Interactive Object
Oriented
Programming

In Java

Learn and Test Your Skills

Vaskaran Sarcar

ApPress’

Interactive Object
Oriented Programming
in Java

Vaskaran Sarcar

Apress-

Interactive Object Oriented Programming in Java: Learn and Test Your Skills

Vaskaran Sarcar
Bangalore, Karnataka, India

ISBN-13 (pbk): 978-1-4842-2543-1 ISBN-13 (electronic): 978-1-4842-2544-8
DOI 10.1007/978-1-4842-2544-8

Library of Congress Control Number: 2016962147
Copyright © 2016 by Vaskaran Sarcar

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Managing Director: Welmoed Spahr

Lead Editor: Celestin Suresh John

Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan,
Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal, James Markham,
Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Prachi Mehta

Copy Editor: Lori Jacobs

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM
Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk
Sales-eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text are available to
readers at waw.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/. Readers can also access source code at SpringerLink in the Supplementary
Material section for each chapter.

Printed on acid-free paper

orders-ny@springer-sbm.com
www.springeronline.com
rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

Contents at a Glance

About the AUthOrccvcsniemis s ————————————_ XV
About the Technical REVIEWErSccsssssmssssssmsssmsssmssssssssssssssmsssssssssssssssnsssssssnsnes Xvii
AcknOowIedgmENtS......cccuerrmssssssssnnsnsnmssssssssssssssssssssssssssssssnnssssssssssssnnnnnnnssssssssssnnnnnns Xix
INtroductioncccuvemnmmim s ——————————_——— XXi
Preface: Review the core terms and start the journey.........cccucccmrnsseennnnsssnnnnnnns Xxiii
Chapter 1: Test your skill in language fundamentalscccccenrrrnsssssssssssnnnnessssnes 1
Chapter 2: Classccuueeemmmimssnnmmsssssnsnmssssssnssssssnsssssssssnnsesssssnsssssssnnsnsssssnnnssssssnnnnss 35
Chapter 3: INheritance........cccciinismmnmmnsssssnmmmsssnmmmsssnmessass s 51
Chapter 4: Overloading........cccummmsssnsnmmssssssnssssssnsnnsssssnnnnsssssnssssssssnnnnsssssnnnnsssssnnnnss 65
Chapter 5: OVerridingccuseemmmmsssssnmmssssssnssssssssssmsssssnnsessssssssssssssnnsesssssnnssssssnnnnss 71
Chapter 6: Abstract Class.......ccccuussemmmmssssnnnmmsssssnnsmssssssnnsssssssssssssssnssssssssnnnsssssnnnnss 89
Chapter 7: INterface.......cccccurrrmsssssnmnsmmmmmssssssssssssnnsnesssssssssssssnnssessssssssnnnnnnsnssssssnns 97
Chapter 8: PACKAYEccerrrvsssensmrssssnnnsmssssnssssssssnnnssssssnssssssssnssssssssnnnsssssnnnnsssssnnnnss 113
Chapter 9: 00Ps Concepts Revisitedcccusemmmmnsssmmnmmmsssnnmmssssssnmsssssssnssssssnn 123
Chapter 10: Use of static keywordccoccrrssemmmsssmsmsssssmsssssssssssssssssssssssssssansns 131
Chapter 11: EXCeplionS.......uuuummmsssssmmmmmmmmsssssssssssssssssssssssssssssssssssssnsssssssssssnsnns 143
Chapter 12: An introduction to design patterns..........ccocmmnneennmnnsssnnmmssnnns 167

iii

CONTENTS AT A GLANCE

Appendix A: Solution to the Assignmentsccccinnnsemnnmnissennmmsssssssmmm. 187
Appendix B: Frequently asked questionsccucemmmmmsemmmmmissssnnmssssssssssssssssnnnns 203
Appendix C: Some Useful ReSOUICEeSccurusumrrsssnmrsssnsssssnnssssnsesssnsssssnnssssnnssssans 207
INA@ X iiiiiiisnnnnnnnnnnnnssssssssnnnnnnnnnessssssssnnnnnnnnnsssssssssnnnnnnnnsssssssssnnnnnnnnessssssssnnnnnnnnnesssssnnn 209

iv

Contents

About the AUROFc.ccccmmiimmmnsesssss s s na s nn e nnnnns XV
About the Technical REVIEWErSuccusssssssssssassssnsssssssssssssssssssssasssssssssnsssassssanssas xvii
AcknOowIedgmENtS......cccuerrmssssssssnnsnsnmssssssssssssssssssssssssssssssnnssssssssssssnnnnnnnssssssssssnnnnnns Xix
INtroduction ..o ——————————————————_—_ XXi
Preface: Review the core terms and start the journey.........cccucccmrnsseennnnsssnnnnnnns Xxiii
Chapter 1: Test your skill in language fundamentalscccccenrrrnsssssssssssnnnnessssnes 1
3] = R SRS 1

3] =3 2SRRI 3
R3] =3 TP 6

3] =3 PP 8
R3] =3 1 OO R TSROSO 12

3] =3 R ORR 13

3] =3 TR 21

3] =3 YT SRPTTRRR S RS 27

3] =3 PP 31
Chapter 2: ClaSsSccucusssrrssssmmssssssssssnsssssnsssssnsssssnsesssnsessansesssnsesssnnesssnnesssnnesssnnsssnas 35
DEMONSTIALION=T ..ot 36
010 OO 37
DEMONSIIALION=-2coerercerccr s 37

0 10 1 38

QUIZ. e e e e 38

0 10 1 R 39
(0] = T 10 o R 39

vi

CONTENTS

DemONSIration-3 ... ———————————— 40
010 TP 4
DEMONSTIALION=4coereeeererr e 42
0 10 1 O 42
DeMONSIration=-5ccoccvcicrcrrr s —————————— 43
011 | RSOSSN 44
QUIZ...c.eeeceee et e e R e e Re e e R R e R e e R e R Re R e Re RS REeRe e AR R e AR R e e eRe e Re e eRe e eRenRnaees 44
011 | RSOSSN 44
DeMONSIrAtioN=6c.ccocririirirrrr s ——————————— 45
0 10 1 OO 45
(0] 1 L0 o OSSP 45
DEMONSTIALION=7ceoveerreerre e 47
0 10 1 O 48
Y3 1 L 48
ASSIGNMENL ... e s e s r e re s r e r e sn e sr e sr e sr e resrennennennnnnnnnnns 49
Chapter 3: INheritance.........cccuunmmnmmssnmmmmmmmssssssss s ——————————— 51
DemONSIration-1 ... ————————— 54
0T 1101 OO SRSRRRSRSTN 55
DeMONSIrAtioN=-2 ..o ——————————— 57
OUEPUL ..t e e e e R e A e R e e A e R e e e e e Re e e e s R e e e e nRnnn s 57
DEeMONSTIation=3cccvieeirirerrere e 58
0 10 1 O 59
DEMONSIrAtioN-4cccecrcrr e ——————————— 59
0T 11011 OO SRSRRRSRSTN 60
DeMONSIrAtioN=-5ccociirrrr e ———————————— 61
DEMONSTIALION=6ccccerrerrrirrerrre s r e nr e 62
0 10 1 O 62
ASSIGNMENL ... e s e s r e re s r e r e sn e sr e sr e sr e resrennennennnnnnnnnns 63

CONTENTS

Chapter 4: Overloading........ccccrusssennnmsssssnnnmsssssssnssssssssssssssssssssssssssssssssssnsssssssnnnsss 09

DeMONSIration-1 ... —————————— 65
0111 | OSSR 66
DeMONSIrAtioN=-2cccvirrrrr e ———————————— 67
0101 | OSSPSR 68
DEemMONSTIation=3cccvceeerirerrere e 68
0 10 1 R 69
DEMONSIrAtiON-4ccceercrcer e e 69
0111 | SRS 69
ANGIYSIScveeireitriesiserre st e s e e E e R e R e e Re R e Re R e Re R e e R e e e Re R e RenEeRe R e e R e e Re e eRenrnan 69
QUIZ..c.eeeecees et e s et s e Re e s Re R e ae e e R e e e Re R e AR RS REeEeREeRe R e Re R e AR eEeReeRe e e Re e eRenEeRenRnaeas 70
0111 | SRS 70

DemONSIration-1 ... ——————————— 4l
0111 | SRS 72
ANGIYSIScveeireitriesiserre st e s e e E e R e R e e Re R e Re R e Re R e e R e e e Re R e RenEeRe R e e R e e Re e eRenrnan 72

DeMONSIrAtioN=-2cceerrrr e ————————————— 72
0101 | TSP SRSP 73

DeMONSTIatioN=3ccoviererrrerrere e 73
0 10 1 R 74
Dynamic Method DiSPatCh.........cco et r e re s se e e ae e ae e ae e saenanaens 74

DEMONSIrAtiON-4ccceercrcer e e 75
0111 | SRS 75
Use Of “fiNal” KEYWOITU.......ccorieireirecire et se e n s r s n e sn e s p s a e n e e ne e snennnnens 76

DemONSIrAtioN=-5ccccviiirrcr e ———————————— 77
0101 | TSP SRSP 77
2 78
0101 | TSP SRSP 79

DEMONSTIALION=6ccceererrrrrrerrnsere s re e r e e nn s 80
0 10 1 R 80

vii

CONTENTS

DeMONSIFALiON=-7coirrrr e ———————— 81
010 TP 81
ANAIYSIScvveeecerieseese st e s e e R e R e R e e R e Re R e R e R e e R e Re e e e R e e e e rans 82
2 82
010 TP 83

DemMONSTration=8ccuceeriierrsire e 83
0 10 1 O 83

DemOoNStration-9 ... ————————————— 84
0T 11011 OO SRSRRRSRSTN 84
CoVarANT FEIUMM TYPC ...t 85

DemOoNStration-10ccocvviiririrrr e ———————— 85
OUEPUL ..t e e e e R e A e R e e A e R e e e e e Re e e e s R e e e e nRnnn s 86
ANAIYSIScovveeeeerieseese s e s e s e R E AR e R R e Re e A e R e A e Re e e Re e e e nans 86

DemONSTration=11 ..o e 87
0 10 1 O 88
Y3 1 L 88

Chapter 6: Abstract Class.......ccccuussemmmmssssnnnmmssssssnmmssssssnssssssssssssssssnssssssssnnnsssssnnnnns 89

DeMONSTIAtioN=1cccorieeerrerr e e 89
0 10 1 O 90

DeMONSIrAtioN=-2cccecrcrcrrer s ————————— 90
0T 1101 OO SRSRRRSRSTN 91

DemONSIration-3 ... ———————————— 92
010 TP 92
2 94
010 TP 95
2 95
010 TP 96

Chapter 7: INterface........ccccurrrssssssnsmnnnmmmmssssssssssssnnssssssssssssssssnnssessssssssnnnnnnnsnsssssnns 97

DemONSIration-1 ... ————————— 97
OUEPUL ..t e e e e R e A e R e e A e R e e e e e Re e e e s R e e e e nRnnn s 98

viii

CONTENTS

DeMONSIrAtioN=-2ccceirrer e ——————————— 98
DEMONSTIation=3ccvieerirerrse e 99
0 10 1 O 99
DeMONSIrAtioN-4ccoorcrcrrr s nns 100
0T 11011 OO RSRS 101
DemONSIration=5ccvciiiirrcr e —————————— 101
QUEPUL ..t a s e e e e R e et e R e Re e e s e Re e e e nRe e e e Re e e nes 102
Tagging INTEITACEcccoeeeeece s 102
Demonstration-Marker Interface and ANNOLALIONcccceeereiesennneser e 104
QUEPUL .. e e e R e e e e A e Re e e s e Re e e s e Re e e e nRe e e nes 105
DEMONSTIALiON=6ccceoererrriiresererre e r e en s 106
0 10 1 107
DeMONSIrAtiON=-7ccocrcercrcirr s nn 108
0T 11011 OO RSRS 108
DemOoNSIration-8 ... —————————— 109
QUEPUL .. e e e R e e e e A e Re e e s e Re e e s e Re e e e nRe e e nes 110
DemONnStration-9 ... —————— 111
0 10 1 11
ASSIGNMENL ... e e r e r e sr e a e n e r e n e e e nn e nn e nnnnn s 111
Chapter 8: PACKAYEcerrrrsssmnnsmsssssnnssssssnsnssssssnsnssssssnsnssssssnnnssssssnnnsssssnnnnsssssnnnnss 113
DemOonStration-1 ... ————— 116
0T 11011 OO RSRS 119
DemONSIration-=-2 ..o ———————————— 121
QUEPUL ..t a s e e e e R e et e R e Re e e s e Re e e e nRe e e e Re e e nes 121
Chapter 9: 00Ps Concepts Revisitedcccusemmmmmsssnmnmmssssnsnmsssssssnsssssssnnsssssnnnnss 123
DemONSIration-1 ... ———————— 124
QUEPUL ..t a s e e e e R e et e R e Re e e s e Re e e e nRe e e e Re e e nes 124
ANAIYSIS ..covrveeecerieeesesre e AR e AR AR e AR e e e R e e nEnEans 124
0] 1010 L 0] TSRS 127

ix

CONTENTS

DemONSIrAtion=-2cccvcririrrr s ———————————— 127
QUEPUL ..t e e e e e R e e e A e Re e e s e Re e e s nRe e e e nennnnes 128
GENEralization GEMO...........ccoceerurecrerre e s s s e e s ne e e e nnnnnnes 129
Re@liZatiON UEBMOccceeeeceerieeeir e s e na s e e 130

Chapter 10: Use of static keywordcccccunummmmmmssnnnmmssssssnmsssssssnmsssssssnssssssnsns 131

DemONSIration-1 ... ————————— 131
QUEPUL ..t e e e e e R e e e A e Re e e s e Re e e s nRe e e e nennnnes 132
ANAIYSIS ..cuvveeecrerreeesesre ettt R R E R R Re R AR e e R e e e R e s nE e Eans 132

DEMONSTIALiON=2cccecereerrirerire e en s 132
0 10 1 133
ANAIYSES ..o E e R e e e e e e e e s 133

DemONSIration-3 ... ——————————————— 134
0T 11011 OO STRS 135
QUIZu e ——— 135
0T 11011 OO STRS 136

DeMONSIrAtioN=-4cocrirrcrr s nns 136
QUEPUL ..t e s e s e e R e e e R e Re e e s e Re e e e e Re e e e nRe e e nes 137

DEMONSTIatioN=5cccccveeriercrirerr e 138
0 10 1 139
02 139
0 10 1 139

DemONSIration-6ccocveriririrrsr s ——————————— 140
0T 11011 OO STRS 140
ANGIYSIS ...t s e e e E R R e R R e R Re R e R e e R e R Re R e Re R e e R e e Renrenn 140
02T 141
011 | RSSO 141
0] 14210 o RSOSSN 141

CONTENTS

Chapter 11: EXCeplionS.......cuuummmmmmssmmmmmmmmmmssssssssmmssssssssssssssssssssssssssnssssssssssssnns 143
DemONSIration-1 ... 144
0111 | OSSR 144
DeMONSIrAtioN=-2cccvcrcrcrr s —————————— 145
0 10 1 O 146
DeMONSIration-2A ..o nnan 146
0111 | SR 147
DemonStration-2B ... —————————— 148
OUEPUL ..t a s e e e s R et e A e Re e e s e Re e e s nRe e e e nRnnnnnes 148
DemMONSTration=-2Cccccerierenrrerese s re e r e en s 149
0 10 1 150
DeMONSIration-3 ... ——————— 150
01111 | OSSR 151
DeMONSIrAtioN-4ccoirrrr s ——————— 153
OUEPUL ..t a s e e e s R et e A e Re e e s e Re e e s nRe e e e nRnnnnnes 154
2 155
OUEPUL ..t a s e e e s R et e A e Re e e s e Re e e s nRe e e e nRnnnnnes 155
DEMONSTIAtioN=5ccccveerieresire e 156
0 10 1 158
DeMONSIrAtioN=6cccocrrrirrrserser s nn 159
01111 | OSSR 160
Discussion on Chained EXCEPLION.........cccevereriririre s sae e sae s s saesas s sr s saesa e sassa e e s 161
DeMONSIFALiON=-7ccocrcerrcrir e nenn 161
OUEPUL ..t a s e e e R e e R e Re e e s e Re e e s nRe e e e nne e e nes 162
DEeMONSTIation=8ccoceerierenererese e 162
0 10 1 164
0 10 1 166
ASSIGNMENL ... e e s a e a e s r e r e sa e a e sn e er e nenr e nnenrennennnnes 166

xi

CONTENTS

Chapter 12: An introduction to design patterns..........ccccusvccnrnsssnnnnsssssnnssssssnnnns 167

Creational Patterns.........ccovcieerinecre e e 168
Structural PAtternso 168
Behavioral Patterns...........cocovrnnn 169
ODSErver Pattern ... - 170
0110 0 SRS 170
e L (=0 o T] o] 170
Computer WOrld EXAMPIEcoeveiecerene e s sa e s s s sae s s e st e saesas e s saesassassssnan s 170
HHUSTFALION....cocciccc e ——————————————— 170
PaCKAJE EXPIOTEE VIBWccueeeeerrierreierse e se e ss e e sns e s s e sss e sesesssssssessssessesessssssnssssssssssessanenns 172
IMPIEMENTALION.......c e e e r e e e e e e e e e e e e s 172
01111 | S 175
Prototype Pattern ...t 176
0] 1T | OSSR 176
Real [ife EXAMPIEccceeeeeeceriseeer e e s s e nn e 176
Computer WOrd EXAMPIEcccoveveecerireeeresisesesesss s e e sesss s sesssssssssssssssssssssssssssssssssasens 176
1] 1110 176
PaCKage EXPIOTEE VIBWccceeriieecrerrsreesesesssesesessssssesesssss e e s ssssessssssssssessssssssssssssssssssssssssssssssnsasnns 177
IMPIEMENTALION. ... s nennn e 178
QUEPUL ..t a s e e e R e et e R e Re e e s e Re e e e e Re e e e nRe e e nes 178
Bridge Patternccocevverierierierser sttt se e sn e sn e n e n e 180
1] T) O 180
LT LI T I o L4 o] - 180
Computer WOrld EXAMPIEcceveeereerereerereresereeserseseraesessessssessssessssessesesssssssessssessesesssssssssassesassesseneres 180
HHUSTFALION.ucviticcs s —————————— 180
PACKAQE EXPIOTEE VIBWeeueeeeereeereeneruesersesesersssessesessssessessssessssessesessssesssssssessssessssesssssssssessessssenssneres 182
1] 01240 =T 0= 182
0 10 1 185

xii

CONTENTS

Appendix A: Solution to the Assignmentsccccnsseemnmnssssnsnnnnsssssnsnsssssssenssss 187

02T 187
ASSIGNMENT T ... s R e e e e R e e R e e R e e e Re e r e e e R e e e nenrnnis 187
IMPIEMENTALION.......c e e e e e e e e e e e e e s 187
0111 | SR 188
ASSIGNMENT 2. e R e A e R e e R e e e R e e e Re e e aeeRe e e Rernnis 188
IMPIEMENTALION.......c e e e e e e e e e e e e e s 189
0111 | SR 190
ASSIGNMENT 3. e R e R e e R e e Re e e Re R e e e R e e e Renrnns 191
IMPIEMENTALION.......c e e e e e e e e e e e e e s 191
01111 0 | SR 192

INNEIITANCEcecercrienr e r s s a e s nn s 192
ASSIGNMENT T ... a e e R e e s e s e nrans 192
IMPIEMENTALION. ... s e e s e 193
OUEPUL ..t a s e e e s R et e A e Re e e s e Re e e s nRe e e e nRnnnnnes 194
ASSIGNMENT 2 ...t nE e s R e ne R e s e nrans 194
IMPIEMENTALION. ... s e e s e 195
OUEPUL ..t a s e e e s R et e A e Re e e s e Re e e s nRe e e e nRnnnnnes 196

Use Of StatiC KEYWOIT........ccoereereereeree e see e sse e e e e e s sassaesassassassassassassnssnnns 197
TS T 4 14T 3| O 197
1] 0] L= 40T 0= 197
0 10 1 198

(= 0110 SRR 199
ASSIGNMENT ... R e R e e R e e R e e Re e e Re R e e e R e e e nennnns 199
IMPIEMENTALION. ... s s a e e e e e e a e e 200
01111 | OSSR 201
DISCUSSION ... 202

Appendix B: Frequently asked questionsccconmmmemsmmnnnnmmmmmmssssssssnssssssssssssses 203

Appendix C: Some Useful ReSOUICEeScuusmmmmmssssannmmsssssnssssssssnssssssssnnsssssssnnnsssss 207

About the Author

Vaskaran Sarcar completed his Master of Engineering in Software Engineering from Jadavpur University,
Kolkata. He has 10+ years of teaching and industry experience. He began his career in teaching in various
engineering colleges (2005-2007) and later shifted to the software industry. He is presently working as a
Senior Software Engineer and Team Lead in a reputed R&D organization in India. He also received the
MHRD-GATE Scholarship for the period 2007-2009. Reading and learning new things are passion for
Vaskaran.

Other books by Vaskaran Sarcar are:

e Java Design Patterns (Apress, 2016).
e Design Patterns in C# (Computer Science Interview Series) (2015).

e C# Basics: Test Your Skill (2015).

e Operating System (Computer Science Interview Series) (2014).

XV

About the Technical Reviewers

Shekhar Kumar Maravi is a System Software Engineer, whose main interest and expertise are
Programming languages, Algorithms, and Data Structures. He obtained his M.Tech degree from Indian
Institute of Technology, Bombay in Computer Science & Engineering. Since graduating, he has worked

for Hewlett Packard India R&D Hub on Printer Firmware. Currently he is working as a Technical lead in
InsightBitz. He can be reached by email at shekhar .maravi@gmail.com or you can find him on LinkedIn at:
https://www.linkedin.com/in/shekharmaravi

Anupam Chakraborty is a Principal Software Engineer with more than 12 years of experience in developing
object oriented software. He has obtained his Master degree in Computer Engineering from Indian Institute
of Technology, Kharagpur& Bachelor degree from Indian Institute of Engineering Science and Technology,
Shibpur.

xvii

shekhar.maravi@gmail.com
https://www.linkedin.com/in/shekharmaravi

Acknowledgments

My sincere thanks to my family, my friends, my great teachers, and all those individuals who supported this
project directly or indirectly. Though it is my book, I believe it was only with the help of these extraordinary
people that I was able to complete this work. Again, thanks to all of them who helped me to fulfill this project
and motivate others in object-oriented programming in Java.

Xix

Introduction

Dear Reader,

Welcome to the journey. It is my privilege to present you with Interactive Object-Oriented Programming
in Java: Learn and Test Your Skills. Before you jump into the topics, I want to highlight few points about the
topic and its contents:

1.

The aim of this book is to help you to get a feel of a Java classroom environment.
I'was involved in teaching since 2005. I have taken classes in both engineering
and non-engineering colleges. And, fortunately, most of my teaching
involvement was based on Java and its advanced topics. That is the true
motivation to introduce a book like this.

This book will not discuss how to write an if-else statement or a simple while
loop. Your teacher expects that before you attending the class, you have done
your basic homework. Here your teacher will focus on the basic object-oriented
concepts that we can implement in Java.

But before that, to assist you to ask better questions in the classroom, I dedicate
an entire section at the beginning of the book to some key concepts in Java.
These concepts will help you to evaluate your skills in the language basics. So,
even if you are new to programming or you have some idea about some other
programming languages, this section will be of great assistance. This section will
also help you to prepare yourself for a job interview or a semester examination.

This book uniquely presents a two-way communication between teachers

and students. With this book, you will have the feel of learning object-oriented
programming in Java in a classroom environment—where your teacher will
discuss some problems/topics, ask you questions, and give you assignments. You
will be encouraged to do those simple assignments before beginning a new topic.
If you are dedicated to this subject and do those assignments, you will surely
develop confidence in this language.

In a semester, you need to attend a certain number of lectures to complete the
fundamental topics, and we all know that learning is a continuous process. So,
this book is not for those who want to learn Java in 24 hours or in 7 days. It is
up to you only. I can only say that the book is designed for you in such a way
that upon its completion, you will develop an adequate knowledge of the topic,
you will learn the key features of this powerful language and object-oriented
programming, and you will learn how we should write programs in Java and,
most importantly, how to go further.

XXi

INTRODUCTION

xxii

I have taken care to provide codes that are compatible with all the latest versions.

Also, it is not mandatory for you to learn Eclipse. You can simply run these
programs in your preferred IDE (integrated development environment). I have
chosen Eclipse because it is widely used to develop Java applications.

No book can be completed without readers’ feedback and supports. So, please
share your comments to truly complete this book and enhance future work.

—The Author

Preface: Review the core terms
and start the journey

In June 1991, James Gosling, Mike Sheridan and Patrick Naughton initiated the project of Java language.
There was an Oak tree outside Gosling’s office. And people say that due to the presence of that tree,
originally the language was named Oak. Later they renamed the project as Green (Their team name was also
Green team). And finally they renamed it to Java. The Green project was chartered by Sun Microsystem.

The team members wanted such a name that will be very much unique in nature and at the same
time, it should reflect the essence of upcoming technologies .So, they picked up names like “Dynamic’,
“Revolutionary’, “Silk’; “Jolt’, “DNA” etc.

James Gosling later told that Java was one of the top choices along with Silk. But finally they selected
Java because most of the team mates liked this name.

Java became Open source on November13, 2006. Sun finished the process by making all of Java’s core
code available under free software/open-source distribution terms, (aside from a small portion of code to
which they did not hold the copyright) on May 08, 2007.

Later Oracle Corporation purchased Sun Microsystem and the acquisition process was finished on
January 27, 2010.

These qualities were the primary focus area for Java:

e Simple, object-oriented, and familiar programming style.
¢ Robustness and Security.

e Architecture-neutral and portability.

e High Performance capabilities.

e Interpreted, Threaded, and Dynamic.

Basic Terms

JVM

-It stands for Java Virtual Machine. When we compile the java file, we get a .class (not an .exe).This file
contains java byte code which is interpreted by JVM. It is responsible for loading, verifying and executing
the code .We say that JVM is platform dependent because it is responsible to convert the bytecodes into the
machine language for the specific computer/machine.

JRE
-It stands for Java Runtime environment. It contains the JVM, the library files and the other supporting files.

To run a java program, the JRE must be installed in the system. So, we can simply say JRE=JVM+ some packages.

xxiii

PREFACE: REVIEW THE CORE TERMS AND START THE JOURNEY

JDK

-It stands for Java Development Kit. It provides the tool which we need to develop java programs and
JRE. This tools contains javac.exe, java.exe etc. When we launch a java application, it will open the JRE
and load the class and then, in turn, it will execute the main method. So, we can conclude that JDK=JRE+
Development tools.

Bytecode

-Bytecodes are machine language of the JVM. They provide the instruction set for a JVM. In other words,
itis a virtual machine language in which java code is compiled. JVM comes into the picture because it stands
between these bytecodes and our physical machine.

Platform

-We use the term platform to mean where the program will run. It can be your machine, your
fully developed OS etc. When we say a language is platform independent, we mean that the code of a
programmer will not vary across different platforms.

So once the java program is compiled, we get the bytecodes. These bytecode format is same for every
platform (Windows/Linux/Solaris etc.).So, we need an interpreter who will interpret these bytecodes and
then in turn he/she will produce the machine specific codes. Now JVM comes into the picture. Here in Java,
these bytecodes are interpreted by JVM which is available for all OS. So, to port the java program into a new
platform, we need to port the java interpreter.

So the pair -JVM and bytecode make Java portable.

Note: So the bottom line is that the trio- JVM, JRE and JDK are platform dependent (because of the OS
dependence) but Java is platform independent.

We must remember the simple fact: Any machine language is dependent on the OS of the machine.
So, if we have dependency on the machine specific OS, we are not platform independent. Java is platform
independent because once the source code is compiled into standard bytecodes, those bytecodes are
platform independent. Because of this facility Sun Microsystem is created the slogan WORA (Write Once
Run Anywhere) for Java.

IDE

-It stands for Integrated Development Environment. They provide the facilities for software
development. In general, they are very smart- they provide us intelligent code completion technique. They
can also highlight/suggest about different kinds of possible fixes in our code. An IDE should have a source
editor, a debugger and the automation tools to build the application. IDE’s, in general, contain a compiler or
an interpreter (or both). We have used eclipse here which contains both of these.

Installation

We need two major things.
1. JDK
2. IDE

[Please note that the following links may be altered in future. Till the writing of the book ,these are
working fine.]

Visit the page:
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Or

XXiv

http://www.oracle.com/technetwork/java/javase/downloads/index.html

To download JDK, directly go here:

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

PREFACE: REVIEW THE CORE TERMS AND START THE JOURNEY

You'll get a screen containing something like this:

Java SE Development Kit 8u65

You must accept the Oracle Binary Code License Agreement for Java SE to download this

Accept License Agreement

Product / File Description
Linux ARM v6NT Hard Float ABI
Linux ARM v8 Hard Float ABI
Linux x86
Linux x86
Linux x64
Linux x64
Mac OS X x64

Solaris SPARC 64-bit (SVR4 package)

Solaris SPARC 64-bit
Solaris x64 (SVR4 package)
Solaris x64

Windows x86

Windows x64

Try to download the latest version based on your system configuration (e.g. 32 bit/64 bit, Windows/

Linux etc.)
To download eclipse IDE:
Go here.

https://eclipse.org/downloads/

software.

File Size
77.69 MB
74.66 MB
154.67 MB
174.84 MB
152.69 MB
172.86 MB
227.14 MB
139.71 MB
99.01 MB
140.22 MB
96.74 MB
181.24 MB
186.57 MB

* Decline License Agreement

Download
jdk-8ub5-linux-arm32-vip-hfittar.gz
jdk-Bub5-linux-arm64-vip-hfittar.gz
jdk-8ub5-linux-i586.rpm
jdk-8ub5-linux-i586.tar.gz
jdk-8ub5-linux-x64.rpm
jdk-8ub5-linux-x64.tar.gz
jdk-8ub5-macosx-x64.dmg
jdk-8u65-solaris-sparcv9.tar.Z
jdk-8u65-solaris-sparcv.tar.gz
jdk-Bub5-solaris-x64.tar.Z
jdk-8u65-solaris-x64 .tar.gz
jdk-Bub5-windows-i586.exe
jdk-8ub5-windows-x64.exe

XXV

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://eclipse.org/downloads/

PREFACE: REVIEW THE CORE TERMS AND START THE JOURNEY

As mentioned above, try to download the latest version based on your system configuration e.g. you can
see something like this:

S eclipse

Download Eclipse Technology
that is right for you

urope | October

r’_‘
-—w

Get Eclipse Ec

Install your favorite Eclipse packages Eclipse Che Is a developer

workspace server and cloud IDE.

NAMING CONVENTIONS

For those familiar with Java, these are the naming conventions I'll follow in this book:

¢ Class- They should start with an uppercase letter and should be a noun e.g. MyClass,
String etc.

¢ Interface/s- They should start with an uppercase letter and should be an adjective e.g.
Runnable, Remote

e Method/s- They should start with a lowercase letter and be a verb e.g. main(),
showMyMethod (), etc.

e Variable/s- They should start with lowercase letter e.g. myIntegervalue,
myDoubleValue, myName €tc.

e Package/s- They should be all in lower case latter e.g. mypackage, package1 etc.
e (Constants- They should be in uppercase letters e.g. MY _CONSTANT etc.

Apart for few special cases, we have tried to maintain these conventions across the book.

XXVi

PREFACE: REVIEW THE CORE TERMS AND START THE JOURNEY

Our First Program

Now let us go through our first program and follow the analysis section carefully.
package javaclassnotes.programs;

public class HelloWorld

{
public static void main(String args[])
{
System.out.println("Hello World.");
}
}
Output

Hello World.

B Console 32

<terminated> Hello [Java Application] C:\Program Files\Java'jrel 8.0_45\bin\javaw.exe (Sep 26, 2015, 9:17:56 AM)
Hello World.

Explanation

First of all, throughout the book, we have organized the programs into package/s. But for this program, it was
not mandatory. Once we go through the chapter on package, it will be clear to us.

This is the basic structure of the main method. The meaning and significance of each keyword will be
clear to you gradually. So, for the time being, you must follow this structure.

Our source file name is HelloWorld. java. We need to use . java extension for our java files. It is the
requirement for the compiler.

Java is case-sensitive.

Here are some key points which we need to remember:

e main- The program will start from here. It is a method. A method is basically a set
of statements grouped together with the curly braces. (For the time being, you can
think it as a function or procedure).

e public- The access specifier. Access specifiers are used to control the visibility of the
members.

xxvii

PREFACE: REVIEW THE CORE TERMS AND START THE JOURNEY

xxviii

static- It allows us to call main() without instantiating a particular instance of the
class. We'll do detailed analysis on the keyword static later.

void-return type of the method.

String args[]-args is the name chosen for this String array. String arrays are used
to store character strings. The name args is chosen to represent arguments to the
method.

println-Itis used to display information.

System.out- Difficult to explain at this point. Just we can know that Systemis a class
and out is output stream associated with the console.

CHAPTER 1

Test your skill in language
fundamentals

Now go through some fundamental concepts. To make an impression in your brain, these fundamental
concepts are discussed through some programs (and their corresponding outputs) and with some Q&aA.
Author suggests you to go through each of them before you enter into your classroom. This section is added
to help you to understand the discussions in the classroom better. Author also believes that you can ask
better questions to your teacher, once you brush up these fundamentals in the Java language before you
enter into the classroom.

SET 1

What will be the output?

package fundamentals;
public class HelloWorldEx2

{
static public void main(String args[])
{
System.out.println("Hello World.");
}
}

Electronic supplementary material The online version of this chapter (doi:10.1007/978-1-4842-2544-8 1)
contains supplementary material, which is available to authorized users.

© Vaskaran Sarcar 2016
V. Sarcar, Interactive Object Oriented Programming in Java, DOI 10.1007/978-1-4842-2544-8_1

http://dx.doi.org/10.1007/978-1-4842-2544-8_1

CHAPTER 1 * TEST YOUR SKILL IN LANGUAGE FUNDAMENTALS

Output:
Hello World.

<terminated> HelloWorldEx2 [Java Application] C:\Program Files\Java\jdkl.8.0_45\bin\javaw.exe (Nov 27, 2016, 12:33:08 AM)
Hello World.

So, we can see that we can change the order. Instead of public static void main(...), we can write: static
public void main(...). But we’ll always use the convention inside this book.

What will be the output if we pass some arguments through command line (e.g. java
CommandlineEx1 John Sam Bob)?

package fundamentals;
public class CommandLineEx1 {
public static void main(String args[])

{
System.out.println("*** Testing Command line arguments ***");
//java CommandlIneEx1 John Sam Bob
System.out.println(args[0]);
System.out.println(args[1]);
System.out.println(args[2]);
}
}
Output:

[terminated> CommandLineExl (1) [Java Application] C:\Program Files\Java\jdkl.8.0_45\bin\javaw.exe (Nov 27, 2016, 12:33:47 AM)
#%%* Testing Command line arguments ***

John

Sam

Bob

CHAPTER 1 * TEST YOUR SKILL IN LANGUAGE FUNDAMENTALS

Explanation:

When we use command line arguments like:

java <your program name> a0 al a2...

values will be assigned in the String array arg as arg[0]=a0, arg[1]=al, arg[2]=a2 etc. Also note that you
can choose any name you want for your String array. e.g.

public static void main(String myStringArray[])
{...}

is perfectly fine.
For eclipse users, you can enter arguments in the Arguments tab under Run Configurations like this:

© Run Configurations _— “
Create, ge, and run configurati
Run a Java application @

o = 4 | :
5 X| B 3~ || Name: CfmmandLineEs

| '® Main _‘xJ= Argument; B\ JRE'. o Classpatl';_ By Sourct;_ -} Enuironmeni_ 1= Common‘_

[7] CommandLineEx ~ Program argow
:1| Composttepatter John Sam Bob -
[J] CompositePatter
[71 CustomExceptior
[7] DecoratorPattern| = 1

' Variables...
DecoratorPattern
DynamicMethod VM arguments:
Examplel
ExceptionB
ExceptionExl z

ExceptionBx2 i

Vanables...
ExceptionBx2A l
ExceptionBx2C | Working directory: 1

[7] ExceptionBx3 -
4 m ¢

Filter matched 111 of 115 items

©) [Rin][Close |

HEHHBE

HEHHEH

Revert

Do we need a main() for each of the class?
No. The class with a main() method is used to denote the starting point of your application. So, other
classes can exist without a main() method.

