEvent class (object), with the EventHandler 
interface and its .handle() method, which you code yourself to tell your application what to do to “handle” the Event 
(ActionEvent) once it has occurred (fired). The .handle() method catches this fired event and then processes it, 
according to the Java programming logic inside the body of the .handle() method.

A Java interface is a class that furnishes empty methods, which are declared for use but which do not yet 
contain any Java programming constructs. The unimplemented methods will, at the time of their use, have to be 
implemented by you, the Java programmer. This Java interface defines only the methods to be implemented (in this 
case, a method for handling the ActionEvent so that the event gets processed in some fashion). It is important to note 
that the Java interface defines the method that needs to be coded but does not write the method code for you, so it is a 
road map of what you must do to complete, or interface with, the programming structure that is in place (in this case, 
the Java programming structure for handling ActionEvent objects, that is, fired action events.

Now, let’s take a look at multithreading in JavaFX, which is another important concept for advanced games, to 
conclude this exploration of everything 2D- and  3D- (game) related in the JavaFX API and package hierarchy.

JavaFX Thread Control for Games: javafx.concurrent Package
Games require background, or asynchronous, processing. This can be done using additional threads besides 
the JavaFX application thread, Prism rendering thread, and media playback thread, which are all automatically 
created for you, based on which classes (objects) you are using in your scene graph. Your application programming 
logic can spawn its own Worker threads for processing so that you do not overload the primary JavaFX application 
thread. Let’s take a look at the javafx.concurrent package next, as it provides us with the Service superclass and its 
ScheduledService subclass, for creating Worker objects, as well as a Task class, used for one-off task processing.

Because you are going to be using Service and ScheduledService in your JavaFX games (applications), I am 
demonstrating the ScheduledService class inheritance hierarchy here, as this will show you the java.lang.Object 
origins of the Service classes as well:
 
Java.lang.Object
  > javafx.concurrent.Service
    > javafx.concurrent.ScheduledService
 

Whereas Task (class) objects are used only one time, to accomplish a given task, a service is ongoing, and a 
Service object and a ScheduledService (class) object can be reused, that is, they are ready to perform their service 
at any time. This is more appropriate for game play processing, as game play continues for long periods of time, and 
the assumption here is that the types of game logic processing involved will also need to be calculated as time goes on 
during game play, and not just one single time, as with the Task class (object).

The Worker Java construct is actually an interface, and the Task, Service, and ScheduledService classes have 
been created for you, based on this Worker interface (which is more than can be said for the EventHandler interface, 
which you have to implement yourself!).



Chapter 4 ■ An Introduction to JavaFX 8: Exploring the Capabilities of the Java 8 Multimedia Engine 

98

A Worker object performs processing, using a background thread, and can be either reusable (such as in the 
Service class) or not reusable (such as in the Task class). Worker thread states are controlled by the Worker.State 
class (object) and contain the life cycle stages for a Worker thread. These apply across the three primary classes in 
the javafx.concurrent package, as they implement the Worker interface and its related nested classes. As mentioned 
in the previous chapter, a nested class is accessed via dot notation, so the State class is thus nested inside the Worker 
interface (class). Because the states of a Worker thread are very important to understand before you use it, I am 
going to detail them in the form of a table so that they are crystal clear to you (see Table 4-3).

Table 4-3.  Worker Thread Life Cycle States, as Defined by the Worker.State Nested Class for Use with a Worker Interface

Worker.State Constant Significance

READY Worker object (thread) has been initialized (or reinitialized) and is ready to be used.

SCHEDULED Worker object (thread) has been scheduled for execution but is not currently running.

RUNNING Worker object (thread) is currently running and is executing the Java programming logic.

SUCCEEDED Worker object (thread) has executed successfully, and a valid result is in the value property.

FAILED Worker object (thread) has failed to execute successfully because of some  
unexpected condition.

CANCELLED Worker object (thread) has been cancelled by invoking the Worker.cancel() method call.

As with everything else in this JavaFX 8 multimedia engine overview chapter, you will be getting deep into the 
details of how to use these packages, classes, nested classes, interfaces, methods, constants, and variables over the 
course of the book, as you apply these JavaFX programming constructs and concepts!

Summary
In this fourth chapter, you took a closer look at some of the more important packages, concepts, components, classes, 
constructors, constants, and variables (attributes) that can be found in the JavaFX 8 API, an impressive collection of 
36 javafx.packagename.subpackagename packages, which I outlined in tables and covered, one by one, as needed for 
multimedia 2D and 3D (and hybrid 2D-3D) game development. When I say, “an overview,” I mean an overview!

Certainly, I cannot discuss every functional class in JavaFX in one chapter, so I started with a broad overview of 
the JavaFX engine and how it integrates with the JavaFX Scene Builder tool and the JavaFX Scene Graph API above 
it, and with the Java 8 API, NetBeans 8.0, and target OSs below it, which give JavaFX expansive OS support across so 
many popular platforms and devices and the leading web browsers.

I presented a high-level technical view of JavaFX, detailing its structures, including JavaFX Scene Graph, APIs, 
Quantum, Prism, Glass, WebKit, and Media engine. You looked at how these multithreading, rendering, windowing, 
media, and web engines interface with the Java 8 API and Java JDK 8 as well as with NetBeans 8.0 and the JVM 
bytecode that it generates, which is read by all the various OS platforms currently running across a dozen different 
consumer electronics device types.

You also explored JavaFX core concepts, such as the JavaFX Scene Graph and the JavaFX pulse events system, 
which you will be leveraging to create a Java 8 game as you work through this book, starting in the next chapter, when I 
explain how to use the JavaFX Scene Builder visual editing tool in NetBeans.

Then, you dove deep into some of the key JavaFX packages and subpackages for game design, such as 
Application, Scene, Shape, Effect, Layout, Control, Media, Image, Stage, Animation, Geometry, Event, 
and Concurrent, and their package classes and subclasses and even, in some cases, their interfaces, nested classes, 
and constants.



Chapter 4 ■ An Introduction to JavaFX 8: Exploring the Capabilities of the Java 8 Multimedia Engine 

99

You even took a break to add some code to your InvinciBagel application that turned it into a windowless 
application and learned how to make the stage, scene, and stackPane background plates transparent, using alpha 
channels and hexadecimal #00000000 or Color.TRANSPARENT, Background.EMPTY, and SceneStyle.TRANSPARENT 
constants. I had to get some work with the NetBeans IDE 8.0, Java 8 programming language, and JavaFX API into this 
chapter somehow!

In the next chapter, you are going to explore the JavaFX Scene Builder, which makes it easy to construct the  
Scene Graph structures that you learned about in this chapter. You will start to build your game splash screen as well, 
as I know you are eager to get started on a game infrastructure, even if it is just a splash screen!



101

Chapter 5

An Introduction to Game Design: 
Concepts, Multimedia, and Using 
Scene Builder

In this chapter, you will build on your knowledge of the JavaFX multimedia engine by learning about the optimal way 
to use the scene graph paradigm in JavaFX and take a look at JavaFX Scene Builder tool and FXML, and why  
(or why not) to use these in certain types of Java game development scenarios. You will also examine basic game 
design optimization concepts, and the types of games, as well as game engines, that are available for the Java platform, 
including physics engines, such as JBox2D and Dyn4J, and 3D game engines, such as LWJGL and JMonkey. Finally, 
you will consider the new media concepts that you will need to understand to integrate digital imaging, digital audio, 
digital video, and animation into your game production pipeline. We will also look at some of the free open-source 
multimedia production tools that you installed back in Chapter 1, and can now use to create Java 8 games.

First, you will revisit the underlying concept of static (fixed) versus dynamic (real time), which was covered in 
Chapter 3 (constant versus variable) and Chapter 4 (pulse) and which is one of the foundational principles of game 
optimization. This is important, because you will want your game to run smoothly across all the different platforms 
and devices that are used to play it, even if the device only uses a single processor (which is actually rare these days, 
with most devices featuring dual core (two processor) or quad core (four processor) CPUs).

Next, you will study the concepts, techniques, and lingo of game design, including sprites, collision detection, 
physics simulation, background plates, animation, layers, levels, logic, and AI. You will also examine the different 
types of games that can be designed, and how they differ from each other.

Then, you will explore the role that multimedia assets play in today’s visually (and aurally) impressive games. You 
will learn about the principles of digital imaging, digital video, and animation as well as digital audio, as you will be 
using many of these new media asset types over the course of the book, and will need this foundational knowledge to 
be able to work with them.

Finally, you will take an in-depth look at the bootstrap JavaFX application code that you generated in Chapter 2 
and at how the Java .main() method and the JavaFX .start() method create the primaryStage Stage object, using the 
Stage() constructor method, and, inside that, create a Scene object named scene, using the Scene() constructor 
method. You will look at how to use methods from the Stage class to set the scene, title the stage, and show the stage 
as well as how to create and use StackPane and Button class (objects) and how to add an EventHandler to a button.



Chapter 5 ■ An Introduction to Game Design: Concepts, Multimedia, and Using Scene Builder

102

High-Level Concept: Static vs. Dynamic
I want to start out with a high-level concept that touches on everything that I will be talking about in this chapter, from 
the types of games you can create, to game optimization, to JavaFX Scene Builder and JavaFX Scene Graph. You took 
a look at this concept back in Chapter 3, whether you realized it or not, while exploring the concept of a Java constant, 
which is fixed, or static, and does not change, versus a Java variable, which is dynamic and changes in real time. 
Similarly, a UI design in JavaFX Scene Graph can be static (fixed and immovable) or dynamic (animated, draggable, or 
skinnable, meaning that you can change the UI look to suit your personal taste).

The reason these concepts are important in game design and development is that your game’s engine, which you 
design to run or render your game, must constantly check on its dynamic portions to see if they have changed and 
require a response (update a score, move a sprite position, play an animation frame, change the game piece’s state, 
calculate collision detection, calculate physics, and so on). This checking (and the ensuing processing) on every frame 
update (called a pulse in JavaFX; see Chapter 4), to make sure that all your variables, positions, states, animations, 
collisions, physics, and the like are conforming to your Java game engine logic, can really add up, and, at some point, 
the processor that is doing all this work can get overloaded, which can slow it down!

The result of this overloading of all the real-time, per-frame checking that enhances the dynamics of your game 
(play) is that the frame rate at which your game is running will decrease. That’s right, like digital video and animation, 
Java 8 games have frame rates, too, but Java 8 game frame rates are based upon the efficiency of your programming 
logic. The lower the frame rate of your game, the less smooth the game play becomes, at least for dynamic, real-time 
games, such as arcade games; how smoothly a game plays relates to how seamless (enjoyable) the user experience is 
for the customer, the game player.

For this reason, the concept of static versus dynamic is very important to every aspect of game play design and 
makes it easier to achieve a great user experience with certain types of games than with others. I will be discussing 
different types of games later in the chapter (see the section “Types of Games: Puzzles, Board Games, Arcade Games, 
Hybrids”), but, as you might imagine, board games are more static in nature, and arcade games are more dynamic. 
That said, there are optimization approaches that can keep a game dynamic, that is, seem like a lot is going on, when, 
from a processing point of view, what is really going on is quite manageable. This is one of the many tricks of game 
design, which, when all is said and done, is about optimization.

One of the most significant static-versus-dynamic design issues in Android (Java) programming is UI design 
using XML (static design) versus UI design using Java (dynamic design). The Android platform allows UI design to be 
done using XML instead of Java so that nonprogrammers (designers) can do the front-end design for an application. 
JavaFX allows exactly the same thing to be done using FXML. You have to create an FXML JavaFX application to do 
this, as you saw in Chapter 2 (see Figure 2-4, right-hand side, third option, “JavaFX FXML Application”). Doing so will 
add the javafx.fxml package and classes to the application, letting you design UIs, using FXML, and later having your 
Java programming logic “inflate” them so that the design consists of JavaFX UI objects.

It is important to note that using FXML adds another layer, containing the FXML markup and its translation and 
processing, to the application development and compilation process. I am going to demonstrate later in the chapter 
how this is done, in case your design team wants to use FXML for the UI design work process, instead of Java (see the 
section “JavaFX Scene Builder: Using FXML for UI Design”). I am doing this because I want to cover all the design 
options in JavaFX, including FXML, to make sure that this book is complete in its coverage of what can be done using 
Java 8 and JavaFX 8.0. At the end of the day, this is a Java 8 programming title, however, so my primary focus during 
this book will be using Java 8, not FXML.

In any event, the point that I am making regarding using XML (or FXML) to create the UI design is that this 
approach can be viewed as static, because the design is created beforehand, using XML, and is “inflated” at compile 
time, using Java. Java inflation methods use the designer-provided FXML structure to create the scene graph, which 
is filled with JavaFX UI (class) objects, based on the UI design structure (hierarchy) created using FXML. I will give 
you an overview of how this works later in the chapter so that you have a handle on how this works (see the section 
“JavaFX Scene Builder: Using FXML for UI Design”).



Chapter 5 ■ An Introduction to Game Design: Concepts, Multimedia, and Using Scene Builder

103

Game Optimization: Balancing Static Elements with Dynamic
Game optimization comes down to balancing static elements, which do not require processing in real time, with 
dynamic elements, which require constant processing. Too much dynamic processing, especially when it is not really 
needed, can make your game play jerky, or stilted. This is why game programming is an art form: it requires balance 
as well as great characters, a story line, creativity, illusion, anticipation, accuracy, and, finally, optimization.

Some of the different game component considerations for optimization in a dynamic game are listed in Table 5-1.  
As you can see, there are a lot of areas of game play that can be optimized to make the processor’s workload 
significantly less “busy.” If you have even one of these primary dynamic game processing areas “run away” with the 
processor’s precious cycles per frame, this can greatly affect the user experience for your game. I will be getting into 
game terminology (sprites, collision detection, physics simulation, and so on) in the next section of the chapter.

Table 5-1.  Aspects of Game Play That Can Be Optimized to Minimize System Memory and Processor Cycle Usage

Game Play Aspect Basic Optimization Principle

Sprite position (Move) Move sprites by as many pixels as possible to achieve smooth movement on the screen.

Collision detection Check for collisions between objects on the screen only when necessary (in close 
proximity).

Physics simulation Minimize the number of objects in a scene that require physics calculations  
to be performed.

Sprite animation Minimize the number of frames that need to be cycled to create an illusion of  
smooth animation.

Background animation Minimize background areas that are animated so that the entire background looks 
animated but is not.

Game play logic Program game play logic (simulated or AI) to be as efficient as possible.

Scoreboard updates Update scoreboard only when scoring, and minimize score updates to once per 
second maximum.

UI design Use a static UI design so that pulse events are not used for UI element  
positioning or CSS3.

Considering all these game programming areas makes game programming an extremely tricky endeavor!
It is important to note that some of these aspects work together to create a given illusion for the player. For 

instance, the sprite animation will create the illusion of a character running, jumping, or flying, but without 
combining that code with sprite positioning (movement) code, the reality of the illusion will not be achieved.  
To fine-tune an illusion, the speed of the animation (frame rate) and the distance moved (in pixels per frame) may 
need to be adjusted (I like to call this tweaked) to get the most realistic result. We will be doing this during Chapter 13.

If you can move game elements (primary player sprite, objectile sprites, enemy sprites, background) a greater 
number of pixels a fewer number of times, you will save processing cycles. It is the moving part that takes processing 
time, not the distance (how many pixels are moved). Similarly, with animation, the fewer frames needed to achieve 
a convincing animation, the less memory will be required to hold those frames. Remember that you are optimizing 
memory usage as well as processing cycles. Detecting collisions is a major part of game programming logic; it is 
important not to check for collisions between game elements that are not “in play” (on the screen), or active, and that 
are not near each other.

Forces of nature (physics simulations) and game play logic if it is not well coded (optimized), are the most 
processor intensive aspects. These are subjects I will cover later in the book, when you are more advanced  
(see Chapters 16 and 17).



Chapter 5 ■ An Introduction to Game Design: Concepts, Multimedia, and Using Scene Builder

104

Game Design Concepts: Sprites, Physics, Collision
Let’s take a look at the various game design components that we you will need to understand to be able to build a 
game, as well as what Java 8 (or JavaFX) packages and classes you can use to implement these aspects of game play, 
which I like to term components of game play. These can include the game play elements themselves (commonly 
referred to as sprites) as well as processing engines, which you will either code yourself, or import preexisting Java 
code libraries for, such as physics simulation and collision detection.

Sprites are the foundation of game play, defining your main character, projectiles used to damage this main 
character, and the enemies firing these projectiles. Sprites are 2D graphics elements and can be either static (fixed, 
a single image) or dynamic (animated, a seamless loop of several images). A sprite will be moved around the screen 
based on programming logic, which dictates how the game is to function. Sprites need to be composited with 
background imagery and other game elements as well as other sprites and so the graphics used to create the sprites 
will need to support transparent backgrounds.

In Chapter 4, I introduced you to the concept of alpha channels and transparency. You will need to achieve this 
same end result with your sprites to create a seamless visual experience with your game. The next most important 
aspect of game play is collision detection, because if your sprites simply flew right past each other on the screen 
and never did anything cool when they touched, or “intersected” each other, then you really would not have much 
of a game! Once you add a collision detection engine (composed of intersection logic processing routines) your 
game can ascertain when any two sprites are touching (edges) or overlapping each other. A collision detection will 
call (trigger) other logic processing routines that will determine what happens when any two given sprites, such as 
a projectile and the main character, intersect. For example, when a projectile intersects the main character, damage 
points might accrue, life force index might be decreased, or a death animation may be started. In contrast, if a treasure 
item intersects with (is picked up by) the main character, power or capability points might accrue, the life force index 
might be increased, or an “I found it” jubilation animation might be started. As you can see, the collision detection for 
your game is one of the foundational design elements of your game play, besides the sprites (characters, projectiles, 
treasures, enemies, obstacles, and so on) themselves, which is why I am covering this concept early on in the book.

The concept next in significance to your game play is real-world physics simulation. The addition of things like 
gravity; friction; bounce; drag; acceleration; motion curves, such as the JavaFX Interpolator class provides; and the like 
add an additional level of realism on top of the already photo-realistic sprites, synchronized animation sequences, 
scenic backgrounds, and highly accurate collision detection.

Finally, the most proprietary attribute, or logic construct (Java code), to add to your game play is the custom 
game play logic, which makes your game truly unique in the marketplace. This logic should be kept in its own Java 
class or methods, separate from physics simulation and collision detection code. After all, Java 8 makes your code 
modularization well-structured if you learn the OOP concepts and apply them to your programming logic!

When you start to add all these game components together, they begin to make the game more believable as 
well as more professional. One of the key objectives for a great game is suspension of belief, which means that your 
player is buying into the premise, characters, objectives, and game play completely. This is the same objective that any 
content producer, whether he or she be a filmmaker, television producer, author, songwriter, Java 8 game programmer, 
or application developer, is going for. Games these days have the same revenue-generating capability as any of the 
other content distribution genres, if not more.

Next, let’s take a look at the different types of games that can be created and how these differ in their application 
of the core game components of sprites, collision detection, physics simulation, and game play logic.

Types of Games: Puzzles, Board Games, Arcade Games, Hybrids
Like everything else I have talked about in this chapter, games themselves can be categorized by using a  
static-versus-dynamic classification approach. Static games are not processor bound, because they tend to be turn 
based and not hand-eye coordination based in nature, and so, in a sense, they are easier to get working smoothly;  
only the programming logic for the rules of game play and the attractive graphics have to be put in place and 



Chapter 5 ■ An Introduction to Game Design: Concepts, Multimedia, and Using Scene Builder

105

debugged. A significant opportunity also exists for developing new types of game genres that use a hybrid 
combination of static and dynamic game play in creative new ways that have never before been seen. I am working  
on a few of these myself!

Because this is a Java 8 programming title, I am going to approach everything from this standpoint,  which 
happens to be a great way to divide games into discrete categories (static, dynamic, hybrid), so let’s cover the static 
(fixed graphics), turn-based games first. These include board games, puzzle games, knowledge games, memory 
games, and strategy games, all of which should not be underestimated in their popularity and marketability.

The thing that is cool about static games is that they can be just as fun to play as dynamic games and have 
significantly less processing overhead, as they do not have to achieve the 60FPS real-time processing target to achieve 
smooth, professional game play. This is because the nature of the game is not predicated on motion at all, but rather 
on making the right strategic move, but only when it is your turn to do so.

There can be some forms of collision detection involved in static games regarding which game piece has been 
moved to a given location on the gameboard or playing surface; however, there is no danger of overloading the 
processor with collision detection, because the rest of the game board is static, with the exception of the one piece 
that is being strategically moved during that particular player’s turn.

The processing logic for strategy games is more strategy logic–based programming, geared toward allowing the 
players to achieve an end win, given the right sequence of moves, whereas the dynamic game programming logic 
looks more at what collisions are taking place between game sprites. Dynamic games are focused on point score, 
dodging projectiles, finding treasures, completing level objectives, and killing enemies.

Complicated strategy games with lots of interrelated rules, such as chess, are likely to have far more programming 
logic routines than dynamic games. Yet, because the execution of the code is not as time sensitive, the resulting game 
play will be smooth, no matter how powerful the platform and CPU are. Of course, the game rule set logic must be 
flawless for this type of game to truly be professional, so, in the end, both static and dynamic games are difficult to 
code, albeit for different reasons.

Dynamic games could be termed action games or arcade games and include a lot of movement on the display 
screen. These highly dynamic games almost always involve shooting things, such as in the first-person shooter  
(e.g., Doom, Half-Life) as well as in the third-person shooter (Resident Evil, Grand Theft Auto) genres, or stealing 
things, or evading things. There is also the obstacle course navigation paradigm, commonly seen in platform games, 
such as Donkey Kong and Super Mario.

It is important to note that any genre of game can be produced using 2D or 3D graphics and assets or even a 
combination of 2D and 3D assets, which, as I pointed out in Chapter 4, is allowed by JavaFX.

There are so many popular game types that there is always the opportunity to create an entirely new genre of 
game by using a hybrid approach of a static (strategic) game type and a dynamic (action) game type.

Game Design Assets: New Media Content Concepts
One of the most powerful tools you have to make your game highly professional and desirable to buyers is the 
multimedia production software that you downloaded and installed back in Chapter 1. Before I go any further, I need 
to spend some time providing you with foundational knowledge regarding four primary types of new media assets 
that are supported in Java 8, using the JavaFX 8 multimedia engine: digital images, used for sprites, background 
imagery, and 2D animation; vector shapes, used in 2D illustration, collision detection, 3D objects, paths, and curves; 
digital audio, used for sound effects, narration, and background music; and digital video, used in games  
for animated background loops (birds flying through the sky, drifting clouds, and so on) once highly optimized.  
As illustrated in Figure 5-1, these four major genres, or areas, are all installed via the JavaFX Scene Graph, using 
packages that I described in Chapter 4. Some of the primary classes that will be used are ImageView, AudioClip, 
Media, MediaView, MediaPlayer, Line, Arc, Path, Circle, Rectangle, Box, Sphere, Cylinder, Shape3D, Mesh,  
and MeshView.



Chapter 5 ■ An Introduction to Game Design: Concepts, Multimedia, and Using Scene Builder

106

Because you need to have a technical foundation before using any of these types of new media elements in a 
Java 8 game design and programming pipeline, I am going to go over basic concepts for each of these four new media 
areas, beginning with digital imaging and vector illustration.

Digital Imaging Concepts: Resolution, Color Depth, Alpha, Layers
JavaFX (and therefore Java8) supports a significant number of popular digital imaging file (data) formats, which 
gives game designers a ton of flexibility. Some of these have been around forever, such as CompuServe’s graphics 
interchange format (GIF) and the Joint Photographic Experts Group (JPEG) format. Some JavaFX graphics file 
formats are more modern, such as portable network graphics (PNG; pronounced “ping”), which is the file format 
that you will be using for your games, as it yields the highest quality level and supports image compositing. All these 
mainstream digital image file formats supported in Java are also supported in HTML5 browsers, and because Java 
applications can be used with HTML applications and web sites, this is a very logical synergy indeed!

The oldest CompuServe GIF format is the lossless digital image file format. It is termed lossless because it does 
not throw away image data to achieve better compression results. The GIF compression algorithm is not as refined 
(powerful) as that of the PNG format, and GIF only supports indexed color, which is how it obtains its compression 
(smaller file size). If your game image assets are already created with the GIF format, you will be able to use them with 
no problem (other than a less efficient image compression algorithm and no compositing capability) with your Java 8 
game applications.

The most popular digital imaging file format that Java 8 (JavaFX) supports is JPEG, which uses a “truecolor” 
color depth, instead of an indexed color depth, as well as what is termed lossy digital image compression, in which 
the compression algorithm “throws away” image data so that it can achieve a smaller file size (the image data are lost 
forever, unless you are smart and save your original image!).

If you magnify a JPEG image after compression, you will see a discolored area (effect) that clearly was not 
present in the original imagery. The degraded area or areas in the image are commonly referred to as compression 
artifacts. This will only occur in lossy image compression and is common with JPEG (and Moving Picture Experts 
Group [MPEG]) compression.

Figure 5-1.  How new media assets are implemented, using Scene Graph through the JavaFX API in Java 8 via NetBeans



Chapter 5 ■ An Introduction to Game Design: Concepts, Multimedia, and Using Scene Builder

107

Tip■■   I recommend that you use the PNG digital imaging format for your Java 8 games. This is a professional  
image-compositing format, and your games will essentially be a real-time sprite-compositing engine, so you will need  
to use PNG32 imagery.

PNG has two truecolor file versions: PNG24, which cannot be used in image compositing, and PNG32, which 
carries an alpha channel used to define transparency.

I recommend PNG for your games because it has a decent image compression algorithm and because it is a 
lossless image format. This means that PNG has great image quality as well as reasonable levels of data compression 
efficiency, which will make your game distribution file smaller. The real power of the PNG32 format lies in its ability to 
composite with other game imagery, using transparency and antialiasing (via its alpha channel).

Digital Image Resolution and Aspect Ratio: Defining Image Size and Shape
As you probably know, digital imagery is made up of 2D (two-dimensional) arrays of pixels (“pixel” stands for picture 
[pix] element [el]). The sharpness of an image is expressed by its resolution, which is the number of pixels in the image 
width (or W, sometimes referred to as the x axis) and height (or H, sometimes referred to as the y axis) dimensions. 
The more pixels an image has, the higher its resolution. This is similar to how digital cameras work, as the more 
megapixels in an image capture device (called a camera CCD), the higher the image quality that can be achieved.

To find the total number of image pixels, multiply the width pixels by the height pixels. For instance, a wide video 
graphics array (VGA) 800 × 480 image contains 384,000 pixels, which is exactly three-eighths of a megabyte. This is 
how you would find the size of your image, both in terms of kilobytes (or megabytes) used and height and width on 
the display screen.

The shape of a digital image asset is specified using the image aspect ratio. Aspect ratio is the width:height ratio 
for the digital image and defines the square (1:1 aspect ratio) or rectangular (also known as widescreen) digital image 
shape. Displays featuring a 2:1 (widescreen) aspect ratio, such as 2,160 × 1,080 resolution, are now available.

A 1:1 aspect ratio display (or image) is always perfectly square, as is a 2:2 or 3:3 aspect ratio image. You might 
see this aspect ratio on a smart watch, for instance. It is important to note that it is the ratio between these two width 
and height (x and y) variables that defines the shape of an image or screen, not the actual numbers themselves.

An aspect ratio should always be expressed as the smallest pair of numbers that can be achieved (reduced) 
on either side of the colon. If you paid attention in high school while you were learning about the lowest common 
denominator, then an aspect ratio will be very easy for you to calculate. I usually do aspect ratio calculation by 
continuing to divide each side of the colon by two. For example, if you take the SXGA 1,280 × 1,024 resolution, half of 
1,280 × 1,024 is 640 × 512, and half of 640 × 512 is 320 × 256; half of 320 × 256 is 160 × 128, half of that again is 80 × 64, 
half of that is 40 × 32, and half of that is 20 × 16; half of 20 × 16 is 10 × 8, and half of that gives you the 5 × 4 aspect ratio 
for SXGA, which would be signified by using a colon between the two numbers, as in a 5:4 aspect ratio.

Digital Image Color Theory and Color Depth: Defining Precise Image Pixel Colors
The color values for each digital image pixel can be defined by the amount of three different colors, red, green, and 
blue (RGB), which are present in different amounts in every pixel. Consumer electronics display screens leverage 
additive colors, in which wavelengths of light for each RGB color channel are added together creating 16.8 million 
different color values. Additive color is used in liquid crystal display (LCD), light-emitting diode (LED), and organic 
light-emitting diode (OLED) displays. It is the opposite of subtractive color, which is used in printing. To show you the 
different results, under a subtractive color model, mixing red with green (inks) will yield purple colors, whereas in an 
additive color model, mixing red with green (light) creates a vibrant yellow coloration. Additive color can provide a 
much broader spectrum of colors than subtractive color.



Chapter 5 ■ An Introduction to Game Design: Concepts, Multimedia, and Using Scene Builder

108

There are 256 levels of brightness for each red, green, and blue color value that is held for each pixel. This allows 
you to set 8 bits of value-controlling color brightness variation for each of the red, green, and blue values, from a 
minimum of 0 (#00, or off, all dark, or black) to a maximum of 255 (#FF, or fully on, maximum color contributed). The 
number of bits that are used to represent digital image pixel color is referred to as the color depth of the image.

Common color depths used in the digital imaging industry include 8 bit, 16 bit, 24 bit and 32 bit. I will outline 
these here, along with their formats. The lowest color depth exists in 8-bit indexed color images. These feature a 
maximum of 256 color values and use GIF and PNG8 image formats to hold this indexed color type of data.

A medium color depth image will feature a 16-bit color depth and will thus contain 65,536 colors (calculated as  
256 × 256). It is supported by the TARGA (TGA) and tagged image file format (TIFF) digital image formats. If you want to 
use digital image formats other than GIF, JPEG, and PNG in your Java 8 games, import the third-party ImageJ library.

Truecolor color depth images will feature 24-bit color depth and will thus contain more than 16 million 
colors. This is calculated as 256 × 256 × 256, which yields 16,777,216 colors. File formats supporting 24-bit color 
depth include JPEG (or JPG), PNG, BMP, XCF, PSD, TGA, TIFF, and WebP. JavaFX supports three of these: JPG, 
PNG24 (24 bit), and PNG32 (32 bit). Using 24-bit color depth will give you the highest quality level. This is why I am 
recommending the use of PNG24 or PNG32 for your Java games. Next, let’s take a look at how to represent image pixel 
transparency values through alpha channels and how these can be used for compositing digital imagery in real time 
in Java 8 games!

Digital Image Compositing: Using Alpha Channels and Transparency in Layers
Compositing is the process of seamlessly blending together multiple layers of digital imagery. As you might imagine, 
this is an extremely important concept for game design and development. Compositing is useful when you want to 
create an image on the display that appears as though it is one single image (or animation), when it is actually the 
seamless collection of two or more composited image layers. One of the principle reasons you would want to set up 
an image or animation composite is to allow programmatic control over various elements in those images, by having 
them on different layers.

To accomplish this, you need to have an alpha channel transparency value, which you can use to control the 
precision of the blending amount of a given pixel with another pixel (in the same x, y image location) on other layers 
(above and below it).

Like the other RGB channels, an alpha channel has 256 transparency levels. In Java programming the alpha 
channel is represented by the first two slots in a hexadecimal representation of #AARRGGBB data values (which I 
will be covering in detail in the next section). Alpha channel ARGB data values use eight slots (32 bit) of data rather 
than the six data slots (#RRGGBB) used in a 24-bit image, which is really a 32-bit image with zero alpha channel data.

Therefore, a 24-bit (PNG24) image has no alpha channel and will not be used for compositing, unless it is the 
bottom image plate in a compositing layer stack. In contrast, PNG32 images will be used as compositing layers on 
top of PNG24 (background plate) or PNG32 (lower, z-order compositing layers), which will need this alpha channel 
capability to show through (via alpha channel transparency values) in certain pixel locations in the image composite.

How do digital image alpha channels, and the concept of image compositing, factor into Java game design? The 
primary advantage is an ability to break the game play screen, and the sprites, projectiles, and background graphic 
elements that it includes, into a number of component layers. The reason for doing this is to be able to apply Java 8 
programming logic (or JavaFX classes) to individual graphic image elements to control parts of your game play screen 
that you would not otherwise be able to control individually were it one single image.

Another part of image compositing, called blending modes, also factors heavily into professional image-
compositing capabilities. JavaFX blending modes are applied by using the Blend class with the BlendMode constant 
values found in the javafx.scene.effect subpackage (see Chapter 4). This JavaFX blending effect package gives 
Java game developers many of the same image-compositing modes that Photoshop (and GIMP) afford to a digital 
imaging artisan. This turns Java 8 (via JavaFX) into a powerful image-compositing engine, just like Photoshop, and 
the blending algorithms are controllable at a very flexible level, using custom Java 8 code. JavaFX blending mode 
constants include ADD, SCREEN, OVERLAY, DARKEN, LIGHTEN, MULTIPLY, DIFFERENCE, EXCLUSION,  
SRC_ATOP, SRC_OVER, SOFT_LIGHT, HARD_LIGHT, COLOR_BURN, and COLOR_DODGE.



Chapter 5 ■ An Introduction to Game Design: Concepts, Multimedia, and Using Scene Builder

109

Representing Color and Alpha in Java 8 Game Code: Using Hexadecimal Notation
Now that you know what color depth and alpha channels are, and that color and transparency are represented by 
using a combination of four different image channels (alpha, red, green, and blue [ARGB]) within any given digital 
image, it is important to understand how, as programmers, you are supposed to represent these four ARGB image 
color and transparency channel values in Java 8 and JavaFX.

In the Java programming language, color and alpha are used not only in 2D digital imagery (commonly referred 
to as bitmap imagery), but also in 2D illustration (commonly referred to as vector imagery). Colors and transparency 
values are also often used across a number of different color setting options. As you have already seen with the 
Stage object and the Scene object, you can set a background color (or transparency value) for a stage, scene, layout 
container (StackPane), or UI control, among other things.

In Java (and thus JavaFX) different levels of ARGB color intensity values are represented using hexadecimal 
notation. Hexadecimal (or hex) is based on the original Base16 computer notation. This was used long ago to 
represent 16 bits of data value. Unlike the more common Base10, which counts from 0 to 9, Base16 notation counts 
from 0 to F, where F represents the Base10 value of 15 (0 to 15 yields 16 data values).

A hexadecimal value in Java always starts with a 0 and an x, like this: 0xFFFFFF. This hexadecimal color value 
represents the Color.WHITE constant and uses no alpha channel. Each of the six slots in this 24-bit hexadecimal 
representation stands for a single Base16 value, so to get the 256 values required for each RGB color will take two 
slots, as 16 × 16 = 256. Therefore, to represent a 24-bit image using hexadecimal notation, you would need to have 
six slots after the pound sign to hold each of the six hexadecimal data values (data pairs representing 256 levels of 
value each). If you multiply 16 × 16 × 16 × 16 × 16 × 16 you will get the 16,777,216 colors that are possible using 24-bit, 
truecolor image data.

The hexadecimal data slots represent RGB values in the following format: 0xRRGGBB. For the Java constant 
Color.WHITE, all the red, green, and blue channels in the hexadecimal color data value representation are at the full 
(maximum color value) luminosity setting. If you add all these colors together, you will get white light.

The color yellow would be represented by the red and green channels’ being on, and the blue channel’s being 
off, so a hexadecimal representation for Color.YELLOW would therefore be 0xFFFF00, where both the red and green 
channel slots are fully on (FF, or a 255 Base10 data value), and the blue channel slots are fully off (00, or a 0 value).

The eight hexadecimal data slots for an ARGB value will hold data using the following format: 0xAARRGGBB. 
Thus, for the Color.WHITE, all alpha, red, green, and blue channels in the hexadecimal color data value 
representation would be at their maximum luminosity (or opacity), and the alpha channel would be fully opaque, that 
is, not transparent, as represented by an FF value. Therefore, the hexadecimal value for the Color.WHITE constant 
would be 0xFFFFFFFF.

A 100 percent transparent alpha channel can be represented by setting an alpha slot to 0, as you observed when 
you created a windowless Java 8 application (see Chapter 4). Therefore, you would represent transparent image pixel 
values using any value between 0x00000000 and 0x00FFFFFF. It is important to note that if an alpha channel value 
equates to full transparency, it would follow that the 16,777,216 color values that could be contained in the other six 
(RGB) hexadecimal data value slots will not matter at all, because that pixel, being transparent, will be evaluated as 
not being there and thus will not be composited in the final image or animation composite image.

Digital Image Masking: Using Alpha Channels to Create Game Sprites
One of the primary applications for alpha channels in game design is to mask out areas of an image or animation 
(series of images) so that it can be used as a game sprite in a game play image-compositing scenario. Masking is the 
process of cutting subject matter out of a digital image so that the subject matter can be placed on its own virtual layer, 
using alpha channel transparency values. This is done using a digital imaging software package, such as GIMP.

Digital image–compositing software packages, such as Photoshop and GIMP, feature tools that are included for use 
in masking and image compositing. You cannot do effective image compositing without doing effective masking, so this 
is an important area to master for game designers who wish to integrate graphics elements, such as image sprites and 
sprite animation, into their game designs. The art of digital image masking has been around for a very long time!



Chapter 5 ■ An Introduction to Game Design: Concepts, Multimedia, and Using Scene Builder

110

Masking can be done for you automatically, using professional blue screen (or green screen) backdrops, along 
with computer software that can automatically extract those exact color values to create a mask, which is turned into 
alpha channel (transparency) information (data). Masking can also be done manually, using digital image software, 
via one of the algorithmic selection tools, in conjunction with various sharpening and blur algorithms.

You will learn a lot about this work process over the course of this book, using common open-source software 
packages, such as GIMP. Masking can be a complex and involved work process. This chapter is intended to expose you 
to foundational knowledge that will underlie the processes you undertake while working through the book.

A key consideration in the masking process is getting smooth, sharp edges around a masked object  
(subject matter). This is so that when you place a masked object (in this case, a game sprite) into (over) new 
background imagery, it looks as if it were photographed there in the first place. The key to doing this successfully lies 
in your selection work process, which entails using digital image software selection tools, such as the scissors tool in 
GIMP, or the magic wand tool in Photoshop, in the proper fashion. Choosing the correct work process is critical!

For instance, if there are areas of uniform color around the object that you wish to mask (maybe you shot it 
against a blue screen), you will use a magic wand tool with a proper threshold setting to select everything except your 
object. Then, you invert the selection, which will give you a selection set containing the object. Often, the correct 
work process requires approaching something in reverse. Other selection tools contain complex algorithms that  
can look at color changes between pixels. These can be useful for edge detection, which you can use for other 
selection methods.

Smoothing Digital Image Composites: Using Antialiasing to Smooth Image Edges
Antialiasing is a popular digital image–compositing technique, in which two adjacent colors in a digital image are 
blended together along the edge that borders the two color areas. This tricks the viewer’s eye into seeing a smoother 
(less jagged) edge when the image is zoomed out, thereby eliminating what has come to be called image jaggies. 
Antialiasing provides an impressive result by using averaged color values (a color range that is a portion of the way 
between the two colors coming together), with just a few colored pixels along the edge that needs to be smoothed.

Let’s take a look at an example to see what I am talking about. Figure 5-2 shows what appears to be a razor-sharp 
red circle on one layer, overlaying a yellow fill color on a background layer. I zoomed into the red circle’s edge and 
then made another screenshot, placing it to the right of the zoomed-out circle. This screenshot reveals a range of 
antialiasing color values (yellow-orange, to orange, to red-orange) right on the edge bordering the red and yellow 
colors, where the circle meets the background.

Figure 5-2.  A red circle composited on a yellow background (left) and a zoomed-in view (right) showing antialiasing



Chapter 5 ■ An Introduction to Game Design: Concepts, Multimedia, and Using Scene Builder

111

It is important to note that the JavaFX engine will antialias 2D shapes and 3D objects against all background 
colors and background imagery, using the Java2D software renderer or the hardware rendered with the Prism 
engine, which can use OpenGL or DirectX. You will still be responsible for correctly compositing, that is, providing 
antialiasing for your multilayered imagery, using each image’s alpha channel.

Digital Image Optimization: Using Compression, Indexed Color, and Dithering
There are a number of factors that affect digital image compression and some basic techniques that you can use to 
achieve a better-quality result with a smaller data footprint. This is a primary objective in optimized digital imagery; 
obtaining the smallest possible data footprint for your application (in this case, a game), while achieving the highest 
quality visual result. Let’s start with the aspects that most significantly affect data footprint and examine how each of 
these contributes to data footprint optimization for any given digital image. Interestingly, their order of significance is 
similar to the order in which I have presented the digital imaging concepts thus far.

The most critical contributor to a resulting digital image asset file size is what I like to call the data footprint, 
which is the number of pixels, or resolution of, a digital image. This is logical, because each of the pixels needs to be 
stored, along with the color and alpha values that are contained in their three (24 bit) or four (32 bit) channels. The 
smaller you can get your resolution, while still having the image look sharp, the smaller the resulting file size will be.

Raw (or uncompressed) image size is calculated by width × height × 3 for 24-bit RBG images, and  
width × height × 4 for 32-bit ARGB images. For instance, an uncompressed, truecolor, 24-bit VGA image will have 
640 × 480 × 3, equaling 921,600B of original (raw), uncompressed digital image data. To determine the number of 
kilobytes in this raw VGA image, you would divide as follows: 921,600 ÷ 1,024, the number of bytes that are in a 
kilobyte, giving you an even 900KB of data in a truecolor VGA image.

It is important to optimize for raw (uncompressed) image size by optimizing your digital imagery resolution.  
This is because once an image is decompressed out of a game application file, into system memory, this is the amount 
of memory that it is going to occupy, as the image will be stored pixel for pixel, using a 24-bit (RGB) or 32-bit (ARGB) 
representation in memory. This is one of the reasons I use PNG24 and PNG32 for my game development, not indexed 
color (GIF or PNG8); if the OS is going to transmute the color to a 24-bit color space, then you should use that 24-bit 
color space for quality reasons and deal with (accept) a slightly larger application file size.

Image color depth is the next most critical contributor to the data footprint of a compressed image, because the 
number of pixels in the image is multiplied by 1 (8 bit), 2 (16 bit), 3 (24 bit), or 4 (32 bit) color data channels. This small 
file size is the reason 8-bit indexed color images are still widely used, especially with the GIF image format.

Indexed color images can simulate truecolor images if the colors that are used to make up the image do not vary 
too widely. Indexed color imagery uses only 8 bits of data (256 colors) to define the image pixel color, using a palette 
of up to 256 optimally selected colors, instead of 3 RGB color channels or 4 ARGB color channels, containing 256 
levels of color each. Again, it is important to note that once you turn a 24-bit image into an 8-bit image by compressing 
it using a GIF or PNG8 codec, you only have a potential (maximum) 256 of the original 16,777,216 colors at your 
disposal. This is why I am advocating using PNG24 or PNG32 imagery rather than GIF or PNG1 (2 color),  
PNG2 (4 color), PNG4 (16 color), or PNG8 (256 color) images, which JavaFX also supports.

Depending on how many colors are employed in any given 24-bit source image, using 256 colors to represent an 
image originally containing 16,777,216 colors can cause an effect called banding. This is when the transfer between 
adjoining colors in the resulting (from compression) 256- (or less) color palette is not gradual and thus does not appear 
to be a smooth color gradient. Indexed color images have an option to correct visually for banding, called dithering.

Dithering is an algorithmic process of making dot patterns along the edges between any adjoining colors within 
an image to trick the eye into seeing a third color. Dithering will give you a maximum perceptual number of colors  
(of 65,536; 256 × 256), but this will only occur if each of those 256 colors borders on each of the other 256 colors. Still, 
you can see the potential for creating additional colors, and you would be amazed at the result that indexed color 
formats can achieve in some compression scenarios (with certain imagery).

Let’s take a truecolor image, such as the one shown in Figure 5-3, and save it as a PNG5 indexed color image 
format, to show you this dithering effect. It is important to note that PNG5, although supported in Android and HTML5, 
is not supported in JavaFX, so if you do this exercise yourself, select the 2-, 4-, 16-, or 256-color option! The figure 
demonstrates the dithering effect on the driver-side rear fender in an Audi 3D image, as it contains a gray gradient.



Chapter 5 ■ An Introduction to Game Design: Concepts, Multimedia, and Using Scene Builder

112

Interestingly, it is permissible to use less than the 256-colormaximum in an 8-bit indexed color image. This is 
often done to reduce further the imagery’s data footprint. For instance, an image that can attain good results using 
only 32 colors is actually a 5-bit image and would technically be called a PNG5, even though the format itself is 
generally called PNG8 for the indexed color usage level.

I have set this indexed color PNG image, shown in Figure 5-4, to use 5-bit color (32 color, or PNG5) to illustrate 
this dithering effect clearly. As you can see in the image preview area, on the left-hand side of the figure, the dithering 
algorithm makes dot patterns between adjacent colors to create additional colors.

Figure 5-3.  A truecolor PNG24 image created with Autodesk 3ds Max, which you are going to compress as PNG5

Figure 5-4.  Setting dithering to the diffusion algorithm and 32 colors (5 bit), with 100 percent dithering for PNG5 output



Chapter 5 ■ An Introduction to Game Design: Concepts, Multimedia, and Using Scene Builder

113

Also, note that you can set the percentage of dithering that is used. I often select either the 0 percent or  
100 percent setting; however, you can fine-tune the dithering effect anywhere between these two extreme values.  
You can also choose between dithering algorithms, because, as you probably have surmised, the dithering effect is 
created using dithering algorithms, which are part of the indexed file format (in this case, PNG8) compression routines.

I use diffusion dithering, which gives a smooth effect along irregularly shaped gradients, as is seen in the car 
fender. You can also use a noise option, which is more randomized, or a pattern option, which is less so. The diffusion 
option usually gives the best results, which is why I choose it when I am using indexed color (which is not often).

Dithering, as you might imagine, adds data patterns to an image that are more difficult to compress. This is 
because smooth areas in an image, such as gradients, are easier for the compression algorithm to compress than 
sharp transitions (edges) or random pixel patterns (e.g., dithering or “noise” from a camera CCD).

Therefore, applying the dithering option will always increase the data footprint by a few percentage points. Be 
sure to check the resulting file size with and without dithering applied (selected in the Export dialog) to see if it is 
worth the improved visual result that it affords. Note that there is also a transparency option (check box) for indexed 
color PNG images but that the alpha channel used in PNG8 images is only 1 bit (on/off), not 8 bit, as with PNG32.

You can also increase the data footprint of your image by adding an alpha channel to define transparency for 
compositing. This is because by adding an alpha channel you will be adding in another 8-bit color channel (or a 
transparency channel, actually) to the image being compressed. If you need an alpha channel to define transparency 
for your image to support future compositing requirements, such as using the image as a game sprite, there is not 
much choice but to include the alpha channel data.

If your alpha channel contains all zeroes (or uses an all-black fill color), which would define your imagery as 
being completely transparent, or contains all FF values (or uses an all-white fill color), which would define your image 
as being completely opaque, you would essentially (in practical terms) be defining an alpha that does not contain any 
useful alpha data values. The transparent image would therefore need to be removed, and the opaque image would 
need to be defined as a PNG24 rather than a PNG32.

Finally, most alpha channels that are used to mask objects in the RGB layers of the digital image should compress 
very well. This is because the alpha channel is primarily areas of white (opaque) and black (transparent), with some 
medium-gray values along the edge between the two colors to antialias the mask (see Figure 5-2). These gray areas 
contain the antialiasing values in the alpha channel, and will provide the visually smooth-edge transitions between 
the object in the RGB layers of the image and any background color or background images that may be used behind it.

The reason for this is that in the alpha channel image mask, an 8-bit transparency gradient (from white to 
black) defines levels of transparency, which could be thought of as per-pixel blending (opacity) strength. Therefore, 
the medium-gray values on the edges of each object in the mask (which is contained in the alpha channel) will serve 
essentially to average the colors of the object edge, and any target background, no matter what color (or image) value 
it may contain. This offers real-time antialiasing with any target background that may be used, including animated 
backgrounds.

Digital Video and Animation: Frames, Rate, Looping, Direction
Interestingly, all the concepts that I have just covered for digital images apply equally well to digital video and 
animation, as both formats use digital images as the foundation for their content. Digital video and animation extend 
digital imaging into the fourth dimension (time) by using frames. The two formats are composed of an ordered 
sequence of frames, which are displayed rapidly over time.

The term “frame” comes from the film industry, in which, even today, frames of film are run through film 
projectors at a rate of 24 frames per second (24FPS), which creates the illusion of motion. Because both digital video 
and animation are made up of a collection of frames containing digital images, the concept of frame rate, expressed 
as frames per second, is also very important when it comes to the memory data footprint optimization work process 
(for animation assets) as well as the digital video file size data footprint optimization work process. As discussed 
previously, in JavaFX this attribute for animation is stored in the Animation object rate variable (see Chapter 4).



Chapter 5 ■ An Introduction to Game Design: Concepts, Multimedia, and Using Scene Builder

114

The optimization concept regarding frames in an Animation object or digital video asset is very similar to the 
optimization concept regarding pixels in an image (the resolution of a digital image): the fewer used, the better! This 
is because the number of frames in an animation or video multiplies both the system memory used and the filesize 
data footprint with each frame. In digital video, not only does each frame’s (image) resolution, but also the frame rate 
(specified in the Compression Settings dialog) impact file size. Earlier in this chapter, you learned that if you multiply 
the number of pixels in the image by its number of color channels, you will get the raw data footprint for the image. 
With animation and digital video, you will now multiply that number again by the number of frames that need to be 
used to create the illusion of motion.

Therefore, if you have an animated VGA (RGB) background plate for your game (remember that each frame is 
900KB) that uses five frames to create the illusion of motion, you are using 900KB × 5, or 4,500KB (4.5MB), of system 
memory to hold that animation. Of course, this is too much memory to use for a background, which is why you will 
be using static backgrounds with sprite overlays to achieve this exact same end result in less than a megabyte. The 
calculation for digital video is a bit different, as it has hundreds or thousands of frames. For digital video you would 
multiply your raw image data size by the number of frames per second (frame rate) at which the digital video is set to 
play back (this frame rate value is specified during the compression process), and then multiply that result by the total 
number of seconds of content duration contained in your video file.

To continue with the VGA example, you know that a 24-bit VGA image is 900KB. This makes the calculation 
to take this to the next level easy. Digital video traditionally runs at 30FPS, so 1 second of standard definition raw 
(uncompressed) digital video would be 30 image frames, each of which is 900KB, yielding a total data footprint of 
27,000KB! You can see why having video compression file formats such as MPEG-4 H.264 AVC, which can compress 
the massive raw data footprint that digital video can create, is extremely important. The JavaFX media package uses 
one of the most impressive video compression codecs (“codec” stands for code-decode) which is also supported 
in HTML5 and Android, the aforementioned MPEG-4 H.264 AVC (advanced video codec). This is quite convenient 
for developer asset optimization, as one single digital video asset can be used across JavaFX, HTML5, and Android 
applications. Just in case you want to use digital video in the background of your game (which I do not recommend), I 
am going to cover the basics of digital video compression and optimization next.

Digital Video Compression Concepts: Bit Rate, Data Streaming, SD, HD, UHD
Let’s begin with the primary or standard resolutions that are used in commercial video. These also happen to be 
common device screen resolutions, probably because if the screen pixel resolution matches the video pixel resolution 
that is being played full screen on a screen, there will be zero scaling, which can cause scaling artifacts. Before high 
definition came along, video was standard definition (SD) and used a vertical resolution of 480 pixels. VGA is an SD 
resolution, and 720 × 480 could be called wide SD resolution. High definition (HD) video comes in two resolutions, 
1,280 × 720, which I call pseudo HD, and 1,920 × 1,080, which the industry calls true HD. Both HD resolutions 
feature a 16:9 aspect ratio and are used in TVs and iTVs, smartphones, tablets, e-book readers, and game consoles. 
There is also an ultra high definition (UHD) resolution out now that features 4,096 × 2,160 pixels.

Video streaming is a more complicated concept than resolution, as it involves playing back video data over a wide 
expanse, such as the one between your Java 8 game application and the remote video data server that will hold your 
potentially massive digital video assets. Furthermore, the device that your Java game application is running on will 
be communicating in real time with remote data servers, receiving video data packets as the video plays (it is termed 
streaming because the video is streaming from the video server, over the Internet, and into the hardware device). 
Video streaming is supported by the MPEG-4 H.264 AVC format codec (encoder-decoder pair).

The last concept that you need to understand is bit rate. Bit rate is the key setting used in the video compression 
process, as bit rates represent your target bandwidth, or the data pipe size that is able to accommodate a certain 
number of bits streaming through it every second. The bit-rate setting should also take into consideration the CPU 
processing power that exists within any given Java-capable device, making your digital video’s data optimization even 
more challenging. Fortunately, most devices these days feature dualcore or quadcore CPUs!



Chapter 5 ■ An Introduction to Game Design: Concepts, Multimedia, and Using Scene Builder

115

Once the bits travel through a data pipe, they also need to be processed and displayed on the device screen. 
Thus, bit rates for digital video assets must be optimized not only for bandwidth, but also in anticipation of variances 
in CPU processing power. Some single-core CPUs may not be able to decode high-resolution, high–bit rate digital 
video assets without dropping frames, so do make sure to optimize low–bit rate video assets if you are going to target 
older or less expensive consumer electronics devices.

Digital Video Data Footprint Optimization: Using Codecs and Their Settings
As mentioned earlier, your digital video asset will be compressed, using software utilities called codecs. There are two 
“sides” to the video codec: one that encodes the video data stream and another that decodes it. The video decoder 
will be part of the OS, platform (JavaFX), or browser that uses it. The decoder is primarily optimized for speed, as 
smoothness of playback is a key issue, whereas the encoder is optimized to reduce the data footprint for the digital 
video asset it is generating. For this reason, the encoding process can take a long time, depending on how many 
processing cores a workstation contains. Most digital video content production workstations should support eight 
processor cores, like my 64-bit AMD octacore workstation.

Codecs (the encoder side) are like plug-ins, in that they can be installed into different digital video–editing 
software packages to enable them to encode different digital video asset file formats. Because Java and JavaFX 8 
support the MPEG-4 H.264 AVC format, you need to make sure that you are using one of the digital video software 
packages that supports encoding digital video data using (or into) this digital video file format. More than one 
software manufacturer makes MPEG-4 encoding software, so there will be different MPEG-4 AVC codecs that will 
yield different (better or worse) results, in terms of encoding speed and file size. The professional solution, which I 
highly recommend that you secure if you want to produce digital video professionally, is called Sorenson Squeeze Pro.

There is also an open-source solution called EditShare LightWorks 12, which is scheduled to support output 
to the MPEG4 codec natively by 2014. When optimizing (setting compression settings) for digital video data file 
size, there are many variables that directly affect the digital video data footprint. I will discuss these in their order of 
importance, in in terms of effect on video file size, from the most important to the least, so that you will know which 
parameters to tweak to obtain the result you are looking for.

Like with digital image compression, the resolution, or number of pixels, in each frame of video is the optimal 
place to start the optimization process. If your user is using 800 × 480 or 1,280 × 720 smartphones, e-readers, or 
tablets, then you do not need to use true HD 1,920 × 1,080 resolution to get good visual results for your digital video 
assets. With superfine density (small dot pitch) displays out there, you can scale a 1,280 video up 33 percent, and it 
will look reasonably good. The exception to this may be HD or UHD (popularly termed 4K iTV) games targeted at 
iTVs; for these huge, 55- to 75-inch (screen) scenarios, you would want to use the industry standard, true HD  
1,920 × 1,080 resolution.

The next level of optimization would come in the number of frames used for each second of video (or FPS), 
assuming the actual number of seconds in the digital video itself cannot be shortened. As mentioned earlier, this is 
known as the frame rate, and instead of setting the video standard 30FPS frame rate, consider using a film standard 
frame rate of 24FPS or even the multimedia standard of 20FPS. You may even be able to use a 15FPS frame rate, half 
the video standard, depending on the amount (and speed) of movement within the content. Note that 15FPS is half as 
much data as 30FPS (a 100 percent reduction in data encoded). For some video content this will play back (look) the 
same as 30FPS content. The only way to test this is to try frame rate settings during the encoding process.

The next most optimal setting for obtaining a smaller data footprint would be the bit rate that you set for a codec 
to try to achieve. Bit rate equates to the amount of compression applied and thus sets a quality level for the digital 
video data. It is important to note that you could simply use 30FPS, 1,920 resolution HD video and specify a low bit-
rate ceiling. If you do this, the results will not be as good-looking as if you had experimented with using a lower frame 
rate and resolution, in conjunction with a higher (quality) bit-rate setting. There is no set rule for this, as every digital 
video asset contains completely unique data (from the codec’s point of view).

The next most effective setting for obtaining a smaller data footprint is the number of key frames that the codec 
uses to sample your digital video. Video codecs apply compression by looking at each frame and then encoding only 
the changes, or offsets, over the next several frames so that the codec algorithm does not have to encode every single 



Chapter 5 ■ An Introduction to Game Design: Concepts, Multimedia, and Using Scene Builder

116

frame in a video data stream. This is why a talking head video will encode better than a video in which every pixel 
moves on every frame (such as video that uses fast camera panning, or rapid field of view [FOV] zooming).

A key frame is a setting in a codec that forces that codec to take a fresh sampling of your video data assets every 
so often. There is usually an auto setting for key frames, which allows a codec to decide how many key frames to 
sample, as well as a manual setting, which lets you specify a key frame sampling every so often, usually a certain 
number of times per second or over the duration of the entire video (total frames).

Most codecs usually have either a quality or a sharpness setting (a slider) that controls the amount of blur 
applied to a video frame before compression. In case you are not familiar with this trick, applying a slight blur to your 
image or video, which is usually not desirable, can allow for better compression, as sharp transitions (edges) in an 
image are harder to encode, taking more data to reproduce, than softer transitions. That said, I would keep the quality 
(or sharpness) slider between 80 percent and 100% percent  and try to reduce your data footprint using one of the 
other variables that I have discussed here, such as decreasing the resolution, frame rate, or bit rate.

Ultimately, there will be a number of different variables that you will need to fine-tune to achieve the best 
data footprint optimization for any given digital video data asset. It is important to remember that each video asset 
will look different (mathematically) to a digital video codec. For this reason, there can be no standard settings that 
can be developed to achieve any given compression result. That said, experience tweaking various settings will 
eventually allow you to get a feel, over time, for the various settings that you have to change, in terms of the different 
compressions parameters, to get the desired end result.

Digital Audio Concepts: Amplitude, Frequency, Samples
Those of you who are audiophiles know that sound is created by sending sound waves pulsing through the air. Digital 
audio is complex; part of that complexity comes from the need to bridge analog audio technology, created with 
speaker cones, with digital audio codecs. Analog speakers generate sound waves by pulsing them into existence. Our 
ears receive analog audio in exactly the opposite fashion, catching and receiving those pulses of air, or vibrations with 
different wavelengths, and then turning them back into data that our brain can process. This is how we “hear” the 
sound waves; our brain then interprets the different audio sound wave frequencies as different notes, or tones.

Sound waves generate various tones, depending on the frequency of the sound wave. A wide, or infrequent 
(long), wave produces a low (bass) tone, whereas a more frequent (short) wavelength produces a higher (treble) tone. 
Interestingly, different frequencies of light will produce different colors, so there is a close correlation between analog 
sound (audio) and analog light (color). There are many other similarities between digital images (and video) that will 
also carry through into your digital new media content production, as you will soon see.

The volume of a sound wave will be determined by its amplitude, or the height (or size) of that wave. Thus, 
frequency of sound waves equates to how closely together the waves are spaced, along the x axis if you are looking at 
it in 2D, and amplitude equates to how tall the waves are, as measured along the y axis.

Sound waves can be uniquely shaped, allowing them to “piggyback” various sound effects. A “pure,” or baseline, 
type of sound wave is called a sine wave (which you learned about in high school trigonometry, with the sine, cosine, 
and tangent math functions). Those of you who are familiar with audio synthesis are aware that other types of sound 
waves are also used in sound design, such as the saw wave, which looks like the edge of a saw (hence its name), and 
the pulse wave, which is shaped using only right angles, resulting in immediate on and off sounds that translate into 
pulses (or bursts) of audio.

Even randomized waveforms, such as noise, are used in sound design to obtain edgy sound results. As you may 
have ascertained by using your recently acquired knowledge of data footprint optimization, the more “chaos,” or 
noise, present in your sound wave (and in new media data in general), the harder it will be to compress for a codec. 
Therefore, more complex sound waves will result in larger digital audio file sizes, owing to the chaos in the data.



Chapter 5 ■ An Introduction to Game Design: Concepts, Multimedia, and Using Scene Builder

117

Converting Analog Audio to Digital Audio Data: Sampling, Accuracy, HD Audio
The process of turning analog audio (sound waves) into digital audio data is called sampling. If you work in the 
music industry, you have probably heard about a type of keyboard (or even rack-mounted equipment) called a 
sampler. Sampling is the process of slicing an analog audio wave into segments so that you can store the shape of 
the wave as digital audio data, using a digital audio format. This turns an infinitely accurate analog sound wave into 
a discrete amount of digital data, that is, into zeroes and ones. The more zeroes and ones used, the more accurate the 
reproduction of the infinitely accurate (original) analog sound wave.

Each digital segment of a sampled audio sound wave is called a sample, because it samples that sound wave at an 
exact point in time. The sample accuracy (resolution) you want will determine how many zeroes and ones are used 
to reproduce analog sound waves, so the precision of a sample is determined by the amount of data used to define 
each wave slice’s height. As with digital imaging, this precision is termed the resolution, or, more accurately (no pun 
intended), the sample resolution. Sample resolution is usually defined using 8-bit, 12-bit, 16-bit, 24-bit, or 32-bit 
resolution. Games mostly leverage 8-bit resolution for effects such as explosions, in which clarity is not as important; 
12-bit resolution for crystal-clear spoken dialogue and more important audio elements; and, possibly,  
16-bit resolution for background music.

In digital imaging and digital video this resolution is quantified by the number of pixels, and in digital audio, 
by how many bits of data are used to define each of the analog audio samples taken. Again, as with digital imaging, 
in which more pixels yields better quality, with digital audio a higher sample resolution yields better sound 
reproduction. Thus, higher sampling resolutions, using more data to reproduce a given sound wave sample, will 
produce higher-quality audio playback, at the expense of a larger data footprint. This is the reason that 16-bit audio 
(commonly referred to as CD quality audio) sounds better than 8-bit audio. Depending on the audio involved, 12-bit 
audio can be a great compromise.

In digital audio there is a new type of audio sample, known as HD audio in the consumer electronics industry. 
HD digital audio broadcast radio uses a 24-bit sample resolution, so each audio sample, or slice of the sound wave, 
contains 16,777,216 bits of sample resolution. Some of the newer hardware devices now support HD audio, such as 
the smartphones you see advertised featuring “HD-quality audio,” meaning that they have 24-bit audio hardware. 
These days, laptops (including PCs), as well as game consoles and iTVs, also come standard with 24-bit audio 
playback hardware.

It is important to note that HD audio is probably not necessary for Java 8 games, unless your game is music 
oriented and makes use of high-quality music, in which case you can use HD audio samples via a WAVE file format.

Another consideration is digital audio sampling frequency (also called the sampling rate), This is a measure 
of how many samples at a particular sample resolution are taken during 1 second of sampling time frame. In terms 
of digital image editing, sampling frequency is analogous to the number of colors contained in a digital image. You 
are probably familiar with the term “CD-quality audio,” which is defined as using a 16-bit sample resolution and a 
44.1kHz sampling rate (taking 44,100 samples, each of which has 16 bits of sample resolution, or 65,536 bits of audio 
data). You can determine the amount of raw data in an audio file by multiplying the sampling bit rate by the sampling 
frequency by the number of seconds in the audio snippet. Obviously, this can potentially be a huge number! Audio 
codecs are really great at optimizing data down to an amazingly small data footprint with very little audible loss  
in quality.

Thus, the exact same trade-off that exists in digital imaging and digital video occurs with digital audio as well: 
the more data you include, the higher quality the result, but always at the cost of a much larger data footprint. In the 
visual mediums the size of the data footprint is defined using color depth, pixels, and, in the case of digital video and 
animation, frames. In the aural medium it is defined via the sample resolution, in combination with the sampling 
rate. The most common sampling rates in the digital audio industry currently include 8kHz, 22kHz, 32kHz, 44.1kHz, 
48kHz, 96KHz, 192kHz, and even 384kHz.

Lower sampling rates, such as 8kHz, 11kHz, and 22kHz, are the ones that you are going to use in your games, as, 
with careful optimization, these can yield high-quality sound effects and arcade music. These rates would be optimal 
for sampling any voice-based digital audio as well, such as movie dialogue or an e-book narration track. Higher audio 
sample rates, such as 44.1kHz, would be more appropriate for music, and sound effects that need a high dynamic 
range (high fidelity), such as rumbling thunder, could use 48kHz. Higher sample rates will allow audio reproduction 
that exhibits movie theater (THX) sound quality, but this is not required for most games.



Chapter 5 ■ An Introduction to Game Design: Concepts, Multimedia, and Using Scene Builder

118

Digital Audio Streaming: Captive Audio vs. Streaming Audio
As with digital video data, digital audio data can be either captive within the application distribution file (in the case 
of Java, a .JAR file) or streamed, using remote data servers. Similar to digital video, the upside to streaming digital 
audio data is that it can reduce the data footprint of the application file. The downside is reliability. Many of the same 
concepts apply equally well to audio and video. Streaming audio will save the data footprint, because you do not have 
to include all that heavy new media digital audio data in your .JAR files. So, if you are planning on coding a Jukebox 
application, you may want to consider streaming your digital audio data; otherwise, try to optimize your digital audio 
data so that you can include them (captive) inside the .JAR file. This way, the data will always be available to the 
application’s users when they need it!

The downside to streaming digital audio is that if a user’s connection (or the audio data server) goes down, your 
digital audio file may not always be present for your end users to play and listen to, using your game application! The 
reliability and availability of digital audio data are a key factor to be considered on the other side of this streaming-
versus-captive  trade-off. The same would apply to digital video assets as well.

Again, as with digital video, one of the primary concepts in regard to streaming your digital audio is the bit rate of 
the digital audio data. As you learned in the previous section, the bit rate is defined during the compression process. 
Digital audio files that need to support lower bit-rate bandwidth are going to have more compression applied to the 
audio data, which will result in lower quality. These will stream (play back) more smoothly across a greater number of 
devices, because fewer bits can be quickly transferred as well as processed more easily.

Digital Audio in JavaFX: Supported Digital Audio Codecs and Data Formats
There are considerably more digital audio codecs in JavaFX than digital video codecs, as there is only one video 
codec, MPEG-4 H.264 AVC. Android audio support includes .MP3 (MPEG-3) files, Windows WAVE (Pulse Code 
Modulation [PCM] audio) .WAV files, .MP4 (or .M4A) MPEG-4 AAC (Advanced Audio Coding) audio, and Apple’s 
AIFF (PCM) file format. The most common format supported by JavaFX (and thus Java 8) is the popular .MP3 digital 
audio file format. Most of you are familiar with MP3 digital audio files, owing to music download web sites, such as 
Napster or Soundcloud, and most of us collect songs in this format to use on MP3 players and in CD-ROM- or DVD-
ROM-based music collections. The MP3 digital audio file format is popular because it has a fairly good compression-
to-quality ratio and is widely supported.

MP3 is an acceptable format to use in a Java 8 application, so long as you get the highest quality level possible 
out of it, using an optimal encoding work process. It is important to note that, like JPEG (used for images), MP3 is a 
lossy audio file format, in which some of the audio data (and thus quality) are thrown away during your compression 
process and cannot be recovered.

JavaFX does have two lossless audio compression codecs, AIFF and WAVE. Many of you are familiar with these, 
as they were the original audio formats used with the Apple Macintosh and Microsoft Windows OSs, respectively. 
These files use PCM audio, which is lossless (in this case, because there is no compression applied whatsoever!). 
“PCM,” which, as stated, stands for “pulse code modulation,” refers to the data format it holds.

PCM audio is commonly used for CD-ROM content as well as telephony applications. This is because PCM WAVE 
audio is an uncompressed digital audio format, with no CPU-intensive compression algorithms applied to the data 
stream. Thus, decoding (CPU data processing) is not an issue for telephony equipment or for CD players.

For this reason, when you start compressing digital audio assets into the various file formats, you can use PCM 
as your baseline file format. It allows you to look at the difference between PCM (WAVE) and MP3 and MP4 audio 
compression results to get an idea of how much data footprint optimization you are getting for your JAR file;  more 
important, you can also see how your sample resolution and sample frequency optimization are going to affect the 
system memory used for your game’s audio effects. Even if you used an MP3 or MP4 format, it would still have to be 
decompressed into memory before the audio asset could be used with the AudioClip class and employed as a sound 
effect in a Java 8 game.



Chapter 5 ■ An Introduction to Game Design: Concepts, Multimedia, and Using Scene Builder

119

Because a WAVE or AIFF file will not have any quality loss (as there is also no decompression needed), the PCM 
data can be placed straight from the JAR file into system memory! This makes PCM audio great for game sound effects 
that are short in duration (0.1 to 1 second), and it can be highly optimized, using 8-bit and 12-bit sample resolution 
and 8kHz, 22kHz, or 32kHz sample frequency. Ultimately, the only real way to find out which audio format supported 
by JavaFX has the best digital audio compression result for any given digital audio data is to encode your digital audio 
in the primary codecs that you know are supported and efficient. I will be outlining this work process later on, when 
you add audio to the game, and you will observe the relative data footprint results between the different formats, using 
the same source audio sample (see Chapter 15). Then, you will listen to the audio playback quality so that you can 
make your final decision concerning the optimal balance between quality and file size . This is the work process that 
you will need to go through to develop JavaFX digital audio assets for use in your Java 8 game.

JavaFX also supports the popular MPEG-4 AAC codec. These digital audio data can be contained in MPEG4 
containers (.mp4, .m4a, .m4v), or file extensions, and can be played back using any OS. It is important to note that 
JavaFX does not contain an MPEG-4 decoder, but instead supports what is called a multimedia container, meaning 
that JavaFX uses the OS’s MPEG-4 decoder.

For this reason, and because online listening studies have concluded that the MP3 format has better quality (for 
music) than the MP4, you will be using the MP3 format for longer-form audio (game background musical loops) via 
the Media and MediaPlayer classes. You will use the PCM WAVE audio format for short-form (1 second or less) audio 
(game sound effects, such as shots, bells, yelps, grunts, laughter, cheering, and other such digital audio assets), which 
you will use via the AudioClip digital audio sequencing engine (class) that JavaFX so generously provides.

Digital Audio Optimization: Start with CD-Quality Audio, and Work Backward
Optimizing your digital audio assets for playback across the widest range of hardware devices on the market is going 
to be easier than optimizing your digital video or digital imagery (and thus animation) across these devices. This 
is because there is a much wider disparity between target screen resolutions and display aspect ratios than there is 
between types of digital audio playback hardware support across hardware devices (with the possible exception of 
new hardware featuring 24-bit HD audio playback hardware compatibility). All hardware plays digital audio assets 
well, so audio optimization is a “one audio asset hits all devices” scenario, whereas with the visual (video, image, 
animation) part of the equation, you have display screens as large as 4,096 × 2,160 pixels (4K iTV Sets) and as small as 
320 × 320 pixels (flip phones and smart watches).

It is important to remember that the user’s ears cannot perceive the same quality difference with digital audio 
that the user’s eyes can with digital imagery, 2D animation, and digital video. Generally, there are three primary “sweet 
spots” of digital audio support across all hardware devices that you should target for support for Java game audio.

Lower-quality audio, such as short narration tracks, character exclamations, and short-duration sound effects, 
can achieve remarkably high quality by using a sampling rate of 8kHZ or 22kHz, along with 8-bit or 12-bit sampling 
resolution. Medium-quality audio, such as long narration tracks, longer-duration sound effects, and looped 
background (ambient) audio, can achieve a very high quality level by using a 22kHz or 32kHz sampling rate, along 
with a 12-bit or 16-bit sampling resolution.

The high-quality audio assets, such as music, should be optimized approaching CD-quality audio and will use 
a 32kHz or 44.1kHz sampling rate, along with the 16-bit data sampling resolution. For HD-quality audio, being at 
the ultra-high end of this audio spectrum, you would use the 48kHz sampling rate, along with the 24-bit digital audio 
data sampling resolution. There is also an unnamed, “somewhere in the middle” high-end audio specification, using 
a 48kHz sampling rate, along with a 16-bit data sampling resolution, which just happens to be what Dolby THX used 
to use for its high-end audio experience technology in movie theaters (back in the day).

Ultimately, it comes down to the quality–file size balance results that emerge from the digital audio data footprint 
optimization work process, which can be amazing. Therefore, your initial work process for optimizing your digital 
audio assets across all these hardware devices is going to be to create baseline 16-bit assets, at either 44.1kHz or 
48kHz, and then optimize (compress) them, using the different formats supported in JavaFX. Once that work process 
is completed, you can see which resulting digital audio assets provide the smallest data footprint, along with the 
highest quality digital audio playback. After that, you can reduce your 44.1KHz or 48kHz data to 32kHz and save  



Chapter 5 ■ An Introduction to Game Design: Concepts, Multimedia, and Using Scene Builder

120

that out ,using first 16-bit and then 12-bit resolution. Next, reopen the original 48kHz data, downsample to 22kHz 
sample frequency, and export that, using 16-bit and 12-bit resolution, and so on. You will be performing this work 
process later on, when you add digital audio assets to the Java 8 game, so you will see the entire process  
(see Chapter 15).

Next, let’s take a look at JavaFX Scene Builder and how it uses FXML to allow designers to design Java FX 
applications visually. I am not going to be using Scene Builder or FXML (just Java 8 code and JavaFX classes) over the 
course of this book, so pay attention!

JavaFX Scene Builder: Using FXML for UI Design
JavaFX Scene Builder is a visual design tool that generates an FXML (JavaFX markup language) UI Scene Graph 
construct to define your JavaFX application’s front-end design. This FXML UI definition can then be “inflated” 
in Java 8 to create your application’s JavaFX Scene Graph, nodes, groups, and SubScene objects filled with javafx.
scene.control package classes (objects) defining your UI design. Oracle’s intention in offering both a Scene Builder 
visual development tool and FXML is to allow nonprogrammers, ostensibly UI designers, to design the front-end UIs 
for their Java 8 applications so that the Java programmers can then focus on back-end functional application task 
processing logic.

Because FXML and Scene Builder are optimized for UI design (arranging controls, such as buttons, text entry 
fields, radio buttons, check boxes, and so on), I am not going to use Scene Builder and FXML over the course of this 
book. I am, however, going to cover it in this chapter so that you know how to use it if you want to for your other 
JavaFX applications. My reasoning is that, other than the initial game splash screen, which contains a few UI Button 
objects, which show game instructions, list the contributors, track the high scores, save a current game state, and start 
game play, UI design will not be a major focus of this book.

To use FXML, and soon after use of the Scene Builder visual UI design tool, you must create a special kind of 
FXML application, as you learned in Chapter 2 (see Figure 2-4), when you created the JavaFX game. Creating an FXML 
application imports the javafx.fxml package and classes. This allows the Java 8 code to inflate FXML constructs 
created by the UI designers so that they can be used by the programmers to attach Java logic to the various UI controls. 
The Android OS does this as well, using basic XML, but in Android this approach is not optional; it is part of the way 
things are done. In JavaFX 8 (as you saw in Figure 2-4), it is simply one option. If you want to research XML-based UI 
design further for Android, check out my book Pro Android UI (Apress, 2014).

The Scene Builder visual layout tool that writes FXML UI design constructs for you is a WYSIWYG drag and 
drop interface design tool. All a designer has to do is drag and drop any of the JavaFX UI controls onto the editing 
screen from a UI Control panel that contains every Control class (object) in the javafx.scene.control package (see 
Chapter 4). This Scene Builder is integrated into NetBeans 8.0 for easy access and integration with JavaFX, in case 
programmers also need to use it to quickly prototype UI designs for their clients. There is also a stand-alone version of 
the Scene Builder tool, at version 2.0, for designers who do not want to work inside the NetBeans IDE.

You can switch back and forth from FXML editing and previewing in real time and see UI design and layout 
changes without having to compile the Java application. You can also apply all CSS styles to the Scene Builder 
tool and FXML structure in real time and see the results of those coding changes as well, again, without any Java 
compilation! In addition, you can add custom UI controls to the UI Control panel library, using third-party JAR files or 
FXML definitions.

The Scene Builder Kit API is open source. This lets you customize your own integrations of Scene Builder’s UI 
panels and controls, allowing you to integrate Scene Builder into other IDEs, such as Eclipse or IntelliJ IDEA. A rich 
text TextFlow container has recently been added into the GUI component (Control) library, affording rich text–
editing capabilities. With these new capabilities, you can build multiple-node, rich text constructs that can integrate 
other UI elements, or new media element types, with the TextFlow elements.

For you 3D “aficionados,” 3D is also fully supported in the Scene Builder visual design editor and in FXML. A 3D 
object can be loaded and even saved out using the Scene Builder tool, and all of the object’s properties can be edited 
(and viewed) in real time, using the Inspector panel. It is not yet possible to create from scratch 3D objects using 
Scene Builder, and you cannot yet assign or edit complex Mesh or Materials properties at this time, but I am sure that 
these features will come, along with the advanced 3D OpenGL ES power that is scheduled to be added into JavaFX 8.



Chapter 5 ■ An Introduction to Game Design: Concepts, Multimedia, and Using Scene Builder

121

Next, let’s take a look at FXML markup language specifically, at an in-depth level. After that, you will examine an 
actual FXML UI definition structure, and you will see exactly how the current JavaFX application’s UI design would be 
structured using an FXML UI definition construct. As you will see, FXML makes UI design a lot easier!

FXML Definition: Anatomy of an XML UI Definition Construct
The FXML structure is based on the JavaFX classes (objects), and their attributes, that the FXML tags, and parameters 
structures, which you can easily create, allow you to “mock up” a front-end UI more easily, using a mark-up language. 
The FXML structure lets you more easily construct your Scene Graph hierarchy, and the FXML tags and their 
parameters, which you will be looking at in the next section, match up 1:1 with the JavaFX API classes.

Once you create your UI design, the Java programmers can use javafx.fxml classes and methods to inflate 
your UI layout container and UI control arrangement into a JavaFX scene and Scene Graph structure, based on Java 
objects. Then, the UI design can be used in the application Java code. As mentioned earlier, FXML is most useful for 
designing complex, static (fixed) UI design layouts containing lots of buttons, forms, check boxes and the like.

Hello World UI FXML Definition: Replicating Your Current UI Design,  
Using FXML
The first thing that you define in the FXML structure is the FXML processing instructions. Each processing 
instruction starts with a less-than sign, question mark sequence (<?) and ends with the  reversal of that sequence 
(question mark, greater-than sign [?>]). The first processing instruction is a declaration of the XML language 
use, its version (1.0), and the text character set language-encoding format that you want to use (in this case, 
UTF-8 [universal character set transformation format, 8 bit]). Because it is 8 bit, there are 256 characters in this 
international character set, which was designed to span the many languages based on Germanic characters, that is, 
languages that use an A to Z alphabet (including accented characters).

Following the declaration of an XML language and a character set are processing instructions. These import 
the Java language, utilities, and javafx.scene package as well as the javafx.scene.layout and javafx.scene.control 
packages, which are used to design the UI layout and the UI controls that the layout contains.

For example, the StackPane UI layout container that you are using in the current application is in the javafx.
scene.layout package, and the button UI control element is in the javafx.scene.control package. Because the 
<StackPane> FXML UI layout container is the parent element in this structure, it goes first, or outside the nested 
FXML UI definition structure that you are about to create.

Inside the <StackPane>, you will nest children of the StackPane class (object), using the <children> tags  
( XML tags are coded using <arrowHeadBrackets>). Nested inside these <children> tags are the UI control elements 
(in this case, a button control, so you would use the <Button> tag). Note that the class (object) proper name is used 
inside the arrowhead brackets to create the FXML tag, so this is very logical and should be quite easy to learn and 
assimilate into your UI design work process:
 
<? xml version="1.0" encoding="UTF-8" ?>
<? import java.lang.* ?>
<? import java.util.* ?>
<? import javafx.scene.* ?>
<? import javafx.scene.layout.* ?>
<? import javafx.scene.control.* ?>
 
<StackPane id="root" prefHeight="250" prefWidth="300" >
    <children>
       <Button id="btn" text="Say 'Hello World'" layoutX="125" layoutY="116" />
    </children>
</StackPane>
 



Chapter 5 ■ An Introduction to Game Design: Concepts, Multimedia, and Using Scene Builder

122

Next, let’s take a look at the tag and parameter syntax so that you always know how to construct FXML UI 
layout and control definition files. A UI element that has no children, such as the prior <Button> UI control, will use 
a shorthand tag open-and-close syntax, using the <ClassName opening tag and  forward slash, greater-than sign 
closing tag (/>), like this:
 
<Button  id="btn"  text="Say 'Hello World'"  layoutX="125"  layoutY="116"  />
 

Note that the parameters that configure the tag, which would equate to the attributes of the object (or the 
variables in the class that creates the object) are (yet again) nested inside the tag itself and use the variable name and 
equals operator, along with the data value specified in quotation marks, as shown in the previous code.

A FXML tag that has <children> objects nested inside it will use this different <ClassName> opening tag. 
Following the nested tags listed inside (after) this tag is a </ClassName> closing tag. This allows the tag syntax to 
specify (become) the container for the <children> tags inside it, as you can see in the example here, in which the 
opening and closing FXML tags are ordered according to their nesting (inside) hierarchy:
 
<StackPane id="root" prefHeight="250" prefWidth="300" >
    <children>
       <Button id="btn" text="Say 'Hello World'" layoutX="125" layoutY="116" />
    </children>
</StackPane>
 

As you can see, the parameters can be put inside the opening tag for a parent tag by placing them between the 
<ClassName part of the opening tag and the greater-than sign. This is how you would configure the parent tag for any 
parameters if you needed to do so, as when you specified the StackPane size and name (called an id in FXML).

Summary
In this fifth chapter, you took a closer look at some of the more important game design and new media concepts 
that you will be using in your Java 8 game development work process so that you have the foundational knowledge 
necessary to create your game. You also studied JavaFX Scene Builder and FXML, just to get those concepts under 
your belt and out of the way, as I am going to do everything in this book using Java 8 code and JavaFX classes to 
comply with the requests I get from readers of my Android books (“How do we do this using only Java code? We don’t 
want to use XML to create our applications!” is the mantra that I am constantly hearing these days).

First, you examined the key concept of static versus dynamic and how this is important for both game design 
and game optimization, as too much dynamics can overload older single-core and even dualcore CPUs if game 
optimization is not an ongoing consideration throughout the game design, development, and optimization process.

Next, you explored some of the key components of game design (and development), such as sprites, collision 
detection, physics simulation, background animation, UI design, scoring engines, and game play logic. You took 
a look at how these applied to static games, or games without continuous movement, such as strategy games, board 
games, puzzles, knowledge games, memory games, and dynamic games, and games using continuous movement, 
such as platformers, arcade games, first-person shooters, third-person shooters, driving games, and the like.

You took a high-level technical overview of new media asset types and the concepts and terminology across 
digital imaging, animation, digital video, and digital audio. You learned about pixels; resolutions; and how aspect 
ratios define the shape of an image, animation, or video and about color depth and alpha channel transparency and 
how to define these, using hexadecimal notation. Then, you investigated the fourth dimension of time and learned 
about frames, frame rates, and bit rates, and you looked at digital audio, sample frequency, and sample resolution. 
Finally, you studied JavaFX Scene Graph and FXML how these work and how they can be used in your current game.

In the next chapter, you are going to examine JavaFX Scene Graph and create the infrastructure for your Java 8 
game application, including the splash screen (your game’s home screen and primary UI).



123

Chapter 6

The Foundation of Game Design: 
The JavaFX Scene Graph and the 
InvinciBagel Game Infrastructure

In this chapter, you will start to design the infrastructure of your InvinciBagel game, both from the user interface (UI) 
and user experience standpoint as well as from the “under the hood” game engine, sprite engine, collision engine, 
and physics engine standpoint. You will keep optimization in mind, as you must do as you work through the rest of 
the book, so that you do not get a scene graph that is so extensive or complicated that the pulse system cannot update 
everything efficiently. This means keeping primary game UI screens (Scene or SubScene nodes) to a minimum 
(three or four); making sure that the 3D and Media engine (digital audio and digital video) use their own threads; and 
checking that the functional “engines” that drive the game are all coded logically, using their own classes and proper 
Java 8 programming conventions, structures, variables, constants, and modifiers (see Chapter 3).

First, you will learn about the top-level, front-facing UI screen design that your game will offer the user, 
including the InvinciBagel “branding” splash screen he or she sees when launching the application. This screen will 
have Button controls on it, accessing other information screens, which you will want to minimize in number, as they 
will be either Scene nodes (primary game play screen) or ImageView nodes (the other information screens). These 
game support screens will contain things that the user needs to know to play the game effectively, such as game 
instructions and a high scores screen. You will also include a legal disclaimers screen (to keep your legal department 
happy), which will also have credits for the various programmers and new media artisans who worked on the creation 
of the game engine and game assets.

The next level down of the InvinciBagel game design foundation that you will develop is the under the hood, or 
back-facing (unseen by the game user), game engine component Java class design aspects for the InvinciBagel game. 
These include a game play engine, which will use a javafx.animation.AnimationTimer class to control the game 
play updates to the game play interface screen; a sprites engine, which will use Java list arrays and sets to manage 
game sprites; a collision engine, which will detect and respond when a collision has occurred between two sprites; a 
physics engine, which will apply force and similar physics simulations to the game play so that sprites accelerate and  
react to gravity realistically; and an actor engine, which will manage each of the characteristics of individual actors 
in the InvinciBagel game.

Finally, you will modify your existing InvinciBagel.java Application subclass to implement a new splash screen 
and buttons for the game play screen and for the other three functional information screens needed to provide these 
top-level UI features and the foundational UI screen infrastructure for this InvinciBagel game application. This will 
ultimately get you into some Java and JavaFX programming, as you create the foundation for the game.



Chapter 6 ■ The Foundation of Game Design: The JavaFX Scene Graph and the InvinciBagel Game Infrastructure

124

Game Design Foundation: Primary Function Screens
One of the first things you want to design is the top-level, or highest-level, UIs that your game’s users will interface 
with. These will all be accessed using the InvinciBagel splash (branding) screen, contained in the primary 
InvinciBagel.java class code. As discussed previously, this Java code will extend the javafx.application.Application 
class and will launch the application, displaying its splash screen, along with options to review instructions, play the 
game, see the high scores, or review the game’s legal disclaimers and game creator credits (programmer, artist, writer, 
composer, sound designer, and so on). A high-level diagram showing the game, starting with functional UI screens at 
the top and progressing down to the OS level, can be seen in Figure 6-1.

This will require adding three more Button nodes to your StackPane layout container Parent node as well as 
an ImageView node for the splash screen background image container. The ImageView node will have to be added 
to the StackPane first to be the first child node in the StackPane (z-order = 0), as this ImageView holds what I call 
the background plate for the splash screen UI design. Because it is in the background, the image would need to be 
behind the Button UI control elements, which will have z-order values of 1 through 4.

