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“Steven Weinberg, a Nobel Laureate in physics, has written an exceptionally
clear and coherent graduate-level textbook on modern quantum mechanics. This
book presents the physical and mathematical formulations of the theory in a
concise and rigorous manner. The equations are all explained step-by-step, and
every term is defined. He presents a fresh, integrated approach to teaching this
subject with an emphasis on symmetry principles. Weinberg demonstrates his
finesse as an excellent teacher and author.”

Barry R. Masters, Optics and Photonics News

“. . . Lectures on Quantum Mechanics must be considered among the very best
books on the subject for those who have had a good undergraduate introduction.
The integration of clearly explained formalism with cogent physical examples
is masterful, and the depth of knowledge and insight that Weinberg shares with
readers is compelling.”

Mark Srednicki, Physics Today

“Perhaps what distinguishes this book from the competition is its logical coher-
ence and depth, and the care with which it has been crafted. Hardly a word is
misplaced and Weinberg’s deep understanding of the subject matter means that
he leaves no stone unturned: we are asked to accept very little on faith . . . it is
for the reader to follow Weinberg in discovering the joys of quantum mechanics
through a deeper level of understanding: I loved it!”

Jeff Forshaw, CERN Courier

“An instant classic . . . clear, beautifully structured and replete with insights. This
confirms [Weinberg’s] reputation as not only one of the greatest theoreticians of
the past 50 years, but also one of the most lucid expositors. Pure joy.”

The Times Higher Education Supplement
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Preface

Preface to First Edition

The development of quantum mechanics in the 1920s was the greatest advance
in physical science since the work of Isaac Newton. It was not easy; the ideas
of quantum mechanics present a profound departure from ordinary human intu-
ition. Quantum mechanics has won acceptance through its success. It is essential
to modern atomic, molecular, nuclear, and elementary particle physics, and to a
great deal of chemistry and condensed matter physics as well.

There are many fine books on quantum mechanics, including those by Dirac
and Schiff from which I learned the subject a long time ago. Still, when I have
taught the subject as a one-year graduate course, I found that none of these
books quite fit what I wanted to cover. For one thing, I like to give a much
greater emphasis than usual to principles of symmetry, including their role in
motivating commutation rules. (With this approach the canonical formalism is
not needed for most purposes, so a systematic treatment of this formalism is
delayed until Chapter 9.) Also, I cover some modern topics that of course could
not have been treated in the books of long ago, including numerous examples
from elementary particle physics, alternatives to the Copenhagen interpreta-
tion, and a brief (very brief) introduction to the theory and experimental tests
of entanglement and its application in quantum computation. In addition, I
go into some topics that are often omitted in books on quantum mechanics:
Bloch waves, time-reversal invariance, the Wigner–Eckart theorem, magic num-
bers, isotopic spin symmetry, “in” and “out” states, the “in–in” formalism, the
Berry phase, Dirac’s theory of constrained canonical systems, Levinson’s the-
orem, the general optical theorem, the general theory of resonant scattering,
applications of functional analysis, photoionization, Landau levels, multipole
radiation, etc.

The chapters of the book are divided into sections, which on average approx-
imately represent a single seventy-five minute lecture. The material of this book
just about fits into a one-year course, which means that much else has had
to be skipped. Every book on quantum mechanics represents an exercise in

xvii
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xviii Preface

selectivity – I can’t say that my selections are better than those of other authors,
but at least they worked well for me when I taught the course.

There is one topic I was not sorry to skip: the relativistic wave equation
of Dirac. It seems to me that the way this is usually presented in books on
quantum mechanics is profoundly misleading. Dirac thought that his equation
is a relativistic generalization of the non-relativistic time-dependent Schrödinger
equation that governs the probability amplitude for a point particle in an external
electromagnetic field. For some time after, it was considered to be a good thing
that Dirac’s approach works only for particles of spin one half, in agreement
with the known spin of the electron, and that it entails negative-energy states,
states that when empty can be identified with the electron’s antiparticle. Today
we know that there are particles like the W± that are every bit as elementary as
the electron, and that have distinct antiparticles, and yet have spin one, not spin
one half. The right way to combine relativity and quantum mechanics is through
the quantum theory of fields, in which the Dirac wave function appears as the
matrix element of a quantum field between a one-particle state and the vacuum,
and not as a probability amplitude.

I have tried in this book to avoid an overlap with the treatment of the quantum
theory of fields that I presented in earlier volumes.1 Aside from the quantization
of the electromagnetic field in Chapter 11, the present book does not go into
relativistic quantum mechanics. But there are some topics that were included
in The Quantum Theory of Fields because they generally are not included in
courses on quantum mechanics, and I think they should be. These subjects are
included here, especially in Chapter 8 on general scattering theory, despite some
overlap with my earlier volumes.

The viewpoint of this book is that physical states are represented by vectors
in Hilbert space, with the wave functions of Schrödinger just the scalar prod-
ucts of these states with basis states of definite position. This is essentially the
approach of Dirac’s “transformation theory.” I do not use Dirac’s bra–ket nota-
tion, because for some purposes it is awkward, but in Section 3.1 I explain how
it is related to the notation used in this book. In any notation, the Hilbert space
approach may seem to the beginner to be rather abstract, so to give the reader a
greater sense of the physical significance of this formalism I go back to its his-
toric roots. Chapter 1 is a review of the development of quantum mechanics from
the Planck black-body formula to the matrix and wave mechanics of Heisen-
berg and Schrödinger and Born’s probabilistic interpretation. In Chapter 2 the
Schrödinger wave equation is used to solve the classic bound state problems
of the hydrogen atom and harmonic oscillator. The Hilbert-space formalism is
introduced in Chapter 3, and used from then on.

1 S. Weinberg, The Quantum Theory of Fields (Cambridge University Press, 1995; 1996; 2000).
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Preface xix

Addendum for the Second Edition

Since the publication of the first edition, I have come to think that several
additional topics needed to be included in this book. I have therefore added
six new sections: Section 4.9 on the rigid rotator; Section 5.9 on van der
Waals forces; Section 6.8 on Rabi oscillations and Ramsey interferometers;
Section 6.9 on open systems, including a derivation of the Lindblad equation;
Section 8.9 on time reversal of scattering processes, including a proof of the
Watson–Fermi theorem; and Section 11.8 on quantum key distribution. There
have also been many additions within the sections of the first edition, including
discussions of the universality of black-body radiation in Section 1.1, lasers in
Section 1.2, unentangled systems in Section 3.3, the groups O(3) and SO(3)
in Section 4.1, 3 j symbols and the addition theorem for spherical harmonics
in Section 4.3, the application of the eikonal approximation to scattering by
long-range forces in Section 7.10, and error-correcting codes in Section 12.3.
I have also taken the opportunity to correct many minor errors, as well as a
major error in the formulation of degenerate perturbation theory in Sections 5.1
and 5.4.

In Section 3.7 of the first edition I reviewed various interpretations of quantum
mechanics, and explained why none of them seem to me entirely satisfactory.
I have now reorganized and expanded this discussion, with no change in its
conclusion.

∗ ∗ ∗ ∗ ∗

I am grateful to Raphael Flauger and Joel Meyers, who as graduate students
assisted me when I taught courses on quantum mechanics at the University of
Texas, and suggested numerous changes and corrections to the lecture notes on
which the first edition of this book was based. I am also indebted to Robert Grif-
fiths, James Hartle, Allan Macdonald, and John Preskill, who gave me advice
on various specific topics that proved helpful in preparing the first edition,
and to Scott Aaronson, Jeremy Bernstein, Jacques Distler, Ed Fry, Christo-
pher Fuchs, James Hartle, Jay Lawrence, David Mermin, Sonia Paban, Philip
Pearle, and Mark Raizen who helped with the coverage of various topics in
the second edition. Thanks are due to many readers who pointed out errors
in the first edition, especially Andrea Bernasconi, Lu Quanhui, Mark Weitz-
man, and Yu Shi. Cumrun Vafa used the first half of the first edition as a
textbook for a one-term graduate course on quantum mechanics that he gave
at Harvard, and was able to make many valuable suggestions of points that
should be included or better explained. Of course, only I am responsible for
any errors that may remain in this book. Thanks are also due to Terry Riley,
Abel Ephraim, and Josh Perlman for finding countless books and articles, and
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xx Preface
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Notation

Latin indices i, j, k, and so on generally run over the three spatial coordinate
labels, usually taken as 1, 2, 3.

The summation convention is not used; repeated indices are summed only where
explicitly indicated.

Spatial three-vectors are indicated by symbols in boldface. In particular, ∇ is
the gradient operator.

∇2 is the Laplacian
∑

i ∂
2/∂xi ∂xi .

The three-dimensional ‘Levi-Civita tensor’ εijk is defined as the totally antisym-
metric quantity with ε123 = +1. That is,

εijk ≡
⎧⎨
⎩

+1, ijk = 123, 231, 312,
−1, ijk = 132, 213, 321,
0, otherwise.

The Kronecker delta is

δnm =
{

1, n = m,
0, n 	= m.

A hat over any vector indicates the corresponding unit vector: Thus, v̂ ≡ v/|v|.
A dot over any quantity denotes the time-derivative of that quantity.

The step function θ(s) has the value +1 for s > 0 and 0 for s < 0.

The complex conjugate, transpose, and Hermitian adjoint of a matrix A are
denoted A∗, AT, and A† = A∗T, respectively. The Hermitian adjoint of an oper-
ator O is denoted O†. + H.c. or + c.c. at the end of an equation indicates the
addition of the Hermitian adjoint or complex conjugate of the foregoing terms.

Where it is necessary to distinguish operators and their eigenvalues, upper case
letters are used for operators and lower case letters for their eigenvalues. This
convention is not always used where the distinction between operators and
eigenvalues is obvious from the context.

xxi
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xxii Notation

Factors of the speed of light c, the Boltzmann constant kB, and Planck’s constant
h or � ≡ h/2π are shown explicitly.

Unrationalized electrostatic units are used for electromagnetic fields and electric
charges and currents, so that e1e2/r is the Coulomb potential of a pair of charges
e1 and e2 separated by a distance r . Throughout, −e is the unrationalized charge
of the electron, so that the fine structure constant is α ≡ e2/�c 
 1/137.

Numbers in parenthesis at the end of quoted numerical data give the uncertainty
in the last digits of the quoted figure. Where not otherwise indicated, experi-
mental data are taken from K. Nakamura et al. (Particle Data Group), “Review
of Particle Properties,” J. Phys. G 37, 075021 (2010).
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1
Historical Introduction

The principles of quantum mechanics are so contrary to ordinary intuition that
they can best be motivated by taking a look at their prehistory. In this chapter
we will consider the problems confronted by physicists in the first years of the
twentieth century that ultimately led to modern quantum mechanics.

1.1 Photons

Quantum mechanics had its beginning in the study of black-body radiation.
The universality of the frequency distribution of this radiation was established
on thermodynamic grounds in 1859–1862 by Gustav Robert Kirchhoff (1824–
1887), who also gave black-body radiation its name. Consider an enclosure
whose walls are kept at a temperature T , and suppose that the energy per vol-
ume of radiation within this enclosure in a frequency interval between ν and
ν + dν is some function ρ(ν, T ) times dν. Kirchhoff calculated the energy per
time of the radiation in any frequency interval that strikes a small patch of area
A. He reasoned that, from a point in the enclosure with polar coordinates r, θ, φ
(with r the distance to the patch, and θ measured from the normal to the patch),
the patch will subtend a solid angle A cos θ/r2, so the fraction of the energy at
that point that is aimed at the patch will be A cos θ/4πr2. The total energy in
a frequency interval between ν and ν + dν that strikes the patch in a time t is
then the integral of A cos θ/4πr2 × ρ(ν, T ) dν over a hemisphere with radius
ct , where c is the speed of light:

2π
∫ ct

0
dr
∫ π/2

0
dθ r2 sin θ × A cos θ ρ(ν, T ) dν

4πr2
= ct A ρ(ν, T ) dν

4
.

If a fraction f (ν, T ) of this energy is absorbed by the walls of the enclosure,
then the total energy per area and per time absorbed by the walls in a frequency
interval between ν and ν + dν is

E(ν, T ) dν = c

4
f (ν, T ) ρ(ν, T ) dν.

1

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316276105.003
http:/www.cambridge.org/core


2 1 Historical Introduction

In order to be in equilibrium, this must also equal the energy per area and per
time emitted by the walls in the same frequency interval. The walls cannot
absorb more radiation than they receive, so the absorption fraction f (ν, T ) is
at most equal to one. Any material for which f (ν, T ) = 1 is called black. The
function ρ(ν, T ) must be universal, for in order for it to be affected when some
change is made in the enclosure, keeping it all at temperature T , energy at some
frequencies would have to flow from the radiation to the walls or vice versa,
which is impossible for materials at the same temperature.

Physicists in the last decades of the nineteenth century were greatly concerned
to understand the distribution function ρ(ν, T ). It had been measured, chiefly at
a Berlin research institute, the Physikalisch-Technische Reichsanstalt, but how
could one understand the measured values?

An answer was attempted using the statistical mechanics of the late nineteenth
century, without quantum ideas, in a series of papers1 in 1900 and 1905 by
John William Strutt (1842–1919), more usually known as Lord Rayleigh, and
by James Jeans (1877–1946). It was familiar that one can think of the radiation
field in a box as a Fourier sum over normal modes. For instance, for a cubical
box of width L , whatever boundary condition is satisfied on one face of the box
must be satisfied on the opposite face, so the phase of the radiation field must
change by an integer multiple of 2π in a distance L . That is, the radiation field
is the sum of terms proportional to exp(iq · x), with

q = 2πn/L , (1.1.1)

where the vector n has integer components. (For instance, to maintain transla-
tional invariance, it is convenient to impose periodic boundary conditions: each
component of the electromagnetic field is assumed to be the same on opposite
faces of the box.) Each normal mode is thus characterized by a triplet of inte-
gers n1, n2, n3 and a polarization state, which can be taken as either left- or
right-circular polarization. The wavelength of a normal mode is λ = 2π/|q|, so
its frequency is given by

ν = c

λ
= |q|c

2π
= |n|c

L
. (1.1.2)

Each normal mode occupies a cell of unit volume in the space of the vectors n,
so the number of normal modes N (ν) dν in the range of frequencies between ν
and ν + dν is twice the volume of the corresponding shell in this space:

N (ν) dν = 2 × 4π |n|2 d|n| = 8π(L/c)3ν2 dν, (1.1.3)

the extra factor of 2 taking account of the two possible polarizations for each
wave number. In classical statistical mechanics, in any system that can be
regarded as a collection of harmonic oscillators, the mean energy of each

1 Lord Rayleigh, Phil. Mag. 49, 539 (1900); Nature 72, 54 (1905); J. Jeans, Phil. Mag. 10, 91 (1905).
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1.1 Photons 3

oscillator Ē(T ) is simply proportional to the temperature, a relation written as
Ē(T ) = kBT , where kB is a fundamental constant, known as Boltzmann’s con-
stant. (The derivation is given below.) If this applied to radiation, the energy
density in the radiation between frequencies ν and ν + dν would then be given
by what has come to be called the Rayleigh–Jeans formula

ρ(ν, T ) dν = Ē(T ) N (ν) dν

L3
= 8πkBT ν2 dν

c3
. (1.1.4)

The prediction that ρ(ν, T ) is proportional to T ν2 was actually in agreement
with observation for small values of ν/T , but failed badly for larger values.
Indeed, if it held for all frequencies at a given temperature, then the total energy
density

∫
ρ(ν, T ) dν would be infinite. This became known as the ultraviolet

catastrophe.
To be a bit more specific about who did what when, Rayleigh in 1900 showed

in effect that ρ(ν, T ) is proportional for low frequency to T ν2, but he did not
attempt to calculate the constant of proportionality in Eq. (1.1.3) or in Ē(T ),
and hence could not give the constant factor in Eq. (1.1.4). To avoid the ultra-
violet catastrophe, he also included an ad hoc factor that decayed exponentially
for large values of ν/T , without attempting to calculate the values of ν/T at
which the decay becomes appreciable. Rayleigh went further in 1905, and cal-
culated the constant factor in Eq. (1.1.3), but obtained a result 8 times too large.
The correct result was given a little later by Jeans (in a postscript to his 1905
article), who also correctly gave Ē(T ) = kBT , and hence obtained (1.1.4) as a
low-frequency limit.

The correct complete result had already been published by Max Planck
(1858–1947) in 1900.2 Planck noted that the data on black-body radiation could
be fit with the formula

ρ(ν, T ) dν = 8πh

c3

ν3 dν

exp(hν/kBT )− 1
, (1.1.5)

where h was a new constant, known ever after as Planck’s constant. Comparison
with observation gave kB ≈ 1.4 × 10−16 erg/K and3 h ≈ 6.6 × 10−27 erg sec.
This formula was at first just guesswork, but a little later Planck gave a derivation
of the formula,4 based on the assumption that the radiation was the same as if
it were in equilibrium with a large number of charged oscillators with different
frequencies, the energy of any oscillator of frequency ν being an integer multiple
of hν. Planck’s derivation is lengthy and not worth repeating here, since its basis
is very different from what soon replaced it.

2 M. Planck, Verh. deutsch. phys. Ges. 2, 202 (1900).
3 The modern value is 6.62606891(9) × 10−27 erg sec; see E. R. Williams, R. L. Steiner, D. B. Newell,

and P. T. Olson, Phys. Rev. Lett. 81, 2404 (1998).
4 M. Planck, Verh. deutsch. phys. Ges. 2, 237 (1900).
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4 1 Historical Introduction

Planck’s formula agrees with the Rayleigh–Jeans formula (1.1.4) for ν/T �
kB/h, but it gives an energy density that falls off exponentially for ν/T 
 kB/h,
yielding a finite total energy density∫ ∞

0
ρ(ν, T ) dν = aBT 4, aB ≡ 8π5k4

B

15h3c3
. (1.1.6)

(Using modern values of constants, this gives aB = 7.56577(5) × 10−15 erg
cm−3 K−4.) According to the Kirchhoff relation between ρ(ν, T ) and the rate of
emission from a black body, the total rate of energy emission per area from a
black body is σT 4, where σ is the Stefan–Boltzmann constant:

σ = caB

4
= 2π5k4

B

15h3c2
= 5.670373(21)× 10−5 erg cm−2 sec−1K−4.

Perhaps the most important immediate consequence of Planck’s work was
to provide long-sought values for atomic constants. The theory of ideal gases
gives the well-known law pV = n RT , where p is the pressure of a volume V
of n moles of gas at temperature T , with the constant R given by R = kB NA,
where NA is Avogadro’s number, the number of molecules in one mole of gas.
Measurements of gas properties had long given values for R, so with kB known
it was possible for Planck to infer a value for NA, the reciprocal of the mass of
a hypothetical atom with unit atomic weight (close to the mass of a hydrogen
atom). This was in good agreement with estimates of NA from properties of
non-ideal gases that depend on number density and not just mass density, such
as viscosity. Knowing the mass of individual atoms, and assuming that atoms in
solids are closely packed so that the mass to volume ratio of an atom is similar
to the measured density of macroscopic solid samples of that element, one could
estimate the sizes of atoms. Similarly, measurements of the amount of various
elements produced by electrolysis had given a value for the faraday, F = eNA,
where e is the electric charge transferred in producing one atom of unit valence,
so with NA known, e could be calculated. It could be assumed that e is the charge
of the electron, which had been discovered in 1897 by Joseph John Thomson
(1856–1940), so this amounted to a measurement of the charge of the electron,
a measurement much more precise than any direct measurement that could be
carried out at the time. Thomson had measured the ratio of e to the mass of
the electron, by observing the bending of cathode rays in electric and magnetic
fields, so this also gave a value for the electron mass.

It is ironic that all this could have been done by Rayleigh in 1900, without
introducing quantum ideas, if he had obtained the correct Rayleigh–Jeans for-
mula (1.1.4) then. He would only have had to compare this formula with
experimental data at small values of ν/T , where the formula works, and use
the result to find kB – for this, h is not needed.

Planck’s quantization assumption applied to the matter that emits and absorbs
radiation, not to radiation itself. As George Gamow later remarked, Planck
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1.1 Photons 5

thought that radiation was like butter; butter itself comes in any quantity, but
it can be bought and sold only in multiples of one quarter pound. It was Albert
Einstein (1879–1955) who in 1905 proposed that the energy of radiation of fre-
quency ν was itself an integer multiple of hν.5 He used this to predict that in
the photoelectric effect no electrons are emitted when light shines on a metal
surface unless the frequency of the light exceeds a minimum value νmin, where
hνmin is the energy required to remove a single electron from the metal (the
“work function”). The electrons then have energy h(ν − νmin). Experiments6 by
Robert Millikan (1868–1953) in 1914–1916 verified this formula, and gave a
value for h in agreement with that derived from black-body radiation.

The connection between Einstein’s hypothesis and the Planck black-body for-
mula is best explained in a derivation of the black-body formula by Hendrik
Lorentz (1853–1928) in 1910.7 Lorentz made use of the fundamental result of
statistical mechanics due to J. Willard Gibbs (1839–1903),8 that in a system
containing a large number of identical systems in thermal equilibrium at a given
temperature T (like light quanta in a black-body cavity), the probability that
one of these systems has an energy E is proportional to exp(−E/kBT ), with an
energy-independent constant of proportionality. If the energies of light quanta
were continuously distributed, this would give a mean energy

Ē =
∫∞

0 exp(−E/kBT ) E d E∫∞
0 exp(−E/kBT ) d E

= kBT,

the assumption used in deriving the Rayleigh–Jeans formula (1.1.4). But if the
energies are instead integer multiples of hν, then the mean energy is

Ē =
∑∞

n=0 exp(−nhν/kBT ) nhν∑∞
n=0 exp(−nhν/kBT )

= hν

exp(hν/kBT )− 1
. (1.1.7)

The energy density in radiation between frequencies ν and ν+dν is again given
by ρ dν = Ē N dν/L3, which now with Eqs. (1.1.3) and (1.1.7) yields the Planck
formula (1.1.5).

Even after Millikan’s experiments had verified Einstein’s prediction for the
energies of photoelectrons, there remained considerable skepticism about the
reality of light quanta. This was largely dispelled by experiments on the scat-
tering of X-rays by Arthur Compton (1892–1962) in 1922–23.9 The energy of
X-rays is sufficiently high that it is possible to ignore the much smaller binding
energy of the electron in a light atom, treating the electron as a free particle.
Special relativity says that if a quantum of light has energy E = hν, then it

5 A. Einstein, Ann. Physik 17, 132 (1905).
6 R. A. Millikan, Phys. Rev. 7, 355 (1916).
7 H. A. Lorentz, Phys. Z. 11, 1234 (1910).
8 J. W. Gibbs, Elementary Principles in Statistical Mechanics (Charles Scribner’s Sons, New York, 1902).
9 A. H. Compton, Phys. Rev. 21, 207 (1923).
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6 1 Historical Introduction

has momentum p = hν/c, in order to have m2
γc4 = E2 − p2c2 = 0. If, for

instance, a light quantum striking an electron at rest is scattered backwards,
then the scattered quantum has frequency ν ′ and the electron scattered forward
has momentum hν/c + hν ′/c, where ν ′ is given by the energy conservation
condition:

hν + mec
2 = hν ′ +

√
m2

ec4 + (hν/c + hν ′/c)2c2

(where me is the electron mass), so

ν ′ = νmec2

2hν + mec2
.

This is conventionally written as a formula relating the wavelengths λ = c/ν
and λ′ = c/ν ′:

λ′ = λ+ 2h/mec. (1.1.8)

The length h/mec = 2.425 × 10−10 cm is known as the Compton wavelength
of the electron. (For scattering at an angle θ to the forward direction, the factor
2 in Eq. (1.1.8) is replaced with 1 − cos θ .) Verification of such relations con-
vinced physicists of the existence of these quanta. A little later the chemist G. N.
Lewis10 gave the quantum of light the name by which it has been known ever
since, the photon.

1.2 Atomic Spectra

Another problem confronted physicists throughout the nineteenth and early
twentieth centuries. In 1802 William Hyde Wollaston (1766–1828) discovered
dark lines in the spectrum of the Sun, but these lines were not studied in detail
until around 1814, when they were re-discovered by Joseph von Fraunhofer
(1787–1826). Later it was realized that hot atomic gases emit and absorb light
only at certain definite frequencies, the pattern of frequencies, or spectrum,
depending on the element in question. The dark lines discovered by Wollas-
ton and Fraunhofer are caused by the absorption of light as it rises through the
cooler outer layers of the Sun’s photosphere. The study of bright and dark spec-
tral lines became a useful tool for chemical analysis, for astronomy, and for the
discovery of new elements, such as helium, discovered in the spectrum of the
Sun. But, like writing in a forgotten language, these atomic spectra provided no
intelligible message.

No progress could be made in understanding atomic spectra without knowing
something about the structure of atoms. After Thomson’s discovery of the
electron in 1897, it was widely believed that atoms were like puddings, with

10 G. N. Lewis, Nature, 118, 874 (1926).
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1.2 Atomic Spectra 7

negatively charged electrons stuck in like raisins in a smooth background of
positive charge. This picture was radically changed by experiments carried out
in the laboratory of Ernest Rutherford (1871–1937) at the University of Manch-
ester in 1909–1911. In these experiments a post-doc, Hans Geiger (1882–1945),
and an undergraduate, Ernest Marsden (1889–1970), let a collimated beam of
alpha particles (4He nuclei) from a radium source strike a thin gold foil. The
alpha particles passing through the foil were detected by flashes of light when
they struck a sheet of zinc sulfide. As expected, the beam was found to be
slightly spread out by scattering of alpha particles by the gold atoms. Then for
some reason Rutherford had the idea of asking Geiger and Marsden to check
whether any alpha particles were scattered at large angles. This would not be
expected if the alpha particle hit a much lighter particle like the electron. If
a particle of mass M with velocity v hits a particle of mass m that is at rest,
and continues along the same line with velocity v′, giving the target particle a
velocity u, the equations of momentum and energy conservation give

Mv = mu + Mv′,
1

2
Mv2 = 1

2
Mv′2 + 1

2
mu2. (1.2.1)

(In the notation used here, a positive velocity is in the same direction as the
original velocity of the alpha particle, while a negative velocity is in the opposite
direction.) Eliminating u, we obtain a quadratic equation for v′/v:

0 = (1 + M/m)(v′/v)2 − 2(M/m)(v′/v)− 1 + M/m.

This has two solutions. One solution is v′ = v. This solution is one for which
nothing happens – the incident particle just continues with the velocity it had at
the beginning. The interesting solution is the other one:

v′ = −v
(

m − M

m + M

)
. (1.2.2)

But this has a negative value (that is, a recoil backwards) only if m > M .
(Somewhat weaker limits on m can be inferred from scattering at any large
angle.)

Nevertheless, alpha particles were observed to be scattered at large angles. As
Rutherford later explained, “It was quite the most incredible event that has ever
happened to me in my life. It was almost as incredible as if you fired a 15-inch
shell at a piece of tissue paper, and it came back and hit you.”11

So the alpha particle must have been hitting something in the gold atom much
heavier than an electron, whose mass is only about 1/7300 the mass of an alpha
particle. Furthermore, the target particle must be quite small to stop the alpha
particle by the Coulomb repulsion of positive charges. If the charge of the target

11 Quoted by E. N. da Costa Andrade, Rutherford and the Nature of the Atom (Doubleday, Garden City,
NY, 1964).
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8 1 Historical Introduction

particle is +Ze, then in order to stop the alpha particle with charge +2e at a
distance r from the target particle, the kinetic energy Mv2/2 must be converted
into a potential energy (2e)(Ze)/r , so r = 4Ze2/Mv2. The velocity of the alpha
particles emitted from radium is 2.09×109 cm/sec, so the distance at which they
would be stopped by a heavy target particle was 3Z × 10−14 cm, which for any
reasonable Z (even Z ≈ 100) is much smaller than the size of the gold atom, a
few times 10−8 cm.

Rutherford concluded12 then that the positive charge of the atom is con-
centrated in a small heavy nucleus, around which the much lighter negatively
charged electrons circulate in orbits, like planets around the Sun. But this only
heightened the mystery surrounding atomic spectra. A charged particle like the
electron circulating in orbit would be expected to radiate light, with the same
frequency as the orbital motion. The frequencies of these orbital motions could
be anything. Worse, as the electron lost energy to radiation it would spiral down
into the atomic nucleus. How could atoms remain stable?

In 1913 an answer was offered by a young visitor to Rutherford’s Manchester
laboratory, Niels Bohr (1885–1962). Bohr proposed in the first place that the
energies of atoms are quantized, in the sense that the atom exists in only a
discrete set of states, with energies (in increasing order) E1, E2, . . . . The fre-
quency of a photon emitted in a transition m → n or absorbed in a transition
n → m is given by Einstein’s formula E = hν and energy conservation by

ν = (Em − En)/h. (1.2.3)

A bright or dark spectral line is formed by atoms emitting or absorbing pho-
tons in a transition from a higher to a lower energy state, or vice versa. This
explained a rule, known as the Ritz combination principle, that had been noticed
experimentally by Walther Ritz (1878–1909) in 190813 (but without explaining
it), that the spectrum of any atom could be described more compactly by a set of
so-called “terms,” the frequencies of the spectrum being all given by differences
of the terms. These terms, according to Bohr, were just the energies En , divided
by h.

Bohr also offered a method for calculating the energies En , at least for elec-
trons in a Coulomb field, as in hydrogen, singly ionized helium, etc. Bohr noted
that Planck’s constant h has the same dimensions as angular momentum, and
he guessed that the angular momentum mevr of an electron of velocity v in a
circular atomic orbit of radius r is an integer multiple of some constant �,14

presumably of the same order of magnitude as h:

mevr = n�, n = 1, 2, . . . . (1.2.4)

12 E. Rutherford, Phil. Mag. 21, 669 (1911).
13 W. Ritz, Phys. Z. 9, 521 (1908).
14 N. Bohr, Phil. Mag. 26, 1, 476, 857 (1913); Nature 92, 231 (1913).
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1.2 Atomic Spectra 9

(Bohr did not use the symbol �. Readers who know how � is related to h should
temporarily forget that information; for the present � is just another constant.)
Bohr combined this with the equation for the equilibrium of the orbit,

mev
2

r
= Ze2

r2
, (1.2.5)

and the formula for the electron’s energy,

E = mev
2

2
− Ze2

r
. (1.2.6)

This gives

v = Ze2

n�
, r = n2

�
2

Zmee2
, E = − Z 2e4me

2n2�2
. (1.2.7)

Using the Einstein relation between energy and frequency, the frequency of a
photon emitted in a transition from an orbit with quantum number n to one with
quantum number n′ < n is

ν = �E

h
= Z2e4me

2h�2

(
1

n′2 − 1

n2

)
. (1.2.8)

To find �, Bohr relied on a correspondence principle, that the results of clas-
sical physics should apply for large orbits – that is, for large n. If n 
 1 and
n′ = n − 1, Eq. (1.2.8) gives ν = Z2e4me/h�

2n3. This may be compared with
the frequency of the electron in its orbit, v/2πr = Z2e4me/2πn3

�
3. Accord-

ing to classical electrodynamics these two frequencies should be equal, so Bohr
could conclude that � = h/2π . Using the value of h obtained by matching
observations of black-body radiation with Planck’s formula, Bohr was able to
derive numerical values for the velocity, radial coordinate, and energy of the
electron:

v = Ze2

n�

 Zc

137n
, (1.2.9)

r = n2
�

2

Zmee2

 n2 × 0.529Z−1 × 10−8 cm, (1.2.10)

E = − Z 2e4me

2n2�2

 −13.6Z2 eV

n2
. (1.2.11)

The striking agreement of Eq. (1.2.11) with the atomic energy levels of hydrogen
inferred from the frequencies of spectral lines was a strong indication that Bohr
was on the right track. The case for Bohr’s theory became even stronger when
he pointed out (in the Nature article cited in footnote 14) that Eq. (1.2.11) also
accounts for the spectrum of singly ionized helium (observed both astronom-
ically and in laboratory experiments), with a small but detectable correction.
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10 1 Historical Introduction

Bohr realized that the mass appearing in these formulas should be not pre-
cisely the electron mass, but rather the reduced mass μ ≡ me/(1 + me/mN),
where mN is the nuclear mass. (This is discussed in Section 2.4.) Hence the
constant of proportionality between E and 1/n2 is larger for helium than for
hydrogen by a factor that is not simply equal to Z2

He = 4, but rather by a factor
4(1 + me/mH)/(1 + me/mHe) = 4.00163, in agreement with experiment.

