QP /A 7

Beginning

Java 8 Games
Development

LEARN THE FUNDAMENTALS OF JAVA 8
GAME PROGRAMMING

Wallace Jackson

QELLL L/ /o
Apresse

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

Apress*

Contents at a Glance

About the AUthOr ..o ————————————_ Xix
About the Technical ReVIEWETccsveessrsssssssssmsssssmsssssssssssssssssssssssssssnssssssssssassnsnssnsnsnsansas xxi
Acknowledgments........ccccuuuissnnmmmnmmmmmmssssssssssnnnmmmssssssssssssnnnseesssssssssnnnnnneesssssssnnnnnnnnnssssssnnn XXiii
INtrodUCTioNcciiieeniisnnnssssnnnsssnnssssnnnsssansssssnnssssnnnsssnnnsssnnsnssnnnsssnnnnssnnnnssannesssnnnnsnnnnssnnnnnnnnn XXV
Chapter 1: Setting Up a Java 8 Game Development Environmentcccuccemnnnsssnnnnnssnnns 1
Chapter 2: Setting Up Your Java 8 IDE: An Introduction to NetBeans 8.0..........cceceennennns 19
Chapter 3: A Java 8 Primer: An Introduction to Java 8 Concepts and Principles 43

Chapter 4: An Introduction to JavaFX 8: Exploring the Capabilities
of the Java 8 Multimedia ENGINEccccusssemmmmssssnsnmmssssssnmsssssssnssssssssssssssssssssssssnnnssssssnnnsnsss 75

Chapter 5: An Introduction to Game Design: Concepts, Multimedia,
and Using Scene BUuilder.......ccccuusemmmmmisssmmmsssssnmmssssssnmmssssssnmssssssssmssssssssssssssnssssssssnnnssss 101

Chapter 6: The Foundation of Game Design: The JavaFX Scene Graph
and the InvinciBagel Game Infrastructure..........cccccccmnnnsemmmmnnssmnmnssssnmsssssmsassm. 123

Chapter 7: The Foundation of Game Play Loop: The JavaFX Pulse System
and the Game Processing Architecture...........cccccunemmmnnnssmnmmnsssnmnssssnmsassmssssmmms 145

Chapter 8: Creating Your Actor Engine: Design the Characters for Your Game
and Define Their Capabilities........cccciuismmmmmissssnnmmmssssmmmmsssnmmssssnmsssssassa—————"" 165

Chapter 9: Controlling Your Action Figure: Implementing Java Event Handlers
and Using Lambda EXPreSSioNnS......ccccuusesmmmssssssnmssssssssssssssssnssssssssnsssssssssssssssnssssssssnnnnssss 187

Chapter 10: Directing the Cast of Actors: Creating a Casting Director Engine
and Creating the Bagel Actor Class........cccvumsmmmmmsssssnnmmssssnsnssssssnssssssssssnssssssnssssssssnnnnssss 207

Chapter 11: Moving Your Action Figure in 2D: Controlling the X and Y
Display Screen Coordinates.........ccciuuuissmmnmmsssssnnmmssssssnmmssssssssssssssnsnnsssssssssssssnnsnnssssannnnssns 229

CONTENTS AT A GLANCE

Chapter 12: Setting Boundaries for Your Action Figure in 2D: Using the
Node Class LocalToParent Attributeccccusmmismmmnsmnmmsssnmssssmsssssmsssssssssssssssssssssnsnnnns 251

Chapter 13: Animating Your Action Figure States: Setting the Image
States Based on KeyEvent ProCessingcccuueemmmsssssssmsssssnsnssssssnsnsssssssssssssssnsnssssssnnnnssns 273

Chapter 14: Setting Up the Game Environment: Creating Fixed Sprite
Classes Using the Actor SUPErclasscccuussssmmmmsssssnsmmssssnsnsssssssnnssssssnsnssssssnnsnssssannnnssss 299

Chapter 15: Implementing Game Audio Assets: Using the JavaFX
AudioClip Class Audio Sequencing ENgineccucccmmmmsssnsmmmssssssssmssssssssssssssssssssssssnnsssssnns 323

Chapter 16: Collision Detection: Creating SVG Polygons for the Game Actors
and Writing Code to Detect ColliSionc.cccuussmmmsssnnssssansssssnsssssnsssssnsssssnsssssnsssssnnssssnnss 343

Chapter 17: Enhancing Game Play: Creating a Scoring Engine,
Adding Treasure and an Enemy Auto-Attack ENnginecccunnmsmmmmmnmnnsssssssssssssssssssssssnss 393

Introduction

The Java Programming Language is currently the most popular object-oriented (OOP) programming language in
the world today. Java runs on everything from SmartWatches to HD Smartphones to Touchscreen Tablets to eBook
Readers to Game Consoles to SmartGlasses to Ultra-High Definition (UHD) 4K Interactive Television Sets, with even
more types of consumer electronics devices, such as those found in the automotive, appliances, health care, digital
signage, security, and the home automation market, increasingly adopting the open source Java platform for use in
their hardware devices as time goes on.

Since there are literally billions of Java compatible consumer electronics devices, owned by billions of users all
over the world, it stands to reason that developing popular Java 8 Games for all of these people could be an extremely
lucrative undertaking, given that you have the right game concept, artwork, game design, and optimization work
process, of course.

Java 8 (and its multimedia engine, JavaFX 8) code can run on just about every operating system out there,
including Windows XP; Vista, 7, 8, and 9; all Linux distributions; 32-bit Android 4 and 64-bit Android 5; Open Solaris;
Macintosh 0S/X, iOS; Symbian, and Raspberry Pi - it’s only a matter of time before the other popular OSes add
support for this popular open source programming language. Additionally, every popular Internet browser has Java
built in! Java provides the ultimate flexibility in installing software, as an application, or in the browser as an applet.
You can even drag a Java application right out of the browser, and have it install itself on that user’s desktop! Java 8 is a
truly remarkable technology.

There are a plethora of embedded and desktop hardware support levels currently for Java 8 (and for JavaFX 8.0)
including the full Java SE 8, Java SE 8 Embedded, Java ME (Micro Edition) 8, and Java ME 8 Embedded, as well as
Java EE 8 for Enterprise Application Development. Talk about being able to “code once, deliver everywhere!” That is the
dream of every programmer, and Oracle is making it a reality with the powerful Java 8 multimedia programming platform.

This book will go a long way toward helping you to learn exactly how to go about developing Java 8 games, using
the Java programming language in conjunction with the recently added JavaFX 8.0 multimedia engine. These Java 8
game applications will be able to run across a plethora of Java compatible consumer electronics devices. Developing
Java 8 game applications that play smoothly across all of these different types of consumer electronics devices
requires a very specific work process, including asset design, game code design, and optimization, all of which I will
be covering during this book.

I'wrote the Beginning Java 8 Game Development title from scratch, using a real-world client game project that I
am actually working on, and will be delivering to the public sometime in 2015. I am targeting those readers who are
Beginning Game Developers, and who had not coded in Java 8 and JavaFX 8.0. These readers are technically savvy, but
they are not that familiar with object-oriented computer programming concepts and techniques. Since Java is now at
Version 8u40, this book will be more advanced than many of the other Java books out there. Java 8 has added some
very advanced features, such as the JavaFX 8.0 API, which gives Java 8 its own multimedia engine, supporting SVG, 2D,
3D, audio, and video media.

I designed this book to contain a comprehensive overview of the optimal Java 8 game development work
process. Most beginning Java application development books only cover the language, however. If you really want to
become that well-known Java game application developer that you seek to become, you will have to understand as
well as master all of the areas of game design, including multimedia asset creation, user interface design, Java 8
Programming, JavaFX 8.0 class usage, and data footprint, memory, and CPU usage optimization. Once you've
mastered these areas - hopefully, by the end of this book, you will be able to create the memorable user experience
that will be required to create popular, best-selling Java 8 games. You can do it; I know you can!

XXV

INTRODUCTION

Java 8 games are not only developed using the NetBeans 8.0 Integrated Development Environment (IDE) alone,
but also in conjunction with the use of JavaFX 8 and several other different types of new media content development
software packages. For this reason, this book covers the installation and use of a wide variety of other popular
open source software packages, such as GIMP 2.8 and Audacity 2.0.6, in conjunction with developing Java 8 game
applications using the NetBeans 8.0 IDE and the JavaFX new media engine, which brings the “wow factor” to the Java
programming language.

I am architecting this book in this fashion so that you can ascertain precisely how your usage of new media
content development software will fit into your overall Java 8 game development work process. This comprehensive
approach will serve to set this unique book title distinctly apart from all of those other Java 8 game application
development titles that are currently out on the market. The book starts out in Chapter 1 with downloading and
installing the latest Java 8 JDK as well as the NetBeans 8.0 IDE, along with several popular open source content
development applications.

In Chapter 2, you will learn about NetBeans 8.0, and create your first Java 8 game application, and look at useful
NetBeans features, such as code completion and code profiling. In Chapter 3, you will learn about the fundamentals
of the Java 8 programming language, which you’ll be implementing to create a Java 8 game during the remainder of
the book.

In Chapter 4, you will learn all about the JavaFX 8.0 new media engine (API) and how its impressive features
can take your Java 8 game development and place it into the stratosphere. In Chapter 5, you will learn all about the
JavaFX 8 FXML (Java FX Markup Language) and about the underlying concepts of developing new media assets such
as digital audio, digital images, digital video, 2D scalable vector graphics (SVG), and 3D geometry, for use with Java 8
games. In Chapter 6, you will learn about game design concepts, and create the foundation for your Java 8 game, its
user interface, and a splashscreen. Thus the first third of this book is foundational material, which you’ll need to be
able to understand how NetBeans 8.0, Java 8, JavaFX 8.0, and various new media asset types supported by the JavaFX
engine function together as a platform.

In Chapter 7 we will start to create the various game engines, starting with the game play loop 60 FPS timing
engine, and we will learn about the JavaFX 8 Animation, Timeline, KeyFrame, KeyValue, Interpolator, and
AnimationTimer classes, which allow the Java 8 game to tap into the JavaFX pulse event timing engine that gives Java 8
its multimedia power.

In Chapter 8, we will create your game Actor and Hero Java abstract classes, the Actor engine, if you will, which
will allow us to create the different types of game play components that we will need for the Java 8 game. This will
teach you how to create custom foundational classes for a game project, and you will look at the Node, SVGPath,
Shape, Image, and ImageView classes as we incorporate these JavaFX class (object) types into our Java 8 Game
Actor design.

In Chapter 9, you will learn how to add interactivity to your Java 8 Game projects, using event handling. We will
add an event processing engine, which will process all of the different types of action, key, mouse, and drag events
that you are likely to utilize in your Java 8 game development work process in the future when you create your own
custom games.

In Chapter 10, you will learn about Java List, Set, and Array classes. These are called Java collections, and we will
create a custom Actor management engine, which we will call the CastingDirector class, during this chapter. This will
allow you to automate the task of keeping track of the cast of your game for each level, and will be used for collision
detection.

In Chapter 11 we will start coding our primary Actor class for the InvinciBagel character, and add Java 8 code that
controls movement on the screen, so that we can start to work on fusing character animation with game player key
use so that we can allow our game players to control the InvinciBagel character completely. This involves “wiring up”
the Bagel class to the GamePlayLoop (game play timing class created in Chapter 7) class, so we can start working in
the fourth dimension of time.

In Chapter 12 you will use your Actor and Hero abstract classes that you created in Chapter 8 to create the
InvinciBagel primary character and his Bagel.java class, as well as learn how to implement code that sets the
boundaries for your Java 8 game, so that the Actor does not go off the screen, forcing him stay inside of the field of play
for the game.

XXVi

INTRODUCTION

In Chapter 13 you will add different InvinciBagel sprite image states into your Java 8 game, and when these are
combined with the movement you coded in Chapters 11 and 12, allow your InvinciBagel character to run, jump, fly,
land, wait impatiently to be moved, and even turn sideways to evade bullets.

In Chapter 14, you will create a series of Prop classes that will allow you to place fixed props and obstacles into
your Java 8 game levels. You will learn how to use one digital image asset to create four different scenery props, using
the JavaFX ability to flip and mirror your image assets around either (or both of) their X and Y axes.

In Chapter 15, you'll implement your Java 8 game audio engine, using the JavaFX AudioClip class, which allows
digital audio sequencing to be integrated into your Java 8 game play, taking it an order of magnitude higher, by
stimulating the aural senses of your game player. You'll learn how to optimize digital audio assets so well, that you will
not have to use any lossy compression, giving you perfect audio samples, and showing you exactly how much of the
system’s memory your audio assets will be using.

In Chapter 16, we'll start getting into advanced topics, such as designing collision polygons using SVG data and
the GIMP 2.8 and PhysicsEditor software packages. We will also learn about the JavaFX Bounds and Node classes,
and how collision detection is accomplished for Java 8 game development, using the .getBoundsInLocal() and
.getBoundsInParent() method calls, in conjunction with the Node.intersects() and Shape.intersect() method calls.

In Chapter 17, we will pull everything together, and focus solely on implementing your game play. You will
create Actor subclasses for Treasure, Projectile, and Enemy, and create an auto-attack engine that will turn a game
player’s PC or mobile device into his or her adversary. We look at the most advanced topics, such as physics and Al,
during this chapter, after which you will have enough of a foundation to create your own Java 8 games, using your own
intellectual property!

This book attempts to be the most comprehensive Java 8 game application development programming title on
the market, by covering most, if not all, of the major Java 8 and JavaFX classes that will need to be used to create Java 8
Game Applications. Some of these include the Image, ImageView, Group, Node, StackPane, Scene, Stage, Application,
ListArray, HashSet, Arrays, AudioClip, MediaPlayer, URL, Button, Shape, HBox, SVGPath, Insets, AnimationTimer,
and more.

If you're looking for the most comprehensive, up-to-date overview of the Java 8 programming language for
games, including JavaFX 8.0 and NetBeans 8.0 IDE all seamlessly integrated with new media content development
work processes, as well as a “soup to nuts” knowledge about how to optimally use these technologies in conjunction
with the leading open source new media game content design and development tools, then this book will really be of
significant interest to you.

It is the intention of this book to take you from being a Beginner in Java 8 game application development to a
solid intermediate knowledge level regarding Java 8, NetBeans 8, and JavaFX 8.0 game application development.

Be advised that this book, even though it’s ostensibly a Beginner title, contains a significant amount of technical
knowledge. All of the work processes that are described during the book may well take more than one read through
to assimilate into an application development knowledge base (your quiver of technical knowledge). It will be well
worth your time, however, rest assured.

xxvii

CHAPTER 1

Setting Up a Java 8 Game
Development Environment

Welcome to the book Beginning Java 8 Games Development! Let’s get started by creating a solid development software
foundation for use with this book. The core of this foundation will be Java SDK (Software Development Kit) 8,

also called JDK (Java Development Kit) 8. I will also set you up with NetBeans IDE 8.0 (Integrated Development
Environment), which will make coding Java 8 games much easier. After that, I will introduce you to the latest open-
source new media content creation software packages for digital illustration (Inkscape), digital imaging (GIMP [GNU
Image Manipulation Program]), digital video (EditShare Lightworks), digital audio (Audacity), and 3D modeling and
animation (Blender). At the end of the chapter, I will also suggest some other professional-level software packages
that you should consider adding to the professional game development workstation that you will be creating over the
course of this chapter.

To get the best results from all this free, professional-level software, you will want to have a modern, 64-bit
workstation with at least 4GB of system memory (6GB or 8GB would be even better) and a multicore processor
(central processing unit [CPU]), such as an AMD FX-6300 (hexa-core), AMD FX-8350 (octa-core), or Intel i7 (quad-
core). Workstations such as these have become commodity items and can be purchased at Walmart or Pricewatch.com
at an affordable price.

The first thing that you will do in this chapter is make sure that you have removed any of the outdated versions
of Java, such as Java 7 or Java 6, or any outdated versions of NetBeans, such as NetBeans 7 or NetBeans 6. This involves
uninstalling (removing or deleting completely) these older development software versions from your workstation.

You will do this using the Windows program management utility Programs and Features, which can be found
in the Windows operating system (OS) Control Panel suite of Windows OS Management Utilities. There are similar
utilities on the Linux and Mac platforms, if you happen to be using one of these less commonly used OSs. Because
most developers use Windows 7, 8, or 9, you will be using the Windows 64-bit platform for the examples in this book.

Next, I will show you where exactly to go on the Internet to get these software packages, so get ready to fire up
your speedy Internet connection so that you can download nearly a gigabyte of all-new game content production
software! After you download the latest versions of all this software, you will install the programming and content
development packages and configure them for use with this book.

The order in which you perform these software installations is important, because Java JDK 8 and Java 8 Runtime
Environment (JRE) form the foundation of NetBeans IDE 8.0. This is because NetBeans IDE 8.0 was originally coded
using the Java programming language, so you will see just how incredibly professional a piece of software can be using
this language. Thus, the Java 8 software will be the first software you install.

After you install Java 8, you will then install NetBeans 8.0, so that you have a graphical user interface (GUI), on
top of the Java programming language, which will make the Java software development work process easier. After you
have these two primary software development tools installed, you will get a plethora of new media content creation
software packages, which you can use in conjunction with Java 8 and NetBeans 8.0 to create 2D and 3D games.

https://Pricewatch.com

CHAPTER 1

SETTING UP A JAVA 8 GAME DEVELOPMENT ENVIRONMENT

Prepare a Workstation for Java 8 Game Development

Assuming that you already have a professional-level workstation in place for new media content development and
game development, you need to remove all the outdated JDKs and IDEs and make sure that you have the latest V8
(not the drink, silly!) Java and NetBeans software installed on your system and ready to go. If you are new to this and
do not have a game-appropriate workstation, go to Walmart or Pricewatch.com, and purchase an affordable
multicore (use a 4-, 6- or 8-core) 64-bit computer running Windows 8.1 (or 9.0 if it is available) that has 4GB, 6GB,
or 8GB of DDR3 (1333 or 1600 memory access speed) system memory at the very least and a 750GB, or even 1TB,

hard disk drive.

The way that you remove old software is through the Windows Control Panel and its set of utility icons, one of
which is the Programs and Features icon (Windows 7 and 8), displayed in Figure 1-1. Note that in earlier versions of
Windows, this utility icon may be labeled differently, probably as something like Add or Remove Programs.

4 » Control Panel » All Control Panel liems »

Adjust your computer’s settings

‘w Action Center

.,; Color Management
_,sl Device Manager

}:' Folder Options

1 Internet Options

M Network and Sharing
s
Center

Phone and Modem

Recovery

A
@ Sync Center

Py Windows Anytime

~A Upgrade

,_...

5 Administrative Tools

Credential Manager

4 Devices and Printers

Fonts

| lava

Notification Area lcons

Power Options

Region and Language

System

Windows CardSpace

e Akamai NetSession
Interface Control P..

iy Date and Time

! Display
3

Getting Started

_l ‘.'j AutoPlay
@ Default Programs
@ Ease of Access Center

Q.& HomeGroup

P Location and Other

> Keyboard 1
? =} Sensors
Performance Information
Parental Control.
% arental controls - and Tools
ral s and Features uickTime (32-bit)
Kal I ‘a QuickTime {32-bit)

grams and Features
#ll or change programs on your

computer,

.

Sound

Taskbar and Start Menu

Ef'ﬂ Windows Defender

-'; Troubleshooting

‘ Windows Firewall

e‘y Backup and Restore
E.J Desktop Gadgets
Flash Player (32-bit)
dge Indexing Options
__? Mouse

g Personalization

" Realtek HD Audio Manager

< 8

Speech Recognition

&

User Accounts

% P Windows Update

Figure 1-1. Use the Programs and Features utility icon to uninstall or change programs on your computer workstation

Click the Programs and Features link, or double-click the icon in previous versions of Windows, to launch the
utility. Then, scroll down to see if you have any old versions of the Java development tools (Java 5, Java 6, or Java 7)
installed on your workstation. Note that if you have a brand new workstation, you should find no preinstalled versions
of Java or NetBeans on your system. If you do find them, return the system, as it may have been used previously!

Asyou can see in Figure 1-2, on my Windows 7 HTML5 development workstation, I had an older version of Java,
Java 7, installed (on November 29, 2013), taking up 344MB of space. To remove a piece of software, select it by clicking
it (it will turn light blue), and then click the Uninstall button, shown at the top of the figure. I left the tool tip, which
says, “Uninstall this program,” showing in the screenshot so that you can see that if you hover your mouse over
anything in the Programs and Features utility, it will tell you what that feature is used for.

CHAPTER 1 © SETTING UP A JAVA 8 GAME DEVELOPMENT ENVIRONMENT

[F4 » Control Panel » All Control Panelltems » Programs and Features = | #¢ | Search Programs and Features »
Contrel Panel Home :
Uninstall or change a program
View installed updates To uninstall a program, select it from the list and then click Uninstall, Change, or Repair.
", Tum Windows features on or
i Organize * Uninstall Change =+ 8
Mame [Uninstai Thi{-f.rﬂgrans. l Publisher Installed On Size Version -
€ Google Chrome Google Inc. 12/5/2011 3501516153
@ Google Toolbar for Internet Explorer Google Inc. 6/12/2004 7551111712
@ Hotkey Utility Gateway Incorporated 5/15/2010 2053003
[Elidentity Card Gateway Incorporated 5/15/2010 1.00.3003
@ Inkscape 0.45.4 4/28/2013 0.48.4
|§|Java 7 Update 45 (64-bit) Oracle 11/29/2013 113MB 70450
| £ Java SE Development Kit 7 Update 45 (64-bit) Oracle 11/29/2013 226 MB 1.7.0450 -
« Oracle Product version: 1.7.0450 Support ink: http://java.com Size: 226 MB
=’ Help link: hitp:/fjava.com/help Update information: https//www.oracle.com...

Figure 1-2. Select any version of Java older than the current version (Java 8), and click the Uninstall button at the top

Once you click the Uninstall button, the utility will remove the older version of Java. If you want to keep your old
Java project files, make sure to back up your Java project files folder (if you have not done so already, that is). Make
sure that you back up your workstation’s hard disk drive regularly so that you do not lose any of your work.

Also make sure that you uninstall all versions of Java; in my case, there were 64-bit Java 7 update 45 and Java
SDK 7u45, used to run or execute IDEs, such as NetBeans (or Eclipse), that were coded using the Java programming
language.

Next, you will want to ascertain if there are any older versions of the NetBeans IDE on your workstation. In my
case, as you can see in Figure 1-3, there was indeed a NetBeans 7 IDE installation currently on my 64-bit Windows 7
workstation. I selected this for removal and then clicked the Uninstall/Change button, shown at left, which brought
up a custom Uninstall Summary dialog, shown at right.

Sarmary

i Linstal b start B rnstalation. 7 NetBeans o

The folowing 7
Jerva B, Java ME, 1w Card ™ 3 Connecied, C/C++, Groovy, Java SE, FHE, HTMLS, Fesnes on Demand, Sase
% » Contrel Panel » A1 Control Faned kems » Frograms snd Festwes - e

s vegra s ana Features A
Runimes i remerve with NetBeans IDE 7.4
Cartrel Fanel Home. 2) ElasaFah S Cioen Surcn Edion 40
Uninstall or change a program
View instabied updates. Te unirstall s peogram, select it fram the kst and then dick Uninstall, Change, o Repair.
[Wintowa b S Netbens userd at O Vsess e VippData Finamng FieBeans 7.4
Orgaran = | Unintall/Changs - @ Feder R
Far o 1001 (ks
Murwe = thangs the program. || | Publisher Irtalied On Sase Vemion
NeSaans IDE T4 HetBeiniog WM T4
1 Hodes Jopent, Inc. and sthes Node con... 614214 155ME 008
W et btesnet Sevaity Symarten Corpunateer 4z 175012
i Norton Deline Backup - 420 LM 12036
S OpenCifice 400 Apache Sobwire Feundation 1002013 HIME 40050
) Opera 1214 Oetrs Software ALA 2 12341708
@ GuickTime Appleine. a3 TEME THEM
Netbrans.org Product veriios: 74 ke Bitpe e matbeant ey
Hell lenic. httpe e netbeans.o... Lipdate i Bt e Pt ans cey doweicads wh || st]| Cored

Figure 1-3. Find and select any version of NetBeans that is older than version 8.0; also, uninstall old GlassFish versions

Manufacturers (in this case, the NetBeans development team) can create custom Uninstall Summary dialogs for
their products to use during the uninstall process, as you can see here. This dialog allows you to select whether you
want to uninstall GlassFish Server 4 and the NetBeans UserDir Configuration folder. Because you are installing new
versions of NetBeans and GlassFish, select both check boxes, and then click the Uninstall button.

CHAPTER 1~ SETTING UP A JAVA 8 GAME DEVELOPMENT ENVIRONMENT

Downloading Java JDK 8 and NetBeans 8.0

Now that the outdated versions of Java and NetBeans have been removed from your workstation, you will need to go
on the Internet, to the Oracle and NetBeans web sites, respectively, to get the latest development SDKs and IDEs.

I will show you how to do this using Google’s search engine (I am using this method in case the download links,

or URLs, ever change) as well as demonstrate what the direct download URLs are currently, at the time of writing
this book.

Let’s get Java 8 first, as that is the foundation for everything that you are going to be doing as you read through
this book. A Google search for Java JDK 8 will give you the search result that Oracle’s Java Downloads page, which is
located in the Oracle Technology Network section, as shown at the top of the screenshot in Figure 1-4. The URL for
this page is currently www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html. It
is important to note that this URL could change at any time in the future and that you can always use Google Search
to find the latest one. Before you can download the 170MB SDK installer file for Windows 7/8 64-bit, you will need
to click the radio button next to the Accept License Agreement option shown at the top left of the Java 8 download
table. Once you accept the license agreement, these 11 OS-specific links will become activated for use.