This means that you will be using six Node objects (one parent node and five child nodes) in your application’s 
scene graph just to create your InvinciBagel splash screen! The instructions and credit screens will use another 
ImageView node, so you are up to six nodes already, and the high scores screen will likely use another two 
(ImageView and TableView) nodes, so you likely have more than eight nodes in the Scene Graph for creating the game 
support infrastructure before you have even considered adding the nodes for the game play screen, which is,  
of course, where you want to get the best performance possible for your game.

This really is not so bad if you think about it, as these screens are all static and do not need to be updated, that 
is, the (UI) elements they contain are fixed and do not require updates using the pulse system, and so you should 
essentially still have 99 percent of the power of the JavaFX pulse engine left over to process an InvinciBagel game 
GamePlayLoop engine. In fact, as Java 8 and JavaFX 8 continue to improve the efficiency of their platform APIs and 
classes, you may actually have even more processing power left over for game play (sprite movements, collisions, 
physics, animation, and so on) and thus will be in good shape.

The GamePlayLoop will process the game code for you, using the javafx.animation package and its  
AnimationTimer class. You will always need to be cognizant of how many Scene Graph Node objects you are asking 
the pulse engine to process, because, if this number gets to be too large, it will start to affect the game’s performance.

Figure 6-1.  Primary game functional screens and how they are implemented through Java and JavaFX API, using a JVM



Chapter 6 ■ The Foundation of Game Design: The JavaFX Scene Graph and the InvinciBagel Game Infrastructure

125

Java Class Structure Design: Game Engine Support
Next, let’s take a look at how the functional structure of the InvinciBagel game will need to be put together under the 
hood, so to speak, within your Java 8 game programming code, which is what this book is all about! There is really no 
correlation between what the front-facing UI screens look like and what the underlying programming logic looks like, as 
the majority of the programming code will go toward creating the game play experience on the game play screen. The 
game instructions and legal and credits screens will just be images (ImageView) and will either have the text embedded in 
the image (resulting in fewer Scene Graph nodes used) or composite a transparent TextView on top of the ImageView. The 
high scores screen will take a little bit of programming logic, which you will do toward the end of the game development, 
as the game logic has to be created and played for high scores to even be generated in the first place (see Chapter 17)!

Figure 6-2 displays the primary functional area components required for the InvinciBagel game to be complete. 
The diagram shows an InvinciBagel Application subclass at the top of the hierarchy, creating the top level and the 
scene, and the Scene Graph contained below (or inside) it.

Below the InvinciBagel Scene object, which is actually created inside this InvinciBagel Application subclass, is the 
broader structural design for functional classes that you will need to code over the course of the remainder of the book. 
The engines (classes) shown in the figure will create your game functions, such as game engine (gameplay loop),  
logic engine (game play logic), sprite engine (actor management), actor engine (actor attributes), score engine 
(game-scoring logic), animation engine (animation logic), collision detection, and physics simulation. You will have 
to create all these Java class functions to fully implement a comprehensive, 2D game engine for the InvinciBagel game.

The game engine, which I call the GamePlayLoop class, is the primary class that creates the AnimationTimer 
object that invoke the pulse events that continually process the gameplay loop. This loop, as you know, will call the 
.handle() method, which will in turn contain method calls, which will ultimately access the other classes that you 
will be creating to manage actors (sprite engine); move them around the screen (actor engine); detect any collisions 
(collision engine); apply the game logic after collisions have been detected (logic engine); and apply the forces of 
physics to provide realistic effects, such as gravity and acceleration, to the game play (physics engine).

From Chapter 7 on, you will be building up these various engines, which will be used to create the game play 
experience. I will stratify chapter topics, based on each of these engines and what they need to do, so that everything is 
structured logically from a learning as well as coding perspective.

Figure 6-2.  Primary game functional classes and how they are implemented under the Scene and Scene Graph levels



Chapter 6 ■ The Foundation of Game Design: The JavaFX Scene Graph and the InvinciBagel Game Infrastructure

126

JavaFX Scene Graph Design: Minimizing UI Nodes
The trick to minimizing the Scene Graph is to use as few nodes as possible to implement a complete design, and, 
as you can see in Figure 6-3, this can be accomplished with one StackPane root node, one VBox branch (parent) 
node, and seven leaf (children) nodes (one TableView, two ImageView, and four Button UI controls). When you 
get into coding the Scene Graph next (finally!), you will use only 14 objects, and import only 12 classes, to make the 
entire top level for your InvinciBagel game, which you designed in the previous section, a reality. The TableView will 
overlay the ImageView composite, which contains the information screen layers of the design. This TableView object 
will be added in later stages of your game design. An ImageView backplate will contain the InvinciBagel artwork; 
an ImageView compositing layer will contain three different transparent images, which will seamlessly overlay the 
backplate image, based on the ActionEvents (clicks of the Button controls); and a VBox Parent UI layout container 
will contain the four Button controls. You will also create an Insets object to hold the padding values to fine-tune the 
button bank alignment.

Because a Button object cannot be positioned individually, I had to use the HBox class, along with an Insets class 
and a Pos class, to contain and position the Button controls. I will be going over the classes you will be using for this 
high-level design in this chapter so that you have an overview of every class that you are going to be adding to your 
InvinciBagel class to create this top-level UI design.

The way I optimized the Scene Graph use for the four different screens needed to match the four different 
buttons was to use one ImageView as a backplate to contain the InvinciBagel splash screen artwork and then one 
more ImageView to contain different composite images (overlays) that use transparency (alpha channel). In this way, 
you can simulate four different screens, using only two ImageView Scene Graph Node objects.

Finally, a TableView Scene Graph node will contain the table structure for the high scores table. This will 
be created via the score engine, which you will be creating last, after you finish your entire game design and 
programming. For now, you will leave the High Scores and Play Game button code unimplemented.

Figure 6-3.  Primary splash screen Scene Graph node hierarchy, the objects it contains, and the assets it references



Chapter 6 ■ The Foundation of Game Design: The JavaFX Scene Graph and the InvinciBagel Game Infrastructure

127

Scene Graph Code: Optimizing Your Current InvinciBagel Class
I know you are eager to work on the InvinciBagel class code, so let’s clean up, organize, and optimize the existing Java 
code to implement this top-level UI screen design. First, put the object declaration and naming Java code at the top 
of the InvinciBagel class. This is more organized, and all the methods that are inside your class will be able to see and 
reference these objects without using Java modifier keywords. As you can see in Figure 6-4, these include your existing 
scene Scene object, root StackPane object, and btn Button object (which I am renaming gameButton). I added three 
other Button objects, named helpButton, scoreButton, and legalButton, all declared and named using a single 
line of Java code, as well as two ImageView objects, named splashScreenbackplate and splashScreenTextArea. 
You also need to create four Image objects to hold digital image assets, which will be displayed in the ImageView 
nodes; I have named these splashScreen, instructionLayer, legalLayer, and scoresLayer and declared them, 
using one compound Java statement. Finally, you declare and name the buttonContainer VBox object and the 
buttonContainerPadding Insets object. NetBeans will write import statements for you, so long as you use the 
Alt+Enter keyboard shortcut, selecting the correct javafx package and class path. The imports are shown at the top of 
the figure.

You will be taking a look at all these JavaFX classes in detail in this chapter so that you learn what they are used 
for and what they can do for your Java applications.

Figure 6-4.  Declaring and naming the 14 objects that will make up your Scene Graph hierarchy at the top of the class



Chapter 6 ■ The Foundation of Game Design: The JavaFX Scene Graph and the InvinciBagel Game Infrastructure

128

Scene Graph Design: Streamlining the Existing .start() Method
Now, you can optimize the .start() method so that it only has one or two dozen lines of code. First, modularize the 
Scene Graph node creation Java routines into their own createSplashScreenNodes() method, which will be called 
at the top of the .start() method, as can be seen in Figure 6-5. After all the nodes are created in this method, create an 
addNodesToStackPane() method to add the nodes to the StackPane root node, and then have the three primaryStage 
lines of code configuring and managing the Stage object and, finally, the ActionEvent handling code routines that 
“wire” the Button UI controls to the Java code to be executed when they are clicked.

As you can see, after you duplicate the .setOnAction() constructs for each Button object, when you collapse 
the EventHandler routines, you have nine lines of code: one for creating nodes, one for adding nodes to root, three 
for Stage object setup, and four for UI Button event-handling. This is pretty compact, if you consider the amount 
of functionality you are adding to the top level of your game structure (game play, instructions, legal, credits, 
scoreboard).

It is important that you do things in the correct order, as some Java code is predicated on other Java code. For this 
reason, the object declarations come first; then, inside the .start() method, you create (instantiate) the nodes. Once 
these are declared, named, and instantiated (created), you add them to the StackPane root node and then configure 
(using the .setTitle() method) and add the scene Scene object to the primaryStage Stage object, using the .setScene() 
method. After your objects are in system memory, only then will you be able to process ActionEvent handling 
routines, which are attached to your four Button UI controls. Next, let’s make sure that your digital image assets, which 
will be referenced in the createSplashScreenNodes() method, are in the proper NetBeans folder.

Figure 6-5.  Organize the .start() method with the createSplashScreenNodes() and addNodesToStackPane() methods



Chapter 6 ■ The Foundation of Game Design: The JavaFX Scene Graph and the InvinciBagel Game Infrastructure

129

Scene Graph Assets: Installing the ImageView’s Image Assets in Your Project
To reference the digital image assets inside the JAR file in your Java code, you have to insert a forward slash before the 
file name. Before you can reference the files, however, you must copy these image files from the book repository into 
the Computer/ComputerName/Users/user/MyDocuments/NetBeansProjects/InvinciBagel/src folder, as shown 
on the left-hand side (and the top) of Figure 6-6. You can also see how these digital image assets will composite, as the 
background plate invincibagelsplash PNG24 has a spot for the other three PNG32 images to overlay (cover). The white 
areas seen in the composite ImageView assets are actually transparent! Now, you are ready!

JavaFX UI Classes: HBox, Pos, Insets, and ImageView
Let’s take a break from coding for an in-depth look at some of the new classes you are going to use to complete your 
top-level game application UI design. These include the Pos class (positioning); the Insets class (padding); the HBox 
class (UI layout container); the Image class (digital image container); the ImageView class (digital image display); 
and the TableView class (table data display), which you will study here but implement in code later in your game 
development once the game is completely finished. You will examine these in order, from simplest (Pos) to most 
complex (TableView), and then code the .createSplashScreenNodes() and .addNodesToStackPane() methods, 
which use these new classes (objects).

The JavaFX Pos Class: Generalized Screen Position Constants
The Pos class is an Enum<Pos> class, which stands for “enumeration.” This class contains a list of constants that are 
translated into integer values for use in the code. The constant values (in this case, positioning constants, such as TOP, 
CENTER, and BASELINE) make it easier for programmers to use these values in their code.

Figure 6-6.  Windows 7 Explorer file management utility, showing a PNG24 splash screen and three PNG32 overlays



Chapter 6 ■ The Foundation of Game Design: The JavaFX Scene Graph and the InvinciBagel Game Infrastructure

130

The Java class extension hierarchy for the Pos class starts at the java.lang.Object masterclass and progresses to the 
java.lang.Enum<Pos> class, finally ending with the javafx.geometry.Pos class. As Figure 6-4 demonstrates (l. 6), Pos 
is in the JavaFX geometry package and uses the following subclass hierarchy structure:
 
java.lang.Object
  > java.lang.Enum<Pos>
    > javafx.geometry.Pos
 

The Pos class has a set of constants for providing a generalized horizontal and vertical positioning and alignment 
(see Table 6-1). As you will see in the next section, you will have to use an Insets class and object to obtain the  
pixel-accurate positioning that you desire. You will employ the BOTTOM_LEFT constant to position the Button 
control bank in the bottom-left corner of the splash screen.

Because the Pos class offers generalized positioning, it should be used in conjunction with the Insets class to 
effect pixel-precise positioning. Let’s take a look at the Insets class next, as it is also in the javafx.geometry package.

The JavaFX Insets Class: Providing Padding Values for Your UI
The Insets class is a public class that directly extends the java.lang.Object masterclass, meaning that the Insets class 
was coded from scratch to provide insets, or offsets inside a rectangular area. Imagine a picture frame in which you 
place a mat, or an attractive border between the frame on the outside and the picture on the inside. This is what 
the Insets class does with two constructor methods: one provides equal, or even, insets, and the other, unequal, or 
uneven, insets. 

Table 6-1.  Pos Class Enum Constants That Can Be Used for Positioning and Alignment in JavaFX

Pos Constant Positioning Result (Object)

BASELINE_CENTER On the baseline, vertically; at the center, horizontally

BASELINE_LEFT On the baseline, vertically; on the left, horizontally

BASELINE_RIGHT On the baseline, vertically; on the right, horizontally

BOTTOM_CENTER On the bottom, vertically; at the center, horizontally

BOTTOM_LEFT On the bottom, vertically; on the left, horizontally

BOTTOM_RIGHT On the bottom, vertically; on the right, horizontally

CENTER At the center, vertically and horizontally

CENTER_LEFT At the center, vertically; on the left, horizontally

CENTER_RIGHT At the center, vertically; on the right, horizontally

TOP_CENTER At the top, vertically; at the center, horizontally

TOP_LEFT At the top, vertically; on the left, horizontally

TOP_RIGHT At the top, vertically; on the right, horizontally



Chapter 6 ■ The Foundation of Game Design: The JavaFX Scene Graph and the InvinciBagel Game Infrastructure

131

You will be using the constructor that offers unequal insets values, which would look very unprofessional if you 
were framing a picture! The Java class hierarchy for the Insets class starts with the java.lang.Object master class and 
uses this class to create the javafx.geometry.Insets class. As Figure 6-4 illustrates (l. 5), Insets is contained in the 
JavaFX geometry package, just like the Pos class, and uses the following class hierarchy structure:
 
java.lang.Object
  > javafx.geometry.Insets
 

The Insets class furnishes a set of four double offset values specifying the four sides (top, right, bottom, left) 
of a rectangle, which should be specified in that order within the constructor method. You will be using the Insets 
class (object) to fine-tune the position of the Button control bank, which you will be creating using the HBox layout 
container. Think of these Insets objects as a way to draw a box inside another box, which shows the spacing that you 
want the objects inside the rectangle to “respect” around its edges. The simple constructor for an Insets object would 
use the following format:
 
Insets(double topRightBottomLeft)
 

This constructor uses a single value for all the spacing sides (topRightBottomLeft), and an overloaded 
constructor allows you to specify each of these values separately, like this:
 
Insets(double top, double right, double bottom, double left)
 

These values need to be specified in this order. An easy way to remember this is by using an analog clock. A clock 
has “12” at the top, “3” at the right, “6” at the bottom, and “9” at the left. So, starting at high noon (for you western 
genre lovers out there), always work clockwise, the way the hands move around a clockface, and you will have a great 
way to remember how to specify the Insets values in the “uneven values” constructor method. You will soon be using 
the Insets class to position the Button control bank, which are initially “stuck” in the bottom-left corner of the splash 
screen design, away from the left-hand side and bottom of the screen, using two of these four insets positioning 
parameters.

The JavaFX HBox Class: Using a Layout Container in a Design
Because Button objects cannot be positioned easily, I will be placing the four Button objects in a layout container from 
the javafx.scene.layout package called HBox, which stands for Horizontal Box. This public class arranges things in 
a row, and because you want the buttons to be aligned at the bottom of the splash screen, you use the Parent node for 
four Button control nodes, which will become children (leaf nodes) of this HBox branch node. This will create a bank 
of UI buttons that can be positioned (moved around) together as a single unit of the splash screen design.

An HBox class is a public class that directly extends the javafx.layout.Pane superclass, which in turn extends a 
javafx.layout.Region superclass. The javafx.layout.Region superclass extends a javafx.scene.parent superclass, which 
in turn extends a javafx.scene.Node superclass, which extends the java.lang.Object masterclass. As Figure 6-4  
shows (l. 11), HBox is contained in the javafx.scene.layout package, just like the StackPane class, and it uses the 
following class hierarchy structure:
 
java.lang.Object
  > javafx.scene.Node
    > javafx.scene.Parent
      > javafx.scene.layout.Region
        > javafx.scene.layout.Pane
          > javafx.scene.layout.HBox
 



Chapter 6 ■ The Foundation of Game Design: The JavaFX Scene Graph and the InvinciBagel Game Infrastructure

132

If an HBox has a border or a padding value specified, the contents of your HBox layout container will respect that 
border or padding specification. A padding value is specified using the Insets class, which you will be using for exactly 
this fine-tuned UI control bank application.

You will use the HBox class (object), along with the Pos class constant and the Insets class (object), to group the 
UI Button objects together and, later, to fine-tune their position as a Button control bank. This HBox layout container 
will thus become the Parent node (or a branch node) for the Button UI controls (or leaf nodes).

Think of an HBox object as a way to array children objects horizontally, in a row. These could be your image 
assets, which would use the basic HBox constructor (with zero spacing), or UI controls, such as buttons, arranged next 
to each other but spaced apart, using one of the overloaded constructors. The simplest constructor for an HBox object 
creation would use the following empty constructor method call format:
 
HBox()
 

The overloaded constructor that you will be employing for your HBox object creation will use a spacing value to 
put some space between the child Button objects inside the HBox, with the following constructor method call format:
 
HBox(double spacing)
 

There are also two other overloaded constructor method call formats. These will allow you to specify the children 
Node objects (in this case, Button objects) inside the constructor method call itself, as follows:
 
HBox(double spacing, Nodes... children)  - or, with zero spacing value in between Node objects:
 
HBox(Nodes... children)
 

You are going to be using the “long form,” and .getChildren().addAll() method chain, in your code, but you 
could also declare the HBox, and its Button Node objects, by using the following constructor:
 
HBox buttonContainer = new HBox(12, gameButton, helpButton, scoreButton, legalButton);
 

The HBox layout container will control resizing of child elements, based on different screen sizes, aspect ratios, 
and physical resolutions if the child objects are set to be resizable. If the HBox area will accommodate the child 
objects’ preferred widths, they will be set to that value. In addition, a fillHeight attribute (boolean variable) is set to 
true, as the default value, specifying whether a child object should fill (scale up to) the HBox height value.

Alignment of an HBox is controlled by the alignment attribute (property or variable), which defaults to the  
TOP_LEFT constant from the Pos class (Pos.TOP_LEFT). If an HBox is sized above its specified width, the child 
objects use their preferred width values, and the extra space goes unused. It is important to note that the HBox layout 
engine will lay out the managed child elements, regardless of their visibility attribute (property or variable) setting.

Now that I have discussed the JavaFX geometry and layout classes, which you will be using to create the UI  
(a bank of Button objects) design, let’s take a look at the digital image–related classes, from the javafx.scene.image 
package, which will allow you to implement the digital image–compositing pipeline that you will put in place behind 
these four JavaFX Button UI control element objects held inside an HBox UI layout container object.

The JavaFX Image Class: Referencing Digital Images in a Design
The Image class is a public class that directly extends the java.lang.Object masterclass, meaning that the Image class 
was also coded from scratch to provide image loading (referencing) and scaling (resizing). You can lock the aspect 
ratio for scaling and specify the scaling algorithm (quality) as well. All URLs that are supported by the java.net.URL 
class are supported. This means that you can load images from the Internet (www.servername.com/image.png); from 
the OS (file:image.png); or from the JAR file, using a forward slash (/image.png).

http://www.servername.com/image.png


Chapter 6 ■ The Foundation of Game Design: The JavaFX Scene Graph and the InvinciBagel Game Infrastructure

133

The Java class hierarchy for the Image class starts with the java.lang.Object master class and uses this class 
to create the javafx.scene.image.Image class. As Figure 6-4 shows (l. 9), Image is contained in the JavaFX image 
package, just like the ImageView class, and uses the following class hierarchy structure:
 
java.lang.Object
  > javafx.scene.image.Image
 

The Image class supplies six different (overloaded) Image() constructor methods. These take anything from 
a simple URL to a set of parameter values specifying the URL, width, height, aspectRatioLock, smoothing, and 
preload options. These should be specified in that order within the constructor method, as you will soon see, when 
you write an Image() constructor using the most complicated of all the constructor methods, which has the following 
format:
 
Image(String url, double requestedWidth, double requestedHeight, boolean preserveRatio, boolean 
smooth, boolean backgroundLoading)
 

The simple constructor for an Image object specifies only the URL and uses the following format:
 
Image(String url)
 

If you want to load an image and also have the constructor method scale the image to a different width and 
height (usually, this is smaller, to save memory), while locking (preserving) the aspect ratio, using the highest-quality 
resampling (smooth-pixel scaling), that Image object constructor uses the following format:
 
Image(String url, double scaleWidth, double scaleHeight, boolean preserveAspect, boolean smooth)
 

If you want to load an image in the background (asynchronously), using its “native,” or physical, resolution and 
native aspect ratio, the Image() constructor uses the following format:
 
Image(String url, boolean backgroundLoading)
 

Two Image() constructor methods also use the java.io.InputStream class, which furnishes a real-time stream  
(like streaming video or audio, only customized for a Java application) of input data to the Image() constructor 
method. These two Image object constructor formats take the following formats (simple and complex):
 
Image(InputStream is) // This is the simple format. The complex format would thus be as follows:
 
Image(InputStream is, double newWidth, double newHeight, boolean preserveAspect, boolean smooth)
 

Therefore, the Image class (object) is used to prepare a digital image asset for use, that is, to read its data 
from a URL; resize them, if necessary (using whatever smoothing and aspect ratio lock you like); and load them 
asynchronously, while other things are going on in your application. It is important to note that the Image class  
(or object) does not display an image asset: the Image class just loads it; scales it, if needed; and places it in system 
memory to be used in your application.

To display an Image object, you will need to use a second class (object), called an ImageView class. The 
ImageView object can be used as a node on your Scene Graph and references and then “paints” the Image object data 
onto the layout container, which holds the ImageView node (in this case, a StackPane Scene Graph root and Parent 
node to the leaf ImageView node). I will be covering the ImageView class in the next section.

From a digital image–compositing perspective, the StackPane class (object) is the image-compositing engine, 
or layer manager, if you will, and each ImageView object represents an individual layer in the layer stack. An Image 
object contains the digital image data in the ImageView layer or in more than one ImageView, if needed, as the Image 
objects and the ImageView objects are decoupled and exist independently of each other.



Chapter 6 ■ The Foundation of Game Design: The JavaFX Scene Graph and the InvinciBagel Game Infrastructure

134

JavaFX ImageView Class: Displaying Digital Images in a Design
The ImageView class is a public class that directly extends the javafx.scene.Node superclass, which is an extension 
of the java.lang.Object (see Chapter 4). The ImageView object is therefore a type of Node object in the JavaFX Scene 
Graph that is used for painting a view, using the data contained in an Image object. The class has methods that allow 
image resampling (resizing), and, as with the Image class, you can lock the aspect ratio for scaling as well as specify 
the resampling algorithm (smoothing quality).

The Java class hierarchy for the ImageView class starts with the java.lang.Object master class and uses this class 
to create the javafx.scene.Node class, which is then employed to create an ImageView Node subclass. As Figure 6-4 
illustrates (l. 10), like the Image class, ImageView is contained in the JavaFX image package. The ImageView class uses 
the following Java class inheritance hierarchy structure:
 
java.lang.Object
  > javafx.scene.Node
    > javafx.scene.image.ImageView
 

The ImageView class provides three different (overloaded) ImageView() constructor methods. These range from 
an empty constructor (which is the one you are going to use later on, in your code); to one that takes an Image object 
as its parameter; to one that takes a URL String object as the parameter and creates the Image object automatically.  
To create an ImageView object, the simple (empty) ImageView() constructor method uses the following format:
 
ImageView()
 

You will be employing this constructor method so that I can show you how to use the .setImage() method call to 
load an Image object into an ImageView object. If you want to avoid using the .setImage() method call, you can use 
the overloaded constructor method, which has the following format:
 
ImageView(Image image)
 

So, to set up an ImageView “explicitly” and wire it to the Image object looks like this:
 
splashScreenBackplate = new ImageView();      // This uses the empty constructor method approach
splashScreenBackplate.setImage(splashScreen);
 

You can condense this into one line of code, using an overloaded constructor method, structured as follows:
 
splashScreenBackplate = new ImageView(splashScreen);  // using the overloaded constructor method
 

If you want to bypass the process of creating and loading an Image object, there is a constructor method for that 
as well, which uses the following format:
 
ImageView(String url)
 

To load an image in the background (asynchronously), using its native (default) resolution and native aspect 
ratio, the Image() constructor uses the following format:
 
splashScreen = new Image("/invincibagelsplash.png", 640, 400, true, false, true);
splashScreenBackplate = new ImageView();
splashScreenBackplate.setImage(splashScreen);   // uses the empty constructor method approach
 



Chapter 6 ■ The Foundation of Game Design: The JavaFX Scene Graph and the InvinciBagel Game Infrastructure

135

If you did not want to specify the image dimensions, background image loading, and smooth scaling, or lock the 
aspect ratio for any scaling, you could condense the previous three lines of Java code into the following constructor:
 
splashScreenBackplate = new ImageView("/invincibagel.png");   // uses third constructor method
 

At least initially (for learning purposes), I am going to do this the long way, and I will always explicitly load Image 
objects, using the Image() constructor method, so that you can specify all the different attributes and see all the 
different image assets that you are using in this Java programming logic. I want to show you the shortcut code here, 
because you will be using this approach later in the book, once you start using ImageViews as sprites (see Chapter 8). 
You can use this shortcut approach with your sprites because you will not be scaling them and because they are so 
highly optimized that background loading will not be necessary.

Next, let’s take a quick look at the TableView class, which will hold the high scores table. Although you will 
not be implementing this here, I will cover the class, as it is part of the top-level UI design that you are creating and 
implementing in this chapter.

The JavaFX TableView Class: Displaying Data Tables in a Design
The TableView class is a public class that directly extends the javafx.scene.control.Control superclass, which is an 
extension of javafx.scene.layout.Region. javafx.scene.layout.Region is an extension of the javafx.scene.Parent, which 
is an extension of the javafx.scene.Node Scene Graph superclass (see Chapter 4). A TableView<S> object is therefore 
a type of UI control (a table) and a Node object in the JavaFX Scene Graph that is used for constructing a table, using 
S objects, each of which contains data to be displayed in a table. You will be writing data into a TableView<S> object 
later in the book, using these S objects, after scores have been achieved that eclipse those currently listed in the table.

The Java class hierarchy for the TableView class starts with the java.lang.Object master class and uses this class 
to create the javafx.scene.Node class, which is then used to create a Parent class. This is used to create a Region 
class, which in turn creates a Control class, which is used to create the TableView class. The TableView class has the 
following Java class inheritance hierarchy structure:
 
java.lang.Object
  > javafx.scene.Node
    > javafx.scene.Parent
      > javafx.scene.layout.Region
        > javafx.scene.control.Control
          > javafx.scene.control.TableView<S>
 

The TableView class provides two different (overloaded) TableView() constructor methods, an empty constructor 
and a constructor that takes an ObservableList<S> object, filled with Table data items as a parameter. A simple (empty) 
TableView() constructor method to create an empty TableView object will use the following format:
 
TableView()
 

The second constructor type uses an ObservableList<E> class (object) from the javafx.collections package, 
which is a type of list that allows a data change event listener to track any changes in the list as they occur. This 
TableView object constructor method call uses the following format:
 
TableView(ObservableList<S> items)
 

I think that is enough class background information for now, so let’s get into writing the code for your first 
.createSplashScreenNodes() method, which will instantiate and set up all the Node objects for your Scene Graph!



Chapter 6 ■ The Foundation of Game Design: The JavaFX Scene Graph and the InvinciBagel Game Infrastructure

136

Scene Graph Nodes: .createSplashScreenNodes( )
The first thing you will want to do with your createSplashScreenNodes() method is code the empty method structure 
and add the Node object creation code that already exists in the bootstrap code that was generated for you by 
NetBeans in Chapter 2. This includes the Node objects for the Button node, the StackPane root node, and the Scene 
object named scene. You will keep the primaryStage code in the .start() method because that object is created using 
the .start(Stage primaryStage) constructor method call. The Button object has already been renamed gameButton  
(it was btn), so you have three lines of object instantiation code and a line of configuration code, as follows:
 
root = new StackPane();
scene = new Scene(root, 640, 400);
gameButton = new Button();
gameButton.setText("PLAY GAME");
 

It is important to note that because the root StackPane object is used in the constructor method call for the scene 
Scene object, this line of code needs to come first (your root object has to be created before it is used!). The next thing 
you need to create is the HBox layout container object that will hold your four Button UI controls. You will also set the 
alignment attribute for the HBox; add an Insets object to contain the padding values; and then add this padding to 
the4 HBox object, using these four lines of Java code:
 
buttonContainer = new HBox(12);
buttonContainer.setAlignment(Pos.BOTTOM_LEFT);
buttonContainerPadding = new Insets(0, 0, 10, 16);
buttonContainer.setpadding(buttonContainerPadding);
 

Next, let’s take a handy programmers’ shortcut and copy and paste the two gameButton (instantiation and 
configuration) lines of code below the HBox code (because the buttons are inside the HBox, this is just for visual 
organization, not to make the code work) and then copy and paste them three more times, on separate lines. This will 
allow you to change the game to help, score, and legal, respectively, by creating the following four button Java codes:
 
gameButton = new Button();
gameButton.setText("PLAY GAME");
helpButton = new Button();
helpButton.setText("INSTRUCTIONS");
scoreButton = new Button();
scoreButton.setText("HIGH SCORES");
legalButton = new Button();
legalButton.setText("LEGAL & CREDITS");
 

Now that you have created the HBox Button UI control layout container and buttons, you still need to write one 
more line of code to fill the HBox with Button objects, using the .getChildren().addAll() method chain, like this:
 
buttonContainer.getChildren().addAll(gameButton, helpButton, scoreButton, legalButton);
 

Next, let’s add your image-compositing Node objects (Image and ImageView) so that you can add the artwork for 
your InvinciBagel splash screen as well as the panel overlays that will decorate your instructions, legal disclaimers and 
production credits and a background and screen title for your (eventual) game high scores table. I use two ImageView 
objects to contain these two layers; let’s set up the bottommost backplate image layer first by using the following Java 
code to instantiate the Image object and then the ImageView object and wire them together:
 
splashScreen = new Image("/invincibagelsplash.png", 640, 400, true, false, true);
splashScreenBackplate = new ImageView();
splashScreenBackplate.setImage(splashScreen);   // this Java statement connects the two objects
 



Chapter 6 ■ The Foundation of Game Design: The JavaFX Scene Graph and the InvinciBagel Game Infrastructure

137

Finally, let’s do the same thing for the image-compositing plate, that is, the ImageView that will hold the different 
Image objects containing the alpha channel (transparency) values that will create an overlay of panel images for the 
InvinciBagel splash screen artwork (which was created by the talented 2D artist Patrick Harrington):
 
instructionLayer = new Image("/invincibagelinstruct.png", 640, 400, true, false, true);
splashScreenTextArea = new ImageView();
splashScreenTextArea.setImage(instructionLayer); // this Java statement connects the two objects
 

As Figure 6-7 demonstrates, your Scene Graph node creation (seen at the top of the InvinciBagel class) and the 
Node object instantiation and configuration (seen in the createSplashScreenNodes() method) are in place and error 
free. You still need to add in the Image objects for the other two screens, but there is enough code here to be able to 
add these Node objects to the Scene Graph, using the addNodesToStackPane() method, and then test the code to 
make sure that it is working. According to the NetBeans IDE, this code is error free!

Next, let’s add the Node objects to the StackPane Scene Graph root object in an addNodesToStackPane() method.

Figure 6-7.  Coding the createSplashScreenNodes() method; instantiating and configuring the nodes in the Scene Graph



Chapter 6 ■ The Foundation of Game Design: The JavaFX Scene Graph and the InvinciBagel Game Infrastructure

138

Adding Nodes to the Scene Graph: .addStackPaneNodes()
Finally, you have to create a method that will add the Node objects that you have created to the Scene Graph root, 
which, in this case, is a StackPane object. You will use the .getChildren().add() method chain to add the children Node 
objects to the parent StackPane root Scene Graph node. This is done via three simple lines of Java code, like this:
 
root.getChildren().add(splashScreenBackplate);
root.getChildren().add(splashScreenTextArea);
root.getChildren().add(buttonContainer);
 

As you can see in Figure 6-8, the Java code is error free, and the root object sees its declaration at the top of the 
class. Clicking the root object in the code creates this highlighting, which traces the use of the object through the code. 
This is a pretty cool NetBeans 8.0 trick that you should use whenever you want to track an object in code.

The important thing to note here is the order in which the Node objects were added to the StackPane root 
Scene Graph object. This affects the compositing layer order for the image compositing, as well as for the UI element 
compositing, on top of these digital image elements. The first node added to the StackPane will be on the bottom of 
the layer stack; this needs to be the splashScreenBackplate ImageView Node object, as you can see in the figure.

The next node to add will be the splashScreenTextArea ImageView Node object, as the transparent images with 
the panel overlays need to go right on top of Pat Harrington’s InvinciBagel splash screen 2D artwork. After this, you 
can place the UI design, which, in this case can be done in one fell swoop, using the buttonContainer HBox Node 
object, which contains all the Button objects. Note that you do not have to add buttons to this StackPane root Scene 
Graph object, because you have already used the .getChildren().addAll() method chain to add your Button UI 
controls to the Scene Graph hierarchy below an HBox (Parent object) Node branch object. Now, you are ready to test!

Figure 6-8.  Coding the addNodesToStackPane() method, using the .getChildren() method chained to the .add() 
method



Chapter 6 ■ The Foundation of Game Design: The JavaFX Scene Graph and the InvinciBagel Game Infrastructure

139

Testing the InvinciBagel Application: Pulse the Scene Graph
Click the green Play arrow at the top of the NetBeans IDE, and run the project. This will bring up the window 
illustrated in Figure 6-9 (I have removed the Java code added in Chapter 4, demonstrating how to create a windowless 
application). So, you have window “chrome” back, at least for now. As you can see, you are getting a very good result, 
using only a dozen import statements (external classes), a few dozen lines of Java code, and a half a dozen child nodes 
below the Scene Graph root (StackPane) object. As you can see, JavaFX does a great job of compositing the backplate, 
composite image overlays, and button bank overlay into one seamless, professional result!

Because you only copied and pasted the EventHandler routines for each button, and changed your Button 
objects’ names but not the code inside these routines, the Button objects will still work properly (writing text to the 
console) and not cause compiler errors. However, they will not do what you want them to do, which is to change an 
image overlay so that the panel on the left-hand side of the design holds a title and text that you want it to show a user.

This will be done using a call to the .setImage() method, which will set the splashScreenTextArea ImageView 
object to the instructionLayer, scoresLayer, or legalLayer Image object, based on which Button UI control is clicked by 
the user. You cannot implement this event-handling code until you add the last two Image object instantiations!

Finishing an InvinciBagel UI Screen Design: Add Images
Let’s finish with the createSplashScreenNodes() method by adding two more lines at the end of the method that 
add two more Image objects, referencing the invincibagelcreds.png and invincibagelscores.png 32-bit PNG32 
digital image assets. This is done by employing the following two lines of Java object instantiation code using the new 
keyword:
 
legalLayer = new Image( "/invincibagelcreds.png", 640, 400, true, false, true );
scoresLayer = new Image( "/invincibagelscores.png", 640, 400, true, false, true );
 

Figure 6-9.  Run the InvinciBagel application, and make sure that the StackPane compositing class is working correctly



Chapter 6 ■ The Foundation of Game Design: The JavaFX Scene Graph and the InvinciBagel Game Infrastructure

140

As Figure 6-10 shows, the code is error free, because you have copied the four PNG files into your project’s /src 
folder. You do not need the other lines of code (ImageView object instantiation, .setImage()), because you will be 
using the splashScreenTextArea ImageView object to hold these last two Image objects. Thus, you are saving on Scene 
Graph Node objects used, as you are using a single ImageView Scene Graph Node object to display three different 
Image objects (overlays), based on button events.

This means that the splashScreenTextArea.setImage() method calls you will make off the 
splashScreenTextArea ImageView object will be placed inside the ActionEvent EventHandler programming 
constructs for the three Button objects that trigger image composite overlays when they are clicked. The fourth Button 
object will start up game play, so, for now, you will just have a Java comment in that button event-handling structure, 
making it an “empty” logic structure. Now, let’s take a look at how to finish coding these EventHandler constructs so 
that you can finish this UI design and get on with creating the game play engines mentioned earlier.

Interactivity: Wiring the InvinciBagel Buttons for Use
You need to replace the system writing to the console code in all these duplicated button event-handling structures 
with calls to the .setImage() method so that you can set the image-compositing plate ImageView to the Image object 
that holds the digital image asset you want to overlay the InvinciBagel backplate artwork created by Pat Harrington. 
You have already written this code construct twice in the createSplashScreenNodes() method, so you can copy the 
line of code directly above the two Image object instantiations you just wrote, if you want a shortcut.

The .setOnAction() event-handling Java code structures would therefore look like this:
 
helpButton.setOnAction(new EventHandler<ActionEvent>() {
    @Override
    public void handle(ActionEvent event) {
        splashScreenTextArea.setImage(instructionLayer);
    }
});

Figure 6-10.  Adding legalLayer and scoresLayer Image object instantiations to add the other image composite plates



Chapter 6 ■ The Foundation of Game Design: The JavaFX Scene Graph and the InvinciBagel Game Infrastructure

141

scoreButton.setOnAction(new EventHandler<ActionEvent>() {
    @Override
    public void handle(ActionEvent event) {
        splashScreenTextArea.setImage(scoresLayer);
    }
});
legalButton.setOnAction(new EventHandler<ActionEvent>() {
    @Override
    public void handle(ActionEvent event) {
        splashScreenTextArea.setImage(legalLayer);
    }
});
 

As Figure 6-11 demonstrates, your event-handling code is error free, and you are ready to run and test again!

As you can see, you are leaving the gameButton.setOnAction() event-handling structure empty for now; in the 
next chapter, you will create the primary game play surface and a pulse event-processing engine (structure) that will 
run this game by calling the various functional engines that you will be writing over the course of the book.

You are leaving the bottom part of the high scores screen blank for now as well so that you can overlay the 
two ImageView layers with a TableView Node object in your Scene Graph root StackPane. You will complete this 
composite for the High Scores button UI element later on after you finish developing your Java 8 game.

Figure 6-11.  Modify the body of the .handle() method for each of four Button controls to complete the infrastructure



Chapter 6 ■ The Foundation of Game Design: The JavaFX Scene Graph and the InvinciBagel Game Infrastructure

142

Now, it is time for the final testing of the top-level UI part of your game application to make sure that all the UI 
button elements (objects) function properly and do what you have designed (coded) them to do. After that, you will be 
running the NetBeans 8.0 Profiler again to ensure that the Scene Graph hierarchy that you have just created is indeed 
leaving 99 percent of the available CPU processing power for the game engines that you will be creating from here on.

Testing the Final InvinciBagel UI Design
Again, click the green Play arrow at the top of NetBeans IDE 8.0, and run your project. This will bring up the windows 
demonstrated in Figure 6-12. As you can see, when you click the Legal and Credits button UI element, the overlay 
makes a seamless composite with the InvinciBagel artwork backplate, as shown on the left-hand side of the figure, 
and when the High Scores button UI element (control) is clicked, the high scores table background is put in place, 
as displayed on the right-hand side of the figure. As you can see, the classes from the javafx.image package provide a 
pristine result with regard to compositing

Next, let’s take a look at how many CPU cycles are being taken up by the Scene Graph implementation that you 
have coded in this chapter, as you want to ensure a 100 percent static, top-level UI design so that the only dynamic 
elements used in your game are the game play engine (and related engines) themselves. Because the traversal of the 
Scene Graph hierarchy by the pulse resolution engine can get “expensive,” you need to be very careful here!

Remember that your primary objective is to create a top-level UI design for starting the game play screen 
and loop, while also implementing a UI that allows your users to display the instructions, legal disclaimers, and 
production credits and take care of setting up an area to use for displaying the high scores table. At the same time, 
you are tasked with saving 99 percent of the processing power for use later on, for processing the game logic, sprite 
movements, sprite animation, collision detection, scoring, and physics via the JavaFX pulse engine.

Profiling the InvinciBagel Scene Graph for Pulse Efficiency
It is important that the game UI design not take any processing power away from the CPU, as the game engine is going 
to need all of it. As Figure 6-13 reveals, you can use the Profile > Profile Project (InvinciBagel) menu sequence to 
run the Profiler and take a screenshot of the CPU statistics for the current (top-level UI) application.

Figure 6-12.  The other two Image objects shown composited, using the background plate and compositing ImageViews



Chapter 6 ■ The Foundation of Game Design: The JavaFX Scene Graph and the InvinciBagel Game Infrastructure

143

As you can see in the Total Time column, on the right-hand side of the figure, the createSplashScreenNodes() 
method takes 279 milliseconds, or approximately three-tenths of a second, to execute, and your Scene Graph is 
created. The addNodesToStackPane() method takes approximately 3 milliseconds, or three one-thousandths of a 
second, to execute.

If you look at the threads profiling output and click the UI button elements, you will see a blip of color appear 
on the thread, showing the processing overhead of a button click, which, as you can see, is less than one-tenth of a 
second per click (look at the Invocations column, on the far right, to see how many times I tested the button click 
functions). I highlighted the threads view, where I clicked High Scores, and then the Legal and Credits button UI 
elements (see Figure 6-14). As you can see in this view as well, the current design is using minimal resources.

Figure 6-13.  Profiling the Scene Graph UI design thus far to make sure that it does not use any perceptible CPU cycles



Chapter 6 ■ The Foundation of Game Design: The JavaFX Scene Graph and the InvinciBagel Game Infrastructure

144

Java 8 and its JavaFX engine spawned nearly a dozen threads, so your game application is already highly 
multithreaded, and it does not even need to be at this point in time! The teams at Oracle are working diligently at 
making JavaFX the premier game engine, so the performance just keeps getting better and better, which is great news 
for Java 8 game developers!

Summary
In this sixth chapter, you got your hands dirty doing the actual top-level UI design for your game as well as outlining 
the underlying game engine component design and figuring out the most efficient Scene Graph node design. Then, 
you got back into Java 8 game programming and redesigned your existing bootstrap Java 8 code, originally created by 
NetBeans 8.0.

Because this NetBeans-generated Java code design was not optimal for your purposes, you rewrote it completely 
to make it more organized. You did this by creating two custom Java methods,.createSplashScreenNodes() and 
.addNodesToStackPane(), to modularize the Scene Graph node creation process as well as the adding of the three 
Parent (and leaf) Node objects to the Scene Graph root (in this case, the StackPane object, which you are using for its 
multilayer UI object-compositing capability).

Next, you learned about some of the JavaFX classes for implementing these new methods, including the Pos class 
and the Insets class, from the javafx.geometry package; the Image and the ImageView class, from the javafx.scene.
image package; the HBox class, from the javafx.scene.layout package; and the TableView class, from the javafx.
scene.control package. You coded the new .createSplashScreenNodes() method, which instantiated and configured 
the HBox object, using the Insets object, and then the Image and ImageView objects and the four Button objects. 
Once all these Scene Graph nodes were instantiated and configured, you wrote an .addNodesToStackPane() method 
to add Node objects to the StackPane root object so that they would be displayed by the Stage object, which references 
the Scene Graph’s root object. Next, you tested your top-level game application UI design. Then, you added in the last 
couple of Image objects and added ActionEvent EventHandler program logic. Finally, you profiled the application to 
make sure it was efficient.

In the next chapter, I will present the JavaFX pulse engine and the AnimationTimer class so that you can create 
the infrastructure for your Java 8 game engine, which will process your game events in real time.

Figure 6-14.  Profiling the Scene Graph UI design thus far to make sure that it does not use any perceptible thread 
overhead



145

Chapter 7

The Foundation of Game Play Loop: 
The JavaFX Pulse System and the 
Game Processing Architecture

Now that you have created the top-level UI screens needed for your user to learn how to play the game, start the game, 
view high scores, and review the legal disclaimers and Ira H. Harrison Rubin’s InvinciBagel intellectual property game 
production credits, let’s get down to business and create the game play timing loop for your InvinciBagel game. This 
is of the greatest importance from a user experience standpoint, and is also critical to the proper functioning of the 
different game engines that you will be creating over the course of the remainder of this book, including the sprite 
engine, collision detection engine, animation engine, scoring engine, and physics engine. You will always keep 
smoothness of game play in mind; the efficient, optimal implementation of the JavaFX pulse system is of paramount 
importance at this stage of the game (no pun intended). For this reason, I will be going into great detail in this chapter 
regarding the javafx.animation package, and how all of its functional classes differ from each other.

First, you will explore the two Animation superclasses in the javafx.animation package: Animation and 
AnimationTimer. After that, you will take a look at Animation, Timeline, and Transition and how these classes, and 
any of their subclasses, such as PathAnimation and TranslateAnimation, will allow you to access the JavaFX pulse 
event timing system. Now, you need to use pulse, if you want to create an action-oriented arcade type Java 8 game!

You will also be taking a closer look at the overall structure of the entire javafx.animation package, because 
you’ll need to use one of these classes for your Java 8 game play loop. You will do this by using a diagram of the entire 
package, so that you can get an overview of how all its classes interrelate. You will then examine the class hierarchies 
among all of the JavaFX Animation classes, in detail. With the exception of AnimationTimer, Interpolator, 
KeyFrame, and KeyValue, all of these javafx.animation package classes are subclassed (using the Java extends 
keyword) using the JavaFX Animation superclass.

Finally, you will be adding the new GamePlayLoop.java class into your invincibagel package, which will be 
created as a GamePlayLoop object in the InvinciBagel.java Application subclass, implementing the timing loop. This 
GamePlayLoop class will contain a .handle() method, as well as a .start() method and a .stop() method, which will 
allow you to control your GamePlayLoop timing events when the GamePlayLoop is operational, and to determine 
when it is latent (stopped or paused).

I will create a diagram that will show the class and object hierarchy for this InvinciBagel game, so that you can 
start to visualize how these classes that you are coding, and objects that you are creating, will all fit together. It is 
almost as if the coding of a game using Java 8 and JavaFX is in itself a (puzzle) game! Pretty cool stuff.



Chapter 7 ■ The Foundation of Game Play Loop: The JavaFX Pulse System and the Game Processing Architecture

146

Game Loop Processing: Harnessing a JavaFX Pulse
One of the primary questions, even among Oracle employees on the development teams, is which design approach 
to implementing a game timing loop engine should be used with classes that are contained in the JavaFX animation 
package (suite of classes). Indeed, this is precisely what this chapter is all about: using the javafx.animation package 
and its classes, which tap into the JavaFX pulse event timing engine. At the top level of the class hierarchy for the 
package, shown in Figure 7-1, the AnimationTimer and Animation classes provide the primary way to grab hold 
of these pulse events so that they do your real-time processing for you. In this section, you will see how they differ 
and what they have been designed for, including the kinds of games they should be used for. With the exception of 
Interpolator (motion curve application), KeyFrame (keyframe definition), and KeyValue (keyframe customization), 
all the classes in the javafx.animation package can be used to harness pulse events.

There are four basic approaches to implementing (accessing) the JavaFX pulse event timing system to create a 
game timing loop. These different approaches apply to the different types of game play, which I discussed previously 
(see Chapter 5). These game play types range from static games (board games, puzzle games) that need to use the 
pulse event engine to implement special effects (Transition subclasses) or custom animations (Timeline class, in 
conjunction with the KeyFrame class and possibly the KeyValue class) to highly dynamic games that need no-frills 
core access to the pulse event system at the full 60 times per second game play refresh rate (AnimationTimer class).

The highest level (visually, the lowest level, shown at the bottom left of the figure) is the use of prebuilt Transition 
subclasses in the javafx.animation package, such as the PathTransition class (or object), for the path of the game 
sprites or projectiles, or TranslateTransition, which translates (moves) things on the screen. All these Transition 
subclasses are coded for you; all you have to do is use them, which is why I am labeling this the highest functional level, 
in this particular discussion. With this high level of prebuilt functionality comes a memory and processing price; this is 
because, as you know from what you learned about Java inheritance (see Chapter 3), the PathTransition class contains 
all its methods, variables, and constants as well as those from all the classes above it in the class hierarchy.

This means that the entire PathTransition class, the Transition superclass, the Animation superclass, and 
the java.lang.Object masterclass are all contained within the memory footprint for this class and potentially the 
processing overhead, too, depending on how the object is implemented using the class. This is something to consider, 
as the lower down you go in the JavaFX animation package, the more expensive it is and the more control you give the 
code that has been written for you rather than custom code you are writing yourself.

The next-highest-level approach to coding custom game loops is to subclass the javafx.animation.Transition 
class to create your own customized Transition subclass. Both this and the previous level are what would be 
considered the top-level approaches and would be best applied to games that are static yet animated, or that have a 
less dynamic game play.

The middle-level solution is to use the Timeline class and its related KeyFrame and KeyValue classes, which are 
great for implementing the type of timeline-based animation that you see in drag-and-drop tools, such as Flash. As 
you will find, if you look online at JavaFX game engine discussions, this is a popular approach, as many animations are 
implemented by creating a single KeyFrame object and then using a TimeLine object to process the pulse events.

Figure 7-1.  Javafx.animation package subclass hierarchy; top level classes all coded from scratch with java.lang.Object



Chapter 7 ■ The Foundation of Game Play Loop: The JavaFX Pulse System and the Game Processing Architecture

147

Using the Timeline object approach allows you to specify a frame rate for processing your game loop, such 
as 30FPS. This would be appropriate for less dynamic games that can use a lower frame rate, because they do not 
involve a lot of interframe game processing, such as sprite movement, sprite animation, collision detection, or physics 
calculation. It is important to note that if you use a Timeline object (class), you will be defining variables in system 
memory for frame rate and at least one KeyFrame object reference (these are part of the Timeline class definition) as 
well as properties (variables) inherited from the Animation superclass, such as status, duration, delay, cycleCount, 
cycleDuration, autoReverse, currentRate, currentTime, and an onFinished (ActionEvent) ObjectProperty.

If you are familiar with creating animations, you will see that Timeline, along with at least one KeyFrame 
object and potentially a large number of KeyValue objects stored inside each KeyFrame object, is clearly designed 
for (optimized toward) creating timeline-based animation. Although this is a very powerful feature, it also means 
that using a Timeline and KeyFrame object for game loop processing will create close to a dozen areas of memory 
allocation that you may not even use in your game or that may not be designed (coded) optimally for your game 
design implementation.

Fortunately, there is another javafx.animation package timing-related class that carries none of this prebuilt class 
overhead, and so I term this the lowest-level approach, in which you have to build all your game processing logic 
yourself, inside one simple .handle() function, which accesses the JavaFX pulse engine on every pass it makes.

The low-level solution involves using the AnimationTimer class, so named because Java (Swing) already has a 
Timer class (javax.swing.Timer), as does Java’s utility class (java.util.Timer), which you could also use if you were an 
advanced enough programmer to deal with all the thread synchronization issues (and coding).

Because this is a beginner-level book, you will stick with looping your game using the Java 8 game engine 
(JavaFX 8). JavaFX has its own Timer class, in the javafx.animation package, called AnimationTimer so as not to 
cause confusion with Swing GUI Toolkit’s Timer class (which is still supported, for legacy code reasons). Many 
new developers are confused by the “Animation” part of this class name; do not assume that this Timer class is for 
Animation; it is, at its core, for timing purposes. This class is the lowest-level class in the javafx.animation package, 
in terms of accessing a JavaFX pulse timing system, and essentially serves just to access the pulse timing system. 
Absolutely everything else is stripped away.

The AnimationTimer class is therefore the class that will provide you with the least system overhead (memory 
used) to implement. At the full 60FPS speed, it will have the highest performance, assuming that all the code inside 
the .handle() method is well optimized. This is the class to use for a fast, high-dynamics game, such as an arcade game 
or a shooter game. For this reason, this is the class that you are going to use for your game, as you can continue to 
build a game engine framework and add features without running out of power.

You will use the lowest-level approach throughout this book just in case you are pushing your Java 8 game 
development to the very limit and are creating a highly dynamic, action-filled game. The JavaFX AnimationTimer 
superclass is perfect for this type of game application, as it processes its .handle() method on every single JavaFX pulse 
event. A pulse event is currently throttled at 60FPS, the standard frame rate (also called a refresh rate) for professional 
action games. You will subclass your GamePlayLoop.java class from the AnimationTimer superclass.

Interestingly, most modern iTV LCD, OLED, and LED display screen products also update at this exact refresh 
rate (60Hz), although newer displays will update at twice this rate (120Hz). Displays with a 240Hz refresh rate are 
also coming out, but because these 120Hz and 240Hz refresh rate displays use an even multiple (2× or 4×) of 60Hz, 
60FPS is a logical frame rate for developing games for today’s consumer electronics devices. Next, let’s implement the 
GamePlayLoop.java class in your game, which will subclass AnimationTimer to access pulses.

Creating a New Java Class: GamePlayLoop.java
Let’s use the AnimationTimer superclass from the javafx.animation package to create a custom GamePlayLoop class 
(and, eventually, object) and the required .handle() method to process your game play calculations. As Figure 7-2  
demonstrates, this is done in NetBeans 8.0 by right-clicking the invincibagel package folder in your Projects 
hierarchy pane. This will show NetBeans where you want the new Java class to be placed after it is created.



Chapter 7 ■ The Foundation of Game Play Loop: The JavaFX Pulse System and the Game Processing Architecture

148

Click New ➤ Java Class, which will open the New Java Class dialog, seen in Figure 7-3. Name the class 
GamePlayLoop, and leave the other defaults, which NetBeans set, based on your right-clicking the invincibagel 
package folder, and click Finish.

Figure 7-2.  Right-click the invincibagel package folder, and use the New ➤ Java Class menu sequence

Figure 7-3.  Name the new Java class GamePlayLoop, and let NetBeans set up the other fields



Chapter 7 ■ The Foundation of Game Play Loop: The JavaFX Pulse System and the Game Processing Architecture

149

NetBeans will create a bootstrap infrastructure for the GamePlayLoop.java class, with a package and a class 
declaration, as illustrated in Figure 7-4. Now, you add an extends keyword and AnimationTimer.

Mouse over the error, press Alt+Enter, and select Add import, as displayed in Figure 7-5.

Figure 7-4.  NetBeans creates a GamePlayLoop.java class and opens it in an editing tab in the IDE, for you to edit

Figure 7-5.  Subclass an AnimationTimer superclass with an extends keyword: press Alt+Enter, and select Add import



Chapter 7 ■ The Foundation of Game Play Loop: The JavaFX Pulse System and the Game Processing Architecture

150

Once NetBeans adds the import javafx.animation.AnimationTimer; programming statement, you will be 
ready to start creating this class, which will harness the JavaFX pulse engine for you and contain all your core game 
play loop processing, or calls to classes and methods that will perform the various types of processing, such as sprite 
movement, sprite animation, collision detection, physics simulation, game logic, audio processing, AI, scoreboard 
updates, and the like.

Creating the GamePlayLoop Class Structure: Implementing  
Your .handle( ) Method
Note that once the import statement has been written for you by NetBeans, yet another wavy red error highlight 
appears below the GamePlayLoop class name. Mouse over this to find out what the error message is relating to this 
newest error. As Figure 7-6 demonstrates, the .handle() method required for every AnimationTimer subclass has not 
yet been implemented (also called overridden) in this GamePlayLoop.java class, so you have to do this next. Maybe 
you can even get NetBeans to write the code for you; let’s take a look, and see!

As you can see at the bottom left of the error message pop-up, you can use the Alt+Enter keystroke combination 
to bring up a helper dialog, which will offer you several solutions, including one that will actually write the 
unimplemented .handle() method for you. Select Implement all abstract methods, shown in Figure 7-7, highlighted 
in blue. Once you double-click this option, NetBeans will write this method structure for you:
 
@Override
public void handle (long now) {
    throw new UnsupportedOperationException("Not supported yet.");
}
 

Figure 7-6.  Once you extend and import AnimationTimer, NetBeans throws an error: class does not implement  
the .handle()



Chapter 7 ■ The Foundation of Game Play Loop: The JavaFX Pulse System and the Game Processing Architecture

151

Note that the an @Override keyword precedes the public void handle method access keyword, return type 
keyword, and method name. This tells the Java compiler that your .handle() method is going to replace (override) 
AnimationTimer’s .handle() method, which is why the error indicates that you have to override abstract method 
.handle(long).

You certainly do not want your .handle() method to throw 60 UnsupportedOperationException() errors every 
single second of your game loop; however, you are going to leave this in there for now so that you can see what it does 
and also learn a bit more about the NetBeans error console.

As Figure 7-8 demonstrates, once you select the Implement all abstract methods option, the Java code is error 
free, and the basic package-import-class-method structure for the class is in place. Now, you should be able to create 
a GamePlayLoop object using this class, so let’s switch gears and do some programming in the InvinciBagel Java class, 
in which you create a GamePlayLoop object, and then profile the application to see what it does.

Figure 7-7.  Take a coding shortcut: press Alt+Enter to bring up a helper dialog, and select Implement all abstract methods

Figure 7-8.  NetBeans creates a public void handle(long now) bootstrap method with UnsupportedOperationException



Chapter 7 ■ The Foundation of Game Play Loop: The JavaFX Pulse System and the Game Processing Architecture

152

Creating a GamePlayLoop Object: Adding Pulse Control
Next, you need to declare, name, and instantiate a GamePlayLoop object named gamePlayLoop, using the new class 
you have created, in conjunction with the Java new keyword. Click the InvinciBagel.java tab, shown in Figure 7-9,  
and add a line of code below the Insets object declaration declaring the GamePlayLoop object, and name it 
gamePlayLoop, as follows:
 
GamePlayLoop gamePlayLoop;
 

Figure 7-9.  Click the InvinciBagel.java editing tab, and declare a GamePlayLoop object named gamePlayLoop at the top

As you can see, the code is error free, because NetBeans has found your GamePlayLoop class, which contains the 
overridden .handle() method and whose parent AnimationTimer class has a constructor method that can create an 
AnimationTimer (type of) object, using the GamePlayLoop class, extending AnimationTimer.

Now, you have to instantiate, or create, an instance in memory of the GamePlayLoop object, using the Java new 
keyword. This is done once, when the game is first started, which means that the instance needs to go in the  
.start() method.

You can do this after all the other Scene Graph Node objects and ActionEvent EventHandler objects have been 
created, using the following line of Java code (see also Figure 7-10):
 
gamePlayLoop = new GamePlayLoop();
 



Chapter 7 ■ The Foundation of Game Play Loop: The JavaFX Pulse System and the Game Processing Architecture

153

The logic of this code placement (at the end), is to set up all your static objects, in terms of creation and 
configuration, and then create the dynamic object at the end that will be processing the pulse-related logic.

Profiling the GamePlayLoop Object: Running NetBeans Profiler
Let’s run NetBeans Profiler, using a Profile ➤ Project Profile menu sequence, to determine if you can see the 
GamePlayLoop object that you have created in any of the profiling views. As Figure 7-11 demonstrates, the 
GamePlayLoop <init> call takes less than 2 milliseconds to set up the GamePlayLoop object in memory for your use, 
using very little overhead.

Figure 7-10.  At the end of the .start() method, instantiate the gamePlayLoop object by using the Java new keyword

Figure 7-11.  Use a Profile ➤ Profile Project menu sequence to start the Profiler and look at GamePlayLoop memory use



Chapter 7 ■ The Foundation of Game Play Loop: The JavaFX Pulse System and the Game Processing Architecture

154

Next, let’s study the threads analysis pane by scrolling down in the Profiler tab, shown at the top left of Figure 7-11. 
Find the Threads iconNetBeans will ask you if you want to start the threads analysis tool; once you agree, it will open 
the Threads tab (see Figure 7-12). 

In case you are wondering why you are not seeing any “blips” in the Thread objects shown in Figure 7-12, like you 
did when you clicked the Button objects in the previous chapter, you are correct in your assumption that you should 
see the JavaFX pulse engine timing events somewhere in this diagram Yet, all the thread bars are solid colored, so no 
action or pulse events are firing. I am going to have you use the NetBeans profiling utility as often as necessary to get 
you used to it, as many developers avoid this tool because they have not become comfortable with it.

This reason you do not see any events is that simply creating the GamePlayLoop object is not enough for the 
.handle() method inside it to grab hold of pulse events. Because it is a Timer object of sorts (an AnimationTimer, to be 
exact), like any timer, it needs to be started and stopped. Let’s create these methods for the GamePlayLoop next.

Controlling Your GamePlayLoop: .start( ) and .stop( )
Because the AnimationTimer superclass has the .start() and .stop() methods, which control when the class (object) 
will (using a .start() method call) and will not (using a .stop() method call) handle pulse events, you will simply pass 
these functions “up” to the AnimationTimer superclass, using the Java super keyword inside your method code. You 
will override the .start() method by using the Java @Override keyword and then pass the method call functionality up 
to the AnimationTimer superclass by using the following method programming structure:
 
@Override
public void start() {
    super.start();
}
 

Figure 7-12.  Click the Threads icon, seen at the left of the screen, and open the Threads tab; the same eleven threads  
are running



Chapter 7 ■ The Foundation of Game Play Loop: The JavaFX Pulse System and the Game Processing Architecture

155

The .stop() method structure will be overridden, and the method functionality, passed up to the superclass,  
in exactly the same fashion, using the following Java method programming structure:
 
@Override
public void stop() {
    super.stop();
}
 

As Figure 7-13 reveals, the GamePlayLoop class code is error free, and you can now write the code in the 
InvinciBagel class that starts the GamePlayLoop AnimationTimer object so that you can see pulse objects when you 
profile the application.

You will need to call this .start() method off the GamePlayLoop object named gamePlayLoop, using the new 
.start() method that you just created. Click the InvinciBagel.java tab, shown in Figure 7-14, and add a line of code 
below the GamePlayLoop object instantiation, calling the .start() method off the GamePlayLoop object named 
gamePlayLoop, as follows:
 
gamePlayLoop.start();
 

Figure 7-13.  Adding .start() and .stop() methods to the GamePlayLoop class and using the Java super keyword properly



Chapter 7 ■ The Foundation of Game Play Loop: The JavaFX Pulse System and the Game Processing Architecture

156

As you can see, the method call is in place, and the Java code is error free, as NetBeans can now find the .start() 
method in the GamePlayLoop class. Next, let’s use the Run ➤ Project sequence and test a pulse or two to determine 
what will happen now that the GamePlayLoop AnimationTimer subclass has been activated using the .start() method 
call. It will be interesting to see what throwing an error inside the .handle() method will do!

As Figure 7-15 demonstrates, you are getting repeated errors related to the content in the .handle() method.

Figure 7-14.  Call a .start() method off the gamePlayLoop object to start GamePlayLoop AnimationTimer



Chapter 7 ■ The Foundation of Game Play Loop: The JavaFX Pulse System and the Game Processing Architecture

157

Clearly, NetBeans 8.0 does not always write optimal code for the bootstrap methods that it codes for us, so let’s 
remove the throw new UnsupportedOperationException("Not implemented yet."); line of code (see Figure 7-13).  
In its place, you will insert a Java comment, which creates for now what is termed an empty method, shown in 
Figure 7-16. This should allow your game application to run. Although the game application window did launch 
with the thrown errors, the components of the Scene Graph were not written to the scene, and only a default white 
background color could be seen. You will observe this if you are following along in NetBeans.

Figure 7-15.  Click Run ➤ Project, and open the Output pane to see errors being generated in .handle()



Chapter 7 ■ The Foundation of Game Play Loop: The JavaFX Pulse System and the Game Processing Architecture

158

Now, let’s again use the Profile ➤ Profile Project (InvinciBagel) work process to see if anything new has 
appeared in the Live Results and Threads tabs in NetBeans. Click the Live Results icon, shown at the left of Figure 7-17, 
and start the Live Results Profiler in a tab. Note that the GamePlayLoop object is created, using <init>, and that an 
AnimationTimer is started, using the invincibagel.GamePlayLoop.start() entry in the Profiler output.

Figure 7-16.  Replace throw new UnsupportedOperationException(); with a comment, creating an empty method

Figure 7-17.  Use a Profile ➤ Profile Project menu sequence to start the Profiler, and look at GamePlayLoop memory use



Chapter 7 ■ The Foundation of Game Play Loop: The JavaFX Pulse System and the Game Processing Architecture

159

As you can see, it only takes a fraction of a millisecond to initialize each of the event queues, including the pulse 
event, and all four ActionEvent EventHandler event processing queues. This is in keeping with our maximum game 
optimization approach, using static Scene Graph nodes and not doing anything inside the GamePlayLoop that will 
use up any more system resources (memory and processing cycles) than are absolutely necessary to accomplish the 
various tasks that you will be building up as you create your action-filled arcade game.

Now that you have created and started your GamePlayLoop object, let’s take a look at the Threads Profiler!
Again, scroll down in the Profiler tab, shown at the top left of Figure 7-17, and find the Threads icon, which is 

displayed at the top- left of Figure 7-18. NetBeans will ask you if you want to start the threads analysis tool; once you 
agree, it will open the Threads tab. As Figure 7-18 illlustrates, the pulse engine is running, and several pulse events are 
shown for Thread-6. Interestingly, once JavaFX ascertains that the .handle() method is empty, the pulse event system 
does not continue to process this empty .handle() method and use unnecessary pulse events, indicating that the 
JavaFX pulse event system has some modicum of intelligence.

InvinciBagel Diagram: Package, Classes, and Objects
Next, let’s take a look at your current package, class, and object hierarchy, in the form of a diagram (see Figure 7-19),  
to see where you are in terms of creating your game engine. At the right of the diagram is the InvinciBagel class, 
which holds the Scene Graph, and Stage, Scene, and StackPane objects, which hold and display your splash screen UI 
design. At the left of the diagram is the GamePlayLoop class, which will contain the game processing logic calls and 
which gets declared and instantiated as a gamePlayLoop object in the InvinciBagel class but is not part of the Scene 
Graph hierarchy. Soon, you will start building the other functional areas displayed in the diagram so that you can 
control your sprites, detect collisions between the sprites, and simulate real-world forces of physics to make the game 
more realistic. You will see additions to this diagram as you progress through the book and create your Java 8 game.

Figure 7-18.  Click the Threads icon, seen at the left side of the screen, and open a Threads tab; AnimationTimer pulses 
can be observed on Thread-6



Chapter 7 ■ The Foundation of Game Play Loop: The JavaFX Pulse System and the Game Processing Architecture

160

Next, , before moving on to the GamePlayLoop AnimationTimer class and object, you are going to place some 
relatively simple Java code inside the currently empty .handle() method. You will do this to make sure that the pulse 
engine is processing and to see just how fast 60FPS is! (I have to admit, my curiosity is getting the best of me!).

Testing the GamePlayLoop: Animating the UI Container
Let’s move one of the existing Scene Graph nodes, for example, the HBox layout container parent (branch) node, 
which contains the four UI Button control elements, counterclockwise around the InvinciBagel splash screen. You will 
do this by using a simple if-else Java loop control programming structure to read (using a .get() method) and control 
(using a .set() method) Pos constants that control (in this case) the corner of the screen placement.

First, declare a Pos object named location at the top of the GamePlayLoop class. Then, click on the error message 
highlighting, press Alt+Enter, and select the Import Pos class option so that NetBeans will write your import 
statement for you. Next, inside the .handle() method, add an if-else conditional statement that evaluates this Pos 
object named location and compares it with the four Pos class constants that represent the four corners of the display 
screen, including BOTTOM_LEFT, BOTTOM_RIGHT, TOP_RIGHT, and TOP_LEFT. Your Java code should look like 
the following if-else conditional statement Java program structure (see also Figure 7-20):
 
Pos location;
@Override
public void handle(long now) {
  location = InvinciBagel.buttonContainer.getAlignment();
    if (location == Pos.BOTTOM_LEFT) {
        InvinciBagel.buttonContainer.setAlignment(Pos.BOTTOM_RIGHT);
    } else if (location == Pos.BOTTOM_RIGHT) {
        InvinciBagel.buttonContainer.setAlignment(Pos.TOP_RIGHT);
    } else if (location == Pos.TOP_RIGHT) {
        InvinciBagel.buttonContainer.setAlignment(Pos.TOP_LEFT);
    } else if (location == Pos.TOP_LEFT) {
        InvinciBagel.buttonContainer.setAlignment(Pos.BOTTOM_LEFT);
    }
}
 

Figure 7-19.  Current invincibagel package, class, and object hierarchy, after addition of the GamePlayLoop



Chapter 7 ■ The Foundation of Game Play Loop: The JavaFX Pulse System and the Game Processing Architecture

161

As the figure illustrates, your code is error free, and you are ready to use the Run ➤ Project work process and 
watch the 60FPS fireworks! Get ready for some blinding speed!

Next, let’s run the Live Results Profiler and Threads Profiler one last time to see if your pulse engine is cranking! 
Once you do this, you will know that you have successfully implemented your GamePlayLoop timing engine for your 
game, and you can then shift your focus to developing your game sprites, collision detection, physics, and logic!

Profiling the GamePlayLoop: Pulse Engine
Now, let’s use the Profile ➤ Profile Project (InvinciBagel) work process one final time to see if anything new has 
appeared in the Live Results and Threads tabs in NetBeans. Click the Live Results icon, shown at the left of Figure 7-21,  
and start the Live Results Profiler in a tab. Note that the GamePlayLoop object is created, using <init>; that an 
AnimationTimer is started, using the invincibagel.GamePlayLoop.start() entry in the Profiler output; and that there 
is an invincibagel.GamePlayLoop.handle(long) entry as well, which means that your game timing loop is being 
processed.

Figure 7-20.  Create an if-else loop that moves the HBox UI counterclockwise around the four corners of a splash screen



Chapter 7 ■ The Foundation of Game Play Loop: The JavaFX Pulse System and the Game Processing Architecture

162

As you can see, the Invocations column indicates how many pulses have accessed the .handle() method in 
the GamePlayLoop. It has only taken 40.1 milliseconds to process 3,532 pulses, so each pulse equates to 0.0114 
milliseconds, or 114 nanoseconds, using the new Java 8 timing resolution. Thus, your current code for testing the 
pulse, or at least the JavaFX pulse engine, is running efficiently.

Of course, you will need to remove this pulse engine testing code from the .handle() method before moving on to 
the next chapter, when you will start processing game assets and logic inside this method.

Next, let’s scroll down one last time in the Profiler tab, displayed at the top left of Figure 7-21, and click the 
Threads icon, which is shown at the top left of Figure 7-22, to open the Threads tab. As you can see, the pulse engine 
is running, and pulse events can be seen processing in Thread-6 as well as the JavaFX Application Thread.

Figure 7-21.  Run the Live Results Profiler



Chapter 7 ■ The Foundation of Game Play Loop: The JavaFX Pulse System and the Game Processing Architecture

163

Given the empty .handle() method processing from the GamePlayLoop object in Thread-6 (see Figure 7-18), you 
can assume that the pulse events in Thread-6 are from the GamePlayLoop AnimationTimer subclass. This means that 
the pulse events showing in the JavaFX Application Thread are showing where the .handle() method is accessing a 
buttonContainer HBox object contained in a stackPane Scene Graph root in the InvinciBagel class.

Now, you have a low-overhead, extremely fast game processing loop in place, and you can start to create your 
other (sprite, collision, physics, scoring, logic, and so on) game engines! One down, and a whole bunch to go!

Summary
In this seventh chapter, you wrote the first of the many game engines that you will be designing and coding over the 
course of this book, the GamePlayLoop game play timing class and object, which allow you to tap into the powerful 
JavaFX pulse event processing system.

First, you examined the different classes in the javafx.animation package and the different ways to use the 
Animation, Transition, Timeline, and AnimationTimer classes to harness the JavaFX pulse event processing system.

After that, you learned how to create a new Java class in NetBeans and then extended the AnimationTimer 
superclass to create the GamePlayLoop subclass, which will process your game play logic at 60FPS. You saw how 
to use NetBeans to help you write the majority of the code for this new subclass, including the package and class 
statement, the import statement, and the bootstrap .handle() method.

Figure 7-22.  Run the Threads Profiler



Chapter 7 ■ The Foundation of Game Play Loop: The JavaFX Pulse System and the Game Processing Architecture

164

Next, you went into the InvinciBagel.java class and declared and named a new gamePlayLoop GamePlayLoop 
object, using the new class you created. Then, you tested the code and profiled it to see if any new entries appeared in 
the Threads Live Results tabs. You also tested the .handle() method that NetBeans coded for you and changed it to an 
empty method to get rid of repeated errors thrown by the pulse event engine. Next, you implemented the .start() and 
.stop() methods, using the Java super keyword, so that you can control your use of the pulse engine if you want to add 
in additional Java statements, such as saving the game state, later on, when the pulse engine is started and stopped. 
You again tested and profiled the application to observe your progress. Finally, you placed some test code in the 
.handle() method so that you could again test and profile the application to make sure that the pulse event engine was 
quickly and consistently processing the code that you placed in the .handle() method.

In the next chapter, you are going to take a look at how to create and implement abstract classes which will later 
be used to create your game sprites. Once we have that in place, it will allow us to display them, animate them, and 
process their movement on the display screen inside your new gamePlayLoop engine in real time in later chapters.



165

Chapter 8

Creating Your Actor Engine: Design 
the Characters for Your Game and 
Define Their Capabilities

Now that we have created the game play timing loop in Chapter 7, let’s get into some scratch coding here in Chapter 8, 
and create the public abstract class framework that we can use to create the different types of sprites that we will be 
using in our InvinciBagel game. This essentially equates to your “Actor Engine” for your game, as you’ll define and 
design the various types of game components that your game will include as actors, and these two classes will be 
used to create all of the other classes that will be used to create the objects (components) that are in your game. These 
would include things such as the InvinciBagel himself (the Bagel class), his adversaries (the Enemy class), all the 
treasure he looks for during the game (the Treasure class), things that are shot at him (the Projectile class), things that 
he navigates over and around (the Prop classes), all providing game objectives that InvinciBagel must try and achieve.

During this chapter, we will create two public abstract class constructs. The first, the Actor class, will be the 
superclass of the other, the Hero subclass. These two abstract classes can be used during the book to create both our 
fixed sprites, which are sprites that do not move (obstacles and treasure), using the Actor superclass, and sprites that 
move around the screen, using a Hero subclass of the Actor class. The Hero class will provide additional methods and 
variables for motion sprites (the superhero, and his arch enemies in the multi-player version of the game). These will 
track things like collision and physics characteristics, as well as Actor animation (motion states). Having lots of motion 
on the screen will make game play more interesting, and allow us to make the game more challenging for the player.

Creating the Actor Engine up front will give you experience in creating public abstract classes. As you recall 
from Chapter 3, public abstract classes are used to create other class (and object) structures in Java, but are not used 
directly in the actual game programming logic. This is the reason I am terming creating these two “blueprint” classes 
creating the Actor Engine, as we are essentially defining the lowest level of the game, the “actors” during this chapter.

As we progress in the design of the game during the book, we’ll create the Treasure subclass using the Actor 
(fixed sprite) class, for “fixed” treasures that will get picked up by InvinciBagel during the game play. We’ll also create 
the Prop class using this Actor superclass, for the obstacles in the game that InvinciBagel has to navigate up, over, 
under, around, or through, successfully. We’ll also create sprites that move around on the screen using the Hero 
subclass of the Actor superclass, such as the Bagel class. We’ll eventually create an Enemy class and Projectile class.

Besides designing the two key public abstract Actor classes during this chapter, we will also define our main 
InvinciBagel character’s digital image states using less than ten PNG32 digital image assets. We will do this during 
this chapter so that this is in place before we’ll want to use these classes and sprite image states in the next chapter 
of the book, when we’ll look at event handling, so that the player can control where the InvinciBagel goes around 
the screen and what states (stand, run, jump, leap, fly, land, miss, crouch, etc.) he is using to navigate the obstacles 
in his world.



Chapter 8 ■ Creating Your Actor Engine: Design the Characters for Your Game and Define Their Capabilities

166

Game Actor Design: Defining the Attributes Up Front
The foundation of any popular game is the characters – the Hero and his Arch Enemies –  as well as the game’s 
obstacles, armory (projectiles), and treasures. Each of these “actors” need to have attributes, defined using variables in 
Java, that keep track of what is going on with each of these actors during game play in real time, using areas of system 
memory. I am going to try to do this right the first time, in the same sense that you want to define a database record 
structure to hold the data you will need out into the future correctly the first time that you define your database. 
This can be a challenging stage of your game development, as you need to look out into the future and ascertain what 
features you want your game and its actors to have, and then put those into your actor’s capabilities (variables and 
methods) up front. Figure 8-1 gives you an idea of some of the two dozen attributes that we will be installing for the 
game actors over the course of the chapter as we create over a hundred lines of code to implement our actor engine 
for the game.

Figure 8-1.  Design a public abstract Actor superclass and a public abstract Hero subclass to use to create sprite classes

As you can see, I’m trying to get a balanced number of variables; in this case it’s about a dozen each, between the 
fixed sprite Actor class and the motion sprite Hero class. As you know from Chapter 3, because the Hero subclass we’ll 
be creating extends the Actor superclass, it actually has two dozen attributes or characteristics, as it assumes all of the 
superclass variables, in addition to having its own. A design challenge will be to put as many of these attributes in the 
Actor superclass as possible, so that fixed sprites have as much flexibility as possible. A good example of this is that in 
the first rounds of design I had the pivot point (pX and pY variables) in the Hero class, but then I thought about it and 
thought “what if I want to rotate fixed sprites (obstacles and treasure) later on for more level design efficiency” so I 
placed these variables in the Actor superclass, giving this pivot (rotate) capability to both fixed and motion sprites.

Another variable that I had in the Hero class that I moved “up” into the Actor superclass is the List<Image> 
property. I thought to myself during this design process, “What if for some reason I want my fixed sprites to have 
more than one image state?” I also upgraded the Actor class from using a simple Rectangle Shape object to using a 
SVGPath Shape subclass, so that I can define collision geometry (which is what a spriteBounds variable is) using 
more complex shapes than a Rectangle to support advanced obstacle constructs in later levels of the game that are 
more complex.

Also note that I have the spriteFrame ImageView, which holds the sprite image assets, in the Actor class, as 
both fixed and motion sprites use images, so I can put the ImageView into the Actor superclass. I use the imageStates 
List<Image> in the Actor superclass, so that fixed sprites have access to different “visual states” just like the motion 
sprites do. As you may have guessed, List<Image> is a Java List object filled with JavaFX Image objects. The iX and iY 
variables in the Actor class are image (or initial) placement X and Y locations, which place a fixed sprite on your game 
level layout, but will also hold current sprite position for motion sprites, when assumed by the Hero subclass. Other 
variables hold Boolean states (alive/dead, etc.) and lifespan, damage, offset, collision, or physics data we’ll need later.



Chapter 8 ■ Creating Your Actor Engine: Design the Characters for Your Game and Define Their Capabilities

167

The InvinciBagel Sprite Images: Visual Action States
Besides designing the optimal Actor Engine classes to use to implement characters, treasure, and obstacles in a game, 
the other important thing to optimize is the main character for the game, and the different states of animation that 
a character will move between, based on the movement of the character by the player. From a memory optimization 
standpoint, the fewer image frames that we can accomplish all of this in, the better. As you can see in Figure 8-2, I will 
provide all of the InvinciBagel character motion states using only nine different sprite image assets; some of these can 
be used in more than one way: for instance, by using the pX and pY variables, which will allow us to rotate these sprite 
frames around any pivot point that we choose. An example of this is center pivot point placement for the FLY state, 
seen in the middle of Figure 8-2, which gives us a take-off (fly up), flying, and landing (fly down) simply by rotating this 
image 50 degrees clockwise (to a horizontal orientation) to 100 degrees clockwise (tilting to fly down, instead of up).

Figure 8-2.  The nine primary character motion sprites for the InvinciBagel character that will be used during the game

Even though we are providing offset and pivot point capabilities in our sprite Actor Engine abstract classes, that 
doesn’t mean that we should not make sure that our motion sprite image states are well synchronized with each 
other. This is so that we do not routinely have to use these pivot or offset capabilities to get good visual results. This is 
what I term sprite registration, and involves positioning the different sprite states optimally relative to each other.

Some examples of sprite registration between sprite frames that will be used with each other can be seen in 
Figure 8-3. For instance, the starting to run imageStates[1] sprite should start its run cycle with the same foot position 
as a standing (or waiting) imageStates[0] sprite, as seen on the left side of Figure 8-3. Also, the running imageStates[2] 
sprite should keep its body portion as still as possible, relative to the imageStates[1] starting to run sprite. A preparing 
to land imageStates[6] sprite should change foot positioning realistically relative to the landed imageStates[7] sprite.

Figure 8-3.  Sprite registration (alignment) to make sure the transition motion is smooth

What you want to do to optimize sprite registration, relative to all of the other sprites, is to put all of your digital 
image sprites into the same square 1:1 aspect ratio resolution image format, and place them all in layers in a digital 
image compositing software package, such as GIMP or Photoshop. Then use the move tool and nudge (single pixel 
movements using arrow keys on keyboard) each sprite into position, relative to whichever two layers you have 
visibility (toggled on/off using the eye icon on the left of each layer) turned on for. The result is shown in Figure 8-3.



Chapter 8 ■ Creating Your Actor Engine: Design the Characters for Your Game and Define Their Capabilities

168

Creating an Actor Superclass: Fixed Actor Attributes
Let’s get down to scratch coding our public abstract Actor class that will be the foundation for all sprites we will be 
creating for the game during this book. I won’t revisit how to create a new class in NetBeans (see Figure 7-2) as you’ve 
already learned that in Chapter 7, so create an Actor.java class, and declare it using public abstract class Actor and 
place the first five lines of code at the top of the class, declaring a List<Image> named imageStates, and creating a 
new ArrayList<> object, as well as an ImageView named spriteFrame, an SVGPath named spriteBound, and double 
variables iX and iY. Make all of these protected, so that any subclasses can access them, as is shown in Figure 8-4. 
You’ll need to use the Alt-Enter work process for the red error underlining relating to the import statements you will 
need for the List class (object), ArrayList class (object), Image class (object), ImageView class (object), and SVGPath 
class (object). Once NetBeans writes these for you, the dozen or so lines of code declaring the List<Image> ArrayList, 
spriteFrame ImageView, SVGPath collision Shape object and double variables containing the sprite’s X and Y location 
should look like the following Java class structure:
 
package invincibagel;
import java.util.ArrayList;
import java.util.List;
import javafx.scene.image.Image;
import javafx.scene.image.ImageView;
import javafx.scene.shape.SVGPath;
public abstract class Actor {
    protected List<Image> imageStates = new ArrayList<>();
    protected ImageView spriteFrame;
    protected SVGPath spriteBound;
    protected double iX;
    protected double iY;
} 

Figure 8-4.  Create a New Class in NetBeans, name it public abstract class Actor, and add in the primary Actor variables



Chapter 8 ■ Creating Your Actor Engine: Design the Characters for Your Game and Define Their Capabilities

169

These five variables or attributes hold the “core” properties for any sprite; the spriteFrame ImageView and the 
List<Image> ArrayList of Image assets (one to many visible states) that it holds (this defines what the sprite looks 
like), the spriteBound collision Shape area (defines what is deemed to have intersected with the sprite), and the X, Y 
location of the sprite on the display screen.

These are also the five variables that will be configured using your Actor() constructor method, as well as your 
Hero() constructor method later on. First we will create the Actor() constructor; after that, we will add in all the other 
variables that we will need every Actor subclass to include.

After we create all of the other variables for the Actor class, which are not set using the Actor() constructor method, 
we will initialize these to hold their default values inside of the constructor method, and finally we will have NetBeans 
create .get() and .set() methods for our variables using an automatic coding function which you’ll really like.

The parameters that we will code to pass into this Actor() constructor will include the String object named 
SVGdata, which will contain a string of text defining the SVGPath collision shape, as well as the sprite X, Y location, and 
a comma delimited List of Image objects. The SVGPath class has a .setContent() method that can read or “parse” raw 
SVG data strings, and so we will use this to turn the String SVGdata variable into our SVGPath collision Shape object.

We will not be implementing the collision code, or SVGPath Shape object during this chapter, or the next for 
that matter, but we need to put them in place, so we can use them later during Chapter 16 on collision detection 
processing and how to create collision polygon data using the GIMP and PhysEd (PhysicsEditor) software packages.

The Actor constructor method that we will be creating will follow the following constructor method format:
 
public Actor(String SVGdata, double xLocation, double yLocation, Image... spriteCels)
 

Later on if we need to create more complex Actor() constructor methods, we can “overload” this method by 
adding other more advanced parameters, such as pivot point pX and pY, for instance, or the isFlipH or isFlipV boolean 
values, to allow us to mirror fixed sprite imagery horizontally or vertically. Your Java code will look like the following:
 
public Actor(String SVGdata, double xLocation, double yLocation, Image... spriteCels) {
    spriteBound = new SVGPath();
    spriteBound.setContent(SVGdata);
    spriteFrame = new ImageView(spriteCels[0]);
    imageStates.addAll(Arrays.asList(spriteCels));
    iX = xLocation;
    iY = yLocation;
}
 

Notice that the ImageView constructor, invoked using the Java new keyword, passes the first frame (Image) of 
the List<Image> ArrayList data you are passing in using a comma delimited list by using a spriteCels[0] annotation.  
If you were to create an overloaded method that allowed you to set up the pivot point data, it might look like this:
 
public Actor(String SVG, double xLoc, double yLoc, double xPivot, double yPivot, Image... Cels){
    spriteBound = new SVGPath();
    spriteBound.setContent(SVG);
    spriteFrame = new ImageView(Cels[0]);
    imageStates.addAll(Arrays.asList(Cels));
    iX = xLoc;
    iY = yLoc;
    pX = xPivot;
    pY = yPivot;
}
 

As you can see in Figure 8-5, you will need to use the Alt-Enter work process, and have NetBeans code your 
import statements for the Arrays class for you. Once you do this, your code will be error free.



Chapter 8 ■ Creating Your Actor Engine: Design the Characters for Your Game and Define Their Capabilities

170

Next, let’s code the other crucial method for this class, the abstract .update() method, and then we can add the 
rest of the Actor class fixed sprite attributes that we will need. After that, we can initialize the additional variables 
inside of the Actor() constructor method. Finally we will learn how to create “getter and setter” methods for the Actor 
class, before we move on to use this new custom Actor superclass to create our other Hero motion sprites subclass.

Creating an .update() Method: Connect to GamePlayLoop Engine
The most important method for any sprite class, other than the constructor method that births it into existence, is the 
.update() method. The .update() method will contain the Java 8 code that tells the sprite what to do on every pulse 
of the GamePlayLoop. For this reason, this .update() method will serve to “wire” the Actor sprite subclasses created 
using our Actor superclass and Hero subclass into the GamePlayLoop timing engine that we created in Chapter 7.

Because we need to have an .update() method as part of every Actor object (actor sprite) in our game, we’ll need 
to include an “empty” (for now) abstract .update() method in the Actor superclass we are coding currently.

As you learned in Chapter 3, this public abstract method is left empty, or more accurately, unimplemented, 
in the Actor superclass, but will need to be (that is, will be required to be) implemented (or alternatively, to again 
be declared as an abstract method) in any Actor subclass, including the Hero subclass we are going to be coding 
later on.

The method is declared public abstract void, as it does not return any values (it is simply executed on each 
JavaFX pulse event) and does not include the {...} curly braces, as it does not (yet) have any body of code inside of it! 
The single line of code that declares the public abstract (empty or unimplemented) method should look like this:
 
public abstract void update();
 

As you can see in Figure 8-6, the method is very simple to implement, and once you add this new method under 
your Actor() constructor method, your Java 8 code is again error free, and you will be ready to add more code.