In this derivation Bohr had relied on the old idea of classical radiation theory,
that the frequencies of spectral lines should agree with the frequency of the
electron’s orbital motion, but he had assumed this only for the largest orbits,
with large n. The light frequencies he calculated for transitions between lower
states, such as n = 2 → n = 1, did not at all agree with the orbital frequency
of the initial or final state. So Bohr’s work represented another large step away
from classical physics.

Bohr’s formulas could be used not only for single-electron atoms, like hydro-
gen or singly ionized helium, but also roughly for the innermost orbits in heavier
atoms, where the charge of the nucleus is not screened by electrons, and we can
take Ze as the actual charge of the nucleus. For Z ≥ 10, the energy of a photon
emitted in a transition from n = 2 to n = 1 orbits is greater than 1 keV, and
hence is in the X-ray spectrum. By measuring these X-ray energies, H. G. J.
Moseley (1887–1915) was able to find Z for a range of atoms from calcium to
zinc. He discovered that, within experimental uncertainty, Z is an integer, sug-
gesting that the positive charge of atomic nuclei is carried by particles of charge
+e, much heavier than the electron, to which Rutherford gave the name protons.
Also, with just a few exceptions, Z increased by one unit in going from any ele-
ment to the element with the next largest atomic weight A (roughly, the mass of
the atom in units of the hydrogen atom mass). But Z turned out to be not equal
to A. For instance, zinc has A = 65.38, and it turned out to have Z = 30.00. For
some years it was thought that the atomic weight A was approximately equal
to the number of protons, with the extra charge canceled by A − Z electrons.
The discovery by James Chadwick (1891–1974) in 1935 of the neutron,15 which
was found to have a mass close to that of the hydrogen atom, showed that instead
nuclei contain Z protons and approximately A−Z neutrons. (The atomic weight
is not precisely equal to the number of protons plus the number of neutrons, both
because the neutron mass is not precisely the same as the proton mass, and also
because, according to Einstein’s formula E = mc2, the energy of interaction of
the particles inside a nucleus contributes to the nuclear mass.)

Incidentally, Eqs. (1.2.9)–(1.2.11) also hold roughly for electrons in the outer-
most orbits in heavy atoms, where most of the charge of the nucleus is screened
by inner electrons, and Z can therefore be taken to be of order unity. This is
why the sizes of heavy atoms are not very much larger than those of light atoms,

15 J. Chadwick, Nature 129, 312 (1932).
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1.2 Atomic Spectra 11

and the frequency of light emitted in transitions of electrons in the outer orbits
of heavy atoms is comparable to the corresponding energies in hydrogen, and
hence in the visible range of the spectrum. Heavy atoms are somewhat larger
than light ones, because, for reasons outlined in Section 4.5, the electrons in the
outer orbits of heavy atoms have larger values of n than for light atoms.

The Bohr theory applied only to circular orbits, but just as in the solar sys-
tem, the generic orbit of a particle in a Coulomb field is not a circle, but an
ellipse. A generalization of the Bohr quantization condition (1.2.4) was pro-
posed by Arnold Sommerfeld (1868–1951) in 1916,16 and used by him to
calculate the energies of electrons in elliptical orbits. Sommerfeld’s condition
was that in a system described by a Hamiltonian H(q, p), with several coordi-
nates qa and canonical conjugates pa satisfying the equations q̇a = ∂H/∂pa and
ṗa = −∂H/∂qa , if all qs and ps have a periodic time dependence (as for closed
orbits), then for each a ∮

pa dqa = nah (1.2.12)

(with na an integer), the integral taken over one period of the motion. For
instance, for an electron in a circular orbit we can take q as the angle traced
out by the line connecting the nucleus and the electron, and p as the angular
momentum mevr , in which case

∮
p dq = 2πmevr , and (1.2.12) is the same as

Bohr’s condition (1.2.4). We will not pursue this approach here, because it was
soon made obsolete by the advent of wave mechanics.

In 1916 (in his spare time while discovering the general theory of relativity),
Einstein returned to the theory of black-body radiation,17 this time combining it
with the Bohr idea of quantized atomic energy states. Einstein defined a quantity
An

m as the rate at which an atom will spontaneously make a transition from a
state m to a state n of lower energy, emitting a photon of energy Em − En . He
also considered the absorption of photons from radiation (not necessarily black-
body radiation) with an energy density ρ(ν) dν at frequencies between ν and
ν + dν. The rate at which an individual atom in such a field makes a transition
from a state n to a state m of higher energy is written as Bm

n ρ(νnm), where
νnm ≡ (Em − En)/h is the frequency of the absorbed photon. Einstein also took
into account the possibility that the radiation would stimulate the emission of
photons by the atom in transitions from a state m to a state n of lower energy, at
a rate written as Bn

mρ(νnm). The coefficients Bm
n and Bn

m like An
m are assumed to

depend only on the properties of individual atoms, not on the temperature or the
radiation.

Now, suppose the radiation is black-body radiation at a temperature T , with
which the atoms are in equilibrium. The energy density of the radiation will

16 A. Sommerfeld, Ann. Physik 51, 1 (1916).
17 A. Einstein, Phys. Z. 18, 121 (1917).
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12 1 Historical Introduction

be the function ρ(ν, T ), given by Eq. (1.1.5). In equilibrium the rate at which
atoms make a transition m → n from higher to lower energy must equal the rate
at which atoms make the reverse transition n → m:

Nm

[
An

m + Bn
mρ(νnm, T )

] = Nn Bm
n ρ(νnm, T ), (1.2.13)

where Nn and Nm are the numbers of atoms in states n and m. According to the
Boltzmann rule of classical statistical mechanics, the number of atoms in a state
of energy E is proportional to exp(−E/kBT ), so

Nm/Nn = exp(−(Em − En)/kBT ) = exp(−hνnm/kBT ) . (1.2.14)

(It is important here to take the Nn as the numbers of atoms in individual states
n, some of which may have precisely the same energy, rather than the numbers
of atoms with energies En .) Putting this together, we have

An
m = 8πh

c3

ν3
nm

exp(hνnm/kBT )− 1

(
exp(hνnm/kBT ) Bm

n − Bn
m

)
. (1.2.15)

For this to be possible at all temperatures for temperature-independent A and B
coefficients, these coefficients must be related by

Bn
m = Bm

n , An
m =

(
8πhν3

nm

c3

)
Bn

m . (1.2.16)

Hence, knowing the rate at which a classical light wave of a given energy den-
sity is absorbed or stimulates emission by an atom, we can calculate the rate at
which it spontaneously emits photons.18 This calculation will be presented in
Section 6.5.

The phenomenon of stimulated emission makes possible the amplification of
beams of light, in a laser (an acronym for “light amplification by stimulated
emission of radiation”). Suppose a beam of light with energy density distribu-
tion ρ(ν) passes through a medium consisting of Nn atoms at energy level En .
Stimulated emission from the first excited state n = 2 to the ground state n = 1
adds photons of frequency ν12 ≡ (E2 − E1)/h to the beam at a rate N2ρ(ν12)B1

2 ,

18 Einstein in the article cited in footnote 17 actually used this argument to give a new derivation of the
Planck formula for ρ(ν, T ) as well as the relations (1.2.16). He first considered the limit of very large
temperature, for which ρ(νnm , T ) may be assumed to be very large, and Eq. (1.2.14) gives Nn very
close to Nm . In this limit Eq. (1.2.13) requires that Bm

n = Bn
m , which, since the Bs are independent of

temperature, must be generally true. Using Bm
n = Bn

m in Eq. (1.2.13) for a general temperature then
gives ρ(νnm , T ) = (An

m/Bn
m )/[exp(hνnm/kBT )−1]. Einstein then used a thermodynamic relation due

to Wilhelm Wien (1884–1928), the Wien displacement law, which requires that ρ(ν, T ) equals ν3 times
some function of ν/T . This gave An

m/Bn
m proportional to ν3

nm , and Einstein then found the constant
of proportionality by requiring that the Rayleigh–Jeans formula (1.1.4) is satisfied for hν � kBT .
But Einstein’s use of the Wien displacement law was actually unnecessary, because in order for the
formula ρ(νnm , T ) = (An

m/Bn
m )/[exp(hνnm/kBT )− 1] to agree with the Rayleigh–Jeans formula for

hν � kBT , it is necessary that the ratio An
m/Bn

m be given by Eq. (1.2.16), and Planck’s formula then
follows immediately.
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1.3 Wave Mechanics 13

but absorption from the ground state removes photons at a rate N1ρ(ν12)B2
1 , and

since B1
2 = B2

1 , there will be a net addition of photons only in the case N2 > N1.
Unfortunately, such a population inversion cannot be produced by exposing the
atoms in their ground state to light at this frequency. The net rate of change in
the population of the first excited state n = 2 due to spontaneous and stimulated
emission from the excited state and absorption from the ground state will be

Ṅ2 = −N2ρ(ν12)B
1
2 − N2 A1

2 + N1ρ(ν12)B
2
1 ,

or, using the Einstein relations (1.2.16),

Ṅ2 = B1
2

[
−N2

[
ρ(ν12)+ 8πν3

12h/c3
]

+ N1ρ(ν12)
]
. (1.2.17)

If we start with N2 = 0, then N2 increases until it approaches a value
N1/(1 + ξ), where ξ ≡ 8πν3

12h/ρ(ν12)c3, when N2 becomes constant. Not
only can this process not produce a population inversion, but also, because
of spontaneous emission, it cannot even make N2 as large as N1. A popula-
tion inversion can be produced in other ways, for instance by optical pumping,
in which atoms are excited to some state n = 3 by absorption of light with
frequency ν31 = (E3 − E1)/h, and then spontaneously decay to the state n = 2.

1.3 Wave Mechanics

Ever since Maxwell, light had been understood to be a wave of electric and
magnetic fields, but after Einstein and Compton, it became clear that it is also
manifested in a particle, the photon. So is it possible that something like the
electron, that had always been regarded as a particle, could also be manifested
as some sort of wave? This was suggested in 1923 by Louis de Broglie (1892–
1987),19 a doctoral student in Paris. Any kind of wave of frequency ν and wave
number k has a spacetime dependence exp(ik · x − iωt), where ω = 2πν.
Lorentz invariance requires that (k, ω) transform as a four-vector, just like the
momentum four-vector (p, E). For light, according to Einstein, the energy of a
photon is E = hν = �ω, and its momentum has a magnitude |p| = E/c =
hν/c = h/λ = �|k|, so de Broglie was led to suggest that in general a particle
of any mass is associated with a wave having the four-vector (k, ω) equal to 1/�
times the four-vector (p, E):

k = p/�, ω = E/�. (1.3.1)

This idea gained support from the fact that a wave satisfying (1.3.1) would
have a group velocity equal to the ordinary velocity c2p/E of a particle of

19 L. de Broglie, Comptes Rendus Acad. Sci. 177, 507, 548, 630 (1923).
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14 1 Historical Introduction

momentum p and energy E . For a reminder about group velocity, consider a
wave packet in one dimension:

ψ(x, t) =
∫

dk g(k) exp
(

ikx − iω(k)t
)
, (1.3.2)

where g(k) is some smooth function with a peak at an argument k0. Suppose also
that the wave

∫
dk g(k) exp(ikx) at t = 0 is peaked at x = 0. By expanding

ω(k) around k0, we have

ψ(x, t) 
 exp
(
−i t[ω(k0)− k0ω

′(k0)]
) ∫

dk g(k) exp
(

ik
[
x − ω′(k0)t

])
,

and therefore

|ψ(x, t)| 

∣∣∣ψ([x − ω′(k0)t], 0

)∣∣∣ . (1.3.3)

The wave packet that was concentrated at time t = 0 near x = 0 is evidently
concentrated at time t near x = ω′(k0)t , so it moves with speed

v = dω

dk
= d E

dp
= c2 p

E
, (1.3.4)

in agreement with the usual formula for velocity in special relativity.
Just as vibrational waves on a violin string are quantized by the condition

that, since the string is clamped at both ends, it must contain an integer number
of half-wavelengths, so according to de Broglie, the wave associated with an
electron in a circular orbit must have a wavelength that just fits into the orbit a
whole number n of times, so 2πr = nλ, and therefore

p = �k = � × 2π/λ = n�/r. (1.3.5)

Using the non-relativistic formula p = mv, this is the same as the Bohr quan-
tization condition (1.2.4). More generally, the Sommerfeld condition (1.2.12)
could be understood as the requirement that the phase of a wave changes by
a whole-number multiple of 2π when a particle completes one orbit. Thus the
success of Bohr and Sommerfeld’s wild guesses could be explained in a wave
theory, though that too was just a wild guess.

There is a story that in his oral thesis examination, de Broglie was asked what
other evidence might be found for a wave theory of the electron, and he sug-
gested that perhaps diffraction phenomena might be observed in the scattering
of electrons by crystals. Whatever the truth of this story, it is known that (at the
suggestion of Walter Elsasser (1904–1991)) this experiment was carried out at
the Bell Telephone Laboratories by Clinton Davisson (1881–1958) and Lester
Germer (1896–1971), who in 1927 reported that electrons scattered by a single
crystal of nickel showed a pattern of diffraction peaks similar to those seen in
the scattering of X-rays by crystals.20

20 C. Davisson and L. Germer, Phys. Rev. 30, 707 (1927).
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1.3 Wave Mechanics 15

Of course, an atomic orbit is not a violin string. What was needed was some
way of extending the wave idea from free particles, described by waves like
(1.3.2), to particles moving in a potential, such as the Coulomb potential in
an atom. This was supplied in 1926 by Erwin Schrödinger (1887–1961).21

Schrödinger presented his idea as an adaptation of the Hamilton–Jacobi for-
mulation of classical mechanics, which would take us too far away from
quantum mechanics to go into here. There is a simpler way of understanding
Schrödinger’s wave mechanics as a natural generalization of what de Broglie
had already done.

According to the relations p = �k and E = �ω, the wave function ψ ∝
exp(ik · x − iωt) of a free particle of momentum p and energy E satisfies the
differential equations

−i� ∇ψ(x, t) = pψ(x, t), i�
∂

∂t
ψ(x, t) = Eψ(x, t).

For any state of energy E , we then have

ψ(x, t) = exp(−i Et/�) ψ(x), (1.3.6)

while for a free particle, in the non-relativistic case, E = p2/2m, so here ψ(x)
is some solution of the equation

E ψ(x) = −�
2

2m
∇2ψ(x).

More generally, the energy of a particle in a potential V (x) is given by E =
p2/2m + V (x), which suggests that for such a particle we still have Eq. (1.3.6),
but now

E ψ(x) =
[−�

2

2m
∇2 + V (x)

]
ψ(x). (1.3.7)

This is the Schrödinger equation for a single particle of energy E .
Just like the equations for the frequencies of transverse vibrations of a vio-

lin string, this equation has solutions only for certain definite values of E . The
boundary condition that takes the place here of the condition that a violin string
does not vibrate where it is clamped at its ends, is that ψ(x) is single-valued
(that is, it returns to the same value if x goes around a closed curve) and van-
ishes as |x| goes to infinity. For instance, Schrödinger was able to show that in
a Coulomb potential V (x) = −Ze2/r , for each n = 1, 2, . . . , Eq. (1.3.7) has
n2 different single-valued solutions that vanish for r → ∞ with energies given
by Bohr’s formula En = −Z2e4me/2n2

�
2, and no such solutions for any other

energies. (We will carry out this calculation in the next chapter.) As Schrödinger
remarked in his first paper on wave mechanics, “The essential thing seems to me

21 E. Schrödinger, Ann. Physik 79, 361, 409 (1926).
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16 1 Historical Introduction

to be that the postulation of “whole numbers” no longer enters into the quantum
rules mysteriously, but that we have traced the matter a step farther back, and
found the ‘integralness’ to have its origin in the finiteness and single-valuedness
of a certain space function.”

More than that, Schrödinger’s equation had an obvious generalization to
general systems. If a system is described by a Hamiltonian H(x1, . . . ; p1 . . .)

(where dots indicate coordinates and momenta of additional particles) the
Schrödinger equation takes the form

H(x1, . . . ; −i� ∇1 · · · )ψn(x1, . . .) = Enψn(x1, . . .). (1.3.8)

For instance, for N particles of masses mr with r = 1, 2, . . ., with a general
potential V (x1, . . . , xN ), the Hamiltonian is

H =
∑

r

p2
r

2mr
+ V (x1, . . . , xN), (1.3.9)

and the allowed energies E are those for which there is a single-valued solu-
tion ψ(x1, . . . , xN ), vanishing when any |xr | goes to infinity, of the Schrödinger
equation

E ψ(x1, . . . , xN) =
[

N∑
r=1

−�
2

2mr
∇2

r + V (x1, . . . , xN)

]
ψ(x1, . . . , xN). (1.3.10)

So now it was possible at least in principle to calculate the spectrum not only of
hydrogen, but of any other atom, and indeed of any non-relativistic system with
a known potential.

1.4 Matrix Mechanics

A few years after de Broglie introduced the idea of wave mechanics, and
a little before Schrödinger developed his version of the theory, a quite dif-
ferent approach to quantum mechanics was developed by Werner Heisenberg
(1901–1976). Heisenberg suffered from hay fever, so in 1925 he escaped the
pollen-laden air of Göttingen to go on vacation to the grassless North Sea island
of Helgoland. While on vacation he wrestled with the mystery surrounding the
quantum conditions of Bohr and de Broglie. When he returned to the University
of Göttingen he had a new approach to the quantum conditions, which has come
to be called matrix mechanics.22

Heisenberg’s starting point was the philosophical judgment that a physical
theory should not concern itself with things like electron orbits in atoms that
can never be observed. This is a risky assumption, but in this case it served

22 W. Heisenberg, Z. Physik 33, 879 (1925).
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1.4 Matrix Mechanics 17

Heisenberg well. He fastened on the energies En of atomic states, and the rates
An

m at which atoms spontaneously make radiative transitions from one state m
to another state n, as the observables on which to base a physical theory. In
classical electrodynamics, a particle with charge ±e with a position vector x
that is undergoing non-uniform motion emits a radiation power23

P = 2e2

3c3
ẍ2. (1.4.1)

Heisenberg guessed that this formula gives the power emitted in a radiative
transition from an atomic state with energy Em to one with a lower energy En ,
if we make the replacement

x �→ [x]nm + [x]∗nm, (1.4.2)

where [x]nm is a complex vector amplitude characterizing this transition, taken
proportional to exp(−iωnmt), and ωnm is the circular frequency (the frequency
times 2π ) of the radiation emitted in the transition:

ωnm = (Em − En)/�. (1.4.3)

(Heisenberg did not actually write the classical formula (1.4.1), but he did give
the electric and magnetic fields far from the accelerated charge, from which
Eq. (1.4.1) can be inferred. He also did not explicitly state that he was making
the replacement (1.4.2), but it is pretty clear from his subsequent results that this
is what he did.) With the replacement (1.4.2), Eq. (1.4.1) becomes a formula for
the radiation power emitted in the transition m → n:

P(m → n) = 2e2ω4
nm

3c3

(
[x]2

nm + 2[x]nm[x]∗nm + [x]∗nm[x]∗nm

)
.

The first and third terms are proportional respectively to exp(−2iωnmt) and to
exp(2iωnmt), and hence make no contribution when we average over a time long
compared with 1/ωnm . The time average (indicated by a bar over P) is therefore
given by the cross-term, which is time-independent:

P(m → n) = 4e2ω4
nm

3c3

∣∣∣[x]nm

∣∣∣2. (1.4.4)

That is, the rate of emitting photons carrying energy �ωnm in the transition
m → n is, in Einstein’s notation,

An
m = P(m → n)

�ωnm
= 4e2ω3

nm

3c3�

∣∣∣[x]nm

∣∣∣2, (1.4.5)

23 J. Larmor, Phil. Mag. S.5, 44, 503 (1897). (This is the total radiation power that at time t passes through
a sphere of radius r , with x evaluated at the retarded time t − r/c, under the assumption that r is much
greater than the distance of the particle from the center of the sphere.)
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18 1 Historical Introduction

and, according to the Einstein relations (1.2.16), this gives the coefficients of
ρ(νnm) in the rates for induced emission and absorption

Bm
n = Bn

m = 2πe2

3�2

∣∣∣[x]nm

∣∣∣2. (1.4.6)

In Eqs. (1.4.5) and (1.4.6), [x]nm appears only with Em > En , but Heisenberg
extended the definition of [x]nm to the case where En > Em , by the condition

[x]nm = [x]∗mn ∝ exp(−iωnmt), (1.4.7)

so that Eq. (1.4.6) holds whether Em > En or En > Em .
Heisenberg limited his calculations to the example of an anharmonic oscil-

lator in one dimension, for which the energy is given classically in terms of
position and its rate of change by

E = me

2
ẋ2 + meω

2
0

2
x2 + meλ

3
x3, (1.4.8)

where ω0 and λ are free real parameters. To calculate the En and [x]nm , Heisen-
berg used two relations. The first is a quantum-mechanical interpretation of
Eq. (1.4.8):

me

2
[ẋ2]nm + meω

2
0

2
[x2]nm + meλ

3
[x3]nm =

{
En, n = m,
0, n 	= m,

(1.4.9)

where En is the energy of the quantum state labeled n. But what meaning should
be attached to [ẋ2]nm , [x2]nm , and [x3]nm? Heisenberg found that the “simplest
and most natural assumption” was to take

[x2]nm =
∑

l

[x]nl [x]lm, [x3]nm =
∑
l,k

[x]nl [x]lk [x]km (1.4.10)

and likewise

[ẋ2]nm =
∑

k

[ẋ]nk[ẋ]km =
∑

k

ωnkωmk[x]nk [x]km . (1.4.11)

Note that because [x]nm is proportional to exp(−i(Em − En)t/�) for all n and
m, each term in Eq. (1.4.9) is time-independent for n = m. Also, by virtue of
the condition (1.4.7), the first two terms are positive for n = m though the last
term might not be.

The second relation is a quantum condition. Here Heisenberg adopted a for-
mula that had been published a little earlier by W. Kuhn24 and W. Thomas,25

which Kuhn derived using a model of an electron in a bound state as an ensem-
ble of oscillators vibrating in three dimensions at frequencies νnm . From the

24 W. Kuhn, Z. Physik 33, 408 (1925).
25 W. Thomas, Naturwissenschaften 13, 627 (1925).
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1.4 Matrix Mechanics 19

condition that at very high frequency the scattering of light from such an elec-
tron should be the same as if the electron were a free particle, Kuhn derived the
purely classical statement26 that, for any given state n,

∑
m

Bm
n (Em − En) = πe2

me
. (1.4.12)

Combining this with Eq. (1.4.6) gives

� = 2me

3

∑
m

∣∣∣[x]nm

∣∣∣2ωnm . (1.4.13)

Since in three dimensions there are three terms in
∣∣∣[x]nm

∣∣∣2, the factor 1/3 gives

the average of these three terms, so in one dimension we would have

� = 2me

∑
m

∣∣∣[x]nm

∣∣∣2ωnm . (1.4.14)

This is the quantum condition used by Heisenberg.
Heisenberg was able to find an exact solution27 of Eqs. (1.4.9) and (1.4.14)

for the harmonic oscillator case λ = 0. For any integer n ≥ 0,

En =
(

n + 1

2

)
�ω0, [x]∗n+1,n = [x]n,n+1 = e−iω0t

√
(n + 1)�

2meω0
, (1.4.15)

with [x]nm vanishing unless n−m = ±1. We will see how to derive these results
for λ = 0 in Section 2.5. Heisenberg was also able to calculate the corresponding
results for small non-zero λ, to first order in λ.

This was all very obscure. On his return from Helgoland, Heisenberg showed
his work to Max Born (1882–1970). Born recognized that the formulas in
Eq. (1.4.10) were just special cases of a well-known mathematical procedure,
known as matrix multiplication. A matrix denoted [A]nm or just A is a square
array of numbers (real or complex), with [A]nm the number in the nth row and
mth column. In general, for any two matrices [A]nm and [B]nm , the matrix AB
is the square array

[AB]nm ≡
∑

l

[A]nl[B]lm . (1.4.16)

26 Kuhn actually gave this condition only where n is the ground state, the state of lowest energy, but the
argument applies to any state. Where n is not the ground state, the terms in the sum over m are positive
if m has higher energy than n, but negative if m has lower energy.

27 Somewhat inconsistently, Heisenberg took the time-dependence factor in [x]nm to be cos(ωnmt) rather
than exp(−iωnmt). The results here apply to the case where [x]nm ∝ exp(−iωnmt); [x]nm is the term
in Heisenberg’s solution proportional to exp(−iωnmt).

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316276105.003
http:/www.cambridge.org/core


20 1 Historical Introduction

We also note for further use that the sum of two matrices is defined so that

[A + B]nm ≡ [A]nm + [B]nm, (1.4.17)

and the product of a matrix and a numerical factor α is defined as

[αA]nm ≡ α[A]nm . (1.4.18)

Matrix multiplication is thus associative, namely A(BC) = (AB)C , and dis-
tributive, meaning that A(α1 B1 + α2 B2) = α1 AB1 + α2 AB2 and (α1 B1 +
α2 B2)A = α1 B1 A + α2 B2 A], but in general it is not commutative (AB and
B A are not necessarily equal). As defined by Eq. (1.4.10), [x2] is the square of
the matrix [x], [x3] is the cube of the matrix [x], and so on.

The quantum condition (1.4.14) can also be given a pretty formulation as a
matrix equation. Note that according to Eq. (1.4.7), the matrix for momentum is

[p]nm = me[ẋ]nm = −imeωnm[x]nm,

so the matrix products [px] and [xp] have the diagonal components

[px]nn =
∑

m

[p]nm[x]mn = −ime

∑
m

ωnm

∣∣∣[x]mn

∣∣∣2,
[xp]nn =

∑
m

[x]nm[p]mn = −ime

∑
m

ωmn

∣∣∣[x]mn

∣∣∣2.
(In both formulas, we have used the relation (1.4.7), which says that [x]mn is
what is called an Hermitian matrix.) Since ωnm = −ωmn , the quantum condition
(1.4.14) can be written in two ways

i� = −2[px]nn = +2[xp]nn. (1.4.19)

Of course, the relation can then also be written

i� = [xp]nn − [px]nn = [xp − px]nn, (1.4.20)

where we have used the definitions (1.4.17) and (1.4.18).
Shortly after the publication of Heisenberg’s paper, there appeared two papers

that extended Eq. (1.4.20) to a general formula for all elements of the matrix
xp − px :

xp − px = i� × 1, (1.4.21)

where here 1 is the matrix

[1]nm ≡ δnm ≡
{

1 n = m,
0 n 	= m.

(1.4.22)

That is, in addition to Eq. (1.4.20), we have [xp − px]nm = 0 for n 	= m. Born
and his assistant Pascual Jordan28 (1902–1984) gave a mathematically fallacious

28 P. Jordan, Z. Physik 34, 858 (1925).
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1.4 Matrix Mechanics 21

derivation of this fact, on the basis of the Hamiltonian equations of motion.
Paul Dirac29(1902–1984) simply assumed Eq. (1.4.21), from an analogy with
the Poisson brackets of classical mechanics, described in Section 9.4.

Matrix mechanics was now a general scheme for calculating the spectrum of
any system described classically by a Hamiltonian H(q, p), given as a function
of a number of coordinates qr and the corresponding “momenta” pr . One looks
for some representation of the qs and ps as matrices satisfying the matrix
equation

qr ps − psqr = i�δrs × 1, (1.4.23)

and such that the matrix H(q, p) is diagonal,

[H(q, p)]nm = Enδnm . (1.4.24)

The diagonal elements En are the energies of the system, and the matrix
elements [x]nm can be used with Eqs. (1.4.5) and (1.4.6) to calculate the rates
for spontaneous and stimulated emission and absorption of radiation.

Unfortunately, there are very few physical systems for which this sort of
calculation is practicable. One is the harmonic oscillator, already solved by
Heisenberg. Another is the hydrogen atom, whose spectrum was obtained using
matrix mechanics in a display of mathematical brilliance by Wolfgang Pauli30

(1900–1958), a student of Sommerfeld. (Pauli’s calculation is presented in
Section 4.8.) These two problems were soluble because of special features of the
Hamiltonians, the same features that make the classical orbits of particles closed
curves. It was hopeless to use matrix mechanics to solve more complicated prob-
lems, like the hydrogen molecule, so wave mechanics largely superseded matrix
mechanics among the tools of theoretical physics.

But it must not be thought that wave mechanics and matrix mechanics are
different physical theories. In 1926, Schrödinger showed how the principles
of matrix mechanics can be derived from those of wave mechanics.31 To see
how this works, note first that the Hamiltonian is what is called an Hermitian
operator, meaning that for any functions f and g that satisfy the conditions of
single-valuedness and vanishing at infinity imposed on wave functions, we have∫

f ∗(Hg) =
∫
(H f )∗g, (1.4.25)

the integrals being taken over all coordinates. This is trivial for the term V in
Eq. (1.3.9), and it is also true for the Laplacian operator, as can be seen by
integrating the identity

(∇2 f )∗g − f ∗(∇2g) = ∇ · [(∇ f )∗g − f ∗ ∇g].
29 P. A. M. Dirac, Proc. Roy. Soc. A 109, 642 (1926).
30 W. Pauli, Z. Physik 36, 336 (1926).
31 E. Schrödinger, Ann. Physik 79, 734 (1926).
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22 1 Historical Introduction

It follows that for solutions ψn of the Schrödinger equation with energy En , we
have

En

∫
ψ∗

mψn =
∫
ψ∗

m(Hψn) =
∫
(Hψm)

∗ψn = E∗
m

∫
ψ∗

mψn. (1.4.26)

Taking m = n, we see that En is real, and then taking m 	= n, we see that∫
ψ∗

mψn = 0 for En 	= Em . It can be shown that if there is more than one solu-
tion of the Schrödinger equation with the same energy, the solutions can always
be chosen so that

∫
ψ∗

mψn = 0 for n 	= m. (This is shown in footnote 3 of Sec-
tion 3.1 in cases where there is a finite number of solutions of the Schrödinger
equation with a given energy.) By multiplying the ψn with suitable factors we
can also arrange that

∫
ψ∗

nψn = 1, so the ψn are orthonormal, in the sense that∫
ψ∗

mψn = δnm . (1.4.27)

Now consider any operators A, B, etc., defined by their action on wave func-
tions. For instance, for a single particle, the momentum operator P and position
operators X are defined by

[Pψ](x) ≡ −i� ∇ψ(x), [Xψ](x) ≡ xψ(x). (1.4.28)

For any such operator, we define a matrix

[A]nm ≡
∫
ψ∗

n [Aψm]. (1.4.29)

Note that, as a consequence of Eq. (1.3.6), this has the time-dependence (1.4.7)
assumed by Heisenberg

[A]nm ∝ exp
(
−i(Em − En)t/�

)
.

With the definition (1.4.29), we can show that the matrix of a product of
operators is the product of the matrices:∫

ψ∗
n

[
A[Bψm]

]
=
∑

l

[A]nl[B]lm . (1.4.30)

To prove this, we assume that the function Bψm can be written as an expansion
in the wave functions:

Bψm =
∑

r

br (m)ψr ,

with some coefficients br (m). (To make this literally true, it may be necessary
to put the system in a box, like that used in Section 1.1, so that the solutions
of the Schrödinger equation form a discrete set, including those correspond-
ing to unbound electrons.) We can find these coefficients by multiplying both
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1.4 Matrix Mechanics 23

sides of the expansion with ψ∗
l and integrating over all coordinates, using the

orthonormality property (1.4.27):

[B]lm =
∫
ψ∗

l [Bψm] =
∑

r

br (m)δrl = bl(m).

It follows that

Bψm =
∑

l

[B]lmψl . (1.4.31)

Repeating the same reasoning, we have

A[Bψm] =
∑
l,s

[B]lm[A]slψs . (1.4.32)

Multiplying with ψ∗
n , integrating over all coordinates, and again using the

orthonormality property (1.4.27) then gives Eq. (1.4.30).
We can now derive the Heisenberg quantization conditions. First, note that

the matrix [H ]nm is simply

[H ]nm ≡
∫
ψ∗

n [Hψm] = Em

∫
ψ∗

nψm = Emδnm, (1.4.33)

which is the same as Eq. (1.4.24). Next, we can verify the condition (1.4.14) in
the generalized form (1.4.21). Note that

∂

∂x
(xψ) = ψ + x

∂

∂x
ψ,

so the operators P and X defined by (1.4.28) satisfy[
P[Xψ]

]
= −i�ψ +

[
X [Pψ]

]
.