[} Javad - Google Search % ¥ [S) Java SE Development Kit? x

C | [O www.oracle.com/technetwor nloads/jdk8-downloads-2133 itml 97 =
Java SE Overview | Downloads || Documentation || Community || Technologies || Training Java SDKs and Tools -
Java EE L

& 3 i eet
Java ME Java SE Development Kit 8 Downloads * 2 fisn
Java SE Suppont # Java M
\ s i ™ " 8l
Java SE Advanced & Suite Th:ml\:’oufo downloading this release ofthe Java '™ Platform, Standard Edition Development Kit & i ;
z == (JOK™. The JOK is a development environment for building applications, applets, and :‘
Java Embedded components using the Java programming language. ¥ NetBeans |
Java DB
The JOK includes tools useful for developing and testing programs written in the Java programming # Java Mission Control
Web Tier language and running on the Java platiorm. e
Java Card
See also: &
Java TV « Java Developer Newsletter (tick the checkbox under Subscription Center > Oratle Technology -
‘ News) # Technical Aticles
MNew to Java
Community » Java Developer Day hands-on workshops (free) and other events & Demos and Videos
Java Magazine + JavaMagazine # Forums
JOK MD5 Checksum * A Zin
Javan
Looking for JDK 8 on ARM? o a0t
JOK 8 for ARM downloads have moved to the JOK & for ARM download page. # Developer Training
Tutorial
Java SE Development Kit 8u25 # Javacom
You mustaccept the Oracle Binary Code License Agi for Java SE to this
software.
Accept License Agreement | * Decline License Agreement
Product / File Description File Size | pSubscribaiodey;
Linux x86 135.24ME =
Linux x86 15488 MB #
Linux x64 1356MB ¥
Linux x64 15342MB & x-x64 tar.gz
Mac OS X x64 209.13MB #
Solaris SPARC 64-DIt(SVR4 package) 137.01MB ¥ jdk-Bu25-solaris-sparcvd tar.Z
Solaris SPARC 64-bit 9714 MB # jdk-Bu25-solaris-sparcvd tar.gz 9
Solaris x64 (SVR4 package) 137.11MB & -solaris-x64 tar 2 e =
Solaris x84 9424MB & Duke’s Choice
Windows x86 15726 MB ¥ Award 2014
Windows x64 16962 ME ¥ indows-x64 exe -

Figure 1-4. Google the term “Java JDK 8,” open the JDK 8 Downloads page, and select Accept License Agreement

4

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

CHAPTER 1 © SETTING UP A JAVA 8 GAME DEVELOPMENT ENVIRONMENT

Be sure to match the Java JDK 8 software that you download to your OS and bit level (x86 signifies a 32-bit-level OS).
Most modern-day workstations use a 64-bit Linux, Mac, Solaris (Oracle), Windows 7, or Windows 8 OS. This will be
specified with the x64 delineation after the name of the OS.

To find out the bit level of the OS, on Windows 7, open the Start Menu, right-click the Computer entry, and
select the Properties option, at the bottom of the context-sensitive menu. On Windows 8, you click Start (a window
pane icon at the bottom left of your desktop if you are in Windows 7 desktop mode) and then the down-arrow icon
at the bottom left, then click the PC Settings purple gear icon and finally the PC Info entry at the bottom left of the
screen. In both use cases, there should then be a text entry that says System type and either 32-bit Operating System
or 64-bit Operating System.

Now that you have downloaded the Java JDK 8 installer, the next thing that you need to do is download is
NetBeans IDE 8.0. Do a Google search for the term NetBeans 8.0, as is shown at the top of Figure 1-5,
and click the Download search result option, which will take you to the NetBeans IDE 8.0.1 Download page
(currently https://netbeans.org/downloads). If you want to keep both tabs open in the browser, as I did, then
right-click the Download link, and select the Open link in new tab option.

NetBunsa.ﬂ-GuogleSeax ONetBeanleEDcwnload x

C' | & https;//netbeans.org/downloads/

Nglﬂea"s NetBeans IDE | NetBeans Platform | Plugins | Docs & Support | Community | Partners

HOME / Download

NetBeans IDE 8.0.1 Download 8.0 50.1 Development | Archive
Ema:l’addressuopil:cna’l:: [] :_Daigua-;e: English v] Plattorm: [Windows v
Subscribe to newsletters: < Monthly Weekly = dald

Note: Greyed out technologies are not supported for this platform

¥ NetBeans can contact me at this address

NetBeans IDE Download Bundles

Supported technologies g Java SE Java EE C/C++ HTMLS & PHP all
Y NetBeans Platform SDK . . °
i) Java SE L] L] .
1) Java FX L] L] L]
Y JavaEE L] L]
Y Java ME .
3 HTMLS L] [] []
L) Java Card™ 3 Connected °
LC/C++ . .
i Groovy .
i PHP . L
Bundled servers

L GlassFish Server Open Source Edition 4.1 L] .
4 Apache Tomcat 8.0.9 L] °

(_ Downioad) (_ Download) (_ Downioad) (Download f(_ Downioad)
Free, 90 MB Free, 185 MB Free, 63 MB Free, 53 MB Free, 204 MB -

Figure 1-5. Google the term “NetBeans 8.0,” open the NetBeans IDE 8.0.1 Download page, and download all versions

https://netbeans.org/downloads

CHAPTER 1 © SETTING UP A JAVA 8 GAME DEVELOPMENT ENVIRONMENT

Once you are on the NetBeans IDE 8.0 Download page, select the language and platform (OS) that you are using
from the drop-down menus at the top right of the page. I chose English and Windows. Now, you can click one of the
three Download buttons at the bottom of the page to download a NetBeans IDE 8.0 that supports JavaFX 8 new media
(and that will therefore support game development) programming language (application programming interface
[API]). You will learn more about what an API is in Chapter 3, when I cover the Java programming language in detail.

If you are only going to develop Java SE (Standard Edition) and JavaFX applications (games) for individuals, then
click the first button. If you are going to develop Java EE (Enterprise Edition) and JavaFX applications (games) for
enterprise (business), then click the second button. If you are going to develop both JavaFX and HTML5 applications
(games), which is what I do for my business, then you click the fifth Download button, and download the “All” version
of NetBeans IDE 8.0. This version will allow you to develop in all the programming languages supported by NetBeans!

Because the NetBeans IDE is free, and your workstation hard disk drive can handle huge amounts of data, I
recommend that you install this 204MB All version of the IDE, in case you ever find that you need any of the other
capabilities that NetBeans IDE 8.0 is able to provide for you as a software developer (Java EE, Java ME, PHP, HTMLS5,
Groovy, GlassFish, Tomcat, C++). This is an extra 120MB if you are going to install the client-side, or Java SE IDE,
version, but is less than 20MB of extra disk space if you are going to install the server-side, or Java EE IDE, version.

Once you click the Download button, the software download will commence. After it is finished, you will be
ready to install Java 8 and then NetBeans IDE 8.0. Finally, to complete the setup of your comprehensive Java 8 game
development workstation, you will get some ancillary new media content tools. You will be able to use the workstation
as you read through this book (and thereafter) to create epic Java 8 game deliverables! This is getting exciting!

Installing the Java 8 Software Development Environment

NetBeans IDE 8.0 requires Java to be installed in order to function (run), so you will need to install the JDK and JRE
first. Because you want to develop games using the latest and most feature-filled version of Java, so you are going to
be installing Java 8, which was released in 2014. Installing the latest version of software ensures that you have the
newest features and the fewest bugs possible. Make sure to check often that you are using the latest version of all your
software packages; after all, these are open source and free to download, upgrade, and use!

The first step is to find where you downloaded your installer files to on your system. The default should be set to
the Download folder in Windows. I downloaded mine to a C: /Clients/Java8 folder, as you can see in Figure 1-6.

@ . . » Computer » Gateway (C:) » Clients » Javad » -

Organize + [=) Open Bumn New folder =+ 0 @
4 {r', Gateway (C:) - Name : Date modified Type Size
. Autodesk = i : 3 P . : o £AD W
- Client 5 Apache_OpenOffice_4.1.0_Win_x86_instal... 6/19/2014 v Application 137,609 KB
! 5
:“ (] jdk-8u25-windows-x64 11/11/20149:42PM__ Application 173,689 KB
ress :
BIFGD B jdk-8u25-windows-64-demos Open 61,882 KB
= = W4 netbeans-8.0-windows n, Run as administrator 214 207 KB
» [@ jelk-BuS- windows-64-demes |~ Troubleshoot compatibility
« jdk-8uS-windows-x64 Date modified: 6/19/2014 12:10 AM Date created: 6/19/201 e e '
'«;‘;-;..' Application Size: 155 MB Pin to Taskbar
—
Pin to Start Menu —_—

Figure 1-6. Find the JDK 8 install file on your hard disk drive, right-click it, and select Run as administrator

The file will be named using the format jdk-version-platform-bitlevel, so find the latest version (in this case, it
was jdk-8u25-windows-x64). Right-click it, and select the Run as administrator option so that the installer has all the
OS “permissions” that it needs to create folders, transfer files into them, and the like.

6

CHAPTER 1 © SETTING UP A JAVA 8 GAME DEVELOPMENT ENVIRONMENT

Once you launch the installer, you will see the Welcome dialog, shown in Figure 1-7 (left). Click the Next button
to advance to the Select Features to Install dialog, shown in Figure 1-7 (right), and accept the defaults.

wel 1o the Installation Wizard for Java SE Dew LKt 8 Select optional features to install from the list below. You can change your cheice of features after
snhchdel il e ok instalation by using the Add/Remove Programs utiity in the Control Panel

Feature Descaiption

This wizard will guide you through the installation process for the Java SE Development I =r Tooks | Java SE Development kit 8
Kit8. Update 25 (64bit), induding the
=3 - | Source Code 4
JavaFX SDK, a private JRE, and
&9+ | Public RE the Java Mission Control tools

suite. This will require 130MB on
your hard drive.

The Java Mission Control profilng and diagnostics tools suite is now avalable as part of A
the JDK. C:\Program Files\Javaljdk 1.8.0_05\ Change...

Next> | [concel | [<Bak [Mext> J[cConcel |

Figure 1-7. Click Next in the Welcome dialog to advance to the Select Features to Install dialog, and then click the
Next button

As you can see, the installer will install 180MB of software into the C:\ProgramFiles\Java\jdk1.8.0_25 folder
on your workstation. Click the Next button to start the installation process, which will extract the installation files and
then copy them onto your system, using an animated progress bar, as displayed in Figure 1-8 (left).

Install to:

C:\Program Fles\Javaljes) [change... |

Figure 1-8. Java 8 installation will extract and copy install files (left) and then suggest the installation directory (right)

After the Java SDK is installed on your system, you will get the JRE installation dialog, which is presented in
Figure 1-8 (right). Make sure that you accept the default installation location for this JRE; it should be installed in the
\Java\jre8 folder. It is best to allow Oracle (Java SDK) to put the software in an industry standard folder location, as
other software packages that you will be using that use this JRE, such as NetBeans IDE 8.0, will be looking for it there
first. Click the Next button to install the JRE.

The installation will show a progress bar during the install, as seen in Figure 1-9 (left). When it is finished,
it will display the Successfully Installed dialog, shown in Figure 1-9 (right). If you want to access tutorials, API
documentation, developer guides, version release notes, and so on, you can click the Next Steps button.

CHAPTER 1~ SETTING UP A JAVA 8 GAME DEVELOPMENT ENVIRONMENT

1% Java SE Development Kit 8 Update 25 (64-bit) - Complete =

Java SE Development Kit 8 Update 25 (64-bit) Successfully Installed

3 Billion Devices Run Java

Click Next Steps to access tutorials, API documentation, developer guides, release notes
and more to help you get started with the JDK.,

Next Steps |

Figure 1-9. During installation a progress bar shows you what is installing (left) and then gives you a completed
dialog (right)

Installing NetBeans IDE 8.0

Now, you are ready to install NetBeans, so locate your netbeans-8.0-windows file (see Figure 1-6. Right-click it, and
select the Run as administrator option to launch the installer. Once it is launched, you will see the dialog shown in
Figure 1-10, which gives you a Customize button that you can use to customize the install.

Welcome to the NetBeans IDE 8.0 Installer

The installer will install the NetBeans IDE with the following packs and runtimes.
Click Customize to select the packs and runtimes to install,

Base IDE
[Java SE
Java EE
Java ME
HTMLS
Java Card™ 3 Connected
CfC++
Groovy
PHP
Features on Demand

Runtimes
GlassFish Server Open Source Edition 4.0

Installation Size: 722.2 MB

[Next> | [cancel

Figure 1-10. The Welcome to the NetBeans IDE 8.0 Installer dialog

8

CHAPTER 1 © SETTING UP A JAVA 8 GAME DEVELOPMENT ENVIRONMENT

Click the Next button to begin the default (full) installation, and you will get the NetBeans IDE 8.0 License
Agreement dialog, shown in Figure 1-11 (left). Select the I accept the terms in the license agreement check box, and
click the Next button to advance to the JUnit License Agreement dialog, shown in Figure 1-11 (right).

License Agreement | JUnit License Agreement
Pl - & NetBeansiDf | o & NetBeans|DE
ase read the folowng lcense agreement carefuly, - Please read the following license agreement carefidly. Ll

NETBEANS IDE 3.0 Product”) LICENSE AGREEMENT Gl | | Wit = |
PLEASE READ THE FOLLOWING LICENSE AGREEMENT TERMS AND Common Public License - v 1.0 |
CONDITIONS CAREFULLY, TNCLUDING WITHOUT LIMITATION THOSE

DISPLAYED ELSEWHERE (AS INDICATED BY LINKS LISTED BELOW), THE ACCOMPANYING PROGRAM IS PROVIDED UNDER THE TERMS OF THIS COMMON PUBLIC

BEFORE USING THE SOFTWARE. THESE TERMS AND CONDITIONS LICENSE ("AGREEMENT "), ANY USE, REPRODUCTION OR DISTRIBUTION OF THE PROGRAM

CONSTITUTE A LEGAL AGREEMENT BETWEEN YOU, OR THE ENTITY FOR CONSTITUTES RECIPIENT'S ACCEPTANCE OF THIS AGREEMENT,

WHICH YOU ARE AN AUTHORIZED REPRESENTATIVE WITH FULL

AUTHORITY TO ENTER INTO THIS AGREEMENT, AND ORACLE. BY 1. DEFINITIONS

CLICKING "ACCEPT" OR THE EQUIVALENT YOU AGREE TO ALL OF

THE TERMS AND CONDITIONS OF THIS LICENSE AGREEMENT. TF YOU | | "Contribution” means:

DO NOT AGREE TO THIS LICENSE DO NOT CLICK "ACCEPT™ OR |

THE EQUIVALENT AND DO NOT INSTALL OR USE THIS SOFTWARE. | @) in the case of the inital Contributor, the initial code and

| d dhstributed under this Agr , and
Copyright () 1997, 2014, Oracke andfor its affliates. Al b} in the case of each subsequent Contributor:
rights reserved.

i) changes to the Program, and
Oracle and Java are registered trademarks of Orade andjor | L |
Its affilates. Other names may be trademarks of ther Unit is a Java unit testing framework

respeClive Ganers.
x| | @ [accent the terms in the b Install Ling

[¥] { accept the terms in the hcense agreement Do not install AUnit

(<oea) (] (o) (<o) (>) (oo |

Figure 1-11. Accept the terms of the license agreement, click the Next button (left), and then do the same for
JUnit (right)

In the JUnit License Agreement dialog, presented in Figure 1-11 (right), click the radio button next to the I accept
the terms in the license agreement statement, and click the Next button to proceed with the installation. The next
two installer dialogs, illustrated in Figure 1-12, will allow you to specify where NetBeans 8.0 and GlassFish 4.0 will be
installed on your system. I suggest accepting the default installation locations in these two dialogs as well. As you will
notice, the NetBeans installer has found your Java installation in its default location as well.

NetBeans IDE 8.0 Installation GlassFish 4.0 Installation
€ =]
Choase the installation folder and J0K™, & NetBeansIDE Choose the instalation folder. & NetBeans|DE

Install the NetBeans IDE to: Instal GassFish to:
C:\Program Fies\NetBeans 8.0 [orowse... | C:\Program Files\glassfish-4.0 Browse...
JOK™ for the NetBeans [DE: JOK™ for GlassFish applcation server:
C:\Program Files\lavaljde1.8.0_25 - Browse. .. C:\Program Files\lavaljdk 1.8.0_25 - Browse. ..

[<Back | [Next> | [Concel | [<Bak | [(Mext> | [cancel

Figure 1-12. Accept the default installation directory suggestions for NetBeans IDE (left) and GlassFish 4.0 (right)

Once you accept these default installation locations and click the Next button to advance through these dialogs,
you will get a Summary dialog, shown in Figure 1-13 (left). This dialog contains an Install button, which will trigger
the installation that you have set up over the previous five NetBeans IDE 8.0 installation dialogs.

CHAPTER 1~ SETTING UP A JAVA 8 GAME DEVELOPMENT ENVIRONMENT

Summary | Setup Complete
i
Cick Instal to start the ins:allation. GO MNEIBEAMSIDE |[|| i rivsh to frssh the Metgans 10z setp. & NetBeans DE

NetBeans IDE Installation Folder:

C:\Program Files\hetBeans 8.0 unit lbrary and 118 updates successfully installed.
GlassFish Server Open Source Edtion 4.0 Instalation Folder: Talsunch the IDE, use either the Start menu o the NetBeans deskiop icon.
C:\Program Files\glassfish-4.0
Toch led comp and acd luging, use Plugin Manager that is an integral part of NetBeans
nit ibrary will be downloaded and instaled during installation of NetBeans IDE. oE.
[¥] Contribute to the NetSeans project by providng anonymous usage data
[¥] Check for Updates
The NetSeans installer can automatcally chedk for updates of installed plugins @ If you agree to partidpate, the IDE wil keep rack of the highdevel features you use
using your Internet connection. @ The collected anonymous data wil be submitted to a usage statistics database at netheans.org server
" The usage statistics will help the team to better user and prigritize
Total Installation Size: improvements in future releases. We cannot and wil not reverse-engineer that collected data to find spedific
72.2M8 | details concerning your projects. See more information,
<ok | [concet

Figure 1-13. Select the Check for Updates check box, and click the Install button (left) and the Finish button (right)

During the installation, you will see the Installation dialog, and its progress bar, illustrated in Figure 1-14, which
will tell you exactly what percentage of the installation has been completed as well as which IDE files are currently
being extracted, and installed, on your workstation.

() NetBeans IDE Installe

Installation
Please wait while the installer installs NetBeans IDE and runtimes.

Installing Base IDE...

= 5%

Extracting C:\Program Files\NetBeans 8.0'platform\core\ocale\org-openide-filesystems_ja.jar.pack.gz

Figure 1-14. The Installation progress dialog, showing the percentage of install complete

When the installation process is complete, you will see the Setup Complete dialog, which is shown in Figure 1-13
(right). Now, you are ready to develop Java 8 and JavaFX applications (games) on your workstation.

Next, let’s download five of the most popular free open-source new media content development software
packages so that you have all the tools that you will need for a Java 8 games development business!

After that, you will take a look at some other impressive open-source software that I use on my workstation.
That way, if you want to, you can put together the ultimate software development workstation before you have even
finished this chapter, creating an incredibly valuable content production workstation for the cost of the hardware
(and OS) alone!

10

CHAPTER 1 © SETTING UP A JAVA 8 GAME DEVELOPMENT ENVIRONMENT

Installing New Media Content Production Software

There are a number of “genres” of new media elements, or assets, as I call them, that are supported in JavaFX, which
is the new media engine in Java 8 (and Java 7) and thus what you will be using as the foundation for your Java 8 game
development. The primary genres of new media, for which you will be installing the leading open-source software in
the remainder of this chapter, include digital illustration, digital imaging, digital audio, digital video, and 3D.

Downloading and Installing Inkscape

Because JavaFX supports 2D, or vector, technology, commonly used in digital illustration software packages, such as
Adobe Illustrator and FreeHand, you will download and install the popular open-source digital illustration software
package known as Inkscape.

Inkscape is available for the Linux, Windows, and Mac OSs, just like all the software packages that you are
installing in this chapter, so you can use any platform you like to develop games!

To find the Inkscape software package on the Internet, go to Google Search, and type in Inkscape, as shown in
Figure 1-15, at the top left. Click the Download link (or right-click, and open in a separate tab), and click the icon that
represents the OS that you are using. The Penguin signifies Linux (far-left icon), the Window signifies Windows (center
icon), and the stylized apple signifies Mac (far-right icon).

] Q Download | Inkscape

- C | [www.inkscape.org/en/download

Followus on: W (5

| 9]

INKSCAPE

* Draw Freely.

ABOUT DOWNLOAD NEWS COMMUNITY CONTRIBUTE DEVELOP

Home » Download

Download

Download Inkscape for free and let your creativity Fly!

Figure 1-15. Google the term “InkScape,” go to the Inkscape Download page, and click the icon that matches your OS

If you want to use the 64-bit Windows version of Inkscape, scroll down, and take a look at the text links below
these three icons to access that particular OS download. Once you have downloaded the software, right-click it and
Run as administrator, and install the software on your workstation. If you have a previous version of Inkscape, the
installation will upgrade it to the latest version; you do not need to use the Programs and Features utility that you
used earlier in the chapter to uninstall your SDK and IDEs, which do not upgrade previous versions, like new media
production software packages tend to do.

11

CHAPTER 1~ SETTING UP A JAVA 8 GAME DEVELOPMENT ENVIRONMENT

After the software is installed, create a Quick Launch icon on your taskbar so that you can launch Inkscape with
a single click of the mouse. Next, you will install a popular digital imaging software package, called GIMP, which will
allow you to create “raster,” or pixel-based (bitmap), artwork for your games in JPEG, PNG, or GIF digital image file
formats supported by JavaFX. Raster images are different from vector, or shape, illustrations, so you will need GIMP.

Downloading and Installing GIMP

JavaFX also supports 2D images that use raster image technology, which represents images as an array of pixels and
is commonly used in digital image compositing software packages, such as Adobe Photoshop and Corel Painter. In
this section, you will download and install the popular open-source digital image editing and compositing software
package called GIMP. This software is available for the Linux, Windows, Solaris, FreeBSD, and Mac OSs.

To find the GIMP software on the Internet, go to Google Search, and type in GIMP, as demonstrated in Figure 1-16.

5 GIMP - GoogleSearch % 1 <& GIMP - The GNU Image IV x
og () g

C | [) www.gimp.org

GNU Image Manipulation Program

- gimp e

GIMP is the GNU Image Manipulation Program. It is a freely distributed piece of software for such tasks as
|, image composition and . It works on many operating systems, in many
languages. (:)

This is the official GIMP web site. It contains information about downloading, installing,

using, and enhancing it. This site also serves as a distribution point for the latest releases.

We try to provide as much information about the GIMP community and related projects as m
possible. Hopefully you will find what you need here. Grab a properly chilled beverage and

enjoy.

We have released an 1 aller () for Microsoft Windows. This one fixes the
and the : bugs - all by updating the included GTK+ library to 2.24.24.

Still unsolved are the in the zoom drop down and the on high
zooms (updating the Pango and Cairo libraries that are didn't change anything there), investigations continue.
www.gimp.org/features/

Figure 1-16. Google the term “GIMP” go to the GIMP Downloads page, and click the Download GIMP link

12

CHAPTER 1 © SETTING UP A JAVA 8 GAME DEVELOPMENT ENVIRONMENT

Click the Download link (or right-click, and open it in a separate tab), and click Download GIMP 2.8.14 (or the
latest version that represents the OS that you are using). The Downloads page will automatically detect the OS that
you are using and give you the correct OS version; in my case, it is Windows. Download and install the latest version of
GIMP, and then create a Quick Launch icon for your workstation taskbar, as you did for Inkscape. Next, you will install
a powerful digital audio editing and audio effects software package, called Audacity.

Downloading and Installing Audacity

JavaFX supports digital audio sequencing, which uses digital audio technology. Digital audio represents analog audio
by taking digital audio samples. Digital audio content is commonly created using digital audio composition and
sequencer software packages, such as Propellerhead Reason and Cakewalk Sonar. In this section, you will download
and install the popular open source digital audio editing and optimization software package known as Audacity.
Audacity is available for the Linux, Windows, and Mac OSs, so you can use any OS platform that you like to create and
optimize digital audio for your Java 8- and JavaFX-based games.

To find the Audacity software package on the Internet, use the Google search engine, and type in Audacity, as
shown in Figure 1-17, at the top left. Click the Download link (or right-click, and open in a separate tab), and click
Audacity for Windows (or the version that represents the OS that you are using).

Audacity - Google Search % ¥ {2} Audacity: Download

[audacity.sourceforge.net/download o

t Search
A d | Search Audacity sites and other selected sites

Home About Download | Help | | Contact Us | | Get Involved | | Donate

Download Download
Audacity Audacity 2.0.6
Windows
e i?{f Audacity for Windows®
NUA I (Windows 2000/XP/Vista'Windows 7/Windows &)
d
. ‘_ Audacity for Mac®

Release Notes (Wiki)
(Universal Binary for Mac OS X 10.4 to 10.9.x)
Plug-Int and Libraries

tain

A § _ Audacity for GNU/Linux®

Vendors and Distributors of
SRR S (L USSTEHANA OF (source code)

Audacity

Release Motes for Audacity 206

Figure 1-17. Google the term “Audacity,” go to the Audacity Download page, and click a link matching your OS

Download and install the latest version of Audacity (currently, it is 2.0.6), and then create a Quick Launch Icon for
your workstation taskbar, as you did for Inkscape and GIMP. Next, you will install a powerful digital video editing and
special effects software package, called EditShare Lightworks.

13

CHAPTER 1 © SETTING UP A JAVA 8 GAME DEVELOPMENT ENVIRONMENT

Downloading and Installing EditShare Lightworks

JavaFX also supports digital video, which uses raster pixel-based motion video technology. Raster represents video
as a sequence of frames, each of which contains a digital image based on an array of pixels. Digital video assets are
usually created using digital video editing and special effects software packages, such as Adobe After Effects and Sony
Vegas. In this section, you will download and install open-source digital video editing software known as Lightworks.

EditShare’s Lightworks used to be a paid software package until it was made open source. You will have to register
on the Lightworks web site to download and use the software. This package is available for Linux, Windows, and Mac
08Ss. To find Lightworks on the Internet, go to Google Search, and type in Lightworks, as shown in Figure 1-18, at the
top left. Click the Download link (or right-click, and open in a separate tab), and click the appropriate Download
button and the tab that represents the OS that you are using. The Downloads page will automatically detect the OS
that you are using and select the correct OS tab; in my case, Windows.

Lightworks - Google Seare % T . Dowrloads

€« o www lwks.com/i

Cutting-edge fashion meets cutting-edge streaming video

LIGHTWORKS

Praduct Downloads Tutarials

29/10/14:: Lightworks Ri e 12.0.17 on Windows, Linux and Mac

Downloads

: .
&Y windows Documentation

L
M Lightworks for Windows

Latest release: 12.01
Release date: 29 0ct 2014
Release notes: 2
Recommended spec:

Download 32-bit # Dpownload 64-bit

Figure 1-18. Google the term “Lightworks,” go to the Lightworks Downloads page, and click the tab that matches
your OS

Register on the Lightworks web site, if you have not done so already. Once you are approved, you can then
download and install the latest version of Lightworks. Install the software, and create a Quick Launch icon for your
taskbar, as you did for the other software. Next, you will install a 3D modeling and animation package, called Blender.