SET 2

What will be the output?

package fundamentals;
public class FundamentalEx1i {
public static void main(String args[])

{

System.out.println("***Fundamentals Review Example -1***");

CHAPTER 1 * TEST YOUR SKILL IN LANGUAGE FUNDAMENTALS

int a=5;//0k
int b=07;//0k
System.out.println("a="+a);
System.out.println("b="+b);

}

Output:
a=5b=7

<terminated> FundamentalEx (1) [Java Application] C:\Program Files\Java\jdk1.8.0_45\bin\javaw.exe (Nov 27, 2016, 12:23:00 AM)
Fundamentals Review Example -1

a=$§

b=7

What will be the output?

package fundamentals;
public class FundamentalEx2 {
public static void main(String args[])

{
System.out.println("***Fundamentals Review Example -2%¥*");
int a=5;//0k
int b=07;//0k
int c=09;//Error
System.out.println("a="+a);
System.out.println("b="+b);
System.out.println("c="+c);

}

}
Output:

Compilation error: The literal 09 is out of range.

Description Resource Path Location Type
4 @ Errors (1 item)
@ The literal 09 of type int is out of range Fundamentalbx2.java /JavaClassNotes/fu... line8 Java Problem

CHAPTER 1 * TEST YOUR SKILL IN LANGUAGE FUNDAMENTALS

Explanation:
When we put a leading 0, Java treats it as an octal representation. So, in that case, the range it can
supportis 0 to 7. In this example, we have crossed that boundary. To print 8, you have to code like:

int d=010;//0k. It will print 8
System.out.println("d="+d);

What will be the output?
package fundamentals;

public class FundamentalEx3 {
public static void main(String args[])

{
System.out.println("***Fundamentals Review Example -3***");
int c=0x12;//0k, will print 18
int d=0x1E;//ok, will print 30
int e=0X1F;//ok, will print 31
System.out.println("c="+c);//18
System.out.println("d="+d);//30
System.out.println("e="+e);//31
}
}
Output:
c=18d=30e=31
<terminated> FundamentalE:x3 (1) [Java Application] C:\Program Files\Java\jdk1.8.0_45\bin\javaw.exe (Nov 27, 2016, 12:23:56 AM)
Fundamentals Review Example -3
c=18
d=30
e=31
Explanation:

When we prefix 0x or 0X, Java treats them as a hexadecimal integer literal representation. So, in this
case, the range it can support is 0 to 15. A to F is used to represent the digits with values 10 to 15.

CHAPTER 1 * TEST YOUR SKILL IN LANGUAGE FUNDAMENTALS

What will be the output?
package fundamentals;

public class FundamentalEx4

{
public static void main(String args[])
{
System.out.println("***Fundamentals Review Example -4***");
int a=5;
double const=3.14;//Error
System.out.println("const value is ="+const);//Error
}
}
Output:

Compilation error.

Description Resource Path Location Type
4 © Errors (2 items)
@ Syntax error on token "const”, invalid Expression Fundamentalbxd.java /JavaCl.. line10 Java Problem
@ Syntax error on token "const”, invalid VariableDeclaratorld FundamentalBxd.java /JavaCl.. line9 Java Problem
Explanation:

Some words are explicitly reserved for used by the Java languages only. These are reserved keywords in
java. In the above example, we have being used such a keyword const like a variable and hence encountered
this issue.

SET 3

What will be the output?
package fundamentals;

public class FundamentalEx5 {
public static void main(String args[])

{
System.out.println("***Fundamentals Review Example -5***");
byte b1=127;//0k
byte b2=128;//Error
System.out.println("b1="+b1);
System.out.println("b2="+b2);
}

CHAPTER 1 * TEST YOUR SKILL IN LANGUAGE FUNDAMENTALS

Output:

Compilation error.

Description Resource Path Location Type
a4 © Errors (1 item)
1 Type mismatch: cannot convert from int to byte Fundamentalbx5.java /JavaCl... line8 Java Problem
Explanation:

Range of byte is -128 to 127.
What will be the output?
package fundamentals;

public class FundamentalEx6 {
public static void main(String args[])

{
System.out.println("***Fundamentals Review Example -6***");
byte b1=127;//0k
int i1=b1;//0k
System.out.println("b1="+b1);
System.out.println("i1="+i1);
}
}
Output:

bl=127i1=127

<terminated> FundamentalEx6 (1) [Java Application] C:\Program Files\Java\jdk1.8.0_45\bin\javaw.exe (Nov 27, 2016, 12:24:38 AM)
Fundamentals Review Example -6

b1=127

i1=127

Explanation:
The two types- int and byte are compatible and here we are putting the byte into an int means that the
destination type is larger than source type. So, compiler is ok with this conversion.

CHAPTER 1 * TEST YOUR SKILL IN LANGUAGE FUNDAMENTALS

What will be the output?
package fundamentals;

public class FundamentalEx7 {

public static void main(String args[])

{
System.out.println("***Fundamentals Review Example -7***");
byte b1=127;
int i1=b1;//0k: small to big
b1=i1;//Error: big to small
System.out.println("b1="+b1);
System.out.println("i1="+i1);

}

Output:

Compilation error.

Description Resource Path Location Type
4 © Errors (1 item)
£ Type mismatch: cannot convert from int to byte FundamentalEx7.java /JavaCl... line9 Java Problem
Explanation:

Here the destination type is smaller than source type. So, compiler is raising the concern.

SET 4

What will be the output?
package fundamentals;

public class FundamentalEx8 {
public static void main(String args[])
{
System.out.println("***Fundamentals Review Example -8***");

int 1=2147483647;
System.out.println("i="+1i);
int j=++i;
System.out.println("Now i is="+i);
System.out.println("j="+j);

CHAPTER 1 * TEST YOUR SKILL IN LANGUAGE FUNDAMENTALS

Output:

terminated> FundamentalExg [Java Application] C:\Program Files\Java\jdk1.8.0_45\bin\javaw.exe (Nov 26, 2016, 11:50:05 PM)
Fundamentals Review Example -8

i=2147483647
Now i is=-2147483648
j=-2147483648

Explanation:

The maximum value of integer is 2,147,483,647 and the minimum value is -2,147,483,648. Here in j
(with post increment of i), we have crossed the maximum limit of an integer.

What will be the output?

package fundamentals;
public class FundamentalEx9
{
public static void main(String args[])

{

System.out.println("***Fundamentals Review Example -9***");

int i=5;
int j=i++;//j becomes 5, i becomes 6
System.out.println("j now="+j);
System.out.println("i now="+i);
int k=++j;//j and k both becomes 6
System.out.println("j="+j);
System.out.println("k="+k);
}

}

Output:

The program will compile and run successfully.

<terminated> FundamentalEx9 [Java Application] C:\Program Files\Java\jdkl.8.0_45\bin\javaw.exe (Nov 26, 2016, 11:51:55 PM)
Fundamentals Review Example -9

j now=5§
i now=6
j=6
k=6

CHAPTER 1 * TEST YOUR SKILL IN LANGUAGE FUNDAMENTALS

What will be the output?

package fundamentals;
public class FundamentalEx10 {
public static void main(String args[])
{
System.out.println("***Fundamentals Review Example -10%**");
int i=260;
byte b=(byte) i;
System.out.println("b="+b);
}
}

Output:
b=4

<terminated> FundamentalEx10 [Java Application] C:\Program Files\Java\jdk1.8.0_45\bin\javaw.exe (Nov 26, 2016, 11:52:37 PM)
Fundamentals Review Example -10
b=4

Explanation:

Here we are trying to type cast a larger variable(int) into a smaller variable(byte). So, in this type of case,
java calculates modulo of larger variable by the range of smaller variable. Our byte range is -128 to 127. So
final result would be 260 % 256 i.e. 4

What will be the output?
package fundamentals;

public class FundamentalEx11 {
public static void main(String args[])
{
System.out.println("***Fundamentals Review Example -11***");
int i=65550;
short s=(short)i;
System.out.println("s="+s);

10

CHAPTER 1 * TEST YOUR SKILL IN LANGUAGE FUNDAMENTALS

Output:

s=14

<terminated> FundamentalExl1 [Java Application] C:\Program Files\Java\jdkl.8.0_45\bin\javaw.exe (Nov 26, 2016, 11:53:10 PM)
Fundamentals Review Example -11
s=14

Explanation:
See the above explanation. The range for short datatype is: -32768 to 32767 i.e. total ranges it
covers is 65536. So here the result is: 65550 % 65536=14

What will be the output?
package fundamentals;

public class FundamentalEx12 {
public static void main(String args[])
{
System.out.println("***Fundamentals Review Example -12%¥*");
char c1=65;
char c2='a'+3;
System.out.println("c1="+c1);
System.out.println("c2="+c2);
}
}

Output:
cl=Ac2=d

<terminated> FundamentalEx12 [Java Application] C:\Program Files\Java\jdkl.8.0_45\bin\javaw.exe (Nov 26, 2016, 11:53:44 PM)
***Fundamentals Review Example -12*%**

c1=A

c2=d

11

CHAPTER 1 * TEST YOUR SKILL IN LANGUAGE FUNDAMENTALS

Explanation:
ASCII value of A is 65 and ASCII value of a is 97.
97+3=100 which is the ASCII value of d.

SET 5

Why do you prefer double over float?
double is used for double precision, float is for single precision. So, to maintain the accuracy of
calculation, double is a better choice over float.

What is the difference between char in Java vs char in C/C++?
In C/C++, char is an integer type (8 bit wide). But Java uses Unicode (UTF-16) to represent them. In Java,
char is of 16 bit type.

What do we mean by Unicode?

Unicode defines a fully international character set that can be found in world’s most human languages/
writing systems. So, it is a unification of all those character sets. This allows us to encode, represent and
handling texts in those languages in a standard way.

What do we mean automatic type conversion?
Two basic criteria must be followed for an automatic conversion.

e The destination type should be larger.
e The types are compatible.

e.g. following conversion is automatic:

int i1=15;
double d=i1;//0k
System.out.println("d="+d);//15.0

But below conversion is not allowed:

boolean b=true;
int i2=b;//error

Why does Java not convert primitive types to objects?
Unnecessary overhead will be created due to these conversions and Java may lose the efficiency in
performance.

Why do all Java primitive types have a fixed range?
To support portability, Java supports this concept.

What do we mean by the word portability?

In simple language, suppose you have developed an application in a machine. Now you want to reuse
it in other environment (e.g. in different hardware/software platforms or versions or different operating
systems etc) without a major rework (in ideal scenario: no rework).If you can do that you can claim that your
application is portable

We also remember that the pair -JVM and bytecode make Java portable. Go through the “Basic Terms”
explained previously to revise your concepts.

12

CHAPTER 1 * TEST YOUR SKILL IN LANGUAGE FUNDAMENTALS

SET 6

What will be the output?

package fundamentals;
public class FundamentalEx13

{

public static void main(String args[])
{
System.out.println("***Fundamentals Review Example -13***");
int x = 10;
int result=++x*5;
System.out.println(" The result is : "+ result);
}
}

Output:

<terminated> FundamentalEx13 [Java Application] C:\Program Files\Java\jdkl.8.0_45\bin\javaw.exe (Nov 26, 2016, 11:57:03 PM)
Fundamentals Review Example -13
The result is : S5

Explanation:
See Table 1-1 below. ++ has higher precedence than *. So, ++x will be evaluated first and then the result
will be multiplied.

Table 1-1. Operator Precedence Table (highest to lowest):

Postfix expr++ expr--

Unary ++expr --expr +expr -expr ~ !
Multiplicative */ %

Additive -+

Shift >>> << >>

Relational <= >= <>instanceof
Equality ===

Bitwise AND &

(continued)

13

CHAPTER 1 * TEST YOUR SKILL IN LANGUAGE FUNDAMENTALS

Table 1-1. (continued)

Bitwise exclusive OR (XOR) A

Bitwise OR(inclusive) |

Logical AND &&

Logical OR I

Ternary ?:

Assignment =+=-=%= /= %= &= N=|=<<=>>=>>>=

Other points to remember:
e Only assignment operators are evaluated right to left.
e All other binary operators are evaluated in reverse direction (i.e. left to right).

e (), [], dot operators (.) have the highest precedence. These are called separators
but they act like operators in an expression. Basically to alter the precedence of an
operation, we need to use parentheses.

What will be the output?
package fundamentals;

public class FundamentalEx14 {
public static void main(String args[])

{
int x=5;
System.out.println(" ~x is : "+ ~x);

}

Output:

~X is: -6

<terminated> FundamentalEx14 [Java Application] C:\Program Files\Java\jdk1.8.0_45\bin\javaw.exe (Nov 26, 2016, 11:59:58 PM)
~Xis:-0

Explanation:

5 is represented by 0000 0101. ~5 will make it 1111 1010. Which is for -6.

To understand it better, represent 6 in binary: 0000 0110. Now 2’s complement of it (inverting all bits
first and then add a 1 to that) will make it 1111 1010.

14

CHAPTER 1 * TEST YOUR SKILL IN LANGUAGE FUNDAMENTALS

What will be the output?

package fundamentals;
public class FundamentalEx15 {
public static void main(String args[])

{
int x=21;
int y=15;
int z=x"y;
System.out.println(" z is : "+ z);
}
}
Output:
z1s:26

<terminated> Fundamentalbx15 [Java Application] C:\Program Files\Java\jdk1.8.0_45\bin\javaw.exe (Nov 27, 2016, 12:00:45 AM)
Zzis:26

Explanation:
e 2linbinaryis 0001 0101
e 15inbinaryis 00001111
XOR combines bits with the rule: if exactly one operand is 1 then the result is 1. So our result becomes:
0001 10101i.e 26

What will be the output?

package fundamentals;
public class FundamentalEx16 {
public static void main(String args[])

{
int x=24;
int y=11;
int result= ++x * y--;
System.out.println("Result is : "+ result);
System.out.println("y now : "+ y);

}

15

CHAPTER 1 * TEST YOUR SKILL IN LANGUAGE FUNDAMENTALS

Output:

Resultis :275
ynow: 10

<terminated> FundamentalEx16 [Java Application] C:\Program Files\Java\jdk1.8.0_45\bin\javaw.exe (Nov 27, 2016, 12:02:10 AM)

Result is : 275
ynow : 10

Explanation:
++x =25, 25*y--=275 (After this operation y will be decremented)

What will be the output?
package fundamentals;

public class FundamentalEx17 {
public static void main(String args[])

{
int x=24;
int y=11;
int z=100;
//int result= ++x * y--;//275
int result= ++x *--y %z;
System.out.println(" Result is : "+ result);
System.out.println(" y now : "+ y);
}
}
Output:

Result is: 50

ynow:10

<terminated> FundamentalEx17 [Java Application] C:\Program Files\Java\jdk1.8.0_45\bin\javaw.exe (Nov 27, 2016, 12:03:21 AM)
Result is : 50
y now : 10

16

CHAPTER 1 * TEST YOUR SKILL IN LANGUAGE FUNDAMENTALS

Explanation:
Pre increment happened to x and pre decrement happened to y before the multiplication operation
which results 250. Finally the modulo operation is resulting 50. (250%100=50).

What will be the output?
package fundamentals;

public class FundamentalEx18 {
public static void main(String args[])

{
int x=10;
int y=4;
double result= ++y*x/y;
System.out.println(" Result is : "+ result);
System.out.println(" y now : "+ y);
}
}
Output:

Resultis :10.0

ynow: 5

<terminated> FundamentalEx18 [Java Application] C:\Program Files\Java\jdk1.8.0_45\bin\javaw.exe (Nov 27, 2016, 12:04:47 AM)
Result is : 10.0
ynow:S5S

Explanation:
We must notice that y incremented first and becomes 5. So, 5*10/5 becomes 10.0 because we are storing

the result in a double datatype.
What will be the output?

package fundamentals;

public class FundamentalEx19 {
public static void main(String args[])

{
System.out.println("***Fundamentals Review Example -19***");
int a=7,b=12;
System.out.println(a+b);//19
System.out.println("a+b=" +a+b);//a+b=712
System.out.println(a+b+"=a+b=" +a+b);//19=a+b=712

}

17

CHAPTER 1 * TEST YOUR SKILL IN LANGUAGE FUNDAMENTALS

Output:

<terminated> FundamentalEx19 [Java Application] C:\Program Files\Java\jdk1.8.0_45\bin\javaw.exe (Nov 27, 2016, 12:07:17 AM)
Fundamentals Review Example -19

19

a+b=712

19=a+b=712

Explanation:

You must note this behavior: once the string is encountered, we started seeing the concatenation
instead of addition. That’s why initially a and b is added and resulted 19 but after that it encountered a string
“a+b’; so now onwards it will start string concatenation operations.

Differentiate: break vs continue with an example.
package fundamentals;

public class FundamentalEx20 {
public static void main(String args[])

{
System.out.println("***Fundamentals Review Example -20%**");
System.out.println("***break vs continue***");
System.out.println("***Example : break***");
for(int i=0;i<5;i++)
{
System.out.print("At entry i is :"+i);
if(i==3)
break;
System.out.print("\t At Exit i is :"+i);
System.out.println();
}
System.out.println();
System.out.print("***Example : continue***\n");
for(int i=0;i<5;i++)
{
System.out.print("At entry i is :"+i);
if(i==3)
continue;
System.out.print("\t At Exit i is :"+i);
System.out.println();
}
}

18

CHAPTER 1 * TEST YOUR SKILL IN LANGUAGE FUNDAMENTALS

Output:

<terminated> FundamentalEx20 [Java Application] C:\Program Files\Java\jdkl 8.0_45\bin\javaw.exe (Nov 27, 2016, 12:08:02 AM)
***Fundamentals Review Example -20%**
preak vs continue

Example : break

Atentryiis:0 AtExitiis:0

Atentryiis:1 AtExitiis:1

Atentryiis:2 AtExitiis:2

Atentryiis:3

*#**Example : continue***

At entryiis 0 At Exitiis:0

Atentryiis:1 AtExitiis:1

Atentryiis:2 AtExitiis:2

Atentryiis :3Atentryiis:4 AtExitiis:4

Explanation:

From the above code, we can see that once we encounter break (at i=3), control has come out from the
for loop block but in case of continue, it just skipped remaining portion for that iteration (i.e. did not print
Exit statement for i=3) and continued looping to the end.

Oracle Java documentation says: break can have two forms-labeled and unlabeled. An unlabeled
break statement can terminate the innermost for, while, do-while, switch statements, but a labeled break can
terminate an outer statement.

What will be the output?
package fundamentals;

public class ConditionalOperatorEx {
public static void main(String args[])

{
System.out.println("*** Conditional Operator Demo***");
int a=10;
int b=5;
int c=a>b?a:b;
System.out.println("c is : "+c);
}

19

CHAPTER 1 * TEST YOUR SKILL IN LANGUAGE FUNDAMENTALS

Output:

<terminated> ConditionalOperatorEx (1) [Java Application] C:\Program Files\Java\jdk1.8.0_45\bin\javaw.exe (Nov 27, 2016, 12:09:30 AM)
*** Conditional Operator Demo***
cis: 10

Explanation:
This is a very common use of the conditional operator.

What will be the output?

package fundamentals;
public class ConditionalOperatorEx2 {
public static void main(String args[])
{
System.out.println("*** ConditionalOperator Demo-2***");
int a=10;
int b=5;
//Ex5.10
//Error:Type mismatch
String result=a<0?"Negative":a;
System.out.println("result is : "+result);

}

Output:

Compilation Error.

Description Resource Path

4 @ Errors (1 item)
£ Type mismatch: cannot convert from int to String ConditionalOperator... /JavaClassNotes/ja...

Explanation:

You cannot put an integer inside a string. So, be careful for the following type of comparison:
expressionl? expression2: expression3

expression 2 and expression3 must be same.

20

CHAPTER 1 * TEST YOUR SKILL IN LANGUAGE FUNDAMENTALS

SET 7

What is an array?
It is container object that can hold a fixed number of a particular type.
Show an example of creating an array and displaying the contents inside it.

package fundamentals;
public class ArrayEx1
{
public static void main(String args[])
{
System.out.println("***Fundamentals Review Examples -Arrays***");
int[] myIntArray=new int[5];
for(int i=0;i<5;i++)

{
}

System.out.println("Contents of Array:");
for(int i=0;i<5;i++)

{
}

myIntArray[i]=i*10;

System.out.print("\t"+myIntArray[i]);

Output:

<terminated> ArrayExl (1) [Java Application] C:\Program Files\Java\jdkl.8.0_45\bin\javaw.exe (Nov 27, 2016, 12:10:27 AM)
Fundamentals Review Examples -Arrays
Contents of Array:

0 10 20 30 40

Explanation:
Here we have created an array which can hold 5 integers only (notice the declaration new int[5]).
In the above program suppose you have used the following declaration:

int myIntArray[]=new int[5];

Is it a valid declaration?

Yes. We can use either form : int[] myArray or int myArray/].
How can you alter the size of an array?

Once created, we cannot alter the size of it, it is fixed then.

21

CHAPTER 1 * TEST YOUR SKILL IN LANGUAGE FUNDAMENTALS

Can you shorten the code size in the example 6.2.
We can directly initialize the array like this:

int myIntArray[]={0,10,20,30,40};//0k

Can you compile the code below?
int[] myIntArray=new int[3];
myIntArray[0]=10;

myIntArray[2]=20;
myIntArray[3]="Thirty";

No. We cannot put a string into an integer array.

4 O Errors (1 item)
£ Type mismatch: cannot convert from String to int

Will the code compile?
package fundamentals;

public class ArrayEx2

{
public static void main(String args[])
{
System.out.println("***Fundamentals Review Examples -Arrays***");
int[] myIntArray=new int[3];
myIntArray[0]=10;
myIntArray[2]=20;
System.out.println("Contents of Array:");
for(int i=0;i<5;i++)
{
System.out.print("\t"+myIntArray[i]);
}
}
}
Answer:

Yes. There is no compilation error but we’ll encounter a runtime exception as we are trying to access
locations beyond the boundary (our array size is 3 but we are trying to access indexes more than index 2).
We'll discuss on exceptions later in this book.

22

CHAPTER 1 * TEST YOUR SKILL IN LANGUAGE FUNDAMENTALS

<terminated> ArrayEx2 (1) [Java Application] C:\Program Files\Java\jdil.8.0_45\bin\javaw.exe (Nov 27, 2016, 12:11:38 AM)
Fundamentals Review Examples -Arrays
Contents of Array:
10 0 20Exception in thread "main" java.lang.ArravindexOutOfBoundsException: 3
at fundamentals.ArrayEx2.main(ArravEx2.java:14)

In the above output, we can see MyIntArray[1] is printed as 0 but we have not supplied 0 in it. Is this
array initialized with default values?

Yes. Default value for integers is 0.

What will be the output?

package fundamentals;

class A
{
int i;
A(int i)
{
this.i=i;
}
public class ArrayEx3
{
public static void main(String args[])
{
System.out.println("***Fundamentals Review Examples -Arrays***");
A[] myArray=new A[5];
myArray[0]=new A(10);
myArray[2]=new A(25);
System.out.println("Contents of Array:");
for(int i=0;i<5;i++)
{
System.out.print("\t"+myArray[i]);
}
}
}

23

CHAPTER 1 * TEST YOUR SKILL IN LANGUAGE FUNDAMENTALS

Output:

<terminated> Arraybx3 (1) [Java Application] C:\Program Files\Java\jdk1.8.0_45\bin\javaw.exe (Nov 27, 2016, 12:13:03 AM)
Fundamentals Review Examples -Arrays
Contents of Array:

fundamentals.A@659%9e0bfd null fundamentals.A@2a139a55 null null

Explanation:
We can see that all object references are initialized to their default values i.e. null. Here we did not provide
values for indexes 1, 3 and 4. So, those locations are holding null.

How can we modify the program above to see the values stored inside the objects?

package fundamentals;

class A1
{
int i;
A1(int i)
{
this.i=i;
}
}
public class ArrayEx3Modified
{
public static void main(String args[])
{
System.out.println("***Fundamentals Review Examples -Arrays***");
A1[] myArray=new A1[5];
myArray[0]=new A1(10);
myArray[2]=new A1(25);
System.out.println("Contents of Array:");
for(int i=0;i<5;i++)
{
if(myArray[i]!=null)
System.out.println("myArray["+ i+"] : "+myArray[i].i);
}
}
}

24

CHAPTER 1 * TEST YOUR SKILL IN LANGUAGE FUNDAMENTALS

Output:

<terminated> Arraybx3Modified [Java Application] C:\Program Files\Java\jdk1.8.0_45\bin\javaw.exe (Nov 27, 2016, 12:13:43 AM)
Fundamentals Review Examples -Arrays

Contents of Array:

myArray[0] : 10

myArray[2] : 25

Explanation:
Notice carefully, we need to put an extra guard to do a null check inside the for loop. Otherwise we’ll
encounter “NullPointerException” because some of the values inside the array are null.

<terminated> ArrayEx3Modified [Java Application] C:\Program Files\Java\jdk1.8.0_45\bin\javaw.exe (Nov 27, 2016, 12:14:23 AM)
Fundamentals Review Examples -Arrays
Contents of Array:
myArray[0] : 10
Exception in thread "main" java.lang.NullPointerException
at fundamentals.ArrayEx3Modified.main(ArravEx3Modified.java:23)

Task:
Can you write a simple array-handling program where you need to supply 4 integers between 1 to 5

(No repetition is allowed). Then your program need to response back to you saying which number you
have not used.

package fundamentals;

import java.util.Scanner;
public class ArrayEx4 {
public static void main(String args[])
{
System.out.println("***Fundamentals Review Examples -Find a missing number
using Arrays***");
System.out.println("Type any 4 integers between 1 and 5(no repetition is
allowed) :");
int[] myStore=new int[5];
int accumulatedSum=0;//To sum up the numbers you //have entered

25

CHAPTER 1 * TEST YOUR SKILL IN LANGUAGE FUNDAMENTALS

for(int i=0;i<4;i++)

{
Scanner in = new Scanner(System.in);
int input= in.nextInt();
myStore[i]=input;

}

System.out.println("You have entered:");
for(int i=0;i<4;i++)

{
//if(myArray[i]!=null)
{
System.out.println("myStore["+ i+"] : "+myStore[i]);
accumulatedSum=accumulatedSum+myStore[i];
}
}

int expectedSum=5%(5+1)/2;//Sum of n integers=n*(n+1)/2;
int missingNumber=expectedSum-accumulatedSum;
System.out.println("The missing number is : "+missingNumber);

}

Output:

<terminated> ArrayExd (1) [Java Application] C:\Program Files\Java\jdk1 8.0_45\bin\javaw.exe (Nov 27, 2016, 12:15:39 AM)
Fundamentals Review Examples -Find a missing number using Arrays
Type any 4 integers between 1 and 5(no repetition is allowed) :

1
3
2
5
You have entered:
myStore[0] : 1
myStore[1]: 3
myStore[2] : 2

myStore[3]: §
The missing number is : 4

Explanation:

Sum of n numbers=n*(n+1)/2. Replace n with 5 for 5 integers to get the sum of 5 numbers (expectedSum).
Now you sum up the 4 numbers which you have entered through keyboard (accumulatedSum). So, the
difference between expectedSum and accumulatedSum is the missing number for this scenario.

26

CHAPTER 1 * TEST YOUR SKILL IN LANGUAGE FUNDAMENTALS

SET 8

Will the code compile?

package fundamentals;
public class SwitchEx1i {
public static void main(String args[])

{
System.out.println("***Discussions on Switch ***");
int myNumber=6;
switch (myNumber)
case 1: System.out.println("one");
break;
default: System.out.println("Default");
case 2: System.out.println("Two");
break;
}
}
}
Yes. We'll get following output:
Default
Two
<terminated> SwitchExl (1) [Java Application] C:\Program Files\Java\jdk1.8.0_45\bin\javaw.exe (Nov 27, 2016, 12:16:48 AM)
***Discussions on Switch ***
Default
Two
Explanation:

We must note that we can put default case anywhere in the switch block. And also if there is no break
statement, control will continue to fall through until a break statement is encountered/end of block is
reached-it does not matter whatever be the case.

Will the code compile?

package fundamentals;
public class SwitchEx2 {
public static void main(String args[])
{
System.out.println("***Discussions on Switch ***");
int myNumber=6;
switch(myNumber)

27

CHAPTER 1 * TEST YOUR SKILL IN LANGUAGE FUNDAMENTALS

{

case 1: case 5:
System.out.println("One or Five");
break;
default: System.out.println("Default");
break;
case 2: case 6:case §:
System.out.println("Two or Six or Eight");
break;

Output:

<terminated> SwitchbBx2 (1) [Java Application] C:\Program Files\Java\jdk1.8.0_45\bin\javaw.exe (Nov 27, 2016, 12:17:26 AM)
***Discussions on Switch ***
Two or Six or Eight

Explanation:
Multiple case labels are possible like this in a switch statement.

Will the code compile?
package fundamentals;

public class SwitchEx3 {
public static void main(String args[])

{
System.out.println("***Discussions on Switch ***");
char myChoice="e';
switch (myChoice)
case 'b':
System.out.println("b");
break;
default: System.out.println("Default");
break;
case 'a':
System.out.println("a");
break;
}
}

28

CHAPTER 1 * TEST YOUR SKILL IN LANGUAGE FUNDAMENTALS

Output:

<terminated> Switchbx3 (1) [Java Application] C:\Program Files\Java\jdk1.8.0_45\bin\javaw.exe (Nov 27, 2016, 12:18:04 AM)
***Discussions on Switch ***
Default

Explanation:

It is not necessary that in the switch statement’s expression, we need to put integers only. Other built
in data types like byte, short, char and enums also supported here. Java 7 or above starts supporting String
objects also inside those expression.

What will be the output?
package fundamentals;

public class SwitchEx4 {
public static void main(String args[])

{
System.out.println("***Discussions on Switch ***");
boolean value=true;
switch (value) //compile error
{
case true:
System.out.println("true");
break;
case false:
System.out.println("false");
break;
default: System.out.println("Default");
break;
}
}
}
Output:

Compilation error.

Description
4 © Errors (1 item)
@ Cannot switch on a value of type boolean. Only convertible int values, strings or enum variables are permitted

29

CHAPTER 1 * TEST YOUR SKILL IN LANGUAGE FUNDAMENTALS

Explanation:
Booleans are not supported for switch.

When should we prefer switch over if-else?

There is no universal rule. It depends on the situation or demand of your program. But we must
remember the fact that if-else can test conditions or range of values where switch works on an integer, enum
or String object.

Name the different type of iteration statements in Java.

while loop

e do...whileloop

o forloop

e for-each loop(From J2SE5)

Why we need these statements?
To create loops. Or simply to execute our code up to some specified number of times repeatedly.

What is the key difference between a while loop and a do...while loop?

In case of do...while, the condition is checked at the end of the loop. So, even the condition is false, do...
while loop executes at least once.

Consider the program below. Note that, we are checking whether the value of j is less than 10 or not in
the while part. Even we're able to print the statement in do{..}.

package fundamentals;
public class DolWhileEx

{
public static void main(String args[])
{
System.out.println("***do...while Demo***");
int j=10;
do
{
System.out.println("j is now " + j);
J++s
} while (j < 10);
}
}
Output:

<terminated> doWhileEx [Java Application] C:\Program Files\Java\jdkl.8.0_45\bin\javaw.exe (Nov 27, 2016, 12:18:48 AM)
do...while Demo
j is now 10

30

CHAPTER 1 * TEST YOUR SKILL IN LANGUAGE FUNDAMENTALS

What will be the output?
package fundamentals;

public class WhileDemo2

{
public static void main(String args[])
{
System.out.println("***while Demo-2***");
int x=10;
while(x)
{
System.out.println("I am inside the loop");
}
}
}
Output:

Compilation error.

Description . Resource Path Location Type
4 @ Errors (1 item)
£ Type mismatch: cannot convert from int to boolean ~ WhileDemo2 java fJavaClassNotes/ja... line9 Java Problem
Explanation:

In Java, boolean and int are not compatible. In the above case, we need to use a boolean variable inside
the while loop.

SET 9

Predict the output.
package fundamentals;

public class FundamentalEx21 {

public static void main(String args[])

{
System.out.println("***Fundamentals Review Example -21%**");
System.out.println("***String vs StringBuffer***");
String stri="Hello";
stri.concat("World");
System.out.println(str1);//Hello

StringBuffer str2=new StringBuffer("Hello");

str2.append("World");
System.out.println(str2);//HelloWorld

31

CHAPTER 1 * TEST YOUR SKILL IN LANGUAGE FUNDAMENTALS

Output:

<terminated> FundamentalEx21 [Java Application] C:\Program Files\Java\jdk1.8.0_45\bin\javaw.exe (Nov 27, 2016, 12:21:15 AM)
***Fundamentals Review Example -21%**

%*String vs StringBuffer*

Hello

HelloWorld

Explanation:

String is immutable i.e. cannot be modified but StringBuffer is mutable. For the String object, when you
are concatenating “World’) actually a new object is created inside memory. But for StringBuffer, the value of
the object modified. To see it properly, you can do a simple test-check the hash codes of them. So, we have
included some additional lines of code to the previous program to analyze the output once again. Now you
can see that for the String object, we are getting different hash codes but for the StringBuffer object, we are
getting the same hash code.

package fundamentals;

public class FundamentalEx21 {

public static void main(String args[])

{
System.out.println("***Fundamentals Review Example -21%¥*");
System.out.println("***String vs StringBuffer***");
String stri="Hello";
stri.concat("World");
System.out.println(str1);//Hello
System.out.println(stri.hashCode());
System.out.println(stri.concat("World").hashCode());
StringBuffer str2=new StringBuffer("Hello");
str2.append("World");
System.out.println(str2);//HelloWorld
System.out.println(str2.hashCode());
System.out.println(str2.append("World").hashCode());

32

CHAPTER 1 * TEST YOUR SKILL IN LANGUAGE FUNDAMENTALS

Output:

<terminated> FundamentalEx21 [Java Application] C:\Program Files\Java\jdk1.8.0_45\bin\javaw.exe (Nov 27, 2016, 12:19:41 AM)
***Fundamentals Review Example -21%*%*

***String vs StringBuffer®**
Hello

69609650

439329280

HelloWorld

1704856573

1704856573

What is the fundamental difference between StringBuffer and StringBuilder ?

StringBuffer is synchronized i.e. in a multithreaded environment it is much preferred than StringBuilder

because StringBuilder is not synchronized.

On the other hand, Java Oracle documentation recommends that if speed is the primary concern and

synchronization is not important then StringBuilder is preferred over StringBuffer.

What is the difference between applets and applications?

The easiest distinction is application contains main() method and requires JRE. Whereas in an applet
you'll not see main(). An applet needs a browser (e.g. Chrome). An applet should be executed in a secured

environment whereas an application does not need so much of security compared to an applet. In this book,

we have focused only on applications.

33

CHAPTER 2

Class

Object Oriented Programming (OOP) is based on the following two concepts.
Class:
A class is a blueprint or a template. It will describe about the behaviors of its objects.
Object:

An object is an instance of a class.