Applying the general formula (1.4.30), we have then

[xp − px]nm = i�δnm, (1.4.34)

which is the same as (1.4.21). The same argument can evidently be applied to
give the more general condition (1.4.23).

The approach that will be adopted when we come to the general princi-
ples of quantum mechanics in Chapter 3 will be neither matrix mechanics nor
wave mechanics, but a more abstract formulation, that Dirac called transforma-
tion theory,32 from which matrix mechanics and wave mechanics can both be
derived.

Although we will not be going into quantum electrodynamics until
Chapter 11, I should mention here that in 1926 Born, Heisenberg, and Jordan33

32 P. A. M. Dirac, Proc. Roy. Soc. A 113, 621 (1927). This approach is the basis of Dirac’s treatise, The
Principles of Quantum Mechanics, 4th edn. (rev.) (Oxford University Press, Oxford, 1976).

33 M. Born, W. Heisenberg, and P. Jordan, Z. Physik 35, 557 (1926). They ignored the polarization of light,
and treated the problem in one dimension, rather than as in the three-dimensional version described here.
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24 1 Historical Introduction

applied the ideas of matrix mechanics to the electromagnetic field. They showed
that the free field in a cubical box with edges of length L can be written as a
sum of terms with wave numbers given by (1.1.1), that is, qn = 2πn/L with n
a vector with integer components, each term described by a harmonic oscillator
Hamiltonian Hn = [ȧ2

n + ω2
na2

n]/2 (with an replacing
√

mx), where ωn = c|qn|.
The energy of this field in which the nth oscillator is in the Nnth excited state is
the sum of the harmonic oscillator energies (1.4.15)

E =
∑

n

[
Nn + 1

2

]
�ωn. (1.4.35)

Such a state is interpreted as one containing Nn photons of wave number
qn = 2πn/L , thus justifying the Einstein assumption that light comes in quanta
with energy hν = �ω. (The additional “zero-point” energy

∑
n �ωn/2 is the

energy of quantum fluctuations in the vacuum, which has no effect, except on
the gravitational field. This is one contribution to the “dark energy” that is cur-
rently a major concern of physicists and astronomers.) In 1927 Dirac34 was able
to use this quantum theory of radiation to give a completely quantum mechan-
ical derivation of the formula (1.4.5) for the rate of spontaneous emission of
photons, without having to rely on analogies with classical radiation theory. This
derivation is presented and generalized in Section 11.7.

1.5 Probabilistic Interpretation

At first, Schrödinger and others thought that wave functions represent particles
that are spread out, like pressure disturbances in a fluid – most of the particle is
where the wave function is large. This interpretation became untenable with the
analysis of scattering in quantum mechanics by Max Born.35 For this purpose,
Born used a generalization of de Broglie’s assumption (1.3.6) for the time-
dependence of the wave function of a free particle. For any system described
by a Hamiltonian H , the time-dependence of any wave function, whether or not
for a state of definite energy, is given by

i�
∂

∂t
ψ = Hψ. (1.5.1)

For instance, for a particle of mass m moving in a potential V (x), the non-
relativistic Hamiltonian of classical mechanics is H = p2/2m + V , and the
wave function satisfies the time-dependent Schrödinger equation

i�
∂

∂t
ψ(x, t) = H(X,P)ψ(x, t) =

[
−�

2 ∇2

2m
+ V (x)

]
ψ(x, t), (1.5.2)

34 P. A. M. Dirac, Proc. Roy. Soc. A 114, 710 (1927).
35 M. Born, Z. Physik 37, 863 (1926); 38, 803 (1926).
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1.5 Probabilistic Interpretation 25

with the operators X and P defined by Eq. (1.4.28). By following the time devel-
opment of a packet like (1.3.2) that is localized within a small region of space,
Born found that when a particle strikes a target like an atom or atomic nucleus,
the wave function radiates out in all directions, with a magnitude decreasing as
1/r , where r is the distance to the target. (This is shown here in Chapter 7.) This
seemed to contradict the common experience that though a particle striking a
target may indeed be scattered in any direction, it does not break up and go in
all directions.

Born proposed that the magnitude of the wave function ψ(x, t) does not tell
us how much of the particle is at position x at time t , but rather the probability
that the particle is at or near x at time t . To be precise, Born proposed that for
a system consisting of a single particle, the probability that the particle is in a
small volume d3x centered at x at time t is

dP = |ψ(x, t)|2 d3x . (1.5.3)

In order that there be a 100% probability of the particle being somewhere, the
wave function must be normalized so that∫

|ψ(x, t)|2 d3x = 1, (1.5.4)

the integral being taken over all space. The condition that the integral has the
value unity does not set important constraints on the sort of wave function that
is physically allowed, for as long as the integral is a finite constant N , we can
always make (1.5.4) satisfied by dividing the wave function by

√
N . It is impor-

tant that the integral be finite; this is a stronger version of the condition used by
Schrödinger, that the wave function must vanish at infinity.

Note that for a wave function whose time-dependence is described by the
Schrödinger equation (1.5.1), the integral (1.5.4) remains constant, so a wave
function that is normalized to satisfy (1.5.4) at one time will satisfy it at all
times. The rate of change of this integral is given by

i�
d

dt

∫
|ψ(x, t)|2 d3x = i�

∫
ψ∗(x, t)

∂

∂t
ψ(x, t) d3x

+ i�
∫ (

∂

∂t
ψ∗(x, t)

)
ψ(x, t) d3x

=
∫
ψ∗(x, t) ([Hψ](x, t)) d3x

−
∫
([Hψ](x, t))∗ψ(x, t) d3x,

and this vanishes because H satisfies the condition (1.4.25), that it is an Hermi-
tian operator. In particular, if ψ satisfies the one-particle Schrödinger equation
(1.5.2), then
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26 1 Historical Introduction

∂

∂t
|ψ(x, t)|2 = i�

2m
∇ ·

(
ψ∗(x, t)∇ψ(x, t)− ψ(x, t)∇ψ∗(x, t)

)
. (1.5.5)

This is a conservation law like the conservation of electric charge, but here |ψ |2
is the density of probability rather than charge, and (i�/2m)

(
ψ∗ ∇ψ−ψ ∇ψ∗

)
is the flux of probability rather than the electric current density. If ψ(x, t) van-
ishes for |x| → ∞, then Eq. (1.5.5) and Gauss’s theorem tell us again that the
integral of |ψ |2 over all space is time-independent.

It follows immediately from (1.5.3) that the mean value (the “expectation
value”) of any function f (x) is given by

〈 f 〉 =
∫

f (x)|ψ(x, t)|2 d3x . (1.5.6)

In other words, if f (X) is the operator that multiplies a wave function ψ(x) by
f (x), then

〈 f 〉 =
∫
ψ∗(x)[ f (X)ψ](x) d3x .

It is only a short step from this to assume that the average of any observable A is

〈A〉 =
∫
ψ∗(x)[Aψ](x) d3x, (1.5.7)

where Aψ is the effect of the operator representing the observable A on the wave
function ψ . In systems with more than one particle, the wave function depends
on the coordinates of all the particles, and the integrals in Eqs. (1.5.4)–(1.5.7)
run over all these coordinates.

In 1927 Paul Ehrenfest (1880–1933) used these results to show how the classi-
cal equations of motion of a non-relativistic particle in a potential emerge from
the time-dependent Schrödinger equation.36 To derive Ehrenfest’s results, we
use Eq. (1.5.2), and find the time-derivatives of the expectation values of the
position and momentum:

d

dt
〈X〉 = 1

i�

∫
d3xψ∗(x, t)

(
XH − HX

)
ψ(x, t) = 〈P〉/m,

d

dt
〈P〉 = 1

i�

∫
d3xψ∗(x, t)

(
PH − HP

)
ψ(x, t) = −〈∇V (X)〉.

This is not quite the same as the classical equations, because 〈V (X)〉 is not
in general the same as V (〈X〉), but if (as usual in macroscopic systems) the
force does not vary much over the range in which the wave function is appre-
ciable, then these equations are very close to the classical equations of motion
for 〈P〉 as well as for 〈X〉. (This is made more precise by the use of the eikonal
approximation, described in Section 7.10.)

36 P. Ehrenfest, Z. Physik 45, 455 (1927).
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1.5 Probabilistic Interpretation 27

We can now see why it is important for all operators representing observable
quantities to be Hermitian. Taking the complex conjugate of Eq. (1.5.7) gives

〈A〉∗ =
∫

[Aψ](x)∗ ψ(x) d3x =
∫
ψ(x)∗[Aψ](x) d3x .

In the last step, we have used the definition (1.4.25) of Hermitian operators. The
final expression is the expectation value of A, so we see that Hermitian operators
have real expectation values.

We can also now derive the condition for a wave function to represent a state
that has a definite real value a for some observable represented by an Hermitian
operator A. The expectation value of (A − a)2 is

〈(A − a)2〉 =
∫
ψ∗(x)

[
(A − a)2ψ

]
(x) d3x

=
∫ ([

(A − a)ψ
]
(x)
)∗ [

(A − a)ψ
]
(x) d3x

=
∫ ∣∣∣[(A − a)ψ

]
(x)
∣∣∣2 d3x . (1.5.8)

If the state represented by ψ(x) has a definite value a for A, then the expectation
value of (A − a)2 must vanish, in which case (1.5.8) shows that (A − a)ψ
vanishes everywhere, and so

[Aψ](x) = aψ(x). (1.5.9)

In this case, ψ(x) is said to be an eigenfunction of A with eigenvalue a. The
Schrödinger equation for the energies and wave functions of states of definite
energy is just a special case of this condition, with A the Hamiltonian operator,
and a the energy.

We can now easily see that it is impossible for any state to have definite
values for any component x of position and the corresponding component p
of momentum. If there were such a state, its wave function would satisfy both

Xψ = xψ and Pψ = pψ, (1.5.10)

where x and p are the numerical values of the position and momentum. But then

X Pψ = pXψ = pxψ, P Xψ = x Pψ = xpψ,

and so

(X P − P X)ψ = 0

in contradiction with the commutation relation X P − P X = i�.
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28 1 Historical Introduction

Heisenberg37 was even able to set a lower limit on the product of the
uncertainty in position and in momentum, known as the Heisenberg Uncertainty
Principle. Using the commutation relation X P − P X = i�, he was able to show
that

�x �p ≥ �/2, (1.5.11)

where �x and �p are the uncertainties in position and momentum, defined
as the root mean square deviation of position and momentum from their
expectation values:

�x ≡ 〈
(X − 〈X〉)2

〉1/2
, �p ≡ 〈

(P − 〈P〉)2
〉1/2

. (1.5.12)

The proof will be given in Section 3.3. It should be emphasized that �x is the
spread in values found for the position if we make a large number of highly
accurate measurements of position, always starting with the same state with the
same wave function ψ , and likewise for �p. These uncertainties depend on the
state, not on the method of measurement, which in general will introduce an
additional uncertainty in the results obtained for x or p, which is not taken into
account in the definitions (1.5.12). As defined by Eq. (1.5.12), �x and �p are
not the same as the uncertainties encountered if we measure x , which modifies
the state, and then measure p in the modified state (or vice versa).38

Heisenberg also offered a heuristic argument for a relation like Eq. (1.5.11),
but a relation with a rather different meaning. He supposed that a particle is
observed using light of wavelength λ, in which case the uncertainty in measured
position cannot be much less than λ, no matter how sharply peaked the wave
function is at a given position. Each photon will have momentum 2π�/λ, so in
a successive measurement of momentum, the uncertainty �p associated with
the new wave function cannot be much less than 2π�/λ, and so the product of
the uncertainties cannot be much less than 2π�. In Heisenberg’s thought exper-
iment, the lower bound on the uncertainty in position arises from the nature of
the measurement, while the lower bound on the uncertainty in momentum arises
from the nature of the wave function after the measurement of position.

More generally, it is only possible for a state represented by a wave function
ψ to have definite values for both of two observables represented by operators
A and B if

(AB − B A)ψ = 0. (1.5.13)

Of course, this will be true for all wave functions if AB = B A, and for no wave
functions if AB − B A is a non-zero number like i� times the unit operator. The
difference AB − B A is known as the commutator of A and B, and denoted

37 W. Heisenberg, Z. Physik 43, 172 (1927); The Physical Principles of the Quantum Theory (University of
Chicago Press, Chicago, 1930), transl. C. Eckart and F. C. Hoyt, Chapter II, pp. 16–21. The discussion
here of Heisenberg’s work is based on the latter reference.

38 On the uncertainties in such successive measurements, see M. Ozawa, Phys. Rev. A 67, 042105 (2003);
J. Distler and S. Paban, arXiv:1211.4169.
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1.5 Probabilistic Interpretation 29

[A, B] ≡ AB − B A. (1.5.14)

It is only possible for a state to have definite values for both A and B if the wave
function ψ satisfies [A, B]ψ = 0. Any two operators for which the commutator
vanishes are said to commute.

Born also gave a probabilistic interpretation of wave functions that are not
eigenfunctions of the Hamiltonian.39 Suppose a wave function is given by an
expansion in energy eigenfunctions

ψ =
∑

n

cnψn, (1.5.15)

where Hψn = Enψn and cn are numerical coefficients. As remarked in
Section 1.4, we can choose the ψn to satisfy the orthonormality condition
(1.4.27), in which case a normalized wave function must have

1 =
∫

|ψ |2 =
∑
nm

c∗
ncm

∫
ψ∗

nψm =
∑

n

|cn|2. (1.5.16)

The expectation value of any function f (H) of the Hamiltonian is

〈 f (H)〉 =
∑
nm

c∗
ncm

∫
ψ∗

n f (H)ψm =
∑
nm

f (En)c
∗
ncm

∫
ψ∗

nψm

=
∑

n

|cn|2 f (En). (1.5.17)

For this to be true for all functions, we must interpret |cn|2 as the probability
that in a measurement of the energy (and, in the case of degeneracy, of other
observables that distinguish the individual states), the system will be found to
be in the state described byψn . This rule was soon extended to general operators,
not just the Hamiltonian.

As we saw in Section 1.4, the coefficient cn can be calculated by multiplying
Eq. (1.5.15) with ψ∗

m , integrating over coordinates, and using the orthonormality
condition (1.4.27), which gives cm = ∫

ψ∗
mψ . Thus if a system is in a state

represented by a wave function ψ , and we make a measurement that puts the
system in any one of a set of states represented by orthonormal wave functions
ψn (which may or may not be energy eigenfunctions) then the probability that
the system will be found to be in a particular state represented by the wave
function ψm is

P(ψ → ψm) =
∣∣∣∣
∫
ψ∗

mψ

∣∣∣∣
2

. (1.5.18)

This is known as the Born rule, and can be taken as the fundamental interpretive
postulate of quantum mechanics.

39 M. Born, Nature 119, 354 (1927).
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The probabilistic interpretation of quantum mechanics was controversial from
the beginning. In one way or another it was opposed by such leaders of theoret-
ical physics as Schrödinger and Einstein. Debates about this aspect of quantum
mechanics continued for years, most notably at the Solvay Conferences in Brus-
sels in 1927 and later years. To the present, there continues to be a tension
between the probabilistic interpretation and the deterministic evolution of the
wave function, described by Eq. (1.5.1). If physical states, including observers
and their instruments, evolve deterministically, where do the probabilities come
from? These issues will be discussed in Section 3.7.

Historical Bibliography

The works listed below contain convenient collections of original articles (in
English, or English translation) from the early days of quantum mechanics and
atomic physics:

1. The Question of the Atom – From the Karlsruhe Congress to the First Solvay
Conference, 1860–1911, ed. M. J. Nye (Tomash Publishers, Los Angeles/San
Francisco, CA, 1986).

2. The Collected Papers of Lord Rutherford of Nelson O.M., FRS, ed.
J. Chadwick (Interscience, New York, 1963).

3. Sources of Quantum Mechanics, ed. B. L. van der Waerden (North-Holland,
Amsterdam, 1967).

4. E. Schrödinger, Collected Papers on Wave Mechanics, Third English Edition
(Chelsea Publishing, New York, 1982).

5. G. Bacciagaluppi and A. Valentini, Quantum Theory at the Crossroads –
Reconsidering the 1927 Solvay Conference (Cambridge University Press,
Cambridge, 2009).

Problems

1. Consider a non-relativistic particle of mass M in one dimension, confined in
a potential that vanishes for −a ≤ x ≤ a, and becomes infinite at x = ±a,
so that the wave function must vanish at x = ±a.

● Find the energy values of states with definite energy, and the corresponding
normalized wave functions

● Suppose that the particle is placed in a state with a wave function propor-
tional to a2 − x2. If the energy of the particle is measured, what is the
probability that the particle will be found in the state of lowest energy?
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2. Consider a non-relativistic particle of mass M in three dimensions, described
by a Hamiltonian

H = P2

2M
+ Mω2

0

2
X2.

● Find the energy values of states with definite energy, and the number of
states for each energy.

● Suppose the particle has charge e. Find the rate at which a state of next-to-
lowest energy decays by photon emission into the state of lowest energy.

Hint: you can express the Hamiltonian as a sum of three Hamiltonians for
one-dimensional oscillators, and use the results given in Section 1.4 for the
energy levels and x-matrix elements for one-dimensional oscillators.

3. Suppose the photon had three polarization states rather than two. What
difference would that make in the relations between Einstein’s A and B
coefficients?
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2
Particle States in a Central Potential

Before going on to lay out the general principles of quantum mechanics in
the next chapter, we will first in this chapter illustrate the meaning of the
Schrödinger equation by solving some important physical problems by the
methods of wave mechanics. To start, we will consider a single particle mov-
ing in three space dimensions under the influence of a general central potential.
Later we will specialize to the case of a Coulomb potential, and work out the
spectrum of hydrogen. One other classic problem, the harmonic oscillator, will
be treated at the end of this chapter.

2.1 Schrödinger Equation for a Central Potential

We consider a particle of mass1 μ moving in a central potential V (r), which
depends only on r ≡ √

x2. The Hamiltonian in this case is2

H = p2

2μ
+ V (r) = − �

2

2μ
∇2 + V (r), (2.1.1)

where ∇2 is the Laplacian operator

∇2 ≡ ∂2

∂x2
1

+ ∂2

∂x2
2

+ ∂2

∂x2
3

. (2.1.2)

The Schrödinger equation for a wave function ψ(x) representing a state of
definite energy E is then

1 We are using μ for the mass here to avoid confusion with an index m that is conventionally used
in describing the angular dependence of the wave function. We will see in Section 2.4 that the same
Schrödinger equation applies to a problem of two particles with masses m1 and m2, with a potential
that depends only on the particle separation, if μ is taken as the reduced mass m1m2/(m1 + m2).

2 In this chapter, and in most of the following chapters, we will be using x both as the argument of the
wave function (with r ≡ |x|) and as the operator that multiplies the wave function by its argument,
denoted X in the previous chapter. The context should make it clear which is meant. Also, here p is the
operator −i� ∇, denoted P in the previous chapter.

32
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2.1 Schrödinger Equation for a Central Potential 33

Eψ = Hψ = − �
2

2μ
∇2ψ + V (r)ψ. (2.1.3)

Like any wave function for a state of definite energy E , this ψ(x) will have a
simple time-dependence contained in a factor exp(−i Et/�), which we will not
generally show explicitly.

It is a good idea when confronted with a problem like this to consider what
observables along with the energy may be used to characterize physical states.
As explained in Section 1.5, these are operators that commute with the Hamil-
tonian. One such observable is the angular momentum L = x × p. Making the
usual substitution of p with −i� ∇, this suggests that in quantum mechanics we
should define an angular momentum operator

L ≡ −i�x × ∇, (2.1.4)

where x is the operator (called X in Chapter 1) that multiplies a wave function
with its argument. Written in terms of Cartesian components, this operator is

Li = −i�
∑

jk

εi jk x j
∂

∂xk
, (2.1.5)

where i , j , k each run over the three directions 1, 2, 3, and ε is a totally
antisymmetric coefficient, defined by

εi jk ≡
⎧⎨
⎩

+1, i, j, k even permutation of 1, 2, 3,
−1, i, j, k odd permutation of 1, 2, 3,
0, otherwise.

(2.1.6)

To show that L commutes with the Hamiltonian, first consider the commutator
of Li with either x j or ∂/∂x j . Recall that

∂

∂xk
(x jψ)− x j

∂

∂xk
ψ = δ jkψ,

so [
∂

∂xk
, x j

]
= δk j . (2.1.7)

Since the components of x commute with each other, by changing j in
Eq. (2.1.5) with a running index m we find[

Li , x j

] = −i�
∑

m

εim j xm = +i�
∑

k

εi jk xk . (2.1.8)

To evaluate the commutator of L with the gradient operator, we need only
rewrite Eq. (2.1.7) as [

xm ,
∂

∂x j

]
= −δ jm
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34 2 Particle States in a Central Potential

so that, since the components of the gradient commute with each other,[
Li ,

∂

∂x j

]
= +i�

∑
k

εi jk
∂

∂xk
. (2.1.9)

Both Eqs. (2.1.8) and (2.1.9) can be written in the form

[Li , v j ] = i�
∑

k

εkvk, (2.1.10)

where vi is either xi or ∂/∂xi . It can be shown that Eq. (2.1.10) is true of any
vector v that is constructed from x or ∇. In particular, it is true of L itself:

[Li , L j ] = i�
∑

k

εi jk Lk . (2.1.11)

This is obviously the case if i and j are equal, because εi jk vanishes if any two of
its indices are equal. To check Eq. (2.1.11) when i and j are not equal, consider
the case i = 1 and j = 2. Here

[L1, L2] = −i�

[
L1,

(
x3

∂

∂x1
− x1

∂

∂x3

)]

= −i�

(
−i�x2

∂

∂x1
+ i�x1

∂

∂x2

)

= i�L3 = i�
∑

k

ε12k Lk,

and likewise for [L2, L3] and [L3, L1].
To show that the Li commute with the Hamiltonian, we note that if vi is any

vector satisfying Eq. (2.1.10), we have

[Li , v2] =
∑

j

[Li , v j ]v j +
∑

j

v j [Li , v j ] = i�
∑

jk

εi jk(vkv j + vkv j ),

so, because εi jk is antisymmetric in j and k,

[Li , v2] = 0. (2.1.12)

(Note that this works even if the components of v do not commute with each
other, as will be the case for some vector operators other than the position and
gradient vectors.) In particular, Li commutes with x2, and therefore with any
function of r ≡ [x2]1/2, and it commutes with the Laplacian ∇2, so it commutes
with the Hamiltonian (2.1.1). It is the rotational symmetry of the Hamiltonian
that ensures that it commutes with L; if the Hamiltonian depended on the direc-
tion of x or p instead of just their magnitudes, it would not commute with L.

Because L j is itself a vector v j that satisfies Eq. (2.1.10), it also follows that
Li commutes with L2. Furthermore, since Li commutes with the Hamiltonian,
so does L2. Therefore we can characterize physical states by the eigenvalues of
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2.1 Schrödinger Equation for a Central Potential 35

the operators H , of L2, and of any one component of L, all of which operators
commute with each other. Note that we can only do this for one component
of L, because according to Eq. (2.1.11) the three different components do not
commute with each other. It is conventional to choose this component as L3, so
physical wave functions will be characterized by the eigenvalues of H , L2, and
L3.

Since each Li commutes with r , it must act only on the direction of the
argument x, not its length. That is, in polar coordinates defined by

x1 = r sin θ cosφ, x2 = r sin θ sinφ, x3 = r cos θ, (2.1.13)

the operators Li act only on θ and φ. From the definition (2.1.5) of these
operators, we can work out their explicit form in polar coordinates:

L1 = i�

(
sinφ

∂

∂θ
+ cot θ cosφ

∂

∂φ

)

L2 = i�

(
− cosφ

∂

∂θ
+ cot θ sinφ

∂

∂φ

)
(2.1.14)

L3 = −i�
∂

∂φ
.

Also, in polar coordinates,

L2 = −�
2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2

]
. (2.1.15)

As an example of how these are derived, let us calculate L3, which will be of
special importance for us. Note that

∂

∂φ
=
∑

i

∂xi

∂φ

∂

∂xi

= −r sin θ sinφ
∂

∂x1
+ r sin θ cosφ

∂

∂x2
= −x2

∂

∂x1
+ x1

∂

∂x2

= i

�
L3,

justifying the formula in (2.1.14) for L3.
It should be noted that each component of L is an Hermitian operator, because

x j and pk are Hermitian operators, and commute with each other for j 	= k. This
is a special case of a general rule: if A and B are Hermitian and commute, then∫

ψ∗(ABψ) =
∫
(Aψ)∗ Bψ =

∫
(B Aψ)∗ψ =

∫
(ABψ)∗ψ,

so AB is Hermitian. Also, since each component of L is Hermitian and
commutes with itself, its square is Hermitian, and so their sum L2 is Hermitian.
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36 2 Particle States in a Central Potential

What does this have to do with the Schrödinger equation? To see this, let’s
calculate the operator L2 in a different way. According to Eq. (2.1.5), this is

L2 =
∑

i

Li Li = −�
2
∑
i jklm

εi jkεilm x j

(
∂

∂xk

)
xl

(
∂

∂xm

)
.

The sum over i gives ∑
i

εi jkεilm = δ jlδkm − δ jmδkl .

(This holds because for each i , εi jk will vanish unless j and k are the two direc-
tions other than i , and εilm will vanish unless l and m are the two directions other
than i , so the product εi jkεilm vanishes unless either j = l and k = m, or j = m
and k = �. In the first case we have the product of two εs with indices in the
same order, which gives +1, and in the second case we have the product of two
εs differing by a permutation of the second and third indices, which gives −1.)
Thus

L2 = −�
2
∑

jk

[
x j

(
∂

∂xk

)
x j

(
∂

∂xk

)
− x j

(
∂

∂xk

)
xk

(
∂

∂x j

)]
.

(As usual in these operator expressions, the partial derivatives here act on every-
thing to the right, including whatever function L2 acts on.) Moving the second x j

in the first term in square brackets to the left and using the commutation relation
(2.1.7) gives ∑

jk

x j

(
∂

∂xk

)
x j

(
∂

∂xk

)
= r2 ∇2 +

∑
j

x j

(
∂

∂x j

)
.

In the same way, interchanging the x j and xk in the second term and using the
same commutation relation gives∑

jk

x j

(
∂

∂xk

)
xk

(
∂

∂x j

)
=
∑

jk

xk

(
∂

∂xk

)
x j

(
∂

∂x j

)
+ 3

∑
j

x j

(
∂

∂x j

)

−
∑

j

x j

(
∂

∂x j

)
.

Putting this together and recalling that
∑

j x j ∂/∂x j = r ∂/∂r , we have

L2 = −�
2

[
r2 ∇2 − r

∂

∂r
r
∂

∂r
− r

∂

∂r

]
= −�

2

[
r2 ∇2 − ∂

∂r
r2 ∂

∂r

]
,

or in other words

∇2 = 1

r2

∂

∂r
r2 ∂

∂r
− L2

�2r2
. (2.1.16)
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2.1 Schrödinger Equation for a Central Potential 37

The Schrödinger equation (2.1.3) then takes the form

Eψ(x) = − �
2

2μr2

∂

∂r

(
r2 ∂ψ(x)

∂r

)
+ 1

2μr2
L2ψ(x)+ V (r)ψ(x). (2.1.17)

Now let us consider the spectrum of the operator L2. As long as V (r) is not
extremely singular at r = 0, the wave function ψ must be a smooth function of
the Cartesian components xi near x = 0, in the sense that it can be expressed
as a power series in these components. Suppose that, for some specific wave
function, the terms in this power series with the smallest total number of factors
of x1, x2, and x3 have � such factors. Here � can be 0, 1, 2, etc. The sum of all
these terms forms what is called a homogeneous polynomial of order � in x. (For
instance, a homogeneous polynomial of order 0 is a constant; a homogeneous
polynomial of order 1 is a linear combination of x1, x2, and x3; a homogeneous
polynomial of order 2 is a linear combination of x2

1 , x2
2 , x2

3 , x1x2, x2x3, and x3x1;
and so on.) When written in polar coordinates, a homogeneous polynomial of
order � is r � times a function of θ and φ. Thus in the limit r → 0, ψ(x) will take
the form

ψ(x) → r � Y (θ, φ), (2.1.18)

with Y (θ, φ) a homogeneous polynomial of order � in the unit vector

x̂ ≡ x/r = (sin θ cosφ, sin θ sinφ, cos θ). (2.1.19)

Equation (2.1.17) may be written

L2ψ(x) = �
2 ∂

∂r

(
r2 ∂ψ(x)

∂r

)
+ 2μr2

[
E − V (r)

]
ψ(x).

In the limit r → 0 the first term on the right-hand side is �
2�(� + 1)ψ while as

long as the potential is less singular than 1/r2 the second term on the right-hand
side vanishes as r → 0 more rapidly than ψ , so Eq. (2.1.19) requires, for r → 0,
that ψ satisfy the eigenvalue equation

L2ψ → �
2�(�+ 1)ψ. (2.1.20)

Hence, if ψ is an eigenfunction of L2 and H , the eigenvalue of L2 can only be
�

2�(�+ 1), with � ≥ 0 an integer. We will give a much more general derivation
of this result in Section 4.2.

If we choose the wave functions (as we can) to be eigenfunctions of L2 as well
as of H , then according to Eq. (2.1.20) the eigenvalues can only be �

2�(�+ 1),
so Eq. (2.1.20) must apply not only for r → 0, but for all r . Since L2 acts
only on angles, such a wave function must be proportional to a function only of
angles, with a coefficient of proportionality R that can depend only on r . That
is, for all r ,

ψ(x) = R(r) Y (θ, φ), (2.1.21)
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38 2 Particle States in a Central Potential

where R(r) is a function of r satisfying

R(r) ∝ r � for r → 0 (2.1.22)

and Y (θ, φ) is a function of θ and φ satisfying

L2Y = �
2�(�+ 1)Y. (2.1.23)

If we also require ψ to be an eigenfunction of L3 with eigenvalue denoted �m,
then

L3Y = �m Y. (2.1.24)

Equation (2.1.14) shows that Y (θ, φ) must then have a φ-dependence

Y (θ, φ) = eimφ × function of θ. (2.1.25)

The condition that Y (θ, φ) must have the same value at φ = 0 and φ = 2π
requires that m be an integer. We will see in the next section that |m| ≤ �.

Using Eq. (2.1.21) in Eq. (2.1.17), the Schrödinger equation becomes an
ordinary differential equation3 for R(r):

E R(r) = − �
2

2μr2

d

dr

(
r2 d R(r)

dr

)
+ �

2�(�+ 1)

2μr2
R(r)+ V (r)R(r). (2.1.26)

To these conditions we must add the requirement that R(r) vanishes sufficiently
rapidly as r → ∞ that

∫ |ψ |2 d3x converges, and hence∫ ∞

0
|R(r)|2r2 dr < ∞. (2.1.27)

For a potential that approaches the value zero sufficiently rapidly for r → ∞,
the general solution of Eq. (2.1.26) for E < 0 will be a linear combination of an
exponentially growing and an exponentially decaying solution, and Eq. (2.1.27)
requires that we choose the exponentially decaying solution.

Equation (2.1.26) can be made to look more like the Schrödinger equation in
one dimension by defining a new radial wave function

u(r) ≡ r R(r). (2.1.28)

Multiplying Eq. (2.1.26) with r , the Schrödinger equation then takes the form

− �
2

2μ

d2u(r)

dr2
+
[

V (r)+ �(�+ 1)�2

2μr2

]
u(r) = E u(r), (2.1.29)

3 Often in attempting to solve a partial differential equation like the Schrödinger equation (2.1.3), one tries
a solution that factorizes into functions, each function depending on some subset of the coordinates, as
in Eq. (2.1.21). The treatment of the Schrödinger equation presented here shows that the success of this
procedure follows from the rotational symmetry of the equation to be solved. This is the general rule:
factorizable solutions of partial differential equations can generally be found if the equations are subject
to suitable symmetry conditions.
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2.2 Spherical Harmonics 39

with the normalization condition∫ ∞

0
|u(r)|2 dr < ∞. (2.1.30)

This is almost the same as the one-dimensional Schrödinger equation, but with
two important differences. One is the extra term �(� + 1)�2/2μr2 added to the
potential, which may be understood as the effect of centrifugal forces. The other
is the presence of a boundary at r = 0, where u(r) is required to go as r �+1.