14

CHAPTER 1 © SETTING UP A JAVA 8 GAME DEVELOPMENT ENVIRONMENT

Downloading and Installing Blender

JavaFX has recently moved to support 3D new media assets that are created outside the JavaFX environment, which
means that you will be able to create 3D models, textures, and animation, using third-party software packages, such
as Autodesk 3D Studio Max or Maya and NewTek Lightwave 3D. In this section, you will download and install the
popular open-source 3D modeling and animation software package known as Blender. Blender is available for the
Linux, Windows, and Mac OSs, so you can use any OS platform that you like to create and optimize 3D models, 3D
texture mapping, and 3D animation for use in your Java 8 and JavaFX games.

To find the Blender software on the Internet, using the Google search engine, type in Blender, as shown in
Figure 1-19. Click the correct download link to download and install Blender, and then create the Quick Launch icon.

) Blender - Google Search % ¥ 42 Download - blender.org -

&« C [www.blender.org/download/ w =

/_leender' Features Download Support Getlnvolved About Store

External Renderers Previous Versions Requirements

Download Blender 2.72b tor Windows

Blender 2.72b is the latest stable release from the Blender Foundation
To download it. please select your platform and location. Blender is Free & Open Source Software

Blender 2.72b was released on October 22, 2014

Read about the new features and fixes in the Blender 2.72 Features page.

Mac OSX GNU/Linux Source Code Daily Builds

=& Blender 2.72b for Windows
Compatible with Windows 8 | 7 | Vista

32 bit

USA

DE
() installer -

Figure 1-19. Google the term “Blender,” go to the Blender Download page, and click the tab for your OS

15

CHAPTER 1 © SETTING UP A JAVA 8 GAME DEVELOPMENT ENVIRONMENT

Other Open-Source Software Packages of Interest

There are a number of other professional-level open-source software packages that I use in my new media content
production business that I thought I would let you know about, in case you had not heard about them. These will add
even more power and versatility to the new media production workstation that you have built up to this point. It is
important to note that you have already saved yourself thousands of dollars that would have otherwise been spent

on similar paid content production software packages in the process of doing all this extensive downloading and
installing. I guess you could say my motto is, “Do it right the first time, and be sure to go all the way,” so let me tell you
about some of the other free, and even some of the more affordable, new media content production software packages
that I have installed on my own content production workstations.

One of the best values in open-source software, aside from the EditShare Lightworks package, which used to
cost six figures back in the day, is a business productivity software suite that was made open source by Oracle after
it acquired Sun Microsystems. Oracle transferred its OpenOffice software suite over to the popular Apache open-
source project. OpenOffice 4.1 is an entire office productivity software suite that contains six full-fledged business
productivity software packages! Because your content production agency is actually a full-fledged business concern,
you should probably know about this software, as it is an exceptionally solid open-source software offering. You can
find it at www.openoffice.org; this popular business software package has been downloaded by savvy professionals
such as yourself more than a hundred million times, so it’s no joke, as they say!

A great complement to the Audacity digital audio editing software is Rosegarden MIDI sequencing and music
composition and scoring software, which can be used for music composition and printing out the resulting scores for
music publishing. Rosegarden, currently in version 14.02, and being ported from Linux to Windows, can be found via
Google Search or at www.rosegardenmusic.com.

Another impressive audio, MIDI], and sound design software package is Qtractor If you are running the Linux
OS, be sure to download and install this professional-level digital audio synthesis software package by doing a Google
search or going to https://Qtractor.SourceForge.net.

For 3D character modeling and animation, be sure to check out the 3D software packages from DAZ Studio
(www.daz3d.com) when you have the chance. The current version of DAZ Studio Pro is 4.6, and yes, it is free! You have
to log in and sign up, like you did for EditShare Lightworks, but that is a small price to pay! There is also a free
3D modeling software package on this web site, called Hexagon 2.5, and a popular terrain generation software
package for less than 20 dollars, called Bryce 7.1 Pro. The most expensive software on the DAZ Studio web site is
Carrara (150 dollars) and Carrara Pro (285 dollars). DAZ Studio makes most of its revenue selling character models
of one type or another, so take alook, as it is a force to be reckoned with in the 3D content (virtual) world!

Another impressive (and free, for the basic version) world generation software package is Terragen 3.2, from
Planetside Software, in the United Kingdom. You can download the basic version from https://planetside.co.uk
as well as join its forum. I have used this software in a couple of my Android application development books, so I
know it works well for multimedia applications and games. It is also used by professional filmmakers, as the level of
quality is pristine.

Caligari TrueSpace 7.61 is also excellent, free 3D modeling and animation software. The program, which is
“free and alive!” according to the Caligari web site (https://Caligari.us), from which you can still download it,
used to cost nearly a thousand dollars when it was first developed by Roman Ormandy, the founder of the Caligari
Corporation (later purchased by Microsoft). A professional-level 3D modeling and animation software package, this
program had millions of users in its heyday. It is a really cool piece of software, with a fun-to-use user interface (UI),
so be sure to grab it!

Another 3D rendering software you should take a look at is POV-Ray (Persistence of Vision Raytracer), which
works with any 3D modeling and animation software package to generate impressive 3D scenes, using advanced
ray-traced rendering algorithms. The most recent version on the POV-Ray web site (www.povray.oxrg), 3.7, is 64 bit
and multicore (multithreaded) compatible, and it can be downloaded for free!

Bishop3D is a cool 3D modeling software package that was specifically designed for use with POV-Ray. The
software can be used to create custom 3D objects, which can then be imported into POV-Ray (and then into JavaFX)
for use in your games. The most recent version, an 8MB download, is 1.0.5.2, for Windows 7. The software can be
found at www.bishop3d.com and can currently be downloaded for free!

16

http://www.openoffice.org/
http://www.rosegardenmusic.com/
https://Qtractor.SourceForge.net
http://www.daz3d.com
https://planetside.co.uk
https://Caligari.us
http://www.povray.org/
http://www.bishop3d.com/

CHAPTER 1 © SETTING UP A JAVA 8 GAME DEVELOPMENT ENVIRONMENT

Yet another free 3D modeling software worth investigating is Wings 3D. This software can be used to create
custom 3D objects, which can then be imported into JavaFX for use in your games. The most recent version, a 64-bit,
16MB download, is 1.5.3 and was released in April 2014, for Windows 7, Mac OS X, and Ubuntu Linux. The software
can be found at www.wings3d.com and can currently be downloaded for free!

For Ul design prototyping, the free software package Pencil 2.0.6, from Evolus, allows you to easily prototype Ul
designs before you create them in Java, Android, or HTMLS5. The software is located at http://pencil.evolus.vn and
is available for Linux, Windows, and Mac OSs.

Next, you will take a look at how I organize some of the basic OS utilities and open-source software on my taskbar.

Organizing Quick Launch Icons in Your Taskbar Area

There are certain OS utilities, such as the calculator, text editor (Notepad), and file manager (Explorer), for which

I create Quick Launch icons on my taskbar, as these utilities are used frequently in programming and new media
content development work processes. I also keep as Quick Launch icons a wide range of new media development,
programming, and office productivity applications. Figure 1-20 displays a dozen of these, including everything that
you just installed, in the order in which you installed it, as well as a few others, such as OpenOffice 4.1, DAZ Studio Pro 4.6,
and Bryce 7.1 Pro.

Figure 1-20. Make taskbar Quick Launch icons for key system utilities, NetBeans 8.0, and new media production
software

There are a couple of ways to create these Quick Launch icons: you can drag programs from the start menu and
drop them onto the taskbar, or you can right-click icons on the desktop or in the Explorer file manager and select
Pin this program to taskbar from the context-sensitive menu. Once icons are on the taskbar, you can change their
position simply by dragging them to the left or to the right.

Congratulations, you have just set up a new media Java 8 game development workstation that is highly optimized
and that will allow you to create any new media Java 8 game that you or your clients can imagine!

Summary

In this first chapter I made sure that you have everything that you need to develop standout Java 8 games, including
the latest versions of Java 8, JavaFX, and NetBeans 8.0 as well as all the latest open-source new media software.

You started by downloading and installing the latest Java JDK 8 and NetBeans IDE 8.0 software. Then, you did the
same for a plethora of professional open-source new media tools.

In the next chapter, I will show you how to use NetBeans 8.0 to create a Java 8 project.

17

http://www.wings3d.com/
http://pencil.evolus.vn/

CHAPTER 2

Setting Up Your Java 8 IDE: An
Introduction to NetBeans 8.0

Let’s get started here in Chapter 2 by considering NetBeans IDE 8.0, because that is the primary piece of software
that you will be using to create your Java 8 games. Even though Java JDK 8 is the foundation for your Java 8 games, as
well as for NetBeans 8.0, you will start your journey by learning about NetBeans, as it is the “front end,” the window
through which you look at your Java game project.

NetBeans 8.0 is the official IDE for Java JDK 8, and, as such, it is what you will be using for this book. That is not
to say you cannot use another IDE, such as Eclipse or IntelliJ, which are the official IDEs for Android 4.x (32 bit)
and Android 5.x (64 bit) respectively, but I prefer to use NetBeans 8.0 for my new media application and game
development for the Java 8, JavaFX 8, HTML5, CSS3 (Cascading Style Sheets 3), and JavaScript software development
markup and programming paradigms.

This is not only because NetBeans 8.0 integrates JavaFX Scene Builder, which you will be learning about in
Chapter 5 of this book, but also because it is an HTMLS5 IDE, too, and I create everything I design for my clients using
Java 8, JavaFX 8, Android 4.x, or Android 5.x as well as HTML5. I do this so that the content works across (on) closed,
or proprietary, OSs and platforms. I prefer open-source software and platforms, as you observed in Chapter 1.

First, you will take a look at what is new in NetBeans 8.0. This version of NetBeans was released at the same time
as Java 8, and the version number synchronization is no coincidence. You will discover why you will want to use
NetBeans 8.0 rather than an older NetBeans version, such as NetBeans 7.4 or earlier.

Next, you will examine the various attributes of NetBeans IDE 8.0 that make it an invaluable tool for Java 8 game
development. You will not be able to get hands-on experience with all its features in the chapter, but you will be
exploring all the cool things that it can do for you over the course of this book (you will need to put an advanced code
base into place to really give some of the features a workout).

Finally, you will learn how to create your Java 8 and JavaFX project, using NetBeans 8.0 so that you progress
toward creating the Java 8 game that you will be developing as you read through this book.

Primary Attributes of NetBeans 8.0: An Intelligent IDE

Assuming that you already have a professional-level workstation in place for new media content and game development,
you need to remove all the outdated JDKs and IDEs and make sure that you have the latest V8 Java and NetBeans
software installed on your system and ready to go. If you are new to this and do not have a game-appropriate
workstation, go to Walmart or PriceWatch.com, and purchase an affordable multicore (use a 4-, 6- or 8-core) 64-bit
computer running Windows 8.1 (or 9.0 if it is available) that has 4GB, 6GB, or 8GB of DDR3 (1333 or 1600 memory
access speed) system memory at the very least and a 750GB, or even 1TB, hard disk drive.

19

CHAPTER 2 © SETTING UP YOUR JAVA 8 IDE: AN INTRODUCTION TO NETBEANS 8.0

NetBeans 8.0 Is Smart: Put Your Code Editing into Hyperdrive

Although it is true that an IDE is like a word processor, only geared toward writing code text rather than creating
business documents, a programming integrated development environment such as NetBeans does a lot more for your
programming work process than a word processor does for your document-authoring work process.

For instance, your word processor does not make suggestions in real time regarding the content that you are
writing for your business, whereas the NetBeans IDE will actually look at what you are coding while you are writing
that code and will help you write your code statements and constructs.

One of the things that NetBeans will do is finish lines of code for you as well as apply color to the code statements
to highlight different types of constructs (classes, methods, variables, constants, references, and the like) (for more
details, see Chapter 3). NetBeans will also apply the industry standard for code indenting to make your code much
easier to read (for both yourself and the other members of your game application development team).

In addition, NetBeans will provide matching code structure brackets, colons, and semicolons so that you do
not get lost when you are creating complex, deeply nested, or exceptionally dense programming constructs. You will
be creating constructs such as these as I take you from Java 8 game beginner to Java 8 game developer, and I will point
out Java 8 code that is dense, complex, or deeply nested as you encounter it.

NetBeans can also provide bootstrap code, such as the JavaFX game application bootstrap code that you will be
creating a bit later in this chapter (see the section “Creating Your Java 8 Project: The InvinciBagel”), as well as code
templates (which you can fill out and customize), coding tips and tricks, and code refactoring tools. As your Java code
becomes more complex, it also becomes a better candidate for code refactoring, which can make the code easier to
understand, easier to upgrade, and more efficient. NetBeans can also refactor your code automatically.

In case you are wondering, code refactoring is changing the structure of existing computer code to make it more
efficient or scalable without changing its external behavior, that is, what it accomplishes. For instance, you could take
Java 6 or Java 7 code and make it more efficient by implementing Lambda Expressions, using Java 8.

Furthermore, NetBeans offers pop-up helper dialogs of various types, containing methods, constants, asset
references (see Chapter 3), and even suggestions regarding how to construct the code statement, for example,
when it might be appropriate to use the powerful new Java 8 Lambda Expressions feature to make your code more
streamlined and multithread compatible.

NetBeans 8.0 Is Extensible: Code Editing with Many Languages

Another thing that your word processor cannot do is allow you to add features to it, which NetBeans can do using its
plug-in architecture. The term that describes this type of architecture is extensible, which means that if needed, it can
be extended to include additional features. So, if you wanted to extend NetBeans 8.0 to allow you to program using
Python, for instance, you could. NetBeans 8.0 can also support older languages, such as COBOL and BASIC, in this
fashion as well, although with the majority of popular consumer electronics devices using Java, XML, JavaScript, and
HTMLS5 these days, I am not really sure why anyone would want to take the time do this. I did a Google search for this,
however, and there are people coding in Python and COBOL in NetBeans 8.0, so there is real-world proof that the IDE
isindeed extensible.

Probably because of its extensibility, NetBeans IDE 8.0 supports a number of popular programming languages,
including C, C++, Java SE, JavaScript, XML, HTML5, and CSS on the client side and PHP, Groovy, Java EE, and
JavaServer Pages (JSP) on the server side. Client-side software is run on the device that the end user is holding
or using (in the case of an iTV); server-side software runs remotely, on a server, and talks to the end user over the
Internet or a similar network while the software is running on the server. Client-side software is more efficient, as it
islocal to the hardware device that it is running on and thus is more scalable: no server is involved to experience
overload as more and more people use the software at any given point in time.

20

CHAPTER 2 © SETTING UP YOUR JAVA 8 IDE: AN INTRODUCTION TO NETBEANS 8.0

NetBeans 8.0 Is Efficient: Organized Project Management Tools

A good programming IDE needs to be able to manage projects that can grow to become quite massive, involving more
than a million lines of code contained in hundreds of folders in the project folder hierarchy and thousands of files
and new media assets. For this reason, project management features must be extremely robust in any mainstream
IDE. NetBeans 8.0 contains a plethora of project management features that allow you to look at your Java 8 game
development project, and its corresponding files and their interrelationships, in a number of different ways.

There are four primary project management views, or “panes” that you can use to see the different types of
interrelationships in your project. (I call them panes, as the entire IDE is in what I call a window). I jumped ahead
(to the end of the chapter, once your Java 8 game project has been created) and created the screenshot presented in
Figure 2-1. This screenshot displays the four project management panes opened in this new project so that you can
see exactly what they will show you.

File Edit View Mavigate Source Refactor Rum Debug Profile Team Tools Window Help Q> Search (Ciri+l
£ al % tmaortss _w) T E DB ®-
Projects % | = || Files = @ || services » = [invicBagel v = ENEE
5 InvincBagel 3-1L IrwincBagel =il Databases |5¢¢m hetoy [EB-B-ARFEL|FLL (2 e B g ®
i Source Padages budd i [e e : =
=[] mvinabagel [dasses i (). Drvers 1 e .'.e.':k.eg- e
) InvincBagel.java B[emoty i B sbciderbys/flocahost: 1527fcamcle [appon pp] | | TR 0T o Ly
= (i@ Libraries #-[)) penerated-sources Bl servers L;
5 oK 1.5 Defaudi) [bult-ar.propertes @k Maven Reposiories - e T S Ty P -

dist i 0 Local
i central

yStage) {

tion (new EvencHandler<ActionEvents () (
de

3

@C liz void handle (ActionEvent event) {
25 System. cut.princln(b
26| | ¥
27 N
28 St ne reot = new Pane () 2
29 root.getChildren() .add (betn) ;
30 Scene scene = cene (root, 300, 250):
al ryStage.setTitle(" [H
a2 age.setScens (scene);
33 age.show()
=L g L T
3 3 public static veoid main(Stzing[] azgs) [-.3 lines 1,
|l 38 } -
{4 TrincBiagsl
Output B =]

Figure 2-1. Project management panes, at the left of the IDE, include Projects, Files, Services, and Navigator

The Projects pane, at the left of the screen, shows the Java Source Packages and Libraries that make up your
(game) project. The next pane over is the Files pane, which has the project folder and file hierarchy on your hard
disk drive. The Services pane contains the databases, servers, repositories, and build hosts, if they are used in the
project (these are primarily server-side technologies, and technologies used with a development team, so I am not
going to go into these in detail).

The Projects pane should always be left open (as you will see in Figures 2-7 through 2-21). The Projects pane
provides you with a primary access point for all the project source code and assets (content) in your Java 8 game
project. The Files pane shows not only the project folder and file hierarchy, but also the data and FXML markup
(JavaFX) or Java 8 code hierarchy inside each file.

The Navigator pane (bottom) shows the relationships that exist inside your Java code structures. In this case,
these are the InvinciBagel class, the .start() method, and the .main() method (for further information,
see Chapter 3).

21

CHAPTER 2 © SETTING UP YOUR JAVA 8 IDE: AN INTRODUCTION TO NETBEANS 8.0

NetBeans 8.0 Is User Interface Design Friendly: UI Design Tools

NetBeans 8.0 also has Design a GUI drag-and-drop design tools for a plethora of platforms, including Java SE, Java
EE, Java ME, JavaFX, and Java Swing as well as C, C++, PHP, HTMLS5, and CSS3. NetBeans provides visual editors that
write the application’s UI code for you, so all you have to do is make the visual on the screen look like what you want
it to look like in your game application. Because games use the JavaFX new media (game) engine, you will be learning
about the JavaFX Scene Builder, an advanced FXML-based visual design editor, in Chapter 5 of this book.

JavaFX has the Prism game engine as well as 3D (using OpenGL ES [OpenGL for Embedded Systems]) support,
so I will be focusing quite a bit on the JavaFX Scene Graph and JavaFX APIs. The assumption here is that you will want
to build the most advanced Java 8 games possible, and leveraging the JavaFX engine, which is now a part of Java 8
(along with Lambda Expressions), is going to be the way to accomplish this. The fastest way to develop a game is to
leverage advanced code and programming constructs that the Java 8 and JavaFX environments generously give you
for your use in creating cutting-edge applications (in this case, games) that contain powerful new media elements.

NetBeans 8.0 Is not Bug Friendly: Squash Bugs with a Debugger

There is an assumption across all computer programming languages that the negative impact to your programming
project of a “bug,” or code that does not do exactly what you want it to, increases in magnitude the longer it remains
unfixed, so bugs must be squashed as soon as they are “born.” NetBeans bug-finding code analysis tools, and
integrated NetBeans Debugger, and integration with the third-party FindBugs project, which, as you now know from
experience (Audacity), can be found on the SourceForge web site (http://findbugs.sourceforge.net) (if you want
the stand-alone version), all supplement the real-time, “as you type” code-correcting and efficiency tools I discussed
earlier (see the section “NetBeans 8.0 Is Smart: Put Your Code Editing into Hyperdrive”).

Your Java code will not be very complicated until a bit later in the book, so I will cover how these tools work when
you need to use them, once your knowledge base is a bit more advanced.

NetBeans 8.0 Is a Speed Freak: Optimize the Code with a Profiler

NetBeans also has something called a Profiler, which looks at your Java 8 code while it is running and then tells you
how efficiently it uses memory and CPU cycles. This allows you to refine your code and make it more efficient in its
use of key system resources, which is quite important for Java 8 game development, as this will affect the smoothness
of game play on systems that are not as powerful (e.g., on single- and dual-core CPUs).

This Profiler is a dynamic software analysis tool, as it looks at your Java code while it is running, whereas the
FindBugs code analysis tool is a static software analysis tool, as it simply looks at your code in the editor, when it is
not compiled and running in system memory. The NetBeans Debugger will allow you to step through your code while
itis running, so that tool can be viewed as a hybrid that ranges from a static (editing) to a dynamic (executing) code
analysis mode.

After you create the foundation for your Java 8 (JavaFX) game engine (in the following sections), you will run
the Profiler to see how it works inside NetBeans IDE 8.0. I am going to present as many key features of NetBeans as
possible up front so that you get comfortable with this software.

22

CHAPTER 2 © SETTING UP YOUR JAVA 8 IDE: AN INTRODUCTION TO NETBEANS 8.0

Creating Your Java 8 Game Project: The InvinciBagel

Let’s get down to business and create the foundation for your game. I am going to demonstrate how to create an
original game so that you can see the process involved in developing a game that does not yet exist, as opposed to
most game programming books, which replicate games that are already on the market. I got permission from my
client Ira Harrison-Rubin, cartoonist/author/humorist for the BagelToons franchise, to let readers to see the process
of creating his InvinciBagel cartoon game during the course of this book.

Click the Quick Launch icon on your taskbar (or double-click the icon on your desktop) to launch NetBeans 8.0,
and you will see the NetBeans start-up screen, illustrated in Figure 2-2. This screen contains a progress bar
(in red) and will tell you what is being done to configure the NetBeans IDE for use. This involves loading the various
components of the IDE into your computer system memory so that they can be used smoothly and in real time
during development.

& NetBeansIDE 8.0

Turning on modules...

Figure 2-2. Launch NetBeans 8.0, using the Quick Launch icon

After NetBeans IDE 8.0 has been loaded into your system memory, the NetBeans 8.0 start page will be displayed
on your screen, as shown in Figure 2-3. Click the “x” at the right of the Start Page tab to close this page.

23

CHAPTER 2 © SETTING UP YOUR JAVA 8 IDE: AN INTRODUCTION TO NETBEANS 8.0

Flle Edit View Mavigate Scurce Refactor Run Debug Prefile Team Teols Window Help iQ- Search (Cir
| EES DE X

[startpage |

@ NetBeansIpe -

Learn & Discover

Take a Tour Demos & Tutorials Featured Demo

Try a Sample Project

Java SE Applications
Juhats tlow Java and JavaFx GUI Applicalions
Community Comer Java EE & Java Web Applications
CIC++ Applications

PHP and HTMLS Applications

Mobile and Embedded Applications

Java EE 7 with NetBeans and Vaadin
All Online Documentation >>

ORACLE

Figure 2-3. Close the Start Page tab, at the top left of the screen, by clicking the “x” at the right of the tab to reveal
NetBeans IDE 8.0

This will display what I term the virgin IDE, with no projects active. Enjoy this now, as soon you will be filling this
IDE with panes for your project components (you can see part of this empty IDE in Figure 2-4, which contains menus
and shortcut icons and not much else).

Edit View Navigate Source Refactor Fun Debup Profile Team Tools Window Help | Q- Sexr & T
I Mew Project... Ctrl+Shift« N - T -8 1. Choose Project Q Fiter:
P9 Mew File... CrdeN —ll = .-
& Open Project... Ctrl+ Shift=0
Open Recent Project 3
i i |85, JovaX in Swing Appication
Close Other frojects 3 . | Javal Project with Exsting Sources
Close All Projects) aaee |
Open File...). lavaCard
Open Recent File L] A Maven
J PP
Project Groups...) Groovy
Project Froperies L Ce+
). NetBeans Modues
Import Project & [Samples
Expert Project] L
Desarpion: x
e e Creates a new Java application with enabled JavafX features
Save As... ina standard IDE project. You can aiss generate &
A SR a. app . sample JavaFX code i the |
ntichond ikl peoject. Standard projects use an IDE-generated Ant buld script ta
brild, run, and debug your project. -
Page Setup...
Print. Ctr+ Alt+ Shift+ P
Print to HTML....
] - 1= r 4
= i | (o] [e | () (]

Figure 2-4. Showing virgin NetBeans 8.0 IDE (left) and a JavaFX New Project dialog (right)

24

CHAPTER 2 © SETTING UP YOUR JAVA 8 IDE: AN INTRODUCTION TO NETBEANS 8.0

In case you are wondering, the start page displays every time you start the NetBeans IDE, and if you wanted to
open the Start Page tab later on, perhaps to explore the Media Library section (demos) and tutorials, you can! To
open the start page at any time, you use the NetBeans IDE 8.0 Help menu and the Start Page submenu. For future
reference, I usually notate a menu sequence like this: Help » Start Menu.

The first thing that you will want to do in NetBeans IDE 8.0 is create a new InvinciBagel game project! To
accomplish this, you will use the NetBeans 8.0 New Project series of dialogs. This is one of those helpful Java
programming features that I mentioned earlier (see the section “NetBeans IDE 8.0 Is Smart: Put Your Editing into
Hyperdrive”) that creates a bootstrap project with the correct JavaFX libraries, .main() and .start() methods, and
import statements (for more details, see Chapter 3).

Click the File menu, at the top-left corner of the DE, as displayed in Figure 2-4 (left), and then select New Project
(the first menu item). Note that to the right of this selection, there is a keyboard shortcut given (Ctrl+Shift+N), in case
you want to memorize it.

If you want to use this keyboard short-cut to bring up the New Project series of dialogs, hold down the CTRL and
Shift keys on your keyboard (both at the same time), and while they are depressed (held down), press the N key. This
will do the same thing as using the File » New Project menu sequence.

The first in the series is the Choose Project dialog, shown in Figure 2-4 (right). Because you are going to use the
powerful JavaFX new media engine in your game, select JavaFX from the list of programming language categories in
the Categories pane, and because a game is a type of application, select JavaFX Application from the Projects pane.

Remember that Oracle made JavaFX a part of Java 7 and Java 8, so a JavaFX game is also a Java game, whereas
before Java 7 (in Java 6), JavaFX was its own separate programming language! The JavaFX engine had to be recoded as
aJava (7 and 8) API (set of libraries) for it to become a seamless part of the Java programming language. The JavaFX
API replaces AWT (Abstract Windowing Toolkit) and Swing, and although these older UI design libraries can still be
used in Java projects, they are normally used only by legacy (older) Java code so that those projects can compile and
run in Java 7 and 8. You will be compiling and running the new project you are creating here a bit later in this chapter.

Note that there is a Description pane below the other panes that will tell you what your selections will give you.
In this case, that would be a new Java application with enabled JavaFX features; here, “enabled” indicates that the
JavaFX API libraries will be included (and started) in the Java application project’s class and methods, as you will soon
see in the code (for further information on what the code means, see Chapter 3).

