THE EXPERT’S VOICE® IN JAVA

Java Design
Patterns

A Tour with 23 Gang of Four Design
Patterns in Java

Vaskaran Sarcar

ApPress’

Java Design Patterns

Vaskaran Sarcar

APIess®

Java Design Patterns: A tour of 23 gang of four design patterns in Java
Copyright © 2016 by Vaskaran Sarcar

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-1801-3
ISBN-13 (electronic): 978-1-4842-1802-0

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr

Lead Editor: Pramila Balan

Technical Reviewers: Anupam Chakraborty and Shekar Maravi

Editorial Board: Steve Anglin, Pramila Balan, Louise Corrigan, Jonathan Gennick, Robert Hutchinson,
Celestin Suresh John, Michelle Lowman, James Markham, Susan McDermott, Matthew Moodie,
Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Prachi Mehta

Copy Editor: Karen Jameson

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Nature, 233 Spring Street, 6th Floor, New York,

NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit

www. springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales-eBook Licensing web page at waw.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to
readers at www.apress.com/9781484218013. For detailed information about how to locate your book’s source
code, go to www.apress.com/source-code/. Readers can also access source code at SpringerLink in the
Supplementary Material section for each chapter.

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484218013
www.apress.com/source-code/

Dedicated to
Almighty GOD
My Family
and
The Gang of Four

You are my inspiration.

Contents at a Glance

About the AUNOFccouusemmmsnnmmssnmsssssmssssssssssssssssnsssssnsssssnnesssnnssssnnesssnnsssnnnnsssnnnsss xvii
AcknOWIedgmENtS.......ccuurermmsssssssnsnnmmmmssssssssssssssssssssssssssssnsnssssssssssssnnnnnnnssssssssssnnnnnns Xix
o £ T XXi
LG T T 11 XXiii
Chapter 1: Introductioncccuineemmmmmnnmnnnsssss s 1
Chapter 2: Observer Patternsccccuneemmmnssssnnmmnssssnmmsssssnsmsssssnmsssssssssssssssenns 3
Chapter 3: Singleton Patterns.........cccuemmmmssmmsssnnmsssssmsssssmsssssssssnsssssssssssnsssssnnnsssns 17
Chapter 4: Proxy Patternsccuceeemmmmmnmnmsssssssssssmmmmmmsssssssssssssssssssssssssssssssssssssnns 23
Chapter 5: Decorator Patterns.......cccccinmimmnnmsssssnnnmmnmmmmsssssssnnsnsssssssssssnnnsnnns 27
Chapter 6: Template Method Patterns............cccccnimmnsmnissnmsmnsmmssns s 33
Chapter 7: Strategy Patterns (Or, Policy Patterns).......ccccusemmrsssssnnsssssssnnsssssssnnnns 39
Chapter 8: Adapter Patterns.......cccccmmmmmnnmmnmsssssssnmmmmmmssssssssns s 47
Chapter 9: Command Patterns.........cccccusmmmmmnssnmnmmnissssnmmmssssmmmssssnmssssssnssssn 53
Chapter 10: Iterator Patterns..........ccccnnnemmmnnnsesnnnmnssssnmmmssssnmmssssn s 59
Chapter 11: Facade Patternscccccemnnmmnmmmsssssssnnnmmsmsssssssssssssssssssssssssssssssssssssnns 67
Chapter 12: Factory Method Patterns.........cccsccmmmnnssmmmmmmssssssnmsssssssnmssssssssssssssnsnns 73
Chapter 13: Memento Patterns........ccccuemmmmmnssennmmmsssssnnmmsssssssssssssssssssssssssssssssnnnes 77
Chapter 14: State Patternsccccemmmnnnnnmmmssssnnnnmnssss .- 83
Chapter 15: Builder Patiernsccccccemmmmmmssssssssssnmsmmssnns 89
Chapter 16: Flyweight Patterns.........cccursmmmmnsemmnmmsssssnnmmsssssssmsssssssssssssssssssssssns 97

CONTENTS AT A GLANCE

Chapter 17: Abstract Factory Patterns........ccccmmnnnnnmnnnsssssnnnnnnmmmssssssssnnssssnnes 109
Chapter 18: Mediator Patternscccucmmmnnsenmmmmssssnmmmssssnmmssssssmsssssssssssnnn 115
Chapter 19: Prototype Patterns.........ccccmmmnnemmnnnnsssnnmnmsssnmmsssssssssssssesssssnn 123
Chapter 20: Chain of Responsibility Patterns.........cccoummmmmmmmnmnmmmmmssssssnmmm. 129
Chapter 21: Composite Patterns........cc.ucccimmnsmmnmmmssssnmmmssssnmmsssssnmsssssnmsssnnn 135
Chapter 22: Bridge Patterns (Or Handle/Body Patterns)cc.cccusenssssnnssssansas 141
Chapter 23: Visitor Patternscccccemmmmmmmmmmsssssssmmmmsmsmssssssssssssssssssssssssssssssssnns 149
Chapter 24: Interpreter Patiernsccccnnneemmmmmnnnnmmnssssssssmnmnssssssssssmmmn.. 155
ApPPENndiX A: FAQ ..cccceerermssnnmmmmsssssnsmsssnnssssssnnnssssssnnnnsssss 163
INA@X...ciiiisnmnnrssssnnnnnssssnnnssssssnnnssssssnnnssssssnnnsssssnnnnsssssnnnssnsssnnnnsnsssnnnnnssssnnnnnnsssnnnnnnnss 169

vi

Contents

About the AUROFc.ccccmmismnmnsesnssss s n s nnn s Xvii
ACKNOWIEdgMENTS....cceriemssnsssansssassssnsssassssassssnsssanssssssssnsssassssnssssnssssnsssnnsssnsnsanssans Xix
Preface ...ccccuniemmmissnmmsssnmmsssnmmsssnsmsssnnssssnssssansnsssnnssssnsssssnnssssnnssssnnssssnnssssnnnsssnnnnssnnnnns XXi
(o 11 11 XXiii
Chapter 1: Introductioncccccciieemmmnisessmmnssssmmmssssnmssss . 1
Chapter 2: Observer Patternscccccunmmmmmnsssnnmmmissssnmmssssnmssssssmssssssnssssssnnns 3
0] 1 1T 0 S 3
Real-Life EXAMPIEccocercercerererere s s e e s e s snssns s sns s snssnsssnsnnnes 3
Computer World EXamPIE.......ccoeeeeeeeecceseesee e ssessessessesssssesssssssssssssnsssssssssssssssssnnsns 3
173 (10] 3 3
UML Class Didgramcccuceeerernsesesnsessssessssssessssesessssesssssssessssssssssssessssssssssssesssnsssens 4
Package EXPIOTEr VIBWccccvcerceririrsesses st se et se st snssnssnssn s snssns s s s 5
1] 0 T4 T=T 1 7 L0 5
011011 P SSRSRT 7
1 0 TSP 7
UML ClasS Di@gramccceveerererernrsesssssessesssassssssssassssssssassns 8
Package EXPIOIEr VIBWccucvcercerseresserses s se s s s e ssns s s s s snssnsnsssssnnnnes 8
IMPIEMENTALION ... s 9
0 11
ASSIGNMENT ... e r e a e ae s r e sr e en e er e sr e resresnenrenrnnnnnnns 11

vii

CONTENTS

UML ClaSS Di@gramccooeeereressessesessessessssssssssssesssens 11
IMPIEMENTALION ... 12
QUEPUL....ce e s e s n e 15
Chapter 3: Singleton Patterns.........cccccunemmmnnnsemmnmmnsssnnmmssssnmsssnnsssssn———ms 17
0] 1 (1T 0 SRS 17
Real-Life EXAMPIEcoeeeeeeeceereeree e see e sse s s s s sassae s saesassas s sn e sassassnssnssnssnesnes 17
Computer WOrld EXamPIEccveveererererereessessessesssssesssssssassassssssssssssssassssssssssssssassssnns 17
11Ty 1o 17
UML ClaSS DI@gramcceresrrreressesessssesssensasens 18
Package EXPIOrer VIBWcccvcecirneiierre s sses s ssse s s s ssne e sne s snsssessnessnssnessnesnesn 18
IMPIEMENTALION ... e 18
10 19
NOTE ... 20
Chapter 4: Proxy Patternsccceeeesmmmmmmmmmmssssssssnmsssssssssssssssssssssssssssssssssssssssnns 23
00] T) RSP SRR 23
Real—Life EXAMPIE........ccceeeeeeeere e s s e s sne s s nesn s s nesn e nesn s snssn e nnennennas 23
Computer World EXAmPIE.......c.ceeverrerieererieererseessesssessessssssessssssssssssssssssssssssssssessssssesaes 23
HIUSEALION ... e 23
UML ClasS Di@gramccceeeeereererersessessessessessessessesssees 24
PACKaQge EXPIOTEI VIBWcoueeeereereereerseraesaesseseessesasssesasssssassassassassssssssssssssssssssssssssasssssens 24
IMPIEMENTALION ... n e nn e 25
010 OSSR 26
NOTE ... ————————————————— 26
Chapter 5: Decorator Patterns.........ccccuemmmmnnsemnmmmmsssnmmmssssmmmsssssmsssssssanm 27
1] 10T) 27
Real-Life EXAMPIEcceeeeeeeeeceecee e s sse e s se s snesnesne s sns s snesnssnssnssnsnnssnannas 27
Computer World EXamPIEc.coeeeverererereeseesse e s ssessssassssssssssssssssssssssssssssssssssssssnns 27
LT3 (10] 27

viii

CONTENTS

UML ClaSS Di@gramccooeeereressessesessessessssssssssssesssens 28
PACKaQge EXPIOTEI VIBWc.ceueveereereereerseraesaessesaessesassssssssssssssassassasssssasssssssssssssssssssssssssses 29
IMPIEMENTALION ... s 29
0 1] SRS 31
NOTE ... —————————— 31
Chapter 6: Template Method Patternsccccccnmmnnssemmmmnnssessmmmsssnmmmssssssssssnnn 33
0] 1 0T | S 33
Real-Life EXAMPIEcceeeeeeeeeeeeecee e sse s s sse s s sne s sne s snssnesnesnssnssnssnsnnssnennas 33
Computer WOrld EXamPIE.......ccoeeererererereeseesse e e sse e sses 33
HIUSEIALION ... 33
UML ClaSS Di@gramcccoeeeeererreressessessessesssssesssanses 34
PACKaQge EXPIOTEI VIBWccuereereereereersessesaessessessesaesassssssssassassassassssssssssssssssssssssssssssssssens 35
IMPIEMENTALION ... r e r e sr e n e nn e nnens 35
010 OSSR 37
NOTE ... ———————————————— 37
Chapter 7: Strategy Patterns (Or, Policy Patterns)........occeeemmnssnssssssssssnnnnnsssssssnns 39
] 10T) 39
Real—Life EXAMPIE.......cccceeeeererrcerersesse e ssessesse e sse e ssessessssnsssssnsssssnssnssnssnsssssnsssssnsssnnnes 39
Computer World EXamPI@.......c.coeeeeeeeresesee e sss e sssssssssssesssssssssssssssssssssssssssssssens 39
LT3 (10] 39
UML ClasS Di@gramccceeerermseserensesssessessssessesessesssssssesssssssessssesssssssessssssssssssesssnsssens 40
PaCKaQge EXPIOTEr VIBWccueeeeeeereereersesse e ssesnessessessesssssessssnsssssassssssssssssssssssssssssssssssnns 41
10 0 T4 T=T 17 L0 41
010 SRS 44
0 45

ix

CONTENTS

Chapter 8: Adapter Patterns.......ccccmmminnimmnmsssssnnnnmsmmssssssssns s 47
00] T) SRR PPSRR 47
Real—Life EXAMPIE.........ccocrirircercerer st n s sn s nn s 47
Computer World EXAmPIE.......cccoevverrerieererieeresssessssssessssssesessssssssssssssssssssssssssssssssssessees 47
HIUSTIALION ... 47
UML ClaSS DI@gramccoceerrierenseressssessessssessnsssens 48
PacKage EXPIOTEr VIEWcvcevverrerierersessesses s st e se e s ses e sessnsssssas s s snsssssnssassnssssnns 49
IMPIEMENTALION ... e sr e s 49
010 SRS 50
NOTE ...t e 51
HIUSTIALION ... 51
010 S SSSSS 52
Chapter 9: Command Patterns.........ccccusemmmmmsssssmmmmsssssnmmmsssssmmssssssnmssssssssssssnnns 53
0] 1 (1T S S S SS 53
Real-Life EXAMPIEoocereceee e sn e s sne e s nne 53
Computer World EXamPI@.......ccoeeeeeeeeeresee e ssesssssessessessssssssssnssssssssssssssssssssnes 53
LT3 (10§ 53
UML ClaSS Di@gramccooeeererersesesessessssssessssessessssesssssssessssssssssssessssssssssssssssssssesssnsssens 54
Package EXPIOTEr VIBWcccccvcercerierersis s ss s se s s s s s s s s snssnssnssnannas 55
100 0 T 11 T=T 17 L0 o 55
OQUEPUL..c.ce e a e s a e a e e n e e ne e ne s 57
1 0 PR 57
Chapter 10: Iterator Patterns..........ccccnnnemnmnnnsemnnmmssssssnmmssssnmnsssssssss s 59
0] 1 (1T 0 OSSR 59
Real-Life EXAMPIEcccecerceereereeriesresee e seesaesssessessessesssesssssasssessssssssssesssssssssssssessnesaesns 59
Computer World EXamPIE........cccceeeericrecirerncre e se s ssssessessssessssensens 59
11Ty Lo TR 59

UML ClasS Di@gramcccoevererererersessessssssssessesssnes 60

CONTENTS

Package EXPIOTEr VIBWcccvcercerieriressenses s sessnssn s s e s s s snsnnas 61
100 0 T4 T=T 17 L0 o 61
OQUEPUL....c e e s e e R s n e R e ne e nean 65
1 0 PP 65
Chapter 11: Facade Patternscccoummsemnnmsssssssnmssssssnnssssssssssssssssssssssssnsssssssnnnnss 67
0] 1 (1T 0 | SRS 67
Real-Life EXAMPIEocecerieeririeerses e resssessessesssssessessssssessessssssessnssasssssssssssssanesassnnesanes 67
Computer World EXamPI@........coeeeeeeereresre e sse e sse e sssssessesssssssssssssssssssssssssssssssssnns 67
HIUSTIALION ... n s se s nnenn s 67
UML Class Di@gramcceceeereererersessersesssssessssssssssssssssssssssassassasssssassssssssssssssssssssssssssnes 68
Package EXPIOrEr VIBWccccvcercernerserses s ss s se s s s s s s snssnssnssnnnnas 68
IMPIEMENTALION ... s 69
0 1] S 7
1 0 71
Chapter 12: Factory Method Patterns.........cccusccemmmnssenmnmmssssnssmsssssssssssssssssssssssnnns 73
0] 1 (1T 0 | RS SSSSSSS 73
Real-Life EXAMPIEcoeeueeeeceereeree e sae e saesse s s sassassaesae s sas s s snssassnssassnssnssnes 73
Computer WOrld EXamPIEcccvevererererereeseessessessessessessssassasssssssssssssssssssssssssssssasssssens 73
HIUSEFALION ... 73
UML ClasS Di@gramcccceeererererersessessessesssens 74
Package EXPIOrEr VIBWccucvcereersmssesssssessessessss s ssssesssssessessssssssssssssssssssssssssssssssssssnsens 74
IMPIEMENTALION ... e 75
101 76
1 0 76
Chapter 13: Memento Patierns.......ccccimmmmmmmmssmssnmnmmmmmmssssssssnssssssssssssssssssssssnnns 77
00] T) PR PRRRR 77
Real-Life EXAMPIEcc.eeeeeeeeeeecee e see e s s s e s sne s snesnssnssnesnesnssn e snesnssnesnnnnas 77
Computer World EXAmPIE.......c.cevveererierrerieererseessesssessesssessesssessessssssssssssssssssssssssssssessees 77

xi

CONTENTS

HIUSTIALION ...ttt a s e nn s nnen s 77
UML ClasS Di@gramcccceeererereersessessesssssessesssssssssssssssssssasssssssssssasssssssssssssssssssssssssnes 78
PaCKage EXPIOTEr VIBWccceeeeeerernersessessessessessessessesssanns 79
IMPIEMENTALION ... s 79
0 1] S 81
1 81
Chapter 14: State Patternsccccccmnnnnesnnnnnsesnnmmssssnmmsssssensssssessssss s sasnn 83
0] 1 (1T 0 RS S S SSSS 83
Real-Life EXAMPIEcoeeueeeererrerrerrere e sse s sse s s saesne s sasssssas s snessesassnssnssnssnssnes 83
Computer WOrld EXamPIEccoerererererereessessessesssssssssssssassassssssssssssssssssssssssssassasssssens 83
1Ty 1o 83
UML ClaSS Di@gramcccecevererereressessessessesssens 84
PaCKage EXPIOTEr VIBWcceeeereerrerressessessessessessessessssssssessssssssssssssssssssssssssssssssssssssnssanens 85
IMPIEMENTALION ... s 85
101 87
0 87
Chapter 15: Builder Patiernsccccceermimmmmmmmsssssssnsmmsmmmsssssssssssssssssssssssssssssssssnns 89
00] T) PRSP RRR 89
Real-Life EXAMPIEcceeeeeeeereecee e sse e s s s snesnesaesne s snssnssnesnssnssn s snssnnnnas 89
Computer World EXAmPIE.......c.ccevverrerierrerieererseesesssessesssessessssssessssssssssssssssssssssssssssesaees 89
HIUSEFALION ... 89
UML ClasS Di@gramccceeeeererrerersessessessessessessessesssesens 90
PACKaQge EXPIOTEI VIBWc.cvuereereereerserseraesaessesssssesassssssssssssssassassassssssssasssssssssssssssssssssssns 91
IMPIEMENTALION ... e 92
010 SRS 94
NOTE ... ————————————— 95

xii

CONTENTS

Chapter 16: Flyweight Patterns.........cccccccmnnnemmmmnnssssnmmmssssnmnssssnmsssssssssssssnn 97
00] T) PRSP SRR 97
Real-Life EXAMPIEccocercerirercer ettt nn e nn s 97
Computer World EXAMPIE.......c.ceeverrerieererieeresssessesssessssssessessssssssssssssssssssssssssssssssssesaes 97
HIUSEIALION ... s 97
UML ClaSS DI@gramccoceeerieressesessssesssssssesssssssessens 98
PacKage EXPIOTEr VIEWccvcevververiereresserses s ses e e s e s sss e ssssnssnssnssss s sssssssnssassnssnsnes 98
IMPIEMENTALION ... e nan 99
010 SRS 102
Improvement to the Program ... ene s 102
UML ClaSS Di@gramcccceeeeererreressessessessessessessesssansans 103
Package EXPIOrEr VIBWcuccvueeeierresessessssessessssessssesssssssesssssssssssssssssssssssssssssnsssesssnsens 104
IMPIEMENTALION ... ———————— 104
010 SRS 107
NOTE ...t —————————————— 107
Chapter 17: Abstract Factory Patterns.........ccccceimmnmnnssssssssssnnnnnsssssssssssssnssssssssnns 109
] 10T) 109
Real-Life EXAMPIEccocercercercerserer s e s s se e e s s snssnssnssnssnssnssnssnnnnnns 109
Computer World EXamPIE........coeeeeeeereresresresressessessessesssssssssssssssssssssssssssssssssssssssnsnns 109
LT3 (10] 109
UML ClasS Diagramccccecereerrierenesessssesessssessssesessssesssssssessssssssssssesssssssessssssssssssenns 110
Package EXPIOrEr VIBWccccvcerceriersisserses s ses s s sn s e ses s e e s snssnssnssnsnnns 111
1 0111 T=T 1 7 L0 o 111
OQUEPUL..c..c e e a e e R e n e e Re e s 114
1 0 SR 114

xiii

CONTENTS

Chapter 18: Mediator Patternscccccivimmmmmsssssnmnnmmmmmsssssssnnnmssssssmmn. 115
0] T 0 RO SRS 115
Real-Life EXAMPIEcocereeririerser et se e sn s sn s sn s sn s sn e nnnnns 115
Computer World EXAmPIE........cocevveereerieerierieesesssesesssssssssessssssessssssssssssssssssssssssssnessenns 115
HIUSEIALION ... s s 116
UML ClaSS DI@gramccocueereresseressssessnssssessssessens 116
PacKage EXPIOTEr VIEWccvververrerrirserseressessessesses e s sessessessessesssssesssssssssssssssssasssssssnnnns 117
IMPIEMENTALION ... e sr e r e sn e sn e nn e nnenn 117
0 1] OSSR 121
NOTE ...t 121
Chapter 19: Prototype Patterns.........ccccccinnnmmmmnmnssmnmmnnsssnmmssssnmsssssnssssnn 123
0] 1 0T 0 | SR 123
Real-Life EXAMPIEccocercerirercer st sn s sn s sn s sn s nn s sn s nnennenn 123
Computer World EXamPIE.......ccoeeeeererreressessesse e sssssessnns 123
HIUSEFALION ... ————————— 124
UML ClaSS Di@gramccceeeeererrerressessessessessessesssans 124
Package EXPIOTEr VIBWccucevververiersirsires s e e e e e s e sss e s s snssnssssssssssssssssnnnns 125
IMPIEMENTALION ... r e sr s sr e n e nn e n e snennnnnn 125
0 1] SRS 127
NOTE ...t ——————————————————— 128
Chapter 20: Chain of Responsibility Patterns.........cccounmemmmmmmnnnmnnssssssssnnseesmn. 129
] 10T) 129
Real-Life EXAMPIEccoceecerercereres s se s se e e sn s snssnssnssnssns s nnnnns 129
Computer World EXamPIE.......ccoeeeeerererernessesee e ssessesssnns 129
1173 (10] 130
UML ClaSS Di@gramccccecereerriernenesessssesesssessssesessssesssssssessssssssssssesssssssessssssssssssenns 130

xiv

CONTENTS

PacKage EXPIOTEr VIBWccoceeurereenrseressessesssesssssssesessessessssssssssssssssssssssssssssssssssssnsesns 131
IMPIEMENTALION ... e n e n e 131
0 1] | S SSSSSSSSPS 134
0 134
Chapter 21: Composite Patterns........cccccmmmsemmmmmssssnmmmssssmmmssssnmsssssnmsssnn 135
0] 1 (1T | OSSR 135
Real-Life EXAMPIEccooverercerce et ne e ne 135
Computer World EXamPI@........coeeeeeeereressesressecsessessesssssessssssssssssssssssssssssssssssssssssnsans 135
11Ty Lo TSR 135
UML Class Di@gramccceerererereerenrsessessassssssssssssnns 136
PaCKage EXPIOTEr VIBWccceeereererrersessessessessessessessessessnsans 137
0 0T 11 T=T 7 L0 o 137
01011 SRS 140
T 140
Chapter 22: Bridge Patterns (Or Handle/Body Patterns)c.cccenrsssnnnnsssssnnnnas 141
0] 1 (1T | OSSOSO 141
Real-Life EXAMPIEccevercerieere s s vessessesssessssssessessaesssssessesssssessessssssssssssnnessesns 141
Computer World EXamPI@.........cocceeeriernircrrcse e s se s sne s s 141
11Ty Lo S 142
UML ClaSS Di@gramcccceeererereereessessessessesssnns 142
PaCKage EXPIOTEr VIBWcccceeereererrersessessessessessessansans 143
IMPIEMENTALION ... e sr e n e nrenn 143
01 146
T 146

XV

CONTENTS

Chapter 23: Visitor Patternscccccummmmmmmmmsssssssnmmmsmmmssssssssssssssssssssssssssssssssnns 149
0] T 0 RO SRS 149
Real-Life EXAMPIEcocereeririerser et se e sn s sn s sn s sn s sn e nnnnns 149
Computer World EXAmPIE........cocevveereerieerierieesesssesesssssssssessssssessssssssssssssssssssssssssnessenns 149
HIUSEIALION ... s s 149
UML ClaSS DI@gramccocueereresseressssessnssssessssessens 150
PacKage EXPIOTEr VIEWccvververrerrirserseressessessesses e s sessessessessesssssesssssssssssssssssasssssssnnnns 151
IMPIEMENTALION ... e sr e r e sn e sn e nn e nnenn 151
0 1] OSSR 153
NOTE ...t 153
Chapter 24: Interpreter Patternscccivnnemnmnnnsesnmmnssnnmmsssssmssssnsan—ms 155
0] 1 0T 0 | SR 155
Real—Life EXAMPIE.........ccocririrsircir s sn e sn s s sn s snennenn 155
Computer World EXamPIE.......ccoeeeeererreressessesse e sssssessnns 155
HIUSEFALION ... ————————— 155
UML ClaSS Di@gramccceeeeererrerressessessessessessesssans 156
Package EXPIOTEr VIBWccucevververiersirsires s e e e e e s e sss e s s snssnssssssssssssssssnnnns 157
IMPIEMENTALION ... r e sr s sr e n e nn e n e snennnnnn 158
0 1] SRS 161
NOTE ...t ——————————————————— 161
AppendiX A: FAQcooociimmmnsnsssmmmmmmmsssssssssssmmmmssssssssssssssssessssssssssssnnssssssssssnnnnnns 163
RETEIEBINCEScvcererce et 164
INO@X . uueeiissmnnsssnnnsssnnnsssnnnsssanssssanssssanssssansssssnnssssnnssssnnssssnnssssnnssssnnssssnnssssnnssssnnnsssnnss 169

xvi

About the Author

Vaskaran Sarcar, ME (Software Engineering), MCA, B Sc. (Math) is a Senior Software Engineer at Hewlett
Packard India Software Operation Pvt. Ltd. He has been working in the HP India PPS R&D Hub since
August 2009. He is an alumnus of prestigious institutions like Jadavpur University, Kolkata, WB, Vidyasagar
University, Midnapore, WB and Presidency College, Kolkata, WB, Jodhpur Park Boys School, Kolkata, WB
and Ramakrishna Mission Vidyalaya, Narendrapur, Kolkata, WB. He is also the author of the following
books: Design Patterns in C#, Operating System: Computer Science Interview Series, C# Basics: Test Your Skill,
and Easy Manifestation. He devoted his early years (2005-2007) to teaching in various engineering colleges.
Later he received the MHRD-GATE Scholarship (India). Reading and learning new things are passions for
him. You can reach him at: vaskaran@rediffmail.com.

xvii

mailto:vaskaran@rediffmail.com

Acknowledgments

I offer sincere thanks to my family, my friends, my great teachers, my publisher and to everyone who

supported this project directly or indirectly. Though it is my book, I believe that it was only with the help of
these extraordinary people that I was able to complete this work. Again, thanks to those who helped me to

fulfill my desire to help people.