2.2 Spherical Harmonics

As already remarked in the previous section, we use the eigenvalue of L3 as well
as the eigenvalues of H and L2 to classify the wave functions of definite energy.
The angular part of the wave function will therefore be labeled with � and m, as
Y m
� (θ, φ), with

L2Y m
� = �

2�(�+ 1)Y m
� , (2.2.1)

and

L3Y m
� = �m Y m

� . (2.2.2)

We will now consider what values of m are allowed for a given �, and show how
to calculate the Y m

� .
We can rewrite the eigenvalue condition (2.2.1) in a more convenient form,

by using expression (2.1.16) for the Laplacian. Acting on r �Y m
� , the first term

on the right-hand side of Eq. (2.1.16) is �(� + 1)r �−2Y m
� , which according to

Eq. (2.2.1) is canceled by the second term, so

∇2
(
r �Y m

�

) = 0. (2.2.3)

Finally, recall that r �Y m
� (θ, φ) is a homogeneous polynomial of order � in the

Cartesian components of the coordinate vector x. Equivalently, it can be written
as a homogeneous polynomial of order � in4

x± ≡ x1 ± i x2 = r sin θ e±iφ and x3 = r cos θ. (2.2.4)

Thus Eq. (2.2.2) tells us that Y m
� must contain numbers ν± of factors of x± such

that

m = ν+ − ν−. (2.2.5)

Since the total number of factors of x+, x−, and x3 is �, the index m is a positive
or negative integer, with a maximum value �, reached when ν+ = � and ν− = 0,
and a minimum value −�, reached when ν− = � and ν+ = 0. In Section 4.2 we

4 We sometimes write spherical harmonics as functions of the unit vector x̂ ≡ x/r rather than of θ and
φ, the two sets of variables being related by Eq. (2.2.4).
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40 2 Particle States in a Central Potential

will see how to use the commutation relations (2.1.11) to give a purely algebraic
derivation of this result for the spectrum of L3, and also of Eq. (2.2.1) for the
spectrum of L2.

We must now ask whether Y m
� is uniquely determined (of course, up to a

constant factor) by the values of � and m. For a given �, the index m can have
any integer value from m = −� to m = +�, so it takes 2� + 1 values. On
the other hand, a homogeneous polynomial of order � in x± and x3 is a linear
combination of terms that contain ν+ factors of x+, with 0 ≤ ν+ ≤ �, plus ν−
factors of x−, with 0 ≤ ν− ≤ � − ν+, plus � − ν+ − ν− factors of x3, so the
total number of independent homogeneous polynomials of order � in these three
coordinates is

N� =
�∑

ν+=0

�−ν+∑
ν−=0

1 =
�∑

ν+=0

(�− ν+ + 1) = 1

2
(�+ 1)(�+ 2) . (2.2.6)

The Laplacian of a homogeneous polynomial of order � is a homogeneous poly-
nomial of order � − 2, so Eq. (2.2.3) imposes N�−2 independent conditions on
Y , and therefore the number of independent Y s for a given � is

N� − N�−2 = 2�+ 1. (2.2.7)

Since this is also the number of values taken by m for a given �, we conclude
that there is just one independent polynomial for each � and m. These functions,
denoted Y m

� (θ, φ), with −� ≤ m ≤ +�, are known as spherical harmonics.
These functions may be written

Y m
� (θ, φ) ∝ P |m|

� (θ)eimφ, (2.2.8)

with P |m|
� satisfying the differential equation (see Eq. (2.1.15))

− 1

sin θ

d

dθ

(
sin θ

d P |m|
�

dθ

)
+ m2

sin2 θ
P |m|
� = �(�+ 1)P |m|

� . (2.2.9)

The solutions of this equation are known as associated Legendre functions. They
are polynomials in cos θ and sin θ .

By simply enumerating all the independent homogeneous polynomials in x of
order 0, 1, and 2, and imposing the condition ∇2(r �Y ) = 0, we easily see that
the spherical harmonics for � ≤ 2 are

Y 0
0 =

√
1

4π
,

Y 1
1 = −

√
3

8π

(
x̂1 + i x̂2

) = −
√

3

8π
sin θ eiφ,

Y 0
1 =

√
3

4π
x̂3 =

√
3

4π
cos θ,
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2.2 Spherical Harmonics 41

Y −1
1 =

√
3

8π

(
x̂1 − i x̂2

) =
√

3

8π
sin θ e−iφ,

Y 2
2 =

√
15

32π

(
x̂1 + i x̂2

)2 =
√

15

32π
(sin θ)2e2iφ,

Y 1
2 = −

√
15

8π

(
x̂1 + i x̂2

)
x̂3 = −

√
15

8π
sin θ cos θ eiφ,

Y 0
2 =

√
5

16π

(
2x̂2

3 − x̂2
1 − x̂2

2

) =
√

5

16π

(
3(cos θ)2 − 1

)
,

Y −1
2 =

√
15

8π

(
x̂1 − i x̂2

)
x̂3 =

√
15

8π
sin θ cos θ e−iφ,

Y −2
2 =

√
15

32π

(
x̂1 − i x̂2

)2 =
√

15

32π
(sin θ)2e−2iφ.

For instance, Y 0
0 and each Y m

1 contain respectively zero and one factor of x̂± or
x̂3, so Y 0

0 must be a constant, and Y +1
1 , Y 0

1 , and Y −1
1 must be proportional to x̂+,

x̂3, and x̂− respectively in order to have the right dependence on φ. Similarly,
each Y m

2 contains just two factors of x̂± and/or x̂3, so in order to have the right
dependence on φ, Y ±2

2 must be proportional to x̂2± and Y ±1
2 must be proportional

to x̂± x̂3. The case of Y 0
2 is a little more complicated, for both x̂+ x̂− and x̂2

3
have the right dependence on φ. If we take Y 0

2 to be equal to Ax̂+ x̂− + Bx̂2
3 ,

then r2Y 0
2 is equal to Ax+x− + Bx2

3 = A(x2
1 + x2

2) + Bx2
3 , so ∇2(r2Y 0

2 ) =
4A+2B, and hence Eq. (2.2.3) requires that B = −2A. Thus Y 0

2 is proportional
to x̂+ x̂− − 2x̂2

3 = 1 − 3 cos2 θ . The numerical factors are chosen here so that the
Y s are normalized∫

d2�
∣∣Y m

� (θ, φ)
∣∣2 ≡

∫ π

0
sin θ dθ

∫ 2π

0
dφ

∣∣Y m
� (θ, φ

) |2 = 1, (2.2.10)

where d2� is the solid angle differential sin θ dθ dφ. This leaves only the phases
arbitrary. The reason for the phases chosen here will be made clear when we
come to the general theory of angular momentum in Chapter 4.

The spherical harmonics for different �s and/or ms are orthogonal, because
they are eigenfunctions of the Hermitian operators L2 and L3 with different
eigenvalues. To check the orthogonality, note first that∫

d2� Y m
� (θ, φ)

∗Y m′
�′ (θ, φ) ∝

∫ 2π

0
exp(i(m ′ − m)φ) dφ ∝ δm′m . (2.2.11)

Next, considering the case m ′ = m,∫
d2� Y m

� (θ, φ)
∗Y m

�′ (θ, φ) ∝
∫ π

0
P |m|
�′ (θ)P |m|

� (θ) sin θ dθ. (2.2.12)
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42 2 Particle States in a Central Potential

Multiplying Eq. (2.2.9) with P |m|
�′ (θ) sin θ and subtracting the same expression

with � and �′ interchanged gives[
�(�+ 1)− �′(�′ + 1)

]
P |m|
�′ (θ)P |m|

� (θ) sin θ

= d

dθ

[
sin θ P |m|

� (θ)
d

dθ
P |m|
�′ (θ)− sin θ P |m|

�′ (θ)
d

dθ
P |m|
� (θ)

]
. (2.2.13)

The quantity in square brackets on the right-hand side vanishes at θ = 0 and
θ = π , so[

�(�+ 1)− �′(�′ + 1)
] ∫ π

0
P |m|
�′ (θ)P |m|

� (θ) sin θ dθ = 0. (2.2.14)

It is only possible to have �(�+1) = �′(�′+1) with � and �′ positive if � = �′, so∫ π

0
P |m|
�′ (θ)P |m|

� (θ) sin θ dθ = 0 for � 	= �′. (2.2.15)

Putting together Eqs. (2.2.10), (2.2.11), and (2.2.15) gives our orthonormality
relation ∫

d2� Y m
� (θ, φ)

∗Y m′
�′ (θ, φ) = δ��′δmm′ . (2.2.16)

We also note the space-inversion (or “parity”) property of the wave function.
Since the Y m

� are homogeneous polynomials of order � in the unit vector x̂ , it
follows that under the transformation x̂ → −x̂ , the spherical harmonics change
by just a sign factor (−1)�:

Y m
� (π − θ, π + φ) = (−1)� Y m

� (θ, φ). (2.2.17)

The spherical harmonics for m = 0 are conventionally written in terms of
Legendre polynomials P�(cos θ) as

Y 0
� (θ) =

√
2�+ 1

4π
P�(cos θ). (2.2.18)

To see that Y 0
� (θ) is a polynomial in cos θ , recall that it is a polynomial in the

components of the unit vector x̂ , and since it is invariant under rotations around
the 3 axis, it must be a polynomial in x̂3 = cos θ and x̂+ x̂− = sin2 θ = 1−cos2 θ .
(The numerical factor in Eq. (2.2.18) is chosen so that P�(1) = 1.) For instance,
referring back to the spherical harmonics listed above, Eq. (2.2.18) gives

P0(cos θ) = 1, P1(cos θ) = cos θ, P2(cos θ) = 1

2

(
3 cos2 θ −1

)
, (2.2.19)

and so on.

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316276105.004
http:/www.cambridge.org/core


2.3 The Hydrogen Atom 43

2.3 The Hydrogen Atom

At last we come to a realistic three-dimensional system, consisting of a single
electron moving in a Coulomb potential

V (r) = − Ze2

r
, (2.3.1)

where −e is the electron charge in unrationalized electrostatic units (for which
e2/�c 
 1/137). We wish here to solve the Schrödinger equation for bound
states, which have energy E < 0.

The radial Schrödinger equation (2.1.29) (with ψ(x) ∝ u(r)Y m
� (θ, φ)/r ) is

then

− �
2

2me

d2u(r)

dr2
+
[
− Ze2

r
+ �(�+ 1)�2

2mer2

]
u(r) = Eu(r),

or in other words

−d2u(r)

dr2
+
[
−2me Ze2

r�2
+ �(�+ 1)

r2

]
u(r) = −κ2u(r), (2.3.2)

where κ is defined by

E = −�
2κ2

2me
, κ > 0 (2.3.3)

and me is the electron mass. We will write this in dimensionless form by
introducing

ρ ≡ κr. (2.3.4)

After dividing by κ2, Eq. (2.3.2) becomes

−d2u

dρ2
+
[
− ξ

ρ
+ �(�+ 1)

ρ2

]
u = − u, (2.3.5)

where

ξ ≡ 2me Ze2

κ�2
. (2.3.6)

We must look for a solution that decreases as ρ�+1 for ρ → 0, and (more or
less) like exp(−ρ) for ρ → ∞, so let’s replace u with a new function F(ρ),
defined by

u = ρ�+1 exp(−ρ) F(ρ). (2.3.7)

Then
du

dρ
= ρ�+1 exp(−ρ)

[(
�+ 1

ρ
− 1

)
F + d F

dρ

]
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44 2 Particle States in a Central Potential

and

d2u

dρ2
= ρ�+1 exp(−ρ)

[(
1 − 2(�+ 1)

ρ
+ �(�+ 1)

ρ2

)
F

+
(

−2 + 2(�+ 1)

ρ

)
d F

dρ
+ d2 F

dρ2

]
.

The radial wave equation (2.3.5) thus becomes

d2 F

dρ2
− 2

(
1 − �+ 1

ρ

)
d F

dρ
+
(
ξ − 2�− 2

ρ

)
F = 0. (2.3.8)

Let’s try a power-series solution

F =
∞∑

s=0

asρ
s, (2.3.9)

where a0 	= 0, because we define � so that u(r) ∝ r �+1 for r → 0. Then
Eq. (2.3.8) becomes

∞∑
s=0

as
[
s(s − 1)ρs−2 − 2sρs−1 + 2s(�+ 1)ρs−2 + (ξ − 2�− 2)ρs−1

] = 0.

(2.3.10)
In order to derive a relation between the coefficients in the power series, let us
replace the summation variable s with s + 1 in all terms that go as ρs−2 rather
than ρs−1. (The factors s in the first and third terms in Eq. (2.3.10) make the
sums over these terms start with s = 1, so after redefining s as s +1 all the sums
start with s = 0.) Equation (2.3.10) then becomes

∞∑
s=0

ρs−1
[
s(s + 1)as+1 − 2sas + 2(s + 1)(�+ 1)as+1 + (ξ − 2�− 2)as

] = 0.

(2.3.11)
This must hold for all ρ > 0, so the coefficient of each power of ρ must vanish,
which gives a recursion relation

(s + 2�+ 2)(s + 1)as+1 = (−ξ + 2s + 2�+ 2)as . (2.3.12)

The quantity (s + 2�+ 2)(s + 1) does not vanish for any s ≥ 0, so this gives all
the coefficients as in terms of an arbitrary normalization coefficient a0.

Let us consider the asymptotic behavior of this power series for large ρ.
Equation (2.3.12) shows that, for s → ∞,

as+1/as → 2/s. (2.3.13)

Since all the as for large s have the same sign, the asymptotic behavior of the
power series is dominated by the high powers of ρ, for which Eq. (2.3.12) gives

as ≈ C 2s/(s + B)!, (2.3.14)
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2.3 The Hydrogen Atom 45

with unknown constants C and B. (If B is not an integer the factorial here is a
gamma function, but this makes little difference when s 
 B.) Thus we expect
that asymptotically

F(ρ) ≈ C
∞∑

s=0

(2ρ)s

(s + B)! → C(2ρ)−Be2ρ. (2.3.15)

Aside from constants and powers of ρ, the function (2.3.7) generically then
goes as

u ≈ eρ. (2.3.16)

This is no surprise, because for generic values of ξ the solution that goes as ρ�+1

for ρ → 0 will approach a linear combination of terms proportional to eρ or e−ρ
for ρ → ∞, which will be dominated in this limit by the term proportional to
eρ . But an asymptotic behavior like Eq. (2.3.16) is clearly inconsistent with the
condition (2.1.30) that the wave function be normalizable.

The only way to avoid this is to require that the power series terminates, so
that F(ρ) goes as some power of ρ, rather than as e2ρ . The recursion relation
(2.3.12) shows that in order for the series to terminate, it is necessary for ξ to
be equal to some positive even integer 2n with n ≥ � + 1, in which case the
series terminates with power ρn−�−1. The functions F(ρ) are then polynomials
of order n − �− 1, known as Laguerre polynomials, and conventionally written
L2�+1

n−�−1(2ρ). The first few examples (aside from normalization constants) are

F =
{

1, for n = �+ 1,
1 − ρ/(�+ 1), for n = �+ 2.

(2.3.17)

Although the wave functions depend on � and n, the energies only depend on
n. With ξ = 2n, Eq. (2.3.6) gives

κn = 2me Ze2

ξ�2
= 1

na
, (2.3.18)

where a is the Bohr radius:

a = �
2

me Ze2
= 0.529177249(24)× 10−8 Z−1 cm. (2.3.19)

Since the radial wave function R(r) ≡ u(r)/r decreases at large distances like
ρn−1 exp(−ρ) ∝ rn−1 exp(−r/na), the electron is pretty well localized within
a radius na. Finally, using Eqs. (2.3.18) and (2.3.19) in Eq. (2.3.3) gives the
bound-state energies as

En = −�
2κ2

n

2me
= − �

2

2mea2n2
= −me Z2e4

2�2n2
= −13.6056981(40)Z2 eV

n2
.

(2.3.20)
As we saw in Section 1.2, this is the famous formula guessed at by Bohr in 1913.
It is an excellent approximation (neglecting magnetic and relativistic effects) for
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46 2 Particle States in a Central Potential

single-electron atoms, such as hydrogen with Z = 1, singly ionized helium
with Z = 2, doubly ionized lithium with Z = 3, and so on. As mentioned in
Section 1.2, it is also a fair approximation for the states of the outermost electron
in neutral atoms of alkali metals such as lithium, sodium, and potassium, for
which the charge Ze of the nucleus is partially shielded by the Z − 1 inner
electrons, so that Z in Eq. (2.3.20) can be taken as effectively of order unity.

Incidentally, note that the energy required to excite a hydrogen atom in the
n = 1 state to the n = 2 state is 10.2 eV, so to excite hydrogen atoms from the
ground state to any higher energy state in atomic collisions requires temperatures
of at least about 10 eV/kB 
 105 K. Hot gases in astrophysics typically cool by
emission of radiation from atoms excited in atomic collisions, so a gas of hot
hydrogen finds it very difficult to cool below about 105 K. On the other hand,
for reasons discussed in Section 4.5, the outer electrons in heavy atoms all have
larger values of n, so it takes much less energy to excite these atoms to the next
higher state, and even small quantities of heavy elements make a large difference
in the cooling rate.

For each n we have � values running from 0 to n − 1, and for each � we have
2�+ 1 values of m, so the total number of states with energy En is

n−1∑
�=0

(2�+ 1) = 2
n(n − 1)

2
+ n = n2. (2.3.21)

We will see in Section 4.5 that this formula plays an essential role in explain-
ing the periodic table. In multi-electron atoms the energies of these states are
actually separated from each other by departures of the effective electrostatic
potential from a strict proportionality to 1/r , due to the nucleus and other elec-
trons, as well as by relativistic effects and by magnetic fields within the atom,
and may be further split by external fields.

There is a standard nomenclature for these states. In general, one-electron
atomic states with � = 0, 1, 2, 3 are labeled s, p, d, f . (The letters stand for
“sharp,” “principal,” “diffuse,” etc., for reasons having to do with the appearance
of spectral lines.) In hydrogen, or hydrogen-like atoms, this letter is preceded by
a number giving the energy level. Thus the lowest energy state of hydrogen is
1s, the next lowest 2s and 2p, the next lowest 3s, 3p, and 3d, and so on.

As discussed in Section 1.4, in the approximation that the wavelength of light
emitted in an atomic transition is much larger than the Bohr radius, the rate at
which a state represented by a wave function ψ decays by single-photon emis-
sion into a state represented by a wave functionψ ′ is proportional to | ∫ ψ ′∗xψ |2.
If we change the variable of integration from x to −x, then as mentioned in Sec-
tion 2.2, the wave functions ψ and ψ ′ change by factors (−1)� and (−1)�

′
, and

so the whole integrand changes by a factor

(−1)�+�
′+1.
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2.4 The Two-Body Problem 47

Thus the transition rate vanishes (in this approximation) unless the signs (−1)�

and (−1)�
′
are opposite. (There are other selection rules, which will be described

in Section 4.4.) For instance, the 2p state can emit a photon and decay into
the 1s state (this is known as Lyman-α radiation), but the 2s state cannot. This
selection rule actually helps the recombination of hydrogen ions and electrons
in hot gases, such as in the early universe at a temperature of about 3000 K.
Emission of a Lyman-α photon may not provide an effective way for hydrogen
to reach the lowest-energy state (the “ground state”), because that photon just
excites another hydrogen atom in the 1s state to the 2p state.5 On the other hand,
the 2s state can only decay to the 1s state by emitting two photons, neither of
which has enough energy to excite another hydrogen atom from the ground state.

2.4 The Two-Body Problem

So far, we have considered the quantum mechanics of a single particle in a fixed
potential. Of course, real one-electron atoms consist of two particles, a nucleus
and an electron, with a potential that depends on the difference of their coor-
dinate vectors. It is well known in classical mechanics that the latter two-body
problem is equivalent to a one-body problem, with the electron mass replaced
with a reduced mass:

μ = memN

me + mN
, (2.4.1)

where mN is the nuclear mass. We will now see that the same is true in quantum
mechanics.

In both classical and quantum mechanics, the Hamiltonian for a one-electron
atom is

H = p2
e

2me
+ p2

N

2mN
+ V (xe − xN), (2.4.2)

where pe and pN are the electron and nuclear momenta. (To a good approx-
imation the potential only depends on |xe − xN|, but for the purposes of the
present section it is just as easy to deal with the more general case.) Also, in
both classical and quantum mechanics, we introduce a relative coordinate x and
a center-of-mass coordinate X by

x ≡ xe − xN, X ≡ mexe + mNxN

me + mN
, (2.4.3)

5 There is an exception to this. In cosmology, a Lyman-α photon that survives long enough will lose
energy through the cosmological expansion, to the point where it can no longer excite a hydrogen atom
from the ground state to any higher state. This also contributes to hydrogen recombination.
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48 2 Particle States in a Central Potential

and a relative momentum p and a total momentum P by

p ≡ μ

(
pe

me
− pN

mN

)
, P ≡ pe + pN. (2.4.4)

It is easy to see then that the Hamiltonian (2.4.2) may be written

H = p2

2μ
+ P2

2(me + mN)
+ V (x) (2.4.5)

and this too is true in both classical and quantum mechanics.
In quantum mechanics we identify the momenta as the operators

pe = −i� ∇e, pN = −i� ∇N. (2.4.6)

It is then elementary to calculate that the momenta (2.4.4) are

p = −i� ∇x, P = −i� ∇X. (2.4.7)

So the momenta (2.4.4) and the coordinates (2.4.3) satisfy the commutation
relations

[xi , p j ] = [Xi , Pj ] = i�δi j , [xi , Pj ] = [Xi , p j ] = 0. (2.4.8)

It is obvious then that the Hamiltonian (2.4.2) commutes with all components
of P, which also commute with each other, so the wave functions represent-
ing physical states of definite energy can also be taken to have definite total
momentum.

Such a wave function will have the form

ψ(x,X) = eiP·X/�ψ(x), (2.4.9)

where P is now a c-number eigenvalue, and ψ(x) is a wave function for an
internal energy E , satisfying the one-particle Schrödinger equation

−�
2 ∇2

xψ(x)
2μ

+ V (x)ψ(x) = Eψ(x). (2.4.10)

For example, in single-electron atoms the internal energy E is given by
Eq. (2.3.20), with me replaced withμ. The total energy is just the internal energy
E of the atom, plus the kinetic energy of its overall motion:

E = E + P2

2(me + mN)
. (2.4.11)

The most important aspect of the replacement of the electron mass with the
reduced mass (2.4.1) is that internal energies then depend very slightly on the
mass of the nucleus. There are two stable isotopes of the hydrogen nucleus, the
proton with mass 1836me, and the deuteron with mass 3670me, giving reduced
masses

μpe = 0.99945me, μde = 0.99973me. (2.4.12)
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2.5 The Harmonic Oscillator 49

This tiny difference is enough to produce a detectable split in the frequencies of
light emitted from a mixture of ordinary hydrogen and deuterium. The relative
intensity of the observed hydrogen and deuterium spectral lines is used by
astronomers to measure the relative abundance of hydrogen and deuterium in
the interstellar medium, which in turn reveals conditions in the early universe
when a tiny fraction of matter was formed into deuterons. Also, as mentioned in
Section 1.2, the experimental confirmation of the predicted differences between
the energy levels of different one-electron atoms such as hydrogen and ionized
helium helped to confirm the Bohr theory of these atoms.

2.5 The Harmonic Oscillator

As a final bound-state problem in three dimensions, let’s consider a particle of
mass M in a potential

V (r) = 1

2
Mω2r2, (2.5.1)

where ω is a constant with the dimensions of frequency. Of course, this is
not the potential felt by electrons in atoms, but it is worth considering for at
least four reasons. One is its historical importance. As we saw in Section 1.4,
this is the problem (though in one dimension) studied by Heisenberg in his
ground-breaking 1925 paper introducing matrix mechanics. Another reason is
that this theory provides a nice illustration of how we can find energy levels
and radiative transition amplitudes by algebraic methods (the methods used by
Heisenberg), without having to solve second-order differential equations. Third,
the harmonic oscillator potential is used in models of atomic nuclei, which, as
we will see in Section 4.5, lead to the idea of “magic numbers” of neutrons or
protons for which nuclei are particularly stable. Finally, the methods described
here for dealing with the harmonic oscillator will turn out to be useful in Sec-
tion 10.3 for dealing with the energy levels of electrons in magnetic fields, and
in Sections 11.5 and 11.6 for calculating the properties of photons.

The Schrödinger equation (2.1.3) is here

Eψ = − �
2

2M
∇2ψ + 1

2
Mω2r2ψ. (2.5.2)

Both the Laplacian and r2 = x2 may be written as sums over the three coordinate
directions, so that the Schrödinger equation may be written(−�

2

2M

∂2ψ

∂x2
1

+ Mω2x2
1ψ

2

)
+
(−�

2

2M

∂2ψ

∂x2
2

+ Mω2x2
2ψ

2

)

+
(−�

2

2M

∂2ψ

∂x2
3

+ Mω2x2
3ψ

2

)
= Eψ. (2.5.3)
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50 2 Particle States in a Central Potential

This has separable solutions, of the form

ψ(x) = ψn1(x1)ψn2(x2)ψn3(x3), (2.5.4)

where ψn(x) is a solution of the one-dimensional Schrödinger equation

−�
2

2M

∂2ψn(x)

∂x2
+ Mω2x2ψn(x)

2
= Enψn(x). (2.5.5)

The energy is the sum of the energies of three one-dimensional harmonic
oscillators in the n1th, n2th and n3th energy states:

E = En1 + En2 + En2 . (2.5.6)

So our problem has been reduced to the one considered by Heisenberg in 1925,
the one-dimensional harmonic oscillator.

To solve this problem, we introduce so-called lowering and raising operators

ai ≡ 1√
2M�ω

(
−i�

∂

∂xi
− i Mωxi

)
,

a†
i ≡ 1√

2M�ω

(
−i�

∂

∂xi
+ i Mωxi

)
, (2.5.7)

with i = 1, 2, and 3. These operators obey the commutation relations[
ai , a†

j

]
= δi j (2.5.8)

and [
ai , a j

] =
[
a†

i , a†
j

]
= 0. (2.5.9)

Also, the one-dimensional Hamiltonian here is

Hi ≡ − �
2

2M
∇2

i + Mω2x2
i

2
= �ω

[
a†

i ai + 1

2

]
. (2.5.10)

(The summation convention, that repeated indices are summed, is not being used
here.) Now, it follows from Eqs. (2.5.8)–(2.5.10) that

[Hi , ai ] = −�ωai , [Hi , a†
i ] = +�ωa†

i . (2.5.11)

Hence if ψ represents a state with energy E , then aiψ represents a state with
energy E − �ω, and a†

i ψ represents a state with energy E + �ω, provided of
course that aiψ and a†

i ψ respectively do not vanish. There is a wave function
ψ0(xi ) for which aiψ0 = 0; it is

ψ0(xi ) ∝ exp(−Mωx2
i /2�), (2.5.12)

so this represents a state for which the energy Eni is �ω/2, and no wave function
representing a state with a lower value of Eni can be formed by operating on this
wave function with ai . On the other hand, there is no wave function ψ(xi ) for
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2.5 The Harmonic Oscillator 51

which a†
i ψ vanishes, because the solution of the differential equation a†

i ψ = 0
is ψ ∝ exp(Mωx2

i /2�), and this is not normalizable. In consequence, there is
no upper bound to the energies of states represented by wave functions formed
by operating any number of times with a†

i on ψ0. These wave functions take the
form

ψni (xi ) ∝ a†ni
i ψ0(xi ) ∝ Hni (xi ) exp(−Mωx2

i /2�), (2.5.13)

where Hn(x) is a polynomial of order n in x . (It is proportional to the Hermite
polynomial Hen(z) of order n and argument z = x

√
2Mω/�.) For instance,

H0(x) ∝ 1, H1(x) ∝ x , H2(x) ∝ 1 − 2Mωx2/�, and so on. These polynomials
satisfy the parity condition

Hn(−x) = (−1)n Hn(x). (2.5.14)

Using Eq. (2.5.10) and the commutation relations shows that Eq. (2.5.13) is an
eigenfunction of Hi with eigenvalue �ω(ni + 1/2). The general wave function
representing a state of definite energy is therefore

ψn1n2n3(x) ∝ a†n1
1 a†n2

2 a†n3
3 ψ0(r)

∝ Hn1(x1)Hn2(x2)Hn3(x3) exp(−Mωr2/2�), (2.5.15)

and the state has energy

En1n2n3 = �ω

[
N + 3

2

]
(2.5.16)

and the parity property

ψn1n2n3(−x) = (−1)Nψn1n2n3(x), (2.5.17)

where

N = n1 + n2 + n3. (2.5.18)

All but the lowest of these energy levels have a great deal of degeneracy. For
a fixed value of N = n1 + n2 + n3 there is just one possible value of n3 for a
given n1 and n2, so the number of ways of writing a positive integer N as the
sum of three positive (perhaps zero) integers n1, n2, and n3 is

NN =
N∑

n1=0

N−n1∑
n2=0

1 =
N∑

n1=0

(N − n1 + 1) = (N + 1)2 − N (N + 1)

2

= (N + 1)(N + 2)

2
. (2.5.19)

Since the potential (2.5.1) is spherically symmetric, these wave functions
can also be written as sums of the spherical harmonics Y m

� (θ, φ), times m-
independent radial wave functions RN�(r), with numerical coefficients that may
depend on N , �, and m. The wave function (2.5.15) is a polynomial of order
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52 2 Particle States in a Central Potential

N = n1 + n2 + n3 in the xi times a function of r , so the maximum value of � is
N . Also, according to Eq. (2.5.17) the wave function (2.5.15) is even or odd in x
depending on whether N is even or odd. Thus this wave function is at most a sum
of terms proportional to Y m

� (θ, φ), with � = N , N −2, and so on down to � = 1
or � = 0. For instance, H1(x) ∝ x , so the three wave functions of the form
(2.5.15) with N = 1 take the form x1 exp(−Mωr2/2�), x2 exp(−Mωr2/2�),
and x3 exp(−Mωr2/2�), which can be written as linear combinations of the
� = 1 terms rY m

1 (θ, φ) exp(−Mωr2/2�) with m = +1, m = 0, and m = −1.
It turns out that for higher values of N there are independent wave functions

proportional to Y m
� (θ, φ), with � = N , N − 2, and so on down to � = 1 or

� = 0, with just the usual 2�+ 1 wave functions for each such �. To check this,
note that this gives the total degeneracy as

NN =
∑

�=N , N−2, ...

(2�+ 1). (2.5.20)

For instance, if N is even we can set � = 2k, and find a degeneracy

NN =
N/2∑
k=0

(4k + 1) = 4
(N/2)(N/2 + 1)

2
+ N/2 + 1 = (N + 1)(N + 2)

2
,

in agreement with Eq. (2.5.19). The same result holds for N odd.
The degeneracy of the energy eigenstates, and in particular the existence of

states with different values of � but the same energy, is a peculiar feature of
the Coulomb and harmonic oscillator potentials, that is not expected to occur
for generic potentials. In both cases this degeneracy arises from the existence of
operators that commute with the Hamiltonian, and which therefore when operat-
ing on a wave function with definite energy give another wave function with the
same energy. Some of these operators do not commute with L2, and when acting
on a wave function with a given orbital angular momentum give a wave function
with a different orbital angular momentum, though with the same energy. What
these operators are for the Coulomb potential will be explained in Section 4.8.
For the harmonic oscillator potential, they are the nine operators a†

j ak , with j
and k running over the coordinate indices 1, 2, 3, which can easily be seen
to commute with the three-dimensional Hamiltonian given by the sum of the
one-dimensional Hamiltonians (2.5.10):

H = �ω

[∑
i

a†
i ai + 3

2

]
.

As we will see in Section 4.6, the fact that these operators commute with
the Hamiltonian is related to a symmetry of this Hamiltonian and of the
commutation rules. Incidentally, both for the Coulomb potential and for the
harmonic oscillator potential, the existence of operators that commute with
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2.5 The Harmonic Oscillator 53

the Hamiltonian is also related to the peculiar property that classical orbits in
these two potentials form closed curves.