Click the Next button to advance to the next dialog in the series, which is the Finding Feature dialog, shown in
Figure 2-5. This dialog displays a progress bar while it is “Activating JavaFX 2,” which equates to installing the JavaFX
API libraries in your project code infrastructure. You will find that sometimes JavaFX 8 is still referred to as JavaFX 2
(2.3 was the latest version of JavaFX before people started using the name JavaFX 8, probably to sync up with Java 8).
I'have also seen discussion of a JavaFX 3, which is now being called JavaFX 8, and because JavaFX is now a part of Java 8,
I am going to refer to it simply as JavaFX for the duration of this book.

O T .

Steps Finding Feature

1. Choose Project
2. Finding Feature
Activating JavaFXx 2

[C<Bade] [Nexts e | (e [o

Figure 2-5. Step 2: Finding Feature dialog, showing the progress bar for the process of activating JavaFX

25

CHAPTER 2 © SETTING UP YOUR JAVA 8 IDE: AN INTRODUCTION TO NETBEANS 8.0

Once the Finding Feature dialog has activated JavaFX for your game project, you will get the Name and
Location dialog, which is presented in Figure 2-6. Name your project InvinciBagel, and leave the default Project
Location, Project Folder, JavaFX Platform, and Create Application Class settings the way that NetBeans 8.0 has
configured them.

G N &, =

Steps Name and Location

1. Choose Project ProjectName: | InvinciBagel

2. Name and Location
Project Location: C:\Users\user\Documents\NetBeansProjects

Project Folder: C:\Users\user\Documents\NetBeansProjects\InvinciBagel

JavaFX Platform: | JDK 1.8 (Default) -

[7] Create Custom Preloader

Project Name: |InvinciBagel-Preloader

|| Use Dedicated Folder for Storing Libraries

Libraries Folder:

Different users and projects can share the same compiation libraries (see Help for details).

invindbagel.InvinciBagel

Figure 2-6. Name the project InvinciBagel, and leave the other settings as they are

Itis usually a good idea to let NetBeans 8.0 do things for you. As you can see, NetBeans creates the logical
C:\Users\user\My Documents\NetBeansProjects folder in your user folder and My Documents subfolder for the
Project Location data field.

For your Project Folder data field, NetBeans again logically creates a subfolder named InvinciBagel, below the
NetBeansProjects folder, just like you would do yourself.

For the JavaFX Platform drop-down menu, NetBeans 8.0 defaults to the very latest JDK 8, which is also known as
JDK 1.8, and has the latest JavaFX 8 (which was supposed to be JavaFX 3.0).

Because you are not creating multiple applications that will share libraries, leave the Use Dedicated Folder for
Storing Libraries check box unchecked. Finally, select Create Application Class, which will be named InvinciBagel
and will be in the invincibagel package; for the reason, the complete path and class name will be as follows:
invincibagel.InvinciBagel (following the packagename.ClassName Java naming paradigm and style).

(You will be learning more about packages and classes and methods in the Chapter 3, but you are ultimately
going to be exposed to some of this information here, as NetBeans 8.0 will be writing some of the bootstrap Java
code that will provide you with the foundation for your InvinciBagel Java 8 game. I will go over some of the basic
components of the Java code shown in Figure 2-7, but I am primarily going to focus on the NetBeans IDE 8.0 in this
chapter and concentrate on the Java 8 programming language in Chapter 3.)

26

CHAPTER 2

SETTING UP YOUR JAVA 8 IDE: AN INTRODUCTION TO NETBEANS 8.0

File Edit View Navigate Source Refactor Run Debug Profile Team Tools Window Help [Qr search (Ctri+])
PEED DE wen T H DB B-
[Projects = [Files [services | = |[£2 InvinciBageljova | EDEE
&~ incare) [@B-8-REFRE(Fe B Aul0 80 *
= Wi S?xcePadtages 1 o g
-8 invincbagel 2 . T n n v
IR cooceoo || : -
=@ Libranes ; " i
=8| é—'ﬂ 1.8 (Default) | InvinciBagel java s| L o
G- resources.jar QNMS.“: I:e.compifed. € package invincibagel;
“' Q e I}Contamsmamclass._ 7| C imporc javafx.application.Application;
i‘ =)99!.-1’ -] import javafx.event.ActionEvent;
f g j;:]a' .] import javarx.event.EventHandler:
;' Eil jﬁ_:ls'p 10 import javarx.scene.Scene;
; B access-bridge-64.jar 11 import javafx.scene.control.Button;
S ddedata.jar ;. import ;:»avafx.scene.lnyout.Stacanne:
g dens.jar :: nf\;_':or.. javafx.stage.Stage;
@& jaccess.jar = T * i 3 3
© B hatjer " o)
""r g oceledale e 17 public class InvinciBagel extends Application {
I E‘ w’”;" 18 goverride
i;r 6 sunice_provder.gar @ & public void start(Stage primaryStage) {
&8 for 20 Button btn = new Bu::onﬂ‘
®8 1o 21 btn.secText ("Say 'Hello rld'"}:
i LE S Q = btn.setOniction (new EventHaﬂdlerdhctlonEventb[) {
L @@ g 23 i @Overzide
| InvinciBagel - Navigator a! = @ L public void handle(ActionEvent event) {
Members w || <empty> = ﬁ 25 Sysctem.cut.printlin("Hellec World!");:
56 InvincBagel :: Application :: b !
2::2((\:;2[;::)\’5@9) 8 S:;ckPene root = new StackPane(); L3
i 29 root.getChildren() .add(btn);
30 Scene scene = new Sce"el"oat, 300, 250);
31 primaryStage.setTicle (" lo World!™}:;
32 primaryStage.secScene (scene);
33 primaryStage.show () :
34 - }
35 public static veid main(String[] args) {
36 T launch{args):
37 }
= — g =
& MIDEE = 3 & o> =
i%1 INS

Figure2-7. Examine the bootstrap JavaFX code that NetBeans created for you, based on the New JavaFX Application dialog

Asyou can see in the figure, NetBeans has written the package statement, seven JavaFX import statements, the
class declaration, and the .start() and .main() methods. NetBeans 8.0 colors Java key programming statement
words blue and comments gray. Data values are orange and input/output is green.

Before you can run this bootstrap code, to make sure that NetBeans 8.0 wrote code for you that actually works,

you will need to compile it into an executable format, which is run in your system memory.

27

CHAPTER 2 © SETTING UP YOUR JAVA 8 IDE: AN INTRODUCTION TO NETBEANS 8.0

Compiling Your Java 8 Game Project in NetBeans 8.0

In showing you how to compile your Java 8 code before you run (test) it, | am demonstrating the “long way” here so
that you are exposed to every step of the compile/run Java 8 code-testing process. Click the Run menu, and then
select Compile File (the eleventh menu item) to compile your Java code, or use the F9 keyboard shortcut, as indicated
at the right of the selection, as seen in Figure 2-8. Now your project is ready to run!

File Edit View MNavigate Source Refactor Debug Profile Team Tools Window Help
?_—I a m %) @& :.:M [> RunProject (nvinciBagel) F6
Test Project (InvinciBagel) Alt+Fé
| Projects ¥ | Files !SQMG&. | ‘}j“ El @
= i Build Project (InvinciBagel) F11 Y -
[B- & InvincBage b) & Bhlfdlae @ ga #
= ijn Seurce Packages "ﬁ Clean and Build Project (InvinciBagel) Shift+F11 I A
BE-EH "“’w Batch Build Project... (InvinciBagel)
& T
=L@ Libr Set Project Configuration »
=] DK 1.8 (Default) = < |-
E‘ e Set Main Project extends Application { |
@[3 resources.jor
- = . .
G- o
3 -—L«‘ r)N'. Generate Javadoc (InvinciBagel) b primarystage)
f‘ Ié- Wl’ Run File Shift+F6 utton(): |
4] -)
f 8 Joejr ; Test File Ctrl+F6 Hello World'"™):
o3 C. charsets.jar i e =
-y Compile File =1} w EventHandler<ActionEvent>() {
& E jfr.jar
- k&) access-bridge-64.j % CheckFile Alt+F3
v E' coe-53.% bt ; i naLe{ncr.J.or‘Eve'r. event) {
[#- | ddrdata.jar W Validate File Alt+Shift+F9 printin("Hel World!®):
@[3 dnsns.jar i s
-3 jaccess.jor Repeat Build/Run Ctrl+F11
@5 bt t il
r_ g :oc Ja'h | S‘OF'_Su”d Run ew StackPane():
L = .-)V Il 29 root.getChildren() .add(btn);
||| InvinciBagel - Navigator # | L] Scene scene = new Sceﬂe:"nat, 300, 250):
[Mmbgs w» || <empty> - @ 31 primaryScage.secTicle ("He World!®):
B InvincBagel :: Amica!im 32 primaryStage.setScene [sc=n=] H
@ main(string[] args) 33 primaryStage.show();
@ start{Stage primaryStage) 34 }
| 35 [# public scatic void main(Scring[] args) [{
| et 1|38 } X
e DDEE S S | e ;
171 INS

Figure 2-8. Click the Run menu, at the top of the IDE, and then select Compile File, or press the F9 function key

28

CHAPTER 2 © SETTING UP YOUR JAVA 8 IDE: AN INTRODUCTION TO NETBEANS 8.0

Figure 2-9 illustrates the Compile progress bar, which will appear at the bottom of the IDE during compilation.

File Edit View MNavigate Source Refactor Run Debug Profile Team Tools Window Help .Q' Searc
PSS DO [ST R D-B-GB-
Projects % |Files | Services = |[E® invincageljova w1 e
& & InvincBagel - Hstory | @[3 + & 1 |
= Q"Sf)ur{.ePadtages f @ [...5 lines =
- l'—_.“ [nvincibagel:
i rssos o : o
=-| @ Libraries -
= gﬁmriifec::d: 17 public class InvinciBagel extends Application { hi
' 8 i =4 18 @override
5 E jose jar @ & public void start(Stage primaryStage) {
— 20 Button btn = new Button():
T E e . 21 btn.setText ("Say '"Hello World'"); 5
: F_:-. :::a]r;els;a @ L bin.seclnAction (new EventHandler<ActionEvent>() { 3
' I'_? access-bridge-64.jar 23 @0verride
50 crdata.for @ p‘.l!:llc' voiaja—mdlefnc:;?r.}:venc evenr.)l {
I ;: } System.out.println("Hello World!"):
90 jaccess.jor 27 | 1)z
73 ihotjar i
5 localedata.jor = 28 StackPane rcot = new StackPane():;
L = = —| 28 root.getChildren() .add(btn);
InvinciBagel - Navigator % Bl a0 Scene scene = new Scene(root, 300, 250):
: ﬁ 31 primaryScage.secTicle ("Hello World!"™):
32 primaryStage.setScene (scene);
33 primaryStage.show();
34| - 1
35 public static void main(String[] args) |[{...3 lines } |
= | 38 3 il |
= () InvinciBagel ®
| imvincBage! (compile <ingle) = @ || s

Figure 2-9. The Compile progress bar is shown at the bottom of the screen, along with expand and collapse icon
Junctionality

Itis also important to note here that NetBeans will compile the project code when you use the File » Save menu
sequence (or the CTRL-S keyboard shortcut), so if you were to use the Save feature of the NetBeans IDE right after
the bootstrap code is created, you would not have to undertake the compilation process that I just showed you, as this
process is done “automagically,” (not manually) every time you save a game project.

Also shown in the figure, right above the Compile progress bar, is a highlighted a block of code that was visible
in Figure 2-7 but that I have collapsed, using the minus icon at the left of the code editor pane. You can see three
uncollapsed minus icons in the middle of the code editor pane (under the InvinciBagel class) as well as three
collapsed icons at the top of the code editor pane for the two comments and the import statement code block.

A minus icon turns into a plus icon so that a collapsed code view can be expanded. Now that you have looked at how
to compile your project in NetBeans as well as how to collapse and expand the views of logical blocks (components)
of your project code, it is time to run the code.

Running Your Java 8 Game Project in NetBeans 8.0

Now that you have created and compiled your bootstrap Java 8/JavaFX game project, it is time to run or execute
the bootstrap code and see what it does. You can do this by using the Run » Run Project menu sequence

(see Figure 2-8), or you can use the shortcut icon at the top of the IDE (resembling a video transport play button),
displayed in Figure 2-10.

29

CHAPTER 2 © SETTING UP YOUR JAVA 8 IDE: AN INTRODUCTION TO NETBEANS 8.0

File Edit View Navigate Source Refactor Run Debug Profile Team Tools Window Help |°.' Search (Ctrl+]) '
FEES D E e T B DHEBG-
1 = e
Projects % |Files | Services | 2| & tnvinaBageljava |ia| LRun Project dnvinciBage) (F6 [ET|E3]E)
r"?_‘"““’“‘*‘ 2 [Sowce Hetory |[@ B-B-ARSTBLE (P (|00 (G B
= fn Seource Packages I =
&8 1@ [...5 lines | a
o tbl; == 6 package invincibagel:
B o _ — 7| @ impert
i s u K
=8 —— {DGM 17 public class InvinciBagel extends Application {
& TESOUrces
5.0 il =il 12 @override
=8 i @& public void start(Stage primaryStage) {
& é 39991’ 20 Button btn = new Button(): i
P 21 btn.secText (" " lo World'")};
@5 dursetsjor @C bt Onhction (new EventHandler<ActionEvent>() { s
B8 i tn.secOnAction (o entHandler<ActionEvent
23 @override
@[5 access-bridge-64.jar |4 1 ;
@0 drdatadar @ public void handle(ActicnEvent event) {
25 5 -out. ln("Helloc World!"™):
& B jor I 1 ysTem c.princlin|]
2 Q jaccess.jar
i 27 Yz
-8 shotjer s 0 3
&5 localedata jor | 28 StackPane rcot = new StackPane();
29 root.getChildren() .add (btn);
InvinciBagel - Navigator '| Bl 30 Scene scene = new Scene(root, 300, 250): i
Members w || <empty> - @ 31 primarvScage.setIicle("Hello World!"):
= ¢4 InvincBagel :: wm . 3z primaryStage.setScene (scene);
@ main(string[] args) 33 primaryStage.show();
@ start{Stage primaryStage) 34 - 1
5| &= public static void main(String(] args) [{...
[i 138l 3 2
e @MODEE & BD% | o ,_
| 171 NS

Figure 2-10. Click the Run Project shortcut icon (green play button), at the top middle of the IDE (tool tip pop-up shown)

Once you run the compiled Java code, a window will open with your software running in it, at the right of the
screen, as seen in Figure 2-11. Currently, the program uses the popular “Hello World!” sample application.

File Edt View Mavigate Sowrce Refactor Run Debug Profile Tesm Tools Window Help

DEHES DO e STHDI B

[Proiecs [raes [servees | BB e =] e
& nncagel _mv EBERE-B-ARFfEO0(fL aueE |01l .]
"“:‘;:'EW 1@ [..8 1ines ..|

Lo € package invine Hello World! [T =
i Indchuocnm 7| @ wpore [..7 1 . = |
. Lo u @
) 2Lk Pty 17 public class InvinciBagel extends Applicatien { g I
'S:‘;‘“‘“ (8] | & vinclagd 3 @start (&) Everttarder) (@ handle 3 | =

1d\buile-gaz. propecties Say Hello Wodd'

5 propezey file: i\ 1dvbaile-jaz

Created diz: C:\Dsazs’
Denected JuvaFX Anc APT versies 1.3

Leunching <fa:jarr vask frem C:\Progeam Piles’Javaridki.B.0_85hieeh..\libhant-Javaln. jax

Warming: Frem JDKTulS the Codebase manifest avtribute should be used to restrier JAR repurpesing.

Pripercy to override the current defeslt non-securs valde "o,

Copying 13 files %o & Jeca \ 0399

Exscuting C:\Usess) Jecter InvinciBagel cintirunl 331700399 Invincilagel . Jaz using platform C:\Fragrem Files\Jeva'jdki..0_08\jze/bin/jave

Invincagel (ffxsanun) | .. T wn

Figure 2-11. Drag the separator bar upward to reveal the Compile Output area of the IDE (running the application
seen at right)

30

CHAPTER 2 © SETTING UP YOUR JAVA 8 IDE: AN INTRODUCTION TO NETBEANS 8.0

Click the divider line between the code editor pane and the Output tab, at bottom, and, holding down the
mouse button, drag this divider line upward, revealing the Output tab contents, as demonstrated in Figure 2-11.

The Output tab will contain different types of output in NetBeans, such as compile operation output from Ant,
run operation output (shown in the figure), profiler operation output (which you will be exploring in the next section),
and even output from the application itself.

You may have noticed in Figure 2-10 that the code for this bootstrap Java 8/JavaFX application contains a
(System.out.println("Hello World!"); Java statement in line 25, so if you wanted to see the application that
you are currently running print to the Output pane (sometimes referred to in programming circles as the Output
Console), click the Say “Hello World” button in the “Hello World!” application (running on top of the IDE).

Once you click this button, “Hello World!” will appear in the Output tab, under the red text that says it is
executing the InvinciBagel.jar file. A . jar (Java Archive) file is the distributable format for your Java application.
Part of the compile process is creating this file, so if your compiled version works, you can have the . jar file ready to
distribute if your application design and programming are complete!

A . jar file does not contain your actual Java 8 code, but rather a compressed, encrypted “Java byte stream”
version of the application, which the JRE can execute and run (like NetBeans 8.0 is doing now). The path that is
attached to the front of the InvinciBagel. jar file tells you where the compiled . jar file resides and where NetBeans
is accessing it from currently to run it. On my system this location was C:\Users\user\Documents\NetBeansProjects\
InvinciBagel\dist\run1331700299\InvinciBagel.jar.

Let’s take a look at some of the other Output tab text to see what NetBeans did to get to the point where it could
run the . jar file for this project. First, the compiler deletes and rebuilds the build-jar-properties file, in the
\NetBeansProjects\InvinciBagel\build folder, based on the unique attributes of your game application.

Next, Ant creates a \NetBeansProjects\InvinciBagel\dist\ distribution folder to hold project . jar files and
then, detecting JavaFX usage, launches ant-javafx. jar to add JavaFX capabilities to the Ant build engine, which
will create the . jar file. Finally, you will see a warning to change the manifest.custom.codebase property from an
asterisk value (which means “everything”) to a specific value. I may get into the manifest and permissions area of
application development later in the book, after you are a bit more advanced. JavaFX is then launched, and the
.jar file is built.

Ant is the build engine, or build tool, that creates your . jar file. Other build engines, such as Maven and Gradle,
can also be used in NetBeans, because as you now know, NetBeans is extensible!

Ant is used in the Eclipse IDE as well and is an Apache open-source project that has been around for a very long
time. To learn more about the Ant build system and what it does, visit the Ant web site (http://ant.apache.org).

Next, you will explore the profiling capabilities in NetBeans 8.0, which can analyze your code at runtime and
let you know how efficiently (or inefficiently) your Java 8 code is running. This is important for a game, especially an
arcade game or any game that is moving sprites around in real-time on a user’s screen. You will be learning game
concepts and design in Chapter 6 of this book.

Profiling Your Java 8 Game Project in NetBeans 8.0

To launch the Java 8 code profiling utility, using the Profile menu at the top of the IDE, select Profile Project
(InvinciBagel) (the first menu item), as illustrated in Figure 2-12, or use the Profile Project shortcut icon, which is
visible in the collapsed screen view given in Figure 2-13 (you can tell that I collapsed the screenshot by the Java code
line numbering in the code editor pane, which contains only lines 1 and 38, the first and last numbers in the range;
I removed lines 2-37, using Photoshop).

31

http://ant.apache.org/

CHAPTER 2 © SETTING UP YOUR JAVA 8 IDE: AN INTRODUCTION TO NETBEANS 8.0

of : _ :
File Edit View Mavigate Source Refactor Run Debug Team Tools Window Help |Q' Search (Ctrl+]) |

?_I-J W =3 : B @ [<defadtconig> | (B Profile Project (InvinciBagel) Alt+F2
] Profile File I
Projects S|Hlel |Semeel | E'[E Profile Test File EE@
-t 2B atachprofie.. FeR|ae B4 #
748 S Pacen i Application { R
-8 invinabagel 1 PP Rerun Profiling Session Ctrl+Shift+F2
= Medify Profiling Session... Alt«Shift«F2 |yStage
| o o My s
&) 1K 1.8 Defoukt) f B stop Profiling Session Shift+F2 — =
j % i i | [Reset CollectedResults Alt-Shift-F2 |andlex<ActionEvent>() {
+ rt.jar 4
& i 4@ RunGC -
‘?}% Joe.Jar ionEvent event) {
; B:‘ p“ts.ja ij Take Snapshot of Collected Results Ctrl+F2 |{"Hello World!"™}: g
@ @ o 1 [Take Heap Dump..
@ [access-bridge64.jar ‘@ Load Snapshot... T—
@ [ddrdatajor J LoadIDE Snapshot... bz
& E dnsns.jer Sﬁ Load Heap Dump... lox, 300, 250):
-8 access.o 15 CompareSnapshots... lo Werld!"™): L 4
@3 shresar =)l e
Navigator # | E]' 3 Advanced Commands L3
Members - || <empty> - E 34 H . .
=6 InvincBagel : Appication :: & 3 public static void main(String(] args) |{. ;
@ main(tring[] args) | e =t = =
© start(stage prmaryStage) L racssl)) @uxt> @ Zoese)
L | Qutput - InvinciBage! (jfxsa-run) = I=l
& @ED@| B |@ 48 i i:__ i '
23:22 INS

Figure 2-12. Click the NetBeans IDE 8.0 Profile menu, and select the Profile Project (InvinciBagel) menu option

| Fite it View” Navigate: Source Refactor: Run' Debiug Profile * Team * Tools Window Help [Q~ search (crri+D)]
DS DC e ST WP BIO Il |
Projects |Files % [Services | [l InvincBageljova & [Profile Project (invinciBagel) (Alt-F2)| CHEE|

S it CE=)wey RB-8-QA2FRBO(FE (A6 0 *

T O s e Ex

v 38 =

& @DMDERE) & B8 & || & mwnbed > gsat > u

20:1 INS i

Figure 2-13. The shortcut icon for the Profile Project utility, with tool tip (screen collapsed)

As you can see in both the Profile menu and the Profile Project icon tool tip, at the top of the screen, the keyboard
shortcut for the Profile Project tool is ALT+F2 (hold down the ALT key on your keyboard, and press the F2 function
key, at the top left of the keyboard, simultaneously).

32

CHAPTER 2 © SETTING UP YOUR JAVA 8 IDE: AN INTRODUCTION TO NETBEANS 8.0

Profiling Your Java 8 Game Application CPU Usage

Using the Profile Project menu item or shortcut icon will open the Profile InvinciBagel (your game project’s name)
dialog, as shown in Figure 2-14. Let’s click the center CPU button at the left of the dialog, which will put the dialog in
Analyze Performance (selection characteristics) mode. You will look at profiling memory use a bit later on (see the
section “Profiling Your Java 8 Game Application Memory Usage”). The Monitor (button) option enables real-time
thread monitoring, which can be used while you write your Java code.

'ﬂ |,2$‘:— Monitor Analyze Performance
() cru Quick (sampled)

t profiling roots, customize. ..
* Analyze Performance

* Create Custom... . -
Filter: Profile only project dasses >
Show filter value Edit filter sets
|Instrumentation filter - enables you to limit the classes that are profiled.|
@ Memory

/] Use defined Profiling Points Show active Profiing Points

Overhead: |S— | Advanced ssttings

|)) i)

Figure 2-14. Set the filter, using the drop-down menu in the Profile Project dialog, and select the Advanced
(instrumented) output setting

In this dialog, you can select a Quick profile or an Advanced profile, which has graphical instruments that show
the performance visually. As you can see, this is the option selected as well as the Profile only project classes option
from the Instrumentation Filter drop-down menu. Leave Use defined Profiling Points selected to get NetBeans 8.0
to do the maximum amount of profiling work possible. Note as well the Overhead gauge (indicator) at the bottom of
the dialog, indicating a 50 percent value.

The first time that you run the NetBeans profiling tool, it needs to calibrate your workstation, as every
workstation will have different characteristics, such as the amount of memory and number of CPU cores, or
processors.

33

CHAPTER 2 © SETTING UP YOUR JAVA 8 IDE: AN INTRODUCTION TO NETBEANS 8.0

Figure 2-15 displays the Calibration Information dialog, which suggests that only NetBeans run on your
workstation during the calibration process and tells you how to calibrate again in the future (if you change the
system hardware configuration), using the Profile » Advanced Commands » Manage Calibration Data menu
sequence.

) Inhm

'0' Profiler will now perform an initial calibration of your machine and target JVM.

This calibration needs to be performed the first time you run the profiler to
ensure that timing results are accurate when profiling your application. To
ensure the calibration data is accurate, please make sure that other
applications are not placing a noticeable load on your machine at this time.

You can run the calibration again by choosing
"Profile | Advanced Commands | Manage Calibration Data"

Warning: If your computer uses dynamic CPU frequency switching, please
disable it and do not use it when profiling.

Figure 2-15. The first time you profile, a calibration is performed

There is also a warning, saying that you should disable dynamic CPU frequency switching (this is typically
referred to as overclocking), which is a common feature these days.

Because I want to test for slower CPU speeds, I did not bother to do this, as it involves going into the system
BIOS (Basic Input/Output System) on the workstation motherboard and is not something for beginners to be playing
around with.

Ultimately, the most thorough way to test a game application is across a wide range of different OSs and hardware
configurations, but I wanted to show you this profiling feature, as it is a great way to get a good baseline on your
application performance, which you can then improve on as you refine your code (and then run the profiler again and
again, comparing the results with the original baseline measurements).

Once you click the OK button, NetBeans IDE 8.0 will calibrate its profiling tool relative to your system hardware
characteristics, which should not take long at all on a fast, modern-day, multicore workstation.

If you are running the Windows OS (as seen here, in the 64-bit Windows 7 version), you will probably get a
Windows Firewall has blocked some features of this program Windows Security Alert dialog. You want to have
all the features of NetBeans 8.0 at your disposal, so let’s look at how to allow access to the Java SE 8 platform in
Windows next.

34

CHAPTER 2 © SETTING UP YOUR JAVA 8 IDE: AN INTRODUCTION TO NETBEANS 8.0

Unblocking the Java 8 Platform Binary via the Windows Firewall

If you get the dreaded Blocked Features network dialog, presented in Figure 2-16, select the Allow Java Platform SE
binary to communicate on Private networks, such as my home or work network check box, and then click the Allow
access button, which will allow the Java 8 platform SE binary to communicate through the Windows firewall.

Windows Firewall has blocked some features of Java(T™) Platform SE binary on all public and
private networks.