Xix

Preface

Welcome to the journey. It is my privilege to present Java Design Patterns. Before jumping into the topic,
I want to highlight a few points about the topic and contents:

#1. You are an intelligent person. You have chosen a topic that can assist you throughout your career. If
you are a developer/programmer, you need these concepts. If you are an architect at a software organization,
you need these concepts. If you are a college student, you need these concepts—not only to achieve good
grades but also to enter into the corporate world. Even if you are a tester who needs to take care of the white
box testing or simply to know about the code paths of the product, these concepts will help you a lot.

#2. This book is written in Java, but the focus is not on the language construct of Java. I has made the
examples simple in such a way that if you are familiar with any other popular language (C#, C++, etc.) you
can still easily grasp the concept. Except in a few special places, I have made his best effort to follow the
naming conventions used in Java.

#3. There are many books on this topic or a related topic. Then why was I interested in adding a new one
in the same area? The true and simple answer for this question is: I found that the materials on this topic are
scattered. In most cases, many of those examples are unnecessarily big and complex. I always like simple
examples. He believes that anyone can grasp an idea with simple examples first. And when the concept is
clear, readers are motivated to delve deeper. I believe that this book scores high in this area. The examples
used here are simple. I didn’t want to make the book fat, but he did want to make it concise and simple. He
wants to grow interest about this topic in your mind—so that, you can also motivate yourself to continue the
journey and to dig further with the concepts in your professional fields.

#4. Each of the topics is divided into seven parts—the definition, the core concept, a real-life example, a
computer/coding world example, a UML class diagram, a sample program with a high-level view in Package
Explorer and output of the program. So, even before you enter into the coding parts, you will be able to form
some impression in your mind. These examples are chosen in such a way that you will be able to get back to
the core concepts with these examples whenever you need to do so.

#5. Please remember that you have just started the journey. You have to consistently think about these
concepts and try to write codes, and only then will you master this area. I was also involved (and am still
involved!) in the journey. The sources/references are only a small part of this journey. I went through a large
number of materials and ultimately he picked up those which made his concept clearer. So, he is grateful to
the authors of those sources because those resources helped him ultimately to clear his doubts and increase his
interest in the topic. I am also grateful to his family and friends for their continuous help and support.

#6. Though the patterns described here are broadly classified into three categories—creational,
structural, and behavioral—all similar patterns are not grouped together here, so before you start with the
examples, concepts, and definition, you can test your understanding—uwhich category is your pattern falling
under. Also, you can start with any pattern you like.

#7. No book can be completed without the reader’s feedback and support. So, please share your
comments and feedback to truly complete this book and enhance my work in the future.

#8. Always check for the most updated version available in the market. I have decided to highlight the
key changes at the beginning of the book. So that you can also update your copy accordingly whenever a
new update appears in this book.

—Vaskaran Sarcar

xxi

Key Points

#1. We need to know design patterns to find solutions for frequently occurring problems. And we want to
reuse these solutions whenever we face a similar situation in the future.

#2. These are one kind of template to address solutions in many different situations.

#3. In other words, these are the descriptions of how different objects and their respective classes solve a
design problem in a specific context.

#4. Here we have discussed 23 design patterns as outlined by the Gang of Four. These patterns can be
classified into three major categories:

A. Creational Patterns:

These patterns mainly deal with the instantiation process. Here we make the systems
independent from how their objects are created, collected, or represented. The
following five patterns fall into this category:

Singleton Pattern
Abstract Factory Pattern
Prototype Pattern
Factory Method Pattern
Builder Pattern

B. Structural Patterns:

Here we focus on how objects and classes are associated or can be composed to
make relatively large structures. Inheritance mechanisms are mostly used to combine
interfaces or implementations. The following seven patterns fall into this category:

Proxy Pattern
Flyweight Pattern
Bridge Pattern
Facade Pattern
Decorator Pattern
Adapter Pattern

Composite Pattern

xxiii

KEY POINTS

C. Behavioral Patterns:

Here our concentration is on algorithms and the assignment of the critical
responsibilities among the objects. We also need to focus on the communication
between them. We need to take a closer look at the way those objects are
interconnected. The following 11 patterns fall into this category.

Observer Pattern
Template Method Pattern
Command Pattern
Iterator Pattern

State Pattern

Mediator Pattern
Strategy Pattern

Chain of Responsibility Pattern
Visitor Pattern
Interpreter Pattern
Memento Pattern

#5. Here you can start with any pattern you like. I have chosen the simplest examples for your easy
understanding. But you must think of the topic, practice more, try to link with other problems, and then
ultimately keep doing the code. This process will help you, ultimately, to master the subject.

XXiv

CHAPTER 1

Introduction

Over a period of time, software engineers were facing a common problem during the development of
various software programs. There were no standards to instruct them how to design and proceed. The issue
became significant when a new member (experienced or unexperienced; it does not matter) joined the team
and was assigned to do something from scratch or to modify something in the existing product. As already
mentioned, since there were no standards, it took a lot of effort to become familiar with the existing product.
Design Patterns simply addresses this issue and makes a common platform for all developers. We shall
remember that these patterns were intended to be applied in object-oriented designs with the intention of reuse.

In 1994-95, four Is—Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides—published Design
Patterns—Elements of Reusable Object-Oriented Software (Addison-Wesley, 1995) in which they initiated the
concept of design patterns for software development. These Is became known as the Gang of Four (GoF).
They introduced 23 patterns which were developed by experienced software engineers over a very long
period of time. As a result, now if any new member joins a development team and he knows that the new
system is following some specific design patterns, he can actively participate in the development process
with the other members of the team within a very short period of time.

The first concept of real-life design pattern came from the building architect Christopher Alexander.
In his experience he came to understand some common problems. Then he tried to address those issues
with related solutions (for building design) in a uniform manner. People believe that the software industry
grasped those concepts because software engineers can also relate their product applications with these
building applications.

Each pattern describes a problem which occurs over and over again in our environment,
and then describes the core of the solution to that problem, in such a way that you can use
this solution a million times over, without ever doing it the same way twice.

—Christopher Alexander

GoF assures us that though the patterns were described for buildings and towns, the same concepts can
be applied for the patterns in object-oriented design. We can substitute the original concepts of walls and
doors with objects and interfaces. The common thing in both is that at the core, both types of patterns are
solution to problems in some context.

In 1995 the original concepts were discussed with C++. Sun Microsystems released its first public
implementation—Java 1.0—in 1995 and then it went through various changes. So, the key point is: Java
was relatively new at that time. In this book, we'll try to examine these core concepts with Java. The book is
written in Java, but still, if you are familiar with any other popular programming languages (C#, C++ etc.),
you can also grasp the concept very easily because I has made as his main focus the design patterns and how
we can implement the concept with the basic Java language construct. Again: he has chosen simple, easy-to-
remember examples to help you to develop these concepts easily.

CHAPTER 2

Observer Patterns

GoF Definition: Define a one-to-many dependency between objects so that when one object changes state,
all its dependents are notified and updated automatically.

Concept

In this pattern, there are many observers (objects) which are observing a particular subject (object).
Observers are basically interested and want to be notified when there is a change made inside that subject.
So, they register themselves to that subject. When they lose interest in the subject they simply unregister
from the subject. Sometimes this model is also referred to as the Publisher-Subscriber model.

Real-Life Example

We can think about a celebrity who has many fans. Each of these fans wants to get all the latest updates of
his/her favorite celebrity. So, he/she can follow the celebrity as long as his/her interest persists. When he
loses interest, he simply stops following that celebrity. Here we can think of the fan as an observer and the
celebrity as a subject.

Computer World Example

In the world of computer science, consider a simple Ul-based example, where this Ul is connected with
some database (or business logic). A user can execute some query through that UI and after searching the
database, the result is reflected back in the UL In most of the cases we segregate the UI with the database. If
a change occurs in the database, the UI should be notified so that it can update its display according to the
change.

lllustration

Now let us directly enter into our simple example. Here I have created one observer (though you can create
more) and one subject. The subject maintains a list for all of its observers (though here we have only one
for simplicity). Our observer here wants to be notified when the flag value changes in the subject. With the
output, you will discover that the observer is getting the notifications when the flag value changed to 5 or
25. But there is no notification when the flag value changed to 50 because by this time the observer has
unregistered himself from the subject.

CHAPTER 2 © OBSERVER PATTERNS

UML Class Diagram

<<Java Class>>

(9 ObserverPatternEx
observer pattern.demo

<<Java Class>>
(9 Subject
observer.pattern.demo

;°0bserverPatternEx()
@ main(String[]):void

a _flag: int

~pbserverList

<<Java Class>>

(9 Observer
observer.pattern.demo

& Subject()

@ getFlag():int

@ setFlag(int).void

© register(Observer).void
@ unregister(Observer):void

@ notifyObservers().void

v

<<Java Interface>>

€ ISubject

observer. pattern.demo

fObserver()
@ update():void

@ register(Observer):.void
@ unregister(Observer):void
@ notifyObservers().void

CHAPTER 2

Package Explorer view

High-level structure of the parts of the program is as follows:

4 &7 ObserverPattern
4 3 observer.pattern.demo
4 |J] ObserverPatternEx.java
4 €} ISubject
@' notifyObservers() : void
@' register(Observer) : void
Ty unregister(Observer) : void
4 & Observer
@ update() : void
4 (3 ObserverPatternEx
@ main(String(]) : void
@ Subject
B\ JRE System Library [JavaSE-1.8]

Implementation

package observer.pattern.demo;
import java.util.*;

class Observer

{
public void update()
{
System.out.println("flag value changed in Subject");
}
}
interface ISubject
{
void register(Observer o);
void unregister(Observer o);
void notifyObservers();
}
class Subject implements ISubject
{

List<Observer> observerlist = new ArraylList<Observer>();
private int _flag;

public int getFlag()

{

}

return flag;

OBSERVER PATTERNS

CHAPTER 2 © OBSERVER PATTERNS

public void setFlag(int flag)

{
this. flag= flag;
//flag value changed .So notify observer(s)
notifyObservers();
}

@0verride
public void register(Observer o)

{
}

@0verride
public void unregister(Observer o)

{
}

@0verride
public void notifyObservers()

{

for(int i=0;i<observerlList.size();i++)

{
}

observerList.add(o);

observerList.remove(o);

observerlList.get(i).update();

}
}

class ObserverPatternEx

{

public static void main(String[] args)

System.out.println("***Observer Pattern Demo***\n");
Observer ol = new Observer();
Subject subl = new Subject();
subl.register(o1);
System.out.println("Setting Flag = 5 ");
subl.setFlag(5s);
System.out.println("Setting Flag = 25 ");
subl.setFlag(25);
subl.unregister(o1);
//No notification this time to o1 .Since it is unregistered.
System.out.println("Setting Flag = 50 ");
sub1.setFlag(50);

CHAPTER 2 © OBSERVER PATTERNS

Output

E) Console 52

<terminated> ObserverPatternEx [Java Application] C:\Program Files\Java\jrel 8.0_45\bin\javaw.exe (Jun 19, 2015, 12:45:34 PM)
0Observer Pattern Demo

Setting Flag = 5

flag value changed in Subject
Setting Flag = 25

flag value changed in Subject
Setting Flag = 50

Note

The above example is one of the simple illustrations for this pattern. Let us consider a relatively complex
problem. Let us assume the following:

1. Now we need to have a multiple observer class.

2. And we also want to know about the exact change in the subject. If you notice our
earlier implementation, you can easily understand that there we are getting some
kind of notification but our observer does not know about the changed value in the
subject

Obviously now we need to make some change in the above implementation. Note that now we cannot
use concrete observers like the following:

List<Observer> observerlList = new Arraylist<Observer>();
Instead we need to use :
List<IObserver> observersList=new ArraylList<IObserver>();

And so we need to replace Observer with IObserver in corresponding places also. We have also
modified our update function to see the changed values in the Observers themselves.

CHAPTER 2 © OBSERVER PATTERNS

UML Class Diagram

<<Java Class>> <<Java Class>> <<Java Class>> <<Java Class>>
(2 Observer1 (9 Observer2 (9 ObserverPatternModifiedEx (® Subject
observer. pattern demol observer. pattern.demol observer pattern.demol observer. pattern.demod
a°Observer1() A" Observer2() &5 ObserverPatternhlodifiedEx() o:myVaie: int
@ update(int).void @ update(int):void osmah(Strhgﬂ}:vnid fSubjeci()
7 H @ getMyValue():int
@ sethlyValue(int):void
@ register(lObserver).void
@ unregister(lObserver).void
@ notifyObservers(int):void
Q v ~0 erslList v
<<Java Interface>> <<Java Interface>>
©lobserver | O ©Subject

observer pattern.demo2

@ update(int):void

Package Explorer view

High-level structure of the parts of the modified program is as follows:

4 &’ ObserverPatternModified
4 {8 observer.pattern.demo2
4 [J) ObserverPatternModifiedEx.java
4 €} Observer
&' update(int) : void
4 €} ISubject
¢ notifyObservers(int) : void
¢ register(IObserver) : void
&' unregister(IObserver) : void
4 (& Observerl
@. update(int) : void
4 Q Observer2
@. update(int) : void
b C'}_ ObserverPatternModifiedEx
> (@ Subject
> =¥ JRE System Library [JavaSE-1.8)

observer. pattern. demoZ

@ register(iObserver).void
@ unregister(lObserver).void
@ notifyObservers(int):void

CHAPTER 2 © OBSERVER PATTERNS

Implementation

package observer.pattern.demo2;
import java.util.*;

interface IObserver

{
void update(int i);
}
class Observerl implements IObserver
{
@0verride
public void update(int i)
{
System.out.println("Observeri: myValue in Subject is now: "+i);
}
}
class Observer2 implements IObserver
{
@0verride
public void update(int i)
{
System.out.println("Observer2: observes ->myValue is changed in
Subject to :"+i);
}
}
interface ISubject
{
void register(IObserver o);
void unregister(IObserver o);
void notifyObservers(int i);
}

class Subject implements ISubject

{

private int myValue;

public int getMyValue() {
return myValue;
}

public void setMyValue(int myValue) {
this.myValue = myValue;
//Notify observers
notifyObservers(myValue);

CHAPTER 2 © OBSERVER PATTERNS

10

List<IObserver> observersList=new ArraylList<IObserver>();

@0verride
public void register(IObserver o)
{
observerslList.add(o);
}
@0verride
public void unregister(IObserver o)
{
observersList.remove(o);
}
@0verride
public void notifyObservers(int updatedValue)
{
for(int i=0;i<observersList.size();i++)
{
observersList.get(i).update(updatedvalue);
}
}

class ObserverPatternModifiedEx

public static void main(String[] args)

{

System.out.println("*** Modified Observer Pattern Demo***\n");

Subject sub = new Subject();
Observerl obl = new Observeri();
Observer2 ob2 = new Observer2();

sub.register(ob1);
sub.register(ob2);

sub.setMyValue(5);
System.out.println();
sub.setMyValue(25);
System.out.println();

//unregister ob1 only
sub.unregister(ob1);

//Now only ob2 will observe the change
sub.setMyValue(100);

Output

B Console 33

*** Modified Observer Pattern Demo™**

Observerl: myValue in Subject is now: S

Observer2: observes ->myValue

Observerl: myValue in Subject is now: 25

Observer2: observes

Observer2: observes

Assignment

Implement an observer pattern where you have multiple observers and multiple subjects.

-»myValue

-»myValue i

changed in Subject to :

changed in Subject to :2

changed in Subject to :

CHAPTER 2

<terminated> ObserverPatternModifiedEx (1) [Java Application] C:\Program Files\Java\jrel 8.0_45\bin\javaw.exe (Jun 19, 2015, 12:59:39 PM)

OBSERVER PATTERNS

Note | always suggests that you do the assignments by yourself. Once you complete your task, come back

here to match the output.

UML Class Diagram

<<Java Class>>
(Observer3

observer pattem dema3

A Observer3()
@ update(String,int):void

<«<Java Class>>
(© Observer2

observer pattern demol

A Observer2()
@ update(String,int):void

<<Java Class>>
(9 Observer1

observer pattermn. demod

iCbsewerhﬁ.

@ update(String,int):void

<<)ava Class>>
(® ObserverPatternDemo3Ex

observer pattern demaol

A ObserverPatternDemo3Ex()

J‘mar.fS'.mgﬂ'. void

<<Java lnterfaces»

=) 10bserver ~observersList

<<)ava Class>>
(® Subject2

observer pattem demol

o my'Value: int

& Subject2()

observer. pattern. dema3d

0.

@ update(String,int):void

~pbserversList

@ getilyValue()int

@ sethlyValue(int)-void

@ registen(l0bserver)void
@ unregister(i0bserver)void
@ notifyObservers(int):void

<<Java Interface>>
D 1Subject

cbserver patiern demol

@ registen(l0bserver)void
@ unregister(IObserver):void
@ notifyObservers(int):void

«<<Java Class=>
(@ Subject1

observer pattern demal

o myValue: int

‘c Subject1()

@ getMyValue()int
@ setMyValue(int):void
@ register{lObserver):
@ unregister{iObser

@ notifyObservers(int).void

<

11

CHAPTER 2 © OBSERVER PATTERNS

Implementation

package observer.pattern.demo3;

import java.util.*;

12

interface IObserver
void update(String s,int i);

class Observerl implements IObserver

{
@0verride
public void update(String s,int i)
{
System.out.println("Observeri: myValue in "+ s+ " is now: "+i);
}
class Observer2 implements IObserver
{
@0verride
public void update(String s,int i)
{
System.out.println("Observer2: observes ->myValue is changed in
"+s+" to :"+1);
}
}
class Observer3 implements IObserver
{
@0verride
public void update(String s,int i)
{
System.out.println("Observer3 is observing:myValue is changed in
"+s+" to :"+i);
}
}
interface ISubject
{
void register(IObserver o);
void unregister(IObserver o);
void notifyObservers(int i);
}

class Subject1l implements ISubject

{

private int myValue;

CHAPTER 2

public int getMyValue() {
return myValue;
}

public void setMyValue(int myValue) {
this.myValue = myValue;
//Notify observers
notifyObservers(myValue);
}

List<IObserver> observersList=new Arraylist<IObserver>();

OBSERVER PATTERNS

@0verride
public void register(IObserver o)
{
observerslList.add(o);
}
@0verride
public void unregister(IObserver o)
{
observersList.remove(o);
}
@0verride
public void notifyObservers(int updatedvalue)
{
for(int i=0;i<observersList.size();i++)
{
observersList.get(i).update(this.getClass().getSimpleName(),
updatedValue);
}
}
}
class Subject2 implements ISubject
{

private int myValue;

public int getMyValue() {
return myValue;
}

public void setMyValue(int myValue) {
this.myValue = myValue;
//Notify observers
notifyObservers(myValue);
}

List<IObserver> observersList=new ArraylList<IObserver>();

13

CHAPTER 2 © OBSERVER PATTERNS

@0verride
public void register(IObserver o)
{
observersList.add(o);
}
@0verride
public void unregister(IObserver o)
{
observerslList.remove(o);
}
@0verride
public void notifyObservers(int updatedvalue)
{
for(int i=0;i<observersList.size();i++)

{
observersList.get(i).update(this.getClass().getSimpleName(),
updatedValue);

}

}

}

class ObserverPatternDemo3Ex
{
public static void main(String[] args)
{
System.out.println("*** Observer Pattern Demo3***\n");
Subject1 subl = new Subjecti();
Subject2 sub2 = new Subject2();

Observerl obl = new Observeri();
Observer2 ob2 = new Observer2();
Observer3 ob3 = new Observer3();

//0bserverl and Observer2 registers to //Subject 1
subl.register(ob1);
subl.register(ob2);

//0bserver2 and Observer3 registers to //Subject 2
sub2.register(ob2);
sub2.register(ob3);

//Set new value to Subject 1

//0bserver1 and Observer2 get //notification
subl.setMyValue(50);
System.out.println();

//Set new value to Subject 2

//0Observer2 and Observer3 get //notification
sub2.setMyValue(250);
System.out.println();
//unregister Observer2 from Subject 1
subl.unregister(ob2);

14

CHAPTER 2 © OBSERVER PATTERNS

//Set new value to Subject & only //Observeri is notified
subl.setMyValue(550);
System.out.println();
//0b2 can still notice change in //Subject 2
sub2.setMyValue(750);

Output

&) Console 2

<terminated> ObserverPatternDemo3Ex [Java Application] C:\Program Files\Java\jrel 8.0_45\bin\javaw.exe (Nov 10, 2015, 10:11:09 AM)
*** Observer Pattern Demo3***

Observerl: myValue in Subjectl is now: 5@
Observer2: observes ->myValue is changed in Subjectl to :5@

Observer2: observes -»myValue is changed in Subject2 to :250@
Observer3 is observing:myValue is changed in Subject2 to :25@

Observerl: myValue in Subjectl is now: 55@

Observer2: observes ->myValue is changed in Subject2 to :75@
Observer3 is observing:myValue is changed in Subject2 to :758@

15

CHAPTER 3

Singleton Patterns

GoF Definition: Ensure a class only has one instance, and provide a global point of access to it.

Concept

A particular class should have only one instance. We will use only that instance whenever we are in need.

Real-Life Example

Suppose you are a member of a cricket team. And in a tournament your team is going to play against another
team. As per the rules of the game, the captain of each side must go for a toss to decide which side will bat
(or bowl) first. So, if your team does not have a captain, you need to elect someone as a captain first. And at
the same time, your team cannot have more than one captain.

Computer World Example

In a software system sometimes we may decide to use only one file system. Usually we may use it for the
centralized management of resources.

lllustration

In this example, we have made the constructor private first, so that we cannot instantiate in normal fashion.
When we attempt to create an instance of the class, we are checking whether we already have one available
copy. If we do not have any such copy, we'll create it; otherwise, we'll simply reuse the existing copy.

17

CHAPTER 3 " SINGLETON PATTERNS

c

UML Class Diagram

0

<<JavaElass>> <<Java E‘.iass»

(9 MakeACaptain (9 SingletonPatternEx
singleton.pattern.demo singleton.pattern.demo

ac MakeACaptain()

i nfSingletonPatternEx()
esget(:aplain():l.'lakeACaptain T I esmin(Slring[]):void

O

e \ J 0..1

Package Explorer view

High-level structure of the parts of the program is as follows:

4 & SingletonPattern

4 {§ singleton.pattern.demo

4 |J] SingletonPatternEx.java
4 (3 MakeACaptain
o° _captain
@ getCaptain() : MakeACaptain
& MakeACaptain()
4 & SingletonPatternEx

@ main(String(]) : void

> B JRE System Library [JavaSE-1.8]

Implementation

package singleton.pattern.demo;
class MakeACaptain

{

18

private static MakeACaptain _captain;
//We make the constructor private to prevent the use of "new'
private MakeACaptain() { }

public static MakeACaptain getCaptain()

{

// Lazy initialization

if (_captain == null)

{ _captain = new MakeACaptain();
System.out.println("New Captain selected for our

}

team");

CHAPTER 3 I SINGLETON PATTERNS

else

System.out.print("You already have a Captain for your team.");
System.out.println("Send him for the toss.");
}

return _captain;

}
}

class SingletonPatternEx

{

public static void main(String[] args)

System.out.println("***Singleton Pattern Demo***\n");
System.out.println("Trying to make a captain for our team");
MakeACaptain c1 = MakeACaptain.getCaptain();
System.out.println("Trying to make another captain for our team");
MakeACaptain c2 = MakeACaptain.getCaptain();

if (c1 == 2)

{
}

System.out.println("c1 and c2 are same instance");

Output

E) Console 52

<terminated> SingletonPatternEx [Java Application] C:\Program Files\Java\jrel.8.0_45\bin\javaw.exe (Nov 9, 2015, 9:05:05 PM)
Singleton Pattern Demo

Trying to make a captain for our team

New Captain selected for our team

Trying to make another captain for our team

You already have a Captain for your team. Send him for the toss.

cl and c2 are same instance

19

CHAPTER 3 ' SINGLETON PATTERNS

Note

Why in the code have we used the term “Lazy initialization”?
Because, the singleton instance will not be created until the }getCaptain() method is called here.
Point out one improvement area in the above implementation?

The above implementation is not thread safe. So, there may be a situation when two or more threads
come into picture and they create more than one object of the singleton class.

So what do we need to do to incorporate thread safety in the above implementation?

There are many discussions on this topic. People came up with their own solutions. But there are always
pros and cons. I want to highlight some of them here:
Case (i): Use of “synchronized” keyword:

public static synchronized MakeACaptain getCaptain()
{

//our code

}

With the above solution we need to pay for the performance cost associated with this synchronization
method.

Case (ii): There is another method} called “Eager initialization” (opposite of “Lazy initialization”
mentioned in our original code) to achieve thread safety.

class MakeACaptain

{
//Early initialization
private static MakeACaptain _captain = new MakeACaptain();
//We make the constructor private to prevent the use of "new"
private MakeACaptain() { }
// Global point of access //MakeACaptain.getCaptain() is a public static //method
public static MakeACaptain getCaptain()
{
return _captain;
}
}

In the above solution an object of the singleton class is always instantiated.
Case (iii): To deal with this kind of situation, Bill Pugh came up with a different approach:

class MakeACaptain
{

private static MakeACaptain _captain;
private MakeACaptain() { }

//Bill Pugh solution

private static class SingletonHelper{
//Nested class is referenced after getCaptain() is called

20

CHAPTER 3 I SINGLETON PATTERNS

private static final MakeACaptain _captain = new MakeACaptain();

}
public static MakeACaptain getCaptain()
{
return SingletonHelper._captain;
}

This method does not need to use the synchronization technique and eager initialization. It is regarded
as the standard method to implement singletons in Java.

21

CHAPTER 4

Proxy Patterns

GoF Definition: Provide a surrogate or placeholder for another object to control access to it.

Concept

We want to use a class which can perform as an interface to something else.

Real-Life Example

In a classroom, when one student is absent, during roll call, his best friend may try to mimic the student’s
voice to try to keep his friend from being marked as absent.