In order to calculate mean values and radiation transition probabilities, it is
necessary to construct properly normalized wave functions. This can most easily
be done using the raising and lowering operators (2.5.7). First, in order that the
ground-state wave function ψ0 for one-dimensional oscillators be normalized,
we must take it as

ψ0(x) =
[

Mω

π�

]1/4

exp(−Mωx2/2�), (2.5.21)

so that ∫ +∞

−∞
|ψ0(x)|2 dx = 1. (2.5.22)

Also, note that a†
i is the adjoint of the operator ai , in the sense that for any two

normalizable functions f and g, we have∫ +∞

−∞
f ∗(xi )ai g(xi ) dxi =

∫ +∞

−∞

(
a†

i f (xi )
)∗

g(xi ) dxi . (2.5.23)

It follows that∫ ∞

−∞
|a†ni

i ψ0(xi )|2 dxi =
∫ ∞

−∞

(
a†(ni −1)

i ψ0(xi )
)∗

ai a
†ni
i ψ0(xi ) dxi .

The commutation relations (2.5.8) and (2.5.9) give

ai a
†ni
i = a†ni

i ai + ni a
†(ni −1)
i ,

and since ai annihilates ψ0(xi ), we have∫ ∞

−∞

∣∣∣a†ni
i ψ0(xi )

∣∣∣2 dxi = ni

∫ ∞

−∞

∣∣∣a†(ni −1)
i ψ0(xi )

∣∣∣2 ,
and so ∫ ∞

−∞

∣∣∣a†ni
i ψ0(xi )

∣∣∣2 dxi = ni !. (2.5.24)

The properly normalized wave functions are then

ψn1n2n3(x) = 1√
n1!n2!n3!

[
Mω

π�

]3/4

a†n1
i a†n2

2 a†n3
3 exp(−Mωr2/2�). (2.5.25)

To calculate the matrix element of one of the components of x, say x1, we note
that according to Eq. (2.5.7)

x1 = i
√

�√
2Mω

(
a1 − a†

1

)
.
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54 2 Particle States in a Central Potential

Since a1 and a†
1 respectively lower and raise the index n1 by one unit, [x1]nm

must vanish unless n − m = ±1. Also,

[x1]n+1,n ≡
∫
ψ∗

n+1(x1)x1ψn(x1) dx1

= 1√
n!√(n + 1)!

∫ (
a†(n+1)

1 ψ0

)∗
(

−ia†
1

√
�√

2Mω

)(
a†n

1 ψ0

)
dx1

= −i

√
(n + 1)�

2Mω
. (2.5.26)

If we had included the time-dependence factors exp(−i Et/�) in the wave func-
tions, this would be the same as Heisenberg’s result (1.4.15), except for a
conventional constant phase factor, which of course has no effect on |xnm|2, and
hence no effect on radiative transition rates.

Problems

1. Use the method described in Section 2.2 to calculate the spherical harmonics
(aside from constant factors) for � = 3.

2. Derive a formula for the rate of single-photon emission from the 2p to the 1s
state of hydrogen.

3. Calculate the expectation values of the kinetic and potential energies in the
1s state of hydrogen.

4. Calculate the expectation values of the kinetic and potential energies in the
lowest-energy state of the three-dimensional harmonic oscillator, using the
algebraic methods that were used in Section 2.5 to find the energy levels in
this system.

5. Derive the formula for the energy levels of the three-dimensional harmonic
oscillator by using the power-series method (with suitable modifications) that
was used in Section 2.3 for the hydrogen atom.

6. Find the difference between the energies of the Lyman-α transitions in
hydrogen and deuterium.

7. Calculate the wave function (aside from normalization) of the 3s state of the
hydrogen atom.

Hint: in problems 2 and 3, don’t forget to use properly normalized wave
functions.
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3
General Principles of Quantum

Mechanics

We have seen in the previous chapter how useful wave mechanics can be
in solving physical problems. But wave mechanics has several limitations. It
describes physical states by means of wave functions, which are functions of
the positions of the particles of the system, but why should we single out posi-
tion as the fundamental physical observable? For instance, we might want to
describe states in terms of probability amplitudes for particles to have certain
values of the momentum or energy rather than the position. A more funda-
mental limitation is that there are attributes of physical systems that cannot
be described at all in terms of the positions and momenta of a set of parti-
cles. One of these attributes is spin, which will be a chief subject of Chapter 4.
Another is the value of the electric or magnetic field at some point in space,
treated in Chapter 11. This chapter will describe the principles of quantum
mechanics in a formalism which is essentially the “transformation theory” of
Dirac, mentioned briefly in Section 1.4. This formalism generalizes both the
wave mechanics of Schrödinger and the matrix mechanics of Heisenberg, and is
sufficiently comprehensive to apply to any sort of physical system.

3.1 States

The first postulate of quantum mechanics is that physical states can be repre-
sented as vectors in a sort of abstract space known as Hilbert space.

Before getting into Hilbert space, I need to say a bit about vectors in general.
In kindergarten we learn that vectors are quantities with both magnitude and
direction. Later, when we study analytic geometry, we learn instead to describe
a vector in d dimensions as a string of d numbers, the components of the vector.
The latter approach lends itself well to calculation, but in some respects the
kindergarten version is better, because it allows us to describe relations among
vectors without specifying a coordinate system. For instance, a statement that
one vector is parallel to a second vector, or perpendicular to a third, has nothing
to do with how we choose our coordinate system.

Here we will formulate what we mean by vector spaces in general, and Hilbert
space in particular, in a way that is independent of the coordinates we use to

55
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56 3 General Principles of Quantum Mechanics

describe directions in these spaces. From this point of view, the wave func-
tions that we have been using to describe physical states in wave mechanics
should be considered as the set of components ψ(x) of an abstract vector �,
known as the state vector, in an infinite-dimensional space in which we happen
to choose coordinate axes that are labeled by all the values that can be taken
by the position x. The same state vector could be described instead by a wave

function ψ̃(p) in momentum space, defined as the coefficient of exp
(

ip · x/�
)

in a wave packet like (1.3.2).1

ψ(x) = (2π�)−3/2
∫

d3 p exp
(

ip · x/�
)
ψ̃(p).

In this case, ψ̃(p) is regarded as the component of the same state vector � along
the direction corresponding to a definite value p of the momentum. This is not
conceptually very different from switching to a description of position vectors in
terms of latitude, longitude, and altitude to some other set of three coordinates.
Or, as in Eq. (1.5.15), we could write ψ(x) as an expansion in wave functions
ψn(x) of definite energy,

ψ(x) =
∑

n

cnψn(x),

and regard the coefficients cn as the components of the same state vector along
directions characterized by different values of the energy. These are just exam-
ples; our discussion of Hilbert space will not depend on any particular choice of
coordinates.

Hilbert space is a certain kind of normed complex vector space. In general,
any sort of vector space consists of quantities �, � ′, etc., with the following
properties.

● If � and � ′ are vectors, then so is � + � ′. The operation of addition is
associative and commutative:

� + (� ′ +� ′′) = (� +� ′)+� ′′, (3.1.1)

� +� ′ = � ′ +�. (3.1.2)

● If � is a vector, then so is α�, where α is any number. A real vector space
is one in which these numbers are restricted to be real. In a complex vector
space, like the Hilbert space of quantum mechanics, the numbers like α can be
complex. For either real or complex vector spaces, multiplication by a number
is taken to be associative and distributive:

α(α′�) = (αα′)�, (3.1.3)

1 This definition is framed so that the momentum operator −i� ∇ acting on ψ(x) has the effect of multi-
plying ψ̃(p) with p. The factor (2π�)−3/2 is included so that, for a wave function normalized to have∫ |ψ(x)|2 d3x = 1, by a theorem of Fourier analysis we have

∫ |ψ̃(p)|2 d3 p = 1.
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3.1 States 57

α(� +� ′) = α� + α� ′, (3.1.4)

(α + α′)� = α� + α′�. (3.1.5)

● There is a single zero vector2 o, with the obvious properties that, for any
vector � and number α,

o +� = �, 0� = o, αo = o. (3.1.6)

A normed vector space is a vector space in which for any two vectors � and
� ′ there is a number, the scalar product (�,� ′), with the properties of linearity,(

� ′′, [α� + α′� ′]
)

= α
(
� ′′, �

)
+ α′

(
� ′′, � ′

)
, (3.1.7)

symmetry, (
� ′, �

)∗ =
(
�, � ′

)
, (3.1.8)

and positivity, which requires that the scalar product of a vector with itself is a
real number with

(�,�) > 0 for � 	= o. (3.1.9)

(Note that (�, o) = 0 for any �, and in particular for � = o, because for any
number α and vector � we have α(�, o) = (�, αo) = (�, o), which is only
possible if (�, o) = 0.) For real vector spaces the scalar products (�,� ′) are
all taken to be real, and the complex conjugation in Eq. (3.1.8) has no effect; for
complex vector spaces the scalar products must be allowed to be complex. From
Eqs. (3.1.7) and (3.1.8) it follows that(

[α� + α′� ′], � ′′
)

= α∗
(
�, � ′′

)
+ α′∗

(
� ′, � ′′

)
. (3.1.10)

In addition to being a normed complex vector space, a Hilbert space is either
finite-dimensional, or satisfies certain technical assumptions of continuity that
allow it to be treated in some respects as if it were finite-dimensional. To explain
this, it is necessary first to say something about sets of vectors that are indepen-
dent, or complete, and how this allows us to define the dimensionality of a vector
space.

A set of vectors �1, �2, etc., is said to be independent if no non-trivial linear
combination of these vectors can vanish. That is, if �1, �2, etc. are independent,
and if for some set of numbers α1, α2, etc. we have α1�1 + α2�2 + · · · = o,
then it follows that α1 = α2 = · · · = 0. Equivalently, no one of a set of inde-
pendent vectors can be expressed as a linear combination of the others. In
particular, vectors �1, �2, etc. are independent if they are orthogonal; that is,
if (�i , � j ) = 0 for i 	= j , for if such a set of orthogonal vectors satisfies a

2 In future chapters, where no confusion can arise, we will not bother to use the special symbol o for the
zero state vector, and will instead just use the familiar zero 0.
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58 3 General Principles of Quantum Mechanics

relation α1�1 + α2�2 + · · · = o, then by taking the scalar product with any of
the �s we have αi (�i , �i ) = 0, so αi = 0 for all i . The converse does not
hold – the vectors of an independent set do not have to be orthogonal – but if a
set �i of vectors with 1 ≤ i ≤ n are all independent, then we can always find
n linear combinations �i of these vectors that are not only independent but also
orthogonal.3

A set of vectors �1, �2, . . . , �n , is said to be complete if any vector � can
be expressed as a linear combination of the �i :

� = α1�1 + α2�2 + · · · + αn�n.

The vectors of a complete set do not have to be independent, but if they are
not, then we can always find a subset that is both complete and independent, by
deleting in turn any vectors of the set that can be written as linear combinations
of the others. Given a complete independent set of vectors �i , by the method
described earlier we can find a set of vectors �i that are orthogonal as well
as independent, and since according to this construction every �i is a linear
combination of the �i , the �i are also complete. A complete set of orthogonal
vectors is said to form a basis for the Hilbert space.

A vector space is said to have a finite dimensionality d if the largest possible
number of independent vectors is d. In such a space, any set of d independent
vectors �i is also complete, because if there were a vector � that could not be
written as

∑d
i=1 αi�i , then there would be d +1 independent vectors: namely, �

and the �i . Also, no set of fewer than d vectors ϒ j could be complete, because
if it were then each vector �i of the d independent vectors could be written as
�i = ∑d−1

j=1 ci jϒ j , and for any (d × (d − 1))-dimensional matrix ci j there is

always a d-component quantity ui such that
∑d

i=1 ui ci j = 0, contradicting the
assumption that the �i are independent.

For our present purposes, a Hilbert space can be defined as a normed com-
plex vector space that is either of finite dimensionality, or in which there exists
an infinite set of independent orthogonal vectors �i , that are complete in the
sense that for any vector � we can find a set of numbers αi such that the sum∑∞

i=1 αi�i converges to �. (By this, we mean that (�N , �N ) → 0 for N → ∞,

3 In this case we can construct a vector

�n ≡ �n −
n−1∑

i, j=1

(ω−1) j i� j (�i , �n)

that is orthogonal to all the �i with 1 ≤ i ≤ n − 1, where ωi j ≡ (�i , � j ). (We know that ωi j
has an inverse, because if there were a non-zero vector v j for which

∑
j ωi jv j = 0 then the vector

� ≡ ∑
i vi�i would have norm (�,�) = ∑

i j v
∗
i ωi j v j = 0, and would therefore have to vanish,

which since the �i are independent is only possible if all vi vanish.) Also, we know that �n does not
vanish, because that would contradict the independence of the �i . Continuing along the same lines, we
can also construct a non-zero vector �n−1 that is orthogonal to all �i with 1 ≤ i ≤ n − 2 and also to
�n , and so on, until we have a set of n orthogonal vectors �i .
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3.1 States 59

where �N ≡ � −∑N
i=1 αi�i .) The latter condition allows us to apply some of

the same mathematical methods as if the Hilbert space were finite-dimensional.
The components of a state vector � in a basis provided by a complete orthog-

onal set of vectors �i are just the numbers αi in the expression � = ∑
i αi�i .

They are unique, because if � could be written in this way with two differ-
ent sets of αi , then the difference of the sums would vanish, contradicting the
assumption that the �i are independent. In fact, by taking the scalar product of
the sum

∑
i αi�i with � j , we see that we can write these components as

α j = (� j , �)

(� j ,� j )

so that any vector� is expressed in terms of a complete set of orthogonal vectors
�i by

� =
∑

j

(� j , �)

(� j ,� j )
� j . (3.1.11)

This allows a concrete realization of the scalar product of any two vectors �
and � ′:

(�,� ′) =
∑
i, j

(� j , �)
∗

(� j ,� j )

(�i , �
′)

(�i ,�i )
(� j ,�i ),

or, since the �i are orthogonal,

(�,� ′) =
∑

i

(�i , �)
∗(�i , �

′)
(�i ,�i )

, (3.1.12)

(At this point, we are limiting ourselves to a complete set of basis vectors�i that
is denumerable. The case of a continuum of basis vectors will be considered in
the next section.)

Now at last we can put some flesh on these bones, and state the interpretation
of scalar products in terms of probabilities. The first interpretive postulate of
quantum mechanics is that any complete orthogonal set of states �i are in one-
to-one correspondence with all the possible results of some sort of measurement
(what sort will be considered in Section 3.3), and that if the system before the
measurement is in a state�, then the probability that the measurement will yield
a result corresponding to the state �i is

P(� �→ �i ) =
∣∣∣(�i , �

)∣∣∣2(
�,�

) (
�i ,�i

) . (3.1.13)

It is important to note that the probabilities given by this formula have the fun-
damental properties that must be possessed by any probabilities. First, they

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316276105.005
http:/www.cambridge.org/core


60 3 General Principles of Quantum Mechanics

are obviously all positive. Also, since the �i are a complete orthogonal set,
Eq. (3.1.12) gives

(�,�) =
∑

i

|(�i , �)|2
(�i ,�i )

so the probabilities (3.1.13) add up to one.
The probabilities (3.1.13) are unchanged if we multiply � with a constant α,

or multiply the �i with constants βi . In quantum mechanics state vectors that
differ by a constant factor are regarded as representing the same physical state.
(But � +� ′ and α� +� ′ do not generally represent the same state.) We can if
we like multiply the state vectors � and �i with constants chosen so that

(�,�) = (�i ,�i ) = 1, (3.1.14)

in which case the probabilities (3.1.13) are

P(� �→ �i ) =
∣∣∣(�i , �

)∣∣∣2 . (3.1.15)

This is essentially the Born rule mentioned in Section 1.5.
A set of vectors �i that are orthogonal and also normalized so that

(�i ,�i ) = 1 is said to be orthonormal. For a complete orthonormal set of basis
vectors �i , Eqs. (3.1.11) and (3.1.12) become

� =
∑

j

(� j , �)� j , (3.1.16)

and

(�,� ′) =
∑

i

(�i , �)
∗(�i , �

′). (3.1.17)

Even after choosing � and �i to satisfy Eq. (3.1.14), we can still multi-
ply the state vectors with complex numbers of magnitude unity (that is, phase
factors), with no change in Eqs. (3.1.14) and (3.1.15). Thus physical states in
quantum mechanics are in one-to-one correspondence with rays in the Hilbert
space, each ray consisting of a set of state vectors of unit norm that differ only
by multiplication with phase factors.

This is a good place to mention the “bra–ket” notation used by Dirac. In
Dirac’s notation, a state vector � is denoted |�〉, and the scalar product (�,�)
of two state vectors is written 〈�|�〉. The symbol 〈�| is called a “bra,” and |�〉
is called a “ket,” so that 〈�|�〉 is a bra–ket, or bracket (not to be confused with
the entirely different Dirac bracket described in Section 9.5). In the special cases
where � is identified as a state with a definite value a for some observable A,
the corresponding ket in Dirac’s notation is frequently written as |a〉.

The notation we use, with scalar products denoted (�,�), is commonly
used by mathematicians, while the Dirac notation with scalar products denoted
〈�|�〉 is more common among physicists. In Section 3.3 I will explain how for
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3.2 Continuum States 61

some purposes the Dirac notation is particularly convenient, and in some cases
inconvenient.

3.2 Continuum States

Before going on to the next interpretive postulate of quantum mechanics, it is
necessary to explain how the description of physical states given in the previous
section is modified when we consider a system for which the complete orthog-
onal states form a continuum. Suppose that instead of being labeled as �i with
a discrete index i , they are labeled �ξ , where ξ is a continuous variable, like
position. (The mathematical condition that defines a state with a definite value
of position or any other observable is discussed in the next section.) We can
adapt the results of the previous section by treating such systems approximately,
letting ξ take a very large number ρ(ξ) dξ of discrete values of ξ in any small
interval from ξ to ξ+dξ . (For instance, if ξ is the x-coordinate of some particle,
we might replace the x-axis with a large number of discrete points, with succes-
sive points separated by a small distance 1/ρ(x).) It is convenient in such cases
when introducing a complete orthogonal set of basis vectors �ξ to normalize
them so that

(�ξ ′,�ξ ) = ρ(ξ)δξ ′,ξ . (3.2.1)

Then according to Eq. (3.1.11), an arbitrary state can be expressed as a linear
combination of basis states

� =
∑
ξ

(�ξ ,�)

ρ(ξ)
�ξ . (3.2.2)

In the limit as the points ξ become increasingly close together, any sum over ξ
of a smooth function f (ξ) can be expressed as an integral∑

ξ

f (ξ) �→
∫

f (ξ)ρ(ξ) dξ. (3.2.3)

(The sum over all values of ξ , in an interval dξ that is small enough that within
this interval f (ξ) and ρ(ξ) are essentially constant, equals the number ρ(ξ) dξ
of allowed values of ξ in this interval, times f (ξ). Summing this over intervals
gives the integral.) Hence in this limit Eq. (3.2.2) may be written

� =
∫
(�ξ ,�)�ξ dξ, (3.2.4)

the factors ρ(ξ) here canceling. Similarly, the scalar product (3.1.12) of two
such states may be written

(�,� ′) =
∑
ξ

(�ξ ,�)
∗(�ξ ,�

′)
ρ(ξ)

=
∫
(�ξ ,�)

∗(�ξ ,�
′) dξ. (3.2.5)
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62 3 General Principles of Quantum Mechanics

In particular, the condition for a state � to have unit norm is that

1 =
∫

|(�ξ ,�)|2 dξ. (3.2.6)

If a system is initially in a state represented by a vector� of unit norm, and we
perform an experiment whose possible outcomes are represented by a complete
set of states �ξ , then the differential probability d P(� �→ �ξ) that the outcome
will be in an interval from ξ to ξ + dξ will equal the probability of finding an
individual state with a label near ξ , given by Eq. (3.1.13), times the number of
states in this interval:

d P(� �→ �ξ) = |(�ξ ,�)|2
(�ξ ,�ξ )

× ρ(ξ) dξ = |(�ξ ,�)|2 dξ. (3.2.7)

According to Eq. (3.2.6), this satisfies the essential condition that the total
probability of any result should be unity:∫

d P(� �→ �ξ) = 1. (3.2.8)

For instance, we might take �x to represent states in which a particle has def-
inite values x for its position in one dimension. As mentioned at the beginning
of this chapter, the wave function of Schrödinger’s wave mechanics is nothing
but the scalar product

ψ(x) = (�x , �). (3.2.9)

Equation (3.2.5) shows that the scalar product of two state vectors �1 and �2 is

(�1, �2) =
∫
ψ∗

1 (x)ψ2(x) dx . (3.2.10)

In particular, the condition (3.2.6) for a state vector of unit norm now reads

1 =
∫

|ψ(x)|2 dx, (3.2.11)

and for states satisfying this condition, Eq. (3.2.7) gives the probability that the
particle is located between x and x + dx :

d P = |ψ(x)|2 dx (3.2.12)

as Born guessed in 1926. (See Section 1.5.)
We will occasionally use a “delta function” notation due to Dirac.4 Let us

define

δ(ξ − ξ ′) ≡ ρ(ξ)δξ,ξ ′ (3.2.13)

4 P. A. M. Dirac, Principles of Quantum Mechanics, 4th edn. (Clarendon Press, Oxford, 1958).
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3.2 Continuum States 63

so that the normalization condition (3.2.1) for continuum states reads

(�ξ ,�ξ ′) = δ(ξ − ξ ′). (3.2.14)

According to Eq. (3.2.3), the integral over ξ ′ of this function times any smooth
function f (ξ ′) is∫

δ(ξ − ξ ′) f (ξ ′) dξ ′ =
∑
ξ ′

δ(ξ − ξ ′) f (ξ ′)
ρ(ξ ′)

= f (ξ). (3.2.15)

That is, the function (3.2.13) vanishes except at ξ ′ = ξ , but is so large there that
its integral over ξ ′ is unity, so that in an integral like Eq. (3.2.15) it picks out the
value of the function where ξ ′ = ξ .

Sometimes it is convenient to represent the delta function as a smooth function
that is negligible away from zero argument, but so strongly peaked there that its
integral is unity. For instance, we might define

δ(ξ − ξ ′) ≡ 1

ε
√
π

exp
(−(ξ − ξ ′)2/ε2

)
, (3.2.16)

where ε is allowed to go to zero through positive values. Or we might give up
continuity, and define

δ(ξ − ξ ′) ≡
{

1/2ε, |ξ − ξ ′| < ε,

0, |ξ − ξ ′| ≥ ε.
(3.2.17)

Another representation is suggested by the fundamental theorem of Fourier
analysis. According to this theorem, if g(k) is a sufficiently smooth function
which is sufficiently well-behaved as k → ±∞, and we define

f (x) ≡ 1√
2π

∫ ∞

−∞
g(k)eikx dk, (3.2.18)

then

g(k) = 1√
2π

∫ ∞

−∞
f (x)e−ikx dx . (3.2.19)

If we use Eq. (3.2.19) in the integrand of Eq. (3.2.18), then we have, at least
formally,

f (x) = 1

2π

∫ ∞

−∞
dx ′ f (x ′)

∫ ∞

−∞
dk eik(x−x ′), (3.2.20)

so we can take

δ(x − x ′) = 1

2π

∫ ∞

−∞
dk eik(x−x ′). (3.2.21)

The reader can check that if we give meaning to this integral by inserting a
convergence factor exp(−ε2k2/4) in the integrand, with ε infinitesimal, then
Eq. (3.2.21) becomes the same as the representation (3.2.16).
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64 3 General Principles of Quantum Mechanics

There is a rigorous approach to the delta function known as the theory of dis-
tributions, due to the mathematician Laurent Schwartz5 (1915–2002), in which
we give up the idea of representing the delta function itself as an actual function,
and instead only define integrals involving the delta function by Eq. (3.2.15).
In the same way, the derivative of the delta function is defined by the
statement that ∫

δ′(ξ − ξ ′) f (ξ ′) dξ ′ = − f ′(ξ), (3.2.22)

as obtained from (3.2.15) by a formal integration by parts.

3.3 Observables

Now we come to the second postulate of quantum mechanics. This postulate
requires that observable physical quantities like position, momentum, energy,
etc., are represented as Hermitian operators on Hilbert space, in a sense to be
explained below. An Hermitian operator is one that is linear and self-adjoint, so
before we spell out what this postulate means, we need to consider what is meant
by operators in general, by linear operators in particular, and by the adjoint of
an operator.

An operator is any mapping of the Hilbert space on itself. That is, an operator
A takes any vector � in the Hilbert space into another vector in the Hilbert
space, denoted A�. This leads to natural definitions of products of operators
with each other and with numbers, and of sums of operators. The product AB of
two operators is defined as the operator that operates on an arbitrary state vector
� first with B and then with A. That is,

(AB)� ≡ A(B�). (3.3.1)

An ordinary complex number α can also be regarded as the operator that multi-
plies any state vector with that number, so according to Eq. (3.3.1), the product
αA of a number α with an operator A is the operator that operates on an arbitrary
state vector � first with A and then multiplies the result with α:

(αA)� ≡ α(A�). (3.3.2)

The sum of two operators A and B is defined as the operator that, acting on an
arbitrary state vector �, gives the sum of the state vectors produced by acting
on � with A and B individually:

(A + B)� ≡ A� + B�. (3.3.3)

5 L. Schwartz, Théorie des distributions (Hermann et Cie, Paris, 1966).
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We can define a zero operator 0 that, acting on any state vector �, gives the zero
state vector o:

0� ≡ o. (3.3.4)

It follows then that, for an arbitrary operator A and number α,

0A = 0, 0 + A = A, α0 = 0α = 0. (3.3.5)

We also define a unit operator 1 that, acting on any state vector �, gives the
same state vector:

1� ≡ �. (3.3.6)

For an arbitrary operator A, we then have

1A = A1 = A. (3.3.7)

A linear operator A is one for which

A(� +� ′) = A� + A� ′, A(α�) = αA�, (3.3.8)

for arbitrary state vectors � and � ′ and arbitrary numbers α. It is easy to see
that if A and B are linear, then so are AB and αA + βB for any numbers α and
β. Also, both 0 and 1 are linear.

The adjoint A† of any operator A (linear or not) is defined as that operator (if
there is one) for which6

(� ′, A†�) = (A� ′, �), (3.3.9)

or equivalently

(� ′, A†�) = (�, A� ′)∗,

for any two state vectors � and � ′. It is elementary to show the following
general properties of adjoints:

(AB)† = B† A†, (A†)† = A, (αA)† = α∗ A†, (A + B)† = A† + B†.

(3.3.10)
Both 0 and 1 are their own adjoints.

If we introduce a complete orthonormal set of basis vectors �i , we can
represent any linear operator A by a matrix Ai j , given by

Ai j ≡ (�i , A� j ). (3.3.11)

Using Eq. (3.1.16), we see that the matrix representing any operator product AB
is the product of the matrices

(AB)i j = (�i , AB� j ) =
∑

k

(�i , A�k)(�k, B� j ) =
∑

k

Aik Bkj . (3.3.12)

6 Equation (3.3.9) is awkward to express in Dirac’s bra–ket notation, since in 〈� ′|B|�〉 the operator B is
always presumed to act to the right. Instead of Eq. (3.3.9), one must write 〈� ′|A†|�〉 = 〈�|A|� ′〉∗.
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66 3 General Principles of Quantum Mechanics

The adjoint of an operator is represented by the transposed complex conjugate
of the matrix representing the operator:

(A†)i j = A∗
j i . (3.3.13)

As discussed in the previous section, we frequently encounter complete sets
of state vectors �ξ , labeled with a continuum variable ξ instead of a discrete
label i , and orthonormal in the sense that

(�ξ ′,�ξ ) = δ(ξ ′ − ξ). (3.3.14)

In this case, we define

Aξ ′ξ ≡ (�ξ ′, A�ξ), (3.3.15)

and instead of Eq. (3.3.12), we have

(AB)ξ ′ξ =
∫

dξ ′′ Aξ ′ξ ′′ Bξ ′′ξ . (3.3.16)

The second postulate of quantum mechanics holds that a state has a definite
value a for an observable represented by a linear Hermitian operator A if and
only if the state vector� is an eigenstate of A with eigenvalue a, in the sense that

A� = a�. (3.3.17)

If also A� ′ = a′� ′, then because A is Hermitian,

a(� ′, �) = (� ′, A�) = (A� ′, �) = a′∗(� ′, �).

In the case � = � ′ 	= o and a′ = a this gives a∗ = a, while for a 	= a′
we have (� ′, �) = 0. That is, the allowed values of observables are real, and
state vectors with different values for any observable are orthogonal. In terms of
the matrices (3.3.11) or (3.3.15), the condition (3.3.17) may be written∑

j

Ai j (� j , �) = a(�i , �), (3.3.18)

or else ∫
dξ Aξ ′ξ (�ξ ,�) = a(�ξ ′, �). (3.3.19)

If a state vector � has a definite value a for an observable represented by A
and also a definite value b for an observable represented by B, then

AB� = bA� = ba� = ab� = aB� = B A�,

so � has the definite value zero for the commutator [A, B] ≡ AB − B A. In
particular, it is impossible for there to be a state with definite values for a pair of
observables, if their commutator does not have a zero eigenvalue, as is the case
for instance if the commutator is a non-zero number times the unit operator. This
obstacle to the existence of states in which A and B each have definite values
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does not arise if the operators commute, in the sense that the commutator [A, B]
vanishes.

The Hermitian operators representing observables are assumed to have the
important property that their eigenvectors form complete sets, which can be
taken to be orthonormal. This is automatic for Hermitian operators acting in
spaces of finite dimensionality.7 It is more difficult to show that a given Hermi-
tian operator in an infinite-dimensional space has this property, especially when
its eigenvalues form a continuum, and we will simply assume that this is the
case.

This is often referred to as the diagonalization of the matrix A, because we
can regard the i th component of the r th orthonormal eigenvector ur of A as the
ir component of a matrix Uir , so that the eigenvalue condition can be written
AU = U D, where Drs = arδrs is a diagonal matrix. The condition that the
eigenvectors are orthonormal tells us that U †U = 1, so U has an inverse equal
to U †, and U−1 AU = D.

To see what goes wrong when an operator is not Hermitian, consider the 2×2
matrix

M =
(

a c
0 b

)
,

which is not Hermitian if c 	= 0, whatever the values of a and b. It has
eigenvalues a and b, with respective eigenvectors(

1
0

)
,

(
c

b − a

)
.

These eigenvectors form a complete set in this two-dimensional space, except
in the case a = b, where for c 	= 0 both eigenvalues are the same and both
eigenvectors are in the same direction, and so are not a complete set. On the
other hand, in the Hermitian case with c = 0 the two eigenvectors can be taken
to be the complete set (1, 0) and (0, 1), irrespective of whether or not b = a.

7 Here is the proof. It follows from the theory of determinants that a matrix Ai j in a finite number d of
dimensions will have an eigenvalue a if and only if the determinant of A−a1 vanishes. This determinant
is a polynomial in a of order d, and therefore by a fundamental theorem of algebra, there is always at
least one value of a where it vanishes, and hence at least one eigenvector u for which Au = au. Consider
the space of vectors v that are orthogonal to u – that is, for which (v, u) = 0. If A is Hermitian, this
space is invariant under A, for if (v, u) = 0 then (Av, u) = (v, Au) = a(v, u) = 0. According to
the argument given in footnote 3 of Section 3.1, we can introduce a complete orthonormal basis of
vectors vi in this space, so that Avi is a linear combination

∑
j A jiv j of these basis vectors. Because

A ji = (v j , Avi ) = (Av j , vi ) = A∗
i j , the coefficients Ai j form an Hermitian matrix, but now in d − 1

dimensions. We then apply the same argument as before to show that there is some linear combination
of the vi orthogonal to u that is also an eigenvector of A. Then by considering the action of A on the
(d − 2)-dimensional space of vectors orthogonal to both u and v, we can find an eigenvector of A in
this space. We can continue in this way to construct d orthogonal eigenvectors of A. Since they are
orthogonal, they are independent, and since there are d of them, they form a complete set.
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68 3 General Principles of Quantum Mechanics

These results can be generalized to the case of several commuting Hermitian
operators. Suppose that A and B are Hermitian and satisfy [A, B] = 0. As
remarked above, we can find a complete set of vectors ur satisfying the eigen-
value condition Aur = ar ur . Let us make a small change in notation, using r to
label different values of the eigenvalue ar , and using an index s to distinguish
different eigenvectors urs of A, all with eigenvalue ar . For fixed r , the space of
linear combinations u of the urs with different values of s is invariant under B,
because if Au = ar u then A(Bu) = B Au = ar Bu. Hence by the same argument
as for A, in this space we can find a complete orthonormal set of eigenvectors
of B. That is, we can choose the orthonormal vectors urs so that Aurs = ar urs

and Burs = bsurs . Hence in the same sense as before, we can choose a basis in
which A and B are both represented by diagonal matrices.