With a class, we are creating a new datatype and objects are used to hold the data (fields) and methods.
Object behavior can be exposed through these methods.

Suppose, we say, Sachin is a cricketer. If we have some idea about cricket, we can predict that either
Sachin plays as a batsman or as a bowler or as a wicketkeeper (or as an all-rounder). Here Cricketer is a
class and Sachin can be considered as an object of that class.

Now come back to our Cricketer class again. Let us say, Sourav is a cricketer. Like the same manner, we
can predict Sourav is a batsman or a bowler or a wicketkeeper. Now we can see both Sachin and Sourav are
objects of Cricketer class but they have individual identity. Obviously Sourav and Sachin show their skills in
the game differently even though they are participating in the same game.

Consider a different domain. We can consider our pet dog or cat as an object of an Animal class.

Basically all real world objects have two basic characteristics- state and behavior. If you notice the
objects- Sachin or Sourav, you can notice that they can also have states-“playing state” or “non-playing state”.
In playing state, they can show different behaviors-they can bat, they can bowl, they can do fielding etc.

Similarly in non-playing state, they can take meals or they can sleep or they can do some other activities
like reading a book, watching a movie etc. Similarly your table lamp can be either in “on” state or in “off”
state and it shows different behavior ~-when you “Switch on the light” or “Turn Off the light”.

So, to start with the OOPS programming it is always suggested that you ask yourself these two questions

e What states are possible for your objects?
e What are the functions (behaviors) it can perform?

Once you identify the answers for these questions, you are ready to program because software objects
also follow the same pattern- their states are stored in fields/variables and their capabilities/behaviors are
represented through functions/methods.

Now come to the programming. Suppose our class name is MyClass.

Class MyClass {}

© Vaskaran Sarcar 2016 35
V. Sarcar, Interactive Object Oriented Programming in Java, DOI 10.1007/978-1-4842-2544-8_2

CHAPTER 2 ' CLASS

Then we can create an object obA of the class MyClass with the following statement:
MyClass obA=new MyClass ();

Actually, the above line can be decomposed of two lines as below:

MyClass obA;//Line-1
obA=new MyClass ();//Line-2

At the end of the first line, obA is a reference. Till this point, there is no memory allocated. But once the
new comes into picture, the memory is allocated.

You must note that in the second line, class name is followed by a parentheses. These are for
constructors. Constructors are used to describe what will happen when an object is created. Constructors
can have different attributes. But if our class does not specifically define a constructor, Java will supply a
default one. In the above example, we have used a default no argument constructor.

A simple class demonstration

A class can have variables and methods. The variables defined in a class are called instance variables
because each instance of a class will hold their own copy of these variables. On the other hand, methods
will contain the actual codes. Instance variables, in general, accessed by these methods (or acted on these
methods). These variables and methods are collectively termed as class members.

Now go through a simple example. Here our class name is ClassA. It has only one field-i which is
of type int. Here the value of i already has the value 5 associated with it. So, we can predict that if we
create an object for this class, the object of that class will have an integer named i and the value of i in
it will be 5.

For your ready reference, we have created 2 objects obA and obB for our class ClassA here. We have
tested the values of the variable i inside the objects. You can see that both have the value 5.

Demonstration-1

package classes.examples;

class ClassA

{
int i=5;
}
class ClassEx1
{
public static void main(String args[])
{
System.out.println("*** A Simple class with 2 objects-obA And obB ***");
ClassA obA=new ClassA();
ClassA obB=new ClassA();
System.out.println("obA.i ="+ obA.i);
System.out.println("obB.i ="+ obB.1i);
}
}

36

CHAPTER 2 © CLASS

Output

& Console 53

<terminated> ClassExl [Java Application] C:\Program Files\Java\jrel 8.0_45\bin\javaw.exe (Sep 26, 2015, 9:28:06 AM)

*** A Simple class with 2 objects-obA And obB ***
obA.i =5
obB.i =5

Students ask:

Sir, can you tell me something more on constructors?

Teacher says: Constructors are used to initialize objects. It must have the same name as the class in
which it stays and it does not have any return type.

Basically there are 2 types of constructors- constructors with no argument and constructors with
parameter/s (termed as parameterized constructors). But when constructors with no arguments is created
by Java, it is termed as a default constructor. And if constructors with no argument is created by us, we term
it as no argument constructor.

So, we can say that we do some common initialization for all the variables inside a class through the
constructors when an instance of that class is created.

Students ask:

Sir, constructors do not have any return type. Did you mean to say that their return type is void?
Teacher says: Not at all. Even void is also considered as a return type. We do not have return type for
constructors because implicitly their return type is same as their class type.

Students ask:

Sir, then no argument constructor and default constructor appears same to me. What is the actual
difference between them?

Teacher says: We already mentioned that default constructors are supplied by Java only, if you do not
supply any constructor for your class. Yes, since they also do not have arguments- both may appear to be the
same. But in a no argument constructor, you can add your own body and that’s why it is not default.

In addition to this, all access modifiers like -private, protected, public or default can be used for
developer created no-argument constructor whereas Java provided default constructors have access
modifiers decided based on the class access specifier.

Below is an example of a no-argument constructor:

Demonstration-2

package classes.examples;

class MyClass

{
protected MyClass()

{

System.out.println("I am a no argument constructor");

37

CHAPTER 2 ' CLASS

System.out.println("I Can have additional logic");

}
}
public class ExperimentWithConstructorEx1
{
public static void main(String args[])
{
System.out.println("*** Experiment with constructors ***");
MyClass myOb=new MyClass();
}
}
Output

*** Experiment with constructors ***
I am a no argument constructor
1 Can have additional logic

So, we can see the messages inside the no-argument constructor are printed in console because Java
knows that we have defined a constructor and so it does not need to supply a default one.

Also default constructors have super () calls only but developer created no-argument constructors can
have both the logic and super calls.

Note You will learn about access specifiers in the chapter of Package and you will learn about super in the
chapter of inheritance. So, you can come back to this question once you have completed those topics.

Students ask:

Sir, we can have method to initialize all these variables. Then why do we need constructors?

Teacher says: In that case also, you need to make an explicit call to your method to initialize all those
variables. It means that your call is not automatic.

On the other hand, automatic initialization happens for constructors when each time we create an object.

Teacher asks:

Can you predict the output?

Quiz
package classes.examples;

class ConsEx2

{
int i;
ConsEx2(int i)
this.i=i;
}
}

38

CHAPTER 2 © CLASS

public class ExperimentWithConstructorEx2 {
public static void main(String args[])

{
}

ConsEx2 ob2=new ConsEx2();

Output

Compilation error.

Description

4 © Errors (1 item)
1 The constructor ConsEx2() is undefined

Explanation
See the Q&A below. We'll also discuss about the keyword “this” shortly.
Students ask:

Sir, Java was supposed to provide a default constructor in this case as we did not provide a no
argument constructor. Then why we have encountered this error?

Teacher says: Java will provide a default constructor if and only if there is no constructor provided by us.
But in this case, We have already defined a constructor which is basically a parameterized constructor. So,
now Java will not supply a default constructor for us. This is why, when we try to create an object through a
default constructor, compiler will not find such a constructor in the program. Hence it will raise the issue.

To remove the compilation error either you provide a no argument constructor or remove the
parameterized constructor or try to use something like

ConsEx2 ob2=new ConsEx2(5);

Students ask:

Sir, from the above examples it appears to me that class is a custom type-is this understanding correct?
Teacher says: Yes.

Students ask:

Sir, can you please elaborate the concept of reference?
Teacher says: Yes. When we write ClassA obA=new ClassA(); an instance of ClassA will be born in
memory and it creates a reference to that instance and stores the result inside the variable obA.

Students ask:

Sir, then reference is basically used to point an address. Is the understanding correct?
Teacher says: Yes.

Students ask:

Sir, then references are pointers. Is the understanding correct?

Teacher says: We must remember Java does not support pointers. It may appear that references are
special kind of pointers. But we must note the key difference: with a pointer, we can point any address
(which is actually a number slot in a memory). So, it is quite possible that with a pointer, we can point an

39

CHAPTER 2 ' CLASS

invalid address also and then we may face surprises issues during runtime. But reference types will always
point to valid addresses or they will point to null.

Students ask:

Sir, how can we check whether my reference variable is pointing to null or not?
Teacher says: This simple check can serve your purpose.

if(obA==null)

{
System.out.println("obA is null");
}
else
{
System.out.println("obA is NOT null");
}

Students ask:

Sir, Can multiple variables reference a same object in memory?
Teacher says: Yes. Following declaration is perfectly fine:

ClassA obA=new ClassA();
ClassA obB=obA;

Demonstration-3

In this example we will provide our own constructor here. We can see that we can now initialize objects
with different values. obA has initialized integer i with the value 20 and obB has initialized the integer i
with the value 30.

package classes.examples;

class ClassA3

{
int i;
ClassA3(int i)
{
this.i=i;
}
}
class ClassEx3
{
public static void main(String args[])
{
System.out.println("*** A Simple class with 2 objects-obA And obB ***");
System.out.println("*** obA.i And obB.i are different here ***");
ClassA3 obA=new ClassA3(20);
ClassA3 obB=new ClassA3(30);
System.out.println("obA.i ="+ obA.i);
System.out.println("obB.i ="+ obB.1i);
}
}

40

CHAPTER 2 © CLASS

Output

*** A Simple class with 2 objects-obA And obB ***
*** obA.i And obB.i are different here ***

obA.i =20

cbB.i =30

Students ask:

Sir, what is the use of this here?

Teacher says: Good question. this is used to refer the current object. We can omit the use of this if we
write the code like this:

class ClassA

{
int i;//instance variable
ClassA(int myInt)//myInt-local variable
i=myInt;
}
}

We are familiar with the code like this: a=5; here we are assigning 5 into a. But can we write 5=a;? No.

Here myInt is our local variable (seen inside methods, blocks or constructors) and i is our instance
variable (declared inside a class but outside a method, block or constructor).

So, instead of myInt,if we use i, we need to tell compiler about our intention.

class ClassA

{
int i;//instance variable
ClassA(int i)//i-local variable
{
this.i=i; //instance variable is assigned with the value of local variable
}
}

It should not be confused about “which value is assigned where”. Here we are assigning the value of the
local variable to the instance variable and compiler should clearly understand our intention. With this.
i=1; compiler will clearly understand the value of the local variable 1 is assigned to instance variable i.

We can also explain the scenario from another point of view. For the time being, suppose, you, by mistake have
written i=1 in the above scenario. Then what will happen? Then compiler will see that you are dealing with

2 local variables only and these two are same, so ultimately there is no effect at all. So, now if you create an
object say obA for ClassA and try to see the value of obA. i, you will get 0 (default value of an integer) , So, your
instance variable cannot get the intended value. Our Eclipse IDE also raise an warning in this case like this:

.t The assignment to variable i has no effect

41

CHAPTER 2 ' CLASS

Note When we have a local variable which has a same name as an instance variable, the local variable
hides the instance variable- this scenario sometimes referred as “Instance variable hiding”.

Demonstration-4

Here we have used two constructors. Go through the program. Notice that we can initialize an object with a
default value here. If the default constructor is used during the creational process of an object, the instance
variable i will be initialized with 7. We can also supply different values through the non-default constructor.

package classes.examples;

class ClassA4

{
int i;
ClassA4()
{
this.i=7;
}
ClassA4(int 1)
{
this.i=i;
}
}
class ClassEx4
{
public static void main(String args[])
{
System.out.println("*** A Simple class with 2 objects-obA And obB ***");
System.out.println("*** Different type of constructors are used here ***");
ClassA4 obA=new ClassA4();
ClassA4 obB=new ClassA4(25);
System.out.println("obA.i ="+ obA.i);
System.out.println("obB.i ="+ obB.1i);
}
}
Output

*** A Simple class with 2 objects-obA And obB ***
*** pifferent type of constructors are used here ***
obA.i =7

obB.i =25

42

CHAPTER 2 © CLASS

Note that inside the no-argument constructor, we could use the keyword this differently to achieve the
same result. Here we call it as this constructorThe use is shown here:

ClassA()
{
//this.i=7;
//Also valid
this(7);
}

Oracle Java documentation clearly states that if present, the invocation of another constructor must
be the first line in the constructor i.e.in other words, if present, this() should be the first statement inside
that block.

Now suppose we are breaking the declaration ClassA obA=new ClassA(); into two parts as below:

Class obA;//line-1
ObA=new ClassA();//line-2

Can you tell me : how much memory will be allocated for line-1?

Answer: Already we mentioned at the beginning that no memory will be allocated till this point. obA will
point to NULL. Memory will be allocated only after the keyword new comes into picture.

Demonstration-5

We mentioned that a class can have both variables and methods. So, now we are going to create a class with
a method which will return an integer. This method is used to accept 2 integer inputs and in turn, it will
return the sum of those integers.

package classes.examples;

class Demo5s

{
int sum(int x, int y)
{
return x+y;
}
}
public class ClassEx5
{
public static void main(String args[])
{
System.out.println("*** A Simple class with a method returning an integer ***");
Demo5 ob=new Demo5();
int result=ob.sum(10,20);
System.out.println("Sum of 10 and 20 is : "+ result);
}
}

43

CHAPTER 2 ' CLASS

Output
<terminated> ClassDemod [Java Application] C:\Program Files\Java\jdkl.8.0_45\bin\javaw.exe (Aug 23, 2016, 8:29:45 PM)

% A Simple class with a method returning an integer *
Sum of 10 and 20 is : 30

Students ask:

Sir, can we pass variable number of arguments inside a method?
Teacher says: yes. You can. Java supports this concept. Go through the below program:

Quiz

package classes.examples;

class A
{
int sum;
int sumOfNumbers(int...values)
{
int length=values.length;
for(int i=0;i<=length;i++)
{
sum=sum+i;
}
return sum;
}

public class VarArgskx {
public static void main(String args[])

{
System.out.print("***Test on a method with variable arguments***\n\n ");
System.out.println("1+2+3 = "+ new A().sumOfNumbers(1,2,3));
System.out.println("1+2+3+4+5 ="+ new A().sumOfNumbers(1,2,3,4,5));
}
}
Output

<terminated> VarArgsEx [Java Application] C:\Program Files\Java\jdkl.8.0_45\bin\javaw.exe (Aug 23, 2016, 8:34:14 PM)
Test on a method with variable arguments

142+3=6
14243 +4+5 =15

Notice that we haven’t created any new variable to represent the objects of the class. To reduce the code
size directly we have used the format: new className().methodName(parameter1, parameter 2 etc).
Likewise in the previous example of ClassEx5, you could directly use:
System.out.println("Sum of 10 and 20 is : "+ new ClassEx5().sum(10, 20));
44

CHAPTER 2 © CLASS

Demonstration-6

Students ask:

Sir, what should be the expected output for this program?

package classes.examples;

class A6
{
int i;
A6()
{
this.i=7;
}
}
class ClassEx6
{
public static void main(String args[])
{
System.out.println("*** Simple class: quizes ***");
A6 ob1;
obi=new A6();
System.out.println(ob1);
}
}
Output

<terminated> AbstractClassEx [Java Application] C:\Program Files\Java\jdkl.8.0_45\bin\javaw.exe (Aug 20, 2016, 12:53:33 PM)
i“” Simple class: quizes ***
ljavaclassnotes.programs. simpleclasses. A@659e0bfd

Explanation

Teacher says: To understand the above output, we can introduce 2 additional lines inside main() in the
above program as below:

public static void main(String args[])

{
System.out.println("*** Simple class: quizes ***");
A6 ob1;
obil=new A6();
System.out.println(obi.getClass().getName());
System.out.println(Integer.toHexString(System.identityHashCode(ob1)));
System.out.println(ob1);

}

45

CHAPTER 2 ' CLASS

And you will receive output like this:

<terminated> AbstractClassEx [Java Application] C:\Program Files\Java\jdkl.8.0_45\bin\javaw.exe (Sep 2, 2016, 8:04:05 PM)
x Simple class: quizes ***

javaclassnotes.programs.simpleclasses A

659e0bfd

javaclassnotes.programs.simpleclasses. A(@659e0bfd

So now you can understand the rule: if we simply use System.out.println(Any object reference),
we are expected to get output like:

OurObject.getClass().getName() + '@' + Integer.toHexString(hashCode())

Students ask:

Sir, in the above example we have not defined any method called getClass().Then how could we
call this method via an object of class A6?

Teacher says: Class Object is top of class hierarchy. It is the superclass for all other class by default. And
in the Object class, that method is defined. You'll understand the concept of superclass when we’ll cover the
topic on inheritance.

Students ask:

Sir, here we see that codes are always bundled inside objects. What are the benefits with this type of
design in real world scenarios?

Teacher says: Actually there are many advantages. Think from a real world scenario, e.g., your laptop
or your printer. If any parts of your laptop starts malfunctioning or your print cartridge runs out of ink, you
can simply replace those parts, you do not need to replace the entire laptop or entire printer. Same concept
applies for other real world objects also.

Secondly, you can reuse the similar parts in similar model of a laptop or a printer.

Apart from this, you must agree that we do not care how these functionalities are actually implemented
in those parts. If they are working fine and serve our needs we are happy.

In object oriented programming, objects play the same role-they can be reused and they can be plugged
in. At the same time, they are hiding the implementation details e.g. in the Demonstration 5 example, we
can see when we invoke ob. sum(10,20), we know we’ll get the result of the sum of 2 integers-10 and 20. But
outside user is totally unware how the calculation is happening inside the method. So, we can provide a level
of security by hiding these information from outside world.

Lastly from another coding point of view: assume the following scenario. Suppose, you need to store an
employee information through your program. If we start coding like this:

String empName= "empiName";
String deptName= "Comp.Sc.";
int empSalary= "10000";
Then for a 2nd employee, we have to write something like this:
String empName2= "emp2Name";

String deptName2= "Electrical";
int empSalary2= "20000";

46

CHAPTER 2 © CLASS

and so on. Now, can we really continue like this? Answer is no. To make it simple, it is always a better idea to
make an Employee class and process like this:

Employee empl, emp2;

It is much cleaner, readable and obviously a better approach.
Students ask:

Sir, so far we have talked about constructors but not destructors. Why?

Teacher says: Some other language e.g C++ releases dynamically allocated resources explicitly (by
calling delete operator).But Java gives us a facility. It introduced the concept of garbage collection technique.
They occur periodically to do their job and reclaim the memory. In general, different Java runtime have their
own approaches to garbage collection and they give the relief to users by taking the headache of reclaiming
memory.

Students ask:

Sir, how do GCs work?
Teacher says: Simple answer is they will search for references. If there is no reference to an object exist,
they assume that the object is no longer needed and so we can reclaim the memory occupied by that object.

Students ask:

Sir, then there is no memory leak in Java. Is this understanding correct?

Teacher says: No. In some cases, your object can hold some other non-java resources (e.g. file handles
etc.). And if you do not free them explicitly then you can encounter memory leak over the period of time.
So, it is suggested that you use the finalize() method in those scenarios and put your intended operations
inside your finalize() method.

But we must remember that finalize() will be called just prior to garbage collection. And we do not
know when it will come into picture or whether GC will be called within a certain period of time (because
we do not know when GC will be called).So, experienced developers always suggest that it is better to put
our own efforts/mechanisms to release system resources etc. (once the job is done) which can be held by an
object.

Consider the below example with output and then go through the analysis:

Demonstration-7

package classes.examples;
class ConsEx3

{
int i,
ConsEx3(int i)
{
this.i=i;
}
protected void finalize()
{
System.out.println("Freeing all resources");
System.out.println("ConsEx2 object is null already");
}
}

47

CHAPTER 2 ' CLASS

public class ExperimentWithConstructorEx3 {
public static void main(String args[])

{
System.out.println("***Experimenting with GC***");
ConsEx3 ob2=new ConsEx3(5);
ob2=null;
//System.runFinalization();
System.gc();
}
}
Output
“‘Experimmtling with GC*** -
Freeing all resources
ConsEx2 object is null already
Analysis

e Note the last 3 lines inside main().We have made the object reference null and make
it prepare for garbage collection.

e Then we send a request to GC to invoke its operation. But we must remember it is a
request from our side. Garbage collector can obey this command or not. In this case
(by seeing the output), it appeared to us that it accepted our request.

e Wecan use System.runFinalization() also to execute the finalize() method. But
again, it’s a request and you are not sure whether the command will be obeyed or
not.

e Tomake a difference in the output, you can try to comment out the line as below:

//0ob2=null;

And upon execution the program, we may notice that finalize() is not called yet.

Experimenting with GC

Students ask:

Sir, how can we represent structures in Java?

Teacher says: Java doesn’t support structures. Java developers believe that we can replace a structure or
a union with a class declaration with appropriate instance variable/s declaration.

Since we can change the visibility with different access specifiers e.g. private, public etc. So, we have the
freedom to hide our implementation details differently from different objects.

48

CHAPTER 2 © CLASS

Assignment

1.

Create a class Vehicle. The class should have two fields-no_of_seats and no_of_
wheels. Create two objects-Motorcycle and Car for this class. Your output should
show the descriptions for Car and Motorcycle.

Create a class with a method. The method has to decide whether a given year is a
leap year or not.

[Note- A year is a leap year if:

a. Ithasan extra dayi.e. 366 instead of 365.

b. Itis divisible by 4 year e.g. 2008, 2012 are leap years. The exception to this is
the next rule.

c. For every 100 years a special rule applies-1900 is not a leap year but 2000
is a leap year. In those cases, we need to check whether it is divisible by
400 or not.]

Create a class with two functions-one recursive and one non recursive. Either of
these function should be capable of calculating the factorial of a number.

49

CHAPTER 3

Inheritance

The main objective of inheritance is to promote reusability and eliminate redundancy (of code). Here a child
class obtains the features of its parent class. By parent class we mean the class which is at the higher level in
the class hierarchy compared to another class (which is termed as a child class).

Types of inheritance:

In general, we deal with 4 types of inheritance.

¢ Single inheritance: One child class is derived from one base class.

Parent

Y

Child

Figure 3-1. Single inheritance

The format of code is like this:

class Parent

{

//your code...

}
class Child extends Parent

{

//your code...

}

© Vaskaran Sarcar 2016 51

V. Sarcar, Interactive Object Oriented Programming in Java, DOI 10.1007/978-1-4842-2544-8_3

CHAPTER 3 ' INHERITANCE

e Hierarchical inheritance: Multiple child class can be derived from one base class.

Parent

Child1l Child2

Figure 3-2. Hierarchical inheritance

The format of code is like this:

class Parent

{

//your code...

}

class Child1 extends Parent

{

//your code...

}

class Child2 extends Parent

{

//your code...

}

52

CHAPTER 3 " INHERITANCE

e Multilevel inheritance: Here the parent class has the grandchild.

Parent

Child

GrandChild

Figure 3-3. Multilevel inheritance

Teacher asks:
Now try to implement the concept with Java code.
Solution:

The format of code is like this:

class Parent

{//your code...

ilass Child extends Parent
{//your code...

ilass GrandChild extends Child
i//your code...

53

CHAPTER 3 ' INHERITANCE

e Multiple inheritance: Here a child can derive from multiple Parents.

Parent1 Parent2

Child

Figure 3-4. Multiple inheritance

Note that Java does not support this type of inheritance (through class).i.e.in Java, a child class cannot

derive from more than one parent class. To deal with this type of situation we need to understand interfaces.

Note There is another type of inheritance which is termed as hybrid inheritance. This is a combination of

one or more types of the above inheritance/s.

A simple program on Inheritance:

Demonstration-1

54

package inheritance.examples;

class ParentClass

{
public void show()

{

System.out.println("I am in Parent Class");

}

class ChildClass extends ParentClass

{
}

class InheritanceExi

{

public static void main(String args[])

{
ChildClass childi=new ChildClass();
//Calling show() through ChildClass object
child1.show();
}

CHAPTER 3 " INHERITANCE
Output
& Conscle 22

<terminated> Examplel [Java Application] C:\Program Files\Java\jrel .8.0_45\bin\javaw.exe (Nov 4, 2015, 1:06:56 PN

[i am in Parent Class

Note Remember that in Java, Object (in java.lang package) is the superclass for all classes. Because all
other classes directly or indirectly is an inheritor of that class.

Students ask:

Why Java does not support multiple inheritance through class?

The main reason is to avoid ambiguity. They can cause some confusion in some typical scenarios
like this:

Suppose, in our parent class, we have a method named show(). The parent class has multiple children-
say child1 and child 2 who are overriding the method differently for their own purpose. The code may look
like this:

class Parent

{
public void show()
{
System.out.println ("I am in Parent");
}
class Child1l extends Parent
{
public void show()
{
System.out.println ("I am in Child-1");
}
class Child2 extends Parent
{
public void show()
{
System.out.println ("I am in Child-2");
}
}

55

CHAPTER 3 ' INHERITANCE

Now say our GrandChild derives from both Child1 and Child2 but it has not overridden the method show().

} Parent ‘
)

Child-1 Child-2

~
/

GrandcChild ‘

So, now we have an ambiguity-from which class, GrandChild will inherit/call show()- Child1 or Child2.
In order to remove this type of ambiguity Java does not support multiple inheritance through class. This
problem is known with a famous name- the Diamond problem.

Students ask:

So, there is no programming language that supports multiple inheritance- is this understanding
correct?

No. It depends on the designers of the programming language e.g. C++ supports the concept of multiple
inheritance.

Students ask:

Why C++ designers support multiple inheritance? The same diamond problem can appear to
them also.

I'm trying to explain from my point of view. Probably they did not want to discard the case of multiple
inheritance (i.e. they wanted the feature to be included to make the language rich). They supplied
developers the support but leaves the control of proper use of the concept to them only.

On the other hand, Java designers wanted to avoid any unwanted situation in future due to this kind of
support, they wanted to make the language simple and less error prone.

Teacher asks:

Can we have hybrid inheritance in Java?

Interesting question. Think carefully. Hybrid inheritance can be a combination of two or more type
of the above inheritance/s. So, the answer to this question is yes till the point where we are not trying to
combine any multiple inheritance through class. And if our intention is to make such a hybrid inheritance in
which we need to have any kind of multiple inheritance (through class), Java will not support that concept.

Teacher asks:

Suppose we have a parent class and a child class. Can we guess in which order constructors of the
classes will be called?

We must remember that constructor’s calls follows the path from parent class to child class. Let’s test
this with a simple example: here we have a Parent, child and grandchild class. Child derives from Parent,
GrandChild derives from Child. Now when we create an object of GrandChild class, notice the output-we
can easily see that constructors are called in the order of their derivation.

56

CHAPTER 3 " INHERITANCE

Demonstration-2

package inheritance.examples;

class Parent

{
Parent()
{
System.out.println("Inside Parent Constructor");
}
class Child extends Parent
{
Child()
{
System.out.println("Inside Child Constructor");
}
}
class GrandChild extends Child
{
GrandChild()
{
System.out.println("Inside GrandChild Constructor");
}
}
public class TestConstructorCallingSequence
{
public static void main(String args[])
{
System.out.println("***Inheritance Example***");
System.out.println("***Testing constructor calling sequence***");
GrandChild grandChild=new GrandChild();
}
}
Output

Inheritance Example

Testing constructor calling sequence
Inside Parent Constructor

Inside Child Constructor

Inside GrandChild Constructor

Students ask:

Sir, sometimes I am confused-which class should be the parent class and which should be a child
class in an inheritance hierarchy. Is there any specific guideline to resolve this conflict?

Teacher says: You can try to remember a simple statement-A cricketer is a Player but the reverse is not
true. This “IS-A” test can help you to decide who should be the Parent e.g. here Player is the parent class
and Cricketer is the child class.

We make this “IS-A” test to get some idea in advance whether they can have similar behavior or not and
whether we should put them in an inheritance hierarchy or not.

57

CHAPTER 3 ' INHERITANCE

Demonstration-3
A special keyword: super

In Java, we have a special keyword-super. It is used to access the members of the parent class (super class) in
an efficient way. Whenever a child class wants to refer its immediate parent, it should use this keyword.
We can examine the use of super with this simple example.

package inheritance.examples;

class A2
{
int a;
int b;
A2(int a,int b)
{
System.out.println("I am in Parent constructor");
this.a=a;
this.b=b;
}
void parentMethod()
{
System.out.println("I am a Parent method");
}
}
class B2 extends A2
{
int c;
B2(int a, int b,int c)
{
super(a,b);
System.out.println("I am in Child constructor");
this.c=c;
}
void childMethod()
{
System.out.println("I am a Child method");
System.out.println("I am calling the Parent method");
super.parentMethod();
}
}
class TestingSuperEx1
{
public static void main(String args[])
{
System.out.println("*** The use of super keyword Demo***");
B2 obB2=new B2(1,2,3);
System.out.println("a in ObB2="+ obB2.a);
System.out.println("b in ObB2="+ obB2.b);
System.out.println("c in ObB2="+ obB2.c);
obB2.childMethod();
}

CHAPTER 3 " INHERITANCE
Output

E) Console 52

<terminated> Test2 [Java Application] C:\Program Files\Java\jrel.8.0_45\bin\javaw.exe (Dec 16, 2015, 9:12:17 PM)
*** The use of super keyword Demo***

I am in Parent constructor

I am in Child constructor

a in ObB2=1

b in ObB2=2

c in ObB2=3

I am a Child method

I am calling the Parent method

I am a Parent method

We'll examine another use of super with the following example. Here we'll see that even if the instance
variable of the parent class becomes hidden by the child class’s instance variable, super can allow us to
access the instance variable in the super class.

Demonstration-4

package inheritance.examples;

class A3
{
int a;
A3()
{
a=25;//some default value
}
}
class B3 extends A3
{
int a;//this will hide a in A3
B3()
{
super.a=12;//for a in parent class
a=50;//for a in B(child class)
}

void display()
{

System.out.println("a in parent class="+ super.a);
System.out.println("a in child class="+ a);

}
}
class TestingSuperEx2
{

public static void main(String args[])
59

CHAPTER 3 ' INHERITANCE

{
System.out.println("***The use of super Demo-2***");
B3 obB3=new B3();
obB3.display();
}
}
Output
E) Console 52

<terminated> Test3 [Java Application] C:\Program Files\Java\jrel .8.0_45\bin\javaw.exe (Dec 16, 2015, 9:36:40 PM)
(***The use of super Demo-2***

|a in parent class=12

a in child class=50

Students ask:

Can we use super keyword to call methods that are hidden by a subclass?
Yes.

Students ask:

It appears to me that a subclass can use its superclass methods. But is there any way by which a
superclass can use its child class methods?

Teacher says: No. First of all, you must remember that superclass is completed before its subclass, so it
has no idea about its subclass methods-it only announces something (you can think about some contract/
methods) that can be used by its childs. It is only giving without any expectation to get return from its
children.

Also ifyou notice carefully, you will find that “IS-A” test is one-way e.g. A Cricketer is a Player always
but the reverse is not true. So, there is no concept of backward inheritance.

Students ask:

Sir, it appears to me whenever I want to use a super class method but want to add something more
into it, we can make use of a super call and then put our additional stuff. Is the understanding correct?

Teacher says: Yes. But at the same time, you must have noticed the difference from a constructor call
and from a method call. For a constructor call, super statement must be the first statement, otherwise you'll
get an error like this:

@ Constructor call must be the first statement in a constructor

But for a method call, we are seeing that Eclipse is allowing us to put some additional staff before the
super call here. But it is always suggested to use super at the beginning.

Java documents states like this: Invocation of a superclass constructor must be the first line in the subclass
constructor. If a constructor does not explicitly invoke a superclass constructor, the Java compiler automatically
inserts a call to the no-argument constructor of the superclass. If the super class does not have a no-argument
constructor, you will get a compile-time error.

60

CHAPTER 3 " INHERITANCE

It also ensures us that Object class has such a constructor. A child class constructor always invokes its
parent class constructor explicitly or implicitly and the calling chain runs the way back to the constructor of
Object class. This scenario is also termed as chaining of constructors.

Students ask:

Sir, consider the below program. It is running successfully. But is it not funny that we need to
restructure our code i.e. we need to comment out Line-12 and Line-13 below and we need to use Line-15
whereas basically in both ways, looks like, we are doing the same?

Demonstration-5

package inheritance.examples;

class SuperA {
public SuperA(int x)

System.out.print(x);
}
}
class SuperB extends SuperA
{

public SuperB(int a, int b)

//int ¢ = a + b;//Line-12
//super(c); //error//Line-13
//correct coding

super(a+b); //Line-15

}

public class TestingSuperEx3 {
public static void main(String[] args)

{
}

SuperB sb=new SuperB(10,15);

Teacher says: From the Java documentation, it appears to me that Java developers did not want to break the
constructor chaining. Looks like, they felt that if we are allowed to put statements like this before a super
call, someone may do the misuse- they can perform some invalid operations before the creation of the
parent object itself.

Students ask:

Sir, previously you told us that this() should be the first statement. Now you are telling us super()
should be the first statement. Then what will happen if we have both in the same constructor?

Teacher says: Good question. But you must notice that both are constructor calls. And if we have a
constructor call, it must be the first statement. So, we cannot have both in the same constructor.

Students ask:

Sir, then it is a very restrictive design. Isn’t it?

61

CHAPTER 3 " INHERITANCE

Teacher says: Following program analysis can remove your doubt. So, let’s go through the following
program and output:

Demonstration-6

package inheritance.examples;

class ParentA {

int i;
ParentA()
{
System.out.println("Parent no -argument constructor");
}
}
class ChildA extends ParentA
{
int b;
ChildA()
{
//both this() and super() cannot be used together
//super();
this(2);
System.out.println("Child no -argument constructor");
}
ChildA(int b)
{
this.b=b;
System.out.println("Child constructor . b= " +b);
}
}
public class TestingthisEx1
{
public static void main(String[] args)
{
ChildA obCA=new ChildA();
}
}
Output

<terminated> TestingthisExl [Java Application] C:\Program Files\Java\jdk1.8.0_45\bin\javaw.exe (Oct 8, 2016, 11:46:42 PM)

arent no -argument constructor
Child constructor . b=2
Child no -argument constructor

62

CHAPTER 3 " INHERITANCE

Now enable the super statement and comment out the this() constructor in the above program as below:

ChildA()
{
//both this() and super() cannot be used together
super () ;
//this(2);
System.out.println("Child no -argument constructor");
}

And run the program again. We'll see the following output:

<terminated> Testingthis [Java Application] C:\Program Files\Java\jdkl.8.0_45\bin\javaw.exe (Sep 19, 2016, 9:31:59 PM)
Parent no -argument constructor
Child no -argument constructor

So, have you noticed an interesting scenario?

It does not matter whether you make an explicit call to the parent class constructor through super() or
not, Parent class constructor is always called. So, we can assume that if Java developers allowed us to put
super () and this() in the same constructor, ultimately we’'ll end up with multiple super calls in the calls of
constructor chaining which is obviously not a good design.

Students ask:

Sir, in OOP, inheritance is helping us to reuse the behavior. Is there any other way to achieve the same?

Teacher says: Yes. Though the concept of inheritance is used in most of the places but it will not provide
the best solution always. To understand it better, you need to understand the concept of design patterns and
our earlier release Java Design Patterns, Apress 2016 can help you a lot to develop those tricks.

Students ask:

Sir, it appears to me if any one already made a method for his application, we should always reuse the
same method through the concept of inheritance to avoid the duplicate effort. Is the understanding correct?

Teacher says: Not at all. You cannot generalize like that. It depends on the behavior of your application.
Suppose, someone has made a method show() to print something for his Car class. Now if you want to reuse
the method for your AnimalFactory class, you'll write something like:

Class AnimalFactory extends Car{...}

Is it a good design? You must agree that there is no relationship between these two classes and we
should not relate them in the same inheritance hierarchy.
Students ask:

Can we inherit a constructor?
No.