« MName: ava(TM) Platform SE binar

= Publisher: Orade Corporation

Path: C:\program files\java'jdk 1.8.0_05\bin\java.exe

Allow Java(TM) Platform SE binary to communicate on these networks:
(/] Private networks, such as my home or work network

[] Public networks, such as those in airports and coffee shops (not recommended
because these networks often have little or no security)

What are the risks of allowing a program through a firewall?

’ fﬁ'&lowaccess] [Cancel

Figure 2-16. Allow Java features to be used by clicking Allow access

After you allow access to the Java 8 platform SE binary, the NetBeans 8.0 profiling tool can (and will) run and
will generate basic profiling telemetry results. You will take a closer look at these in the following sections, which
deal how to analyze profiling results and what they reveal in terms of how your application uses memory and CPU
resources.

Analyzing the NetBeans IDE 8.0 Game Project CPU Profiling Tool Results

The NetBeans Profiler essentially looks at memory usage and the CPU time used to execute your code. The less
memory used, and the faster the CPU times (which equates to fewer CPU processing cycles required to execute code),
the better optimized your application is. The Profiler also looks at code- (software-) related things, such as method
calls and thread states, which you will be learning about over the course of this book.

35

CHAPTER 2 © SETTING UP YOUR JAVA 8 IDE: AN INTRODUCTION TO NETBEANS 8.0

After you run the NetBeans 8.0 Profiler, you will see that a Profiler tab has been added to your Projects, Files,
and Services tabs, at the left of the IDE, as illustrated in Figure 2-17. You examined these other three tabs earlier in
the chapter (see the section “NetBeans 8.0 Is Efficient: Organized Project Management Tools”), so let’s explore the
Profiler tab now.

[Irwinc

”

File Edit View Mavigate Source Refactor Run Debug Profile Team Tools Window Help Q- Search (Ctrl+]
FEES DO wwen T DB O
Projects | Files services | Prof... ® | & [[& mvincBageljava EHEE
8 Controls) e BE-0ATFRL(PLR SO L 8|
He ooH LB |...5 lines ("5 Hello Worl! =10 ?
et [package invincibagel; e
= 2 7 Ll impozt javafx.spplication.hpplicaticn:
Type: CPUinstrumentation B i javafx.event.AetionEvent;
Confi i Analyze Perfy 4 < .
Status: R 9 g avafyx.event.EventHandler: L
10 javafx.scene.Scene;
& Profiling Results 11 javafx.scene.control.Button;
S p— .G. 12 i javafx.scene.layout.S5tackPane;
@ =] &M@ 13 -4 vafx.stage.Stage; Say ‘Hello Werld
Take Snapshot DumpHea Live Rests 148Ul ines +/| 4
=1| 17 public class InvinciBagel extends Application {
[Saved Snapshots 18 @0verride
= View @ public void start(Stage primaryScage) {
— — — 20 Button btn = new Button():
e = == 21 btn.setText("s ‘Hello World'");
VM Telemetry Threads Lock Contention & [btn.setOnActio: w EventHandler<ActionEvent>() {||
23 #0verride
=i Basic Telemetry @ L public void handle (ActicnEvent event) {
Instrumented: 100 Methods 25 System, cut.println("Hello World!");
Filter: Profile only project dasses 26 }
Threads: 1 - 1
Total Memory: 143,130,6248 s
Used Memory: 5,608,2248 28 StackPane root = new StackPane():
Time Spent in GC: 0.0% 29 root.getChildren() .add(bctn);
2 = —| 30 Scene scene = new Scene(zoot, 300, 250):
start - Navigator # | Gi_ 3 primaryScage.secTicle (" o "}
Iﬂunbus - @ || 22 primaryStage.setScene (scene) s
& . " 33 primaryScage.show () ; -
@ main(string(] | & InvincBagel @ start " |
o ¥ ey s L e Lt]
s ® Sk s | Output - InvinciBagel (itxsa-profile) % 5|
@ @MME®E s D% |»] . = il
I:.nr'ncﬂaqei (ifxsa-profie) | nnning... | E I M1 NS

Figure 2-17. Profile’s Basic Telemetry section, at the left of the IDE, under the Profile tab, shows methods, threads, and
total and used memory

At the top of the Profiler tab is the Controls section, with Stop (Terminate) Profiled Application, Reset Collected
Profiling Results Buffer, Garbage Collection, Modify Profiling Session, and VM Telemetry Overview icons.

Below these is the Status section, showing the type of profiling you have selected (in this case, CPU), the
configuration (Analyze Performance), and the Status (Running).

The Profiling Results section contains icons that open tabs in the code editor section regarding profiling data
results (reports), and the View section does the same thing for virtual memory (VM) telemetry, threads, and thread
lock contention. You will be looking at some of these in the next section, when you profile memory usage (you are
currently profiling CPU usage).

You can save snapshots of various points in time during your code profiling sessions in the Saved Snapshots
section. The Basic Telemetry section shows statistics regarding the profiling session, including number of methods,
filter settings, threads running, and memory usage.

36

CHAPTER 2 © SETTING UP YOUR JAVA 8 IDE: AN INTRODUCTION TO NETBEANS 8.0

Click the Live Results icon in the Profiling Results section, and open a live profiling result tab, shown in
Figure 2-18, at the top, labeled with the CPU time (2:12:09 pPm).

File Edit View Mavigate Source Refactor Run Debug Profile Team Tools Window Help .Q(Search (¢
PEES DO wew T H D B-G
Projects |Files Services | Profiler % &l || InvincBageljava 1| () qpu: 1209 = w0 [eS|]
&l Controls || vew: Cimenoss ~| QB F|E
w [_ E Call Tree - Method Total Time [%] v | Total Time Invocations _E]
& Status | - £ WindowsNativeRunloopThread] B0 ms (1008 1 -
= = i =18 invincibagel.ImvinciBagel. start (javaf.stage Stage [E—— 599 ms (%5.5% 1
ype: instrumentation o 57.58
Configuration: Analyze Performance © seif tme E—] frelitte 2
Status: Inactive (& nvincibagel. InvinciBagels 1. <init> (i 0.009ms (0% 1
=~ 3 invincibagel.InvinciBagel$ 1.handle (12 0.810ms [0.1% 1
= Profiling Results) i i eve
(5 nvincbagel.InvinciBagel$ 1. handle (javafx.eve 0.850ms [0.1% 1
(@ Seif time 0.150ms 1
(&) iwincibagel.Invinciagel. <init> 0.016 ms 1
-1 £33 main | 1.31ms (100% 1
| (D invincibagel.ImvinciBagel. main (Stng(] / 1.31ms (100% 1S
[t} Saved Snapshots I FCP T T =
Vi | U Method Name Filter (C .;\..._:.__ . -
) %3 Call Tres | [HotSpots | [Combined | @ Info
) Output - InvinciBagel (jfxsa-profile) # (5]
¥4 Tekernalry TheachLock Cantimion [{> Pzefiler Agenc: Esvablished connecticn wish the teel i
= Basic Teleme! I Profiler Agent: Local accelerated sessicn
= . | w Halleo World!
Instrumented: =} Profiler Agent: Connection with agent closed
ﬂ:ﬂ‘“ 8 Profiler Agent: Initializing...
;n;:IaMe Profiler Agent: Opticns: »C:\Pzogram Files\NetBeans 8.0\profilezilib, E140,10<
Used Memo) Profiler Agent: Inicialized successfully
Time Spent in 6C: Profiler Agent: 250 classes cached.
| Profiler Agent: 250 classes cached.
' Profiler Rgent: 250 classes cached.
= E. Pzofiler Agent: 250 classes cached.
v E | Profiler Agent: 250 classes cached.
Deleting directory C:\Users\user\Documents\HetBeansProjects\InvinciBagel\dist\runlS51634336
BUIL L (total time: 4 minutes 53 seconds)
& DMDERE & (7 & | a i 5
k22 INS

Figure 2-18. NetBeans Profiler output, shown in the cpu tab, at the top right, and the Output tab, at the bottom right

As you can see, you are able to open your code hierarchy, including the .main() method, the . start() method,
and the .handle() method, and see a visual representation of their percentage of total CPU time used as well as the
actual CPU time used, in milliseconds, which is the time value that is employed in Java programming for both Java 8
and JavaFX and even for HTMLS5, JavaScript, and Android application development.

Finally, as you can see in the Qutput pane at the bottom of the figure, there is also text output, just like when this
Output pane is used for displaying the compiled, run, and executed code, showing what the Profiler is doing as well.
After the “Hello World!” that you generated by clicking your application’s Say “Hello World” button, you can see the
Profiler agent Initializing, caching classes, and so on. There are a ton of tabs and options in this area of NetBeans, and
I cannot cover every single one of them in this basic NetBeans overview chapter, so play around with what you see on
your screen!

37

CHAPTER 2 © SETTING UP YOUR JAVA 8 IDE: AN INTRODUCTION TO NETBEANS 8.0

Profiling Your Java 8 Game Application Memory Usage

Let’s take a look at Memory Profiling next. Click the Profile Project icon, and open the Analyze Memory dialog,
presented in Figure 2-19. As you can see, if you select Record stack trace for allocations, the Profiler uses more
system overhead.

:;r‘C Monitor Analyze Memory Analyze Memory

o —
@ Advanced (instrumented)

@ Advanced (nstrumented)

@ Memory) ﬁ Memory X
| Record ful object ifecyde] Record full chiject ifecyde
- Analyze Memory | Record stack trace for alocations - Anabyze Memory] Rexord stack trace for alocations
* Create Cugtom... * Craate Custom...
] Use defined Profilng Points Show active Profing Points 7] Use defined Proflng Ponts Show active Profilng Points
Overhead: | — Advanced satfings Overhesd: |— Advanced sitings
(prn J[cne J(_ w0] (b) cond |[beb]

Figure 2-19. Select the Memory section of the Profile InvinciBagel dialog and select Record stack trace for allocation

Once the memory profiler is running, use a Window » Profiling » VM Telemetry Overview menu sequence,
shown in Figure 2-20 (top), to open the VM Telemetry Overview tab (bottom). This tab shows memory allocated
and memory used. You can hover the mouse over the visual bar to get an exact reading at any point in time.

In programming terms, hovering a mouse over something will be accessed in your code using “mouse-over.”

38

CHAPTER 2

Edit View Navigate Source Refactor Run Debug Profile Team Tocls |Window| Help

SETTING UP YOUR JAVA 8 IDE: AN INTRODUCTION TO NETBEANS 8.0

PSS D@ (o v“d’%i‘ﬁ
|Files | Projects | Services | Profiler 2| =1l I java xl
Type: Memory instrumantation » | MSomee | Histor
| Co'f'gllatlm: Analyze Memory ﬂg
|- e g b |®
| & Profiling Results Output - InvinciBage! (tx 58
! E ﬁ @ B mz-:a‘nq- c-\(E:j
[I B
| Take Snapshot DumpHeap Live Results g
|
Ius.mdmm 2%
I M
= = - I z
| aax E Upe.lr.i.ng propd
[B \% r Deleting dire
: M Telemetry Threads Lock Contention an
|I:'Blsk_‘lelemetr\r deps-jaz:
Created diz: (
| mrlndrnmenhd: 2,903 Classes S
n"e;dg 11 Created dir: (
| TotalMemory: 17,301,5048 3§ Created diz:
| Used 9,800,328 B Czeated diz: {
L Tin:Speul.-GC. 0.0% i Compiling 1 s¢
" ‘l = ca=pile sl
Members » | <empty> - E Z
& (@) InvincBagel : Applcation - Iar
ODERD = I * o rr—

| (fusa-profile) |

Projects Ctrl+1

Files Ctrl+2
Favorites Ctrle3
Services Crle5
Navigator Ctrl+7
Action Items Ctrl+6
Tasks Ctrl+Shift+6
QOutput Ctrl+4
Editer Ctrl+0
Debugging

Prefiling

Web

IDE Toolks

Configure Window

Reset Windows

Close Window Ctrl+W
Close All Documents CrleShifts W
Close Other Documents

Document Groups

Documents... Shift+F4

Detected Javaln worv nors wweszon o
‘hing <fx:jaz> task from C:\Progzam Files'Java\jdkl.2.0_05\jze\.
Wazrning: From JDETulf the Codebase manifest attribute should be used to ze -

TN

: [T E3)
eI 5| & 4

5
®|

5]

A\InvinciBageli\build\buil

-

|tBeansProjects\InvinciBa

'@
)
=l

Profiler

Live Results

Threads

VM Telemetry

VM Telemetry Overview
O Profiling Points

: -c: n\Im.tr.;inagn 1\build\e
cts\InvinciBagelibuild\e

|ets\InvinciBagelibuildig
\NetBeansFrojectshlnvine
»

|ezs\InvinciBagelidiss

LAliby,

] 14:4

1

File Edit View Navigate Source Refactor Run Debug

Profile Team Teols Window Help

|Qr Search

(Ctri+1)

PSS D@ ooy

T W b-B-®-

files | Projects | services |pronier x| =/ jva u| HNEE
Type: Memor trumen al = _ = — = 1
ot Ay) wey RB-8-ABFEH|PE% AU H Ud %
Status: Running |) =
| & Profiling Results | Output - (insa-profile) | VM Telemetry Overview | =
I_d Lﬂ i | 1005
Take Snapshot DumpHeap Live Results J
| B Saved Snapshots
& View i o 3,000
))) 100 M8 =80%
=) =
VM Telemetry Threads Lock Contention
| 75 M8 = T a0t
| [Basic Telemetry b L2000
Instrumented: 2,503 Classes S0EA052T P IR 12014
Filter: Heap Size: 17,301,514 B
Threads: i Used Heap: 1 a0%
Total Memory: 17,301,5048 ome- Heap: 5. 537198 e i
Used Memary: 9,550,8408 Max Heap Size: 1384120328
Time Spent in GC: 0.0% | Max Used Heap: 11 605,584 B 1,000
InvinciBagel - Navigator | =l =" T A% .
Members || <empty> = E
(i InvinoBage :: Applcation
@ main(5tring]] args) oM r 0
® swswqemﬁbﬂt? |
@ @[:D-E] & |FF) & | M Hesp Sce M Used Hesp B Surviving Generations [Relative Time Spent in GC B Threads M Loaded Classes
(jfusa-profie) | g] 144 s

Figure 2-20. Use the Window » Profiling menu sequence to access the visual profiling tabs

Check out some of the other visual report tabs in the Window » Profiling menu sequence. Presented in Figure 2-21
are the Threads tab, showing all 11 threads (see the Basic Telemetry pane, at the left of the screen), including what each thread
is doing (what code the thread is running), and the VM Telemetry tab, which displays virtual memory usage over time.

39

CHAPTER 2 * SETTING UP YOUR JAVA 8 IDE: AN INTRODUCTION TO NETBEANS 8.0

File Edit View Navigate Source Refactor Run Debug Profile Team Tools Window Help |Qv Search (Ctrl4])

_%:ﬁ;@;;mmm@ ST W D-BR-®-

Services | Profiler 8 | [[} invincBageljava 2[[=] Threads |
Memory instrumentation @|Q@.Q|mum
i Name 120: = b
O Attach Listenar 99,705ms (100%) 99,705 ms ~

99,705ms (100%) 99,705 ms
Oms (0%) 99,705 ms

Take Snapshot DumpHeap Live Results S e H O U5
Oms (0%) 99,705 ms

| [&] Saved Snapshots Oms (0%) 99,705 ms
[= View Oms {0%) 99,705 ms
— @ JavaFX Application Thread 99,705ms (100%) 99,705 ms

E @ @ Thread-8 99,705ms (100%) 99,705 ms

VM Telemetry T B JavaFx4auncher oms {0%) 99,705 ms

O Prism Font Disposer Oms [0%) 99,705 ms

2,03 laazes EDRunning [Sleeping [Wait [Park (B Monitor

1
17,301,5048 | | Output - I (jtxsa-profile) | =

10,000,528 8 Copying 12 files to C:\Users‘\user\Documents‘\NetBeansProjects\InvinciBagel\dist\runld! =
Time Spentin GC: 0.0% Jfx-project-run:

InvinciBagel - Navigator % | Executing C:\Users\user\Documents'\NetBeansProjects\InvinciBagel\dist\runld59021031\1:
Profilez Agent: Waiting for connection on port 5140, ti 10 (P 1 el
'cofiler Agent: Established connection with the teool

i1 Apphication Profiler Agens: Local accelerated session

- llcefwtw

gel (jfxsa-profie) |

File Edit View Navigate Source Refactor Run Debug Profile Team Tools Window Help | Qr Search (Ctri+D)]

PSS D @ (oo)Y Y DB

Files | Projects | Services |Profiler % | (x| & InvincBage java m[[= Threads m[[5] v Teemetry x| EREBE]
o [T TEG0

status: Ruing

[Profiling Results
18.605 PM, Jul 7, 2014

E @ E‘E | wore Heap Sze 17,301,504 8
E : Used Heap 10,098,528 B

Take Snapshot Dump Heap Live Results

sOMB Max Heap S2e 138,412,032 B
(00} Savedm Mz Used Heap 11,605,584 B
[=] View
le—s] pEEm .
1 6:23:10PM 6:23:20 PM 6:23:30

VM Telemetry Threads Lock Contention |‘ :l ’
| [SlHeapSize W Used Heap

(=] Basic Telemetry
Instrumented: 2,903 Classes

Filter: mymﬂmfﬁc)lmflndeddaﬁﬂi
Threads: 11
Total Memory: 17,301,5048 | Output- (ifxsa-profile) & | =
Used Memory: 10,098,528 B8 E» Copying 12 files to C:\Users\user\Documents\NetBeansProjects\InvinciBagelid: ~
Time Spentin GC: 0.0% bt | | jEx-project =
InvinciBage! - Navigator = N’) Executing C:\Users‘\user'\Documents'\NetBeansProjects\InvinciBagelidist\runlds!
: TR = E '@ Profiler Agent: Waiting for connection on port 5140, timecut 10 seconds (Pxc
- /48 - J % Frofiler Agent: Established connection with the teol
=-(4y InvinaBagel :: Application = Profiler Agent: Local acceleraced session [
& ODDEE = I3 % L | v ,
InvincBagel (ifxsa-profie) | ORI, v J@ | 14:4 NS

Figure 2-21. Use the Window » Profiling menu sequence to access the Threads and VM Telemetry tabs

40

CHAPTER 2 © SETTING UP YOUR JAVA 8 IDE: AN INTRODUCTION TO NETBEANS 8.0

The NetBeans Profiler is something that you learn how to use over time, first through experimentation and then,
as you become familiar with what Profiler can do, by using it with your own projects as they become increasingly
complex and observing what your code base does regarding threads, CPU usage, and memory allocation and usage.
NetBeans Profiler is a powerful and useful tool of this that is going to serve as the code development foundation for
your Java 8 game development. I included it in this chapter to give you a solid overview, as this knowledge base will
help you leverage the software, using it to its fullest potential and capabilities.

Clearly, this is an advanced IDE and software development tool that cannot be covered in one short chapter
(maybe in a book; however, this is not a NetBeans 8.0 games development title), so you will be learning more about
what NetBeans 8.0 can do for you in just about all the chapters in this book, as NetBeans 8.0 and Java 8 (and JavaFX 8)
are inexorably intertwined.

Summary

In this second chapter, you learned about NetBeans IDE 8.0, which will serve as the foundation and primary tool for
your Java 8 game development work process. This IDE is where your Java 8 (and JavaFX 8) code is written, compiled,
run, tested, and debugged as well as where your new media (image, audio, video, 3D, font, shape, and so on) assets
are stored and referenced, using your NetBeansProject folder and its subfolders.

You started by taking a look at NetBeans 8.0 and the high-level features that make it the official IDE for Java 8
and that help programmers develop code quickly, efficiently, and effectively (i.e., make code that is bug free) the first
time. After this overview, you created your Java 8 game project, using as a model a real-world game project that [am
working on for a major client.

You went through the New Java Application series of dialogs and created a JavaFX framework for your game,
which will allow you to use new media assets, such as images, audio, video, and 3D. Then, you explored how to
compile and run an application, using NetBeans 8.0. You also studied the Output tab and how that is used for
compiler output, runtime output, and profiling output, which you considered next.

You examined both CPU profiling and memory profiling in NetBeans 8.0; learned how to set up and start up the
Profile Project tool; and studied some of the output, statistics, and visual reports that the NetBeans Profiler can create
for you, based on your Java 8 game project.

In the next chapter, I will present an overview of the Java 8 programming language to make sure that you are up to
speed on how Java 8 works; a Java primer chapter, if you will.

41

CHAPTER 3

A Java 8 Primer: An Introduction
to Java 8 Concepts and Principles -

Let’s build on the knowledge you gained about NetBeans IDE 8.0 in the previous chapter by exploring the basic
concepts and principles behind the Java 8 programming language. Java JDK 8 will be the foundation for your Java
8 games, as well as for your NetBeans IDE 8.0, so it is important that you take the time to study this chapter, a Java 8
“primer” that gives you an overview of this internationally popular computer (and device) programming language.

You will of course learn about more advanced concepts, such as Lambda Expressions, and about other Java 8
components, such as the recent JavaFX multimedia engine, as you progress through the book, so be aware that this
chapter will cover the most foundational Java programming language concepts, techniques, and principles, spanning
the three major versions of Java SE currently in widespread use today, on computers, iTVs, and handheld devices.

These versions of Java, used by billions of users, include Java 6, which is used in the 32-bit Android 4.x OS and
applications; Java 7, which is used in the 64-bit Android 5.x OS and applications; and Java 8, which is used across
many popular OSs, such as Microsoft Windows, Apple OS X, Oracle Solaris, and a plethora of popular Linux “distros,”
or distributions (custom Linux OS versions, such as SUSE, Ubuntu, Mint, Mandrake, Fedora, and Debian).

You will start with the easiest concepts, the highest level of Java, and progress to the more difficult ones, the
guts of the Java programming constructs. You will begin, with a study of Java syntax, or lingo, including what Java
keywords are, how Java delimits its programming constructs, and how to comment your code. Examining this first
will give you a head start at being able to read Java code, as it is important to be able to discern the Java code from the
commentary regarding that code (which is usually written by the author of the Java code using comments).

Then, you will consider the top-level concept of APIs, as well as what a package is, and how you can import and
use the preexisting code that is provided by Java packages. These Java packages are a part of the Java 8 API, and it is
important to note that you can create custom Java packages of your own, containing your games or applications.

After that, you will consider the constructs that are held inside of these Java packages, which are called Java
classes. Java classes are the foundation of Java programming, and can be used to build your applications (in this case,
your Java 8 games). You will learn about the methods, variables, and constants that these classes contain, as well as
what superclasses and subclasses are, and what nested classes and inner classes are, and how to utilize them.

Finally, you will discover what Java objects are, and learn how they form the foundation of Object Oriented
Programming (OOP). You will also come to know what a constructor method is, and how it creates the Java
object, by using a special kind of method called a constructor method that has the same name as the class that it is
contained in. Let’s get started—we have a lot of ground to cover!

The Syntax of Java: Comments and Code Delimiters

There are a couple of things regarding syntax, meaning how Java writes things in its programming language, that you
need to consider right off of the bat. These primary syntax rules are there to allow the Java compiler to understand
how you are structuring your Java code. Java compilation is the part of the Java programming process, in which the

43

CHAPTER 3 © A JAVA 8 PRIMER: AN INTRODUCTION TO JAVA 8 CONCEPTS AND PRINCIPLES

JDK compiler (program) turns your Java code into bytecode that is executed or run by a Java Runtime Engine (JRE).
This JRE, in this case it is JRE 8, is installed on your end user’s computer system. The Java compiler needs to know
where your Java code blocks begin and end, where your individual Java programming statements or instructions
begin and end within those Java code blocks, and which parts of your code are Java programming logic, and which
parts are comments to yourself, or comments (notes) to other members of your game project programming team.

Let’s start with comments, as this topic is the easiest to grasp, and you have already seen comments in your
InvinciBagel game bootstrap Java code, in Chapter 2. There are two ways to add comments into Java code: single-line,
also referred to as “in-line,” comments, which are placed after a line of Java code logic, and multiple--line, or “block,”
comments, which are placed before (or after) a line of Java code or a block of Java code (a Java code structure).

The single-line comment is usually utilized to add a comment regarding what that line of Java logic, which I like
to call a Java programming “statement,” is doing, that is, what that line of Java code is there to accomplish within your
overall code structure. Single-line comments in Java start with the double forward slash sequence. For instance, if
you wanted to comment one of the import statements in the InvinciBagel bootstrap code that you created in Chapter 2,
you would add double forward slashes after the line of code. This is what your Java code would look like once it has
been commented (see also Figure 3-1, bottom right):

import javafx.stage.Stage // This line of code imports the Stage class from JavaFX.stage package

File Edit View Mavigate Source Refactor Run Debug Profile Team Tools Window Help Q Search (Cul+1)
PEES skt _iu] f W P -B3-G -
Files | Projects % | Services =62 InvinciBageljava | DEBE
o, InvincBagel [Sowce | Hstory | E-H-|QRFELR|FL2 (2 o0 5| & 2 ®
-1\l Source Packages i /- el
= k -
n};‘blnvhcﬂagei.)ava 5 A
-\ Libraries ; 1
+- 8 10K 1.8 (Default) s L
[package invincibagel;
o 7 [imporc javalx.application.Application;
— -] import javafx.event.hcticnEvent;
o Ll import javafx.event.EvencHandler;
10 import javafx.scene.Scene;
11 import javafx.scene.control,.Button;
12 import javafx.scene.layout.StackPane;
13 imporc javafx.scage.Scage; -
& =
t ¥ - Output ® [l
& MDEE « I8
6:1 INS

Figure 3-1. Multiline comments (first five lines of code, at the top) and single-line comments (last three lines of code, at
the bottom)

Next, let’s take a look at multiline comments, which are shown at the top of Figure 3-1, above the package
statement (which you will be learning about in the next section). As you can see, these Java block comments are done
differently, using a single forward slash next to an asterisk to start the comment and the reverse of that, an asterisk
next to a single forward slash, to end the multi-line comment.

Asyou can see in the InvinciBagel.java code editing tab in NetBeans 8.0, just as I lined up the single-line
comments to look pretty (cool) and organized, so too the Java convention in block commenting is to line up the
asterisks, with one as the beginning comment delimiter and one as the ending comment delimiter.

44

CHAPTER 3 * A JAVA 8 PRIMER: AN INTRODUCTION TO JAVA 8 CONCEPTS AND PRINCIPLES

Definition A “convention” in Java programming is the way that most, if not all, Java programmers will implement a
Java construct. In this case, this is the way that the Java code block commenting is styled.