The second postulate of quantum mechanics leads to a simple formula for the
expectation value of any observable. Let �r be a complete orthonormal set of
state vectors that for some self-adjoint linear operator A represent states with
values ar for the observable represented by A, and so for which A�r = ar�r .
The expectation value of this observable in a state represented by a normalized
vector � is the sum over allowed values, weighted by the probability (3.1.15)
of each:

〈A〉� =
∑

r

ar |(�r , �)|2 =
∑

r

(�, A�r )(�r , �) = (�, A�). (3.3.20)

It is easy to see that if the state represented by � has a definite value a for
an observable represented by an operator A, then An� = an�, and so it has
a definite value p(a) for the observable represented by any power series p(A)
in the operator A. More generally, we can define functions f (A) of Hermitian
operators by specifying that for an arbitrary linear combination

∑
r cr�r of a

complete independent set of eigenvectors �r of A with eigenvalues ar , we have

f (A)
∑

r

cr�r ≡
∑

r

cr f (ar )�r .

In general, the expectation value of a function of an operator is not equal to
that function of the expectation value. That is, 〈 f (A)〉� 	= f (〈A〉�). In fact,
for Hermitian operators, 〈A2〉� ≥ 〈A〉2

� , with equality if and only if � is an
eigenvector of A. To see this, we note that the expectation value of the square of
any Hermitian operator B is

〈B2〉� = (B�, B�),

so the expectation value is always positive, and vanishes only if B annihilates
the state vector �. Thus in particular

0 ≤ 〈
(A − 〈A〉�)2

〉
�

= 〈A2〉� − 2〈A〉2
� + 〈A〉2

� = 〈A2〉� − 〈A〉2
�. (3.3.21)
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As this shows, 〈A〉2
� is at most equal to 〈A2〉� , and equals it only if � is an

eigenstate of A.
We are now in a position to prove a generalized version of the Heisenberg

uncertainty principle. For this purpose, we will need a general inequality, known
as the Schwarz inequality, which states that for any two state vectors � and � ′,
we have

|(� ′, �)|2 ≤ (� ′, � ′)(�,�). (3.3.22)

(This is a generalization of the familiar fact that cos2 θ ≤ 1.) The Schwarz
inequality is proved by introducing

� ′′ ≡ � −� ′(� ′, �)/(� ′, � ′)

and noting that

0 ≤ (� ′′, � ′′)(� ′, � ′) = (�,�)(� ′, � ′)− 2(�,� ′)(� ′, �)+ |(� ′, �)|2
= (�,�)(� ′, � ′)− |(� ′, �)|2.

To give a precise statement of the uncertainty principle, we may define the root
mean square deviation of an Hermitian operator A from its expectation value in
a state represented by � as

�� A ≡
√〈(

A − 〈A〉�
)2
〉
�

. (3.3.23)

For our purposes, it is convenient to rewrite this as

�� A = √
(�A, �A),

where

�A ≡ (A − 〈A〉�)�/
√
(�,�).

For any pair of Hermitian operators A and B, the Schwarz inequality (3.3.22)
then gives

�� A�� B ≥ |(�A, �B)|.
The scalar product on the right-hand side may be expressed as

(�A, �B) = (�, [A − 〈A〉�][B − 〈B〉�]�)
(�,�)

= (�, [AB − 〈A〉�〈B〉�]�)
(�,�)

.

In particular, since for Hermitian operators (�, AB�)∗ = (�, B A�), the
imaginary part of this scalar product is

Im(�A, �B) = (�, [A, B]�)
2i(�,�)

= 〈[A, B]〉�/2i.
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The absolute value of any complex number is equal to or greater than the
absolute value of its imaginary part, so at last

�� A�� B ≥ 1

2
|〈[A, B]〉� |. (3.3.24)

For example, if we have a pair of operators X and P for which [X, P] = i�,
then in any state �,

�� X �� P ≥ �

2
. (3.3.25)

This is the Heisenberg uncertainty relation, discussed in Section 1.5. It is not
possible to derive an improved general lower bound on �� X �� P , because for
a Gaussian wave packet this product actually equals �/2.

For some operators A, we may define a number called the trace, written Tr A.
The trace is defined by introducing a complete orthonormal set of basis vectors
�i , and writing

Tr A ≡
∑

i

(�i , A�i ). (3.3.26)

This definition is useful because the trace, where it exists, is independent of
the choice of basis vectors. According to Eq. (3.1.16), for any other complete
orthonormal set of basis vectors �i , we have

A�i =
∑

j

(� j , A�i )� j ,

so Eqs. (3.3.26) and (3.1.17) give

Tr A =
∑

i j

(� j , A�i )(�i ,� j ) =
∑

j

(� j , A� j ).

The trace has some obvious properties:

Tr(αA + βB) = α TrA + β Tr B, Tr A† = (Tr A)∗. (3.3.27)

Also,

Tr(AB) =
∑

i

(�i , AB�i ) =
∑

i j

(�i , A� j )(� j , B�i )

=
∑

i j

(� j , B�i )(�i , A� j )

= Tr(B A). (3.3.28)

But not all operators have traces. The trace of the unit operator 1 is just
∑

i 1,
which is the dimensionality of the Hilbert space, and hence is not defined in
Hilbert spaces of infinite dimensionality. Note in particular that in a space of
finite dimensionality the trace of the commutation relation [X, P] = i�1 would
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give the contradictory result 0 = i� Tr 1, so this commutation relation can only
be realized in Hilbert spaces of infinite dimensionality, where the traces do not
exist.

Operators can be constructed from state vectors. For any two state vectors

� and �, we may define a linear operator
[
��†

]
known as a dyad, by the

statement that, acting on an arbitrary state vector �, this operator gives8[
��†

]
� ≡ �(�,�). (3.3.29)

The adjoint of this dyad is
[
��†

]† =
[
��†

]
. The result of operating on an

arbitrary state vector � with a product of such dyads is[
�1�

†
1

][
�2�

†
2

]
� =

(
�2,�

)[
�1�

†
1

]
�2 =

(
�2,�

)(
�1, �2

)
�1,

so the product is a numerical factor times another dyad:[
�1�

†
1

][
�2�

†
2

]
=
(
�1, �2

)[
�1�

†
2

]
. (3.3.30)

(For any given state vector � we can if we like introduce an operator �†, which
operating on any state vector � yields the number (�,�), but in this book we
will not have occasion to employ the symbol �† except as an ingredient in the

symbols for dyads like
[
��†

]
.)

In particular, if � is a normalized state vector, then the dyad
[
��†

]
is an

Hermitian operator equal to its own square:

[��†]2 = [��†]. (3.3.31)

Such operators are called projection operators. From Eq. (3.3.31) it follows that
the eigenvalues λ of projection operators satisfy λ2 = λ, and therefore are all
either one or zero. The projection operator [��†] represents an observable, that
takes the value one in the state represented by �, and the value zero in any state
represented by a vector orthogonal to �. For a complete orthonormal set of state
vectors �i , the relation (3.1.17) may be expressed as a statement about the sum
of the corresponding projection operators∑

i

[
�i�

†
i

]
= 1. (3.3.32)

An Hermitian operator A with eigenvalues ai and a complete set of orthonor-
mal eigenvectors �i can be expressed as a sum of projection operators with
coefficients equal to the eigenvalues:

8 Here the Dirac bra–ket notation is particularly convenient. The dyad
[
��†

]
is written in this nota-

tion as |�〉〈�|, which immediately suggests that (|�〉〈�|)|�〉 = |�〉(〈�|�〉), which is the same as
Eq. (3.3.29).
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A =
∑

i

ai

[
�i�

†
i

]
. (3.3.33)

(To see this, it is only necessary to check that the operator A −∑
i ai

[
�i�

†
i

]
annihilates any of the �i ; since the �i form a complete set, this operator
therefore vanishes.)

From Eq. (3.3.33) it is easy to see that for any polynomial function P(A) of
an Hermitian operator A, we have

P(A) =
∑

i

P(ai )
[
�i�

†
i

]
.

We extend this to a definition of general functions of operators: for any function
f (a) that is finite at the eigenvalues ai , we define

f (A) ≡
∑

i

f (ai )
[
�i�

†
i

]
. (3.3.34)

Probabilities can enter in quantum mechanics not only because of the proba-
bilistic nature of state vectors, but also because (just as in classical mechanics)
we may not know the state of a system. A system may be in any one of a number
of states, represented by state vectors �n that are normalized but not neces-
sarily orthogonal, with probabilities Pn satisfying

∑
n Pn = 1. (For instance,

an atomic state with � = 1 may have a 20% chance of being in a state with
Lz = �, a 30% chance of having Lx = 0, and a 50% chance of having
(Lx + L y)/

√
2 = �.) In such cases, it is often convenient to define a density

matrix (actually an operator, not a matrix) as a sum of projection operators, with
coefficients equal to the corresponding probabilities

ρ ≡
∑

n

Pn

[
�n�

†
n

]
. (3.3.35)

We note that the expectation value of the observable represented by an arbitrary
Hermitian operator A is the sum of the expectation values in the individual states
�n , weighted with the probabilities of these states:

〈A〉 =
∑

n

Pn

(
�n, A�n

)
= Tr{Aρ}. (3.3.36)

So in quantum mechanics the physical properties of a statistical ensemble of pos-
sible states are completely characterized by the density matrix of the ensemble.
This is remarkable, because the same density matrix can be written in different
ways as sums over various sets of states with various probabilities. In particu-
lar, because the density matrix (3.3.35) is Hermitian, it has a complete set of
orthonormal eigenvectors �i with eigenvalues pi , so it can also be written

ρ =
∑

i

pi

[
�i�

†
i

]
. (3.3.37)
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Also, ρ is a positive operator, in the sense that any of its expectation values is a
positive number, so all pi have pi ≥ 0. Finally, using Eq. (3.1.17), we can see
that the operator (3.3.35) has unit trace

Tr ρ =
∑

n

Pn = 1,

so applying this to the representation (3.3.37), we also have
∑

i pi = 1. As far as
calculating expectation values is concerned, we can equally well say that the sys-
tem is in any of the states represented by possibly non-orthogonal state vectors
�n , with probabilities Pn , or in any of the states represented by the orthogonal
state vectors�i , with probabilities pi . It is a special feature of quantum mechan-
ics that our knowledge of the same system can be expressed in different ways, as
different sets of probabilities that the system is in different sets of states. As we
shall see in Section 12.1, it is this feature of quantum mechanics that prevents the
instantaneous transmission of information between distant isolated observers.

It is sometimes convenient to express the degree to which the state of a system
differs from a single pure state by the von Neumann entropy:

S[ρ] ≡ −kB Tr
(
ρ ln ρ

)
= −kB

∑
i

pi ln pi , (3.3.38)

where kB (often omitted) is the Boltzmann constant. For a pure state, with one pi

equal to unity and all others equal to zero, the von Neumann entropy vanishes,
while in all other cases we have S > 0.

We often encounter systems that are composed of two subsystems, so that
we label states with compound indices ma, nb, etc.: �ma would be a vector
representing a state in which subsystem I is in state m and subsystem I I is in
state a. These two subsystems might be just two atoms, or subsystem I might
be some microscopic system of interest while subsystem I I is its environment.
If an observable is represented by an operator A that acts non-trivially only on
the states of subsystem I , that is,

Ama,nb = AI
mnδab, (3.3.39)

then its mean value in an ensemble of states with density matrix ρma,nb is

〈A〉 = Tr(Aρ) =
∑
manb

Ama,nbρnb,ma =
∑
mn

AI
mnρ

I
nm, (3.3.40)

where

ρ I
mn ≡

∑
a

ρma.na. (3.3.41)

We can thus think of ρ I
mn as the density matrix for subsystem I , relevant to the

case in which nothing is being done to probe subsystem I I . Note that like any
density matrix, ρ I is Hermitian, positive, and has unit trace. In the same sense,
ρ I I

ab ≡ ∑
m ρma,nb can be regarded as the density matrix of subsystem I I .
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74 3 General Principles of Quantum Mechanics

Where there is no correlation between the two subsystems, the density
matrix of the whole system is the direct product of the density matrices of the
subsystems: ρ = ρ I ⊗ ρ I I , or more explicitly

ρma,nb = ρ I
mn ρ

I I
ab . (3.3.42)

In this case, each eigenvalue of ρ is the product of an eigenvalue pI
i of ρ I and

an eigenvalue pI I
r of ρ I I , and the von Neumann entropy (3.3.38) is therefore

simply additive:

S[ρ] = −kB

∑
ir

pI
i pI I

r ln[pI
i pI I

r ] = − − kB

∑
ir

pI
i pI I

r

(
ln[pI

i ] + ln[pI I
r ])

= S[ρ I ] + S[ρ I I ]. (3.3.43)

The case of entanglement, in which neither Eq. (3.3.42) nor Eq. (3.3.43) holds,
is the subject of Chapter 12.

3.4 Symmetries

Historically, it was classical mechanics that provided quantum mechanics with a
menu of observable quantities and with their properties. But much of this can be
learned from fundamental principles of symmetry, without recourse to classical
mechanics.

A symmetry principle is a statement that, when we change our point of view in
certain ways, the laws of nature do not change. For instance, moving or rotating
our laboratory should not change the laws of nature observed in the laboratory.
Such special ways of changing our point of view are called symmetry transfor-
mations. This definition does not mean that a symmetry transformation does not
change physical states, but only that the new states after a symmetry transfor-
mation will be observed to satisfy the same laws of nature as the old states.

In particular, symmetry transformations must not change transition probabil-
ities. Recall that if a system is in a state represented by a normalized Hilbert
space vector �, and we perform a measurement (say, of a set of observables
represented by commuting Hermitian operators) which puts the system in any
one of a complete set of states represented by orthonormal state vectors �i , then
the probability of finding the system in a state represented by a particular �i is
given by Eq. (3.1.15):

P(� �→ �i ) =
∣∣∣(�i , �

)∣∣∣2 . (3.4.1)

Thus symmetry transformations must leave all
∣∣∣(�,�)∣∣∣2 invariant. One way

to satisfy this condition is to suppose that a symmetry transformation takes
general state vectors � into other state vectors U�, where U is a linear operator
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satisfying the condition of unitarity, namely that for any two state vectors � and
�, we have (

U�,U�
)

=
(
�,�

)
. (3.4.2)

Recall that the adjoint of an operator U is defined so that(
U�,U�

)
=
(
�,U †U�

)
,

so the condition of unitarity may also be expressed as an operator relation:

U †U = 1. (3.4.3)

We limit ourselves to symmetry transformations that, like rotations and trans-
lations, have inverses, which undo the effect of the transformation. (For instance,
the symmetry transformation of rotating around some axis by an angle θ has an
inverse symmetry transformation, in which one rotates around the same axis by
an angle −θ .) If a symmetry transformation is represented by a linear unitary
operator that takes any � into U�, then its inverse must be represented by a
left-inverse operator U−1 that takes U� into �, so that

U−1U = 1. (3.4.4)

The same must be true for U−1 itself, so it has a left-inverse (U−1)−1 for which
(U−1)−1U−1 = 1. Multiplying this on the right with U and using Eq. (3.4.4)
then gives

(U−1)−1 = U, (3.4.5)

so by applying Eq. (3.4.4) to U−1, we see that the left-inverse of U is also a
right-inverse:

UU−1 = 1. (3.4.6)

Acting on Eq. (3.4.3) on the right with U−1, we see that the inverse of a unitary
operator is its adjoint:

U † = U−1. (3.4.7)

Now, is this the only way that symmetry transformations can act on physi-
cal states? In formulating the mathematical conditions for symmetry principles
in quantum mechanics, we immediately run into a complication. As discussed
in Section 3.1, in quantum mechanics a physical state is not represented by a
specific individual normalized vector in Hilbert space, but by a ray, the whole
class of normalized state vectors that differ from one another only by phase fac-
tors, numerical factors with modulus unity. We have no right simply to assume
that a symmetry transformation must map an arbitrary vector in Hilbert space
into some other definite vector. We are only entitled to require that symmetry
transformations map rays into rays – that is, a symmetry transformation acting
on the normalized state vectors differing by phase factors that represent a given
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76 3 General Principles of Quantum Mechanics

physical state will yield some other class of normalized state vectors differing
only by phase factors that represent some other physical state. To represent a
symmetry, such a transformation of rays must preserve transition probabilities –
that is, if � and � are state vectors belonging to the rays representing two dif-
ferent physical states, and a symmetry transformation takes these two rays into
two other rays containing the state vectors � ′ and �′, then we must have

|(�′, � ′)|2 = |(�,�)|2. (3.4.8)

Notice that this is only a condition on rays – if it is satisfied by a given set of
state vectors, then it is satisfied by any other set of state vectors that differ from
the first set only by arbitrary phases.

There is a fundamental theorem due to Eugene Wigner9 (1902–1995), which
says that there are just two ways that this condition can be satisfied for all � and
�. One is the way we have already discussed: phases can be chosen so that the
effect of a symmetry transformation on any state vector � is a transformation
� → U�, with U a linear unitary operator satisfying the condition (3.4.2). The
other possibility is that U is antilinear and antiunitary, by which it is meant that

U (α� + α′� ′) = α∗U� + α′∗U� ′ (3.4.9)

and

(U�,U�) = (�,�)∗. (3.4.10)

(Note that an antiunitary operator cannot be linear, because if it were then we
would have α(U�,U�) = (U�,Uα�) = (�, α�)∗ = α∗(U�,U�), which
is not true for complex α.) For antiunitary operators the definition of the adjoint
is changed to

(U †�,�) = (�,U�)∗,

so Eq. (3.4.3) applies to antiunitary as well as to unitary operators. We will see
in Section 3.6 that symmetries represented by antilinear antiunitary operators all
involve a change in the direction of time’s flow. We will mostly be concerned
with symmetries represented by linear unitary operators.

The operator 1 represents a trivial symmetry, that does nothing to state vec-
tors. It is of course unitary as well as linear. If U1 and U2 both represent
symmetry transformations, then so does U1U2. This property, together with the
existence of inverses and a trivial transformation 1, means that the set of all
operators representing symmetry transformations forms a group.

There is a special class of symmetries represented by linear unitary oper-
ators – those for which U can be arbitrarily close to 1. Any such symmetry
operator can conveniently be written

9 E. P. Wigner, Ann. Math. 40. 149 (1939). Some missing steps are provided by S. Weinberg, The
Quantum Theory of Fields, Vol. 1 (Cambridge University Press, Cambridge, 1995), pp. 91–96.
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Uε = 1 + iεT + O(ε2), (3.4.11)

where ε is an arbitrary real infinitesimal number, and T is some ε-independent
operator. The unitarity condition is(

1 − iεT † + O(ε2)
)(

1 + iεT + O(ε2)
)

= 1,

or, to first order in ε,

T = T †. (3.4.12)

Thus Hermitian operators arise naturally in the presence of infinitesimal sym-
metries. If we take ε = θ/N , where θ is some finite N -independent parameter,
and then carry out the symmetry transformation N times and let N go to infinity,
we find a transformation represented by the operator[

1 + iθT/N
]N → exp(iθT ) = U (θ). (3.4.13)

(To see that this is true for Hermitian operators T , note that it is true when both
sides of the equation act on any eigenvector of T , where T can be replaced with
the eigenvalue, and since these eigenvectors form a complete set, it is true in
general.) The operator T appearing in Eq. (3.4.11) is known as the generator
of the symmetry. As we shall see, many if not all of the operators represent-
ing observables in quantum mechanics are the generators of symmetries. For
instance, the total momentum is the generator of translations of spatial coor-
dinates (Section 3.5); the Hamiltonian is the generator of translations of the
time (Section 3.6); and the total angular momentum is the generator of spatial
rotations (Section 4.1).

Under a symmetry transformation � �→ U�, the expectation value of any
observable A is subjected to the transformation

(�, A�) �→ (U�, AU�) = (�,U−1 AU�), (3.4.14)

so we can find the transformation properties of expectation values (or any other
matrix elements) by subjecting observables to the transformation

A �→ U−1 AU. (3.4.15)

Transformations of this type are called similarity transformations. Note that
similarity transformations preserve algebraic relations:

U−1 AU × U−1 BU = U−1(AB)U, U−1 AU + U−1 BU = U−1(A + B)U.

Also, similarity transformations do not change the eigenvalues of operators; if
� is an eigenvector of A with eigenvalue a, then U−1� is an eigenvector of
U−1 AU with the same eigenvalue. Where U takes the form (3.4.11) with ε

infinitesimal, an arbitrary operator A is transformed into

A �→ A − iε[T, A] + O(ε2). (3.4.16)
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78 3 General Principles of Quantum Mechanics

Thus the effect of infinitesimal symmetry transformations on any operator is
expressed in the commutation relations of the symmetry generator with that
operator. This is in particular true when the operator A is itself a symmetry gen-
erator; as we will see in several examples, in that case the commutation relations
reflect the nature of the symmetry group.

3.5 Space Translation

As an example of a symmetry transformation of great physical importance, let
us consider the symmetry under spatial translation: the laws of nature should
not change if we shift the origin of our spatial coordinate system, so that any
particle coordinate Xn (where n labels the individual particles) is transformed to
Xn + a, where a is an arbitrary three-vector. It follows that there must exist a
unitary operator10 U (a) such that

U−1(a)XnU (a) = Xn + a. (3.5.1)

In particular, for a infinitesimal, U must take a form like (3.4.11), which in this
case we will write with an Hermitian three-vector operator −P/� in place of T :

U (a) = 1 − iP · a/� + O(a2). (3.5.2)

The condition (3.5.1) then requires that, for any infinitesimal three-vector a,

i[P · a,Xn]/� = a,

and therefore

[Xni , Pj ] = i�δi j . (3.5.3)

The presence of � in this familiar commutation relation arises because we con-
ventionally express the generator of spatial translations in units of mass times
velocity, rather than in natural units of inverse length. Equation (3.5.2) can sim-
ply be taken as the definition of what we mean by momentum, leaving it to
experience to justify the identification of this symmetry generator with what is
called momentum in classical mechanics.

It should be noted that the operator P introduced here has the same com-
mutation relation (3.5.3) with the coordinate vector of any particle, so P must
be interpreted as the total momentum of any system. In a system containing a
number of different particles labeled n, the total momentum usually takes the
form

P =
∑

n

Pn, (3.5.4)

10 We will generally not bother to label such unitary operators with the nature of the symmetry they
represent, leaving this to be indicated by the argument of the unitary operator.
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3.5 Space Translation 79

where the operator Pn acts only on the nth particle, and therefore

[Pn,Xm] = 0 for n 	= m. (3.5.5)

It follows then from Eq. (3.5.3) that

[Xni , Pmj ] = i� δi j δnm . (3.5.6)

Of course, the individual momentum operators Pn are not the generators of any
symmetry of nature.

A translation by a vector a followed by a translation by a vector b gives
the same change of coordinates as a translation by a vector b followed by a
translation by a vector a, so

U (b)U (a) = U (a)U (b).

The terms in this relation proportional to ai b j tell us that the components of
momentum commute with each other:

[Pi , Pj ] = 0. (3.5.7)

Because they commute, we can find a complete set of eigenvectors of all three
components of momentum, so by the same argument we used earlier in deriving
Eq. (3.4.13), for finite translations we have

U (a) = exp
(
−iP · a/�

)
. (3.5.8)

This is a very simple example of the derivation of commutation relations from
the structure of a transformation group. It isn’t always so easy. The effect of two
rotations around different axes depends on the order in which the rotations are
carried out, so, as we shall see in the next chapter, the different components of
the generator of rotations, the angular momentum vector, do not commute with
each other.

If �0 is a one-particle state with a definite position at the origin (that is, an
eigenstate of the position operator X with eigenvalue zero), then according to
Eq. (3.5.1), we can form a state with definite position x:

�x ≡ U (x)�0, (3.5.9)

in the sense that

X�x = x�x. (3.5.10)

From Eq. (3.5.6) we can infer that

Pj�x = i�
∂

∂x j
�x, (3.5.11)

so the scalar product of this state with a state �p of definite momentum is(
�p,�x

)
= exp

(
−ip · x/�

)(
�p,�0

)
.
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80 3 General Principles of Quantum Mechanics

It is convenient to normalize these states so that(
�p,�x

)
= (2π�)−3/2 exp

(
−ip · x/�

)
.

The complex conjugate gives the usual plane wave formula for the coordinate-
space wave function of a particle of definite momentum

ψp(x) ≡
(
�x, �p

)
= (2π�)−3/2 exp

(
ip · x/�

)
. (3.5.12)

This normalization has the virtue that, if the states �x satisfy the usual
normalization condition for continuum states(

�x′,�x

)
= δ3(x − x′),

then so do the states �p. That is, the scalar product of these states is(
�p′, �p

)
=
∫

d3x ψ∗
p′(x)ψp(x) =

∫
d3x (2π�)−3 exp

(
i(p − p′) · x/�

)
.

We recognize this integral as the product of the representations (3.2.21) of the
delta function (with ki = pi/�) for each coordinate direction, so(

�p′, �p

)
= δ3(p − p′), (3.5.13)

as required by Eq. (3.2.14).

∗ ∗ ∗ ∗ ∗
In some external environments, the Hamiltonian is not invariant under all

translations, but only under a subgroup of the translation group. In a three-
dimensional crystal, the Hamiltonian is invariant under spatial translations

x �→ x + Lr , r = 1, 2, 3, (3.5.14)

as well as any combinations of these. The Lr are the three independent transla-
tion vectors that take any atom to the neighboring atom with an identical crystal
environment. (Of course, Lr are three independent vectors, not the three compo-
nents of a single vector.) For instance, in a cubic lattice like sodium chloride the
three Lr are orthogonal vectors of equal length, but in general they do not need
to be either orthogonal or equal in length.

Because of this symmetry, if ψ(x) is a solution of the time-independent
Schrödinger equation for an electron in the crystal, then each of ψ(x + Lr ) with
r = 1, 2, 3 is also a solution with the same energy. Assuming no degeneracy,11

11 The conclusion (3.5.15) applies also in the case of degeneracy, but a few more words are needed in the
argument. In the case of an N -fold degeneracy, in place of the factors exp(iθr ) in Eq. (3.5.15) we have
three N ×N unitary matrices. Because translations commute, these three unitary matrices commute with
each other, and hence we can choose a basis for the N degenerate wave functions in which the unitary
matrices are diagonal: they have phase factors exp(iθrν) on the main diagonal, with ν = 1, 2, . . . , N ,
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this requires that ψ(x + Lr ) is simply proportional to ψ(x), with a proportion-
ality constant that is required by the normalization of the wave function to be a
phase factor:

ψ(x + Lr ) = eiθrψ(x), (3.5.15)

where θr are three real angles. In the language of group theory, the wave function
provides a one-dimensional representation of the group of translations that con-
sists of all combinations of the three fundamental translations (3.5.14). Without
loss of generality, we can limit each of the θr by

0 ≤ θr < 2π, r = 1, 2, 3. (3.5.16)

We will define a wave vector q by the three conditions

q · Lr = θr , r = 1, 2, 3. (3.5.17)

In the special case of a cubic lattice, this directly gives the Cartesian components
of q. More generally, it is necessary to solve these three linear equations to find
the three components of q. In any case, it follows from Eqs. (3.5.15) and (3.5.17)
that the function e−iq·xψ(x) is periodic, the factors arising from the change in
the exponential canceling the factors eiθr in Eq. (3.5.15). Hence we may write

ψ(x) = eiq·xϕ(x), (3.5.18)

where ϕ(x) is periodic, in the sense that

ϕ(x + Lr ) = ϕ(x), r = 1, 2, 3. (3.5.19)

Such solutions of the Schrödinger equation are known as Bloch waves.12

If ψ(x) satisfies a Schrödinger equation of the form

H(∇, x)ψ(x) = Eψ(x), (3.5.20)

then ϕ(x) satisfies a q-dependent equation

H(∇ + iq, x)ϕ(x) = Eϕ(x). (3.5.21)

Just as in the case of free particles in a box with periodic boundary conditions,
the periodicity conditions (3.5.19) make the spectrum of eigenvalues for each q
appearing in the differential equation (3.5.21) a discrete set En(q). Of course,
q is a continuous variable, but according to Eqs. (3.5.16) and (3.5.17) it varies
only over a finite range, defined by13

and zero everywhere else. In this basis Eq. (3.5.15) applies to the νth degenerate wave function, with a
phase θrν in place of θr .

12 F. Bloch, Z. Physik 52, 555 (1928).
13 This is known as the first Brillouin zone, identified by L. Brillouin, Comptes Rendus 191, 292 (1930).

If we had adopted a convention for the angles θr in Eq. (3.5.15) other than Eq. (3.5.16), then the wave
vector q would lie in one of various other finite regions, known as the second, third, etc. Brillouin zones.
This would just amount to a re-definition of the periodic function ϕ(x), with no change in physical
results.
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|q · Lr | < 2π, r = 1, 2, 3. (3.5.22)

Hence for each n the energies En(q) occupy a finite band. As will briefly be
described in Section 4.5, many of the properties of crystalline solids depend on
the occupancy of these bands.

3.6 Time Translation and Inversion

One of the fundamental symmetries of nature is time-translation invariance –
the laws of nature should not depend on how we set our clocks. Thus whatever
time-dependence a physical state vector �(t) may have, the results �(t + τ) of
a time translation by an arbitrary amount τ should be physically equivalent, so
there must be some linear unitary operator U (τ ) such that the state of a system
at time t is transformed to

U (τ )�(t) = �(t + τ). (3.6.1)

Because τ is a continuous variable, it must be possible to express U (τ ) in a form
like (3.4.13). For time translation in place of the general Hermitian operator T
in Eq. (3.4.13), we introduce an Hermitian operator −H/�, so that

U (τ ) = exp
(
−i Hτ/�

)
. (3.6.2)

This can be taken as the definition of the Hamiltonian H .
It follows, by setting t = 0 in Eq. (3.6.1) and then replacing τ with t , that the

time-dependence of any physical state vector is given by

�(t) = exp
(
−i Ht/�

)
�(0). (3.6.3)

Like any symmetry transformation represented by linear unitary operators, this
leaves scalar products invariant:(

�(t),�(t)
)

=
(
�(0),�(0)

)
. (3.6.4)

From Eq. (3.6.3) we can easily derive a differential equation for the time-
dependence of the state vector:

i��̇(t) = H�(t). (3.6.5)

This is the general version of the time-dependent Schrödinger equation.
This formalism, in which we ascribe time-dependence to physical states (and

hence to wave functions), is known as the Schrödinger picture. There is a
completely equivalent formalism, in which we keep the state vectors fixed, by
describing any state in terms of its appearance at a fixed time such as t = 0,
and instead ascribe time-dependence to operators representing observables. In
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3.6 Time Translation and Inversion 83

order that the time-dependence of expectation values should be the same in both
pictures, we must define operators in the Heisenberg picture by

AH (t) = exp
(
+i Ht/�

)
A exp

(
−i Ht/�

)
. (3.6.6)

Note that, since H commutes with itself,

exp
(
+i Ht/�

)
H exp

(
−i Ht/�

)
= H,

so the Hamiltonian is the same in the Heisenberg and Schrödinger pictures. The
time-dependence of any operator in the Heisenberg picture is given by

ȦH (t) = i[H, AH (t)]/�, (3.6.7)

provided that the definition of A does not refer explicitly to time. The Hamil-
tonian thus determines the time-dependence of most physical quantities. Any
operator A that commutes with the Hamiltonian and that does not depend
explicitly on time is conserved, in the sense that ȦH (t) = 0, which means
that expectation values of this observable are time-independent, irrespective of
whether we use the Heisenberg picture or the Schrödinger picture.