Assignment

1. Write a simple program to implement hierarchical inheritance.

2. Write a simple program to implement multilevel inheritance.

63

CHAPTER 4

Overloading

Teacher asks:

Consider the below program segments. Do you notice any specific pattern?

int sum(int x,int y)

{
return x+y;
}
double sum(double x,double y)
{
return x+y;
}
String sum(String si1,String s2)
{
return si.concat(s2);
}
Students respond:

Yes sir. We are seeing all of the methods have the same name sum but from their method bodies it
appears that each method is doing different things.

Teacher says: yes. You are correct. When we do this kind of coding, we term it as method overloading.
But you should notice that though method names are same but method signatures are different here.

Students ask:

What is a method signature?

Ideally method name with number and types of the parameters consist the method signature. Java
compiler can distinguish among methods with same name but different parameter list e.g. for Java compiler,
double sum(double x, double y) isdifferent from int sum(int x, int y).

Consider the below program. Here we represent method overloading with the following example:

Demonstration-1

package overloading.examples;

class Addition

{
int sum(int x,int y)
{
return x+y;
}
© Vaskaran Sarcar 2016 65

V. Sarcar, Interactive Object Oriented Programming in Java, DOI 10.1007/978-1-4842-2544-8_4

CHAPTER 4 © OVERLOADING

double sum(double x,double y)

{
return x+y;
}
String sum(String s1,String s2)
{
return si.concat(s2);
}
}
public class OverloadingEx
{
public static void main(String args[])
{
System.out.println("***Method Overloading Demo***");
Addition additionOb=new Addition();
int sumOfIntergers=additionOb.sum(10,20);
System.out.println("Sum of 10 and 20 is :"+sumOfIntergers);
double sumOfDoubles=additionOb.sum(10.5,20.7);
System.out.println("Sum of 10.5 and 20.7 is :"+sumOfDoubles);
String sumOfStrings=additionOb.sum("Amit","Kumar");
System.out.println("Concatenation of Amit and Kumar is :"+sumOfStrings);
}
}
Output
& Console 2

<terminated> OverloadingEx [Java Application] C:\Program Files\Java\jrel 8.0_45\bin\javaw.exe (Nov 25, 2015, 3:48:52 PM)
[***Method Overloading Demo*** '
|Sum of 10 and 20 is :30

Sum of 10.5 and 20.7 is :31.2

Concatenation of Amit and Kumar is :AmitKumar

Teacher asks:

Is it an example of method overloading?
int sum(int x,int y)

return x+y;

}

int sum(int x,int y,int z)

return x+y+z;

}

Answer: Yes.

66

CHAPTER 4 © OVERLOADING

Teacher asks:

Is it an example of method overloading?
int sum(int x,int y)

return x+y;

}
double sum(int x,int y)
{
return x+y;
}

Answer: No. Compiler will not consider return type to differentiate these methods. Return type is not
considered as a part of method signature.

Students ask:

Sir, can we have constructor overloading?
Definitely. You can write a similar program for constructor overloading.

Demonstration-2

package overloading.examples;

class A1
{
A1()
{
System.out.println("Constructor with no argument");
}
A1(int a)
System.out.println("Constructor with one integer argument");
}
A1(int a,double b)
{
System.out.println("Constructor with one integer argument and one double argument");
}
}
class Test1
{
public static void main(String args[])
{
System.out.println("***Constructor Overloading Demo***");
A1 obi=new A1();
A1l ob2=new A1(2);
A1 ob3=new A1(2,3.7);
}

67

CHAPTER 4 " OVERLOADING
Output

&) Console 32

<terminated> Testl [Java Application] C:\Program Files\Java\jrel .8.0_45\bin\javaw.exe (Dec 16, 2015, 8:12:51 PM)
Constructor Overloading Demo

Constructor with no argument

Constructor with one integer argument

Constructor with one integer argument and one double argument

Students ask:

Sir, it appears to me that it is also method overloading. What is the difference between a
constructor and a method?

We already discussed about constructors in the discussion of classes. For your ready reference-a
constructor has the same name as class and also it has no return type. So, you can consider a constructor as
a special kind of method which has the same name as a class and no return type. But there are many other
differences: the main focus of a constructor is to initialize objects. They cannot be called directly.

Students ask:

So Sir, can we write code like this?

Demonstration-3

class A1
{
//I1t is a constructor. It has no return type.
A1()
{
System.out.println("Constructor with no argument");
}
//It is a method. It has return types.
void A1()
{
System.out.println("I am a method");
}

Sure. Now, the following lines inside main function

A1 obi=new A1();
ob1.A1(5);

can create output like this:

68

CHAPTER 4 © OVERLOADING

Output

&) Console 2
<terminated> Testl [Java Application] C:\Program Files\Java\jrel.8.0_45\bin\javaw.exe (Dec 16, 2015, 8:28:28 PM)

Constructor with no argument
I am a method

Students ask:

Sir, can we overload the main() method?
Teacher says: Yes. Let us go through the following program.

Demonstration-4

package overloading.examples;

public class OverloadingMainTest

{ public static void main(String args[])
{ System.out.println("***Method Overloading Demo***");
System.out.println("From void main(String arg[])");
gublic static void main()
{ System.out.println("From void main()");
public static void main(String arg)
{ System.out.println("Hello " + arg);
} }
Output
Method Overloading Demo
From void main(String arg[])
Analysis

We must notice that JVM will always consider the main(String args[]) ormain(String[] args) asthe
entry point. It does not matter how many other overloaded form of main method you are using.

Students ask:

Sir, then how can we call the other forms of main()?
69

CHAPTER 4 © OVERLOADING

Teacher says: Just like we do in other scenarios i.e. we can call them from our traditional main method
(the main method with String arguments).
In this case, we can add the following two statements (highlighted) in our traditional main() method:

public static void main(String args[])

{
System.out.println("***Method Overloading Demo***");
System.out.println("From void main(String arg[])");
main();
main("Vaskaran");

}

Now, when we run this application, we'll receive the following output:

<terminated> OverloadingMainTest [Java Application] C:\Program Files\Java\jdkl 8.0_45\bin\javaw.exe (Sep 17, 2016, 8:11:32 PM)
Method Overloading Demo

From void main(String arg[])

From void mam()

Hello Vaskaran

Teacher asks:

Can you predict the output?
Quiz
package overloading.examples;

public class OverloadingMainTest2

{
public static void main(String args[])
{
System.out.println("***Method Overloading Demo***");
System.out.println("From void main(String arg[])");
}
//Compiler error now
public static void main(String... args)
{
System.out.println("From String... args)");
}
}

This time we will see the compiler error. Now JVM cannot distinguish which one is the entry point.

Output
Description - Resource Path
& @ Errors (2 items)
. Duplicate method main(String...) in type OverloadingMainTest OverloadingMainTes... /JavaClassNotes/ja...
.3 Duplicate method main(String(]) in type OverloadingMainTest OwverloadingMainTes... /lavaClassMotes/ja...

70

CHAPTER 5

Overriding

Sometimes we want to redefine or modify the behavior of our parent class. Method overriding comes into
picture in such a scenario. Consider the below program. Note that, here showMe () method has the same
signature in both the parent class and its child class.

Demonstration-1

package overriding.examples;
class ParentClass

{
public void showMe()
{
System.out.println("I am in Parent class");
}
class ChildClass extends ParentClass
{
public void showMe()
{
System.out.println("I am in Child class");
}
}
class OverridingEx
{
public static void main(String args[])
{
System.out.println("***Method Overriding Demo***");
ChildClass childOb=new ChildClass();
childob. showMe();
}
}
© Vaskaran Sarcar 2016 71

V. Sarcar, Interactive Object Oriented Programming in Java, DOI 10.1007/978-1-4842-2544-8_5

CHAPTER 5 " OVERRIDING

Output

<terminated> OverridingEx (1) [Java Application] C:\Program Files\Java\jdk1.8.0_45\bin\javaw.exe (Oct 10, 2016, 9:05:56 AM)
Method Overriding Demo
I am in Child class

Analysis
In the above program we are seeing that:

¢ A method named showMe () with same signature and return type is defined in both
the ParentClass and the ChildClass.

e Asthe name suggests, ChildClass is basically derived class whose parent is
ParentClass.

e Inthemain() method, we created a child class object childOb. And when we invoke
the method showMe () through this object, it is calling the showMe () version defined
in ChildClass i.e. the parent method version is overridden. Hence the scenario is
termed as method overriding.

Note There is concept called covariant return type in Java. We’ll discuss about this later. Since it is a
relatively advanced concept, it is suggested that you understand the original concepts first.

Students ask:

Sir, in method overloading, return types didn’t matter. But here it matters. Is the understanding
correct?

Teacher says: Yes. Here child class method’s return type must be the same (or subclass type-which we’ll
discuss later) as the parent class method'’s return type (or in simple word, both type must be compatible).

Students ask:

Sir, then will following program receive compilation error?

Demonstration-2

package overriding.examples;

class ParentClass

{
public void showMe()
{
System.out.println("I am in Parent class");
}
}

72

CHAPTER 5 " OVERRIDING

class ChildClass extends ParentClass

{
//Error
public int showMe()
{
System.out.println("I am in Child class");
return 5;
}
}

Teacher says: Yes. Here child class method’s return type is int and parent class method’s return type is
void. So, inside ChildClass, compiler may try to treat it as overloading and then it will find that only return
types are different, so it cannot treat is as overloading alsoThen it will give up and raise the compilation error:.

Output

Description
4 © Errors (1 item)
£ The return type is incompatible with ParentClass.showMe()

So, to overcome this, you can do this simple change and redefine the method inside ChildClass as below:
public int showMe(int i)

System.out.println("I am in Child class");
return i;

}

Now you can use both the methods -from parent and child classes. But note that, now you are using
overloading but not overriding.

So, below program is a perfect example where both the concept of method overloading and method
overriding are combined together.

Demonstration-3

package overriding.examples;

class ParentClassDemo

{
public void showMe()
{
System.out.println("I am in Parent class");
}
}
class ChildClassDemo extends ParentClassDemo
{

//Here it is method overriding
public void showMe()
{

}

System.out.println("I am in Child class");

73

CHAPTER 5 " OVERRIDING

//Error-method type is not compatible

/*public int showMe()

{
System.out.println("I am in Child class");
return 5;

¥/

//0k-treating as method overloading

public int showMe(int 1)

{
System.out.println("I am also in Child class");
return i;
}
}
class OverridingEx2
{
public static void main(String args[])
{
System.out.println("***Method Overriding with method overloading Demo***");
ChildClassDemo childOb=new ChildClassDemo();
childOb.showMe();
System.out.println(childOb.showMe(5));//5
}
}
Output

<terminated> OverridingEx2 (1) [Java Application] C:\Program Files\Java\jdk1.8.0_45\bin\javaw.exe (Oct 10, 2016, 9:09:39 AM)
Method Overriding with method overloading Demo

I am in Child class

I am also in Child class

5

Dynamic Method Dispatch

This is an extremely important concept in Java. Java can implement runtime polymorphism through this
technique. This technique is considered to implement runtime polymorphism because the call to an
overridden method is resolved dynamically at runtime. Java will call the appropriate method based on the
object which we are referring.

74

CHAPTER 5

Demonstration-4

package overriding.examples;

class MyParentClass

{
public void showMe()
{
System.out.println("I am in Parent class");
}
class MyChildClass extends MyParentClass
{
public void showMe()
{
System.out.println("I am in Child class");
}
}
class DynamicMethodDispatchEx
{
public static void main(String args[])
{
System.out.println("***Dynamic Method Dispatch Demo***");
MyParentClass parent=new MyParentClass();
parent.showMe();
MyChildClass childOb=new MyChildClass();
/*Parent class reference to a child object*/
parent=childOb;
parent.showMe();
}
}
Output

OVERRIDING

<terminated> DynamicMethodDispatchEx (1) [Java Application] C:\Program Files\Java\jdk1.8.0_45\bin\javaw.exe (Oct 10, 2016, 9:12:09 AM)

Dynamic Method Dispatch Demo
1 am in Parent class
I am in Child class

75

CHAPTER 5 " OVERRIDING

Points to remember

Through a parent class reference, we can refer a child class object but the reverse is not applicable.
So,

MyParentClass parent=new MyChildClass(); // is ok but
MyChildClass child=new MyParentClass(); // will raise error.

Students ask:

Sir, you are saying “The parent class reference can point to a child object but the reverse is not
true”- why we support this kind of design?

Teacher says: We must agree about these facts:

All cricketers are players but the reverse is not true. (Because there are many players who play football,
golf, basketball, hockey etc.)

Similarly we can say that all buses are vehicles but the reverse is not true because there are other
vehicles like trains, ships which are not definitely buses.

Like the same manner, in programming terminology, all derived classes are of type base classes but the
reverse is not true e.g suppose we have class called Rectangle and it is derived from an another class called
Shape. Then we can say that all Rectangles are Shapes but the reverse is not true.

And you must remember that we already mentioned that we need to do an “IS-A” test for an inheritance
hierarchy and an “IS-A” is always one-way e.g. there is no concept of backward inheritance.

Teacher asks:

Now there may be some situation where we want a restriction: A method in the parent should not
be overridden by its child. How can we achieve that?

In many interviews, you can face this question. We must remember that we can prevent overriding by
the use of static, private or final keywords. But here we have discussed about the use of final only. It is
very much helpful because compiler itself will prevent the process of overriding.

Use of “final” keyword

class ParentClass

{
//Use of final to prevent overriding
final public void showMe()
{
System.out.println("I am in Parent class");
}
}
class ChildClass extends ParentClass
{
//Cannot override now: It is not allowed
public void showMe()
{
System.out.println("I am in Child class");
}
}

So, with the above code, compiler will raise the error.
To understand it better go through the following program. Here we have compared between a final
method and a non-final method.

76

CHAPTER 5 " OVERRIDING

Demonstration-5

package overriding.examples;

class MyParentClassi

{
final public void aFinalMethod()
{
System.out.println("In Parent class-a Final method");
}
public void aNonFinalMethod()
{
System.out.println("In Parent class-Non final method");
}
class MyChildClass1 extends MyParentClassi
{
//Cannot override now
public void aFinalMethod()
{
System.out.println("I am in Child class-aFinalMethod");
}
//1t is ok
public void aNonFinalMethod()
{
System.out.println("I am in Child class-a Non Final Method");
}
}
class PreventOverridingEx
{
public static void main(String args[])
{
System.out.println("***Prevent Method Overriding by use of final - Demo***");
MyChildClass1 childOb=new MyChildClassi();
childOb.aNonFinalMethod();
childOb.aFinalMethod();
}
}
Output

Compilation error.

Description Resource Path Location
4 @ Errors (1 item)
£ Cannot override the final method from MyParentClassl PreventOverridingEx.... /JavaClassNotes/ja... line16

7

CHAPTER 5 " OVERRIDING

If you comment out the following block inside the child class as below:

/*//Cannot override now
public void aFinalMethod()

{

¥/

System.out.println("I am in Child class-aFinalMethod");

and then try to execute you program, your program will be compiled successfully and upon run, it will
generate the following output:

<terminated> PreventOverridingEx [Java Application] C:\Program Files\Java\jdkl.8.0_45\bin\javaw.exe (Sep 17, 2016, 10:48:58 AM)
Prevent Method Overriding by use of final - Demo

Iam i Child class-a Non Final Method

In Parent class-a Final method

Note We also remember that if a class have only private constructors, it cannot be sub classed.This
concept can be used to make a Singleton design pattern where we prevent unnecessary objects creation in the
system with the use of new keyword.

Quiz
Teacher asks:

Can you predict the output? Is there any compilation error?
package overriding.examples;

//Is it an example of overriding?
class Class1

{
final public void aFinalMethod()
{
System.out.println("I am in Class-1");
}
}
class Class2
{
final public void aFinalMethod()
{
System.out.println("I am in Classs-2");
}
}

78

CHAPTER 5 " OVERRIDING

public class OverridingTest

{
public static void main(String args[])
{
System.out.println("***Is it an example of overriding?***");
Class2 obClass2=new Class2();
obClass2.aFinalMethod();
}
}
Output

The program will compile and run successfully.

<terminated> OverridingTest [Java Application] C:\Program Files\Java\jdk1.8.0_45\bin\javaw.exe (Sep 17, 2016, 11:22:07 AM)
]s it an example of overriding?
I am i Classs-2

We encountered no issue with final this time because the concept of overriding appears between a
superclass and a child class. Since Class2 is not a child class of Class1, it can define its final method with the
same method name in Class1.

Students ask:

Sir, so far you have used the keyword final to methods. Can we apply it to variables also?

Teacher says: Yes. We can apply it to variables as well as class itself. Its nature is same .Consider the
below cases:

Case #1: Making an instance variable final

class FinalDemo

{
}

Or,
Case #2: Making the whole class final

final double PI=3.14;

final class FinalDemo

{

final double PI=3.14;//instance variable is final
//Additional code

79

CHAPTER 5 " OVERRIDING

But we must remember that if we make the class final, then we cannot extend it. So, following codes will
raise compile time error:

Demonstration-6

final class FinalDemo

{
}

//Exrror if class is final
class ChildFinalDemo extends FinalDemo

{
}

final double PI=3.14;//instance variable is final

Output

Compilation error: The type ChildFinalDemo cannot subclass the final class FinalDemo.

Description

4 © Errors (1 item)
&3 The type ChildFinalDemo cannot subclass the final class FinalDemo

Students ask:

Sir, we are seeing that each time you are initializing final variables. Is it mandatory?

Teacher says: Yes. Otherwise you have to initialize final variables inside the constructors. And when we
do that kind of initialization (for those uninitialized final variables), we use the term blank final variables.
Consider the below code for better understanding:

class FinalDemo2

{

//Must be initialized inside a constructor
final double PI;

double area;

//final double PI=3.14;

FinalDemo2()

{
PI=3.14;

}

If we do not initialize the final variable inside the constructor, we’ll receive the compilation error:

-

Description

4 @ Errors (1 item)
@ The blank final field PI may not have been initialized

80

CHAPTER 5 " OVERRIDING

Students ask:

Sir, if we have multiple constructors, do we need to initialize the final variables in each of them?
Teacher says: Yes. Otherwise, you can call another constructor who can do that initialization for you.
Following program can help you to understand the trick:

Demonstration-7

package overriding.examples;
class FinalDemo2

{
//Must be initialized inside a constructor
final double PI;
double area;
FinalDemo2()
{
PI=3.14;
}
FinalDemo2(int radius)
{
//Calling no-argument constructor to initialize the final variable
this();
this.area=this.PI*radius*radius;
}
}
class Testingfinal
{
public static void main(String args[])
{
System.out.println("*** Testing the behavior of final ***");
FinalDemo2 fd=new FinalDemo2(5);
System.out.println("Area of a circle with radious 5 unit is ="+ fd.area+ "
Sq. Unit");
}
}
Output

<terminated> Testingfinal [Java Application] C:\Program Files\Java\jdkl.8.0_45\bin\javaw.exe (Sep 20, 2016, 8:23:01 PM)
*** Testing the behavior of final ***
Area of a circle with radious 5 unit is =78.5 Sq. Unit

81

CHAPTER 5 " OVERRIDING

Analysis
If you comment out the line
//this();

In the above program, you'll see the same error again:

@ The blank final field PI may not have been initialized

Students ask:

Can we have constructor overriding in Java?
Teacher says: No.

Students ask:

Sir, why final variables need to be initialized?

Teacher says: Just think, they are acting like constants throughout your program. If you do not initialize
them at the beginning, others cannot supply/modify them in future. By declaring final, you are preventing
the change in some later phase.

Students ask:

Sir, suppose I want to use a variable that will be accessible from every places but the value in it
cannot be changed. How we can achieve that?

Teacher says: Basically you are trying to bring the concept of global variable which is not supported in
Java. But for your case, you can declare a variable like this:

public static final double PI=3.14;
You'll know more about static later in the book.
Teacher asks:

Can you predict the output?

Quiz
package overriding.examples;
class MyClassEx3

{
final MyClassEx3()
{
System.out.println("I am a no argument constructor");
}
}
class ExperimentWithConstructorEx3
{
public static void main(String args[])
{
System.out.println("*** Experiment with constructors ***");
System.out.println("***Question: Can construcors be final? *¥*");
MyClassEx3 myOb=new MyClassEx3();
}
}

82

CHAPTER 5 " OVERRIDING

Output

Compilation error.

p

Description
1 lllegal modifier for the constructor in type MyClassbBx3; only public, protected & private are permitted

Students ask:

Sir, why we are encountering errors when we try to use final keywords with constructors?
Teacher says: Think from a general point of view: The keyword final is used to prevent overriding but
constructors cannot be overridden at all as per the language specification.

Students ask:

Sir, can we override the main() method?
Teacher says: No. It is because static methods cannot be overridden. We'll see the detailed discussions
and complete implementations of static methods later in the chapter of “Use of static keyword”

Students ask:

Sir, can we make the main() method final?
Teacher says: In Eclipse neon, we tried the following program and found no compile time or runtime
error. But I do not seeing any significant benefit by making this change to our conventional main().

Demonstration-8

package overriding.examples;

class HelloWorld

{
public static final void main(String args[])
{
System.out.println("Hello World---Making main() method final...");
}
}
Output

<terminated> HelloWorld (1) [Java Application] C:\Program Files\Java\jdk1.8.0_45\bin\javaw.exe (Sep 21, 2016, 9:44:15 PM)
Hello World---Making main() method final...

Students ask:

Sir, can we override an overloaded method?
Teacher says: Sure. Consider the below program and corresponding output.

83

CHAPTER 5 " OVERRIDING

Demonstration-9

package overriding.examples;

class ParentOverloadedClass

{
public void showMe()
{
System.out.println("I am in Parent class");
}
public void showMe(int x)
{
System.out.println("Overloaded method in Parent. x is " +x);
}
}
class ChildOverridedClass extends ParentOverloadedClass
{
public void showMe()
{
System.out.println("I am in Child class");
}
}
class OverloadingWithOverridingEx
{
public static void main(String args[])
{
System.out.println("***Method Overriding with overloading Demo***");
ChildOverridedClass childOb=new ChildOverridedClass();
childOb. showMe();
childOb.showMe(25);
}
}
Output

<terminated> OverloadingWithOverridingEx [Java Application) C:\Program Files\Java\jdk1.8.0_45\bin\javaw.exe (Sep 21, 2016, 9:54:07 PM)

Method Overriding with overloading Demo
1 am in Child class
Overloaded method in Parent. x is 25

Students ask:

Sir, give us some pointer, so that we can easily distinguish between method overloading and
method overriding.

84

Teacher says: Following points can help you to brush up your knowledge:

CHAPTER 5

¢ Inmethod overloading -all methods may reside inside the same class (you must note
the word may here-because we have already implemented an example before where
both method overloading and method overriding are implemented and the concept
of method overloading spans in 2 classes-a parent and its child).In method overriding-
inheritance hierarchy of a parent class and a child class is involved, means that at least a

parent class and its child class(i.e. minimum 2 classes) are involved in case of overriding.

e Method overloading-signatures are different. In method overriding-method
signatures are same (No need to consider covariant return type at this point).

e We can achieve compile time (static) polymorphism through method overloading
but we can achieve runtime (dynamic) polymorphism through method overriding.

Covariant return type

OVERRIDING

Note You are suggested to come back this topic once you complete other fundamental topics first to avoid

confusions.

Teacher continues:
Consider the below program and output carefully:

Demonstration-10

//Primary Version
package overriding.examples;

class ParentCov
{
int i,
int getMultipliedNumber(int x)
System.out.println("Inside Parent");

this.i=x;
return (int) (i*1.75);

}
class ChildCov extends ParentCov
{
int getMultipliedNumber(int x)
//error:Return type is incompatible
//double getMultipliedNumber(int x)
{
System.out.println("Inside Child");
this.i=x;
return i*50;
}
}

85

CHAPTER 5 " OVERRIDING

public class CovarianceEx {
public static void main(String args[])

{System.out.println("***Datatype :primitive(int)***\n");
ParentCov pOb=new ParentCov();
int resulti=pOb.getMultipliedNumber(10);
System.out.println("Multiplied result="+result1);

pOb=new ChildCov();
resulti=pOb.getMultipliedNumber(10);
System.out.println("Multiplied result="+result1);

Output

<terminated> Covariancex [Java Application] C:\Program Files\Java\jdkl.8.0_45\bin\javaw.exe (Sep 21, 2016, 4:54:12 PM)
Datatype -primitive(int)

Inside Parent
Multiplied result=17
Inside Child
Multiplied result=500

Analysis

You must notice that 2 lines are commented in this section:

int getMultipliedNumber(int x)
//error:Return type is incompatible
//double getMultipliedNumber(int x)

If you change the return type int with double like this:

// int getMultipliedNumber(int x)
//error:Return type is incompatible
double getMultipliedNumber(int x)

You'll get the compilation error (the return type is incompatible...):
Description

4 @ Errors (1 item)
£ The return type is incompatible with ParentCov.getMultipliedNumber(int)

Now suppose you are dealing with methods that return class names as their return types. In this case,
you'll not receive the similar kind of error if you vary the return type in the direction of subclass. So, let’s go
through the modified program (to show you the difference between these two, we have kept previous parts
untouched and added new codes to it).

86

CHAPTER 5 " OVERRIDING

Demonstration-11

//Modified Version
package overriding.examples;

class ParentCov

{
int i;
int getMultipliedNumber(int x)
System.out.println("Inside Parent");
this.i=x;
return (int) (i*1.75);
}
ParentCov getMultipliedNumber(int x,int y)
{
System.out.println("Inside Parent-overloaded version");
this.i=x*y;
return this;
}
}
class ChildCov extends ParentCov
{
int getMultipliedNumber(int x)
//error:Return type is incompatible
//double getMultipliedNumber(int x)
{
System.out.println("Inside Child");
this.i=x;
return i*50;
}
ChildCov getMultipliedNumber(int x,int y)
{
System.out.println("Inside Child- overloaded version");
this.i=x*y*25;
return this;
}
}

public class CovarianceEx {

public static void main(String args[])

{
System.out.println("*** Testing the covariance return type in Java ***");
System.out.println("***Datatype :primitive(int)***\n");
ParentCov pOb=new ParentCov();
int result1=pOb.getMultipliedNumber(10);
System.out.println("Multiplied result="+result1);

pOb=new ChildCov();
resulti=pOb.getMultipliedNumber(10);
System.out.println("Multiplied result="+result1);

87

CHAPTER 5 " OVERRIDING

System.out.println("\n***Testing covariance now.Datatype: non-primitive***\n");

ParentCov pOb2=new ParentCov();
pOb2=p0b2.getMultipliedNumber(10,20);
System.out.println("Multiplied result="+p0Ob2.i);

ParentCov pOb3=new ChildCov();
pOb3=pOb3.getMultipliedNumber(10,20);
System.out.println("Multiplied result="+p0b3.1i);

Output

<terminated> CovarianceEx [Java Application] C:\Program Files\Java\jdk1.8.0_45\bin\javaw.exe (Sep 21, 2016, 5:10:27 PM)
*** Testing the covariance return type in Java ***

Datatype ‘primitive(int)

Inside Parent
Multiplied result=17
Inside Child
Multiplied result=500

Testing covariance now.Datatype: non-primitive

Inside Parent-overloaded version
Multiplied result=200

Inside Child- overloaded version
Multiplied result=5000

Analysis

Notice the return type of the method:
ChildCov getMultipliedNumber(int x,int y)

You can see that this time instead of ParentCov, we have used ChildCov as the return type but the
compiler did not complain about this though it complained for primitive data types.
This technique is known as covariant return type in Java.

Students ask:

Sir, why Java started supporting this concept?

Teacher says: If you notice that subtype also belongs to a subclass of a parent type e.g. go back to our
earlier example: A Cricketer is a Player but the reverse is not true i.e. we can substitute a cricketer as a
player. So, in some real world scenario also, it makes sense that we can use the subtype as a parent type in
appropriate places.

88

CHAPTER 6

Abstract Class

Sometimes we start doing some work with an expectation that our incomplete work will be carried out by
someone else. A real life example can be seen in case of properties purchases and modeling those. It is very
common that many of our grandparents may bought some properties earlier, then our parents made a small
house in that property and ultimately we give the house a larger shape or we redecorate the house. So basic
idea is same: we want someone to continue and complete the incomplete work first. We give them freedom
that upon completion, they can remodel as per their needs. The concepts of abstract class suits best in such
type of scenarios in the programming world.

These are incomplete classes and we cannot instantiate objects from this type of classes. The child of
those classes must complete them first and then they can redefine some of the methods (by overriding).

In general, if a class contains at least one incomplete/abstract method, the class itself is an abstract
class. By the term “abstract method”- we mean that the method has the declaration (or signature) but no
implementation.

The technique is useful when the super class can define a generalized form (that will be shared by its
subclasses) and passes the responsibilities to fill the details to its subclasses.

Here is the implementation:

Demonstration-1
A simple abstract class demo
package abstractclasses.examples;

abstract class MyAbstractClass

{
public abstract void showMe();
}
class MyConcreteClass extends MyAbstractClass
{
@0verride
public void showMe()
{
System.out.println("I am from concrete class:");
System.out.println("I am supplying the method body for showMe()");
}
}
© Vaskaran Sarcar 2016 89

V. Sarcar, Interactive Object Oriented Programming in Java, DOI 10.1007/978-1-4842-2544-8_6

CHAPTER 6 * ABSTRACT CLASS

class AbstractClassExi

{
public static void main(String Args[])
{
System.out.println("***Abstract class Demo***");
//I1legal:Cannot instantiate
//MyAbstractClass abstractOb=new MyAbstractClass();
MyConcreteClass concreteOb=new MyConcreteClass();
concreteOb.showMe();
}
}
Output
& Console 2

<terminated> AbstractClassEx [Java Application] C:\Program Files\Java\jrel.8.0_45\bin\javaw.exe (Nov 29, 2015, 9:48:06 AM)
***Abstract class Demo™**

I am from concrete class:

I am supplying the method body for showie()

An abstract class can contain concrete methods also. The child class may or may not override those methods.
Here is another implementation.

Demonstration-2

package abstractclasses.examples;
abstract class AbstractClass
{

public abstract void showMe();

public void completeMethod1()

{

System.out.println(" Originally,I am from completeMethodl in
MyAbstractClass.But,I am complete.");

}

public void completeMethod2()
{
System.out.println(" Originally,I am from completeMethod2 in
MyAbstractClass.But,I am also complete.");
}
}
class ConcreteClass extends AbstractClass
{
@0verride
public void showMe()

{
90

CHAPTER 6 © ABSTRACT CLASS

System.out.println("I am from concrete class:");
System.out.println("I am supplying the method body for showMe()");

}
//Tt wants to override completeMethod1() in MyAbstractClass

public void completeMethod1()

{
System.out.println("I am overriding completeMethodl of MyAbstractClass.");
}
}
class AbstractClassEx2
{
public static void main(String Args[])
{
System.out.println("***Abstract class Demo2***");
ConcreteClass concreteOb=new ConcreteClass();
concreteOb. showMe();
//1t will show that completeMethodl is redefined in MyConcreteClass.
concreteOb.completeMethod1();
//1t will show the details of completeMethod2 defined in MyAbstractClass.
concreteOb.completeMethod2();
//Following declaration will be fine
AbstractClass abstractRef=new ConcreteClass();
abstractRef.completeMethod1();
}
}
Output
E) Console 52

<terminated> AbstractClassEx2 [Java Application] C:\Program Files\Java\jrel 8.0_45\bin\javaw.exe (Dec 13, 2015, 5:23:54 PM)
*** Abstract class Demo2***
I am from concrete class:
I am supplyng the method body for showMe()
I am overriding completeMethod1 of MyAbstractClass.
Originally.I am from completeMethod2 in MyAbstractClass. ButI am also complete.
1 am overriding completeMethod1 of MyAbstractClass.

Students ask:

Can we implement the concept of dynamic method dispatch here?
Yes. Following declaration will be perfectly fine and it can call CompleteMethod1 of the ConcreteClass.

through the below codes:

AbstractClass abstractRef=new ConcreteClass();
abstractRef.completeMethod1();

Students ask:

Can an abstract class contain fields?
Yes.

91

CHAPTER 6 * ABSTRACT CLASS

Following example will demonstrate how we can use the concept of dynamic method dispatch here.
Also, the program will show that an abstract class contain fields.

Demonstration-3

package abstractclasses.examples;
abstract class AbstractClass3

{
public int myInt=5;
public abstract void showMe();
public void completeMethod1()
{
System.out.println("I am originally from completeMethodl in MyAbstractClass.
But,I am complete.");
}
}
class ConcreteClass3 extends AbstractClass3
{
@0verride
public void showMe()
{
System.out.println("I am from concrete class:");
System.out.println("I am supplying the method body for showMe()");
}
}
class AbstractClassEx3
{
public static void main(String Args[])
{
System.out.println("***Abstract class Demo3***");
AbstractClass3 abstractRef=new ConcreteClass3();
abstractRef.completeMethodi();
System.out.println("myInt in AbstractClass3="+abstractRef.myInt);
}
}
Output

<terminated> AbstractClassEx3 (1) [Java Application] C:\Program Files\Java\jdk1.8.0_45\bin\javaw.exe (Nov 25, 2016, 8:40:57 AM)
*** Abstract class Demo3***

I am originally from completeMethod! in MyAbstractClass. ButI am complete.

myInt in AbstractClass3=5

92

CHAPTER 6 © ABSTRACT CLASS

Students ask:

In the above example, the access modifier is public. Is it mandatory?
Teacher says: Not at all. We can use non-public access modifiers also. Later you'll learn that it is one of
the key differences with interfaces.

Students ask:

Suppose in a class we have 10+ methods and out of that only one is an abstract method. Still we
need to mark the class as abstract?

Teacher says: Yes. If a class contains at least one abstract method, the class itself is abstract. You can
think from a general point of view-an abstract keyword is used in a sense to represent the incompleteness.
So, if your class contains one incomplete method, your class itself is incomplete and hence need to mark by
the keyword abstract.

Note So, the simple formula is: whenever your class has at least an abstract method, your class itself is an
abstract class.

Teacher asks:

Now consider a reverse scenario. Suppose, you have marked your class abstract but there is no
abstract method in it like this:

abstract class AbstractClass

{
public void completeMethod1()
{
System.out.println("A complete method");
}
public void completeMethod2()
{
System.out.println("Another complete method.");
}
}

Can we compile the program?
Teacher says: Yes. Still it will compile but till this point, you cannot create object for this class.

Students ask:

So sir, how can we create objects from an abstract class?
Teacher says: We mentioned already that we cannot create objects from an abstract class.

Students ask:

Sir, it appears to me that an abstract class has virtually no use if it is not extended. Is the understanding
correct?
Yes.

Students ask:

If a class extends an abstract class, it has to implement all the abstract methods.Is the
understanding correct?

93

CHAPTER 6 * ABSTRACT CLASS

Teacher says: It may or may not implement all the abstract methods in the parent class. The simple
formula is that if you want to create objects of a class, the class needs to be completed i.e. it should not
contain any abstract methods. So, if the child class cannot provide implementation (i.e. body) of all the
abstract methods, it should be marked again with the keyword abstract like the below example.

abstract class AbstractClass

{
public abstract void inCompleteMethod1();
public abstract void inCompleteMethod2();
}
abstract class childl extends AbstractClass
{
//Here our child class is implementing only one of the abstract methods.
//So, the class is abstract again.
@0verride
public void inCompleteMethod1()
{
System.out.println("Implementing the inCompleteMethod1()");
}
}
Students ask:

A concrete class is a class which is not abstract-is the understanding correct?
Teacher says: Yes.

Students ask:

Can we tag a method with both abstract and final?
Teacher says: No. Just think, by declaring abstract, you want overriding and by declaring final, you want
to prevent overriding. i.e. you cannot do both at the same time.