Computer World Example

Consider an ATM implementation for a bank. Here we will find multiple proxy objects. Actual bank
information will be stored in a remote server. We must remember that in the real programming world, the
creation of multiple instances of a complex object (heavy object) is very costly. In such situations, we can
create multiple proxy objects (which must point to an original object) and the total creation of actual objects
can be carried out on a demand basis. Thus we can save both the memory and creational time.

lllustration

In the following program, we are calling the doSomework() function of the proxy object, which in turn calls
the doSomework() of the concrete object. With the output, we are getting the result directly through the
concrete object.

In this example we have followed this structure. Related parts are separated by the packages for
better readability. Our concrete or original implementations reside in the package OriginalClasses,
Proxy implementation (Proxy.java) is in the package ProxyClasses. A proxy is created and tested in
ProxyPatternEx.java.

23

CHAPTER 4 * PROXY PATTERNS

UML Class Diagram

<<Java Class>> <<Java Class>>
(& Subject (® ProxyPatternEx
OriginalClasses proxy.pattern.demo
C .
© Subject() & ProxyPatternEx()
&'doSomeWork():void @ main(String[]):void
/ﬂ'
/
/
/
/
7/
/s
/
/s
/s
7/
/s
’/
<<Java Class>> <<Java Class>>
(9 Proxy (9 Concrete Subject
ProxyClasses e OriginalClasses
c 0.1 T -
@ Proxy() @ ConcreteSubject()
@ doSomeWork():void @ doSomeWork():void

Package Explorer view
High-level structure of the parts of the program is as follows:
4 & ProxyPattern
4 8 OriginalClasses
> [J) ConcreteSubject,java
> |J) Subject.java
4 £ proxy.pattern.demo
> |J) ProxyPatternEx.java
4 £ ProxyClasses
> [J] Proxy.java
> = JRE System Library [JavaSE-1.8)

24

CHAPTER 4

Implementation

// Subject.java
package OriginalClasses;

public abstract class Subject

{
}

public abstract void doSomeWork();

// ConcreteSubject.java
package OriginalClasses;
import OriginalClasses.Subject;

public class ConcreteSubject extends Subject

{
@0verride
public void doSomeWork()
{
System.out.println(" I am from concrete subject");
}
}

// Proxy.java

package ProxyClasses;

import OriginalClasses.*;

public class Proxy extends Subject

{:
ConcreteSubject cs;
@0verride
public void doSomeWork()
{
System.out.println("Proxy call happening now");
//lazy initialization
if (cs == null)
{
cs = new ConcreteSubject();
}
cs.doSomeWork();
}
}

// ProxyPatternkx.java
package proxy.pattern.demo;
import ProxyClasses.Proxy;
class ProxyPatternEx

{

public static void main(String[] args)

{

PROXY PATTERNS

25

CHAPTER 4 " PROXY PATTERNS

System.out.println("***Proxy Pattern Demo***\n");
Proxy px = new Proxy();
px.doSomeWork();

Output

&) Console 2
<terminated> InterpreterPatternEx (1) [Java Application] C:\Program Files\Java\jrel 8.0_45\bin\javaw.exe (May 31, 2015, 4:39:28 PM)
Proxy Pattern Demo

Proxy call happening now
I am from concrete subject

Note

What are the different types of proxies?

Mainly we are familiar with the following types:
Remote proxies. They will hide that actual object which is in a different address space.
Virtual proxies. They are used to perform optimization techniques like the creation of a heavy object on
a demand basis.
Protection proxies. They generally deal with different access rights.
Smart reference. It can also perform some additional housekeeping work when an object is accessed.
A typical operation is counting the number of references to the actual object.

26

CHAPTER 5

Decorator Patterns

GoF Definition: Attach additional responsibilities to an object dynamically. Decorators provide a flexible
alternative to subclassing for extending functionality.

Concept

This main principle of this pattern says that we cannot modify existing functionalities but we can extend
them. In other words, this pattern is open for extension but closed for modification. The core concept
applies when we want to add some specific functionalities to some specific object instead of to the
whole class.

Real-Life Example

Suppose you already own a house. Now you have decided to add an additional floor. Obviously, you do not
want to change the architecture of ground floor (or existing floors). You may want to change the design of the
architecture for the newly added floor without affecting the existing architecture for existing floor(s).

Computer World Example

Suppose in a GUI-based toolkit, we want to add some border properties. We can do this by inheritance. But
it cannot be treated as the best solution because our user or client cannot have absolute control from the
creation. The core of that choice is static there.

Decorator can offer us a more flexible approach: here we may surround the component in another
object. The enclosing object is termed “decorator” It conforms to the interface of the component it
decorates. It forwards requests to the component. It can perform additional operations before or after those
forwarding requests. An unlimited number of responsibilities can be added with this concept.

lllustration

Please go through this example. Here we have not tried to modify the original doJob() method’s
functionality. Two decorators, ConcreteDecoratorEx_1 and ConcreteDecoratorEx_2, are added here to
enhance functionality, but the original doJob()’s working is not disturbed due to this addition.

27

CHAPTER 5 * DECORATOR PATTERNS

UML Class Diagram

<<Java Class>>

(9 DecoratorPatternEx

decorator. pattern.demo

& DecoratorPatternEx()
@ main(String(]):void

<<Java Class>>
(% Component

decorator.pattern.demo

& Component()
&' doJob():void

.:077:)..1

<<zJava Class>>

(4 AbstractDecorator
gdecorator.pattern.demo

AcAbstractDecorator()
@ SetTheComponent(Component).void
@ doJob():void

/

<<Java Class>>

(9 ConcreteDecoratorEx_1

decorator.pattern. demo

a°Con creteDecoratorEx_1()
@ doJob():void

28

N

<<Java Class>>

(9 ConcreteComponent
decorator pattern. demo

ACConcreteComponent()
@ doJob():void

<<Java Class>>

(& ConcreteDecoratorEx_2
decorator.pattern.demo

& ConcreteDecoratorEx_2()
@ doJob():void

CHAPTER 5 * DECORATOR PATTERNS

Package Explorer view

High-level structure of the parts of the program is as follows:

4 (& DecoratorPattern
4 {8 decorator.pattern.demo
4 |J) DecoratorPatternEx.java
4 (G4 AbstractDecorator
> com
@. doJob() : void
@ SetTheComponent(Component) : void
(2 Component
& doJob() : void
4 (3 ConcreteComponent
@. doJob() : void
4 & ConcreteDecoratorEx_1
@. doJob(): void
Q ConcreteDecoratorkx_2
@ doJob() : void
- G?; DecoratorPatternEx

1

. B\ JRE System Library [JavaSE-1.8]

LY

LY

Implementation

package decorator.pattern.demo;

abstract class Component

{
public abstract void doJob();
}
class ConcreteComponent extends Component
{
@verride
public void doJob()
{
System.out.println(" I am from Concrete Component-I am closed for
modification.");
}
}

29

CHAPTER 5 © DECORATOR PATTERNS

30

abstract class AbstractDecorator extends Component

{
protected Component com ;
public void SetTheComponent(Component c)
{
com = c;
}
public void doJob()
{
if (com != null)
{
com.doJob();
}
}
}
class ConcreteDecoratorEx_1 extends AbstractDecorator
{

public void doJob()

super.doJob();
//Add additional thing if necessary
System.out.println("I am explicitly from Ex_1");

}
}
class ConcreteDecoratorEx 2 extends AbstractDecorator
{
public woid doJob()
{
System.out.println("");
System.out.println("***¥START Ex-2***");
super.doJob();
//Add additional thing if necessary
System.out.println("Explicitly From DecoratorEx 2");
System.out.println("***END. EX-2%**");
}
}
class DecoratorPatternEx
{

public static void main(String[] args)
{
System.out.println("***Decorator pattern Demo***");
ConcreteComponent cc = new ConcreteComponent();

ConcreteDecoratorEx 1 cd 1 = new ConcreteDecoratorEx 1();

// Decorating ConcreteComponent Object //cc with ConcreteDecoratorEx_1
cd_1.SetTheComponent(cc);

cd_1.doJob();

ConcreteDecoratorEx 2 cd 2= new ConcreteDecoratorEx 2();
// Decorating ConcreteComponent Object //cc with ConcreteDecoratorEx 1 &
//ConcreteDecoratorEX_2

CHAPTER 5 " DECORATOR PATTERNS

cd_2.SetTheComponent(cd_1);//Adding //results from cd_1 now
cd_2.doJob();

Output

) Console 52
<terminated> DecoratorPatternEx (1) [Java Application] C:\Program Files\Java\jrel.8.0_45\bin\javaw.exe (Jun 20, 2015, 8:30:31 PM)

Decorator pattern Demo
I am from Concrete Component-I am closed for modification.
I am explicitly from Ex_1

ESTART Ex-2%

I am from Concrete Component-I am closed for modification.
I am explicitly from Ex_1

Explicitly From DecoratorEx_2

TETEND. EX-2°**

Note

What are the main advantages of using decorator patterns?

1. Without disturbing existing objects in the system, we can add new functionality
to a particular object.

2. We can code incrementally. For example, we’ll make a simple class first and then
one by one we can add decorator objects to them as needed. As a result, we do
not need to take care of each and every possible scenario in the beginning. On
the other hand, we must acknowledge that making a complex class first and then
extending its functionality is a much more complex procedure.

How is this pattern different from inheritance?

We can add or remove responsibilities by simply attaching or detaching decorators. But with the simple
inheritance technique, we need to create a new class for new responsibilities. So, there will be many classes
inside the system, which in turn can make the system complex.

What is the major disadvantage of using this pattern?

First of all, if we are careful enough, there is no significant disadvantage. But if we create too many
decorators in the system, the system will be hard to maintain and debug. At the same time, the decorators
can create unnecessary confusion.

31

CHAPTER 6

Template Method Patterns

GoF Definition: Define the skeleton of an algorithm in an operation, deferring some steps to subclasses. The
template method lets subclasses redefine certain steps of an algorithm without changing the algorithm’s
structure.

Concept

In a template method, we define the minimum or essential structure of an algorithm. Then we defer some
functionalities (responsibilities) to the subclasses. As a result, we can redefine certain steps of an algorithm
by keeping the key structure fixed for that algorithm.

Real-Life Example

Suppose we want to make pizza. The basic mechanism is the same, but extra materials are added based
upon the customer’s choice—whether he/she wants a vegetarian pizza or a non-vegetarian pizza.

Computer World Example

For an engineering student, in general, most of the subjects in the first semester are common for all
concentrations. Later, additional papers are added in his/her course based on his/her specialization
(Computer Science, Electronics, etc.).

lllustration

Here we have tried to implement our example with a similar concept. The parts of the program are described
by the following structure in the solution. We have implemented a simple program to design engineering
courses to illustrate the template method pattern. We are assuming that all engineering students need to
pass mathematics and soft skills in their initial semesters to obtain their final degree. Later, some special
papers will be added to their course based on their concentration (e.g., computer science or electronics).

33

34

CHAPTER 6 ' TEMPLATE METHOD PATTERNS

UML Class Diagram

<<Java Class>>

(9 TemplateMethodPatternEx

template method. pattern.demo

<<Java Class>>
(3 BasicEngineering
engineering.papers

& TemplateMethodPatternEx()
@ main(String[]): void

ocBasicEngineering()
@ Papers():.void

@ Math():void

@ SoftSkills():void

¢ SpecialPaper().void

<<Java Class>>

(9 Electronics
enginesring. papers

1

<<Java Class>>
(9 ComputerScience
Engineering.p3pers

& Electronics()

@ SpecialPaper():void

& ComputerScience()
@ SpecialPaper():void

CHAPTER 6 ' TEMPLATE METHOD PATTER|

Package Explorer view

High-level structure of the parts of the program is as follows:

4 (& TemplateMethodPattern
4 t§ engineering.papers
\J] BasicEngineering.java
J] ComputerScience.java
\J] Electronics.java
4 {5 template.method.pattern.demo
\J] TemplateMethodPatternEx.java

=)\ JRE System Library [JavaSE-1.8

Implementation

// BasicEngineering.java
package engineering.papers;

public abstract class BasicEngineering
{
// Papers() in the template method
public void Papers()
{
//Common Papers:
Math();
SoftSkills();
//Specialized Paper:
SpecialPaper();
}
//Non-Abstract method Math(), SoftSkills() are //already implemented by Template class
private void Math()

{

}
private void SoftSkills()

{
}

//Abstract method SpecialPaper() must be implemented in derived classes
public abstract void SpecialPaper();

System.out.println("Mathematics");

System.out.println("SoftSkills");

NS

35

CHAPTER 6 ' TEMPLATE METHOD PATTERNS
// ComputerScience.java
package engineering.papers;

public class ComputerScience extends BasicEngineering

{
@0verride
public void SpecialPaper()
{
System.out.println("Object Oriented Programming");
}
}

// Electronics.java
package engineering.papers;

public class Electronics extends BasicEngineering

{
@verride
public void SpecialPaper()
{
System.out.println("Digital Logic and Circuit Theory");
}
}

// TemplateMethodPatternEx.java
package template.method.pattern.Demo;
import engineeringPapers.*;

class TemplateMethodPatternEx

{
public static void main(String[] args)
{
System.out.println("***Template Method Pattern Demo***\n");
BasicEngineering bs = new ComputerScience();
System.out.println("Computer Sc Papers:");
bs.Papers();
System.out.println();
bs = new Electronics();
System.out.println("Electronics Papers:");
bs.Papers();
}
}

36

CHAPTER 6 © TEMPLATE METHOD PATTERNS

Output

E) Console 52
<terminated> TemplateMethodPatternEx [Java Application] C:\Program Files\Java\jrel 8.0_45\bin\javaw.exe (Jun 17, 2015, 4:10:52 PM)
Template Method Pattern Demo

Computer Sc Papers:
Mathematics

Softskills

Object Oriented Programming

Electronics Papers:
Mathematics

Softskills
Digital Logic and Circuit Theory

1. “Reuse of code” is the fundamental aim of this method. This is why, in general,
we can see the use of this pattern in many class libraries.

2. GoF suggests that we explicitly decide which operations should be ook
operations (we have freedom—we may or may not override the methods) and
which operations should be abstract operations (we do not have a choice—
overriding is a must in this case) during the development of a template method.

What is the major precaution we should take for implementing this method?

We need to minimize the number of incomplete/abstract operations. (In Java, remember: an abstract
method does not have a body). Otherwise, each of the subclasses needs to override them and the overall
process will lose the effectiveness of this design pattern.

37

CHAPTER 7

Strategy Patterns
(Or, Policy Patterns)

GoF Definition: Define a family of algorithms, encapsulate each one, and make them interchangeable. The
strategy pattern lets the algorithm vary independently from client to client.

Concept

We can select the behavior of an algorithm dynamically at runtime.

Real-Life Example

In a football match, at the last moment, in general, if Team A is leading Team B by a score of 1-0, instead of
attacking, Team A becomes defensive. On the other hand, Team B goes for an all-out attack to score.

Computer World Example

The above concept is applicable to a computer football game also. Or, we can think of two dedicated
memories where upon fulfillment of one memory, we start storing the data in the second available memory.
So, a runtime check is necessary before the storing of data, and based on the situation, we’ll proceed.

lllustration

We can understand the strategy pattern through the following program and class diagram. In the main
function, we have tested for two arbitrary choices of users (though you can do as many as wish). Depending
on the user’s input, our context objects will decide what choice should be set and displayed.

39

CHAPTER 7 © STRATEGY PATTERNS (OR, POLICY PATTERNS)

UML Class Diagram

<<Java Class>>

<<Java Class>>

<<Java Class>>

40

@ myChoice(String, String):void

@ SetChoice(IChoice):void
@ ShowChoice(String,String):void

®FirstChoice ©Context ® SecondChoice
hoi contextofchoice e
C
& FirstChoice() @ Context() & SecondChoice()

~myC | 0.1

a4 v K

<<Java Interface>>
&9 IChoice
choices

@ myChoice(String, String):void

@ myChoice(String,String):void

<<Java Class>>

(9 StrategyPatternEx
strategy.pattern.demo

ACStrategyPattemEx(}
Osmahgsmng"):void

CHAPTER 7

Package Explorer view

High-level structure of the parts of the program is as follows:

4 [StrategyPattern
4 8 choices
4 [J) FirstChoice.java
4 © FirstChoice
@. myChoice(String, String) : void
4 [J) IChoicejava
4 O IChoice
¢ myChoice(String, String) : void
4 |J) SecondChoice.java
4 O SecondChoice
@. myChoice(String, String) : void
4 8 contextofchoice
4 [J) Context.java
4 © Context
a myC
@ SetChoice(IChoice) : void
@ ShowChoice(String, String) : void
4 [B strategy.pattern.demo
> AJ) StrategyPatternEx.java
> =\ JRE System Library [JavaSE-1.8]

Implementation

// IChoice.java
package choices;
public interface IChoice

{
}

//FirstChoice.java

void myChoice(String s1, String s2);

package choices;

STRATEGY PATTERNS (OR, POLICY PATTERNS)

41

CHAPTER 7 © STRATEGY PATTERNS (OR, POLICY PATTERNS)

public class FirstChoice implements IChoice

{
public void myChoice(String si1, String s2)
{
System.out.println("You wanted to add the numbers.");
int int1, int2,sum;
int1=Integer.parseInt(s1);
int2=Integer.parseInt(s2);
sum=int1+int2;
System.out.println(" The result of the addition is:"+sum);
System.out.println("***End of the strategy***");
}
}

// SecondChoice.java
package choices;

public class SecondChoice implements IChoice

{
public void myChoice(String si1, String s2)
{
System.out.println("You wanted to concatenate the numbers.");
System.out.println(" The result of the addition is:"+s1+s2);
System.out.println("***End of the strategy***");
}
}

//Context.java
package contextofchoice;
import choices.IChoice;

public class Context

{
IChoice myC;
// Set a Strategy or algorithm in the Context
public void SetChoice(IChoice ic)

{

myC = ic;

public void ShowChoice(String si,String s2)
{

}

myC.myChoice(s1,s2);

42

CHAPTER 7 " STRATEGY PATTERNS (OR, POLICY PATTERNS)

// StrategyPatternEx.java

package strategy.pattern.demo;

import java.io.IOException;

//For Java old versions-to take input from user

//import java.io.BufferedReader;

//import java.io.InputStreamReader;

/* Java 5 added a nice utility class called Scanner, to get input from user */
import java.util.Scanner;

import contextofchoice.Context;
//import choices.*;

import choices.FirstChoice;
import choices.IChoice;

import choices.SecondChoice;

class StrategyPatternEx
{
public static void main(String[] args) throws IOException
{

System.out.println("***Strategy Pattern Demo***");

Scanner in= new Scanner(System.in);//To take input from user

IChoice ic = null;

Context cxt = new Context();

String inputi,input2;;

//Looping twice to test two different choices

try

{

for (int i = 1; 1 <= 2; i++)
{

System.out.println("Enter an integer:");
input1l = in.nextLine();
System.out.println("Enter another integer:");
input2 = in.nextLine();
System.out.println("Enter ur choice(1 or 2)");
System.out.println("Press 1 for Addition,
2 for Concatenation");
String c¢ = in.nextLine();

/*For Java old versions-use these lines to collect input
from user

BufferedReader br = new BufferedReader

(new InputStreamReader(System.in));

String c = br.readlLine();*/

if (c.equals("1"))
{
/*If user input is 1, create object of FirstChoice

(Strategy 1)*/
ic = new FirstChoice();

43

CHAPTER 7 © STRATEGY PATTERNS (OR, POLICY PATTERNS)

else
{
/*If user input is 2, create object of SecondChoice
(Strategy 2)*/
ic = new SecondChoice();
}
/*Associate the Strategy with Context*/
cxt.SetChoice(ic);
cxt. ShowChoice(input1,input2);
}
}
finally
{
in.close();
}

System.out.println("End of Strategy pattern");

Output

&) Console 22

<terminated> StrategyPatternEx [Java Application] C:\Program Files\Java\jrel.8.0_45\bin\javaw.exe (Nov 15, 2015, 12:30:37 PM)
Strategy Pattern Demo

Enter an integer:

-

Enter another integer:

5

Enter ur choice(l or 2)

Press 1 for Addition, 2 for Concatenation

2

You wanted to concatenate the numbers.
The result of the addition is:25
eEnd of the strategy

Enter an integer:

3
Enter another integer:
-

Enter ur choice(l or 2)
Press 1 for Addition, 2 for Concatenation
1§
Wou wanted to add the numbers.
The result of the addition is:1@
End of the strategy
End of Strategy pattern

44

CHAPTER 7 " STRATEGY PATTERNS (OR, POLICY PATTERNS)

Note

What is the power behind the strategy pattern?

1. This pattern can provide dynamic behavior for us. It can help us to avoid dealing
with complex algorithm-specific data structures.

2. With this pattern, the same behavior can be expressed differently. So, users can
have a wide variety of choices.

What are the challenges associated with the strategy pattern?
1. The number of objects are increased in the system.

2. Additional overhead is needed due to communication between the strategies
and their contexts.

3. Users need to be fully aware of all kinds of possible behaviors to avoid confusion.

45

CHAPTER 8

Adapter Patterns

GoF Definition: Convert the interface of a class into another interface that clients expect. The adapter
pattern lets classes work together that couldn’t otherwise because of incompatible interfaces.

Concept

The core concept is best described by the examples given below.

Real-Life Example

The most common example of this type can be found with mobile charging devices. If our charger is not
supported by a particular kind of switchboard, we need to use an adapter. Even the translator who is
translating language for one person is following this pattern in real life.

Computer World Example

In real-life development, in many cases, we cannot communicate between two interfaces directly. They
contain some kind of constraint within themselves. To deal with this kind of incompatibility between those
interfaces, we may need to introduce adapters.

A very common use of this pattern is illustrated below.

lllustration

In this example, we can calculate the area of a rectangle easily. If we see the Calculator class and its getArea()
method, we’ll know that we need to supply a rectangle as an input in the getArea() method to get the area

of the rectangle. Now suppose we want to calculate the area of a triangle, but we need to get the area of the
triangle through the getArea() method of Calculator. How can we do that?

To do that we have made a CalculatorAdapter for the triangle and passed a triangle in its getAreal()
method. The method will translate the triangle input to rectangle input and in turn, it will call the getArea()
of Calculator to get the area of it. But from the user’s point of view, it is very simple: it seems to the user that
he/she is passing a triangle to get the area of that triangle.

47

CHAPTER 8 " ADAPTER PATTERNS

UML Class Diagram

Py R <<Java Class>>
O AbiptirDeitisia (3 CalculatorAdapter © Calculator
adapter pattern demo DR — e p1 SORSRPR e
0.1
" AdapterPattern() a"CalculatorAdapter(s
& main(String[))-void | | @ 9etArea(Triangle):double ook it mainai
~triangle {(}..1 ~rectangle | 0..1
<<Java'CIass>> <<Java Class>>
(9 Triangle (O Rect
adapter.pattern.demo adapter.pattern.demo
© b: double o |: double
© h: double © w: double
c & . &
@ Triangle(int,int) A Rect()

48

CHAPTER 8 ' ADAPTER PATTERNS

Package Explorer view

High-level structure of the parts of the program is as follows:

4 (&) AdapterPattern
4 {8 adapter.pattern.demo
4 |J) AdapterPattern.java
({ AdapterPattern
& Calculator
(A CalculatorAdapter
& Rect
(3 Triangle
. B\ JRE System Library [JavaSE-1.8]

Implementation

package adapter.pattern.demo;
class Rect
{
public double 1;
public double w;

}
class Triangle
{
public double b;//base
public double h;//height
public Triangle(int b, int h)
this.b = b;
this.h = h;
}
}

/*Calculator can calculate the area of a rectangle. To calculate the area we need a
Rectangle input.*/
class Calculator
{ Rect rectangle;
public double getArea(Rect r)
{
rectangle=r;
return rectangle.l * rectangle.w;

49

CHAPTER 8 " ADAPTER PATTERNS

/*Calculate the area of a Triangle using CalculatorAdapter. Please note here: this time our
input is a Triangle.*/
class CalculatorAdapter

{
Calculator calculator;
Triangle triangle;
public double getArea(Triangle t)
{
calculator = new Calculator();
triangle=t;
Rect r = new Rect();
//Area of Triangle=0.5*base*height
r.1 = triangle.b;
r.w = 0.5*triangle.h;
return calculator.getArea(r);
}
}
public class AdapterPattern
{
public static void main(String[] args)
{
System.out.println("***Adapter Pattern Demo***");
CalculatorAdapter cal=new CalculatorAdapter();
Triangle t = new Triangle(20,10);
System.out.println("\nAdapter Pattern Example\n");
System.out.println("Area of Triangle is :" + cal.getArea(t));
}
}

Output

E) Console 53

<terminated> AdapterPattern [Java Application] C:\Program Files\Java\jrel 8.0_45\bin\javaw.exe (May 20, 2015, 8:14:10 PM)
pdapter Pattern Demo

Adapter Pattern Example

Area of Triangle is :1@0.@

50

Note

GoF tells us about two major kinds of adapters:

A. Class adapters. They generally use multiple inheritance to adapt one interface to
another. (But we must remember, in Java, multiple inheritance through classes is not
supported. We need interfaces to implement the concept of multiple inheritance.)

B. Object adapters. They depend on the object compositions.

To illustrate the concepts, I'll present a simple example for your ready reference:

<<Java Class»>>

(9 ClassAndObjectAdapter

different.type.adapter

<<Java Class>>
(9 IntegerValue

different.type.adapter |

&° ClassAndObjectAdapter()
@ main(String]):void

& IntegerValue()
@ getinteger():int

i

<<Java Class>>

(9 ClassAdapter
different.type.adapter

A ClassAd apter()

@ getinteger():int

lllustration

package different.type.adapter;
interface IIntegerValue

{
public int getInteger();

}

class IntegerValue implements IIntegerValue

{

@0verride
public int getInteger()
{

}

return 5;

}

class ClassAdapter extends IntegerValue

{

//Incrementing by 2
public int getInteger()

{
}

return 2+super.getInteger();

<<Java Interface>>

3 lintegerValue
different.type.adapter

@ getinteger():int

d
-mylint [0..1

CHAPTER 8 ' ADAPTER PATTERNS

<<Java Class>>

(9 ObjectAdapter

different.type. adapter

@ ObjectAdapter(lintegerValue)
@ getinteger():int

51

CHAPTER 8 ' ADAPTER PATTERNS

class ObjectAdapter

{
private IIntegerValue myInt;
public ObjectAdapter(IIntegerValue myInt)
{
this.myInt=myInt;
}
//Incrementing by 2
public int getInteger()
{
return 2+this.myInt.getInteger();
}
}
class ClassAndObjectAdapter
{
public static void main(String args[])
{
System.out.println("***Class and Object Adapter Demo***");
ClassAdapter cal=new ClassAdapter();
System.out.println("Class Adapter is returning :"+cal.getInteger());
ClassAdapter ca2=new ClassAdapter();
ObjectAdapter oa=new ObjectAdapter(new IntegerValue());
System.out.println("Object Adapter is returning :"+oa.getInteger());
}
}

Output

&) Console 22

<terminated> ClassAndObjectAdapter [Java Application] C:\Program Files\Java\jrel.8.0_45\bin\javaw.exe (Nov 17, 2015, 8:08:43 PM)
Class and Object Adapter Demo

Class Adapter is returning :7

Object Adapter is returning :7

To what extent does an adapter need to take care when it adapts an adaptee?