Symmetry principles provide a natural reason why physical theories should
involve conserved quantities. If an observer sees a state �(t) evolving according
to Eq. (3.6.3), then another observer for whom the laws of nature are the same
must see the state U�(t) evolving according to the same equation

U�(t) = exp
(
−i Ht/�

)
U�(0). (3.6.8)

In order for this to be consistent with Eq. (3.6.3) for all states, we must have

exp
(
−i Ht/�

)
U = U exp

(
−i Ht/�

)
, (3.6.9)

and therefore, provided U is a linear operator,

U−1 HU = H. (3.6.10)

That is, the Hamiltonian must be invariant under the symmetry transformation.
For an infinitesimal symmetry transformation with U given by Eq. (3.4.11), this
tells us that

[H, T ] = 0, (3.6.11)

so observables represented by the generators of symmetries of the Hamiltonian
commute with the Hamiltonian. It is invariance under space and time translation
that is responsible for the conservation of momentum and energy.

Note that this would not work if U were antilinear. In that case, because of
the i in the exponent in Eq. (3.6.9), in place of Eq. (3.6.10) we would find
U−1 HU = −H . This would imply that for every eigenstate � of the Hamil-
tonian with energy E , there would be another eigenstate U� with energy −E ,
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84 3 General Principles of Quantum Mechanics

which is clearly in conflict with observation and with the stability of matter.14

The only way to avoid this conclusion for symmetries represented by antilinear
operators is to suppose that, instead of Eq. (3.6.8), such symmetries reverse the
direction of time:

U�(t) = exp
(

i Ht/�
)

U�(0). (3.6.12)

Then in place of Eq. (3.6.9), consistency with Eq. (3.6.3) would require that

exp
(

i Ht/�
)

U = U exp
(
−i Ht/�

)
. (3.6.13)

With U antilinear, this again yields the result that U commutes with H , avoid-
ing the disaster of negative energies. So we see that symmetries represented by
antilinear operators are possible, but they necessarily involve a reversal of the
direction of time.

It used to be thought that nature respects a symmetry under a transformation
t → −t with everything else left unchanged. As discussed in Section 4.7, it is
now known that this symmetry is violated by the weak interactions, although it
is a good approximation even there. The application of time-reversal symmetry
to scattering processes is described in Section 8.9. There is also a transformation
that reverses both the direction of time and of space, and also interchanges mat-
ter and antimatter, which is believed to be an exact symmetry of all interactions.
This is discussed further in Section 4.7.

Not all symmetries are represented by operators that commute with the
Hamiltonian. The leading example of a different sort of symmetry is invariance
under Galilean transformations, which take the spatial coordinate x into x + vt
(where v is a constant velocity) while leaving the time coordinate unchanged. In
quantum mechanics this symmetry requires there to be a unitary linear operator
U (v) such that

U−1(v)XH (t)U (v) = XH (t)+ vt, (3.6.14)

where XH (t) is the Heisenberg-picture operator representing the spatial coor-
dinate of any particle. Taking the time-derivative of Eq. (3.6.14) and using
Eq. (3.6.7) gives

iU−1(v)[H,XH (t)]U (v) = i[H,XH (t)] + �v,

and therefore, setting t = 0,

i
[
U−1(v)HU (v),U−1(v)XU (v)] = i[H,X] + �v.

14 Negative-energy states were encountered by Dirac, not as a consequence of time reversal symmetry,
but as negative-energy solutions of his relativistic wave equation. Dirac supposed that matter is stable
because all or almost all of these negative-energy states are filled. (See P. A. M. Dirac, Proc. Roy. Soc.
A 126, 360 (1930).) Dirac’s interpretation of negative-energy states is untenable, for reasons indicated
in Section 4.6.
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For t = 0 Eq. (3.6.14) tells us that U (v) commutes with the Schrödinger-picture
operator X, so this gives

i
[
U−1(v)HU (v),X

]
= i[H,X] + �v. (3.6.15)

This requires that

U−1(v)HU (v) = H + P · v, (3.6.16)

where P is an operator satisfying the familiar commutation relation [Xi , Pj ] =
i�δi j with every particle coordinate – that is, P is the total momentum vector.

For v infinitesimal we can write

U (v) = 1 − iv · K + O(v2), (3.6.17)

with K some Hermitian operator, known as the boost generator. Since the
transformations (3.6.14) are additive, we have U (v)U (v′) = U (v + v′), and
hence

[Ki , K j ] = 0. (3.6.18)

Also, letting v in Eq. (3.6.16) become infinitesimal, we find

[K, H ] = −iP. (3.6.19)

It is because K does not commute with the Hamiltonian that we do not use its
eigenvalues to classify physical states of definite energy. The boost generator is
an exception to the general rule that the generators of symmetries commute with
the Hamiltonian. This exception arises because K is associated with a symmetry
transformation (3.6.14) that depends explicitly on time.

Since Eq. (3.6.14) applies to the coordinate Xn of any particle (now label-
ing individual particles with a subscript n), by taking the time-derivative and
multiplying with the particle mass mn , we have

U−1(v)PnH (t)U (v) = PnH (t)+ mnv, (3.6.20)

where PnH ≡ mnẊnH is the momentum of the nth particle in the Heisenberg pic-
ture. Setting t = 0 and specializing to the infinitesimal Galilean transformations
(3.6.17), this gives

[Ki , Pnj ] = −imnδi j . (3.6.21)

Note that then Eq. (3.6.19) is satisfied by the usual Hamiltonian for a multi-
particle system

H =
∑

n

P2
n

2mn
+ V, (3.6.22)

provided the potential V depends only on the differences of the particle
coordinate vectors. Indeed, from a point of view that regards symmetries as fun-
damental, we can say that Galilean invariance is the reason why Hamiltonians
for non-relativistic particles take this form.
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86 3 General Principles of Quantum Mechanics

Note that the operators K, H , and the total momentum P = ∑
n Pn form a

closed Lie algebra, in the sense that the commutators of these generators are
linear combinations of the same generators. But there is a complication: the
commutator of Ki and Pj is proportional to the total mass

∑
n mn . Quantities

like the total mass that appear in commutation relations but commute with all the
operators in these relations are known as central charges. In theories that obey
Lorentz invariance rather than Galilean invariance, there are again symmetries
generated by the total momentum P, the Hamiltonian H , and a boost generator
K, but the commutation relations are different: the commutator of K with P is
proportional to H , not to the total mass; there are no central charges; and the
commutators [Ki , K j ] do not vanish, but are proportional to the total angular
momentum operator.

∗ ∗ ∗ ∗ ∗
It is sometimes useful to follow the time-dependence of the density matrix.

Suppose that at time t = 0 the probabilities that a system is in various states
represented by independent normalized (but not necessarily orthogonal) state
vectors �n are the positive quantities Pn , with

∑
n Pn = 1. Then, as discussed

in Section 3.3, the density matrix at t = 0 is

ρ(0) =
∑

n

Pn

[
�n �

†
n

]
. (3.6.23)

At a later time t the state vectors �n turn into exp(−i Ht/�)�n , and the density
matrix becomes

ρ(t) =
∑

n

Pn exp(−i Ht/�)
[
�n �

†
n

]
exp(+i Ht/�)

= exp(−i Ht/�) ρ(0) exp(+i Ht/�). (3.6.24)

This is a unitary transformation, so ρ(t) is Hermitian, and has the same eigen-
values as ρ(0), and therefore is positive, has unit trace, and has the same von
Neumann entropy as ρ(0).

3.7 Interpretations of Quantum Mechanics

The discussion of probabilities in Section 3.1 was implicitly based on what is
called the Copenhagen interpretation of quantum mechanics, formulated under
the leadership of Niels Bohr.15 According to Bohr,16 “The essentially new

15 N. Bohr , Nature 121, 580 (1928), reprinted in Quantum Theory and Measurement, eds. J. A. Wheeler
and W. H. Zurek (Princeton University Press, Princeton, NJ, 1983); Essays 1958–1962 on Atomic
Physics and Human Knowledge (Interscience Publishers, New York, 1963).

16 N. Bohr, “Quantum Mechanics and Philosophy – Causality and Complementarity,” in Philosophy in the
Mid-Century, ed. R. Klibansky (La Nuova Italia Editrice, Florence, 1958), reprinted in N. Bohr, Essays
1958–1962 on Atomic Physics and Human Knowledge (Interscience Publishers, New York, 1963).
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3.7 Interpretations of Quantum Mechanics 87

feature of the analysis of quantum phenomena is . . . the introduction of a
fundamental distinction between the measuring apparatus and the objects under
investigation. This is a direct consequence of the necessity of accounting for
the functions of the measuring apparatus in purely classical terms, excluding in
principle any regard to the quantum of action.”

As Bohr acknowledged, in the Copenhagen interpretation a measurement
changes the state of a system in a way that cannot itself be described by quan-
tum mechanics.17 This can be seen from the interpretive rules of the theory.
If we measure an observable represented by an Hermitian operator A, and
the system is initially in a normalized superposition

∑
r cr�r of orthonor-

mal eigenvectors �r of A with eigenvalues ar , then the state is supposed
to collapse during the measurement to a state in which the observable has
a definite one of the values ar , and the probability of finding the value ar

is given by what is known as the Born rule, as |cr |2. This interpretation of
quantum mechanics entails a departure during measurement from the dynam-
ical assumptions of quantum mechanics. In quantum mechanics the evolution
of the state vector described by the time-dependent Schrödinger equation is
deterministic. If the time-dependent Schrödinger equation described the mea-
surement process, then whatever the details of the process, the end result
would be some definite pure state, not a number of possibilities with different
probabilities.

We can see this more concretely by considering the effect of a measurement
on the density matrix. For a system that can be in various possible states �r with
probabilities Pr , the density matrix is

ρ =
∑

r

�r Pr , (3.7.1)

where �r ≡ [�r�
†
r ] is the projection operator on the normalized state vector

�r . If the system is in a state �r and we make a measurement of some quantity
or quantities that have definite values in a complete orthonormal set of state vec-
tors �α, then the probability that we will find the values characteristic of some
particular state �α is |(�α,�r )|2, so the density matrix after the measurement is

ρ ′ =
∑
α

�α

∑
r

Pr |(�α,�r )|2 =
∑
α

�α Tr
(
ρ �α

)
=
∑
α

�αρ�α, (3.7.2)

where �α ≡ [�α�
†
α] is the projection operator on state vector �α. On the

other hand, for the familiar deterministic evolution of state vectors in quantum
mechanics, a system that is in state �r at time t will at time t ′ be in a state
� ′

r = exp(−i H(t ′ − t)/�)�r , so the density matrix at time t ′ will be

17 There are variants of the Copenhagen interpretation sharing this feature, some of them described by B.
S. DeWitt, Physics Today, September, p. 30 (1970).
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88 3 General Principles of Quantum Mechanics

ρ ′ =
∑

r

Pr exp(−i H(t ′ − t)/�)�r exp(+i H(t ′ − t)/�)

= exp(−i H(t ′ − t)/�) ρ exp(+i H(t ′ − t)/�). (3.7.3)

There is no possible Hamiltonian for which for all initial density matrices ρ the
final density matrices (3.7.3) would take the form (3.7.2).

This is clearly unsatisfactory. If quantum mechanics applies to everything,
then it must apply to a physicist’s measurement apparatus, and to physicists
themselves. On the other hand, if quantum mechanics does not apply to every-
thing, then we need to know where to draw the boundary of its area of validity.
Does it apply only to systems that are not too large? Does it apply if a measure-
ment is made by some automatic apparatus, and no human reads the result? Also,
for Bohr, classical mechanics was not merely an approximation to quantum
mechanics – it was an essential part of the world, necessary for the interpretation
of quantum mechanics. Even if we reject this as absurd, the Copenhagen inter-
pretation still leaves us with the question, what does lie beyond the boundary of
validity of quantum mechanics?

This puzzle has led some physicists to propose ways to replace quantum
mechanics with a more satisfactory theory. One possibility is to add “hidden
variables” to the theory. The probabilities encountered in quantum mechanics
would then reflect our ignorance of these variables, rather than any intrinsic
indeterminacy in nature.18 Another possibility, which goes in the opposite direc-
tion, is to introduce intrinsically random terms into the equation for the evolution
of the state vector, with no hidden variables, so that superpositions sponta-
neously collapse in an unpredictable way into the sorts of states familiar in
classical physics, too slowly for it to be observed for microscopic systems like
atoms or photons, but much more quickly for macroscopic systems such as mea-
suring instruments.19 In this section we will limit ourselves to interpretations of
quantum mechanics that do not entail any change in its dynamical foundations –
no hidden variables, and no modifications to the time-dependent Schrödinger
equation.

There has emerged in recent years a clearer picture of what actually happens
in a measurement. This has been largely due to the attention given to the phe-
nomenon of decoherence.20 But as I will try to show, even with this clarification,
there still seems to be something important missing in our present understanding
of quantum mechanics.

From the beginning, it was clear that the first requirement in a measurement
is an evolution of the state vector in the Schrödinger picture, which establishes

18 The best known theory of this sort is that of D. Bohm, Phys. Rev. D 85, 166, 180 (1952).
19 The leading theory of this type is that of G. C. Ghirardi, A. Rimini, and T. Weber, Phys. Rev. D 34, 470

(1986). For a review, see A. Bassi and G. C. Ghirardi, Phys. Rep. 379, 257 (2003).
20 For a review of decoherence, see W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003).
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3.7 Interpretations of Quantum Mechanics 89

a correlation between the system under study (which I will call the microscopic
system, though in principle it need not be small), such as an atom’s angu-
lar momentum or a radioactive nucleus, and a macroscopic apparatus, such
as a detector that determines the atom’s trajectory, or a cat. Suppose that the
microscopic system can be in various states labeled with an index n, while the
apparatus can be in states labeled with an index a, so that the states of the com-
bined system can be expressed in terms of a complete orthonormal basis of state
vectors denoted �na . (There must be at least as many apparatus states a as sys-
tem states n, though there may be many more.) The apparatus is placed at t = 0
in a suitable known initial state denoted a = 0, with the microscopic system
in a general superposition of states, so that the combined system has an initial
state vector

�(0) =
∑

n

cn�n0. (3.7.4)

We then turn on an interaction between the microscopic system and the mea-
suring apparatus, so that the system evolves in a time t to U�(0), where U is
the unitary operator U = exp(−i t H/�). We suppose that we are free to choose
the Hamiltonian H to be anything we like, so that U is whatever unitary trans-
formation we need. For an ideal measurement, what we need is that the basis
states �n0 should evolve into states U�n0 = �nan , with n unchanged,21 and
with an labeling some definite state of the apparatus in a unique correspondence
with the state of the microscopic system, so that an 	= an′ if n 	= n′. That is,
we need22

Un′a′,n0 = δn′nδa′an . (3.7.5)

21 Measurements that are ideal in this sense, with the state of the microscopic system unchanged,
were called by J. A. Wheeler (1911–2008) “quantum non-demolition” measurements. In some cases
measurements that change the state of the microscopic system are also useful.

22 We can always choose the other elements of Un′a′,na , those with a 	= 0, to make the whole matrix
unitary. For instance, for a 	= 0, we can take

Un′a′,na =
{

δn′n U (n)
a′a , a′ 	= an′ ,

0, a′ = an′ ,

where the submatrix U (n) is constrained by the condition that, for all a 	= 0 and ā 	= 0,

δaā =
∑

a′ 	=an

U (n)∗
a′a U (n)

a′a .

The submatrices U (n)
a′a are square, because a′ runs over all apparatus states except a′ = an , and a runs

over all apparatus states except a = 0. These conditions thus simply require that these submatrices
are unitary, and since they are subject to no other constraints, we can find any number of matrices
that satisfy this condition. The reader can check that these conditions make the whole matrix Un′a′,na
unitary.
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90 3 General Principles of Quantum Mechanics

After the microscopic system and the measuring apparatus have interacted,
the combined system is in a state U�(0), which according to Eqs. (3.7.4) and
(3.7.5) is a superposition of apparatus states:23

U�(0) =
∑

n

cn�nan . (3.7.6)

This is not yet a measurement, because the system is still in a pure state, a
definite superposition of the basis states �n,an . Somehow the system must make
a transition to one or other of these states, with probabilities given by the Born
rule as |cn|2.

Even before we consider how this happens, we face a problem. Ordinary
experience shows that there are severe limitations on the states produced in mea-
surements. We may observe the pointer on a meter in any one of a number of
definite directions on the dial, but in practice we never see it in a superposi-
tion of directions. We will refer to the favored states produced by measurement
as classical states. (These states were identified by Zurek,24 with the name of
“pointer states.”) Quantum mechanics itself does not indicate anything special
about the classical states. As far as our discussion so far is concerned, we could
have taken the �na to be any orthonormal basis we like. The solution turns out
to involve the phenomenon of decoherence. To illustrate this, let’s look at two
classic examples of measurement, which will also be useful later as illustrations
in dealing with deeper problems.

The first example is the 1922 Stern–Gerlach experiment, which will be con-
sidered in detail (more detail than we need here) in Section 4.2. In this sort of
experiment a beam of atoms is sent into a magnetic field, with a homogeneous
term in, say, the z-direction, and a smaller inhomogeneous term, which puts the
atoms on different trajectories according to the value of the z-component Jz of
the total angular momentum of the atom. If the atom is initially in a state that
is a linear combination of eigenstates of Jz with different eigenvalues, then the

23 A frequently quoted example was given by John von Neumann (1903–1957), in Mathematical Foun-
dations of Quantum Mechanics, transl. R. T. Beyer (Princeton University Press, Princeton, NJ, 1955).
Instead of discrete indices n and a, the states of the microscopic system and the apparatus are charac-
terized by the position coordinate x of a particle and the coordinate X of a pointer. The Hamiltonian
is taken as H = ωx P, where ω is some constant and P is the pointer momentum operator, satisfying
the usual commutation relation [X, P] = i� (and with X and P commuting with x and its associated
momentum p). If at t = 0 the coordinate-space wave function is ψ(x, X, 0) = f (x − ξ)g(X), then at
a later time t the wave function in this case will be

ψ(x, X, t) = f (x − ξ)g(X − xωt).

If both f and g are sharply peaked at zero values of their arguments, then observation of the pointer
position X will tell us the position ξ of the particle, with an uncertainty that can be made as small as we
like by choosing the peaks in f and g to be sufficiently sharp. But if we start with the particle described
by a broad wave packet f , then no matter how sharply peaked we take the function g, the pointer will
be left in a superposition of states with a broad range of different positions X .

24 W. H. Zurek, Phys. Rev. D 24, 1516 (1981).
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3.7 Interpretations of Quantum Mechanics 91

state vector evolves to become a superposition of terms in which the atoms are
following different trajectories. So why do we always see the particle on one
definite trajectory, corresponding to a definite value of Jz?

The answer has to do with the phenomenon of decoherence. This occurs
because any real macroscopic apparatus will always be subject to tiny pertur-
bations from the external environment, if only from the black-body photons that
are present at any temperature above absolute zero.25 Joos and Zeh26 have con-
sidered an experiment in which electrons can classically follow either one of two
possible trajectories, and shown how room temperature radiation will in one sec-
ond introduce large random phases in the state vectors of trajectories separated
by only 1 mm. These perturbations cannot normally change one classical state
into another. For instance, exposure to low-temperature black-body photons will
not cause a particle on one trajectory in a Stern–Gerlach experiment to switch to
an entirely different trajectory. So if we choose the basis states �na to be classi-
cal states, such as the states in a Stern–Gerlach experiment in which the particle
has definite values of Jz and travels on definite trajectories, then the effect of
decoherence can only be to convert Eq. (3.7.6) to∑

n

exp(iϕn) cn�nan , (3.7.7)

where the ϕn are randomly fluctuating phases.27 In consequence, when we
calculate expectation values the interferences between different terms in this
superposition average to zero, and the observed expectation value of any Her-
mitian operator A (not necessarily one for which the �nan are eigenstates)
will be

〈A〉 =
∑

n

|cn|2
(
�nan , A�nan

)
, (3.7.8)

with the bar over the expectation value indicating that it is averaged over the
phases ϕn . This is commonly interpreted as meaning that the probability of the
system under study and the apparatus being in the state �nan is |cn|2, but, as
discussed below, this interpretation is far from clear.

A more melodramatic example of measurement in quantum mechanics was
offered in 1935 by Schrödinger.28 A cat is placed in a closed chamber with
a radioactive nucleus, a Geiger counter that can detect the nuclear decay, and
a capsule of poison that is released when the counter records that the decay

25 The possibility of suppressing decoherence so that superpositions of classical states can be observed is
discussed by A. J. Leggett, Contemp. Phys. 25, 583 (1984).

26 E. Joos and H. D. Zeh, Z. Phys. B: Condensed Matter 59, 223 (1985).
27 The classical states �na of the sort discussed above are here assumed to form a complete orthonormal

basis. In simple cases such as a Stern–Gerlach experiment, the classical states do form a complete
orthonormal set. This is not necessarily true in more complicated cases.

28 E. Schrödinger, Naturwissenschaften 48, 52 (1935).
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92 3 General Principles of Quantum Mechanics

has occurred. After one half-life, the state vector of the combined system is a
superposition of terms with equal magnitude: in one term, the nucleus has not
yet decayed and the cat is still alive; in the other term the decay has occurred
and the cat has been killed by the poison. Just looking at the cat perturbs the
state, but it cannot change a dead cat into one that is alive, or vice versa. But
these perturbations can and do rapidly change the phase of classical states,
in which the cat is definitely alive or dead. These rapid and random phase
changes almost immediately change any superposition of classical states to
other superpositions. A feline superposition calive�alive + cdead�dead will become
eiαcalive�alive + eiδcdead�dead, with α and δ randomly fluctuating phases. Again,
the expectation value of an operator A that represents an observable in such a
superposition when averaged over phases will become the average of the expec-
tation values of A in the states in which the cat is alive or dead, weighted with
|calive|2 and |cdead|2.

There seems to be a wide-spread impression that decoherence removes all
obstacles to this class of interpretations of quantum mechanics. But there is still
a problem with the Born rule, that tells us that in a state (3.7.8), the probability
that an observer sees the system in the state �nan is |cn|2. The “derivation” given
above, based on Eq. (3.7.8), is clearly circular, because it relies on the formula
for expectation values as matrix elements of operators, which is itself derived
from the Born rule. So where does the Born rule come from? There are two main
approaches to this question, that are often called instrumentalist and realist, each
with its own drawbacks.

Instrumentalism

In instrumentalist approaches, one gives up the idea that the state vector of a
closed system gives a complete account of the condition of the system, and
instead regards it as just an instrument that provides a prescription for the calcu-
lation of probabilities. This point of view can be regarded as a re-interpretation
of the Copenhagen version of quantum mechanics: instead of invoking a myste-
rious collapse of the state of a system during measurement, one simply assumes
that in a state with a normalized state vector �, the probability that the system
will be found to have a value an for some quantity represented by an Hermitian
operator A (rather than any other value of that quantity) is pn = ∑

r |(�nr , �)|2,
where �nr are all the orthonormal eigenvectors of A with eigenvalue an . This
Born rule would simply be taken as one of the laws of nature. But if these proba-
bilities are taken to be the probabilities of obtaining various results when people
make observations, then this approach brings people into the laws of nature.

This is not a problem for those physicists who, as did Bohr, view the laws
of nature as no more than a set of methods for ordering and surveying human
experience. They are certainly that, but it would be sad to give up the hope that
they are something more, that the laws of nature are in some sense “out there” in
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objective reality, the same laws (aside from language) for whoever studies them,
and the same whether or not anyone is studying them.

For some physicists the intrusion of humans into the laws of nature is
not unwelcome. David Mermin29 approvingly cites the approach known as
QBism,30 which “attributes the muddle at the foundations of quantum mechanics
to our unacknowledged removal of the scientist from the science.”

The problem with instrumentalism is not that, in considering what happens in
a measurement, one takes into account the scientist making the measurement.
That is unobjectionable, and perhaps inevitable. The problem arises precisely
because we want to be able to understand scientists along with everything else
scientifically, and for that very reason, we need to keep humans (scientists,
observers, or anyone else) out of the laws of nature, which by definition are
unexplained. Only if the laws are expressed in impersonal terms, whether parti-
cle trajectories or wave functions or something else that does not refer to people
making observations, can we hope to come to a scientific understanding of what
is going on when people do observe nature or make a measurement.

This has a parallel in the theory of evolution. Before Charles Darwin and
Alfred Russel Wallace, those naturalists who accepted the reality of evolution
generally explained it in terms of an inherent tendency of life to evolve toward
something better, like us. That put humans into the laws of biology, in a way that
would rule out a unified view of nature encompassing both life and physics. The
great achievement of Darwin and Wallace was to show how species like humans
could evolve from earlier species, without invoking any law of nature to that
effect. Much of the progress in biology since then would have been impossible
without this achievement.

Some physicists who follow the instrumentalist approach claim that the prob-
abilities predicted by the Born rule can be regarded as objective probabilities,
not necessarily having anything to do with people making measurements. For
instance, it is argued that when we say that the probability that a particle is
in a small interval �x around the coordinate x is |ψ(x)|2 �x , this is simply a
statement about where the particle actually is likely to be, not necessarily about
where we are likely to find it when we look at the particle. I don’t find this ten-
able, because in general the particle has no definite position or momentum until
people choose to observe one or the other. It can’t have both a definite position x
and a definite momentum p (with�x �p < �/2), because there is no such state.

By not attributing any reality to the state vector, except as a predictor of
probabilities, instrumentalism also gives up the classic and classical idea of an
objective evolution of physical systems. We can live with the idea that the state
of a physical system is described by a vector in Hilbert space rather than by
numerical values of the positions and momenta of all the particles in the system,

29 N. D. Mermin, Nature 507, 421 (2014).
30 C. A. Fuchs, N. D. Mermin, and R. Schack, Am. J. Phys. 82, 749 (2014).
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but it is hard to live with no description whatever of the evolution of physical
states. This objection is met in part by the “decoherent histories” or “consistent
histories” approach, due originally to Griffiths,31 and developed by Omnès32

and in detail by Gell-Mann and Hartle.33 In this approach, one defines histo-
ries of closed systems (such as the whole universe) to which one can attribute
probabilities that are consistent with the usual properties of probability.

A history is characterized first by a normalized initial state �, which evolves
from the initial time t0 to a time t1 according to the time-dependent Schrödinger
equation, At time t1 the system is averaged over its properties, holding fixed
only the values a1η of a few observables A1η. This is followed by evolution to
a time t2, at which time the system is again averaged over its properties, now
holding fixed only values a2η of another set of observables A2η, and so on. That
is, the history is defined by �, by the times t1, t2, etc., by the choice of the
observables A1η, A2η, etc. whose values are held fixed in the averaging at each
of these times, and by the fixed values a1η, a2η, etc. of these observables. This
corresponds to what is actually done in observations, say of particle trajectories,
in which only a few properties of a system are measured, and other properties
such as the surrounding thermal radiation field are ignored.

To simplify our notation, we will suppress the index η, as if each averaging
held fixed the value of just a single observable A1, A2, etc. To each history one
assigns a state vector:

�a1a2...aN ≡ �N (aN ) exp
(
−i H(tN − tN−1)/�

)
. . .

× exp
(
−i H(t3 − t2)/�

)
�2(a2)

× exp
(
−i H(t2 − t1)/�

)
�1(a1) exp

(
−i H(t1 − t0)/�

)
�,

(3.7.9)

where �1(a1), �2(a2), etc. are sums of projection operators on all states of the
system that are consistent with restrictions labeled by a1, a2, etc. For instance,
if the r th sum held fixed only the value ar of a single observable Ar , then
�r (ar ) would be the sum

∑(ar )
i [�i�

†
i ] of the projection operators on a set of

31 R. B. Griffiths, J. Stat. Phys. 36, 219 (1984); also see R. B. Griffiths, Consistent Quantum Theory
(Cambridge University Press, Cambridge, 2002).

32 R. Omnès, Rev. Mod. Phys. 64, 339 (1992); also see R. Omnès, The Interpretation of Quantum
Mechanics (Princeton University Press, Princeton, 1994).

33 M. Gell-Mann and J. B. Hartle, in Complexity, Entropy, and the Physics of Information, ed. W. H. Zurek
(Addison–Wesley, Reading, MA, 1990); in Proceedings of the Third International Symposium on the
Foundations of Quantum Mechanics in the Light of New Technology, ed. S. Kobayashi, H. Ezawa, Y.
Murayama, and S. Nomura (Physical Society of Japan, 1990); in Proceedings of the 25th International
Conference on High Energy Physics, Singapore, August 2–8, 1990, ed. K. K. Phua and Y. Yamaguchi
(World Scientific, Singapore, 1990); J. B. Hartle, Directions in Relativity, Vol. 1, ed. B.-L. Hu, M. P.
Ryan, and C. V. Vishveshwars (Cambridge University Press, Cambridge, 1993).
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orthonormal states �i that are complete in the subspace consisting of eigen-
states of Ar with eigenvalue ar . (This is called coarse-graining by Gell-Mann
and Hartle in the texts cited in footnote 33. Projection operators were discussed
in Section 3.3.) Equivalently, we have

�a1a2...aN = e−i HtN /��N (aN , tN ) . . . �2(a2, t2)�1(a1, t1)e
i Ht0/��, (3.7.10)

where �r (ar , tr ) are the same sums of projection operators, but in the Heisen-
berg picture:

�r (ar , tr ) = ei Htr /��r (ar )e
−i Htr /�. (3.7.11)

A positive probability is assumed for each history by a generalization of the
Born rule:

P(a1a2 . . . ) ≡
(
�a1a2... , �a1a2...

)
. (3.7.12)

It is necessary to show that Eq. (3.7.12) possesses the usual properties of prob-
abilities, but this is true only for a limited class of possible histories. Specifically,
we must show that the sum of these probabilities over all possible values of one
of the observables, say ar , equals the probability of the history in which this
observable is not held fixed:∑

ar

P(a1a2 . . . ar−1ar ar+1 . . . aN ) = P(a1a2 . . . ar−1ar+1 . . . aN ). (3.7.13)

This is the case for histories that satisfy the consistency condition, that(
�a′

1a′
2...a

′
N , �a1a2...aN

)
= 0 unless a′

1 = a1, a′
2 = a2, . . . . (3.7.14)

Here is the proof. According to Eq. (3.7.12), the sum in Eq. (3.7.13) is∑
ar

P(a1a2 . . . ar−1ar ar+1 . . . aN )

=
∑

ar

(
�a1a2...ar−1ar ar+1...aN , �a1a2...ar−1ar ar+1...aN

)
.

By using the consistency condition (3.7.14), we can write this as∑
ar

P(a1a2 . . . ar−1ar ar+1 . . . aN )

=
⎛
⎝∑

a′
r

�a1a2...ar−1a′
r ar+1...aN ,

∑
ar

�a1a2...ar−1ar ar+1...aN

⎞
⎠ .

But the completeness relation (3.3.32) gives∑
ar

�r (ar , tr ) = 1,
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so ∑
ar

�a1a2...ar−1ar ar+1...aN = �a1a2...ar−1ar+1...aN ,

from which Eq. (3.7.13) follows immediately. This theorem has the important
consequence that the sum of probabilities for all histories of a given type (that
is, all histories with a given initial state �, given times t1, . . . , tN , and given
observables Ar that are held fixed at each of these times) is unity:

∑
a1a2...aN

P(a1a2 . . . aN ) =
(
�,�

)
= 1. (3.7.15)

The histories that satisfy the consistency condition (3.7.14) are identified by
considerations of decoherence. For instance, the history of a planet’s motion
around the Sun is characterized by a set of projection operators, with labels a
that distinguish various cells of finite spatial volume in which the planet might
be found. (It is necessary to deal with finite volumes of space, since a precise
measurement of position would give the planet an unwanted change in momen-
tum.) In evaluating (3.7.9) or (3.7.10) for any given history, we average over all
other variables characterizing perturbations of the planet’s orbit, including those
that describe solar radiation, interplanetary matter, etc. These perturbations do
not move a planet from one cell to another, but they do change the phase of
the state vector (3.7.9), and the averaging over perturbations thus destroys the
correlations that would invalidate the consistency condition (3.7.14).