Quiz
Teacher asks:
Can you predict the output?

package abstractclasses.examples;

class MyClassEx4

{
//Constructors cannot be final/abstract/static
abstract MyClassEx4()
{
System.out.println("I am a no argument constructor");
}
}
class ExperimentWithConstructorEx4
{

public static void main(String args[])

{

94

CHAPTER 6 © ABSTRACT CLASS

System.out.println("*** Experiment with constructors ***");
System.out.println("***Question:Can construcors be abstract? ***");
MyClassEx4 myOb=new MyClassEx4();

Output

Compilation error.

-

Description

£ lllegal modifier for the constructor in type MyClassExd; only public, protected & private are permitted

Students ask:

Sir, why constructors cannot be abstract?

Teacher says: Think from a general point of view. The keyword abstract with a method is used to mean
that the method will be overriding somewhere in a child class. But constructors cannot be overridden as per
the language specification.

Quiz
Teacher asks:
Can you predict the output?

package abstractclasses.examples;

abstract class MyAbstractClass

{
public abstract void showMe();
}
class MyConcreteClass extends MyAbstractClass
{
@0verride
protected void showMe()
{
System.out.println("I am from concrete class:");
System.out.println("I am supplying the method body for showMe()");
}
}

public class AbstractClassAccessModifierEx {
public static void main(String args[])

{
MyAbstractClass myref=new MyConcreteClass();

myref.showMe();

95

CHAPTER 6 * ABSTRACT CLASS

Output

Description
4 @ Errors (1 item)
.8 Cannot reduce the visibility of the inherited method from MyAbstractClass

Resource Path Location

AbstractClassAccess... /JavaClassNotes/ja... line10

Note We have 2 solutions to remove the problem. Either in the parent class, we use the modifier protected
or in the child class, we can use the modifier public. Just think, if you are implementing dynamic method
dispatch and suddenly at runtime you discover that you do not have enough visibility-Then what will happen?
This will be a definite source of problem then.

Students ask:

Sir, what will happen if we do the reverse (i.e. using protected in parent class and public in child
class in the above scenario)?

Teacher says: In this case, you are basically increasing the visibility, so there can be no issue in runtime like
above. So, compiler will allow you to do this change and you will receive the following output:

<terminated> AbstractClassAccessModifierEx [Java Application] C:\Program Files\Java'jdil 8.0_45\bin\javaw.exe (Sep 24, 2016, 11:47:39 AM)
I am from concrete class:

I am supplying the method body for showMe()

96

CHAPTER 7

Interface

With the interface, we declare what we are going to implement but we are not specifying how we are going
to do that. These are similar to classes but with no instance variables and all of their methods are declared
without a body (i.e. methods are actually abstract).

We can support dynamic method resolution during run time with the help of interfaces. Once defined,
a class can implement any number of interfaces.

Demonstration-1

package interfaces.examples;
interface MyInterface

{
void show();
}
class MyClass implements MyInterface
{
@0verride
public void show()
{
System.out.println("MyClass is implementing the Interface method.");
}
}
public class InterfaceEx1
{
public static void main(String args[])
{
System.out.println("***Interface Example.Demo-1***");
MyClass myClassOb=new MyClass();
myClassOb. show();
}
}
© Vaskaran Sarcar 2016 97

V. Sarcar, Interactive Object Oriented Programming in Java, DOI 10.1007/978-1-4842-2544-8_7

CHAPTER 7 " INTERFACE

Output

<terminated> Interfacebxd (1) [Java Application] C:\Program Files\Java\jdkl.8.0_45\bin\javaw.exe (Oct 10, 2016, 7:36:43 PM)
Interface Example Demo-1
MyClass is implementing the Interface method.

Students ask:

Sir, if the methods are incomplete then a class who is using the interface needs to implement all the
methods in the interfaces. Is the understanding correct?

Teacher says: Exactly. And if the class cannot implement all of them, it will announce its
incompleteness by marking itself abstract. Following example will help you to understand better.

Here is implementation 2:

The interface has two methods. But a class is implementing only one. Then the class itself becomes abstract.

Demonstration-2

package interfaces.examples;

interface MyInterface2

{
void showi();
void show2();
}
abstract class MyClass2 implements MyInterface2
{
@0verride
public void showi()
{
System.out.println("MyClass2 is implementing the showi() method.");
}
}

Note So the formula is: A class needs to implement all the methods defined in the interface. Otherwise,
it will be an abstract class.

Students ask:

Sir, you said earlier that interfaces can help us to implement the concept of multiple inheritance.
Then can our class implement two or more interfaces?

Teacher says: Yes. Following example will show you how to do that.

In Demonstration 3, a class is implementing multiple interfaces.

98

CHAPTER 7 ' INTERFACE

Demonstration-3

package interfaces.examples;
interface MyInterface3A

{
void show3A();
}
interface MyInterface3B
{
void show3B();
}
class MyClass3 implements MyInterface3A,MyInterface3B
{
@0verride
public void show3A()
{
System.out.println("MyClass3 is implementing the show3A() method of Interface3A");
}
@0verride
public void show3B() {
System.out.println("MyClass3 is implementing the show3B() method of Interface3B");
}
}

public class InterfaceEx3 {
public static void main(String args[])

{
System.out.println("***Interface Example.Demo-3***");
MyClass3 myClassOb=new MyClass3();
myClassOb. show3A();
myClassOb. show3B();
}
}
Output
&) Console 2

<terminated> Interfacebx3 [Java Application] C:\Program Files\Java\jrel.8.0_45\bin\javaw.exe (Dec 1, 2015, 12:16:08 PM)
Interface Example. Demo-3

MyClass3 is implementing the show3A() method of Interface3A

MyClass3 is implementing the show3B() method of Interface3B

99

CHAPTER 7 " INTERFACE

Students ask:

In the above program, method names were different in interfaces. But if both of the interfaces
contain the same method name, can we implement them?

Teacher says: Very good question. Yes we can but in that case, the class needs to implement its own
implementation for the same named method:

Demonstration-4

package interfaces.examples;

//Both of the interface have the same method name "show()".
interface MyInterface4A

{ void show();

interface MyInterface4B

{ void show();

ilass MyClass4 implements MyInterface4A,MyInterface4B

{ @verride
public void show()
{ System.out.println("MyClass4 is implementing the show() method ");
}

}

public class InterfaceEx4 {
public static void main(String args[])

{

System.out.println("***Interface Example.Demo-4***");

//A11 the 3 callings are legal.
MyClass4 myClassOb=new MyClass4();
myClassOb. show();

MyInterface4A inter4A=myClassOb;
inter4A.show();

MyInterface4B inter4B=myClassOb;
inter4B.show();

100

Output

&) Console 22

CHAPTER 7

INTERFACE

<terminated> Interfacebxd [Java Application] C:\Program Files\Java\jrel.8.0_45\bin\javaw.exe (Dec 1, 2015, 12:30:39 PM)

Interface Example. Demo-4

MyClass4 is implementing the show() method
MyClass4 is implementing the show() method
MyClass4 is implementing the show() method

Students ask:

Can an interface extend/implement another interface?

Teacher says: It can extend but not implement (see Demonstration 5).

Demonstration-5

package interfaces.examples;

interface Interfaceil

{

void showInterfaceiMethod();
}
interface Interface2
{

void showInterface2Method();
}

//Interface extending another interfaces
interface Interface3 extends Interfacei,Interface2

{
}

class MyClass5 implements Interface3

{

void showInterface3Method();

//Now MyClass5 needs to implement methods from Interfacei,Interface2 and Interface3

@0verride
public void showInterfaceiMethod() {

System.out.println("MyClass5 is implementing the showInterface1i() method ");

}
@0verride
public void showInterface2Method() {

System.out.println("MyClass5 is implementing the showInterface2() method ");

}

101

CHAPTER 7 " INTERFACE

@0verride
public void showInterface3Method() {
System.out.println("MyClass5 is implementing the showInterface3() method ");

}
}

public class InterfaceEx5 {
public static void main(String args[])

{
System.out.println("***Interface Example.Demo-5***");
System.out.println("***Interface can extend interfaces***");
MyClass5 myClassOb=new MyClass5();
myClassOb. showInterfaceiMethod();
myClassOb. showInterface2Method();
myClassOb. showInterface3Method();
}
}
Output
&) Console &2

<terminated> InterfaceEx5 [Java Application] C:\Program Files\Java\jrel.8.0_45\bin\javaw.exe (Dec 1, 2015, 3:45:11 PM)
Interface Example. Demo-5

Interface can extend interfaces

MyClassS5 is implementing the showInterface1() method

MyClassS5 is implementing the showInterface2() method

MyClass5 is implementing the showInterface3() method

Tagging Interface
Teacher asks:

What is a tag/tagging Interface?
Answer: An interface which is empty is termed as a tag/tagging interface.

//tagging interface example
interface ITaggingInterface

{
}

Teacher asks:
Why we need a tagging interface?

L4 We can create a common parent.

102

CHAPTER 7 ' INTERFACE

e Aclass can claim membership in the set e.g. if our class implements the
Serializable interface, it becomes serializable. So, our class actually becomes an
interface type through polymorphism. Even a class that is implementing a tagging
interface, need not define any new method because the interface itself does not have
any such method.

e Later you'll know that we can implement thread safety through marker interfaces.

The concept of annotation is more popular than marker interfaces JDK5 onwards we get the concept of
annotations. We have also used built in annotation @verride in some of our programs.

Basically we can add some metadata information with our source code with this technique.e.g.to mark
a deprecated method we can use @eprecated as below. To show you the visual behavior in Eclipse IDE, we
have taken a snapshot of the program:

package javaclassnotes programs;

interface LAnnotationDemo
{

6 * @deprecated
*Ple

-
ase use our new method myNewMethod() instead of this

2 @Deprecated

public void myOldMethod();

* Thas is our new method

public void myNewMethod();

16 }
17 class AnnotationDemo implements IAnnotationDemo
5 K
@19 public void myOldMethod(){
20 System.out.printin("I am an old method.I am retired”);

Y)
422- public void myNewMethod(){
23 System.out.printin("T am the modified method for myOldMethod(). Use me now enwards.");
24 }
2)
26 public class AnnotationEx! {
W27 public static void main(String args(])
28 {
System.out.println("***Simple use of Annotation in Java***");
AnnotationDemo anOb=new AnnotationDemo();
anOb.myOldMethod();
anOb.myNewMethod();

We can see the warning messages in the above program due to use of the deprecated method. If you can
not see the message, just you check whether the following checkbox is checked for you:

103

CHAPTER 7 " INTERFACE

Deprecated APE
[Signal use of depr

ed APl inside deprecated code

[¥] Signal iding or ting deprecated method

O Preferences e : e =are
| Errors/Warnings ¥, LIS
enersl nfigure Pr iffi in
» Ant
» Code Recommenders Select the severity level for the following optional problems:
» Help type filter text (use ~ to filter on preference values, e.g. ~ignore or ~off)
> Install/Update > Cad
e style -
4 Java
. Appearance Non-static access to static member:
g‘::: ::;—Ihe Indirect access to static member:
4 Compiler Unqualified access to instance field:
Building : =
Errors/Wamnings Access to a non-accessible member of an enclosing type:
Javadoc Parameter assignment: Ignore
Task Tags
= ek Non-extemalized strings (missing/unused SNON-NLSS tag): L
» Editor Undocumented empty block:
i Installed JREs
JUnit Resource not managed via try-with-resource (1.7 or higher):
i T ——
aven
» Mylyn Method can be static:
ObjectAid . "
Ol Method can potentially be static:
Run/Debug » Potential prog ing probl
b Team » Name shadowing and conflicts
Validation ~ Deprecated and restricted APl
-

1

rhidden reference (accrts nile<k: Frrar

[Restore Defautts| | Apply

®® Lo |

Cancel]

Following program is presented for your ready reference and comparison of uses of a simple marker
interface and a marker annotation:

Demonstration-Marker Interface and Annotation

package interfaces.examples;
//Marker interface
interface IMarkerInterfaceDemo{}

//Marker Annotation
@interface IMarkerAnnotation{}

class Annotation2 implements IMarkerInterfaceDemo

{
public void myInterfaceMethod(){

System.out.println("Implementing Marker Interface.");

104

CHAPTER 7 ' INTERFACE

class Annotation3
{
@IMarkerAnnotation public void myInterfaceMethod(){
System.out.println("Implementing Marker Annotation.");
}

}

public class AnnotationEx2 {
public static void main(String args[])

{
System.out.println("***Simple use of Marker Interface and Marker Annotation
in Java®rx");
Annotation2 anOb2=new Annotation2();
Annotation3 anOb3=new Annotation3();
anOb2.myInterfaceMethod();
anOb3.myInterfaceMethod();
}
}
Output

<terminated> AnnotationEx2 (1) [Java Application] C:\Program Files\Java\jdk1.8.0_45\bin\javaw.exe (Oct 10, 2016, 7:45:01 PM)
Simple use of Marker Interface and Marker Annotation in Java

Implementing Marker Interface.

Implementing Marker Annotation.

Note We must note that @0verride, @Deprecated are also examples of marker annotations. The detail
discussions of annotations is out of scope of this book.

Teacher asks:
Can you tell me: What is the difference between an abstract class and an interface?

e An abstract class can have concrete methods in it but an interface cannot have that.
We'll come to this point later. Now in Java 8, we have a keyword called default. We
can use this keyword in an interface to provide some default implementation, see
below in our implementation 6.

e An abstract class can have only one parent class (can extend from another abstract
class or concrete class), an interface can have multiple parent interfaces. An interface
can extend from other interface/s only.

e Members of an interface is by default public. An abstract class can have other flavors
e.g. private, protected etc.

e Variables in an interface is by default static final. An abstract class can have non-final
as well as final variables.

105

CHAPTER 7 " INTERFACE

Students ask:

Sir, then how we decide-whether we should use an abstract class or an interface?

Good question. I believe that if we want to have some centralized or default behavior/s, abstract class
is a better choice .Because here we can provide some default implementation(in case of abstract class). On
the other hand, interface implementation starts from a scratch. They indicate some kind of rules-what to be
done (e.g. you must implement the method) but they will not enforce you how to be done. Also interfaces
are preferred when we are trying to implement the concept of multiple inheritance.

But at the same time we also remember that if we need to add a new method in an interface, then
we need to track down all the implementation/s of that interface and we need to put the concrete
implementation for that method in all those places. An abstract class is ahead here-we can add a new
method in an abstract class with a default implementation and our existing code can run smoothly.

So, now Java has taken special care to this point and Java 8 has introduced the use of default keyword.

In Java 8, we can prefix the word default before our intended method signature and can provide a default
implementation. Interface methods are public by default, so, we do not need to mark it by the keyword public.

The Java documentation also briefly summarizes as below:

We should give preferences to abstract for these scenarios:

e We want our code sharing among multiple closely related classes.

e We expect that classes that extend our abstract class can have many common
methods or fields, or they require non-public access modifiers inside them.

¢ We want to use non-static or/and non-final fields which enables us to define
methods that can access and modify the state of the object to which they belong.

On the other hand, we should give preferences to interfaces for these scenarios:

* You expect that several unrelated classes are going to implement your interface e.g.
Comparable interface can be implemented by many unrelated classes.

e We want to specify the behavior of a particular data type, but not concerned about
the implementer.

e We want to use the concept of multiple inheritance of type in the application.
Students ask:

Sir, can you show us an example of the usage of default keyword inside an interface?
Teacher says: Consider the below example (Demonstration 6)

Demonstration-6

package interfaces.examples;
interface MyDefaultInterface

{
void show();
default void defaultMethod()
{
System.out.println("It is a default implementation in the interface");
}
}

106

CHAPTER 7 ' INTERFACE

class MyClass6 implements MyDefaultInterface

{

@verride

public void show()

{

System.out.println("MyClass is implementing the Interface method.");

}

}
public class UseOfDefaultEx
{

public static void main(String args[])

{

System.out.println("***Interface Example.Demo-6***");
System.out.println("***Use of default***");
MyDefaultInterface interfaceOb=new MyClass6();
interfaceOb.show();
interfaceOb.defaultMethod();

}

}
Output
E) Console 32

<terminated> UseOfDefaultEx [Java Application] C:\Program Files\Java\jrel 8.0_45\bin\javaw.exe (Dec 11, 2015, 11:41:00 AM)
Interface Example. Demo-6

Use of default

MyClass is implementing the Interface method.

It is a default implementation in the interface

Now we can see that MyClass6 has implemented only show() method but still the program can run
without a compilation error.

Students ask:

Sir, can we override the default method in an interface?
Teacher says: Yes. We can do that.

Consider the below example (Demonstration 7) and corresponding output. Here we have added a
method inside MyClass7 to override the default method in the interface MyDefaultInterface2.

107

CHAPTER 7 " INTERFACE

Demonstration-7

package interfaces.examples;

interface MyDefaultInterface2

{
void show();
default void defaultMethod()
{
System.out.println("It is a default implementation in the interface");
}
}
class MyClass7 implements MyDefaultInterface2
{
@0verride
public void show()
{
System.out.println("MyClass is implementing the Interface method.");
}
@0verride
public void defaultMethod()
{
System.out.println("MyClass is overriding the default Interface method.");
}
}
public class UseOfDefaultEx2
{
public static void main(String args[])
{
System.out.println("***Interface Example.Demo-7***");
System.out.println("***Use of default.Ex-2***");
MyDefaultInterface2 interfaceOb=new MyClass7();
interfaceOb.show();
interfaceOb.defaultMethod();
}
}
Output

Interface Example Demo-7

Use of default

MyClass is implementing the Interface method.
MyClass is overriding the default Interface method.

108

CHAPTER 7 ' INTERFACE

Students ask:

Sir, with the use of default, are we not going back to the diamond problem with multiple inheritance?

Teacher says: No. Here is the trick. Java puts a restriction that if a class is implementing from 2 (or
more) interfaces where each interface has its own default implementation with same method name, the
class needs to implement its own implementation for the same named method, otherwise we'll receive a
compilation error.

Consider the below example (implementation 8). Each of the interfaces has a default method namely
myDefaultMethod(). Now MyClass8 is implementing both of them. So, to avoid the conflict, it must provide
its own implementation for myDefaultMethod(), otherwise we’ll receive following compilation error:

4 @ Emors (1 item)
0 Duplicate default methods named myDefaultMethod with the parameters () and () are inherited frem the types MyDefaultinterfaced and MyDefaultinterface3

Demonstration-8

package interfaces.examples;

interface MyDefaultInterface3

{
void show();
default void myDefaultMethod()
{
System.out.println("Default implementation for interface3");
}
}
interface MyDefaultInterface4
{
void show();
default void myDefaultMethod()
{
System.out.println("Default implementation for interface4");
}
}
class MyClass8 implements MyDefaultInterface3,MyDefaultInterface4
{
@0verride
public void show()
{
System.out.println("MyClass is implementing the Interface method.");
@0verride
public void myDefaultMethod()
System.out.println("MyClass8 needs to implement this method");
}
}

109

CHAPTER 7 " INTERFACE

public class UseOfDefaultEx3

{
public static void main(String args[])
{
System.out.println("***Interface Example.Demo-8***");
System.out.println("***Use of default.Ex-3***");
MyDefaultInterface3 interfaceOb3=new MyClass8();
interfaceOb3.show();
interfaceOb3.myDefaultMethod();
}
}
Output
<terminated> UseOfDefaultEx3 (1) [Java Application] C:\Program Files\Java\jdk1.8.0_45\bin\javaw.exe (Oct 10, 2016, 7:51:42 PM)
Interface Example Demo-8
Use of default. Ex-3

MyClass is implementing the Interface method.
MyClass8 needs to implement this method

Students ask:

Sir, looks like the defaults methods in the interfaces are not used at all in the above program. Is
there any way to call those methods?

Teacher says: Definitely. You can modify the myDefaultMethod() for MyClass8 as below to call those
interfaces method

@0verride

public void myDefaultMethod()

{
System.out.println("MyClass8 needs to implement this method");
//Calling default method of MyDefaultInterface3
MyDefaultInterface3.super.myDefaultMethod();
//Calling default method of MyDefaultInterface4
MyDefaultInterface4.super.myDefaultMethod();

}

Now you'll get output like this:

Interface Example. Demo-7
Use of default. Ex-3
MyClass is implementing the Interface method.
MyClass8 needsto implement this method
Default implementation for interface3
Default implementation for interface4

110

CHAPTER 7 ' INTERFACE

Students ask:

Sir, can we make the interface final?

Teacher says: If you make the interface final, then who will implement the incomplete methods of that
interface? We must remember that before Java 8, static methods (we'll discuss later about them) were not
supported in interfaces. So, basically, there was no point to make an interface final.

For the below declaration, Eclipse IDE also raises the error:

Demonstration-9
final interface MyInterface
{
}

void show();

Output

Description

4 © Errors (1 item)
1 lllegal modifier for the interface Mylnterface; only public & abstract are permitted

Students ask:

Sir, can we use the keyword abstract before the interface method?
Teacher says: Actually there is no need to do that. Because by default, they are abstract. But compiler
will not raise any issue here.

interface MyInterface

{
//void show();
//no need to mention abstract
abstract void show();

}

Students ask:

Sir, can we use constants inside interfaces?
Teacher says: Yes. They are by default public, static and final. So, we can omit these modifiers.

Assignment

You have two classes- A and B. Class A contains an abstract method showA() You also have an interface called
Inter. In Inter, you have a method showInter (). Now write a simple program where B will implement the
methods defined in A and Inter.

111

CHAPTER 8

Package

Consider a simple scenario. Can you use the same class name twice in a Java file? No. Compiler will raise the
issue and it will point towards this naming collision. So we need to choose unique naming conventions each
time whenever we are going to define a class. But we must remember that in real world programming, class
name should be meaningful enough and so there is a possibility that two different programmer in a project
are going to choose the same name for their class. Then how we can deal with those situations? Package will
rescue us in those scenarios.

We can bundle our classes/interfaces etc. inside our own packages. Packages help us to avoid naming
conflicts and/or to control the visibility. We can control the visibility inside a package in such a way that our
particular class may or may not be exposed to outside world (both inside and outside packages).

Packages are reflected as directories. Creating a package in Eclipse is quite easy. We do not even think
about how Java runtime is going to find the proper packages or classes inside it. Otherwise, we need to put
special attention to the CLASSPATH environment variable.

We must remember about the following points:

e package statement should be on top of our source file. If we do not explicitly
define this statement, then all the classes/interfaces etc. will be in the current
default package.

e When one class refers another class inside the same package, package statement
need not to be included. Otherwise we need to use fully qualified class name like
packagename.classname or we need to use import statement.

e Whole package can be imported like:

import packagename.*;
Or, if we want to import only a particular class from a package, use:

import packagename.classname;

e The name of the package must follow the directory structure.

© Vaskaran Sarcar 2016 113
V. Sarcar, Interactive Object Oriented Programming in Java, DOI 10.1007/978-1-4842-2544-8_8

CHAPTER 8 " PACKAGE

Here is an example on how to create a package in Eclipse IDE:

1. Click File menu » New » Package

114

Vindow Help

New AReShifteN» (22 Jave Project

Open File... 9 Project.

Close CuleW @ Package

Close Al Cu-ShifteW @ Class

Seve Cutes | & Intmface
& SweAs. Sl bent

Save Al Cuteshipes | € Aanotation

P @ Source Folder

(45 Java Working Set

Move.., ld m
’ Renarme... R | o Fle
&) Refresh F5 % Untitied Text File

Convert Line Delimiters To ’I.} JUntt Test Caze
& Print. Crtep | T Task

Switch Workspace » [Eample

S— 9 Other. CuleN
s Import. System out_printind ‘11 15 a ¢
Ly Epot.. } 3

Properties Al+Enter | class MyClass6 implements)\

: {

1 UseOfDefaukEx java [JavaClasshotes...) @Overrid

2interfacefal java [JavaClazsNoter/] public void show()

3 InterfaceExS java [JavaClazsNotes/..] { :

4 PreventOverndingExjove [JavaClass..) } System out printhn{ "My Cla:

Ext }

T Poatofi® o LE | 13

CHAPTER 8 ' PACKAGE

2. Supply the required information and click finish.

© New Java Package @ =R
Java Package S
Create a new Java package. g

Creates folders corresponding to packages.

Source folder: JavaClassNotes

Name: com.a.tour

["] Create package-info.java

@ Finsh | [Cancel |

3. Now you'll see the package in your package explorer view e.g. it may look like as below:

4)= JavaClassNotes

> #f abstractclasses.examples

» # assignments

4 ;B classes.examples
b ClassExd java
b [J) Classbx3 java
b ClassExd.java
b 4] ClassBxS.java
b [J] ClassExb.java
b 4J] ExperimentWithConstructorExl java
b ExperimentWithConstructorEx2 java
b 1)) ExperimentWithConstructorbx3.java
b (1] VarArgsExjava

(3 com.a.tour

Note The newly created package is empty. But other packages in the snapshots already have some classes
inside them. Those packages were created earlier.

115

CHAPTER 8 ' PACKAGE

4. Nowright-click the package name » New » Class/Package etc to put classes/sub
packages etc. inside the created package. It may have the following structure:

¢ = JavaClassNotes
. 1§ abstractclasses.examples
. #3 assignments
- 48 classes.examples
4 £ com
4 atour
- |J) GoaPackagejava
J] KeralaPackage.java
4 £ b.tour
- J] AndamanPackage.java
J] GoaPackage.java

Note here in this package, already there are some classes-which we made earlier.

Demonstration-1

Now let us go through an example. Consider two travel companies-a and b. Company a conducts tours for
Goa and Kerala. Company b conducts tours for Goa and Andaman. Any tourist can seek information from
them for any particular tour package.

Here we have covered both of the following scenarios:

e Less challenging situation: Only Company a conducts tour for Kerala and Only
company b conducts tour for Andaman.

e More challenging situation: Notice that both of the companies are providing tour for
Goa. And we need to get the information through the GoaPackage Class. See both
the packages are using the same class name.

Here is the Eclipse package explorer view

4 B tour.company
4 2 a
. |J) GoaPackage.java
. |J) KeralaPackage.java
a b
. [J] AndamanPackage.java
. |J)] GoaPackage.java

116

CHAPTER 8 ' PACKAGE

// GoaPackage.java [For Company A, in com.a.tour package]
package com.a.tour;
public class GoaPackage

{
int basic_price=10000;
public void ShowPrice()
{
System.out.println("***Tariff for Goa tour in Company A***");
System.out.println("For two person , Goa tour package is Rs. "+ basic price*2);
System.out.println("For four person , Goa tour package is Rs. "+ basic_price*s);
System.out.println("¥¥rktrikitikt) .
}
}

// KeralaPackage.java [For Company A, in com.a.tour package]
package com.a.tour;

public class KeralaPackage

{
int basic_price=7000;
public void ShowPrice()
{
System.out.println("***Tariff for Kerala tour in Company A***");
System.out.println("For two person , Kerala tour package is Rs. "+ basic price*2);
System.out.println("For four person, Kerala tour package is Rs. "+ basic price*s);
System.out.println("Hksriktrikitikt) .
}
}

// AndamanPackage.java [For Company B, in com.b.tour package]
package com.b.tour;
public class AndamanPackage

{
int basic_price=12000;
public void ShowTariff()
{
System.out.println("***Tariff for Andaman tour in Company B***");
System.out.println("For two person , Andaman tour package is Rs. "+ basic price*2);
System.out.printIn("For four person, Andaman tour package is Rs. "+ basic price*s);
System.out.println (" ¥xriktrikitikt),
}
}

// GoaPackage.java [For Company B, in com.b.tour package]
package tour.company.b;
public class GoaPackage
{
int basic_price=15000;
int serviceTax=2000;
public void ShowTariff()

117

CHAPTER 8 ' PACKAGE

int forTwoPerson=basic_price*2 +serviceTax;

int forFourPerson=basic_price*4 +serviceTax;

System.out.println("***Tariff for Goa tour in Company B¥**");
System.out.println("In Company A:For two person , Goa tour package is Rs. "+
forTwoPerson);

System.out.println("In Company A:For four person , Goa tour package is Rs.
"+ forFourPerson);

System.out.println("ikrkkikktikikit) .

}
}

//0ur main
package packages.examples;

//For company a packages

/*

import com.a.tour.GoaPackage;

import com.a.tour.KeralaPackage;

//or, simply use the following statement*/
import com.a.tour.*;

//For company b packages

import com.b.tour.*;

public class PackageEx {
public static void main(String args[])

{
System.out.println("***Package Example Demo***");
// Only CompanyA has KeralaPackage
KeralaPackage keralaPackageInA=new KeralaPackage();
keralaPackageInA.ShowPrice();
//0nly CompanyB has AndamanPackage
AndamanPackage companyBAndamanPackage=new AndamanPackage();
companyBAndamanPackage . ShowTariff();
//Company A and B both have package for Goa.
com.a.tour.GoaPackage companyAGoaPackage=new com.a.tour.GoaPackage();
companyAGoaPackage . ShowPrice();
com.b.tour.GoaPackage companyBGoaPackage=new com.b.tour.GoaPackage();
companyBGoaPackage . ShowTariff();

}

118

Output

) Console 2

CHAPTER 8 ' PACKAGE

<terminated> PackageEx [Java Application] C:\Program Files\Java\jrel 8.0_45\bin\javaw.exe (Dec 2, 2015, 3:31:09 PM)

Package Example Demo

Tariff for Kerala tour in Company A

For two person , Kerala tour package is Rs. 14000

For four person , Kerala tour package is Rs. 28000

ki 2k ok ok o o o o ol ol ol ok ok

Tariff for Andaman tour in Company B

For two person , Andaman tour package is Rs. 24000

For four person , Andaman tour package is Rs. 48000

ok ROk R R R R R

Tariff for Goa tour in Company A

For two person , Goa tour package is Rs. 20000

For four person , Goa tour package is Rs. 40000

00 30 o0 e o e o R ROk R K

Tariff for Goa tour in Company B

In Company A-For two person , Goa tour package is Rs. 32000
In Company A-For four person , Goa tour package is Rs. 62000

0ok e ook ok e ok ok ok ok ok ok ok ok R

e Allclasses in java.lang package are imported by default.

1. Every class in Java resides inside a Package.

2. Ifyouwant to rename your package, first rename the directory in which your

classes are stored.

3. Package naming convention should be followed carefully e.g. if we use
statement like package a.b.c; we mean to say that directory c is inside b

which is in inside a.

¢ You must remember the visibility control mechanism with the following table:

public protected private Default/No modifier
Same class Yes Yes Yes Yes
Subclass in same package Yes Yes No Yes
Non-subclass in same package Yes Yes No Yes
Subclass in different package Yes Yes No No
Non-subclass in different package Yes No No No

119

CHAPTER 8 ' PACKAGE

Students ask:

Sir, if every class stays in some package, then how could we use System.out.print() till now
without importing any package?

Teacher says:Remember that in Java, all classes in java.lang package, are imported by default. This is why,
you can use System.out.println() because System class also resides inside the default java.lang package.

Students ask:

Sir, can you please explain about the default access specifier?

Teacher says: always look into the table mentioned above. From the table, it is obvious that if you do not
mention any specific access modifiers like public, private etc. to any of the member, it will be considered
to have a default modifier and then your particular member is visible inside the same packages only i.e. all
other classes inside the package can see and use them.

By the same way, you can give the visibility to outside classes with a restriction that only those outside
classes that are in the same inheritance hierarchy (i.e. subclass) can see the intended member, then you can
use the modifier protected. And if you do not want to put any restriction at all, simply use the public modifier
and to provide maximum restriction, use the private modifier.

Students ask:

Sir, what is the purpose of import statements?

Teacher says: We bring all classes (or packages) from a specified location to our intended location with
the use of import statements. Otherwise, we need to use the fully qualified name e.g. suppose we have class
named MyClass with some methods (for simplicity, consider we have used public modifiers only). This class
is stored inside a package (or directory) b which, in turn, is placed inside another directory a. Now we want to
reuse those methods/class from a different location. So, ideally, we need to refer the class as a.b.Myclass. So,
we can see that it becomes tedious and looks ugly to type the long dot separated package name first for the
classes we need to use. So, in short, we can save a lot of typing and increase the readability of our program.

Students ask:

Sir, then technically we can avoid the import statements. Is the understanding correct?
Teacher says: Yes but you have to pay a lot in terms of typing and readability in a real life programming
situation. So, particularly, I'll not encourage you to do that.

Students ask:

Sir, suppose we have used same class name inside two packages. And then in some other program,
we have imported both of the packages. Now will we face any compiler issue? or, now how can we access
any particular class?

Teacher says: First of all there is no compiler issue. If you have same named class in two or more
packages, just use their fully qualified name to avoid the conflict. Go through the program that is presented
earlier in the chapter. You have noticed that both of the packages have the class GoaPackage and we have
used their fully qualified name inside our main().

Students ask:

Sir, in some example, we see import statement is the first statement.But you also tell us the package
statement is the first statement.Then if we have both, which one should come first?

Teacher says: We must remember that package statements should be the first statements. Then import
statements should be placed.Consider the below program:

120

CHAPTER 8 ' PACKAGE

Demonstration-2

import java.util.Date;// error
package javaclassnotes.testprograms;
//import java.util.Date;
public class OrderOfPackageStmts {
public static void main(String args[])

{
Date currentTime = new Date();
System.out.println(currentTime.toString());
}
}
Output

Compilation error.

Description i Resource Path Location Type
4 © Errors (1 item)
@ Syntax error on token “package”, import expected OrderOfPackageStm... /JavaClassNotes/ja... line2 Java Problem

Once you change the order of package and the import statement, you will get the expected output:

<terminated> OrderOfPackageStmts [Java Application] C:\Program Files\Java\jdkl 8.0_45\bin\javaw.exe (Sep 13, 2016, 12:22:04 PM)
Tue Sep 13 12:22:04 IST 2016 '

Students ask:

Sir, why we support this kind of design-package statements must come before import statements?
Teacher says: I see it from this angle-you need to fix a location first before writing the code. Then we
may decide which classes are needed for our application .If our class is inside the same package (i.e. in same

location), we can refer it immediately and import do not come into picture. Otherwise, we need to bring
that class in our intended location and import takes its place. So, its like first deciding a place first to build a
house. We can never build a house and then change the location. Likewise, if you notice carefully, you will
find that package naming conventions follow a directory structure of the corresponding bytecode i.e. your
intention is to fix a location first and then you proceed.

Students ask:

Sir, how to deal with multiple package statements in a source file?
Teacher says: You can have only one package statement in a source file.

Students ask:

Sir, in many cases, why we do not see any package statement at all in a source file?
Teacher says: It means that you are using the current default package.

121

CHAPTER 8 ' PACKAGE

Students ask:

Sir, till now we have got some idea about the usage of packages. It’ll be helpful if you can
summarize the overall usefulness of the packages.
Teacher says: If you notice carefully, you can see that packages are covering 3 major scenarios:

e They provide an organized structure which is very much useful to understand the
program and debug.

e We are avoiding naming collisions using package statements.

o With different access modifiers inside packages, we can provide a level of security
which is very much required in the real development process of a software.

122

CHAPTER 9

OOPs Concepts Revisited

The fundamental features of object oriented programming is as below:

Class and object
Polymorphism
Abstraction
Encapsulation
Inheritance
Message passing

Dynamic binding

Teacher asks:

Can you tell me how we have covered these topics in Java?

Class and object-Almost in every example, we have used classes and objects.

Polymorphism -Method overloading (compile-time polymorphism) and method
overriding (run-time polymorphism).

Abstraction-Abstract classes and interfaces.

Encapsulation-Each class can be an example. A more effective example can be a
class with a private member and getter-setter.

Inheritance-Examples in inheritance.

Message passing- Mostly observed in a multithreaded environment. But also the
dynamic method dispatch example can be treated in this category.