There is a third type of comment, called a Javadoc comment, which you will not be using in your Java 8 game
development, as your code is intended to be used to create a game, and not to be distributed to the public. If you were
going to write a Java game engine for use by others to create games, that is when you would use Javadoc comments to
add documentation to your Java 8 game engine. A Javadoc comment can be used by the javadoc.exe tool in the JDK
to generate HTML documentation for the Java class containing Javadoc comments, based on the text content that you
put inside the Javadoc comment.

A Javadoc comment is similar to a multiline comment, but it uses instead two asterisks to create the opening
Javadoc comment delimiter, as shown here:

/** This is an example of a Java Documentation (Javadoc) type of Java code comment.
This is a type of comment which will automatically generate Java documentation!
*/

If you wanted to insert a comment right in the middle of your Java statement or programming structure
(which you should never do as a professional Java programmer), use the multiline comment format, like so:

import /* This line of code imports the Stage class */ javafx.stage.Stage;

This will not generate any errors, but would confuse the readers of this code, so do not comment your code in
this way. The following single line comment way of commenting this code, using the double forward slash, would,
however, generate compiler errors in NetBeans 8.0:

import // This line of code imports the Stage class javafx.stage.Stage

Here, the compiler will see only the word import, as the single-line comment goes to the end of the line,
compared with the multiline comment, which is specifically ended using the block comment delimiter sequence
(asterisk and a forward slash). So, the compiler will throw an error for this second improperly commented code,
essentially asking, “Import what?”

Just as the Java programming language uses the double forward slash and slash-asterisk pairing to delimit the
comments in your Java code, so too a couple of other key characters are used to delimit Java programming statements
as well as entire blocks of Java programming logic (I often call these Java code structures).

The semicolon is used in Java (all versions) to delimit or separate Java programming statements, such as the
package and import statements seen in Figure 3-1. The Java compiler looks for a Java keyword, which starts a Java
statement, and then takes everything after that keyword, up to the semicolon (which is the way to tell the Java
compiler, “I am done coding this Java statement”), as being part of the Java code statement. For instance, to declare
the Java package at the top of your Java application, you use the Java package keyword, the name of your package, and
then a semicolon, as follows (see also Figure 3-1):

package invincibagel;
Import statements are delimited using the semicolon as well, as can be seen in the figure. The import statement
provides the import keyword, the package and class to be imported, and, finally, the semicolon delimiter, as shown

in the following Java programming statement:

import javafx.application.Application;

45

CHAPTER 3 © A JAVA 8 PRIMER: AN INTRODUCTION TO JAVA 8 CONCEPTS AND PRINCIPLES

Next, you should take a look at the curly { braces ({. . .}) delimiter, which, like the multiline comment delimiter,
has an opening curly brace, which delimits (that is, which shows a compiler) the start of a collection of Java
statements, as well as a closing curly brace, which delimits the end of the collection of Java programming statements.
The curly braces allow you to use multiple Java programming statements inside a number of Java constructs,
including inside of Java classes, methods, loops, conditional statements, lambda expressions, and interfaces, all of
which you will be learning about over the course of this book.

As illustrated in Figure 3-2, Java code blocks delimited using curly braces can be nested (contained) inside of
each other, allowing far more complex Java code constructs. The first (outermost) code block using curly braces is
the InvinciBagel class, with other constructs then nested as follows: the start() method, the .setOnAction() method,
and the handle() method. You will be examining what all this code does as this chapter progresses. What I want you
to visualize now (with the help of the red squares in Figure 3.2) is how the curly braces are allowing your methods
(and class) to define their own code blocks (structures), each of which is a part of a larger Java structure, with the
largest Java structure being the InvinciBagel.java class itself. Note how each opening curly brace has a matching
closing curly brace. Note as well the indenting of the code, such that the innermost Java code structures are indented
the farthest to the right. Each block of code is indented by an additional four characters or spaces. As you can see,
the class is not indented (0), the start() method is 4 spaces in, the .setOnAction() method is 8 spaces in, and the
handle() method is 12 spaces in. NetBeans 8.0 will indent each of your Java code structures for you! Also notice that
NetBeans 8.0 draws very fine (gray) indentation guide lines in the IDE so that you can line up your code structures
visually, if you prefer.

PP B @ [cehutank> 0 W b-B-®

Files | Projects ® | Services | Bl || & InvinciBageljava AEE
- @ [nvincBagd ooy |[RB-8-QRFRBE|FPLR |20 B |64 +
T ‘ Sourcs Pacages 17 public class InvinciBagel extends Application { -
I_IWE java 18 3 @Override o
S B Ubraries @ o public void start(Stage primaryStage) {
. 20 Button btn = new Butten():
B8 20K 1.8 (efauit 21 ben.secText ("Sa e o "y
& 0n btn.secOnhction (new EventHandler<hctionEvent>() {
23 @override
@ public void handle (ActionEvent event) {
25 System.out.princln("He W 11"):
2€ } £
| 27 i
=] 2 StackFans oot = new StackPans ()7
j 29 reot.getChildzen () . add (ben) ;
30 Scene scene = new Scene (root, 300, 250):
31 prinaryScage.setTicle ("Hello World!"):
32 primazyStage.setScene (scene);
33 primazyStage.show();
34 }
35| B public static void main(String(] axgs)
38 ¥ o
b ®
|| Output ® | =l

(& MDEE - 6D &

Figure 3-2. Nested Java code blocks for the InvinciBagel class, start method, setOnAction method, and handle method

The Java code inside each of the red squares begins with a curly brace and ends with a curly brace. Now that you
are familiar with the various Java 8 code commenting approaches, as well as how your Java 8 game programming
statements need to be delimited, both individually and as Java code blocks, you will next study the various Java code
structures themselves—how they are used, what they can do for your applications and games, and which important
Java keywords are employed to implement them.

46

CHAPTER 3 * A JAVA 8 PRIMER: AN INTRODUCTION TO JAVA 8 CONCEPTS AND PRINCIPLES

Java APIs: Using Packages to Organize by Function

At the highest level of a programming platform, such as Google’s 32-bit Android 4, which uses Java SE 6; 64-bit
Android 5, which uses Java SE 7; and the current Oracle Java SE platform, which was recently released as Java SE

8, there is a collection of packages that contain classes, interfaces, methods, and constants and that together form
the API. This collection of Java code (in this case, the Java 8 API) can be used by application (in this case, game)
developers to create professional-level software across many OSs, platforms, and consumer electronics devices, such
as computers, laptops, netbooks, notebooks, tablets, iTV sets, game consoles, smartwatches, and smartphones.

To install a given version of an API level, you install the SDK (Software Development Kit). The Java SDK has a
special name, the JDK (Java Development Kit). Those of you who are familiar with Android (Java SE on top of Linux)
OS development know that a different API level is released every time a few new features are added. This is because
these new hardware features need to be supported, not because Google’s executives feel like releasing a new SDK
every few months. Android has 24 different API levels, whereas Java SE has only eight, and only three of Java’s API
levels (Java 6, Java 7, Java 8) are in use currently.

Java SE 6 is used with Eclipse ADT (Android Developer Tools) IDE to develop for 32-bit Android (versions 1.5
through 4.5); Java SE 7 is used with Intelli] IDEA to develop for 64-bit Android (version 5.0 and later); and Java 8 is
used with the NetBeans IDE to develop for JavaFX and Java 8 across the Windows, Mac OS X, Linux, and Oracle Solaris
OSs. I have three different workstations that are optimized for each of these Java API platforms and IDE software
packages so that I can develop applications for Android 4 (Java 6), Android 5 (Java 7), and JavaFX (Java 8) at the same
time. Fortunately, you can get a powerful Windows 8.1 hexacore or octacore 64-bit AMD workstation on PriceWatch.
com for a few hundred dollars!

Besides API level (the SDK you installed and are using), the highest-level construct in the Java programming
language is the package. A Java package uses the package keyword to declare the application’s package at the top of
your Java code. This must be the first line of code declared, other than comments (see Figure 3-1; see also Chapter 2).
The New Project series of dialogs in NetBeans that you used in Chapter 2 will create your package for you and will
import other packages that you will need to use, based on what you want to do in your application. In this case, these
are JavaFX packages, so you can use the JavaFX new media engine.

As you may have ascertained from the name, a Java package collects all the Java programming constructs. These
include classes, interfaces, and methods that relate to your application, so the invinciBagel package will contain all your
code, as well as the code that you imported to work with your code, to create, compile, and run the InvinciBagel game.

A Java package is useful for organizing and containing all your own application code, certainly, but it is even
more useful for organizing and containing the SDK’s (API’s) Java code, which you will use, along with your own Java
programming logic, to create your Java 8 applications. You can use any of the classes that are part of the API that you
are targeting by using the Java import keyword, which, in conjunction with the package and class that you want to
use, constitutes an import statement.

The import statement begins with the import keyword, followed by the fully qualified class name, which is the
package name, any subpackage name, and the class name as a complete naming reference path (the full proper
name for the class). A semicolon terminates an import statement. As you have already seen in Figure 3-1, the import
statement used to import the JavaFX EventHandler class from the javafx.event package should look just like this:

import javafx.event.EventHandler;

The import statement tells the Java compiler that you will be using methods (or constants) from the class that is
referenced, using the import keyword, as well as which package the class is stored in. If you use a class, method, or
interface in your own Java class, such as the InvinciBagel class (see Figure 3-2), and you have not declared the class
for use, using the import statement, the Java compiler will throw an error until you add the required import statement
at the top of the class (after the Java package declaration statement, and before the Java class declaration statement).

47

http://pricewatch.com/
http://pricewatch.com/

CHAPTER 3 © A JAVA 8 PRIMER: AN INTRODUCTION TO JAVA 8 CONCEPTS AND PRINCIPLES

Note Itis possible to use, instead of the Java import keyword, the fully qualified class name, that is, to preface the
class name with the package name, right inside your Java code. Convention dictates using the import statement; how-
ever, line 20 in Figure 3-2 could be written as javafx.scene.control.Button btn = new javafx.scene.control.
Button(); if you wanted to buck standard Java programming convention.

Java Classes: Logical Java Constructs to Build On

The next logical Java programming construct beneath the package level is the Java class level, as you saw in the import
statement, which references both the package that contains the class and a class itself. Just as a package organizes all
the related classes, so too a class organizes all its related methods, variables, and constants and, sometimes, other
nested classes.

Thus, the Java class is used to organize your Java code at the next logical level of functional organization, and so
your class will contain Java code constructs that add functionality to your application. These may include methods,
variables, constants, nested classes, or inner classes.

Java classes can also be used to create Java objects. Java objects are constructed, using your Java class, and have
the same name as the Java class and as that class’s constructor method.

As you saw in Figure 3-2, you declare your class, using a Java class keyword, along with a name for your class. You
can also preface the declaration with Java modifier keywords, which you will be studying later in this chapter (see the
section “Java Modifier Keywords: Access Control and More”). Java modifier keywords are always placed before (or in
front of) the Java class keyword, using the following format:

<modifier keywords> class <your custom classname goes here>

One of the powerful features of Java classes is that they can be used to modularize your Java game code so
that your core game application features can be a part of a high-level class that can be subclassed to create more
specialized versions of that class. Once a class has been subclassed, it becomes a superclass, in Java class hierarchy
terminology. A class will always subclass a superclass using a Java extends keyword. If a class does not extend a given
superclass in this way, then it automatically extends the Java masterclass: java.lang.Object. This is so that every class
in Java can create an object by implementing a constructor method.

Using a Java extends keyword tells the compiler that you want the superclass’s capabilities and functionality
added (extended) to your class, which, once it uses this extends keyword, becomes a subclass. A subclass extends the
core functionality that is provided by the superclass. To extend your class definition to include a superclass, you add to
(or extend, no pun intended) your existing class declaration, using the following format:

<modifier keywords> class <your custom classname> extends <superclass>
When you extend a superclass with your class, which is now a subclass of that superclass, you can use all the

superclass’s features (nested classes, inner classes, methods, variables, constants) in your subclass, without having
them all explicitly written (coded) in the body of your class, which would be redundant (and disorganized).

48

CHAPTER 3 * A JAVA 8 PRIMER: AN INTRODUCTION TO JAVA 8 CONCEPTS AND PRINCIPLES

Note If any of the data fields or methods in the superclass that you are extending (or, if you prefer, subclassing) have
been declared using the private access control keyword, those variables (or constants) and methods are reserved for use
only by (or within) that superclass, and thus will not be accessible to your subclass. The same rules apply to nested and
inner classes; these class structures cannot use any code declared as private in the Java constructs that contain them
(or that are above them, if you will).

The body of your class is coded inside the curly braces (see Figure 3-2, outermost red box), which follow your
class (and javafx.application.Application superclass, in this case) declaration. This is why you learned about Java
syntax first, and you are building on that with the class declaration and the Java syntax that holds the class definition
(variables, constants, methods, constructor, nested classes) constructs.

Asyou can see in the figure, the InvinciBagel class extends an Application superclass from the JavaFX package.
The inheritance diagram (a tool I will be using throughout the book to show you where things come from in the
overall Java and JavaFX API schemas) for your current superclass-to-subclass hierarchy will therefore look like this:

> java.lang.Object
> javafx.application.Application
> invincibagel.InvinciBagel

By extending the javafx.application package and its Application class, you will give the InvinciBagel class
everything it needs to host (or run) the JavaFX application. The JavaFX Application class “constructs” an Application
object so that it can use system memory; call an .init() method, to initialize anything that may require initializing; and
call a .start() method (see Figure 3-2, second-outermost red box), which puts things into place that will ultimately be
needed to fire up (start) an InvinciBagel Java 8 game application.

When the end user finishes using the InvinciBagel game application, the Application object, created by
the Application class, using the Application() constructor method, will call its .stop() method and remove your
application from system memory, thus freeing up that memory space for other uses by the your end-users. You will
be learning about Java 8 methods, constructors, and objects soon, as you are progressing from the high-level package
and class constructs, to lower-level method and object constructs, and so you are moving from a high-level overview
to lower levels. You may be wondering if Java classes can be nested inside each other, that is, if Java classes contain
other Java classes. The answer is yes, they certainly can (and do)! Let’s take a look at the concept of Java nested
classes next.

Nested Classes: Java Classes Living Inside Other Classes

A nested class in Java is a class that is defined inside of another Java class. A nested class is part of the class in which
itis nested, and this nesting signifies that the two classes are intended to be used together in some fashion. There
are two types of nested classes: static nested classes, which are commonly referred to simply as nested classes, and
nonstatic nested classes, which are commonly referred to as inner classes.

Static nested classes, which I will refer to as nested classes, are used to create utilities for use with the class that
contains them, and are sometimes used only to hold constants for use with that class. Those of you who develop
Android applications are very familiar with nested classes, as they are quite commonly employed in the Android AP],
to hold either utility methods or Android constants, which are used to define things such as screen density settings,
animation motion interpolation curve types, alignment constants, and user interface element scaling settings. If you
are looking for an understanding regarding the concept of static, it can be thought of as fixed, or not capable of being
changed. A photograph is a static image, whereas video is not static. We’'ll look at this concept often during this book.

49

CHAPTER 3 © A JAVA 8 PRIMER: AN INTRODUCTION TO JAVA 8 CONCEPTS AND PRINCIPLES

A nested class uses what is commonly referred to in Java as dot notation to reference the nested class “off of”
its master, or parent, containing class. For instance, MasterClass.NestedClass would be the referencing format that
would be used to reference a nested class via its master class (containing class) name, using generic class type names
here. If you created an InvinciBagel SplashScreen nested class to draw the splash screen for your Java game, it would
be referenced in your Java code as InvinciBagel.SplashScreen, using this Java 8 dot notation syntax.

Let’s take a look at, for example, the JavaFX Application class, which contains a Parameters nested class. This
nested class encapsulates, or contains, the parameters that you can set for your JavaFX application. Thus, this
Application.Parameters nested class would be a part of the same javafx.application package as your Application
class and would be referenced as javafx.application.Application.Parameters, if you were using an import statement.

Similarly, the constructor method would be written as Application.Parameters(), because the constructor
method must have the exact same naming schema as the class that it is contained in. Unless you are writing code for
other developers, which is when nested classes are most often used (such as the JavaFX Application class or the many
nested utility or constant provider classes which you will find in the Android OS), you are far more likely to utilize
non-static nested classes (commonly referred to as Java inner classes).

A nested class can be declared by using the Java static keyword. A Java keyword is also sometimes called a Java
modifier. Therefore, if you were to do an InvinciBagel.SplashScreen nested class, the InvinciBagel class and its
SplashScreen nested class declaration (Java 8 programming structure) would look something like this:

public class InvinciBagel extends Application {
static class SplashScreen {
// The Java code that creates and displays your splashscreen is in here
}

It is important to note if you use, for example, import javafx.application.Application.Parameters toimport
a nested class, you can reference that nested class within your class, using just the Parameters class name, rather than
the full class name path that shows your class’s code how to travel through a parent class to its nested class via the
Application.Parameter (ClassName.NestedClassName) dot notation syntax reference.

As you will see many times throughout this book, Java methods can also be accessed using the dot notation. So,
instead of using ClassName.NestedClassName.MethodName, you could, if you had used the import statement to
import this nested class, simply use NestedClassName.MethodName. This is because the Java import statement has
already been used to establish the full reference path to this nested class, through its containing class, and so you do
not have to provide this full path reference for the compiler to know what code construct you are referring to!

Next, let’s take a look at nonstatic nested classes, which are usually referred to as Java inner classes.

Inner Classes: Different Types of Nonstatic Nested Classes

Java inner classes are also nested classes, but they are not declared using the static keyword modifier before the class
keyword and class name, which is why they are called nonstatic nested classes. Thus, any class declaration that is
inside another class that does not use the static (keyword) modifier would be termed an inner class in Java. There are
three types of inner classes in Java: member class, local class, and anonymous class. In this section, you will discover
what the differences are between these inner classes, as well as how they are implemented .

Like nested classes, member classes are defined within the body of the containing (parent) class. You can
declare a member class anywhere within the body of the containing class. You would declare a member class if you
wanted to access data fields (variables or constants) and methods belonging to the containing class without having to
provide a path (via dot notation) to the data field or method (ClassName.DataField or ClassName.Method).

A member class can be thought of as a nested class that does not use the Java static modifier keyword.

Whereas a nested class is referenced through its containing, or top-level, class, using a dot notation path to the
static nested class, a member class, because it is not static, is instance specific, meaning that objects (instances)
created via that class can be different from each other (an object is a unique instance of a class), whereas a static

50

CHAPTER 3 * A JAVA 8 PRIMER: AN INTRODUCTION TO JAVA 8 CONCEPTS AND PRINCIPLES

(fixed) nested class will only have one version, which does not change. For instance, a private inner class can only be
used by a parent class that contains it. The SplashScreen inner class coded as a private class would look something
like this:

public class InvinciBagel extends Application {
private class SplashScreen {
// The Java code that creates and displays your splashscreen is in here
}

Because this class is declared as private, it is for your own application usage (the containing class’s usage,
specifically). Thus, this would not be a utility or constant class for use by other classes, applications, or developers.
You can also declare your inner class without using the private access modifier keyword, which would look like the
following Java programming construct:

public class InvinciBagel extends Application {
class SplashScreen {
// The Java code that creates and displays your splashscreen is in here
}

This level of access control is called package or package private and is the default level of access control
applied to any class, interface, method, or data field that is declared without using one of the other Java access control
modifier keywords (public, protected, private). This type of inner class can be accessed not only by the top-level,
or containing, class, but also by any other class member of the package that contains that class. This is because the
containing class is declared public, and the inner class is declared package private. If you want an inner class to be
available outside the package, you declare it to be public, using the following Java code structure:

public class InvinciBagel extends Application {
public class SplashScreen {
// The Java code that creates and displays your splashscreen is in here
}

You can also declare an inner class protected, meaning that it can only be accessed by any subclasses of the
parent class. If you declare a class inside a lower-level Java programming structure that is not a class, such as a method
or an iteration control structure (commonly called a loop), it would technically be referred to as a local class. A local
class is only visible inside that block of code; thus, it does not allow (or make sense to use) class modifiers, such as
static, public, protected, or private. A local class is used like a local variable, except that it is a complex Java coding
construct rather than a simple a data field value that is used locally.

Finally, there is a type of inner class called an anonymous class. An anonymous class is a local class that has not
been given a class name. You are likely to encounter anonymous classes far more often than you are local classes.
This is because programmers often do not name their local classes (making them anonymous classes); the logic local
classes contain is only used locally, to their declaration, and so these classes do not really need to have a name—they
are only referenced internally to that block of Java code.

Java Methods: Core Java Function Code Constructs

Inside classes, you generally have methods and the data fields (variables or constants) that these methods use.
Because we are going from outside to inside, or top-level structures to lower-level structures, I will cover methods
next. Methods are sometimes called functions in other programming languages. Figure 3-2 provides an example

51

CHAPTER 3 © A JAVA 8 PRIMER: AN INTRODUCTION TO JAVA 8 CONCEPTS AND PRINCIPLES

of the .start() method, showing how the method holds the programming logic that creates a basic “Hello World!”
application. The programming logic inside the method uses Java programming statements to create a Stage object
and a Scene object, place a button on the screen in a StackPane object, and define event-handling logic, such that
when the button is clicked, the bootstrap Java code writes the “Hello World!” text to your NetBeans IDE output area.

The method declaration starts with an access modifier keyword, either public, protected, private, or package
private (which is designated by not using any access control modifier at all). As you can see in the figure, the .start()
method has been declared, using the public access control modifier.

After this access control modifier, you will need to declare the method’s return type. This is the type of data that
the method will return after it is called, or invoked. Because the .start() method performs setup operations but does
not return a specific type of value, it uses the void return type, which signifies that the method performs tasks but does
not return any resulting data to the calling entity. In this case, the calling entity is the JavaFX Application class, as the
.start() method is one of the key methods (the others being the .stop() and .init() methods) provided by that class to
control the life cycle stages of a JavaFX application.

Next, you will supply the method name, which, by convention (programming rules), should start with a
lowercase letter (or word, preferably a verb), with any subsequent (internal) words (nouns or adjectives) starting
with a capital letter. For instance, a method to display the splash screen would be named .showSplashScreen() or
.displaySplashScreen() and because it does something but does not return a value, would be declared using
this code:

public void displaySplashScreen() { Java code to display splashscreen goes in here }

If you need to pass parameters, which are named data values that have to be operated on within the body of the
method (the part inside the curly braces), these go inside the parentheses that are attached to the method name. In
Figure 3-2 the .start() method for your bootstrap “HelloWorld!” JavaFX application receives a Stage object, named
primaryStage, using the following Java method declaration syntax:

public void start(Stage primaryStage) { bootstrap Java code to start Application goes in here }

You can provide as many parameters as you like, using the data type and parameter name pairs, with each pair
separated by a comma. Methods can also have no parameters, in which case the parameter parentheses are empty,
with the opening and closing parentheses right next to each other, for example, .start(), and .stop().

The programming logic that defines your method will be contained in the body of the method, which, as
discussed previously, is inside the curly braces that define the beginning and the end of the method. The Java
programming logic that is inside methods can include variable declarations, program logic statements, and iterative
control structures (loops), all of which you will be leveraging to create your Java game.

Before moving on, let’s focus on one other Java concept that applies to methods, namely, overloading Java
methods. Overloading a Java method means using the same method name, but different parameter list configurations.
What this means is that, if you have defined more than one method with the same name, Java can figure out which of
your (overloaded) methods to use by looking at the parameters that are being passed into the method being called
and then using that parameter list to discern which of the methods (that have the same name) to use by matching the
parameter list data types and names and the order in which they appear. Of course, your parameter list configurations
must all be unique for this Java method overloading feature to work correctly.

You will be learning how to use and how to code Java methods over the course of this book, beginning in Chapter 4,
so I am not going to spend too much time on them here, other than to define what they are and the basic rules for how
they are declared, and used, inside Java classes.

One specialized kind of method that I am going to cover in detail, however, is the constructor method. This is a
type of method that can be used to create objects. Java objects are the foundation of OOP, so you will be taking a look
at constructor methods next, as it is important to do so before learning about the Java object itself, which you will
study later in the chapter (see the section “Java Objects: Virtual Reality, Using Java Constructs®).

52

CHAPTER 3 * A JAVA 8 PRIMER: AN INTRODUCTION TO JAVA 8 CONCEPTS AND PRINCIPLES

Creating a Java Object: Invoking a Class’s Constructor Method

AJava class can contain a constructor method with the exact same name as the class that can be used to create Java
objects using that class. A constructor method uses its Java class like a blueprint to create an instance of that class in
memory, which creates a Java object. A constructor method will always return a Java object and thus does not use any
of the Java return types that other methods will typically use (void, String, and so on). A constructor method is invoked
by using the Java new keyword, because you are creating a new object.

You can see an example of this in the bootstrap JavaFX code shown in Figure 3-2 (1L. 20, 28, and 30), where new
Button, StackPane, and Scene objects are created, respectively, by using the following object declaration, naming,
and creation Java code structure:

<Java class name> <your object instance name> = new <Java constructor method name> <semicolon>

The reason that a Java object is declared in this way, using the class name, the name of the object you are
constructing, the Java new keyword, and the class’s constructor method name (and parameters, if any) in a single
Java statement terminated with a semicolon, is because a Java object is an instance of a Java class.

Let’s take a look at, for example, the Button object creation from line 20 of your current Java code. Here, via the
part of the Java statement on the left-hand side of the equals operator, you are telling the Java language compiler that
you want to create a Button object named btn, using the JavaFX Button class as the object blueprint. This declares the
Button class (object type) and gives it a unique name.

The first part of creating the object is thus called the object declaration. The second part of creating your Java
object is called the object instantiation, and this part of the object creation process, seen on the right-hand side of the
equals operator, involves a constructor method and the Java new keyword.

To instantiate a Java object, you invoke the Java new keyword, in conjunction with an object constructor method
call. Because this takes place on the right-hand side of the equals operator, the result of the object instantiation is
placed in the declared object, which is on the left-hand side of the Java statement. As you will see a bit later in the
chapter, when I discuss operators (see the section “Java Operators: Manipulating Data in the Application”), this is
what an equals operator does, and a useful operator it is.

This completes the process of declaring (class name), naming (object name), creating (using a new keyword),
configuring (using a constructor method), and loading (using the equals operator) your very own custom Java object.

It is important to note that the declaration and instancing parts of this process can be coded using separate lines
of Java code as well. For instance, the Button object instantiation (see Figure 3-2, 1. 20) could be coded as follows:

Button btn;
btn = new Button();

This is significant, because coding an object creation in this way allows you to declare an object at the top of your
class, where each of the methods inside the class that use or access these objects can see the object. In Java, unless
declared otherwise, using modifiers, an object or data field is only visible inside the Java programming construct
(class or method) in which it is declared.