Figure 8-5.  Create a constructor method to set up fixed Actor sprite subclasses with collision shape, Image list, location



Chapter 8 ■ Creating Your Actor Engine: Design the Characters for Your Game and Define Their Capabilities

171

Next, we will add the rest of the attributes (or variables) for our fixed sprite Actor superclass, which requires us to 
think ahead, regarding what we want to be able to accomplish with our sprites during the creation of this game.

Adding Sprite Control and Definition Variables to an Actor Class
The next part of the process is easy, from a coding standpoint, as we will be declaring some more variables at the top 
of the Actor class. From a design standpoint, this is more difficult, however, as it requires that we think ahead as far as 
possible, and speculate about what variable data we will need for our sprite actors, both fixed and motion sprites, to 
be able to do everything that we want to during the construction of this game, as well as during its game play.

The first additional variables I am going to declare after the iX and iY variables are the pX and pY pivot point 
variables. I had originally placed these in the Hero subclass, which we’re going to create next, once we are done with 
the creation of this Actor superclass. The reason I moved these “up” to the Actor superclass level is because I wanted 
to have the flexibility of rotating fixed sprites (treasure and obstacles) as well as motion sprites. This gives me more 
power and flexibility where level and scene design purposes are concerned. These pivot point X and Y variables would 
be declared as protected double data variables, and would be done using the following two lines of Java code:
 
protected double pX;
protected double pY;
 

Next, we need to add some boolean “flags” to our Actor class (object) definition. These will indicate certain 
things about the sprite object in question, such as if it is Alive (for fixed sprites this will always be false) or Dead, or 
if it is Fixed (for fixed sprites this will always be true, and true for motion sprites that are not in motion) or Moving, 
or Bonus objects, indicating additional points (or lifespan) for their capture (collision), or Valuable, indicating 
additional powers (or lifespan) for their acquisition (collision). Finally, I’m defining a Flip Horizontal and Flip 
Vertical flag, to give me four times the flexibility with (fixed or motion) sprite image assets than I would have without 
these flags in place.

Figure 8-6.  Add an Arrays import statement to support constructor method; add a public abstract .update() method



Chapter 8 ■ Creating Your Actor Engine: Design the Characters for Your Game and Define Their Capabilities

172

Since JavaFX can flip or mirror images on the X or Y axis, this means I can reverse a sprite direction (left or right) 
using FlipV or orientation (up or down) using FlipH.

These six additional Boolean flag fixed (Actor) sprite attributes will be declared by using protected boolean data 
variables, using the following six lines of Java 8 code, as is shown (error free, no less) in Figure 8-7:
 
protected boolean isAlive;
protected boolean isFixed;
protected boolean isBonus;
protected boolean hasValu;
protected boolean isFlipV;
protected boolean isFlipH; 

Figure 8-7.  Add the rest of the variables needed to support rotation (pivot point), and sprite definition states

Next, we’ll initialize these variables, inside the Actor() constructor method. If you wanted to pass settings to 
any of these Boolean flags into the Actor() constructor method using the parameter list, remember that you’re 
able to create as many overloaded constructor method formats as you like, as long as the parameter list for each 
one is 100% unique. We may well do this later on during the book, if, for instance, we need a constructor method 
that pivots our fixed sprites for layout design purposes, for instance, or one that flips it around a given axis, for 
instance, for the same exact purpose, or one that does both of these, which would give us a nine parameter Actor() 
constructor method call.



Chapter 8 ■ Creating Your Actor Engine: Design the Characters for Your Game and Define Their Capabilities

173

Initializing Sprite Control and Definition Variables in an Actor Constructor Method
For now we are going to initialize our pivot point pX and pY to 0 (the upper left corner origin) and all of our Boolean 
flags to a value of false except for the isFixed variable, which for a fixed sprite will always be set to a value of true. We will 
do this using the following eight lines of Java code inside of the current Actor() constructor method and underneath 
the initial four lines of code in the method that deal with configuring the Actor object using the method parameters:
 
pX = 0;
pY = 0;
isAlive = false;
isFixed = true;
isBonus = false;
hasValu = false;
isFlipV = false;
isFlipH = false;
 

We could also do this using compound initialization statements. This would reduce the code to three lines:
 
px = pY = 0;
isFixed = true;
isAlive = isBonus = hasValu = isFlipV = isFlipH = false;
 

As you can see in Figure 8-8 we have now coded nearly three dozen lines of error-free Java 8 code, and we are 
ready to create the rest of the .get() and .set() methods that will make up the public abstract Actor superclass.

Figure 8-8.  Add initialization values to the eight new fixed sprite pivot and state definition variables you just declared



Chapter 8 ■ Creating Your Actor Engine: Design the Characters for Your Game and Define Their Capabilities

174

The remaining methods in the Actor class will be what are commonly termed “getter” and “setter" methods 
because these methods provide access to the data variables inside of the class. Using getter and setter methods is the 
correct way to do things, because doing this implements the Java concept (and advantage) of encapsulation, which 
allows Java objects to be self-contained vessels of object attributes (variable data values) and behaviors (methods).

Accessing Actor Variables: Creating Getter and Setter Methods
One of the really powerful (and time saving, as you are about to see) features of NetBeans is that it will write all of your 
.get() and .set() methods for each of your object and data variables for you automatically. We will be using this handy 
feature during this book whenever possible, so you can get used to using this time saving feature to write lots of Java 
8 code for you, accelerating your Java 8 game code production output! You access this auto-coding feature by using 
the Source menu, and its Insert Code submenu, as can be seen in Figure 8-9. As you can see, there is also a keyboard 
short-cut (Alt-Insert); using either of these will bring up a floating Generate menu, which is shown highlighted in red 
in the bottom center of Figure 8-9.

Figure 8-9.  Use Source ➤ Insert Code menu (or Alt+Insert) to bring up a Generate Getter and Setter dialog and select all

Click on the Getter and Setter option, shown highlighted in the middle of the Generate floating menu, and a 
Generate Getters and Setters dialog will appear, which is shown on the right side of Figure 8-9. Make sure that the 
hierarchy is open, and that the check box next to Actor is selected, which will automatically select all of the variables 
inside of the class, in this case, a dozen variables also shown selected on the right hand side of Figure 8-9.

Once all of these are selected, click on the Generate button at the bottom of the dialog and generate the 
24 .get() and .set() methods that you would have to type in manually if NetBeans 8.0 did not offer this handy 
IDE feature.



Chapter 8 ■ Creating Your Actor Engine: Design the Characters for Your Game and Define Their Capabilities

175

These .get() and .set() methods, which are generated by the NetBeans 8.0 Source ➤ Insert Code ➤ Generate 
➤ Getters and Setters menu sequence, will give you the following twenty-four Java method code constructs, which 
equates to two methods for each of the twelve variables that we defined within the public abstract Actor class:
 
public List<Image> getImageStates() {
    return imageStates;
}
 
public void setImageStates(List<Image> imageStates) {
    this.imageStates = imageStates;
}
 
public ImageView getSpriteFrame() {
    return spriteFrame;
}
 
public void setSpriteFrame(ImageView spriteFrame) {
    this.spriteFrame = spriteFrame;
}
 
public SVGPath getSpriteBound() {
    return spriteBound;
}
 
public void setSpriteBound(SVGPath spriteBound) {
    this.spriteBound = spriteBound;
}
 
public double getiX() {
    return iX;
}
 
public void setiX(double iX) {
    this.iX = iX;
}
 
public double getiY() {
    return iY;
}
 
public void setiY(double iY) {
    this.iY = iY;
}
 
public double getpX() {
    return pX;
}
 
public void setpX(double pX) {
    this.pX = pX;
}
 
public double getpY() {
    return pY;
}
 



Chapter 8 ■ Creating Your Actor Engine: Design the Characters for Your Game and Define Their Capabilities

176

public void setpY(double pY) {
    this.pY = pY;
}
 
public boolean isAlive() {
    return isAlive;
}
 
public void setIsAlive(boolean isAlive) {
    this.isAlive = isAlive;
}
 
public boolean isFixed() {
    return isFixed;
}
 
public void setIsFixed(boolean isFixed) {
    this.isFixed = isFixed;
}
 
public boolean isBonus() {
    return isBonus;
}
 
public void setIsBonus(boolean isBonus) {
    this.isBonus = isBonus;
}
 
public boolean hasValu() {
    return hasValu;
}
 
public void setHasValu(boolean hasValu) {
    this.hasValu = hasValu;
}
 
public boolean isFlipV() {
    return isFlipV;
}
 
public void setIsFlipV(boolean isFlipV) {
    this.isFlipV = isFlipV;
}
 
public boolean isFlipH() {
    return isFlipH;
}
 
public void setIsFlipH(boo lean isFlipH) {
    this.isFlipH = isFlipH;
}
 



Chapter 8 ■ Creating Your Actor Engine: Design the Characters for Your Game and Define Their Capabilities

177

Notice that in addition to the .get() and .set() methods generated, for the boolean variables there is also an 
additional .is() method that is generated instead of the .get() method. Since I already named the boolean flags using 
the “is” preface, I am going to remove the second “Is” so that these “double is” methods are more readable. I am also 
going to do this to the hasValu method, so that inquiring as to the boolean setting in the method call is more natural, 
for instance, .hasValu(), isFlipV(), isBonus(), isFixed() or .isFlipH() for instance. I suggest that you perform the same 
edits with your code, for readability purposes.

Now we are ready to create our Hero subclass, which will add another eleven attributes to the thirteen we have 
created in the Actor class, bringing the total to an even two dozen. These additional eleven attributes held in the 
Hero class will be used with movable sprites that can move around the screen (I like to call these motion sprites). Our 
InvinciBagel character will be the primary Hero Actor object in the single-player version of our game, and for a future 
multi-player version, this would include the InvinciBagel Hero Actor object and the Enemy Hero Actor object as well.

Creating a Hero Superclass: Motion Actor Attributes
Let’s create our public abstract Hero class next! This class will be the foundation for motion sprites that we will be 
creating for the game during this book. Create your Hero.java class in NetBeans, and declare it as public abstract 
class Hero extends Actor. Since we have done a lot of the “heavy lifting” in the Actor class, you will not have to 
create an ImageView to hold the sprite Image assets, or the List<Image> ArrayList object loaded with a List object 
filled with Image objects, or an SVGPath Shape object to hold the collision shape SVG polyline (or polygon) path data.

Since we don’t have to declare any primary attributes, as those are inherited from the Actor superclass, the first 
thing we are going to do is to create a Hero() constructor method. This will contain your collision Shape data in a 
String object, the sprite X, Y location, and the Image objects that will be loaded into the List<Image> ArrayList object. 
After we create a basic Hero() constructor method, we will finish figuring out the other attributes (or variables) that 
your motion sprites will need to contain, just like we did when we designed the Actor superclass.

Remember that you already have the spriteBound SVGPath Shape object, imageStates List<Image> ArrayList 
object, SpriteFrames Image object and iX and iY variables constructed in the Actor class using Actor() method. 
We will also need these to be in place in order to be able to code our Hero() constructor method. Since these are all 
already in place, due to the java extends keyword in the Hero class declaration, all we have to do is use the super() 
constructor method call and pass these variables from the Hero() constructor up to the Actor() constructor. This will 
automatically pass these variables up into the Hero class for our use, using the Java super keyword.

Therefore, we have everything we need to be able to code our core Hero() constructor method, so let’s get into 
that now. The Hero() constructor will take in the same number of complex parameters as the Actor() constructor. 
These include your collision shape data, contained in the String object named SVGdata, an “initial placement” X and 
Y location for the sprite, and a comma separated list of the Image objects (cels or frames) for the sprite, which I named 
Image... spriteCels. This Image... designation, which needs to be at the end of your parameter list, because it is “open 
ended,” means that the parameter list will pass in one or more Image objects. Your code will look like the following:
 
public void Hero(String SVGdata, double xLocation, double yLocation, Image... spriteCels) {
    super(SVGdata, xLocation, yLocation, spriteCels);
}
 

By using super() to pass your core constructor work up to the Actor superclass Actor() constructor method, your 
code that you wrote earlier, inside of the Actor() constructor, will create the spriteBound SVGPath Shape object using 
the Java new keyword and the SVGPath Shape subclass, and will uses a SVGPath class .setContent() method in order 
to load the SVGPath Shape object with your collision shape to be used with the sprite image states. The iX and iY 
initial locations are set, and the imageStates List<Image> array is loaded with sprite Image objects, passed in from 
the end of the parameter list.



Chapter 8 ■ Creating Your Actor Engine: Design the Characters for Your Game and Define Their Capabilities

178

It’s important to note that since we’re setting this up in this way that the Hero class has access to everything 
that the Actor class has (thirteen powerful attributes). Actually, it may be more “salient” to look at this the other 
way around, that the Actor (fixed sprites) class has every capability that the Hero (motion sprites) class. This 
power should be leveraged for level design wow factor, including multi-image states (List<Image> Array), custom 
SVGPath collision shape capability, custom pivot point placements, and the ability to flip (mirror) sprite imagery 
around either the X axis (FlipV = true) or the Y axis (FlipH = true) or both axes (FlipH = FlipV = true). Putting these 
capabilities into place in your Actor Engine (Actor and Hero abstract superclasses) is only the first step; using them 
brilliantly for your game’s design and programming, as time goes on and you continue to build and refine the game, 
is the ultimate goal for putting this foundation into place during this chapter. As you can see in Figure 8-10 our basic 
(core) constructor code is error free.

Figure 8-10.  Create a public abstract class Hero extends Actor and add a constructor method and a super() constructor

Adding Update and Collision Methods: .update() and .collide()
Now that we have a basic constructor method, which we’ll be adding to a bit later, let’s add the required abstract 
.update() method, as well as a .collide() method, as motion sprites are moving, and therefore can collide with things! 
First let’s add in the public abstract void .update(); method, as it is required by our Actor superclass. Doing this 
essentially passes down (or up, if you prefer) the implementation requirement for this .update() method, from Actor 
superclass to Hero subclass, and on to any future subclasses of Hero (which will make Hero into a superclass, and 
more reflective of its name). Future non-abstract (functioning) classes will implement this .update() method, which 
will be utilized to do all the heavy lifting for the game programming logic. As you can see in Figure 8-11, motion sprites 
(Hero subclasses) will also need to have a collision detection method, which I will call .collide(), as that is a shorter 
name, and that, at least for now, will remain unimplemented except for returning a boolean false (no collision here, 
Boss!) boolean data value. Your Java code for the .collide() method structure will take an Actor object as its parameter, 
since that is what your Hero object will be colliding with, and should look like the following:
 
public boolean collide(Actor object) {
    return false;
}
 



Chapter 8 ■ Creating Your Actor Engine: Design the Characters for Your Game and Define Their Capabilities

179

Next, let’s add another eleven variables into this Hero class. These will hold data values that apply to motion 
sprites, which have to deal with colliding with things, and obey the laws of physics. We will also need things such as a 
lifespan variable, and one that holds the accumulation of damage (points), which may be incurred if enemies shoot 
at each other. We’ll add protected variables such as X and Y velocity, X and Y offset (for fine-tuning positioning 
of things relative to a sprite), and collision shape rotation and scaling factors, and finally, friction, gravity, and 
bounce factors.

Adding Sprite Control and Definition Variables to the Hero Class
The next thing that we need to do is to make sure that all of the variables that we will need to hold data for motion 
sprites are defined at the top of the Hero class, as seen in Figure 8-12. This information will be used by NetBeans to 
create getter and setter methods for the Hero class. The Java code should look like this:
 
protected double vX;
protected double vY;
protected double lifeSpan;
protected double damage;
protected double offsetX;
protected double offsetY;
protected double boundScale;
protected double boundRot;
protected double friction;
protected double gravity;
protected double bounce;
 

Figure 8-11.  Add the @Override public abstract void .update() and public boolean .collide(Actor object) methods



Chapter 8 ■ Creating Your Actor Engine: Design the Characters for Your Game and Define Their Capabilities

180

Before we add all 22 of your getter and setter methods, which would be 11 .get() and 11 .set() methods, to match 
our new Hero class variables, let’s go back and finish our Hero() constructor method, and initialize these eleven 
variables that we just added at the top of the Hero class.

Initializing the Sprite Control and Definition Variables in the Hero Constructor
Let’s give our Hero Actor objects (motion sprites) a lifespan of 1000 units, and set the other variables to zero, which 
you can see that I have done using compound initialization statements to save eight lines of code. As you can see in 
Figure 8-13, the code is error free, and the Java programming statements should take the following format:
 
lifespan = 1000;
vX = vY = damage = offsetX = offsetY = 0;
boundScale = boundRot = friction = gravity = bounce = 0;
 

Figure 8-12.  Add eleven variables at the top of Hero class defining velocity, lifespan, damage, physics, collision



Chapter 8 ■ Creating Your Actor Engine: Design the Characters for Your Game and Define Their Capabilities

181

Before we generate our getter and setter methods, let’s take a look at how we can use a combination of compound 
variable declaration statements and the knowledge of what default variable type values Java will set for our variables 
if we do not explicitly specify them to reduce the amount of code that it takes to write the entire Hero class from its 25 
lines of code (or 33 if we didn’t use compound variable initialization statements) to 14 lines of code.

If you don’t count lines of code with one curly brace on them (three) we are talking less than a dozen lines of Java 
statements, including package, class and import declarations, to code this entire public abstract class. This is pretty 
impressive, given how much motion sprite power and capabilities the core class gives us. Of course, after we add the 
22 getter and setter methods, which are 3 lines of code each, we will have about 80 lines of total code, sans spacing.  
It is important to note that NetBeans will be writing more than 75% of this class’s code for us! Pretty cool.

Optimizing the Hero Class Via Compound Statements and Default Variable Values
I am going to do two major things to reduce the amount of code in this primary portion of the Hero class, before 
we have NetBeans write our getter and setter methods for us. The first is to use compound declaration for all of our 
similar data types, declaring the protected double and protected float modifiers and keywords first, and then listing all 
of the variables after those, separated by commas, which is called “comma delimited” in programming terms. The Java 
code for the eleven Hero class variable declarations will now look like the following:
 
protected double vX, vY, lifeSpan, damage, offsetX, offsetY;
protected float boundScale, boundRot, friction, gravity, bounce;
 

Figure 8-13.  Add initialization for your eleven variables inside of your constructor method using compound statements



Chapter 8 ■ Creating Your Actor Engine: Design the Characters for Your Game and Define Their Capabilities

182

As you can see in Figures 8-13 and 8-14, we did the same type of compound statement for the initializations:
 
lifeSpan = 1000;
vX = vY = damage = offsetX = offsetY = 0;
boundScale = boundRot = friction = gravity = bounce = 0; 

Figure 8-14.  Optimize your Java code by using compound declarations, and leveraging default initialization values

This could also be done using only two lines of code, if you happen to be editing on an HDTV display screen:
 
lifeSpan = 1000;
vX = vY = damage = offsetX = offsetY = boundScale = boundRot = friction = gravity = bounce = 0;
 

Next, if we depend on the Java compiler to initialize our variables to zero, as double and float variables will be 
initialized to if no initialization value has been specified, we can reduce these two lines of code to one line of code:
 
lifeSpan = 1000;
 

Now that we’ve finished the “core” of our Hero() constructor method, let’s have NetBeans write some code!

Accessing Hero Variables: Creating Getter and Setter Methods
Create a line of space after your .collide() method, and place your cursor there, which will show NetBeans where 
you want it to place the code that it is about to generate. This is shown in Figure 8-15 by a light-blue shaded line seen 
behind the Source menu. Use a Source > Insert Code menu sequence or the Alt-Insert keystroke combination, and 
when the Generate floating pop-up menu appears under this blue line (this shows the selected line of code), select 
the Getter and Setter option, shown highlighted in Figure 8-15, and select all of the Hero classes. Make sure that all of 
the Hero class variables are selected, either by using the Hero class master selection check box, or by using the check 
box UI elements for each variable, as is shown on the right hand side of Figure 8-15.



Chapter 8 ■ Creating Your Actor Engine: Design the Characters for Your Game and Define Their Capabilities

183

After you click on the Generate button at the bottom of the Generate Getters and Setters dialog, you will see the 
22 new methods, all shiny and new and coded for you by NetBeans. The methods will look like the following:
 
public double getvX() {
    return vX;
}
 
public void setvX(double vX) {
    this.vX = vX;
}
 
public double getvY() {
    return vY;
}
 
public void setvY(double vY) {
    this.vY = vY;
}
 
public double getLifeSpan() {
    return lifeSpan;
}
 
public void setLifeSpan(double lifeSpan) {
    this.lifeSpan = lifeSpan;
}
 

Figure 8-15.  Use the Source ➤ Insert Code ➤ Generate ➤ Getter and Setter menu sequence and select all class variables



Chapter 8 ■ Creating Your Actor Engine: Design the Characters for Your Game and Define Their Capabilities

184

public double getDamage() {
    return damage;
}
 
public void setDamage(double damage) {
    this.damage = damage;
}
 
public double getOffsetX() {
    return offsetX;
}
 
public void setOffsetX(double offsetX) {
    this.offsetX = offsetX;
}
 
public double getOffsetY() {
    return offsetY;
}
 
public void setOffsetY(double offsetY) {
    this.offsetY = offsetY;
}
 
public float getBoundScale() {
    return boundScale;
}
 
public void setBoundScale(float boundScale) {
    this.boundScale = boundScale;
}
 
public float getBoundRot() {
    return boundRot;
}
 
public void setBoundRot(float boundRot) {
    this.boundRot = boundRot;
}
 
public float getFriction() {
    return friction;
}
 
public void setFriction(float friction) {
    this.friction = friction;
}
 
public float getGravity() {
    return gravity;
}
 



Chapter 8 ■ Creating Your Actor Engine: Design the Characters for Your Game and Define Their Capabilities

185

public void setGravity(float gravity) {
    this.gravity = gravity;
}
 
public float getBounce() {
    return bounce;
}
 
public void setBounce(float bounce) {
    this.bounce = bounce;
}
 

It is important to note that objects created using the Hero class also have access to the getter and setter methods 
that we generated earlier for the Actor class. In case you are wondering what the Java keyword this means in all 
of these .set() methods, it is referring to the current object that has been created using the Actor or Hero class 
constructor method. Thus if you call the .setBounce() method off of the iBagel Bagel object (which we will soon be 
creating in Chapter 10), this keyword is referring to this (iBagel) Bagel object instance. So if we wanted to set a 50% 
bounce factor, we would make the following method call using our new .setBounce() setter method:
 
iBagel.setBounce(0.50);
 

Next let’s take a look at how these sprite Actor classes fit in with the other classes we have coded during the book 
so far. After that, we will summarize what we have learned so far during this chapter, and we can move on into the 
future chapters in this book, and use these classes to create sprites for our game, as we learn how to use sprites for 
game play.

Updating the Game Design: How Actor or Hero Fit In
Let’s update the diagram that I introduced in Chapter 7 (Figure 7-19) to include the Actor.java and Hero.java classes. 
As you can see in Figure 8-16, I had to switch the .update() physics and .collide() collision parts of the diagram, as 
the Actor class only includes the .update() method, and the Hero class includes both of these methods. Since the 
.collide() method will be called in the .update() method, I connected these two parts of the diagram with a chrome 
sphere as well.

Figure 8-16.  The current invincibagel package class (object) hierarchy, now that we have added Actor and Hero classes



Chapter 8 ■ Creating Your Actor Engine: Design the Characters for Your Game and Define Their Capabilities

186

The .handle() method in a GamePlayLoop object will call these .update() methods, so there is a connection 
there as well. There are connections between the Actor and Hero classes with the InvinciBagel class, as all your 
game sprite objects created using these abstract classes will be declared and instantiated from within a method in 
this class.

We are making great progress on developing our game engine framework, while at the same time, seeing 
how some of the core features of the Java 8 programming language can be implemented to our advantage. We will 
be looking at the powerful new Java 8 lambda expressions feature in the next chapter on event handling as well, 
so more knowledge regarding leading-edge Java 8 features is right around the (game) bend. I hope you are as 
excited as I am!

Summary
In this eighth chapter, we wrote the second round of the several game engines that we will be designing and coding 
during this book, the Actor (fixed sprites) superclass, and its Hero (motion sprites) subclass. Once we start creating 
our game sprites in Chapter 10 and subsequent chapters, the Hero class will also become a superclass. Essentially, 
during this chapter you learned how to create public abstract classes, which will be used to define our sprite objects 
from here on out during the book. What this amounts to is doing all the heavy lifting (sprite design and coding work) 
up front for all of the actors (sprites) in our game, making the creation of powerful fixed and motion sprites for our 
game much easier for us to do from here on out. We are building both our knowledge base and our game engine 
framework first!

We first took a look at how these Actor and Hero classes would be designed, as well as what types of actual sprite 
classes we would be creating with them. We looked at nine sprite Image assets, and how these covered a wide range of 
motions by using only nine assets, and looked at how to “register” the sprite “states” relative to each other.

Next, we designed and created our Actor superclass, to handle fixed sprites such as props and treasure, creating 
the basic List<Image>, ImageView, SVGPath, iX and iY variables and a constructor method that used these to define 
the fixed sprite appearance, position, and collision boundaries. Then we added some additional variables that we will 
be needing for future game design aspects, and learned how to have NetBeans write .get() and .set() methods.

Next, we designed and created our Hero subclass, which extends Actor to handle motion sprites such as the 
InvinciBagel himself and his enemies, as well as projectiles and moving challenges. We created the basic constructor 
method that sets the variables from the Actor superclass, this time to define a motion sprites imagery, initial position, 
and collision boundaries. Then we added some additional variables, which we will be needing for future game design 
aspects, and again saw how NetBeans will write our .get() and .set() methods for us, which is always fun to watch!

Finally, we took a look at an updated invincibagel package, class and object structure diagram, to see just how 
much progress we have made so far during the first eight chapters of this book. This is getting pretty exciting!

In the next chapter, we are going to take a look at how to control the game sprites that we will create using this 
Actor engine that we have created during this chapter. This next Chapter 9 will cover Java 8 and JavaFX event handling, 
which will allow our game player to manipulate (control) these actor sprites using event handling.



187

Chapter 9

Controlling Your Action Figure: 
Implementing Java Event Handlers 
and Using Lambda Expressions

Now that we have created the public abstract Actor and Hero classes, which I call the “actor engine,” in Chapter 8, 
let’s get back into our InvinciBagel.java primary application class coding here in Chapter 9, and create the event 
handling framework that we can use to control the primary hero for our game, the InvinciBagel himself. The event 
handling that implements the interface between the player and your game programming logic could be looked at 
as the “interactivity engine” for your game, if we follow the engine paradigm we have been using thus far. There 
are many ways to interface with a game, including arrow keys (also known as a DPAD for consumer electronics 
devices), the keyboard, a mouse or trackball, a game controller, touchscreen, or even advanced hardware, 
such as gyroscopes and accelerometers. One of the choices you will make for your game development will be 
how a player will interface with the game, using the hardware device they are playing the game on, and the input 
capabilities it supports.

During this chapter, we will be doing a number of upgrades to your InvinciBagel.java class. The first is to add 
support for the game WIDTH and HEIGHT variables in the form of Java constants. These will allow us to change the 
width and height of the game play surface, which is the area inside of the game window that pops up, or the entire 
screen, if your game player is using a consumer electronics device.

The second upgrade we will do is to add the Java code that will create a blank white screen for us to design the 
game over (on top of) during the next several chapters. We’ll do this by installing a Color.WHITE background color 
in the Scene() constructor method call (along with our new width and height variables), and then installing Java code 
into our Button control event handler structure that are already in place, to hide the two ImageView “plates” we are 
using for image compositing of our splash screen UI design. We can also use these two ImageView Node objects later 
on to hold background imagery for our game play, once we get into that level of design. Remember it is important to 
keep the number of Nodes in the Scene Graph to a minimum, so we will reuse Node objects, instead of adding more.

The third upgrade we’ll add is to add keyboard event handling routines to our Scene object that will handle the 
arrow key support that we will use for the game, to span any hardware device that has an arrow key pad or DPAD. This 
will handle any events at the top-level of the Scene down to the StackPane (Scene Graph) hierarchy. This will pass the 
arrow key values pressed by the user to our Node objects. This will eventually allow motion control code to move the 
actors around the game, which is something we will be getting involved with in greater detail in the next chapter.

Besides upgrading our InvinciBagel.java code, and adding keyboard event handling, we will also be learning 
about lambda expressions during this chapter, just to make sure I get everything that is new in Java 8 covered during 
this book. These lambda expressions are somewhat advanced to be covered in this beginner level book, but since they 
are a major new feature of Java 8, and provide multi-threading support as well as more compact code structures, I am 
going to cover them here in this chapter, partly because NetBeans 8 (no surprise here) is willing to code them for you!



Chapter 9 ■ Controlling Your Action Figure: Implementing Java Event Handlers and Using Lambda Expressions

188

Game Surface Design: Adding Resolution Flexibility
The first thing that I want to do to the InvinciBagel.java code, which should already be open in a tab in NetBeans (if it 
is not, use the right-click and Open work process), is to add WIDTH and HEIGHT constants for the game application. 
The reason for doing this is that you may want to provide custom versions for netbooks or tablets (1024 by 600), or 
iTV set or eReaders (1280 by 720) or HDTV usage (1920 by 1080) or even for new 4K iTV sets (4096 by 2160). Having 
a height and width variable allows you to not have to change your Scene() constructor method call later, and to do 
certain screen boundary calculations using these variables rather than “hard coded” numeric values throughout your 
code. As you can see at the top of Figure 9-1, I have created a constant declaration for these two variables using a 
single line of Java code, which is known as a compound statement, as you learned in the previous chapter. The Java 
code for this declaration can be seen at the top of the class in Figure 9-1, and should look like the following:
 
static final double WIDTH = 640, HEIGHT = 400; 

Figure 9-1.  Add private static final double WIDTH and HEIGHT constants; install these, and Color.WHITE, in Scene()

The next thing that we will want to do is the upgrade our Stage() constructor method call, to use one of the other 
overloaded constructor methods that allows us to also specify the background color value. Let’s use the Color class 
constant of WHITE, and our new width and height display screen size constants, and create this new constructor 
method call, using the following line of Java code, which is also shown (laden with errors) at the bottom of Figure 9-1:
 
scene = new Scene(root, WIDTH, HEIGHT, Color.WHITE);
 

As you can see in Figure 9-1, you will have a wavy red error underline under your Color class reference, until you 
use the Alt-Enter work process to bring up the helper dialog (as shown), and select the option that specifies “Add 
import for javafx.scene.paint.Color” in order to have NetBeans write the Java import statement for you. Once you do 
this, your code will be error free, and we will be ready to write some code that will put this background color in place.

To do this, we’ll need to hide the ImageView Node objects that hold our full screen (splashScreenbackplate) 
and overlay (splashScreenTextArea) image assets. We will do this by setting the visible attribute (or characteristic, or 
parameter, if you prefer) to a value of false, which will allow the white background color that we set to show through.



Chapter 9 ■ Controlling Your Action Figure: Implementing Java Event Handlers and Using Lambda Expressions

189

Finishing the UI Design: Coding a Game Play Button
The next thing that we will need to do is to finish the Button control event handling code so that when we click on 
the GAME PLAY Button object, the white background is revealed for us to develop our game over. Later on we can 
use the ImageView plates that we use for our splash screen support to provide background image compositing 
for the game to make it more interesting visually. The way that we are going to hide the two ImageView Node 
objects in the Scene Graph is by calling the .setVisible() method off of each of these objects inside of the 
.handle() method that is attached to the PLAY GAME UI Button object. This can be seen in the bottom portion 
of Figure 9-2, and would be implemented using the following two lines of Java code, inside of the .handle() 
EventHandler<ActionEvent> method structure:
 
splashScreenBackplate.setVisible(false);
splashScreenTextArea.setVisible(false); 

Figure 9-2.  Use a .setVisible() method for the ImageView class to hide background image plates and reveal White color

As you can see, there is also a wavy yellow warning highlight under the EventHandler<ActionEvent> part of 
this event handling structure which relates to Java lambda expressions. After we finish implementing all of the 
final UI design code for the Buttons that controls what is visible to the player, and which imagery it is showing 
them, I will get into lambda expressions, and we will get rid of these warning messages in your code as well. 
After that, we’ll move on to implement arrow key event handling structures, so that the user can navigate the 
InvinciBagel around the screen.

First, let’s test the code that we put into the previously empty PLAY GAME Button event handling structure.



Chapter 9 ■ Controlling Your Action Figure: Implementing Java Event Handlers and Using Lambda Expressions

190

Testing the Game Play Button: Making Sure Your Code Works
Use the Run ➤ Project (or the Run icon at the top of the IDE that looks like a video play transport button) to 
launch your InvinciBagel game and click on the PLAY GAME Button on the bottom left of the window. As you 
can see in Figure 9-3, the screen turns white because the two ImageView image plates are not visible anymore 
and your white background color is shining through! You will notice if you click on the other three Button 
controls that they do not work anymore. Actually they are working, but they are not visible anymore, so the UI 
design now seems to be broken!

Figure 9-3.  Run the Project, and test the PLAY GAME Button to reveal white background

So now we have an ability to see what we are doing going into our game play design chapters, which are the 
next eight in the book. All that we have to do now is to fix (or rather upgrade) the other three Button controls event 
handling structures to include method calls to make sure that the ImageView Node objects are visible so that they can 
show the image content that we want them to display to our players. Let’s take care of this next, since we are working 
on the Button UI design for our InvinciBagel game, and then we can take a look at the new Java 8 lambda expressions.

Upgrading the Other UI Button Code: Making ImageView Visible
Let’s add a couple of lines of code to each of the three existing Button event handling structures that will make sure 
that both ImageView image plates are set to be visible whenever these Button control objects are clicked. The reason 
that we need to put this code into each of the three other UI Button event handling structures is because we do not 
know what order the user will click on the Buttons, so we need to put these statements into each Button event handler. 
If the ImageView Node objects are already set as visible when these statements are triggered, then they will simply 
remain visible, because they were already previously visible! The Java method calls will look like the following:
 
splashScreenBackplate.setVisible(false);
splashScreenTextArea.setVisible(false);
 

As you can see highlighted in Figure 9-4, I’ve installed these (identical, except for the Image object that they 
reference) two statements inside of the other three Button event handling structures. These statements can go either 
before or after the existing method calls inside each of these .handle() methods.



Chapter 9 ■ Controlling Your Action Figure: Implementing Java Event Handlers and Using Lambda Expressions

191

Now you will see that when you use your Run ➤ Project work process, that all of your Button UI controls will do 
what they are supposed to do, and will display either a white background for the game or information screens that 
have the InvinciBagel splash screen artwork behind them. Now we are ready to learn about Java lambda expressions.

Lambda Expression: A Powerful New Java 8 Feature
One of the major new features that was recently released in Java 8 during 2014 is the lambda expression. Using the 
lambda expression can make your code more compact, and allows you to turn a method into a simple Java statement 
using Java 8’s new lambda -> “arrow” operator. The lambda expression provides a Java code shortcut to structure one 
single method interface by instead using a lambda expression.

The Java 8 lambda expression has the same features as a Java method structure, as it requires a list of parameters 
to be passed in, as well as the code “body” to be specified. The code that the lambda expression calls can be a single 
java statement, or a block of code, containing multiple Java programming statements. This statement (or statements) 
will be expressed utilizing the parameters passed into the lambda expression. The basic Java 8 syntax for the simple 
lambda expression should be written as follows:
 
(the parameter list) -> (a Java expression)
 

You can also create a complex lambda expression by using the curly braces that are used in Java to define an 
entire block of Java code statements in conjunction with the lambda expression. This would be done by using the 
following format:
 
(the parameter list) -> { statement one; statement two; statement three; statement n; }
 

Figure 9-4.  Add in the .setVisible(true) method calls for the splashScreenBackplate and splashScreenTextArea objects



Chapter 9 ■ Controlling Your Action Figure: Implementing Java Event Handlers and Using Lambda Expressions

192

It is important to note that you do not have to use lambda expressions to replace traditional Java methods! In 
fact, if you want your code to be compatible with Java 7, for instance, if you want your code to also work in Android 
5.0, which uses Java 7, you do not have to utilize lambda expressions. However, since this is specifically a Java 8 game 
development title, and since lambda expressions are the major new feature of Java 8, and since NetBeans will convert 
your Java methods to lambda expressions for you, as you are about to see, I have decided to utilize them in this book.

Let’s take a closer look at the work process for getting NetBeans to convert your Java methods into lambda 
expressions for you. As you can see in Figure 9-5, you currently have wavy yellow warning highlights in your code.

Figure 9-5.  Mouse-over wavy yellow warning highlight, and reveal a “inner class can be turned into a lambda” pop-up

When you mouse-over these, they will give you a “This anonymous inner class creation can be turned into a 
lambda expression,” message. This lets you know that NetBeans 8.0 may be willing to write some lambda expression 
code for you, which is really nifty.

To find out, you’ll need to leverage your trusty Alt-Enter work process, and as you can see there is a lambda 
expression option that will have NetBeans rewrite the code as a lambda expression. The original code looked like this:
 
gameButton.setOnAction(new EventHandler<ActionEvent>() {
    @Override public void handle(ActionEvent event) {
        splashScreenBackplate.setVisible(false);
        splashScreenTextArea.setVisible(false);
    }
});
 

The lambda expression that NetBeans codes is much more compact and looks like the following Java 8 code:
 
gameButton.setOnAction((ActionEvent event) -> {
    splashScreenBackplate.setVisible(false);
    splashScreenTextArea.setVisible(false);
}); 



Chapter 9 ■ Controlling Your Action Figure: Implementing Java Event Handlers and Using Lambda Expressions

193

As you can see in Figure 9-6, this lambda expression that NetBeans wrote for you is not without warnings 
itself, as there is a “Parameter event is not used” warning, so we will be removing the event next, to make the 
lambda expression even more compact! At some point in time, Oracle will update this code that writes lambda 
expressions so that it looks inside of your method code block, sees that there is no event object referenced, and 
will remove this as well, and the warning will no longer be generated. Until that time comes, we’ll need to edit 
NetBeans’ code ourselves.

Figure 9-6.  The lambda expression that NetBeans writes for you has a warning message “Parameter event is not used”

Since we are not using the event variable inside of the code body of this lambda expression, we can remove it, 
giving us this following final Java 8 lambda expression code, which is quite a bit more simple than the original code:
 
gameButton.setOnAction((ActionEvent) -> {
    splashScreenBackplate.setVisible(false);
    splashScreenTextArea.setVisible(false);
});
 

As you can see the lambda expression requires that the Java compiler create the ActionEvent object for you, 
replacing a new EventHandler<ActionEvent>() constructor method call with the ActionEvent object it creates. 
If you are wondering why lambda expressions were added to Java 8, and how they make it better, they allow a Java 
function (method), especially a “one shot” or inner method, to be written like a statement. They also facilitate 
multi-threading.

Before we get into event handling classes in Java 8 and JavaFX, let’s take a look at an update I encountered as I was 
writing this chapter, as well as a couple of warning highlights that are appearing, which are not accurate.



Chapter 9 ■ Controlling Your Action Figure: Implementing Java Event Handlers and Using Lambda Expressions

194

Handling NetBeans Unexpected Updates and Incorrect Warnings
As I was “upgrading” my UI Button event handling code structures to use lambda expressions, as shown in Figure 9-7, 
I noticed a couple of things I wanted to take a couple of pages to address before I proceed to get into event handling. 
First of all, there is an incorrect warning “Parameter ActionEvent is not used,” which is incorrect, as an event handling 
construct inherently uses an ActionEvent object, and besides that, why don’t the other identical constructs above and 
below this exhibit the same warning? I ran the code and it all works great, so I am ignoring this highlight in NetBeans. I 
also am seeing a “39 updates found” message at the bottom-right of the IDE, and so I clicked on the blue link that said 
“click here to make your IDE up to date,” and I took a couple of screen shots showing the work process I went through 
to get my IDE updated. I am not sure where NetBeans got the 39 from, as there were hundreds of updates listed in an 
installer dialog, which is shown on the right side of Figure 9-7. As you can see there are numerous updates to JavaFX, 
Java 8 and related packages, as well as to non-Java packages that are supported by NetBeans 8. I clicked on the Next 
button and invoked the download and update process, which took several minutes.

Figure 9-7.  Showing the incorrect lambda expression warning message and the 39 updates found notification message

As you can see on the left-hand side of Figure 9-8, you will have to read and then accept all of those relevant 
licensing agreements that are required for you to download and install all of the software package upgrades which you 
will be upgrading to since you initially installed Java 8 and NetBeans (or since you last updated your IDE).



Chapter 9 ■ Controlling Your Action Figure: Implementing Java Event Handlers and Using Lambda Expressions

195

Select the “I accept the terms in all of the license agreements” checkbox, and click on the Update button, to start 
the downloading and installation process. As you can see on the bottom-right of Figure 9-8, a progress bar will tell you 
exactly how much has been downloaded, as well as what is being downloaded and installed onto the system.

Let’s spend the remainder of this chapter taking a look at event handling, and the event-related classes in Java 
and JavaFX that we can use to provide different types of event handling to our Java 8 game development efforts.

Event Handling: Adding Interactivity to Your Games
One could argue that event handing is at the very foundation and core of game development, as without a way to 
interface with the game play logic and actors, you really don’t have much of a game at all. I am going to cover the Java 
and JavaFX event handling related classes during this section of the chapter, and then we’ll implement keypad event 
handing, so that we can support using the arrow keys to navigate our InvinciBagel character around the screen. After 
that, we’ll turn that Java 7 compatible code into Java 8 compatible lambda expressions, and then we will be ready to 
cover sprite movement around the screen during the next chapter of the book. The first thing I want to talk about 
before we start dissecting Java and JavaFX classes is the different types of events that are handled for games, from 
the arrow keys (DPAD on Smartphones) to keyboard (or remotes for iTV) to mouse (or trackball on Smartphones) 
to touchscreen (Smartphones and Tablets) to game controllers (Game Consoles and iTV Sets) to gyroscopes and 
accelerometers (Smartphones and Tablets) to motion controllers such as the Leap Motion and Razer Hydra Portal.

Types of Controllers: What Types of Events Should We Handle?
One of the key things to look at is what is the most logical approach to supporting game play related events, such 
as arrow keys; mouse clicks; touchscreen events; game controller buttons (A, B, C and D); and more advanced 
controllers, such as gyroscopes and accelerometers that are available on Android, Kindle, Tizen, and iOS consumer 
electronics devices. This decision will be driven by the hardware devices that a game is targeted to run on; if a game 
needs to run everywhere, then code for handling different event types, and even different programming approaches to 
event handling, will ultimately be required. We’ll take a look at what input events are currently supported in Java 8.

It is also interesting to note that Java 8 and JavaFX apps are already working on these embedded platforms, and 
I’d put money on native support on open platforms (Android, Tizen, Chrome, Ubuntu), and proprietary platforms 
that currently support Java technology (Windows, Blackberry, Samsung Bada, LGE WebOS, Firefox OS, Opera, etc.), at 
some point in time in the near future. The future of Java 8 is bright, thanks to JavaFX and hardware platform support!

Figure 9-8.  Showing the License Agreement dialog (left) and the download and update progress bar (right) in NetBeans



Chapter 9 ■ Controlling Your Action Figure: Implementing Java Event Handlers and Using Lambda Expressions

196

Java 8 and JavaFX Events: javafx.event and java.util
As you have seen, the javafx.event package’s EventHandler public interface, which extends the java.util package’s 
EventListener interface, is the way that Event objects are created and handled, either using an anonymous inner 
class (Java 7) structure, or a lambda expression (Java 8). You have become familiar now with how to code both of these 
types of event handling structures, and I will continue during this book to initially code methods using the Java 7 
(anonymous inner class) approach, and I will then use NetBeans to convert them to Java 8 lambda expressions so that 
you can create games that are compatible with both Java 7 (Android) and Java 8 (PC OS) game code delivery pipelines.

The ActionEvent class (and objects) that you’ve used thus far during the book for your user interface Button 
control event handling is a subclass of the Event superclass, which is a subclass of the java.util package’s EventObject 
superclass, which is a subclass of the java.lang.Object master class. The entire class hierarchy is structured as follows:
 
java.lang.Object
  > java.util.EventObject
    > javafx.event.Event
      > javafx.event.ActionEvent
 

The ActionEvent class is also in the javafx.event package, along with the EventHandler public interface. All of the 
other event-related classes that we will be using from here on out are contained in a javafx.scene.input package. I am 
going to focus on the javafx.scene.input package for the rest of this chapter, as you have already learned how to use the 
EventHandler<ActionEvent> {…} structure for Java 7 and the (ActionEvent) -> {…} structure for Java 8, so it is time to 
learn how to use other types of events, called input events, in our Java 8 game development work process.

Let’s take a look next at this important JavaFX Scene input event package, and the twenty-five input event classes 
that it provides us to use for our Java 8 game development.

JavaFX Input Event Classes: The javafx.scene.input Package
Even though it is the java.util and javafx.event packages that contain the core EventObject, Event and EventHandler 
classes that “handle” the events, at the foundational level of making sure that the events get processed (handled), 
there is another JavaFX package called javafx.scene.input which contains the classes that we will be interested in 
using to process (handle) our player’s input for the different types of games that you might be creating. I will call 
these “input events,” because they are different events than the action events and pulse (timing) events that we have 
encountered thus far in the book. Once we’ve covered input events in this chapter, you will be familiar with many of 
the different types of events that you will want to use in your own Java 8 games development. Later on in the chapter 
we will also implement a KeyEvent object to handle arrow keypad (or DPAD and game controller) usage in our game.

It’s interesting to note that a number of the input event types that are supported in the javafx.scene.input 
package are more suited to consumer electronics (the industry term is “embedded”) devices, such as smartphones or 
tablets, which tells me that JavaFX is being positioned (designed) for use on open source platforms such as Android 
or Chrome. JavaFX has specialized events such as GestureEvent, SwipeEvent, TouchEvent, and ZoomEvent, that 
support specific features in the new embedded devices marketplace. These input event classes support advanced 
touchscreen device features, such as gestures, page swiping, touchscreen input handling, and multi-touch display that 
are required features for these devices, which support advanced input paradigms such as two-finger (pinching in or 
spreading out) touch input, for instance, to zoom in and out of the content on the screen.

We will be covering the more “universal” input types in this book, which are supported across both personal 
computers (desktops, laptops, notebooks, netbooks, and the newer “pro” tablets, such as the Surface Pro 3) as 
well as embedded devices, including smartphones, tablets, e-Readers, iTV sets, game consoles, home media 
centers, Set-Top Boxes (STBs), and so forth. These devices will also process these more widespread (in their 
implementation) KeyEvent and MouseEvent types of input events, as mouse and key events are always supported 
for legacy software packages.



Chapter 9 ■ Controlling Your Action Figure: Implementing Java Event Handlers and Using Lambda Expressions

197

It is interesting to note that a touchscreen display will “handle” mouse events as well as touch events, which is 
very convenient as far as making sure that your game works across as many different platforms as possible. I often 
use this approach of using mouse event handling in my Android book titles, so that both the touchscreen and a DPAD 
center (click) button can be used by the user to generate a mouse click event without having to specifically use touch 
events. Another advantage of using mouse (click) events where possible for touchscreen users is that if you use touch 
events, you cannot go in the other direction, that is, your game application will only work on touchscreen devices and 
not on devices (such as iTV sets, laptops, desktops, netbooks, and the like) that feature mouse hardware of some type.

This same principle applies to key events, especially the arrow keys we will be using for this game, as these keys 
can be found on the arrow keypad on keyboards and remote controls, on game controllers, and on the DPAD on most 
smartphones. I will also show you how to include alternate key mapping so that your players can decide which input 
method they prefer to use to play your Java 8 game. Let’s take a look at the KeyCode and KeyEvent classes next.

The KeyCode Class: Using Enum Constants to Define Keys Players Use for Game
Since we are going to use the arrow keypad for our game, and possibly the A-S-D-W keys, and in the future, the game 
controller’s GAME_A, GAME_B, GAME_C and GAME_D buttons, let’s take a closer look at the KeyCode class first. 
This class is a public Enum class that holds enumerated constant values. This class is where the KeyEvent class goes 
to get the KeyCode constant values that it uses (processes) to determine which key was used by the player for any 
particular key event invocation. The Java 8 and JavaFX class hierarchy for the KeyCode class looks like the following:
 
java.lang.Object
  > java.lang.Enum<KeyCode>
    > javafx.scene.input.KeyCode
 

The constant values contained in the KeyCode class use capital letters, and are named after the key that the 
keycode supports. For instance, the a, s, w, and d keycodes are A, S, W, and D. The arrow keypad keycodes are 
UP, DOWN, LEFT, and RIGHT, and the game controller button keycodes are GAME_A, GAME_B, GAME_C, and 
GAME_D.

We will be implementing KeyCode constants along with the KeyEvent object in the EventHandler object in a bit, 
after we cover these foundational packages and classes for input event handling. As you will soon see, this is done in 
much the same way that an ActionEvent is set up to be handled, and KeyEvents can be coded using the Java 7 inner 
class approach, or by using a Java 8 lambda expression.

We will set up our KeyEvent object handling in a very modular fashion, so that an event KeyCode evaluation 
structure sets Boolean flag variables for each KeyCode mapping. The nature of event processing is that it is a real-time 
engine, like the pulse engine, so these Boolean flags will provide an accurate “view” of what keys are being pressed or 
released by the player during any given nanosecond. These Boolean values can then be read and acted upon, by using 
Java game programming logic in our other game engine classes, which will then process these key events in real time.

The KeyEvent Class: Using KeyEvent Objects to Hold KeyCode Players Are Using
Next, let’s take a closer look at the KeyEvent class. This class is designated public final KeyEvent, and it extends 
the InputEvent superclass, which is used to create all of the input event subclasses that are in the javafx.scene.
input package. The KeyEvent class is set into motion using the EventHandler class, and handles KeyCode class 
constant values. This class’s hierarchy starts with the java.lang.Object master class and goes through the java.
util.EventObject event superclass to the javafx.event.Event class, which is used to create the javafx.scene.input.
InputEvent class that the KeyEvent class extends (subclasses). It is interesting to note that we are spanning four 
different packages here!



Chapter 9 ■ Controlling Your Action Figure: Implementing Java Event Handlers and Using Lambda Expressions

198

The Java 8 and JavaFX class hierarchy for the KeyEvent class jumps from the java.lang package to the java.util 
package to the javafx.event package to the javafx.scene.input package. The KeyEvent class hierarchy looks like the 
following:
 
java.lang.Object
  > java.util.EventObject
    > javafx.event.Event
      > javafx.scene.input.InputEvent
        > javafx.scene.input.KeyEvent
 

The generation of a KeyEvent object by the EventHandler object indicates that a keystroke has occurred. A 
KeyEvent is often generated in a Scene Graph Node, such as an editable text UI control, but in our case we are going 
to attach our event handling above the Scene Graph Node hierarchy directly to the Scene object named scene, hoping 
to avoid any Scene Graph processing overhead that would be incurred by attaching event handling to any of the Node 
objects in the Scene Graph (in our case, this is currently the StackPane object named root).

A KeyEvent object is generated whenever a key is pressed and held down, released, or typed (pressed and 
immediately released). Depending on the nature of this key pressing action itself, your KeyEvent object is passed into 
either an .onKeyPressed(), an .onKeyTyped() or an .onKeyReleased() method for further processing inside the 
nested .handle() method, which is what will hold your game-specific programming logic.

Games typically use key-pressed and key-released events, as users typically press and hold keys to move the 
actors in the game. Key-typed events on the other hand tend to be “higher-level” events and generally do not depend 
upon the OS platform or the keyboard layout. Typed key events (.onKeyTyped() method calls) will be generated when 
a Unicode character is entered, and are used to obtain character input for UI controls such as text fields, and are used 
for business applications, such as calendars and word processors, for instance.

In a simple case, the key-typed event will be produced by using a single key press and its immediate release. 
Additionally, alternate characters can be produced using combinations of key press events, for instance, the capital A 
can be produced using a SHIFT key press and an ‘a’ key-type (press and immediate release).

A key-release is not usually necessary to generate a key-typed KeyEvent object. It is important to notice that there 
are some fringe cases where a key-typed event is not generated until the key is released; a great example of this is the 
process of entering ASCII character code sequences, using that old-school Alt-Key-with-Numeric-keypad entry 
method, which was used “back in the day,” with DOS and held over into Windows OSes.

It is important to note that no key-typed KeyEvent objects will be generated for keys that do not generate any 
Unicode characters. This would include action keys or modifier keys, although these do generate key-pressed and 
key-released KeyEvent objects, and could thus be used for game play! This would not represent a good user interface 
design (or user experience design) approach, generally speaking, as these keys are used to modify other key behavior.

The KeyEvent class has a character variable (I am tempted to call this a character characteristic, but I won’t) 
which will always contains a valid Unicode character for a key-typed event or CHAR_UNDEFINED for a key-pressed 
or key-released event. Character input is only reported for key-typed events, since key-pressed and key-released 
events are not necessarily associated with character input. Therefore, the character variable is guaranteed to be 
meaningful only for key-typed events. In a sense, by not using key-typed events, we are saving both memory and CPU 
processing, by not having to process this Unicode character variable.

For key-pressed and key-released KeyEvent objects, the code variable in the KeyEvent class will contain your 
KeyEvent object’s keycode, defined using the KeyCode class you learned about earlier. For key-typed events, this 
code variable always contains the constant KeyCode.UNDEFINED. So as you can see, key-pressed and key-released 
are thus designed to be used differently than key-typed, and that’s the reason we are using these for our game event 
handling.

Key-pressed and key-released events are low-level, and depend upon platform or keyboard layout. They are 
generated whenever a given key is pressed or released, and are the only way to “poll” the keys that do not generate 
character input. The key being pressed or released is indicated by the code variable, which contains a virtual 
KeyCode.



Chapter 9 ■ Controlling Your Action Figure: Implementing Java Event Handlers and Using Lambda Expressions

199

Adding Keyboard Event Handling: Using KeyEvents
I think that is enough background information for us to move on to implementing KeyEvent processing for the game, 
so add a line of code after your screen WIDTH and HEIGHT constant declarations, and declare four Boolean variables 
named up, down, left, and right, using a single compound declaration statement, shown in Figure 9-9. Since the 
default value for any Boolean value is false (which will signify a key which is not being pressed, that is, a key which is 
currently released), we do not have to explicitly initialize these variables.  This is done by using the following line of 
Java code, which is also shown error-free at the top of Figure 9-9:
 
boolean up, down, left, right; 

Figure 9-9.  Add a .setOnKeyPressed() function call off a scene object and create a new EventHandler<KeyEvent> object

As you can see at the bottom of Figure 9-9, I put the foundation for my KeyEvent (pressed) handling using the 
.setOnKeyPressed() method call off of the Scene object named scene, which I have instantiated in the previous line of 
code. Inside of this method call I create a new EventHandler<KeyEvent> just like we did for our action events.  
The code, which as you can see has an error message attached to it until you import a KeyEvent class, looks like this:
 
scene.setOnKeyPressed(new EventHandler<KeyEvent>() { your .handle() method will go in here });
 

Use an Alt-Enter work process to select an import javafx.scene.input.KeyEvent option seen in Figure 9-9, to 
remove this error message. Next, let’s take a look at the .handle() method we need to write to process the KeyEvent.



Chapter 9 ■ Controlling Your Action Figure: Implementing Java Event Handlers and Using Lambda Expressions

200

Processing Your KeyEvent: Using the Switch-Case Statement
KeyEvent object processing is a perfect application for implementing Java’s highly efficient switch-case statement. 
We can add a case statement for each type of KeyCode constant that is contained inside of any KeyEvent (named event) 
that is passed into the .handle() method. A KeyCode can be extracted from a KeyEvent object using a .getCode() 
method. This method is called on the KeyEvent object named event, inside of the switch() evaluation area. Inside of 
the switch{} body, the case statements compare themselves against this extracted KeyCode constant, and if there is a 
match, the statements after the colon are processed. The break; statement allows processing to exit the switch-case 
evaluation, as an optimization.

This event handling switch-case structure should be implemented by using the following Java programming 
structure, which is also shown highlighted in Figure 9-10:
 
scene.setOnKeyPressed(new EventHandler<KeyEvent>() {
    @Override
    public void handle(KeyEvent event) {
        switch (event.getCode()) {
            case UP:    up    = true; break;
            case DOWN:  down  = true; break;
            case LEFT:  left  = true; break;
            case RIGHT: right = true; break;
        }
    }
}); 

Figure 9-10.  Add a switch-case statement inside of the public void handle() method setting Boolean direction variables



Chapter 9 ■ Controlling Your Action Figure: Implementing Java Event Handlers and Using Lambda Expressions

201

Now we have the basic key-pressed event handling structure, which we’ll be adding to a bit later, let’s have 
NetBeans turn this Java 7 code into a Java 8 lambda expression for us! After that, we can create a key-released event 
handling structure by using a block copy and paste operation, turning the .setOnKeyPressed() to .setOnKeyReleased(), 
and the true values to false values. Programming shortcuts are almost as cool as having NetBeans write code for us!

Converting the KeyEvent Handling Structure: Using a Java 8 Lambda Expression
Next let’s have NetBeans recode our EventHandler<KeyEvent> code structure as a lambda expression, which will 
simplify it significantly, reducing it from a three-deep nested code block to one that is nested only two deep, and from 
eleven lines of code to only eight. These lambda expressions are really elegant for writing tight code, and they are 
designed for multi-threaded environments, so whenever possible their usage could result in more optimal Thread 
usage! The resulting Java 8 lambda expression code structure should look like the following, as shown in Figure 9-11:
 
scene.setOnKeyPressed(KeyEvent event) -> {
    switch (event.getCode()) {
        case UP:    up    = true; break; // UP, DOWN, LEFT, RIGHT constants from KeyCode class
        case DOWN:  down  = true; break;
        case LEFT:  left  = true; break;
        case RIGHT: right = true; break;
    }
}); 

Figure 9-11.  Convert the KeyEvent method to a lambda expression; notice that the event variable is used in the switch



Chapter 9 ■ Controlling Your Action Figure: Implementing Java Event Handlers and Using Lambda Expressions

202

Next, let’s use a block copy and paste operation, and copy the .OnKeyPressed() KeyEvent handing structure 
underneath itself, changing it to be an .OnKeyReleased KeyEvent handling structure, with false values instead of true.

Creating the KeyPressed KeyEvent Handling Structure
The next thing that we will need to do is to create the polar opposite of the OnKeyPressed structure, and create the 
OnKeyReleased structure. This will use the same code structure, except that the true values will become false values, 
and the .setOnKeyPressed() method call will instead be a .setOnKeyReleased() method call. The easiest way to do this 
is to select the .setOnKeyPressed() structure, and copy and paste it underneath itself. The Java code, which is shown in 
Figure 9-12, should look like this Java structure:
 
scene.setOnKeyReleased(KeyEvent event) -> {
    switch (event.getCode()) {
        case UP:    up    = false; break;
        case DOWN:  down  = false; break;
        case LEFT:  left  = false; break;
        case RIGHT: right = false; break;
    }
}); 

Figure 9-12.  Use a block copy and paste operation to create .setOnKeyReleased() code block, using .setOnKeyPressed()

One of the interesting things that using lambda expressions does by “implicitly” declaring and using classes, such 
as the EventHandler class in the instances in this chapter, is that it reduces the number of import statements in the 
top of your class code. This is because if a class is not specifically used (its name written) in your code, the import 
statement for that class does not have to be in place at the top of your code with the other import statements.



Chapter 9 ■ Controlling Your Action Figure: Implementing Java Event Handlers and Using Lambda Expressions

203

Also, notice that the code-collapsing plus and minus icons in the left margin of NetBeans are also gone! This is 
because a lambda expression is a basic Java code statement, and not a construct, such as a method or inner class as 
it was before you converted it to a lambda expression. If you look at Figure 9-12, your event handling code is looking 
very clean and well-structured, and yet, in just over a dozen lines of code, it is actually doing quite a lot for your game.

Next, let’s take a look at your import statements code block (especially if you have your import code block 
collapsed), since you had NetBeans 8 create lambda expressions for you. Let’s see if you have any unneeded imports!

Optimizing Import Statements: Remove the EventHandler Class Import Statement
Click the + plus icon at the top-left of NetBeans and expand your import statement section and see if you now 
have an unused import javafx.event.EventHandler statement with wavy yellow underline warning highlighting 
underneath it. I have this, as you can see in Figure 9-13, and when I mouse-over it I get the “Unused Import” 
warning message. I used the Alt-Enter work process to bring up the solutions options helper dialog, and sure 
enough, there was a “Remove Import Statement” option. So NetBeans will unwrite code for you as well as writing it 
for you! Pretty amazing feature!

Figure 9-13.  Mouse-over the import EventHandler warning highlight, and display the pop-up “Unused Import” warning

Next, let’s add the traditional ASDW game play key event handling, to give our users an option to use those keys 
or to use two hands for their game play! This will show you how to add alternate key mapping support to your existing 
event handling code, using only a few more lines of code in the highly efficient switch-case statement.



Chapter 9 ■ Controlling Your Action Figure: Implementing Java Event Handlers and Using Lambda Expressions

204

Adding Alternate KeyEvent Mapping: Using A-S-D-W
Now that we have these KeyEvent handling structures in place, let’s take a look at how easy it is to add an alternate key 
mapping to the ASDW keys often used for game play. This is done by adding in a few more case statements for the A, 
S, D, and W characters on the keyboard, and setting them to the UP, DOWN, LEFT, and RIGHT Boolean equivalents 
that we have set up already. This will allow users to use the A and D characters with their left hand and the UP and 
DOWN arrows with their right hand for easier game play, for instance.

Later on, if you wanted to add more features to your game play, using your game controller, and its support for the 
KeyCode class’s GAME_A (Jump), GAME_B (Fly), GAME_C (climb), and GAME_D (crawl) constants, all that you would 
have to do is to add these new features into your game would be to add another four Boolean variables (jump, fly, climb, 
and crawl) to the up, down, left, and right at the top of the screen, and add in another four case statements.

These four W (UP), S (DOWN), A (LEFT), and D (RIGHT) case statements, once added to the switch statement, 
would bring your KeyEvent object and its event handling Java code structure to only a dozen lines of Java code. Your 
new .setOnKeyPressed() event handling structure would look like this block of code after you make this modification:
 
scene.setOnKeyPressed(KeyEvent event) -> {
    switch (event.getCode()) {
        case UP:    up    = true; break;
        case DOWN:  down  = true; break;
        case LEFT:  left  = true; break;
        case RIGHT: right = true; break;
        case W:     up    = true; break;
        case S:     down  = true; break;
        case A:     left  = true; break;
        case D:     right = true; break;
    }
});
 

As you can see, now the user can use either set of keys, or both sets of keys at the same time, to control the game 
play. Now that you have made the .setOnKeyPressed() event handling structure more flexible (and powerful) for the 
game player, let’s do the same thing to the .setOnKeyReleased() event handling structure, which will instead set a 
false value to the up, down, left and right Boolean flag variables when the user has released the A or LEFT, W or UP, 
S or DOWN, or D or RIGHT keys on the keyboard, remote control, or device keyboard and keypad.

Your .setOnKeyReleased() event handling Java code should look like the following once you add these case 
statements at the end of the body of the switch statement:
 
scene.setOnKeyReleased(KeyEvent event) -> {
    switch (event.getCode()) {
        case UP:    up    = false; break;
        case DOWN:  down  = false; break;
        case LEFT:  left  = false; break;
        case RIGHT: right = false; break;
        case W:     up    = false; break;
        case S:     down  = false; break;
        case A:     left  = false; break;
        case D:     right = false; break;
    }
});
 

Now that you have added another set of player movement control keys for your player to use to control the game 
play, your code is error free, and has a simple, effective structure, as is shown in Figure 9-14. We are handling the 
events one time at the very top of the Scene object named scene, not involving any Scene Graph Node objects in this 
event handling “calculation,” and are using only a few bytes of memory to hold eight Boolean (on/off) values.



Chapter 9 ■ Controlling Your Action Figure: Implementing Java Event Handlers and Using Lambda Expressions

205

Figure 9-14.  Add the case statements for ASDW keys to give users two key options, or to allow two-handed game play

This is in keeping with our objective of optimizing both memory and CPU cycles, so that these are available for 
the more advanced parts of our game play, such as the game play logic, collision detection, or physics calculation.

We also added constants that will allow us to later scale this 640 by 400 game prototype to fit display screens of 
different resolutions such as Pseudo HD (1280 by 720), True HD (1920 by 1080), and UHD (4096 by 2160). These can 
also be used in the game logic, to calculate the size of the screen area to determine movement boundaries.

So far, we have added our actor and supporting cast engine, as well as our basic event handling processing, so 
that we can start to determine how this InvinciBagel game hero is going to move around on the screen in the next 
chapter. We have .handle() as well as .update() and .collide() methods in place to hold the code, which will animate a 
character, and eventually enemies, in both the single-player as well as a future multi-player version of this game.

Next, let’s revisit our overview diagram of this game design, and take a look at the InvinciBagel package, the 
InvinciBagel.java class, and the GamePlayLoop and Actor and Hero classes, which provide the foundation for our 
game play processing and actor (and projectiles, treasure, enemy and obstacles or “props”) creation.

Updating Our Game Design: Adding Event Handling
Let’s update the diagram that I introduced in Chapter 7 (Figure 7-19) and updated in Chapter 8 (Figure 8-17) to 
include the ActionEvent and KeyEvent handling by the EventHandler class. As you can see in Figure 9-15, I added 
the EventHandler event handling class to the diagram as well as the ActionEvent objects that handle our UI design 
control and the KeyEvent that we are going to use to move the InvinciBagel actor around the screen. Since the 
.setOnKeyPressed() and .setOnKeyReleased() methods are called off of the scene Scene object named scene, and the 
ActionEvent is also contained under the Scene object, I placed these inside of the Scene object in the diagram.



Chapter 9 ■ Controlling Your Action Figure: Implementing Java Event Handlers and Using Lambda Expressions

206

Figure 9-15.  The current InvinciBagel package class (object) hierarchy, now that we have added Actor and Hero classes

The Boolean flags set by the KeyEvent switch-case statements will be used in the .update() method and will 
move the InvinciBagel. The .handle() method in the GamePlayLoop object will call the .update() method, so there 
is a connection there as well. We are still making steady progress on our game engine framework, adding  
event handling!

Summary
In this ninth chapter, we added constants to our game Scene object creation so that we can change the supported 
display resolution at any time in the future, as well as adding a Color.WHITE background color using one of the other 
overloaded Scene() constructor methods. We did this so that we could finish our UI design and implement the PLAY 
GAME UI Button control so that it would hide the two ImageView image compositing plates that currently hold splash 
screen assets, and which can later hold game background digital image assets.

We learned about the ImageView class (and object) visible characteristic (or attribute, or variable), and how to 
use the .setVisible() method call to toggle the visibility of a given ImageView image plate using true or false values. 
Since we turned the ImageView image compositing plate’s visibility off in the ActionEvent handling structure for the 
PLAY GAME Button, we then of course had to make sure that the visible attribute was set back to true (on or visible) 
for the other three Button UI controls in case your game player wanted to review any of these screens at a later time.

Next we covered how to turn Java 7 compatible anonymous inner class event handling structures into a Java 8 
lambda expression using NetBeans. I wanted to cover Java 8 lambda expressions in this book, even though they are 
an advanced feature, because they are one of the major new features in Java 8, and this is a Java 8 programming title.

Finally we got into adding new features to our Java 8 game programming infrastructure, and learned about input 
event (InputEvent) classes and subclasses and about how the event handler (EventHandler) class structures are set 
up, and how they span across the java.lang, java.util, javafx.event and javafx.scene.input packages. We took a look at 
KeyCode constants and at the KeyEvent class, and then implemented this KeyEvent handing in our Java game code, 
using .setOnKeyPressed() and .setOnKeyReleased() event handler structures for both Java 7 and Java 8 compatibility.

In the next chapter, we are going to take a look at how to move a game sprite around your screen using this 
KeyEvent event handling structure that we have created during this chapter, as well as how to ascertain the boundary 
(edges) of the screen, character direction, movement velocity, and related animation and movement considerations.



207

Chapter 10

Directing the Cast of Actors: Creating 
a Casting Director Engine and 
Creating the Bagel Actor Class

Now that we have created the public abstract Actor and Hero classes (the Actor Engine) in Chapter 8, and some basic 
KeyEvent handling in Chapter 9, it is time to put more of our game infrastructure in place here in Chapter 10. We are 
going to create yet another Java class to manage our cast of actors, called CastingDirector.java (the Casting Engine). 
We will do this so that we can keep track of the Actor objects on the game play screen that have been created using our 
Actor and Hero abstract classes. It is important to know what game components (actors) are currently on the screen 
(or stage, or set, if you like the film production lingo that we are using) at any given time (or level) in the game.

In this chapter, we’ll also need to learn more about, and use, the List and ArrayList classes as well as the Set and 
HashSet classes. These Java “collection” classes will manage the List objects and Set object that we’ll use to track the 
current Actor objects that are involved in the game play on the screen. We’ll cover these java.util package classes in 
detail early on during this chapter, so get ready to learn about Java Array objects, and some other fairly advanced Java 
programming concepts that may be a challenge for the beginner. However, they will be very useful for you to use in 
your Java 8 game title development work process, so I have decided to include them in this book.

We will also want to create our first actor for the game, the InvinciBagel character actor, since I don’t want to get 
too far removed from the code that we wrote in Chapter 8 without implementing it (using it to create an actor). We will 
accomplish this by creating a Bagel.java class that will use the Java extends keyword to subclass a Hero.java abstract 
class. This makes Bagel.java into a subclass, and makes Hero.java a superclass.

Once we have a Bagel.java class in place, we will then use the Java new keyword and the Bagel() constructor 
method for the Bagel class to create a Bagel object named iBagel. We will load the iBagel object with some temporary 
SVG data, at least until we get into how to create complex SVG collision shape data in Chapter 16 covering collision 
detection. We will also pass an X and Y coordinate, to put the iBagel actor in the middle of the screen, and finally the 
9-character movement sprite “cels,” which we first looked at during Chapter 8.

We will do this so you can start to utilize the primary data fields (variables, properties, or attributes) that we 
installed in a public abstract Actor and Hero class infrastructure, which we so painstakingly (or, should I say, lovingly) 
designed back in Chapter 8.

We will also be working in our InvinciBagel.java primary application class again here in Chapter 10, and will 
create our iBagel Bagel (Hero) object in a new .createGameActor() method we will be coding, so that we can wire our 
main character up to the GamePlayLoop class’s .handle() method. This will then access (call) the Bagel class .update() 
method, so that we can start to control the movements for the primary hero for our game, the InvinciBagel himself.



Chapter 10 ■ Directing the Cast of Actors: Creating a Casting Director Engine and Creating the Bagel Actor Class

208

Game Design: Adding Our CastingDirector.java class
The first thing that I want to do to is to update our invincibagel package and class structure diagram to show you 
the new actor (sprite) management class that we are going to develop during this chapter using Java ArrayList and 
HashSet classes (objects). As you can see in Figure 10-1, I am going to name this class CastingDirector.java because 
it will act just like a Casting Director would for any entertainment project, adding Actors to the project, and removing 
them when the scene is finished. This class will also contain a Java collection (a Java ListArray is an ordered collection 
and a Java HashSet is an unordered collection) that will be used when we start to implement collision detection later 
on during the book. As your game levels and scenes get more complicated, you will be glad to have a CastingDirector 
class that keeps your game actors organized and adds and removes actors from the game as needed by your game’s 
programming logic. It is important to keep track of exactly how many Actor (fixed sprites) and Hero (motion sprites) 
objects are in the scene, so that you only involve the fewest possible number of actors in your collision detection code 
(algorithms). This is a function of optimizing your game programming logic so the game plays well across all platforms.

Before we code our CastingDirector.java class, let’s take some time to learn about Java collections, generics, and 
the List, ListArray, Set and HashSet classes that we are going to use to create these actor management tools.

List and ArrayList: Using java.util List Management
First, let’s cover the public class ArrayList<E> because it is a class, and then we will look at List as that is an Interface, 
and not a Java class. In case you are wondering what the <E> stands for, it stands for Element, if you see a <K> that 
stands for Key, if you see a <T> that stands for Type, and if you see a <V> that stands for Value. The <E> gets replaced 
by an element (object) that you’re using in an ArrayList. In our case that is ArrayList<Actor> as CastingDirector.java 
class ArrayList (and Set) will reference Actor objects (subclasses of Actor superclass). The class hierarchy is as follows:
 
java.lang.Object
  > java.util.AbstractCollection<E>
    > java.util.AbstractList<E>
      > java.util.ArrayList<E>
 

Figure 10-1.  Create a CastingDirector.java actor casting and tracking engine to keep track of Actor and Hero objects



Chapter 10 ■ Directing the Cast of Actors: Creating a Casting Director Engine and Creating the Bagel Actor Class

209

This class is a member of the Java Collections Framework, as you might have surmised, as a List, as well as an 
Array, both contain collections of data, much like a data structure (or a data store) does, only in a simpler format.  
An ArrayList<E> class can “implement” or support the following Java Interfaces: Serializable, Cloneable, Iterable<E>, 
Collection<E>, List<E>, and RandomAccess. We will be using the List<E> or, in our case, List<Actor> Java interface, 
which we will be looking at in the next section on List<E> when we will learn about Java Interfaces.

Essentially the ArrayList class (and object) creates a resizable Array implementation of the List<E> interface. An 
ArrayList object thus implements all optional List operations, and permits all types of List elements, including null. In 
addition to implementing the List<E> Java interface, this class also provides method calls, including a .removeAll(), 
.addAll(), and .clear(), which we will be using in our class, to manipulate both the List content as well as the size of the 
ArrayList object that is used internally to store the List of Actors (for List<Actor>) or Images (for List<Image>) used.

Each ArrayList object instance has a capacity. The capacity is the size of the Array used to store the elements 
(objects) in the List<E> implementation: in our case, a List<Actor>. The capacity will always be at least as large as the 
List size. As elements (Actor objects) are added to an ArrayList, its capacity will grow automatically, which makes it 
perfect for our CastingDirector class, as we can make levels of the game more and more complex that is, it can utilize 
more Actor objects in the ArrayList<Actor> of List<Actor>.

It is important to note that the List<E> implementation is not synchronized (capable of running on multiple 
threads simultaneously). If you need to have multiple threads access an ArrayList instance concurrently (at the same 
exact time), and at least one of these multiple threads modifies your List<Actor> structure, it must be synchronized 
externally (manually, using your code). We are going to call the CastingDirector class specifically when an enemy is 
killed, or a projectile is shot, or a treasure is found (collected) and will not have it being continually called on a pulse.

A structural modification of an ArrayList object is an operation that adds or removes one or more elements; 
merely setting the value of an element (Actor) in the ArrayList would not be considered to be structural modification.

The Java Interface: Defining Rules for Implementing Your Class
Before we look at the List<E> Java interface, let’s take a look at what Java interfaces do in general, as we did not have 
enough pages to cover all of the Java programming language back in Chapter 3. So I am going to cover some of the 
more advanced Java topics as we need to learn them during the book. A good example of this is lambda expressions 
in Chapter 9 and Java interfaces here in Chapter 10. The reason for using a Java interface is to make sure that other 
programmers who are going to use your code implement it correctly; that is, include everything necessary for the code 
to work properly.

Essentially, all an interface specifies is the group of related methods that is needed for another developer to 
implement your class. These are specified with “empty method” code bodies. If you wanted to have other developers 
use the Hero class, for instance, you would specify a Hero interface. This would be done using the following Java code:
 
public interface Hero {
    public void update();
    public boolean collide(Actor actor);
}
 

As you can see, this is similar to what we did with the .update() method in the Actor superclass, as there is no 
{code body} specified as there usually is in a method. Thus, in a sense, a Java interface is also used in an abstract 
fashion to define what needs to be included in a class that “implements” the Java interface. As you probably have 
guessed, you would thus use the Java implements keyword in your class declaration to implement a Java interface.



Chapter 10 ■ Directing the Cast of Actors: Creating a Casting Director Engine and Creating the Bagel Actor Class

210

So, if you had defined a Hero interface, and wanted to implement it in one of your classes, in which case the Java 
compiler would watch over the code and make sure that you are implementing the necessary method structures, the 
class definition line of code and the methods inside the body of the class would look something like the following:
 
public class SuperHero implements Hero {
    protected boolean flagVariable1, flagVariable2;
    public void update() {
        // Java statements to process on each update
    }
    public boolean collide(Actor actor) {
        // Java statements to process for collision detection
    }
}
 

So with the java.util ArrayList class that we looked at earlier, the technical class definition is as follows:
 
public class ArrayList<E> extends AbstractList<E> implements List<E>
 

The ArrayList<E> class also implements RandomAccess, Cloneable, and Serializable, but we will not be using 
those at this time so I am just showing you the parts of the ArrayList<E> class definition that pertain to what we will 
be learning during this chapter, not the full public class ArrayList<E> extends AbstractList<E> implements 
List<E>, RandomAccess, Cloneable, Serializable class definition, as you would see if you look at the Java class 
documentation for the ArrayList<E> class online.

It is important to notice that the .addAll(), .removeAll() and .clear() method calls that we will use with the 
ArrayList<E> class are implemented because the List<E> Java interface demands that they be implemented, so that is 
the connection between the classes and why we will specify the declaration of the ArrayList<> object using this code:
 
private List<Actor> CURRENT_CAST = new ArrayList<>();
 

You may be wondering why we will not need to explicitly specify the Actor object type on both sides of this 
declaration and instantiation statement. Prior to Java 7, you would have needed to specify your Actor object type on 
both sides of this statement, inside of the ArrayList<>() constructor method call. So, if you are writing game code that 
needs to be compatible with Java 5 and Java 6, you would code this statement using the following line of Java code:
 
private List<Actor> CURRENT_CAST = new ArrayList<Actor>();
 

Now that we have learned what a Java interface is, let’s take a look at the List<E> public interface in detail.

The List<E> Public Interface: A List Collection of Java Objects
The List<E> public interface is also a member of the Java Collections Framework. The Java public interface List<E> 
extends the Collections<E> public interface, which extends the Iterable<T> public interface. Thus, the super interface 
to sub interface hierarchy would look something like this following List<E> Java interface hierarchy:
 
Interface Iterable<T>
  > Interface Collection<E>
    > Interface List<E>
 

A List<E> is an ordered Collection<E> and could also be thought of as a sequence of objects. In our case, the 
List<Actor> will be an ordered sequence of Actor objects. A user of the List interface has precise control over where in 
the List each element (in our case, Actor object) is inserted. The user can access elements using an integer index, that 
is, the position in the List, using a parenthesis after the name of the List. You can also search for elements in a List.



Chapter 10 ■ Directing the Cast of Actors: Creating a Casting Director Engine and Creating the Bagel Actor Class

211

For instance, in the Actor.java class, we have the following line of code we declared at the top of the class:
 
protected List<Image> imageStates = new ArrayList<>();
 

To access the first Actor class imageState Image object List sprite, we will use the following Java statement:
 
imageStates.get(0);
 

Unlike Set objects, which we will be learning about in the next section of the chapter, your List<E> interface 
conformant ArrayList objects will typically allow duplicate elements. An example of this for a game application might 
include projectiles (say, bullets) if you have coded the game to allow the Enemy object to shoot at the Bagel object.  
We will, of course, try to keep duplicate elements in our game to a minimum for optimization purposes, but it is nice to 
have this capability in the List<Actor> implementation if we need to have duplicate elements in a game scene.

The List<E> interface provides four methods for positional (indexed) access to List elements (objects) using 
the integer index in the method call. These include the .get(int index) method, to get an object from the List; the 
.remove(int index) method, to remove an object from the List; the .set(int index, E element) method, which 
will replace an object within the List; and a .listIterator() method, which returns a ListIterator object from 
the List. A ListIterator object allows you to perform an operation (add, remove, set/replace) on more than one List 
element at a time, in case you might be wondering what a ListIterator is utilized for.

The List interface provides this special Iterator<E> implementation, called a ListIterator<E>, which is a sub 
interface of the Iterator<E> super interface, to allow multiple element insertion and replacement. A ListIterator<E> 
also provides bidirectional List access, in addition to the normal operations that the Iterator<E> interface provides.

The .listIterator() method that we discussed earlier was provided to obtain a ListIterator object that starts at a 
specified position in the list. So using an imageStates List<Image> ArrayList object, a imageStates.listIterator() 
method call would produce a ListIteration object containing an iteration over an entire imageStates ArrayList<Image> 
object. This would give us imageStates(0), the starting List element, as well as the remainder of this List<Image> in an 
ArrayList<Image> construct, which would be referenced as imageStates(1), imageStates(2), and the last one would 
be referenced as imageStates(8). Java List class use () parens to reference List objects, whereas Java Array classes use 
the [] square brackets. A Java List is “dynamic” (luckily, we have discussed static versus dynamic); that is, it’s open-
ended, whereas a Java Array is “static,” or fixed, which means that its length needs to be defined when it is created.

Objects that implement List<E> start their numbering schema using a zero, just like all Java Array objects. This is 
not out of the ordinary, as most Java programming constructs will also start counting at zero instead of using one. It is 
important to note from an optimization standpoint that iterating over the elements in List<E> is typically preferable 
(more optimal) to indexing through it by number, for instance using a for loop, which is probably why support for this 
ListIterator interface is a part of the List<E> interface specification, and therefore is a part of the ArrayList class, which 
has no choice but to implement the List<E> interface specification because it uses the Java implements keyword.

The List<E> interface also provides three methods allowing access to the List using a specified object. These 
include .indexOf(Object object), .contains(Object object), and .remove(Object object). Again, looking at it 
strictly from a performance standpoint, these methods should be used with caution, because having to compare an 
“input” object to every object inside of the List is going to take way more memory and CPU cycles than simply using 
the index for the object in the List. After all, that is what an index is for! In many implementations this will perform 
a costly “linear” object search, starting at ListElement[0] and going through the entire list comparing objects. If your 
object is at the “head” of this List, this would not be costly at all. One the other hand, if your object is at the end of a 
List containing a great many object elements, you may well observe a performance hit using these “object oriented” 
methods. Well, all methods are object oriented, so, let’s cleverly call these methods “object parameterized” instead!

The List<E> interface also provides two methods to efficiently read or remove multiple List elements at an 
arbitrary point within the List. The .removeRange(int fromIndex, int toIndex) removes a range of List elements, 
and the .subList(int fromIndex, int toIndex) returns a view of the portion of the List between the specified 
fromIndex and the toIndex. The fromIndex is included in the returned sub-list, however, the toIndex is not included.



Chapter 10 ■ Directing the Cast of Actors: Creating a Casting Director Engine and Creating the Bagel Actor Class

212

Finally, the List<E> interface provides three methods that manipulate the entire List using a single method. Since 
we are using the List to manage all of the Actor objects currently in the scene, we will primarily be using these methods, 
which were mentioned earlier in the ArrayList section of the chapter and include .addAll(), .removeAll(), and .clear(). 
We will also be using the .add(E element) method to add a single Actor object to our CURRENT_CAST List.

Finally, while it is technically permissible for a List<E> to contain itself as an element, this is not viewed as being 
a “good” programming practice, so I do not recommend doing this. You should use extreme caution if you are going to 
try doing this, because the equals and hashCode methods will no longer be “well defined” in such a List.

Set and HashSet: Using java.util Unordered Sets
The Set<E> public interface is also a member of the Java Collections Framework. The Java public interface Set<E> 
extends the Collections<E> public interface, which extends the Iterable<T> public interface. Thus, the super interface 
to sub interface hierarchy for Set<E> is the same as it is for List<E> and looks like the following interface hierarchy:
 
Interface Iterable<T>
  > Interface Collection<E>
    > Interface Set<E>
 

A Set<E> is an unordered Collection<E> and could also be thought of as a random collection of objects in 
no particular order. A Set<E> collection may contains no duplicate elements, and will throw an error, called an 
“exception,” if a duplicate element is added to the Set<E> or if any “mutable” (elements than can change into 
something else) element is changed into an element that duplicates another element already in the Set<E>. This no 
duplicates rule also means that at the most, a Set<E> can contain only one single null element. As all of you who are 
well versed in mathematics may have surmised already, this Set<E> interface is modeled after the mathematical set 
you learned about in school.

The Set<E> interface places additional stipulations beyond those that are “inherited” from the Collection<E> 
super interface, on the “contracts” (requirements for all of you non-legal types) for all constructor methods, as well as 
on the contracts (requirements) of the .add(), .equals(), and .hashCode() related methods.

The additional stipulations on these constructor methods is, according to rule, that all constructors must create a 
Set<E> containing zero duplicate elements.

As mentioned earlier, you must be careful regarding what you are doing if mutable (changeable) objects are used 
as elements in a Set<E> collection. The behavior of the Set<E> is not specified if the value of an object is changed in 
a manner that affects the .equals() method comparisons while the mutable object is an element in that Set<E>. The 
special case of this prohibition is that it is not permissible for a Set<E> to contain itself as an element, as a List<E> can.

The java.util HashSet Class: Using Unordered Sets of Objects
Next, let’s cover the public class HashSet<E> that is a member of the Java Collections Framework as well. This 
class that provides a HashSet object container for the Set<E> interface specification is similar to the way that the 
ArrayList<E> class creates an ArrayList object container for the List<E> interface. The HashSet class can “implement” 
or support the following Java Interfaces: Serializable, Cloneable, Iterable<E>, Collection<E>, and Set<E>. We will be 
using the Set<E>, or in our case, Set<Actor> interface, in our CastingDirector.java class. The Set<E> class hierarchy is 
as follows:
 
java.lang.Object
  > java.util.AbstractCollection<E>
    > java.util.AbstractSet<E>
      > java.util.HashSet<E>
 



Chapter 10 ■ Directing the Cast of Actors: Creating a Casting Director Engine and Creating the Bagel Actor Class

213

The HashSet class implements the Set<E> interface in the form of a hash table, which is actually an instance of 
a HashMap. The HashSet makes no guarantees as to the iteration order of the Set<E> of objects; in particular, it does 
not guarantee that the order will remain constant over time. This class permits the use of one null element.

It is important to note that the Set<E> implementation is not synchronized. If multiple threads access your 
HashSet object concurrently, and at least one of these threads modifies your Set<E>, then it should be synchronized 
externally. This is typically accomplished by synchronizing on some object that naturally encapsulates the Set<E> 
such as the HashSet. We are using the HashSet in a very basic fashion: to hold objects that are removed from the 
game play for one reason or another, such as treasure being found; enemies being eliminated; or similar game design 
scenarios.

One of the advantages of the HashSet class (and object) offers is a constant time performance for your basic 
dataset operations such as the .add(), .remove(), .contains(), and .size() methods. Iteration over a HashSet object will 
require a time period proportional to the sum of the Set<E> object instance size, which is determined by the number 
of elements currently in the Set<E> combined with the “capacity” of the backing HashMap object instance.

Creating Your Casting Engine: CastingDirector.java
Now that you have some background on Java interfaces, the Java Collection Framework, and its List<E> and 
Set<E> interfaces implemented by the ArrayList<E> and HashSet<E> classes, we can move on to create our basic 
CastingDirector class. The class will keep a List object of what Actor objects are currently “in play” in the current 
scene and another List object of what Actor objects should be checked for collisions. There will also be a Set object to 
hold Actor objects that need to be removed. Right-click on the invincibagel package folder in the NetBeans Projects 
pane, and select the New ➤ Java Class menu sequence to bring up the New Java Class dialog, which is shown in 
Figure 10-2. Name the new class CastingDirector and leave the other fields in the dialog, which are automatically set 
by NetBeans.