It depends on that particular case. If our target interface is very similar, then adapters do not have much
work. If there is not much similarity, then adapters must do some extra work to match those functionalities.

52

CHAPTER 9

Command Patterns

GoF Definition: Encapsulate a request as an object, thereby letting you parameterize clients with different
requests, queue or log requests, and support undoable operations.

Concept

Here requests are encapsulated as objects. In general, four terms are associated—invoker, client, command,
and receiver. A command object is capable of calling a particular method in the receiver. It stores the
parameters of the methods in receiver. An invoker only knows about the command interface, but it is
totally unware about the concrete commands. The client object holds the invoker object and the command
object(s). The client decides which of these commands needs to execute at a particular point in time. To do
that, he/she passes the command object to the invoker to execute that particular command.

Real-Life Example

We cannot change our past, but frequently we wish we could do so. Unfortunately, we do not have any such
device yet to fulfill that wish. But we can undo and redo many other operations in our daily life. We can erase
a pencil drawing with a rubber. We can re-architect our living places. And, most important, we can forget
bad memories and start a fresh journey. So, you must acknowledge that undo/redo operations are part of
our life and we are doing those through some commands—either externally or internally.

Computer World Example

The above scenario applies with Microsoft paint also. There we can do the undo/redo operations easily
through some menu options or shortcut keys.

lllustration

Consider this simple example in this context. For simplicity, we are dealing with only two commands,
MyUndoCommand and MyRedoCommand. All naming conventions are used for your easy reference.

53

CHAPTER 9 "' COMMAND PATTERNS

UML Class Diagram

<<Java Class>>
(®Invoke
command. pattern.demo

~cmd

&5 Invoke()
@ ExecuteCommand(ICommand):void

<<Java Interface>>

£ ICommand
command. pattern.demo

0.1

@ Do():void

<<Java Class>>

(® CommandPatternEx
command.pattern.demo

<<Java Class>>

(® MyUndoCommand
command.pattern.demo

<<Java Class>>

(® MyRedoCommand
command.pattern.demo

a°CommandPatternEx()
@° main(String[]):void

& MyUndoCommand(Receiver)
@ Do():void

&°MyRedoCommand(Receiver)
@ Do():void

54

-receivel

0.1 -receiver /0.1

<<Java Class>>
(9 Receiver
command. pattern.demo

& Receiver()
@ performUndo():void
@ performRedo():void

CHAPTER 9 © COMMAND PATTERNS

Package Explorer view

High-level structure of the parts of the program is as follows:

4 [CommandPattern
4 8 command.pattern.demo
4 [J) CommandPatternEx.java
4 & CommandPatternEx
& main(String[]) : void
€3 ICommand
¢ Do(): void
@& Invoke
a cmd
® ExecuteCommand({ICommand):
(& MyRedoCommand
o receiver
& MyRedoCommand(Receiver)
@ Do(): void
& MyUndoCommand
o receiver

[9

[9

(o]

[9

& MyUndoCommand(Receiver)
@ Do() : void
@ Receiver
@ performRedo() : void
@ performUndo() : void
. B JRE System Library [JavaSE-1.8]

[

Implementation

package command.pattern.demo;
interface ICommand

void Do();
}

class MyUndoCommand implements ICommand

{

private Receiver receiver;
MyUndoCommand (Receiver recv)

{
}

receiver=recv;

55

CHAPTER 9 ©* COMMAND PATTERNS

@0verride
public void Do()
{
//Call undo in receiver
receiver.performUndo();
}
}
class MyRedoCommand implements ICommand
{
private Receiver receiver;
MyRedoCommand (Receiver recv)

receiver=recv;

}

@0verride

public void Do()

{
//Call redo in receiver
receiver.performRedo();

}

}

//Receiver Class
class Receiver

{
public void performUndo()
{
System.out.println("Executing -MyUndoCommand");
}
public void performRedo()
{
System.out.println("Executing -MyRedoCommand");
}
}

//Invoker Class
class Invoke

{
ICommand cmd;
public void ExecuteCommand(ICommand cmd)
{
this.cmd=cmd;
cmd.Do();
}
}

56

CHAPTER 9 © COMMAND PATTERNS

//Client Class
class CommandPatternEx

{

public static void main(String[] args)

{
System.out.println("***Command Pattern Demo***\n");
Receiver intendedreceiver=new Receiver();
/*Client holds Invoker and Command Objects*/
Invoke inv = new Invoke();
MyUndoCommand unCmd = new MyUndoCommand(intendedreceiver);
MyRedoCommand reCmd = new MyRedoCommand(intendedreceiver);
inv.ExecuteCommand(unCmd);
inv.ExecuteCommand(reCmd);

Output

) Console 52

<terminated> StatePatternEx (1) [Java Application] C:\Program Files\Java\jrel .8.0_45\bin\javaw.exe (Nov 21, 2015, 9:00:56 PM)
***Command Pattern Demo™®**

Executing -MyUndoCommand
Executing -MyRedoCommand

1. This pattern is widely used for undo/redo operations.

2. A callback function can be designed with this pattern.

3. This pattern is very useful when we model transactions (which can be
responsible for changes in data).

4. Commands can be extended easily. They operate like any other objects. And the
beauty of using them is that while we use them, we do not need to change the
classes in the system.

5. Thereis another pattern called chain of responsibility. There we forward a request
along a chain of objects with the hope that any one of the objects along that chain
will handle the request. But in command pattern, we'll forward the request to the
specific object.

57

CHAPTER 10

lterator Patterns

GoF Definition: Provide a way to access the elements of an aggregate object sequentially without exposing
its underlying representation.

Concept

Iterators are generally used to traverse a container to access its elements.

Real-Life Example

Suppose there are two companies: Company A and Company B. Company A stores its employee records
(name, etc.) in a linked list and Company B stores its employee data in a big array. One day the two
companies decide to work together. The iterator pattern is handy in such a situation. We need not write
codes from scratch. We’ll have a common interface through which we can access data for both companies.
We'll simply call the same methods without rewriting the codes.

Computer World Example

Similarly, say, in a college, the arts department may use array data structure and the science department
may use linked list data structure to store their students’ records. The main administrative department will
access those data through the common methods—it doesn’t care which data structure is used by individual
departments.

lllustration

It has many parts. I have created the related folders for these. So, first see the structure. Here science subjects
are stored in a linked list and arts subjects are stored in an array. We are printing the papers using the
iterators. IIterator is the common interface here. Its methods are specifically implemented in Sciencelterator
(contained in science class) and ArtsIterator (contained in arts class). We are printing the papers through the
common methods IsDone() and Next() here. (You can use the other two methods also, namely, First() and
currentltem()—those are also implemented.)

For simplicity, you can omit either Science(and Sciencelterator) or Arts(and Artslterator). But we kept
both to show you the power of this pattern.

59

CHAPTER 10 I ITERATOR PATTERNS

UML Class Diagram

._‘_Q

<<Java Class>>
(3 Artsliterator
<<Java Class>> aggregate
GArts o subjects: String[]
pgregate o position: int
o subjects: Stringl] 4 & Artstterator(String[})
&Arts() @ First():void
@ Createfterator():Rerator @ Next():String
H @ IsDone():Boolean
@ Currentitem():String
ﬁ <<Java Class>>
<<Java Interfaces» G lteratorPatternEx
©ISubject iteratorpattem demo
aaaregate a°ReratorPatternEx()
@ Createtterator():Rterator @ main(String[]):void
A & Print(Iterator):void
<<Java Class>>
: (@ Sciencelterator
<<Java Class>> aggregate
(@ Science o subjects: LinkedList<String>
aggregate o position: int
o subjects: LinkedList<String> [" Sciencetterator(LinkedList<String>)
@ Science() @ First{):void
@ Createterator():Rerator @ Next():String
@ IsDone():Boolean
@ Currentitem():String

60

<<Java Interface>>
3 literator

iterator

@ First():void

@ Next():String

@ IsDone():Boolean
@ Currentitem():String

Package Explorer view

High-level structure of the parts of the program is as follows:

4 [TteratorPattern
2 8 aggregate
4 [J) Arts.java
s O Ats
. @ Artslterator
o subjects
& Arts()
@. Createlterator() : literator
» [J] ISubject.java
4 [J) Science.java
4 © Science
. (® Sciencelterator
o subjects
@ Science()
@. Createlterator() : literator
4 {8 iterator
4 [J] Dterator.java
4 O Iterator
& Currentitem() : String
@' First() : void
& IsDone() : Boolean
¢ Next() : String
4 {8 iteratorpattern.demo
. [J) ReratorPatternEx.java
. = JRE System Library [JavaSE-1.8)

Implementation

//ISubject.java

package aggregate;
import iterator.*;

public interface ISubject

{
}

//IIterator.java

public IIterator Createlterator();

package iterator;

CHAPTER 10

ITERATOR PATTERNS

61

CHAPTER 10 * ITERATOR PATTERNS

public interface IIterator

{
void First();//Reset to first element
String Next();//get next element
Boolean IsDone();//End of collection check
String CurrentItem();//Retrieve Current Item
}

//Arts.java

package aggregate;
import iterator.*;

public class Arts implements ISubject
{

private String[] subjects;

public Arts()

{
subjects = new String[2];
subjects[0] = "Bengali”;
subjects[1] = "English" ;
}
public IIterator CreateIterator()
{
return new ArtsIterator(subjects);
}

//Containing the ArtsIterator
public class ArtsIterator implements IIterator
{

private String[] subjects;

private int position;

public ArtsIterator(String[] subjects)

{
this.subjects = subjects;
position = 0;
}
public void First()
{
position = 0;
}
public String Next()
{
return subjects[position++];
}
public Boolean IsDone()
{
return position >= subjects.length;
}

62

}

CHAPTER 10

public String CurrentItem()
{

}

return subjects[position];

// Science.java

package aggregate;
//for Linked List data structure used here

import java.util.LlinkedList;
import iterator.*;

public class Science implements ISubject

{

private LinkedList<String> subjects;

public Science()

{
subjects = new LinkedList<String>();
subjects.addLast("Maths");
subjects.addLast("Comp. Sc.");
subjects.addLast("Physics");

}

@0verride

public IIterator CreateIterator()

{
return new Sciencelterator(subjects);

}

//Containing the Sciencelterator
public class Sciencelterator implements IIterator
{
private LinkedList<String> subjects;
private int position;
public Sciencelterator(LinkedList<String> subjects)

{
this.subjects = subjects;
position = 0;

}

public void First()

{
position = 0;

}

ITERATOR PATTERNS

63

CHAPTER 10

}

ITERATOR PATTERNS

public String Next()

{
return subjects.get(position++);
}
public Boolean IsDone()
{
return position >= subjects.size();
}
public String CurrentItem()
{
return subjects.get(position);
}

//IteratorPatternEx.java

package iteratorpattern.demo;
import iterator.*;
import aggregate.*;

class IteratorPatternkEx

public static void main(String[] args)

System.out.println("***Iterator Pattern Demo***\n");
ISubject Sc_subject = new Science();
ISubject Ar_subjects = new Arts();

ITterator Sc_iterator = Sc_subject.Createlterator();
ITterator Ar_ iterator = Ar_subjects.CreateIterator();

System.out.println("\nScience subjects :");
Print(Sc_iterator);

System.out.println("\nArts subjects :");
Print(Ar_iterator);

public static void Print(IIterator iterator)

{
{
}
{
}
}

64

while (!iterator.IsDone())

{
}

System.out.println(iterator.Next());

CHAPTER 10 * ITERATOR PATTERNS

Output

E) Console 22
<terminated> IteratorPatternEx [Java Application] C:\Program Files\Java\jrel 8.0_45\bin\javaw.exe (Nov 14, 2015, 12:15:08 PM)

***Iterator Pattern Demo

Science subjects :

Comp. Sc.
Physics

Arts subjects :
Bengali
English

Note

If you have gone through the above code, probably you now have a fair idea of the power of an iterator and
the significance of this pattern. We can support different variations for the traversal of an aggregate (the
interface to create an Iterator object), and above all, it simplifies the interface.

But we must be careful while traversing and any kind of modification during that traversal period can
cause damage to us. We can take a backup first to deal with this type of scenario, but it is obvious that taking
the backup and reexamining it at some later stage is also a costly operation.

65

CHAPTER 11

Facade Patterns

GoF Definition: Provide a unified interface to a set of interfaces in a system. Facade defines a higher-level
interface that makes the subsystem easier to use.

Concept

It is one of those patterns that supports loose coupling. Here we emphasize the abstraction and hide the
complex details by exposing a simple interface.

Real-Life Example

Suppose you are going to organize a birthday party and you have invited 100 people. Nowadays, you can go
to any party organizer and let him/her know the minimum information— (party type, date and time of the
party, number of attendees, etc.). The organizer will do the rest for you. You do not even think about how
he/she will decorate the party room, whether people will take food from self-help counter or will be served
by a caterer, and so on.

Computer World Example

We can think about a case where we use a method from a library. The user doesn’t care how the method is
implemented in the library. He/she just calls the method to serve his/her easy purpose. The pattern can be
best described by the example that follows.

lllustration

Here our aim is to build/construct robots. And from a user point of view he/she needs to supply only the
color and material for his/her robot through the RobotFacade (See our FacadePatternEx.java file.) Our
RobotFacade (RobotFacade.java) will in turn create objects for RobotBody, RobotColor, RobotMetal and
will do the rest for the user. We need not worry about the creation of these separate classes and their calling
sequence. All of the classes have their corresponding implementation here.

In this example I have followed this structure. Note that the related parts are separated by the packages
for better readability.

67

CHAPTER 11 I FACADE PATTERNS

UML Class Diagram
<zJava Class=> =zzJava Class>>
(9FacadePatternEx (9 RobotFacade
facade pattem.demo robotfacade
ch acadePatternEx() ecRnbntFacade()
Osmain(String[]): void © ConstructRobot(String, String): void
~rm /0..1 }rb\(i |
~r
<<Java Class=» 0.1 =<Java Class>» <<Java Class>»
(9 RohotBody (9 RohotMetal (9 RobotColor
robotparts robotparts robotparts
ecRobotaody() o metal: String o color: String
® CreateBody():void & RobotMetal() @ RobotColor()
© SetMetal(String): void © SetColor(String): void

Package Explorer view

4 &7 FacadePattern
4 8 facade.pattern.demo
> |J) FacadePatternEx.java
4 3 robotfacade
> [J) RobotFacade.java
4 8 robotparts
> [J] RobotBody.java
> |J] RobotColor.java
> [J] RobotMetal.java
> =\ JRE System Library [JavaSE-1.8]

68

CHAPTER 11

Implementation

//RobotBody. java
package robotparts;

public class RobotBody

{
public void CreateBody()
{
System.out.println("Body Creation done");
}
}

//RobotColor. java
package robotparts;

public class RobotColor

{
private String color;
public void SetColor(String color)
{
this.color = color;
System.out.println("Color is set to : "+ this.color);
}
}

//RobotMetal. java
package robotparts;

public class RobotMetal

{
private String metal;
public void SetMetal(String metal)
{
this.metal=metal;
System.out.println("Metal is set to : "+this.metal);
}
}

FACADE PATTERNS

69

CHAPTER 11

FACADE PATTERNS

//RobotFacade. java
package robotfacade;
import robotparts.*;

public class RobotFacade

RobotColor rc;
RobotMetal rm ;
RobotBody rb;

public RobotFacade()

rc = new RobotColor();
rm = new RobotMetal();
rb = new RobotBody();

public void ConstructRobot(String color,String metal)

{
{
{
}
}

System.out.println("\nCreation of the Robot Start");
rc.SetColor(color);

rm.SetMetal(metal);

rb.CreateBody();

System.out.println(" \nRobot Creation End");
System.out.println();

//FacadePatternEx. java
package facade.pattern.demo;
import robotfacade.RobotFacade;

class FacadePatternEx

{

public static void main(String[] args)

{

70

System.out.println("***Facade Pattern Demo***");
RobotFacade rfi = new RobotFacade();
rf1.ConstructRobot("Green", "Iron");
RobotFacade rf2 = new RobotFacade();
rf2.ConstructRobot("Blue", "Steel");

CHAPTER 11 " FACADE PATTERNS

Output

&) Console 2

<terminated> FacadePatternEx (2) [Java Application] C:\Program Files\Java\jrel.8.0_45\bin\javaw.exe (Nov 14, 2015, 4:56:20 PM)
Facade Pattern Demo

Creation of the Robot Start
Color is set to : Green
Metal is set to : Iron

Body Creation done

Robot Creation End

Creation of the Robot Start
Color is set to : Blue
Metal is set to : Steel
Body Creation done

Robot Creation End

1. We use Facade pattern to represent a simple interface instead of a complex
subsystem.

2. Here we promote weak coupling among subsystems—so, in this way, we are
making them portable.

3. We already mentioned that we separate subsystems from clients by a simple
interface. With this model, we not only make the system easier to use but also
reduce the number of objects that the clients need to deal with.

4. There is truly no major disadvantage associated with this pattern. On the other
hand, it has proven its usefulness in libraries like jQuery also.

71

CHAPTER 12

Factory Method Patterns

GoF Definition: Define an interface for creating an object, but let subclasses decide which class to
instantiate. The factory method lets a class defer instantiation to subclasses.

Concept

The concept can be best described with the examples below.

Real-Life Example

Suppose you have two different types of televisions—one with an LED screen and another with an LCD
screen. If any of these starts malfunctioning, you will call a TV repairman to request a visit to your residence.
The repairman must ask first what kind of TV is nonoperational. As per your input, he’ll carry the required
instruments with him.

Computer World Example

In a Windows application, we may have different database users (e.g., one user uses Oracle and one may use
Sql Server). Now whenever we need to insert data in our database we need to create either an SqlConnection
or an OracleConnection first; only then we can proceed. If we put them into simple if-else, we need to

repeat lots of codes and it doesn’t look good. We can use the factory pattern to solve these types of problems.
The basic structure is defined with an abstract class; our subclasses will be derived from this class. The
subclasses will take the responsibility of the instantiation process.

lllustration

Here I have created all classes into a single file. Please go through the code. Note that here we have two
animal types—Duck and Tiger. And whenever we try to use a new type, Lion, which was not implemented
earlier, an exception will be thrown. If you want to omit this extra part, you can do that. In that case, we also
do not need to take precautions for any exceptions.

73

CHAPTER 12 ' FACTORY METHOD PATTERNS

UML Class Diagram

<<Java Class>>
<<Java Class>> (2 Duck
&4 1AnimalFactory factory.pattern.demo
f . de
actory.pattern.demo g';l:}uck()
flAnirmFactory() @ Speak().void -
&' GetAnimal Type(String):1Animal PR N
‘.-"'..b‘
creates"
‘_.-‘"s <<Java Class>>
(9 FactoryPatternEx B
<<Java Class>> B factory.pattern demo
(9 ConcreteFactory = <<Java Interface>>
factory.pattern.demo & FacloryPatiemEx() € 1Animal
& main(Stringf)):void Bnctispaetieciiio
‘c ConcreteFactory()
© GetAnimalType(String):lAnimal o = V @ Speak():void
creaté;""--. <<Java Class>>

©Tiger
_.} factory.pattern.demo

aTiger()
@ Speak():void

Package Explorer view

High-level structure of the parts of the program is as follows:

4 (& FactoryPattern
4 {5 factory.pattern.demo
4 [J) FactoryPatternEx.java
4 @ ConcreteFactory
@. GetAnimalType(String) : [Animal
4 @ Duck
@. Speak(: void
4 (FactoryPatternEx
@ main(String(]) : void
4 € IAnimal
& Speak() : void
4 GZ IAnimalFactory
@' GetAnimalType(String) : [Animal
4 @ Tiger

@. Speak() : void

74

CHAPTER 12 I FACTORY METHOD PATTERNS

Implementation

package factory.pattern.demo;
interface IAnimal

{
void Speak();
}
class Duck implements IAnimal
{
@0verride
public void Speak()
{
System.out.println("Duck says Pack-pack");
}
}
class Tiger implements IAnimal
{
@0verride
public void Speak()
{
System.out.println("Tiger says: Halum..Halum");
}
}
abstract class IAnimalFactory
{
public abstract IAnimal
/*if we cannot instantiate in later stage, we'll throw exception*/
GetAnimalType(String type) throws Exception;
}
class ConcreteFactory extends IAnimalFactory
{
@0verride
public IAnimal GetAnimalType(String type) throws Exception
{
switch (type)
{
case "Duck":
return new Duck();
case "Tiger":
return new Tiger();
default:
throw new Exception("Animal type : "+type+" cannot be
instantiated");
}
}
}

75

CHAPTER 12 = FACTORY METHOD PATTERNS

class FactoryPatternEx

{

public static void main(String[] args) throws Exception

{
System.out.println("***Factory Pattern Demo***\n");
IAnimalFactory animalFactory = new ConcreteFactory();
IAnimal DuckType=animalFactory.GetAnimalType("Duck");
DuckType.Speak();

IAnimal TigerType = animalFactory.GetAnimalType("Tiger");
TigerType.Speak();

//There is no Lion type. So, an exception will be thrown
IAnimal LionType = animalFactory.GetAnimalType("Lion");
LionType.Speak();

Output

Ifyou do not want to see the exception, just do not try to create the Lion type here (i.e., comment out the code).

&) Console 2

<terminated> FactoryPatternEx [Java Application] C:\Program Files\Java\jrel.8.0_45\bin\javaw.exe (Nov 14, 2015, 9:11:50 PM)
Factory Pattern Demo

Duck says Pack-pack
Tiger says: Halum..Halum

1. This pattern is useful when our classes shift the responsibilities of objects
creation to its subclasses.

2. This pattern is also useful when implementing parallel class hierarchies (when
some of the responsibilities shift from one class to another) and when making a
system with loose coupling is possible.

3. Oneissue that we need to address is that making too many objects often can
decrease performance.

76

CHAPTER 13

Memento Patterns

GoF Definition: Without violating encapsulation, capture and externalize an object’s internal state so that
the object can be restored to this state later.

Concept

Our aim is to save the state of an object, so that in the future, we can go back to the specified state. Three
objects are playing the game here—a memento, a caretaker, and the originator. The memento will store the
internal states of the originator. The originator can have the internal states and it has the ability to restore
into its earlier state. An originator can also retrieve information from the memento. The caretaker takes care
of the memento’s safekeeping or protection and it should not examine the contents of the memento.

Real-Life Example

In notepad we use undo frequently by pressing ctrl+Z.

Computer World Example

A classic example in this category includes the state in a finite state machine. Apart from this, in real-world
database programming, often we may need to roll back a transaction operation.

lllustration

Please go through the code. Use the comments for your ready reference. Please also note that if you are
familiar with C#, you can also use C# properties in place of the getter and setter operations used here.

7

CHAPTER 13 © MEMENTO PATTERNS

UML Class Diagram

<<Java Class>>

(9 Caretaker
memento. pattern.demo

‘c Caretaker()
© SaveMemento(Memento):void
@ RetrieveMemento():Memento

-_mement

<<Java Class>>
(9 Originator
memento. pattern.demo

o state: String

&° Originator()

@ setState(String):void

@ OriginatoriMemento():Memento
@ Revert(Memento):void

0.1 ~m 0.1

<<Java Class>>

(9 MementoPatternEx
memento.pattern.demo

<<Java Class=>

(9 Memento
memento.pattern.demo

a°MementoPatternEx()
05 main(String[]):void

78

o state: String

@ Memento(String)
© getState():String

CHAPTER 13

Package Explorer view

High-level structure of the parts of the program is as follows:

4 (£ MementoPattern
4 8 memento.pattern.demo
4 [J] MementoPatternEx.java
s (G Caretaker
o _memento
@ RetrieveMemento() : Memento
© SaveMemento(Memento) : void
4 (@ Memento
o state
& Memento(String)
@ getState() : String
. (& MementoPatternEx
4 (3 Originator
a4 m
o state
@ OriginatorMemento() : Memento
@ Revert(Memento) : void
@ setState(String) : void

Implementation

package memento.pattern.demo;
// Memento class

class Memento

{

private String state;

public Memento(String state)
{

}

this.state = state;

MEMENTO PATTERNS

79

CHAPTER 13 MEMENTO PATTERNS

}

public String getState()
{

}

return state;

// Originator class

class Originator

{

}

private String state;
Memento m;

public void setState(String state)
{

this.state = state;

System.out.println("State at present :

}

// Creates memento
public Memento OriginatorMemento()
{
m = new Memento(state);
return m;

}

// Back to old state
public void Revert(Memento memento)

+state);

{
System.out.println("Restoring to previous state...");
state = memento.getState();
System.out.println("State at present :" +state);

}

//Caretaker Class
class Caretaker

{

80

private Memento _memento;

public void SaveMemento(Memento m)

{
_memento = m;
}
public Memento RetrieveMemento()
{
return _memento;
}

CHAPTER 13 ' MEMENTO PATTERNS

class MementoPatternEx

{

public static void main(String[] args)

{

System.out.println("***Memento Pattern Demo***\n");
Originator o = new Originator();
o.setState("First state");

// Holding old state
Caretaker ¢ = new Caretaker();
c.SaveMemento(o.0riginatorMemento());

//Changing state
o.setState("Second state");

// Restore saved state
o.Revert(c.RetrieveMemento());

Output

&) Console 2

<terminated> MementoPatternEx [Java Application] C:\Program Files\Java\jrel.8.0_45\bin\javaw.exe (Nov 15, 2015, 2:51:44 PM)
Memento Pattern Demo

State at present : First state
State at present : Second state
Restoring to previous state...
State at present :First state

1. We are advised to treat the memento object as an opaque object (i.e., ideally,
caretakers should not be allowed to change them).