Dynamic binding -Through the example in the dynamic method dispatch (method
overriding).

Students ask:

Can you give us a simple example of getter-setter?

© Vaskaran Sarcar 2016
V. Sarcar, Interactive Object Oriented Programming in Java, DOI 10.1007/978-1-4842-2544-8_9

123

CHAPTER 9 ' OOPS CONCEPTS REVISITED

Teacher says: Go through the following program and analysis.

Demonstration-1

package oopsconcepts.examples;

class GetterSetter

{
private int aVariable=5;
public int getaVariable() {
return aVariable;
public void setaVariable(int aVariable) {
this.aVariable = aVariable;
}
}
public class GetterSetterExi
{
public static void main(String args[])
{
System.out.println("*** Simple getter-setter example ***");
GetterSetter myOb=new GetterSetter();
//Following line will cause error:
//We cannot access the private member
//System.out.println(myOb.aVariable);
System.out.println("aVariable is now : "+myOb.getaVariable());//5
//Setting the variable
myOb.setaVariable(25);
//Check the modification
System.out.println("aVariable is now : "+myOb.getaVariable());//25
}
}
Output

<terminated> GetterSetterExl [Java Application] C:\Program Files\Java\jdk1.8.0_45\bin\javaw.exe (Sep 9, 2016, 9:52:57 AM)
*** Simple getter-setter example ***

|aVariable is now : §

|aVariable is now : 25

Analysis

We can see from the above example that we cannot access the private member of a class (as expected)
through the object. But we can achieve this functionality through getter-setters which are basically two
public methods inside the class and have access to this private member.

124

CHAPTER 9 " 00PS CONCEPTS REVISITED

We must also note that we can have either a getter or a setter (or both- as in the example above).When
we have a getter only, we can see the private member but we cannot change that private member .So the
variable becomes read-only.

And in a similar fashion when we have only setter, the variable becomes write-only.

Students ask:

Sir, can you please summarize the difference between abstraction and encapsulation?

Teacher says: The process of binding/wrapping the data and codes into a single entity is termed as
encapsulation. It helps us to prevent the arbitrary and unsecured accesses from outside the wrapper.

In an abstraction, we show the essential features and hides the detailed implementation from user e.g.
when we use a remote control to switch on a television, we do not think about the internal circuits or digital
instructions. We are simply happy if we can see the images coming out from the television after the button
press.

Students ask:

What are the different types of polymorphism?
Teacher says:

e Compile time polymorphism-Which method needs to call is resolved by the
compiler. So, it is also known as early binding. Since the call is resolved early, it is
faster in general.

e Run time polymorphism (Or, Dynamic Polymorphism) -Which method needs to call
will be decided during runtime. That is why; it is also known as late binding and it is
slower compared to early binding.

Students ask:

Does Java support pointers like C/C++?

Teacher says: We already mentioned that Java does not support pointers. One of the main reason is with
pointers we can access beyond our intended data boundary which is really dangerous. Apart from this, if we
support pointers, memory management will become tedious, because, in many cases, they are error-prone.
We believe, as long as we are in the Java execution environment, we'll never feel the need of using a pointer.
Java developers also believe that the major use of pointers come into pictures due to the use of structures,
processing of strings and manipulation of arrays. But Java does not use structures .And in Java, strings and
arrays are treated as objects- so these entire domain of usage can be replaced without the pointers.

Students ask:

Sir, you told us earlier that inheritance may not provide the best solution always. Can you please
elaborate it?

Teacher says: In some cases, composition can provide a better solution. But to understand the
composition, you need to be aware of following concepts first:

e Association

e Aggregation

Association: It can be one way or 2-ways.Suppose we are seeing this kind of UML diagram:

ClassA > ClassB

125

CHAPTER 9 ' OOPS CONCEPTS REVISITED

It means ClassA knows about ClassB but reverse is not true.

And when we see this kind of diagrams, we conclude it as a 2-ways association i.e. they know each other.

ClassA ClassB

Aggregation: It is a stronger type of association and widely represented as:

Dept <> Professor

E.g. a professor belongs to a particular department. If in future, the department closes, the professor still
can exist. But the reverse is also true i.e. if a professor leaves the college and he joins in a new institution, his
old department still exists.

Note So, in general, we say that a department has a professor. For this reason, an association
relationship is also termed as a has-a relationship. (Remember, in case of inheritance, we discussed about is-a
relationships).

Composition: It is a stronger form of aggregation and this time we have a filled diamond in place.

College > Dept

A particular department in a college cannot exist without the college. We also note the fact that the
college is only responsible to create and destroy (close) any of its department.(You can argue that if there is
no department at all, a college also cannot exist, but we do not need to complicate the things by considering
these type of corner cases to understand these concepts).

Now to show the power of composition, recall the diamond problem mentioned in the chapter of
inheritance. And then go through the following program with the analysis:

126

CHAPTER 9 ' OOPS CONCEPTS REVISITED

Composition

Demonstration-2

<<Java Class>>
(% SuperClass
[avaclassnotes. programs.copsconcepts
£°SuperClass()
&' showMe()-void
<<Java Class>> <<Java Class>>
(9 ClassA (9ClassB
javaclassnotes.programs.oopsconcepts javaclassnotes. programs.oopsconcepts
25ClassA() &5 ClassB()
© showMe().void @ showMe():void

=7

<<Java Class>>
(9 ClassC <<Java Class>>

javaclassnotes. programs.copsconcepts (9 CompositionEx
javaclassnotes. programs.oopsconcepts

A°ClassC()

C .
CompositionEx
A ShowMeA():void B 0

Gsma'mgstring]]g:void

A ShowMeB():void

package oopsconcepts.examples;

abstract class SuperClass

{
}

//Both ClassA and ClassB are overriding their parent method.
class ClassA extends SuperClass

public abstract void showMe();

{
@0verride
public void showMe()
{
System.out.println("I am in Class A");
}
}
class ClassB extends SuperClass
{
@0verride

public void showMe()

127

CHAPTER 9 ' OOPS CONCEPTS REVISITED

{
}

System.out.println("I am in Class B");

}
//The concept of composition to avoid the diamond problem
class ClassC
{
ClassA clsA;
ClassB clsB;
ClassC()
{
this.clsA=new ClassA();
this.clsB=new ClassB();

}
void ShowMeA()

clsA.showMe();

}
void ShowMeB()
{
clsB.showMe();
}

public class CompositionEx {

public static void main(String args[])

{
System.out.println("*** Example of composition to avoid multiple inheritance
in Java*ex");
CompositionEx ob=new CompositionEx();
ClassC clsC=new ClassC();
c1sC.ShowMeA();
c1sC.ShowMeB();
}
}
Output

<terminated> CompositionEx [Java Application] C:\Program Files\Java\jdkl.8.0_45\bin\javaw.exe (Sep 25, 2016, 5:02:34 PM)
|*** Example of composition to avoid multiple inheritance in Java***

Iamin Class A

Iammn Class B

You can see that both classes- ClassA and ClassB have overridden their parent method showMe (). And
ClassC doesn’t have its own showMe () method. But still we can call those class specific methods through
an object of ClassC.

128

CHAPTER 9 " 00PS CONCEPTS REVISITED

You must notice that ClassC is holding the references of both the classes-ClassA and ClassB and inside
its constructor only, we have created ClassA and ClassB objects. So, when ClassC objects will not be present
in our application (e.g. garbage collected), there will be no ClassA or ClassB objects inside the system. You
can also put some restrictions to users so that they will not be able to create objects for ClassA and ClassB
directly inside the application but for simplicity, we have ignored that part.

You must be aware of some other common terms e.g. generalization/specialization and realization.

We have already used these concepts in our applications. Simply, in our programs, when our class extends
another class (i.e. inheritance), we used the concepts of generalization/specialization e.g. a Cricketer is a
special kind (specialization) of a Player. Or we can say that both the Footballer and Cricketer are Players
(generalization)

And when our class implemented an interface, we used the concept of realization. For your ready
reference, go through the following structures:

Generalization demo

package oopsconcepts.examples;
class GeneralClass

{
//Some code
}
class SpecialClass extends GeneralClass
{
//Some code
}

<<Java Class>>

(9 GeneralClass
javaciassnotes. programs.oopsconcepts

cheneraIClass()

<<Java Class>>
(3 SpecialClass

javaclassnotes. programs.copsconcepts

AC SpecialClass()

129

CHAPTER 9 ' OOPS CONCEPTS REVISITED

Realization demo

package oopsconcepts.examples;

interface RealizationInterface
{

//Some code
}

class Implementor implements RealizationInterface

{
//Some code
}

<<)ava Interface=>
€9 RealizationInterface
javaclassnotes. programs.copsconcepts

..4-...-...-....,.--.{}.

<<Java Class>>

(¥ Implementor
javaclassnotes. programs.copsconcepts

‘c Implementor()

Apart from these there are concepts of reflexive associations and multiplicities (We will see them in the
solution of assignment for the chapter “Use of static keyword”).

Students ask:

What are challenges/drawbacks of OOP?

Teacher says: Some of the experts believe that in general, size of the object oriented programs are larger.

As size of the programs are larger, we can assume that it will take more storage (But, I believe that in modern
days, in most of cases, these issues hardly matters).

Some developers find challenges to design, code and debug in this type of programming style. As a
result, maintenance of the software becomes tricky for them.

Some of the real world situations cannot be modeled properly with object oriented style. But at the end,
I personally like OOPs because its merit side is much heavier than the demerit side.

130

CHAPTER 10

Use of static keyword

Sometimes we need variables that can be used without creating any object of that class. To serve that
purpose, we tag the member/s with the keyword static. When a member is preceded with the keyword
static, the member can be accessed before any object of that class is created i.e. we do not need to
reference any object in this context.

Consider the below example:

Demonstration-1

package useofstatickeyword.examples;

class StaticDemo1
{
//static members
static int myStaticInt=5;
static String myStaticString="I am a static string";
//Non static members
int myNonStaticInt=25;

public class StaticEx1

{
public static void main(String args[])
{
System.out.println("***Use of static variables***");
//We can call static members with the class name itself
//No need to create objects
System.out.println("myStaticInt value is : "+StaticDemol.myStaticInt);
System.out.println("myStaticString value is : "+StaticDemol.myStaticString);
//Exror:We cannot call instance variable with class name.
//System.out.println("myNonStaticInt value is : "+StaticDemol.myNonStaticInt);
}
}
© Vaskaran Sarcar 2016 131

V. Sarcar, Interactive Object Oriented Programming in Java, DOI 10.1007/978-1-4842-2544-8_10

CHAPTER 10 * USE OF STATIC KEYWORD

Output

) Console 32

<terminated> StaticExl [Java Application] C:\Program Files\Java\jrel 8.0_45\bin\javaw.exe (Dec 6, 2015, 9:51:25 AM)
Use of static variables

myStaticInt value is - 5

myStaticString value is : I am a static string

Analysis

We can see that we are accessing the static members with classname.membername i.e. we do not need to
create an object to access those variables.

Demonstration-2

Let us go through another example. Here we’ll test static variables initialization with a static method and a
static block.

package useofstatickeyword.examples;

class StaticEx2
{
//static members
static int myStaticInt=1;
static String myStaticString="No string";
//instance variable
int nonStaticInt=25;
//static method
static void setValuesToStaticMembers()

{
System.out.println("I am inside the static method now.");
System.out.println("myStaticInt="+ myStaticInt);
System.out.println("myStaticString="+ myStaticString);

//error:Can access only static fields from here

//System.out.println("myNonStaticInt="+ myNonStaticInt);

}

//static block

static

{

System.out.println("I am a static block");
System.out.println("Before my change :");
System.out.println("myStaticInt="+ myStaticInt);
System.out.println("myStaticString="+ myStaticString);

132

CHAPTER 10 © USE OF STATIC KEYWORD

System.out.println("I am changing the values now...");
myStaticInt=5;
myStaticString="I am a static string";

}
public static void main(String args[])
{
System.out.println("***Use of static methods and static blocks***");
StaticEx2.setValuesToStaticMembers();
}
}
Output
E) Console 52

<terminated> StaticEx2 [Java Application] C:\Program Files\Java\jrel.8.0_45\bin\javaw.exe (Dec 6, 2015, 10:22:30 AM)
I am a static block

Before my change :

myStaticInt=1

myStaticString=No string

I am changing the values now...

Use of static methods and static blocks

I am inside the static method now.

myStaticInt=5

myStaticString=I am a static string

Analysis

Look at the output carefully. Look at the order of the output. You can see the statements in the static

block printed on the top of output. Even before the execution of the static block, the static variables were

initialized. Later static block changed the values (which are reflected clearly when we call the static method).
It is because as soon as a static class loaded, all static statements run.
You should notice another important characteristic also: Static methods can access only static members.
Also note that our static method is nested here.

Rules of thumb:
e Static methods can only other static methods.
e Static methods can access only static fields.
e Static methods cannot refer this or super.
Students ask:

Can we create static class?

Yes. But there is a constraint in Java. The static class should be inside of another class i.e. it must be
nested. Java does not allow us to create top level static class.

The class which contains the static class is termed as an outer class.

133

CHAPTER 10 * USE OF STATIC KEYWORD

Consider the below example. Here we have shown how to create and use a nested static class and a
nested non-static (inner class).

Demonstration-3

package useofstatickeyword.examples;

//Java doesn't allow us to create top-level static
//classes, it must be nested.

class OuterClass

{
//static class
static class MyStaticClass
{
public static void showStaticMethod()
{
System.out.println("I am a static method");
}
}
//non static inner class
public class MyNonStaticClass
{
public void showNonStaticMethod()
{
System.out.println("I am a NonStatic method");
}
}
}
class StaticClassEx
{
public static void main(String args[])
{
System.out.println("***Static and Inner Class Demo***");
//Call Static method OuterClass.MyStaticClass.showStaticMethod();
//CallNonStatic method
OuterClass.MyNonStaticClass obNonStatic=(new OuterClass()).new MyNonStaticClass();
obNonStatic.showNonStaticMethod();
}
}

134

CHAPTER 10 USE OF STATIC KEYWORD
Output

&) Console 52

<terminated> StaticClassEx [Java Application] C:\Program Files\Java\jrel 8.0_45\bin\javaw.exe (Dec 6, 2015, 7:34:47 PM)
Static and Inner Class Demo

I am a static method

I am a NonStatic method

Students ask:

What is an inner class?

As described above, a non-static nested class is termed as an inner class. It can access all the variables
and methods of the outer class.

Students ask:

From static class, can we access the variables of outer class?
Answer is yes if and only if those variables are static. Consider the below example. Following code
snippet is fine:

class OuterClass

{
static int outer_int=25;
//static class
static class MyStaticClass
{
public static void showStaticMethod()
{
System.out.println("I am a static method");
System.out.println("Outer_int =" +outer int);
}
}
}

Butifouter_int is non-static, compiler will raise an issue.
Teacher asks:

Can you predict the output?

Quiz
package useofstatickeyword.examples;
class MyClassEx3

{

//Constructors cannot be final/abstract/static
static MyClassEx3()

135

CHAPTER 10 * USE OF STATIC KEYWORD

{
System.out.println("I am a no argument constructor");
}
}
class ExperimentWithConstructorEx3
{
public static void main(String args[])
{
System.out.println("*** Experiment with constructors ***");
System.out.println("***Question:Can construcors be static? ***");
MyClassEx3 myOb=new MyClassEx3();
}
}
Output

Compilation error.

2 -,
Description

£ lllegal modifier for the constructor in type MyClassEBx3; only public, protected & private are permitted

Students ask:

Sir, why constructors cannot be static?

Teacher says: Think from a general point of view. The keyword static is used to represent a method
or variable as a class variable means it is not specific to any object. But constructors are used to initialize a
particular object. And we must remember that to access class variables we use class name not objects. So,
there is no point of making static constructors.

Now consider the below program and corresponding output carefully:

Demonstration-4

package useofstatickeyword.examples;

class StaticDemo3

{
static void aStaticmethod()
{
System.out.println("I am a static method");
}
void aNonStaticmethod()
{
System.out.println("A non static method");
}
}

136

CHAPTER 10 © USE OF STATIC KEYWORD

class ChildStaticDemo3 extends StaticDemo3

{
static void aStaticmethod()
{
System.out.println("I am a overriding the static method");
}
void aNonStaticmethod()
{
System.out.println("Overriding a non static method");
}
}
public class StaticEx3
{
public static void main(String args[])
{
System.out.println("***Testing the static methods***");
StaticDemo3.aStaticmethod();
ChildStaticDemo3.aStaticmethod();
//Checking dynamic method dispatch
StaticDemo3 parent=new ChildStaticDemo3();
parent.aStaticmethod();
parent.aNonStaticmethod();
}
}
Output

<terminated> StaticEx3 [Java Application] C:\Program Files\Java\jdkl.8.0_45\bin\javaw.exe (Sep 17, 2016, 8:39:39 PM)
|***Testing the static methods***

I am a static method

I am a overriding the static method

T am a static method

|Overriding a non static method

Teacher asks:

Can you see any important behavior with the above program?

Students reply: Yes Sir. All results are expected except the result from the call parent.aStaticmethod().

We are seeing instead of calling the child class method, it is calling the static method from base class.

Teacher says: Yes. Here is the difference and we must remember that static method cannot be
overridden.

Students ask:

Why static methods cannot be overridden?

Teacher says: We must know that for static methods (or class methods) , method calls are decided at
compile time only i.e. it is not dependent on which object we are pointing at runtime. But for non static
methods, method calls are decided at runtime (which object we are pointing at that moment).

137

CHAPTER 10 * USE OF STATIC KEYWORD

Students ask:

If static methods cannot be overridden, then why we did not receive the compiler error in the
above example?

Teacher says: There the derived class hides the static method in the parent class. If you add following
lines inside the main() above:

//Will call the child method
ChildStaticDemo3 child=new ChildStaticDemo3();
child.aStaticmethod();

Then you will get the corresponding method calls from the child class:

<terminated> StaticEx3 [Java Application] C:\Program Files\Java\jdkl1.8.0_45\bin\javaw.exe (Sep 26, 2016, 9:21:02 PM)
am a static method
am a overriding the static method
am a static method
rerriding a non static method
[l am a overriding the static method

Students ask:

Can we overload static methods?
Teacher says: Yes. Consider the below program and output:

Demonstration-5

package useofstatickeyword.examples;

class StaticDemos4

{
static void showMe()
{
System.out.println("In ShowMe()");
}
static void showMe(String s)
{
System.out.println("Hi ," +s);
}
static void showMe(int i)
{
System.out.println("You have supplied " +i);
}
}
class StaticEx4
{

public static void main(String[] args)

{

System.out.println("***Static methods can be overloaded***");
StaticDemo4.showMe();

138

CHAPTER 10 © USE OF STATIC KEYWORD

StaticDemo4.showMe("John");
StaticDemo4.showMe(25);

Output

<terminated> StaticExd [Java Application] C:\Program Files\Java\jdkl.8.0_45\bin\javaw.exe (Sep 17, 2016, 9:05:55 PM)
Static methods can be overloaded
In ShowMe()

Hi John

You have supplied 25

Teacher asks:

Will the code compile?

Quiz

package useofstatickeyword.examples;
class StaticExs

{
static void showMe()
{
System.out.println("Static method");
}
void showMe()
{
System.out.println("Non Static method");
}
}

Answer: No. The overloading is to be allowed if the method signature is different. In the above case,
inclusion of a static keyword before a method name is not considered as a different signature. (What are
elements that constitute a method signature, we already discussed earlier)

In this case, compiler will raise the following error:

Output
Description ‘ Resource Path Location
4 @ Errors (2 items)
43 Duplicate method showMe() in type StaticBS StaticBxS java flavaClassNotes/ja... line5
.3 Duplicate method showMe() in type StaticBx5 StaticbBx5.java flavaClassNotes/ja... line9

Actually I see it from another point of view.In Java, we can invoke the static methods through objects
also.Consider the below program and output.

139

CHAPTER 10 * USE OF STATIC KEYWORD

Demonstration-6

package useofstatickeyword.examples;

class StaticDemo6

{
static void showMe()
{
System.out.println("Static method");
}
}
public class StaticEx6
{
public static void main(String[] args)
{
System.out.println("***Static methods can be invoked through objects also in
Javar*x");
//Using classname to call the static method
StaticDemo6.showMe();
//Using object to invoke the static method
StaticDemo6 myOb=new StaticDemo6();
myOb . showMe () ;
}
}
Output

<terminated> StaticEx6 [Java Application] C:\Program Files\Java\jdkl.8.0_45\bin\javaw.exe (Sep 17, 2016, 9:39:55 PM)
f“*Static methods can be mvoked through objects also in Java***

|Static method

|Static method

Analysis

So, we can see that Java allows us to call a static method through objects also. Now if we have another non
static method with the same signature, Java compiler will be confused-which one to be called. That is

another way of approving the fact that only the inclusion of the keyword static cannot be considered a
overloaded method.

Students ask:

Then why Java allows us to invoke static methods through objects?

140

CHAPTER 10 © USE OF STATIC KEYWORD

Teacher says: There is no straight forward answer to this question. But some developers find it useful
when backward compatibility comes into picture. We can just use the modifier static to an older method and
then we can invoke the method through the object.But at the same time, there are other languages who will
not allow you to do this.

Teacher asks:

Can you explain the output of the below program?

Quiz
package javaclassnotes.programs;

public class StaticEx7

{
int i;
static void showMe()
{
this.i=7;
System.out.println("Static method");
}
}
Output

Compiler error.

Description < Resource Path Location Type
4 @ Errors (1 item)
@ Cannct use this in a static context StaticEx] java flavaClassMotes/ja... line8 Java Problem

The keyword this is used in the context of the current object. But static methods can be called with class
name (and it is the true intention of the keyword static) There is no need to create an object to call a class
method (or a static method).

Assignment

Suppose you have formed a cricket team. Now your team is going to play against an opponent team. You must
be aware of the fact that which team will bat (or bowl) first will be decided through the toss and you need to
send your captain for that. So, at first, you must elect a captain. At the same time, you must be aware that you
can select one and only one captain. So, if you do not have any such captain, you will select one and send him
for toss. Otherwise, you simply send the already nominated captain for the toss. Can you design this?

141

CHAPTER 11

Exceptions

Here we deal with some unwanted situations. These situations can occur due to some careless mistakes or
wrong logic written in the program. And we often term these unwanted situations as exceptions.

By definition, an exception is an event which breaks the normal execution/instruction flow. An object
is created to describe the exception. When these exceptional situations arise, an exception object is created
and thrown in the methods which created those. Then that method may or may not handle the situation (in
programming term: the exception).If it cannot handle the exception, it will pass the responsibility to other.
(Like our everyday situation, when situation reach beyond our control, we seek advice from experts).But
ultimately they are handled and processed.

Java run time system can create these exceptions or we can create our own.

Before going forward, we’ll introduce following class hierarchy to get some idea about our upcoming topic:

Object

Throwable
o~ "

Exception Error
o =
“
/ AN
e ™,

v ~
RuntimeException [Other Exceptions etc.]

So, we can see that both Exception class and Exror class are the subclasses of Throwable class which in
turn derives from Object (in java.lang package).By other exceptions we mean classes like IOException
(already defined in Java), our own custom exception classe/s (not defined in Java).

Here we'll primarily focus on RuntimeExceptions. Errors, in general, causes from some catastrophic
failures like JVM out of memory, stack overflow etc. We can hardly do anything with them. Java run time
environment itself needs to take care of these severe situations.

When we create our custom exception classes, in general, we’ll subclass from the Exception class.

The following five keywords are used to deal with Java exceptions:

o try
e catch
e throw
e throws
e finally
© Vaskaran Sarcar 2016 143

V. Sarcar, Interactive Object Oriented Programming in Java, DOI 10.1007/978-1-4842-2544-8_11

CHAPTER 11 " EXCEPTIONS

Demonstration-1

Consider the below program:

I have taken snap shots of the code from eclipse editor here for some of the programs below -so that you can
see the exact line number in the editor. This line numbers are useful when we analyze the outputs.

[J] ExceptionExl java 532
1 package javaclassnotes.programs.exceptions;
3 public class ExceptionEx1 {
public static void main(String args[])

b

5| 4
6 System.out printin("***Exception Example -1***");
7 int a=5;
8 int b=0;
E int c=a/b;
10 System.out.printin("I am at line number 10 now");
11 System.out printin("c="+c);
12 | 3

14 |

Output

<terminated> Exceptionbxd [Java Application] C:\Program Files\Java\jdkl.8.0_45\bin\javaw.exe (Nov 27, 2016, 11:32:38 AM)

Exception Example -1Exception in thread "main"
java.lang.ArithmeticException: / by zero
at javaclassnotes.programs.exceptions.ExceptionExl.main(ExceptionEx1.java:9)

From the output window, we can have below observations:
e We have encountered an exception in the program.
e This exceptional situation arises in the main method of ExceptionEx1. java

e Line number of this faulty code is 9.

144

CHAPTER 11 EXCEPTIONS

e /by zero (divide by zero) was the operation which raises this exception. The name of
the exception is AirthmeticException. We have not defined this. That means, Java
already defined this type of exception for us and this exception is defined in java.lang
package(which is the default package).

e Once the program encountered this exception at line number 9, control comes out
and it did not print the below statements (e.g I am in line number 10 now).

Demonstration-2

Now consider the below example. Now we try to catch the exception and handle it properly. The statement/s
which may cause an exception are placed inside a try block. A catch block is placed just after the try block.
If you notice carefully, you will find that this catch block will handle the ArithmeticException (if it occurs)
only, no other type of exception cannot be handled by this catch block.

[J] ExceptionBx2java i3
I package javaclassnotes.programs.exceptions;
3 public class ExceptionEx2{
- public static void mamn(String args[])
> {
6 System.out printin("***Exception Example -2***");
int a=5;
int b=0;
9 int c=0;
10 try
{
1 c=a'b;
13 System.out println("c="+c);
14 }
15 catch(ArithmeticException ex)
16 {
17 System.out.printin("Caught the AirthmeticException :"+ ex.getMessage());
18 ex.printStackTrace();

145

CHAPTER 11 " EXCEPTIONS

Output

kterminated> Exceptionbx2 [Java Application] C:\Program Files\Java\jdkl 8.0_45\bin\javaw.exe (Nov 27, 2016, 11:40:25 AM)
Exception Example -2%

Caught the AirthmeticException:/ by zero
java.lang.ArithmeticException: / by zero
at javaclassnotes.programs.exceptions.ExceptionEx2.main(ExceptionEx2.java:12)

Students ask:

Sir, what should be the behavior/output if we encounter a different type of exception in our code
which we do not handle inside the catch block?

Teacher says: It will be handled by Java’s run time error management (with a default handler) just like
Demonstration 1.Consider the below example:

Demonstration-2A

[3) ExceptionBAjava 3

7" 1 package javaclassnotes programs exceptions;
2 public class ExceptionEx2A {
3= public static void main(String args[])
4| £

5 System.out printin("***Exception Example -2A***");
6 try
7 {
8 int a=5;
9 int b=0;
10 AirthmeticException is Occured but we are not handling it by catching it
11 int c=a/b;
12 System.out.println("I am at line number 10 now");
13 System.out println("c="+c);

}
15 catch(ArrayIndexOutOfBoundsException ex)
16 {
17 System.out.println("Caught the ArrayIndexOutOfBoundsException "+ ex.getMessage());
18 ex.printStackTrace();
19 }

146

CHAPTER 11 EXCEPTIONS

Output

<terminated> ExceptionBx2A [Java Application] C:\Program Files\Java\jdk1.8.0_45\bin\javaw.exe (Nov 27, 2016, 11:50:15 AM)
Exception Example -2A
Exception in thread "main" java.lang. ArithmeticException: / by zero

at javaclassnotes.programs.exceptions.ExceptionEx2A.main(ExceptionEx2A.java:11)

We can see from the above example that if we do not catch the ArrayIndexOutOfBoundException, a
default handler will take the charge and it will handle the scenario.

Students ask:

Sir, we are seeing that when we encounter an exception inside a method (here inside main)
remaining lines are not printed in the console. But we want those lines to be printed. e.g. we want to see
the statement I am at line number....Is there any way?

Teacher says: You can place the required lines in the finally block. Any code inside a finally block
must be executed.

147

CHAPTER 11 " EXCEPTIONS

Demonstration-2B

[J] *Exception2B.java &2

| package javaclassnotes.programs.exceptions;
> public class Exception2B {
3= public static void main(String args[])

4 |
5 System.out println("***Exception Example -2B***");
6 try
7 {
8 int a=5;
= 9 int b=0;
10 AirthmeticException is Occured but we are not handling it by catching it
11 int c=a'b;
12 System.out.println("I am at line number 10 now");
13 System.out.printin("c="+c);
14 }
15 We are not catching the AirthmeticException
16 catch(ArrayIndexOutOfBoundsException ex)
17 {
18 System.out.printin("Caught the ArrayIndexOutOfBoundsException :"+ ex.getMessage()):
19 ex.printStackTrace();
20 }
21 finally block- always be executed
22 finally
23 {
24 System.out printn("I am in finally. So I'll be printed always.");
25 System.out.printin("I am at kne number 25 now");
26 }
B
28 }
Output
< i 1> ExceptionEx2B [Java Application] C:\Program Files\Java\jdkl.8.0_45\bin\javaw.exe (Nov 27, 2016, 12:03:22 PM)

Exception Example -2B
Exception in thread "main" I am in finally.So I'll be printed always.
I am at line number 25 now

java.lang. ArithmeticException: / by zero
at javaclassnotes.programs.exceptions.ExceptionEx2B.main(ExceptionEx2B.java:11)

Students ask:

Sir, then why we need catch block at all?
Teacher says: To handle the exception in some specified manner.

148

Students ask:
Sir, Can we use only try and finally like below?
try
{
//Some code

}
finally
{

}

//Some code

Teacher says: Yes.

Students ask:

Sir, what will happen if we encounter exception inside a finally block?

CHAPTER 11

EXCEPTIONS

Teacher says: Good question. We should not forget the purpose of finally. The purpose of finally

Demonstration-2C

o

[4) *ExceptionBx2C.java 3

_1 package javaclassnotes.programs.exceptions;

2 public class ExceptionEx2C {

public static void main(String args[])

{

5 System.out.printin("***Exception Example -2C***");
0 try
7 {
8 System.out.println("I am inside a trv block");
9 }
10 Wrong way of writing :Exception occurs inside finally
11 finally
12 {
System.out.printn("T am at top of finally.");
int a=5;
int b=0;

1] Oh WA b W

int c=a/b;
Following lines will not be printed

System.out.println("c="+c);

o O 0o

AirthmeticException 1s Occured but we are not handhng 1t by catching it

System.out.println("I am at the bottom of finally");

basically is to close files, release occupied resources etc. If we do not put those codes inside finally, there
may be situations where we encounter an exception and an opened file is not closed properly or some
resources are not released properly (which in turn can cause memory leaks inside the system). But yes, if
you put your erroneous logic in the following manner, you'll get corresponding output like this (i.e. once we
receive exceptions, below lines will not be executed in the block).

149

CHAPTER 11 = EXCEPTIONS

Output

<terminated> ExceptionBx2C [Java Application] C:\Program Files\Java\jdk1.8.0_45\bin\javaw.exe (Nov 27, 2016, 12:12:17 PM)
Exception Example -2C

I am inside a try block
Exception in thread "main" I am at top of finally.
java.lang.ArithmeticException: / by zero
at javaclassnotes.programs.exceptions.ExceptionEx2C.main(ExceptionEx2C.java:17)

Demonstration-3

Now consider the below program. Here we have multiple catch blocks with a try block. In the try block
we may encounter ArithmeticException, ArrayIndexOutOfBoundsException or NullPointerException
We are generating a random number between 0 and 2 and based on the random number generated,
we'll encounter different type of exceptions and then handle those e.g. when b=0, we’ll encounter
ArithmeticException, if not then we’'ll proceed further. Now we’ll check whether b is an even number or an
odd number. If b is a non-zero even number, we encounter an ArrayIndexOutOfBoundsException.Ifbisa
non-zero odd number, we'll encounter a NullPointerException.

I have shown all possible outputs in different runs. You may get a different order because the value of b
is generated at random.

package javaclassnotes.programs.exceptions;
import java.util.Random;
public class ExceptionEx3 {

public static void main(String args[])
{
System.out.println("***Exception Example -3***");
int a=5;
Random randomGenerator=new Random();
//Will generate 0 to 2.
int b=randomGenerator.nextInt(3);
System.out.println("b="+b);
int c=0;
try
{
//Case-1:it will encounter ArithmeticException
//if b=0
c=a/b;
System.out.println("c="+c);
int[] arr=new int[2];
arr[0]=0;
arr[1]=c+1;

150

CHAPTER 11 EXCEPTIONS

if(b%2==0)

{

//Case-2: it will encounter //ArrayIndexOutOfBoundsException
arr[2]=c+2;

}
else
{
Object myObject=null;
//case-3: It will encounter //NullPointerException
int hashcode=myObject.hashCode();
}
catch(ArithmeticException ex)
{
System.out.println("Caught the AirthmeticException :"+ ex.getMessage());
ex.printStackTrace();
}

catch(ArrayIndexOutOfBoundsException ex)
System.out.println("Caught the ArrayIndexOutOfBoundsException :"+
ex.getMessage());
ex.printStackTrace();

}
catch(Exception ex)
{
System.out.println("Caught the Exception :"+ ex.getMessage());
ex.printStackTrace();
}
finally{
System.out.println("I am finally here");
}
}
}
Output
Run 1:

<terminated> ExceptionbBx3 [Java Application] C:\Program Files\Java\jdk1.8.0_45\bin\javaw.exe (Nov 27, 2016, 12:43:28 PM)
Exception Example -3

b=0

Caught the AirthmeticException :/ by zero

I am finally here

java.lang.ArithmeticException: / by zero
at javaclassnotes.programs.exceptions.ExceptionEx3.main(ExceptionEx3.java:19)

151

CHAPTER 11 " EXCEPTIONS

Run 2:

<terminated> ExceptionEBx3 [Java Application] C:\Program Files\Java\jdkl.8.0_45\bin\javaw.exe (Nov 27, 2016, 12:42:51 PM)

Exception Example -3

b=2

c=2

Caught the ArravindexOutOfBoundsException :2
java.lang. ArravindexOutOfBoundsException: 2

at javaclassnotes.programs.exceptions.ExceptionEx3.main(ExceptionEx3.java:27)
I am finally here

Run 3:

<terminated> ExceptionEx3 [Java Application] C:\Program Files\Java\jdk1.8.0_45\bin\javaw.exe (Nov 27, 2016, 12:44:25 PM)

Exception Example -3
b=1

c=5

Caught the Exception :null

I am finally here
java.lang.NullPointerException

at javaclassnotes.programs.exceptions.ExceptionEx3.main(ExceptionEx3.java:33)

Students ask:

Sir, so far you have given examples like ArrayIndexOutOfBoundsException, ArithmeticException
etc. How we’ll remember these names?

152

CHAPTER 11 EXCEPTIONS

Teacher says: These are built-in exceptions in Java. All of these are already defined in java.lang
packages. Since this package is the default package, we’ll get all these exceptions imported by default. Upon
practice, you can remember their names. I personally take help from eclipse editor. Any IDE can help you
in this context. Otherwise, you can see what the exception is-your default handler is throwing. From that
report, you can get the name of the exception e.g. notice the output of our example 1:

<terminated> ExceptionExl [Java Application] C:\Program Files\Java\jdil 8.0_45\bin\javaw.exe (Nov 27, 2016, 12:45:52 PM)
Exception in thread "main" ***Exception Example -1***
java.lang.ArithmeticException: / by zero

/ywrlassnotes.programs.excep(ions.ExceptionExl.main(l-_‘xceplioul-.‘xl.ia\-a:9)

/

From the output, you can see that the name of the exception name is AirthmeticException.