We will start by creating the List<Actor> ArrayList<Actor> objects first, one to hold the current cast for 
your scene and then a second List<Actor> to hold objects to be checked for collision detection. After that we will 
create the Set<Actor> HashSet<Actor> object, which will provide an unordered Set object, which will collect 
those Actor objects that need to be removed from the scene. Let’s get started creating the body of our public 
CastingDirector class.

Figure 10-2.  Create a New Java Class in the invincibagel package; name it CastingDirector for the InvinciBagel Project



Chapter 10 ■ Directing the Cast of Actors: Creating a Casting Director Engine and Creating the Bagel Actor Class

214

Creating an ArrayList Object: CURRENT_CAST Data Store List
The first thing that we need to add to the CastingDirector class is a private List<Actor> ArrayList<Actor> object that 
I am going to name CURRENT_CAST as it contains the Actor objects that are currently on the Stage, which is the 
current cast. Although it is not technically a constant as far as using static and final keywords in its declaration, it 
is acting (no pun intended) as a database of sorts, and so I am using ALL_CAPS so that it stands out in the code as 
being a data structure. I’m also going to add a basic .get() method to access the ArrayList<Actor> structure using 
a Java return keyword to return an object to the calling entity. The code for the declaration and instantiation of 
the CURRENT_CAST ArrayList object and the body of the .getCurrentCast() method structure should look like the 
following Java code: 
 
package invincibagel;
public class CastingDirector {
 
    private List<Actor> CURRENT_CAST = new ArrayList<>();
 
    public List<Actor> getCurrentCast() {
        return CURRENT_CAST;
    }
}
 

As you can see in Figure 10-3, there is wavy red error highlighting under your List interface reference as well as 
your ArrayList reference in the line of code that declares and instantiates the CURRENT_CAST object, so you’ll need 
to use the Alt-Enter work process, and have NetBeans 8 write the import java.util.List; statement at the top of 
your class. The .getCurrentCast() will be the easiest method to code, as it simply returns your entire CURRENT_CAST 
ArrayList<Actor> object to whatever Java entity may be calling the method. Next, we’ll take a look at how to code 
the more complicated ArrayList data store access methods, which will deal with adding, removing, and resetting 
(clearing) the Actor objects from this CURRENT_CAST ArrayList<Actor> object.

Figure 10-3.  Inside the CastingDirector class, add a CURRENT_CAST List<Actor> object, and a .getCurrentCast() method

The first method that we will code is the .addCurrentCast() method, which will pass in a comma delimited List 
of Actor objects to the List (and the ArrayList class that implements List) interfaces .addAll() method call. As you have 
learned already, a comma delimited List is passed at the end of the method parameter list, unless, as it is in this case, 
it is the only parameter. 



Chapter 10 ■ Directing the Cast of Actors: Creating a Casting Director Engine and Creating the Bagel Actor Class

215

To show the .addCurrentCast() method that we are going to pass more than one Actor object into the body of the 
method, we used the Actor... annotation, and I am going to name the (more than one) Actor objects variable actors. 
Inside of the body of the .addCurrentCast() method we will call an .addAll() method off of the CURRENT_CAST 
object using dot notation.

Inside of the .addAll() method we will nest another Java statement that will create an Arrays object from the 
comma delimited List using the .asList() method called off the Arrays class reference and pass the actors Actor... 
comma delimited list into that method. This is all done using the following Java method construct: 
 
public void addCurrentCast(Actor... actors) {
    CURRENT_CAST.addAll( Arrays.asList(actors) );
}
 

As you can see in Figure 10-4, you will get a wavy red error highlighting under the Arrays class, so use the  
Alt-Enter work process and have NetBeans write your import java.util.Arrays; statement for you. Now we are 
ready to write the other two methods relating to the CURRENT_CAST data store that will remove Actor objects from 
the List<Actor> ArrayList<Actor> data store object, and one that will clear it out entirely (reset it to being unused).

Figure 10-4.  Add .addCurrentCast(), removeCurrentCast(), and resetCurrentCast methods to the CastingDirector class

The second method that we will code is the .removeCurrentCast() method, which will also pass in a comma 
delimited List of Actor objects to the List (and ArrayList class implementing List) interfaces .removeAll() method call. 

To show this .removeCurrentCast() method that we are going to pass more than one Actor object into the body 
of the method, we again use the Actor... annotation, and I am going to again name this variable actors. Inside of the 
body of the .removeCurrentCast() method we will again call the .removeAll() method off of the CURRENT_CAST 
object, and inside of the .removeAll() method we’ll nest another Java statement that will create an Arrays object from 



Chapter 10 ■ Directing the Cast of Actors: Creating a Casting Director Engine and Creating the Bagel Actor Class

216

the comma delimited List using the .asList() method called off the Arrays class reference, again passing the Actor... 
comma delimited list named actors into the method. This is done using the following Java method seen in Figure 10-4:
 
public void removeCurrentCast(Actor... actors) {
    CURRENT_CAST.removeAll( Arrays.asList(actors) );
}
 

Now all you have left to code is a simple .resetCurrentCast() method, which invokes the .clear() method call: 
 
public void resetCurrentCast() {
    CURRENT_CAST.clear();
}
 

Next let’s take a look at one more issue in our CastingDirector.java code thus far, and then we can move on.

NetBeans Optimization Suggestions: Making a List<Actor> Data Store Object Final
As you can see in Figure 10-5, your code is error-free, but is not warning free, so let’s take a look at what NetBeans 
wants us to do to the code that relates to our CURRENT_CAST List<Array> data store object. I used the mouse-over 
work process, and popped up the pale yellow hints message, which informed me that the CURRENT_CAST data  
field (variable, which is an object) can be marked as final, using the Java final keyword. If we were to do this, the 
basic Java 8 syntax for the new declaration and instantiation statement for the CURRENT_CAST object will be 
written as follows:
 
private final List<Actor> CURRENT_CAST = new ArrayList<>(); 

Figure 10-5.  Mouse-over yellow warning highlight under CURRENT_CAST, and use the Alt-Enter dialog to fix problem



Chapter 10 ■ Directing the Cast of Actors: Creating a Casting Director Engine and Creating the Bagel Actor Class

217

Often there is a misunderstanding as to the use of this Java modifier keyword final with regard to objects. It is 
true that with most Java variables (numeric, Boolean, and String) when made final, the variable value itself can’t be 
changed. Many assume that a final modifier when used with a Java object (variable declaration) also makes the object 
itself “final,” and therefore “immutable,” or not changeable in memory.

Generally in Java the final keyword when used with an object variable refers to memory references, and the 
immutable keyword applies to those objects themselves, and means that they can’t be changed. Therefore, an object 
(reference) that is declared as final can still contain an object that is mutable (can be changed, as we wish to do here).

In fact, what the final modifier keyword does regarding Java objects in memory, such as our CURRENT_CAST 
ArrayList<Actor> object, is to make the reference to where it’s being kept in memory locked, that is, finalized. So 
what NetBeans is suggesting here is an optimization that will allow your CURRENT_CAST data store object to remain 
where it is in memory all of the time (after it is created).

This does not mean that your List<Actor> ArrayList<Actor> object itself can’t change. Your game’s Java code can 
expand, contract, and clear (reset) a List<Actor> ArrayList<Actor> object that has been declared final at any time, based 
upon your game’s invocation of the .addCurrentCast(), .removeCurrentCast(), and .resetCurrentCast() methods.

The optimization theory here would be the more a JVM can “lock down” memory locations “up front” (upon 
program launch, when loading into memory), the better it can optimize memory, as well as the CPU cycles that are 
needed to access this memory. If you think about it, if the CPU does not have to “look” for an object in memory, then 
it will be able to access it faster. A final object can also be used more optimally in a multi-threaded environment.

If, however, you do not want to make your object references final, you can optionally turn this feature off in 
NetBeans. This can be done using the Tools ➤ Options menu sequence, seen on the left side of Figure 10-6, in order 
to access the Options dialog, which is shown in the right side of Figure 10-6. As you can see along the top of this 
Options dialog, NetBeans has organized it’s hundreds of preferences (also known as options) into ten specific areas, 
and even has a Search Filter, seen at the top right of the dialog as well, in case you don’t know exactly where to look 
for a given option. If any of these sections have too many options to display on the dialog screen, there will be tabs 
(the hints tab is shown selected in Figure 10-6), which you can use to navigate to an area you want to visit. We’re 
going to the Hints section, and selecting the Java Language from the drop-down, and then finally opening up the 
Threading section.

Figure 10-6.  Setting Editor Hints Preferences using the Tools ➤ Options menu and the Editor ➤ Hints ➤ Java ➤ Threading

Now that we have covered the final object variable issue, and shown you both ways of dealing with it, let’s continue on, 
and create a second ArrayList<Actor> object named COLLIDE_CHECKLIST to store complex collision data.



Chapter 10 ■ Directing the Cast of Actors: Creating a Casting Director Engine and Creating the Bagel Actor Class

218

Another ArrayList Object: COLLIDE_CHECKLIST Data Store List
Now let’s create our second List<Actor> ArrayList data store object and call it COLLIDE_CHECKLIST since it 
will eventually be accessed in the .collide() method; this will happen if you implement complex multiple object 
collision lists in later advanced stages of game development. We will not get to the advanced level that will require 
implementation of this during this book, but I wanted to show you how to put a complete CastingDirector class 
together, so that you will have it in place when you need it for your game development, as you add more advanced 
features into your game. This object will hold the most current copy of the CURRENT_CAST ArrayList<Actor> and 
will have two methods. The .getCollideCheckList() method will return the COLLIDE_CHECKLIST object, and the 
.resetCollideCheckList() will reset the COLLIDE_CHECKLIST, by using the .clear() method call, and for now, we 
will use the .addAll() method to load COLLIDE_CHECKLIST ArrayList<Actor> object with the current version of the 
CURRENT_CAST ArrayList<Actor> object. Later we can use this List to hold a custom collision checklist, that groups 
together only objects that can collide with each other into one List. The Java code, which can be seen in Figure 10-7, 
needed to declare and instantiate the object, should look like the following:
 
private final List<Actor> COLLIDE_CHECKLIST = new ArrayList<>();
 

Figure 10-7.  Add a COLLIDE_CHECKLIST List<Actor> object, .getCollideCheckList(), and resetCollideCheckList() 
methods

A .getCollideCheckList() method uses a return keyword, to give access to the COLLIDE_CHECKLIST, like this:
 
public List getCollideCheckList() {
    return COLLIDE_CHECKLIST;
}
 



Chapter 10 ■ Directing the Cast of Actors: Creating a Casting Director Engine and Creating the Bagel Actor Class

219

A .resetCollideCheckList() method uses a .clear() method to clear out the COLLIDE_CHECKLIST and then uses 
an .addAll() method to add (insert) the contents of the CURRENT_CAST object into the COLLIDE_CHECKLIST object.
 
public void resetCollideCheckList() {
    COLLIDE_CHECKLIST.clear();
    COLLIDE_CHECKLIST.addAll(CURRENT_CAST);
}
 

Now that we have our ArrayList<Actor> objects set up to hold cast members and advanced collision list data sets, 
let’s create a HashSet<Actor> object. This Set object will be used to collect Actors that for one reason or another need 
to be removed from the game play (the Scene and the Stage).

Creating a HashSet Object: REMOVED_ACTORS Data Store Set<Actor>
Now let’s create our third Set<Actor> HashSet data store object, and let’s call it REMOVED_ACTORS, since it will 
be used to hold a collection of Actor objects that have been removed from the current Stage. This Set<Actor> object 
will hold all of the Actor objects that for whatever reason need to be removed from the CURRENT_CAST List. The 
REMOVED_ACTORS data store (data set) will have three associated methods.

The .getRemovedActors() method will return the REMOVED_ACTORS object, the .addToRemovedActors() will 
be the “core” method that will add Actor objects to the REMOVED_ACTORS Set<Actor> object as things happen 
during game play (finding treasure, killing enemies, etc.) that eliminate an Actor object from the Stage and Scene, 
and the .resetRemovedActors() that will use the .removeAll() method to remove Actors from the CURRENT_CAST 
ArrayList<Actor> object, and then reset the REMOVED_ACTORS data set, by using the .clear() method call on the 
REMOVED_ACTORS HashSet object. The code, seen in Figure 10-8, needed to declare and instantiate the HashSet 
object using the Java new keyword, looks like this: 
 
private final Set<Actor> REMOVED_ACTORS = new HashSet<>();
 

Figure 10-8.  Add a private final Set named REMOVED_ACTORS and use the Java new keyword to create a HashSet<>



Chapter 10 ■ Directing the Cast of Actors: Creating a Casting Director Engine and Creating the Bagel Actor Class

220

The easiest of these three methods to write is the .getRemovedActors() method, which simply uses a return 
keyword to pass the entire HashSet<Actor> Set object to a calling entity. This provides access to REMOVED_ACTORS 
to other methods, such as the ones we will be writing later on in this section. The Java code should look just like this:
 
public Set getRemovedActors() {
    return REMOVED_ACTORS;
}
 

The next method we’ll need to code is the most complicated as well as the most often used, as it will be the one 
you use when something in your cast has changed: for instance, a killed enemy, such as an InvinciBagel, a spent 
projectile, such as a bullet, consumed food, such as a ball of cream cheese, or found treasure, such as a gift box.

The .addToRemovedActors() method uses the if-else statement, to ascertain if multiple Actor objects have been 
passed in the parameter list (the first or if part of the construct) or if just one Actor object needs to be removed (the 
second or else part of the construct). The first part of the if-else statement uses the .length() method to ascertain if 
more than one Actor objects has been passed into the method call parameter list using if(actors.length > 1) since 
an Actor... parameter allows more than one Actor object to be submitted to the method, as seen in Figure 10-9.

Figure 10-9.  Add .getRemovedActors(), .addToRemovedActors(), and .resetRemovedActors() method structures



Chapter 10 ■ Directing the Cast of Actors: Creating a Casting Director Engine and Creating the Bagel Actor Class

221

If there are multiple Actor objects to be processed the inside of an if{...} construct, use the .addAll() method to 
add the contents of the parameter list to your REMOVED_ACTORS Set<Actor> object. This is accomplished by using 
the Arrays.asList((Actor[]) actors)) construct inside of the .addAll() method call, which constructs the Actor[] 
Array named actors that is compatible with (necessary for) using an .addAll() method call with a Set<E> object type. 
The second else{...} portion of this method body adds one single Actor object, since the actors.length was not greater 
than one, by using an actors[0] annotation (first Actor parameter) and an .add() method call using the following code: 
 
public void addToRemovedActors(Actor... actors) {
    if (actors.length > 1) { REMOVED_ACTORS.addAll(Arrays.asList((Actor[]) actors)); }
    else {                   REMOVED_ACTORS.add(actors[0]);                          }
 

Notice that since we have converted the Actor... parameters (which are destined for a List, but are not one yet) 
into an Array (because the compiler can count the fixed number of items), so we can use the actors[0] notation.

Now that we have a way to add one or more Actor objects to the REMOVED_ACTORS Set<Actor> HashSet, let’s 
create a .resetRemovedActors() to clear out the REMOVED_ACTORS data set. Before we clear the Set<Actor> object 
we need to make sure all of the Actor objects contained within it are removed from the CURRENT_CAST Actor List 
object, since that is what it is there for, so the first part of this method will call the .removeAll() method off of the 
CURRENT_CAST ArrayList<Actor> object and inside of this method pass over the REMOVED_ACTORS Set<Actors> 
object. After that we can use the .clear() method call off of the REMOVED_ACTORS object to reset it back to being 
empty, so that it can be used all over again to collect Actor objects that need to be disposed of. The Java code, which is 
shown in Figure 10-9, should look like the following: 
 
public void resetRemovedActors() {
    CURRENT_CAST.removeAll(REMOVED_ACTORS);
    REMOVED_ACTORS.clear();
}
 

Next, we are going to look at how we can get NetBeans to code our CastingDirector() constructor method!

CastingDirector() Constructor: Having NetBeans Write the Code
There is a way that you can get NetBeans to write a constructor method for you, and since it is a little bit “hidden,”  
I’ll show you how to find it! I left the insertion-bar cursor in Figure 10-10, to show you that I clicked on the final 
keyword and the yellow light bulb “tip” icon that appears, and the pale yellow pop-up tooltip message that I get when 
I mouse-over the tip light bulb. The message that I get is the “Move initializer to constructor(s),” and so I hit the  
Alt-Enter key combo that is suggested. Sure enough, there is an option for NetBeans to write this constructor method 
code for me.



Chapter 10 ■ Directing the Cast of Actors: Creating a Casting Director Engine and Creating the Bagel Actor Class

222

For the first final keyword that you click on, and Alt-Enter, and have NetBeans write your CastingDirector() 
constructor method for, it will code the public CastingDirector(){...} structure for you, and add the first instantiation 
statement. As you can see in Figure 10-11, once you click on each of the three final keywords at the top of your class 
and use the same work process, you can have NetBeans write the entire constructor method for you. The Java code 
that NetBeans generates uses the Java this keyword (so that the CastingDirector object can refer to itself) to preface 
each of the three data store objects, as well as using the Java new keyword to create new instances of ArrayList<E> and 
HashSet<E> should look like the following:
 
public CastingDirector() {
    this.CURRENT_CAST = new ArrayList<>();
    this.COLLIDE_CHECKLIST = new ArrayList<>();
    this.REMOVED_ACTORS = new HashSet<>();
}
 

Figure 10-10.  Mouse-over the yellow light bulb icon in the line number area of the pane and reveal the constructor tip



Chapter 10 ■ Directing the Cast of Actors: Creating a Casting Director Engine and Creating the Bagel Actor Class

223

We should probably create at least one Actor class (object) for our game’s star character, the InvinciBagel himself, 
before we close out this chapter. Let’s use our Hero abstract class to create a Bagel class so that later we can create an 
iBagel object. We will use this code in the next chapter, where we will learn how to move this InvinciBagel character 
around the Stage, as well as optimizing the structure of our InvinciBagel.java class a bit more as well.

Creating Our Main Actor: The Bagel Hero Subclass
Let’s create a Bagel.java class by right-clicking on the invincibagel package folder in the NetBeans Projects pane 
on the left side of the IDE, and select the New ➤ Java Class menu sequence to bring up the New Java Class dialog, 
shown in Figure 10-12. Name the class Bagel and accept the other default Project, Location, Package and Created 
File option fields, by clicking on the Finish button, which will create the new Bagel.java class, and open it up in a tab 
in NetBeans.

Figure 10-11.  Use Alt-Enter, and have NetBeans write your CastingDirector() constructor method Java code for you



Chapter 10 ■ Directing the Cast of Actors: Creating a Casting Director Engine and Creating the Bagel Actor Class

224

The first thing that you will want to do is to add the Java extends keyword to the end of your public class Bagel 
{...} class declaration statement that NetBeans wrote for you, so that your Bagel class inherits all of the power 
(variables and methods) from the Hero class that we created back in Chapter 8. The Java code for this currently empty 
class should look like the following:
 
package invincibagel;
 
public class Bagel extends Hero {
    // an empty class structure
}
 

The first thing that we will want to write is the Bagel() constructor method, since we want to create a Bagel 
character to place onto the screen so that we can start to work on movement code, and later collision code. This code 
will take in the same exact parameters that the Hero class Hero() constructor method needs to receive, and will pass 
them “up” to the Hero class Hero() constructor using the Java super keyword (I like to call this a super constructor) 
in the form of a super() constructor method call. Your Java code for this Bagel() constructor method should look just 
like the following Java class and constructor method structure:
 
public class Bagel extends Hero {
    public Bagel(String SVGdata, double xLocation, double yLocation, Image... spriteCels) {
        super(SVGdata, xLocation, yLocation, spriteCels);
    }
}
 

As you can see in Figure 10-13, there is a wavy red error underline highlight, under the Bagel class name. If you 
mouse-over this you will see the “Bagel is not abstract and does not override abstract method .update() in Hero,” 
which tells you that you either need to make Bagel a public abstract class, which we are not going to do because we 
wish to actually use this class to hold a character (object) and its attributes (variables) and capabilities (methods), so 
the other option to eliminate this error is to add in your @Override public void update() {...} method structure, 
even if it is an empty method for now.

Figure 10-12.  Use the New Java Class dialog and create the Bagel.java class in the invincibagel package



Chapter 10 ■ Directing the Cast of Actors: Creating a Casting Director Engine and Creating the Bagel Actor Class

225

The code to implement the (currently) empty .update() method uses a Java @Override keyword, and once it is in 
place the error will disappear, and the code will be error-free, as seen in Figure 10-14. The code looks like this:
 
@Override
public void update() { // empty method structure }
 

Figure 10-14.  Add a public void .update() method to override the public abstract void update method in the Hero class

Figure 10-13.  Code a public Bagel() constructor method that calls a super() constructor method (from Hero superclass)

Notice at the top of Figure 10-14 that you will have to add the import javafx.scene.image.Image; code statement 
in order to be able to use the Image... annotation in your public Bagel() constructor method parameter list.

Just to be thorough, let’s override a public Boolean .collide() method as well, so that we have it in the Bagel 
class. You may be wondering why NetBeans did not give us an error in Figure 10-14 when we did not add the .collide() 
method to the Bagel class. As you can see in Figure 10-15, which shows the public abstract Hero class, we didn’t make 
the .collide() method a public abstract method, like we did with the .update() method. This is why NetBeans 8 did not 
generate any error highlighting, because we’re not required to implement the .collide() method in all Hero subclasses.



Chapter 10 ■ Directing the Cast of Actors: Creating a Casting Director Engine and Creating the Bagel Actor Class

226

You might be wondering why we didn’t make .collide() into an abstract method, which it’s important to note that 
we could do, at any point in time in the future. The reason is that we might want to have (add in) motion sprites that 
do not collide with anything in the scene (game play) at some point in your future game development, perhaps to add 
in visual detail elements, such as a bird flying across the top of the screen. The choice is yours to make, so if you want 
motion sprites to always collide with things, you could declare the .collide() method to be abstract as well.

The important thing to note is that we can still override the .collide() method, which I am going to do next, 
just to show you that this can still be done without the method having to be declared using the Java abstract keyword 
and the Bagel class will use the overridden .collide() method rather than the “default” method in the Hero superclass, 
which returns a false value (no collision).

What is important to make a note of here is that you can put your default method code into the superclass, 
which, if not specifically overridden in any given subclass, will become your default method programming logic for all 
of your subclasses. This allows you to implement “default” behaviors for all your subclasses, in one place (superclass).

Of course, you can always override this default behavior, and implement a more specific behavior, using the  
@Override keyword along with the same exact method declaration format. This can be seen in Figure 10-16, near the 
bottom of the screen shot, and if you compare this with the bottom of Figure 10-15, you will see that their structure is 
identical, with the exception of the @Override keyword used in the Bagel subclass. When we cover collision detection 
programming, we’ll replace the return false; line of code with our Bagel class’s own customized .collide() collision 
detection behavior, which will become quite complex as we add advanced features to the game as time goes on. For 
now I am installing this .collide() method body (essentially empty, as it just returns false) so you see a complete class.

Figure 10-15.  The Hero abstract class has a public boolean collide() method but since it is not abstract it is not required



Chapter 10 ■ Directing the Cast of Actors: Creating a Casting Director Engine and Creating the Bagel Actor Class

227

We have made a lot of good progress in this chapter, creating a Casting Director and the Star for your game!

Summary
In this tenth chapter, we added two key classes to the game: the CastingDirector.java class and the Bagel.java class. 
The first performs a cast management and collision management functionality, and the second adds the primary 
actor for the game, so that we can start to work on how the InvinciBagel moves around the screen. We looked at a 
diagram of our current package and class structure and how the new classes are going to fit into an overall game 
engine design strategy that we are implementing during this book.

We learned what a Java interface is, and how Java interfaces will allow us to control what’s implemented by other 
developers regarding our classes. We also learned about the Java Collection Framework, which provides things such 
as Arrays, Lists and Sets to use to provide data store functionality for our Java 8 and JavaFX applications (games).

We learned about the java.util package and its List<E> interface, as well as the ArrayList<E> class, and how the 
ArrayList<E> class implements this List<E> interface. We learned about <E> Elements, <K> Keys, <V> Values, and 
<T> Types. We learned that the List and ArrayList objects have a structure and an order, whereas the Set and HashSet 
objects do not have a specific order, and cannot have duplicate elements.

Next we created your CastingDirector.java class, to manage the Actor objects that will need to be added to the 
game and removed from the game. This class will also maintain the List<Actor> structure that will be used for the 
collision detection logic that we will be adding later on during the book in Chapter 16.

Finally, we created our first Actor related class, the Bagel class, which extends the Hero superclass and will allow 
us to put the primary InvinciBagel Actor object character into our game Scene and onto the Stage. We created the 
Bagel() constructor method and used the @Override keyword to override the .update() and .collide() methods, so 
that we have someplace to construct our programming logic relating to this character during the rest of the book.

In the next chapter, we’re going to take a look at how to move the game sprite around the screen using this 
KeyEvent event handling structure that we have created during this chapter, as well as how to ascertain the boundary 
(edges) of the screen, character direction, movement velocity, and related animation and movement considerations.

Figure 10-16.  Override public boolean .collide() method body, for our use later on during a collision detection chapter



229

Chapter 11

Moving Your Action Figure in 2D: 
Controlling the X and Y Display 
Screen Coordinates

Now that we have created the public CastingDirector class, which I call the “casting engine,” in Chapter 10, we need to 
get back into our InvinciBagel.java primary application class coding here in Chapter 11, and create our iBagel primary 
game play Actor (character) in the .createGameActors() method. We will also create the castDirector object using 
the CastingDirector.java class and its CastingDirector() constructor method, which we created in Chapter 10, as well as 
creating the .createCastingDirection() method, which will manage our casting direction class-related features.

After we finish adding the code into our InvinciBagel.java class that will create the iBagel Bagel object, and create 
a castDirector CastingDirector object, we will reorganize our code into logical method structures for the major task 
areas that need to be addressed in the InvinciBagel class. After we do this, we’ll have eight logical method areas. These 
methods will then serve as “guides” to the functional areas that we will need to keep updated (add statements to) as 
we develop our game over the rest of the book. For instance, if we add an Actor to the game, we will do this by adding 
(instantiating) an Actor object inside of a .createGameActors() method, and then add the Actor object to a cast object 
created using our new CastingDirector() constructor method inside of a new .createCastingDirection() method.

In addition to the .createGameActors() and .createCastingDirector() methods, our new methods will include the 
.loadImageAssets() method, the .createSceneEventHandling() method, the .createStartGameLoop() method, 
and the .addGameActorNodes() method. So, we will be creating half a dozen new methods for your InvinciBagel.
java class during this chapter, to significantly “beef up” the top-level organizational structure for our game’s core 
class as well as its “top-level” .start() method. There’s only one method that will survive this process without any 
modifications; that will be the .addNodesToStackPane() method, that you created in Chapter 6 (see Figure 6-8 to 
refresh your memory).

After we have reorganized our InvinciBagel.java code infrastructure, we can move on and start to create the 
program logic that will be used to create, and later control, the primary hero for our game, the InvinciBagel himself. 
This will involve using the Bagel() and CastingDirector() constructor methods, and then adding the iBagel Bagel 
object to the Scene Graph (StackPane root object) and CastingDirector castDirector object, using the .add() method 
call and the .addCurrentCast() method call respectively.

After we have the iBagel Actor created, we will wire up its .update() method to the GamePlayLoop .handle() 
method, at which point we can start to build the programming logic that will move this InvinciBagel around on your 
Stage. At this point, things get more interesting, as we can start to define the movement boundaries for the Stage, the 
sprite image states (the nine different character positions), and how these relate to X (left-right) and Y (up-down) key 
usage. For instance, no movement will be standing, left and right will use running, up will use jump, down will land, or 
later on in the game design, certain key combinations can cause an InvinciBagel to fly and so on as we refine the code.



Chapter 11 ■ Moving Your Action Figure in 2D: Controlling the X and Y Display Screen Coordinates

230

InvinciBagel.java Redesign: Adding Logical Methods
The first thing that I want to do regarding the InvinciBagel.java code, which should already be open in a tab in 
NetBeans (if it is not, use the right-click and Op	en work process), is to reorganize the current code using a half-dozen 
new methods that logically contain, as well as show, the different areas that we will need to address in order to add 
new Actors to our game. These include things such as managing event handling, adding new Image asset references, 
creating the new game Actor objects, adding the new actors to the Scene Graph, adding the new Actor objects to the 
CURRENT_CAST List we created in Chapter 10, and starting the GamePlayLoop AnimationTimer pulse engine.  
The first thing that we should do is to put those Java statements that need to be done first and that need to be in  
the .start() method itself at the top of the code. These create the Scene Graph root, a Scene object, and set up the  
Stage object:
 
primaryStage.setTitle(InvinciBagel);
root = new StackPane();
scene = new Scene(root, WIDTH, HEIGHT, Color.WHITE);
primaryStage.setScene(scene);
primaryStage.show();
 

As you can see in Figure 11-1, we are taking the root and scene object instantiations out of the method that is 
called .createSplashScreenNodes(), and putting these at the top of the .start() method. I am doing this because they 
are foundational to our InvinciBagel game (class). Next, we are also going to add six all-new method structures to our 
existing code. The only method that will remain untouched during this process is your .addNodesToStackPane(). You 
can see I’m calling the methods in a logical order: add events, add images, add actors, add Scene Graph, and add cast.

Figure 11-1.  Place basic configuration statements at top of the .start() method, and then the eight game method calls



Chapter 11 ■ Moving Your Action Figure in 2D: Controlling the X and Y Display Screen Coordinates

231

The method calls that we are going to put into place during the first part of this chapter involve creating the 
event handlers for the Scene object, which we will do right after we have set-up that Scene object named scene. 
The next thing that we will need to do in the process of adding to the game is to load the Image object assets (digital 
image references), which is what your .loadImageAssets() method will do. Once your Image objects are declared and 
instantiated, we can then create the game actors using the .createGameActors() method and the constructor method 
calls that we created in our custom Actor and Hero subclasses, such as the Bagel.java class we created in Chapter 10. 
Once we have the actors created, we can add them to the Scene Graph using .addGameActorNodes() as well as adding 
them to the game cast using the .createCastingDirection() method. At the end, we create and start the GamePlayLoop 
object by calling the .createStartGameLoop() method. The .createSplashScreenNodes() and .addNodesToStackPane() 
are at the end, as they won’t be added to now that the splashscreen content production work has been completed. The 
method call code that we’ll add during this chapter looks like the following:
 
createSceneEventHandling();
loadImageAssets();
createGameActors();
addGameActorNodes();
createCastingDirection();
createSplashScreenNodes();
addNodesToStackPane();
createStartGameLoop();
 

Let’s get down to business and start implementing this code redesign process for the InvinciBagel.java class.

The Scene Event Handling Method: .createSceneEventHandling()
The first thing that we will want to do is to move the event handling for our game play into its own method, which we 
will call .createSceneEventHandling(). The reason that I am creating a method for the creation of Scene object event 
handling is because if later on you wanted to add other types of input events into your game, such as mouse events or 
drag events, you will have a logical method already in place which can hold this event-related Java code.

This new Java code, which can be seen in Figure 11-2, will involve taking your scene.setOnKeyPressed() 
and scene.setOnKeyReleased() method handling structures, created in Chapter 9, out of your 
.createSplashScreenNodes() method, and placing them into their own method structure. Later we’ll relocate all 
ActionEvent handlers, which are in the .start() method, and actually belong inside the .createSplashScreenNodes() 
method where they would be grouped with the other splashscreen objects. This new event handling code structure 
should look like the following Java code:
 
private void createSceneEventHandling() {
    scene.setOnKeyPressed((KeyEvent event) -> {
        switch (event.getCode()) {
            case UP:    up     = true; break;
            case DOWN:  down   = true; break;
            case LEFT:  left   = true; break;
            case RIGHT: right  = true; break;
            case W:     up     = true; break;
            case S:     down   = true; break;
            case A:     left   = true; break;
            case D:     right  = true; break;
        }
    });



Chapter 11 ■ Moving Your Action Figure in 2D: Controlling the X and Y Display Screen Coordinates

232

    scene.setOnKeyReleased((KeyEvent event) -> {
        switch (event.getCode()) {
            case UP:    up     = false; break;
            case DOWN:  down   = false; break;
            case LEFT:  left   = false; break;
            case RIGHT: right  = false; break;
            case W:     up     = false; break;
            case S:     down   = false; break;
            case A:     left   = false; break;
            case D:     right  = false; break;
        }
    });
} 

Figure 11-2.  Create private void createSceneEventHandling() method for OnKeyReleased and OnKeyPressed event 
handling structures

Now that the event handling for the game play is where it needs to be, before we can write the rest of the method 
structures for adding Image, Actor, and CastingDirector objects, we’ll need to declare these objects for use at the top of 
our InvinciBagel.java class. Let’s do this work that sets up the rest of the methods we’ll need to code next.



Chapter 11 ■ Moving Your Action Figure in 2D: Controlling the X and Y Display Screen Coordinates

233

Adding InvinciBagel: Declare Image, Bagel, and CastingDirector
Since we are going to start to get our InvinciBagel character on the game play screen during this chapter, and bring 
together all of the code we wrote during previous chapters creating our GamePlayLoop class (Chapter 7), Actor and 
Hero classes (Chapter 8), event handling (Chapter 9), and CastingDirector class (Chapter 10), we need to declare 
some object variables at the top of the InvinciBagel.java class, before we can instantiate and use these objects during 
the chapter. We will declare the Bagel object named iBagel using the static keyword, as we will be calling the iBagel 
object’s .update() method from the GamePlayLoop object’s .handle() method, and this will make the iBagel “visible” 
across (or between) these two classes. We will also declare the nine Image (sprite state) objects, iB0 through iB8, by 
using a compound declaration. Finally, we will declare a CastingDirector object, which we will name castDirector. 
The declaration statements, which we need to add at the top of our InvinciBagel.java class, can be seen in Figure 11-3. 
They include the following Java variable declaration statements, located at the top of your InvinciBagel.java class:
 
static Bagel iBagel;
Image iB0, iB1, iB2, iB3, iB4, iB5, iB6, iB7, iB8;
CastingDirector castDirector; 

Figure 11-3.  Add static Bagel iBagel, CastingDirector castDirector and Image object declaration named iB0 through iB8

Now that we’ve declared the object variables that we will need to implement the InvinciBagel Actor object 
instantiation in the .createGameActors() method and CastingDirection engine in the createCastingDirection() 
method, let’s move on to creating the first of our new methods, the .loadImageAssets() method, which will contain 
all of your Image object instantiation calls to the Image() constructor. We will put all Image object instantiations in 
this method.



Chapter 11 ■ Moving Your Action Figure in 2D: Controlling the X and Y Display Screen Coordinates

234

The Actor Image Assets Loading Method: .loadImageAssets()
Now that we have declared the nine Image objects for use at the top of our InvinciBagel.java class, the next thing that 
we will need to do is to copy the nine PNG32 sprite images, which are named sprite0.png through sprite8.png, into 
the /src folder for our InvinciBagel NetBeans project. This is done using the file management utility for your operating 
system; in the case of my 64-bit Windows 7 OS it is the Windows Explorer utility, shown in Figure 11-4, with the Image 
assets copied into the C:/Users/user/MyDocuments/NetBeansProjects/InvinciBagel/src folder. All of the PNG 
image assets are PNG32 (24-bit RGB true color data with a 8-bit 256 gray level alpha channel) except for the back plate 
for the splashscreen, which is a PNG24, as it does not need an alpha channel because it is a background image plate.

Figure 11-4.  Copy the sprite0.png through sprite8.png files into your NetBeansProjects/InvinciBagel/src project folder

Now we are ready to code the private void loadImageAssets(){...} method. Once you create a method 
body (declaration), you will want to copy the four Image object instantiations from your .createSplashScreenNodes() 
method so that all of the Image object loading is done in one central location for your game application. After that is 
done, you can copy and paste the scoresLayer Image instantiation and create iB0 through iB8 Image instantiations. Be 
sure to set the image size to 81 pixels (X and Y) and use the correct file name references, shown in the following code:
 
private void loadImageAssets() {
    splashScreen = new Image("/invincibagelsplash.png", 640, 400, true, false, true);
    instructionLayer = new Image("/invincibagelinstruct.png", 640, 400, true, false, true);
    legalLayer = new Image("/invincibagelcreds.png", 640, 400, true, false, true);
    scoresLayer = new Image("/invincibagelscores.png", 640, 400, true, false, true);
    iB0 = new Image("/sprite0.png", 81, 81, true, false, true);
    iB1 = new Image("/sprite1.png", 81, 81, true, false, true);
    iB2 = new Image("/sprite2.png", 81, 81, true, false, true);
    iB3 = new Image("/sprite3.png", 81, 81, true, false, true);
    iB4 = new Image("/sprite4.png", 81, 81, true, false, true);
    iB5 = new Image("/sprite5.png", 81, 81, true, false, true);
    iB6 = new Image("/sprite6.png", 81, 81, true, false, true);
    iB7 = new Image("/sprite7.png", 81, 81, true, false, true);
    iB8 = new Image("/sprite8.png", 81, 81, true, false, true);
}
 



Chapter 11 ■ Moving Your Action Figure in 2D: Controlling the X and Y Display Screen Coordinates

235

As you can see in Figure 11-5, your code is error-free, which means that you have copied your sprite assets into 
the proper /src folder, and you now have more than a dozen digital image assets installed for use in your game.

Figure 11-5.  Create a private void loadImageAssets() method, add the iB0 through iB8 and splashScreen Image objects

Now that the assets you need to call your Bagel() constructor method that you created in Chapter 10 are in 
place, we can move on to creating a method that holds our game asset creation Java code. This amounts to calling 
the constructor methods for each of the Actor subclasses we eventually create, the first of which was the Bagel class, 
which we created first so that we can start to work on getting our primary character moving around the screen.

Creating Your InvinciBagel Bagel Object: .createGameActors()
The next step in the game actor creation process after loading your image assets is to call the constructor method for 
the game actor. To be able to do this, you must first subclass either the Actor superclass (for fixed game actors, which 
could be called “props”) or the Hero superclass (for motion game actors, such as the Hero, his enemies, and the like). 
I am going to create a .createGameActors() method to hold these instantiations, because even though initially there is 
only going to be one line of code inside of the body of this method, eventually, as the game becomes more and more 
complex, this method will serve as a “roadmap” regarding what game actor assets we have installed. This method will 
be declared as a private method, since the InvinciBagel class will be controlling the creation of these game actors, and 
will feature a void return type, because the method doesn’t return any values to the calling entity (the .start() method 
in this case). Inside of the method we’ll call the Bagel() constructor method, using some “placeholder” SVG path data, 
as well as a 0,0 initial X,Y screen location, and finally, the nine sprite cels using a comma-delimited list at the end of 
the constructor method call. The method body and object instantiation will use the following three lines of Java code: 
 
private void createGameActors() {
    iBagel = new Bagel("M150 0 L75 500 L225 200 Z", 0, 0, iB0,iB1,iB2,iB3,iB4,iB5,iB6,iB7,iB8);
}
 



Chapter 11 ■ Moving Your Action Figure in 2D: Controlling the X and Y Display Screen Coordinates

236

As you can see in Figure 11-6, the code is error-free, and you now have an iBagel Bagel object that you can now 
use to start to develop the InvinciBagel sprite movement around the game play stage, which is usually the entire 
display screen. We’ll be wiring this Bagel Actor up to the JavaFX pulse timing engine a bit later on during this chapter.

Figure 11-6.  Add a private void createGameActors() method; add an iBagel object instantiation via Bagel() constructor

In case you’re wondering what the SVGdata String object “M150 0 L75 200 L225 200 Z” does, it is shorthand for 
the following line drawing instructions (commands). The M is a “Move Absolute” command and tells the line draw 
(or in this case a path draw) operation to start at location 150,0. The L is a “Line Draw To” command and tells the SVG 
data to draw a line from 150,0 to 75,200. The second L draws a line from 75,200 to 225,200, giving us two sides of the 
triangle shape. The Z is a “Close Shape” command, which, if the shape is open, as ours is currently, will draw a line 
to close the shape. In this case, that would equate to drawing a line from 225,200 to 150,0, giving us three sides to our 
triangle shape, closing the open path, and giving us a valid collision detection boundary.

We will be replacing this with a more complex collision shape later on, during Chapter 16 covering collision 
detection polygon creation, SVG data, and collision detection logic. Our actual collision polygon will contain many 
more numbers, making our Bagel() constructor method call unwieldy. As you might imagine, at that point in the game 
(no pun intended), I will probably create a work process that will be used specifically for constructing collision shapes. 
This work process will show you how to generate SVG polygon data using GIMP so that you can place SVG data into 
its own String object, and reference that in your Actor object constructor. If you wanted to turn collision data creation 
into its own method as well, this is how that would look, using a (theoretical) .createActorCollisionData() method:
 
String cBagel; // Create String variable named cBagel (collision data Bagel) at top of class
 
private void createActorCollisionData() {
    cBagel = "M150 0 L75 500 L225 200 Z";
}
private void createGameActors() {
    iBagel = new Bagel(cBagel, 0, 0, iB0,iB1,iB2,iB3,iB4,iB5,iB6,iB7,iB8);
}
 



Chapter 11 ■ Moving Your Action Figure in 2D: Controlling the X and Y Display Screen Coordinates

237

You could also, later on, create a method for Image sprite List<Actor> object loading. This would pass the 
ArrayList as a parameter, instead of a comma-delimited List. Note that if you did this, you would also need to change 
your Actor abstract class constructor to take in an ArrayList<Actor> object, instead of an Image... List of Image objects.

Next, let’s take a look at how we add our newly created iBagel object into our game’s Scene Graph object, which is 
currently a Stackpane object named root.

Adding Your iBagel to the Scene Graph: .addGameActorNodes()
One of the steps that JavaFX application developers often forget is to add their objects that will need to be displayed 
in the Scene (and on the Stage that the Scene object is attached to) to the root object of the Scene Graph. In our case, 
this is a StackPane object named root. We will need to use the same root.getChildren().add() method call chain 
that we did in Chapter 6, when we started developing our Splashscreen, to add our iBagel object ImageView, which 
is referenced using iBagel.spriteFrame, to the Scene Graph root object. I am going to add a method at this stage that 
will ensure that we never forget this important add to Scene Graph step in our work process. I am going to specifically 
address this stage in the Actor creation work process by making it into its own method, which I am going to call 
.addGameActorNodes(). The creation of this method body, and our first add Actor to Scene Graph programming 
statement, would be accomplished using the following Java code, which is also shown (highlighted) in Figure 11-7: 
 
private void addGameActorNodes() {
    root.getChildren().add(iBagel.spriteFrame);
} 

Figure 11-7.  Create a private void addGameActorNodes() method; .add() iBagel.spriteFrame ImageView to root object

It is important to note that I am calling this .addGameActorNodes() method, at the top of the InvinciBagel class, 
inside of the .start() method, before I call the .addNodesToStackPane() method. There is a very good reason for doing 
this, and it goes back to what you learned about JavaFX in Chapter 4. Remember the objects that you add to the 
StackPane layer management object are displayed using a Z-index (or Z-order), which means that they are “stacked” 
on top of each other. If any of these layers do not have an alpha channel, which we learned about in Chapter 5, then 
nothing behind them will be able to show through! For this reason, the easiest way to get our Splashscreen to overlay 
our game at any point in time that a player clicks the INSTRUCTIONS Button control object is to add these assets last.



Chapter 11 ■ Moving Your Action Figure in 2D: Controlling the X and Y Display Screen Coordinates

238

By having your .addNodesToStackPane() method called after your .addGameActorNodes() method, you will 
guarantee that your game assets will always be at a lower Z-index than your Splashscreen assets. This means that the 
SplashScreenBackplate and the SplashScreenTextArea ImageView “plates” will always be at the top Z-index layers 
in the StackPane, and thus, when these are displayed (made visible), they will completely cover your game play. This 
is because the SplashScreenBackplate ImageView contains an opaque PNG24 image asset that is the same size as your 
Scene (and Stage) object.

We will be seeing the result of this method order reorganization later on when we test the new InvinciBagel 
game application, and you will see that we have resolved this problem of the game actor(s) displaying on top of the 
Splashscreen. We accomplished this simply by changing the order that your programming code is executed in. This 
should also point out to you that the order that the Java programming code is executed in is almost as important as the 
Java programming logic itself!

Creating and Managing Your Cast: .createCastingDirection()
Now the time has come to implement the other class that we created in Chapter 10, the CastingDirector.java class, 
and its CastingDirector() constructor method. We will do this inside of another new custom method we will create 
called .createCastingDirection(). This method will contain the initial instantiation of a CastingDirector object named 
castDirector, which we will create by using the Java new keyword and the CastingDirector() constructor method, as 
well as adding the iBagel Actor object to the castDirector object, using the .addCurrentCast() method that we created 
in Chapter 10. The Java method structure, which is shown error-free in Figure 11-8, should look like the following:
 
private void createCastingDirection() {
    castDirector = new CastingDirector();
    castDirector.addCurrentCast(iBagel);
} 

Figure 11-8.  Create private void createCastingDirection() method with castDirector and .addCurrentCast() statements



Chapter 11 ■ Moving Your Action Figure in 2D: Controlling the X and Y Display Screen Coordinates

239

Now that we have put our Image assets into place, created our Actor object, added him to the Scene Graph, 
created a CastingDirector engine, and added our iBagel to the cast, we’re ready to deal with the Game Timing Engine.

Create and Start Your GamePlayLoop: .createStartGameLoop
I am going to jump ahead of the .createSceneGraphNodes() method, which is still our most complex method body 
and which I am saving for last, and create a new method called .createStartGameLoop(). Inside of this method 
we’re going to create, and then start, our GamePlayLoop object, which we created back in Chapter 7 using the 
GamePlayLoop.java class. This class extends the JavaFX AnimationTimer superclass to provide access to the JavaFX 
pulse timing engine for our game. Inside of the .createStartGameLoop() method we are going to use the Java new 
keyword to create a pulse engine for our game named gamePlayLoop using the GamePlayLoop() constructor method. 
After that, we are going to call the .start() method off of this gamePlayLoop object to start the pulse event timing 
engine. This call is done by using the following four lines of Java programming logic, which are also shown error-free 
in Figure 11-9: 
 
private void createStartGameLoop() {
    gamePlayLoop = new GamePlayLoop();
    gamePlayLoop.start();
} 

Figure 11-9.  Create a private void createStartGameLoop() method, and create and .start() the gamePlayLoop object

As you can see at the bottom of Figure 11-9, I have collapsed the other method structures, and I have them in 
the same order in the code that they are called within the .start() method, for organization purposes. I start a game 
play loop last because I want to make sure I have done absolutely everything else that I need to do to set up the game 
environment first, before I start the JavaFX pulse engine firing and launch the game. As you can see, I’m using the Java 
method names, and my game code design, to keep me reminded about what I need to do every time that I add some 
new game actor, which now that our hero is in place, could be game props, projectiles, enemies, treasure, and so on.



Chapter 11 ■ Moving Your Action Figure in 2D: Controlling the X and Y Display Screen Coordinates

240

Update Splashscreen Scene Graph: .createSplashScreenNodes()
Now the time has come to reorganize our .createSplashScreenNodes() method body, and then we will be ready to get 
into “wiring up” the JavaFX pulse engine that we created in our GamePlayLoop.java class to the Actor object that we 
created using our Actor.java, Hero.java and Bagel.java classes. We have already removed four lines of code from the 
end of the .createSplashScreenNodes() method, and placed them into the .loadImageAssets() method, where they 
more logically belong. The other thing that we need to do to try and streamline our .start() method is to group the 
ActionEvent handling structures with each of their respective object instantiations and configuration Java statements. 
Thus, your gameButton object instantiation, configuration, and event handling will all be kept together in one place, 
for instance. We will do the same thing for the helpButton, scoreButton, and legalButton objects. The event handling 
structures that I copied from the .start() method into the .createSplashScreenNodes() method are shown here in bold. 
The new .createSplashScreenNodes() method body will contain the following three dozen lines of Java code:
 
private void createSplashScreenNodes() {
    buttonContainer = new HBox(12);
    buttonContainer.setAlignment(Pos.BOTTOM_LEFT);
    buttonContainerPadding = new Insets(0, 0, 10, 16);
    buttonContainer.setPadding(buttonContainerPadding);
    gameButton = new Button();
    gameButton.setText("PLAY GAME");
    gameButton.setOnAction((ActionEvent) -> {
        splashScreenBackplate.setVisible(false);
        splashScreenTextArea.setVisible(false);
    });
    helpButton = new Button();
    helpButton.setText("INSTRUCTIONS");
    helpButton.setOnAction((ActionEvent) -> {
        splashScreenBackplate.setVisible(true);
        splashScreenTextArea.setVisible(true);
        splashScreenTextArea.setImage(instructionLayer);
    });
    scoreButton = new Button();
    scoreButton.setText("HIGH SCORES");
    scoreButton.setOnAction((ActionEvent) -> {
        splashScreenBackplate.setVisible(true);
        splashScreenTextArea.setVisible(true);
        splashScreenTextArea.setImage(scoresLayer);
    });
    legalButton = new Button();
    legalButton.setText("LEGAL & CREDITS");
    legalButton.setOnAction((ActionEvent) -> {
        splashScreenBackplate.setVisible(true);
        splashScreenTextArea.setVisible(true);
        splashScreenTextArea.setImage(legalLayer);
    });
        buttonContainer.getChildren().addAll(gameButton, helpButton, scoreButton, legalButton);
        splashScreenBackplate = new ImageView();
        splashScreenBackplate.setImage(splashScreen);
        splashScreenTextArea = new ImageView();
        splashScreenTextArea.setImage(instructionLayer);
    }
 



Chapter 11 ■ Moving Your Action Figure in 2D: Controlling the X and Y Display Screen Coordinates

241

Notice that since the .loadImageAssets() method is called before the .createSplashScreenNodes() method, that 
we can still keep the last four lines of code in the method body that reference the loaded Image assets in place. This is 
because the splashScreen and instructionLayer Image objects have been created, and loaded with their digital image 
assets, in the top part of the .loadImageAssets() method. Since this method is called inside the .start() method before 
the .createSplashScreenNodes() method is called, these objects can be safely used inside of this method body.

As you can see in Figure 11-10, the new method is error-free and all of the objects, including the HBox named 
buttonContainer, Button(s) named gameButton, helpButton, scoreButton and legalButton, and ImageView(s) named 
splashScreenBackplate and splashScreenTextArea, are all logically grouped together, and are now well organized.

Figure 11-10.  Copy .setOnAction() event handlers from the .start() method into the .createSplashScreenNodes() method

Since we don’t have to do anything to your .addNodesToStackPane() method, we are finished with the code 
reorganization that we needed to do here, before we take this game to the next level of complexity! Every now and 
then, you need to go back and make sure that your programming logic is optimally structured, so that when you build 
more complex structures, you have a solid foundation to build upon, just like you’re building a real building structure.



Chapter 11 ■ Moving Your Action Figure in 2D: Controlling the X and Y Display Screen Coordinates

242

Powering the iBagel Actor: Using the GamePlayLoop
Next let’s “wire up” or make the connection between these game engines that we have been putting into place in our 
game code infrastructure during the first half of the book. The first thing that we will need to do is to tell our GamePlay 
Engine in the GamePlayLoop AnimationTimer subclass that we want to have it look at (update) the iBagel Bagel 
object on every pulse. There are two major lines of code that we will need to install in the GamePlayLoop.java class 
for this to happen. The first is a reference to the static Bagel object named iBagel that we declared in the code that is 
shown in Figure 11-3 using the import static invincibagel.InvinciBagel.iBagel Java statement. The second line 
of code that we need to install will live inside of the .handle() method, and will serve to “wire” the .handle() method 
(the pulse engine) to the iBagel object using its .update() method. The new GamePlayLoop class import statements 
and .handle() method should look like the following Java code, shown error-free in Figure 11-11:
 
import javafx.animation.AnimationTimer;
import static invincibagel.InvinciBagel.iBagel;
public class GamePlayLoop extends AnimationTimer {
    @Override
    public void handle(long now) {
        iBagel.update();
    }
} 

Figure 11-11.  Add a Java statement inside of the GamePlayLoop .handle() method invoking an iBagel.update() method



Chapter 11 ■ Moving Your Action Figure in 2D: Controlling the X and Y Display Screen Coordinates

243

What the iBagel.update() Java statement does is to call the .update() method for the Bagel object named iBagel 
on every pulse event. Anything that you put into this .update() method will be executed 60 times every second. Any 
other Actor object that you want processed at 60 FPS, simply add a similar .update() call to this .handle() method.

Moving the iBagel Actor Object: Coding Your .update() Method
Now we are ready to start developing the code that will move our InvinciBagel Actor object around the screen. We 
will be refining this Java code during the remainder of the book, as everything revolves around this primary Actor 
object, and his movement. This includes where he moves (boundaries and collisions), how fast he moves (speed and 
physics), and what he looks like when he moves (animating between sprite image cels or “states”). All of this code will 
originate inside of the iBagel object’s .update() method, and so we are going to start this lengthy journey by adding 
some basic code that looks at the Boolean variables that are in our InvinciBagel.java class, and which hold the arrow 
(or ASDW keys) key pressed and released states, and then process these states using conditional If statements. The 
results of this conditional statement processing will then move the InvinciBagel character on the screen (initially, 
later we will add more advanced programming logic). We will eventually make this movement and interaction more 
and more “intelligent.” The first thing that we will want to do is to make the Boolean variables for up, down, left, and 
right visible to the Bagel class using import static statements, as we did earlier in the chapter, to make the iBagel object 
visible to the GamePlayLoop class .handle() method. The four added import static statements will look like this:
 
package invincibagel;
import static invincibagel.InvinciBagel.down;
import static invincibagel.InvinciBagel.left;
import static invincibagel.InvinciBagel.right;
import static invincibagel.InvinciBagel.up;
import javafx.scene.image.Image;
public class Bagel extends Hero {...}
 

As you can see in Figure 11-12, there are no error or warning highlights regarding this code, and we’re ready to 
move on and add the conditional programming logic that will look at which of these four variables are set to true, or 
KeyPressed, and which are set to false, or KeyReleased. Inside of these conditional statements we’ll place the code 
that will move the iX and iY (Actor location) variables, based on the vX and vY (Actor velocity of movement) variables.

Figure 11-12.  Add import static invincibagel.InvinciBagel references to static boolean down, left, right, and up 
variables



Chapter 11 ■ Moving Your Action Figure in 2D: Controlling the X and Y Display Screen Coordinates

244

Since we are writing this code inside of the Bagel object (in our case, we instantiated and named it iBagel), we 
will have a chance to utilize and understand the iX and iY variables, which we will be doing in the next section of this 
chapter, when we develop the code statements that access and change the iBagel Bagel object’s iX and iY location 
attributes, as well as adding code that accesses and utilizes the iBagel Bagel object’s vX and vY velocity attributes.

Building the .update() Method: Using If Statements to Determine X or Y Movement
Now it is time to add some basic Java programming logic inside of the Bagel class .update() method that will move the 
iBagel object along the X or Y axis (or both, if multiple keys are being pressed). Since our iX and iY variables hold the 
Actor location on the screen, we will use these inside of each if statement, and add (or subtract) the velocity variable 
amount for each axis (vX if we are dealing with iX, vY if we are dealing with iY) respectively. We have initially set the 
vX and vY values at one, which would equate to a relatively slow movement. If the vX and vY were set to 2, the iBagel 
would move twice as fast (it would move by two pixels on each pulse event, instead of by one pixel).

If the right Boolean variable is true, we want your iBagel object to move in the positive direction along the X axis, 
so we would use an if(right){iX+=vX} programming statement to add the vX velocity value to the iX location value 
using the += operator we learned about in Chapter 3. Similarly, if the left Boolean variable is true, we would use an 
if(left){iX-=vX} programming statement, which will subtract the vX velocity value from the iX location value, using 
the -= Java operator.

We will do essentially the same thing along the Y axis when the up and down (or W and S) keys are pressed. If 
the down Boolean variable is true, we want the iBagel object to move in the positive direction along the Y axis. Thus 
we would use an if(down){iY+=vY} programming statement, which will add the vY velocity value to the iY location 
value, using the += operator. In JavaFX, a positive X value goes from the 0,0 origin to the right, while positive Y values 
go from 0,0 down. Finally, to move the iBagel up, we will use an if(up){iY-=vY} programming statement, which will 
subtract the vY velocity value from the iY location value, using the -= operator. The basic Java code to perform these 
four conditional if statement evaluations, and their respective X or Y sprite movement calculations inside of the Bagel 
class .update() method, is shown in Figure 11-13, and should look like the following method body structure thus far:
 
@Override
public void update() {
    if(right) { iX += vX }
    if(left)  { iX -= vX }
    if(down)  { iY += vY }
    if(up)    { iY -= vY }
}
 



Chapter 11 ■ Moving Your Action Figure in 2D: Controlling the X and Y Display Screen Coordinates

245

Next, let’s move an iBagel on the screen using the ImageView .setTranslateX() and .setTranslateY() methods.

Moving a Scene Graph ImageView Node: .setTranslateX( ) and .setTranslateY( )
Now that we have the conditional statements in place that will process where our InvinciBagel is supposed to be on 
the screen based on what arrow keys (or ASDW keys) are being held down (or not held down) by the player, let’s add 
the Java programming statements that will take this data from our InvinciBagel iX and iY variables, and pass this 
sprite location information to the spriteFrame ImageView Node object, to actually have it reposition the Node on the 
display screen. The .setTranslateX() and .setTranslateY() methods are part of the Node superclass’s transformation 
methods. These methods also include method calls that will rotate and scale a Node object; in this case, it is the Actor 
spriteFrame ImageView Node that contains one of the Image assets held in your List<Image> ArrayList object.

When we call these .setTranslate() methods, off of our iBagel object’s spriteFrame ImageView Node object, we 
are referring to the spriteFrame ImageView object that we installed inside of the abstract Actor superclass. Since an 
Actor superclass was used to create the Hero superclass, which was used to create the Bagel class, the spriteFrame 
ImageView object can be referenced inside of the Bagel class by using a spriteFrame.setTranslateX(iX) statement, as 
is shown in the following Java code for the completed .update() method, which is also shown in Figure 11-14:
 
public void update() {
    if(right) { iX += vX }
    if(left)  { iX -= vX }
    if(down)  { iY += vY }
    if(up)    { iY -= vY }
    spriteFrame.setTranslateX(iX);
    spriteFrame.setTranslateY(iY);
}
 

Figure 11-13.  Add four if statements to the .update() method, one for each right, left, down, and up boolean variable



Chapter 11 ■ Moving Your Action Figure in 2D: Controlling the X and Y Display Screen Coordinates

246

As you can see in Figure 11-14, the code is error- and warning-free, and we’re ready to test the code that we have 
written during the chapter, including a reorganized InvinciBagel.java class and its six new methods, the updated 
Bagel.java class and its .update() method, and the updated GamePlayLoop.java class, and its .handle() method.

Testing Our New Game Design: Moving InvinciBagel
We have made significant changes to our game application during this chapter, especially to the structure of the 
InvinciBagel.java class, adding six all-new methods, and moving our event handling code around completely. We 
created an iBagel Bagel object, and a castDirector CastingDirector object, using classes that we created in Chapter 10. We 
wired up our GamePlayLoop object and one of our Actor objects (an iBagel Bagel object) by using the JavaFX pulse 
engine .handle() method in the GamePlayLoop.java class and the .update() method in the Bagel.java class. Now the 
time has come to use our Run ➤ Project work process and make sure that all of the Java code that we have put into 
place during this chapter does what it is supposed to do: that is, what we think that it should do. After all, that is what 
the programming practice is all about: writing code that we think will do something, running it to see if it does, and 
then debugging it to find out why it is not working, if in fact it is not. Once you click on the Play button at the top of the 
NetBeans IDE and invoke the Run ➤ Project process, the code will compile and the InvinciBagel game window seen 
in Figure 11-15 will open up on your desktop. The first thing that you should notice is that the InvinciBagel sprite is 
nowhere to be seen, since we added it to the root StackPane object first instead of last, and so the splashscreen and 
game user interface design is still working as intended.

Figure 11-14.  After the four if statements, add statements calling the .setTranslate() methods off of the spriteFrame



Chapter 11 ■ Moving Your Action Figure in 2D: Controlling the X and Y Display Screen Coordinates

247

Next, let’s test your ActionEvent handling, and later, the KeyEvent handling, by clicking on the PLAY GAME 
Button control object. This should hide the splashScreenBackplate and splashScreenTextArea ImageView objects, and 
reveal the white background color which is set for the Scene object named scene using the Color.WHITE constant.

As you can see, on the left half of Figure 11-16, this is indeed the case, and our InvinciBagel character is on the 
screen, and we are ready to test the KeyEvent handling that we put into place in Chapter 9, and see if we can get the 
InvinciBagel (iBagel Bagel object) character to move around on the screen. This is starting to get more and more 
exciting with each successive chapter that we finish!

Figure 11-15.  Use Run ➤ Project to start the game and click the PLAY GAME Button



Chapter 11 ■ Moving Your Action Figure in 2D: Controlling the X and Y Display Screen Coordinates

248

Let’s test the worst case scenario first, and see how powerful the JavaFX pulse event and key event handling 
infrastructure really is. Press the up key and the left arrow key, or the A key and the W key, at the same time. As you 
can see, the InvinciBagel character moves smoothly and steadily on a diagonal vector, up and to the left. The result of 
this can be seen on the right half of Figure 11-16. Try using the individual keys as well, to make sure they are working.

As you play around with your now motion-enabled InvinciBagel sprite, notice that you are able to move him 
behind the UI buttons at the bottom of the screen, as seen on the left half of Figure 11-17. This happens because you 
have your .addGameActorNodes() method called before your .addNodesToStackPane() method is called, which gives 
everything in your game a lower Z-index than everything in your user interface design. Also notice that you can move 
the InvinciBagel off of the screen (out of view of the player), which we are going to address in Chapter 12, when you 
will add to the existing code to establish boundaries and implement other advanced movement features. Finally, note 
that if you use the left and right arrow keys (not the ASDW keys), the Button control focus (the blue outline) moves as 
well, which means that we will also have to fix this in a future chapter, by having our KeyEvents “consumed.” As you 
can see, there is lots of really cool code to write and things about Java 8 and JavaFX 8.0 to learn before we’re finished!

Figure 11-16.  Hold a left arrow (or A) and up arrow (or W) key down at the same time, and move the Actor diagonally

Figure 11-17.  Notice the InvinciBagel character is using a lower Z-index than the UI elements, and can move off-screen



Chapter 11 ■ Moving Your Action Figure in 2D: Controlling the X and Y Display Screen Coordinates

249

Yet again you have made a ton of progress during this chapter in getting your primary InvinciBagel.java class 
optimized, implementing all of the classes that you have coded thus far in this book, wired the game play loop engine 
into your primary game character, tested all of your ActionEvent and KeyEvent handling, and had an all-around good 
time doing it! I would call that a pretty successful chapter, and we will continue to have a good time in every chapter!

Summary
In this eleventh chapter, we reorganized our primary InvinciBagel.java class to extract the five key game creation 
Java statements, and then organized the rest of the Java code into eight logical methods (routines), six of them 
which we created from scratch during this chapter. The six new methods serve to parcelize things such as adding 
Image assets, creating new Actor objects, adding Actors to the Scene Graph, adding Actors to the Cast, creating and 
starting the Game Engine, and implementing the game key event handling routines. We added object declarations 
so that we could create a new iBagel Bagel object for our game’s primary character, and also created a castDirector 
CastingDirection engine so that we could manage our cast members as we add them to the game in later chapters.

We learned about import static statements, and we saw how to use them to wire our iBagel Bagel object to the 
GamePlayLoop.java engine .handle() method. We also used these import static statements to allow our Bagel.java 
class to process the Boolean up, down, left, and right variables in the .update() method.

Next, we covered how to use conditional if statements to determine which key events (held in four Boolean 
variables) were being used by the game player. We placed this logic inside of the Bagel class .update() method, which 
as we know is being rapidly executed 60 times per second by the GamePlayLoop .handle() JavaFX pulse engine.

Finally we tested all of the new methods and Java statements that we added during the chapter to see if the basic 
game sprite movement works. We observed some of the things that we will need to address in future chapters, and 
thoroughly tested the existing KeyEvent handling methods and iX, iY, vX, and vY attributes of the abstract Actor class 
that we created as the foundation for all of our game actor assets.

In the next chapter, we are going to take a closer look at the JavaFX Node class and also take a look at advanced 
concepts regarding moving the game sprite around your screen, as well as how to ascertain the boundary (edges) of 
the screen, character direction, movement velocity, and related animation and movement considerations.



251

Chapter 12

Setting Boundaries for Your Action 
Figure in 2D: Using the Node Class 
LocalToParent Attribute

Now that we have organized your Java code into logical methods in the InvinciBagel.java class, and wired up the 
GamePlayLoop .handle() method to the Bagel .update() method in Chapter 10, to make sure that our KeyEvent 
handlers will move our InvinciBagel character around the screen, it is time to establish some boundaries for our 
game hero, so that he does not leave the field of play, so to speak. To do this, we will need to dive into the JavaFX Node 
superclass at a much deeper level of detail then we did in Chapter 4. We will look at how transforms are performed, 
and more important, how they function relative to the Parent Node, which is located above them in the Scene Graph. 
For our Actor ImageView Node(s), that Parent Node would be the Scene Graph root StackPane Node.

Before we start getting into code complexities such as absolute or relative transformation, which we will be 
looking at during this chapter, and things such as collision detection and physics simulation, which we will cover later 
in Chapters 16 and 17, we will need to get back into our InvinciBagel.java primary application class Java code here in 
Chapter 12, so that we can do a few more things that will optimize the Java 8 foundation for our game. We have been 
putting our game engines into place during the first part of this book, and I want to make sure that everything is “up to 
snuff” before I start to build complex code structures on top of what we have put into place so far. We’re going to make 
sure everything is “locked down tightly!”

For this reason, I am going to spend the first few pages of this chapter getting rid of those import static Java 
statements, which although they work just fine, as you have seen, they are not what is termed “best practice” in Java 
programming. There is a more complex and involved way to talk between classes, involving a Java “this” keyword, so I 
am going to show you how to implement far more private variables (and far less static variables), and then I will teach 
you how to use reference objects, represented by the Java this keyword, to send object data variables between classes.

This is a somewhat advanced topic for a beginner level book, but it will allow you to write more professional 
and “industry standard” Java 8 code, so it will be worth the extra effort. Sometimes, the right way to do things is more 
involved and detailed than the basic (simple) way to get things coded. The assumption here is that you are going to be 
producing a commercially viable game, so you will need a rock solid foundation to build increasingly complex code on.

After we finish adding additional code refinements in our InvinciBagel.java class, which will implement Java 
“encapsulation” using private variables wherever possible, and the this keyword where needed to provide access to 
the InvinciBagel object to other related classes—in this case, the GamePlayLoop and Bagel classes for now—we will 
begin to add complexity to the sprite movement code that is in our Bagel class .update() method.

We will add code that will tell your InvinciBagel character where the ceiling and floor of his Scene and Stage are 
located, and where the left and right sides of the screen are, so that he does not fall off of his flat 2D world. We will 
also organize the methods in the Bagel.java class, so that the .update() method only calls higher-level methods that 
contain all of the Java programming logic in an exceptionally well organized fashion.



Chapter 12 ■ Setting Boundaries for Your Action Figure in 2D: Using the Node Class LocalToParent Attribute

252

InvinciBagel Privatization: Removing Static Modifiers
The first thing that I want to do regarding the InvinciBagel.java class Java code, as well as the GamePlayLoop.java class 
code and the Bagel.java class code that both reference the InvinciBagel up, down, left, and right Boolean variables 
by using import static statements, is to remove these import static statements from the top of both of these “worker” 
classes, and instead pass an InvinciBagel class (context) object, using the Java this keyword, in the Bagel() constructor 
method as well as in the GamePlayLoop() constructor method. The first step in this process, which will span the next 
several pages of the chapter, is to change the public static boolean variable declaration compound statement to not 
use a static modifier, and instead of the public access control modifier, to use the private keyword, as is shown here:
 
private boolean up, down, left, right;
 

As you can see in Figure 12-1, this doesn’t generate any red errors or yellow warning highlights in the code; 
however, it does generate wavy grey underlining. This signifies that the code that is highlighted is not currently being 
used. Since the “convention” or general rule in Java regarding static modifier keywords is to use them with constants, 
such as we are in the first line of code, and thus, I am going to try and “encapsulate” the code in this InvinciBagel.java 
class as much as possible, by removing the static modifiers (first), and making many of the other declarations private.

Figure 12-1.  Change the public static access modifiers for the boolean KeyEvent variables to be private access control

The code that we are going to put into place next will eliminate this wavy grey highlighting, and in fact, we are 
going to have NetBeans write that code for us using the Source ➤ Insert Code ➤ Getters and Setters work process, 
which we learned about in Chapter 8, when we created our Actor and Hero superclasses. The .is() and .set() methods, 
which we are about to generate next, are the solution that allows us to eliminate the public static variable declaration 
that was allowing your classes external to InvinciBagel.java to “reach inside” (think of this as a security breach) to grab 
these four Boolean variables. Making these variables private prevents this. So, we need to put .is() and .set() methods 
into place which force external classes and methods to “request” this information, using a more “formal” method call.



Chapter 12 ■ Setting Boundaries for Your Action Figure in 2D: Using the Node Class LocalToParent Attribute

253

This time, we are going to use the NetBeans Generate Getters and Setters dialog, which is shown in Figure 12-2, to 
selectively write the getters (the .is() methods) and the setters (the .set() methods), which will access the four Boolean 
variables. Technically, right now we only need to use the getter .is() methods, so you could use the Generate ➤ Getter 
menu option, shown in the middle (pop-up or floating) Generate menu, above the selected Getter and Setter option, 
in the middle (encased with a red line) of Figure 12-2. I prefer to generate both of these method “directions,” just in 
case, later on in the software development process, I need to set these variables (externally, in another class) for some 
programming reason relating to the game play logic development.

Figure 12-2.  Use the Source ➤ Insert Code ➤ Getter and Setter dialog to create methods for the four boolean variables

Select the four Boolean down, left, right, and up variables in the Generate Getters and Setters dialog, shown on 
the far right side of Figure 12-2, click your cursor so that it is in front of the final } curly brace in your class (this will 
tell NetBeans that you want it to write, or place, this code at the end of the current class structure), and then click the 
Generate button at the bottom of this dialog, to generate the eight new Boolean variable access method structures.

As you can see in Figure 12-3, there are eight new methods at the bottom of your InvinciBagel.java class. It is 
important to note that the .set() methods all use the Java this keyword to set the Boolean variable that you pass in to 
the method to the up, down, left, or right (private) variables. The .setUp() method, for instance, would look like this:
 
public void setUp(boolean up) {
    this.up = up;
}
 



Chapter 12 ■ Setting Boundaries for Your Action Figure in 2D: Using the Node Class LocalToParent Attribute

254

In this case, the this.up refers to the private up variable inside the InvinciBagel object (InvinciBagel class).
As you can see, this is the new (more complex, or at least more involved to put into place, code-wise) way that we 

can now access the up variable without having to reach across classes using a static modifier keyword and an import 
static declaration at the top of the Bagel.java class, which as you will see a bit later, we no longer need to use.

Now that we have made our InvinciBagel class a bit more encapsulated (more private, and less public) by 
declaring the Boolean variables to be private, and putting getter and setter methods in place for classes and objects 
external to InvinciBagel to request that data, we will need to modify the Bagel class constructor method to receive a 
copy of the InvinciBagel object so that the calling class has “digital context” as to what the InvinciBagel class (and thus 
object) has to offer. This is done using an additional parameter, the Java this keyword, in the Bagel() parameter list.

Passing Context from InvinciBagel to Bagel: Using this Keyword
The final piece in the puzzle regarding how to eliminate static import statements, and reach between classes (objects) 
in a legitimate fashion, is to pass the InvinciBagel class’s current configuration, held in a contextual object reference, 
which the this keyword actually represents, over to the Bagel class (object) using the Bagel() constructor method. 
Once the Bagel class has received this contextual information regarding how the InvinciBagel class (object) is set up, 
what it includes, and what it does (hey, I have not called this object reference a “contextual” object reference for no 
reason), it will be able to use the .isUp() method to “see” the value of a Boolean up variable, without having any static 
declaration in place anywhere other than for constants, which is what an import static reference should be used for.

The first thing that we need to do to upgrade your Bagel class is to set up a variable to hold this InvinciBagel 
contextual object reference information, and modify our current Bagel() constructor method so that it can receive 
an InvinciBagel object reference. We’ll need to add a protected InvinciBagel invinciBagel; statement, at the top 

Figure 12-3.  Place the cursor at the bottom of the class so that the four .set() and .is() methods are the last ones listed



Chapter 12 ■ Setting Boundaries for Your Action Figure in 2D: Using the Node Class LocalToParent Attribute

255

of the class, to create an invinciBagel reference object (the variable will hold a reference to this object in memory) to 
hold this information. The reason I am making this protected access is so that if we make any subclass using Bagel, it 
will have access to this contextual object reference information. This object declaration would use the following Java 
statement, located at the very top of the Bagel.java class, as shown in Figure 12-4:
 
protected InvinciBagel invinciBagel; 

Figure 12-4.  Add an InvinciBagel object variable named invinciBagel, and add the object into the constructor method

Next, let’s add the InvinciBagel context object into the front of the Bagel() constructor’s parameter list, since we 
can’t put it at the end of the parameter list, because we’re using the end of the parameter list to hold our Image... List 
(or Array, at some point in the code it is both of these) specification. Inside of the constructor method itself, you’ll set 
the InvinciBagel reference object, which is passed into the constructor method using the name iBagel, to equal an 
invinciBagel variable, which you have already declared at the top of the Bagel.java class. This would all be done using 
the following modified Bagel() constructor method structure, which can be seen highlighted at the top of Figure 12-4:
 
public Bagel(InvinviBagel iBagel, String SVGdata, double xLocation, double yLocation,
             Image... spriteCels)  {
    super(SVGdata, xLocation, yLocation, spriteCels);
    invinciBagel = iBagel;
}
 

As you can see in Figure 12-4, our code is error-free, and we are ready to go back into our InvinciBagel.java class 
and add the Java this keyword into the Bagel() constructor method call. Doing this will pass an InvinciBagel class 
(object) reference object over to the Bagel.java class (object) so that we will be able to use the .is() and .set() methods 
from the InvinciBagel class without having to specify any import statements whatsoever. You can also delete the four 
import static statements at the top of your Bagel.java class. As you can see in Figure 12-4, I have deleted these static 
import statements already.

Now let’s go back into the InvinciBagel.java NetBeans editing tab, and finish wiring the two classes together.



Chapter 12 ■ Setting Boundaries for Your Action Figure in 2D: Using the Node Class LocalToParent Attribute

256

Modifying the iBagel Instantiation: Adding a Java this Keyword to the Method Call
Open up your .createGameActors() method structure using the + expand icon on the left side of NetBeans. Add a  
this keyword at the “head” or front of the list of parameters that you are passing into the Bagel() constructor method call. 
Your newly revised Java statement should look like the following code, which is also shown highlighted in Figure 12-5:
 
iBagel = new Bagel(this, "M150 0 L75 200 L225 200 Z", 0,0, iB0,iB1,iB2,iB3,iB4,iB5,iB6,iB7,iB8); 

Figure 12-5.  Modify the iBagel instantiation to add a Java this keyword to the Bagel() constructor method parameters

As you can see in Figure 12-5, your Java code is error-free, which means that you have now passed a copy of your 
InvinciBagel.java class’s (or the object created by it, however you prefer to look at it) context into the Bagel class (or 
more precisely, into the object which is created by your use of the Bagel() constructor method). What is contained 
in the digital context structure of the this object is beyond the scope of a beginner book, but suffice it to say that the 
this keyword will pass over a complete structural reference to an object. This reference contains all of the contextual 
information which would be needed to give the object that it is being passed to enough information to be able to put 
everything into “digital perspective” (context) regarding the class that is passing the this reference object over, in our 
case, this will be the InvinciBagel class (object) passing contextual information about itself to the Bagel class (object). 
This will include your object structure (variables, constants, methods, etc.) for the object as well as state information 
relating to more complex things that relate to use of system memory and thread usage. Think of passing one object’s 
context information to another object using the Java this keyword as wiring them together, so to speak, so that your 
receiving object can peer into the sending object by using the this object reference.

Now that the this reference (contextual object) for the InvinciBagel class (object) has been passed to the Bagel 
class (object) by using the Java this keyword inside of the Bagel() constructor method, we have now create a far more 
industry standard link between these two classes. We can now proceed to change our Bagel .update() method so that 
it uses the new .is() method calls to get the four different Boolean variable values (states) from the InvinciBagel object 
reference that it now has. We will need this data to be able to move our InvinciBagel character around on the screen.



Chapter 12 ■ Setting Boundaries for Your Action Figure in 2D: Using the Node Class LocalToParent Attribute

257

Using Your New InvinciBagel .is( ) Methods: Updating Your Bagel .update( ) Method
The next step in our elimination of using import static references and static variables will be to rewrite the conditional 
if statements using the .isUp(), isDown(), isLeft() and isRight() method calls. Since we’re not using static variables to 
reach across classes (objects) anymore, we’ll need to replace these actual up, down, left, and right static variables that 
are currently used inside the if() statements in the Bagel class .update() method. These will no longer work, because 
they are now encapsulated in the InvinciBagel class, and are private variables, so we will have to use .isUp(), isDown(), 
isLeft(), and isRight() “getter” methods instead, to politely knock on the InvinciBagel’s door, and ask for these values!

We will call our four .is() methods “off of” the InvinciBagel reference object (using dot notation), which we have 
declared and named invinciBagel at the top of the Bagel.java class. This variable (object reference) contains the 
InvinciBagel class context, which we sent from the InvinciBagel class into the Bagel class using the Java this keyword. 
What this means is that if we say invinciBagel.isRight() in our code, our Bagel class (object) now knows that to mean: 
go into the invinciBagel InvinciBagel object using “this” reference object (just trying to be cute here), which will now 
show the Bagel class (object) how, and where, to get to, and to execute, the public void .isRight() {...} method 
structure, which will pass over the private boolean right variable encapsulated in an InvinciBagel object. This is 
included here as a demonstration of the Java OOP concept of “encapsulation.”

Your new .update() method body will use the same six lines of Java code, modified to call the .is() methods on the 
inside of the if(condition=true) evaluation portion of your existing conditional if structure. The new Java code, which 
is also shown in Figure 12-6, should look like the following:
 
public void update() {
    if(invinciBagel.isRight()) { iX += vX; }
    if(invinciBagel.isLeft())  { iX -= vX; }
    if(invinciBagel.isDown())  { iY += vY; }
    if(invinciBagel.isUp())    { iY -= vY; }
    spriteFrame.setTranslateX(iX);
    spriteFrame.setTranslateY(iY);
} 

Figure 12-6.  Insert the invinciBagel.is() method calls inside of the if statements, where the boolean variables used to be



Chapter 12 ■ Setting Boundaries for Your Action Figure in 2D: Using the Node Class LocalToParent Attribute

258

As you can see in Figure 12-6, the code is error-free, and you now have an .update() method that accesses the 
Boolean variables from your InvinciBagel.java class without having to use any import static statements to do so.

You might be thinking, well, since this is a great way to get rid of import static statements in my Bagel.java class, 
why don’t I use this same approach to also get rid of the static Bagel iBagel declaration in my InvinciBagel.java class, 
as well as the import static statement that is used in the GamePlayLoop.java class to access the static iBagel Bagel 
object? Wow, that is a fantastic idea, folks, I just wish that I had thought of it! In fact, let’s do that right now!

Removing a Static iBagel Reference: Revise the Handle( ) Method
As you can see in Figure 12-7, we still have quite a few InvinciBagel variables declared using the static keywords that 
are not, in fact, constants. Before this chapter is over we will have eliminated these, so that only our WIDTH and 
HEIGHT constants use the static modifier keyword. Since we are going to pass the InvinciBagel object reference 
to the GamePlayLoop class using the Java this keyword inside of the GamePlayLoop() constructor method, which 
means that we can remove the static keyword from the Bagel iBagel object declaration statement at the top of the 
InvinciBagel class. This can be accomplished using the following variable declaration, which is shown (highlighted) 
in Figure 12-7:
 
Bagel iBagel; 

Figure 12-7.  Remove the Java static modifier keyword from in front of your Bagel iBagel object declaration statement

The next thing that we’ll need to do to makes sure that our InvinciBagel and GamePlayLoop classes (objects) can 
talk to each other is to make the GamePlayLoop() constructor method compatible with (accept in the InvinciBagel 
this context reference object inside of its parameter list) the InvinciBagel class’s this object reference that we need to 
send over to the GamePlayLoop class inside of the constructor method call. Since we are currently depending on the 
Java compiler to create the GamePlayLoop() constructor method for us, we will need to create one for ourselves! As 
you learned in Chapter 3, if you do not explicitly create a constructor method for a class, one will be created for you.



Chapter 12 ■ Setting Boundaries for Your Action Figure in 2D: Using the Node Class LocalToParent Attribute

259

Enhancing GamePlayLoop.java: Creating a GamePlayLoop( ) Constructor Method
Let’s perform a similar work process in the GamePlayLoop.java class to what we did in the Bagel.java class. Add a 
protected InvinciBagel invinciBagel; statement at the top of the class. Next, create a public GamePlayLoop() 
constructor method, with an InvinciBagel object named iBagel inside the parameter list. Inside the GamePlayLoop() 
constructor method, set the iBagel InvinciBagel object reference equal to the protected InvinciBagel invinciBagel 
(reference) variable so that we can use the new invinciBagel InvinciBagel object reference inside of the 
GamePlayLoop .handle() method. This will allow us to call the .update() method off of the iBagel Bagel object using 
the invinciBagel InvinciBagel reference object. The GamePlayLoop class and constructor method structure, along 
with a new .handle() method body, which includes a revised invinciBagel.iBagel.update() method call path (object 
referencing structure), are shown error-free in Figure 12-8, and should look like the following Java code:
 
public class GamePlayLoop extends AnimationTimer {
    protected InvinciBagel invinciBagel;
    public GamePlayLoop(InvinciBagel iBagel) {
        invinciBagel = iBagel;
    }
    @Override
    public void handle(long now) {
        invinciBagel.iBagel.update();.
    }
} 

Figure 12-8.  Make the same change to GamePlayLoop by adding an invinciBagel InvinciBagel variable and 
constructor



Chapter 12 ■ Setting Boundaries for Your Action Figure in 2D: Using the Node Class LocalToParent Attribute

260

As you can see in Figure 12-8, I have clicked on the invinciBagel variable (InvinciBagel object reference) so it is 
highlighted, and you can see its usage across the two methods. The declaration is used in the GamePlayLoop class, 
the instance inside of the GamePlayLoop() constructor method is set using the InvinciBagel class this keyword (using 
the iBagel parameter), and the variable reference inside of the .handle() method accessed the Bagel class .update() 
method using the iBagel Bagel object and the invinciBagel InvinciBagel reference object. Java is advanced, but cool.

Now that we have created our custom GamePlayLoop() constructor method that accommodates the receipt of 
the InvinciBagel object reference named iBagel, and then assigns it to the invinciBagel variable, it is time to return to 
the InvinciBagel.java code (editing tab in NetBeans).

The final piece of this (second) puzzle of removing the static Bagel iBagel; declaration is to add the Java 
this keyword in the GamePlayLoop() constructor method call. After we do this, our InvinciBagel, Bagel and 
GamePlayLoop will all be wired up to each other, without using any static variables (other than the WIDTH and 
HEIGHT constants).

Using this in GamePlayLoop() Constructor: GamePlayLoop(this)
Open up your .createStartGameLoop() method structure, using the + expand icon on the left side of NetBeans, as 
shown in Figure 12-9. Add the Java this keyword in the parameter area, so that you are again passing the InvinciBagel 
object reference, this time into the GamePlayLoop() constructor method call. This will give that class a reference to 
your InvinciBagel class and its context and structure, just like you did with the Bagel class. Your newly revised Java 
method body and constructor method call will look like the following code, which is shown highlighted in Figure 12-9:
 
private void createStartGameLoop() {
    gamePlayLoop = new GamePlayLoop(this);
    gamePlayLoop.start();
} 



Chapter 12 ■ Setting Boundaries for Your Action Figure in 2D: Using the Node Class LocalToParent Attribute

261

As long as we are making our InvinciBagel.java class completely encapsulated, let’s make the StackPane root 
variable private as well, and get rid of the static modifier. Since I have moved the StackPane object named root back 
up into the .start() menu from the .createSplashScreenNodes() method, there is no good reason for a static modifier 
keyword. I am trying to remove all static modifiers (that are not constants) and “privatize” this class as much as I can.

Removing the Rest of the Static Variables: StackPane and HBox
Now I am going to start going right down the variable declaration lines of code at the top of the InvinciBagel.java 
class starting with the Boolean variables that we made private (which were public static), and see which of these 
variables I can make private instead of package protected static (which StackPane and HBox are currently), or 
which are package protected, and can be made private. A private variable “encapsulates” that variable’s data inside 
of the class (object) itself; in this case, this would be the InvinciBagel.java code that we’re currently refining. A 
package protected variable encapsulates the data inside of the package; in this case that would be the invincibagel 
package. The new Java statement for declaring the StackPane object named root, which is a root element of the 
Scene Graph, to be a private member of the InvinciBagel.java class (only), would be accomplished using the 
following code, shown in Figure 12-10.
 
private StackPane root;
 

Figure 12-9.  Add a Java this keyword inside of the GamePlayLoop() constructor method call to provide a context object



Chapter 12 ■ Setting Boundaries for Your Action Figure in 2D: Using the Node Class LocalToParent Attribute

262

The next static variable down in the declarations at the top of the class is static HBox buttonContainer; and  
I am also going to change this variable declaration to be a private variable, using the following Java statement:
 
private HBox buttonContainer;
 

Let’s make sure that the Java statements inside of the .createSplashScreenNodes() method can still “see” or 
reference this buttonContainer HBox object, which as you can see in Figure 12-11, they can. I also clicked on the HBox 
object in NetBeans so that it showed me the object references throughout my code (this is a really useful feature that 
you should use to visualize how objects relate between different Java 8 programming statements inside of your code). 
This selected object highlighting is shown in your code inside of NetBeans 8 by using a yellow field highlighting color.

Figure 12-10.  Change the declaration statement for the StackPane object named root from a static modifier to private



Chapter 12 ■ Setting Boundaries for Your Action Figure in 2D: Using the Node Class LocalToParent Attribute

263

I had originally declared these fields static because I had read on the Internet, on several of the Java coding sites, 
that this is an “optimization trick,” which allows the JVM to set aside fixed areas of memory, and make the code run 
more optimally. I have decided to make the objects for my game as encapsulated as possible first, here during the 
development process, and then look at optimization later on, if and when it becomes necessary.

As long as we are making our InvinciBagel.java class completely encapsulated, let’s make the other variables 
private as well. I tested this game after making each of the variables (after the Bagel iBagel declaration) private, and it 
ran just fine. When I make the Bagel iBagel private, the game hangs on a white (background color) screen, so I left the 
Bagel iBagel declaration package protected (no access control modifier keyword signifies package protected access).