2. We should pay special attention so that other objects are not affected by the
change made in the originator to the memento.

3. Sometimes, use of this pattern can cost more (e.g., if we want to store and restore
large amount of data frequently). Also, from a caretaker point of view, the caretaker
has no idea about how much state is kept in the memento that it wants to delete.

81

CHAPTER 14

State Patterns

GoF Definition: Allow an object to alter its behavior when its internal state changes. The object will appear to
change its class.

Concept

The concept is best described by the examples that follow.

Real-Life Example

Consider a network connection for the moment. Here the object (that is responsible for communication) can
be in various states (e.g., already a connection is established, a connection is closed, or the object is listening
through the connection). We can also think of a traffic signal in this context.

Computer World Example

The above example is applicable in the computer world also. Let us look at an additional example: We have a
job processing application where we can process only one job (or any certain number of jobs) at a time. Now
if a new job appears, either the application will process that job or it will signal that the new job cannot be
processed at this moment because the system is already processing the maximum number of jobs in it

(i.e., its number of job processing capabilities has reached the ceiling).

lllustration

Here we have picked a very simple switching mechanism for turning a TV on/off. Suppose, we have a remote
control to turn the TV on/off. Initially the TV is in the off state. When we press the power button, the TV will
be on; upon the next press of the button, the TV will go off. We have implemented this concept with the state
design pattern here.

83

CHAPTER 14 I STATE PATTERNS

UML Class Diagram

<<Java Class>> <<Java Class>> <<Java Class>>

(9 StatePatternEx ®O0n ®off
state.pattern.demo state_pattern.demo state.pattern.demo

4&° StatePatternEx() aSon() o)

@ main(String[]):void @ pressSwitch(TV):void @ pressSwitch(TV):void

<<Java Class>>

(&5 RemoteControl
state pattern.demo

& RemoteControl()
&' pressSwitch(TV):void

i
-state | 0..1

<<Java Class>>

e1v

state pattern.demo

@ getState():RemoteControl

© setState(RemoteControl):void
OCTV(Ren'loteControl)

@ pressButton():void

84

CHAPTER 14

Package Explorer view

High-level structure of the parts of the program is as follows:

4 (=7 StatePattern
4 {§} state.pattern.demo
4 |J) StatePatternExjava
4 @ Off
@. pressSwitch(TV) : void
4 @ On
@. pressSwitch(TV) : void
G4 RemoteControl
@' pressSwitch(TV) : void
. (3 StatePatternEx
PRCEL
o state
@ TV(RemoteControl)
@ getState() : RemoteCo
@ pressButton() : void
@ setState(RemoteControl) : void
» 2 JRE System Library [JavaSE-1.8]

[Y

Implementation

package state.pattern.demo;
abstract class RemoteControl

public abstract void pressSwitch(TV context);

}
class Off extends RemoteControl
{
@0verride
public void pressSwitch(TV context){
System.out.println("I am Off .Going to be On now");
context.setState(new On());
}
}

STATE PATTERNS

85

CHAPTER 14 © STATE PATTERNS

class On extends RemoteControl

{
@0verride
public void pressSwitch(TV context)
{
System.out.println("I am already On .Going to be Off now");
context.setState(new Off());
}
}
class TV
{
private RemoteControl state;
public RemoteControl getState() {
return state;
}
public void setState(RemoteControl state) {
this.state = state;
public TV(RemoteControl state)
{
this.state=state;
}
public void pressButton()
{
state.pressSwitch(this);
}
}
class StatePatternEx
{
public static void main(String[] args)
{
System.out.println("***State Pattern Demo***\n");
//Initially TV is Off
Off initialState = new Off();
TV tv = new TV(initialState);
//First time press
tv.pressButton();
//Second time press
tv.pressButton();
}
}

86

CHAPTER 14 © STATE PATTERNS

Output

&) Conscle 2

<terminated> StatePatternEx [Java Application] C:\Program Files\Java\jrel 8.0_45\bin\javaw.exe (May 20, 2015, 8:32:06 PM)
***State Pattern Demo™**

I am Off .Going to be On now
I am already On .Going to be Off now

Note

1. As human beings, we perform best when we are happy and free of tension and our
behavior can clearly reflect our mental state. It is obvious that when we are in a
happy and relaxed mode, we can perform better and we can talk to othersin a
friendlier tone. But consider the reverse scenario: when we are full of tension. In
that scenario, in most cases, our efforts cannot produce a great result. That is why
itis always suggested that we should work in relaxed mode. You can relate this
simple philosophy with the foregoing illustration. If the TV is on, it can entertain
you; if it is off, it cannot—right? So, when we want to design similar kinds of
behavior changes of an object when its internal state changes, this pattern becomes
handy.

2. Ifthe number of states increases significantly in the system, then it becomes
extremely hard to maintain that system.

87

CHAPTER 15

Builder Patterns

GoF Definition: Separate the construction of a complex object from its representation so that the same
construction processes can create different representations.

Concept

The pattern is useful when a creational algorithm of a complex object is independent of the assembly of the
parts of the object. The construction process is also capable of building a different representation of that
object under consideration.

Real-Life Example

To create a computer, different parts are assembled depending upon the order received by the customer
(e.g., a customer can demand a 500 GB hard disk with an Intel processor; another customer can choose a 250
GB hard disk with an AMD processor).

Computer World Example

We sometimes need to convert one text format to another text format (e.g., RTF to ASCII text).

lllustration

Here the participants are IBuilder, Car, MotorCycle, Product, and Director. The first three are very
straightforward—Car and MotorCycle are implementing the IBuilder interface. IBuilder is used to create
parts of the Product object where Product represents the complex object under construction. The assembly
process is described in Product. We can see that we have used the Linked List data structure in Product for
this assembly operation.

Car and MotorCycle are the concrete implementations. They have implemented IBuilder interface.
That’s why they needed to BuildBody(), InsertWheels(), AddHeadlights(), and finally GetVehicle(). We
use the first three methods to build the body of the vehicle, insert the number of wheels into it, and add
headlights to the vehicle. GetVehicle() will return the ultimate product. Finally, Director will be responsible
for constructing the ultimate vehicle. Director will build the product with IBuilder interface. He is calling the
same Construct() method to create different types of vehicles.

Please go through the code to see how different parts are assembled for this pattern.

89

CHAPTER 15 I BUILDER PATTERNS

UML Class Diagram

<<Java Class>>
(9 Director
builder pattern.demo

<<Java Interface>>

) |Builder

builder. pattemn.demo

~myBuilder

aCDirector()

@ Construct(Builder):void

<<Java Class>>

®car

builder. pattern.demo

a°car()

@ BuildBody():void

@ InsertWheels():void
@ AddHeadlights():void
@ GetVehicle().Product

90

0.1

L

@ BuildBody():void

@ InsertWheels():void
© AddHeadlights():void
@ GetVehicle().Product

<<Java Class>>

(9 BuilderPatternEx
builder pattern.demo

AcBuIderPaﬂernEx()
@ main(String[]):void

<<Java Class>>
(@ Product

builder. pattern.demo

o parts: LinkedList<String>

& Product()
@ Add(String):void
@ Show():void

0.1

<<Java Class>>
(9 MotorCycle
builder pattern.demo

2 MotorCycle()

@ BuikdBody():void

@ InsertWheels().void
@ AddHeadlights():void
@ GetVehicle():Product

CHAPTER 15

Package Explorer view

High-level structure of the parts of the program is as follows:

4 (&7 BuilderPattern
4 {8 builder.pattern.demo
4 |J) BuilderPatternEx.java
» @ BuilderPatternEx
« @ Car
o product
@. AddHeadlights() : void
@. BuildBody() : void
@. GetVehicle() : Product
@. InsertWheels() : void
4 (3 Director
& myBuilder
@ Construct(IBuilder) : void
4 €} IBuilder
&' AddHeadlights() : void
@' BuildBody() : void
&' GetVehicle() : Product
& InsertWheels() : void
> G MotorCycle
4 Q Product
o parts
@ Product()
@ Add(String) : void
@ Show() : void

BUILDER PATTERNS

91

CHAPTER 15 © BUILDER PATTERNS

Implementation

package builder.pattern.demo;
import java.util.LlinkedlList;

// Builders common interface
interface IBuilder

{

}

void BuildBody();

void InsertWheels();
void AddHeadlights();
Product GetVehicle();

// Car is ConcreteBuilder
class Car implements IBuilder

{

}

private Product product = new Product();

@0verride
public void BuildBody()
{
product.Add("This is a body of a Car");
}
@0verride
public void InsertWheels()
{
product.Add("4 wheels are added");
}
@0verride
public void AddHeadlights()
{
product.Add("2 Headlights are added");
}
@0verride
public Product GetVehicle()
{
return product;
}

// Motorcycle is a ConcreteBuilder
class MotorCycle implements IBuilder

{

92

private Product product = new Product();
@verride

CHAPTER 15 I BUILDER PATTERNS

public wvoid BuildBody()

{
product.Add("This is a body of a Motorcycle");
}
@verride
public void InsertWheels()
{
product.Add("2 wheels are added");
}
@0verride
public void AddHeadlights()
{
product.Add("1 Headlights are added");
}
@0verride
public Product GetVehicle()
{
return product;
}
}
// "Product"
class Product
{
// We can use any data structure that you prefer. We have used LinkedList here.
private LinkedlList<String> parts;
public Product()
{
parts = new LinkedList<String>();
}
public void Add(String part)
{
//Adding parts
parts.addLast(part);
}
public void Show()
{
System.out.println("\n Product completed as below :");
for(int i=0;i<parts.size();i++)
{
System.out.println(parts.get(i));
}
}
}

// "Director"
class Director

{
IBuilder myBuilder;

93

CHAPTER 15 I BUILDER PATTERNS

// A series of steps—for the production
public void Construct(IBuilder builder)
{
myBuilder=builder;
myBuilder.BuildBody();
myBuilder.InsertWheels();
myBuilder.AddHeadlights();
}

class BuilderPatternEx

{

public static void main(String[] args)

{

System.out.println("***Builder Pattern Demo***\n");
Director director = new Director();

IBuilder carBuilder = new Car();
IBuilder motorBuilder = new MotorCycle();

// Making Car
director.Construct(carBuilder);
Product p1 = carBuilder.GetVehicle();
p1.Show();

//Making MotorCycle
director.Construct(motorBuilder);
Product p2 = motorBuilder.GetVehicle();
p2.Show();

Output

) Console &2

Builder Pattern Demo

Product completed as below :
This is a body of a Car

4 wheels are added

2 Headlights are added

Product completed as below :

This is a body of a Motorcycle
2 wheels are added
1 Headlights are added

94

<terminated> BuilderPatternEx [Java Application] C:\Program Files\Java\jrel.8.0_45\bin\javaw.exe (Jun 10, 2015, 3:56:43 PM)

Note

CHAPTER 15 I BUILDER PATTERNS

Here we separate the code of assembling from its representation. So, it hides the
complex construction process and represents it as a simple process.

Here we focus on “how the product will be made.”

In general, we have only one method which will finally return the complete
object. Other methods will be responsible for partial creation process only.

It requires some amount of code duplication—which is considered a drawback
with this pattern.

Also, if we want a mutable object (an object which can be modified after the
creational process is over), we should not use this pattern.

95

CHAPTER 16

Flyweight Patterns

GoF Definition: Use sharing to support large numbers of fine-grained objects efficiently.

Concept

A flyweight is an object through which we try to minimize memory usage by sharing data as much as
possible. Two common terms are used here—intrinsic state and extrinsic state. The first category (intrinsic)
can be stored in the flyweight and is shareable. The other one depends on the flyweight’s context and is
non-shareable. Client objects need to pass the extrinsic state to the flyweight.

Real-Life Example

In all real-world business applications, we want to avoid storing similar objects. The concept of this pattern
is applicable in those places. I'll also share a story with you: a few years ago, two of my friends were each
searching for an apartment to stay nearby their office. However, neither of them was satisfied with the
available options. Then, one day, they found a place with all kind of facilities that they both desired. But
there were two constraints—first of all, there was only one apartment, and second, the rent was high.

So, to avail themselves of all those facilities, they decided to stay together and share the rent. This can be
considered a real-life example of the flyweight pattern.

Computer World Example

The graphical representation of characters in word processors is a common example of this pattern. Also,
we can think of a computer game where we have a large number of participants whose looks are same but
who differ from each other in their performances (or color, dresses, weapons, etc.). We can use the flyweight
pattern in all those scenarios.

lllustration

Please go through the code with the comments for your ready reference for an implementation of this
pattern. Note that, we'll not create any new object (here, small or large robots) if we have created such a type
already. If we have at least one instance of our desired object, we’ll reuse that object from this point onward.

97

CHAPTER 16 FLYWEIGHT PATTERNS

UML Class Diagram

<<Java Class>>

<<Java Class>>
(9 RobotFactory

(9 FlyweightPatternEx

<<Java Interface>>

flyweight pattern.demo YO e ~shapes IRobot
C . fhyweight.pattern.demo
25 FlyweightPatternEx() & RobotFactory() 0.
& main(Strin 0):void @ TotalObjectsCreated()int @ Print():void
@ GetRobotFromFactory(String):IRobot

A

1/’

<<Java Class>>

(® SmallRobot
flyweight. pattern.demo

25 SmalRobot()
@ Print():void

<<Java Class>>
(9 LargeRobot
flyweight. pattern.demo

4" LargeRobot()
@ Print():void

Package Explorer view

High-level structure of the parts of the program is as follows:

4 [FlyweightPattern
4 {8 flyweight.pattern.demo
4 [J] FlyweightPatternEx.java
b @,_ FlyweightPatternkx
4 €} IRobot
& Print() : void
& LargeRobot
@. Print() : void
4 (3 RobotFactory
4 shapes
@ GetRobotFromFactory(String) : IRobot
@ TotalObjectsCreated() : int
& SmallRobot
@. Print() : void
> = JRE System Library [JavaSE-1.8]

1Y

1Y

98

CHAPTER 16 I FLYWEIGHT PATTERNS

Implementation

package flyweight.pattern.demo;
import java.util.HashMap;
import java.util.Map;

/**

* @author sarcarv

* Qur interface
*

*/
intexface IRobot
{
void Print();
}
J**

* @author sarcarv

* A 'ConcreteFlyweight' class-SmallRobot
*

*/
class SmallRobot implements IRobot
{
@0verride
public void Print()
{
System.out.println(" This is a Small Robot");
}
}
/**

* @author sarcarv

* A 'ConcreteFlyweight' class-LargeRobot
*

*/

class LargeRobot implements IRobot

{
@0verride
public void Print()
{

System.out.println(" I am a Large Robot");

}

}

99

CHAPTER 16 © FLYWEIGHT PATTERNS

/**

* @author sarcarv

* The 'FlyweightFactory' class
*

*/
class RobotFactory
{
Map<String, IRobot> shapes = new HashMap<String, IRobot>();
public int TotalObjectsCreated()
{
return shapes.size();
}
public IRobot GetRobotFromFactory(String RobotCategory) throws Exception
{
IRobot robotCategory = null;
if (shapes.containsKey(RobotCategory))
robotCategory = shapes.get(RobotCategory);
}
else
{
switch (RobotCategory)
{
case "small":
System.out.println("We do not have Small Robot. So we are
creating a Small Robot now.");
robotCategory = new SmallRobot();
shapes.put("small", robotCategory);
break;
case "large":
System.out.println("We do not have Large Robot. So we are
creating a Large Robot now .");
robotCategory = new LargeRobot();
shapes.put("large", robotCategory);
break;
default:
throw new Exception(" Robot Factory can create only small
and large shapes");
}
}
return robotCategory;
}
}

100

/**

CHAPTER 16 I FLYWEIGHT PATTERNS

* @author sarcarv
*FlyweightPattern is in action.

*/

class FlyweightPatternEx

public static void main(String[] args) throws Exception

{

RobotFactory myfactory = new RobotFactory();
System.out.println("\n***Flyweight Pattern Example***\n");

IRobot shape = myfactory.GetRobotFromFactory("small");
shape.Print();
/*Here we are trying to get the objects additional 2 times. Note that from
now onward we do not need to create additional small robots as we have
already created this category*/
for (int i = 0; 1 < 2; i++)
{
shape = myfactory.GetRobotFromFactory("small");
shape.Print();
}
int NumOfDistinctRobots = myfactory.TotalObjectsCreated();
System.out.println("\nDistinct Robot objects created till now=
"+ NumOfDistinctRobots);

/*Here we are trying to get the objects 5 times. Note that the second time
onward we do not need to create additional large robots as we have already
created this category in the first attempt(at i=0)*/
for (int i = 0; 1 < 5; i++)
{

shape = myfactory.GetRobotFromFactory("large");

shape.Print();

}

NumOfDistinctRobots = myfactory.TotalObjectsCreated();
System.out.println("\n Finally no of Distinct Robot objects created:
"+ NumOfDistinctRobots);

101

CHAPTER 16 FLYWEIGHT PATTERNS

Output

@ Javadoc |i, Declaration E) Console 33

<terminated> FlyweightPatternEx [Java Application] C:\Program Files\Java\jrel.8.0_45\bin\javaw.exe (Jun 8, 2015, 9:06:30 PM)
Flyweight Pattern Example

not have Small Robot.So we are creating a Small Robot now.
is a Small Robot
is a Small Robot
is a Small Robot

Distinct Robot objects created till now= 1
We do not have Large Robot.So we are creating a Large Robot now .
I am a Large Robot
I am a Large Robot
am a Large Robot
am a Large Robot
am a Large Robot

a
a
a
a

Finally no of Distinct Robot objects created: 2

Improvement to the program

Now take a closer look to our program. Here it seems that this pattern is behaving similar to a singleton
pattern because we cannot create two distinct types of small (or large) robots. But there may be situations
where we want different types of small (or large) robots in which the basic structure should be same but it
will differ only with some special characteristics. So, we are going to present another example here. This
illustration will clear your doubt and you can make the distinction between the flyweight and the singleton
patterns.

To make the program simple, we are dealing with robots which can be either king type or queen type.
Each of these types can be either green or red. Before making any robot, we'll consult with our factory. If we
already have king or queen types of robots, we'll not create them again. We will collect the basic structure
from our factory and after that we’ll color them. Note that color is extrinsic data here, but the category of robot
(king or queen) is intrinsic.

102

UML Class Diagram

<<Java Class>>

(®Robot
fhyweight.pattern. modified.demo

4 robofType: String
o colorOfRobot: String

@ Robot(String)
@ setColor(String):void
@ Print():void

<<Java Class>>

(9 FlyweightPatternModifiedEx
flyweight. pattern. modified.demo

A FlyweightPatternModifiedEx()
@ main(String]):void
AsgetRandomColorg):String

CHAPTER 16 I FLYWEIGHT PATTERNS

<<Java Interface>>

€ IRobot
flyweight. pattern. modified.demo

@ Print():void

h

~shapes | 0.7

<<Java Class>>
(9 RobotFactory
flyweight. pattern.modified.demo

& RobotFactory()
@ TotalObjectsCreated():int
@ GetRobotFromFactory(String):IRobot

103

CHAPTER 16 FLYWEIGHT PATTERNS

Package Explorer view

4 (& FlyweightPatternModified
4 {8 flyweight.pattern.modified.demo
4 |J] FlyweightPatternModifiedEx.java
4 & FlyweightPatternModifiedEx
& getRandomColor() : String
@ main(String(]) : void
4 €} IRobot
@ Print() : void
4 (3 Robot
o colorOfRobot
4 robotType
@ Robot(String)
@. Print() : void
@ setColor(String) : void
4 (3 RobotFactory
& shapes
@ GetRobotFromFactory(String) : IRobot
@ TotalObjectsCreated() : int
» B4 JRE System Library [JavaSE-1.8]

Implementation

package flyweight.pattern.modified.demo;
import java.util.HashMap;

import java.util.Map;

import java.util.Random;

/**
* @author sarcarv

* Qur interface
*

*/
intexface IRobot
{
void Print();
}
/**

* @author sarcarv

* A 'ConcreteFlyweight' class-SmallRobot
ES

*/

104

CHAPTER 16 I FLYWEIGHT PATTERNS

class Robot implements IRobot

{
String robotType;
public String colorOfRobot;
public Robot(String robotType)
{
this.robotType=robotType;
}
public void setColor(String colorOfRobot)
{
this.colorOfRobot=colorOfRobot;
}
@0verride
public void Print()
{
System.out.println(" This is a " +robotType+ " type robot with
"+colorOfRobot+ "color");
}
}
/**

* @author sarcarv

* The 'FlyweightFactory' class
*

*/
class RobotFactory

{
Map<String, IRobot> shapes = new HashMap<String, IRobot>();

public int TotalObjectsCreated()
{

}

return shapes.size();

public IRobot GetRobotFromFactory(String robotType) throws Exception

{
IRobot robotCategory= null;

if (shapes.containsKey(robotType))

{
robotCategory = shapes.get(robotType);
}
else
{
switch (robotType)
{
case "King":

System.out.println("We do not have King Robot. So we are
creating a King Robot now.");

robotCategory = new Robot("King");
shapes.put("King",robotCategory);

break;

105

CHAPTER 16 © FLYWEIGHT PATTERNS

case "Queen":
System.out.println("We do not have Queen Robot. So we are
creating a Queen Robot now.");
robotCategory = new Robot("Queen");
shapes.put("Queen",robotCategory);
break;

default:
throw new Exception(" Robot Factory can create only king and
queen type robots");

}

}

return robotCategory;

}

/**

* @authoxr sarcarv
*FlyweightPattern is in action.
*/

class FlyweightPatternModifiedEx

public static void main(String[] args) throws Exception
{
RobotFactory myfactory = new RobotFactory();
System.out.println("\n***Flyweight Pattern Example Modified***\n");
Robot shape;
/*Here we are trying to get 3 king type robots*/
for (int i = 0; 1 < 3; i++)

{
shape =(Robot) myfactory.GetRobotFromFactory("King");
shape.setColor(getRandomColor());
shape.Print();

}

/*Here we are trying to get 3 queen type robots*/
for (int i = 0; 1 < 3; i++)

{
shape =(Robot) myfactory.GetRobotFromFactory("Queen");
shape.setColor(getRandomColor());
shape.Print();

}

int NumOfDistinctRobots = myfactory.TotalObjectsCreated();
//System.out.println("\nDistinct Robot objects created till now =
"+ NumOfDistinctRobots);
System.out.println("\n Finally no of Distinct Robot objects created:
"+ NumOfDistinctRobots);

}

static String getRandomColor()

{
Random r=new Random();
/*You can supply any number of your choice in nextInt argument.

106

CHAPTER 16 I FLYWEIGHT PATTERNS

* we are simply checking the random number generated is an even number
* or an odd number. And based on that we are choosing the color. For
simplicity, we'll use only two colors-red and green

*/

int random=r.nextInt(20);

if (random%2==0)

{
return "red";
}
else
{
return "green";
}

Output

E) Console 52

<terminated> FlyweightPatternModifiedEx [Java Application] C:\Program Files\Java\jrel 8.0_45\bin\javaw.exe (Nov 21, 2015, 4:31:43 PM)

Flyweight Pattern Example Modified

We do not have King Robot.So we are creating a King Robot now.
This is a King type robot with greencolor

This is

a King type robot with greencolor

This is a King type robot with redcolor
We do not have Queen Robot.So we are creating a Queen Robot now.

This i

This is

This i

Finally

a Queen type robot with greencolor
a Queen type robot with greencolor
a Queen type robot with redcolor

no of Distinct Robot objects created: 2

Minimization of storage is one of the key concerns here. If we can have more
flyweights to share, we can save more memory.

If we can compute extrinsic states rather than storing them, we can save a
significant amount of memory.

Sometimes in a tree structure, to share leaf nodes, we combine this pattern with
composite pattern.

A flyweight interface may or may not enable sharing. In some cases, we may have
unshared flyweight objects, which in turn may have concrete flyweight objects as
children.

In simple terms: intrinsic data make the instance unique, whereas extrinsic data
are passed as arguments.

107

CHAPTER 17

Abstract Factory Patterns

GoF Definition: Provides an interface for creating families of related or dependent objects without specifying
their concrete classes.

Concept

In this pattern, we provide an encapsulation mechanism to a group of individual factories. These factories
have a theme in common. In this process, an interface is used to create related objects. Here we do not call
their implementer or concrete classes directly. We sometimes refer to this pattern as a factory of factories or a
Super factory.

With this pattern, we can interchange the specific implementations without changing the user’s code.
But to achieve this, we need to compensate for the complexity of the system. As a result, debugging may be
difficult in many scenarios.

Real-Life Example

Suppose we are decorating our room. Now suppose we need two different types of almirah (or, say, table)—
one must be made of wood and one of steel. For the wooden almirah, we need to visit a carpenter shop

and for the other type, we can go to a readymade steel almirah shop. Both of these are almirah (or table)
factories. Based on our demand, we decide what kind of factory we need. This scenario can be considered an
example of this pattern.

Computer World Example

ADO.NET has already implemented similar concepts to establish a connection to a database.

lllustration

In this example, our client is looking for movies and he/she needs to access an Abstract Factory,
IMovieFactory, and Abstract Products, ITollywoodMovie and IBollywoodMovie. The client does not care
which of these factories is giving the concrete object for him/her. He/she uses only the generic interfaces of
their products. The naming conventions are chosen for your easy reference.