If you declare an object inside your class, and therefore outside all the methods contained in the class, then all
the methods in your class can access (use) that object. Similarly, anything declared inside a method is local to that
method and is only visible to other members of that method (Java statements inside the method scope delimiters). If
you wanted to implement this separate object declaration (in the class, outside the methods) and object instantiation
(inside the .start() method) in your current InvinciBagel class, the first few lines of Java code for your InvinciBagel
class would change to look like the following Java programming logic:

public class InvinciBagel extends Application {
Button btn;
@0verride
public void start(Stage primaryStage) {
btn = new Button();

53

CHAPTER 3 © A JAVA 8 PRIMER: AN INTRODUCTION TO JAVA 8 CONCEPTS AND PRINCIPLES

btn.setText("Say 'Hello World'");
// The other programming statements continue underneath here

}

When the object declaration and instantiation are split up, they can be placed inside (or outside) methods as
needed for visibility. In the preceding code, other methods of your InvinciBagel class could call the .setText() method
call shown without the Java compiler’s throwing an error. The way the Button object is declared in Figure 3-2, only the
.start() method can see the object, and so only the .start() method can use this btn.setText() method call.

Creating a Constructor Method: Coding an Object’s Structure

A constructor method is more a method for creating objects in system memory, whereas other methods (or functions,
if using a different programming language) are usually used to perform calculation or processing of one type or
another. The constructor method’s use in creating Java objects in memory, rather than performing some other
programming function, is evidenced by the use of the Java new keyword, which creates a new object in memory. For
this reason, a constructor method will define the structure of an object as well as allow the calling entity to populate
the object structure with custom data values, using the constructor method’s parameter list.

You will create a couple of sample constructor methods in this section to learn the basics of how this is done as
well as what a constructor method usually contains. Let’s say you are creating an InvinciBagel object for your game,
so you declare a public InvinciBagel() constructor method, using the following Java code structure:

public InvinciBagel() {
int lifeIndex = 1000; // Defines units of lifespan
int hitsIndex = 0; // Defines units of damage ("hits" on the object)

String directionFacing = "E"; // Direction that the object is facing
Boolean currentlyMoving = false; // Flag showing if the object is in motion

This constructor method, when called using an InvinciBagel mortimer = new InvinciBagel(); Java method
call, creates an InvinciBagel object named mortimer, with 1,000 units of life and no hits, that is facing east and that is
not currently moving.

Next, let’s explore the concept of overloading the constructor method, which you learned about earlier
(see the section “Java Methods: Java Core Function Code Constructs”), and create another constructor method that
has parameters that allow you to define the lifeIndex and directionFacing variables of the InvinciBagel object while
you are creating it. This constructor method looks like this:

public InvinciBagel(int lifespan, String direction) {
int lifelndex;
int hitsIndex;
String directionFacing = null;
Boolean currentlyMoving = false;
lifeIndex = lifespan;
directionFacing = direction;

54

CHAPTER 3 * A JAVA 8 PRIMER: AN INTRODUCTION TO JAVA 8 CONCEPTS AND PRINCIPLES

In this version the lifeIndex and hitsIndex variables at the top are initialized to 0, the default value for an
integer, so you do not have to use lifeIndex = 0 or hitsIndex = 0 in the code. The Java programming language
accommodates method overloading, so if you use an InvinciBagel bert = new InvinciBagel(900, "W"); method
call to instantiate the InvinciBagel object, the correct constructor method will be used to create the object. The
InvinciBagel object named bert would have a lifeIndex of 900 units of life and no hits on its life, would be facing
West, and would not be currently moving.

You can have as many (overloaded) constructor methods as you like, so long as they are each 100 percent unique.
This means that overloaded constructors must have different parameter list configurations, including parameter list
length (the number of parameters) and parameter list types (order of data types). As you can seg, it is the parameter
list (length, data types, order) that allows a Java compiler to differentiate overloaded methods from one another.

Java Variables and Constants: Values in Data Fields

The next level down (progressing from API, to package, to class, to method, to the actual data values that are being
operated on in Java classes and methods) is the data field. Data values are held inside something called a variable; if
you fix, or make permanent, the data, it is called a constant. A constant is a special type of variable (which I will cover
in the next section), because declaring a constant correctly is a bit more involved (advanced) than declaring a Java
variable.

In the Java lingo, variables declared at the top of a class are called member variables, fields, or data fields,
although all variables and constants can be considered data fields, at a fundamental level. A variable declared inside a
method or other lower-level Java programming structure declared inside a class or method, is called a local variable,
because it can only be seen locally, inside the programming constructs delimited by curly braces. Finally, variables
declared inside a parameter list area of a method declaration or method call are, not surprisingly, called parameters.

Avariable is a data field that holds an attribute of your Java object or software that can (and will) change over
the course of time. As you might imagine, this is especially important for game programming. The simplest form of
variable declaration can be achieved by using a Java data type keyword, along with the name that you want to use for
the variable in your Java program logic. In the previous section, using the constructor method, you declared an integer
variable named hitsIndex to hold the damage, or hits, that your InvinciBagel object will sustain during game play. You
defined the variable data type, and named it, using the following Java variable declaration programming statement:

int hitsIndex; // This could also be coded as: int hitsIndex = 0; (the default Integer is Zero)

Asyou also saw in that section, you can initialize your variable to a starting value, using an equals operator, along
with a data value that matches up with the data type declared: for example:

String facingDirection = "E";

This Java statement declares a String data type variable and names it facingDirection, on the left side of the
equals operator, and then sets the declared variable to a value of “E,” which signifies the direction East, or right. This
is similar to how an object is declared and instantiated, except that the Java new keyword and constructor method
are replaced by the data value itself, because now a variable (data field) is being declared instead of an object being
created. You will learn about the different data types (I have already covered Integer, String, and Object) later in
chapter (see the section “Java Data Types: Defining Data in Applications”).

You can also use Java modifier keywords with variable declarations, which I will do in the next section, when I
show you how to declare an immutable variable, also known as a constant, which is fixed, or locked, in memory and
which cannot be altered.

Now that I am almost finished going from the largest Java constructs to the smallest (data fields), I will start to
cover topics that apply to all levels (classes, methods, variables) of Java. These concepts will generally increase in
complexity as you progress to the end of this Java 8 primer chapter.

55

CHAPTER 3 © A JAVA 8 PRIMER: AN INTRODUCTION TO JAVA 8 CONCEPTS AND PRINCIPLES

Fixing Data Values in Memory: Defining a Data Constant in Java

If you are already familiar with computer programming, you know that there is often a need to have data fields that
will always contain the same data value and that will not change during the duration of your application run cycle.
These are called constants, and they are defined, or declared, using special Java modifier keywords that are used
to fix things in memory so that they cannot be changed. There are also Java modifier keywords that will restrict (or
unrestrict) object instances, or access to certain classes inside or outside a Java class or package (which you will be
examining in detail in the next section).

To declare Java variables fixed, you must use a Java final modifier keyword. “Final” means the same thing as
when your parents say that something is final: it is fixed in place, an FOL (fact of life), and not going to change, ever.
Thus, the first step in creating a constant is to add this final keyword, placing it in front of the data type keyword in
your declaration.

A convention, when declaring a Java constant (and constants in other programming languages), is to use
uppercase characters, with underscored characters between each word, which signifies a constant in your code.

If you want to create screen width and screen height constants for your game, you do so like this:

final int SCREEN_HEIGHT PIXELS
final int SCREEN WIDTH PIXELS

480;
640,

If you want all the objects created by your class’s constructor method to be able to see and use this constant, you
add the Java static modifier keyword, placing it in front of the final modifier keyword, like this:

static final int SCREEN_HEIGHT PIXELS = 480;
static final int SCREEN WIDTH PIXELS = 640;

If you want only your class, and objects created by this class, to be able to see these constants, you declare the
constants by placing the Java private modifier keyword in front of the static modifier keyword, using this code:

private static final int SCREEN HEIGHT PIXELS = 480;
private static finmal int SCREEN_WIDTH PIXELS = 640;

If you want any Java class, even those outside your package (i.e., anyone else’s Java classes), to be able to see
these constants, you declare the constants by placing the Java public modifier keyword in front of the static modifier
keyword, using the following Java code:

public static final int SCREEN HEIGHT PIXELS = 480;
public static finmal int SCREEN WIDTH PIXELS = 640;

Asyou can see, declaring a constant involves a significantly more detailed Java statement than declaring a simple
variable for your class! Next, you will take a deeper look at Java modifier keywords, as they allow you to control things
such as access to your classes, methods, and variables as well as locking them from being modified and similar high-
level Java code control concepts that are fairly complicated.

Java Modifier Keywords: Access Control and More

Java modifier keywords are reserved Java keywords that modify the access, visibility, or permanence (how long
something exists in memory during the execution of an application) for code inside the primary types of Java
programming structures. The modifier keywords are the first ones declared outside the Java code structure, because
the Java logic for the structure, at least for classes and methods, is contained within the curly braces delimiter, which
comes after the class keyword and class name or after the method name and parameter list. Modifier keywords can be
used with Java classes, methods, data fields (variables and constants), and interfaces.

56

CHAPTER 3 * A JAVA 8 PRIMER: AN INTRODUCTION TO JAVA 8 CONCEPTS AND PRINCIPLES

As you can see at the bottom of Figure 3-2, for the .main() method, created by NetBeans for your InvinciBagel
class definition, which uses the public modifier, you can use more than one Java modifier keyword. The .main()
method first uses a public modifier keyword, which is an access control modifier keyword, and then a static modifier
keyword, which is a nonaccess control modifier keyword.

Access Control Modifiers: Public, Protected, Private, Package Private

Let’s cover access control modifiers first, because they are declared first, before nonaccess modifier keywords or
return type keywords, and because they are easier to understand conceptually. There are four access control modifier
levels that are applied to any Java code structure. If you do not declare an access control modifier keyword, a default
access control level of package private will be applied to that code structure, which allows it to be visible, and thus
usable, to any Java programming structure inside your Java package (in this case, invincibagel).

The other three access control modifier levels have their own access control modifier keywords, including public,
private, and protected. These are somewhat aptly named for what they do, so you probably have a good idea of how
to apply them to either share your code publicly or protect it from public usage, but let’s cover each one in detail
here, just to make sure, as access (security) is an important issue these days, inside your code as well as in the outside
world. I will start with the least amount of access control first!

Java’s Public Modifier: Allowing Access by the Public to Java Program Constructs

The Java public access modifier keyword can be used by classes, methods, constructors, data fields (variables and
constants), and interfaces. If you declare something public, it can be accessed by the public! This means that it can be
imported and used by any other class, in any other package, in the entire world. Essentially, your code can be used in
any software that is created using the Java programming language. As you will see in the classes that you use from the
Java or JavaFX programming platforms (APIs), the public keyword is most often used in open-source programming
Java platforms or packages that are employed to create custom applications, such as games.

Itis important to note that if a public class that you are trying to access and use exists in a package other than your
own (in your case, invincibagel), then the Java programming convention is to use the Java import keyword to create an
import statement that allows use of that public class. This is why, by the time you reach the end of this book, you will
have dozens of import statements at the top of your InvinciBagel.java class, as you will be leveraging preexisting Java
and JavaFX classes in code libraries that have already been coded, tested, refined, and made public, using the public
access control modifier keyword, so that you can create Java 8 games with them to your heart’s content!

Owing to the concept of class inheritance in Java, all the public methods and public variables inside a public
class will be inherited by the subclasses of that class (which, once it is subclassed, becomes a superclass). Figure 3-2
offers an example of a public access control modifier keyword, in front of the InvinciBagel class keyword.

Java’s Protected Modifier: Variables and Methods Allow Access by Subclass

The Java protected access modifier keyword can be used by data fields (variables and constants) and by methods,
including constructor methods, but cannot be used by classes or interfaces. The protected keyword allows variables,
methods, and constructors in a superclass to be accessed only by subclasses of that superclass in other packages (such
as the invincibagel package) or by any class within the same package as the class containing those protected members
(Java constructs).

This access modifier keyword essentially protects methods and variables in a class that is intended to be (hoped
to be used as) a superclass by being subclassed (extended) by other developers. Unless you own the package that
contains these protected Java constructs (which you do not), you must extend the superclass and create your own
subclass from that superclass to be able to use the protected methods.

57

CHAPTER 3 © A JAVA 8 PRIMER: AN INTRODUCTION TO JAVA 8 CONCEPTS AND PRINCIPLES

You may be wondering, why would one want to do this, protecting Java code structures in this way? When you
are designing a large project, such as the Android OS API, you will often want to have the higher-level methods
and variables not be used directly, right out of, or from within, that class, but rather within a more well-defined
subclass structure.

You can achieve this direct usage prevention by protecting these methods and variable constructs from being
used directly such that they become only a blueprint for more detailed implementations in other classes and are not
able to be used directly. Essentially, protecting a method or variable turns it into a blueprint or a definition only.

Java’s Private Modifier: Variables, Methods, and Classes Get Local Access Only

The Java private access control modifier keyword can be used by data fields (variables or constants) and by methods,
including constructor methods, but cannot be used by classes or interfaces. The private modifier can be used by
a nested class; however, it cannot be used by an outer or the primary (topmost) class. The private access control
keyword allows variables, methods, and constructors in a class to be accessed only inside that class. The private
access control keyword allows Java to implement a concept called encapsulation, in which a class (and objects created
using that class) can encapsulate itself, hiding its “internals” from outside Java universe, so to speak. The OOP concept
of encapsulation can be used in large projects to allow teams to create (and, more importantly, debug) their own
classes and objects. In this way, no one else’s Java code can break the code that exists inside these classes, because
their methods, variables, constants, and constructors are private!

The access modifier keyword essentially privatizes methods or variables in a class so that they can only be
used locally within that class or by objects created by that class’s constructor method. Unless you own the class
that contains these private Java constructs, you cannot access or use these methods or data fields. This is the most
restrictive level of access control in Java. A variable declared private can be accessed outside the class if a public
method that accesses a private variable from inside the class, called a public .get() method call, is declared public and
thus provides a pathway (or doorway) through that public method to the data in the private variable or constant.

Java’s Package Private Modifier: Variables, Methods, and Classes in Your Package

If no Java access control modifier keyword is declared, then a default access control level, which is also referred to as
the package private access control level, will be applied to that Java construct (class, method, data field, or interface).
This means that these Java constructs are visible, or available, to any other Java class inside the Java package that
contains them. This package private level of access control is the easiest to use with your methods, constructors,
constants, and variables, as it is applied simply by not explicitly declaring an access control modifier keyword.

You will use this default access control level quite a bit for your own Java applications (game) programming, as
usually you are creating your own application in your own package for your users to use in its compiled executable
state. If you were developing game engines for other game developers to use, however, you would use more of the
access control modifier keywords I have discussed in this section to control how others would use your code.

Nonaccess Control Modifiers: final, static, abstract, volatile, synchronized

The Java modifier keywords that do not specifically provide access control features to your Java constructs are termed
nonaccess control modifier keywords. These include the often used final, static, and abstract modifier keywords as
well as the not so often used synchronized and volatile modifier keywords, which are employed for more advanced
thread control and which I will not be covering in this beginner-level programming title, except to describe what they
mean and do, in case you encounter them in your Java universe travels.

I will present these concepts in the order of their complexity, that is, from the easiest for beginners to wrap their
mind around to the most difficult for beginning OOP developers to wrap their mind around. OOP is like surfing, in
that it seems very difficult until you have practiced doing it a number of times, and then suddenly you just get it!

58

CHAPTER 3 * A JAVA 8 PRIMER: AN INTRODUCTION TO JAVA 8 CONCEPTS AND PRINCIPLES

Java’s final Modifier: Variables, Methods, and Classes That Cannot Be Modified

You have already explored the final modifier keyword as it is used to declare a constant, along with a static keyword.
A final data field variable can only be initialized (set) one time. A final reference variable, which is a special type of
Java variable that contains a reference to an object in memory, cannot be changed (reassigned) to refer to a different
object; the data that are held inside the (final) referenced object can be changed, however, as only the reference to the
objectitself is the final reference variable, which is essentially locked in, using a Java final keyword.

A Java method can also be locked using the final modifier keyword. When a Java method is made final, if the Java
class that contains that method is subclassed, that final method cannot be overridden, or modified, within the body
of the subclass. This basically locks what is inside the method code structure. For example, if you want the .start()
method for your InvinciBagel class (were it ever to be subclassed) always to do the same things that it does for your
InvinciBagel superclass (prepare a JavaFX staging environment), you use the following code:

public class InvinciBagel extends Application {
Button btn;

@0verride
public final void start(Stage primaryStage) {
btn = new Button();
// The other method programming statements continue here

}

This prevents any subclasses (public class InvinciBagelReturns extends InvinciBagel) from changing anything
regarding how the InvinciBagel game engine (JavaFX) is set up initially, which is what the .start() method does for
your game application (see Chapter 4). A class that is declared using a final modifier keyword cannot be extended, or
subclassed, locking that class for future use.

Java’s Static Modifier: Variables or Methods That Exist in a Class (Not in Objects)

As you have already seen, the static keyword can be used in conjunction with the final keyword to create a constant.
The static keyword is used to create Java constructs (methods or variables) that exist independently, or outside, any
object instances that are created using the class that static variables or static methods are defined in. A static variable
in a class will force all instances of the class to share the data in that variable, almost as if it is a global variable as far as
objects created from that class are concerned. Similarly, a static method will also exist outside instanced objects for
that class and will be shared by all those objects. A static method will not reference variables outside itself, such as an
instanced object’s variables.

Generally, a static method will have its own internal (local or static) variables and constants and will also take in
variables, using the method parameter list, and then provide processing and computation, based on those parameters
and its own internal (static local) constants if needed. Because static is a concept that applies to instances of a class,
and is thus at a lower level than any class itself, a class would not be declared using a static modifier keyword.

Java’s Abstract Modifier: Classes and Methods to Be Extended and Implemented

The Java abstract modifier keyword has more to do with protecting your actual code than with code that has been
placed in memory (object instances and variables, and so on) at runtime. The abstract keyword allows you to specify
how the code will be used as a superclass, that is, how it is implemented in a subclass once it is extended. For this
reason, it applies only to classes and methods and not to data fields (variables and constants).

59

CHAPTER 3 © A JAVA 8 PRIMER: AN INTRODUCTION TO JAVA 8 CONCEPTS AND PRINCIPLES

A class that has been declared using the abstract modifier keyword cannot be instanced, and it is intended to be
used as a superclass (blueprint) to create (extend) other classes. Because a final class cannot be extended, you will not
use the final and abstract modifier keywords together at the class level. If a class contains any methods that have been
declared using the abstract modifier keyword, the class must itself be declared an abstract class. An abstract class does
not have to contain any abstract methods, however.

A method that has been declared using the abstract modifier keyword is a method that has been declared for
use in subclasses but that has no current implementation. This means that it will have no Java code inside its method
body, which, as you know, is delineated in Java by using curly braces. Any subclass that extends an abstract class
must implement all these abstract methods, unless the subclass is also declared abstract, in which case the abstract
methods are passed down to the next subclass level.

Java’s Volatile Modifier: Advanced Multithreading Control over Data Fields

The Java volatile modifier keyword is used when you are developing multithreaded applications, which you are not
going to be doing in basic game development, as you want to optimize your game well enough so that it only uses one
thread. The volatile modifier tells the Java virtual machine (JVM), which is running your application, to merge the
private (that thread’s) copy of the data field (variable or constant) that has been declared volatile with the master copy
of that variable in system memory.

This is similar to the static modifier keyword, the difference being that a static variable (data field) is shared by
more than one object instance, whereas a volatile data field (variable or constant) is shared by more than one thread.

Java’s Synchronized Modifier: Advanced Multithreading Control over Methods

The Java synchronized modifier keyword is also used when you are developing multithreaded applications, which
you are not going to be doing for your basic game development here. The synchronized modifier tells the JVM, which
is running your application, that the method that has been declared synchronized can be accessed by only one thread
at a time. This concept is similar to that of synchronized database access, which prevents record access collisions.
A synchronized modifier keyword likewise prevents collisions between threads accessing your method (in system
memory) by serializing the access to one at a time so that parallel (simultaneous) access to a method in memory by
multiple threads will never occur.

Now that you have studied primary Java constructs (classes, methods, and fields) and basic modifier keywords
(public, private, protected, static, final, abstract, and so on), let’s journey inside the curly braces now, learning about
the tools that are used to create the Java programming logic that will eventually define your game app’s game play.

Java Data Types: Defining Data Type in Applications

Because you have already learned about variables and constants encountered in a few of Java’s data types, let’s explore
these next, as it is not too advanced for your current progression from easy to more difficult topics!

There are two primary data type classifications in Java: primitive data types, which are the ones that you are the
most familiar with if you have used a different programming language, and reference (object) data types, which you
will know about if you have used another OOP language, such as Lisp, Python, Objective-C, C++, or C# (C Sharp).

Primitive Data Types: Characters, Numbers, and Boolean (Flags)

There are eight primitive data types in the Java programming language, as shown in Table 3-1. You will be using
these as you work your way through the book to create your InvinciBagel game, so I am not going to go into detail
regarding each one of them now, except to say that Java boolean data variables are used for flags or switches (on/off),
char is used for Unicode characters or to create String objects (an array of char), and the rest are used to hold numeric

60

CHAPTER 3 * A JAVA 8 PRIMER: AN INTRODUCTION TO JAVA 8 CONCEPTS AND PRINCIPLES

values of different sizes and resolutions. Integer values hold whole numbers, whereas a floating point value holds
fractional (decimal point value) numbers. It is important to use the right numeric data type for a variable’s scope, or
range, of use, because, as you can see in Binary Size column in Table 3-1, large numeric data types can use up to eight
times more memory than the smaller ones.

Table 3-1. Java Primitive Data Types, Along with Their Default Values, Size in Memory, Definition, and Numeric Range

Data Type Default Binary Size Definition Range

boolean false 1 bit True or false value 0 to 1 (false or true)

char \u0000 16 bit Unicode character \u0000 to \uFFFF

byte 0 8 bit Signed integer value -128 to 127 (256 total values)

short 0 16 bit Signed integer value --32768 to 32767 (65,536 total values)

int 0 32 bit Signed integer value -2147483648 to 2147483647

long 0 64 bit Signed integer value -9223372036854775808 to
9223372036854775807

float 0.0 32 bit IEEE 754 floating point value =~ +1.4E-45 to +3.4028235E+38

double 0.0 64 bit IEEE 754 floating point value ~ +4.9E-324 to

+1.7976931348623157E+308

Reference Data Types: Objects and Arrays

(OOP languages also have reference data types, which provide a reference in memory to another structure
containing a more complex data structure, such as an object or an array. These more complex data structures are
created using code; in the case of Java, this is a class. There are Java Array classes of various types that create arrays of
data (such as simple databases) as well as the constructor method in a Java class, which can create the object structure
in memory, containing both Java code (methods) and data (fields).

Java Operators: Manipulating Data in the Application

In this section, you will learn about some of the most commonly used operators in the Java programming language,
especially those that are the most useful for programming games. These include arithmetic operators, used for
mathematical expressions; relational operators, used to ascertain relationships (equal, not equal, greater than, less
than, and so on) between data values; logical operators, used for boolean logic; assignment operators, which do
the arithmetic operations and assign the value to another variable in one compact operation (operator); and the
conditional operator, also called a ternary operator, which assigns a value to a variable, based on the outcome of a
true or false (boolean) evaluation.

There are also the conceptually more advanced bitwise operators, used to perform operations at the binary data
(zeroes and ones) level, the logic of which is beyond the beginner scope of this book and the use of which is not as
common in Java game programming as these other, more mainstream types of operators, each of which you will be
using over the course of this book to accomplish various programming objectives in your game play logic.

61

CHAPTER 3 © A JAVA 8 PRIMER: AN INTRODUCTION TO JAVA 8 CONCEPTS AND PRINCIPLES

Java Arithmetic Operators

The Java arithmetic operators are the most commonly used in programming, especially in arcade type games, in
which things are moving on the screen by a discrete number of pixels. Many more complex equations can be created
using these basic arithmetic operators, as you have already learned in math class, from primary school through college.

The only arithmetic operators shown in Table 3-2 that you may not be that familiar with are the modulus
operator, which will return the remainder (what is left over) after a divide operation is completed, and the increment
and decrement operators, which add or subtract 1, respectively, from a value. These are used to implement your
counter logic. Counters (using increment and decrement operators) were originally used for loops, (which I will be
covering in the next section); however, these increment and decrement operators are also extremely useful for game
programming (point scoring, life span loss, game piece movement, and similar progressions).

Table 3-2. Java Arithmetic Operators, Their Operation Type, and a Description of the Arithmetic Operation

Operator Operation Description

Plus + Addition Adds the operands on either side of the operator

Minus - Subtraction Subtracts the right-hand operand from the left-hand operand

Multiply * Multiplication =~ Multiplies the operands on either side of the operator

Divide / Division Divides the left-hand operand by the right-hand operand

Modulus % Remainder Divides the left-hand operand by the right hand-operand, returning remainder
Increment ++ Add1 Increases the value of the operand by 1

Decrement -- Subtract 1 Decreases the value of the operand by 1

To implement the arithmetic operators, place the data field (variable) that you want to receive the results of the
arithmetic operation on the left side of the equals assignment operator and the variables that you want to perform
arithmetic operations on the right side of the equals sign. Here is an example of adding an x and a y variable and
assigning the result to a z variable:

Z=X+Y; // Using an Addition Operator

If you want to subtract y from x, you use a minus sign rather than a plus sign; if you want to multiply the x and y
values, you use an asterisk rather than a plus sign; and if you want to divide x by y, you use a forward slash instead of
a plus sign. Here is how those operations look:

Z=X-Y; // Subtraction Operator
Z=X%*Y; // Multiplication Operator
Z=X1/7Y; // Division Operator

You will be using these arithmetic operators quite a bit, so you will get some great practice with these before you
are finished with this book! Let’s take a closer look at relational operators next, as sometimes you will want to compare
values rather than calculate them.

62

CHAPTER 3 * A JAVA 8 PRIMER: AN INTRODUCTION TO JAVA 8 CONCEPTS AND PRINCIPLES

Java Relational Operators

The Java relational operators are used to make logical comparisons between two variables or between a variable
and a constant, in some circumstances. These should be familiar to you from school and include equals, not equal,
greater than, less than, greater than or equal to, and less than or equal to. In Java, equal to uses two equals signs side
by side between the data fields being compared and an exclamation point before an equals sign to denote “not equal
to.” Table 3-3 shows the relational operators, along with an example and a description of each.