Making the Remaining Variables Private: Finish Encapsulating InvinciBagel Class
My work process for making the other eight lines of variable declarations private rather than package protected was 
to place the private Java access control keyword in front of the (simple or compound) variable declaration, and then 
use the Run ➤ Project work process (or click the green play icon at the top of NetBeans, which is faster) to test the 
code and see if all of the features, including the Button UI, splashscreens and character movement, work as they have 
been, using package protected access control. If for some reason at a later point in the software development we need 

Figure 12-11.  Change declaration statement for HBox object named buttonContainer from a static modifier to private



Chapter 12 ■ Setting Boundaries for Your Action Figure in 2D: Using the Node Class LocalToParent Attribute

264

to remove the private modifier or replace it with a different modifier keyword for any reason, we can, but it is best to 
work from a place of total object encapsulation if possible from the start, and then open up the object if we need to 
later on. The Java code statements for making all data fields inside of our InvinciBagel class encapsulated are:
 
private Scene scene;
private Image splashScreen, instructionLayer, legalLayer, scoresLayer;
private Image iB0, iB1, iB2, iB3, iB4, iB5, iB6, iB7, iB8;
private ImageView splashScreenBackplate, splashScreenTextArea;
private Button gameButton, helpButton, scoreButton, legalButton,;
private Insets buttonContainerPadding;
private GamePlayLoop gamePlayLoop;
private CastingDirector castDirector;
 

As you can see in Figure 12-12, the code for all of the classes and modifications we have made thus far are error-
free, and we are ready to build more complex Java statements that control our primary character sprite on top of 
technically correct Java code that follows industry standard Java 8 programming practices.

Figure 12-12.  Make all of the variable declarations after the iBagel Bagel object declaration use private access control

Next, we will get back into our Bagel.java class, and the .update() method, and start to refine (and organize) that 
code into more logical methods, so that our .update() method becomes more of a “top-level” method, that calls lower-
level method “Java code blocks” that implement things such as key event processing, character movement, screen 
boundaries, sprite Image state, and so on.

This will allow us to put a more complex “workload” on the Bagel character’s .update() method by calling logical 
methods such as .setXYLocation(), .moveInvinciBagel(), and .setBoundaries(), and later on during this book, 
.setImageState(), .checkForCollision() and .playAudioClip() for example. In this way, your .update() method calls 
other methods containing logical code blocks. This keeps your Java code well organized and makes programming 
logic easier to visualize.



Chapter 12 ■ Setting Boundaries for Your Action Figure in 2D: Using the Node Class LocalToParent Attribute

265

Organizing the .update( ) Method: .moveInvinciBagel( )
Since we are going to be adding more and more Java programming logic into the .update() method of the Bagel class 
during the remainder of the book, I want to put into place some “method modularization” that will be quite similar to 
what we did for the InvinciBagel class in Chapter 11 when we added the six new logical method structures. Since we 
will be performing a number of complex operations inside of the .update() method as the game becomes more and 
more complex, it is logical that the .update() method should contain calls to other methods that logically organize 
the tasks that we will need to do on each frame, such as determining keys pressed (or not pressed), moving the 
InvinciBagel character, looking to see if he has gone off the screen (setting boundaries), and eventually controlling 
his visual states, detecting collision, and applying physics effects. The first thing that I want to do is to “extract” the 
movement of the sprite into a .moveInvinciBagel() method that will perform any translation transforms that need to 
be implemented using a moveInvinciBagel(iX, iY); method call. This means that we will have to create the private 
void moveInvinciBagel(double x, double y){...} method structure and place the .setTranslate() method calls 
inside of it, replacing them in the .update() method with the .moveInvinciBagel() method call. The basic Java code to 
perform these changes to the Bagel.java class are shown in Figure 12-13, and will look like this Java code:
 
@Override
public void update() {
    if(invinciBagel.isRight()) { iX += vX }
    if(invinciBagel.isLeft())  { iX -= vX }
    if(invinciBagel.isDown())  { iY += vY }
    if(invinciBagel.isUp())    { iY -= vY }
    moveInvinciBagel(iX, iY);
}
private void moveInvinciBagel(double x, double y) {
    spriteFrame.setTranslateX(x);
    spriteFrame.setTranslateY(y);
} 

Figure 12-13.  Create a .moveInvinciBagel() method for .setTranslate() method calls, and call if from .update() method

Next, let’s move an iBagel on the screen using the ImageView .setTranslateX() and .setTranslateY() methods.



Chapter 12 ■ Setting Boundaries for Your Action Figure in 2D: Using the Node Class LocalToParent Attribute

266

Further Modularization of the .update() Method: .setXYLocation()
You might think that the KeyEvent handling Boolean variables need to be processed inside of the .update() method, 
but since they are simply evaluated and then increment the Bagel object’s iX and iY properties, this can be placed into 
its own .setXYLocation() method as well, leaving us with only top-level method calls inside of our .update() method. 
This will make further sprite manipulation and game play development much more organized, and will also help us to 
see what code is being performed at what stages in the .update() cycle. What we are going to do, which is also shown 
in Figure 12-14, is to create a .setXYLocation() method, which we will call first in our .update() method, and then place 
the four conditional if() statements inside of this new private void setXYLocation(){...} method structure. The 
new three method structure for our Bagel.java class .update() “chain of command” will utilize the following Java code:
 
public void update() {
    setXYLocation();
    moveInvinciBagel(iX, iY);
}
private void setXYLocation() {
    if(invinciBagel.isRight()) { iX += vX }
    if(invinciBagel.isLeft())  { iX -= vX }
    if(invinciBagel.isDown())  { iY += vY }
    if(invinciBagel.isUp())    { iY -= vY }
}
private void moveInvinciBagel(double x, double y) {
    spriteFrame.setTranslateX(x);
    spriteFrame.setTranslateY(y);
} 

Figure 12-14.  Create a .setXYLocation() method, install four if() statements inside it, and call it from .update() method

Next, we need to put some code in place that prevents our InvinciBagel character from going off of the screen, in 
case our game player does not reverse his direction in time. Later when we implement scoring, we could add in code 
that subtracts points for going “out of bounds,” but for now we are simply going to stop the movement, as if there was 
an invisible barrier in place at the edges of the game play area (the Stage and Scene size boundaries).



Chapter 12 ■ Setting Boundaries for Your Action Figure in 2D: Using the Node Class LocalToParent Attribute

267

Setting Screen Boundaries: .setBoundaries( ) Method
The next most important thing to do for our InvinciBagel game is to make sure that the character does not disappear 
off the edge of the screen by placing a .setBoundaries() method call between the .setXYLocation() method, which 
evaluates arrow (or ASDW) keypress combinations, and increments the iX and iY Bagel object properties accordingly, 
and the .moveInvinciBagel() method, which actually executes the movement. By placing the .setBoundaries() method 
before the sprite movement is invoked, we can make sure that the sprite is not off the screen (and if he is, move him 
back onto the screen) before we actually call the move function (method). The first step in writing this code is to 
define the sprite size in pixels so that we can calculate this along with our WIDTH and HEIGHT Stage size constants to 
determine the boundary variable values that we will need to check our iX and iY sprite location against inside of the 
.setBoundaries() method and its conditional if() statement structures. As you can see in Figure 12-15, I define these 
sprite pixel size constant declarations at the top of the Bagel.java class, by using the following two lines of Java code:
 
protected static final double SPRITE_PIXELS_X = 81;
protected static final double SPRITE_PIXELS_Y = 81; 

Figure 12-15.  Declare protected static final double SPRITE_PIXELS_X and SPRITE_PIXELS_Y constants at the top of class

Next, we need to calculate the four screen boundary values using the WIDTH and HEIGHT constants in the 
InvinciBagel class and the SPRITE_PIXELS_X and SPRITE_PIXELS_Y constants we just defined at the top of this class. 
As you may have noticed from our 0,0 initial X,Y Bagel object location coordinates putting our sprite in the center of the 
screen, JavaFX is using a centered X axis and Y axis screen addressing paradigm. This means there are four quadrants, 
and that negative values (which mirror positive values) move left and up, and positive values move right and down. 
We can actually use this paradigm later on to quickly ascertain which quadrant of the screen the character is in. The 
way we would thus calculate the boundaries is to take half of the screen width and subtract half of the sprite width to 
find the right (positive) boundary value and simply take the negative of this for the value for the left boundary limit. A 
similar calculation applies to the top and bottom boundary value limit, for which we will take half of the screen height 
and subtract half of the sprite height to find the bottom (positive) boundary value and simply take the negative of this 
for the value for the top boundary limit value. The Java code for these calculations should look like the following:
 
protected static final double rightBoundary  =   WIDTH/2  - SPRITE_PIXELS_X/2;
protected static final double leftBoundary   = -(WIDTH/2  - SPRITE_PIXELS_X/2);
protected static final double bottomBoundary =   HEIGHT/2 - SPRITE_PIXELS_Y/2;
protected static final double topBoundary    = -(HEIGHT/2 - SPRITE_PIXELS_Y/2);
 



Chapter 12 ■ Setting Boundaries for Your Action Figure in 2D: Using the Node Class LocalToParent Attribute

268

As you can see in Figure 12-16, NetBeans is having trouble seeing the constants inside the InvinciBagel class.

Figure 12-16.  Hold a left arrow (or A) and up arrow (or W) key down at the same time, and move the Actor diagonally

Figure 12-17.  Create rightBoundary, leftBoundary, bottomBoundary and topBoundary constants at the top of the class

Mouse-over the wavy red error highlighting in NetBeans that is underneath the WIDTH constant, and select the 
import static invincibagel.InvinciBagel.WIDTH; option so that NetBeans will write this import statement for 
you. The industry standard way to “correctly” utilize import static (or static imports, if you wish) are for the import 
and use of constants, so we are in top conformance with Java programming standard procedures here. Perform that 
same work process again for the red error highlighting underneath the HEIGHT constant reference, and then add the 
.setBoundaries() method call in between the .setXYLocation() and .moveInvinciBagel() method calls in your .update() 
method. This would be done using the following Java method call in the .update() method, shown in Figure 12-17:
 
setBoundaries(); 



Chapter 12 ■ Setting Boundaries for Your Action Figure in 2D: Using the Node Class LocalToParent Attribute

269

As you can see in Figure 12-17, this will generate an error under the method call, until we code the method.
Create a private void setBoundaries(){...} empty method structure underneath the .setXYLocation() 

method structure, so that your methods are in the same order that we will call them from inside of your .update() 
method. Next you will place your four conditional if() structures, one for each screen boundary, starting with the X 
axis related right and left screen boundaries, and then for the Y axis related bottom and top screen boundaries. The 
first if statement needs to look at the rightBoundary value and compare the current iX location to that value. If the iX 
value is greater than or equal to the rightBoundary value limit, then you want to set the iX value to the rightBoundary 
value. This will keep the InvinciBagel locked into position right at the boundary. The reverse of this logic will also 
work for the left side of the screen; if the iX value is less than or equal to the rightBoundary value limit, then you will 
want to set the iX value equal to the leftBoundary value.

The third if statement needs to look at the bottomBoundary value and compare the current iY location to that 
value. If the iY value is greater than or equal to the bottomBoundary value limit, then you will want to set the iY 
value to the bottomBoundary value. This will keep your InvinciBagel locked into position at the bottom of the screen 
boundary. The reverse of this logic will also work for the top of the screen; if the iY value is less than or equal to the 
topBoundary value limit, then you will want to set the iY value equal to the topBoundary value. The Java code for the 
.setBoundaries() method including the four if() statements is shown in Figure 12-18, and should look like the following:
 
private void setBoundaries()  {
    if (iX >= rightBoundary)  { iX=rightBoundary;  }
    if (iX <= leftBoundary)   { iX=leftBoundary;   }
    if (iY >= bottomBoundary) { iY=bottomBoundary; }
    if (iY <= topBoundary)    { iY=topBoundary;    }
} 

Figure 12-18.  Create a private void .setBoundaries() method and four if() statements to ascertain and set boundaries



Chapter 12 ■ Setting Boundaries for Your Action Figure in 2D: Using the Node Class LocalToParent Attribute

270

Next, let’s test all of this code to see if it does what we think that it logically should do! The code is quite well 
organized and very logical, so I don’t see any problems with it, but testing it in NetBeans is the only real way to find 
out for sure! Let’s do that next. This is getting kind of exciting!

Testing the InvinciBagel Sprite Boundaries: Run ➤ Project
Now it is time to use the NetBeans Run ➤ Project work process and test the .setBoundaries() method, which now gets 
called after the .setXYLocation() method but before the .moveInvinciBagel() method. So the logical progression as it 
sits now is check keypressed and set X and Y location based on that, then check to make sure you have not gone past 
any boundaries, then position the sprite.

As you can see in Figure 12-19, the InvinciBagel character now stops at all four edges of the screen. On the 
left and right sides he stops a short distance away from the side of the screen because the sprite is centered in the 
ImageView area, but once we get him running, which we will be doing in the next chapter covering how to animate 
the character’s movements, this will look at lot closer to the edge of the screen. We always have the option to adjust 
our leftBoundary and rightBoundary variable algorithms at the top of the Bagel.java class, which allows us to “tweak” 
the boundary limits value later on, as we continue to refine our code.

Figure 12-19.  Testing the InvinciBagel character movement; shown as stopping at the top and bottom boundary limits

Now that we have both organized and encapsulated our code, got the sprite movement working and set the 
boundaries for the edges of the screen, we can start to look at implementing the different sprite image states so that 
when combined with the key movement, we can start to create a more realistic InvinciBagel character action figure!

Summary
In this twelfth chapter, we privatized our primary InvinciBagel.java class as much as possible, and removed all of the 
static modifier keywords that were not specifically related to constants (WIDTH and HEIGHT). First we removed 
the public static Boolean variables and made them private to the InvinciBagel class, and then created getter and 
setter methods to allow the Bagel class to use these variables using .is() method calls. We also had to pass the 
InvinciBagel object reference to the Bagel object inside of the front of the Bagel() constructor parameter list using 
the Java this keyword. We made these same changes to the static Bagel iBagel object declaration, removing the static 
modifier keyword and passing the InvinciBagel object context using the Java this keyword, this time inside of the 
GamePlayLoop() constructor method call. To do this we had to create our own custom GamePlayLoop() constructor 
method rather than using the one that is created by the compiler (JVM) if we do not specifically provide one.



Chapter 12 ■ Setting Boundaries for Your Action Figure in 2D: Using the Node Class LocalToParent Attribute

271

After that we removed the other two static modifier keywords on the StackPane and HBox objects, and made all 
of the rest of the variables private, at least for now, to provide the greatest level of encapsulation for the InvinciBagel 
(primary) game class.

Next, we reorganized the code in the Bagel.java class relating to the .update() method. We created specific 
methods for polling the keypressed values and setting the iX and iY properties for the object, which we called the 
.setXYLocation() method, as well as creating the .moveInvinciBagel() method for calling the .setTranslate() methods.

Finally, we created a new .setBoundaries() method in the Bagel.java class, which is called after the 
.setXYLocation() method but before the .moveInvinciBagel() method that makes sure that our main character stays 
on the screen at all times.

In the next chapter, we are going take a look at advanced concepts regarding animating the game sprite as it 
is moved around your screen using the List<Image> ArrayList<Image> object, so that we get more realistic sprite 
animation before we get into advanced topics such as digital audio, collision detection, and physics simulation.



273

Chapter 13

Animating Your Action Figure States: 
Setting the Image States Based on 
KeyEvent Processing

Now that we have also organized your Java code into logical methods in the Bagel.java class, as well as making sure 
that all of our Java code is standards compliant in Chapters 11 and 12, it is time to get into some more complicated 
code structures that will animate our InvinciBagel character on the screen as the user moves the character. For 
instance, if the character is traveling due East or due West (using only left or right keypresses, to travel in a straight 
line), he should be running (alternating between the imageStates(1) and imageStates(2) List<Image> elements). If 
the up key is also pressed, he should be leaping up in the direction of the left or right keypress, and if the down key is 
pressed, he should be preparing to land in the direction of the left or right keypress.

We will also need to implement the Actor class’s isFlipH property or attribute, so that the character is facing the 
right way based upon the direction he is traveling. Instead of using another image for that, we will use the JavaFX 
capability to “flip” or “mirror” any image around its central Y axis (isFlipH) or around its central X axis (isFlipV). Once 
a sprite animation state is combined with the movement code that you put into place in the previous chapter, you’ll be 
amazed at how realistic this character will become, and we are still using only nine sprite state images (under 84KB of 
total data footprint used for our new media assets so far).

We will do all of this character animation during this chapter using only Java code, and using only the JavaFX 
AnimationTimer (GamePlayLoop) superclass. This way, we are optimizing the use of the JavaFX pulse engine for our 
game by accessing the pulse event timing engine using only the javafx.animation package’s class that uses the least 
amount of memory overhead. The AnimationTimer class is the most simple class, with no class variables, and only a 
.handle() method to implement, and yet it is also the most powerful, because it lets you write all of your own code.

This approach allows us to write custom code to animate a character based on keys pressed and movement, 
rather than triggering predefined Timeline objects based on KeyFrames (and their KeyValues) along that Timeline.  
I am keeping it simple on the game engine side, and putting all of the complexity into our custom game play code. 
This will save us a lot of headaches later on, trying to “synchronize” keyframe-based and timeline-based linear 
animations, which puts us into a linear timeline-based paradigm, such as Flash uses. This 100% Java 8 coding 
approach is certainly more difficult, from a Java coding perspective, but gives us an order of magnitude more power, 
to achieve a seamless integration of event processing, screen movement, character animation, physics, and collision 
detection. Setting up a multitude of prebuilt JavaFX Animation subclasses would presumably allow the same results 
in the end, but the code would be less elegant, and probably much more difficult to build future versions of the game 
play on top of.

All of our character state animation will be created using a .setImageState() method that will be called from 
inside of the .update() method, so, we will continue to be organized in the movement and animation of our character.



Chapter 13 ■ Animating Your Action Figure States: Setting the Image States Based on KeyEvent Processing

274

InvinciBagel Animation: The .setImageState( ) Method
In this chapter, we are going to create one (fairly complex) method called .setImageState(), which will set our 
InvinciBagel character’s animation or motion state based upon which keys are being pressed at any given moment. 
Calling a .setImageState() method right before the .moveInvinciBagel() method in the .update() method will serve to 
combine one of the character’s nine image cels (frames) with the motion of the character. This will create the illusion 
of animation, and will achieve this without using any animation timelines whatsoever. From a game optimization 
standpoint, this means that the JavaFX engine that is running our GamePlayLoop can focus its resources on just that 
single animation (pulse) engine. As you can see in Figure 13-1, we need to add a .setImageState(); method call, 
inside of the .update() method before the .moveInvinciBagel() method call and after the .setBoundaries() method call. 
After you do this, you’ll have to create an empty method to get rid of the error highlight. The Java code looks like this:
 
private void setImageState() { The Method Body we'll develop in this chapter goes in here } 

Figure 13-1.  Create the private void setImageState( ) method; place a setImageState( ) method call in .update( ) method

As you can see in Figure 13-1, this empty code framework doesn’t generate any red error or yellow warning 
highlights in the code. We are currently very organized, accomplishing all our KeyEvent handling, boundary 
detection, sprite animation, and sprite movement, by using only four method calls inside of this Bagel class 
.update() method.

The first thing that we want to check for is no movement: that is, no keys pressed, so that we can correctly 
implement the “waiting” InvinciBagel state we used in the previous chapter to develop a sprite movement algorithm.

The InvinciBagel Wait State: If No Key Pressed Set imageState(0)
The first conditional if( ) statement that we put into place will be the default or “no keys pressed” state, which is sprite 
zero that shows the InvinciBagel waiting impatiently to be moved and animated. What we want to look for inside of 
the if evaluation area inside of the parenthesis is a false value for each of the up, down, left, and right variables, all at 
the same moment of time. Up until now, we have been looking for a true value, using the .isUp(), .isDown(), .isLeft(), 
and .isRight() method calls off of the invinciBagel object reference. In this situation we want to look for a false value.



Chapter 13 ■ Animating Your Action Figure States: Setting the Image States Based on KeyEvent Processing

275

To accomplish this, we need to use the Java Unary Exclamation Point ! operator. This reverses the Boolean 
value, so in our case, a false value from one of these method calls would be represented by a !invinciBagel.isUp() 
construct, for instance. To find out if more than one value is false at the same time, we’ll need to implement the Java 
Conditional AND operator, which uses two consecutive ampersand characters, like this && so; in this case, we will 
be using three of these && Conditional AND operators, to tell the Java compiler that we want Right AND Left AND 
Down AND Up to all be false. All of this logic will go inside of the if() evaluation area (inside of the parenthesis). Inside 
of the curly braces, where the statements go if the if() evaluation area is met (if up, down, left and right are all false), 
we will set the spriteFrame ImageView object equal to the first Image object in the imageStates List<Image> object 
using the .setImage() method call. Inside of that method call, we will use the .get() method call on the imageStates 
List<Image> object, to get the first Image reference imageStates(0) from the List<Image> object. This is the “waiting” 
sprite cel for the InvinciBagel, which shows him waiting impatiently to be moved (animated). The Java code for the 
construct would look like the following Java programming structure (I have indented this for easier readability and 
learning purposes):
 
if( !invinciBagel.isRight() &&
    !invinciBagel.isLeft()  &&
    !invinciBagel.isDown()  &&
    !invinciBagel.isUp()      ) {
    spriteFrame.setImage(imageStates.get(0)); }
 

As is seen in Figure 13-2, this first if() statement, representing “if none of the arrow keys are being pressed,” is 
error-free. If you use the Run ➤ Project work process, and test this code, you’ll get the same result as you did in the 
previous chapter! To see if this code works we must first make the InvinciBagel run, so that when we stop moving him 
using the arrow keys, we get this impatient “waiting” state, which actually makes it a lot more effective (funny), when 
this wait is in the context of all this animated movement we’re about to implement during the course of the chapter!

Figure 13-2.  Add a conditional if() statement that checks for no movement, and sets the wait sprite image state (zero)

Next let’s start to implement some of the other character image cels to try and get our character animating!



Chapter 13 ■ Animating Your Action Figure States: Setting the Image States Based on KeyEvent Processing

276

The InvinciBagel Run State: If KeyPressed Set imageState(1 & 2)
As you have seen in Chapter 8, I am going to try and achieve an animated run state for the character using only two 
sprite cels, imageState(1) and imageState(2). This is about as optimized as you can get, both from an Image assets 
standpoint, as well as from a coding standpoint, as you are about to see. This is especially true given that you can’t 
animate anything such as a run cycle using a single image state. That said, we are going to create a lot of very realistic 
animation during this chapter by using single cel, well-designed, sprite states, in combination with the sprite motion 
code that we put into place in Chapter 12. The if(invinciBagel.isRight()) and if(invinciBagel.isLeft()) 
statement constructs will initially be quite easy and straightforward, but these will grow far more complex as we add 
refining features during the course of this chapter. We will put the foundation into place for these first, then add the 
up and down conditional if() statements, and then later, we will refine the right and left KeyEvent handling. Inside of 
the if() constructs for the left and right arrow key (and A and D key movement), we will use the same chained method 
call that we used in the first (impatiently waiting state) if() construct, only here we will call the imageStates(1) or 
imageStates(2) sprite cels, from the List<Image> object, instead of using the imageStates(0) sprite cel. The Java code to 
change the sprite Image states to state 1 or 2, if the right or left key is pressed (true), should look like the following:
 
if(invinciBagel.isRight()) {
    spriteFrame.setImage(imageStates.get(1));
}
if(invinciBagel.isLeft()) {
    spriteFrame.setImage(imageStates.get(2));
}
 

As you can see in Figure 13-3, the Java code is error-free, and we are ready to use the Run > Project work 
process test this preliminary run mode. If you quickly press the left and right arrow keys in succession, you’ll see the 
InvinciBagel running!

Figure 13-3.  Add conditional if() statements that check for left/right movement, and sets the run sprite image states



Chapter 13 ■ Animating Your Action Figure States: Setting the Image States Based on KeyEvent Processing

277

Since this is not how we want to make our game player make the InvinciBagel run (because the very nature of it 
stops his movement around the screen, and because it’s just plain lame), let’s quickly put into place your up and down 
key support, so that we can come back and work on the left and right keys so we can make the run cycle work!

The InvinciBagel Fly State: If KeyPressed Set imageState(3 & 4)
The if(invinciBagel.isDown()) and the if(invinciBagel.isUp()) conditional if() structures are identical to the 
left and right key structures, except that they call imageStates(3) and imageStates(4) List elements, to allow the 
InvinciBagel character to “come in for landing” (cel 3), and “take off flying” (cel 4). As we add more of the imageStates 
during this chapter, and combine this cel animation code with our motion and boundary code, you are going to have 
more and more fun testing this chapter’s coding results! If you want to take a programmer’s shortcut, copy and paste 
the .isRight() and .isLeft() constructs underneath themselves, and simply change the .get(1) and .get(2) to .get(3) and 
.get(4). As you can see in Figure 13-4, the code is currently very compact and well organized; structured; and logical; 
and in only half a dozen lines of Java code, we have now implemented more than half of our nine image states already! 
Of course, we still have to add refinement code, to implement sprite mirroring for direction changes and run-cycle 
timing refinement. The Java code for the .isUp() and .isDown() method structures should look like the following:
 
if(invinciBagel.isDown()) {
    spriteFrame.setImage(imageStates.get(3));
}
if(invinciBagel.isUp()) {
    spriteFrame.setImage(imageStates.get(4));
} 

Figure 13-4.  Add conditional if() statements that check for up/down movement and sets jump/land sprite image state

As you can see in Figure 13-4, our code is error-free, and we are ready to add several layers of complexity to the 
left and right arrow key event processing code, since these two keys are defining the direction (East and West) the 
InvinciBagel is traveling. For this reason, these two conditional if() statement structures, in particular, need to become 
more complex, because traveling East (to the right) will use original (isFlipH = false) sprites, and traveling West (to the 
left) will utilize a mirrored version (isFlipH = true) of each sprite, “flipping” the Image assets around the central Y axis.



Chapter 13 ■ Animating Your Action Figure States: Setting the Image States Based on KeyEvent Processing

278

Mirroring Sprites: Quadrupling Your Image Assets from 9 to 36
Now let’s go back into the existing .isLeft() and .isRight() conditional evaluation statements, which are going to become 
quite “robust” (complicated) over the course of this chapter, and let’s add our spite mirroring capability. The JavaFX 
API has its mirroring capability “hidden” in the ImageView class’s .setScaleX() method call. Although we are not going 
to scale our Image assets, as doing so causes artifacts in our pristine PNG32 image assets, there is a little known trick 
that you can pass a -1 (negative 100% scaling factor) value into a .setScaleX() method, to flip or mirror the Image asset 
around the Y axis (or into the .setScaleY() method, to flip or mirror around the X axis). Clearly we will need to also 
“undo” this in the other conditional if() structure by passing a 1 (positive 100% scaling factor) into the same method 
call, which does not make a whole lot of sense (normally) as our Image scale is already 100% (not scaled) but in light 
that the -1 scale-flip factor might have been set previously, this is how we make sure that mirroring is disabled and 
we are again using our original sprite Image assets for that particular state. Your newly upgraded Java statements 
implementing sprite mirroring should now look like the following code, which is also shown highlighted in Figure 13-5:
 
if(invinciBagel.isRight()) {
    spriteFrame.setImage(imageStates.get(1));
    spriteFrame.setScaleX(1);
}
if(invinciBagel.isLeft()) {
    spriteFrame.setImage(imageStates.get(1));
    spriteFrame.setScaleX(-1);
} 

Figure 13-5.  Add a .setScaleX() method call to the .isRight() and .isLeft() evaluations to flip the sprite around the Y axis

As you can see in Figure 13-5, your Java code is still error-free. It is interesting to note that we are calling the sprite 
mirroring method on the spriteFrame ImageView object, and not on the Image assets inside of this ImageView. This 
is of tantamount importance, because it means that we can use this one single line of code inside of .isRight() and 
.isLeft() to flip whatever sprite state (image) is showing inside of an ImageView! That’s highly optimized programming!

Now that our sprite mirroring code is in place, we need to take care of the issue of having the run cycle that is 
implemented by alternating imageStates(1) and imageStates(2) accomplished using our conditional if() processing.



Chapter 13 ■ Animating Your Action Figure States: Setting the Image States Based on KeyEvent Processing

279

Animating Your Run Cycle: Creating a Nested If-Else Structure
The next step in our sprite animation for this chapter is to actually animate a run cycle for our character, which we 
would normally do with JavaFX KeyFrame and Timeline classes, but which we will do here in little more than a dozen 
lines of code. Since we are already using the AnimationTimer class, this is the optimal approach, and can be done 
using only a single Boolean variable. Since we have two cels for our run cycle, we can use this Boolean variable and 
alternate its value between true and false. If this Boolean value, which we will call animator, is false, we will show the 
cel in imageStates(1), which is our starting to run position (foot touching the ground). If animator is true, we will show 
the cel in imageStates(2), which is our full-out run position (both feet in full motion). Create the Boolean animator 
variable at the top of the Bagel.java class. NetBeans was giving me a “variable not initialized” warning, so I explicitly 
set it equal to the default Boolean value of false, as I want the run cycle to always start with a foot pushing off of the 
ground. The variable declaration statement should look like the following, and is shown at the very top of Figure 13-6:
 
boolean animator = false; 

Figure 13-6.  Nest an if-else logic structure alternating between sprite cels 1 and 2 using the boolean animator variable

Since we want the run cycle to always start with the imageStates(1) foot pushing off the ground cel, we will add an 
animator=false; line of code inside of our “no arrow keys pressed” code statement. This statement will now do two 
different things: setting the imageStates(0) waiting sprite Image reference; and making sure that the animator variable 
is initialized to a false value, which ensures the run cycle starts with a foot on the ground, just like it would in real life. 
The new Java code for the “no arrow keys pressed” conditional if() structure should look like the following:
 
if( !invinciBagel.isRight()  &&
    !invinciBagel.isLeft()   &&
    !invinciBagel.isDown()   &&
    !invinciBagel.isUp()       )  {
    spriteFrame.setImage(imageStates.get(0));
    animator=false;               }
 



Chapter 13 ■ Animating Your Action Figure States: Setting the Image States Based on KeyEvent Processing

280

The Java code for the .isRight() and .isLeft() conditional if() structures is going to become significantly more 
robust now, as we will have to nest another if-else conditional statement inside of the one that determines if the right 
arrow key is pressed. If right is true, it will set the ScaleX property to 1 (not mirrored), and then adds a conditional if() 
statement that looks to see if the value of the animator Boolean variable is false. If animator is false we use the handy 
method chain to get imageStates(1), and set this Image asset as the cel that the spriteFrame ImageView will use. After 
that, we need to set the animator variable to a true value, so that later on the imageStates(2) full run sprite image can 
be set. If animator is true, the else-if portion of the structure then looks to confirm animator is true, and if it is, again 
uses the spriteFrame.setImage(imageStates.get(2)); method chain to get imageStates(2) and sets animator to 
false. The new code for the statement, which is also shown in Figure 13-6, should look like the following:
 
if(invinciBagel.isRight())  {
    spriteFrame.setScaleX(1);
    if(!animator) {
        spriteFrame.setImage(imageStates.get(1));
        animator=true;
    }   else if(animator)   {
        spriteFrame.setImage(imageStates.get(2));
        animator=false;
    }
}
 

It is important to note that you could remove the else if(animator) in this situation, and just use an else 
without the if(animator) part. However, we’re going to be making the right (and left) KeyPressed construct even more 
complex, by nesting even more code even deeper in the if-else-if-else structure, so I am going to leave it this way both 
for readability as well as for future code development purposes. As you can see in Figure 13-6, the code is error-free.

You can now implement the same exact code structure into your .isLeft() conditional if() structure. Since the 
player will be using either the left or the right key (but not both together, at least not until we start adding those cool 
hidden “Easter egg” features during later stages of the game development) we can use the same animator variable in 
both the .isRight() and .isLeft() conditional if() constructs, allowing us to do a bit of memory-use optimization here. 
As you can see, the only difference is that the ScaleX property is set to mirror the sprite image (using a -1 value), and 
the Java code for the if(invinciBagel.isLeft()) conditional if() structure should therefore look like the following:
 
if(invinciBagel.isLeft())  {
    spriteFrame.setScaleX(-1);
    if(!animator) {
        spriteFrame.setImage(imageStates.get(1));
        animator=true;
    }   else if(animator)   {
        spriteFrame.setImage(imageStates.get(2));
        animator=false;
    }
}
 

As you can see in Figure 13-7, this Java code is error-free, and you are ready to use your Run > Project work 
process, and test the InvinciBagel run cycle so you can see just how fast your superhero can run (or how fast the pulse 
engine in JavaFX can be, using the AnimationTimer superclass for your GamePlayLoop class). When you test your Java 
code, you will see that your superhero character is running much faster than humanly possible (and much faster than 
a bagel can run); in fact, the sprite animation cels are alternating so fast, that it looks like one blurred run animation!



Chapter 13 ■ Animating Your Action Figure States: Setting the Image States Based on KeyEvent Processing

281

The next thing that we’ll need to is to add some Java code to control the running speed of your InvinciBagel 
sprite. We will do this using two Integer variables: one to serve as a framecounter and the other to hold the running 
speed value, which we can change later on based on our vX (velocity along the X axis) variable to get a realistic match 
between the speed the run cycle is animating at and the speed the sprite is being moved across the screen.

Controlling Run Cycle Speed: Setting Up Your Animation Throttle Program Logic
In order to be able to “throttle” our run cycle sprite animation to achieve different speeds, we need to introduce a 
“counter” variable called framecounter, which will count up to a certain number of frames before we change a false 
(sprite cel 1) animator value to true (sprite cel 2). We will also use a runningspeed variable, so that our animation 
speed is not hard-coded, and exists in a variable that we can change later on. This allows us to have fine-tuned control 
over the speed (realism) of this run-cycle animation. Declare these two Integer (int) variables at the top of the Bagel.
java class and initialize the framecounter variable to zero and set the runningspeed variable to a value of 6. Since both 
the false (!animator) and true (animator) second-level if() structures will use this “count up to 6” variable, the math for 
what we are doing would equate to 6+6=12, divided into the 60FPS pulse timing loop, means that we are slowing down 
the unthrottled animation by 500% (five times, because 60/12=5). The variable declaration statements at the top of the 
Bagel class should look like the following Java code, and are also shown in the middle of Figure 13-8:
 
int framecounter = 0;
int runningspeed = 6; 

Figure 13-7.  Duplicate the nested if-else statement in .isLeft() structure, so InvinciBagel character runs both directions



Chapter 13 ■ Animating Your Action Figure States: Setting the Image States Based on KeyEvent Processing

282

As you can see in Figure 13-8, I’ve clicked on the framecounter variable, so it is highlighted, and you can see its 
use in an initialization statement that we’ll need to put into the “no arrow keys pressed” conditional if() structure, just 
as we did with the animator variable. The code for this if() structure is shown in Figure 13-8, and looks like this:
 
if( !invinciBagel.isRight()  &&
    !invinciBagel.isLeft()   &&
    !invinciBagel.isDown()   &&
    !invinciBagel.isUp()       )  {
    spriteFrame.setImage(imageStates.get(0));
    animator=false;
    framecounter=0;
}
 

Just like we want the animator Boolean variable to be reset to the false value any time that all of the arrow keys 
are not in use, so to do we want the framecounter integer variable to be reset to a zero value, any time that the arrow 
keys are not in use (that is, are in a released state all at the same time). As you can see, we not only are setting our 
sprite’s waiting image state in this conditional statement, we are also using it to reset our other variables as well.

Now we are ready to make our .isRight() and .isLeft() conditional if structures even more complicated, as we will 
be nesting our Java logic three-nested conditional if structures deep, to allow us to incorporate the framecounter and 
runningspeed integer variables into our conditional if() structure. This will make our animation code “wait” for six 
pulse event cycles before it changes the animator false value to true, and then wait for another six pulse event cycles 
before changing it back to false.

This is fairly complicated Java code, at least for a beginner Java 8 title, but game programming is inherently a 
complex undertaking, so let’s go ahead and learn how to code this throttle mechanism for our run-cycle animation.

I want to teach you about advanced topics during this book, and this one (implementing a speed throttle) is one 
that we simply can’t avoid, as this run speed using a simple Boolean alternating image state logic structure is not 
feasible to use in our game, given the incredible speed of the JavaFX pulse event timing engine and its “console game” 
60FPS frame rate, which is making our InvinciBagel sprite run cycle look not only unrealistic, but painful to look at!

Figure 13-8.  Add int variables at top of the class for framecounter and runningspeed and set to zero in no movement if



Chapter 13 ■ Animating Your Action Figure States: Setting the Image States Based on KeyEvent Processing

283

That said, this is about as complex as our Java 8 coding is going to get during this chapter, at least, so hang on 
tight, and enjoy the ride (or rather, the run) as we create a 16 lines of Java code, nested conditional if() structure, in the 
next section. It will be a lot of work, but the resulting run-cycle throttle control will be well worth the effort!

Coding Your Run Cycle Throttle: Triple Nested If-Else Structures
The modification we are going to make to our Boolean animator if() structure is to place an if(framecounter >= 
runningspeed){...} structure “around” the animator=true; statement, so that the animator does not become true 
until six pulse event loops have transpired. If the framecounter is equal to (or for some reason, greater than) six, 
animator becomes true, and the framecounter gets reset to zero and imageStates(2) is used. If framecounter is less 
than six, the else part of the statement increments the framecounter by one with a framecounter+=1; statement. We 
wrap framecounter code around both the if(animator) code in both parts of this structure, as shown in Figure 13-9: 
 
if(invinciBagel.isRight())  {
    spriteFrame.setScaleX(1);
    if(!animator) {
        spriteFrame.setImage(imageStates.get(1));
        if(framecounter >= runningspeed) {
            animator=true;
            framecounter=0;
        } else { framecounter+=1; }
    }   else if(animator) {
        spriteFrame.setImage(imageStates.get(2));
        if(framecounter >= runningspeed) {
            animator=false;
            framecounter=0;
        } else { framecounter+=1; }
    }
} 



Chapter 13 ■ Animating Your Action Figure States: Setting the Image States Based on KeyEvent Processing

284

Now make the same modifications to the if(invinciBagel.isLeft()) conditional if() structure. The only 
difference will be the ScaleX property being -1 (mirrored sprite image) as shown in the following code in Figure 13-10:
 
if(invinciBagel.isLeft())  {
    spriteFrame.setScaleX(-1);
    if(!animator) {
        spriteFrame.setImage(imageStates.get(1));
        if(framecounter >= runningspeed) {
            animator=true;
            framecounter=0;
        } else { framecounter+=1; }
    }   else if(animator) {
        spriteFrame.setImage(imageStates.get(2));
        if(framecounter >= runningspeed) {
            animator=false;
            framecounter=0;
        } else { framecounter+=1; }
    }
}
 

Figure 13-9.  Add a third level of if-else nesting that prevents cels from alternating too quickly by using a framecounter



Chapter 13 ■ Animating Your Action Figure States: Setting the Image States Based on KeyEvent Processing

285

Now the time has come again to use the Run ➤ Project work process and test the run-cycle code, which now 
exhibits a smooth, even, realistic run cycle. You can fine tune the running speed to slightly slower with a 7 or 8 value 
or slightly faster with a 4 or 5 value. As we add faster vX values for running (say vX = 2) we can set the runningspeed to 
3 or 4 to match this and make the game far more realistic.

One additional thing that I noticed as I was testing the code during this chapter that I want to correct here is the 
sprite cel image for landing. I have been using imageStates(3), which is the “landed” image, which should actually 
be better utilized with a collision situation. Let’s save this sprite cel image state for use later, in the collision detection 
code development phase, to signify a collision with a surface (just landed or on impact image). The image I want 
to use while the down arrow key is pressed is actually imageStates(6), which is the “preparing to land” image. The 
revised Java code will look like the following, and is shown highlighted in Figure 13-11: 
 
if(invinciBagel.isDown()) {
    spriteFrame.setImage(imageStates.get(6));
}
 

Figure 13-10.  Duplicate the if-else structure from the isRight() structure into the isLeft() structure using framecounter



Chapter 13 ■ Animating Your Action Figure States: Setting the Image States Based on KeyEvent Processing

286

Let’s make sure that the professionalism of our InvinciBagel sprite animation is improving with each section of 
this chapter, and use the Run ➤ Project work process and test all four arrow keys. Be sure and test the up and down 
keypresses with the left and right keypresses (left-up, left-down, right-up, and right-down) to really see what the Java 
code that you have put into place so far is capable of. We have a long way to go, but very impressive results already!

Optimizing Run-Cycle Processing: Turning Off Processing for Fly and Land States
The next thing that I want to do is also advanced conceptually, but uses far less code. As an optimization nut, what is 
concerning me is that the animator, framecounter, and runningspeed variables and the programming logic that uses 
them might be taking up memory when the player is using the up and down arrow keys, so I want to put a statement 
in the top of the conditional if() structure that leaves the .setScaleX() sprite mirroring code intact but turns off the rest 
of the processing logic if the up and down keys are being used. The Java code for excluding the run-cycle logic should 
be based on the up and down arrow key variables both showing as false, indicating the player is using the left or right 
keys only. This exclusion logic is seen in Figure 13-12, and looks like the following Java code (shown in bold) addition:
 
if(invinciBagel.isRight())  {
    spriteFrame.setScaleX(1);
    if( !animator && ( !invinciBagel.isDown() && !invinciBagel.isUp() ) ) {
        spriteFrame.setImage(imageStates.get(1));
        if(framecounter >= runningspeed) {
            animator=true;

Figure 13-11.  Change .isDown() sprite cel to imageStates(6) using the imageStates.get(6) method call to use correct cel



Chapter 13 ■ Animating Your Action Figure States: Setting the Image States Based on KeyEvent Processing

287

            framecounter=0;
        } else { framecounter+=1; }
    }   else if(animator) {
        spriteFrame.setImage(imageStates.get(2));
        if(framecounter >= runningspeed) {
            animator=false;
            framecounter=0;
        } else { framecounter+=1; }
    }
} 

Figure 13-12.  Add if() statement logic to exclude processing of nested if-else hierarchy if down or up keys being pressed

The reason that I’m doing this is because when either the up or down key is being pressed, the jump (or fly) or 
preparing to land sprite cel image is showing. For this reason, optimization dictates that I need to turn off all of the 
“alternating between sprite cel 1 and sprite cel 2” processing code. I want to do this so that this constant processing 
is not going on in memory and in the thread (CPU) when the imageStates(1) and imageStates(2) are not even being 
used (displayed) inside of the spriteFrame ImageView “container.”

To achieve this optimization objective, I added a new level of evaluation to the outside of the second nested if() 
loop. This is the level that contains all of the sprite cel changes (1 to 2 and back) using the animator, framecounter, and 
runningspeed variables and related processing. This new more complex evaluation statement guarantees that all of 
this run-cycle processing logic will not be executed if this the new condition is being met.

What this new condition says specifically, is that if the animator variable is false AND the up AND down keys 
are both not being used (are false) then to process the rest of the logic, which switches between the two sprite image 
states (as well as waiting a certain number of pulse events before each switch). What this means is that if either of the 
up or down keys are being pressed (thus showing the fly or land sprite cel image state), none of the programming logic 
past that point will be processed at all, saving CPU processing cycles for the many other things that we are going to be 
adding into the game play that will need to use this “saved” processing overhead for other game play-related logic.



Chapter 13 ■ Animating Your Action Figure States: Setting the Image States Based on KeyEvent Processing

288

You may be wondering why I have not added this same extended condition to the else if(animator) portion of 
this programming structure. The reason is that this portion of the loop will never be executed unless the first part, 
which we are excluding with this new statement, is processed. This is because inside of the first part of this loop, we 
set animator=true; and this will never happen (now that we have added the extended condition) if the up or down 
key is being pressed.

What is really cool about this is that the if(invinciBagel.isRight()) and if(invinciBagel.isLeft()) 
conditional if() structures can now be used to mirror all sprite cel state Image assets, when your player uses the left or 
right key to set the direction that the character is traveling in, and only when the left and right keys (only) are used to 
make the character run will the run-cycle part of this Java code processing take place.

Make sure that you implement this same exact extended condition in your if(invinciBagel.isLeft()) part of 
the conditional if() structure, as is shown below, and which can be seen as well in Figure 13-13.
 
if(invinciBagel.isLeft())  {
    spriteFrame.setScaleX(-1);
    if( !animator && ( !invinciBagel.isDown() && !invinciBagel.isUp() ) ) {
        spriteFrame.setImage(imageStates.get(1));
        if(framecounter >= runningspeed) {
            animator=true;
            framecounter=0;
        } else { framecounter+=1; }
    }   else if(animator) {
        spriteFrame.setImage(imageStates.get(2));
        if(framecounter >= runningspeed) {
            animator=false;
            framecounter=0;
        } else { framecounter+=1; }
    }
}
 



Chapter 13 ■ Animating Your Action Figure States: Setting the Image States Based on KeyEvent Processing

289

Next, let’s make the ASDW keys their own sprite control keys, instead of having them mimic the arrow keys.

Adding Event Handling: Giving ASDW Keys Function
Since I have a few more sprite states that I want to implement, I’m going to upgrade the event handler to use a two-
handed play scenario, using arrow keys with ASDW, or ABCD (color) game controller buttons, using this code upgrade:
 
scene.setOnKeyPressed(KeyEvent event) -> {
    switch (event.getCode()) {
        case UP:    up    = true; break;
        case DOWN:  down  = true; break;
        case LEFT:  left  = true; break;
        case RIGHT: right = true; break;
        case W:     wKey  = true; break;
        case S:     sKey  = true; break;
        case A:     aKey  = true; break;
        case D:     dKey  = true; break;
    }

Figure 13-13.  Add if() statement logic to exclude processing of nested if() hierarchy if down/up keys pressed to isRight()



Chapter 13 ■ Animating Your Action Figure States: Setting the Image States Based on KeyEvent Processing

290

});
scene.setOnKeyReleased(KeyEvent event) -> {
    switch (event.getCode()) {
        case UP:    up    = true; break;
        case DOWN:  down  = true; break;
        case LEFT:  left  = true; break;
        case RIGHT: right = true; break;
        case W:     wKey  = true; break;
        case S:     sKey  = true; break;
        case A:     aKey  = true; break;
        case D:     dKey  = true; break;
    }
});
 

As you can see in Figure 13-14, the code is error-free, because I added wKey, sKey, aKey, and dKey variables to 
the Boolean up, down, left, right compound declaration statement located at the top of the InvinciBagel.java class.

Figure 13-14.  Create event handling for the WSAD keys specifically, by using wKey, sKey, aKey, and dKey variables

Next, we need to use the Source ➤ Insert Code ➤ Generate ➤ Getters and Setters work process, to have 
NetBeans write the eight .is() and .set() methods for us, so that we can access the variables in our Bagel.java class.



Chapter 13 ■ Animating Your Action Figure States: Setting the Image States Based on KeyEvent Processing

291

Creating ASDW Key Get and Set Methods: NetBeans Insert Code
Place your cursor in front of the closing } curly brace for the InvinciBagel.java class, as shown by the light blue area 
in Figure 13-15, and use the Source menu to select the Insert Code option. In the Generate floating menu select the 
Getter and Setter option and aKey, dKey, sKey and wKey options, shown in Figure 13-15, so NetBeans will generate 
eight .is() and .set() methods, based on this new Boolean declaration statement, also shown at the top of this Figure:
 
private boolean up, down, left, right, wKey, aKey, sKey, dKey;
 

The eight method structures NetBeans generates at the end of your class look like the following Java code:
 
public boolean iswKey() {
    return wKey;
}
public void setwKey(boolean wKey) {
    this.wKey = wKey;
}
public boolean isaKey() {
    return aKey;
}
public void setaKey(boolean aKey) {
    this.aKey = aKey;
}
public boolean issKey() {
    return sKey;
}
public void setsKey(boolean sKey) {
    this.sKey = sKey;
}
public boolean isdKey() {
    return dKey;
}
public void setdKey(boolean dKey) {
    this.dKey = dKey;
}
 



Chapter 13 ■ Animating Your Action Figure States: Setting the Image States Based on KeyEvent Processing

292

As you can see in Figure 13-16, NetBeans has created all eight of our getter and setter methods for the new 
KeyEvent processing variables that we have added to the InvinciBagel.java class. The code is error-free, and we are 
ready to go back into the Bagel.java class, and utilize some of these new method calls to implement jump and evade.

Figure 13-15.  Use the Source ➤ Insert Code ➤ Generate ➤ Getter and Setter sequence and select aKey, dKey, 
sKey, wKey



Chapter 13 ■ Animating Your Action Figure States: Setting the Image States Based on KeyEvent Processing

293

Adding Jump and Evade Animation: Using the W and S Keys
Let’s start to put into place the infrastructure for using another set of four keys to give our players more flexibility 
in implementing sprite (character) actions (animation). Using the keyboard, these would use the ASDW keys, and 
using a game controller, these would use the JavaFX KeyCode class constants GAME_A, GAME_B, GAME_C, and 
GAME_D. I’ll be adding game controller event handling a bit later on during my game development after I add 
in more game play logic. The implementation of the basic jump and evade (projectiles) sprite cel Image assets 
would be accomplished by using the following two basic Java conditional if() structures for using the W key via 
if(invinciBagel.iswKey()) and the S key via if(invinciBagel.issKey()) processing structures, which are shown 
below, as well as in Figure 13-17:
 
if(invinciBagel.iswKey()) {
    spriteFrame.setImage(imageStates.get(5));
}
if(invinciBagel.issKey()) {
    spriteFrame.setImage(imageStates.get(8));
}
 

Figure 13-16.  Hold a left arrow (or A) and up arrow (or W) key down at the same time, and move the Actor diagonally



Chapter 13 ■ Animating Your Action Figure States: Setting the Image States Based on KeyEvent Processing

294

Now we have implemented imageStates(0), imageStates(1), imageStates(2), imageStates(4), imageStates(5), 
imageStates(6), and imageStates(8) in our game event handling and character animation processing. The other sprites 
are better suited for use with collision detection, so let’s save those for later chapters in the book.

Last Minute Details: Setting the isFlipH Property
Next, I want to add in two more lines of code for what I call “bookkeeping,” because we have installed isFlipH and 
isFlipV properties in our Actor superclass, so if we mirror sprites around the X or Y axis, we need to be sure to set these 
variables correctly, to reflect that (no pun intended) change to the Actor object, so that we can use this information 
in other areas of our game application programming logic. We will do this using the Java this keyword, to refer to the 
iBagel object that we are coding for in the Bagel.java class, and call the .setIsFlipH() method, using a false value if 
ScaleX property has been set to 1, or a true value if the ScaleX property has been set to a value of -1. It is important to 

Figure 13-17.  Add if() statements at the bottom of the method for .iswKey() and issKey for Jump and Evade animation



Chapter 13 ■ Animating Your Action Figure States: Setting the Image States Based on KeyEvent Processing

295

note that we don’t absolutely have to use the Java this keyword; I am using it for clarity of meaning, and so you could 
also simply utilize the method call without using dot notation, like this: setIsFlipH(false); if you like. The Java code 
for doing this simple bookkeeping addition can be seen highlighted in Figure 13-18, and looks like this:
 
if(invinciBagel.isRight())  {
    spriteFrame.setScaleX(1);
    this.setIsFlipH(false);      // nested conditional if() processing ommitted for brevity
} if(invinciBagel.isLeft())  {
    spriteFrame.setScaleX(-1);
    this.setIsFlipH(true);       // nested conditional if() processing ommitted for brevity
} 

Figure 13-18.  Be sure to set the isFlipH property for the Bagel object using .setIsFlipH() called off of the this (object)

Next, let’s test all of the new sprite animation code to see if it does what we think that it logically should do! The 
code is complex, at least for the primary left and right arrow key character movement, but is quite well organized, and 
very logical, and I don’t see any problems with it from a logic standpoint, but testing it thoroughly using NetBeans is 
the only way to find out! Let’s do that next. To review the sprite image states, refer back to Chapter 8 (Figure 8-2).

Testing the InvinciBagel Sprite Animation States: Run ➤ Project
Now it is time to use the NetBeans Run ➤ Project work process and test the .setImageState() method, which now gets 
called after the .setXYLocation() and .setBoundaries() methods, but before the .moveInvinciBagel() method. So the 
logical progression as it sits now is check keypressed, set X and Y location based on that, check to make sure you have 
not gone past any boundaries, set the sprite animation (Image) state, and then position the sprite. As you can see in 
Figure 13-19, the InvinciBagel character now runs realistically across the screen when you use left or right arrow keys.



Chapter 13 ■ Animating Your Action Figure States: Setting the Image States Based on KeyEvent Processing

296

If you press an up arrow key, while (or after) you are pressing the left or right arrow key, the result, seen in 
Figure 13-20, is the InvinciBagel will take off and start flying in that direction, again with realistic animated movement.

Figure 13-19.  Testing the InvinciBagel character animation; showing here is the running animation using isFlipH 
mirror

Figure 13-20.  Testing the InvinciBagel character animation; showing here is the leap up animation, using isFlipH 
mirror

If you press the down arrow key, while (or even after) you’re pressing the left or right arrow key, the result, seen in 
Figure 13-21, is the InvinciBagel will descend while preparing to land, again with realistic animated movement.



Chapter 13 ■ Animating Your Action Figure States: Setting the Image States Based on KeyEvent Processing

297

Now that our arrow keys are invoking the primary run-leap-fly-land game play states, let’s test this new S and W 
key logic that we put into place at the end of this chapter, so that we can invoke some of the less-often used (evade 
bullet and jump over) sprite cel states, which will add even more diversity to this character animation which we have 
put into place during this chapter using only around five dozen lines of code (two dozen in InvinciBagel.java and three 
dozen in Bagel.java). As you can see in Figure 13-22 on the left side, when we use the S key the InvinciBagel character 
turns sideways so that the bullets fly past (in front of) him, and on the right side of the screen shot, you can see that 
when we press the W key, the InvinciBagel character will hurdle over objects!

Figure 13-21.  Testing the InvinciBagel character animation; showing here is the landing animation, using isFlipH 
mirror

Figure 13-22.  Testing InvinciBagel character animation; shown here is the evade (left) animation, and jumping (right)

You have added quite a significant amount of “wow factor” into this game’s primary InvinciBagel character, 
during this chapter covering animation. This will go a long way toward making this a popular game across age groups.



Chapter 13 ■ Animating Your Action Figure States: Setting the Image States Based on KeyEvent Processing

298

Summary
In this thirteenth chapter, we implemented sprite animation across the InvinciBagel application using highly 
optimized code. We combined seven basic sprite shapes with the key movement that we developed in Chapter 11 and 
the boundary detection that we developed in Chapter 12 to create a fully animated InvinciBagel character that really 
comes alive, and does so based on the use of six basic game play control keys (up, down, left, right, W, and S).

We learned how to use the JavaFX ImageView class ScaleX property with its special -1 use case setting to flip or 
mirror the Image asset that is inside of the ImageView “Image container” around the Y axis. This allows us to create 
36 sprite image states using only 9 basic sprite states, which we have imported as Image assets, into a List<Image> 
ArrayList object. This is a form of optimization, as it allows us to use less than 84KB of image assets instead of 336KB 
of Image assets for our primary game superhero, the InvinciBagel character.

Next, we learned how to implement a Boolean animator variable, which we used to animate between two 
different sprite cel run states, imageStates(1) and imageStates(2) in our List. The resulting run cycle was too rapid for 
professional use, so next, we then added a framecounter variable, to slow the movement down, and a runningspeed 
variable, allowing us to implement a fine-tuned control over the sprite’s running speed, which we will be able to take 
advantage of in later on in our game play logic.

Next we optimized our code so that the variables and processing code used for the run cycle were not used if the 
run cycle was not showing, that is, if the InvinciBagel is flying or landing. We also made sure to set the isFlipH property 
in our Actor superclass (and therefore in our Bagel object) using the this.setIsFlipH() method call.

Next we added four new game play control keys in our event handling code in the InvinciBagel.java class, and 
added four new private Boolean variables aKey, sKey, dKey, and wKey, and had NetBeans create Getter and Setter 
methods for them automatically. After we made that enhancement, we added the sprite evade action image to the S 
key and the sprite jump over action image to the W key to make our game a two-hand game and to get ready to make 
the game prepared to use professional game controller hardware.

Finally, we tested this new sprite animation code with the rest of the event handling, Actor and Hero class, 
CastingDirector class, GamePlayLoop class, and Bagel class sprite movement and boundary code that we have written 
over the previous six chapters (Chapters 7 through 12). Our sprite movement and animation work together seamlessly 
to provide a professional result when navigating our InvinciBagel character around the game play Stage.

In the next chapter, we are going take a look at how to add fixed game sprite (Prop Actor) objects into the game, 
so that we have something to work with when we get into collision detection, and so we can start to really use our 
recent CastingDirector class.



299

Chapter 14

Setting Up the Game Environment: 
Creating Fixed Sprite Classes Using 
the Actor Superclass

Now that we made a significant amount of progress creating your primary InvinciBagel character, using a number of 
key methods in the Bagel.java class, as well as the Actor and Hero superclasses, all of which we put into place along 
with the GamePlayLoop class and CastingDirector class in Chapters 7 through 13, it is time to add fixed sprite objects, 
which I will call “Props,” into the Scene and on the Stage (on the screen). These fixed objects are almost as important 
to the game as the main character himself, as they can be used to provide obstacles, barriers, protection from the 
enemy, and various challenges for the primary game hero character to overcome. We will also need these fixed objects 
in the Scene to use in our collision detection program logic, and to test our CastingDirector class (object).

If you remember, back in Chapter 8, we created the Actor superclass with fixed sprites in mind and the Hero 
superclass with motion sprites in mind. I started out with the motion sprites, because the primary game character is a 
motion sprite, and even though motion sprites are more complex, by their very nature, they are also a lot more fun to 
play around with! Now I need to take a chapter and put the Actor superclass into action and create some Prop-related 
subclasses. We will use these Actor subclasses to populate our Scene (Stage) with things such as platforms, obstacles, 
barriers, bridges, treasure, and similar game play fixed location objects that you will want to add into the Scene (on 
the Stage) to create a game world and enhance the game play experience (also known as user experience).

We’ll create four fixed Prop subclasses, using the Actor superclass, which will make it easy to construct fixed 
scenes (also called levels, when you have created more than one). The Prop.java class will use your fixed sprite Image 
assets “as-is,” while the PropH.java class will set the isFlipH property to true and mirror the image asset around 
the Y axis, using a JavaFX spriteFrame.setScaleX(-1); Java statement. The PropV.java class will set the isFlipV 
property to true and mirror the image asset around the X axis, using a JavaFX spriteFrame.setScaleY(-1); Java 
statement. The PropB.java class (B stands for “both”) will set both the isFlipV property and isFlipH property to true, 
which would mirror an image asset around both the X and Y axis, using two JavaFX spriteFrame.setScale(-1); Java 
statements.

Once we have created these four Prop-related Actor subclasses, we will use them to place fixed objects into the 
Scene to create the first level of this game. That way, when we get into the collision detection chapter, everything that 
would be in a real game will be in place, and we will be able to start coding the collision detection logic; and then, 
eventually, an auto-attack engine; and then game play logic, which dictates how the scoring engine is implemented.

This chapter will be valuable in creating a more feature-filled game. A major part of any game design, in this case, 
it is Ira H. Harrison Rubin’s InvinciBagel character and game, is building the environment that the characters (the 
hero and his or her enemies, whether in a single-player or a multi-player game) engage in is critical to the success and 
popularity of the game, since these fixed elements are a major part of creating the game play challenge for the player.



Chapter 14 ■ Setting Up the Game Environment: Creating Fixed Sprite Classes Using the Actor Superclass

300

Creating the Prop.java Class: Extending Actor.java
Open up the InvinciBagel project in NetBeans 8, and right-click on the invincibagel (package) folder that contains 
your .java files and select the New ➤ Java Class menu sequence. In the New Java Class dialog, shown in Figure 14-1, 
name the class Prop, and accept the other default settings, suggested by NetBeans, and then click on the Finish button. 

Figure 14-1.  Right-click on the project folder and select New ➤ Java Class; using a New Java Class dialog, name it Prop

Figure 14-2.  Add a Java extends keyword and the Actor superclass. Mouse-over the error highlighting underneath Prop

Once NetBeans creates a bootstrap class, add the Java extends keyword and Actor, as shown in Figure 14-2.



Chapter 14 ■ Setting Up the Game Environment: Creating Fixed Sprite Classes Using the Actor Superclass

301

Use a suggested Alt-Enter work process, shown in Figure 14-3, and select “Implement all abstract methods.”

Figure 14-3.  Use the Alt-Enter work process to pop up a helper dialog filled with suggestions regarding fixing the error

Remove the throw new UnsupportedOperationException() and create an empty .update() method for now.

Figure 14-4.  NetBeans generates abstract method for you; remove the throw new statement; create an empty method



Chapter 14 ■ Setting Up the Game Environment: Creating Fixed Sprite Classes Using the Actor Superclass

302

The Java code still has a wavy red error highlight under the class declaration statement, seen in Figure 14-5.

Figure 14-6.  Add a public Prop() constructor, and mouse-over the error highlight, and select Add import for Image class

Mouse-over this and you’ll see you need to code a Prop() constructor method using the following Java code:
 
public Prop(String SVGdata, double xLocation, double yLocation, Image... spriteCels) {method code}
 

To remove the error seen in Figure 14-6, use Alt-Enter, selecting Add import for javafx.scene.image.Image.

Figure 14-5.  Overriding .update() method doesn’t remove the error, so mouse-over again, to reveal needed constructor



Chapter 14 ■ Setting Up the Game Environment: Creating Fixed Sprite Classes Using the Actor Superclass

303

If you still see that wavy red error highlight, once you have imported the Image class reference, it is because you 
need to pass the parameter list in your Prop() constructor method definition “up to” the Actor class. This is done using 
the Java super keyword, sometimes called a super() constructor (method), using the following Java statement:
 
super(SVGdata, xLocation, yLocation, spriteCels);
 

Since this Prop class uses a default, or unflipped (unmirrored) imageStates(0) image for the class, this is the 
first thing that we need to do to make a usable Prop class that is in conformance with the abstract Actor class. Also, 
remember that the Actor class initializes all of the flag properties for us, thanks to a detailed design process. The Java 
code for the class, which now includes the basic super constructor, and is now error-free, can be seen in Figure 14-7:

Figure 14-7.  Add the super() constructor method call inside of the Prop() constructor, to get rid of the error highlight

The next thing that we will need to do, to position the fixed sprite, using the xLocation and yLocation values that 
are passed into the constructor method, is to use the .setTranslateX() and .setTranslateY() methods. Remember that 
you utilized these methods in Chapter 12 in the .moveInvinciBagel() method. We’ll use these again, in this Prop() 
constructor method, to position these fixed sprites on the Stage where your constructor method parameters instruct 
the object constructor to locate them on the screen.

It is important to remember that because of the work we did in Chapter 8 that the Actor superclass’s Actor() 
constructor method already performs the iX=xLocation; and iY=yLocation; sprite iX and iY property setting for us. 
Thus, all that we have to do in the Prop() constructor method is to call spriteFrame.setTranslateX(xLocation); 
and spriteFrame.setTranslateY(yLocation); inside of the constructor method, and after our super() constructor 
method call. Notice in the code that the xLocation and yLocation variables are utilized in both the super() constructor 
method call to set the iX and iY properties for the Prop Actor as well as inside the .setTranslateX() and .setTranslateY() 
method calls, to position the fixed sprites on the Stage during the Prop object instantiation, so that we do not have to 
do this somewhere else in our code. The Java code for the class, and constructor method, will look like the following: 
 
package invincibagel;
import javafxscene.image.Image;
public class Prop extends Actor {



Chapter 14 ■ Setting Up the Game Environment: Creating Fixed Sprite Classes Using the Actor Superclass

304

    public Prop(String SVGdata, double xLocation, double yLocation, Image... spriteCels) {
        super(SVGdata, xLocation, yLocation, spriteCels);
        spriteFrame.setTranslateX(xLocation);
        spriteFrame.setTranslateY(yLocation);
    }
    @Override
    public void update() {
        // empty method
    }
}
 

As you can see in Figure 14-8, this Java code is error-free, and everything that is needed to define and place a 
prop in the Scene (on the Stage) is in place, thanks to good design of the Actor (fixed) sprite class. This includes SVG 
collision shape data, the X and Y location (placement in the scene), and one or more Image assets. The reason that we 
included an .update() method in a fixed sprite class is to allow us to have animated (more than one Image cel) props if 
we want to get fancy later on in our game design process, and ratchet up the wow factor of the game’s visual design.

Figure 14-8.  Position a fixed sprite on the Stage in the constructor method using a .setTranslateX() and .setTranslateY()

Next let’s create PropH, PropV, and PropB (which stands for “both”) classes. These will automatically mirror 
props for us around the X, Y or X and Y axes using the constructor method, so the object will inherently mirror images.

Mirrored Prop Classes: Set the isFlip Property in the Constructor
To make our process of building scenes easier, since everything (collision, location, animation) is part of a constructor 
method call, the difference between props is how they are mirrored (X or Y axis, or both axes). In this section, we are 
going to create variants of the Prop class that flip sprites for us, inside of a constructor method, so that all we have to 
do to get the effect we want is create that PropX object type. Create the first PropH class, as is shown in Figure 14-9.



Chapter 14 ■ Setting Up the Game Environment: Creating Fixed Sprite Classes Using the Actor Superclass

305

Copy the contents of the basic Prop class that you created in the previous section, including the package, import 
and super() constructor, into the PropH class, and then change Prop to PropH, as is shown in Figure 14-10.

Figure 14-9.  Right-click on the project folder and select New ➤ Java Class; using a New Java Class dialog, name it PropH

Figure 14-10.  Create a PropH class structure identical to the Prop class structure, except using PropH, instead of Prop

Add the Java this keyword to your PropH() constructor method on a new line under the super() constructor, and 
then use (type) the period key to open up the handy NetBeans method selector pop-up, as seen in Figure 14-11.



Chapter 14 ■ Setting Up the Game Environment: Creating Fixed Sprite Classes Using the Actor Superclass

306

Figure 14-12.  Call the .setIsFlipH() method, off of a Java this (PropH) object reference, and pass it the true setting value

Figure 14-11.  Add a Java this keyword reference to PropH (object) inside of the constructor and open up method helper

Double-click on the .setIsFlipH method, shown highlighted in Figure 14-11, and insert a true value inside the 
method call parameter area. The finished this.setIsFlipH(true); Java statement can be seen in Figure 14-12.



Chapter 14 ■ Setting Up the Game Environment: Creating Fixed Sprite Classes Using the Actor Superclass

307

It is important to note that if we only use the this.setFlipH(true); method invocation in the constructor 
method, we would still need to observe that isFlipH is set this way, and invoke your .spriteFrame.setScaleX(-1); 
method call, somewhere else in the code. Let’s go ahead and put this method call in your constructor method as 
well, so that all our PropH objects automatically will have their Image assets flipped around the Y axis. In case you 
might be wondering why the .setScaleX(-1) method mirrors the Image asset around the Y axis, that is something 
that I was also wondering about, but what I did was match the isFlipH with the .setScaleX(-1) (since X is an H or 
horizontal axis). That said, I would have made .setScaleY(-1) mirror around the vertical Y axis, which makes more 
sense to me. Add another line of code and type spriteFrame and hit the period key, and select .setScaleX in the 
pop-up, as seen in Figure 14-13.

Figure 14-13.  Call a .setScaleX() method, off of the spriteFrame object variable reference, and pass it a -1 setting value

Double-click on the setScaleX(double value) void option in the pop-up method selector and then add the -1 
value, completing the method call. Now all PropH objects will automatically have the Image asset Y axis mirrored! The 
final code for the PropH constructor, once you add in the .setTranslateX() and .setTranslateY() method calls that will 
actually position the fixed sprite location on the Stage, is seen in Figure 14-14, and looks like the following Java code:
 
import javafxscene.image.Image;
public class PropH extends Actor {
    public PropH(String SVGdata, double xLocation, double yLocation, Image... spriteCels) {
        super(SVGdata, xLocation, yLocation, spriteCels);
        this.setIsFlipH(true);
        spriteFrame.setScaleX(-1);
        spriteFrame.setTranslateX(xLocation);
        spriteFrame.setTranslateY(yLocation);
    }
}
 



Chapter 14 ■ Setting Up the Game Environment: Creating Fixed Sprite Classes Using the Actor Superclass

308

Next, perform the same work process that you did for the PropH class and create a PropV class that sets the 
isFlipV property to true, and implements the spriteFrame.setScaleY(-1); method call, as shown in Figure 14-15.

Figure 14-15.  A completed PropV() constructor method creates a fixed PropV object flipped along the vertical Y axis

Figure 14-14.  A completed PropH() constructor method creates a fixed PropH object flipped along the horizontal X axis



Chapter 14 ■ Setting Up the Game Environment: Creating Fixed Sprite Classes Using the Actor Superclass

309

Next, perform the same work process that you did for the PropV class, and create the PropB class. This class will 
set both the isFlipV and isFlipH properties to true, and implement a spriteFrame.setScaleX(-1); method call, as 
well as a spriteFrame.setScaleY(-1); method call. Your Java class structure for this last PropB class, which will mirror 
fixed prop imagery along both an X and Y axis, can be seen in Figure 14-16 and will look like the following code:
 
public class PropB extends Actor {
    public PropB(String SVGdata, double xLocation, double yLocation, Image... spriteCels) {
        super(SVGdata, xLocation, yLocation, spriteCels);
        this.setIsFlipH(true);
        spriteFrame.setScaleX(-1);
        this.setIsFlipV(true);
        spriteFrame.setScaleY(-1);
        spriteFrame.setTranslateX(xLocation);
        spriteFrame.setTranslateY(yLocation);
    }
}
 

As you can see in Figure 14-16, the code is error-free, and you now have a PropB class, which will create fixed 
objects for your Scene that are flipped or mirrored around both the X and the Y axis at the same time! Having these 
four different fixed Prop classes will allow us to quickly and easily design Scene (and eventually, game levels) 
elements, without having to do anything but declare the correct prop class, and reference the correct Image asset and 
X,Y locus (location) and collision polygon SVG data.

Figure 14-16.  A completed PropB() constructor method creates a fixed PropB object flipped along both the X and Y axis

Now we are ready to use these four new fixed sprite classes, and learn how to add Scene (Stage) elements.



Chapter 14 ■ Setting Up the Game Environment: Creating Fixed Sprite Classes Using the Actor Superclass

310

Using the Prop Class: Creating Fixed Scene Objects
Before we get into the coding in our InvinciBagel.java class, which you should have open in its own tab in NetBeans 
already, and use these Prop classes to add fixed sprite design elements to our game, I wanted to show you how to get 
rid of those pesky little wrench icons next to your file names. You may have several of these on your IDE screen right 
now, after creating these four new props-related classes, so let’s learn how to make these vanish! As you can see in 
Figure 14-17, if you right-click on the file name next to the wrench icon, and select the Compile File menu option, 
or use the F9 function key, the wrench will disappear. Essentially the wrench signifies that you are in the process of 
working on that file, that is, you have made changes to the code in that file, and have not made that code permanent, 
by compiling it to check it for errors as well as to save it.

Figure 14-17.  If you want to get rid of the little wrench icon next to the file name, right-click the file, and Compile File

Adding Prop and Image Declarations: Prop and Image Objects
Let’s start by declaring the objects that we will need to create to add fixed sprites to our game’s Scene and Stage 
objects, which will initially be a Prop object named iPR0, which stands for InvinciBagel Prop zero, and eventually as 
the chapter goes on, a PropH object named iPH0, a PropV object named iPV0, and a PropB object named iPB0, just so 
that you have experience using all of these classes and so that we can make sure that they all work in the way that we 
designed them to. We will also add an iP0 Image object declaration, and later on an iP1 Image object declaration, to 
the end of the Image iB0 through iB8 declarations. The Java statements are shown in Figure 14-18, and look like this:
 
Prop iPR0;
private Image iB0, iB1, iB2, iB3, iB4, iB5, iB6, iB7, iB8, iP0;
 



Chapter 14 ■ Setting Up the Game Environment: Creating Fixed Sprite Classes Using the Actor Superclass

311

Before we can instantiate the Image objects, we need to copy the Image assets into the /src folder, so use a file 
management software package (I used Windows Explorer) to copy the prop0.png and prop1.png PNG8 image files in 
with the other dozen or so image assets you have installed in the game project already, as is shown in Figure 14-19.

Figure 14-18.  Add Prop object declaration, name it iPR0 (invincibagel Prop zero), and add an iP0 to Image 
declaration

Figure 14-19.  Use your file management software to copy the prop0 and prop1 PNG8 files into the project /src folder



Chapter 14 ■ Setting Up the Game Environment: Creating Fixed Sprite Classes Using the Actor Superclass

312

Next, let’s instantiate the Image object that holds one of the prop images, a tileable brick, so that we can use our 
four InvinciBagel.java methods, .loadImageAssets(), .createGameActors(), .addGameActorNodes(), and, finally, 
.createCastingDirection() to install fixed Prop objects into our game’s Scene object, and onto our game’s Stage object.

Instantiate Image Objects: Using the .loadImageAssets( ) Method
Open the InvinciBagel.java tab in NetBeans and open the loadImageAssets() method. Now add an iP0 Image object 
instantiation statement referencing the prop0.png file and its 72x32 pixel size. The Java code to create the iP0 Image 
object, which you can see in Figure 14-20, should look like the following Java statement:
 
iP0 = new Image("/prop0.png", 72, 32, true, false, true); 

Figure 14-20.  Add the iP0 Image object instantiation using the prop0.png file name and the 72 by 32 pixel image size

Now we’re ready to add our first Prop object to our game to add a fixed sprite, which will allow us to create our 
game design using classes that we’re putting into place in our invincibagel package code base during this chapter.

Adding Fixed Sprites Using Prop Objects: .addGameActors( )
After your .loadImageAssets() method there are three other method “containers” that we designed for our use during 
the game design process, for adding Actor objects into this game. These are called in the order that we need to utilize 
them for this process, so let’s continue to be organized, and use them in that order. The first instantiation that we will 
need to perform creates a new (using the Java new keyword) Prop object. We will use our “dummy” SVG shape data 
again for now, as well as the 0,0 center of the screen X and Y locations, and finally, the iP0 Image asset, which we just 
declared and instantiated during the previous sections of this chapter. The Java instantiation statement, which can be 
seen in Figure 14-21, should look like the following line of Java code:
 
iPR0 = new Prop("M150 0 L75 200 L225 200 Z", 0, 0, iP0); 



Chapter 14 ■ Setting Up the Game Environment: Creating Fixed Sprite Classes Using the Actor Superclass

313

Figure 14-21.  Instantiate an iPR0 Prop object, add it to the root Scene Graph, and add it to the CurrentCast List<Actor>

Figure 14-22.  Testing InvinciBagel 0,0 prop placement (left) and changing the z-index in .addGameActorNodes() (right)

The next step is to add the ImageView Node object for the iPR0 Prop object to the Scene Graph root object. This 
is done using a .getChildren().add() method chain, which references the spriteFrame ImageView object, inside of 
the iPR0 Prop object using dot notation, using the following Java statement, which is also shown in Figure 14-21:
 
root.getChildren().add(iPR0.spriteFrame); 

Next, use an .addCurrentCast() method to add an iPR0 object to a castDirector object, seen in Figure 14-21:
 
castDirector.addCurrentCast(iPR0);
 

Next, test the code using a Run ➤ Project work process. The results are seen on the left side of Figure 14-22.



Chapter 14 ■ Setting Up the Game Environment: Creating Fixed Sprite Classes Using the Actor Superclass

314

As you can see, the InvinciBagel character is behind the Prop object, which means that we need to change 
the order of the Java statements inside of the .addGameActorNodes() method, since the order that Node objects 
are added to the Scene Graph determines their z-index or z-order. As you can see in Figure 14-23, I have moved 
the .add() method call to add iPR0 above the one for iBagel, so as you can see on the right side of Figure 14-22, the 
InvinciBagel character is now on top of the Prop object. Once we add collision detection this will not be an issue, of 
course. Let’s use the same work process and add a PropH object into the scene, so that I can show you how this tile 
image can be flipped and mirrored to create seamless tileable constructs for your Java 8 game development.

Let’s use the same naming convention and name the PropH object iPH0. The Java instantiation statement, which 
can be seen in Figure 14-23, should look like the following line of Java code:
 
iPH0 = new PropH("M150 0 L75 200 L225 200 Z", 0, 0, iP0); 

Figure 14-23.  Instantiate an iPH0 PropH object, add it to the root Scene Graph, and add it to a CurrentCast List<Actor>

Our next step in adding a fixed sprite prop, is adding the ImageView Node object for the iPH0 PropH object, into 
the Scene Graph root object. This is accomplished using the .getChildren().add() method chain, which references 
the spriteFrame ImageView object that lives inside of the iPH0 PropH object, by using dot notation. This is done 
using the following Java statement, which is also shown in Figure 14-23:
 
root.getChildren().add(iPH0.spriteFrame);
 

Finally, we will use the .addCurrentCast() method that we created in Chapter 10, to add this iPH0 object to the 
CURRENT_CAST List<Actor> ArrayList object, inside of the castDirector CastingDirector object, using the following 
line of Java code, also shown at the bottom of Figure 14-23:
 
castDirector.addCurrentCast(iPH0);
 

As you can see in Figure 14-23, I have also changed the 0,0 coordinates for the Prop object to 0,148, and the 
coordinates for the PropH object to 72,148. This will place the Y-axis mirrored PropH object seamlessly to the right of 
the Prop object. If you want to see the seamless tiling effect now, you can use your Run ➤ Project work process. If you 
don’t have your NetBeans 8 IDE running currently, and you want to look ahead to Figure 14-26, you can see this tiling 
(mirroring) effect now. Eventually, I’m also going to integrate the PropV and the PropB classes (objects) into this tiling.



Chapter 14 ■ Setting Up the Game Environment: Creating Fixed Sprite Classes Using the Actor Superclass

315

Let’s use the exact same work process, and add a PropV object into the scene, so that we can see how this tile 
image can be flipped and mirrored around the X axis, to create even more complex seamless tileable constructs for 
your Java 8 game development. Let’s use the same naming convention, and name this new PropV object iPV0. Your 
new Java instantiation statement, which can be seen in Figure 14-24, should look like the following line of Java code:
 
iPV0 = new PropV("M150 0 L75 200 L225 200 Z", 0, 0, iP0);
 

The next logical step to adding a fixed sprite prop, is to add the ImageView Node object for this iPV0 PropV object 
into the Scene Graph root StackPane object. This is accomplished using the .getChildren().add() method chain, 
which references the spriteFrame ImageView object, which lives inside of the iPV0 PropV object, using dot notation. 
This can be accomplished by using the following Java programming statement, which is also shown in Figure 14-24:
 
root.getChildren().add(iPV0.spriteFrame);
 

Finally, we will use the .addCurrentCast() method, that we created in Chapter 10, to add this iPV0 object to the 
CURRENT_CAST List<Actor> ArrayList object, inside of the castDirector CastingDirector object, using the following 
line of Java code, which is also shown at the very bottom of Figure 14-24:
 
castDirector.addCurrentCast(iPV0); 

Figure 14-24.  Instantiate an iPV0 PropV object, add it to the root Scene Graph, and add it to a CurrentCast List<Actor>

Finally, let’s add a PropB object into the scene, so that I can show you how your tileable image can be flipped 
(mirrored) around both the X and the Y axes at the same time. We’ll follow our naming convention, naming the PropB 
object iPB0. The instantiation statement, which can be seen in Figure 14-25, should look like the following Java code:
 
iPB0 = new PropB("M150 0 L75 200 L225 200 Z", 0, 0, iP0);
 



Chapter 14 ■ Setting Up the Game Environment: Creating Fixed Sprite Classes Using the Actor Superclass

316

Next, let’s add the ImageView Node for the iPB0 PropB object into the Scene Graph root object. This is done 
using a .getChildren().add() method chain. This references a spriteFrame ImageView object, which is inside of 
the iPB0 PropB object, using dot notation. This is done using the following Java statement, which is also shown in 
Figure 14-25:
 
root.getChildren().add(iPB0.spriteFrame);
 

Finally, we’ll use the .addCurrentCast() method that we created in Chapter 10 to add this iPB0 PropB object to 
a CURRENT_CAST List<Actor> ArrayList<Actor> object, inside of the castDirector CastingDirector object, which can 
be seen at the bottom of Figure 14-25, and which uses this following single line of Java code:
 
castDirector.addCurrentCast(iPB0);
 

Now that we’ve put all four of the Actor subclasses that we have created during the first half of this chapter into 
service, we can test the application and see what the different X and Y axis mirroring does to the prop0.png brick.

Figure 14-25.  Instantiate an iPB0 PropB object, add it to the root Scene Graph, and add it to a CurrentCast List<Actor>



Chapter 14 ■ Setting Up the Game Environment: Creating Fixed Sprite Classes Using the Actor Superclass

317

Next, let’s take a look at how to use large Scene Prop objects to composite background elements on a Stage.

Using Larger Scene Props: Compositing with JavaFX
One thing that is really nice about these four Prop Actor subclasses that we have created is that they allow us to 
leverage the PNG8 (background image assets) and PNG32 (true color compositing images with alpha channels) image 
assets to do digital image compositing right in our game Scene and Stage objects. If we do not use a fixed prop with a 
motion sprite game character by implementing collision detection, and if we keep these fix props in the background, 
by watching what we’re doing inside of our .addGameActorNodes() method as far as Actor z-index goes, we can 
optimize game visual elements using the same compositing engine we have developed for characters and obstacles. 
We might not have to use any background image plates for our game at all. At the very least, this allows us to add 
simpler background image plates, such as a basic sky with clouds, or a sunset. These compress better, due to their 
simplicity, and can use PNG8 images with pristine results. Let’s add a larger fixed sprite prop next, one that has nearly 
500 pixels of width and nearly 100 pixels of height. The first thing that we’ll need to add, as shown in Figure 14-27, is 
another Prop object that we’ll name iPR1, and another Image object that we’ll name iP1, using the following code:
 
Prop iPR0, iPR1;
private Image iB0, iB1, iB2, iB3, iB4, iB5, iB6, iB7, iB8, iP0, iP1;
 

Figure 14-26.  Run ➤ Project; Prop, PropH, and PropV shown at the left, and all four Prop subclasses shown at the right

Use Run ➤ Project and test the game to see how each brick is mirrored differently, as shown in Figure 14-26.



Chapter 14 ■ Setting Up the Game Environment: Creating Fixed Sprite Classes Using the Actor Superclass

318

Copy your iP0 Image instantiation, creating an iP1 Image, referencing prop1.png, as shown in Figure 14-28.

Figure 14-27.  Add an iPR1 Prop declaration (shown with all other PropH, PropV and PropB declarations) and iP1 Image

Figure 14-28.  Add the iP1 Image object instantiation using the prop1.png file name, and the 496 by 92 pixel image size



Chapter 14 ■ Setting Up the Game Environment: Creating Fixed Sprite Classes Using the Actor Superclass

319

Copy your iPR0 object instantiation and addition code, and create an iPR1 object, as shown in Figure 14-29.

Figure 14-29.  Instantiate an iPR1 Prop object, add it to the root Scene Graph, and add it to the CurrentCast List<Actor>

Figure 14-30.  Run the project; the Prop iPR1 is shown at the left, and iPV1 PropV mirrored object is shown at the right

To put a moss rock at the top of the screen, I used the 0,-150 screen coordinates in my constructor method call. 
Now use the Run ➤ Project work process to take a look at the results, which are shown on the left in Figure 14-30.



Chapter 14 ■ Setting Up the Game Environment: Creating Fixed Sprite Classes Using the Actor Superclass

320

You can also “flip” large props, creating some very cool effects. Create an iPV1 declaration and instantiation, as 
seen in Figure 14-31, and create a PropV object, which will mirror the moss rock, along the X axis. This can be seen on 
the right side of Figure 14-30. We’ve made a lot of progress in this chapter using fixed sprite Prop class capabilities.

Figure 14-31.  Instantiate an iPV1 PropV object, add it to the root Scene Graph, and add it to a CurrentCast List<Actor>

Summary
In this fourteenth chapter, we created our fixed sprite “prop” classes that allow us to design our game scenes and the 
fixed objects that our motion sprite Actor objects will interact with. We first created the Prop class, which extends 
the Actor class that we created during Chapter 8. We used the .setTranslateX() and .setTranslateY() methods to take 
the xLocation and yLocation parameters in the constructor method to position the ImageView on the Stage, similar 
to what we did with the .moveInvinciBagel() class, only with fixed sprites a move is only made once, inside of the 
constructor method, to position the prop in the Scene on the Stage.

Next we created even more complicated PropH and PropV classes, which in addition to positioning the 
fixed sprites in the Scene, also mirror them automatically, around the Y axis (PropH) and X axis (PropV). We also 
created a PropB (B stands for Both) class that will automatically mirror fixed sprite Image assets around both the 
X and Y axes.

Next, we learned how to implement these Prop classes by declaring, instantiating, and adding (to the JavaFX 
Scene Graph as well as to the CastingDirector object) them inside of our InvinciBagel.java primary game design class. 
We learned how to position our fixed sprites on the screen, as well as how to create seamless mirrored tiling effects, 
and tested our new Prop classes to make sure they were ready for use in designing game play levels.



Chapter 14 ■ Setting Up the Game Environment: Creating Fixed Sprite Classes Using the Actor Superclass

321

Finally, we tested two of these four new fixed sprite classes with larger props, which, if we do not define the fixed 
sprite objects for use in collision detection by adding them into the CastingDirector object, could conceivably be used 
for scene background compositing. This would help reduce the data footprint for the game, by minimizing use of 
large PNG24 background imagery, allowing us to replace these data heavy images with far smaller PNG8 background 
images. These could depict scene “settings,” such as a rainy day, a cloudy sky, or a vivid sunset.

In the next chapter, we are going take a look at how to add a digital audio sound effects engine to our game code. 
This audio engine will use the JavaFX AudioClip class to add sound effect sequencing capabilities to the game, so that 
we have all of the basic new media elements (fixed and motion imagery, and audio feedback) to work, with when we 
get into adding things such as like physics and collision detection. In this way, we can start to add in multimedia that 
will utilize all of our player’s senses in the game play (user) experience.



323

Chapter 15

Implementing Game Audio Assets: 
Using the JavaFX AudioClip Class 
Audio Sequencing Engine

Now that we have created both motion sprite and fixed sprite classes using our abstract Actor (fixed sprites) and 
Hero (motion sprites) superclasses, we need to put the code into place that will play our game audio assets. Although 
generally not thought of as being as important as the digital image (visual) assets, digital audio (aural) assets can be 
quite important to the quality of your game play. In fact, you would be surprised how much that great audio assets can 
add to the perceived value of your Java 8 game products. We will be learning how to optimize and implement digital 
audio assets for your Java 8 game development during this chapter, using open source tools such as Audacity 2.0.6.

Fortunately for us, the JavaFX AudioClip engine (actually, it is a class in the javafx.scene.media package) can 
bring a lot of power to our games development. This is because this class has essentially been designed to be an 
audio sequencing engine, able to control every aspect of the audio asset performance, as well as to create new audio 
assets using 6 octave (three up, and three down) pitch shifting capabilities. We’ll be learning about this class in 
detail, during the beginning of this chapter, and then implementing it in our primary InvinciBagel.java class, as well 
as using it in our Bagel.java class in a new .playAudioClip() method, which we’ll code and call in that class’s primary 
.update() method.