109

CHAPTER 17 ABSTRACT FACTORY PATTERNS

UML Class Diagram

<<instantiate>>

<<lava Class»>
(3 AbstractFactoryPatternEx
AbATISIBSIONY DATIET Semo
o AbstractFactoryPatternEx()
éuh]ﬁhgﬂ;{:vud
- <<Java Class=> <<lava Interface=>
ollywoodActionMovie MollywoodMovie
P UL A S o 3 aswactaceypatemdems | o > patter camo [<1
= :
& Wm.\m.uumﬂ @ MovieName():String
@ MovieName():String

<<instantiate>>

110

<<Java Class>>
(@ TollywoodComedyMovie
abstractfactory pattern demd

a5 TobywoodComedyMovie()
@ MovieName():String

<<jinstantiate>>

ey Clna <ccjava terfaces> S Ce
c acto
(@ ActionMovieFactory © IMovieFactory (¢} WM’Y
Aabstract!actony patten. demo. abstractinctory.patiesn. deme sbstractfaciorypatiemceme L L oo oo
& o
& ActionMovieFactory() B ° v Yoty - COII”EMWEFGHIWYE _______ ”
@ GefToly ie():Moly © GetBoly dovie(1B . 0““‘ ¥ : .l-‘: H
@ GetBoly ¥ y Ll o g Y :
1
I
[
1
<<Java Class>> e <<Java Class>> :
(© BollywoodActionMovie . (® BollywoodComedyMovie -
azsvactiscicry patterr cems O IBollywoodMovie - patemdemo | I
- pattem demo - o
| aBotywooaactiontiovie() . R & BolywoodComedylovie() <<jnstantiate>>
@ MovieName():String ke @ MovieName():String

CHAPTER 17

Package Explorer view

High-level structure of the parts of the program is as follows:

4 (& AbstractFactoryPattern
4 {8 abstractfactory.pattern.demo
4 [J] AbstractFactoryPatternExjava
. @ AbstractFactoryPatternEx
. (& ActionMovieFactory
b Q BollywoodActionMovie
. @ BollywoodComedyMovie
» (@ ComedyMovieFactory
«Q IBoIIywoudMowe
@' MovieName() : String
4 €} IMovieFactory
@' GetBollywoodMovie() : IBollywoodl
& GetTollywoodMovie() : ITollywoodh
4 €} MollywoodMovie
& MovieName() : String
» @@ TollywoodActionMovie
Q ToltywoodComedyMovie
. B JRE System Library [JavaSE-1.8]

r
=

(=]

(=]

Implementation

package abstractfactory.pattern.demo;
interface ITollywoodMovie

{
String MovieName();
}
interface IBollywoodMovie
{
String MovieName();
}
interface IMovieFactory
{
ITollywoodMovie GetTollywoodMovie();
IBollywoodMovie GetBollywoodMovie();
}

ABSTRACT FACTORY PATTERNS

111

CHAPTER 17 ABSTRACT FACTORY PATTERNS

//Tollywood Movie collections
class TollywoodActionMovie implements ITollywoodMovie

{

@0verride
public String MovieName()

{
}

return "Kranti is a Tollywood Action Movie";

}

class TollywoodComedyMovie implements ITollywoodMovie

{

@0verride
public String MovieName()

{
}

retuxrn "BasantaBilap is a Tollywood Comedy Movie";

}

// Bollywood Movie collections
class BollywoodActionMovie implements IBollywoodMovie

{

@0verride
public String MovieName()
{
return "Bang Bang is a Bollywood Action Movie";
}

}

class BollywoodComedyMovie implements IBollywoodMovie

{

@0verride

public String MovieName()
{

return "Munna Bhai MBBS is a Bollywood Comedy Movie";
}

}

//Action Movie Factory
class ActionMovieFactory implements IMovieFactory

{
public ITollywoodMovie GetTollywoodMovie()

{
}

return new TollywoodActionMovie();

112

CHAPTER 17

public IBollywoodMovie GetBollywoodMovie()
{

}

return new BollywoodActionMovie();

}
//Comedy Movie Factory

class ComedyMovieFactory implements IMovieFactory

{
public ITollywoodMovie GetTollywoodMovie()

ABSTRACT FACTORY PATTERNS

{
return new TollywoodComedyMovie();
}
public IBollywoodMovie GetBollywoodMovie()
{
return new BollywoodComedyMovie();
}
}
class AbstractFactoryPatternEx
{
public static void main(String[] args)
{
System.out.println("***Abstract Factory Pattern Demo***");
ActionMovieFactory actionMovies = new ActionMovieFactory();
ITollywoodMovie tAction = actionMovies.GetTollywoodMovie();
IBollywoodMovie bAction = actionMovies.GetBollywoodMovie();
System.out.println("\nAction movies are:");
System.out.println(tAction.MovieName());
System.out.println(bAction.MovieName());
ComedyMovieFactory comedyMovies = new ComedyMovieFactory();
ITollywoodMovie tComedy = comedyMovies.GetTollywoodMovie();
IBollywoodMovie bComedy = comedyMovies.GetBollywoodMovie();
System.out.println("\nComedy movies are:");
System.out.println(tComedy.MovieName());
System.out.println(bComedy.MovieName());
}
}

113

CHAPTER 17 © ABSTRACT FACTORY PATTERNS

Output

E) Console 2

<terminated> AbstractFactoryPatternEx [Java Application] C:\Program Files\Java\jrel 8.0_45\bin\javaw.exe (Jun 10, 2015, 11:32:59 AM)
***pbstract Factory Pattern Demo™**

Action movies are:
Kranti is a Tollywood Action Movie
Bang Bang is a Bollywood Action Movie

Comedy movies are:
BasantaBilap is Tollywood Comedy Movie
Munna Bhai MBBS is a Bollywood Comedy Movie

1. We use this pattern when our system does not care about how its products will be
created or composed.

2. We use this pattern when we need to deal with multiple factories.

3. This pattern separates concrete classes and makes interchanging the products
easier. It can also enhance the reliabilities among products. But, at the same
time, we must acknowledge the fact that creating a new product is difficult with
this pattern (because we need to extend the interface and, as a result, changes
will be required in all of the subclasses that already implemented the interface).

114

CHAPTER 18

Mediator Patterns

GoF Definition: Define an object that encapsulates how a set of objects interacts. The mediator pattern
promotes loose coupling by keeping objects from referring to each other explicitly, and it lets you vary their
interaction independently.

Concept

A mediator is the one who takes the responsibility of communication among a group of objects. The
mediator acts as an intermediary who can track the communication between two objects. The other objects
in the system are also aware of this mediator and they know that if they need to communicate among
themselves, they need to go through the mediator. The advantage of using such a mediator is that we can
reduce the direct interconnections among the objects and thus lower the coupling.

Real-Life Example

In an airplane application, before taking off the flight undergoes a series of checks. These checks confirm
that all components/parts (which are dependent on each other) are in perfect condition.

Also, the pilot needs to communicate with the towers at the airport. In general, one pilot from one
airline will not communicate with another pilot from a different airline before taking off or landing
operations. Towers are acting as the mediator here.

Computer World Example

In a business application, in many cases we need to apply constraints (e.g., suppose we have a form for
which we need to supply a user id and then a password for that account). In the same form, we may need

to supply other mandatory information (e-mail id, communication address, age, etc.). Now suppose the
functions are implemented as follows: once a user supplies his user id, the form will check whether that user
id (supplied by user) is valid. If it is a valid id, then only the password field will be enabled. After supplying
these two fields, we may need to check whether the user has provided any e-mail id. Let’s assume here after
providing a user id with a valid e-mail and all other mandatory details, our submit button will be enabled
(i.e., the overall submit button will be enabled if we supply a valid user id, password, e-mail id, and other
mandatory details only). We must also ensure that the user id is an integer, so if the user by mistake provides
any character in that field, the submit button still will be in disabled mode. The mediator pattern becomes
handy in such a scenario.

115

CHAPTER 18 I MEDIATOR PATTERNS

The mediator pattern is handy in such a scenario.

lllustration

In the example here, we have a group of three friends—Amit, Sohel, and Raghu. Among these three friends,

So, when a program consists of many classes and the logic is distributed among them, it becomes
harder to read and maintain. If we need to make some kind of change, it becomes a challenging task for us.

Raghu is the boss and he needs to coordinate things properly. Amit and Sohel work in Raghu'’s team.
Whenever Amit and Sohel talk to each other (say, through a chat server), Raghu can see who is sending

messages to him (though he does not care about the message). Raghu wants to coordinate things smoothly
and whenever he wants to send messages, he wants his messages to reach others instantly. Analyze the code

and output and it'll be clear to you.

UML Class Diagram

<<Java Class>>

(9 MediatorPatternEx
mediator. pattern.demo

a° MediatorPatternEx()
@ main(String[]):void

-friend1 01

<<Java Class>>

(9 Friend1
mediator. pattern.demo

@ Friend1 (Mediator,String)
@ Send(String):void
@ Notify(String):void

116

<<Java Class>>
&5 Mediator
mediator. pattern.demo

25 Mediator()
¢ Send|(Friend, String).void

i

<<Java Class>>
(2 ConcreteMediator
mediator. pattern.demo

" ConcreteMediator()
@ setFriend1(Friend1):void
@ setFriend2(Friend2):void
@ setBoss(Boss).void
@ Send(Friend,String):void

-friend

<<Java Class>>
(5 Friend
mediator. pattern.demo

© name: String

& Friend(Mediator)

e F

0.1

<<Java Class>>
(®Boss

mediator. pattern. demo

<<Java Class>>
(9 Friend2

mediator pattern.demo

& Boss(Mediator,String)
@ Send(String):void
@ Notify(String):void

& Friend2(Mediator, String)
© Send(String):void
@ Notify(String):void

CHAPTER 18 I MEDIATOR PATTERNS

Package Explorer view

High-level structure of the parts of the program is as follows:

4 (& MediatorPattern
4 3 mediator.pattern.demo
4 [J) MediatorPatternEx.java
. (3 Boss
- (& ConcreteMediator
4 G} Friend
mediator
© name
@ Friend(Mediator)
- (3 Friendl
. @ Friend2
4 Gﬁ Mediator
& Send(Friend, String) : void
- (& MediatorPatternEx
. B JRE System Library [JavaSE-1.8]

Implementation

package mediator.pattern.demo;
abstract class Mediator

public abstract void Send(Friend frd, String msg);
}

// ConcreteMediator
class ConcreteMediator extends Mediator
{

private Friendl friendi;

private Friend2 friend2;

private Boss boss;

117

CHAPTER 18 © MEDIATOR PATTERNS

//In this example, setters are sufficient.

public void setFriend1i(Friendl friend1) {
this.friend1 = friendi;
}

public void setFriend2(Friend2 friend2) {
this.friend2 = friend2;

}

public void setBoss(Boss boss) {
this.boss = boss;
}

@0verride
public void Send(Friend frd,String msg)
{
//In all cases, boss is notified
if (frd == friend1)
{
friend2.Notify(msg);
boss.Notify(friend1i.name +

sends message to " + friend2.name);
}
if(frd==friend2)
{
friend1.Notify(msg);
boss.Notify(friend2.name +

sends message to " + friendl.name);

}

//Boss 1is sending message to others
if (frd==boss)

{
friend1i.Notify(msg);

friend2.Notify(msg);

}

// Friend
abstract class Friend

{

protected Mediator mediator;
public String name;

118

CHAPTER 18

// Constructor
public Friend(Mediator mediator)

{
}

mediator = _mediator;

}

// Friendi-first participant
class Friendl extends Friend

{
public Friendi(Mediator mediator,String name)
{
super (mediator);
this.name = name;
}
public void Send(String msg)
{
mediator.Send(this,msg);
}
public void Notify(String msg)
{
System.out.println("Amit gets message: "+ msg);
}
}

// Friend2-Second participant
class Friend2 extends Friend

{
// Constructor
public Friend2(Mediator mediator,String name)
{
super (mediator);
this.name = name;
}
public void Send(String msg)
{
mediator.Send(this,msg);
}
public void Notify(String msg)
{
System.out.println("Sohel gets message: "+ msg);
}
}

MEDIATOR PATTERNS

119

CHAPTER 18 © MEDIATOR PATTERNS

// Friend3-Third participant. He is the boss. He is notified whenever friendi and
friend2 communicate.
class Boss extends Friend

{
// Constructor
public Boss(Mediator mediator,String name)
{
super (mediator);
this.name = name;
}
public void Send(String msg)
{
mediator.Send(this, msg);
}
public void Notify(String msg)
{
System.out.println("\nBoss sees message: " + msg);
System.out.println("");
}
}
class MediatorPatternEx
{
public static void main(String[] args)
{
System.out.println("***Mediator Pattern Demo***\n");
ConcreteMediator m = new ConcreteMediator();
Friend1 Amit= new Friendi(m,"Amit");
Friend2 Sohel = new Friend2(m,"Sohel");
Boss Raghu = new Boss(m,"Raghu");
m.setFriend1(Amit);
m.setFriend2(Sohel);
m.setBoss(Raghu);
Amit.Send("[Amit here]Good Morrning. Can we discuss the mediator pattern?");
Sohel.Send("[Sohel here]Good Morning.Yes, we can discuss now.");
Raghu.Send("\n[Raghu here]:Please get back to work quickly");
}
}

120

CHAPTER 18 ' MEDIATOR PATTERNS

Output

&) Console 2

<terminated> MediatorPatternEx [Java Application] C:\Program Files\Java\jrel.8.0_45\bin\javaw.exe (Jun 9, 2015, 3:16:24 PM)
Mediator Pattern Demo

Sohel gets message: [Amit here]Good Morrning. Can we discuss the mediator pattern?
Boss sees message: Amit sends message to Sohel
gets message: [Sohel here]Good Morning.Yes, we can discuss now.

sees message: Sohel sends message to Amit

Amit gets message:
[Raghu here]:Please get back to work quickly
Sohel gets message:
[Raghu here]:Please get back to work quickly

1. Nowyou should have a clear idea that this pattern is very useful when we observe
complex communications in the system. Communication (among objects) is
much simpler with this pattern.

2. This pattern reduces the number of subclasses in the system and it also enhances
the loose coupling in the system.

3. Here the “many-to-many” relationship is replaced with the “one-to-many”
relationship—which is much easier to read and understand.

4. We can provide a centralized control with this pattern.

5. Sometimes the encapsulation process becomes tricky and we find it difficult to
maintain or implement.

121

CHAPTER 19

Prototype Patterns

GoF Definition: Specify the kinds of objects to create using a prototypical instance, and create new objects by
copying this prototype.

Concept

The prototype pattern provides an alternative method for instantiating new objects by copying or cloning
an instance of an existing one. Creating a new instance, in a real-world scenario, is normally treated as an
expensive operation. This pattern helps us to deal with this issue. Our focus here is to reduce the expense of
this creational process of a new instance.

Real-Life Example

Suppose we have a master copy of a valuable document. We want to make some change to it to get a
different feel. We can make a photocopy of this document and then try to edit our changes.

Computer World Example

Suppose we have made an application. The next time we want to create a similar application with some
small changes, we must start with a copy from our master copy application and make the changes. We'll not
start from the scratch.

123

CHAPTER 19 ' PROTOTYPE PATTERNS

lllustration

In my example, I am going to follow the structure shown here:

<<import>>
BasicCar | s Client (Main)

/N

Nano Ford

Here BasicCar is our prototype. Nano and Ford are our Concrete Prototypes and they need to implement
the Clone() method defined in BasicCar. Here we notice that a BasicCar model is created with some default
price. Later we have modified that price as per the model. Please also note that PrototypePatternEx is the
client here. As usual, the related parts are separated by the packages for better readability.

UML Class Diagram

<<Java Class>> <<Java Class>>
($BasicCar (3 PrototypePatternEx
car prototype.pattern.demo
© modeiname: String & PrototypePatternEx()
© price: int @’ main(String[]):void
@ BasicCar()

@ getModelname():String
@ setlModelname(String):void

05 setPrice():int
@ clone():BasicCar

<<Java Class>> <<Java Class>>
(®Nano ®Ford
car car
@ Nano(String) @ Ford(String)
@ clone():BasicCar @ clone():BasicCar

124

CHAPTER 19

Package Explorer view

High-level structure of the parts of the program is as follows:

4 (&7 PrototypePattern

4 3 car
|J) BasicCar.java
\J] Ford.java
|J] Nano.java

4 {8 prototype.pattern.demo
\J] PrototypePatternEx.java

B\ JRE System Library [JavaSE-1.8]

Implementation

//BasicCar.java
package car;
import java.util.Random;

public abstract class BasicCar implements Cloneable

{
public String modelname;
public int price;

public String getModelname()
{

return modelname;

public void setModelname(String modelname)

{
this.modelname = modelname;
}
public static int setPrice()
{
int price = 0;
Random r = new Random();
int p = r.nextInt(100000);
price = p;
return price;
}

PROTOTYPE PATTERNS

125

CHAPTER 19 © PROTOTYPE PATTERNS

public BasicCar clone() throws CloneNotSupportedException

{
return (BasicCar)super.clone();
}
}
//Ford.java

package car;

public class Ford extends BasicCar

{
public Ford(String m)
{
modelname = m;
}
@0verride
public BasicCar clone() throws CloneNotSupportedException
{
return (Ford)super.clone();
}
}
//Nano. java

package car;

public class Nano extends BasicCar

{
public Nano(String m)
{
modelname = m;
}
@0verride
public BasicCar clone() throws CloneNotSupportedException
{
return (Nano)super.clone();
}
}

//PrototypePatternkx. java
package prototype.pattern.demo;
import car.*;

public class PrototypePatternEx
{

public static void main(String[] args) throws CloneNotSupportedException

{

System.out.println("***Prototype Pattern Demo***\n");
BasicCar nano_base = new Nano("Green Nano");
nano_base.price=100000;

126

CHAPTER 19 " PROTOTYPE PATTERNS

BasicCar ford basic = new Ford("Ford Yellow");
ford basic.price=500000;

BasicCar bci;

//Clone Nano Object

bc1 =nano_base.clone();

//Price will be more than 100000 for sure

bcl.price = nano_base.pricet+BasicCar.setPrice();

System.out.println("Car is: "+ bcil.modelname+" and it's price is Rs."+bcl.price);

//Clone Ford Object

bc1 =ford basic.clone();

//Price will be more than 500000 for sure

bcl.price = ford basic.price+BasicCar.setPrice();

System.out.println("Car is: "+ bcil.modelname+" and it's price is Rs."+bcl.price);

Output

*. Problems @ Javadoc [, Declaration) Console &3

<terminated> PrototypePatternEx (2) [Java Application] C:\Program Files\Java\jrel 8.0_45\bin\javaw.exe (Jun 7, 2015, 9:49:47 AM)
[***Prototype Pattern Demo***

Car is: Green Nano and it's price is Rs.189818
Car is: Ford Yellow and it's price is Rs.561925

127

CHAPTER 19 © PROTOTYPE PATTERNS

Note

1. When the system does not care about the creational mechanism of the products,
this pattern is very helpful.

2. We can use this pattern when we need to instantiate classes at runtime.

3. In our example, we have used the default clone() method in Java, which is a
shallow copy. Thus, it is inexpensive compared to a deep copy.

What are the advantages of the prototype pattern?
1. We can include or discard products at runtime.
2. We can create new instances with a cheaper cost.
What are the disadvantages of the prototype pattern?
1. Each subclass has to implement the cloning mechanism.

2. Implementing the cloning mechanism can be challenging if the objects under
consideration do not support copying or if there is any kind of circular reference.

128

CHAPTER 20

Chain of Responsibility Patterns -

GoF Definition: Avoid coupling the sender of a request to its receiver by giving more than one object a
chance to handle the request. Chain the receiving objects and pass the request along the chain until an
object handles it.

Concept

Here we process a series of objects one by one (i.e., in a sequential manner). A source will initiate this
processing. With this pattern, we constitute a chain where each of the processing objects can have some logic
to handle a particular type of command object. After one’s processing is done, if anything is still pending, it
can be forwarded to the next object in the chain. We can add new objects anytime at the end of a chain.

Real-Life Example

In an organization, there are some customer care executives who handle feedback/issues from customers
and forward those customer issues/escalations to the appropriate department in the organization. Not all
departments will start fixing an issue. The department that seems to be responsible will take a look first, and
if the department staff believe that the issue should be forwarded to another department, he/she will do that.

Computer World Example

Consider an application which is handling e-mail and faxes. As usual, we need to take care of the issues
reported in each of these communications. We need to introduce two error handlers—EmailErrorHandler
and FaxErrorHandler. EmailErrorHandler will handle e-mail errors only and is not responsible for fax errors.
In the same manner, FaxErrorHandler will handle fax errors and does not care about e-mail errors.

Then we can make a chain as follows: whenever our main application finds an error, it will just raise this
and forward the error with the hope that one of those handlers will handle it. The request will first come to
FaxErrorhandler—if it finds that it is a fax issue, it'll handle the request; otherwise, it will forward the issue to
EmailErrorHandler.

Note that here our chain ends with EmailErrorHandler. But if we need to handle another type of issue
(e.g., Authentication), we can make an AuthenticationErrorHandler and put it after EmailErrorHandler.

So, now, whenever the issue cannot be fixed by EmailErrorHandler, the issue can be forwarded to
AuthenticationErrorHandler and the chain will end there.

Thus, the bottom line is as follows: the chain will end if the issue is being processed by some handler or

there are no more handlers to process it (i.e., we have reached the end of the chain).

129

CHAPTER 20 CHAIN OF RESPONSIBILITY PATTERNS

lllustration

In this example, we are processing both normal and high-priority issues from e-mail and fax

communications.

UML Class Diagram

<<Java Class>>
(3 ChainOfResponsibilityPatternEx
chainofresponsibiity. pattem. demo

<<Java Class>>
(9 FaxErrorHandler
chainofresponsibility. pattermn. demo

AcChmomuponsbmnemExt}
@ main(String())-void

otFuErrorHandler(meer)

@ Pr Boolean

130

<<Java Enumeration>>

(3 MessagePriority
chainofrasponsibiity pattem. deme
%' Normat: MessagePriority
SoFH'gh: MessagePriority
fueaugemwt}

+Priority [0.1

<<Java Class>>

-n MJ ~_nextReceivér
Ay 24

<<Java Class>>
(9 EmailErrorHandler

chainofrasponsibility. pattern. demo

& EmaiErrorHandler(IReceiver)

@ Pre

g ge).Boolean

<<java interfaces»
O IReceiver
chainofresponsibility. pattern demo

@ ProcessMessage(Message) Boolean

+setfirstReceiver | 0.1

<<Java Class>>

(O Message (@ IssueRaiser
chainofresponsibiity. panem demo chainofresponsibiity pattern. demo
© Text: String & IssueRaiser(IReceiver)

otlleauge{SImg.MmagePriomyl

© RaiseMessage{Message)void

CHAPTER 20

Package Explorer view

High-level structure of the parts of the program is as follows:

4 & ChainOfResponsibilityPattern
4 8 chainofresponsibility.pattern.demo
4 [J] ChainOfResponsibilityPatternEx.java
. (& ChainOfResponsibilityPatternEx
4 (3 EmailErrorHandler
o _nextReceiver
@ EmailErrorHandler(IReceiver)
@. ProcessMessage(Message) : Boolean
4 & FaxErrorHandler
o _nextReceiver
@ FaxErrorHandler(IReceiver)
@. ProcessMessage(Message) : Boolean
4 Q IReceiver
¢ ProcessMessage(Message) : Eoolean
» (@ IssueRaiser
4 (@ Message
o Priority
o Text
@ Message(String, MessagePriority)
4 (@ MessagePriority
¥ High
¥ Normal

Implementation

package chainofresponsibility.pattern.demo;
enum MessagePriority

{
Normal ,
High

}

class Message

{

public String Text;
public MessagePriority Priority;
public Message(String msg, MessagePriority p)

CHAIN OF RESPONSIBILITY PATTERNS

131

CHAPTER 20 © CHAIN OF RESPONSIBILITY PATTERNS

{
Text = msg;
this.Priority = p;
}
}
interface IReceiver
{
Boolean ProcessMessage(Message msg);
}
Class IssueRaiser
{
public IReceiver setFirstReceiver;
public IssueRaiser(IReceiver firstReceiver)
{
this.setFirstReceiver = firstReceiver;
}
public void RaiseMessage(Message msg)
{
if (setFirstReceiver != null)
setFirstReceiver.ProcessMessage(msg);
}
}
class FaxErrorHandler implements IReceiver
{
private IReceiver _nextReceiver;
public FaxErrorHandler(IReceiver nextReceiver)
{
_nextReceiver = nextReceiver;
}
public Boolean ProcessMessage(Message msg)
{
if (msg.Text.contains("Fax"))
System.out.println("FaxErrorHandler processed "+ msg.Priority+
"priority issue: "+ msg.Text);
return true;
}
else
{
if (_nextReceiver != null)
_nextReceiver.ProcessMessage(msg);
}
return false;
}
}

132

CHAPTER 20 CHAIN OF RESPONSIBILITY PATTERNS

class EmailErrorHandler implements IReceiver

private IReceiver nextReceiver;
public EmailErrorHandler(IReceiver nextReceiver)

_nextReceiver = nextReceiver;

public Boolean ProcessMessage(Message msg)

if (msg.Text.contains("Email"))

System.out.println("EmailErrorHandler processed "+ msg.Priority+
"priority issue: "+ msg.Text);
return true;

}
else
{
if (_nextReceiver != null)
_nextReceiver.ProcessMessage(msg);
}

return false;

class ChainOfResponsibilityPatternEx

public static void main(String[] args)

{
{
}
{
}
}
{
{
}
}

System.out.println("***Chain of Responsibility Pattern Demo***\n");
//Making the chain first: IssueRaiser->FaxErrorhandler->EmailErrorHandler
IReceiver faxHandler, emailHandler;

//end of chain

emailHandler = new EmailErrorHandler(null);

//fax handler is before email

faxHandler = new FaxErrorHandler(emailHandler);

//starting point: raiser will raise issues and set the first handler
IssueRaiser raiser = new IssueRaiser (faxHandler);

Message m1 = new Message("Fax is reaching late to the destination",
MessagePriority.Normal);

Message m2 = new Message("Email is not going", MessagePriority.High);
Message m3 = new Message("In Email, BCC field is disabled occasionally",
MessagePriority.Normal);

Message m4 = new Message("Fax is not reaching destination",
MessagePriority.High);

raiser.RaiseMessage(m1);
raiser.RaiseMessage(m2);
raiser.RaiseMessage(m3);
raiser.RaiseMessage(m4);

133

CHAPTER 20 © CHAIN OF RESPONSIBILITY PATTERNS

Output

E) Console 32

<terminated> ChainOfResponsibilityPatternEx [Java Application] C:\Program Files\Java\jrel 8.0_45\bin\javaw.exe (Nov 18, 2015, 2:46:10 PM)
Chain of Responsibility Pattern Demo

FaxErrorHandler processed Normalpriority issue: Fax is reaching late to the destination
EmailErrorHandler processed Highpriority issue: Email is not going

EmailErrorHandler processed Normalpriority issue: In Email, BCC field is disabled occationally
FaxErrorHandler processed Highpriority issue: Fax is not reaching destination

1. This pattern is used when we issue a request without specifying the receiver. We
expect any of our receivers to handle that request.