Table 3-3. Java Relational Operators, an Example in Which A = 25 and B = 50, and a Description of the
Relational Operation

Operator Example Description

== (A ==B) not true Comparison of two operands: if they are equal then the condition equates to true

1= (A!=B)istrue Comparison of two operands: if they are not equal the condition equates to true

> (A > B) not true Comparison of two operands: if left operand is greater than right operand, equates
to true

< (A<B)istrue Comparison of two operands: if left operand is less than right operand, equates
to true

>= (A >=B) not true Compare two operands: if left operand is greater or equal to right operand equates
to true

<= (A <=B)istrue Compare two operands: if left operand less than or equal to right operand, equates
to true

The greater than symbol is a right-facing arrow-head, and the less than symbol is a left-facing arrow-head.
These are used before the equals sign to create greater than or equal to and less than or equal to relational operators
respectively, as you can see at the bottom of Table 3-3.

These relational operators return a boolean value of true or false, and as such are also used in control (loop)
structures in Java quite a bit, and are also used in gameplay programming logic as well to control the path (result) that
the gameplay will take. For instance, let’s say you want to determine where the left edge of the game screen is so that
the InvinciBagel does not travel right off of the screen when he is moving to the left. Using this relational comparison:

boolean changeDirection = false; // Create boolean variable changeDirection, initialize to false
changeDirection = (invinciBagelX <= 0); // boolean changeDirection is TRUE if left side reached

Notice that I have used the <= less than or equal to (yes, Java supports negative numbers too), so that if the
InvinciBagel has gone past the (x=0) left side of the screen the changeDirection boolean flag will be set to the
value of true, and the sprite movement programming logic can deal with the situation, by changing the direction of
movement (so InvinciBagel bounces off of the wall) or stopping the movement entirely (so the InvinciBagel sticks to
the wall).

You will be getting a lot of exposure to these relational operators during this book as they are quite useful in
creating gameplay logic, so we are going to be having a lot of fun with these soon enough. Let’s take a look at logical
operators next, so we can work with Boolean Sets and compare things in groups, which is also important for games.

63

CHAPTER 3 © A JAVA 8 PRIMER: AN INTRODUCTION TO JAVA 8 CONCEPTS AND PRINCIPLES

Java Logical Operators:

The Java logical operators are similar to the boolean operations (union, intersection, etc.) that you learned about

in school, and allow you to determine if both boolean variables hold the same value (AND), or if one of the boolean
variables is different (OR), from the other. There’s also a NOT operator that reverses the value of any of the compared
boolean operands. Table 3-4 shows Java’s three logical operators, and an example of each, along with a description.

Table 3-4. Java Logical Operators, an Example in Which A = True and B = False, and a Description of Logical Operation

Operator Example Description
&& (A && B) is false A logical AND operator equates to true when BOTH operands are the same value.
I (A||B)istrue Alogical OR operator equates to true when EITHER operand is the same value.

! (A && B) is true Alogical NOT operator reverses the logical state of the operator (or set) it is
applied to.

Let’s use logical operators to enhance the game logic example in the previous section by including the direction
in which the InvinciBagel is moving on the screen. The existing facingDirection String variable will control the
direction the InvinciBagel is facing (and moving in, if in motion). You can now use the following logical operator to
determine if the InvinciBagel is facing left (W, or West); if the travelingWest boolean variable is true; AND if the hit
(or passed) boolean variable on the left-hand side of the screen, hitLeftSideScrn, is also equal to true. The modified
code for doing this will include two more boolean variable declarations and initializations and will look like this:

boolean changeDirection = false; // Create boolean variable changeDirection, initialize to false
boolean hitlLeftSideScrn = false; // Create boolean variable hitlLeftSideScrn, initialize to false
boolean travelingWest = false; // Create boolean variable travelingWest, initialize to false

hitLeftSideScrn = (invinciBagelX <= 0); // boolean hitLeftSideScrn is TRUE if left side reached
travelinglest = (facingDirection == "W") // boolean travelingWest is TRUE if facingDirection="W"
changeDirection = (hitLeftSideScrn 83 trawvelingWlest) // Change Direction, if both equate to TRUE

To find out if the InvinciBagel is facing (or traveling, if also moving) West, you create another travelingWest boolean
variable and initialize it (set it equal) to false (because your initial facingDirection setting is East). Then, you create a
boolean variable called hitLeftSideScrn, setting that to the (invinciBagelX <= 0) relational operator statement.

Finally, you create a relational operator statement with the travelinghlest = (facingDirection == "W") logic,
and then you are ready to use the changeDirection boolean variable with your new logical operator. This logical
operator will make sure that both the hitLeftSideScrn and travelingWest boolean variables are set to true, using the
changeDirection = (hitLeftSideScrn &8 travelingWest) logical operation programming statement.

Now, you have a little practice declaring and initializing variables and using relational and logical operators to
determine the direction and location of a primary game piece (called a sprite in arcade games; for more on game
design lingo, see Chapter 6). Next, let’s take a look at assignment operators.

Java Assignment Operators

The Java assignment operators assign a value from a logic construct on the right-hand side of the assignment operator
to a variable on the left-hand side of the assignment operator. The most common assignment operator is also the
most commonly used operator in the Java programming language, the equals operator. The equals operator can

be prefaced with any of the arithmetic operators to create an assignment operator that also performs an arithmetic
operation, as can be seen in Table 3-5. This allows a more “dense” programming statement to be created when the
variable itself is going to be part of the equation. Thus, instead of having to write C = C + A, you can simply use C+=A
and achieve the same end result. You will be using this assignment operator shortcut often in your game logic design.

64

CHAPTER 3 * A JAVA 8 PRIMER: AN INTRODUCTION TO JAVA 8 CONCEPTS AND PRINCIPLES

Table 3-5. Java Assignment Operators, What Each Assignment Is Equal to in Code, and a Description of the Operator

Operator Example Description

= C=A+B Basic assignment operator: Assigns value from right-hand operand to
left-hand operand

+= C+=A equals C=C+A ADD assignment operator: Adds right-hand operand to left-hand
operand; puts result in left-hand operand

-= C-=A equals C=C-A SUB assignment operator: Subtracts right-hand operand from left-hand
operand; puts result in left-hand operand

= C=A equals C=C*A MULT assignment operator: Multiplies right-hand operand and left-hand
operand; puts result in left-hand operand

/= C/=A equals C=C/A DIV assignment operator: Divides left-hand operand by right-hand
operand; puts result in left-hand operand

%= C%=A equals C=C%A MOD assignment operator: Divides left-hand operand by right-hand
operand; puts remainder in left-hand operand

Finally, you are going to take a look at conditional operators, which also allow you to code powerful game logic.

Java Conditional Operators

The Java language also has a conditional operator that can evaluate a condition and make a variable assignment
for you, based on the resolution of that condition, using only one compact programming construct. The generic Java
programming statement for a conditional operator always uses the following basic format:

Variable = (evaluated expression) ? Set this value if TRUE : Set this value if FALSE ;

So, on the left-hand side of the equals sign, you have the variable, which is going to change (be set), based on
what is on the right-hand side of the equals sign. This conforms to what you have learned thus far.

On the right-hand side of the equals sign, you have an evaluated expression, for instance, “x is equal to 3,
followed by a question mark and then two numeric values that are separated from each other, using the colon, and,
finally, a semicolon to terminate the conditional operator statement. If you wanted to set a variable y to a value of 25
ifx is equal to 3, and to 10 if x is not equal to 3, you would write that conditional operator programming statement by
using the following Java programming logic:

y:(X==3)?25310;

Next, you are going to look at Java logic control structures that leverage the operators you just learned about.

Java Conditional Control: Decision Making or Loops

As you have just seen, many of the Java operators can have a fairly complex structure and provide a lot of processing
power, using very few characters of Java programming logic. Java also has several more complicated conditional
control structures, which can automatically make decisions or perform repetitive tasks for you, once you have set
up the conditions for those decisions or task repetitions by coding the Java logic control structure.

65

CHAPTER 3 © A JAVA 8 PRIMER: AN INTRODUCTION TO JAVA 8 CONCEPTS AND PRINCIPLES

In this section, you will first explore decision-making control structures, such as the Java switch-case
structure and the if-else structure. Then, you will take a look at Java’s looping control structures, including for,
while, and do-while.

Decision-Making Control Structures: Switch-Case and If-Else

Some of the most powerful Java logic control structures allow you to define decisions that you want your program
logic to make for you as the application is running. One such structure offers a case-by-case, “flat” decision matrix; the
other has a cascading (if this, do this; if not, do this; if not, do this; and so on) type of structure that evaluates things in
the order in which you want them examined.

Let’s start by looking at the Java switch statement, which uses the Java switch keyword and an expression at the
top of this decision tree and then uses the Java case keyword to provide Java statement blocks for each outcome for
this expression’s evaluation. If none of the cases inside a switch statement structure (curly braces) are called (used)
by the expression evaluation, you can also supply a Java default keyword and Java statement code block for what you
want done.

The variable used in the case statements can be one of four Java data types: char (character), byte, short, or int
(integer). You will generally want to add a Java break keyword at the end of each of your case statement code blocks,
atleast in the use case, in which the values being switched between need to be exclusive, and only one is viable (or
permissible) for each invocation of the switch statement. The default statement, which is the “if any of these do not
match” is the last of the statements inside of the switch, and does not need this break keyword.

If you do not furnish a Java break keyword in each of your case logic blocks, more than one case statement can
be evaluated in the same pass through your switch statement. This would be done as your expression evaluation tree
progresses from top (first case code block) to bottom (last case code block or default keyword code block). So if you
had a collection of Boolean “flags” such as hasValue, isAlive, isFixed, and so on, these could all be processed on one
single “pass” by using a switch-case statement structure that does not use any break statements at all.

The significance of this is that you can create some fairly complex decision trees, based on case statement
evaluation order, and whether you put this break keyword at the end of any given case statement’s code block.

The general format for your switch-case decision tree programming construct would look like this:

switch(expression) {

case valuel :
programming statement one;
programming statement two;
break;

case value2 :
programming statement one;
programming statement two;
break;

default :
programming statement one;
programming statement two;

Let’s say you want to have a decision in your game as to which InvinciBagel death animation is called when
the InvinciBagel is hit (shot, slimed, punched, and so on). The death animation routine (method) would be called,
based on the InvinciBagel’s state of activity when he or she is hit, such as flying (F), jumping (J), running (R), or idle

66

CHAPTER 3 * A JAVA 8 PRIMER: AN INTRODUCTION TO JAVA 8 CONCEPTS AND PRINCIPLES

(I). Let’s say these states are held in a data field called ibState, of the type char, which holds a single character. The
switch-case code construct for using these game-piece state indicators to call the correct method, once a hit has
occurred, would be:

switch(ibState) { // Evaluate ibState char and execute case code blocks accordingly
case 'F' :
deathLogicFlying(); // Java method controlling death sequence if InvinciBagel flying
break;
case ']’
deathLogicJumping(); // Java method controlling death sequence if InvinciBagel jumping
break;
case 'R’
deathLogicRunning(); // Java method controlling death sequence if InvinciBagel running
break;
default :
deathLogicIdle(); // Java method controlling death sequence if InvinciBagel is idle

This switch-case logic construct evaluates the ibState char variable inside the evaluation portion of the switch()
statement (note that this is a Java method) and then provides a case logic block for each of the game-piece states
(flying, jumping, running) and a default logic block for the idle state (which is a logical way to set this up).

Because a game piece cannot be idle, running, flying, and jumping at the same time, you need to use the break
keyword to make each of the branches of this decision tree unique (exclusive).

The switch-case decision-making construct is generally considered more efficient, and faster, than the if-else
decision-making structure, which can use just the if keyword for simple evaluations, like this:

if(expression = true) {
programming statement one;
programming statement two;

You can also add an else keyword to make this decision-making structure evaluate statements that would need to
execute if the boolean variable (true or false condition) evaluates to false rather than true, which makes this structure
more powerful (and useful). This general programming construct would then look like this:

if (expression = true) {
programming statement one;
programming statement two;
} else { // Execute this code block if (expression = false)
programming statement one;
programming statement two;

In addition, you can nest if-else structures, thereby creating if{}-{else if}-{else if}-else{} structures. If these
structures get nested too deeply, then you would want to switch (no pun intended) over to the switch-case structure,
which will become more and more efficient, relative to a nested if-case structure, the deeper the if-else nesting goes.
For example, the switch-case statement that you coded earlier for the InvinciBagel game, if translated into a nested
if-else decision-making construct, would look like the following Java programming structure:

if(ibState = 'F') {
deathLogicFlying();
} else if(ibState = '3") {
deathLogicJumping();

67

CHAPTER 3 © A JAVA 8 PRIMER: AN INTRODUCTION TO JAVA 8 CONCEPTS AND PRINCIPLES

} else if(ibState = 'R') {
deathLogicRunning();

} else {
deathLogicIdle();

Asyou can see, this if-else decision tree structure is quite similar to the switch-case that you created earlier,
except that the decision code structures are nested inside each other rather than contained in a flat structure. As
arule of thumb, I would use the if and if-else for one- and two-value evaluations and a switch-case for three-value
evaluation scenarios and greater. I use this switch-case structure extensively in my books covering Android.

Next, let’s take a look at the other types of conditional control structures that are used extensively in Java, the
looping programming structures. These allow you to execute a block of programming statements a predefined
number of times (using the for loop) or until an objective is achieved (using a while or a do-while loop).

Looping Control Structures: While, Do-While, and For

Whereas the decision tree type of control structure is traversed a fixed number of times (once all the way through,

unless a break [switch-case] or resolved expression [if-else] is encountered), looping control structures keep

executing over time, which, with respect to the while and do-while structures, makes them a bit dangerous, as an

infinite loop can be generated, if you are not careful with your programming logic! The for loop structure executes for

a finite number of loops (the number is specified in the definition of the for loop), as you will soon see in this section.
Let’s start with the finite loop, covering the for loop first. A Java for loop uses the following general format:

for(initialization; boolean expression; update equation) {
programming statement one;
programming statement two;

Asyou can see, the three parts of the evaluation area of the for loop are inside the parentheses, separated by
semicolons, as each contains a programming statement. The first is a variable declaration and initialization, the
second is a boolean expression evaluation, and the third is an update equation showing how to increment the loop
during each pass.

To move the InvinciBagel 40 pixels diagonally on the screen, along both X and Y, the for loop is as follows:

for(int x=0; x < 40; x = x + 1) { // Note: an x = x + 1 statement could also be coded as x++
invinciBagelX++; // Note: invinciBagelX++ could be coded invinciBagelX = invinciBagelX + 1;
invinciBagelY++; // Note: invinciBagelY++ could be coded invinciBagelY = invinciBagelY + 1;

In contrast, the while (or do-while) type of loop does not execute over a finite number of processing cycles, but
rather executes the statements inside the loop until a condition is met, using the following structure:
while(boolean expression) {

programming statement one;
programming statement two;

68

CHAPTER 3 * A JAVA 8 PRIMER: AN INTRODUCTION TO JAVA 8 CONCEPTS AND PRINCIPLES

To code the for loop to move the InvinciBagel 40 pixels, using a while loop structure, looks like this:

int x = 0;

while(x < 40) {
invinciBagelX++;
invinciBagelY++;
X++

The only difference between a do-while loop and a while loop is that, with the latter, the loop logic programming
statements are performed before, instead of after, the evaluation. Thus, using a do-while loop programming
structure, the previous example would be written as follows:

int x = 0;

do {
invinciBagelX++;
invinciBagelY++;
X++

} while(x < 40);

Asyou can see, the Java programming logic structure is inside curly braces, following the Java do keyword,
with the while statement after the closing brace. Note that the while evaluation statement (and therefore the entire
construct) must be terminated with a semicolon.

If you want to make sure that the programming logic inside the while loop structure is performed at least one
time, use the do-while, as the evaluation is performed after the loop logic is executed. If you want to make sure that
the logic inside the loop is only executed after (whenever) the evaluation is successful, which is the safer way to code
things, use the while loop structure.

Java Objects: Virtual Reality, Using Java Constructs

I saved the best, Java objects, for last, because they can be constructed in one fashion or another using all the concepts
that I have covered thus far in the chapter and because they are the foundation of OOP language (in this case, Java 8).
The fact is, everything in the Java 8 programming language is based on Java’s Object superclass (I like to call it the
masterclass), which is in the java.lang package, so an import statement for it would reference java.lang.Object, the full
pathname for the Java Object class.

Java objects are used to “virtualize” reality by allowing the objects you see all around you in everyday life, or,
in the case of your game, objects you are creating out from your imagination, to be realistically simulated. This is
done by using the data fields (variables and constants) and the methods that you have been learning about in this
chapter. These Java programming constructs will make up the object characteristics, or attributes (constants); states
(variables); and behaviors (methods). The Java class construct organizes each object definition (constants, variables,
and methods) and gives birth to an instance of that object, using the constructor method for the class that designs and
defines the object via the various Java keywords and constructs.

Creating an InvinciBagel Object: Attributes, States, and Behavior

Let’s put together an example of an InvinciBagel object that shows how constants define characteristics, variables
define states, and methods define behaviors. We will do this using Java coding constructs that you have learned about
thus far in the chapter, including constants, variables, and methods that you have already defined, to some extent.

69

CHAPTER 3 © A JAVA 8 PRIMER: AN INTRODUCTION TO JAVA 8 CONCEPTS AND PRINCIPLES

Let’s start with characteristics, which are things about an object that will not change and which are thus
represented using constants, variables that will not (cannot) change. An important bagel characteristic is the type
(flavor). We all have our favorites; mine are plain, egg, rye, onion, and pumpernickel. Another characteristic is the size
of bagel; as we all know, there are minibagels, normal-size bagels, and giant bagels.

private static final String FLAVOR OF BAGEL = "Pumpernickel";
private static final String SIZE OF BAGEL = "Mini Bagel";

Thus, constants are used to define the characteristics, or attributes, of an object. If you are defining a car, boat,
or plane, the color (paint), engine (type), and transmission (type) are attributes (constants), as they generally do not
change, unless you are a mechanic or own a body shop!

Things about an object that will change, such as its location, orientation, how it is traveling (flying, driving,
walking, running), and so on are called states and are defined using variables, which can constantly change in real
time, based on what is happening in real life. These variables will allow any Java object to mimic, or virtualize, the
real-world object that they are creating in your Java universe’s virtual reality. This is, of course, especially true in
games, which is why the topic of this book, Java and games, is especially relevant and applicable.

There will be more states (variables) than attributes (constants) for the InvinciBagel, as it is the game piece and
will be especially active trying to save its hole and score points. Some of the states that you will want to define as
variables include screen (x, y) location, orientation, travel direction, travel type, hits taken, and life span used.

public int invinciBagelX = 0; // X screen location of the InvinciBagel
public int invinciBagelY = 0; // Y screen location of the InvinciBagel
public String bagelOrientation = "side"; // Defines bagel orientation (front, side, top)
public int lifeIndex = 1000; // Defines units of lifespan used

public int hitsIndex = 0; // Defines units of damage (hits taken)

public String directionFacing = "E"; // Direction that the object is facing

public String movementType = "idle" // Type of movement (idle, fly, run, jump)

public boolean currentlyMoving = false; // Flag showing if the object is in motion

As you progress through this book and create the InvinciBagel game, you will be adding attributes, states, and
behaviors that will make the InvinciBagel, as well as its game environment and game play, more realistic, fun, and
exciting, just as you would do in real life. In fact, you are using Java objects and Java constructs to model, a realistic
virtual world in which InvinciBagel players can triumph over evil and shoot cream cheese balls at delicious targets.

Let’s look at a couple of the methods that you might develop to control the InvinciBagel behavior. You will be
creating complex methods over the course of this book to accomplish game play objectives, so I am just going to give
you an idea here of how methods provide behaviors to objects for the purpose of demonstrating how objects can be
created that reflect how real-world objects function.

For your game play of the InvinciBagel, the main behaviors will be 2D movement around the screen, relative to
the x (width) and y (height) dimension, which will access, use, and update the integer invinciBagelX, invinciBagelY,
and the boolean currentlyMoving data fields discussed previously; the InvinciBagel character’s orientation (front
facing, sideways, facing down, and so on), which will access, use, and update the bagelOrientation String field;
the life expectancy of the InvinciBagel, which will access, use, and update the lifeIndex variable; the health of the
InvinciBagel, which will access, use, and update the hitsIndex variable; the direction (East or West) in which the
InvinciBagel is traveling, which will access, use, and update the directionFacing String variable; and the type of
movement (flying, jumping, running, idle) that the InvinciBagel is using , which will access, use, and update the
movementType String variable.

Here is how you declare these methods (behaviors) and pseudocode regarding what they are going to do:

public void moveInvinciBagel(int x, int y) {
currentlyMoving = true;
invinciBagelX = x;
invinciBagelY = y;

70

CHAPTER 3 * A JAVA 8 PRIMER: AN INTRODUCTION TO JAVA 8 CONCEPTS AND PRINCIPLES

}

public String getInvinciBagelOrientation() {
return bagelOrientation;
}

public void setInvinciBagelOrientation(String orientation) {
bagelOrientation = orientation;
}

public int getInvinciBagellifeIndex() {
return lifeIndex;
}

public void setInvinciBagellLifeIndex(int lifespan) {
lifeIndex = lifespan;
}

public String getInvinciBagelDirection() {
return directionFacing;
}

public void setInvinciBagelDirection(String direction) {
directionFacing = direction;
}

public int getInvinciBagelHitsIndex() {
return hitsIndex;
}

public void setInvinciBagelHitsIndex(int damage) {
hitsIndex = damage;
}

public String getInvinciBagelMovementType() {
return movementType;
}

public void setInvinciBagelMovementType(String movement) {
movementType = movement;
}

The convention is to create .get() and .set() methods, as is done here. These allow your Java code to easily
access your object states (variables). Now, it is time to install all these attributes (constants), states (variables),
and behaviors (methods) into a blueprint for your object. As mentioned earlier, this is done using the Java class
programming structure.

71

CHAPTER 3 © A JAVA 8 PRIMER: AN INTRODUCTION TO JAVA 8 CONCEPTS AND PRINCIPLES

Creating an InvinciBagel Blueprint: Create the GamePiece Class

Let’s install all this InvinciBagel virtualization code into a GamePiece class to create a class and constructor method
that is intended for game-piece objects:

public class GamePiece

private static final String FLAVOR_OF BAGEL = "Pumpernickel"; // Flavor (or type) of bagel
private static final String SIZE OF BAGEL = "Mini Bagel"; // Size (classification) of bagel

public int invinciBagelX = 0; // X screen location of the InvinciBagel
public int invinciBagelY = 0; // Y screen location of the InvinciBagel
public String bagelOrientation = "side"; // Define bagel orientation (front, side, top)
public int lifeIndex = 1000; // Defines units of lifespan used

public int hitsIndex = 0; // Defines units of damage (hits taken)

public String directionFacing = "E"; // Direction that the bagel object is facing
public String movementType = "idle"; /! Type of movement (idle, fly, run, jump)

public boolean currentlyMoving = false; // Flag showing if the object is in motion

public void moveInvinciBagel(int x, int y) { // Movement Behavior
currentlyMoving = true;
invinciBagelX = x;
invinciBagelY = y;

}

public String getInvinciBagelOrientation() { // Get Method for Orientation
return bagelOrientation;

}

public void setInvinciBagelOrientation(String orientation) { // Set Method for Orientation
bagelOrientation = orientation;

}

public int getInvinciBagellLifeIndex() { // Get Method for Lifespan
return lifelndex;

}

public void setInvinciBagellLifeIndex(int lifespan) { // Set Method for Lifespan
lifeIndex = lifespan;

}

public String getInvinciBagelDirection() { // Get Method for Facing Direction
return directionFacing;

}

public void setInvinciBagelDirection(String direction) { // Set Method for Direction
directionFacing = direction;

}

public int getInvinciBagelHitsIndex() { // Get Method for Hits (damage)
return hitsIndex;

}

72

CHAPTER 3 * A JAVA 8 PRIMER: AN INTRODUCTION TO JAVA 8 CONCEPTS AND PRINCIPLES

public void setInvinciBagelHitsIndex(int damage) { // Set Method for Hits (damage)
hitsIndex = damage;

}

public String getInvinciBagelMovementType() { // Get Method for Movement Type
return movementType;

}

public void setInvinciBagelMovementType(String movement) { // Set Method for Movement Type
movementType = movement;
}

}

Itis important to note that these constants, variables, and methods are for demonstration of how the class,
method, and data field keywords let developers create (virtualize) their game components. As you develop the game,
these will probably change, as game development is a process of refinement, in which you will be constantly changing
and enhancing the Java code base to add features and capabilities.

Now, all you have to do is add your GamePiece() constructor method, which will create a new object with
the initialized variable settings that you want the default GamePiece to contain. Then, you will create the second
overloaded constructor method. This second constructor method will allow parameters to be passed into a
constructor method so that you can provide custom (nondefault) settings to these same variables (states). In this way,
if you call GamePiece(), you get a default object; if you call GamePiece(parameter list here), you get a custom object.

Creating a GamePiece() Constructor: Overloading a GamePiece

Finally, let’s create the constructor method (two, actually), which takes the states (variables) from the GamePiece class
and creates a default object. You will use this object to create the custom overloaded constructor method. The first
constructor method will employ the package private access control method, using no access modifier keyword, so
that any code in the invincibagel package can call this constructor method. Then, you will set your default variables,
using the following Java code:

GamePiece() {
invinciBagelX = 0;
invinciBagelY = 0;
bagelOrientation = "side";
lifeIndex = 1000;
hitsIndex = 0;
directionFacing = "E";
movementType = "idle";
currentlyMoving = false;

The overloaded constructor method will have parameters declared in the method parameter list area for those
variables that are logical to allow variations for upon object creation. The only two that are not logical to allow
variations for are hitsIndex (a new object will not have sustained any damage points and will thus need to be 0) and

73

CHAPTER 3 © A JAVA 8 PRIMER: AN INTRODUCTION TO JAVA 8 CONCEPTS AND PRINCIPLES

currentlyMoving (a new object will not be moving when it appears, even if that is only for a fraction of a second)
variables, which you will initialize, as you did for the default constructor. The other five variables (states) will be set using
parameters passed in via a parameter list, using an equals assignment operator. This is done using the following code:

GamePiece(int x, int y, String orientation, int lifespan, String direction, String mowvement) {
invinciBagelX = x;
invinciBagelY = y;
bagelOrientation = orientation;
lifeIndex = lifespan;
hitsIndex = 0;
directionFacing = direction;
movementType = movement;
currentlyMoving = false;

I'bolded the variables in the parameter list, as well as where they are used inside the constructor method, to set the
states (variables) for the object. These variables are declared at the top of the GamePiece class, which you have used
to design, define, and create the GamePiece object. This second constructor method can be said to overload the first
constructor method, because it uses the exact same method call (method name), with a different parameter list (full of
parameters, versus empty or no parameters). This gives you the default object constructor method as well as a custom
object constructor method, so in your game logic, you can create a default GamePiece or a custom GamePiece.

Summary

In this third chapter you took a look at some of the more important concepts and structures found in the Java 8
programming language. Certainly, I cannot cover everything in Java in one chapter