After we look at the JavaFX AudioClip class is detail, we will get into using the popular Audacity 2.0.6 digital 
audio editing (and audio effects) software, which we installed in Chapter 1, when we installed all of your open source 
game development software tools. We’ll go through an audio asset creation and optimization process using Audacity. 
We will use the concepts that we learned in Chapter 5 covering new media content creation concepts, and optimize 
digital audio files to achieve an 800% data footprint savings. We will do this so that our digital audio assets do not use 
more than 64KB of our system memory; in fact, we will get six 16-bit digital audio assets to use less than 62KB of data.

Once we have created the six audio assets, which will match up with the six different keys that we are using to 
control our InvinciBagel character, we will create the .loadAudioAssets() method in the InvinciBagel class and learn 
how to declare AudioClip and URL objects. Inside of the .loadAudioAssets() method we will then use these two 
classes (objects) together in order to create our digital audio assets for the game and install them into the player’s 
computer system (or consumer electronics device) memory.

Once these six AudioClip objects are in place, we will then have NetBeans create six Setter methods for the 
AudioClip objects and then “morph” these .setiSound() methods into the .playiSound() methods that we require. 
After this is done, we will go into our Bagel.java class, and add a .playAudioClip() method. Inside of this method, we 
will call the six .playiSound() methods, based upon which keys the player is pressing.

We have a lot of ground to cover during this chapter, so let’s get started by taking an in-depth look at the JavaFX 
AudioClip class and its various properties and methods that we can invoke impressive audio sequencing with! After 
we get that out of the way we can get into the fun stuff and start using Audacity 2.0.6 and NetBeans 8 to create!



Chapter 15 ■ Implementing Game Audio Assets: Using the JavaFX AudioClip Class Audio Sequencing Engine

324

JavaFX AudioClip Class: A Digital Audio Sequencer
The public final AudioClip class is part of the javafx.scene.media package, and is essentially a digital audio sample 
playback and audio sequencing engine that is designed to use short audio snippets or “samples” to create more 
complex audio performances. This is why this class is the perfect digital audio media playback class to use for your 
Java 8 game development. As you can see by the Java inheritance hierarchy shown below, the JavaFX AudioClip 
class is a direct subclass of the java.lang.Object master class. This signifies that the AudioClip class has been “scratch 
coded” specifically for the purpose of being a digital audio sequencing engine.
 
java.lang.Object
  > javafx.scene.media.AudioClip
 

Your AudioClip objects will each reference one digital audio sample in memory. These can be triggered with 
virtually zero latency, which is what makes this class the perfect class to use for Java 8 games development. AudioClip 
objects are loaded similarly to Media (long-form audio or video) objects, using URL objects, but have a vastly different 
behavior. For example, a Media object cannot play itself; it will need a MediaPlayer object, and also the MediaView 
object, if it contains digital video. Media objects would be better suited for long-form digital audio assets (like 
music), which cannot fit in memory all at the same time, and must be streamed for optimal memory utilization. A 
MediaPlayer will only have enough decompressed digital audio data “pre-rolled” into memory to play for a short 
amount of time, so a MediaPlayer approach is much more memory efficient for long digital audio clips, especially if 
they are compressed.

The AudioClip object is usable immediately upon instantiation, as you’ll see later on during this chapter, and 
this is an important attribute to have when it comes to Java 8 game development. AudioClip object playback behavior 
can be said to be “fire and forget,” which means that once one of your playiSound() method calls is invoked, your only 
operable control at that point over the digital audio sample is to call the AudioClip .stop() method.

Interestingly, your AudioClip objects may also be triggered (played) multiple times, and AudioClips can even be 
triggered simultaneously, as you will see a bit later on during this chapter. To accomplish this same result by using a 
Media object, you would have to create a new MediaPlayer object for each sound that you want to play in parallel.

The reason that the AudioClip object is so versatile (responsive) is because your AudioClip objects are stored in 
memory. The AudioClip object uses a raw, uncompressed digital audio sample representing the entire sound. This is 
placed into memory in its raw, uncompressed state, which is why in the next section of the chapter we’re going to use 
the WAVE audio file format. This audio format applies zero compression, and thus, the resulting file size for optimized 
digital audio samples will also represent the amount of system memory that each of these samples will utilize.

What is really impressive about the AudioClip class, however, is the amount of power it gives developers via its 
properties and the three overloaded .play() method calls. You can set up sample playback priorities, shift the pitch 
(frequency of the sound) up to 8 times (higher octaves) or down to 1/8th (lower octaves), pan the sound anywhere in the 
spatial spectrum, control the left and right balance of the sound, control the volume (or amplitude) of the sound, and 
control the number of times the sound is played, from once to forever, using the AudioClip INDEFINITE constant.

Besides the getter and setter methods for these AudioClip properties, there are .play() and .stop() methods as 
well as three (overloaded) .play() methods: one for simple (default) playback; one where you can specify volume; and 
one where you can specify volume, balance, frequency rate (pitch shifting factor), panning, and sample priority.

The key to controlling the AudioClip object is to call one of the three .play() methods based upon how you want 
to control the sample playback. Use .play() for straightforward playback, as we will be doing during this chapter; or 
use .play(double volume) to play your AudioClip object at a relative volume level from 0.0 (off) to 1.0 (full); or use the 
.play(double volume, double balance, double rate, double pan, double priority) to play your AudioClip object at a 
relative volume (0.0 to 1.0), a relative balance (-1.0 left, 0.0 center, 1.0 right), pitch shift rate (0.125 to 8.0), relative pan 
(-1.0 left, 0.0 center, 1.0 right); and priority integer, which specifies which samples get played over others, which, due 
to low resources and low priority, may not get played. Let’s get into using Audacity to optimize our samples next!



Chapter 15 ■ Implementing Game Audio Assets: Using the JavaFX AudioClip Class Audio Sequencing Engine

325

Creating and Optimizing Digital Audio: Audacity 2.0.6
Launch the latest version of Audacity—at the time of this writing that would be 2.0.6, and use your microphone to 
record your voice saying the word “left.” Fortunately my NetBeans 8 and Java 8 development workstation is also my 
Skype workstation, and I have a basic Logitech adjustable microphone on a stand that I can use to make the basic 
audio files that we will need to put audio files into place for each of our different sprite movements that we put into 
place in Chapter 13. I will go through the digital audio file “scratch creation” and optimization work process in this 
section of the chapter, and you can do this yourself, for each of the six digital audio files we will need to use in the 
coding sections of this chapter. You can also use the six audio files included with this book’s software repository if you 
want to simply get onto the Java 8 coding part of digital audio asset implementation using the JavaFX AudioClip class. 
I would recommend going over how to optimize uncompressed audio for use in system memory, as we’re about to 
take 113KB of raw source audio data, and knock 99KB of data off of it, and reduce it another 88% to be only 14KB.

As you can see in the left side of Figure 15-1, I have recorded the spoken word “left,” and used the Audacity 
selection tool to select only that portion of the recording session, seen in a darker gray shade, that contains the audio 
data. Since you can see the digital audio waveform representation in the Audacity waveform editing area, you can see 
the portion of your recording where the data that you just recorded is contained. The portion of your audio recording 
that does not contain any digital audio data will just look like a straight line.

Figure 15-1.  Launch Audacity, record your voice saying the word “left,” and then select the wave and Export Selection

The fastest way to get only the raw digital audio data, which is all that we really want inside of our .WAV file 
anyway, and is the only data that we want to be optimizing using Audacity, is to use the File ➤ Export Selection menu 
sequence. This will allow us to directly write the selected audio data into the left.wav file using the WAVE PCM digital 
audio format. After we do this, we can then start a new Audacity editing session and simply open up that file and start 
the digital audio content optimization process.

After you use the Export Selection menu option in Audacity, you will get the Export File dialog, which is shown 
in Figure 15-2. Type left in the File name: field, seen in the bottom of the dialog, and click the Save button. 



Chapter 15 ■ Implementing Game Audio Assets: Using the JavaFX AudioClip Class Audio Sequencing Engine

326

Now that we have only the spoken word left in a left.wav audio file, and have saved that so that we can see what 
this baseline raw 32-bit 44.1kHz digital audio will give us as a data footprint (and as a memory footprint for our game, 
if we were to use this file as-is), we can close out the recording session, as it has served its purpose. We will do this by 
using the File ➤ Close menu sequence, which can be seen on the left side of Figure 15-3.

Figure 15-2.  In the Export File dialog, name the file “left” using the .WAV audio file type

Figure 15-3.  Close the current editing session, then Open the “left” file, noting its raw file size, for further optimization



Chapter 15 ■ Implementing Game Audio Assets: Using the JavaFX AudioClip Class Audio Sequencing Engine

327

The next thing that we will do is to go back and use the File ➤ Open menu sequence to open the left.wav file that 
contains only the segment of digital audio data that we wish to optimize. This is seen in the middle of Figure 15-3   
(the menu sequence), and on the right side of the screenshot you can see a Select one or more audio files (File Open) 
dialog. Notice that the left.wav file shows what its raw (original) data footprint is (113 KB).

We can use this original data footprint as a baseline to see how many times we reduce the data footprint (it will 
eventually be 8.8 times smaller, once we are done) during this optimization process we are about to embark on.

When you click on the Open button and open a file for the first time in Audacity you’ll get a Warning dialog, which 
is shown in Figure 15-4. This will advise you that you can make a copy of your original file for use in your editing session, 
instead of using the original. This is what is called “non-destructive” editing in the multimedia industry, and is always a 
very good idea, since it essentially provides you with a back-up file (the original), as part of the work process.

Figure 15-4.  Enable non-destructive audio editing in Audacity

Select the “Make a copy of the files before editing (safer)” radio button option, and check the “Don’t warn again, 
and always use my choice above” checkbox, which will turn Audacity 2 into a non-destructive non-linear digital audio 
editing software package. Click on the OK button and we’ll be ready to start your digital audio data optimization work 
process. We will be optimizing our digital audio data, but not compressing it, and I will get into why that is next. 

Optimization Versus Compression: The Audio Memory Footprint
You might be wondering why I am using the uncompressed, pulse code modulated (PCM) Wave (.wav) file format 
instead of the industry standard .MP3 file format that many of you use for your digital audio music file storage. I will 
cover the reason for this up front, before we start the optimization process. In digital audio, there are really two stages 
to data footprint optimization. First you optimize the sample resolution (32-bit original recording, 24-bit HD audio, 
16-bit CD Quality audio and 8-bit lower quality audio) and the sample frequency (44.1kHz, 22.05kHz, 11.025kHz are 
the primary frequency levels that still maintain enough data for a quality result), and then you apply the compression. 
The compression affects your file size; in this case it is your .JAR (Java Resources) file. 

So, why are we not compressing our files into MP3 format, to make our .JAR file a few kilobytes smaller? A primary 
reason for this is because MP3 is a “lossy” format, which throws away original data (and quality) for the audio sample. 
Since the JavaFX AudioClip class is going to take our digital audio assets and decompress them into memory, if we 
use MP3, that memory will contain lower quality audio data that if we use WAV format. Given that we are going to 
get at least an 8X data footprint reduction during the sample optimization work process that we are about to learn 
in the next section of the chapter, and that all our digital audio assets are going to be optimized to between 4KB and 
14K of data footprint, MP3 compression is not going to give us any real JAR file data footprint reduction relative to the 
reduction in sample quality that it will “cost” us. Game audio is short-burst sound effects and musical loops, so we can 
use WAV file format and still get a good result, and not have to use any compression. The other advantage is the data 
size of the WAV file that you see in our file management software is also the amount of memory the sample will use.



Chapter 15 ■ Implementing Game Audio Assets: Using the JavaFX AudioClip Class Audio Sequencing Engine

328

Audio Sample Resolution and Frequency: Optimizing for Your Memory Footprint
The first step in the memory data footprint reduction process will be to take the raw 32-bit data sampling rate and 
reduce that by 100%, from 32-bit floating point data to 16-bit PCM data, as is shown in Figure 15-5 on the bottom left 
of the screenshot. Find the drop-down arrow in the gray information panel on the left side of the Audacity sample 
editing area, which I have circled in red in this screenshot as it is kind of difficult to find if you are not used to using it. 
This will give you a menu that allows you to set the data display (Waveform or Spectrogram) and set your Sample Data 
Format, which is the submenu that we want to use to select the 16-bit PCM option rather than the 32-bit float option. 
Do not set your sample rate using this menu, as it will slow down your voice (you can try this if you want to use this as 
a special effect later on). Next, we will be looking at the correct work process for setting the sample rate. 

Figure 15-5.  Click the drop-down menu arrow at the left and select the Set Sample Format ➤ 16-bit PCM setting option

It is important to note that if you save your file out after making this data bit-level change, your file size will not 
have changed! As you may have noticed, the Export File dialog is saving your file in 16-bit PCM WAVE format, so it is 
doing this same adjustment that you are doing here in memory, for your file size on disk. I am simply including this 
step here so that you get a comprehensive overview of the entire process, starting with a sample data rate reduction, 
and then reducing the sample frequency rate, which we are going to do next, and finally addressing the stereo versus 
mono sample consideration, which will be our final step later on in this section of the chapter.

Each of these “optimization moves” can reduce the file size (and memory footprint) by 100% or more, upon each 
application of the work process. In fact, when we reduce the sampling frequency next from 44,100 to 11,025 we will be 
reducing the data footprint by 200% (100% from 44,100 to 22,050, and then 100% from 22,050 to 11,025).



Chapter 15 ■ Implementing Game Audio Assets: Using the JavaFX AudioClip Class Audio Sequencing Engine

329

Setting the Audio Sample Frequency: Reducing Your Memory Data Footprint by 
Another 200%

The proper way to set the digital audio sampling frequency for your project in Audacity is to use the drop-down 
dialog for the project’s sample frequency setting. This can be seen in the lower left corner of Figure 15-6, highlighted 
inside of a red box. Select the 11025 frequency setting, which reduces the audio data (think of these as vertical slices 
of the sound wave) sampling rate from 44,100 times per second, to 11,025 data slices per second, or a 4X reduction in 
audio data sampled in the first place, which is a 200% reduction in data footprint due to this sample frequency step in 
the data (in this case, you should look at this as memory used, more than file space used) optimization work process. 

Figure 15-6.  Reduce audio sampling frequency by four times by reducing it from 44100 per second to 11025 per second

You can play around with these seven different settings, between the 44,100 and 8000 sample frequency rates, as 
each of them will have a different quality level, with 8000 being too low of a quality to use for voice samples, but which 
might work well with a “dirty” or “noisy” sound, such as an explosion.

If you want to hear what these different settings sound like, after you select each one of course, click on the 
green play (right facing triangle) in the audio transport buttons shown at the top-left of Figure 15-6. You will see that 
the 32,000 frequency sounds just like the 44,100 frequency rate, as does the 22,050 frequency. The 16,000 or 11,025 
frequency rates do not sound as “bright” but are still usable, so I used the 11,025 rate, to get an even 4X downsample 
of the data. This is because downsampling by an even 2X (100%) or 4X (200%) will always provide the best result. This 
is because of the math involved leaving no “partial” samples (or pixels, since the same concept applies with imaging).



Chapter 15 ■ Implementing Game Audio Assets: Using the JavaFX AudioClip Class Audio Sequencing Engine

330

Next, let’s use the File ➤ Export work process. If you want to see this on a menu, this menu sequence can be seen 
in Figure 15-1, and is shown on the File menu, above Export Selection option. In the Export File dialog, which can 
be seen in Figure 15-7, you can save the new version of the file using a different file name, so that you have both the 
original uncompressed data in the left.wav file and the new compressed (stereo) data in the leftstereo.wav file. Name 
this file leftstereo, and click on the Save button, to save it as an uncompressed 16-bit PCM WAV file, as shown on the 
left side of Figure 15-7.

Figure 15-7.  Use the File ➤ Export dialog, name the file leftstereo, Save the file, then use File ➤ Open to check its file size

The next thing that we will want to do is use the same work process shown back in Figure 15-3, and use the  
File ➤ Open menu sequence, to open the Select one or more audio files dialog, shown on the right side of Figure 15-7, 
which will allow us to mouse-over the leftstereo.wav file and see that the size is 28.0 KB, which is four times less data 
than the original 112 KB source file size, just as we expected!

Therefore, we’ve reduced our memory requirements for this audio file that states the word “left” from one-ninth 
of a megabyte (112 KB), to one-thirty-sixth of a megabyte (28KB). This means that you can have 36 audio assets of this 
size, and still be using only one single megabyte of system memory! When I created the other five audio assets, this 
one turned out to be the largest, and the smallest (up and s, as you may have guessed) were less than 4KB each!

The last stage of our digital audio optimization work process is the conversion of this data from a stereo file to a 
mono file. We will do this because we don’t need two copies of the same spoken word for our game audio assets. This 
is also true for most game audio special effects, such as laser blasts and explosions; mono audio works just fine in 
these types of audio sound effect situations. This is especially true because the JavaFX AudioClip class and its pan and 
balance capabilities will also allow us to simulate stereo effects, using mono digital audio assets, if we want to.

This will also reduce our data footprint by another 100%, giving us a 14KB audio file. We could fit 72 digital mono 
audio assets of this size into one megabyte of system memory, so using mono (monaural) audio assets instead of 
stereo digital audio assets is a great thing to do whenever you can, which is why we are going to cover this next.

Stereo Versus Mono Audio: Reducing Your Memory Footprint Another 100%
The last stage of our digital audio optimization work process is the conversion of our digital audio data from using a 
stereo audio asset into a monaural audio asset. We will do this because we don’t need two copies of the same spoken 
word for our game audio asset in this case. This is also true for most game-related digital audio special effects, such as 
laser blasts and explosions. Monaural audio will work just as well as stereo audio in these types of audio sound effect 
situations. This is especially true because the JavaFX AudioClip class gives developers audio panning and balance 
capabilities. These will allow developers to simulate stereo effects using mono audio assets. Audacity has an ability to 
combine stereo audio asset (two tracks, one left and one right) data into one mono audio asset that sounds the same.



Chapter 15 ■ Implementing Game Audio Assets: Using the JavaFX AudioClip Class Audio Sequencing Engine

331

If we combine our two stereo audio tracks into one mono track, using the Audacity Tracks ➤ Stereo Track to 
Mono algorithm which is shown in the menu sequence in Figure 15-8, it will reduce the digital audio data footprint by 
another 100%, giving us a 14KB audio file. We could fit 72 digital audio assets of this size into one megabyte of system 
memory. As it is, using the (uncompressed, no less) digital audio data footprint optimization that I have shown during 
this section of the chapter, I have managed to get all six digital audio assets into less than 62 KB of memory footprint. 

Figure 15-8.  Use the Tracks ➤ Stereo Track to Mono algorithm to combine the stereo samples into one Mono sample

What I want you to do before you use this stereo-to-mono algorithm is to click on the Play transport button at the 
top of Audacity, and listen to the stereo audio asset carefully, a couple of times. Next, go ahead and invoke this stereo-
to-mono track merging algorithm, using the menu sequence shown in Figure 15-8. After you see a single mono audio 
asset, which you can look ahead and see in Figure 15-9, click on the Play transport button again, and then listen to the 
audio sample, now that it is monaural, and see if you can detect any difference whatsoever.

This difference is even more difficult to detect (if you even can) with specialized sound effects. The Audacity 
2.0.6 software package is a fully professional digital audio editing, sweetening, and sound effects program, and as 
you can see here, you can achieve professional game audio development results using the correct work process 
with this software, which is why I had you download and install it during Chapter 1. To make sure you have the 
most powerful version of Audacity 2.0.6 possible, make sure that you have all of the LADSPA, VST, Nyquist, LV2, 
LAME, and FFMPEG plug-ins downloaded, and then install them in the C:\Program Files\Audacity\Plug-Ins 
folder, and restart Audacity.



Chapter 15 ■ Implementing Game Audio Assets: Using the JavaFX AudioClip Class Audio Sequencing Engine

332

Preparing to Code: Exporting Your Assets and Copying Them into Your Project
Let’s export the final monaural file and name it leftmono.wav using the File ➤ Export menu sequence, as is shown in 
Figure 15-9. You can record the other five files using the same work process, or use assets I have created if you prefer. 

Figure 15-9.  Again use the File ➤ Export menu sequence and name the file leftmono and select the WAV 16-bit PCM

Figure 15-10.  Use your file management software to copy the six .WAV files into the InvinciBagel/src project folder

Copy the six audio assets into the InvinciBagel/src folder using the operating system file management utility, as 
shown in Figure 15-10, so they are in place for us to reference during the rest of the chapter, as we write our code.



Chapter 15 ■ Implementing Game Audio Assets: Using the JavaFX AudioClip Class Audio Sequencing Engine

333

Now we’re ready to get back into Java 8 coding. First, we will add code in our InvinciBagel.java class in order to 
implement six AudioClip objects, which will reference our audio assets, and later, in the Bagel.java class, where we will 
utilize the assets in a new .playAudioClip() method that we will add to our Bagel class’s primary .update() method.

Adding Audio to InvinciBagel.java: Using AudioClip
The first thing that we need to do to implement the AudioClip sound engine is to declare six private AudioClip objects, 
using a compound declaration statement at the top of the InvinciBagel.java class. I will name these iSound (stands for 
InvinciBagel Sound) zero through five, as shown in Figure 15-11, using the following single line of Java code: 
 
private AudioClip iSound0, iSound1, iSound2, iSound3, iSound4, iSound5; 

Figure 15-11.  Add the private AudioClip compound declaration statement for your iSound0 through iSound5 objects

As you can see in Figure 15-11, you will have to use the Alt-Enter work process, and select the “Add import for 
javafx.scene.media.AudioClip” option, and have NetBeans 8 write your AudioClip class import statement for you.

Referencing AudioClip Assets: Using the java.net.URL Class
Unlike Image objects in JavaFX, which can be referenced using a simple forward slash character and the file name, 
digital audio assets are not as simple to reference, and require the use of the URL class, which is part of the java.net  
(network) package. The URL class is used to create a URL object, which provides a Uniform Resource Locator (URL) 
file reference, which is essentially a “pointer” to a “data resource,” which is usually a new media asset, and in the 
case of our Java 8 game development, it is a WAVE audio file in our /src folder.



Chapter 15 ■ Implementing Game Audio Assets: Using the JavaFX AudioClip Class Audio Sequencing Engine

334

Like the AudioClip class, the URL class was also scratch coded to provide URL objects, as you can see from the 
Java class hierarchy, which looks like the following: 
 
java.lang.Object
  > java.net.URL
 

The second step in our implementation of our six AudioClip objects is the declaration of six private URL objects 
named iAudioFile0 through iAudioFile5 at the top of the InvinciBagel.java class using a compound declaration 
statement, which can be seen in Figure 15-12, and looks like the following single line of Java code:
 
private URL iAudioFile0, iAudioFile1, iAudioFile2, iAudioFile3, iAudioFile4, iAudioFile5; 

Figure 15-12.  Add a private URL compound declaration statement for the iAudioFile0 through iAudioFile5 URL objects

As you can see in Figure 15-12, you will have to again use the Alt-Enter work process, and select the “Add import 
for java.net.URL” option, and again have NetBeans 8 write your URL class import statement for you.

Now we are ready to write the Java code that loads our URL objects, and then uses these to instantiate our 
AudioClip objects. To maintain our high level of code organization using custom methods inside this class, let’s add a 
loadAudioAssets() method into our .start() method next, and then create a private void loadAudioAssets() method to 
hold our AudioClip related code, in case we want to add more than six digital audio assets into our game in the future.

It is important to note that due to the versatility of the AudioClip class as far as pitch shifting and 2D spatial (left 
to right) audio movement is concerned, you should not need as many audio assets as you might think, because you 
can turn even six well-designed audio assets into literally hundreds of different sound effects for your game play.



Chapter 15 ■ Implementing Game Audio Assets: Using the JavaFX AudioClip Class Audio Sequencing Engine

335

Adding Your Audio Asset Loading Method: .loadAudioAssets( )
Create a method call inside of your start() method, as seen in Figure 15-13, called loadAudioAssets(); and place 
it in the logical method order right before the loadImageAssets(); method invocation. To get rid of the wavy red 
error highlighting, add a private void loadAudioAssets(){} empty method after the createSceneEventHandling() 
method. In this way, your digital audio assets will be referenced and loaded into memory right after your KeyEvent 
handling is set up, and right before your digital image assets are referenced and loaded into memory. 

Figure 15-13.  Create the private void .loadAudioAssets() method to hold the AudioClip object instantiation statements

Inside of your .loadAudioAssets() method body, your will have two Java code statements, as loading a digital 
audio asset is a little bit more involved than referencing digital image assets. First, you will load your first iAudioFile0 
URL object, using the getClass().getResource() method chain. This method chain loads the URL (uniform resource 
locator) object with the digital audio sample resource that you want to use, and will do this for your Class object (in 
this case, this is the InvinciBagel class, since that is the Java class which we are writing this code in).

The resource that you are looking to get the URL for goes inside of the .getResource() method call, and uses the 
same format as the resource references that you used for your digital image assets, which in this case would be a  
“/leftmono.wav” file reference, which is converted by the .getResource() method into a binary URL data format. This 
Java code can be seen in Figure 15-14, and looks like the following Java method body:
 
private void loadAudioAssets() {
    iAudioFile0 = getClass().getResource("/leftmono.wav");
    iSound0 = new AudioClip(iAudioFile0.toString());
}
 



Chapter 15 ■ Implementing Game Audio Assets: Using the JavaFX AudioClip Class Audio Sequencing Engine

336

The second line of code, interestingly, uses the .toString() method call, which converts this URL object right back 
into a String object, which is required to load the AudioClip() constructor method with the audio asset URL. You may 
be thinking: why not use iSound0 = new AudioClip("/leftmono"); ? You can try this, however, you’ll have to “hard 
code” the directory, using “file:/Users/users/MyDocuments/NetBeansProjects/InvinciBagel/src/leftmono.wav.”

I used the URL object approach so that you will be able to reference this audio file from the inside of the JAR file, 
instead of using the approach shown above that requires an “absolute” location on a hard disk drive. Therefore, this 
getClass().getResource() method chain is adding “relative” reference data into this URL object. Your InvinciBagel 
class needs this relative reference data to be able to reference your WAV audio resource files from the inside of your 
NetBeans 8 project InvinciBagel/src folder, as well as from the inside of your JAR file for your Java 8 game application.

Next, use your trusty programmer’s shortcut, and copy and paste these two lines of code five more times 
underneath themselves, which is the easy way to create your other five AudioClip objects. Change the zero on both 
iAudioFile0 and iSound0 to iAudioFile1 through iAudioFile5 and iSound1 through iSound5 respectively. Then change 
the WAV audio file name reference to rightmono.wav, upmono.wav, downmono.wav, wmono.wav and smono.wav 
respectively. Your completed loadAudioAssets() method should then look like the following Java method body, which 
is also shown in Figure 15-15:
 
private void loadAudioAssets() {
    iAudioFile0 = getClass().getResource("/leftmono.wav");
    iSound0 = new AudioClip(iAudioFile0.toString());
    iAudioFile1 = getClass().getResource("/rightmono.wav");
    iSound1 = new AudioClip(iAudioFile1.toString());
    iAudioFile2 = getClass().getResource("/upmono.wav");
    iSound2 = new AudioClip(iAudioFile2.toString());

Figure 15-14.  Instantiate and load the URL object, and then use it inside of the iSound0 AudioClip object instantiation



Chapter 15 ■ Implementing Game Audio Assets: Using the JavaFX AudioClip Class Audio Sequencing Engine

337

    iAudioFile3 = getClass().getResource("/downmono.wav");
    iSound3 = new AudioClip(iAudioFile3.toString());
    iAudioFile4 = getClass().getResource("/wmono.wav");
    iSound4 = new AudioClip(iAudioFile4.toString());
    iAudioFile5 = getClass().getResource("/smono.wav");
    iSound5 = new AudioClip(iAudioFile5.toString());
} 

Figure 15-15.  Create more AudioClip objects referencing the rightmono, upmono, downmono, wmono, and smono files

Since we’ve made our AudioClip objects private, we need to create methods inside of the InvinciBagel class, 
which can be called from our Bagel.java class (and other classes as well, later on in development) using method calls.

Use your Source ➤ Insert Code ➤ Generate ➤ Setters work process to open the Generate Setters dialog, seen 
in Figure 15-16, and select the iSound0 through iSound5 objects, so that NetBeans creates six .setiSound() methods.



Chapter 15 ■ Implementing Game Audio Assets: Using the JavaFX AudioClip Class Audio Sequencing Engine

338

Now we are ready to use these six new .setiSound() methods that NetBeans has coded for us, which we do not 
need, as our AudioClips are permanently “set” in memory using the .loadAudioAssets() method, to create the six 
.playiSound() methods that we do in fact need to play back these six digital audio assets. Let’s do that next.

Providing Access to Your AudioClip: The .playiSound( ) Methods
What we are about to do is what I consider another programmer’s shortcut, but instead of copy and paste, I used 
NetBeans Source ➤ Insert Code function to create Setter methods for the iSound objects that I am going to change 
from .setiSound() to .playiSound() methods, so that I do not have to type out all six of these method bodies. As you 
can see in Figure 15-17, NetBeans created six complete method bodies for us, and all that we have to do is to remove 
the AudioClip iSound references inside of the method parameter areas, change the setiSound() to be playiSound(), 
and finally change the this.iSound0 = iSound0; statement to be this.iSound0.play(); instead. We will do this for 
each of the six .setiSound() method bodies, which will allow us to quickly create six .playiSound() method bodies. 

Figure 15-17.  Edit these six .setiSound() methods, created by NetBeans, at the bottom of the InvinciBagel.java class

Figure 15-16.  Use the Generate Setters dialog and create six .setiSound() methods



Chapter 15 ■ Implementing Game Audio Assets: Using the JavaFX AudioClip Class Audio Sequencing Engine

339

The edit process is relatively easy: select the set part of setiSound and type “play” over the set; select the inside 
of the parameter area (AudioClip iSound#), and hit the delete or backspace key to remove that; and finally, select 
the “ = isound” part of the Java statement, inside of the method between this.iSound and the ; semicolon and type in 
.play() instead. The completed Java method bodies are shown in Figure 15-18 and should look like the following:
 
public void playiSound0() {
    this.iSound0.play();
}
public void playiSound1() {
    this.iSound1.play();
}
public void playiSound2() {
    this.iSound2.play();
}
public void playiSound3() {
    this.iSound3.play();
}
public void playiSound4() {
    this.iSound4.play();
}
public void playiSound5() {
    this.iSound5.play();
} 

Figure 15-18.  Turn .setiSound() methods into .playiSound() methods by adding calls to the AudioClip .play() method



Chapter 15 ■ Implementing Game Audio Assets: Using the JavaFX AudioClip Class Audio Sequencing Engine

340

Triggering the .playiSound( ) Methods in Bagel.java: The .playAudioClip( ) Method
Now that we have declared, universal resource located (referenced), and instantiated our AudioClip objects, and 
created .playiSound() methods that will allow us to trigger each of these digital audio samples from “outside” of the 
InvinciBagel.java class, we can go into the Bagel.java class, and write some code that allows us to trigger these audio 
objects, to see how well the AudioClip class works. The best way to do this with our existing code is to use the event 
handler code we are using to move our motion sprite object to also allow us to trigger one of these sounds for each 
of the KeyEvents that we have set up currently for our game. This is why I named these files with the keys that they 
will be triggered by. The first thing that we need to put into place in the Bagel.java class, similar to what we did in the 
InvinciBagel class, is a method call to a playAudioClip() method inside of the .update() method that references an 
empty private void playAudioClip() method. This method call and empty method body can be seen in Figure 15-19.

Figure 15-19.  Create an empty .playAudioClip() method in the Bagel.java class and add a call to it inside of .update()

Inside of the playAudioClip() method body, we need to create conditional if() structures, similar to what we did 
for the sprite movement that we created in Chapter 12. We’ll match KeyEvent handling (left, right, up, down, w, s) to 
audio files that speak each of the keys (AudioClip objects iSound0 through iSound5) via an invinciBagel.playiSound() 
object reference and method call inside of the conditional if() statements, seen in Figure 15-20, using this Java code:
 
private void playAudioClip()   {
    if(invinciBagel.isLeft())  { invinciBagel.playiSound0(); }
    if(invinciBagel.isRight()) { invinciBagel.playiSound1(); }
    if(invinciBagel.isUp())    { invinciBagel.playiSound2(); }
    if(invinciBagel.isDown())  { invinciBagel.playiSound3(); }
    if(invinciBagel.iswKey())  { invinciBagel.playiSound4(); }
    if(invinciBagel.issKey())  { invinciBagel.playiSound5(); }
}
 



Chapter 15 ■ Implementing Game Audio Assets: Using the JavaFX AudioClip Class Audio Sequencing Engine

341

Now we have added digital audio to our game engine infrastructure, and all we have to do later is swap out the 
voiceovers with sound effects, and we will have the digital audio portion of our game development completed. If you 
use a Run ➤ Project work process and test the code, you will find that audio samples trigger rapidly using JavaFX.

Summary
In this fifteenth chapter, we changed our focus from how our game looks to our eyes (visual) and addressed how it 
sounds to our ears (aural), and took a chapter to implement the code for the AudioClip class so that we can trigger 
digital audio sound effects.

First we took a look at the JavaFX AudioClip class. We learned why it is perfectly suited for use in our game 
development for audio, including short musical loops (using the INDEFINITE constant setting) or rapid sound effects.

Next, we learned how to optimize digital audio assets using Audacity 2.0.6. We learned the work process for 
optimizing digital audio so that it takes only a dozen or so kilobytes of system memory, and how to optimize audio so 
well that we do not even have to apply compression, especially since audio compression codecs supported by Java 8 
are “lossy” codecs and can degrade the quality of the audio data once they are decompressed into system memory.

Finally, we implemented AudioClip objects in our InvinciBagel.java class using a .loadAudioAssets() method, 
and then created six .playiSound() methods to allow external classes to access and play these digital audio assets. 
We also added a .playAudioClip() method in our Bagel.java class that triggered the audio samples based on which 
keys were being pressed. In the next chapter, we are going take a look at how to add collision detection to our 
game code.

Figure 15-20.  Add conditional if() statements to the .playAudioClip() method that call the correct .playiSound() 
method



343

Chapter 16

Collision Detection: Creating SVG 
Polygons for the Game Actors and 
Writing Code to Detect Collision

Now that we have implemented digital audio for our game sound effects and short-loop music, as well as 
implemented our digital imaging related classes that create motion sprites (characters) and fixed sprites (props), 
we will now delve into the other major genre or area of new media: vectors. Vectors are utilized in 2D illustration 
software (InkScape) as well as 3D modeling and animation software (Blender), and use math to define the shapes that 
are used to create the 2D or 3D artwork. This makes vectors the perfect solution for defining custom collision shapes 
that perfectly encase our sprites, so that instead of using a complex array of pixels to detect collision, we use a far 
simpler (and far more memory and processor efficient) collision polygon, that will perfectly surround our sprite.

Fortunately for us, the JavaFX SVGPath class in the javafx.scene.shape package allows us to use custom SVG 
Path (Shape) data to define our sprite collision boundaries. Not only that, but this SVGPath class (object) is also 
highly efficient, as it has zero properties, only a few methods, and a simple SVGPath() constructor method, as you 
have seen already in Chapter 8. This means that using the SVGPath class (object) is relatively memory and processor 
efficient. In fact, the only method that we will need to use is the .setContent() method that we used in our Actor class 
constructor method in Chapter 8. Since we’ll do this once, at game start-up, the SVG Path collision data will be loaded 
into system memory and will be used in our collision detection routines, which we will be putting into place later in 
this chapter.

In this chapter we’ll take a detailed look at how the SVG Path data can be defined. This is specified by World 
Wide Web (W3) Consortium (also known as W3C), the body who defines HTML5. This specification is on their w3.org 
website, and is located at the http://www.w3.org/TR/SVG/paths.html URL, if you want to view it in further detail.

After we look at the SVG or Scalable Vector Graphics (in case you are wondering what this stands for) data 
format in detail, we will get into using the popular GIMP 2.8 digital image editing software, which you installed 
in Chapter 1, and learn how to create collision polygons. We will also take a look at how to use the PhysEd 
(PhysicsEditor) collision polygon generation software. This is from a company called CodeAndWeb GmbH, who 
makes professional, and affordable, game assets creation software.

We will go through a collision polygon vector asset creation and optimization process using GIMP 2.8, using both 
the quick and dirty work process, which allows GIMP to 100% create the collision polygon shape for you, as well as 
a more “involved” work process, where you create your own collision polygon yourself, by hand, using GIMP’s Path 
tools. After we have learned how to create collision polygons that are compatible with the JavaFX SVGPath class, we 
will spend the remainder of the chapter on Java 8 game programming, creating the collision detection engine (code) 
that will allow us to detect when our InvinciBagel character comes into contact with any of the other Actor objects in 
the game environment (Scene and Stage objects). This is where the book will start to become more advanced (useful).

http://www.w3.org/TR/SVG/paths.html


Chapter 16 ■ Collision Detection: Creating SVG Polygons for the Game Actors and Writing Code to Detect Collision

344

The SVG Data Format: Hand Coding Vector Shapes
There are ten different letters that can be utilized with the numeric (X,Y data point location in 2D space) data in an 
SVG data string. Each has an upper case (absolute referencing) and a lower case (relative referencing) version. We will 
be using absolute referencing as we need these data points to match up with pixel locations in the sprite imagery that 
we are going to “attach” or group these SVG Path data strings with to provide collision detection data guidelines. As 
you can see in Table 16-1, the SVG data commands provide you a great deal of flexibility in defining custom curves for 
your Java 8 game development. You could even combine all of these scalable vector commands with your Java 8 code 
to create interactive vector (digital illustration) artwork that has never before been experienced, but since this is a 
game development title, we’re going to use this information to develop highly optimized collision polygons that only 
use a dozen X,Y data points (somewhere between 12 and 15) to define a relatively detailed collision polygon that will 
encase our sprite imagery, and provide highly accurate (from the game player’s viewpoint, at least) collision results.

Table 16-1.  SVG data commands to use for creating SVG path data string (source: Worldwide Web Consortium w3.org)

SVG Command Name Symbol Type Parameter Description

moveto M Absolute X, Y Defines a Start Of Path at the X,Y using 
absolute coordinates

moveto m Relative X, Y Defines a Start Of Path at the X,Y using 
relative coordinates

closepath Z Absolute None Close SVG Path, by drawing line from last to 
first coordinate

closepath z Relative None Close SVG Path, by drawing line from last to 
first coordinate

lineto L Absolute X, Y Draws a Line from the current point to the 
next coordinate

lineto l Relative X, Y Draws a Line from the current point to the 
next coordinate

horizontal lineto H Absolute X Draws a Horizontal Line from current point to 
next coordinate

horizontal lineto h Relative X Draws a Horizontal Line from current point to 
next coordinate

vertical lineto V Absolute Y Draws a Vertical Line from current point to 
next coordinate

vertical lineto v Relative Y Draws a Vertical Line from current point to 
next coordinate

curveto C Absolute X,Y, X,Y, X,Y Draws a cubic Bezier curve from current 
point to next point

curveto c Relative X,Y, X,Y, X,Y Draws a cubic Bezier curve from current 
point to next point

shortandsmoothcurve S Absolute X,Y, X,Y Draws a cubic Bezier curve from current 
point to next point

(continued)



Chapter 16 ■ Collision Detection: Creating SVG Polygons for the Game Actors and Writing Code to Detect Collision

345

SVG Command Name Symbol Type Parameter Description

shortandsmoothcurve s Relative X,Y, X,Y Draws a cubic Bezier curve from current 
point to next point

quadratic Bezier curve Q Absolute X,Y, X,Y Draws a quadratic Bezier curve (current 
point to next point)

quadratic Bezier curve q Relative X,Y, X,Y Draws a quadratic Bezier curve (current 
point to next point)

short quadratic Bezier T Absolute X,Y Draws a short quadratic Bezier (current point 
to next point)

short quadratic Bezier t Relative X,Y Draws a short quadratic Bezier (current point 
to next point)

elliptical arc A Absolute rX, rY, Rot Draws an elliptical arc from current point to 
next point

elliptical arc a Relative rX, rY, Rot Draws an elliptical arc from current point to 
next point

Table 16-1.  (continued)

The best way to see how to use the powerful SVG data “path drawing” commands is to get down to learning the 
work process for creating SVG data-based collision polygon paths. We will learn how to do this using GIMP 2.8.14,  
using a “quick and dirty” approach, which lets GIMP do 100% of the path creation work. After that, we’ll learn another 
way to do this by hand using GIMP. A second approach gives you 100% of the path creation control. At the end of this 
SVG topic, I will also show you how to use another dedicated collision and physics development tool called PhysEd 
from an innovative game development software tools company, located in Ulm, Germany, called CodeAndWeb GmbH.

Creating and Optimizing Collision Data: Using GIMP
Fortunately for us, the popular open source digital image editing software package called GIMP, currently at version 
2.8.14, has enough Path capabilities, and the ability to export this as SVG datasets, to allow the software to be used 
as a full-fledged collision polygon creation tool. The GIMP software supports paths using a Path Tool (shown as an 
old-fashioned fountain pen tip next to a curve data point with Bezier handles coming out of it), which you can see 
in Figure 16-1 (second icon from the left in the second row of the Toolbox Icons). The reason GIMP supports paths, 
as it is not generally a vector (path-based) software package, but instead a raster (pixel-based) software package, 
is because the ability to create a path and then “convert” it to a selection area is a very useful one to the digital 
image compositing artisan. In fact, we will be using GIMP’s ability to do just the opposite of this: that is, convert an 
algorithmically created selection set into path data, which will form the foundation of our fully automated, “quick and 
dirty” SVG Path data creation process. We will take a look at this first, since it is fast, simple, and effective (but “data 
heavy”). Let’s get started by launching GIMP, and using the File ➤ Open process to open the sprite1.png PNG32 
digital image asset that is in your project /src folder. As you can see in Figure 16-1, I have zoomed into the image. This 
allows me to see the collision data path (initially, this will be a selection) that we’re about to create using the GIMP 
Toolbox.



Chapter 16 ■ Collision Detection: Creating SVG Polygons for the Game Actors and Writing Code to Detect Collision

346

Click on the GIMP Fuzzy Selection Tool (icon looks like a sparkler or a magic wand), which is shown selected 
(depressed, as in “sunk in,” not sad) in Figure 16-2. Click on any area of the image that shows a checkerboard pattern, 
which always signifies transparency in any digital imaging software package, as well as many other types of software, 
such as the game asset creation software packages from CodeAndWeb GmbH, for instance. As you see, in Figure 16-2, 
you’ll get an animated, “crawling ants” outline around the transparent areas of the image, since the transparent areas 
have just been selected by the Fuzzy Selection Tool algorithm, which selects areas of contiguous color values.

Figure 16-1.  Launch GIMP, and use File ➤ Open to open the sprite1.png file



Chapter 16 ■ Collision Detection: Creating SVG Polygons for the Game Actors and Writing Code to Detect Collision

347

In this case, the Fuzzy Select tool is selecting transparency values. In fact, you should notice that you have to 
select an option to select transparent areas in an image, using the Fuzzy Select Tool Options dialog, which can be seen 
at the bottom of the Toolbox Tool Options floating palette. As you can see, I have instructed GIMP to not only “look” at 
the RGB plates in the image, but also to look at the Alpha plate, by selecting the “Select transparent areas” option.

Now that we have that selection set that contains everything except the sprite character that we wanted to select, 
we need to figure out a way to get the opposite of what we now have selected. Selecting the transparent areas was 
admittedly much easier than trying to select the different colored areas of the InvinciBagel character! Fortunately 
GIMP has an algorithm that inverts the selection completely, selecting everything that is not selected, and deselecting 
everything that is selected.

Under the GIMP 2.8 Select menu, find the Invert option, or, use the Control+I keyboard shortcut, shown on the 
menu next to the Invert option, all of which can be seen on the left half of Figure 16-3. Once you do this you will notice 
that the animated “marching ants” no longer march around the square perimeter (extents) of the digital image and 
that they are only around the InvinciBagel character, which means that the selection has been inverted and what we 
wanted to select is now contained in the selection set.

Figure 16-2.  Click in a transparent area using Fuzzy Select Tool to select Actor



Chapter 16 ■ Collision Detection: Creating SVG Polygons for the Game Actors and Writing Code to Detect Collision

348

The next step is to convert this raster pixel selection set (array) into a vector (path) data representation. The way 
that we do this in GIMP is to use the Select ➤ To Path menu sequence, seen on the right half of Figure 16-3. This will 
convert the selection that is around the InvinciBagel character to vector path data, which is what we want to cull. 

Once you convert the pixel selection into a vector path, you will get the result that is shown in Figure 16-4. 

Figure 16-3.  Invert selection using Select ➤ Invert, so only Actor is selected (left); use Select ➤ To Path to convert to path



Chapter 16 ■ Collision Detection: Creating SVG Polygons for the Game Actors and Writing Code to Detect Collision

349

In the other floating palette, click on the Paths Tab, shown on the right side of Figure 16-4. GIMP has two, 
primary floating tool windows; one is the GIMP Toolbox, containing Tools, Options, Brushes, Patterns, and 
Gradients, and the other contains four tabs, which represent your digital image’s compositing Layers, Channels, 
Selection Paths, and even an Undo Buffer, which gives you a “history” of every “move” you have made in GIMP since 
you launched it.

Select the Path named Selection (the Path layer named Selection will then turn blue). Next right-click on the 
Path named Selection, and at the bottom of that menu of things that you can do to the Selection Path, you will see an 
Export Path menu option. This is another one of the key GIMP algorithms that enables this collision polygon creation 
and output work process for us. 

Selecting this Export Path option will export the current InvinciBagel character Selection Path data for us, as a 
text-based (XML) file containing SVG data, which is what we need to use in our Bagel() constructor method call. This 
data will be contained in the first String SVGdata parameter, and will replace our “dummy data” that we have been 
using as a placeholder thus far.

Once you invoke the Export Path menu option, you will see the Export Path to SVG dialog, which is shown in 
Figure 16-5. As you can see, I’ve selected the “Export the active path” option, at the bottom of the dialog, since I only 
want to have one collision polygon path data object, and I am naming this file sprite1svgdata.svg, and I am saving it 
in my C:\Clients\BagelToons\InvinciBagelGame\Shape_Data folder.

Figure 16-4.  Right-click on Selection Path in Paths Palette, and Export Path



Chapter 16 ■ Collision Detection: Creating SVG Polygons for the Game Actors and Writing Code to Detect Collision

350

The next step in the work process is to open the sprite1svgdata.svg file that we are exporting in Figure 16-5 in a 
text editor: for Windows users that will be Notepad, for Macintosh users that will be TextEdit, and for Linux users it 
will probably be vi or vim.

Figure 16-6 shows the File Open dialog for Windows Notepad, and you may notice that by default, Notepad will 
look for the .txt (Text file type) file extension, which indicates that there is text data inside of that file. However, there 
is also text data inside of the .svg file extension (type), in the form of XML data. We need to use the drop-down menu 
at the bottom right of the dialog to tell Notepad to look at all files that are available, and to allow us to decide which of 
them contain text data, and which do not.

Figure 16-5.  Select “Export the active path” option, in the Export Path to SVG dialog, and name the file sprite1svgdata



Chapter 16 ■ Collision Detection: Creating SVG Polygons for the Game Actors and Writing Code to Detect Collision

351

Once you select the “All Files” option, you will see the sprite1svgdata file, and you can double-click on it to open 
the file (or single click on it to select it, and then click on the Open button). 

If you want to use this data in your Java code, simply select the part after the d = (data equals) in quotation 
marks, including the quotation marks, which you will need to denote a String, as seen selected in blue in Figure 16-7. 

Figure 16-6.  Use a text editor (like Notepad) and select “All Files” option and Open sprite1svgdata



Chapter 16 ■ Collision Detection: Creating SVG Polygons for the Game Actors and Writing Code to Detect Collision

352

As you can see in Figure 16-7, there are 32 times 3 data pairs, which is close to 100 data points, which is a lot of 
data to process, especially if two objects that both have SVGPath collision detection data defined are colliding!

If you look at the InvinciBagel character in Figure 16-4, we really should be able to define a collision polygon 
around the character using 14 to 16 lines that perfectly encapsulate the character, and use many times less (16 times 
less, in fact, as you will see during the next section of the chapter) data, which equates to 16 times less memory, and 16 
times less processing (1600% higher efficiency) overhead, if not more.

For that reason, I want to show you the more complex work process in GIMP for defining your own custom 
collision polygon SVG data shape object, using as few lines (between data points) as possible. This essentially equates 
to collision detection SVG Path shape data optimization, and since I’ve been showing you the data optimization work 
process for other new media elements, there is no reason to stop that trend now! So next, let’s take a detailed look at 
how to reduce our collision detection SVG Path shape data overhead by 1600% in the next section of this chapter.

Creating an Optimized Collision Polygon: Using the Path Tool
Let’s start over, either by closing the previous project, and using the File ➤ Open to reopen the sprite1.png file, or 
by deleting the previous Selection Path in the Paths palette. This time, instead of the Fuzzy Select Tool, use the Paths 
Tool, and select the Design Edit Mode in the options (bottom) part of the Toolbox, and select the Polygonal checkbox 
option. This will keep our lines nice and straight, like the polygons you see in 3D modeling packages such as Blender. 
Click in the InvinciBagel character’s hair, and then click another point on his left shoulder, as shown in Figure 16-8. 
This will automatically draw a line segment (polyline) between the two points for you. Click a third point at the elbow, 
a fourth point at the wrist, a fifth point at the toe, a sixth point at the knee, a seventh point at the thigh, an eighth point 
at the heel, and so on, to create an outline using straight lines that perfectly contains the InvinciBagel run state.

Figure 16-7.  Select the SVG data (including quote characters) for the SVG Path representation, and use it in your code



Chapter 16 ■ Collision Detection: Creating SVG Polygons for the Game Actors and Writing Code to Detect Collision

353

As you can see in Figure 16-9, I created the collision polygon using only 15 points. You can leave the polygon 
open, and simply add the Z character you learned about in the first section of the book, to create a closed polygon. As 
you can see on the right side of Figure 16-9, the polygon conforms closely to the sprite, so during game play the result 
of a collision will look like it happened with the pixels of your sprite rather than with the collision polygon, which even 
though the collision polygon path data is visible here in GIMP, will be invisible during your game play.

Figure 16-8.  Open sprite1.png, select the Paths Tool, and start to draw a simple Path



Chapter 16 ■ Collision Detection: Creating SVG Polygons for the Game Actors and Writing Code to Detect Collision

354

Export your hand-drawn path, by selecting, and right-clicking on the Unnamed Path shown in the middle of 
Figure 16-9, and use the Export Path menu option to export it as the file sprite1svghand.svg, just like you did back in 
Figure 16-5. If you want to name the path in GIMP, you can double-click on the path name in the path dialog, and give 
it a name, if you like. If you want to save your work in the native GIMP .xcf file format, you can also use the File ➤ Save 
menu sequence, and give the file a name, such as sprite1svgpath15points.xcf.

Next, use your Text Editor’s (Notepad, for instance) File Open dialog, as was shown in Figure 16-6, and open the 
latest sprite1svghand.svg file, so you can see how much data you have saved relative to the nearly 100 data point pairs 
that the GIMP Fuzzy Select Tool selection work process provided for us in the first section of this chapter.

As you can see in Figure 16-10, there are 14 times 3 (42) data pairs, which is less than half of the amount that we 
had in the previous work process. This is strange, because theoretically, there should only be 15 data pairs, so let’s do 
some investigative work, and see what might be going on with this data.

Figure 16-9.  Insert 15 strategically placed points to define a collision shape and use the Export Path to export SVG data



Chapter 16 ■ Collision Detection: Creating SVG Polygons for the Game Actors and Writing Code to Detect Collision

355

Just as NetBeans 8 does not always utilize the “optimal” or correct work process to suit our particular Java 8 game 
creation goals, it is possible that we are having the same type of problem with GIMP. If this is the case here, we will 
have to take matters into our own hands, and intervene by adding our own custom work process steps to achieve the 
precise results that we know that we need for our Java 8 game development. Luckily this SVG Path data uses text data, 
inside of an XML “container,” so we should be able to add our own steps into this work process if we need to. In the 
end, you will find that developing a professional Java 8 game is not as easy an endeavor as playing the game itself!

Upon closer examination of the SVG data (the part after d=), the first thing that you will see is that the level of 
numeric precision that is being utilized is not necessary for this application. Since we are trying to match collision 
data point precision to pixel precision, we can use integer numbers, rather than the floating point numbers that are 
being utilized for this SVG data. Let’s take matters into our own hands and round the decimal portion of these floating 
point numbers up or down to the nearest whole integer number. Doing this will get rid of the floating point precision 
that is currently being utilized. This will be our second round of optimization (the first being hand drawing a polygon). 
Also, add a “Z” close path command at the very end of the data, as shown in Figure 16-10, to form a closed polygon.

As you can see in Figure 16-11, the first round of optimization will give you significantly less data, simplifying the 
collision data considerably. However the question is, if we put this SVG data back into GIMP 2.8, will your collision 
polygon still look exactly the same? Next let’s take a closer look at the work process that can answer this question. Save 
this file as sprite1svghandintegerxml.txt, so that we have the optimized data, shown in 16-11, when we need it.

Figure 16-10.  Open SVG Path data in a text editor and add a Z “close polygon” command to the end of the data



Chapter 16 ■ Collision Detection: Creating SVG Polygons for the Game Actors and Writing Code to Detect Collision

356

Refining SVG Path Collision Shapes in GIMP: Using Import Path
Let’s start over yet again, either by closing the previous project, and using the File ➤ Open to reopen the sprite1.png 
file, or by deleting the previous Selection Path in the Paths palette. As you can see in Figure 16-12, the Paths palette is 
empty, and we can right-click inside the empty area of the palette, and select the Import Path option, at the bottom.

Figure 16-11.  Remove the floating point values, by rounding them up or down, to the nearest integer values



Chapter 16 ■ Collision Detection: Creating SVG Polygons for the Game Actors and Writing Code to Detect Collision

357

Once you click on the Import Path menu item seen in Figure 16-12, you will get the Import Paths from SVG 
dialog. Select the “All files (*.*)” drop-down menu option, and then click on the sprite1svghandintegerxml.txt file and 
then click the Open button, as shown in Figure 16-13. This will open up the edited integer collision path data in GIMP.

Figure 16-12.  Right-click in empty Paths palette, select Import Path option



Chapter 16 ■ Collision Detection: Creating SVG Polygons for the Game Actors and Writing Code to Detect Collision

358

As you can see in Figure 16-14, this integer representation of the collision polygon SVG data is identical to a 
floating point representation, which was shown in Figure 16-9. The collision polygon is now closed, due to an addition 
of an SVG “Z” command, at the end of the SVG data string. We are getting our collision data to be more optimized!

Figure 16-13.  Open the sprite1svghandintegerxml.txt file

Figure 16-14.  Collision polygon is correct using integer data (left); deselect visibility in Layers Palette (right) to see SVG



Chapter 16 ■ Collision Detection: Creating SVG Polygons for the Game Actors and Writing Code to Detect Collision

359

Figure 16-15.  Remove duplicate point data for those points in the interior of the collision polygon, to further optimize

You may have noticed that there are three identical X,Y data point coordinate values for every point, except  
for the starting and ending point, for which we have data point pairs instead of data point triplets. If you recall  
back in Table 16-1, the only SVG command that uses triplet (three) X,Y data point pairs is the C, or Cubic Bezier  
(Spline) Curve. Sure enough, as you see in Figure 16-15, right under the M (moveto) opening SVG command is the  
C command. This explains why GIMP put three data points in each point in your polygon. The reason all the data 
point triplets have the same value is because we checked the polygon option in GIMP. This puts the spline curve 
control handles “away” or out of sight, directly on top of the X,Y data point. This defines zero curvature, or the square 
polygon structure seen in Figure 16-14.

Let’s export the SVG data with the triplets removed, which is shown in Figure 16-15, and see what the result looks 
like in GIMP, using our newfound Import Path work process, primarily for learning purposes, as we are not quite 
finished with the optimization work process.

Save the XML data shown in Figure 16-15 as sprite1svghandintegerxmloptimized.txt and then use the same 
Import Path work process, shown in Figures 16-12 and 6-13, to import this further optimized SVG data set into GIMP. 
As you can see in Figure 16-16, removing those cubic Bezier curve control handles from the data set also removes the 
polygonal nature of your collision polygon. So, we will need to do some further work on our SVG data to correct this.



Chapter 16 ■ Collision Detection: Creating SVG Polygons for the Game Actors and Writing Code to Detect Collision

360

The solution to turn these non-conforming (to the sprite outline) curves into the same collision polygon that we 
had before is quite simple, and you may have already guessed what it is. Since we want straight lines between our 
data points, we need to change this “C” to an “L.” This will turn a curveto SVG command into a lineto SVG command.

As you can see in Figure 16-17, our collision polygon data is almost where we expected it to be, containing 16 
data point pairs and a Z closing command to create a 16-sided collision polygon. We can remove the first duplicate 
data pair, reducing the data set to 15 data point pairs, which is what we “laid down” in GIMP. Next, let’s again use our 
Import Path work process in GIMP, and see if we get the same square polygon result that is shown in Figure 16-14.

Figure 16-16.  Import the latest SVG data with data triplets deleted into GIMP to see curve without tension handle data



Chapter 16 ■ Collision Detection: Creating SVG Polygons for the Game Actors and Writing Code to Detect Collision

361

The final SVG data set is shown in Figure 16-18, and you can copy and paste that data into your Java code as well 
as into an empty Notepad document and save it as its own file, named iBshape1svg.txt, so that we can do some math 
next, and see exactly how much data we have reduced our collision polygon from the automatic GIMP created collision 
polygon, to our hand-optimized custom collision polygon. If you import the collision data shown in Figure 16-18 in 
GIMP, you will get the desired collision polygon shown in Figure 16-14 with 15 data point pairs, instead of 100!

Figure 16-18.  To use optimized SVG Path data set, select the part after d= (including quotes), and paste into the code

Figure 16-17.  Change your SVG Path data from using the C (curve) data type to the L (line) data type representation



Chapter 16 ■ Collision Detection: Creating SVG Polygons for the Game Actors and Writing Code to Detect Collision

362

Ascertaining Collision Data Optimization: Calculating Data Footprint for SVG Data
Let’s figure out our data footprint optimization percentage. The SVG data culled from the file shown in Figure 16-18, 
and put into the format we will use in our Bagel() constructor method call, can be seen in the top part of Figure 16-19.

Mouse-over both iBshape1svg files, seen in Figures 16-19 and 16-20, and get the file size, or right-click on the file, 
and use a Properties dialog to find the number of bytes in the files. This should be 97 bytes and 1,605 bytes.

Figure 16-19.  Open folder in your workstation containing the SVG data, and mouse-over file to see the number of bytes

Figure 16-20.  Mouse-over the original Fuzzy Select Tool generated SVG data to get the data footprint, and do the math



Chapter 16 ■ Collision Detection: Creating SVG Polygons for the Game Actors and Writing Code to Detect Collision

363

To find out the data footprint optimization, simply divide these numbers into each other. If you divide 97 by 1605 
(97/1605=0.0604) you find that 97 is 6% of 1605, giving you a 94% reduction in data footprint. If you divide 1605 by 97 
(1605/97=16.546) it means you have reduced the file by 16.546 times, giving a 16.55X data footprint reduction. These 
are the inverse (1/x) of each other on the calculator, so you can look at it from either direction. So 1605 bytes is 1,655% 
more data than 97 bytes, or 97 bytes is 6% (or 94% less data) of 1605 bytes. Any way that you look at it, you have just 
saved your game a whole lot of memory, processing, and JAR file data footprint, and that is only for one of the sprites! 
Remember that optimizing your collision polygon to use more than 16 times less memory as well as 16 times less 
CPU processing overhead can be very significant to the smoothness of your game play once you implement collision 
detection in your game logic, which we are going to do after we take a look at CodeAndWeb’s PhysEd tool.

Creating and Optimizing Physics Data: Using PhysEd
I want to take a couple of pages to show you an alternative to GIMP that incorporates both physics and collision into a 
unified game development tool offering that is extremely affordable relative to all that it does for game development. 
PhysicsEditor, or PhysEd (or PE) is from CodeAndWeb GmbH, a company owned by another Apress author, Andreas 
Loew, who writes about iOS Game Development. Let’s take a quick look at how we would define our sprite’s collision 
polygon using this professional game development tool, and then we will be ready to get to collision detection coding. 
Install and launch PE using the green cube PE icon, and use the Import Sprite button shown in Figure 16-21 to open 
up your sprite1.png file, and use the zoom slider at the bottom of the screen to zoom in 600%, just like we did in GIMP. 

Figure 16-21.  Launch PhysicsEditor and use the Add Sprites button to open the sprite1.png file and zoom into it 600%



Chapter 16 ■ Collision Detection: Creating SVG Polygons for the Game Actors and Writing Code to Detect Collision

364

Next click on the tracer icon at the top of the sprite editing area (it is the middle icon, that looks like a magic 
wand), which will open the Tracer dialog, shown in Figure 16-22. In this dialog you can set the zoom, tracing 
algorithm tolerance, Trace Mode and Frame mode, and see the resulting vertex count as a result of these settings.

Figure 16-22.  Using the Tracer utility in PhysEd to set the Tolerance, Trace mode, Frame mode and Vertices

Once you have the visual result that you’re looking for, which is accomplished by tweaking the various Trace dialog 
settings, click on the OK button, and you will be taken back to the PhysicsEditor primary user interface window.

You can then refine your collision polygon structure data point by data point, by clicking and dragging these 
points with your mouse, as seen in Figure 16-23. If you compare the collision polygon in Figure 16-22 with the one in 
Figure 16-23, you can see I that have refined several of the data points to better conform to the outline of the sprite.



Chapter 16 ■ Collision Detection: Creating SVG Polygons for the Game Actors and Writing Code to Detect Collision

365

The closer you can get the collision polygon to the outline of the sprite, optimally you would want to put it right 
on top of the anti-aliasing that is on the pixel-edge between the sprite pixels and the transparency, or even right inside 
of the anti-aliasing if you want a more challenging game play. Ultimately, your collision polygons will have to be 
tweaked during your game development and game testing cycles, so that you get the most realistic result during your 
game play. If you’re developing for powerful platforms such as game consoles, you can add data points to the collision 
polygon, and if you’re developing for single or dual processor platforms, such as HTML5 phones or iTVs, use less data.

Replacing Dummy Collision Data: InvinciBagel.java
Next, let’s make some changes to your Java code in the InvinciBagel.java class, so that you are actually using this 
highly optimized collision polygon data that we just developed during this chapter. We will use the data set that has 
only 15 data points, so that we can see all of our collision polygon data in our NetBeans 8.0 code editing pane. As you 
can see in Figure 16-24, we will need to put the Bagel() constructor method call on three different lines: one for the 
iBagel = new Bagel(this) part of the instantiation, another for the collision polygon SVG data String object, and 
another for the xLocation, yLocation and Image object List. We will also be using our knowledge of SVG commands, 
which we learned from Table 16-1, to create the collision polygon data for our tileable brick elements. We will be using 
these brick “Prop” elements to develop our collision detection Java code later on in the chapter. We will create these 
simpler collision polygons using only our brains, by implementing numeric logic that relates to the resolution of the 
brick image, and where the corner pixel locations would be in X,Y coordinate space, in conjunction with the SVG path 
drawing commands that we learned about in Table 16-1. You are becoming quite a game development professional!

Figure 16-23.  Fine-tune your vertex placement for the collision polygon in the PhysicsEditor, then select your Exporter



Chapter 16 ■ Collision Detection: Creating SVG Polygons for the Game Actors and Writing Code to Detect Collision

366

We will also use the Java code commenting technique that we learned in Chapter 3 to remove (temporarily) the 
larger mossy rock props from the Scene, and get our code to that place where we have the InvinciBagel character, and 
several bricks, on the Stage. We can then use these basic objects to start our code development concerning using the 
.collide() method and how it will use the castDirector CastingDirector class (object) as a collision processing guide.

If you want to see the iPR1 and iPV1 objects temporarily removed from your .createGameActors() as well as your 
.addGameActorNodes() and .createCastingDirection() methods, you can see this Java code commenting in place 
in Figures 16-25 and 16-26. Next, let’s copy and paste the SVG collision polygon data set that you created earlier in the 
chapter. Open the iBshape1svg.txt file, shown in Figure 16-20, and select and copy the SVG data, using the Edit ➤ 
Copy menu sequence or CTRL-C keyboard shortcut. Be sure to including the quotation marks. Paste the data in your 
Bagel() method in the .createGameActors() method where the dummy SVG data used to be, as seen in Figure 16-24.

Figure 16-24.  Copy and paste your 15 data point collision polygon SVG data in place of dummy data in Bagel() 
method



Chapter 16 ■ Collision Detection: Creating SVG Polygons for the Game Actors and Writing Code to Detect Collision

367

Figure 16-25.  Create collision polygon SVG data for the iP0 fixed Actor props using a prop0.png image 32´72 resolution

Figure 16-26.  Comment out code related to iP1 object in addGameActorNodes() and createCastingDirection() methods



Chapter 16 ■ Collision Detection: Creating SVG Polygons for the Game Actors and Writing Code to Detect Collision

368

After you update your iBagel Bagel() constructor method, with accurate SVG data for your collision polygon, 
update the iP0 fixed Actor props, using the coordinates for the four corner pixels, to create a square collision polygon, 
as can be seen in Figure 16-25. The upper-left origin corner for any image is going to be 0,0, so the first SVG command 
is going to be M0,0, or “moveto origin.” Next, we want to draw a “lineto” using the L command, the lower-left corner, 
which would use the L0,32 command and data set, since this brick image is 32 pixels tall (Y), and 72 pixels wide (X).

The next data pair will not need to be prefaced by an L command, since any implementation of an SVG data 
parsing algorithm will assume the command used for the previous data pair, if none has been explicitly specified. Your 
lower-right corner of the brick image will use X,Y coordinate 72,32. The upper-right corner of this image would use X,Y 
coordinate 72,0. The Z command can be used to connect the upper-right corner of this prop image with the origin, so 
that we have collision detection on the top of the brick, in this particular use-case, using a closed polygon. As you can 
see in Figure 16-25, you can either use commas or spaces with SVG data, so both of these method calls should work:
 
iPR0 = new Prop("M0 0 L0 32 72 32 72 0 Z", 0, 148, iP0);
                                                          OR:
iPR0 = new Prop("M0,0 L0,32 72,32 72,0 Z", 0, 148, iP0);
 

The second example uses the same amount of space in NetBeans 8, and shows the data point pairs better. I am 
going to comment out all the code related to the iP1 Actor Prop object, as you can see in Figures 16-25 and 16-26, so 
that these larger Prop Actor objects are “disabled” for now, and do not appear on the Stage (and in the Scene), and will 
not interfere with our basic code development for implementing collision detection.

Now we are ready to use the Run ➤ Project work process, and make sure that the InvinciBagel character, as well 
as the four golden bricks that we are going to use for testing the collision detection code are in place and that the large 
mossy rock objects are no longer anywhere to be seen on the Stage. As you can see in Figure 16-27, we have the Scene 
set up for developing the basic collision detection code, and we can now focus on putting this Java 8 game code into 
place, before we start to work on implementing further Scene designs, game play design, game play logic, physics and 
scoring engine code, all of which we will be implementing in the next chapter 17.

Figure 16-27.  Use the Run ➤ Project work process and test the game



Chapter 16 ■ Collision Detection: Creating SVG Polygons for the Game Actors and Writing Code to Detect Collision

369

There are one or two basic changes that we’ll need to make in the InvinciBagel.java class, before we switch over 
into the Bagel.java class to implement collision detection. Since we are going to use the CastingDirector object in 
the collision code, we’ll have to remove the private access control keyword in the CastingDirector castDirector; 
declaration, as shown in Figure 16-28. We are trying to keep as many of the variables in our InvinciBagel class private 
as possible, and later make them package protected if we need to access them from another class, such as Bagel.java.

Figure 16-28.  Remove the private access control modifier keyword for CastingDirector castDirector object declaration

The next thing that we’ll want to do is to remove the iBagel object from the .addCurrentCast() method call 
parameter list in the createCastingDirection() method. We are doing this so that the InvinciBagel, who we are 
going to be checking for collision against the rest of the Actor objects, which are contained in the CURRENT_CAST 
List<Actor> object, does not check for collision against itself! The new shorter method call (minus the iBagel object) 
should look like the following Java code, which is shown highlighted at the bottom of Figure 16-29:
 
castDirector.addCurrentCast(iPR0, iPH0, iPV0, iPB0);
 



Chapter 16 ■ Collision Detection: Creating SVG Polygons for the Game Actors and Writing Code to Detect Collision

370

Now we are ready to start to put the methods into place in the Bagel.java class that will check the iBagel object 
for collision against the objects which are in the CURRENT_CAST List<Actor> object by checking the boundaries for 
each object’s Node (ImageView), and collision Shape (SVGPath). What we will be covering next can get somewhat 
complicated, but if you want to really create a legitimate game title, you need to be able to know when the game play 
elements intersect (called collide in game development terminology) with each other. Let’s dive into that Abyss now!

Bagel Class Collision Detection: .checkCollision( )
Right-click on the Bagel.java class in the Projects pane shown in Figure 16-29 and select the Open option and open up 
the Bagel.java tab in NetBeans 8. Go into the .update() method, and comment out the playAudioClip() method call, 
using two forward slashes at the beginning of the line of code. This will effectively turn off the audio for the KeyEvent 
(KeyCode) KeyPressed constant call-outs that we have in place. The reason I am doing this is because I am going to 
use this audio to “call out” a detected collision in the code that we’re about to create. Next, create a .checkCollision() 
method call at the end of the methods that are called inside of the .update() method. This method will call collision 
detection Java code, which we are about to put into place during the remainder of this chapter, on every pulse event 
that is processed. This is in keeping with the logical sequence of game code processing inside of the .update() method.

The new .update() method, which is seen in Figure 16-30, should look like the following Java method body:
 
public void update() {
    setXYLocation();
    setBoundaries();
    setImageState();
    moveInvinciBagel();
//  playAudioClip();
    checkCollision();
}
 

Figure 16-29.  Remove the iBagel object from the front of the list of objects passed into the .addCurrentCast() method



Chapter 16 ■ Collision Detection: Creating SVG Polygons for the Game Actors and Writing Code to Detect Collision

371

Create an empty public void checkCollision(){} method body, which will remove that wavy red error 
highlighting that you see in Figure 16-30, so that we can begin to put the code into place that will look through the 
CURRENT_CAST List<Actor> object, so that we can ascertain if any of the cast members intersect (have collided 
with) the primary InvinciBagel character on the game Stage.

Inside of this .checkCollision() method, we will need a Java for “counter” loop structure. This structure will be 
used to traverse through your CURRENT_CAST List<Actor> array of objects; in this case, these are Prop objects, to 
check for any collisions (intersections) with the InvinciBagel object. The first part of the for loop is the iterator variable 
declaration and initialization, in our case, int i=0; to declare the integer type iterator variable named “i,” initialized 
to a count value of zero.

The second part of the for loop is the iteration condition, which, in this case, is “iterate until you reach the 
end of the CURRENT_CAST List<Actor> object, or i<invinciBagel.castDirector.getCurrentCast().size() that 
represents the size of (and thus, the last item in) the List. The third part of the for loop statement condition is the 
amount to iterate by, and since we want to go over each object in the List<Actor> to check for collisions, we will use 
the familiar Java ++ operator on the “i” variable, or i++. Inside of the for loop {…} curly braces are the things that we 
want to perform during each iteration of the loop; in this case, this would be for each Prop Actor object that is in the 
List<Actor> object. This is a good construct to use to iterate any List objects from the first element to the last element.

Inside of the for loop, we are going to create a “local” Actor object reference variable, which we are going to set 
equal to the current element in the List(i), using the invinciBagel.castDirector.getCurrentCast().get(i) method 
chain. Java method chains are a cool way to create compact Java code structures, aren’t they? Once we have loaded 
that Actor object with the CURRENT_CAST(i) cast member object, we will then call the .collide() method, using the 
collide(object); Java statement. Remember that we installed this abstract .collide() method in our Hero superclass, so we 
are going to have to “Override” and code that method next, after we learn more about the Node and Shape classes, and a 
couple of their key methods and properties that can be used to determine intersections (collisions).
 
public void checkCollision() {
    for(int i=0; i<invinciBagel.castDirector.getCurrentCast().size(); i++) {
        Actor object = invinciBagel.castDirector.getCurrentCast().get(i);
        collide(object);
    }
}
 

Figure 16-30.  Comment out the playAudioClip() method call to turn off all audio and add a checkCollision() method call



Chapter 16 ■ Collision Detection: Creating SVG Polygons for the Game Actors and Writing Code to Detect Collision

372

This is the first (easy) part of determining collisions, in this first checkCollision() method, called from inside of 
the .update() method, by the pulse event manager. This iterates through the List<Actor> CURRENT_CAST and calls 
the collide(object); method, for each Actor object, to see if the InvinciBagel character has collided with it. As you 
can see in Figure 16-31, this Java code is error-free, and the next Java method body that we will code is the public  
boolean collide() method, which we declared for use previously inside of our abstract Hero class, in Chapter 8.

Figure 16-31.  Add a for loop, counting from 0 to number of objects in the CURRENT_CAST using .getCurrentCast().size()

Before we code the .collide() method, which is one of the more difficult method bodies that we’ll be coding during 
this entire book, we’ll need to look at some of the more complex topics relating to the javafx.scene package’s Node class, 
and its Bounds property, and .getBoundsInLocal() and .getBoundsInparent() method call. We will also be looking at 
the javafx.scene.shape package’s Shape class, and its .intersect(Shape shape1, Shape shape2) method call. We will 
be using all of these inside of our public boolean collide(Actor object) {...} method, so we will need to have this 
advanced knowledge in place first, before we write this complex and dense (but exciting) Java structure.

Locating a Node Object: Using the Bounds Object
The first thing that we need to look at regarding collision detection is the javafx.geometry package’s Bounds class. 
This public abstract class (and the objects that it creates) is utilized in the javafx.scene package’s Node class to hold 
the boundaries for the Node. As you may have surmised, this is one of the things that we will leverage to determine 
collision detection, in conjunction with our collision SVGPath Shape data, which we will get into after we take a look 
at how this Bounds object, and its related .getBoundsInLocal() and .getBoundsInParent() methods, can work for us.

This Bounds class was created from scratch, using the java.lang.Object master class, and contains X, Y, and Z 
coordinates, as well as width, height, and depth values. Since we will be working in 2D, we will be using the X and 
Y, as well as the width and height, values (properties) of the Bounds object. The Bounds class has a single direct 
known subclass, called BoundingBox. In case you are wondering, a “direct subclass” means the BoundingBox class 
declaration says BoundingBox extends Bounds, and a “known” class is one that has been officially added into the 
Java 8 JDK.



Chapter 16 ■ Collision Detection: Creating SVG Polygons for the Game Actors and Writing Code to Detect Collision

373

An example of an “unknown” class would be one of your own customized Bounds subclasses, if you were to write 
one, that is. The Java 8 class hierarchy for the javafx.geometry.Bounds class would look like the following:
 
java.lang.Object
  > javafx.geometry.Bounds
 

The Bounds class is used to create Bounds objects. These are used to describe the Bounds of a Node object, 
which as we know are JavaFX Scene Graph Node objects. An important characteristic of a Bounds object is that it can 
have a negative width, height, or depth. A negative value for any of the Bounds object attributes (properties) is used 
to indicate that the Bounds object is empty. We will be using this in our code later on to ascertain when a collision has 
not occurred. As I pointed out earlier in this book, sometimes you have to take the “opposite” approach to finding the 
solution, or the proper work process, for achieving your game design and programming objectives.

Using Node Local Bounds: The .getBoundsInLocal() Method
One of the important methods in the JavaFX Scene Graph Node class is the public final Bounds .getBoundsInLocal() 
method. This method is the getter method that retrieves the value of the boundsInLocal property. The boundsInLocal 
property is “read-only” and holds a rectangular Bounds object for the Node it is contained in. The data that it contains 
represents untransformed (original) local coordinate space for a Node. Untransformed means the Node coordinates 
prior to their being rotated, translated, or scaled, which represents the Node object’s original (default) coordinates.

For a Node class (object) that extends the Shape class (which our ImageView Node does not), the local Bounds 
will also include the space required to implement a non-zero Shape (or Path) stroke, as this might extend “outside” of 
the Shape geometry, which is being defined by these position and size attributes. A local Bounds object also includes 
any clipping path areas that you may have set, as well as the extents of any special effects that you may have set.

The boundsInLocal property will always have a non-null value, and it is important to note that this method does 
not take the Node object’s visibility into account, so the computation is based on the geometry of the Node only. The 
boundsInLocal property is automatically computed whenever the geometry of a Node object changes.

We will be using the .getBoundsInLocal() method on an intersection of our InvinciBagel SVGPath Shape data 
with our other Scene Actor Prop SVGPath collision Shape data, in order to ascertain if the width of the intersection is 
negative one, as -1 in a Bounds object, as we have learned, is empty, or no intersection, which signifies no collision. 
Next, let’s take a look at the boundsInParent property, which contains the boundsInLocal data plus transformations.

Using Node Parent Bounds: The .getBoundsInParent() Method
Another one of those important methods to understand in the JavaFX Scene Graph Node class is the public 
final Bounds .getBoundsInParent() method. This method is the getter method that retrieves the value of the 
boundsInParent property. The boundsInParent property is a “read-only” property that holds the rectangular Bounds 
object for the Node it is contained in. The data that it contains represents the transformed (modified) coordinate 
space for a Node. Transformed means the Node coordinates plus any transforms that have taken place since the Node 
object’s default, initial or original state. It is named “boundsInParent” because the Bounds object rectangle data will 
need to be relative to the Parent Node object’s coordinate system. This represents the ’visual’ bounds of the Node 
object, as in what you see on the screen, after the Node has been moved, rotated, scaled, skewed, and so on.

The boundsInParent property is calculated by taking a local Bounds, defined by the boundsInLocal property, 
and applying all of the transforms that have taken place, including any calls to .set() methods for the following Node 
properties: scaleX, scaleY, rotate, layoutX, layoutY, translateX, translateY, and transforms (the Java ObservableList). 
Just like the boundsInLocal property, this boundsInParent property will always contain a non-null value.



Chapter 16 ■ Collision Detection: Creating SVG Polygons for the Game Actors and Writing Code to Detect Collision

374

A resulting Bounds object will be contained inside of the coordinate space of a Node object’s Parent object, 
however, the Node object need not have a Parent (it can be the Scene Graph root of the Scene) in order to be able to 
calculate the boundsInParent attribute. Just like the .getBoundsInLocal() method, this method does not take the Node 
object’s visibility into account, so don’t make the mistake of thinking you can circumvent your collision detection 
code by “hiding” your Actor Node, which, in our case, is an ImageView Node subclass named spriteFrame.

Since it computes changes to the boundsInLocal property, it is logical that the boundsInParent property will be 
computed whenever the geometry of a Node changes, or when any transformations of that Node object occur. For 
this very reason it would be a mistake to compute any of these values in a Node based on an expression that depends 
upon this variable. For example, the X or Y variables of a Node object, or translateX, translateY shouldn’t be computed 
using this boundsInParent property for the purpose of positioning the Node, since prior positioning data is included 
in this property, and thus would create a circular reference (somewhat akin to the infamous infinite loop scenario).

Using Node Intersection: The .intersects(Bounds object) Method
Another important method in the JavaFX Scene Graph Node class where collision detection is concerned is the public 
boolean intersects(Bounds localBounds) method. This method will return a true value if the Bounds object that 
specifies the local coordinate space for the Node object that this method is being called “off of” intersects the Bounds 
object passed into the method using the parameter, which is the Bounds object of the Node that you are trying to 
determine intersection with. For instance, to determine if the ImageView Bounds that contains the InvinciBagel sprite 
intersects the ImageView Bounds that contains one of the Prop sprites, we would use the following Java code format:
 
iBagel.spriteFrame.getBoundsInParent().intersects(object.getSpriteFrame().getBoundsInParent());
 

It is important to note that just like the .getBoundsInLocal() and .getBoundsInParent() methods, this method 
also does not take the Node object’s visibility attribute into account. For this reason, an intersection test will be based 
on geometry for the Node objects in question only, and for our ImageView spriteFrame Node objects, which would 
be the geometry (dimensions) of their square (InvinciBagel) or rectangular (Prop) Image containers. The default 
behavior of the Node class intersects(Bounds localBounds) function is to check and see if local coordinates for a 
Bounds object that is passed into this method call intersects with the local Bounds coordinates of the Node that the 
.intersects() method call is being called “off of.” Next, let’s take a closer look at the Shape superclass, and its .intersect() 
method.

Using Shape Class Intersect: The .intersect( ) Method
Just like a Node class (object) has an intersection method called .intersects() that is used to determine when Node 
objects intersect, the Shape class also has an intersection method, which you can use for Shape object intersection. 
This method is called .intersect() (rather than intersects), so that these methods use different naming conventions. 
This was probably done so developers won’t be quite as confused between Node.intersects() and Shape.intersect() 
methods. We will be using both of these in our collision detection code later on in the chapter—first to detect when 
an ImageView Node overlaps another ImageView Node, and then to do a Boolean intersection operation between our 
SVG data collision polygons (SVGPath objects named spriteBounds within each Actor object).

The static method format for the Shape class’s .intersect() method takes two Shape objects in its parameter 
list, and this method returns a new Shape object. The new Shape object that is created represents an intersection of 
(between) two input shapes. As you can imagine, you can also use this method to do Boolean intersection generation 
for your vector artwork if you are using the Shape class and its subclasses for this purpose. The format for the method 
is static Shape intersect(Shape shape1, Shape shape2), and the way that we’re going to use it looks like this:
 
Shape shape = SVGPath.intersect(invinciBagel.iBagel.getSpriteBound(), object.getSpriteBound());
 



Chapter 16 ■ Collision Detection: Creating SVG Polygons for the Game Actors and Writing Code to Detect Collision

375

The reason that the Shape class’s .intersect() method works so well for our collision detection application is 
because we can later use a .getBoundsInLocal().getWidth() method chain, to determine if a collision has occurred, 
or rather, if it has not occurred by looking for a -1 empty value. We’ll call this method chain that looks for a -1 off of 
this new Shape object, which we will name intersection, in our .collide(object) method, using the following line of 
code:
 
if (intersection.getBoundsInLocal().getWidth() != -1) { collisionDetect = true; }
 

The way this .intersect() method works is that it only processes the geometric data that occupies your input 
shapes, which in our application is the spriteBound SVGPath object inside of our Actor objects. This is why we’re 
using an SVGPath Shape object (for maximum collision cage or polygon definition), purely for its geometric data 
values, and why we’ve installed this spriteBounds SVGPath Shape object container in our Actor object design, because 
we intend on using this geometric data for our collision detection, and not for vector illustration artwork (we are not 
stroking, or filling, the SVGPath, for instance, and please, no subtle jokes here folks, we’re learning game development 
right now).

What this means is that the geometric areas of the input Shape objects being considered by the algorithm in the 
.intersect() method is “math based” only. This means the algorithm is independent of the type of Shape (subclass) 
being processed, as well as independent of configuration for the Paint object being used for filling or stroking (please, 
again briefly resist the temptation to snicker one more time, for the sake of learning Java 8 game development).

Before the final intersection calculation, the areas of the input Shape objects are transformed to the Parent Node 
object’s coordinate space (think: boundsInParent). In this way, the resulting shape will only include those areas 
(mathematical geometric areas, more precisely) which were contained in the areas of the two input Shape objects 
passed into the method using the parameter list. Therefore, if there’s any data (something other than a -1 empty data 
value) in the resulting Shape object, which we will be calling intersection in the code we will be writing next, there has 
been some level of intersection, and even a small area of intersection (overlap) needs to signal a detected collision.

Now we are ready to use the technical Java 8 class and method information that we have learned over the past 
several pages of the chapter to create the core collision detection logic using only around a dozen lines of Java code. 
We’ll add another dozen lines of code before the end of the chapter, to process the collision for our game play.

Overriding the Abstract Hero Class: .collide( ) Method
Finally the time has come to override and implement the public boolean collide (Actor object) method that we 
installed in our abstract Hero class back in Chapter 8. This is a critical method to our game play, as it determines when 
our primary InvinciBagel character comes into contact with other elements in the game. The result of this contact is 
scoring, as well as things changing visually on the game screen, so it becomes pivotal to everything that we will be 
doing in the next chapter to implement game play elements into the InvinciBagel game. The first thing we want to do 
is to install a Boolean “flag” variable called collisionDetect, and set it equal to a false value (collision not detected) 
at the top of the .collide() method. The Java code for this statement setting up the collisionDetect flag should look like 
the following:
 
boolean collisionDetect = false;
 

The next step in determining if a collision has occurred is to use a Java conditional if() statement. This allows 
us to test if the ImageView Node objects that contain the sprite Image assets have intersected by using the Node 
class .intersects() method call in conjunction with the .getBoundsInParent() method call off of each spriteFrame 
ImageView Node object. The first spriteFrame.getBoundsInParent() method call is the one that we method chain 
the .intersects() method call off of, since what we are trying to do is to ascertain collision with our primary game 
character. Since we want to reference the invinciBagel object (InvinciBagel class) and its iBagel Actor object, this 
construct would take the form of an invinciBagel.iBagel.spriteFrame.getBoundsInParent().intersects() method 
call structure. Since the Bounds object from the Actor object that we are testing for collision needs to be inside of the 
.intersects(Bounds localBounds) method call, we need to use the .getSpriteFrame() method call we developed in 



Chapter 16 ■ Collision Detection: Creating SVG Polygons for the Game Actors and Writing Code to Detect Collision

376

Chapter 8. Off of the Actor object we pass into the .collide() method we will method chain the .getBoundsInParent() 
method call, resulting in the object.getSpriteFrame().getBoundsInParent() structure, which is then placed on the 
inside of an .intersect() method call. The complete conditional if() construct looks like this:
 
if( invinciBagel.iBagel.spriteFrame.getBoundsInParent().intersects(
    object.getSpriteFrame().getBoundsInParent() ) ){second level of collision detection in here}
 

This first level of collision detection code will check for the intersection of the iBagel spriteFrame ImageView 
Node with the spriteFrame ImageView Node object that is contained in each Actor object that will be passed into this 
.collide(Actor object) method call that we are coding currently.

This part of the code will check for a “top level” ImageView Node proximity (collision) before we call a more 
“expensive” Shape intersection algorithm, which we are going to implement next, in order to confirm more definitive 
collision occurrence (SVGPath collision polygon intersection). Remember that the code we’re putting into place 
inside of this .collide() method will be processed for each iteration of the for loop (for each cast member) that is 
calling this collide(Actor object) method.

The Java code inside of this first conditional if() statement creates a Shape object, named intersection, and sets 
it equal to the result of an SVGPath.intersect() method call that references the iBagel SVGPath Shape object and an 
SVGPath Shape object passed into the collide(Actor object) method. Both objects call a .getSpriteBound() method, 
which we created back in Chapter 8, to access the SVGPath Shape objects needed for the .intersect(Shape1, Shape2) 
method call format. Your Java code, formatted using two lines of code, for readability, should look like the following:
 
Shape intersection = SVGPath.intersect( invinciBagel.iBagel.getSpriteBound(),
                                                     object.getSpriteBound() );
 

After we have this intersection data, we will use another conditional if() statement to see if that intersection 
Shape object contains any collision data, and if it does (that is, if it doesn’t contain a -1 value) a collision has occurred.