2. There may be situation in which more than one receiver can handle the request
but the receivers do not know the priority. However, we want to handle the
request by the receiver based on the priority. This pattern can help us to design
such a scenario.

3. We may need to have the capability to specify objects (that can handle a request)
in runtime.

4. We can either define a new link or use an existing link when we need to
implement a successor chain.

5. Sometimes we can try to implement an automatic mechanism for forwarding
arequest. The advantage is that we can avoid implementing a specific
forwarding mechanism from one point to another point in our chain. Smalltalk’s
doesnotUnderstand is a typical example in this context.

134

CHAPTER 21

Composite Patterns

GoF Definition: Compose objects into tree structures to represent part-whole hierarchies. The composite
pattern lets clients treat individual objects and compositions of objects uniformly.

Concept

This pattern can show part-whole hierarchy among objects. A client can treat a composite object just like
a single object. In object-oriented programming, we make a composite object when we have many objects
with common functionalities. This relationship is also termed a “has-a” relationship among objects.

Real-Life Example

We can think of any organization that has many departments, and in turn each department has many
employees to serve. Please note that actually all are employees of the organization. Groupings of employees
create a department, and those departments ultimately can be grouped together to build the whole
organization.

Computer World Example

Any tree structure in computer science can follow a similar concept.

lllustration

In this example we are showing a college organization. We have a Principal and two Heads of Departments:
one for computer science and one for mathematics. At present, in the mathematics department, we have
two lecturers; in the computer science department we have three lecturers. At the end, one lecturer from the
computer science department retires/leaves. We have represented the scenario with the following simple
example.

135

CHAPTER 21 ' COMPOSITE PATTERNS

UML Class Diagram

<<Java Interface>>

€ ITeacher
composite. pattern.demo

@ getDetails():String

-controls [0..%

<<Java Class>>

(9 CompositePatternEx
composite. pattern.demo

Ny CompositePatternEx()
@ main(String[]):void

<<Java Class>>

(9 Teacher
composite. pattern.demo

o teacherName: String
o deptName: String

gcTeacher(Strhg,Strhg)
@ Add(Teacher):void
@ Remove(Teacher):void

@ getDetails():String

@ getControlingDepts():List<[Teacher>

136

CHAPTER 21

Package Explorer view

High-level structure of the parts of the program is as follows:

4 &2 CompositePattern

4 8 composite.pattern.demo
4 [J] CompositePatternEx.java

4 & CompositePatternEx
@ main(String[]) : void
4 €} Teacher
& getDetails() : String
4 @ Teacher
o controls
o deptName
o teacherName
& Teacher(String, String)
@ Add(Teacher)
@ getControllingDepts() : List<ITeacher>
@. getDetails() : String
© Remove(Teacher) : void

B JRE System Library [JavaSE-1.8]

Implementation

package composite.pattern.demo;
import java.util.*;
interface ITeacher

{
}

public String getDetails();

class Teacher implements ITeacher

{

private String teacherName;
private String deptName;
private List<ITeacher> controls;

Teacher(String teacherName, String deptName)

{
this.teacherName = teacherName;
this.deptName = deptName;
controls = new ArraylList<ITeacher>();
}
public void Add(Teacher teacher)
{
controls.add(teacher);
}

COMPOSITE PATTERNS

137

CHAPTER 21

}

COMPOSITE PATTERNS

public void Remove(Teacher teacher)

{
controls.remove(teacher);
}
public List<ITeacher> getControllingDepts()
{
return controls;
}
@0verride

public String getDetails() {

}

return (teacherName + " is the + deptName);

class CompositePatternEx

{

138

public static void main(String[] args)

{

Teacher Principal = new Teacher("Dr.S.Som","Principal");

Teacher hodMaths = new Teacher("Mrs.S.Das","Hod-Math");

Teacher hodCompSc = new Teacher("Mr. V.Sarcar","Hod-ComputerSc.");

Teacher mathTeacherl = new Teacher("Math Teacher-1","MathsTeacher");
Teacher mathTeacher2 = new Teacher("Math Teacher-2","MathsTeacher");

Teacher cseTeacherl = new Teacher("CSE Teacher-1","CSETeacher");
Teacher cseTeacher2 = new Teacher("CSE Teacher-2","CSETeacher");

Teacher cseTeacher3 = new Teacher("CSE Teacher-3","CSETeacher");

//Principal is on top of college

/*HOD -Maths and Comp. Sc. directly reports to him*/
Principal.Add(hodMaths);

Principal.Add(hodCompSc);

/*Teachers of Mathematics directly reports to HOD-Maths*/
hodMaths.Add(mathTeacher1);
hodMaths.Add(mathTeacher2);

/*Teachers of Computer Sc. directly reports to HOD-Comp.Sc.*/
hodCompSc.Add(cseTeacher1);
hodCompSc.Add(cseTeacher2);
hodCompSc.Add(cseTeacher3);

/*Leaf nodes. There is no department under Mathematics*/
mathTeacher1.Add(null);
mathTeacher2.Add(null);

CHAPTER 21~ COMPOSITE PATTERNS

/*Leaf nodes. There is no department under CSE.*/
cseTeacher1.Add(null);
cseTeacher2.Add(null);
cseTeacher3.Add(null);

//Printing the details

System.out.println("***COMPOSITE PATTERN DEMO ***");
System.out.println("\nThe college has following structure\n");
System.out.println(Principal.getDetails());

List<ITeacher> hods=Principal.getControllingDepts();

for(int i=0;i<hods.size();i++)

{
}

System.out.println("\t"+hods.get(i).getDetails());

List<ITeacher> mathTeachers=hodMaths.getControllingDepts();
for(int i=0;i<mathTeachers.size();i++)

{
}

System.out.println("\t\t"+mathTeachers.get(i).getDetails());

List<ITeacher> cseTeachers=hodCompSc.getControllingDepts();
for(int i=0;i<cseTeachers.size();i++)

{
}

System.out.println("\t\t"+cseTeachers.get(i).getDetails());

//0ne computer teacher is leaving

hodCompSc.Remove(cseTeacher2);

System.out.println("\n After CSE Teacher-2 leaving the organization- CSE
department has following employees:");

cseTeachers = hodCompSc.getControllingDepts();

for(int i=0;i<cseTeachers.size();i++)

{
}

System.out.println("\t\t"+cseTeachers.get(i).getDetails());

139

CHAPTER 21 =~ COMPOSITE PATTERNS

Output

B Console 22
<terminated> CompositePatternEx [Java Application] C:\Program Files\Java\jrel.8.0_45\bin\javaw.exe (Nov 20, 2015, 1:51:21 PM)
***COMPOSITE PATTERN DEMO ***

The college has following structure

Dr.S.Som is the Principal

Mrs.S.Das is the Hod-Math

Mr. V.Sarcar is the Hod-ComputerSc.
Math Teacher-1 is the MathsTeacher
Math Teacher-2 is the MathsTeacher
CSE Teacher-1 is the CSETeacher
CSE Teacher-2 is the CSETeacher
CSE Teacher-3 is the CSETeacher

After (CSE Teacher-2 leaving the organization- CSE department has following employees:
CSE Teacher-1 is the C(SETeacher
CSE Teacher-3 is the CSETeacher

Note

1. The pattern is ideal to represent the part-whole hierarchy among objects.
Here the client can treat composition of objects like a single object.

Clients can add new types of component easily.

Eal

If we are forced to maintain child ordering (e.g., parse trees as components), we
need to take special care to maintain that order.

What is the best data structure to store components?

There is no universal rule. It depends on the requirement (e.g., efficiency). We can use linked list, trees,
arrays, etc., based on our demand. GoF also suggests that it is not mandatory to use any general-purpose
data structure.

140

CHAPTER 22

Bridge Patterns (Or Handle/Body
Patterns)

GoF Definition: Decouple an abstraction from its implementation so that the two can vary independently.

Concept

In this pattern, the abstract class is separated from the implementation class and we provide a bridge
interface between them. This interface helps us to make concrete class functionalities independent from the
interface implementer class. We can alter these different kind of classes structurally without affecting each
other.

Real-Life Example

In a software product development company, the development team and technical support team both play
a crucial role. A change in the operational strategy of one team should not have a direct impact on the other
team. Here the technical support team plays the role of a bridge between the clients and the development
team that implements the product.

Computer World Example

This pattern is used in a GUI framework. It separates Window abstraction from Window implementation in
Linux/Mac OSs. The following illustration is a classical example in the software development field.

141

CHAPTER 22 I BRIDGE PATTERNS (OR HANDLE/BODY PATTERNS)

lllustration

Consider a situation like this:

A
Triangle Color Rectangle
A o 4 v v T A N
/ o / AN iy .
Red Color Green Color Red Color Green Color

We'll use bridge pattern to decouple the interfaces in our example from the implementations. After our
implementation it will have a cleaner look (follow our UML diagram).

UML Class Diagram

Bridge
<<Java Class>» E <<Java Class>> :
(® BridgePatternDemo2 : & Shape <<lava bnterface>> :
sozge pattern semel : bridge.pattem. demc2 #color @ Color :
; bridge. pattem. demol !
o BridgePatiemDemo2() : € Shape(IColor) 0.1 :
@ main(Stringf]):-void &'orawShape(int)-void @ fiWthColor(intyvoid | |
H &' modifyBorder(int,int)-void i & :

<<Java Class>> <<Java Class>>
©GreenColor (@ RedColor
<<java Class»> <<Java Class>> bridge pattern. demo2 bridge.pattem. demo2
vﬁmg:ﬂ Drg'::?::m ‘ccreencwr(: 3‘ RedColor()
@ fiWihColor(int):void @ fillWithColor(int):void

S Triangle(IColor) & Rectangle(IColor)
A drawShape(int):void A drawShape(int)-void
A modifyBorder{int,int):void A modifyBorder{int,int):void

142

CHAPTER 22 © BRIDGE PATTERNS (OR HANDLE/BODY PATTERNS)

Package Explorer view

High-level structure of the parts of the program is as follows:

4 & BridgePattern

4 8 bridge.pattern.demo

4 |J) BridgePatternEx.java
4 (& BridgePatternEx

o main(String(]) : void
& GreenColor

@. fillWithColor(int) : void
€4 IColor

& fillWithColor(int) : void
(3 Rectangle

@& Rectangle(IColor)

£, drawShape(int) : void

2. modifyBorder(int, int) : void
& RedColor

@ fillWithColor(int) : void
(4 Shape

< color

& Shape(IColor)

& drawShape(int) : void

7 modifyBorder(int, int) : void
@ Triangle

& Triangle(IColor)

&, drawShape(int) : void

2. modifyBorder(int, int) : void
> =\ JRE System Library [JavaSE-1.8)

(Y

[S

(Y

[

Implementation

Here we have implemented both an abstraction-specific and an implementer-specific method to represent
the power and usefulness of this pattern. We can draw a triangle and a rectangle with a particular color
with the implementer-specific method drawShape(). We can change the thickness of the border by the
abstraction-specific method modifyBorder(). Please go through the code.

143

CHAPTER 22 © BRIDGE PATTERNS (OR HANDLE/BODY PATTERNS)

package bridge.pattern.demo;
//Colors-The Implementer

interface IColor

{
void fillWithColor(int border);
}
class RedColor implements IColor
{
@verride
public void fillWithColor(int border)
{
System.out.print("Red color with " +border+" inch border");
}
}
class GreenColor implements IColor
{
@0verride
public void fillWithColor(int border)
{
System.out.print("Green color with " +border+" inch border.");
}
}

//Shapes-The Abstraction

abstract class Shape

{
//Composition
protected IColor color;
protected Shape(IColor c)
{

}
abstract void drawShape(int border);
abstract void modifyBorder(int border,int increment);

this.color = c;

}

class Triangle extends Shape

{
protected Triangle(IColor c)

{
}

//Implementer-specific method
@0verride

super(c);

144

CHAPTER 22 © BRIDGE PATTERNS (OR HANDLE/BODY PATTERNS)

void drawShape(int border) {
System.out.print(" This Triangle is colored with: ");
color.fillWithColor(border);

}

//Abstraction-specific method

@0verride

void modifyBorder(int border,int increment) {
System.out.println("\nNow we are changing the border length "+increment+

times");
border=border*increment;
drawShape(border);
}
}
class Rectangle extends Shape
{
public Rectangle(IColor c)
{
super(c);
}
//Implementer-specific method
@0verride
void drawShape(int border)
{
System.out.print(" This Rectangle is colored with: ");
color.fillWithColor(border);
}
//Abstraction-specific method
@0verride
void modifyBorder(int border,int increment) {
System.out.println("\n Now we are changing the border length "+increment+ "
times");
border=border*increment;
drawShape(border);
}
}

class BridgePatternEx
{
public static void main(String[] args)
{
System.out.println("*****BRIDGE PATTERN*¥***")
//Coloring Green to Triangle
System.out.println("\nColoring Triangle:");
IColor green = new GreenColor();
Shape triangleShape = new Triangle(green);
triangleShape.drawShape(20);
triangleShape.modifyBorder(20, 3);

//Coloring Red to Rectangle
System.out.println("\n\nColoring Rectangle :");
IColor red = new RedColor();

145

CHAPTER 22 © BRIDGE PATTERNS (OR HANDLE/BODY PATTERNS)

Shape rectangleShape = new Rectangle(red);
rectangleShape.drawShape(50);

//Modifying the border length twice
rectangleShape.modifyBorder(50,2);

Output

&) Console 33

<terminated> BridgePatternDemo2 [Java Application] C:\Program Files\Java\jrel 8.0_45\bin\javaw.exe (Nov 19, 2015, 1:29:15 PM)
****+BRIDGE PATTERN*****

Coloring Triangle:

This Triangle colored with: Green color with 20 inch border.
Now we are changing the border length 3 times

This Triangle colored with: Green color with 6@ inch border.

Coloring Rectangle :

This Rectangle colored with: Red color with 5@ inch border
Now we are changing the border length 2 times

This Rectangle colored with: Red color with 180 inch border

1. The pattern is extremely helpful when our class and its associated functionalities
may change in frequent intervals.

2. Here we remove the concrete binding between an abstraction and the
corresponding implementation. As a result, both hierarchies (abstraction and its
implementations) can extend through child classes.

3. Both hierarchies can grow independently. Here if we make any change in
abstraction methods, they do not have an impact on the implementer method
(i.e., fillwithColor()).

We have repeatedly referred here to the two hierarchies: abstraction and implementer. An abstraction should
be an abstract class.” Is the statement correct?

No. We can use either an abstract class or an interface. And the same rule applies for the implementer
class also.

What are refined abstractions?
Children of an abstraction are termed “refined abstractions.”
Who are concrete implementers?

Children of an implementer.

146

CHAPTER 22 © BRIDGE PATTERNS (OR HANDLE/BODY PATTERNS)

How can you differentiate an abstraction from its implementer?
In general, an abstraction contains the reference to its implementer.
How can you change the implementers dynamically or at runtime?

By changing the reference in the abstraction.

147

CHAPTER 23

Visitor Patterns

GoF Definition: Represent an operation to be performed on the elements of an object structure. The visitor
pattern lets you define a new operation without changing the classes of the elements on which it operates.

Concept

This pattern helps us to add new functionalities to an existing object structure in such a way that the old
structure remains unaffected by these changes. So, we can follow the open/close principle here
(i.e., extension allowed but modification disallowed for entities like class, function, modules, etc.).

Real-Life Example

Consider a taxi booking scenario. The taxi arrives at our defined location for the pickup. Once we enter into
it, the visiting taxi takes control of the transportation. It can choose a different way toward our destination
and we may or may not have any prior knowledge of that way.

Computer World Example

This pattern is very useful when plugging happens into public APIs. Clients can then perform operations on
a class with a visiting class without modifying the source.

Plugging into public APIs is a common example. Then a client can perform his desired operations
without modifying the actual code (with a visiting class).

lllustration

Here we have illustrated a simple example to represent a visitor pattern. In order to do this, we have
implemented a new class hierarchy (IVisitor hierarchy) and we have implemented the algorithms there. So,
any modification/update operation in the IOriginallnterface hierarchy can be done through this new class
hierarchy without affecting the code in the IOriginallnterface hierarchy.

149

CHAPTER 23 ' VISITOR PATTERNS

IOriginalinterface

A

MyClass

IVisitor

Visitor

In the following example, we want to modify the initial integer value in MyClass (which implements
the Interface IOriginallnterface) through the visitor pattern. Note that we are not touching the code in
I0riginalInterface. We are separating functionality implementations (i.e., algorithms) from the class
hierarchy where these algorithms operate.

UML Class Diagram

<<Java Interface>>
3 |0riginalinterface

visitor.pattern.demo

<<Java Class>>
(9 VisitorPatternEx

visitor.pattern.demo

& VisitorPatternEx()
esmain(String[l}:void

150

@ accept(Visitor):void

8

<<Java Class>>
(® MyClass

visitor.pattern.demo

o myint: int

a°MyClass()

@ getMyint():int

@ setMyint(int).void

@ accept(lVisitor):void

<<Java Interface>>
3 Visitor

visitor. pattern.demo

@ visit{MyClass):void

&

<<Java Class>>
(9 Visitor

visitor.pattern.demo

A Visitor()
@ visit(MyClass):void

CHAPTER 23 © VISITOR PATTERNS

Package Explorer view

High-level structure of the parts of the program is as follows:

a & VisitorPattern
4 £ visitor.pattern.demo
4 |J) VisitorPatternEx.java
4 €} I0riginallnterface
¢ accept(Visitor) : void
€} WVisitor
@' visit(MyClass) : voic
& MyClass
o myint
@. accept(lVisitor) : void
@ getMylnt() : int
@ setMylnt(int) : void
4 & Visitor
@. visit(MyClass) : void
- @ VisitorPatternEx

[N

S

Implementation

package visitor.pattern.demo;

interface IOriginallnterface

{
void accept(IVisitor visitor);
}
class MyClass implements IOriginalInterface
{

//Initial or default value
private int myInt = 5;
public int getMyInt()

{

}

return myInt;

151

CHAPTER 23 © VISITOR PATTERNS

public void setMyInt(int myInt)

{
this.myInt = myInt;
}
@0verride
public void accept(IVisitor visitor)
{
System.out.println("Initial value of the integer :"+ myInt);
visitor.visit(this);
System.out.println("\nValue of the integer now :"+ myInt);
}
}
interface IVisitor
{
void visit(MyClass myClassElement);
}
class Visitor implements IVisitor
{
@0verride
public void visit(MyClass myClassElement)
{
System.out.println("Visitor is trying to change the integer value");
myClassElement.setMyInt(100);
System.out.println("Exiting from Visitor- visit");
}
}
class VisitorPatternEx
{
public static void main(String[] args)
{
System.out.println("***Visitor Pattern Demo***\n");
IVisitor v = new Visitor();
MyClass myClass = new MyClass();
myClass.accept(v);
}
}

152

CHAPTER 23 © VISITOR PATTERNS

Output

&) Console 2

<terminated> VisitorPatternEx (1) [Java Application] C:\Program Files\Java\jrel 8.0_45\bin\javaw.exe (Nov 20, 2015, 4:00:43 PM)
Visitor Pattern Demo

Initial value of the integer :5
Visitor is trying to change the integer value
Exiting from Visitor- visit

Value of the integer now :100

1. Asmentioned earlier, the visitor pattern is very useful for adding new operations
without affecting the existing structure, which was the key aim behind this
pattern.

2. Visitor operations are controlled in a unified manner.

3. Onthe other hand, the class encapsulation may need to be compromised
when visitors are used. If the existing structure is really complex, the traversal
mechanism becomes complex.

4. The visitor hierarchy becomes difficult to maintain when we need to add new
concrete classes to our existing architecture frequently (e.g., in our program, if
we now add Myclass2, we need to add additional operations in the visitor class
hierarchy to support this pattern).

5. Sometimes we need to perform some unrelated operations on the objects in
the existing architecture. But these operations can directly/indirectly affect the
classes in the system. In those situations, this pattern can help us by putting all of
these operations in the visitor hierarchy.

153

CHAPTER 24

Interpreter Patterns

GoF Definition: Given a language, define a representation for its grammar along with an interpreter that uses
the representation to interpret sentences in the language.

Concept

Here, in general, we define a grammatical representation for a language and provide an interpreter to deal
with that grammar (e.g., in our example we have interpreted a string input as binary data). In simple words,
this pattern says how to evaluate sentences in a language.

Real-Life Example

A language translator who translates a language for us provides a classic example for this pattern. Or, we can
also consider music notes as our grammar and musicians as our interpreters.

Computer World Example

A Java compiler interprets the source code into byte code. This byte code is understandable by JVM (Java
virtual machine). In C# also, our source code is converted to MSIL (Microsoft intermediate language) code,
which is interpreted by CLR (common language runtime). Upon execution, this MSIL (intermediate code) is
converted to native code (binary executable code) by a JIT (Just In time) compiler.

lllustration

Here we need to create an interpreter context engine for our interpretation work. Then we need to create

an expression implementation (ideally we should have more implementations—e.g., here we may also be
interested in converting the data to hexadecimal or any other format) that will consume the functionality
provided by the interpreter context. At last we have created the client who will accept the user input to
generate the required output. The client here will also decide which expression to use if we have more than
one expression. Go through the example now. Here we have two choices: we can interpret an input string
(basically a decimal number) as binary data or we can simply interpret it and print the digits in the input into
their equivalent English words.

155

CHAPTER 24 I INTERPRETER PATTERNS

UML Class Diagram

<<Java Class>>
(@ InterpreterPatternEx <<Java Interface>>
interpreter pattemn demo sexp) IExpression
= ' .pattem.demo

0': InterpreterPatternEx(Context) 0.1
@ interpret(String).void @ interpret(Context):void

Gsrruhgstrhgm:void ﬂ b

+clientContext [0..1

<<Java Class>> <<Java Class>> <<Java Class>>
(® Context (9 StringToBinaryExp (© IntToWords
interpretes pattern. demo interpreter pattern. demo interpreter. pattem.demo

© input: String o sir: String o str: String

& Context(String) @ stringToBinaryExp(String) & IntToWords(String)
© getBinaryForm(String):void @ interpret(Context):void @ interpret(Context):void

@ printinWords(String).void

156

Package Explorer view

High-level structure of the parts of the program is as follows:

4 = InterpreterPattern
4 [interpreter.pattern.demo
4 }J) InterpreterPatternEx.java

4 (& Context
o input
s Context(String)
@ getBinaryForm(String) : void
@ printinWords(String) : void

4 €} IExpression
@' interpret(Context) : void

4 {2 InterpreterPatternEx
JJ’#S main(String(]) : void
o clientContext
o exp
& InterpreterPatternEx(Context)
§® interpret(String) : void

4 @ IntToWords
o str
& IntToWords(String)
@. interpret(Context) : void

4 @ StringToBinaryExp
o str
@ StringToBinaryExp(String)
@. interpret(Context) : void

> = JRE System Library [JavaSE-1.8]

CHAPTER 24

INTERPRETER PATTERNS

157

CHAPTER 24 © INTERPRETER PATTERNS

Implementation

package interpreter.pattern.demo;

import java.util.Scanner;

/*Context class: interpretation is carried out based on our implementation.*/
class Context

{

158

public String input;
public Context(String input)

{
this.input=input;
}
public void getBinaryForm(String input)
{
int i = Integer.parseInt(input);
//integer to its equivalent binary string representation
String binaryString = Integer.toBinaryString(i);
System.out.println("Binary equivalent of "+input+ " is "+ binaryString);
}
public void printInWords(String input)
{

this.input = input;

System.out.println("Printing the input in words:");
char c[]=input.toCharArray();

for(int i=0;i<c.length;i++)

{

switch (c[i])

{

case '1':
System.out.print("One ");
break;

case '2':
System.out.print("Two ");
break;

case '3':
System.out.print("Three ");
break;

case '4':
System.out.print("Four ");
break;

case '5':
System.out.print("Five ");
break;

case '6':
System.out.print("Six ");
break;

case '7':

System.out.print("Seven ");
break;

}

CHAPTER 24

case '8':
System.out.print("Eight ");
break;

case '9':
System.out.print("Nine ");
break;

case '0':
System.out.print("Zero ");
break;

default:
System.out.print("* ");
break;

}

interface IExpression

{
}

void interpret(Context ic);

class StringToBinayExp implements IExpression

{

}

private String str;
public StringToBinaryExp(String s)

{
str = s;
}
@0verride
public void interpret(Context ic)
{
ic.getBinaryForm(str);
}

class IntToWords implements IExpression

{

private String str;
public IntToWords(String str)

{
this.str = str;
}
@0verride
public void interpret(Context ic)
{
ic.printInWords(str);
}

INTERPRETER PATTERNS

159

CHAPTER 24 © INTERPRETER PATTERNS

class InterpreterPatternEx

{

160

public Context clientContext=null;
public IExpression exp=null;
public InterpreterPatternEx(Context c)

{
clientContext = c;
}
public void interpret(String str)
{
//We'll test 2 consecutive inputs at a time
for(int i=0;i<2;i++){
System.out.println("\nEnter ur choice(1 or 2)");
Scanner in = new Scanner(System.in);
String ¢ = in.nextLine();
if (c.equals("1"))
{
exp = new IntToWords(str);
exp.interpret(clientContext);
}
else
{
exp = new StringToBinaryExp(str);
exp.interpret(clientContext);
}
}
}
public static void main(String[] args)
{
System.out.println("\n***Interpreter Pattern Demo***\n");
System.out.println("Enter a number :");
Scanner in = new Scanner(System.in);
String input = in.nextLine();
Context context=new Context(input);
InterpreterPatternEx client = new InterpreterPatternEx(context);
client.interpret(input);
}

CHAPTER 24 I INTERPRETER PATTERNS

Output

&) Console 2
<terminated> InterpreterPatternEx (2) [Java Application] C:\Program Files\Java\jrel.8.0_45\bin\javaw.exe (Nov 22, 2015, 11:46:09 AM)

Interpreter Pattern Demo
Enter a number :

512

Enter ur choice(l or 2)
1
Printing the input in words:

Five One Two

Enter ur choice(l or 2)
2
Binary equivalent of 512 is 1000000000

1. This pattern is widely used to interpret the statements in a language as abstract
syntax trees. It performs best when the grammar is easy to understand and
simple.