Demonstration-4

Consider the below program and corresponding output. So far, we were in receiving end, we were handling
exceptions that were thrown by java run time system. But we have the freedom to throw an exception.

This freedom is necessary when we make our own application and we want to control some situation by
ourselves only.

153

CHAPTER 11 " EXCEPTIONS

The basic format is:

throw anObjectOfThrowable

where anObjectOfThrowable must be an instance of Throwable class or its subclass.

*ExceptionBxd.java 53

package javaclassnotes.programs.exceptions;
class DemoClass

{
= void thowingException()
{
System.out.printin("I always throw a NullPomterException”);
8 throw new NullPointerException("Forceful throw");

] Oh LA e B e

9 System.out.printin("I will never print this kne");
10}
11 4}
12 public class ExceptionEx4
13 {
——1 4= public static void main(String args[])
15 {
16 System.out.printn("***Exception Example -4: use of throw***n");
17 DemoClass demo=new DemoClass();
18 try
LR
20 demo.thowingException();
- }
catch(Exception e)
{
System.out println(e getMessage()); Forceful throw
e.printStackTrace();
}
¥
Output

<terminated> ExceptionEx4 [Java Application] C:\Program Files\Java\jdk1.8.0_45\bin\javaw.exe (Nov 27, 2016, 1:15:11 PM)

Exception Example -4:use of throw

I always throw a NullPointerException

Forceful throw

java.lang.NullPointerException: Forceful throw
at javaclassnotes.programs.exceptions.DemoClass.thowingException(ExceptionEx4.java:8)
at javaclassnotes.programs.exceptions.ExceptionEx4.main(ExceptionEx4.java:20)

154

CHAPTER 11 EXCEPTIONS

Quiz
Teacher asks:
Tell me whether following block of code is valid or not?

class TestClass

{
//some code
}
class DemoClass
{
void thowingException()
{
System.out.println("I always throw an Exception");
try
{
throw new TestClass();
catch (TestClass e)
{
// TODO Auto-generated catch block
}
}
}
Answer: No. TestClass is not derived from Throwable or its subclass.
Output

4 O Errors (2 items)
@ No exception of type TestClass can be thrown; an exception type must be a subclass of Throwable
@ No exception of type TestClass can be thrown; an exception type must be a subclass of Throwable

Students ask:

How can we overcome this error?
Teacher says: By making it a subclass of Throwable (or its subclass) like below:

class TestClass extends Throwable

{
//some code
}
class DemoClass
{

void thowingException()

{
System.out.println("I always throw an Exception");
try

155

CHAPTER 11 = EXCEPTIONS

{
throw new TestClass();
}
catch (TestClass e)
{
// TODO Auto-generated catch block
}
}
}
Students ask:

What are the different ways -by which we can obtain a throwable object/instance?
Teacher says:

e A common way is already shown in the above example- using a new operator like above.

e Another way is to use a parameter inside a catch clause.

Demonstration-5

Consider the below program and corresponding output. Compare this program from the previous one
(Demonstration 4) carefully. Notice at the highlighted areas in the below program- we have used the
keyword throws. You can see that inside DemoClass2, the method throwingException() is throwing an
exception but we have not used try/catch block around this code. Instead of this, we have added throws
statements after the method names. It means that this method has the capability of throwing TestClass2
exception. We have used a constructor (which can accept a String message) in the TestClass2, to provide a
meaningful message when we intend to throw such kind of exceptions.

156

1)) ExceptionBxS java 3

1 package javaclassnotes.programs.exceptions;
2 2 class TestClass2 extends Throwable

3 {
4 String str;
5= TestClass2(String str)
6
7 this.str=str;
8§}
4 9= public String toString()
10§
11 return str;
12 }
13 /some other code
14 }
15 class DemoClass2
16 {
17= void thowingException() throws TestClass2
18 ¢
19 throw new TestClass2("Forcefully throwing the exception”);
20 }
21 }

22 public class ExceptionEx5 {
23= public static void main(String args[]) throws TestClass2 {

#1124 System.out println("***Exception Example -5: use of throws***n");
25 DemoClass2 demo2=new DemoClass2();
26 try
D7 {

28 demo?.thowingException();
29 }

30 catch(TestClass2 e)

31 {

32 System.out.printin(e);

33 e printStackTrace();

- }

B)

36 }

CHAPTER 11

EXCEPTIONS

157

CHAPTER 11 " EXCEPTIONS

Output

<terminated> ExceptionBx5 [Java Application] C:\Program Files\Java\jdkl 8.0_45\bin\javaw.exe (Nov 27, 2016, 1:27:01 PM)

Exception Example -5: use of throws

Forceful throw

java.lang.NullPointerException: Forceful throw
at javaclassnotes.programs.exceptions.DemoClass2.thowingException(ExceptionExS.java:19)
at javaclassnotes.programs.exceptions.ExceptionExS.main(ExceptionEx5.java:28)

Points to remember:

e Athrows clause will be needed to indicate all the exceptions that a method can
throw. Otherwise, we'll encounter compile-time errors (except for the next point) e.g.
in the above example, if we do not include throws clause with throwingException()
(line no 17), we'll get the compile time error:

B Problems i =]
1 errer, 17 warnings, 0 others
Description % Resource Path Lecation Type
4 @ Emors (1 item)
& Unhandled exception type TestClass2 ExceptionEx5 java flavaClassNotes/ja... linel9 Java Problem

% Wamings (17 tems)

&) ExceptionBxS java 2
package javaclassnotes programs.exceptions;
4 2 class TestClass2 extends Throwable
3
: String str;
TestClass2(String str)
{

this_str=str;

84 }

= 9= public String toString()
{

11 return sir;

12}

13 some other code

14 }

15 class DemoClass2

16 §

17= void thowingException()
15 {

@l9 throw new TestClass2(Forcefully throwmg the exception’);
H

1}

! public class ExceptionEx5 {l

3= public static void main(String args[]) {

24 System. out printin("* **Exception Example -5 use of throws***n");

25 DemoClass2 demo2=new DemoClass2();
26 oy
27 {
28 demo2 thowingException();

158

CHAPTER 11 EXCEPTIONS

e The above rule will not be applicable for Error or RuntimeException or any of their
subclasses.

e We must remember that checked exceptions must be included in a method’s throws list.
Students ask:

You have just mentioned a term “Checked exception”. What are the checked and unchecked
exceptions?

Teacher says: Good question. We basically deal with two types of exceptions- checked and unchecked.

Checked exceptions-They can raise issue at compile time itself. That’s why they are also known as
compile time exceptions. We must need to take care to handle these type of exceptions.

To understand the difference between checked exceptions and unchecked exceptions, you must go
through this example and the above example repeatedly.

Demonstration-6

In the below example, our TestClass3 inherits from RuntimeException. And now Java compiler will not
check whether the method throws an exception or handles the exception. So, it becomes unchecked
exception. So, no compile time error will be raised due to exclusion of throws clause in method declarations.
But on the other hand, in our previous example (ExceptionEx5.java), our TestClass2 inherits from
Throwable, so we need to exclusively put the throws clause/s with method declarations.

package javaclassnotes.programs.exceptions;
//Check the difference with ExceptionEx5

class TestClass3 extends RuntimeException

{
String str=null;
TestClass3(String str)
{

}
public String toString()

{
}

//some other code

this.str=str;

return str;

}

class DemoClass3

{

void thowingException() //throws clause not necessary now

{
}

throw new TestClass3("Forcefully throwing the exception");

}

public class ExceptionExé {
public static void main(String args[])
{
System.out.println("***Exception Example -6:**¥\n");
System.out.println("***Comparison-Unchecked vs Checked Exceptions:*¥*¥\n");
DemoClass3 demo3=new DemoClass3();

159

CHAPTER 11 = EXCEPTIONS

try
{
demo3.thowingException();
}
catch(TestClass3 e)
{
System.out.println(e);
e.printStackTrace();
}
}
}
Output
Kterminated> Exceptionbxb [Java Application] C:\Program Files\Java\jdkl 8.0_d5\bin\javaw.exe (Mov 27, 2016, 12:50:31 PM)

Exception Example -6:
Comparison-Unchecked vs Checked Exceptions:

Forcefully throwing the exception

Forcefully throwing the exception
at javaclassnotes.programs.exceptions.DemoClass3.thowingException(ExceptionEx6.java:22)
at javaclassnotes.programs.exceptions.ExceptionEx6.main(ExceptionEx6.java:33)

Students ask:
Tell us about some built in checked and unchecked exceptions.
Checked exceptions examples:

e (lassNotFoundException

e NoSuchMethodException

e NoSuchFieldException

e InstantiationException

e (loneNotSupportedException

e TIllegalAccessException
Unchecked exceptions examples:

e ArithmeticException

e ArrayIndexOutOfBoundsException

e IndexOutOfBoundsException

e SecurityException

e NullPointerException etc.
160

CHAPTER 11 EXCEPTIONS

Discussion on Chained Exception

Sometimes we can receive an exception which may be caused by some other exception. So, we may be
interested to know the original cause. The concept of chained exception comes into picture in such a scenario.
Consider a very simple scenario of ArithmeticException when we try to divide an integer by 0 (we
showed the case in our demonstration) Though we are receiving this exception, the original cause is an I/O

error which created this zero.
Chained exceptions can help us to know about such exceptions and also in which layer those exist.

Demonstration-7

Consider the below example and output:
package javaclassnotes.programs.exceptions;

class OuterException extends RuntimeException

{
String str=null;
OuterException(String str)

this.str=str;

}
public String toString()

{
}

return str;

}

class InnerException extends RuntimeException

{
String str=null;
InnerException(String str)

{
}
public String toString()
{

}

this.str=str;

return str;

}

class DemoClass4

{

void thowingException() //throws clause not necessary now

{
OuterException outer=new OuterException("OuterException");
InnerException inner=new InnerException("InnerException");
outer.initCause(inner);
throw outer;

161

CHAPTER 11 = EXCEPTIONS

public class ExceptionEx7 {
public static void main(String args[])

{
System.out.println("***Exception Example -7:**¥¥\n");
System.out.println("***Demo:Chained Exception:***\n");
DemoClass4 demod=new DemoClass4();
try
{
demo4. thowingException();
}
catch(OuterException e)
{
System.out.println("Caught : "+ e);
System.out.println("It is caused by :"+e.getCause());
//e.printStackTrace();
}
}
Output

<terminated> ExceptionEx7 [Java Application] C:\Program Files\Java\jdk1.8.0_45\bin\javaw.exe (Nov 27, 2016, 12:53:21 PM)

***Exception Example -7:%**

Demo:Chained Exception:

Caught : QuterException
It is caused by :InnerException

Students ask:
Sir, in the above example, can the inner exception be further caused by another exception?

Yes. We can carry out to the depth we want. But it is always recommended that we must not end up by
making a very long chain because that can lead to a poor design.

Demonstration-8

Consider the below example: we have modified the above program (Demonstration 7) to increase the depth
of the exception by one level. printStackTrace() method is used to back trace and see the entire stack.

162

CHAPTER 11 EXCEPTIONS

To show the exact line number in the output window, Eclipse snapshots are included in two parts here.

12
13
14
abls
16
17
18
19
20
21
a2

24
25
26
27
28
29
30
31

19

32
33

234
36
37
38

package javaclassnotes programs.exceptions;

class OuterException extends RuntimeException

{

]

}

String str=null;
OuterException(String str)
{

}

public String toString()

{

}

this.str=str;

return str;

class InnerException extends RuntimeException

{

}

String str=null;
InnerException(String str)
{

}

public String toString()

{

}

this.str=str;

return str;

class SubInnerException extends RuntimeException

{

t

String str=null;
SubInnerException(String str)
{

}

public String toString()

{

}

this.str=str;

return str;

163

CHAPTER 11 " EXCEPTIONS

39 class DemoClass4

40 {

41= void thowingException() //throws clause not necessary now

42 {

43 OuterException outer=new OuterException("OuterException”);
44 InnerException nner=new InnerException("InnerException”);
45 SubInnerException subInner=new SubInnerException("SubInnerException");
46 outer.initCause(inner);

47 inner.initCause(sublnner);

48 throw outer;

9 }

50 }

51 public class ExceptionEx7 {

52© public static void main(String args[])

53 {

54 System.out.println("***Exception Example -7 Modified:***n"); |
55 System.out printin("***Demo:Chamed Exception***n");

56 DemoClass4 demo4=new DemoClass4();

57 try

58

59 demo4 thowingException();

60 }

61 catch(OuterException e)

62 {

63 System.out.println("Caught : "+ e);

64 System.out.println("It is caused by :"+e.getCause());

65 e.printStackTrace();

66 }

67}

68 }

Output

<

ted> ExceptionEx] [Java Application] C:\Program Files\Java\jdkl 5.0_45\bin\javaw.exe (Mov 27, 2016, 1:00:28 PM)

\

Exception Example -7.Modified

Demo:Chained Exception:

Caught : QuterException
It is caused by :InnerException

OuterException

at javaclassnotes.programs.exceptions.DemoClass4.thowingException(ExceptionEx7.java:43)
at javaclassnotes.programs.exceptions.ExceptionEx7.main(ExceptionEx7.java:59)

Caused by: InnerException

at javaclassnotes.programs.exceptions.DemoClass4.thowingException(ExceptionEx7.java:44)
... 1 more

Caused by: SubInnerException

at javaclassnotes.programs.exceptions.DemoClass4.thowingException(ExceptionEx7.java:45)
... 1 more

164

CHAPTER 11

To allow chained exceptions we have the following methods:
e Throwable getCause() and
e Throwable initCause(Throwable cause)
And the following constructors:
e Throwable(Throwable cause)
e Throwable(String msg, Throwable cause)
Students ask:

Sir, it appears to us that we can also suppress errors with exceptions.

EXCEPTIONS

Teacher says: Yes. But it is never intended. Consider the below example. Here, when we get 0 (randomly

package javaclassnotes.programs.exceptions;
import java.util.Random;

public class ExceptionEx8{

public static void main(String args[])

{
System.out.println("***Exception Example -8***");
System.out.println("***Wrong use of the concepts of Exception ***");
int a=10;
Random randomGenerator=new Random();
//Will generate 0 to 2.
int b=randomGenerator.nextInt(3);
int c=0;
try
{
c=a/b;
System.out.println("c="+c);
catch(ArithmeticException ex)
{
//printing c=7, after catching the exception
System.out.println("b=" +b);
System.out.println("c=" +7);
}
}

generated) inside b, instead of reporting the true issue, we can suppress the error by printing c=7-which is a
total misuse of this feature.

165

CHAPTER 11 = EXCEPTIONS

Output

<terminated> ExceptionEx8 [Java Application] C:\Program Files\Java\jdkl.8.0_45\bin\javaw.exe (Nov 27, 2016, 1:03:51 PM)
***Exception Example -8%**

***Wrong use of the concepts of Exception ***
b=0
c=7

Students ask:

Sir, Java does not support pointers but it supports Nul1lPointerException. Why?

Teacher’s reply: You need to understand the scenario-When we try to do some illegal operations like
invoking a method or try to access fields etc from a null object, we encounter this exception. This exception
generally indicates that you are treating a null object as an actual object -so your intended operation is
illegalYes, some developers believe that something like Nul1lReferenceException could be a better naming
for this type of exceptions.

But we must remember the fact that Java developers always had the believe that use of pointers by

programmers are one of the primary sources of injecting bugs into the application. So they do not support
any pointer datatype.

Assignment

Create a custom Exception class. You need to consider two integer inputs which must be supplied by the

user. You will display the sum of the integers if and only if the sum is less than 100. If it is not less than 100,
throw your custom exception.

166

CHAPTER 12

An introduction to design patterns/

During different phases of a software development, one the most common query was: Is there any standards
to this development process? The question was obvious because a software team consists of many engineers
and they all involve in the development process. But different people have different mindsets and different
level of understanding to deal with a similar kind of situation. This issue was also a big concern for a new
member (experienced or unexperienced does not matter) who later joined in the team and was assigned

to do something from scratch or to modify something in the existing product. As already mentioned, since
earlier days, there were no standards, to become familiar with the existing design of the system, he/she
needed to put some additional efforts though he/she may have handled situation like this earlier. Design
Patterns simply addresses this kind of issues and make a common platform for all developers. We shall
remember that these patterns were intended to be applied in object oriented designs with the intention of
reuse to reduce duplicate efforts.

In 1994-95, four authors Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides came with
their famous book titled Design Patterns - Elements of Reusable Object-Oriented Software in which they
initiated the concept of Design Pattern in Software development (Design Patterns: Elements of Reusable
Object-Oriented Software (Addison-Wesley Pub Co, 1995)). These authors became popular with the name
Gang of Four (GoF). They introduced 23 patterns which were developed by experienced software developers
over a very long period of time. As a result, now if any new member joins in a development team and he
knows that the new system is following some specific design patterns, immediately he can get some idea
with that design and as a result, he can actively participate in the development process with the other
members of the team within a very short period of time.

The building architect Christopher Alexander can be considered the father of these concepts. He found
that throughout his life time, he encountered some common problems. He mastered himself to deal with
those problems and tried to resolve those in some unified manner. People believe that software industry
grasped those concepts because software engineers can also relate their product applications with these
building applications.

Each pattern describes a problem which occurs over and over again in our environment, and then
describes the core of the solution to that problem, in such a way that you can use this solution a million times
over, without ever doing it the same way twice.

—Christopher Alexander

GoF assures us that though those patterns were described for building and towns, the same concepts
can be applied with object oriented design methodology also. They found that we can substitute the original
concepts of walls and doors with objects and interfaces in the designs of our software models. The common
thing in both is: at core, both type of patterns are solution to problems in some context.

© Vaskaran Sarcar 2016 167
V. Sarcar, Interactive Object Oriented Programming in Java, DOI 10.1007/978-1-4842-2544-8_12

CHAPTER 12 © AN INTRODUCTION TO DESIGN PATTERNS

In 1995 the original concepts were discussed with C++. Sun Microsystems released the first public
implementation as Java 1.0 in 1995 and it has gone through various changes. So, the key point is: Java was
relatively new at that time. Later Java became popular and we were interested to implement the concepts
in Java.So, in this book, we’ll introduce 3 of those 23 design patterns. These 23 patterns were broadly
partitioned into 3 categories.

e Creational patterns
e Structural patterns

e Behavioral patterns

Creational patterns

These patterns are used to abstract the instantiation processes. Applications are built in such a way that they
become independent from how their objects are composed or created. Following five patterns come into
this category.

¢ Singleton Pattern

e Prototype Pattern

e Factory Method Pattern
e Builder Pattern

e Abstract Factory Pattern

Structural Patterns

Here we deal with relatively large structures and we focus on how classes and objects can be composed. The
concepts of inheritance are widely used here. Following seven patterns fall in this category.

e Proxy pattern

e Flyweight Pattern
e Composite Pattern
e Bridge Pattern

e Facade Pattern

e Decorator Pattern

e Adapter Pattern

168

CHAPTER 12 I AN INTRODUCTION TO DESIGN PATTERNS

Behavioral Patterns

Here we concentrate on algorithms and the assignment of responsibilities among objects. We need to focus
on the communication between them. We also give a detailed look on the way by which those objects are
interconnected. Following eleven patterns fall in this category.

e Observer Pattern

e Strategy Pattern

e Template Method Pattern
e Command Pattern

e [terator Pattern

e Memento Pattern

e State Pattern

e Mediator Pattern

e Chain of Responsibility Pattern
e Visitor Pattern

e Interpreter Pattern

We'll pick one from each category for this introductory discussions on design patterns.

169

CHAPTER 12 © AN INTRODUCTION TO DESIGN PATTERNS

Observer Pattern

GoF Definition: Define a one-to-many dependency between objects so that when one object changes state,
all its dependents are notified and updated automatically.

Concept

In this pattern, there are many observers (objects) which are observing a particular subject (object).
Observers are basically interested and want to be notified when there is a change made inside that subject.
So, they register themselves to that subject. The subject must have the freedom-which request he/she will
accept. The subject can also discard any of the observers at any time. Sometimes this model is also referred
as Publisher-Subscriber model.

Real life Example

We can think about a celebrity who can have many fans in Facebook or any of social sites. Everyday he/

she gets friend requests from his fans to include them in his social world. Each of these fans want to get all
the latest updates from this celebrity. So, they send their requests to the celebrity to accept them as one of
his followers. But the celebrity can decide which request he will accept or not. Our celebrity also has the
freedom to discard any of his followers at any time. We can think a fan as an Observer and the celebrity as a
Subject in the observer pattern.

Computer world Example

In the world of computer science, consider a simple Ul based example-Where this Ul is connected with
some database (or business logic).A user can execute some query through that Ul and after searching the
database, the result is reflected back in the UL In most of the cases we segregate the Ul with the database. If
a change occurs in the database, the UI should be notified -so that it can update its display forms according
the change.

Illustration

In the example below, for simplicity, we have created only three Observers (followers) and one Subject
(celebrity). (Though you can create any number of observers and subjects). Subject maintains a list for all of
its observer/s .Our observers want to get notification when the flag value changes in the subject (Like when
the celebrity change his status).

With the output, we can see that Observer1 and Observer2 were getting those notifications initially
because the Subject registered them (means granted their request to be his followers).

Later the Subject (the celebrity) discard one of his followers from his social world and then only
Observer2 was getting the notification.

Finally our celebrity (Subject) grants one more observer-Observer3 as one of his followers. So, now

both Observer2 and Observer3 are getting those alerts for updates/changes in the Subject.

170

CHAPTER 12 I AN INTRODUCTION TO DESIGN PATTERNS

<<Java Class>>

(3 Subject

designpattemnsintro

o myValue: int

A Subject()

@ getMyValue():int

@ setMyValue(int):void

@ register(lObserver):void
@ unregister(lObserver):void

<<Java Class>> <<Java Class>> <<Java Class>>
(9 Observer3 (2 Observer2 (9 Observer1
designpatternsintro designpatternsintro designpatternsintro

a°Observer3() a°Observer2() a Observer1()

@ update(int).void @ update(int):void @ update(int).void

@ notifyObservers(int):void

v

~observershist

<<Java Interface=>

9 ISubject

designpattemnsintro

@ register(lObserver).void

@ unregister(lObserver):void

@ notifyObservers(int).void

*

»
.

9 0o

<<Java Interface=>
€3 10bserver
designpatternsintro

@ update(int):void

<<Java Class>>

(9 ObserverPatternEx

designpatternsintro

gc0bserverPaﬂemEx()

osmh!Strhgm:void

171

CHAPTER 12 ' AN INTRODUCTION TO DESIGN PATTERNS

Package Explorer view

High level structure of the parts of the program is as follows:

4 = JavaClassNotes
4 {3 designpatternsintro
4 |J) ObserverPatternEx.java

4 €} IObserver
¢ update(int) : void

4 @ ISubject
¢ notifyObservers(int) : void
@' register(IObserver) : void
@' unregister(IObserver) : void

4 & Observerl
@. update(int) : void

4 @ Observer2
@. update(int) : void

4 & Observer3
@. update(int) : void

4) ObserverPatternEx
¢ main(String[]) : void

4 @ Subject
o myValue
& observersList
@ getMyValue(): int
@. notifyObservers(int) : void
@. register(IObserver) : void
@ setMyValue(int) : void
@. unregister(IObserver) : void

Implementation

Here is the implementation:

package designpatternsintro;
import java.util.*;

interface IObserver

{
void update(int i);
}
class Observeri implements IObserver
{

172

CHAPTER 12 I AN INTRODUCTION TO DESIGN PATTERNS

@0verride
public void update(int i)
{
System.out.println("Observerl is seeing a change in Subject: "+i);
}
}
class Observer2 implements IObserver
{
@verride
public void update(int i)
{
System.out.println("Observer2 get notification from Subject :"+i);
}
}
class Observer3 implements IObserver
{
@0verride
public void update(int i)
{
System.out.println("Observer3 is seeing the change in Subject :"+i);
}
}
interface ISubject
{
void register(IObserver o);
void unregister(IObserver o);
void notifyObservers(int i);
}

class Subject implements ISubject
{

private int myValue;

public int getMyValue() {
return myValue;
}

public void setMyValue(int myValue) {
this.myValue = myValue;
//Notify observers
notifyObservers(myValue);

}

List<IObserver> observersList=new Arraylist<IObserver>();
@0verride
public void register(IObserver o)

{
}

observersList.add(o);

173

CHAPTER 12 © AN INTRODUCTION TO DESIGN PATTERNS

@0verride
public void unregister(IObserver o)
{
observersList.remove(o);
}
@0verride
public void notifyObservers(int updatedValue)
{
for(int i=0;i<observersList.size();i++)
{
observersList.get(i).update(updatedvalue);
}
}
}
class ObserverPatternEx
{
public static void main(String[] args)
{
System.out.println("*** Observer Pattern Example***\n");
Subject sub = new Subject();
Observerl obl = new Observeri();
Observer2 ob2 = new Observer2();
Observer3 ob3 = new Observer3();
//0nly Observeri and Observer2 is registered
sub.register(ob1);
sub.register(ob2);
sub.setMyValue(10);
System.out.println();
sub.setMyValue(100);
System.out.println();
//unregister Observeri only
sub.unregister(ob1);
//Now only Observer2 will observe the change
sub.setMyValue(200);
System.out.println();
//Take a new follower and register Observer3 now
sub.register(ob3);
//Set a new change in subject
//Now observer 2 and observer 3 will see the change
sub.setMyValue(500);
}
}

174

CHAPTER 12 I AN INTRODUCTION TO DESIGN PATTERNS

Output

<terminated> ObserverPatternEx (1) [Java Application] C:\Program Files\Java\jdkl.8.0_45\bin\javaw.exe (Nov 25, 2016, 9:46:27 AM)
% Observer Pattern Example*

Observerl is seeing a change in Subject: 10
Observer2 get notification from Subject :10

Observerl is seeing a change in Subject: 100
Observer2 get notification from Subject :100

Observer2 get notification from Subject :200

Observer2 get notification from Subject :500
Observer3 is seeing the change in Subject :500

Students ask:

In the above example, we are seeing that all observers are being notified at the same time. But in
some cases, we may need to send notification to only one observer and not to others. Then how that
scenario can be handled by this pattern?

Teacher says: You must understand that each of the pattern has its own intention. The scenario you
explained can be handled easily with another design pattern named-Chain of responsibility. There we can
process a series of objects one by one i.e. in a sequential manner. With that pattern, a source can initiate that
processing. Then we'll constitute a chain where each of the processing object can have some logic to handle
a particular type of command object and after one’s processing is done, if anything is still pending-they can
be forwarded to the next object in the chain. We can also add new objects anytime at the end of the chain.

Consider a real world situation. In an organization, there are some customer care executives who
collects feedbacks from customers and forward those customer issues/escalations to appropriate
departments in the organization. Not all departments will start fixing an issue. The department who
seems to be responsible will take a look first and if they believe that issue should be forwarded to another
department, they will do that.

But our observer pattern works better in situations where we want to notify all observers at the same
time with a centralized announcement. It does not care how many objects will follow its announcement .So,
this pattern should be used to deal with similar models only.

Students ask:

From the above example, it appears to us that we need to create separate classes for each of the
observer. Is the understanding correct?

Teacher says: Not at all. We could simply create one observer class and different objects of that. And
then we can follow the similar registration and unregistration process.Similarly we could vary the update
methods in each of them-they do not need to be similar.

175

CHAPTER 12 © AN INTRODUCTION TO DESIGN PATTERNS

Prototype Pattern

GoF Definition: Specify the kinds of objects to create using a prototypical instance, and create new objects by
copying this prototype.

Concept

It provides an alternative method for instantiating new objects. In real world, to create a brand a new
instance every time is normally treated as an expensive operation. This pattern helps us to reduce that
expense by making a clone (or copy) of an actual instance. So, this cloning operations plays the vital role
here.

Real life Example

Suppose we have a master copy of a valuable document. Now, we want to experiment some changes on it.
In most of the cases we make a replica first by making a photocopy of this Then we try to incorporate our
changes into that document.

Computer world Example

Suppose we have made an application for an inexpensive mobile device which does not support touch
screen. Next time we want the device to support the touchscreen mechanism to attract more customers. So,
you must notice that basic functionalities of the device must be the same, we are basically adding some more
features in it. Then we must start with a copy from our master copy application and try building the new
features on top of it. Definitely, we'll not start from the scratch.

Illustration

In the below example, we are going to follow this structure:

<<import>>

BasicCar |g.. Client (Main)

Nano Ford

Here BasicCar is our prototype. Nano and Ford are our concrete prototypes and they need to implement
the clone() method defined in BasicCar. We can notice that a BasicCar model is created with some default
price. Later we have modified that price as per the model. Please also note that PrototypePatternEx is the
client here. As usual, the related parts are separated by the packages for better readability.

176

CHAPTER 12 I AN INTRODUCTION TO DESIGN PATTERNS

<<Java Class>>

<<Java Class>>

@ getModelname():String

@ setModelname(String):void
@ setPrice():int

@ clone().BasicCar

[N

<<Java Class>> <<Java Class>>
@®Ford (®Nano
PrototypePattern.cars PrototypePattern.cars
@ Ford(String) @ Nano(String)
@ clone():BasicCar @ clone():BasicCar

Package Explorer view

High level structure of the parts of the program is as follows:

4 3 PrototypePattern
a4 8 cars
4 [J) BasicCarjava
» & BasicCar
4 |J) Fordjava
4 O Ford
@ Ford(String)
@ clone() : BasicCar
4 [J) Nanojava
4 © Nano
@ Nano(String)
@ clone() : BasicCar
4 [J) PrototypePatternEx.java
4 @ PrototypePatternEx
o main(String(]) : void

@ BasicCar (® PrototypePatternEx
PrototypePattern.cars PrototypePattern
© modelname: Strin
e 9 & PrototypePatternEx()
. @ main(String[]):void
@ BasicCar()

177

CHAPTER 12 © AN INTRODUCTION TO DESIGN PATTERNS

Implementation

Here is the implementation:
package PrototypePattern;
import PrototypePattern.cars.BasicCar;

import PrototypePattern.cars.Ford;
import PrototypePattern.cars.Nano;

public class PrototypePatternEx

{
public static void main(String[] args) throws CloneNotSupportedException
{
System.out.println("***Prototype Pattern Demo***\n");
BasicCar nano_base = new Nano("Green Nano") ;
nano_base.price=200000;
BasicCar ford basic = new Ford("Ford Yellow");
ford_basic.price=500000;
BasicCar bci;
//Nano
bc1 =nano_base.clone();
//Price will be more than 200000 for sure
bcl.price = nano_base.price+BasicCar.setPrice();
System.out.println("Car is: "+ bcl.modelname+" and it's price is Rs."+bcl.price);
//Foxd
bc1 =ford basic.clone();
//Price will be more than 500000 for sure
bci.price = ford basic.pricet+BasicCar.setPrice();
System.out.println("Car is: "+ bcl.modelname+" and it's price is Rs."+bcl.price);
}
}
Output

<terminated> PrototypePatternEx (1) [Java Application] C:\Program Files\Java\jdk1.8.0_d5\bin\javaw.exe (Oct 1, 2016, 4:59:06 PM)
Prototype Pattern Demo

Car is: Green Nano and it's price is Rs.205353
Car is: Ford Yellow and it's price is Rs_580157

178

CHAPTER 12 I AN INTRODUCTION TO DESIGN PATTERNS

Note that:

e When the system cares only to make a replica but do not care about the creational
mechanism of the products-this pattern is very much helpful.

e We can use this pattern when we need to instantiate classes at runtime.

e In our example, we have used the default clone() method in Java-Which is a shallow
copy. So, it is inexpensive compared to a deep copy.

Students ask:

Sir, with this pattern, we can implement runtime polymorphism. Is the understanding correct?
Teacher says: Yes. The above example depicts that clearly.

Students ask:

Sir, what are the advantages of the prototype patterns?
Teacher says:

e We caninclude or discard products at run time.
e We can create new instances with a cheaper cost.
Students ask:

Are there any disadvantages of the prototype pattern?
Teacher says:

e Each subclass must have to implement the cloning mechanism which is not always
very easy e.g. implementing cloning mechanism can be challenging if the objects under
consideration does not support copying or if there is any kind of circular references.

179

CHAPTER 12 © AN INTRODUCTION TO DESIGN PATTERNS

Bridge Pattern

GoF Definition: Decouple an abstraction from its implementation so that the two can vary independently.

Concept

In this pattern, abstract class is separated from the implementation class and we provide a bridge interface
between them. This interface helps us to make concrete class functionalities independent from the interface
implementer class. We can alter these different kind of classes structurally without affecting each other.

Real life Example

In a software product development company, development team and technical support team-both play
the crucial role. The change in the operational strategy in any of the team should not have a direct impact
on the other team. Here the technical support team plays the role of a bridge between the clients and the
development team that implements the product.

Computer world Example

This pattern is used in GUI framework. It separates Window abstraction from Window implementation in
Linux/Mac OS. Also the below illustration is one of the classical example in a software development field.

Illustration

Consider a situation like this:

Shape
4 -
Triangle Color Rectangle
T " vy — - —
Red Color Green Color Red Color Green Color

180

CHAPTER 12 I AN INTRODUCTION TO DESIGN PATTERNS

We'll use bridge pattern to decouple the interfaces in our example from the implementations. After our
implementation it will have a cleaner look (Follow our UML diagram).

...... Br]dge
<<Java Class>>
@Shape <<)ava Interface>>
designpattemsintro #color @ IColor
<Shape(iColor) 0.1 —
;:uraw_snmﬁmg;vgm . puTT—— @ filWithColor(int):void
&’modifyBorderint,int).void (® BridgePatternEx 4 N
designpattemsintro 7 s
Acﬂr'ﬂgePattemEx()
@’ main(Stringf)):void
. i p . ; ,
<<Java Class>> <<Java Class>> <<Java Class>> <<Java Class>>
(2 Triangle (®Rectangle (®GreenColor (9 RedColor
designpattemnsintro desgrpatternsmntro designpattemsintro designpattemnsintro
< Triangle(IColor) @ Rectangle(IColor) SGreenColor() & RedColor()
A drawShape(int):void A drawShape(int):void @ filWihColor(int):void @ filvithColor(int):void
A modifyBorder(int, int):void A modifyBorder(int,int):void

181

CHAPTER 12 ' AN INTRODUCTION TO DESIGN PATTERNS

Package Explorer view

High level structure of the parts of the program is as follows:

4 tH designpatternsintro
4 BridgePatternEx.java
4 @ BridgePatternEx
@ main(String[]) : void
4 & GreenColor
@ fillWithColor(int) : void
4 @ IColor
&' fillWithColor(int) : void
4 @ Rectangle
¢ Rectangle(IColor)
& drawShape(int) : void
4. modifyBorder(int, int) : «
4 & RedColor
@ fillWithColor(int) : void
4 G4 Shape
color
& Shape(IColor)
&' drawShape(int) : void
&' modifyBorder(int, int) : void
4 @ Triangle
& Triangle(IColor)
& drawShape(int) : void
4. modifyBorder(int, int) : void

=]

Implementation

Here we have implemented both an abstraction specific and an implementer specific method to represent
the power and usefulness of this pattern. We can draw Triangle and Rectangle with a particular color
with the implementer specific method drawShape (). We can change the thickness of the border by the
abstraction specific method modifyBorder (). Now go through the code.

package designpatternsintro;

//Colors-The Implementer

interface IColor

{
}

void fillWithColor(int border);

182

CHAPTER 12 I AN INTRODUCTION TO DESIGN PATTERNS

class RedColor implements IColor

{
@0verride
public void fillWithColor(int border)
{
System.out.print("Red color with " +border+" inch border");
}
}
class GreenColor implements IColor
{
@0verride
public void fillWithColor(int border)
{
System.out.print("Green color with " +border+" inch border.");
}
}

//Shapes-The Abstraction

abstract class Shape

{
//Composition
protected IColor color;
protected Shape(IColor c)

{
}

abstract void drawShape(int border);
abstract void modifyBorder(int border,int increment);

this.color = c;

}

class Triangle extends Shape
{
protected Triangle(IColor c)

{

super(c);

//Implementer specific method

@0verride

void drawShape(int border) {
System.out.print(" This Triangle is colored with: ");
color.fillWithColor(border);

}

//Abstraction specific method

@0verride

void modifyBorder(int border,int increment) {

System.out.printIn("\nNow we are changing the border length "+increment+ " times");

border=border*increment;
drawShape(border);

183

CHAPTER 12 © AN INTRODUCTION TO DESIGN PATTERNS

class Rectangle extends Shape

{

}

public Rectangle(IColor c)
{

}

//Implementer specific method
@0verride
void drawShape(int border)

{

super(c);

System.out.print(" This Rectangle is colored with: ");
color.fillWithColor(border);

}

//Abstraction specific method

@0verride

void modifyBorder(int border,int increment) {

System.out.printIn("\n Now we are changing the border length "+increment+

times");
border=border*increment;
drawShape(border);

class BridgePatternEx

{

public static void main(String[] args)

{

184

System.out.println("*****Bridge Pattern Demo*****");
//Coloring Green to Triangle
System.out.println("\nColoring Triangle:");
IColor green = new GreenColor();

Shape triangleShape = new Triangle(green);
int initialBorder=10;
triangleShape.drawShape(initialBorder);
//Modifying the border length
triangleShape.modifyBorder(initialBorder, 3);

//Coloring Red to Rectangle
System.out.println("\n\nColoring Rectangle :");
IColor red = new RedColox();

Shape rectangleShape = new Rectangle(red);
//nitial border for Rectangle
initialBorder=initialBorder*3;
rectangleShape.drawShape(initialBorder);
//Modifying the border length
rectangleShape.modifyBorder (initialBorder,5);

CHAPTER 12 I AN INTRODUCTION TO DESIGN PATTERNS

Output

cterminated > BridgEPaﬂernEx (1) [Java Application] C:\Program Files‘\Java‘_jdk_l £.0_45\bin\javaw.exe (Sep 27, 2016, 9:50:05 PM)
[F****Bridge Pattern Demo*****

Coloring Triangle:

This Triangle is colored with: Green color with 10 inch border.
WNow we are changing the border length 3 times

This Triangle is colored with: Green color with 30 inch border.