The second nested if() statement will utilize the .getBoundsInLocal().getWidth() method chain, called off of 
the intersection Shape object, and will check to see if it is empty (returns a -1 value), or if a collision has occurred. The 
collision detection will occur if the intersection Shape object’s Bounds object contains any data value other than -1. In 
the body of the if() statement, collisionDetect Boolean flag is set to true of any data is present ( signified by != -1). The 
Java code for the conditional if() statement should look like the following:
 
if(intersection.getBoundsInLocal().getWidth() != -1) { collisionDetect = true; }
 

To test the collision code, I put the invinciBagel.playiSound0() method call inside of the if(collisionDetect){}  
conditional statement. This is why I commented out that .playAudioClip() method call in the .update() method, so 
that the only thing that I will hear during a collision is the audio playback. This is a quick, easy, and effective way 
to test the collision code, at least for now. Since this is the public boolean collide(Actor object) method, I am also 
going to put a return true; line of code at the end of the if() body, that returns a true value from the method call. 
I am placing the statement inside of this conditional if() construct, so that if needed, we can use this true Boolean 
value returned from the .collide() method call in the .update() method for other processing, if we want to. The 
very nature of this .collide() method is to detect if a collision has occurred and then return a value, so we could do 
further processing inside of the .collide() method, or more efficiently do this on-collision processing inside of the 
.checkCollision() method, using an if(collide(object)=true){invinciBagel.playiSound0();} construct, instead 



Chapter 16 ■ Collision Detection: Creating SVG Polygons for the Game Actors and Writing Code to Detect Collision

377

of the way that we are doing this here with the statement processing inside of the .collide() method. The reason I am 
doing it this way, at least for now, is because I am testing this .collide() method, so I’m putting the statements that 
allow me to test the .collide() method inside of that .collide() method since that is where I’m working within the IDE 
right now. The Java code looks like this:
 
    if(collisionDetect) {
        invinciBagel.playiSound0();
        return true;
    }
    return false;
 

The complete .collide(Actor object) method structure, before we get into manipulating the CastingDirector class 
and object List<Actor> objects, should look like the following, which can also be seen in Figure 16-32:
 
@Override
public boolean collide(Actor object) {
    boolean collisionDetect = false;
    if ( invinciBagel.iBagel.spriteFrame.getBoundsInParent().intersects(
         object.getSpriteFrame().getBoundsInParent() ) ) {
             Shape intersection =
             SVGPath.intersect(invinciBagel.iBagel.getSpriteBound(), object.getSpriteBound());
             if (intersection.getBoundsInLocal().getWidth() != -1) {
                 collisionDetect = true;
             }
    }
    if(collisionDetect) {
        invinciBagel.playiSound0();
        return true;
    }
    return false;
}
 



Chapter 16 ■ Collision Detection: Creating SVG Polygons for the Game Actors and Writing Code to Detect Collision

378

Now we’re ready to add the Java code that manages the CastingDirector object, to remove the Actor object.

If Collision Detected: Manipulating the CastingDirector Object
Add a line of code under the .playiSound0() method call, accessing the CastingDirector object, invinciBagel.
castDirector. Next type a period key, to access a method helper pop-up, seen in Figure 16-33, and select 
.addToRemovedActors().

Figure 16-32.  Creating the basic collision detection code and testing it using the invinciBagel.playiSound0() method call



Chapter 16 ■ Collision Detection: Creating SVG Polygons for the Game Actors and Writing Code to Detect Collision

379

After you double-click on the .addToRemoveActors(Actor… actors) option in this pop-up helper dialog, you 
will need to pass the Actor object, aptly named object, into the method call using the parameter list area inside of the 
parentheses, as shown highlighted at the bottom of Figure 16-34. This will add this Actor object that was just involved 
in a collision (luckily, no one was hurt) to the REMOVED_ACTORS HashSet<Actor> object.

Figure 16-33.  Add a line of code under the .playiSound0() method call, and type invinciBagel.castDirector, and a 
period

Figure 16-34.  Add Actor object that was passed into the .collide() method to parameter list of addToRemovedActors()



Chapter 16 ■ Collision Detection: Creating SVG Polygons for the Game Actors and Writing Code to Detect Collision

380

Not only do we need to remove this collided Actor object from the game cast using the CastingDirector class 
(object), we also need to remove the ImageView Node from the Scene Graph root as well. Let’s look at how to do that 
next, and then we will take a look at how to remove the Actor object from the CURRENT_CAST List<Actor> after that.

Removing Actors from the Scene Graph: .getChildren().remove()
Now that we have effectively removed the Actor that the InvinciBagel collided with from the cast by adding it to the 
REMOVED_ACTORS HashSet<Actor> object, the next step is to remove it from the JavaFX Scene Graph, which we 
are currently using the StackPane UI layout container class for. If you remember earlier in the book, we learned that 
the StackPane class can be used as a layer-based layout container, and arranges its contents using a centered XY grid. 
We will be learning how to use a Group object (class) as our Scene Graph root later on in the chapter, to implement 
the more typical upper-left corner 0,0 XY location indexing scheme and as an optimization, as we are not specifically 
using any of the StackPane class properties or methods, and because a Group class is a more basic class that is higher 
up in the Node superclass hierarchy. In this way, you will have experienced using both center screen 0,0 location 
referencing (StackPane), as well as the traditional upper-left 0,0 screen location referencing (a Group class as a Scene 
Graph root).

Removing a Node object from the Scene Graph root is done using a .getChildren().remove() method chain, in 
the exact opposite fashion of the .getChildren.add() method call found in the .addGameActorNodes() method. Add a 
line of code, and type invinciBagel.root and a period, as shown in Figure 16-35, to open the method helper pop-up.

Figure 16-35.  Add a line of code under an .addToRemovedActors() method call and type invinciBagel.root and a 
period

Since we are doing this ImageView Node removal from the Bagel.java class, we will use Java dot notation to 
preface the root object with the invinciBagel object reference before we add the .getChildren() method call, using 
the following invinciBagel.root.getChildren() code shown in Figure 16-35. Double-click on the remove(Object o) 
selection and add the object you passed into the .collide() method into the .remove() method, as seen in Figure 16-36. 
This will create the final invinciBagel.root.getChildren().remove(object); Java programming statement.



Chapter 16 ■ Collision Detection: Creating SVG Polygons for the Game Actors and Writing Code to Detect Collision

381

Mouse-over the warning highlighting, and you will see that NetBeans sees that we are passing our custom Actor 
object to the .getChildren().remove() method chain, instead of the ImageView Node object. The error message also 
tells us that the private StackPane root; declaration in our InvinciBagel.java class will not allow us to access this 
object, until we remove this private access control modifier keyword. Let’s fix the most serious (error) problem first, 
and then fix the “Suspicious method call to java.util.Collection.remove” after that by using an 
 object.getSpriteFrame() method call, inside of the current .remove() method call.

Click on the InvinciBagel.java editing tab in NetBeans and remove the private keyword from the front of the 
StackPane root; object declaration, as is shown highlighted in Figure 16-37.

Figure 16-36.  Investigate red error highlight under the Scene Graph root StackPane object reference in the method call



Chapter 16 ■ Collision Detection: Creating SVG Polygons for the Game Actors and Writing Code to Detect Collision

382

Once you make this modification, you will see the wavy red error highlighting in your current programming 
statement in the Bagel.java disappear, as shown in Figure 16-38, and all we have to worry about now is removing the 
warning highlighting that pertains to passing an Actor object to be removed from the Scene Graph rather than a Node 
object (a spriteFrame ImageView) that it is expecting. This is because the JavaFX Scene Graph manages Node classes, 
as well as Node subclasses such as ImageView, and does not accept non-Node-subclasses, such as the Actor class that 
we designed in Chapter 8, and have implemented during subsequent chapters. Our Actor class (object) does contain a 
Node object, an ImageView Node subclass, inside of it, so we have to include a reference to this object, using Java dot 
notation, so the .remove() method can effectively look “inside” of our Actor object to reach (access) this Node object.

Figure 16-37.  Remove the private access control modifier keyword from in front of the StackPane root; Java statement



Chapter 16 ■ Collision Detection: Creating SVG Polygons for the Game Actors and Writing Code to Detect Collision

383

Place your cursor after the object reference that is inside of the .remove() method call that we are working on 
implementing, and type a period. This will bring up the attribute (property) and method helper pop-up, shown in 
Figure 16-38. Double-click on the getSpriteFrame() method, which we created back in Chapter 8, to call it off of the 
current Actor object which has been passed into the .collide() method. This will pass an ImageView Node object over 
inside of the .remove() method call, as expected, and the warning highlighting will also disappear, leaving clean code.

As you can see in Figure 16-39, all of your Java code is error-free, and you have now played a sound, added this Actor 
object to the HashSet<Actor> REMOVED_ACTORS data set, and removed the spriteFrame ImageView Node object for 
this Actor from the JavaFX Scene Graph root (currently a StackPane layout container). We are now ready to remove this 
Actor object from the CURRENT_CAST List<Actor> object, by using a .resetRemovedActors() method call.

Figure 16-38.  Add a period after object in the .remove() method to open method helper and select .getSpriteFrame()



Chapter 16 ■ Collision Detection: Creating SVG Polygons for the Game Actors and Writing Code to Detect Collision

384

After we update the CURRENT_CAST List, we will have done our basic collision management coding, and we can 
take a look at how we can optimize the .checkCollision() and .collide() methods to work together more efficiently.

Reset the Removed Actor List: .resetRemovedActors() Method
The final thing that we need to do in the series of programming statements that need to happen when a collision 
occurs is to reset the REMOVED_ACTORS HashSet<Actor> object. As you recall from Chapter 10, this method 
removes the removed actors from the CURRENT_CAST List<Actor> object, so that the Actor object is completely 
removed from the game entirely. Besides the .playiSound0() method call we are using to test this method using our 
ears, this is one of the simplest Java programming statements that we will have to code, and should look like the 
following Java code: 
 
invinciBagel.castDirector.resetRemovedActors();
 

Figure 16-39.  Remove the currently collided with Actor object ImageView Node from the Scene Graph using .remove()



Chapter 16 ■ Collision Detection: Creating SVG Polygons for the Game Actors and Writing Code to Detect Collision

385

If you use a Run ➤ Project work process, and test your game code now, you will not only hear the audio, you will 
also see the Prop objects disappear upon collision with the InvinciBagel object. I’m going to leave the audio in this 
code for now, so you can test to see if these Actor objects are really gone by have the InvinciBagel run (or fly) over the 
area where the Prop object was to make sure (using your ears) that it’s really gone. Next, we’ll optimize the code even 
more, by implementing the if(collide(object)) approach that I mentioned earlier, having the .collide() method simply 
return a true (collision detected) or false (no collision detected) value, as a properly behaved Boolean method should.

Optimizing Collision Detection Processing: if(collide(object))
To optimize the collision detection process, we’ll move code that is executed on collision up to the .checkCollision() 
method, inside of an if(collide(object)){} conditional if block of Java code. This allows us to eliminate a Boolean 
collisionDetect variable from the collide() method, making it much more streamlined. All we are doing now in the 
.collide() method is pass the return true; statement back up to the calling entity, in this case, the .checkCollision() 
method, if a collision is detected. This also allows us to completely eliminate the if(collisionDetect) structure as well.

Before this optimization, we had 6 lines of code in the .checkCollision() method, and 19 lines of code in the 
.collide() method. After the optimization, we have 5 less lines of Java code, with 10 lines of code in each method. The 
new Java structures for these methods are error-free, as shown in Figure 16-41, and look like the following Java code:
 
public void checkCollision() {
    for(int i=0; i<invinciBagel.castDirector.getCurrentCast().size(); i++) {
        Actor object = invinciBagel.castDirector.getCurrentCast().get(i);
        If (collide(object)) {
            invinciBagel.playiSound0();
            invinciBagel.castDirector.addToRemovedActors(object);
            invinciBagel.root.getChildren().remove(object.getSpriteFrame());
            invinciBagel.castDirector.resetRemovedActors();
        }
    }

Figure 16-40.  The finished .collide() method is error-free and only 19 lines of code, and is ready for further optimization



Chapter 16 ■ Collision Detection: Creating SVG Polygons for the Game Actors and Writing Code to Detect Collision

386

}
@Override
public boolean collide(Actor object) {
    if (invinciBagel.iBagel.spriteFrame.getBoundsInParent().intersects(
        object.getSpriteFrame().getBoundsInParent() ) ) {
            Shape intersection =
            SVGPath.intersect(invinciBagel.iBagel.getSpriteBound(), object.getSpriteBound());
            if (intersection.getBoundsInLocal().getWidth() != -1) {
                 return true;
            }
    }
    return false;
} 

Figure 16-41.  Optimizing the interaction between the collide() method and the checkCollision() method

Use the Run ➤ Project work process to make sure the code works as it did before the method optimizations.

Optimizing the Scene Graph: Using the Group Class
Since we’re not really using the StackPane for image layer compositing or UI design, other than the splashscreen use, 
let’s add another optimization, and use a Group class (object) for our game, since it is further up the class hierarchy, 
and closer to the Node superclass than the more specialized StackPane class (object) is. Rather than using a class that 
uses the more complex Object ➤ Node ➤ Parent ➤ Region ➤ Pane ➤ StackPane hierarchy, we will use the much 
shorter and simpler Object ➤ Node ➤ Parent ➤ Group hierarchy. The significance of this optimization is that using a 
Group root Node uses a lot less code (properties and methods) in system memory. Since we are not specifically using 
any of the highly specialized StackPane properties or methods, we can perform a major optimization by using a Group 
class. A Group object (class) uses fixed object positioning, so we will have to redo the code for our HBox and Actor 



Chapter 16 ■ Collision Detection: Creating SVG Polygons for the Game Actors and Writing Code to Detect Collision

387

After you make these changes and Run ➤ Project, you’ll see the result shown on the left half of Figure 16-43. The 
game is now using an upper-left 0,0 origin, so we’ll have to modify the rest of the existing code. Let’s do that now.

objects, but only after we use the Run ➤ Project work process to see exactly how using a Group differs from using a 
StackPane. After all, it’s all about learning how these classes work! The Java code for changing a StackPane object’s 
import, declaration, and instantiation into a Group object should look like the following Java code, which is also shown 
in Figure 16-42:
 
import javafx.scene.Group;                         // replaced StackPane import with Group
public class InvinciBagel extends Application {    // all other object declarations omitted
    Group root;
    public void start(Stage primaryStage) {        // all other object instantiations omitted
        root = new Group(); 

Figure 16-42.  Replace the StackPane UI container with the Group (Node subclass) import, declaration and 
instantiation



Chapter 16 ■ Collision Detection: Creating SVG Polygons for the Game Actors and Writing Code to Detect Collision

388

Replace the 0,0 XY location in the iBagel instantiation call to the Bagel() class constructor with WIDTH/2 and 
HEIGHT/2 respectively. This uses screen size constants and calculation code inside of a constructor method call, 
which will place the iBagel at the center of the screen. Add some different numbers in the Prop object instantiations as 
well, to place these tiles at different areas of the screen so we can develop some scoring code next as the InvinciBagel 
picks them up. Finally, replace the .setAlignment(Pos.BOTTOM_LEFT); method call with a .setLayoutY(365); 
method call to implement fixed positioning of the HBox UI Button elements back where they were before when we 
were using StackPane. If you use the Run ➤ Project work process, you will see the result shown on the right half of 
Figure 16-43.

Figure 16-43.  Showing the Group Scene Graph result (left) and corrective modification to HBox, iBagel and Prop (right)

Figure 16-44.  Use .setLayoutY() method to position HBox, WIDTH/2 and HEIGHT/2 to position iBagel, and new Prop X,Y



Chapter 16 ■ Collision Detection: Creating SVG Polygons for the Game Actors and Writing Code to Detect Collision

389

When you test your collision code, you will find that you cannot get to some of these tiles! Let’s fix this next.
Go into the Bagel.java class and modify the screen boundary constants at the top of the class so that the left and 

the top boundaries use the 0,0 origin values, since the Group class uses the upper-left corner of your screen as its 
point of reference, rather than the center of the screen, as the StackPane does. To calculate the rightBoundary value, 
you would take the WIDTH of the screen and subtract the width of the sprite using the SPRITE_PIXELS_X constant. 
A similar approach would be used for the bottomBoundary value, which will take the HEIGHT of the screen and 
subtract the height of the sprite using the SPRITE_PIXELS_Y constant. As you can see in Figure 16-45, we don’t have 
to change the .setBoundaries() method at all, thanks to the modular, logical and organized way that we have set up 
our code.

Figure 16-45.  Update the Bagel.java class with new Boundary values for the right, left, bottom and top Boundary value

Before we finish up with the chapter, let’s add a scoring engine framework to our game, so that this collision 
detection routine calls a scoringEngine method, in addition to playing a sound and removing the Actor from the game.

Creating a Scoring Engine Method: .scoringEngine( )
Before we finish up with this chapter, let’s put a framework in place for the scoring engine, so we can focus the entire 
next chapter on game play. Create a private void scoringEngine(Actor object){} empty method right after the 
checkCollision() method, and add a scoringEngine(object); method call at the end of the if(collide(object)) 
conditional if() structure, inside of the checkCollision() method. As you can see in Figure 16-46, you will get one wavy 
gray warning highlight under the Actor object reference inside of the .scoringEngine() method declaration. This is 
because the object reference has not been implemented inside of the method body. 



Chapter 16 ■ Collision Detection: Creating SVG Polygons for the Game Actors and Writing Code to Detect Collision

390

We’ll do this in the next chapter, so we don’t have to worry about that warning from NetBeans, and we have our 
scoring engine infrastructure in place.

You’ve accomplished a lot in this chapter, regarding collision detection and your scoring engine. Good Job!

Summary
In this sixteenth chapter, we started in on some of the more advanced topics that we will be covering during the last 
couple of chapters in this book. Collision detection is one of the foundational topics of game development, whether 
this is using Java 8, or any other platform, for that matter. In this chapter we learned about the SVG data format 
specification, so that we can leverage the JavaFX SVGPath class, which allows us to access custom path shapes, often 
called polygons, if they are closed, and which collision shapes, or collision polygons, usually are. We looked at the 
seven primary commands within the SVG specification, all of which can be used in absolute or relative mode.

Next we took a detailed look at how to get GIMP 2.8 to create custom collision shape SVG data strings for us using 
a fully automated process that uses only GIMP tools (algorithms) to allow us to simply click on transparent areas and 
have GIMP generate the selection set. We converted the selection set into a collision path, and then exported the path 
as SVG data. This work process allows us to generate complex collision polygons with transparent (alpha channel 
data) areas within any of the game asset digital images.

Figure 16-46.  Add a private void scoringEngine(Actor object) empty method, and call if inside .checkCollision() 
method



Chapter 16 ■ Collision Detection: Creating SVG Polygons for the Game Actors and Writing Code to Detect Collision

391

This auto-generated collision data is very “heavy,” so we looked at a more involved work process, allowing us to 
create collision polygons by hand using fewer data point pairs. This process involved using the Path Tool in GIMP to 
create a collision polygon by hand, which gave us far more control over generating as few data points as possible. We 
also looked at the CodeAndWeb PhysicsEditor software, which can be used across all game development platforms.

In the next chapter, we are going take a look at how to implement enhanced game play elements into a game, 
including the scoring engine, adversaries, treasure, an auto-attack engine, and physics simulation.



393

Chapter 17

Enhancing Game Play: Creating  
a Scoring Engine, Adding Treasure 
and an Enemy Auto-Attack Engine

Now that we’ve implemented collision detection for our game, as well as putting the foundation in place for a scoring 
engine, let’s finish coding the scoring engine that is called from the .checkCollisions() method, and then add some 
more game play elements to take advantage of this scoring engine, as well as to make the game play more interesting. 
To implement our scoring engine display, we will create a gameScore integer variable and scoreText Text object in 
our InvinciBagel.java class. We will also create a scoreFont Font object, and use it to style the scoreText Text object, to 
make it stand out better. We will also learn how to use the Java instanceof evaluator in the conditional if() statement 
in the .scoringEngine() method that we will be creating, and use this to determine what type of Actor object the 
InvinciBagel has collided with. Of course, we will then increment our gameScore variable accordingly.

We’ll also create a Treasure.java class, so that we can add valuable bounty to the game for our InvinciBagel 
character to pick up, while he is evading constant Enemy attacks from the InvinciBeagle, or iBeagle for short, who can 
shoot both deadly bullets (iBullets) as well as Cream Cheese Balls (iCheese) Projectile objects. We will also be creating 
these Enemy.java and Projectile.java classes during this chapter, so we will be using all of the knowledge that you’ve 
learned during this book to create some very advanced Java 8 classes and methods during the course of this chapter.

Once we have the Enemy and Projectile classes in place, the real challenge comes in creating an auto-attack 
engine, so the game itself plays against the player, so that we can create a single-player version of this game. We will 
do this by wiring the Enemy.java class into the GamePlayLoop.java class, by calling the Enemy class .update() method 
from the GamePlayLoop class .handle() method, which will allow us to harness the JavaFX pulse timing engine for 
the iBeagle Enemy object. Once this is done, we can code the Enemy object, and give it a life of its own, having it 
appear randomly on the screen, and attack the InvinciBagel by shooting deadly bullets, or scrumptious cream  
cheese balls.

We will build this auto-attack engine logically and gradually, first by making the iBeagle Enemy appear on either 
side of the screen, and flip around to face the iBagel character correctly. Then we will add programming logic that will 
animate the iBeagle onto the screen, and then back off of the screen. Then we will make him shoot a bullet or cream 
cheese ball, and then we will add some timing code in order to make his movement far more realistic.

After that, we will add randomization to the appearance, locations, and movement, so that the game player 
cannot tell where an iBeagle attack is going to come from. After that we will add physics simulation so that the bullets 
and cream cheese balls are affected by drag and gravity, all of which will make the game play more and more realistic, 
as the chapter progresses on, through the end of the book!

I hope that you have enjoyed your learning experience during the book, as much as I have enjoyed writing it for 
you. Now let’s get into making our game play more and more challenging and professional, as we learn even more 
about Java 8 and JavaFX classes and programming techniques.



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

394

Creating the Score UI Design: Text and Font Objects
The first thing that we need to do to implement a display for our scoring engine is to open the InvinciBagel.java tab in 
NetBeans, and add an integer variable to hold a numeric score accumulation, and a Text UI element object, to display 
the score on the bottom of the screen, alongside our other UI elements. The Text class in JavaFX is used to work with 
text elements in your games, and even has its own javafx.scene.text package, because text is an important element in 
applications. The integer data type allows your game players to score well into the billions of points, so this should be 
adequate for holding any magnitude of numeric score your game player can rack up. We will place these Java variable 
and object declarations, which can be seen highlighted in Figure 17-1, at the very top of the InvinciBagel.java class, 
right after the WIDTH and HEIGHT constant declarations, and the Java code should look like the following:
 
int gameScore = 0;
Text scoreText; 

Figure 17-1.  Add an integer variable named gameScore and initialize it to 0, then add a Text object named scoreText

Mouse-over the wavy red error highlighting, and click next to the line of code containing this error, to select it 
(which is shown using a light blue color). Next, use an Alt-Enter work process to bring up the error resolution helper 
pop-up, shown at the bottom of Figure 17-1, and double-click on the “Add import for javafx.scene.text.Text” option to 
have NetBeans write this Text class import statement for you.

Now we are ready to open the .createSplashScreenNodes() method, and instantiate this Text object named 
scoreText, using a Java new keyword and the Text() constructor method. After you do this, you can call the .setText() 
method, and reference the gameScore integer, using the String.valueOf() method, as well as positioning it in your UI 
layout design, using the .setLayoutX() and .setLayoutX() methods, using the following Java code shown in Figure 17-2:
 
scoreText = new Text();
scoreText.setText(String.valueOf(gameScore));
scoreText.setLayoutY(365);
scoreText.setLayoutX(565);
 



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

395

For now, we are going to use the X,Y position value of 365,565, as you can see in Figure 17-2. To be able to style 
this Text object, we will need to declare a private Font object, named scoreFont, as seen in Figure 17-3. Use the  
Alt-Enter work process again on the red error highlight, and select the “Add import for javafx.scene.text.Font” option.

Figure 17-2.  Instantiate a scoreText object using a Java new keyword and call the .setText() and .setLayout() methods

Figure 17-3.  Add a private Font scoreFont declaration and use Alt-Enter and select “Add import javafx.scene.text.Font”



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

396

Before we can use this scoreFont Font object to style the scoreText Text object, we will need to add this scoreText 
Text Node object to the JavaFX Scene Graph by using the root.getChildren().add(scoreText); Java statement, 
which is shown highlighted in Figure 17-4. If you forget to do this, you will see only white on your game screen after 
you click the PLAY GAME Button!

Figure 17-4.  Add the scoreText Text Node object to the JavaFX Scene Graph, using a .getChildren().add() method chain

Figure 17-5.  Instantiate scoreFont object with a Java new keyword and Font(String fontName, int fontSize) constructor

The next step, now that we can see the Text object in the Scene, is to instantiate the scoreFont Font object using 
the Java new keyword and a Font(String fontName, int fontSize) constructor method call. The Java statement to 
accomplish this is shown highlighted in Figure 17-5, and should look like the following:
 
scoreFont = new Font("Verdana", 20);
 



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

397

The next step in the work process is to “wire” the scoreText Text object into the scoreFont Font object using the 
.setFont() method, which is called off of the scoreText object and sets the Text object to utilize the scoreFont Font 
object using the following code, which is shown in the bottom part of Figure 17-5. You can also use a .setFill() method 
called off of the scoreText Text object to set the color of the Text object; for now, we will use a Color.BLACK constant.
 
scoreText.setFont(scoreFont);
scoreText.setFill(Color.BLACK);
 

Now we can test the scoreText Text object placement, and refine our X,Y screen location values, so that the score 
is right next to the HBox UI Button bank. I found that I had to move the Y location down twenty pixels to a pixel 
location of 385, while I had to move the X location five pixels to the right, to a pixel location of 445, as is shown in 
Figure 17-6, in the left half of the screen shot, in the bottom right of the InvinciBagel game, next to the Legal Button.

Figure 17-6.  Test the scoreText and scoreFont objects using the Run ➤ Project work process to refine their placement

We will be adding a Text object label that says “SCORE:” in the next section of the chapter to label our score for 
the player. The result of this second round of coding is shown in the right half of Figure 17-6, at the bottom right.

Creating a SCORE Label: Adding the Second Text Object
Instead of just having a number on the right side of the UI Button bank (HBox), let’s add a Text label that says SCORE: 
to the front of the scoreText Text object. We will create a scoreLabel Text object and use the same Font object that 
we created in the previous section to style that Text object. I am going to change the numeric part of the score text to 
be blue, using the scoreText.setFill(Color.BLUE); Java statement, and make the SCORE: label black, using the 
following Java code, which can also be seen in Figure 17-7:
 
scoreText.setFill(Color.BLUE);
scoreLabel = new Text();
scoreLabel.setText("SCORE:");
scoreLabel.setLayoutY(385);
scoreLabel.setLayoutX(445);
scoreLabel.setFont(scoreFont);
scoreLabel.setFill(Color.BLACK);
 



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

398

As you can see in Figure 17-8, you need to remember to add this second scoreLabel Text Node to the Scene 
Graph root object, which used to be a StackPane, but which is now a Group object. This is done using a method chain, 
that you should be getting quite familiar with by now: root.getChildren().add(scoreLabel); and notice that the 
addNodesToStackPane() method is beginning to see more use now that we are adding more UI elements to the game. 
Even though the gameScore variable will be updated dynamically during game play, these Text objects will be static in 
nature, since they are declared, instantiated, configured, and positioned at start-up, just like your other UI elements.

Figure 17-7.  Add the scoreLabel object instantiation and configuration method calls underneath the scoreText object

Figure 17-8.  Add the scoreLabel Text Node object to the JavaFX Scene Graph using a .getChildren().add() method chain



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

399

Creating the Scoring Engine Logic: .scoringEngine( )
What I want to base scoring on in this game is the type of Object, as we are going to have fixed Actor subclass objects 
for the InvinciBagel to score against, such as Prop, PropV, PropH, PropB, Treasure, Projectile, Enemy, and similar. 
Since the switch-case structure does not support using an Object in its evaluation logic, we are going to have to use 
conditional if() statements, along with the Java instanceof operator, which, as you can tell from its name, is used to 
determine object type or instance; in this particular case, to start with, if the Actor object is an instance of the Prop, 
PropV, PropH, or PropB class. The basic Java code structure for the scoringEngine() method evaluates one if() for 
each Actor object type, and then sets the gameScore variable, which is displayed by the scoreText Text object, inside 
of the invinciBagel object. This programming logic can all be seen in Figure 17-9. The Java code should look like this:
 
private void scoringEngine(Actor object){
    if(object instanceof Prop)  { invinciBagel.gameScore+=5; }
    if(object instanceof PropV) { invinciBagel.gameScore+=4; }
    if(object instanceof PropH) { invinciBagel.gameScore+=3; }
    if(object instanceof PropB) { invinciBagel.gameScore+=2; }
    invinciBagel.scoreText.setText(String.valueOf(invinciBagel.gameScore));
}
 

Figure 17-9.  Code basic conditional if() statements inside of the .scoringEngine() method using instanceof



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

400

Be sure not to call a invinciBagel.scoreText.setText(String.valueOf(invinciBagel.gameScore)); 
statement, which updates the scoreText UI element using a .setText() method, inside of each of these conditional if() 
statements. Instead, notice that I am placing it at the end of the method, after all of these evaluations are completed. 
I am doing this so I only have to call this one line of code one time, at the end of the conditional if() object processing 
structure. That said, the Java code will still work if you place this scoreText object score update statement inside each 
of the conditional if() statement code body structures. However, I’m trying to show you how to write code that does a 
lot of work by using relative few (a dozen or less) lines of code to accomplish major Java 8 game development tasks.

Next, we are going to take the .playiSound0() method call out of the .checkCollision() method, and we’ll put it 
inside of the scoringEngine() method instead. As long as it is in one of these two methods, it’s going to get called on 
collision, one way or the other. The reason that I am going to do it this way is because we will probably want to play a 
different sound effect when a player finds a treasure, or is hit by a projectile. In this way, your audio is associated with 
scoring and game play when different types of collisions are detected, rather than just playing audio for any collision.

Our conditional if() structure code bodies use curly braces, which allows us to add Java statements into each type 
of collision (scoring) object instance (type). So in addition to incrementing (or decrementing, as we will add later) the 
score, we can also use different sounds (audioClips) for different objects. Let’s add the .playSound() method calls into 
these conditional if() code blocks next, so that we have the code in place to trigger sound effects when a treasure is 
picked up by the primary character or when he is hit by (or catches) a projectile shot by an enemy (an InvinciBeagle) 
character, or when he collides with a prop in the scene.

This is done by using the following Java conditional if() structures, which can also be seen in Figure 17-10:
 
private void scoringEngine(Actor object) {
    if(object instanceof Prop)  {
        invinciBagel.gameScore+=5;
        invinciBagel.playiSound0();
    }
    if(object instanceof PropV) {
        invinciBagel.gameScore+=4;
        invinciBagel.playiSound1();
    }
    if(object instanceof PropH) {
        invinciBagel.gameScore+=3;
        invinciBagel.playiSound2();
    }
    if(object instanceof PropB) {
        invinciBagel.gameScore+=2;
        invinciBagel.playiSound3();
    }
    invinciBagel.scoreText.setText(String.valueOf(invinciBagel.gameScore));
}
 



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

401

Now we have even more game play interaction in place, as the scoreboard will instantly update correctly on 
each collision, and will play an audioClip at the same time, to indicate that a collision has been detected, the type of 
collision that has occurred (good or bad), and that the scoreboard has been updated, since after all, this programming 
logic is contained in the scoringEngine() method and thus should pertain to the act or scoring in some way or another.

After we test this conditional if() programming logic and make sure that everything works as anticipated, we 
can take a look at how to add optimization into this .scoringEngine() method, and then we will be ready to add some 
more Actor types, such as the Treasure.java class, which we will be adding next. After that, we can add some enemies 
(adversaries) to the InvinciBagel game, as we continue to add features that make our game play more fun and exciting 
during the course of this chapter.

Test the game, using the Run ➤ Project work process. As you can see in Figure 17-11, the scoreboard works!

Figure 17-10.  Add .playiSound() method calls in each if() statement body to play different audio for each type



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

402

Optimizing the scoringEngine() Method: Using Logical If Else If
Although the previous series of if() statements will do the job that we are trying to do here, we really need to emulate 
the break; statement that we would have at our disposal if we were using the Java switch-case statement type. To 
optimize this method, we want to break out of this evaluation series once the object type that is involved in the 
collision has been determined. We can do this by attaching all of these conditional if() statements together, using the 
Java else-if capability. If a condition in this structure is satisfied, the rest of the if-else-if structure is not evaluated, 
which is the equivalent of a break; statement in a switch-case structure. To optimize this even further, you would 
want to place the most common (the highest number of collidable objects in the Scene of that object type) objects at 
the top of this if-else-if structure, and the least common objects at the bottom of the structure. All you have to do to 
accomplish this is tie your if() condition blocks together by using the Java else keyword, as shown in Figure 17-12. This 
creates a more compact and processing-optimized conditional evaluation structure, and uses fewer lines of Java code:
 
private void scoringEngine(Actor object) {
    if(object instanceof Prop)         {
        invinciBagel.gameScore+=5;
        invinciBagel.playiSound0();
    } else if(object instanceof PropV) {
        invinciBagel.gameScore+=4;
        invinciBagel.playiSound1();
    } else if(object instanceof PropH) {
        invinciBagel.gameScore+=3;
        invinciBagel.playiSound2();
    } else if(object instanceof PropB) {
        invinciBagel.gameScore+=2;
        invinciBagel.playiSound3();    }
    invinciBagel.scoreText.setText(String.valueOf(invinciBagel.gameScore));
}
 

Figure 17-11.  Use Run ➤ Project to test the game, and collide with the objects on the screen, updating your scoreboard



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

403

Figure 17-12.  Make all the previously unrelated if() structures into one if-else-if stucture by inserting else in between ifs

Adding Bounty to the Game: The Treasure.java Class
To make our game play more exciting, let’s add a Treasure.java class, so that our game players have something to look 
for during game play that allows them to add points to their score now that the scoring engine is in place. This type 
of Treasure object will take advantage of the hasValu and isBonus boolean flags, which we installed in the abstract 
Actor class, and we will set these to a true value in the Treasure() constructor method, which we will code next, along 
with overriding the required .update() method, so that later on in development we can add animation and treasure 
processing logic. Like the Prop, PropV, PropH, and PropB classes, this class will use the xLocation and yLocation 
parameters to set the translateX and translateY properties for the spriteFrame ImageView Node object, which will 
live inside of this Treasure object (Actor object type, also Actor subclass) as part of the Treasure() constructor method 
programming logic. The Java code for this class, which can also be seen in Figure 17-13, should look like the following: 
 
package invincibagel;
import javafx.scene.image.Image;
public class Treasure extends Actor {
    public Treasure(String SVGdata, double xLocation, double yLocation, Image... spriteCels){
        super(SVGdata, xLocation, yLocation, spriteCels);
        spriteFrame.setTranslateX(xLocation);
        spriteFrame.setTranslateY(yLocation);
        hasValu = true;
        isBonus = true;
    }
    @Override
    public void update() {   // Currently this is an Empty but Implemented Method   }
}
 



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

404

Using the Treasure Class: Create Treasure Objects in the Game
Now that we have a Treasure.java class, we can create Treasure objects for the game. As you know, this will be done in 
the InvinciBagel.java class. Declare package protected (since we’re going to reference them outside of InvinciBagel, 
in Bagel.java) Treasure objects, and name them iTR0 and iTR1 (stands for InvinciBagel Treasure). Add iT0 and iT1 
Image object declarations to the end of your private Image objects compound declaration. Instantiate the iT0 and iT1 
Image objects using the Java new keyword, the Image() constructor method, and the treasure1.png and treasure2.png  
image assets, respectively. After that, you can create the iTR0 and iTR1 Treasure objects, using the Treasure() 
constructor method, SVG path data of 0,0, 0,64, 64,64 and 64,0 and locations of 50,105 and 533,206 respectively. Make 
sure that you add these new Treasure object’s spriteFrame ImageView Nodes to the JavaFX Scene Graph, using the 
.getChildren().add() method chain, called off of the root Group object. As you can see in Figure 17-14, the code 
is error-free, and we are now ready to test the new Treasure.java class and the Java code that we have added to the 
InvinciBagel.java class to see if we can get Treasure in the game Scene. Your Java code should look like the following:
 
Treasure iTR0, iTR1;    // These Object Declarations go at the top of the InvinciBagel class
private Image iB0, iB1, iB2, iB3, iB4, iB5, iB6, iB7, iB8, iP0, iP1, iT0, iT1;
 
iT0 =  new Image("/treasure1.png", 64, 64, true, false, true);  // .loadImageAssets() Method
iT1 =  new Image("/treasure2.png", 64, 64, true, false, true);
 
iTR0 = new Treasure("M0 0 L0 64 64 64 64 0 Z", 50, 105, iT0);  // .createGameActors() Method
iTR1 = new Treasure("M0 0 L0 64 64 64 64 0 Z", 533, 206, iT1);
 
root.getChildren().add(iTR0.spriteFrame);
root.getChildren().add(iTR1.spriteFrame);
 

Figure 17-13.  Create a new Java class named Treasure.java extends Actor and create Treasure() and update() methods



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

405

Let’s take a moment and use a Run ➤ Project work process and see if our Treasure Actors are on the screen!
As you can see in the left half of Figure 17-15, all Treasure objects are visible in the Scene, and we’re ready to start 

enhancing our .scoringEngine() method, to support negative scoring as well as add in Treasure scoring values.

Figure 17-14.  After adding declarations at the top of the class, instantiate the objects, and add them to a Scene Graph

Figure 17-15.  Check Treasure placement (left) and test negative collision values (right) and Treasure collision detection

As you’ll soon see (and is seen on the right side of Figure 17-15), a Java int (integer) data type supports negative 
values, so all you have to do in your .scoringEngine() method is to change += to -= for Actor objects that you want 
the game player to avoid. In our development scenario here, we’ll use collision with Prop objects to give a  
negative score.



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

406

Adding Treasure Collision Detection: Updating .scoringEngine()
Change your Prop Actor objects scoring to reduce the scoreboard value by changing the += values to -=1 or -=2, and 
then add an else-if{} section at the end of the existing if-else-if chain, to support Treasure objects, which we will score 
at +=5, to add five points. The Java code to do this, which you can see in Figure 17-16, should look like the following:
 
private void scoringEngine(Actor object)  {
    if(object instanceof Prop)         {
        invinciBagel.gameScore-=1;
        invinciBagel.playiSound0();
    } else if(object instanceof PropV) {
        invinciBagel.gameScore-=2;
        invinciBagel.playiSound1();
    } else if(object instanceof PropH) {
        invinciBagel.gameScore-=1;
        invinciBagel.playiSound2();
    } else if(object instanceof PropB) {
        invinciBagel.gameScore-=2;
        invinciBagel.playiSound3();
    } else if(object instanceof Treasure) {
        invinciBagel.gameScore+=5;
        invinciBagel.playiSound4();       }
    invinciBagel.scoreText.setText(String.valueOf(invinciBagel.gameScore));
}
 

Figure 17-16.  Add a Treasure else-if structure to end of the .scoringEngine() method conditional if() structure



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

407

You will need to remember to add the Treasure objects to the castDirector object, as seen in Figure 17-17, 
because the collision detection engine uses this CastingDirector class (object) to manage a collision detection 
process. If you do not do this step, the InvinciBagel will go right over the Treasure objects without seeing  
(colliding with) them!

Figure 17-17.  Add iTR0 and iTR1 Treasure objects inside the .addCurrentCast(Actor. . .) method call

Now that we have added these two Treasure objects to the castDirector CastingDirector object, the collision 
detection programming logic will “see” them, and collisions with the Treasure objects will occur, triggering the scoring 
engine to score the game correctly. Test the final code for implementing Treasure in your game, and make sure that it 
works, and then we can move on to adding adversaries and have them shoot projectiles at the InvinciBagel character.

Adding Enemies: The Enemy and Projectile Classes
Now that we have added positive (Treasure) elements to our game, let’s add some negative (Enemy and Projectile) 
elements to the game, so that we remain “balanced” in our development work process. We are going to use the Actor 
superclass, rather than the Hero superclass, to create the Enemy and Projectile classes (objects). This is because by 
doing it this way, we have a more optimized game, as we are only using one single .collide() method (remember that 
each Hero object has a .collide() method implemented) for our JavaFX pulse event engine to process. When I convert 
this game into a multi-player game (the code for this is beyond the Beginner nature of this title), I would want to 
make the Enemy class a Hero subclass, so that the Enemy character could collide with things, such as Treasure and 
Projectiles, just like the InvinciBagel can. Since the Enemy class still has an .update() method, it can be moved around 
on the screen, where it can (and will) come out of hiding and shoot bullets (negative effect) and balls of cream cheese 
(positive effect) at the InvinciBagel character. The only thing that differentiates the Hero class is the .collide() method, 



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

408

and for this version of the game, having one .collide() method to process per pulse allows us to optimize the game 
play processing, while still having a game with the different game features that an arcade game would include. As you 
can see in the Enemy() constructor method, the Enemy character isAlive, isBonus, and hasValue, and so all of these 
properties or characteristics of the Enemy will be set to a boolean value of true inside of the constructor method, after 
the sprite location has been set using .setTranslateX() and .setTranslateY(), and after the SVG data, Image, and initial 
X,Y location data is passed up to the Actor() constructor using the super() constructor. The Java code for the Enemy.
java class can be seen error-free in Figure 17-18, and should look like the following Java class structure:
 
package invincibagel;
import javafx.scene.image.Image;
 
public class Enemy extends Actor {
    public Enemy(String SVGdata, double xLocation, double yLocation, Image... spriteCels) {
        super(SVGdata, xLocation, yLocation, spriteCels);
        spriteFrame.setTranslateX(xLocation);
        spriteFrame.setTranslateY(yLocation);
        isAlive = true;
        isBonus = true;
        hasValu = true;
    }
    @Override
    public void update() {
        // Currently Empty Method
    }
}
 

Figure 17-18.  Create an Enemy.java class, override the .update() method, and code your Enemy() constructor method



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

409

The next step in the work process is to use GIMP to create the collision polygon for the Enemy object, as is seen 
in Figure 17-19, using only nine data points. Use the SVG data creation work process you learned in Chapter 16.

Figure 17-19.  Use GIMP to create a nine-point collision polygon for your Enemy Actor

Before we go into the InvinciBagel.java class to declare and instantiate an Enemy object named iBeagle, let’s 
create the Projectile.java class, so that our Enemy object has Projectile objects to shoot at the InvinciBagel character!

Creating Cream Cheese Bullets: Coding a Projectile.java Class
Now that we have added positive (Treasure) elements to our game, let’s add some negative (Enemy and Projectile) 
elements to the game, so that we remain “balanced” in our development work process! Create a Projectile.java class 
and constructor method that sets isFixed to false (since projectiles fly) and isBonus and hasValu to true, so the object 
properties are set. The Java code for this Projectile.java class can be seen in Figure 17-20, and looks like the following: 
 
package invincibagel;
import javafx.scene.image.Image;
public class Projectile extends Actor {
    public Projectile(String SVGdata, double xLocation, double yLocation, Image... spriteCels) {
        super(SVGdata, xLocation, yLocation, spriteCels);
        spriteFrame.setTranslateX(xLocation);
        spriteFrame.setTranslateY(yLocation);



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

410

        isFixed = false;
        isBonus = true;
        hasValu = true;
    }
    @Override
    public void update() {   // Empty Method   }
}
 

Figure 17-20.  Create a Projectile.java class, override the .update() method, and code a Projectile() constructor method

Adding an Enemy and Projectiles to the Game: InvinciBagel.java
Open the InvinciBagel.java tab in NetBeans and declare an Enemy object, named iBeagle, and two Projectile objects, 
named iBullet and iCheese, underneath the iBagel Bagel object, as shown highlighted in Figure 17-21. Next, declare 
three Image objects, iE0, iC0, and iC1, by adding the object names at the end of the second private Image declaration. 



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

411

Copy the enemy.png, bullet.png and cheese.png image assets into the /src folder, as shown in Figure 17-22.

Figure 17-21.  Declare iBeagle, iBullet, iCheese (Enemy and Projectile) objects, and iE0, iC0, iC1 (Image) objects

Figure 17-22.  Copy the enemy.png, bullet.png, and cheese.png image assets into your InvinciBagel/src project folder



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

412

You can then refine your collision polygon structure data point by data point, by clicking and dragging these 
points with your mouse, as seen in Figure 17-23. If you compare the collision polygon in Figure 17-22 with the one in 
Figure 17-23, you can see I that have refined several of the data points to better conform to the outline of the sprite.
 
Enemy iBeagle;                     // Object Declarations go at top of InvinciBagel.java class
Projectile iBullet, iCheese;
private Image iB0, iB1, iB2, iB3, iB4, iB5, iB6, iB7, iB8, iP0, iP1, iT0, iT1, iE0, iC0, iC1;
iE0 =  new Image("/enemy.png", 70, 116, true, false, true);       // .loadImageAssets() Method
iC0 =  new Image("/bullet.png", 64, 24, true, false, true);
iC1 =  new Image("/cheese.png", 32, 29, true, false, true);
iBeagle = new Enemy("M0 6 L0 52 70 52 70 70 70 93 115 45 115 0 84 0 68 16 Z", 520, 160, iE0);
iBullet = new Projectile("M0 4 L0 16 64 16 64 4 Z",  8, 8, iC0);
iCheese = new Projectile("M0 0 L0 32 29 32 29 0 Z", 96, 8, iC1); // .createGameActors() Method
root.getChildren().add(iBeagle.spriteFrame);
root.getChildren().add(iBullet.spriteFrame);              // Add Objects to JavaFX Scene Graph
root.getChildren().add(iCheese.spriteFrame);
castDirector.addCurrentCast(iPR0, iPH0, iPV0, iPB0, iTR0, iTR1, iBeagle, iBullet, iCheese);
 

Figure 17-23.  Instantiate Image and Projectile objects and add them to JavaFX Scene Graph and CastingDirector object



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

413

While we are adding game design elements to the game, let’s go ahead and learn how to use a splashscreen 
ImageView Node object to implement a game background image plate. We will do this so that our white iBeagle, and 
(Cream) iCheese and iBullet objects, stand out to the game player better, using an enhanced blue background color.

Adding a Background Image: Using .toBack( ) Method
Before we get into coding the collision and scoring routines for the Enemy and Projectile objects, let’s add an Image 
asset (object) to use in the background plate, while we are in the process of adding objects to our game. Copy the 
skycloud.png 8-bit PNG8 image asset, seen in the bottom-left corner of Figure 17-24, from the book repository into 
the NetBeansProjects/InvinciBagel/src folder. After you do this, add a skyCloud Image object declaration to the end of 
the private Image object declarations for the splashscreen related image assets, as seen at the top of Figure 17-24. As 
you can see, there will be a warning highlight under this object until you implement (use) it in your Java code. Next, 
instantiate a skyCloud object in .loadImageAssets(), as seen at the bottom of Figure 17-24, using the following code:
 
private Image splashScreen, instructionLayer, legalLayer, scoresLayer, skyCloud;
skyCloud = new Image("/skycloud.png", 640, 400, true, false, true);
 

Figure 17-24.  Declare and instantiate a skyCloud Image object that references a skycloud.png background image asset

Now you have a skyCloud object, so use a .setImage() method to set a SplashScreenBackground ImageView 
Node, to use this image asset inside the gameButton.setOnAction(ActionEvent) code block, so that when you click the 
PLAY GAME Button, this image is set as the backplate image. Also, make sure to use the .setVisible() method call with 
a value of true, so that the ImageView Node will be visible. The Java code, shown in Figure 17-25, should look like this:
 
splashScreenBackground.setImage(skyCloud);
splashScreenBackground.setVisible(true);
 



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

414

Since you have added this code to the gameButton’s event handling code, you must “counter” this move, by 
adding the same method call to the other three Button event handlers to set the image asset back to the splashscreen 
image asset, using the following Java code, shown in the other three Button event handling methods in Figure 17-25:
 
splashScreenBackground.setImage(splashScreen);
 

Use Run ➤ Project to test the code. As you can see on the left side of Figure 17-26, we have a z-index issue!

Figure 17-25.  Use a splashScreenBackplate.setImage() method call to install a skyCloud Image object in gameButton



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

415

Since we want to have our background image at the lowest (zero) z-index so it will be behind all of our game play 
assets, but also have all the splashscreen assets at the highest z-index, so that those image plates will cover (be in front 
of) all of our game play assets, we normally would have to implement yet another ImageView compositing plate, to 
be able to do this. However, there is a handy set of z-index related Node class methods that will allow us to use the 
SplashScreenBackplate ImageView object to hold both the game splashscreen and a game background image plate at 
the same time! This is one of the ImageView Node optimizations that I wanted to implement to keep our game Nodes 
at a minimum, to reduce memory and processing overhead. The code to place the ImageView behind our game assets 
will call the .toBack() method off of the SplashScreenBackplate ImageView Node object, which relocates that Node 
to the Back (Bottom layer) of the JavaFX Scene Graph Node Stack. This is the equivalent of setting this Node’s z-index 
to zero. The Java statement can be seen highlighted in light blue at the top of Figure 17-26, and the completed Java 
code for your gameButton.setOnAction((ActionEvent)->{} event handling structure should look like the following:
 
gameButton.setOnAction((ActionEvent) -> {
    splashScreenBackplate.setImage(skyCloud);
    splashScreenBackplate.setVisible(true);
    splashScreenBackplate.toBack();
    splashScreenTextArea.setVisible(false);
});
 

As you probably realize by now, we’ll need to “counter” this move in the other three Button event handling 
structures. We will use the opposite of the .toBack() method call, which is of course the .toFront() method call. As you 
can see, we need to not only call the .toFront() method off of the splashScreenBackplate ImageView Node object, but 
also off of the splashScreenTextArea ImageView object, and the buttonContainer HBox object that is holding our UI 
Button controls. We will need to call this method off of all of these Splashscreen and UI objects so that all of these are 
brought back to the front of the JavaFX Scene Graph Node Stack. The Java code, shown in Figure 17-27, looks like this:
 
helpButton.setOnAction((ActionEvent) -> {
    splashScreenBackplate.setImage(splashScreen);
    splashScreenBackplate.toFront();
    splashScreenBackplate.setVisible(true);
    splashScreenTextArea.setVisible(true);
    splashScreenTextArea.setImage(instructionLayer);
    splashScreenTextArea.toFront();
    buttonContainer.toFront();
});

Figure 17-26.  Install the skyCloud background Image (left), and use a .toBack() method call to set proper  
z-index (right)



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

416

Using Random Number Generators: java.util.Random
The java.util package contains programming utilities that you can use for your Java 8 games development, as you 
may have guessed from the package name. One of the most important Java utilities for game programmers is the 
Random class, and its Random() constructor method. This class can be used to create Random Number Generator 
objects, which generate random number (or boolean) values for use inside your game programming logic. We will be 
using this class to generate both int (integer, for random screen locations) and boolean (for “guess where the Enemy 
is coming from next” functions) random values. These will make sure the game player cannot anticipate the game 
by recognizing patterns during the game play. The Java 8 Random class was scratch-coded specifically to generate 
random numbers using the Java Object master class. The class hierarchy for the Random class looks like the following:
 
java.lang.Object
  > java.util.Random
 

Figure 17-27.  Use a .toBack() method call in the gameButton code, and .toFront() method call in the other Button code



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

417

The Random class has two constructors, a Random() constructor, which we will be using, and an overloaded 
Random(long seed) constructor, where you can specify the seed value for the Random Number Generator that this 
class implements. Once you have a Random object, you can call one of almost two dozen (22) methods that generate 
different types of random values. The method calls we’ll be using during this chapter are the .nextInt(int bound) and 
.nextBoolean() method calls. In case you are wondering, there is also a .nextInt() method, but we need to generate a 
random number inside of a specific range (zero to bottom of screen), and the .nextInt(int bound) allows generation 
of a random number range from zero to the specified integer bound (boundary) passed over inside of the method call.

We will be using the Random class for our Enemy attack strategy (and code) in the Enemy.java class. Let’s go 
ahead and declare and instantiate a Random object named randomNum at the top of the Enemy.java class, as shown 
in Figure 17-28, using the following compound (declaration plus instantiation) Java 8 programming statement:
 
protected static final Random randomNum = new Random();
 

Figure 17-28.  Declare and instantiate a Random Number Generator at the top of the Enemy.java class using Random()

We will be using this Random (number generator) object throughout the remainder of this chapter to add 
random attack positions, sides, and bullets for our Enemy iBeagle object, so that he can try his best to take down the 
InvinciBagel character (the game player), or at least cause him to generate lots of negative scoring points if he can!

Mounting the Attack: Coding the Enemy Onslaught
First we need to declare counter variables, seen highlighted in Figure 17-29, using the following two Java statements: 
 
int attackCounter = 0;
int attackFrequency = 250;
 



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

418

Now we are ready to start to put a half dozen fairly complicated methods into place in the Enemy.java class. 
These will use the GamePlayLoop class’s .handle() method, to tap into the JavaFX 60 FPS pulse timing event engine, 
to drive a fully automated, fully randomized Enemy attack. The code that we’ll be putting together during the 
remainder of this chapter is the equivalent of turning the computer processor into our game player’s opponent. Let’s 
write code! 

The Foundation of an Enemy Class Attack: The .update() Method
Let’s start by writing the foundation of our iBeagle Enemy auto-attack engine. The first thing that we want to do 
is to “throttle” the 60 FPS pulse engine, and make sure that attacks only happen every four seconds. This is done 
using the attackCounter and attackFrequency variables inside of an if() structure, which counts between the two 
variables. If the attackCounter reaches 250, it is reset to 0 and an initiateAttack() method is called. Otherwise (else) 
the attackCounter is incremented using +=1. You could also use attackCounter++ to accomplish this. The code for 
the basic conditional if() structure, which can be seen highlighted in the middle of Figure 17-30, should look like the 
following Java method: 
 
public void update() {
    if(attackCounter >= attackFrequency) {
        attackCounter=0;
        initiateAttack();
    } else {
        attackCounter+=1;
    }
}
 

Figure 17-29.  Add integer variables at the top of the Enemy.java class; set attackCounter=0, and attackFrequency=250



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

419

Figure 17-30.  Create a conditional if using attackCounter inside the .update( ) method that calls initiateAttack( ) method

Most of this “auto-attack” code we will be writing during this admittedly advanced chapter will leverage this 
.update() method, which will be called from the .handle() method that runs our game from the GamePlayLoop class. 
The reason I installed this .update() method that you need to override in every Actor subclass, is in case you wanted to 
animate things in the game. If an Actor is static, the .update() method simply exists as an empty or unused method.

Attacking on Both Sides of the Screen: .initiateAttack() Method
The way to make your attack come from both sides of the screen is to have a boolean variable that can be set to right 
(true) or left (false), which we will call takeSides. Declare this variable at the top of the Enemy class, and then create 
an empty private void initiateAttack(){} method structure underneath your .update() method. Inside of this 
.initiateAttack() method, create an empty if-else structure if(takeSides){}else{} to hold your attack programming 
logic, so private void initiateAttack(){if(takeSides){}else{}} if you are into writing super compact Java 
code (this is valid Java code, but does absolutely nothing thus far). If you follow the industry standard Java 8 code 
formatting practices, the Java method body that you would use to implement this empty infrastructure can be seen in 
Figure 17-31, and should look like the following: 
 
boolean takeSides = false;
private void initiateAttack() {
    if(takeSides) {
              // Empty Statement
    } else { // Empty Statement }
}
 



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

420

Figure 17-31.  Add an if-else structure inside of the initiateAttack() method, to alternate between the left and right sides

Inside the if(takeSides){} structure set the Enemy object (which we named iBeagle in the InvinciBagel class) to 
an X location of 500, by using spriteFrame.setTranslateX(500); and to a random height on the screen, using a 
spriteFrame.setTranslateY() method call in conjunction with the random number generator object we  
installed in the previous section of the chapter. If you type in your randomNum object name and then hit the  
period key, you will be presented with a number of method call options, which is shown in Figure 17-32.  
Double-click the nextInt(int bound) option, and insert that method call off of the randomNum object inside the  
.setTranslateY() method.



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

421

The next thing that you will want to do is to declare an integer variable named attackBoundary that will be 
referenced inside of your .nextInt() method call, so that you can change your Y axis (bottom of screen) boundary later 
on if you wish, in one easy-to-edit location at the top of the Enemy.java class. The Java statement should look like this:
 
int attackBoundary = 300;
 

Now we’re ready to finish writing the Java code that flips the iBeagle Enemy Actor (sprite) so he is facing the 
correct direction, and then we can test the code. It is important to write complex Java code in logical, digestible steps. 
In this way, you can test your code as you write it, making sure that each component of the programming logic works, 
before adding additional complexity. You will see this work process during this chapter, as we develop a robust auto-
attack algorithm inside of the Enemy.java class. This auto-attack code can be used for any of the Enemy objects that 
you create in the future; thus the code that you’re writing during this chapter will cover a plethora of bad guy attacks!

It is important to note here that since takeSides is boolean and can only have two values – true or false, we’ll only 
need to implement a simple conditional if-else structure. This is because if our if(takeSides) condition equates to 
being true, then we know that the false value (else condition) logic structure will handle the takeSides=false scenario.

Inside of both of these if{} and else{} attack logic processing structures, we’ll flip the sprite image around the Y 
axis, remembering to set the isFlipH variable for future use, set the sprite X location, to one side of the screen or the 
other, set the sprite Y location to a random height value on the screen and then set the takeSides boolean variable to 
the opposite of its current true or false data value. In this way, the iBeagle Enemy Actor object will alternate between 
the left and right sides of the screen. Later, we’ll use the .nextBoolean() method, from the Random class, to make the 

Figure 17-32.  Use a randomNum Random object inside of the .setTranslateY() method and use a period to call selector



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

422

attack unpredictable. Remember that we are starting simple, and adding complexity as we develop this code. The Java 
code for the basic initiateAttack() method body is shown error-free in Figure 17-33, and should look like the following:
 
private void initiateAttack() {
    if(takeSides) {
        spriteFrame.setScaleX(1);
        this.setIsFlipH(false);
        spriteFrame.setTranslateX(500);
        spriteFrame.setTranslateY(randomNum.nextInt(attackBoundary));
        takeSides = false;
    } else {
        spriteFrame.setScaleX(-1);
        this.setIsFlipH(true);
        spriteFrame.setTranslateX(100);
        spriteFrame.setTranslateY(randomNum.nextInt(attackBoundary));
        takeSides = true;
    }
}
 

Figure 17-33.  Add the logic inside the if-else structure that flips the sprite and positions it on either side of the screen



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

423

Powering the Enemy .update( ) Method: Using the GamePlayLoop .handle( ) Method
Before we can start to test the code inside the Enemy.java class .update() method, we must “wire it up” to the 
.handle() method in the GamePlayLoop.java class. As you know, this method is our doorway into the JavaFX 
pulse timing event processing engine that drives our game at a lightning fast 60 FPS. Now our GamePlayLoop 
.handle() method will be updating both an iBagel InvinciBagel character as well as the iBeagle Enemy auto-attack 
programming logic. It is easy to see why InvinciBagel and InvinciBeagle are enemies; it’s an identity crisis of sorts, 
kind of like one of those misspelled domain name disputes! Your Java code, seen error-free in Figure 17-34, will look 
like the following:
 
@Override
public void handle(long now)     {
    invinciBagel.iBagel.update();
    invinciBagel.iBeagel.update();
}

Figure 17-34.  Add a call to the invinciBagel.iBeagle.update() method inside of the GamePlayLoop .handle() method

Use the Run ➤ Project work process to test your first round (level) of Enemy auto-attack Java code. As you can 
see in Figure 17-35, the InvinciBeagle appears on both sides of the screen, in random locations along the Y axis, and 
alternates between the left side of the screen and the right side of the screen. I left the Bullet and Cream Cheese  
Ball Projectile Actor objects visible on the screen for now, in the upper-left corner. We will eventually place these  
off-screen, and will shoot them at the InvinciBagel every few seconds using the InvinciBeagle’s powerful bazooka.



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

424

To keep our use of JavaFX Scene Graph Node objects optimized, we will reuse Projectile objects once they hit the 
InvinciBagel. This “bullet recycling” will be done using Java programming logic in several methods that we’ll put into 
place as we continue to write more and more advanced game play program logic throughout this chapter.

Now we are ready to make the Enemy move on and off-screen, to add the element of surprise. We will be coding 
this animation rather than using another Animation class, since we are trying to do everything using only one 
AnimationTimer class (object) as an optimization strategy, which is working out amazingly well thus far.

Adding the Element of Surprise: Animating Your Enemy Attack
To animate our Enemy onto the Stage we will need to define boolean variables that hold the “on-screen off-screen” 
state, which I will call onScreen, as well as one that will serve as a switch that I can flip once the Enemy is visible on 
the screen, telling him to mount his attack, which I will name callAttack. We will also need integer variables to hold 
the current Enemy sprite right and left side X location, named spriteMoveR and spriteMoveL, and a destination 
variable that holds where we want the Enemy to stop and fire his Projectile objects. The Java declaration statements 
can be seen highlighted near the top of Figure 17-36, and should look like the following Java code:
 
boolean onScreen = false;
boolean callAttack = false;
int spriteMoveR, spriteMoveL, destination;
 

Figure 17-35.  Use the Run ➤ Project to test your code; left half shows left side attack, right half shows right side attack



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

425

The first thing that we’ll need to do, inside the .update() method, is add an if(!callAttack) if-else conditional 
structure around the if(attackCounter >= attackFrequency) structure that we already have in place. We will leave 
the attackCounter = 0; initialization statement inside of this inner loop, and we will add a spriteMoveR = 700;  
and a spriteMoveL = -70; initialization statement. These will place the Enemy sprite off-screen on either side  
of the Stage.

A callAttack boolean flag allows us to communicate between the .update() and the .initiateAttack methods, as 
you can see, in the .update() method, after the attackCounter (timer) has allowed the player enough time to collect 
his wits after enemy attacks, this callAttack variable is set to a true (attack) value. In a more complex version of your 
.initiateAttack() method, you will set this callAttack variable to a false (delay attack) value, starting the attackCounter.

Let’s also make a Java code optimization and take the .setTranslateY() method call that we have twice in the 
initiateAttack() method, and make just a single method call (which represents a 100% savings on usage of the Random 
object’s .nextInt() method call). Once all these programming statements are in place, you can finally set the callAttack 
boolean variable to a true value, so that the next time that the if(!callAttack) conditional if-else structure is called, the 
else portion at the bottom of the structure will execute and will call an initiateAttack() method. This method is where 
the real heavy lifting is done, as far as animating the iBeagle Enemy character onto the screen, having him pause  
and fire off a shot, and then retreat off-screen before the InvinciBagel can execute (collide with) him, gaining ten 
valuable scoring points.

The else part of this if-else programming structure will call the initiateAttack() function, once the callAttack 
variable has been set to a true value inside of the attackCounter timer section of your conditional programming logic.

Figure 17-36.  Add callAttack, spriteMove and destination variables and an if(callAttack)-else programming structure



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

426

Once your conditional if() timer logic has expired (completed its countdown), your Enemy sprite is randomly 
positioned along the Y axis, moved into its starting position using the spriteMoveR and spriteMoveL variables, and the 
attackCounter is reset to zero for the next time the callAttack variable is set to false. At the end of the “set-up initiate 
attack” sequence of Java statements, callAttack is set equal to true, as seen in Figure 17-36, using the following code:
 
public void update() {
    if(!callAttack) {
        if(attackCounter >= attackFrequency) {
            attackCounter = 0;
            spriteFrame.setTranslateY(randomNum.nextInt(attackBoundary));
            spriteMoveR = 700;
            spriteMoveL = -70;
            callAttack = true;
        } else { attackCounter+=1; }
    } else { initiateAttack(); }
}
 

Next we’re going to rewrite our if(takeSides) logic structure to remove the Y axis random number positioning 
statements, reposition the takeSides boolean flag program logic, and add an if(!onScreen) nested structure, around a 
.setTranslateX() method call. This will allow us to animate the iBeagle Enemy Actor sprite on and off of the screen.

Inside of the if(!takeSides) structure, you’ll keep the first two statements that set the sprite mirroring (facing 
direction), but remove the .setTranslateY() method call as that is now accomplished in the .update() method. Add the 
if(!onScreen) conditional structure, where you’ll initialize the destination location to 500 pixels, and then nest another 
counter if(spriteMoveR >= destination) structure, inside of which you’ll move the sprite by two pixels per pulse 
using spriteMoveR-=2; in conjunction with spriteFrame.setTranslateX(spriteMoveR); to actually move the sprite 
as the counter changes, thus leveraging the counter variable in the sprite animation (movement) logic.

The else part of the if-else structure will (eventually) shoot the projectile using a .shootProjectile() method we 
will be coding soon, and since the sprite is now on the screen, we will set the onScreen boolean flag variable to a true 
value, which, for now, will trigger the second if(onScreen) conditional logic structure. This will remove the Enemy 
sprite from the screen using half the velocity (move one pixel per counter iteration) that it came onto the screen with.

The logic for the second nested conditional if(onScreen) structure is quite similar to the first. You will set the 
destination to 700 pixels (putting the Enemy sprite back off-screen, and again out of view), and this time, you’ll 
iterate using +=1 instead of -=2, which will not only move the Enemy in the opposite direction, due to a plus instead 
of minus, but will also use half the initial velocity used to mount an attack, because you’re moving by one pixel rather 
than two.

The real difference in the if(onScreen) conditional if-else structure is in the else portion of the programming 
logic, where we not only set the onScreen boolean flag variable back to false, but we’ll also set the takeSides boolean 
variable to true, so that the Enemy will use the other side of the screen for his next attack attempt.

Finally, since the attack sequence is completed, we will also set the callAttack boolean flag variable to false. As 
you know, this will start up the attackCounter program logic in the .update() method, which will give your player a few 
seconds to recover from being attacked. The Java structure for the entire if(!takeSides) conditional structure, and its 
nested if(onScreen) conditional structures, is shown highlighted in Figure 17-37, and should look like the following: 
 
private void initiateAttack() {
    if(!takeSides) {
        spriteFrame.setScaleX(1);
        this.setIsFlipH(false);
        if(!onScreen) {
            destination = 500;
            if(spriteMoveR >= destination) {
                spriteMoveR-=2;
                spriteFrame.setTranslateX(spriteMoveR);



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

427

            } else {
                // ShootProjectile();
                onScreen = true;
            }
        if(onScreen) {
            destination = 700;
            if(spriteMoveR <= destination) {
                spriteMoveR+=1;
                spriteFrame.setTranslateX(spriteMoveR);
            } else {
                onScreen = false;
                takeSides = true;
                callAttack = false;
            }
        }
 

Figure 17-37.  Add an if(onScreen) level of processing inside the if(!takeSides) logic to animate sprite from the right side



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

428

Inside the second if(takeSides) structure, in the if(!onScreen) structure, initialize the destination location to 100 
pixels, and nest another counter if(spriteMoveL <= destination) structure. This time, you will move the sprite by two 
pixels per pulse using spriteMoveL+=2; in conjunction with spriteFrame.setTranslateX(spriteMoveL); to move 
the sprite in the opposite direction. In the else portion, set the onScreen boolean flag variable to a true value.

The logic for the second nested conditional if(onScreen) structure is again similar to the first. You’ll set your 
destination to -70 pixels, and this time, you’ll iterate using -=1 instead of +=1. In the else portion of the programming 
logic, we will again set the onScreen boolean flag variable back to false, and we’ll set the takeSides boolean variable 
back to false, so that the Enemy will again alternate sides and use the other side of the screen for his next attack.

Finally, since an attack sequence is completed, we will again set the callAttack boolean flag variable to false. As 
you know, this will start up the attackCounter program logic in the .update() method, which will give your player a few 
seconds to recover from being attacked. The Java structure for this entire if(takeSides) conditional structure, and its 
nested if(onScreen) conditional structures, is shown highlighted in Figure 17-38, and should look like the following:
 
    if(takeSides) {
        spriteFrame.setScaleX(-1);
        this.setIsFlipH(true);
        if(!onScreen) {
            destination = 100;
            if(spriteMoveL <= destination) {
                spriteMoveL+=2;
                spriteFrame.setTranslateX(spriteMoveL);
            } else {
                // ShootProjectile();
                onScreen = true;
            }
        if(onScreen) {
            destination = -70;
            if(spriteMoveL >= destination) {
                spriteMoveL-=1;
                spriteFrame.setTranslateX(spriteMoveL);
            } else {
                onScreen = false;
                takeSides = false;
                callAttack = false;
            }
        }
 



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

429

Figure 17-38.  Add an if(onScreen) level of processing inside the if(takeSides) logic to animate a sprite from the left side

Weaponizing the Enemy: Shooting Projectile Objects
Now that we have the Enemy animating onto (and off of) both sides of the screen, the next level of complexity that 
we need to add is the shooting of Projectile objects. We’ll first implement iBullet objects (negative score generation) 
and later iCheese objects (positive score generation), both of which will require our Enemy.java class to have visibility 
into the InvinciBagel class. Thus, the first thing that we’ll need to do is to modify the Enemy() constructor method to 
accept an InvinciBagel object using the Java this keyword, much like we did with our Bagel() constructor method. Go 
into the InvinciBagel.java class and add a this keyword to the front end of (beginning of) your Enemy() constructor 
parameter list, as shown highlighted in Figure 17-39, using the following amended Enemy() constructor method call:
 
iBeagle = new Enemy(this, "M0 6 L0 52 70 52 70 70 70 93 115 45 115 0 84 0 68 16 Z",520,160,iE0);
 



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

430

Figure 17-39.  Add a Java this keyword inside the Enemy() constructor method call to pass over the InvinciBagel object

For this to work, you need to also update your Enemy.java class to accommodate the InvinciBagel object. Add 
an InvinciBagel invinciBagel; object declaration, at the top of the Enemy.java class, and edit your Enemy() 
constructor method to support this object by adding an InvinciBagel iBagel parameter at the head end (beginning) 
of the parameter list definition. Inside of the Enemy() constructor method, set the invinciBagel InvinciBagel object 
equal to the iBagel InvinciBagel object reference passed into the Enemy() constructor method in its parameter list. 
The Java code for the amended Enemy() constructor method body is shown in Figure 17-40, and should look like the 
following:
 
InvinciBagel invinciBagel;
public Enemy( InvinciBagel iBagel,
              String SVGdata, double xLocation, double yLocation, Image... spriteCels) {
        super(SVGdata, xLocation, yLocation, spriteCels);
        invinciBagel = iBagel;
        spriteFrame.setTranslateX(xLocation);
        spriteFrame.setTranslateY(yLocation);
        isAlive = true;
        isBonus = true;
        hasValu = true;
    }
 



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

431

Now that the Enemy class (object) can see into the InvinciBagel class (object), we’re ready to add projectiles.

Creating a Projectile Infrastructure: Adding Projectile Variables
To add projectile support to the Enemy class we will need to declare four new variables at the top of the class. These 
will include randomLocation, a new variable that we’ll use for both the Enemy character and the projectile he shoots; 
randomOffset, a new variable that will hold the vertical (Y) offset that allows us to fine-tune position the projectile so 
that it comes out of the bazooka barrel; and the bulletRange and bulletOffset allowing us to do X positioning. We will 
set the randomLocation variable equal to the randomNum.nextInt(attackBoundary) logic, which used to be inside 
of the .setTranslateY() method call, and add 5 to this variable, to create the randomOffset variable data value.  
The new Java structure for these methods is error-free, as shown in Figure 17-41, and should look like the following 
Java code: 
 
int spriteMoveR, spriteMoveL, destination;
int randomLocation, randomOffset, bulletRange, bulletOffset;
public void update() {
    if(callAttack) {
        if(attackCounter >= attackFrequency) {
            attackCounter=0;
            spriteMoveR = 700;
            spriteMoveL = -70;

Figure 17-40.  Modify the Enemy() constructor method in the Enemy class to add an InvinciBagel object named iBagel



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

432

            randomLocation = randomNum.nextInt(attackBoundary);
            spriteFrame.setTranslateY(randomLocation);
            randomOffset = randomLocation + 5;
            callAttack = true;
        } else { attackCounter+=1; }
    } else {     initiateAttack(); }
}
 

Figure 17-41.  Add randomLocation, randomOffset, bulletRange, and bulletOffset variables to control bullet placement

Also notice, at the bottom of Figure 17-41, we’ve also added an if(shootBullet){shootProjectile();} 
conditional if structure to the bottom of the .update() method, as well as adding a boolean shootBullet = false; 
declaration at the top of the Enemy.java class. Before we code the .shootProjectile() method, let’s add the shootBullet 
flag settings to the .initiateAttack() method, as well as setting a bulletOffset X location for the bullet, in if(!onScreen).



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

433

Invoking a .shootProjectile() Method: Setting shootBullet to True
Inside each of the if(takeSides) conditional if-else structures, in the else portion of the statement, add a bulletOffset 
variable setting (480 or 120) and set shootBullet equal to true. The Java code, seen in Figure 17-42, will look like this: 
 
if(takeSides) {
    spriteFrame.setScaleX(1);
    this.setIsFlipH(false);
    if(!onScreen) {
        destination = 500;
        if(spriteMoveR >= destination) {
            spriteMoveR-=2;
            spriteFrame.setTranslateX(spriteMoveR);
        } else {
            bulletOffset = 480;
            shootBullet = true;
            onScreen = true;    }
 

Figure 17-42.  Add bulletOffset values and shootBullet=true statements into the sprite-reached-destination else body



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

434

Now that you have set up the variables and if(shootBullet) structure in the .update() method, which will call the 
.shootProjectile() method to launch the Projectile objects out of the iBeagle Enemy Actor bazooka, we can start to 
create the code that will animate the iBullet object (and later, the iCheese object as well) in a similar way to how we 
created our Enemy animation functionality.

Shooting Projectiles: Coding the .shootProjectile( ) Method
If you have not already created an empty private void shootProjectile(){} method structure to get rid of those 
wavy red error highlights in your code, you can do so now. Inside of this method, we will again have the if(!takeSides) 
and if(takeSides) conditional structures, to segregate the different logic for each side of the Stage. This is similar to 
what we did to animate the Enemy character onto the screen in the .initiateAttack() method. The first Java statement 
will position the Y location, this time using the randomOffset variable inside of the .setTranslateY() method call 
off of an iBullet.spriteFrame ImageView object. The randomOffset variable adjusts bullet placement relative to the 
bazooka barrel. The next two .setScaleX and .setScaleY() method calls reduce the bullet image scale by half (0.5) and 
also flip the bullet using the -0.5 value. It is interesting to note here than any negative value, not just -1, will mirror 
around an axis. The next line of code sets the bulletRange variable to -50, before the if(bulletOffset >= bulletRange) 
conditional statement animates the bullet into position using a high velocity four pixels per pulse setting. This is 
coded the same way that we did this for the Enemy sprite, by using the bulletOffset variable that is used in the counter 
logic inside of the .setTranslateX() method call off of the iBullet.spriteFrame ImageView object inside of the if 
portion of the conditional statement. The else part of the if-else statement sets the shootProjectile variable to false, 
so only one shot is fired!

The Java code for the if(takeSides) conditional if structure is similar, except it uses +=4, a bulletRange of 
624, and an if(bulletOffset <= bulletRange) evaluation statement. Your Java code for these if(!takeSides) and 
if(takeSides) structures inside of the shootProjectile() method body can be seen in Figure 17-43, and should look 
like the following:
 
private void shootProjectile() {
    if(!takeSides) {
        invinciBagel.iBullet.spriteFrame.setTranslateY(randomOffset);
        invinciBagel.iBullet.spriteFrame.setScaleX(-0.5);
        invinciBagel.iBullet.spriteFrame.setScaleY(0.5);
        bulletRange = -50;
        if(bulletOffset >= bulletRange) {
            bulletOffset-=4;
            invinciBagel.iBullet.spriteFrame.setTranslateX(bulletOffset);
        } else { shootBullet = false; }
    }
    if(takeSides) {
        invinciBagel.iBullet.spriteFrame.setTranslateY(randomOffset);
        invinciBagel.iBullet.spriteFrame.setScaleX(0.5);
        invinciBagel.iBullet.spriteFrame.setScaleY(0.5);
        bulletRange = 624;
        if(bulletOffset <= bulletRange) {
            bulletOffset+=4;
            invinciBagel.iBullet.spriteFrame.setTranslateX(bulletOffset);
        } else { shootBullet = false; }
    }
}
 



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

435

Figure 17-43.  Add private void shootProjectile() method and code the if(!takeSides) and if(takeSides) if-else statements

If you now use your Run ➤ Project work process you will see your iBeagle animate on screen, shoot a bullet, and 
retreat quickly back off-screen. The next level of realism that we need to add into our code is to have the iBeagle pause 
for a second while he aims and shoots the bullet, because currently it looks like he is hitting an invisible barrier and 
bouncing back off-screen. We will do this by adding counter logic into the if(shootBullet) conditional statement in the 
.update() method. Let’s do that next, so that we have a completely professional Enemy auto-attack sequence!

Making the Enemy Pause Before Firing: pauseCounter Variable 
To make the Enemy pause on screen, so that his shooting action looks more realistic, and so that the InvinciBagel 
character has some time to try and tackle him (which we are going to assign ten scoring points to a bit later on), 
let’s add an integer pauseCounter variable and a boolean launchIt variable at the top of our Enemy.java class, as 
is shown highlighted in Figure 17-44. Inside of the if(shootBullet) conditional statement, after the shootProjectile() 
method call, place an if(pauseCounter >= 60) conditional structure, and inside of it, set launchIt equal to true, 
and reset the pauseCounter variable to zero. In the else part of the condition, increment the pauseCounter by one 
using pauseCounter++ and then all we have to do is to implement the launchIt boolean flag into our initiateAttack() 
method and we will have an Enemy character who takes his time when he aims and shoots at the InvinciBagel 
character. Your Java code for this if(shootBullet) if-else structure can be seen in Figure 17-44, and should look like the 
following code:
 
if(shootBullet) {
    shootProjectile();
    if(pauseCounter >= 60) {
        launchIt = true;
        pauseCounter = 0;
    } else { pauseCounter++ }
}
 



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

436

Figure 17-44.  Add a pauseCounter variable to create a timer, creating a one-second delay, so Enemy doesn't bounce

Shoot the Bullet: Pulling the Trigger Using the launchIt Variable
Inside of each of your if(takeSides) and if(!takeSides) conditional if structures, modify the if(onScreen) structure to 
be an if(onScreen && launchIt) structure instead, and then add a launchit = false; statement into the else  
portion of this modified structure. The Java code for the new if() structure is shown in Figure 17-45, and looks like  
the following:
 
if(onScreen && launchIt) {
    destination = 700;
    if(spriteMoveR <= destination) {
        spriteMoveR+=1;
        spriteFrame.setTranslateX(spriteMoveR);
    } else {
        onScreen   = false;
        takeSides  = true;    // This will be false if inside of the if(takeSides) structure
        callAttack = false;
        launchIt   = false;   }
}
 



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

437

For the if(takeSides) version of this if(onScreen && launchIt) structure, make sure to change the destination to 
-70, make the counter if(spriteMoveL >= destination) and the counter update spriteMoveL-=1; and the takeSides 
equal to false in the else portion of this conditional structure. Next, let’s update our scoring engine in the Bagel class.

Update the .scoringEngine( ) Method: Using .equals( )
Let’s use a different approach for these last three object scoring else-if structures, and instead of using an if(object 
instanceof Actor) for more general object type comparisons, we will use the more precise .equals() method that 
allows us to specify the object itself, such as if(object.equals(invinciBagel.iBullet). You can see the complete if-else 
structure in Figure 17-46, and the Java code for the last three Enemy objects looks like the following:
 
} else if(object.equals(invinciBagel.iBullet)) {
    invinciBagel.gameScore-=5;
    invinciBagel.playiSound5;

Figure 17-45.  Add a launchIt flag to the if(onScreen) condition to make that code structure wait for the pauseCounter



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

438

} else if(object.equals(invinciBagel.iCheese)) {
    invinciBagel.gameScore+=5;
    invinciBagel.playiSound0;
} else if(object.equals(invinciBagel.iBeagle)) {
    invinciBagel.gameScore+=10;
    invinciBagel.playiSound0;   }
 

Figure 17-46.  Adding the iBullet, iCheese and iBeagle object.equals() if-else structures to the .scoringEngine() method

At this point, if you use a Run ➤ Project work process, you should have an iBeagle shooting a Bullet or Cream 
Cheese Ball. When you catch the iBeagle with the InvinciBagel character, you should score ten points, or, if you catch a 
Cream Cheese Ball, you should get five points. If you get hit by a Bullet, you should lose five points.

You will notice as you test the InvinciBagel game application that once you get hit by a Bullet, Cream Cheese Ball, 
or when you catch the iBeagle, that they do not come back! This is because the collision detection programming logic 
removes an object from the game once an InvinciBagel collects it (Treasure) or collides with it (Prop or Projectile).

So the next step in our development will be to add in the programming logic that adds an iBullet, iCheese or 
iBeagle object back into the castDirector object once they have been removed by the collision detection programming 
logic that you put into place in Chapter 16. To do this, we’ll have to code an enhancement to the CastingDirector.java 
class, code the new .loadEnemy(), .loadBullet() and .loadCheese() methods at the bottom of the Enemy.java class, and 
add the appropriate programming logic implementing these three new methods into the .initiateAttack() method.



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

439

Adding Bullets to a Clip: Updating .addCurrentCast( )
Since we are going to add single (one at a time, not unmarried) Actor objects back into the CURRENT_CAST List, we 
will need to modify the .addCurrentCast() method as it currently only takes an Actor . . . series of objects and we need 
it to accommodate a single added Actor object, like the addToRemovedActors() method does currently. You can see 
the .addToRemovedActors() method at the bottom of Figure 17-47. The .addCurrentCast() method was designed 
to be used statically in the InvinciBagel.java class, in the start() method, to add all of the cast members at one time 
(remember static versus dynamic). Now I am going to show you how to redesign it to allow “one off” additions during 
gameplay, which is a dynamic use of the method, as the List<Actor> will be modified dynamically in real-time during 
gameplay. To upgrade the .addCurrentCast() method, simply “wrap” the .addAll() method call inside of the method 
with an if(actors.length > 1) if-else structure, with the original code inside of the if() portion and a CURRENT_CAST.
add(actors[0]); statement inside of the else portion to accommodate single Actor method calls. The Java code for 
the new method structure can be seen in Figure 17-47, and should look like the following:
 
public void addCurrentCast(Actor... actors) {
    if(actors.length > 1) {
        CURRENT_CAST.addAll(Arrays.asList(actors));
    } else {
        CURRENT_CAST.add(actors[0]);
    }
}
 

Figure 17-47.  Upgrade addCurrentCast() method in the CastingDirector class to accept a single object in parameter list



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

440

It is important to note that we could also accomplish this objective by overloading this .addCurrentCast() 
method as well. If you wanted to do this in this fashion, the Java code would look like the following method bodies:
 
public void addCurrentCast(Actor... actors) {
        CURRENT_CAST.addAll(Arrays.asList(actors));
}
public void addCurrentCast(Actor actor) {
        CURRENT_CAST.add(actor);
}
 

Once your game design becomes more advanced and you have decorative Actor objects on the Stage, you can 
implement the COLLIDE_CHECKLIST in your if() structures that need to iterate through (only) the Actor objects in 
your Scene that need to be processed for collision. 

At this point in our game design, we are processing all of the Actor objects for collision, thus, we don’t yet need 
to implement the COLLIDE_CHECKLIST List<Actor> Array. I’ve included it in the class design to be thorough and 
because I design foundational classes for games by looking out into the future toward what I will need in order for me 
to create an advanced (complete) game engine. That said, we may not have enough pages in this Beginner title to get 
that advanced, but the functionality is there if you needed to use it in your games, and after this chapter you will have 
plenty of experience using if() structures!

Now that we can add cast members on an individual basis, it is time to write the methods that will allow us to 
check the CURRENT_CAST List<Actor> Array to make sure that there are iBullet, iCheese, and iBeagle Actor objects in 
place for us to use for the next iteration of the auto-attack engine. What these methods will do is to look for these Actor 
objects in the CURRENT_CAST List, and if they are not present, will add one of them to the List so that it is ready for 
any type of attack that our conditional if() statements and random number generator create together! 

We’ll write three methods, one for deadly projectiles, called .loadBullet(); one for healthy projectiles, called 
.loadCheese(); and one for Enemy objects, called loadEnemy(). This will give us the ultimate flexibility, later on in 
our game development, of calling each type of functional Actor object type in its own “replenishment function.” 

Each method will look through the entire CURRENT_CAST List, using a for() loop, along with a .size() method 
call. In this way, the entire List is processed, from the first element (zero), through the last element (the List’s size). 

If there is no Actor object of that type found in the cast, that is, if the for() loop is completed, and no object of that 
type is found, after looking through the entire CURRENT_CAST List<Actor> for a match using object.equals(), then 
the two statements after the for loop will be executed.

The first statement will add one Actor object of that type to the CURRENT_CAST List<Actor>, and the second 
statement will then add one Actor object of that type to the JavaFX SceneGraph. At that point, the method is finished, 
and will then return control to the calling entity.

If an Actor object of that type is found in the CURRENT_CAST List<Actor> Array, a return; statement will be 
called to immediately exit the method, and return control to the calling entity. This means that the statements at the 
end of the for() loop, which add a new Actor object of that type to the cast, as well as adding a new Actor object to the 
JavaFX Scene Graph root object, will not be executed.



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

441

This return; statement is a central component to making this method work, because if any Actor object of that 
type exists, a duplicate one will not be added to the List<Actor> Array, which would cause an error to occur. This is 
a great way to make sure that we only use one Node for each type of Projectile and Enemy object, which allows us to 
optimize both memory and processor overhead. The Java 8 programming structures for all three of these methods is 
quite similar, and can be seen in Figure 17-48. The three private void method bodies should look like the following: 
 
private void loadBullet() {
    for (int i=0; i<invinciBagel.castDirector.getCurrentCast().size(); i++) {
        Actor object = invinciBagel.castDirector.getCurrentCast().get(i);
        if(object.equals(invinciBagel.iBullet)) {
            return;
        }
    }
    invinciBagel.castDirector.addCurrentCast(invinciBagel.iBullet);
    invinciBagel.root.getChildren().add(invinciBagel.iBullet.spriteFrame);
}
 
private void loadCheese() {
    for (int i=0; i<invinciBagel.castDirector.getCurrentCast().size(); i++) {
        Actor object = invinciBagel.castDirector.getCurrentCast().get(i);
        if(object.equals(invinciBagel.iCheese)) {
            return;
        }
    }
    invinciBagel.castDirector.addCurrentCast(invinciBagel.iCheese);
    invinciBagel.root.getChildren().add(invinciBagel.iCheese.spriteFrame);
}
 
private void loadEnemy() {
    for (int i=0; i<invinciBagel.castDirector.getCurrentCast().size(); i++) {
        Actor object = invinciBagel.castDirector.getCurrentCast().get(i);
        if(object.equals(invinciBagel.iBeagle)) {
            return;
        }
    }
    invinciBagel.castDirector.addCurrentCast(invinciBagel.iBeagle);
    invinciBagel.root.getChildren().add(invinciBagel.iBeagle.spriteFrame);
}
 



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

442

Now that all these methods are in place, we can call them inside of the .initiateAttack() auto-attack method 
body and put them to work checking to see if we need to add a Projectile or Enemy object before we mount the next 
attack. The proper place to invoke these method calls would be after the Enemy object is onScreen, and the Projectile 
object has been launched, which means that these method calls need to go at the end of the if(onScreen && launchIt) 
structure’s else{} body of code. The Java code for implementing these three method calls can be seen in Figure 17-49, 
and should look like the following: 
 
if(onScreen && launchIt) {
    destination = 700;
    if(spriteMoveR <= destination) {
        spriteMoveR+=1;
        spriteFrame.setTranslateX(spriteMoveR);
    } else {
        onScreen   = false;
        takeSides  = true;    // This will be false if inside of the if(takeSides) structure
        callAttack = false;
        launchIt   = false;
        loadBullet();
        loadCheese();
        loadEnemy();
    }
}
 

Figure 17-48.  Create loadBullet(), loadCheese() and loadEnemy() methods, to add another Enemy or Projectile to game



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

443

Next, let’s add a unique twist to our game play, and have a Projectile object, in the form of a Cream Cheese Ball, 
that will generate positive points if the InvinciBagel is able to put himself in a position to get hit by it.