2. We can represent, modify, or implement a grammar easily.

3. We can evaluate an expression in our preferred ways. It is up to us how we’ll
interpret those expressions.

4. Ifthe grammar is complex (e.g., it may have many constraints/rules),
implementing this pattern becomes hard. For each rule, we may need to
implement a new class, and obviously it is a cumbersome process.

161

APPENDIX A

FAQ

Which of these patterns is/are best?

There is no straightforward answer for this type of question. It depends on many factors (the situation, the
demand, the constraints, etc.). But if you know all of these patterns, you will have the flexibility to decide.
In real life, it is quite possible that we need to use a combination of these patterns to design a requirement.

Why should we use design patterns?

These are general reusable solutions for software design problems which we see repeatedly in real-world
software development. They help us to avoid unnecessary and scattered implementations. Please refer to the
section “Introduction” in Chapter 1 for the detailed answer.

What is the difference between a command and a memento pattern?
All actions are stored for the command pattern, but the memento pattern saves the state only on request.

In general, in the command pattern, we frequently see operations like undo’s and redo’s for every action,
but the memento pattern does not need that.

What is the difference between the facade pattern and the builder pattern?

The aim of the facade pattern is to make a specific portion of code easier for use. It abstracts details away
from the developer.

The builder pattern splits the construction process of an object from the representation. (See our code.)
Our Director is calling the same Construct() method to create different types of vehicles (i.e., we can use the
same construction process to create multiple types).

What is the difference between the builder pattern and the strategy pattern? It appears that they have
similar UML representation.

First of all we must take care of the intent first. The builder pattern falls into the creational pattern and the
strategy pattern falls into the behavioral pattern. Their areas of focus are different. With the builder pattern
we can use the same construction process to create multiple types and with strategy pattern, we have the
freedom to select an algorithm in runtime.

What is the difference between the command pattern and the interpreter pattern?

For the command pattern, commands are basically objects. On the other hand, for the interpreter pattern
the commands are sentences. With interpreter, we try to evaluate an expression in an easy manner.
Sometimes the interpreter pattern looks convenient, but we must note that the cost of building an
interpreter may be significant if the grammar is complex—because we need a new class to evaluate a new
rule in the grammar.

163

http://dx.doi.org/10.1007/978-1-4842-1802-0_1

APPENDIXA I FAQ

What is the difference between the chain of responsibility pattern and the observer pattern?

For observer patterns, all registered observers will be notified/get request (for the change in subject), but in
the chain of responsibility, it is possible that we do not need to reach to the end of chain, so all processing
objects need not to handle the same scenario. The request can be processed much earlier by some
processing object that is placed at the beginning of the chain.

What is the difference between the mediator pattern and the observer pattern?

GOF also mentioned: These are competing patterns. The difference between them is that observer distributes
communication by introducing observer and subject objects, whereas a mediator object encapsulates the
communication between other objects. Here I'll request you to consider our example of the mediator pattern.
Two workers are always getting messages from their boss. It doesn’t matter whether they like those messages
or not. But if they are simple observers, they should have an option to unregister their boss’s control on
them, saying “I do not want to see messages from the boss.

GoF also found that we may face fewer challenges to make reusable observers and subjects than to make
reusable mediators, but if we try to understand the flow of communication, the mediator scores higher than the
observer.

Consider a situation. You have already implemented an interpreter pattern. Later you found that
you need to incorporate an additional way to interpret a special type of expression. What will your
preferred option be?

We can combine the power of visitor patterns here. It will help us not to disturb the existing grammar classes.
Can we combine the iterator pattern with the composite pattern?

Yes. To design a recursive structure, this combination is quite common.

In which design pattern must opaque objects be present?

In the memento pattern. Memento itself is an opaque object. Remember that the caretaker is not allowed to
make any change there.

What is the difference between the command pattern and the chain of responsibility pattern?

With the chain of responsibility, a request is forwarded to a chain with an expectation that one node of that
chain will handle that request. However, we have no idea about who is going to handle that request. But with
the command pattern, a request will go to an intended receiver (object).

What is the difference between a singleton class and a static class?

With a singleton class we can create objects. This is the main difference. And it means that we can use the
concepts of inheritance and polymorphism (by extending the base class) with a singleton class. Experts also
believe that static classes are not easy to mock and test.

Note: We cannot override the static methods in Java, but these methods are bounded during compile time, so
in certain situations, a static class that consists of static methods can perform better than a singleton class with
several non-static methods.

References

¢ Design Patterns-Elements of Reusable Object-Oriented Software by Erich Gamma,
Richard Helm, Ralph Johnson, and John Vlissides, Addison-Wesley, 1995

e Design Patterns in C# by Vaskaran Sarcar, 2015
e Design Patterns in C# by Jean Paul V.A, 2012
164

APPENDIX A

Java Design Patterns: A Tutorial by James W. Cooper, Addison Wesley, 2000

www . youtube.com/watch?v=ffQZIGTTM48&11ist=PL8C53D99ABAD3F4C8

www . dofactory.com/net/decorator-design-pattern

www. c-sharpcorner.com/UploadFile/40e97e/adapter-pattern-in-C-Sharp/

www.dotnet-tricks.com/Tutorial/designpatterns/iN4c140713-Facade-Design-
Pattern---C

www.dotnet-tricks.com/Tutorial/designpatterns/FUcV280513-Factory-Method-
Design-Pattern---C

www.codeproject.com/Articles/29036/Patterns-in-Real-Life

www. youtube. com/watch?v=CuyzH0-Nx14

www . youtube.com/watch?v=Y3xP2YSJ23Q

www. youtube.com/watch?v=9jIgSsIth 8

www . youtube.com/watch?v=S8XL1L_1Lyw
www.dofactory.com/net/memento-design-pattern
http://en.wikipedia.org/wiki/Memento pattern
http://sourcemaking.com/design_patterns/builder/c-sharp-dot-net
www.dofactory.com/net/builder-design-pattern
www.dreamincode.net/forums/topic/185616-design-patterns-state/
https://weblogs.java.net/blog/ryano/archive/2005/01/implementing_th.html
http://sourcemaking.com/design patterns/State/c-sharp-dot-net
http://en.wikipedia.org/wiki/Flyweight pattern

www. c-sharpcorner.com/UploadFile/f6c0e9/flyweight-pattern/
www.dofactory.com/net/flyweight-design-pattern
www.tutorialspoint.com/design_pattern/flyweight_pattern.htm
www.dotnetexamples.com/2013/07/flyweight-design-pattern.html

www.dotnet-tricks.com/Tutorial/designpatterns/cWHV140713-Flyweight-
Design-Pattern---C

www.dotnet-tricks.com/Tutorial/designpatterns/4EIN020613-Abstract-
Factory-Design-Pattern---C

www . expertbloggingon.net/post/2013/06/21/CSharp-Abstract-Factory-
Pattern-Design-Patterns-in-Action.aspx

http://en.wikipedia.org/wiki/Abstract factory pattern#Structure

www . c-sharpcorner.com/UploadFile/851045/command-design-pattern-in-C-
Sharp/

http://sourcemaking.com/design_patterns/mediator

www.dofactory.com/javascript/mediator-design-pattern

FAQ

165

http://www.youtube.com/watch?v=ffQZIGTTM48&list=PL8C53D99ABAD3F4C8
http://www.dofactory.com/net/decorator-design-pattern
http://www.c-sharpcorner.com/UploadFile/40e97e/adapter-pattern-in-C-Sharp/
http://www.dotnet-tricks.com/Tutorial/designpatterns/1N4c140713-Facade-Design-Pattern---C
http://www.dotnet-tricks.com/Tutorial/designpatterns/1N4c140713-Facade-Design-Pattern---C
http://www.dotnet-tricks.com/Tutorial/designpatterns/FUcV280513-Factory-Method-Design-Pattern---C
http://www.dotnet-tricks.com/Tutorial/designpatterns/FUcV280513-Factory-Method-Design-Pattern---C
http://www.codeproject.com/Articles/29036/Patterns-in-Real-Life
http://www.youtube.com/watch?v=CuyzH0-Nx14
http://www.youtube.com/watch?v=Y3xP2YSJ2JQ
http://www.youtube.com/watch?v=9jIgSsIfh_8
http://www.youtube.com/watch?v=S8XL1L_1Lyw
http://www.dofactory.com/net/memento-design-pattern
http://en.wikipedia.org/wiki/Memento_pattern
http://sourcemaking.com/design_patterns/builder/c-sharp-dot-net
http://www.dofactory.com/net/builder-design-pattern
http://www.dreamincode.net/forums/topic/185616-design-patterns-state/
https://weblogs.java.net/blog/ryano/archive/2005/01/implementing_th.html
http://sourcemaking.com/design_patterns/State/c-sharp-dot-net
http://en.wikipedia.org/wiki/Flyweight_pattern
http://www.c-sharpcorner.com/UploadFile/f6c0e9/flyweight-pattern/
http://www.dofactory.com/net/flyweight-design-pattern
http://www.tutorialspoint.com/design_pattern/flyweight_pattern.htm
http://www.dotnetexamples.com/2013/07/flyweight-design-pattern.html
http://www.dotnet-tricks.com/Tutorial/designpatterns/cWHV140713-Flyweight-Design-Pattern---C
http://www.dotnet-tricks.com/Tutorial/designpatterns/cWHV140713-Flyweight-Design-Pattern---C
http://www.dotnet-tricks.com/Tutorial/designpatterns/4EJN020613-Abstract-Factory-Design-Pattern---C
http://www.dotnet-tricks.com/Tutorial/designpatterns/4EJN020613-Abstract-Factory-Design-Pattern---C
http://www.expertbloggingon.net/post/2013/06/21/CSharp-Abstract-Factory-Pattern-Design-Patterns-in-Action.aspx
http://www.expertbloggingon.net/post/2013/06/21/CSharp-Abstract-Factory-Pattern-Design-Patterns-in-Action.aspx
http://en.wikipedia.org/wiki/Abstract_factory_pattern#Structure
http://www.c-sharpcorner.com/UploadFile/851045/command-design-pattern-in-C-Sharp/
http://www.c-sharpcorner.com/UploadFile/851045/command-design-pattern-in-C-Sharp/
http://sourcemaking.com/design_patterns/mediator
http://www.dofactory.com/javascript/mediator-design-pattern

APPENDIXA I FAQ

e http://en.wikipedia.org/wiki/Mediator_pattern

e http://en.wikipedia.org/wiki/Chain-of-responsibility pattern
e http://en.wikipedia.org/wiki/Composite_pattern

e www.tutorialspoint.com/design_pattern/composite_pattern.htm
e www.dofactory.com/net/composite-design-pattern

e www.tutorialspoint.com/design pattern/bridge pattern.htm

e www.oodesign.com/bridge-pattern.html

e www.codeproject.com/Articles/890/Bridge-Pattern-Bridging-the-gap-
between-Interface

e www.journaldev.com/1491/bridge-pattern-in-java-example-tutorial

e www.youtube.com/watch?v=UYUopyMcWjw

e http://en.wikipedia.org/wiki/Visitor pattern

e http://java.dzone.com/articles/design-patterns-visitor

e www.journaldev.com/1635/interpreter-design-pattern-in-java-example-tutorial
e http://cplus.about.com/od/introductiontoprogramming/p/profileofcsh.htm

e http://java.dzone.com/articles/design-patterns-uncovered-14

e http://stackoverflow.com/questions/2760843/differences-between-facade-
pattern-and-other-patterns

e www.codeproject.com/Articles/430590/Design-Patterns-of-Creational-
Design-Patterns

e http://www.coderanch.com/t/151598/java-Architect-SCEA/certification/
Builder-Strategy-Patterns

e http://stackoverflow.com/questions/11344814/why-java-lang-object-can-
not-be-cloned

e http://javarevisited.blogspot.in/2012/10/java-program-to-get-input-from-
user.html

e www.journaldev.com/1377/java-singleton-design-pattern-best-practices-
with-examples#enum-singleton

e www.codeproject.com/Tips/468254/Proxy-Design-Pattern-in-Java
e https://en.wiktionary.org/wiki/smart-reference_proxy

e http://java67.blogspot.in/2013/05/difference-between-deep-copy-vs-
shallow-cloning-java.html

e http://www.programcreek.com/2013/02/java-design-pattern-iterator/
e https://carldanley.com/js-facade-pattern/
e www.quora.com/What-are-the-pros-and-cons-of-the-factory-design-pattern

e https://javarevealed.wordpress.com/2013/08/12/builder-design-pattern/

166

http://en.wikipedia.org/wiki/Mediator_pattern
http://en.wikipedia.org/wiki/Chain-of-responsibility_pattern
http://en.wikipedia.org/wiki/Composite_pattern
http://www.tutorialspoint.com/design_pattern/composite_pattern.htm
http://www.dofactory.com/net/composite-design-pattern
http://www.tutorialspoint.com/design_pattern/bridge_pattern.htm
http://www.oodesign.com/bridge-pattern.html
http://www.codeproject.com/Articles/890/Bridge-Pattern-Bridging-the-gap-between-Interface
http://www.codeproject.com/Articles/890/Bridge-Pattern-Bridging-the-gap-between-Interface
http://www.journaldev.com/1491/bridge-pattern-in-java-example-tutorial
http://www.youtube.com/watch?v=UYUopyMcWjw
http://en.wikipedia.org/wiki/Visitor_pattern
http://java.dzone.com/articles/design-patterns-visitor
http://www.journaldev.com/1635/interpreter-design-pattern-in-java-example-tutorial
http://cplus.about.com/od/introductiontoprogramming/p/profileofcsh.htm
http://java.dzone.com/articles/design-patterns-uncovered-14
http://stackoverflow.com/questions/2760843/differences-between-facade-pattern-and-other-patterns
http://stackoverflow.com/questions/2760843/differences-between-facade-pattern-and-other-patterns
http://www.codeproject.com/Articles/430590/Design-Patterns-of-Creational-Design-Patterns
http://www.codeproject.com/Articles/430590/Design-Patterns-of-Creational-Design-Patterns
http://www.coderanch.com/t/151598/java-Architect-SCEA/certification/Builder-Strategy-Patterns
http://www.coderanch.com/t/151598/java-Architect-SCEA/certification/Builder-Strategy-Patterns
http://stackoverflow.com/questions/11344814/why-java-lang-object-can-not-be-cloned
http://stackoverflow.com/questions/11344814/why-java-lang-object-can-not-be-cloned
http://javarevisited.blogspot.in/2012/10/java-program-to-get-input-from-user.html
http://javarevisited.blogspot.in/2012/10/java-program-to-get-input-from-user.html
http://www.journaldev.com/1377/java-singleton-design-pattern-best-practices-with-examples#enum-singleton
http://www.journaldev.com/1377/java-singleton-design-pattern-best-practices-with-examples#enum-singleton
http://www.codeproject.com/Tips/468254/Proxy-Design-Pattern-in-Java
https://en.wiktionary.org/wiki/smart-reference_proxy
http://java67.blogspot.in/2013/05/difference-between-deep-copy-vs-shallow-cloning-java.html
http://java67.blogspot.in/2013/05/difference-between-deep-copy-vs-shallow-cloning-java.html
http://www.programcreek.com/2013/02/java-design-pattern-iterator/
https://carldanley.com/js-facade-pattern/
http://www.quora.com/What-are-the-pros-and-cons-of-the-factory-design-pattern
https://javarevealed.wordpress.com/2013/08/12/builder-design-pattern/

APPENDIX A

http://stackoverflow.com/questions/2829106/disadvantages-of-builder-
design-pattern

http://stackoverflow.com/questions/5467005/adapter-pattern-class-
adapter-vs-object-adapter

www.avajava.com/tutorials/lessons/bridge-pattern.html

http://stackoverflow.com/questions/11722352/why-do-we-need-the-visit-
method-in-the-visitor-design-pattern

www.vainolo.com/2012/07/30/the-visitor-design-pattern-with-sequence-
diagrams/

FAQ

167

http://stackoverflow.com/questions/2829106/disadvantages-of-builder-design-pattern
http://stackoverflow.com/questions/2829106/disadvantages-of-builder-design-pattern
http://stackoverflow.com/questions/5467005/adapter-pattern-class-adapter-vs-object-adapter
http://stackoverflow.com/questions/5467005/adapter-pattern-class-adapter-vs-object-adapter
http://www.avajava.com/tutorials/lessons/bridge-pattern.html
http://stackoverflow.com/questions/11722352/why-do-we-need-the-visit-method-in-the-visitor-design-pattern
http://stackoverflow.com/questions/11722352/why-do-we-need-the-visit-method-in-the-visitor-design-pattern
http://www.vainolo.com/2012/07/30/the-visitor-design-pattern-with-sequence-diagrams/
http://www.vainolo.com/2012/07/30/the-visitor-design-pattern-with-sequence-diagrams/

Index

A

Abstract factory patterns
ADO.NET, 109
almirah, 109
definition, 109
implementation, 111
interface, 109
output, 114
Package Explorer view, 111
UML class diagram, 110
Adapter pattern
CalculatorAdapter, 47, 49-51
class adapters, 51-52
definition, 47
getArea() method, 47, 49-51
mobile charging devices, 47
object adapters, 51-52

B

BasicCar model, 124

Bridge patterns
definition, 141
implementation, 143
Linux/Mac OSs, 141
output, 146
Package Explorer view, 143
technical support team, 141
UML diagram, 142

Builder patterns, 163
Car, 89, 91-92
definition, 89
Intel processor, 89
MotorCycle, 89, 91-95

C

Chain of responsibility patterns, 164
definition, 129
e-mail and faxes, 129
implementation, 131

output, 134
Package Explorer view, 131
UML class diagram, 130

Command patterns, 163-164

concrete commands, 53
definition, 53
MyRedoCommand, 53, 55-57
MyUndoCommand, 53, 55-57
pencil drawing, 53

Composite patterns

computer science, 135
definition, 135
implementation, 137
output, 140

Package Explorer view, 137
UML class diagram, 136

Construct() method, 89

D, E

Decorator patterns

advantages, 31
attaching/detaching decorators, 31
ConcreteDecoratorEx_1, 28-31
ConcreteDecoratorEx_2, 28-31
definition, 27

disadvantage, 31

doJob() method’s functionality, 27
ground floor/existing floor, 27
GUI-based toolkit, 27

Design pattern, 1, 163, 164

F

Facade patterns, 163

definition, 67
implementation, 69
output, 71

Package Explorer view, 68
robots, 67

self-help counter, 67
UML class diagram, 68

269

INDEX

Factory method Memento patterns, 163
animal types, 73 definition, 77
definition, 73 finite state machine, 77
high-level structure, 74 implementation, 79
implementation, 75 originator, 77
output, 76 output, 81
SqlConnection, 73 Package Explorer view, 79
televisions, 73 UML class diagram, 78
UML class diagram, 74 modifyBorder() method, 143
Flyweight patterns
constraints, 97 O
definition, 97
graphical representation, 97 Observer patterns, 11, 15, 164
implementation, 99, 104 computer world example, 3
intrinsic state and extrinsic state, 97 Package Explorer view, 5-7
output, 102, 107 UML class diagram, 4-5
Package Explorer view, 98, 104 definition, 3
robots, 102 favorite celebrity, 3
UML class diagram, 98, 103 IObserver
Package Explorer view, 8-11
G H UML class diagram, 8
’
Gang of Four (GoF), 1
g (GoF) PQ,R
| J K L Programming languages, 1
L | ’ Prototype pattern
Interpreter patterns BasicCar model, 124
definition, 155 copying/cloning, 123
grammatical representation, 155 definition, 123
implementation, 158-160 implementation, 125
JVM, 155 output, 127
output, 161 Package Explorer view, 125
Package Explorer view, 157 UML class diagram, 124
UML class diagram, 156 Proxy patterns
Iterator patterns, 164 ATM implementation, 23
arts department, 59 classroom, 23
Artslterator, 59, 61-65 definition, 23
Company A and B, 59 doSomework(), 23, 25
definition, 59 OriginalClasses, 25
Sciencelterator, 59, 61-65 ProxyClasses, 23-26
types, 26
M N Publisher-Subscriber model.
’ See Observer patterns
Mediator patterns, 164
airplane application, 115 S
definition, 115
implementation, 117 Singleton patterns, 21
mandatory information, 115 captain election, 18
objects, 115 constructor private, 17
output, 121 cricket team, 17
Package Explorer view, 117 definition, 17
UML class diagram, 116 eager initialization, 20

270

INDEX

getCaptain() method, 18-19 T U
lazy initialization, 20 ’
MakeACaptain(), 18 Template method pattern
State patterns definition, 33
definition, 83 design engineering courses, 33, 35, 37
job processing application, 83 vegetarian/non-vegetarian pizza, 33

network connection, 83

remote control, 83, 85-87 V W X Y Z
’ y /Ny T

switching
mechanism, 83, 85-87 Visitor pattern
Strategy patterns, 163 implementation, 151-152

challenges, 45 IOriginalInterface hierarchy, 149
computer football game IVisitor hierarchy, 149

arbitrary choices, 39, 45 output, 153

data storage, 39 Package Explorer view, 150
definition, 39 public APIs, 149
dynamic behavior, 45 UML class diagram, 150

271

	Java Design Patterns
	Contents at a Glance
	Contents
	About the Author
	Acknowledgments
	Preface
	Key Points
	Chapter 1: Introduction
	Chapter 2: Observer Patterns
	 Concept
	 Real-Life Example
	 Computer World Example
	 Illustration
	 UML Class Diagram
	 Package Explorer view
	 Implementation
	 Output
	 Note
	 UML Class Diagram
	 Package Explorer view
	 Implementation
	 Output
	 Assignment
	 UML Class Diagram
	 Implementation
	 Output

	Chapter 3: Singleton Patterns
	 Concept
	 Real-Life Example
	 Computer World Example
	 Illustration
	 UML Class Diagram
	 Package Explorer view
	 Implementation
	 Output
	 Note

	Chapter 4: Proxy Patterns
	 Concept
	 Real–Life Example
	 Computer World Example
	 Illustration
	 UML Class Diagram
	 Package Explorer view
	 Implementation
	 Output
	 Note

	Chapter 5: Decorator Patterns
	 Concept
	 Real-Life Example
	 Computer World Example
	 Illustration
	 UML Class Diagram
	 Package Explorer view
	 Implementation
	 Output
	 Note

	Chapter 6: Template Method Patterns
	 Concept
	 Real-Life Example
	 Computer World Example
	 Illustration
	 UML Class Diagram
	 Package Explorer view
	 Implementation
	 Output
	 Note

	Chapter 7: Strategy Patterns (Or, Policy Patterns)
	 Concept
	 Real–Life Example
	 Computer World Example
	 Illustration
	 UML Class Diagram
	 Package Explorer view
	 Implementation
	 Output
	 Note

	Chapter 8: Adapter Patterns
	 Concept
	 Real–Life Example
	 Computer World Example
	 Illustration
	 UML Class Diagram
	 Package Explorer view
	 Implementation
	 Output
	 Note
	 Illustration
	 Output

	Chapter 9: Command Patterns
	 Concept
	 Real-Life Example
	 Computer World Example
	 Illustration
	 UML Class Diagram
	 Package Explorer view
	 Implementation
	 Output
	 Note

	Chapter 10: Iterator Patterns
	 Concept
	 Real-Life Example
	 Computer World Example
	 Illustration
	 UML Class Diagram
	 Package Explorer view
	 Implementation
	 Output
	 Note

	Chapter 11: Facade Patterns
	 Concept
	 Real-Life Example
	 Computer World Example
	 Illustration
	 UML Class Diagram
	 Package Explorer view
	 Implementation
	 Output
	 Note

	Chapter 12: Factory Method Patterns
	 Concept
	 Real-Life Example
	 Computer World Example
	 Illustration
	 UML Class Diagram
	 Package Explorer view
	 Implementation
	 Output
	 Note

	Chapter 13: Memento Patterns
	 Concept
	 Real-Life Example
	 Computer World Example
	 Illustration
	 UML Class Diagram
	 Package Explorer view
	 Implementation
	 Output
	 Note

	Chapter 14: State Patterns
	 Concept
	 Real-Life Example
	 Computer World Example
	 Illustration
	 UML Class Diagram
	 Package Explorer view
	 Implementation
	 Output
	 Note

	Chapter 15: Builder Patterns
	 Concept
	 Real-Life Example
	 Computer World Example
	 Illustration
	 UML Class Diagram
	 Package Explorer view
	 Implementation
	 Output
	 Note

	Chapter 16: Flyweight Patterns
	 Concept
	 Real-Life Example
	 Computer World Example
	 Illustration
	 UML Class Diagram
	 Package Explorer view
	 Implementation
	 Output
	 Improvement to the program
	 UML Class Diagram
	 Package Explorer view
	 Implementation
	 Output
	 Note

	Chapter 17: Abstract Factory Patterns
	 Concept
	 Real-Life Example
	 Computer World Example
	 Illustration
	 UML Class Diagram
	 Package Explorer view
	 Implementation
	 Output
	 Note

	Chapter 18: Mediator Patterns
	 Concept
	 Real-Life Example
	 Computer World Example
	 Illustration
	 UML Class Diagram
	 Package Explorer view
	 Implementation
	 Output
	 Note

	Chapter 19: Prototype Patterns
	 Concept
	 Real-Life Example
	 Computer World Example
	 Illustration
	 UML Class Diagram
	 Package Explorer view
	 Implementation
	 Output
	 Note

	Chapter 20: Chain of Responsibility Patterns
	 Concept
	 Real-Life Example
	 Computer World Example
	 Illustration
	 UML Class Diagram
	 Package Explorer view
	 Implementation
	 Output
	 Note

	Chapter 21: Composite Patterns
	 Concept
	 Real-Life Example
	 Computer World Example
	 Illustration
	 UML Class Diagram
	 Package Explorer view
	 Implementation
	 Output
	 Note

	Chapter 22: Bridge Patterns (Or Handle/Body Patterns)
	 Concept
	 Real-Life Example
	 Computer World Example
	 Illustration
	 UML Class Diagram
	 Package Explorer view
	 Implementation
	 Output
	 Note

	Chapter 23: Visitor Patterns
	 Concept
	 Real-Life Example
	 Computer World Example
	 Illustration
	 UML Class Diagram
	 Package Explorer view
	 Implementation
	 Output
	 Note

	Chapter 24: Interpreter Patterns
	 Concept
	 Real–Life Example
	 Computer World Example
	 Illustration
	 UML Class Diagram
	 Package Explorer view
	 Implementation
	 Output
	 Note

	Appendix A: FAQ
	 References

	Index