Coloring Rectangle :

This Rectangle is colored with: Red color with 30 inch border
Now we are changing the border length 5 times

This Rectangle is colored with: Red color with 150 inch border

Note that:

e The pattern is extremely helpful when our class and its associated functionalities
may change in frequent intervals.

e Here we have removed the concrete binding between an abstraction and the
corresponding implementation. As a result, both hierarchy (abstraction and its
implementations) can grow independently. So, the benefit is: if we make any
change in abstraction methods, they do not have impact on implementer methods
(i.e.in fillWithColor()).

Students ask:

Sir, you have repeatedly referred here about the two hierarchies-abstraction and implementer. We
could use interface to represent the abstraction”-is the statement correct?

Teacher says: Absolutely correct. We can use either an abstract class or an interface. And same rule
applies for implementer also.

Probably you have noticed here that we have used the concept of composition here. This concept is very
much useful to avoid the diamond problem in Java. (We must remember that Java does not support multiple
inheritance through classes and diamond problem is one of key reason for that).

Teacher asks:

What is refined abstractions?
Answer: Children of an abstraction are termed as refined abstractions.

Teacher asks:

Who are concrete implementers?
Answer: Children of an implementer.

Students ask:

How can we differentiate an abstraction from its implementer?
Teacher says: In general, an abstraction contains the reference to its implementer.

Teacher asks:

Can you tell me: how can we implement the polymorphic behavior of the implementers?
Answer: By changing the reference in the abstraction.

185

APPENDIX A

Solution to the Assignments

Class

Assignment 1

Create a class Vehicle. The class should have two fields-no_of_seats and no_of wheels. Create two
objects-Motorcycle and Car for this class. Your output should show the descriptions for Car and Motorcycle.

Uml class diagram:

<<Java Class>>

(2 MyVehicle

<<Java Class>> javaclassnotes.assignments
(9 ClassAssignment_1_Demo

javaclassnotes.assignments

4 no_of_wheels: int

4 no_of_seats: int

c i
‘SC"’_SSAS_?"Q"M"_‘-LDE""’U a5 MyVehicle(int,int)
@ mai(Stringf)void @ showVehicle():void

Implementation

No need to include package statements. But once you understand the concept of package, we’ll see that it is
very much handy to make an organized structure for our programs.

package assignments;

class MyVehicle

{
int no_of_wheels;
int no_of seats;
MyVehicle(int wheels,int seats)
{
no_of_wheels=wheels;
no_of_seats=seats;
}
© Vaskaran Sarcar 2016 187

V. Sarcar, Interactive Object Oriented Programming in Java, DOI 10.1007/978-1-4842-2544-8

APPENDIX A SOLUTION TO THE ASSIGNMENTS

public void showVehicle()

{
System.out.print("Description:");
System.out.println("\prikrkkrdoltiokxt) o
System.out.println("It has "+ no_of wheels+" wheels");
System.out.println("It has "+ no_of seats+" seats\n");
}
}
class ClassAssignment_1 Demo
{
public static void main(String args[])
{
System.out.print("***Assignment on Class***\n\n ");
MyVehicle car=new MyVehicle(4,4);
MyVehicle motorCycle=new MyVehicle(2,0);
System.out.print("Car ");
car.showVehicle();
System.out.print("Motorcycle ");
motorCycle.showVehicle();
}
}
Output
B Console 22

<terminated> ClassAssignment_1_Demo [Java Application] C:\Program Files\Java\jrel .£.0_45\bin\javaw.exe (Dec 5, 2015, 9:00:44 PM)
*** Assignment on Class***

Car Description:
EEEE LSS 2 TS

It has 4 wheels
It has 4 seats

Motorcycle Description:

It has 2 wheels
It has 0 seats

Assignment 2

Create a class with a method. The method has to decide whether a given year is a leap year or not.
Note- A year is a leap year if:

e Ithasan extra dayi.e. 366 instead of 365.
e Itoccursin every4year e.g. 2008, 2012 are leap years.
e Forevery 100 years a special rule applies-1900 is not a leap year but 2000 is a leap

year. In those cases, we need to check whether it is divisible by 400 or not.

188

APPENDIXA = SOLUTION TO THE ASSIGNMENTS

UML class diagram:
<<Java Class>> <<Java Class>>
(9 ClassAssignmentEx2 (9 LeapYearDecider
javaclassnotes.assignments javaclassnotes assignments
C .
@ ClassAssignmentEx2() A LeapYearDecider()
@ main(String[]):void a isLeapYear(int):boolean
Implementation

Here is the impelmentation:

package assignments;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;

//import java.util.Scanner;

class LeapYearDecider

{
boolean islLeapYear(int yr)
{
if (yr%aoo !=0)
{
if((yr¥%a==0) 8& (yr%100 !=0))
{
return true;
}
else
return false;
}
return true;
}
}

public class ClassAssignmentEx2

{

public static void main(String args[]) throws IOException

{
System.out.print("***Assignment on Class. Ex-2**¥*\n\n ");
System.out.print("***Test -whether a given year is a leap year or not***\n ");
System.out.print("Enter an year\n\n ");
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String str= br.readlLine();

int input=0;

try
{

189

APPENDIX A SOLUTION TO THE ASSIGNMENTS

input=Integer.parselnt(str);

catch(NumberFormatException e)

{
System.out.print(" Caught invalid Input : " +e);
//A non zero status to indicate abnormal //termination
System.exit(-1);

}

/*0r we can use the scanner class to take input.Java 5 added this scanner class.
Scanner in=new Scanner(System.in);
int input=Integer.parseInt(in.nextLine());
*/
//LeapYearDeciderclass object
LeapYearDecider ob=new LeapYearDecider();
System.out.print(input +" is a leap year ? "+ob.islLeapYear(input));

Output

Case 1: Positive case-2012 is a leap year.

<terminated> ClassAssignmentEx2 [Java Application] C:\Program Files\Java'jdkl 8.0_45\bin'\javaw.exe (Aug 22, 2016, 10:09:50 PM)
Assignment on Class. Ex-2

Test -whether a given year is a leap year or not
Enter an year

2012
2012 is a leap year ? true

Case 2: Negative case-2005 is not a leap year.

<terminated> ClassAssignmentEx2 [Java Application] C:\Program Files\Java\jdkl 8.0_45\bin\javaw.exe (Aug 22, 2016, 10:11:33 PM)
Assignment on Class. Ex-2

Test -whether a given year is a leap year or not
Enter an year

2005
005 is a leap year 7 false
p

Case 3: Special case-1900 is not a leap year.

<terminated> ClassAssignmentEx2 [Java Application] C:\Program Files\Java\jdkl 8.0_45\bin\javaw.exe (Aug 22, 2016, 10:12:28 PM
*** Assignment on Class. Ex-2***

Test -whether a given year is a leap year or not
Enter an year

1900
[1900 is a leap year ? false

190

APPENDIXA = SOLUTION TO THE ASSIGNMENTS

Assignment 3

Create a class with two functions-one recursive and one non recursive. Either of these function should be
capable of calculating the factorial of a number.

UML class diagram:
<<Java Class>> <<Java Class>>
(9 FactorialEx (9 Factorial
Jvaclassnotes.assignments jJvaclassnotes.assignments
& FactorialEx() A fact int
@ main(String[]):void A Factorial()
A recursivelyCalculateFactorial(int):int
A iterativelyCalculateFactorial(int):int
Implementation

Here is the implementation
package assignments;

class Factorial

{
int fact;

//recursive version
int recursivelyCalculateFactorial(int i)

{
fact=1;
if (i==1 || i==0)
return 1;
else
{
fact=i*recursivelyCalculateFactorial(i-1);
return fact;
}
}

//nonrecursive(iterative) version
int iterativelyCalculateFactorial(int i)

{
if (i==1 || i==0)
{
return 1;
}
else
{
fact=1;

for(int j=1;j<=1; j++)

191

APPENDIX A SOLUTION TO THE ASSIGNMENTS

{
}

return fact;

fact=fact*j;

}

public class FactorialEx {
public static void main(String args[])

{
System.out.println("*** Calculating factorial ***");
Factorial factOb=new Factorial();
System.out.println("*** By using recursive version ***");
System.out.printIn("Factorial of 7 is :"+ factOb.recursivelyCalculateFactorial(7));
System.out.println("*** By using nonrecursive(iterative) version ***");
System.out.println("Factorial of 6 is :"+ factOb.iterativelyCalculateFactorial(6));
}
}
Output

f__t__e;l_r'llinated > FactorialEx [Java Application] C:\Program Files\Java\jdkl.8.0_45\bin\javaw.exe (Aug 24, 2016, 7:03:39 PM)
*** Calculating factorial ***

*** By using recursive version ***

Factorial of 7 is :5040

*** By using nonrecursive(iterative) version ***
Factorial of 6 is :720

Inheritance

Assignment 1

Write a simple program to implement hierarchical inheritance.

192

APPENDIXA = SOLUTION TO THE ASSIGNMENTS

UML class diagram:
<<Java Class>> <<Java Class>>
(9 HierarchicallnheritanceEx (® Vehicle
javaclassnotes. assignments javaclassnotes.assignments
a°HierarchicallnheritanceEx() & Vehicle()
esmain String[]):void @ showVehicle():void

<<Java Class>>

z ™
®car

javaclassnotes assignments

<<Java Class>>
(® Motorcycle

[Avaclassnotes. assignments

ACCar()

c
A Motorcycle()
i @ showVehicle():void

@ showVehicle():void

Implementation

Here is the implementation
package assignments;

class Vehicle

{
public void showVehicle()
{
System.out.println("I am in Vehicle");
}
}
class Car extends Vehicle
{
public void showVehicle()
{
System.out.println("I am in Car");
}
}
class Motorcycle extends Vehicle
{
public void showVehicle()
{
System.out.println("I am in Motorcycle");
}
}

193

APPENDIX A SOLUTION TO THE ASSIGNMENTS

class HierarchicalInheritanceEx

{
public static void main(String args[])
{
System.out.println("***Hierarchical Inheritance Demo***");
Car c=new Car();
c.showVehicle();
Motorcycle m=new Motorcycle();
m.showVehicle();
}
}
Output
B Conscle 2

<terminated> HierarchicallnheritanceEx (1) [Java Application] C:\Program Files\Java\jrel 8.0_45\bin\javaw.exe (Nov 24, 2015, 5:40:35 PM)
Hierarchical Inheritance Demo

I am in Car

I am in Motorcycle

Assignment 2

Write a simple program to implement multilevel inheritance.

We could write the program like the above program (See our code structure in the chapter on
Inheritance).Just for a variety, we are using only constructors here. If you want to see the concrete methods
implementation, just uncomment the codes in the below program.

194

UML class diagram:

<<Java Class>>
(@ Parent

javaclassnotes.assignments

<<Java Class>>

(9 MultilevellinheritanceEx

javaclassnotes.assignments

oc Parent()

<<Java Class>>
(9 Child

jBvaclassnotes. assignments

@ Child()

A

<<Java Class>>
(9 GrandChild

javaclassnotes assignments

@ GrandChild()

Implementation

Here is the implementation:
package assignments;
class Parent

{
public Parent()

o MuttilevelinheritanceEx()
Gsmathtring[]t:void

APPENDIXA = SOLUTION TO THE ASSIGNMENTS

System.out.println("I am in Parent constructor");

System.out.println("I am a Parent");

}

/*public void showMe()
{

} */

class Child extends Parent

{
public Child()

System.out.println("I am in Child constructor");

195

APPENDIX A SOLUTION TO THE ASSIGNMENTS

}
/*public void showMe()
{
System.out.println("I am a Child");
} */
}
class GrandChild extends Child
{
public GrandChild()
{
System.out.println("I am in GrandChild constructor");
/*public void showMe()
{
System.out.println("I am a GrandChild");
Y/
}
class MultilevelInheritanceEx
{
public static void main(String args[])
{
System.out.println("***Multilevel Inheritance Demo***");
//Parent p=new Parent();
//p.showMe();
Child c=new Child();
//c.showMe();
GrandChild g=new GrandChild();
//g.showMe();
}
}
Output
&) Console 32

<terminated> MultilevellnheritanceEx [Java Application] C:\Program Files\Java\jrel 8.0_45\bin'javaw.exe (Nov 24, 2015, 6:12:28 PM)

***Multilevel Inheritance Demo™**
I am in Parent constructor

I am in Child constructor

I am in Parent constructor

I am in Child constructor

I am in GrandChild constructor

Note the output. Whenever we want to initiate a child class object, the parent class constructors called
automatically first. This is why, Child class constructor called Parent class constructor first. Similarly, our
GrandChild class constructor called its parent (i.e. Child class constructor) which in turn called its parent
(i.e. Parent class constructor) constructor first.

196

Use of static keyword

Assignment

Suppose you have formed a cricket team. Now your team is going to play against an opponent team. You

APPENDIXA = SOLUTION TO THE ASSIGNMENTS

must be aware of the fact that which team will bat (or bowl) first will be decided through the toss and you

need to send your captain for that. So, at first, you must elect a captain. At the same time, you must be

aware that you can select one and only one captain. So, if you do not have any such captain, you will select
one and send him for toss. Otherwise, you simply send the already nominated captain for the toss. Can you

design this?

UML class diagram:

<<Java Class>>
(9 MakeACaptain

javaclassnoles. assignments

@ MakeACaptain()

capt

Implementation

Here is the implementation:

package assignments;

class NominateACaptain

{

<<Java Class>>
(9 StaticAssignmentDemo

Jvaclassnotes.assignments

naF StaticAssignmentDemo()

OSgetCaptain(}:!.TakeACaptain : |osrnaingstring[|):vo'rd
< |U..1

private static NominateACaptain _captain;

//We make the constructor private to prevent the use of "new"

private NominateACaptain() { }

//To make the code thread safe using the synchronized version.

// public static NominateACaptain getCaptain()

public static synchronized NominateACaptain getCaptain()

// lazy initialization
if (_captain == null)
in = new NominateACaptain();

System.out.println("We have selected the captain for our team");

{

{ _capta

}

else

{

}

return _
}

System.out.print(" We already have a Captain.");
System.out.println(" We'll send him for the toss.");

captain;

197

APPENDIX A SOLUTION TO THE ASSIGNMENTS

class StaticAssignmentDemo

{

public static void main(String[] args)

{
System.out.println("***Static Assignment Demo***\n");
System.out.println("Trying to make a captain for our team");
NominateACaptain c1 = NominateACaptain.getCaptain();
System.out.println("Trying to make another captain for our team");
NominateACaptain c2 = NominateACaptain.getCaptain();
if (c1 == c2)

{
}

System.out.println("c1 and c2 are same instance");

Output
Note that:

e We have used the term “Lazy initialization” because, the singleton instance will not
be created until the getCaptain() method is called .

e To make the implementation thread safe we have used the keyword synchronized.
Because, there may be a situation when two or more threads come into picture and
they try to create more than one objects of the singleton class.

e Butif we use the synchronized keyword in our program, we need to pay for the
performance cost associated with this synchronization method also.

4. So, to implement the thread safety, developers came up with different other solutions also. But there
is always pros and cons. But I want to highlight some of them.

There is another method called "Eager Initialization” (opposite of "Lazy initialization" mentioned in our
original code) to achieve thread safety.

class MakeACaptain

{
//Early initialization
private static NominateACaptain _captain = new NominateACaptain();
//We make the constructor private to prevent the use of "new"
private NominateACaptain () { }
// Global point of access //NominateAcaptain.getCaptain() is a public static //method
public static NominateACaptain getCaptain()
{
return _captain;
}
}

In the above solution an object of the singleton class is always instantiated. To deal with this kind of
situation, Bill Pugh came up with a different approach:

198

APPENDIXA = SOLUTION TO THE ASSIGNMENTS

class NominateACaptain

{

private static NominateACaptain _captain;
private NominateACaptain () { }

//Bill Pugh solution
private static class SingletonHelper{
//Nested class is referenced after getCaptain() is called

private static final NominateACaptain _captain = new NominateACaptain ();

}

public static NominateACaptain getCaptain()
{

}

return SingletonHelper. captain;

This method does not need to use synchronization technique and eager initialization. It is also regarded
as one of the standard method to implement singletons in Java.

B Console i2
<terminated> StaticAssignmentDemo [Java Application] C:\Program Files\Java\jrel 8.0_45\bin'\javaw.exe (Dec 6, 2015, 8:09:18 PM)
Static Assignment Demo

Trying to make a captain for our team

We have selected the captain for our team

Trying to make another captain for our team

We already have a Captain. We'll send for the toss.
cl and c2 are same mstance

Exceptions

Assignment

Create a custom Exception class. You need to consider two integer inputs which must be supplied by the
user. You will display the sum of the integers if and only if the sum is less than 100. If it is not less than 100,
throw your custom exception.

199

APPENDIX A SOLUTION TO THE ASSIGNMENTS

UML class diagram:
<<Java Class»» <<Java Class»> <<Java Class»>
(® DemoClass (9 CustomExceptionEx (3 CustomExceptionMoreThan100
9 E 5 jav gnments. Exceptions jav assignments. Excep
& DemoClass() & CustomExceptionEx() & mag: String
@ sum{int,int):int osrnam[srrhgm:void ;cCustcni:-:cepmnMare‘rnan'lou[srrhgj
<<Java Interface>»
@Ibemo
@ sum{int,int):int
Implementation

Here is the implementation:

package assignments;
import java.util.Scanner;//To take user input here
class SumGreaterThan100Exception extends Exception

{
String msg;
SumGreaterThan100Exception(String msg)
{
this.msg=msg;
}
}
interface IDemo
{
int sum(int x,int y) throws SumGreaterThan100Exception;
}
class DemoClass implements IDemo
{
public int sum(int x,int y) throws SumGreaterThan100Exception
{
int sumofIntegers=x+y;
if(sumofIntegers<=100)
return sumofIntegers;
}
else
{
throw new SumGreaterThan100Exception ("Sum is
}
}
}

200

greater than 100");

APPENDIXA = SOLUTION TO THE ASSIGNMENTS

public class CustomExceptionEx {
public static void main(String args[])
{
System.out.println("***Assignment on Exception***\n");
System.out.println("***Creating custom exception***\n");
//For Java old versions-use BufferedReader e.g.
//BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
//String c = br.readline();
Scanner in= new Scanner(System.in);//To take input from user
int number1,number2;
System.out.println("Enter first integer");
numberi=Integer.parseInt(in.nextLine());
System.out.println("Enter second integer");
number2=Integer.parseInt(in.nextLine());
DemoClass demo=new DemoClass();
try
{
int result=demo.sum(numberl, number2);
System.out.println("Sum of the numbers is "+ result);
}

catch(SumGreaterThan100Exception e)

{
System.out.println("Caught the custom exception : "+e);
e.printStackTrace();

Output

Case 1: When sum of the inputs are greater than 100

<terminated> CustomExceptionEx (1) [Java Application] C:\Program Files\Java\jdil 8.0 45\bin'\javaw.exe (Nov 27, 2016, 10:55:36 AM)
***Assignment on Exception®**

#**Creating custom exception***

Enter first integer
45
Enter second integer
78
Caught the custom exception : assignments.SumGreaterThan100Exception
assignments.SumGreaterThan100Exception
at assignments.DemoClass.sum(CustomExceptionEx.java:28)
at assignments.CustomExceptionEx.main(CustomExceptionEx.java:49)

201

APPENDIX A SOLUTION TO THE ASSIGNMENTS
Case 2: When sum of the inputs are less or equal to 100

*! Problems [Console &2
<terminated> CustomExceptionEx [Java Application] C:\Program Files\Java'\jdkl.8.0_45\bin\javaw.exe (Jul 24, 2016, 11:21:10 AM)

|*** Assignment on Exception®**
***Creating custom exception®**

|Enter first integer

Sum of the numbers is 100

Discussion

For the above assignment, it was not required to create an interface on top of our DemoClass. But you will
later find that in real world programming, converting class types to interface types can give you many
benefits. We have already discussed such an advantage in the discussion of a tagging interface.

202

APPENDIX B

Frequently asked questions

Now it is the time to test your understanding. Please go through the questions. If there is any doubt, please
go back to the respective topic/s.

1. Whatis a class?
2. Whatis an object?
3. Differentiate between object and reference?
4, Can we implement multiple inheritance in Java?
5. Can we implement hybrid inheritance in Java?
6. Differentiate between an abstract class and an interface.
7. Differentiate between method overloading and method overriding.
8. How you can implement dynamic polymorphism in Java?
9. “Package statement should always come on top”-is it true?
10. WhatisJVM?
11. Differentiate between JRE and JDK.
12. Whatis an inner class?
13. How you can create a static class in java?
14. How you can implement abstraction and encapsulation in Java?
15. Differentiate between a static binding and a dynamic binding in Java.
16. What is use of super in Java?
17. Whatis/are the use/s of this in Java?
18. Whatis use of default in Java?
19. Canyou use an abstract class without an abstract method?
20. Canyou inherit constructors?
21. What is the use of final in Java?
22. Differentiate between an instance method and a class method (static method)?
23. Canyou create a static block? What is its use?
© Vaskaran Sarcar 2016

V. Sarcar, Interactive Object Oriented Programming in Java, DOI 10.1007/978-1-4842-2544-8

203

APPENDIX B * FREQUENTLY ASKED QUESTIONS

24. What is the default package in Java?

25. Does Java support pointers?

26. Whatis an exception?

27. What is the superclass of Exception?

28. What do you mean by checked exceptions?

29. What do you mean by unchecked exceptions?

30. How canyou create your own exception?

31. Mention some example of error condition.

32. Whatis the difference between throw and throws?

33. What will happen if you encounter exception in finally block?
34. What is the drawback of handling exceptions?

35. What is the advantage of handling exceptions?

36. What do you mean by chained exceptions?

37. What are the key methods associated with chained exceptions?
38. Whatis garbage collection?

39. What is finalization?

40. How can you remove memory leak in Java?

41. What is the purpose of a constructor?

42. What are the different types of constructors?

43. How can you differentiate a user defined no-argument constructor with a default
constructor in Java?

44. Can the use of default method in the interfaces lead to diamond problem in Java?

45. Java does not support multiple inheritance through classes but C++ supports. Do
you treat it as an advantage or disadvantage of Java?

46. Can multiple variable reference a same object in memory?

47. What is the expected output if you use the following line of code?
System.out.print(anObject);

48. What is constructor chaining?

49. How can you pass variable number of arguments inside a method?
50. What is the difference between char in Java vs char in C/C++?

51. What do you mean by automatic type conversion?

52. Do you treat Java as a purely object oriented language? If not why?

53. Can a constructor be private?

204

54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.

APPENDIX B " FREQUENTLY ASKED QUESTIONS

Can a constructor be final or abstract or static?

Differentiate among final, finally and finalize.

What is the difference between a default constructor and a no-argument constructor?
Can we have both this() and super() in the same constructor? If not, why?

Can we have backward inheritance?

In an inheritance hierarchy, how can you decide a parent class or a child class?
What is a blank final variable? How can you use it in your program?

Can we override an overloaded method?

If we make the main() method final, will we receive any compile time or run time error?
What is the advantages of a tagging interface?

Is there any alternative to marker interfaces?

Which one you like- use of marker interfaces or use of marker annotations? Why?
How can you implement the concept of generalization/specialization in Java?

How can you implement the concept of realization in Java?

Is there any alternative to inheritance? What is that? When you can use that concept?
Does Java support structures? If not, why?

What is the basic difference between String and StringBuffer?

How you can distinguish a Java applet from a Java application.

What is the difference between StringBuffer and StringBuilder?

In which scenario, you prefer StringBuilder over StringBuffer (and vice versa)?

205

APPENDIX C

Some Useful Resources

Java: The Complete Reference by Herbert Schildt. Publisher: McGraw Hill Education
Head First Java by Sierra, Bates Publisher: O'Reilly Media
Java Design Patterns by Vaskaran Sarcar Publisher: Apress
Online Resources:

e http://www.javatpoint.com/

e http://www.tutorialspoint.com/

e http://beginnersbook.com/

e https://docs.oracle.com/javase/tutorial

e http://www.javabeat.net/

e http://www.geeksforgeeks.org/

e http://mindprod.com/

e http://www.programmerinterview.com/

e http://www.javaworld.com/

© Vaskaran Sarcar 2016
V. Sarcar, Interactive Object Oriented Programming in Java, DOI 10.1007/978-1-4842-2544-8

207

http://www.javatpoint.com/
http://www.tutorialspoint.com/
http://beginnersbook.com/
https://docs.oracle.com/javase/tutorial
http://www.javabeat.net/
http://www.geeksforgeeks.org/
http://mindprod.com/
http://www.programmerinterview.com/
http://www.javaworld.com/article/2077421/learn-java/abstract-classes-vs-interfaces.html

Index

A Class and object, 123
Conditional operator, 20
Abstract class Covariant return type, 72, 85, 88
keyword abstract, 94-95
compilation error, 95
dynamic method dispatch, 92-93 D
information display, 89-91 Data type
keyword abstract, 95 char, 12
Abstraction, 123, 125 double, 12
Aggregation, 126 Design patterns
Applets, 33 behavioral patterns, 169
Arguments passing, 2-3 bridge pattern
Array concept, 180
code compile, 22 implementation, 182-185
creation and display, 21 package explorer view, 182
declaration, 21 creational patterns, 168
default values, 23 observer patterns
size, 21 implementation, 172-174
Array-handling program, 25-26 package explorer view, 172
ASClI value finding, 12 publisher-subscriber model, 170
Association, 125 Ul, 170
Automatic type conversion, 12 prototype pattern
cloning operations, 176
B implementation, 178-179
package explorer view, 177
Boolean variable, 31 structural patterns, 168
Break vs continue, 18-19 Double datatype, 17
Dynamic binding, 123
C Dynamic method dispatch
analysis, 82
Class backward inheritance, 76
definition, 35 ChildFinalDemo, 80
functions/methods, 35 coding, 71, 75
instance variable hiding, 42 compilation error, 77-78
integers, 43-48 compile and run, 79
method creation, 188-190 covariant return type, 85
non-default constructor, 42-43 final method and vs. non-final method, 76-77
package statements, 187-188 method overloading, 85
recursive and non recursive, 191-192 modified program, 86-87
UML, 187 process, 76
variables and methods, 36-39 return type, 88
© Vaskaran Sarcar 2016 209

V. Sarcar, Interactive Object Oriented Programming in Java, DOI 10.1007/978-1-4842-2544-8

INDEX

Dynamic method dispatch (cont.)
runtime polymorphism, 74
static keyword, 83

E, F

Encapsulation, 123, 125

Errors, 143

Exceptions
ArithmeticException, 145, 153
ArrayIndexOutOfBoundsException,

147, 150-151, 153

catch block, 148
chained exceptions, 161, 165
checked and unchecked, 159-160
constructors, 165
definition, 143
errors, 143
implementation, 200, 202
inner exception, 161-162
keywords, 143
NullPointerException, 150-151, 166
printStackTrace() method, 162, 164
RuntimeException, 159
throw, 153-155, 158
try and finally, 149
UML class diagram, 200

G

Generalization/specialization, 129-130
Getter-setter, 123-124

H

Hexadecimal integer literal, 5
Hybrid inheritance, 54

,LJ,K L

if-else, 30

Inheritance, 123, 125
hierarchical, 52-53, 192-193
multilevel, 53-54, 194-196
package inheritance, 54-57
package oopsconcepts, 127-128
showMe(), 128
single, 51-52
special keyword-super, 58-63

Instance variable hiding, 42

Int and byte, 7

Integer array, 22

Integer, max and min values, 9

Interface
and abstract class, 105-106
default keyword, 106

210

default keyword, 107
dynamic method resolution, 97
Eclipse IDE, 111
Java documentation, 106
marker interface and
annotation, 104-105

methods, 98
multiple interfaces, 98, 100-102
myDefaultMethod(), 109-110
overriding default method, 107
tag/tagging, 102-103

Iteration statements, types, 30

main() method, 3
Message passing, 123
Method overriding, 72
Modulo operation, 17

N

NullPointerException, 25

(0

OOP

challenges/drawbacks, 130
Operator Precedence table, 13-14
Overloading

constructor overloading, 67-68

implementation, 65

main() method, 69-70

method overloading, 67

method signature, 65
Overriding

dynamic method dispatch (see Dynamic

method dispatch)
output, 72-74

PQ

Package
access modifiers, 122
creation, Eclipse IDE
file selection, 114
naming, 115
package explorer view, 116
packages implementation,
116-117, 119
import statements, 120-121
java.lang package, 120
syntax, 113
Pointers, 125
Polymorphism, 123
types, 125

INDEX

Portability, 12 nested static and non-static class, 134
Primitive types, 12 outer class, 135
Publisher-Subscriber model, 170 overload static methods, 138-140
static method, 133
R static variables initialization, 132-133
UML class diagram, 197
Realization, 129 static public void main(...), 2
Reserved keywords, 6 StringBuffer, 32-33
StringBuilder, 33
S T Switch statement’s expression, 28-29
’
Singleton design pattern, 78 Uuv
Static keyword ’
accessing static members, 132 Unicode, 12
constructors, 136
implementation, 197-198
inner class, 135 W’ X’ Y’ Z
invoke static methods, objects, 141 While and do...while loop, 30-31

211

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Preface: Review the core terms and start the journey
	Chapter 1: Test your skill in language fundamentals
	SET 1
	SET 2
	SET 3
	SET 4
	SET 5
	SET 6
	SET 7
	SET 8
	SET 9

	Chapter 2: Class
	A simple class demonstration
	Demonstration-1
	Output

	Demonstration-2
	Output
	Output

	Demonstration-3
	Output

	Demonstration-4
	Output

	Demonstration-5
	Output
	Quiz
	Output

	Demonstration-6
	Output
	Explanation

	Demonstration-7
	Output
	Analysis
	Assignment

	Chapter 3: Inheritance
	Demonstration-1
	Output

	Demonstration-2
	Output

	Demonstration-3
	A special keyword: super
	Output

	Demonstration-4
	Output

	Demonstration-5
	Demonstration-6
	Output
	Assignment

	Chapter 4: Overloading
	Demonstration-1
	Output

	Demonstration-2
	Output

	Demonstration-3
	Demonstration-4
	Output
	Analysis
	Quiz
	Output

	Chapter 5: Overriding
	Demonstration-1
	Output
	Analysis

	Demonstration-2
	Demonstration-3
	Output
	Dynamic Method Dispatch

	Demonstration-4
	Output
	Use of “final” keyword

	Demonstration-5
	Output
	Quiz
	Output

	Demonstration-6
	Output

	Demonstration-7
	Output
	Analysis
	Quiz
	Output

	Demonstration-8
	Output

	Demonstration-9
	Output
	Covariant return type

	Demonstration-10
	Output
	Analysis

	Demonstration-11
	Output
	Analysis

	Chapter 6: Abstract Class
	Demonstration-1
	A simple abstract class demo
	Output

	Demonstration-2
	Output

	Demonstration-3
	Output
	Quiz
	Output
	Quiz
	Output

	Chapter 7: Interface
	Demonstration-1
	Output

	Demonstration-2
	Demonstration-3
	Output

	Demonstration-4
	Output

	Demonstration-5
	Output
	Tagging Interface
	Demonstration-Marker Interface and Annotation
	Output

	Demonstration-6
	Output

	Demonstration-7
	Output

	Demonstration-8
	Output

	Demonstration-9
	Output
	Assignment

	Chapter 8: Package
	Demonstration-1
	Output

	Demonstration-2
	Output

	Chapter 9: OOPs Concepts Revisited
	Demonstration-1
	Output
	Analysis

	Demonstration-2
	Output
	Generalization demo
	Realization demo

	Chapter 10: Use of static keyword
	Demonstration-1
	Output
	Analysis

	Demonstration-2
	Output
	Analysis

	Demonstration-3
	Output
	Quiz
	Output

	Demonstration-4
	Output

	Demonstration-5
	Output
	Output

	Demonstration-6
	Output
	Analysis
	Quiz
	Output
	Explanation
	Assignment

	Chapter 11: Exceptions
	Demonstration-1
	Output

	Demonstration-2
	Output

	Demonstration-2A
	Output

	Demonstration-2B
	Output

	Demonstration-2C
	Output

	Demonstration-3
	Output

	Demonstration-4
	Output
	Quiz

	Demonstration-5
	Output

	Demonstration-6
	Output

	Discussion on Chained Exception
	Demonstration-7
	Output

	Demonstration-8
	Output
	Output

	Assignment

	Chapter 12: An introduction to design patterns
	Creational patterns
	Structural Patterns
	Behavioral Patterns
	Observer Pattern
	Concept
	Real life Example
	Computer world Example
	Illustration
	Package Explorer view
	Implementation
	Output

	Prototype Pattern
	Concept
	Real life Example
	Computer world Example
	Illustration
	Package Explorer view
	Implementation
	Output

	Bridge Pattern
	Concept
	Real life Example
	Computer world Example
	Illustration
	Package Explorer view
	Implementation
	Output

	Appendix A: Solution to the Assignments
	Class
	Assignment 1
	Implementation
	Output
	Assignment 2
	Implementation
	Output
	Assignment 3
	Implementation
	Output

	Inheritance
	Assignment 1
	Implementation
	Output
	Assignment 2
	Implementation
	Output

	Use of static keyword
	Assignment
	Implementation
	Output

	Exceptions
	Assignment
	Implementation
	Output
	Discussion

	Appendix B: Frequently asked questions
	Appendix C: Some Useful Resources
	Index