Shooting Cream Cheese Balls: Different Bullet Types
To accommodate different types of projectiles, we will need to declare a new boolean variable, which we will name 
bulletType, so that we can have deadly projectiles (iBullet) and healthy projectiles (iCheese). In the .update() 
method, right before you set callAttack equal to true to start the attack sequence, you will set this bulletType variable 
equal to the result of a call to the .nextBoolean() method made off of the randomNum Random object. The Java code, 
which is shown highlighted in Figure 17-50, should look like the following Java statements:
 
boolean bulletType = false;
 
bulletType = randomNum.nextBoolean();
 

Figure 17-49.  Add calls to loadBullet(), loadCheese() and loadEnemy() to end of “move Enemy offscreen” else structure



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

444

To implement this boolean bulletType flag, we will need to convert your if(!takeSides) evaluator to be an 
if(!bulletType && !takeSides) evaluator, so that both the side of the screen and bullet-type boolean flags are taken 
into consideration. The new conditional if() structures, seen in Figure 17-51, should look like the following Java code:
 
if(!bulletType && !takeSides) {
    invinciBagel.iBullet.spriteFrame.setTranslateY(randomOffset);
    invinciBagel.iBullet.spriteFrame.setScaleX(-0.5);
    invinciBagel.iBullet.spriteFrame.setScaleY(0.5);
    bulletRange = -50;
    if(bulletOffset >= bulletRange) {
        bulletOffset-=4;
        invinciBagel.iBullet.spriteFrame.setTranslateX(bulletOffset);
    } else { shootBullet = false; }
}
if(!bulletType && takeSides) {
    invinciBagel.iBullet.spriteFrame.setTranslateY(randomOffset);
    invinciBagel.iBullet.spriteFrame.setScaleX(0.5);
    invinciBagel.iBullet.spriteFrame.setScaleY(0.5);
    bulletRange = 624;
    if(bulletOffset <= bulletRange) {
        bulletOffset+=4;
        invinciBagel.iBullet.spriteFrame.setTranslateX(bulletOffset);
    } else { shootBullet = false; }
}
 

Figure 17-50.  Add a boolean bulletType variable at top of the Enemy class, then set it equal to .nextBoolean() method



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

445

Next we need to do the same conversion for the bulletType equals true value. This will signify use of Cream 
Cheese as a Projectile object type. Once we put these conditional if() structures into place, we’ll have one if() structure 
for each logical combination of takeSides and bulletType. The last two conditional if() structures should look like this:
 
if(bulletType && !takeSides) {
    invinciBagel.iCheese.spriteFrame.setTranslateY(randomOffset);
    invinciBagel.iCheese.spriteFrame.setScaleX(-0.5);
    invinciBagel.iCheese.spriteFrame.setScaleY(0.5);
    bulletRange = -50;
    if(bulletOffset >= bulletRange) {
        bulletOffset-=4;
        invinciBagel.iCheese.spriteFrame.setTranslateX(bulletOffset);
    } else { shootBullet = false; }
}
if(bulletType && takeSides) {
    invinciBagel.iCheese.spriteFrame.setTranslateY(randomOffset);
    invinciBagel.iCheese.spriteFrame.setScaleX(0.5);
    invinciBagel.iCheese.spriteFrame.setScaleY(0.5);
    bulletRange = 624;
    if(bulletOffset <= bulletRange) {
        bulletOffset+=4;
        invinciBagel.iCheese.spriteFrame.setTranslateX(bulletOffset);
    } else { shootBullet = false; }
}
 

Figure 17-51.  Add bulletType to conditional if statement evaluation in shootProjectile() method, to shoot cream cheese



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

446

Tweaking a Game: Fine-Tuning the User Experience
Let’s take a moment and make a couple of adjustments to the code now that the auto-attack logic is working, to make 
sure that our game play is professional. Place the iBeagle, iBullet, and iCheese objects off-screen at game start-up, 
by changing the X and Y location parameters in each of these object’s constructor methods with negative X location 
values that are the same as (or greater than) the width of the sprite image asset, as can be seen in Figure 17-52.

Figure 17-52.  Modify X and Y parameters for all Enemy and Projectile constructor methods, to place them off-screen

Figure 17-53.  Change z-index of iCheese and iBullet in the addGameActorNodes() method so they’re before iBeagle

You also may have noticed that the Projectile objects are on top of the Enemy’s bazooka, so let’s change the 
z-index of the iBeagle object, so the projectiles come from behind the gun. To do this, put your .add() method call for 
the iBeagle after iBullet, and before iBagel, at the end of the .addGameActorNodes() method, as seen in Figure 17-53.



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

447

Now let’s add even more realism to this auto-attack game play, by randomizing which side the Enemy sprite 
emerges from, so that the game player does not know what to expect. Currently, we are alternating sides, so we need 
to add a randomization of the takeSides boolean flag at the strategic place within our code. Let’s write this code next.

Randomizing an Auto-Attack: Using .nextBoolean with takeSides
Even though we set the takeSides boolean flag right before we exit our initiateAttack() method after completing an 
attack, there is nothing that says we can’t set it again before we call an attack by setting callAttack equal to true in the 
if(attackCounter >= attackFrequency) structure, which you can see I have done in Figure 17-54, using the following 
Java statement:
 
takeSides = randomNum.nextBoolean;
 

Figure 17-54.  Set the boolean takeSides variable to use a .nextBoolean() method call off a randomNum Random object

Now that you have set the takeSides boolean flag variable in this way inside the Enemy .update() method, you 
can further optimize your code by removing the takeSides = true; and takeSides = false; statements, which are 
currently located inside your if(onScreen && launchIt) else statement (reference Figure 17-45).

Since those alternating boolean values will now be subsequently replaced by the .nextBoolean() method call in 
the if(!callAttack) structure, they can be safely removed, because the if(!callAttack) conditional structure randomly 
sets these two boolean values. The result of this is that now the iBeagle Enemy Actor object will randomly appear from 
out of either side of the screen, and the game player cannot anticipate where the attack is coming from anymore.



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

448

Use a Run ➤ Project work process, and play and test the game, which is seen in Figure 17-55. The first thing that 
you will notice is that all of our z-index character layer ordering is correct. You will also see that your Enemy and 
Projectiles are not visible at game start-up, which is another step toward a professional end-user experience.

Figure 17-55.  Use a Run ➤ Project work process to test the game and the enemy attack, bullet types, and scoring engine

You will notice that it is much more difficult to get the InvinciBagel into position, as you do not know where, 
when, or what direction the enemy attack is going to come from! Well, that is not entirely true, as we would need to 
randomize the attackFrequency variable to get the “when he appears” part to not be triggered at even time intervals. 
Since our objective is to make this game progressively more and more challenging and professional, let’s do this next!

For the remainder of the chapter we will add some features that make the game play more challenging and 
realistic. We will add some of the important game design elements such as randomization, artificial intelligence, and 
physics simulation, all of which will make your Java 8 games more professional and popular. You need to have some 
exposure to these concepts before we finish this first (beginner) round of our core Java 8 games development cycle.

Add the Element of Surprise: Randomizing the Attack Frequency
Now that we have made the point of entry on the screen as well as the side of the screen that is used for the attack to 
be completely random, let’s go into the fourth dimension (time) and make when the attack will occur also random. 
This is done by randomizing the attackFrequency variable, which before this we had set to 4.167 seconds (250/60FPS). 
We will set this random value in the else structure in the .initiateAttack() method where we set your boolean flag 
settings and call the .load() methods that we created to make sure the auto-attack engine always has Enemy and 
Projectile objects to work with. We will put a Java statement that inserts a random value into the attackFrequency 
variable at the end of this else portion of the if(onScreen && launchIt) conditional structure, so that a new random 
time is in place when the .update() method starts using this variable for its attack delay counter programming logic. 
Since the .nextInt(int bounds) method call structure gives us a random integer between zero and the upper bounds, in 
order to get a range of attack delay between one second (60) and nine seconds (60+480), we will need to add 60 to the 
value generated by the randomNum.nextInt(480) part of the statement, and then set the attackFrequency variable 
equal to that value. The Java code for this attackFrequency randomization statement can be seen in Figure 17-56 and 
should look like the following:
 
attackFrequency = 60 + randomNum.nextInt(480);
 



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

449

As you can see when you use the Run ➤ Project work process, you no longer can calculate when any given 
Enemy attack will commence! Let’s make the auto-attack engine more intelligent, by telling it where the InvinciBagel 
character is located (Y coordinate) on the screen, so that the auto-attack engine can more effectively target him!

Targeting the InvinciBagel: Adding Enemy Artificial Intelligence
The next thing that we should do to make game play more challenging is tell the auto-attack engine where the iBagel 
is located on the screen, an artificial intelligence gathering mission, made easier because we control all of the Java 
code! To do this, instead of using the randomLocation random Y screen height location value, we will create a variable 
that will hold the InvinciBagel Y screen height location value, giving the Enemy inside information regarding where 
the iBagel object is on the screen. This is done using the iY attribute of the iBagel Hero object, which we access using 
the .getiY() getter method, and then use in the .setTranslateY() method call. We are using integer (rather than double) 
as the iBagelLocation data type, so we’ll need to “cast” the double data value we get from the .getiY() method, so that it 
is compatible with the iBagelLocation variable. The Java code, shown in Figure 17-57, should look like the following:
 
int iBagelLocation;
iBagelLocation = (int) invinciBagel.iBagel.getiY();
spriteFrame.setTranslateY(iBagelLocation);
randomOffset = iBagelLocation + 5;
 

Figure 17-56.  Add an attackFrequency statement incorporating a .nextInt(bounds) method in if (onScreen && launchIt)



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

450

If you use your Run ➤ Project work process to test your code, you will see that the projectiles now target the 
InvinciBagel character, no matter where you might position him on the screen! This is great for attacks that utilize the 
deadly iBullet Projectile Actor object, but makes it too easy to score points when the iCheese Projectile Actor object is 
used by the auto-attack engine. Therefore, we will need to add another layer of code that uses the randomLocation 
variable, if the auto-attack engine is going to shoot a Cream Cheese Ball, and the iBagelLocation variable, if the auto-
attack engine is going to shoot a deadly (real) bullet. We will put this logic structure up in the .update() method where 
we create both the randomLocation and iBagelLocation variable values (using .nextBoolean() or .getiY() method calls), 
right after the bulletType is determined, using a .nextBoolean() method call off of the randomNum Random object.

The if(bulletType) conditional if structure that we are going to create will use a .setTranslateY() method call, 
passing a randomLocation parameter, if bulletType equates to a true value (iCheese), and will use the .setTranslateY() 
method call passing the iBagelLocation parameter, if the bulletType equates to a false value (iBullet), using the else{} 
portion of the if-else structure. In a second line of code inside each section of the if-else structure, we’ll remember to set 
the randomOffset variable, to add five pixels to the randomLocation variable inside the if portion of the structure, or to 
add five pixels to the iBagelLocation variable, inside the else portion, using the following code, shown in Figure 17-58:
 
if(attackCounter >= attackFrequency) {
    attackCounter=0;
    spriteMoveR = 700;
    spriteMoveL = -70;
    randomLocation = randomNum.nextInt(attackBoundary);
    iBagelLocation = (int) invinciBagel.iBagel.getiY();
    bulletType = randomNum.nextBoolean();
    if(bulletType) {
    spriteFrame.setTranslateY(randomLocation);
    randomOffset = randomLocation + 5;
    } else {
    spriteFrame.setTranslateY(iBagelLocation);
    randomOffset = iBagelLocation + 5;
    }
    callAttack = true;
} else { attackCounter+=1; }
 

Figure 17-57.  Declare iBagelLocation integer variable, cast a double iY variable to it, and use it to create randomOffset



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

451

Adding Gravity to the Bullets: Intro to Game Physics
Since physics calculations tend to use fractional numbers rather than integers, we need to pull the randomOffset out of 
the compound integer declaration and make it a double randomOffset; declaration, as seen in Figure 17-59. Also, you’ll 
need to declare double variables for bulletGravity and cheeseGravity, and set them equal to 0.2 and 0.1 values.

Figure 17-58.  Add an if-else structure after the bulletType, randomLocation, and iBagelLocation to locate by bulletType

Figure 17-59.  Declaring bulletGravity and cheeseGravity double variables, and converting randomOffset to a double



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

452

What we want to do is to add a bulletGravity (or cheeseGravity) factor to the randomOffset (Y location) on each 
frame, so we get a slight “tailing off” effect on the shot. This will simulate gravity pulling the Projectile down to Earth. 
We will put this inside of the if(bulletOffset >= bulletRange) counter loop so that gravity factor is only applied when 
the projectile is visible flying across the screen. The Java code that incorporates bulletGravity and cheeseGravity 
adjustments to the Projectile object’s trajectories can be seen in Figure 17-60, and should look like the following code:
 
private void shootProjectile() {
    if(!bulletType && !takeSides) {
        invinciBagel.iBullet.spriteFrame.setTranslateY(randomOffset);
        invinciBagel.iBullet.spriteFrame.setScaleX(-0.5);
        invinciBagel.iBullet.spriteFrame.setScaleY(0.5);
        bulletRange = -50;
        if(bulletOffset >= bulletRange) {
            bulletOffset-=6;
            invinciBagel.iBullet.spriteFrame.setTranslateX(bulletOffset);
            randomOffset = randomOffset + bulletGravity;
        } else { shootBullet = false; }
    }
    if(!bulletType && takeSides) {
        invinciBagel.iBullet.spriteFrame.setTranslateY(randomOffset);
        invinciBagel.iBullet.spriteFrame.setScaleX(0.5);
        invinciBagel.iBullet.spriteFrame.setScaleY(0.5);
        bulletRange = 624;
        if(bulletOffset <= bulletRange) {
            bulletOffset+=6;
            invinciBagel.iBullet.spriteFrame.setTranslateX(bulletOffset);
            randomOffset = randomOffset + bulletGravity;
        } else { shootBullet = false; }
    }
    if(bulletType && !takeSides) {
        invinciBagel.iCheese.spriteFrame.setTranslateY(randomOffset);
        invinciBagel.iCheese.spriteFrame.setScaleX(-0.5);
        invinciBagel.iCheese.spriteFrame.setScaleY(0.5);
        bulletRange = -50;
        if(bulletOffset >= bulletRange) {
            bulletOffset-=4;
            invinciBagel.iCheese.spriteFrame.setTranslateX(bulletOffset);
            randomOffset = randomOffset + cheeseGravity;
        } else { shootBullet = false; }
    }
    if(bulletType && takeSides) {
        invinciBagel.iCheese.spriteFrame.setTranslateY(randomOffset);
        invinciBagel.iCheese.spriteFrame.setScaleX(0.5);
        invinciBagel.iCheese.spriteFrame.setScaleY(0.5);
        bulletRange = 630;
        if(bulletOffset <= bulletRange) {
            bulletOffset+=4;
            invinciBagel.iCheese.spriteFrame.setTranslateX(bulletOffset);
            randomOffset = randomOffset + cheeseGravity;
        } else { shootBullet = false; }
    }
}
 



Chapter 17 ■ Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine 

453

Summary
In this seventeenth and final chapter, we used all of the foundational elements of our game engine(s) that we have 
been building during the course of this book, and created the basic game play for the InvinciBagel game, including a 
scoring engine and an auto-attack engine, as well as random attack strategies and basic physics simulation to enhance 
realism. We learned how to use the JavaFX 8.0 Text and Font class to create scoreboard output on the game, and how 
to use the Java 8 Random class as a random number generator to make our auto-attack engine seem like it had a life of 
its own. We also added bounty to the game by coding a Treasure.java class and created a .scoringEngine() method to 
track and organize our scoring algorithm. We learned more about optimization, using if-else-if loops with break; and 
learned how to use return; to break out of a method prematurely as well, and we used both of these techniques to 
great benefit in our game play logic. We added Enemy characters and Projectile objects to the game, and learned how 
to implement a background plate behind the game play. I’ve tried to go beyond a basic beginner Java 8 book and show 
you the work process involved in creating a game engine infrastructure, including the design thought process, how to 
leverage key classes in Java 8 and JavaFX 8.0, and how to use new media assets and optimization techniques.

Figure 17-60.  Adding physics simulation of gravity to the Projectile object's trajectory in the .shootProjectile() method



A�       �
ActionEvent object, 193
Actor superclass, 165, 168, 299

Actor() constructor method, 169, 173
boolean data variables, 172
double data variables, 171
getter and setter methods, 174
overloaded method, 169
Prop subclasses (see Prop subclasses)
setContent() method, 169
update() method, 170

addGameActorNodes()  
method, 237–238, 248

addNodesToStackPane()  
method, 128, 143, 238, 241

addStackPaneNodes() method, 138
Antialiasing, 110
ArrayList, 208

class, 209
object, 209

addAll() method, 215
addCurrentCast() method, 214
COLLIDE_CHECKLIST, 218
getCurrentCast() method, 214
removeCurrentCast() method, 215
resetCurrentCast() method, 216

ASDW keys function
coding, 289–290
Getter and Setter methods, NetBeans  

Insert Code, 291, 293
jump and evade animation, 293–294
WSAD keys, 290

Audacity, 13
AudioClip, 323

Audacity
Export File dialog, 325
non-destructive audio editing, 327
waveform representation, 325

class, 324
InvinciBagel.java class

loadAudioAssets() method, 335
playAudioClip() method, 340
playiSound() methods, 338
URL class, 333

loadAudioAssets() method, 323
memory footprint, 327

export assets, 332
PCM, 327
resolution, 328
sampling frequency, 329
stereo vs. mono audio, 331

object, 324
playAudioClip() method, 323
setiSound() methods, 323

Auto-attack engine, 393, 417
addGameActorNodes() method, 446
boolean variables, 424
constructor methods, 446
GamePlayLoop .handle() method, 423
getter method, 449
handle() method, 418
iBagelLocation variable, 450
if-else structure, 425
initiateAttack() method, 419, 447
nested if conditional structures, 426
nextBoolean() method, 421, 447
nextInt() method, 421
randomNum.nextInt() method, 448
shootProjectile() method, 426
update() method, 418

B�       �
Background image

loadImageAssets(), 413
setImage() method, 413
setVisible() method, 413

Index

455



toBack() method, 415
toFront() method, 415

Bagel.java class, 223
Bagel() constructor method, 224
collide() method, 225
update() method, 225

Blank white screen, 187
Blender, 15
bulletGravity, 451
Bullet types, 443
Button object instantiation, 53

C, D�       �
Captive vs. streaming audio, 118
CastingDirector.java class

ArrayList (see ArrayList)
CastingDirector() constructor method, 222
CURRENT_CAST object, 216
HashSet class, 208, 213
HashSet Object

addAll() method, 221
addToRemovedActors() method, 220
getRemovedActors() method, 219
removeAll() method, 221

List<E> public interface, 210
Set<E> public interface, 212
threading, 217

cheeseGravity, 451
Codecs, 114–115
Collision detection, 343

bounds object, 372
getBoundsInLocal() method, 373
getBoundsInParent() method, 373
intersects(Bounds localBounds) method, 374

CastingDirector object, 378
checkCollision() method, 370, 385

boolean collide() method, 372
update() method, 370

getBoundsInParent() method, 376
getChildren().remove() method, 380
InvinciBagel.java class, 365

addCurrentCast() method, 369
collide() method, 366
iBagel Bagel() constructor method, 368
parsing algorithm, 368
private access control keyword, 369
testing, 368

invinciBagel.playiSound0() method, 376
object.getSpriteFrame() method, 381
PhysicsEditor (PhysEd), 363
resetRemovedActors() method, 383–384
scoringEngine() method, 389
Shape class intersect() method, 374

SVG Path data (see SVG Path data)
SVGPath.intersect() method, 376
using Group class, 386

setBoundaries() method, 389
setLayoutY() method, 388
StackPane UI container, 387

createActorCollisionData() method, 236
createCastingDirection() method, 238
createGameActors() method, 235
createSceneEventHandling() method, 231
createSplashScreenNodes() method, 128, 240

addNodesToStackPane() method, 137
configuration code, 136
.getChildren().addAll(), 136
Java code, 136

createStartGameLoop() method, 239

E�       �
EditShare Lightworks, 14
empty constructor method, 132
Enemy() constructor method, 408, 429

if() structure, 436
pauseCounter variable, 435
randomLocation variable, 431
shootProjectile() method, 433

extends keyword, 149

F�       �
Framecounter, 281–282
FXML UI design

CSS styles, 120
definition, 121
HelloWorld, 121
Inspector panel, 120
Scene Builder Kit API, 120

G�       �
Game design

concepts
collision detection, 104
physics simulation, 104
sprites, 104

digital audio
amplitude, 116
analog audio, 117
baseline file format, 118
captive vs. streaming, 118
codecs, 118
digital audio, 117
frequency, 116
optimization, 119
pulse wave, 116

■ index

456

Background image (cont.)



saw wave, 116
sine wave, 116

digital image
8-bit transparency gradient, 113
alpha channel transparency value, 108
antialiasing, 110
banding, 111
blending modes, 108
color values, 107
dithering, 111, 113
dot patterns, 111
graphics interchange format (GIF), 106
hexadecimal notation, 109
Joint Photographic Experts Group (JPEG), 106
masking, 109
portable network graphics  

(PNG\; pronounced “ping”), 106
resolution, 107, 111

digital video, 113
codecs, 114–115
data packets, 114
dropping frames, 115
frames, 114
high definition (HD), 114
standard definition (SD), 114
ultra high definition (UHD), 114

foundation
GamePlayLoop class, 124–125
Java class structure, 125
JavaFX Scene Graph (see JavaFX Scene Graph)
JavaFX UI classes (see JavaFX UI classes)
primary game functional screens, 124

optimization, 103
static vs. dynamic, 102
types

dynamic games, 105
static games, 105
strategy games, 105

Game Development Environment, 1
Audacity, 13
Blender, 15
GIMP, 12
Inkscape, 11
JDK 8 installation, 6
license agreement, 4
Lightworks, 14
NetBeans IDE 8.0

directory suggestions, 9
installer dialog, 8
license agreement, 9
percentage dialog, 10
summary dialog, 10

workstation, 2
programs and features, 2
uninstall button, 3

Game Play Loop
handle() method

abstract methods option, 151
NetBeans coding, 150
@Override keyword, 150–151
UnsupportedOperationException, 151

java class creation, 147
javafx.animation package, 145
JavaFX pulse system (see JavaFX pulse system)
NetBeans Profiler

menu sequence, 153
Threads tab, 154

pulse control, 152
pulse engine, 162
.start() and .stop() methods

empty method, 157–158
handle() method, 156–157
InvinciBagel.java tab, 155–156
Live Results Profiler tab, 158
@Override keyword, 154
super keyword, 154
Threads tab, 159

UI container, 160
getChildren().addAll() method, 132
GIMP, 12
Graphics interchange format (GIF), 106

H�       �
HashSet class, 213
HashSet Object

addAll() method, 221
addToRemovedActors() method, 220
getRemovedActors() method, 219
removeAll() method, 221

Hero superclass, 165
collide() method, 178
getter and setter methods, 182
Hero() constructor method, 177
setContent() method, 177
sprite control, 179

compound declaration, 181
initialization statements, 180
variable declarations, 181

update() method, 178

I�       �
if() statement, 274
Image() constructor methods, 133
ImageView() constructor methods, 134
Inkscape, 11
InvinciBagel animation

fly state, 277
isFlipH Property

■ Index

457



Java coding, 295
testing, 295

isLeft() method, 278
isRight() method, 278
run cycle (see Run cycle)
run state, 276
setImageState() method, 274
setScaleX() method, 278
wait state, 274–275

InvinciBagel application, 123
buttons

pulse efficiency, 142
.setOnAction() event-handling  

structure, 140–141
UI design, 142

.setImage() method, 139
splashScreenTextArea.setImage() method, 140
StackPane, 139

InvinciBagel diagram, 159–160
InvinciBagel.java class, 229, 252, 333, 365

actor object creation
handle() method, 242
update() method, 243

addCurrentCast() method, 369
addGameActorNodes(), 237–238
castDirector, 233
collide() method, 366
contextual information, 254

Bagel() constructor method, 255
createGameActors() method, 256
is() methods, 257
protected access, 255
update() method, 257

createCastingDirection(), 238
createGameActors() method, 235
createSceneEventHandling() method, 231
createSplashScreenNodes(), 240
createStartGameLoop() method, 239
creation, 230
enemy object, 410
GamePlayLoop() constructor method, 258
iBagel Bagel() constructor method, 368
loadAudioAssets() method, 335
loadImageAssets() method, 234
logical methods structures, 230–231
moveInvinciBagel() method, 265
playiSound() methods, 338
private access control keyword, 369
Projectile object, 410
remove static modifier

boolean KeyEvent variables, 252
Getter and Setter dialog, 253

setBoundaries() method, 267
setXYLocation() method, 266

StackPane object, 261
start() method, 230
static keyword, 233
SVG data parsing algorithm, 368
testing, 246, 270, 368
URL class, 334

InvinciBagel Prop zero (iPRO), 310
InvinciBagel sprite images, 167
isDown() method, 277
isUp() method, 277

J�       �
Java 8, 43

APIs level, 47
classes

extends keyword, 48
init() method, 49
inner classes, 50
InvinciBagel class, 49
modifier keywords, 48
nested class, 50
stop() method, 49

code blocks delimiters, 46
conditional control structures, 65

decision making, 66
looping, 68

data field
constants, 56
variables, 55

data types
primitive data types, 60
reference data types, 61

Javadoc comment, 45
methods

constructor method, 54
object method, 53
start() method, 52

modifier keywords (see Modifier keywords)
multiline comments, 44
objects

GamePiece() constructor method, 73
InvinciBagel object, 69

operators, 61
arithmetic operators, 62
assignment operators, 64
conditional operators, 65
logical operators, 64
relational operators, 63

semicolon, 45
single-line comment, 44

JavaFX 8 API, 75
animation class, 85

AnimationTimer class, 87–88
collision detection, 88

■ index

458

InvinciBagel animation (cont.)



Interpolator class, 86
KeyFrame objects, 86
pulse management system, 87
Timeline object, 86
transition class, 86

Camera class, 81
concurrent package, 97
event class, 97
geometry class, 95
Glass Windowing Toolkit, 76
JVM layer, 77
LightBase class, 81
overview, 76
popup class, 89
prism bridges, 77
Quantum Toolkit, 76
SceneAntialiasing class, 81
scene class, 79
scene graph, 76, 79
scene subpackages, 82

javafx.scene.control, 83
javafx.scene.effect, 83
javafx.scene.image, 83
javafx.scene.input, 83
javafx.scene.layout, 83
javafx.scene.media, 83
javafx.scene.paint, 83
javafx.scene.shape, 83
javafx.scene.text, 84
javafx.scene.transform, 84
javafx.scene.web, 84

screen class, 89
SnapshotParameters class, 81
StackPane class, 79
stage class

initStyle() method, 90
setBackground() method, 93
setFill() method, 91
setTitle() method, 90

top-level packages, 84
WebKit, 76
window superclass, 89

JavaFX pulse system, 145
AnimationTimer class, 147
frame rate, 147
handle() method, 147
javafx.animation package, 146
javafx.animation.Transition  

class, 146
KeyFrame class, 146
KeyValue class, 146
PathTransition class, 146

JavaFX Scene Builder (see FXML UI design)
JavaFX Scene Graph, 123

.addStackPaneNodes() method
java code, 138

composite images, 126
createSplashScreenNodes() method, 136

addNodesToStackPane() method, 137
configuration code, 136
.getChildren().addAll(), 136
Java code, 136

InvinciBagel class code, 127
node hierarchy, 126
start() method

composite ImageView assets, 129
creation, 128

usage, 126
JavaFX UI classes

HBox class, 131
Image class, 132–133
ImageView class, 134
Insets class, 130
Pos class, 130
TableView class, 135
types, 129

Java interface, 209
Joint Photographic Experts Group (JPEG), 106

K�       �
Keyboard event handling, 187, 195

ActionEvent class, 196
ASWD keys, 197, 204
character variable, 198
controllers, 195
import statements, 203
javafx.event package, 196
JavaFX events, 196
javafx.scene.input package, 196
java.util package, 196
KeyEvent class, 197
lambda expression, 201
setOnKeyPressed() method, 199, 202
switch-case statement, 200
update() method, 205

L�       �
Lambda expressions, 187, 191
Lightworks, 14
loadImageAssets() method, 234, 241

M�       �
Masking, 109
Memory footprint

export assets, 332
PCM, 327
resolution, 328
sampling frequency, 329
stereo vs. mono audio, 331

■ Index

459



Modifier keywords
access control modifiers

package private access  
modifier, 58

private access modifier, 58
protected access modifier, 57
public access modifier, 57

nonaccess control modifier, 58
abstract modifier, 59
final modifier, 59
static modifier, 59
synchronized modifier, 60
volatile modifier, 60

moveInvinciBagel() method, 295

N�       �
NetBeans IDE 8.0, 19

attributes
code indenting, 20
code refactoring, 20

code optimization, 22
debugger, 22
extensible, 20
InvinciBagel game project, 23

application class  
creation, 26

compilation, 28
compile progress bar, 29
description pane, 25
Finding Feature dialog, 25
package statement, 27
profile menu (see Profile menu)
Quick Launch icon, 23
run project, 29
start page tab, 24

Navigator pane, 21
Project pane, 21
UI design, 22

O�       �
Object declaration, 53
Object instantiation, 53
Open-source software  

packages, 16

P�       �
PhysicsEditor (PhysEd), 363
Portable network graphics  

(PNG; pronounced “ping”), 106
Profile menu, 32

analyze performance, 33
calibration process, 34

memory usage
Record stack, 38
Telemetry tabs, 40
Threads tab, 39

profiler tab
garbage collection, 36
output pane, 37
telemetry section, 36

project utility, 32
Windows firewall, 35

Projectile.java class, 409
Prop subclasses, 300

addCurrentCast() method
iPB0 PropB object, 316
iPH0 PropH object, 314
iPR0 Prop object, 313
iPV0 PropV object, 315

addGameActorNodes() method, 317
class declaration, 302
error highlights, 300
helper dialog, 301
image declarations, 310
Java Class dialog, 300
loadImageAssets() method, 312
moveInvinciBagel() method, 303
PropB class, 309
Prop() constructor method, 302
PropH class, 304

PropH() constructor method, 308
setIsFlipH method, 306
setScaleX() method, 307

PropV class, 308
setTranslateX() method, 303
setTranslateY() method, 303
UnsupportedOperationException(), 301
update() method, 302
wrench icons, 310

Public abstract class, 166
Pulse code modulated (PCM), 327

Q�       �
Quick Launch icons, 17

R�       �
Random number generators, 416
Run cycle

fly and land states, 286
Nested If-Else structure, 279
throttle program logic, 281–282
triple Nested If-Else

Java code, 285–286
ScaleX property, 284
structures, 283

■ index

460



S�       �
Scalable Vector Graphics (SVG), 343
Scoring engine, 394

addCurrentCast() method, 439
COLLIDE_CHECKLIST, 440
if else method, 442
loadBullet() method, 440
loadCheese() method, 440
loadEnemy() method, 440
private void method, 441
return statement, 440

code implementation, 399
createSplashScreenNodes() method, 394
equals() method, 437
getChildren().add() method, 396
if-else-if structure, 402
if() structures, 400
playiSound0() method, 400
private Font object, 395
scoreLabel Text object, 397
setFill() method, 397
setFont() method, 397
setText() method, 400
String.valueOf() method, 394

.setImage() method, 134
setImageState() method, 274, 295
setTitle() method, 128
setTranslate() methods, 245–246
setVisible() method, 232
Stereo vs. mono audio, 331
SVG Path data, 344

using GIMP, 345
Export Path, 349
Fuzzy Selection Tool, 346
invert selection, 348
pixel selection, 348
quotation marks, 351
text editor, 351

using Import Path, 356
Bezier curve control, 359
collision polygon, 358
data footprint optimization, 362
floating point  

representation, 358
integer collision path, 357
remove duplications, 359
Z closing command, 360

using Path Tool, 352
close path command, 355
numeric precision, 355
optimization, 355
Unnamed Path, 354

T�       �
TableView() constructor method, 135
Treasure.java class, 393

code implementation, 403
collision detection, 406
Image() constructor method, 404

U, V�       �
UnsupportedOperationException(), 158
update() method

If statements, 243–245
import static statements, 243
setTranslate() methods, 245–246

W, X, Y, Z�       �
White background

ImageView, 190
setVisible() method, 189
testing, 190

Width and height  
variables, 187–188

■ Index

461



Beginning Java 8  
Games Development

Wallace Jackson



Beginning Java 8 Games Development

Copyright © 2014 by Wallace Jackson

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material 
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, 
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, 
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. 
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material 
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the 
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the 
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from 
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are 
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0416-0

ISBN-13 (electronic): 978-1-4842-0415-3

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every 
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion 
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified 
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither 
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may 
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Chád Darby
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Louise Corrigan, James T. DeWolf,  

Jonathan Gennick, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie,  
Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,  
Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Mark Powers
Copy Editors: Lisa Vecchione, Karen Jameson
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor, 
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit  
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science + 
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation. 

For information on translations, please e-mail rights@apress.com, or visit www.apress.com. 

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook 
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook 
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers at  
www.apress.com/9781484204160. For detailed information about how to locate your book’s source code, go to  
www.apress.com/source-code.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484204160
www.apress.com/source-code/


This Java 8 Game Development book is dedicated to everyone in the open source community who is  
working diligently to make professional new media application development software, and content  

development tools, freely available for all of us rich application developers to utilize to achieve  
our creative dreams and financial goals. Last, but certainly not least, I dedicate this book to  

my father Parker, my family, all my life-long friends, and all of my ranching neighbors,  
for their constant help, assistance, and those smoky late night BBQ parties.



vii

Contents

About the Author���������������������������������������������������������������������������������������������������������������� xix

About the Technical Reviewer�������������������������������������������������������������������������������������������� xxi

Acknowledgments������������������������������������������������������������������������������������������������������������ xxiii

Introduction����������������������������������������������������������������������������������������������������������������������� xxv

Chapter 1: Setting Up a Java 8 Game Development Environment■■ ��������������������������������������1

Prepare a Workstation for Java 8 Game Development�������������������������������������������������������������������2

Downloading Java JDK 8 and NetBeans 8.0����������������������������������������������������������������������������������4

Installing the Java 8 Software Development Environment�������������������������������������������������������������6

Installing NetBeans IDE 8.0������������������������������������������������������������������������������������������������������������8

Installing New Media Content Production Software���������������������������������������������������������������������11

Downloading and Installing Inkscape������������������������������������������������������������������������������������������������������������������� 11

Downloading and Installing GIMP������������������������������������������������������������������������������������������������������������������������� 12

Downloading and Installing Audacity�������������������������������������������������������������������������������������������������������������������� 13

Downloading and Installing EditShare Lightworks����������������������������������������������������������������������������������������������� 14

Downloading and Installing Blender��������������������������������������������������������������������������������������������������������������������� 15

Other Open-Source Software Packages of Interest����������������������������������������������������������������������16

Organizing Quick Launch Icons in Your Taskbar Area�������������������������������������������������������������������17

Summary��������������������������������������������������������������������������������������������������������������������������������������17

Chapter 2: Setting Up Your Java 8 IDE: An Introduction to NetBeans 8.0■■ �������������������������19

Primary Attributes of NetBeans 8.0: An Intelligent IDE�����������������������������������������������������������������19

NetBeans 8.0 Is Smart: Put Your Code Editing into Hyperdrive����������������������������������������������������������������������������� 20

NetBeans 8.0 Is Extensible: Code Editing with Many Languages������������������������������������������������������������������������� 20

NetBeans 8.0 Is Efficient: Organized Project Management Tools������������������������������������������������������������������������� 21



■ Contents

viii

NetBeans 8.0 Is User Interface Design Friendly: UI Design Tools������������������������������������������������������������������������� 22

NetBeans 8.0 Is not Bug Friendly: Squash Bugs with a Debugger����������������������������������������������������������������������� 22

NetBeans 8.0 Is a Speed Freak: Optimize the Code with a Profiler���������������������������������������������������������������������� 22

Creating Your Java 8 Game Project: The InvinciBagel������������������������������������������������������������������23

Compiling Your Java 8 Game Project in NetBeans 8.0�����������������������������������������������������������������28

Running Your Java 8 Game Project in NetBeans 8.0��������������������������������������������������������������������29

Profiling Your Java 8 Game Project in NetBeans 8.0��������������������������������������������������������������������31

Profiling Your Java 8 Game Application CPU Usage���������������������������������������������������������������������������������������������� 33

Profiling Your Java 8 Game Application Memory Usage��������������������������������������������������������������������������������������� 38

Summary��������������������������������������������������������������������������������������������������������������������������������������41

Chapter 3: A Java 8 Primer: An Introduction to Java 8 Concepts and Principles■■ ������������43

The Syntax of Java: Comments and Code Delimiters�������������������������������������������������������������������43

Java APIs: Using Packages to Organize by Function��������������������������������������������������������������������47

Java Classes: Logical Java Constructs to Build On����������������������������������������������������������������������48

Nested Classes: Java Classes Living Inside Other Classes���������������������������������������������������������������������������������� 49

Inner Classes: Different Types of Nonstatic Nested Classes��������������������������������������������������������������������������������� 50

Java Methods: Core Java Function Code Constructs�������������������������������������������������������������������51

Creating a Java Object: Invoking a Class’s Constructor Method�������������������������������������������������������������������������� 53

Creating a Constructor Method: Coding an Object’s Structure����������������������������������������������������������������������������� 54

Java Variables and Constants: Values in Data Fields��������������������������������������������������������������������55

Fixing Data Values in Memory: Defining a Data Constant in Java������������������������������������������������������������������������ 56

Java Modifier Keywords: Access Control and More���������������������������������������������������������������������56

Access Control Modifiers: Public, Protected, Private, Package Private����������������������������������������������������������������� 57

Nonaccess Control Modifiers: final, static, abstract, volatile, synchronized��������������������������������������������������������� 58

Java Data Types: Defining Data Type in Applications��������������������������������������������������������������������60

Primitive Data Types: Characters, Numbers, and Boolean (Flags)������������������������������������������������������������������������ 60

Reference Data Types: Objects and Arrays����������������������������������������������������������������������������������������������������������� 61

Java Operators: Manipulating Data in the Application�����������������������������������������������������������������61

Java Arithmetic Operators������������������������������������������������������������������������������������������������������������������������������������ 62

Java Relational Operators������������������������������������������������������������������������������������������������������������������������������������� 63



■ Contents

ix

Java Logical Operators:���������������������������������������������������������������������������������������������������������������������������������������� 64

Java Assignment Operators���������������������������������������������������������������������������������������������������������������������������������� 64

Java Conditional Operators����������������������������������������������������������������������������������������������������������������������������������� 65

Java Conditional Control: Decision Making or Loops�������������������������������������������������������������������65

Decision-Making Control Structures: Switch-Case and If-Else���������������������������������������������������������������������������� 66

Looping Control Structures: While, Do-While, and For������������������������������������������������������������������������������������������ 68

Java Objects: Virtual Reality, Using Java Constructs��������������������������������������������������������������������69

Creating an InvinciBagel Object: Attributes, States, and Behavior������������������������������������������������������������������������ 69

Creating an InvinciBagel Blueprint: Create the GamePiece Class������������������������������������������������������������������������ 72

Creating a GamePiece( ) Constructor: Overloading a GamePiece������������������������������������������������������������������������� 73

Summary��������������������������������������������������������������������������������������������������������������������������������������74

�Chapter 4: An Introduction to JavaFX 8: Exploring the Capabilities  ■■
of the Java 8 Multimedia Engine��������������������������������������������������������������������������������������75

Overview of JavaFX: From Scene Graph Down to OS�������������������������������������������������������������������76

JavaFX Scene Package: 16 Core Java 8 Classes�������������������������������������������������������������������������77

JavaFX Scene Class: Scene Size and Color and Scene Graph Nodes������������������������������������������������������������������� 78

JavaFX Scene Graph: Organizing Scenes, Using Parent Nodes���������������������������������������������������������������������������� 79

JavaFX Scene Content: Lights, Camera, Cursor, Action!��������������������������������������������������������������������������������������� 80

JavaFX Scene Utilities: Scene Snapshots and Antialiasing���������������������������������������������������������������������������������� 81

Scene Subpackages: The 13 Other Scene Packages�������������������������������������������������������������������82

Other JavaFX Packages: The 15 Top-Level Packages������������������������������������������������������������������84

JavaFX Animation for Games: Using javafx.animation Classes���������������������������������������������������������������������������� 85

JavaFX Screen and Window Control: Using javafx.stage Classes������������������������������������������������������������������������� 89

JavaFX Bounds and Dimensions: Using javafx.geometry Classes������������������������������������������������������������������������ 95

JavaFX Input Control for Games: Using javafx.event Classes������������������������������������������������������������������������������� 97

JavaFX Thread Control for Games: javafx.concurrent Package���������������������������������������������������������������������������� 97

Summary��������������������������������������������������������������������������������������������������������������������������������������98



■ Contents

x

�Chapter 5: An Introduction to Game Design: Concepts, Multimedia,  ■■
and Using Scene Builder�������������������������������������������������������������������������������������������������101

High-Level Concept: Static vs. Dynamic�������������������������������������������������������������������������������������102

Game Optimization: Balancing Static Elements with Dynamic��������������������������������������������������103

Game Design Concepts: Sprites, Physics, Collision��������������������������������������������������������������������104

Types of Games: Puzzles, Board Games, Arcade Games, Hybrids����������������������������������������������104

Game Design Assets: New Media Content Concepts������������������������������������������������������������������105

Digital Imaging Concepts: Resolution, Color Depth, Alpha, Layers��������������������������������������������������������������������� 106

Digital Video and Animation: Frames, Rate, Looping, Direction�������������������������������������������������������������������������� 113

Digital Audio Concepts: Amplitude, Frequency, Samples������������������������������������������������������������������������������������ 116

JavaFX Scene Builder: Using FXML for UI Design����������������������������������������������������������������������120

FXML Definition: Anatomy of an XML UI Definition Construct����������������������������������������������������������������������������� 121

Hello World UI FXML Definition: Replicating Your Current UI Design, Using FXML���������������������������������������������� 121

Summary������������������������������������������������������������������������������������������������������������������������������������122

�Chapter 6: The Foundation of Game Design: The JavaFX Scene Graph  ■■
and the InvinciBagel Game Infrastructure����������������������������������������������������������������������123

Game Design Foundation: Primary Function Screens����������������������������������������������������������������124

Java Class Structure Design: Game Engine Support������������������������������������������������������������������125

JavaFX Scene Graph Design: Minimizing UI Nodes��������������������������������������������������������������������126

Scene Graph Code: Optimizing Your Current InvinciBagel Class������������������������������������������������������������������������� 127

Scene Graph Design: Streamlining the Existing .start( ) Method������������������������������������������������������������������������ 128

JavaFX UI Classes: HBox, Pos, Insets, and ImageView���������������������������������������������������������������129

The JavaFX Pos Class: Generalized Screen Position Constants������������������������������������������������������������������������� 129

The JavaFX Insets Class: Providing Padding Values for Your UI�������������������������������������������������������������������������� 130

The JavaFX HBox Class: Using a Layout Container in a Design�������������������������������������������������������������������������� 131

The JavaFX Image Class: Referencing Digital Images in a Design��������������������������������������������������������������������� 132

JavaFX ImageView Class: Displaying Digital Images in a Design����������������������������������������������������������������������� 134

The JavaFX TableView Class: Displaying Data Tables in a Design���������������������������������������������������������������������� 135



■ Contents

xi

Scene Graph Nodes: .createSplashScreenNodes( )��������������������������������������������������������������������136

Adding Nodes to the Scene Graph: .addStackPaneNodes( )������������������������������������������������������������������������������� 138

Testing the InvinciBagel Application: Pulse the Scene Graph�����������������������������������������������������139

Finishing an InvinciBagel UI Screen Design: Add Images�����������������������������������������������������������139

Interactivity: Wiring the InvinciBagel Buttons for Use����������������������������������������������������������������140

Testing the Final InvinciBagel UI Design������������������������������������������������������������������������������������������������������������� 142

Profiling the InvinciBagel Scene Graph for Pulse Efficiency������������������������������������������������������������������������������� 142

Summary������������������������������������������������������������������������������������������������������������������������������������144

�Chapter 7: The Foundation of Game Play Loop: The JavaFX Pulse System  ■■
and the Game Processing Architecture��������������������������������������������������������������������������145

Game Loop Processing: Harnessing a JavaFX Pulse������������������������������������������������������������������146

Creating a New Java Class: GamePlayLoop.java������������������������������������������������������������������������147

Creating the GamePlayLoop Class Structure: Implementing Your .handle( ) Method�����������������150

Creating a GamePlayLoop Object: Adding Pulse Control������������������������������������������������������������152

Profiling the GamePlayLoop Object: Running NetBeans Profiler������������������������������������������������153

Controlling Your GamePlayLoop: .start( ) and .stop( )������������������������������������������������������������������154

InvinciBagel Diagram: Package, Classes, and Objects���������������������������������������������������������������159

Testing the GamePlayLoop: Animating the UI Container�������������������������������������������������������������160

Profiling the GamePlayLoop: Pulse Engine���������������������������������������������������������������������������������161

Summary������������������������������������������������������������������������������������������������������������������������������������163

�Chapter 8: Creating Your Actor Engine: Design the Characters for Your Game  ■■
and Define Their Capabilities������������������������������������������������������������������������������������������165

Game Actor Design: Defining the Attributes Up Front�����������������������������������������������������������������166

The InvinciBagel Sprite Images: Visual Action States�����������������������������������������������������������������167

Creating an Actor Superclass: Fixed Actor Attributes�����������������������������������������������������������������168

Creating an .update( ) Method: Connect to GamePlayLoop Engine��������������������������������������������������������������������� 170

Adding Sprite Control and Definition Variables to an Actor Class����������������������������������������������������������������������� 171

Accessing Actor Variables: Creating Getter and Setter Methods������������������������������������������������������������������������ 174



■ Contents

xii

Creating a Hero Superclass: Motion Actor Attributes�����������������������������������������������������������������177

Adding Update and Collision Methods: .update( ) and .collide( )������������������������������������������������������������������������� 178

Adding Sprite Control and Definition Variables to the Hero Class����������������������������������������������������������������������� 179

Accessing Hero Variables: Creating Getter and Setter Methods������������������������������������������������������������������������� 182

Updating the Game Design: How Actor or Hero Fit In�����������������������������������������������������������������185

Summary������������������������������������������������������������������������������������������������������������������������������������186

�Chapter 9: Controlling Your Action Figure: Implementing Java Event Handlers  ■■
and Using Lambda Expressions��������������������������������������������������������������������������������������187

Game Surface Design: Adding Resolution Flexibility������������������������������������������������������������������188

Finishing the UI Design: Coding a Game Play Button�����������������������������������������������������������������189

Testing the Game Play Button: Making Sure Your Code Works��������������������������������������������������������������������������� 190

Upgrading the Other UI Button Code: Making ImageView Visible����������������������������������������������������������������������� 190

Lambda Expression: A Powerful New Java 8 Feature����������������������������������������������������������������191

Handling NetBeans Unexpected Updates and Incorrect Warnings��������������������������������������������������������������������� 194

Event Handling: Adding Interactivity to Your Games�������������������������������������������������������������������195

Types of Controllers: What Types of Events Should We Handle?������������������������������������������������������������������������� 195

Java 8 and JavaFX Events: javafx.event and java.util����������������������������������������������������������������196

JavaFX Input Event Classes: The javafx.scene.input Package���������������������������������������������������������������������������� 196

Adding Keyboard Event Handling: Using KeyEvents�������������������������������������������������������������������199

Processing Your KeyEvent: Using the Switch-Case Statement��������������������������������������������������������������������������� 200

Creating the KeyPressed KeyEvent Handling Structure�������������������������������������������������������������������������������������� 202

Adding Alternate KeyEvent Mapping: Using A-S-D-W����������������������������������������������������������������204

Updating Our Game Design: Adding Event Handling������������������������������������������������������������������205

Summary������������������������������������������������������������������������������������������������������������������������������������206

�Chapter 10: Directing the Cast of Actors: Creating a Casting Director Engine  ■■
and Creating the Bagel Actor Class��������������������������������������������������������������������������������207

Game Design: Adding Our CastingDirector.java class�����������������������������������������������������������������208

List and ArrayList: Using java.util List Management�������������������������������������������������������������������208

The Java Interface: Defining Rules for Implementing Your Class����������������������������������������������������������������������� 209

The List<E> Public Interface: A List Collection of Java Objects������������������������������������������������������������������������� 210



■ Contents

xiii

Set and HashSet: Using java.util Unordered Sets�����������������������������������������������������������������������212

The java.util HashSet Class: Using Unordered Sets of Objects��������������������������������������������������������������������������� 212

Creating Your Casting Engine: CastingDirector.java�������������������������������������������������������������������213

Creating an ArrayList Object: CURRENT_CAST Data Store List��������������������������������������������������������������������������� 214

Another ArrayList Object: COLLIDE_CHECKLIST Data Store List������������������������������������������������������������������������� 218

Creating a HashSet Object: REMOVED_ACTORS Data Store Set<Actor>������������������������������������������������������������ 219

CastingDirector( ) Constructor: Having NetBeans Write the Code����������������������������������������������������������������������� 221

Creating Our Main Actor: The Bagel Hero Subclass��������������������������������������������������������������������223

Summary������������������������������������������������������������������������������������������������������������������������������������227

�Chapter 11: Moving Your Action Figure in 2D: Controlling  ■■
the X and Y Display Screen Coordinates�������������������������������������������������������������������������229

InvinciBagel.java Redesign: Adding Logical Methods����������������������������������������������������������������230

The Scene Event Handling Method: .createSceneEventHandling( )�������������������������������������������������������������������� 231

Adding InvinciBagel: Declare Image, Bagel, and CastingDirector����������������������������������������������������������������������� 233

The Actor Image Assets Loading Method: .loadImageAssets( )��������������������������������������������������������������������������� 234

Creating Your InvinciBagel Bagel Object: .createGameActors( )�������������������������������������������������������������������������� 235

Adding Your iBagel to the Scene Graph: .addGameActorNodes( )����������������������������������������������������������������������� 237

Creating and Managing Your Cast: .createCastingDirection( )����������������������������������������������������������������������������� 238

Create and Start Your GamePlayLoop: .createStartGameLoop��������������������������������������������������������������������������� 239

Update Splashscreen Scene Graph: .createSplashScreenNodes( )��������������������������������������������������������������������� 240

Powering the iBagel Actor: Using the GamePlayLoop����������������������������������������������������������������242

Moving the iBagel Actor Object: Coding Your .update( ) Method������������������������������������������������������������������������� 243

Testing Our New Game Design: Moving InvinciBagel�����������������������������������������������������������������246

Summary������������������������������������������������������������������������������������������������������������������������������������249

�Chapter 12: Setting Boundaries for Your Action Figure in 2D: Using the Node  ■■
Class LocalToParent Attribute����������������������������������������������������������������������������������������251

InvinciBagel Privatization: Removing Static Modifiers���������������������������������������������������������������252

Passing Context from InvinciBagel to Bagel: Using this Keyword���������������������������������������������������������������������� 254

Removing a Static iBagel Reference: Revise the Handle( ) Method�������������������������������������������������������������������� 258

Using this in GamePlayLoop( ) Constructor: GamePlayLoop(this)����������������������������������������������������������������������� 260

Removing the Rest of the Static Variables: StackPane and HBox����������������������������������������������������������������������� 261



■ Contents

xiv

Organizing the .update( ) Method: .moveInvinciBagel( )��������������������������������������������������������������265

Further Modularization of the .update( ) Method: .setXYLocation( )�������������������������������������������������������������������� 266

Setting Screen Boundaries: .setBoundaries( ) Method���������������������������������������������������������������267

Testing the InvinciBagel Sprite Boundaries: Run ➤ Project������������������������������������������������������������������������������� 270

Summary������������������������������������������������������������������������������������������������������������������������������������270

�Chapter 13: Animating Your Action Figure States: Setting the Image  ■■
States Based on KeyEvent Processing���������������������������������������������������������������������������273

InvinciBagel Animation: The .setImageState( ) Method��������������������������������������������������������������274

The InvinciBagel Wait State: If No Key Pressed Set imageState(0)�������������������������������������������������������������������� 274

The InvinciBagel Run State: If KeyPressed Set imageState(1 & 2)��������������������������������������������������������������������� 276

The InvinciBagel Fly State: If KeyPressed Set imageState(3 & 4)����������������������������������������������������������������������� 277

Mirroring Sprites: Quadrupling Your Image Assets from 9 to 36������������������������������������������������������������������������ 278

Animating Your Run Cycle: Creating a Nested If-Else Structure������������������������������������������������������������������������� 279

Coding Your Run Cycle Throttle: Triple Nested If-Else Structures����������������������������������������������������������������������� 283

Adding Event Handling: Giving ASDW Keys Function�����������������������������������������������������������������289

Creating ASDW Key Get and Set Methods: NetBeans Insert Code���������������������������������������������������������������������� 291

Adding Jump and Evade Animation: Using the W and S Keys���������������������������������������������������������������������������� 293

Last Minute Details: Setting the isFlipH Property�����������������������������������������������������������������������294

Testing the InvinciBagel Sprite Animation States: Run ➤ Project���������������������������������������������������������������������� 295

Summary������������������������������������������������������������������������������������������������������������������������������������298

�Chapter 14: Setting Up the Game Environment: Creating Fixed Sprite  ■■
Classes Using the Actor Superclass�������������������������������������������������������������������������������299

Creating the Prop.java Class: Extending Actor.java��������������������������������������������������������������������300

Mirrored Prop Classes: Set the isFlip Property in the Constructor��������������������������������������������������������������������� 304

Using the Prop Class: Creating Fixed Scene Objects������������������������������������������������������������������310

Adding Prop and Image Declarations: Prop and Image Objects������������������������������������������������������������������������� 310

Instantiate Image Objects: Using the .loadImageAssets( ) Method��������������������������������������������������������������������� 312

Adding Fixed Sprites Using Prop Objects: .addGameActors( )����������������������������������������������������������������������������� 312

Using Larger Scene Props: Compositing with JavaFX����������������������������������������������������������������317

Summary������������������������������������������������������������������������������������������������������������������������������������320



■ Contents

xv

�Chapter 15: Implementing Game Audio Assets: Using the JavaFX  ■■
AudioClip Class Audio Sequencing Engine���������������������������������������������������������������������323

JavaFX AudioClip Class: A Digital Audio Sequencer�������������������������������������������������������������������324

Creating and Optimizing Digital Audio: Audacity 2.0.6���������������������������������������������������������������325

Optimization Versus Compression: The Audio Memory Footprint����������������������������������������������������������������������� 327

Adding Audio to InvinciBagel.java: Using AudioClip��������������������������������������������������������������������333

Referencing AudioClip Assets: Using the java.net.URL Class������������������������������������������������������������������������������ 333

Adding Your Audio Asset Loading Method: .loadAudioAssets( )�������������������������������������������������������������������������� 335

Providing Access to Your AudioClip: The .playiSound( ) Methods������������������������������������������������������������������������ 338

Summary������������������������������������������������������������������������������������������������������������������������������������341

�Chapter 16: Collision Detection: Creating SVG Polygons for the Game Actors  ■■
and Writing Code to Detect Collision������������������������������������������������������������������������������343

The SVG Data Format: Hand Coding Vector Shapes�������������������������������������������������������������������344

Creating and Optimizing Collision Data: Using GIMP������������������������������������������������������������������345

Creating an Optimized Collision Polygon: Using the Path Tool���������������������������������������������������������������������������� 352

Refining SVG Path Collision Shapes in GIMP: Using Import Path������������������������������������������������������������������������ 356

Creating and Optimizing Physics Data: Using PhysEd����������������������������������������������������������������363

Replacing Dummy Collision Data: InvinciBagel.java�������������������������������������������������������������������365

Bagel Class Collision Detection: .checkCollision( )���������������������������������������������������������������������370

Locating a Node Object: Using the Bounds Object���������������������������������������������������������������������372

Using Node Local Bounds: The .getBoundsInLocal( ) Method����������������������������������������������������������������������������� 373

Using Node Parent Bounds: The .getBoundsInParent( ) Method������������������������������������������������������������������������� 373

Using Node Intersection: The .intersects(Bounds object) Method���������������������������������������������������������������������� 374

Using Shape Class Intersect: The .intersect( ) Method���������������������������������������������������������������374

Overriding the Abstract Hero Class: .collide( ) Method���������������������������������������������������������������375

If Collision Detected: Manipulating the CastingDirector Object�������������������������������������������������������������������������� 378

Removing Actors from the Scene Graph: .getChildren( ).remove( )��������������������������������������������������������������������� 380

Reset the Removed Actor List: .resetRemovedActors( ) Method������������������������������������������������������������������������� 384

Optimizing Collision Detection Processing: if(collide(object))����������������������������������������������������������������������������� 385



■ Contents

xvi

Optimizing the Scene Graph: Using the Group Class������������������������������������������������������������������386

Creating a Scoring Engine Method: .scoringEngine( )�����������������������������������������������������������������389

Summary������������������������������������������������������������������������������������������������������������������������������������390

�Chapter 17: Enhancing Game Play: Creating a Scoring Engine,  ■■
Adding Treasure and an Enemy Auto-Attack Engine������������������������������������������������������393

Creating the Score UI Design: Text and Font Objects�����������������������������������������������������������������394

Creating a SCORE Label: Adding the Second Text Object����������������������������������������������������������������������������������� 397

Creating the Scoring Engine Logic: .scoringEngine( )�����������������������������������������������������������������399

Optimizing the scoringEngine( ) Method: Using Logical If Else If������������������������������������������������������������������������ 402

Adding Bounty to the Game: The Treasure.java Class�����������������������������������������������������������������403

Using the Treasure Class: Create Treasure Objects in the Game������������������������������������������������������������������������ 404

Adding Treasure Collision Detection: Updating .scoringEngine( )������������������������������������������������������������������������ 406

Adding Enemies: The Enemy and Projectile Classes������������������������������������������������������������������407

Creating Cream Cheese Bullets: Coding a Projectile.java Class������������������������������������������������������������������������� 409

Adding an Enemy and Projectiles to the Game: InvinciBagel.java���������������������������������������������������������������������� 410

Adding a Background Image: Using .toBack( ) Method���������������������������������������������������������������413

Using Random Number Generators: java.util.Random���������������������������������������������������������������416

Mounting the Attack: Coding the Enemy Onslaught�������������������������������������������������������������������417

The Foundation of an Enemy Class Attack: The .update( ) Method��������������������������������������������������������������������� 418

Attacking on Both Sides of the Screen: .initiateAttack( ) Method����������������������������������������������������������������������� 419

Adding the Element of Surprise: Animating Your Enemy Attack������������������������������������������������������������������������� 424

Weaponizing the Enemy: Shooting Projectile Objects����������������������������������������������������������������429

Creating a Projectile Infrastructure: Adding Projectile Variables������������������������������������������������������������������������ 431

Invoking a .shootProjectile( ) Method: Setting shootBullet to True���������������������������������������������������������������������� 433

Shooting Projectiles: Coding the .shootProjectile( ) Method������������������������������������������������������������������������������� 434

Making the Enemy Pause Before Firing: pauseCounter Variable������������������������������������������������������������������������ 435

Shoot the Bullet: Pulling the Trigger Using the launchIt Variable������������������������������������������������������������������������ 436



■ Contents

xvii

Update the .scoringEngine( ) Method: Using .equals( )���������������������������������������������������������������437

Adding Bullets to a Clip: Updating .addCurrentCast( )����������������������������������������������������������������439

Shooting Cream Cheese Balls: Different Bullet Types����������������������������������������������������������������443

Tweaking a Game: Fine-Tuning the User Experience�����������������������������������������������������������������446

Randomizing an Auto-Attack: Using .nextBoolean with takeSides��������������������������������������������������������������������� 447

Add the Element of Surprise: Randomizing the Attack Frequency��������������������������������������������������������������������� 448

Targeting the InvinciBagel: Adding Enemy Artificial Intelligence������������������������������������������������������������������������ 449

Adding Gravity to the Bullets: Intro to Game Physics�����������������������������������������������������������������451

Summary������������������������������������������������������������������������������������������������������������������������������������453

Index����������������������������������������������������������������������������������������������������������������������������������455



xix

About the Author

Wallace Jackson has been writing for leading multimedia publications about 
his work in new media content development since the advent of Multimedia 
Producer Magazine nearly two decades ago, when he wrote about advanced 
computer processor architecture for an issue centerfold (removable “mini-issue” 
insert) distributed at the SIGGRAPH trade show. Since then, Wallace has written 
for a number of other popular publications about his work in interactive 3D and 
new media advertising campaign design, including 3D Artist Magazine, Desktop 
Publishers Journal, CrossMedia Magazine, AVvideo/Multimedia Producer Magazine, 
Digital Signage Magazine and Kiosk Magazine.

Wallace Jackson has authored a half-dozen Android book titles for Apress, 
including four titles in the popular Pro Android series. This particular Java 8 
programming title focuses on the Java and JavaFX programming languages that are 
used with Android (and all other popular platforms as well) so that developers can 
“code once, deliver everywhere.”

Wallace Jackson is currently the CEO of Mind Taffy Design, a new media 
content production and digital campaign design and development agency, located 

in North Santa Barbara County, halfway between their clientele in Silicon Valley to the North and in Hollywood, 
“The OC,” and San Diego to the South.

Mind Taffy Design has created open source technology-based (HTML5, JavaScript, Java 8, JavaFX 8, and Android 5)  
digital new media content deliverables for more than two decades (since 1991) for a significant number of leading 
branded manufacturers worldwide, including Sony, Tyco, Samsung, IBM, Dell, Epson, Nokia, TEAC, Sun, Micron, SGI 
and Mitsubishi.

Wallace Jackson received his undergraduate degree in Business Economics from the University of California 
at Los Angeles (UCLA). He received his graduate degree in MIS Design and Implementation from University of 
Southern California (USC). Mr. Jackson also received his post-graduate degree in Marketing Strategy at USC and 
completed the USC Graduate Entrepreneurship Program. The USC degrees were completed while at USC’s  
night-time Marshall School of Business MBA Program, which allowed Mr. Jackson to work full-time as a programmer, 
while he completed his graduate and post-graduate business degrees.



xxi

About the Technical Reviewer

Chád (shod) Darby is an author, instructor, and speaker in the Java development 
world. As a recognized authority on Java applications and architectures, he has 
presented technical sessions at software development conferences worldwide 
(United Kingdom, United Kingdom, India, Russia, and Australia). In his fifteen years 
as a professional software architect, he’s had the opportunity to work for Blue Cross/
Blue Shield, Merck, Boeing, Red Hat, and a handful of startup companies.

Chád is a contributing author to several Java books, including Professional Java 
E-Commerce (Wrox Press), Beginning Java Networking (Wrox Press), and XML and 
Web Services Unleashed (Sams Publishing). Chád has Java certifications from Sun 
Microsystems and IBM. He holds a B.S. in Computer Science from Carnegie Mellon 
University.

Visit Chád’s blog at www.luv2code.com to view his free video tutorials on Java. 
You can also follow him on Twitter @darbyluvs2code.

www.luv2code.com


xxiii

Acknowledgments

I would like to acknowledge all my fantastic Editors, and their support staff at Apress, who worked those long hours 
and toiled so very hard on this book, to make it the ultimate Absolute Beginner Android application production  
book title.

Steve Anglin, for his work as the Lead Editor on the book, and for recruiting me to write programming titles at 
Apress covering the most popular open source application development platforms (Android and Java).

Matthew Moodie, for his work as the Development Editor on the book, and for his experience and guidance 
during the process of making this book one of the great Java 8 Game Development titles currently on the market.

Mark Powers, for his work as the Coordinating Editor on the book, and for his constant diligence in making sure 
I either hit my chapter delivery deadlines or surpassed them.

Lisa Vecchione and Karen Jameson, for their work as the Copy Editors for the book, and for their careful 
attention to excruciatingly minute details, and for conforming the text to the current Apress book writing standards.

Chád Darby, for his work as the Technical Reviewer on the book, and for making sure that I did not make any 
Java programming mistakes, because Java code with mistakes does not run properly, if at all, unless the Java code 
includes very lucky mistakes, which is quite rare in computer programming these days.

Anna Ishchenko, for her work as the Book Cover Designer for the book, and for creating the graphic design for 
the book cover that brings it into conformance with other popular Apress Java 8 and JavaFX 8 programming titles.

Ira H. Harrison Rubin, a friend and client, and one of the world’s finest and most respected comic book 
and comic strip authors, for allowing us to use some of his BagelToons IP (intellectual property), specifically an 
InvinciBagel concept, to use as a platform to show our readers how a game can be created around an actual client’s 
intellectual property. Be sure not to create your own InvinciBagel game without checking with Mr. Rubin regarding 
using his intellectual property!

Patrick Harrington, a friend and client, and one of the world’s finest caricature artists, for creating the 2D assets 
for the InvinciBagel game, and allowing me to use some of them to show how to create a basic Java 8 game engine.

Andreas Loew, a fellow Apress author, for allowing me to use his CodeAndWeb GmbH product PhysicsEditor, or 
PhysEd, in Chapter 16 of the book to show an alternate professional collision polygon development tool work process.

Finally, I’d like to acknowledge Oracle for acquiring Sun Microsystems, and continuing to enhance Java 8, so that 
it remains the premiere open source programming language, and for acquiring the JavaFX new media engine, and 
making it a part of Java 8, so that existing Java applications can be “gamified” and made “edutainment” friendly.


	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Setting Up a Java 8 Game Development Environment
	Prepare a Workstation for Java 8 Game Development
	Downloading Java JDK 8 and NetBeans 8.0
	Installing the Java 8 Software Development Environment
	Installing NetBeans IDE 8.0
	Installing New Media Content Production Software
	Downloading and Installing Inkscape
	Downloading and Installing GIMP
	Downloading and Installing Audacity
	Downloading and Installing EditShare Lightworks
	Downloading and Installing Blender

	Other Open-Source Software Packages of Interest
	Organizing Quick Launch Icons in Your Taskbar Area
	Summary

	Chapter 2: Setting Up Your Java 8 IDE: An Introduction to NetBeans 8. 0
	Primary Attributes of NetBeans 8.0: An Intelligent IDE
	NetBeans 8.0 Is Smart: Put Your Code Editing into Hyperdrive
	NetBeans 8.0 Is Extensible: Code Editing with Many Languages
	NetBeans 8.0 Is Efficient: Organized Project Management Tools
	NetBeans 8.0 Is User Interface Design Friendly: UI Design Tools
	NetBeans 8.0 Is not Bug Friendly: Squash Bugs with a Debugger
	NetBeans 8.0 Is a Speed Freak: Optimize the Code with a Profiler

	Creating Your Java 8 Game Project: The InvinciBagel
	Compiling Your Java 8 Game Project in NetBeans 8.0
	Running Your Java 8 Game Project in NetBeans 8.0
	Profiling Your Java 8 Game Project in NetBeans 8.0
	Profiling Your Java 8 Game Application CPU Usage
	Unblocking the Java 8 Platform Binary via the Windows Firewall
	Analyzing the NetBeans IDE 8.0 Game Project CPU Profiling Tool Results

	Profiling Your Java 8 Game Application Memory Usage

	Summary

	Chapter 3: A Java 8 Primer: An Introduction to Java 8 Concepts and Principles
	The Syntax of Java: Comments and Code Delimiters
	Java APIs: Using Packages to Organize by Function
	Java Classes: Logical Java Constructs to Build On
	Nested Classes: Java Classes Living Inside Other Classes
	Inner Classes: Different Types of Nonstatic Nested Classes

	Java Methods: Core Java Function Code Constructs
	Creating a Java Object: Invoking a Class’s Constructor Method
	Creating a Constructor Method: Coding an Object’s Structure

	Java Variables and Constants: Values in Data Fields
	Fixing Data Values in Memory: Defining a Data Constant in Java

	Java Modifier Keywords: Access Control and More
	Access Control Modifiers: Public, Protected, Private, Package Private
	Java’s Public Modifier: Allowing Access by the Public to Java Program Constructs
	Java’s Protected Modifier: Variables and Methods Allow Access by Subclass
	Java’s Private Modifier: Variables, Methods, and Classes Get Local Access Only
	Java’s Package Private Modifier: Variables, Methods, and Classes in Your Package

	Nonaccess Control Modifiers: final, static, abstract, volatile, synchronized
	Java’s final Modifier: Variables, Methods, and Classes That Cannot Be Modified
	Java’s Static Modifier: Variables or Methods That Exist in a Class (Not in Objects)
	Java’s Abstract Modifier: Classes and Methods to Be Extended and Implemented
	Java’s Volatile Modifier: Advanced Multithreading Control over Data Fields
	Java’s Synchronized Modifier: Advanced Multithreading Control over Methods


	Java Data Types: Defining Data Type in Applications
	Primitive Data Types: Characters, Numbers, and Boolean (Flags)
	Reference Data Types: Objects and Arrays

	Java Operators: Manipulating Data in the Application
	Java Arithmetic Operators
	Java Relational Operators
	Java Logical Operators:
	Java Assignment Operators
	Java Conditional Operators

	Java Conditional Control: Decision Making or Loops
	Decision-Making Control Structures: Switch-Case and If-Else
	Looping Control Structures: While, Do-While, and For

	Java Objects: Virtual Reality, Using Java Constructs
	Creating an InvinciBagel Object: Attributes, States, and Behavior
	Creating an InvinciBagel Blueprint: Create the GamePiece Class
	Creating a GamePiece() Constructor: Overloading a GamePiece

	Summary

	Chapter 4: An Introduction to JavaFX 8: Exploring the Capabilities of the Java 8 Multimedia Engine
	Overview of JavaFX: From Scene Graph Down to OS
	JavaFX Scene Package: 16 Core Java 8 Classes
	JavaFX Scene Class: Scene Size and Color and Scene Graph Nodes
	JavaFX Scene Graph: Organizing Scenes, Using Parent Nodes
	JavaFX Scene Content: Lights, Camera, Cursor, Action!
	JavaFX Scene Utilities: Scene Snapshots and Antialiasing

	Scene Subpackages: The 13 Other Scene Packages
	Other JavaFX Packages: The 15 Top-Level Packages
	JavaFX Animation for Games: Using javafx.animation Classes
	The JavaFX Animation Class: The Foundation for Animation Objects
	The JavaFX TimeLine Class: An Animation Subclass for Property Timeline Management
	The JavaFX Transition Class: An Animation Subclass for Transition Effects Application

	The JavaFX AnimationTimer Class: Frame Processing, Nanoseconds, and Pulse
	JavaFX Pulse Synchronization: Asynchronous Processing for Scene Graph Elements
	Harnessing the JavaFX Pulse Engine: Extending the AnimationTimer Class to Generate Pulse Events


	JavaFX Screen and Window Control: Using javafx.stage Classes
	Using a JavaFX Primary Stage Object: Creating a Floating Windowless Application

	JavaFX Bounds and Dimensions: Using javafx.geometry Classes
	JavaFX Input Control for Games: Using javafx.event Classes
	JavaFX Thread Control for Games: javafx.concurrent Package

	Summary

	Chapter 5: An Introduction to Game Design: Concepts, Multimedia, and Using Scene Builder
	High-Level Concept: Static vs. Dynamic
	Game Optimization: Balancing Static Elements with Dynamic
	Game Design Concepts: Sprites, Physics, Collision
	Types of Games: Puzzles, Board Games, Arcade Games, Hybrids
	Game Design Assets: New Media Content Concepts
	Digital Imaging Concepts: Resolution, Color Depth, Alpha, Layers
	Digital Image Resolution and Aspect Ratio: Defining Image Size and Shape
	Digital Image Color Theory and Color Depth: Defining Precise Image Pixel Colors
	Digital Image Compositing: Using Alpha Channels and Transparency in Layers
	Representing Color and Alpha in Java 8 Game Code: Using Hexadecimal Notation
	Digital Image Masking: Using Alpha Channels to Create Game Sprites
	Smoothing Digital Image Composites: Using Antialiasing to Smooth Image Edges
	Digital Image Optimization: Using Compression, Indexed Color, and Dithering

	Digital Video and Animation: Frames, Rate, Looping, Direction
	Digital Video Compression Concepts: Bit Rate, Data Streaming, SD, HD, UHD
	Digital Video Data Footprint Optimization: Using Codecs and Their Settings

	Digital Audio Concepts: Amplitude, Frequency, Samples
	Converting Analog Audio to Digital Audio Data: Sampling, Accuracy, HD Audio
	Digital Audio Streaming: Captive Audio vs. Streaming Audio
	Digital Audio in JavaFX: Supported Digital Audio Codecs and Data Formats
	Digital Audio Optimization: Start with CD-Quality Audio, and Work Backward


	JavaFX Scene Builder: Using FXML for UI Design
	FXML Definition: Anatomy of an XML UI Definition Construct
	Hello World UI FXML Definition: Replicating Your Current UI Design, Using FXML

	Summary

	Chapter 6: The Foundation of Game Design: The JavaFX Scene Graph and the InvinciBagel Game Infrastructure
	Game Design Foundation: Primary Function Screens
	Java Class Structure Design: Game Engine Support
	JavaFX Scene Graph Design: Minimizing UI Nodes
	Scene Graph Code: Optimizing Your Current InvinciBagel Class
	Scene Graph Design: Streamlining the Existing .start() Method
	Scene Graph Assets: Installing the ImageView’s Image Assets in Your Project


	JavaFX UI Classes: HBox, Pos, Insets, and ImageView
	The JavaFX Pos Class: Generalized Screen Position Constants
	The JavaFX Insets Class: Providing Padding Values for Your UI
	The JavaFX HBox Class: Using a Layout Container in a Design
	The JavaFX Image Class: Referencing Digital Images in a Design
	JavaFX ImageView Class: Displaying Digital Images in a Design
	The JavaFX TableView Class: Displaying Data Tables in a Design

	Scene Graph Nodes: .createSplashScreenNodes( )
	Adding Nodes to the Scene Graph: .addStackPaneNodes()

	Testing the InvinciBagel Application: Pulse the Scene Graph
	Finishing an InvinciBagel UI Screen Design: Add Images
	Interactivity: Wiring the InvinciBagel Buttons for Use
	Testing the Final InvinciBagel UI Design
	Profiling the InvinciBagel Scene Graph for Pulse Efficiency

	Summary

	Chapter 7: The Foundation of Game Play Loop: The JavaFX Pulse System and the Game Processing Architecture
	Game Loop Processing: Harnessing a JavaFX Pulse
	Creating a New Java Class: GamePlayLoop.java
	Creating the GamePlayLoop Class Structure: Implementing Your .handle( ) Method
	Creating a GamePlayLoop Object: Adding Pulse Control
	Profiling the GamePlayLoop Object: Running NetBeans Profiler
	Controlling Your GamePlayLoop: .start( ) and .stop( )
	InvinciBagel Diagram: Package, Classes, and Objects
	Testing the GamePlayLoop: Animating the UI Container
	Profiling the GamePlayLoop: Pulse Engine
	Summary

	Chapter 8: Creating Your Actor Engine: Design the Characters for Your Game and Define Their Capabilities
	Game Actor Design: Defining the Attributes Up Front
	The InvinciBagel Sprite Images: Visual Action States
	Creating an Actor Superclass: Fixed Actor Attributes
	Creating an .update() Method: Connect to GamePlayLoop Engine
	Adding Sprite Control and Definition Variables to an Actor Class
	Initializing Sprite Control and Definition Variables in an Actor Constructor Method

	Accessing Actor Variables: Creating Getter and Setter Methods

	Creating a Hero Superclass: Motion Actor Attributes
	Adding Update and Collision Methods: .update() and .collide()
	Adding Sprite Control and Definition Variables to the Hero Class
	Initializing the Sprite Control and Definition Variables in the Hero Constructor
	Optimizing the Hero Class Via Compound Statements and Default Variable Values

	Accessing Hero Variables: Creating Getter and Setter Methods

	Updating the Game Design: How Actor or Hero Fit In
	Summary

	Chapter 9: Controlling Your Action Figure: Implementing Java Event Handlers and Using Lambda Expressions
	Game Surface Design: Adding Resolution Flexibility
	Finishing the UI Design: Coding a Game Play Button
	Testing the Game Play Button: Making Sure Your Code Works
	Upgrading the Other UI Button Code: Making ImageView Visible

	Lambda Expression: A Powerful New Java 8 Feature
	Handling NetBeans Unexpected Updates and Incorrect Warnings

	Event Handling: Adding Interactivity to Your Games
	Types of Controllers: What Types of Events Should We Handle?

	Java 8 and JavaFX Events: javafx.event and java.util
	JavaFX Input Event Classes: The javafx.scene.input Package
	The KeyCode Class: Using Enum Constants to Define Keys Players Use for Game
	The KeyEvent Class: Using KeyEvent Objects to Hold KeyCode Players Are Using


	Adding Keyboard Event Handling: Using KeyEvents
	Processing Your KeyEvent: Using the Switch-Case Statement
	Converting the KeyEvent Handling Structure: Using a Java 8 Lambda Expression

	Creating the KeyPressed KeyEvent Handling Structure
	Optimizing Import Statements: Remove the EventHandler Class Import Statement


	Adding Alternate KeyEvent Mapping: Using A-S-D-W
	Updating Our Game Design: Adding Event Handling
	Summary

	Chapter 10: Directing the Cast of Actors: Creating a Casting Director Engine and Creating the Bagel Actor Class
	Game Design: Adding Our CastingDirector.java class
	List and ArrayList: Using java.util List Management
	The Java Interface: Defining Rules for Implementing Your Class
	The List<E> Public Interface: A List Collection of Java Objects

	Set and HashSet: Using java.util Unordered Sets
	The java.util HashSet Class: Using Unordered Sets of Objects

	Creating Your Casting Engine: CastingDirector.java
	Creating an ArrayList Object: CURRENT_CAST Data Store List
	NetBeans Optimization Suggestions: Making a List<Actor> Data Store Object Final

	Another ArrayList Object: COLLIDE_CHECKLIST Data Store List
	Creating a HashSet Object: REMOVED_ACTORS Data Store Set<Actor>
	CastingDirector() Constructor: Having NetBeans Write the Code

	Creating Our Main Actor: The Bagel Hero Subclass
	Summary

	Chapter 11: Moving Your Action Figure in 2D: Controlling the X and Y Display Screen Coordinates
	InvinciBagel.java Redesign: Adding Logical Methods
	The Scene Event Handling Method: .createSceneEventHandling()
	Adding InvinciBagel: Declare Image, Bagel, and CastingDirector
	The Actor Image Assets Loading Method: .loadImageAssets()
	Creating Your InvinciBagel Bagel Object: .createGameActors()
	Adding Your iBagel to the Scene Graph: .addGameActorNodes()
	Creating and Managing Your Cast: .createCastingDirection()
	Create and Start Your GamePlayLoop: .createStartGameLoop
	Update Splashscreen Scene Graph: .createSplashScreenNodes()

	Powering the iBagel Actor: Using the GamePlayLoop
	Moving the iBagel Actor Object: Coding Your . update() Method
	Building the .update() Method: Using If Statements to Determine X or Y Movement
	Moving a Scene Graph ImageView Node: .setTranslateX( ) and .setTranslateY( )


	Testing Our New Game Design: Moving InvinciBagel
	Summary

	Chapter 12: Setting Boundaries for Your Action Figure in 2D: Using the Node Class LocalToParent Attribute
	InvinciBagel Privatization: Removing Static Modifiers
	Passing Context from InvinciBagel to Bagel: Using this Keyword
	Modifying the iBagel Instantiation: Adding a Java this Keyword to the Method Call
	Using Your New InvinciBagel .is( ) Methods: Updating Your Bagel .update( ) Method

	Removing a Static iBagel Reference: Revise the Handle( ) Method
	Enhancing GamePlayLoop.java: Creating a GamePlayLoop( ) Constructor Method

	Using this in GamePlayLoop() Constructor: GamePlayLoop(this)
	Removing the Rest of the Static Variables: StackPane and HBox
	Making the Remaining Variables Private: Finish Encapsulating InvinciBagel Class


	Organizing the .update( ) Method: .moveInvinciBagel( )
	Further Modularization of the .update() Method: .setXYLocation()

	Setting Screen Boundaries: .setBoundaries( ) Method
	Testing the InvinciBagel Sprite Boundaries: Run ➤ Project

	Summary

	Chapter 13: Animating Your Action Figure States: Setting the Image States Based on KeyEvent Processing
	InvinciBagel Animation: The .setImageState( ) Method
	The InvinciBagel Wait State: If No Key Pressed Set imageState(0)
	The InvinciBagel Run State: If KeyPressed Set imageState(1 & 2)
	The InvinciBagel Fly State: If KeyPressed Set imageState(3 & 4)
	Mirroring Sprites: Quadrupling Your Image Assets from 9 to 36
	Animating Your Run Cycle: Creating a Nested If-Else Structure
	Controlling Run Cycle Speed: Setting Up Your Animation Throttle Program Logic

	Coding Your Run Cycle Throttle: Triple Nested If-Else Structures
	Optimizing Run-Cycle Processing: Turning Off Processing for Fly and Land States


	Adding Event Handling: Giving ASDW Keys Function
	Creating ASDW Key Get and Set Methods: NetBeans Insert Code
	Adding Jump and Evade Animation: Using the W and S Keys

	Last Minute Details: Setting the isFlipH Property
	Testing the InvinciBagel Sprite Animation States: Run ➤ Project

	Summary

	Chapter 14: Setting Up the Game Environment: Creating Fixed Sprite Classes Using the Actor Superclass
	Creating the Prop.java Class: Extending Actor.java
	Mirrored Prop Classes: Set the isFlip Property in the Constructor

	Using the Prop Class: Creating Fixed Scene Objects
	Adding Prop and Image Declarations: Prop and Image Objects
	Instantiate Image Objects: Using the .loadImageAssets( ) Method
	Adding Fixed Sprites Using Prop Objects: .addGameActors( )

	Using Larger Scene Props: Compositing with JavaFX
	Summary

	Chapter 15: Implementing Game Audio Assets: Using the JavaFX AudioClip Class Audio Sequencing Engine
	JavaFX AudioClip Class: A Digital Audio Sequencer
	Creating and Optimizing Digital Audio: Audacity 2.0.6
	Optimization Versus Compression: The Audio Memory Footprint
	Audio Sample Resolution and Frequency: Optimizing for Your Memory Footprint
	Setting the Audio Sample Frequency: Reducing Your Memory Data Footprint by Another 200%

	Stereo Versus Mono Audio: Reducing Your Memory Footprint Another 100%
	Preparing to Code: Exporting Your Assets and Copying Them into Your Project


	Adding Audio to InvinciBagel.java: Using AudioClip
	Referencing AudioClip Assets: Using the java.net.URL Class
	Adding Your Audio Asset Loading Method: .loadAudioAssets( )
	Providing Access to Your AudioClip: The .playiSound( ) Methods
	Triggering the .playiSound( ) Methods in Bagel.java: The .playAudioClip( ) Method


	Summary

	Chapter 16: Collision Detection: Creating SVG Polygons for the Game Actors and Writing Code to Detect Collision
	The SVG Data Format: Hand Coding Vector Shapes
	Creating and Optimizing Collision Data: Using GIMP
	Creating an Optimized Collision Polygon: Using the Path Tool
	Refining SVG Path Collision Shapes in GIMP: Using Import Path
	Ascertaining Collision Data Optimization: Calculating Data Footprint for SVG Data


	Creating and Optimizing Physics Data: Using PhysEd
	Replacing Dummy Collision Data: InvinciBagel.java
	Bagel Class Collision Detection: .checkCollision( )
	Locating a Node Object: Using the Bounds Object
	Using Node Local Bounds: The .getBoundsInLocal() Method
	Using Node Parent Bounds: The .getBoundsInParent() Method
	Using Node Intersection: The .intersects(Bounds object) Method

	Using Shape Class Intersect: The .intersect( ) Method
	Overriding the Abstract Hero Class: .collide( ) Method
	If Collision Detected: Manipulating the CastingDirector Object
	Removing Actors from the Scene Graph: .getChildren().remove()
	Reset the Removed Actor List: .resetRemovedActors() Method
	Optimizing Collision Detection Processing: if(collide(object))

	Optimizing the Scene Graph: Using the Group Class
	Creating a Scoring Engine Method: .scoringEngine( )
	Summary

	Chapter 17: Enhancing Game Play: Creating a Scoring Engine, Adding Treasure and an Enemy Auto-Attack Engine
	Creating the Score UI Design: Text and Font Objects
	Creating a SCORE Label: Adding the Second Text Object

	Creating the Scoring Engine Logic: .scoringEngine( )
	Optimizing the scoringEngine() Method: Using Logical If Else If

	Adding Bounty to the Game: The Treasure.java Class
	Using the Treasure Class: Create Treasure Objects in the Game
	Adding Treasure Collision Detection: Updating .scoringEngine()

	Adding Enemies: The Enemy and Projectile Classes
	Creating Cream Cheese Bullets: Coding a Projectile.java Class
	Adding an Enemy and Projectiles to the Game: InvinciBagel.java

	Adding a Background Image: Using .toBack( ) Method
	Using Random Number Generators: java.util.Random
	Mounting the Attack: Coding the Enemy Onslaught
	The Foundation of an Enemy Class Attack: The .update() Method
	Attacking on Both Sides of the Screen: .initiateAttack() Method
	Powering the Enemy .update( ) Method: Using the GamePlayLoop .handle( ) Method

	Adding the Element of Surprise: Animating Your Enemy Attack

	Weaponizing the Enemy: Shooting Projectile Objects
	Creating a Projectile Infrastructure: Adding Projectile Variables
	Invoking a .shootProjectile() Method: Setting shootBullet to True
	Shooting Projectiles: Coding the .shootProjectile( ) Method
	Making the Enemy Pause Before Firing: pauseCounter Variable
	Shoot the Bullet: Pulling the Trigger Using the launchIt Variable

	Update the .scoringEngine( ) Method: Using .equals( )
	Adding Bullets to a Clip: Updating .addCurrentCast( )
	Shooting Cream Cheese Balls: Different Bullet Types
	Tweaking a Game: Fine-Tuning the User Experience
	Randomizing an Auto-Attack: Using .nextBoolean with takeSides
	Add the Element of Surprise: Randomizing the Attack Frequency
	Targeting the InvinciBagel: Adding Enemy Artificial Intelligence

	Adding Gravity to the Bullets: Intro to Game Physics
	Summary

	Index