Some adherents of the decoherent-histories approach describe the probabil-
ities (3.7.12) as objective properties of the various histories, not necessarily
related to anything seen by any observer, and applying even where there are
no actual observers, in particular to the early universe. This view seems to
me untenable, for reasons like those already described in the case of a single
measurement. The requirement that histories have to satisfy the consistency
condition (3.7.13) does not uniquely determine the choice of the observables
A1, A2, etc. over whose eigenvectors we do not average at times t1, t2, etc. The
problem here is not that the choice is not unique, but rather, that it can only
be made by people. Of course, the answers to questions depend on what ques-
tions we choose to ask, in classical as well as in quantum mechanics, but in
classical physics the necessity of choice can be evaded because in principle we
can choose to measure everything. It cannot be evaded in this way in quantum
mechanics because in general many of these choices are incompatible with each
other. For instance, we can choose to leave the eigenvalues of Jx or Jy or Jz

unaveraged at a given time, but we can’t leave all three unaveraged, because
there is no state in which all three have definite non-zero values. So the Born
rule in the decoherent-histories approach seems to bring people into the laws of
nature, as is apparently inevitable for any instrumentalist approach.
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Realism

The drawbacks of the Copenhagen and instrumentalist approaches to quantum
mechanics have led some physicists to adopt an approach in which one attributes
reality not to classical observables like position and momentum, but instead to
the state vector itself. Taking the state vector seriously, as a complete descrip-
tion of the physical condition of the system, we can attempt to understand how
probabilities arise from the deterministic evolution of the state vector, without
introducing measurements or the people making measurements into the laws
of nature.

One trouble with attributing reality to the state vector is that in an entangled
state of two systems that are entirely isolated from each other, the state vector of
one system can be instantaneously changed by intervention in the other system,
We will take this up when we come to entanglement in Section 12.1.

Another aspect of the realist approach, which some physicists find implau-
sible, is that it seems to lead inevitably to the “many-worlds interpretation” of
quantum mechanics, presented originally in the 1957 Princeton Ph.D. thesis34 of
Hugh Everett (1930–1982). In this approach, the state vector does not collapse; it
continues to be governed by the deterministic time-dependent Schrödinger equa-
tion, but different components of the state vector of the system studied become
associated with different components of the state vector of the measuring appa-
ratus and observer, so that the history of the world effectively splits into different
paths, each characterized by different results of the measurement.

The difference between this interpretation of quantum mechanics and the
Copenhagen interpretation can be illustrated by considering the classic examples
of the measurement process mentioned earlier. In a Stern–Gerlach experiment,
according to the Copenhagen interpretation somehow when the atom interacts
with an observer, the system collapses to a state in which the atom has a definite
value for the component Jz of the angular momentum in the direction of the
homogeneous magnetic field, and is following just one trajectory. According to
the many-worlds interpretation, the state vector of the system comprising both
the atom and the observer remains a superposition: in one term, the observer
sees the atom with one value for Jz and following one definite trajectory; in
another term of the state vector, the observer sees the atom with a different value
for Jz and following a different trajectory. Either interpretation is in accord with
experience, but the Copenhagen interpretation relies on something happening
during a measurement that is outside the scope of quantum mechanics, while the
many-worlds interpretation strictly follows quantum mechanics, but supposes
that the history of the universe is continually splitting into an inconceivably
large number of branches.

34 The published version is H. Everett, Rev. Mod. Phys. 29, 454 (1957).
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Similarly, in the case of Schrödinger’s cat, according to the Copenhagen
interpretation, when the cat is observed (perhaps by the cat itself – it is not
clear) the state of the nucleus and the cat and the observer collapses, either to a
state with the nucleus not yet decayed and the cat still alive, or to a state with the
decay having occurred and the cat being dead, each with its own probability. In
contrast, according to the many-worlds interpretation, the state vector remains
a superposition of terms, one with the cat alive and the observer seeing the cat
alive, and the other term with the cat dead and the observer seeing it dead. (Of
course, even in the term in the state vector in which the cat is still alive after a
single half-life, its future is dim.)

In addition to its other problems, the realist approach faces the challenge
of deriving the Born rule. If measurement is really described by quantum
mechanics, then we ought to be able to derive such formulas by applying the
time-dependent Schrödinger equation to the case of repeated measurement.
This is not just a matter of intellectual tidiness, of wanting to reduce the pos-
tulates of physical theory to the minimum number needed. If the Born rule
cannot be derived from the time-dependent Schrödinger equation, then some-
thing else is needed, something outside the scope of quantum mechanics, and in
this respect the many-worlds interpretation would share the inadequacies of the
instrumentalist and Copenhagen interpretations.35

To address this problem, we need to be specific about the circumstances in
which probabilities are to be measured. If we regard probability as a matter of
the frequencies of things seen by observers, we have to specify when it is that
the observer becomes so tangled with the system that we can think of different
terms in the state vector as including different conclusions of the observer.

One possibility is that a sequence of experiments is carried out, each one
of these experiments starting with the same state vector (3.7.4), and in each
case followed by a measurement of the sort described above, with the observer
treated as part of the measuring apparatus. In each measurement the history
of the world splits into as many branches as there are states n, and (as long
as none of the cn vanish) for every possible sequence of experimental results
n1, n2, etc. there is one history in which the observer sees those results. For
instance, consider a system with only two possible states, which appear in the
state vector with coefficients c1 and c2. As long as neither coefficient vanishes,
after a single measurement of the observable that distinguishes these states, the
state of the world will have two branches, in one of which the observer finds
that the system is in state 1, and in the other of which the observer finds that the
system is in state 2. After N repeated measurements, the history of the world will
have 2N branches, in which there will occur every possible history of results of
these experiments. No matter how large or small the ratio c1/c2 may be, as long

35 For a strong expression of this view, see A. Kent, Int. J. Mod. Phys. A 5, 1745 (1990).
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as it is neither zero nor infinity, there is nothing to pick out one sequence of
experimental results as being more or less likely than another. There is nothing
in this picture that corresponds to the usual assumption of quantum mechanics,
that assigns a probability |cn1 |2|cn2 |2 . . . to a history in which the sequence of
results found by the observer is n1, n2, etc.

In a different sort of experiment for the measurement of probabilities, a large
number N of copies of the same system is prepared in the same state

∑
n cn�n ,

so that the state vector of the combined system is a direct product:

� =
∑

n1n2...nN

cn1cn2 . . . cnN�n1n2...nN , (3.7.16)

where �n1n2...nN is the state in which system copy s is in state ns . If the �n are
suitable classical states, of the sort that survive decoherence, then the effect of
the environment will be to multiply each cns with a phase factor exp(iϕs,ns ), so
that Eq. (3.7.16) becomes

� =
∑

n1n2...nN

cn1cn2 . . . cnN exp
[
iϕ1,n1 + · · · + iϕN ,nN

]
�n1n2...nN (3.7.17)

with the phases ϕs,ns random and uncorrelated. We take the states of this basis
to be orthonormal, in the sense that(

�n′
1n′

2...n
′
N
, �n1n2...nN

)
= δn′

1n1δn′
2n2 . . . δn′

N nN ,

and the state (3.7.17) is then normalized if
∑

n |cn|2 = 1. In this scenario, it is
only after the microscopic system has been prepared in the state (3.7.17) that, by
correlating this state with a measuring apparatus and observer, the observer finds
herself in a branch of the history of the world in which each of the copies of the
system is in some definite basis state, say in the states n1, n2, . . . , nN . Let’s say
that she finds Nn copies in each state n, of course with

∑
n Nn = N . She will

conclude that the probability that any one copy is in the state n is Pn = Nn/N .
Note that this is pretty much how probabilities are actually measured in prac-

tice. For instance, if we want to measure the probability that a nucleus in a given
initial state will experience a radioactive decay in a certain time t , we assemble
a large number N of these nuclei in the same initial state, and count how many
have experienced the decay after a time t ; the decay probability is that number
divided by N .

Here again, all results are possible. The observer can find any set of results
n1, n2, . . . , nN for the states of the identical subsystems. This is not so different
from the situation in classical mechanics. An observer tossing a coin a few times
might find that it comes up heads every time, and has to hope that if the number
N of repetitions were sufficiently large, the relative frequencies Nn/N would
give a good approximation to the actual probability Pn .

Even in the limit of large N , does this picture lead to the usual assump-
tion of quantum mechanics, that the quantities Pn approach |cn|2? Of course,
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state vectors tell us nothing without some sort of interpretive postulate. The one
postulate that does not seem to raise problems of consistency with the deter-
ministic dynamics of the Schrödinger equation, and does not drag reference to
people into the laws of nature, is the “second postulate of quantum mechanics”
described in Section 3.3: if the state vector of a system is an eigenstate of the
Hermitian operator A representing some observable, with eigenvalue a, then the
system definitely has the value a for that observable. The operators that interest
us here are frequency operators Pn , defined by the conditions that they are linear
and act on the basis states of the combined system as

Pn�n1n2...nN ≡ (Nn/N )�n1n2...nN , (3.7.18)

where Nn is the number of the indices n1, n2, . . . , nN equal to n. It would
solve all our problems if we could show that the state (3.7.17) is an eigenstate
of Pn with eigenvalue |cn|2, but of course this is not true (except in the spe-
cial cases where |cn| is zero or one, where � either does not contain any term
�n1n2...nN where any index equals n, or is just proportional to a term where all
indices equal n). What we can show is that this eigenvalue condition is nearly
true for large N . Specifically, for the states (3.7.17) we have36

||(Pn − |cn|2)�||2 = |cn|2(1 − |cn|2)
N

≤ 1

4N
, (3.7.19)

where for any state �, the norm ||�|| denotes (�,�)1/2.
Here is the proof. It is convenient to replace the set of indices n1n2 . . . nN with

a compound index ν, and let Nν,n be the number of the indices n1n2 . . . nN that
are equal to n. Of course, for any ν, we have

∑
n Nν,n = N . The state (3.7.17)

can be written in this notation as

� =
∑
ν

(∏
n

cNν,n
n

)
eiϕν�ν,

and Eq. (3.7.18) gives

Pn� =
∑
ν

(∏
m

cNν,m
m

)
eiϕν

(
Nν,n

N

)
�ν.

Instead of summing over ν, we can sum here independently over N1, N2, etc.
The number of νs with Nν,n = Nn for some given values of N1, N2, etc. is the
binomial coefficient N !/N1!N2! . . .. Thus we have

36 The proof that ||(Pn − |cn |2)�|| vanishes for large N was given by J. B. Hartle, Am. J. Phys. 36, 704
(1968). Also see B. S. DeWitt, in Battelle Rencontres, 1967 Lectures in Mathematics and Physics, eds.
C. DeWitt and J. A. Wheeler (W. A. Benjamin, New York, 1968); N. Graham, in The Many Worlds
Interpretation of Quantum Mechanics, eds. B. S. DeWitt and N. Graham (Princeton University Press,
Princeton, NJ, 1973) [who gives Eq. (3.7.19) explicitly]; E. Farhi, J. Goldstone, and S. Gutmann, Ann.
Phys. 192, 368 (1989); D. Deutsch, Proc. Roy. Soc. A 455, 3129 (1999).
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||(Pn − |cn|2)�||2 =
∑

N1 N2...

(∏
m

|cm |2Nm

)(
Nn

N
− |cn|2

)2 N !
N1!N2! . . . ,

with the sum constrained by N1 + N2 + · · · = N . According to the binomial
theorem,

∑
N1 N2...

(∏
m

|cm |2Nm

)
N !

N1!N2! . . . =
(∑

m

|cm |2
)N

,

so

||(Pn − |cn|2)�||2 =
[

1

N 2

(
|cn|2 ∂

∂|cn|2
)2

− 2

N

(
|cn|4 ∂

∂|cn|2
)

+ |cn|4
]

×
(∑

m

|cm |2
)N

= N (N − 1)

( |cn|4
N 2

)(∑
m

|cm |2
)N−2

+ N

( |cn|2
N 2

)(∑
m

|cm |2
)N−1

− 2N

( |cn|4
N

)(∑
m

|cm |2
)N−1

+ |cn|4
(∑

m

|cm |2
)N

.

If we now use the normalization condition
∑

m |cm |2 = 1, we find Eq. (3.7.19),
as was to be proved.

What should we make of this? Eq. (3.7.19) does not show that the states �ν

approach eigenstates of the frequency operators Pn for N → ∞, because these
states do not approach any limit. Indeed, the size of the Hilbert space they inhabit
depends on N . Hartle and Farhi, Goldstone, and Gutmann in the texts cited in
footnote 36 showed how to construct a Hilbert space for the case N = ∞,37 and
showed that the operators Pn acting on this space have eigenvalues |cn|2, but to
apply this construction it is necessary to extend the usual interpretive assumption
about eigenvalues from the Hilbert space for any finite number N of systems to
the Hilbert space for N = ∞, which seems a stretch.

We might try introducing a strengthened version of the postulate about eigen-
states and eigenvalues, assuming that, if a normalized state vector � is nearly an
eigenvector of an Hermitian operator A with eigenvalue a, in the sense that the
norm ||(A − a)�|| is small, then in the state represented by �, it is almost cer-
tain that the value of the observable represented by A is close to a. This is hardly

37 For criticisms of this construction, see C. M. Caves and R. Schack, Ann. Phys. 315, 123 (2005).
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precise, and in any case, since this assumption refers to something being “almost
certain,” it re-introduces a postulate regarding probability, without showing how
it follows from the dynamical assumptions of quantum mechanics.

Apart from these problems, which are perhaps not so different from those
that afflict discussions of probability in classical physics, there is the additional
difficulty that the Born rule emerges from this analysis precisely because we use
the quantum-mechanical norm ||�|| ≡ (�,�)1/2 as a measure of the departure
of physical states from being eigenstates of the operator Pn with eigenvalue
|cn|2. The smallness of all ||(Pn − |cn|2)�|| for large N does tell us that the
scalar product of � with any eigenstate of Pn with an eigenvalue appreciably
different from |cn|2 is small. (Specifically, the sum of |(�,�)|2 over states �
for which Pn has an eigenvalue that differs from |cn|2 by more than terms of
order 1/

√
N is at most of order 1/N .) If we assume the Born rule, then this

means that the probability of an observer observing such “wrong” values of
Nn/N is small, but of course it is circular to use this reasoning to derive the
Born rule.

∗ ∗ ∗ ∗ ∗
My own conclusion is that today there is no interpretation of quantum

mechanics that does not have serious flaws. This view is not universally
shared. Indeed, many physicists are satisfied with their own interpretation of
quantum mechanics. But different physicists are satisfied with different inter-
pretations. In my view, we ought to take seriously the possibility of finding
some more satisfactory other theory, to which quantum mechanics is only a
good approximation.

Problems

1. Consider a system with a pair of observable quantities A and B, whose
commutation relations with the Hamiltonian take the form [H, A] = iwB,
[H, B] = −iwA, where w is some real constant. Suppose that the expec-
tation values of A and B are known at time t = 0. Give formulas for the
expectation values of A and B as a function of time.

2. Consider a normalized initial state � at t = 0 with a spread �E in energy,
defined by

�E ≡
√〈(

H − 〈H〉�
)2
〉
�

.

Calculate the probability |(�(δt),�)|2 that after a very short time δt the
system is still in the state �. Express the result in terms of �E , �, and δt , to
second order in δt .
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3. Suppose that the Hamiltonian is a linear operator with

H� = g�, H� = g∗�, Hϒn = 0,

where g is an arbitrary constant, � and � are a pair of normalized indepen-
dent (but not necessarily orthogonal) state vectors, and ϒn runs over all state
vectors orthogonal to both � and �. What are the conditions that � and �
must satisfy in order for this Hamiltonian to be Hermitian? With these con-
ditions satisfied, find the states with definite energy, and the corresponding
energy values.

4. Suppose that a linear operator A, though not Hermitian, satisfies the condi-
tion that it commutes with its adjoint. What can be said about the relation
between the eigenvalues of A and of A†? What can be said about the scalar
product of two eigenstates of A with unequal eigenvalues?

5. Suppose the state vectors � and � ′ are eigenvectors of a unitary operator
with eigenvalues λ and λ′, respectively. What relation must λ and λ′ satisfy
if � is not orthogonal to � ′?

6. Show that the product of the uncertainties in position and momentum takes
its minimum value �/2 for a Gaussian wave packet of free-particle wave
functions.
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Wave mechanics failed badly in accounting for the multiplicity of atomic energy
levels. This was most conspicuous in the case of the alkali metals, lithium,
sodium, potassium, and so on. It was known that an atom of any of these ele-
ments can be treated as a more-or-less inert core, consisting of the nucleus and
Z − 1 inner electrons, together with a single outer “valence” electron whose
transitions between energy levels are responsible for spectral lines. Since the
electrostatic field felt by the outer electron is not a Coulomb field, its energy
levels in the absence of external fields depend on the orbital angular momentum
quantum number � as well as a radial quantum number n, but because of the
spherical symmetry of the atom, not on the angular momentum z component
�m. (See Eq. (2.1.29).) For each n, �, and m there should be just one energy
level. But observations of atomic spectra showed that in fact all but the s-states
were doubled. For instance, even a spectroscope of low resolution shows that the
D line of sodium, which is produced in a 3p → 3s transition of the valence elec-
tron, is a doublet, with wavelengths 5896 and 5890 Angstroms. Pauli was led to
propose that there is a fourth quantum number for electrons in such atoms, in
addition to n, �, and m, with the fourth quantum number taking just two values
in all but s-states. But the physical significance of this fourth quantum number
was obscure.

Then in 1925 two young physicists, Samuel Goudsmit (1902–1978) and
George Uhlenbeck (1900–1988), suggested1 that the doubling of energy lev-
els was due to an internal angular momentum of the electron, whose component
in the direction of L (for L 	= 0) can only take two values, and whose interac-
tion with the weak magnetic field produced by the orbital motion of the electron
therefore splits all but s states into nearly degenerate doublets. Any component
of angular momentum s would take 2s + 1 values, so the quantity s correspond-
ing to � for the internal angular momentum would have to have the unusual value
1/2. This internal angular momentum came to be called the electron’s spin.

At first this idea was widely disbelieved. As we saw in Section 2.1, orbital
angular momentum cannot have the non-integer value � = 1/2. Another worry
was that if a sphere with the mass of the electron and with angular momentum

1 S. Goudsmit and G. Uhlenbeck, Naturwissenschaften 13, 953 (1925); Nature 117, 264 (1926).
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4 Spin et cetera 105

�/2 has a rotation velocity at its surface less than the speed of light, then its
radius must be larger than �/2mec 
 2 × 10−11 cm, and it was presumed that
an electron radius that large would not have escaped observation. Electron spin
became more respectable a little later, when several authors2 showed that the
coupling between the electron’s spin and its orbital motion accounted for the
fine structure of hydrogen – the splitting of states with � 	= 0 into doublets.
(This is discussed in Section 4.2.)

The worries about models of spinning electrons were due to the lingering wish
to understand quantum phenomena in classical terms. Instead, we should think
of the existence of both spin and orbital angular momenta as consequences of a
symmetry principle. We saw in Sections 3.4–3.6 how symmetry principles imply
the existence of conserved observables such as energy and momentum. There
is another classic symmetry of both non-relativistic and relativistic physics,
invariance under spatial rotations. In Section 4.1 we will show how rotational
invariance leads in quantum mechanics to the existence of a conserved angular-
momentum three-vector J. The commutation relations of these operators will be
used in Section 4.2 to derive the spectrum of eigenvalues of J2 and J3, and to
find how all three components of J act on the corresponding eigenstates. It turns
out that the eigenvalues of J3 can be integer or half-integer multiples of �.

In general the angular momentum J of any particle is the sum of its orbital
angular momentum, already discussed in Section 2.1, and a spin angular
momentum, that can take half-integer as well as integer values. Also, in a mul-
tiparticle system, the total angular momentum of the system is the sum of the
angular momenta of the individual particles. For both reasons, in Section 4.3
we will consider how the eigenstates of J2 and J3 for the sum of two angular
momenta are constructed from the corresponding eigenstates for the individual
angular momenta. In Section 4.4 the rules for angular-momentum addition are
applied to derive a formula, known as the Wigner–Eckart theorem, for the matrix
elements of operators between multiplets of angular-momentum eigenstates.

It turns out that not only the electron but also the proton and neutron have
spin 1/2. It is sometimes said that this value of the spin of the electron and other
particles is a consequence of relativity. This is because Dirac in 1928 developed
a kind of relativistic wave mechanics,3 which required that the particles of the
theory have spin 1/2. But Dirac’s relativistic wave mechanics is not the only
way to combine relativity and quantum mechanics. Indeed, in 1934 Pauli and
Victor Weisskopf4 (1908–2002) showed how a relativistic quantum theory could
be constructed for particles with no spin. Today we know of particles like the
Z and W particles that seem to be every bit as elementary as the electron, and

2 W. Heisenberg and P. Jordan, Z. Physik 37, 263 (1926); C. G. Darwin, Proc. Roy. Soc. A 116, 227
(1927).

3 P. A. M. Dirac, Proc. Roy. Soc. A 117, 610 (1928).
4 W. Pauli and V. F. Weisskopf, Helv. Phys. Acta 7, 709 (1934).
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106 4 Spin et cetera

that have spins with j = 1 rather than j = 1/2. There is nothing about spin
that requires relativity to be taken into account, and nothing about relativity that
requires elementary particles to have spin one-half.

Though it was not known at first, the spin of a particle determines whether
the wave function of several particles of the same type is symmetric or anti-
symmetric in the particle coordinates (including their spins). This is discussed
in Section 4.5, along with some of its implications for atoms, nuclei, gases, and
crystals.

Using what we have learned about angular momentum, in Sections 4.6 and
4.7 we will consider two other kinds of symmetry: internal symmetries, such
as isotopic spin symmetry, and symmetry under space inversion. Section 4.8
shows that for the Coulomb potential there are two different three-vectors with
the properties of angular momentum, and uses the properties of such three-
vectors derived in Section 4.2 to give an algebraic calculation of the spectrum
of hydrogen. This long chapter ends in Section 4.9 with a discussion of the
rigid rotator, whose energy levels can be calculated exactly, and that provides an
approximation to the rotational spectra of molecules.

4.1 Rotations

A rotation is a real linear transformation xi �→ ∑
j Ri j x j of the Cartesian

coordinates xi that leaves invariant the scalar product x · y = ∑
i xi yi . That is,

∑
i

⎛
⎝∑

j

Ri j x j

⎞
⎠(∑

k

Rik yk

)
=
∑

i

xi yi ,

with sums over i, j, k, etc. running over the values 1, 2, 3. By equating coeffi-
cients of x j yk on both sides of the equation, we find the fundamental condition
for a rotation: ∑

i

Ri j Rik = δ jk, (4.1.1)

or in matrix notation

RT R = 1, (4.1.2)

where RT denotes the transpose of a matrix, [RT] j i = Ri j , and 1 is here the
unit matrix, [1] jk = δ jk . Real matrices satisfying Eq. (4.1.2) are said to be
orthogonal.

Taking the determinant of Eq. (4.1.2) and using the facts that the determinant
of a product of matrices is the product of the determinants, and that the deter-
minant of the transpose of a matrix equals the determinant of the matrix, we
see that [Det R]2 = 1, so Det R can only be +1 or −1. There is a theorem of
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4.1 Rotations 107

matrix algebra that tells us that, since Det R does not vanish, R has an inverse
R−1 such that R−1 R = R R−1 = 1. Multiplying Eq. (4.1.2) on the left with R−1

tells us that R−1 = RT. Note that this inverse is also an orthogonal matrix, for
(R−1)T R−1 = R RT = 1.

It should be noted that the transpose of a product of matrices is the product of
the transposes in the opposite order:

[AB]T
i j = [AB] j i =

∑
k

A jk Bki =
∑

k

BT
ik AT

k j = [BT AT]i j .

It follows in particular that the product of orthogonal matrices is orthogonal: if
AT A = 1 and BT B = 1 then

(AB)T AB = BT AT AB = BT B = 1.

The set of all real orthogonal matrices includes the unit matrix, and these matri-
ces all have inverses that are also real orthogonal matrices, so this set satisfies
all the conditions for a group. This group is known as O(3), the group of real
orthogonal 3 × 3 matrices.

Not all transformations xi �→ ∑
j Ri j x j with Ri j satisfying Eq. (4.1.2) are

rotations. We have already noted that with Ri j satisfying Eq. (4.1.2), the deter-
minant of R can only be +1 or −1. The transformations with Det R = −1
are space-inversions; an example is the simple transformation x �→ −x. These
transformations will be considered in Section 4.7. The transformations with
Det R = +1 are the rotations, which concern us here. The rotations form a
group by themselves, since any product of matrices with unit determinant will
have unit determinant. This subgroup of O(3) is known as the special orthog-
onal group in three dimensions, or SO(3), where O(3) again means that these
are real orthogonal 3 × 3 matrices, and the S stands for “special,” meaning that
these matrices have unit determinant.

Like other symmetry transformations, a rotation R induces on the Hilbert
space of physical states a unitary transformation, in this case � �→ U (R)�.
If we perform a rotation R1 and then a rotation R2, physical states undergo the
transformation � �→ U (R2)U (R1)�, but this must be the same as if we had
performed a rotation R2 R1, so5

U (R2)U (R1) = U (R2 R1). (4.1.3)

Acting on the operator V representing a vector observable (such as the coordi-
nate vector X or the momentum vector P), U (R) must induce a rotation

5 In general it might be possible for a phase factor exp[iα(R1, R2)] to appear on the right-hand side of
this relation. But this does not occur for rotations that can be built up from rotations by very small
angles, the case that will be of interest here. For a detailed discussion of this point, see S. Weinberg,
The Quantum Theory of Fields, Vol. I (Cambridge University Press, Cambridge, 1995), pp. 52–53 and
Section 2.7.
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108 4 Spin et cetera

U−1(R)ViU (R) =
∑

j

Ri j Vj . (4.1.4)

Rotations, unlike inversions, can be infinitesimal. In this case,

Ri j = δi j + ωi j + O(ω2), (4.1.5)

with ωi j infinitesimal. The condition (4.1.2) gives here

1 =
(

1 + ωT + O(ω2)
)(

1 + ω + O(ω2
)

= 1 + ωT + ω + O(ω2),

so ωT = −ω, or in other words

ω j i = −ωi j . (4.1.6)

For such infinitesimal rotations, the unitary operator U (R) must take the form

U (1 + ω) → 1 + i

2�

∑
i j

ωi j Ji j + O(ω2), (4.1.7)

with Ji j = −Jji a set of Hermitian operators. (The factor 1/� is inserted in the
definition (4.1.7) in order to give Ji j the dimensions of �, the same as distance
times momentum.)

As usual with the generators of symmetry transformations, the transformation
property of other observables can be expressed in commutation relations of these
observables with the symmetry generators. For instance, by using Eq. (4.1.7) in
the transformation rule (4.1.4) for a vector V, we find

i

�
[Vk, Ji j ] = δik Vj − δ jk Vi . (4.1.8)

We can also find the transformation rule of the Ji j s, and their commutators
with each other. As an application of Eq. (4.1.3), we have

U (R′−1)U (1 + ω)U (R′) = U (R′−1(1 + ω)R′) = U (1 + R′−1ωR′),

for any ωi j = −ω j i and any rotation R′, unrelated to ω. To first order in ω, we
then have∑

i j

ωi jU (R′−1)Ji jU (R′) =
∑

kl

(R′−1ωR)kl Jkl =
∑
i jkl

R′
ik R′

jlωi j Jkl,

in which we have used Eq. (4.1.2), which gives R′−1 = R′T. Equating the coef-
ficients of ωi j on both sides of this equation then gives the transformation rule
of the operator Ji j :

U (R′−1)Ji jU (R′) =
∑

kl

R′
ik R′

jl Jkl . (4.1.9)
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4.1 Rotations 109

That is, Ji j is a tensor. We can take this a step further, and let R′ itself be an
infinitesimal rotation, of the form R′ → 1 + ω′, with ω′

i j = −ω′
j i infinitesimal.

Then, to first order in ω′, Eq. (4.1.9) gives

i

2�

[
Ji j ,

∑
kl

ω′
kl Jkl

]
=
∑

kl

(
ω′

ikδ jl + ω′
jlδik

)
Jkl =

∑
k

ω′
ik Jk j +

∑
l

ω′
jl Jil .

Equating the coefficients of ω′
kl on both sides of this equation gives the

commutation rule of the J s:

i

�

[
Ji j , Jkl

]
= −δil Jk j + δik Jl j + δ jk Jil − δ jl Jik . (4.1.10)

So far, all this could be applied to rotationally invariant theories in spaces of
any dimensionality. In three dimensions it is very convenient to express Ji j in
terms of a three-component operator J, defined by

J1 ≡ J23, J2 ≡ J31, J3 ≡ J12,

or more compactly,

Jk ≡ 1

2

∑
i j

εijk Ji j , Ji j =
∑

k

εijk Jk, (4.1.11)

where εijk is a totally antisymmetric quantity, whose only non-vanishing com-
ponents are ε123 = ε231 = ε312 = +1 and ε213 = ε321 = ε132 = −1. The unitary
operator (4.1.7) for infinitesimal rotations then takes the form

U (1 + ω) → 1 + i

�
ω · J + O(ω2), (4.1.12)

where ωk ≡ 1
2

∑
i j εijkωi j . The rotation here is by an infinitesimal angle |ω|

around an axis in the direction of ω.
In terms of J, the characteristic property (4.1.8) of a three-vector V takes the

form

[Ji , Vj ] = i�
∑

k

εijkVk . (4.1.13)

(For instance, Eq. (4.1.8) gives [J1, V2] = [J23, V2] = i�V3.) Also, the
commutation relation (4.1.10) takes the form

[Ji , Jj ] = i�
∑

k

εijk Jk . (4.1.14)

(For instance, Eq. (4.1.10) gives [J1, J2] = [J23, J31] = −i�J21 = i�J3.) That
is, J is itself a three-vector. We may recall that Eq. (4.1.14) is the same com-
mutation relation as the commutation relation (2.1.11) satisfied by the orbital
angular momentum operator L, but derived here from the assumption of rota-
tional symmetry, with no assumptions regarding coordinates or momenta. This
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110 4 Spin et cetera

commutation relation will be the basis of our treatment of angular momentum
in the following sections.

Incidentally, it should not be surprising that the quantity J defined by
Eq. (4.1.11) should be a vector, because although the components of εijk are
the same in all coordinate systems, it is a tensor, in the sense that

εijk =
∑
i ′ j ′k′

Rii ′ R j j ′ Rkk′εi ′ j ′k′ . (4.1.15)

This is because the right-hand side is totally antisymmetric in i , j , and k, so
it must be proportional to εijk. According to the definition of determinants, the
proportionality coefficient is just Det R, which for rotations is +1. Knowing
that εijk and Ji j are tensors, it becomes obvious from Eq. (4.1.11) that Ji is a
three-vector.

Now let’s return to the point raised in the introduction to this chapter, that the
total angular momentum J of a particle may be different from its orbital angular
momentum L. If J is the true generator of rotations, then it is J rather than L that
has the commutator (4.1.13) with any vector. As we saw in Section 2.1, direct
calculation shows that in the case of a particle in a central potential the operator
L ≡ X × P satisfies the same commutation relation (4.1.14) as J:

[Li , L j ] = i�
∑

k

εijkLk, (4.1.16)

and since L is a vector we must have

[Ji , L j ] = i�
∑

k

εijkLk . (4.1.17)

Therefore, if we define an operator S ≡ J − L, so that

J = L + S, (4.1.18)

then by subtracting Eq. (4.1.16) from Eq. (4.1.17), we find

[Si , L j ] = 0. (4.1.19)

From Eqs. (4.1.19), (4.1.18), (4.1.16), and (4.1.14) we then have

[Si , Sj ] = i�
∑

k

εijkSk . (4.1.20)

Thus S acts as a new kind of angular momentum, and may be thought of as
an internal property of a particle, called the spin. In Section 2.1 we assumed in
effect that the particle in question had S = 0, but this is not the case for electrons
and various other particles.
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The spin operator is not constructed from the particle’s position and momen-
tum operators. Indeed, it commutes with them. Direct calculation gives

[Li , X j ] = i�
∑

k

εijk Xk, [Li , Pj ] = i�
∑

k

εijk Pk, (4.1.21)

while, as a special case of Eq. (4.1.13),

[Ji , X j ] = i�
∑

k

εijk Xk, [Ji , Pj ] = i�
∑

k

εijk Pk . (4.1.22)

The difference of Eqs. (4.1.21) and (4.1.22) then gives

[Si , X j ] = [Si , Pj ] = 0. (4.1.23)

A system containing several particles has a total angular momentum given
by the sum of the orbital angular momenta Ln and spins Sn of the individual
particles (labeled here with indices n, n′)

J =
∑

n

Ln +
∑

n

Sn. (4.1.24)

Because they act on different particles, the commutation relations of the
contributions to J take the general form

[Lni , Ln′ j ] = i�δnn′
∑

k

εijkLnk, (4.1.25)

[Lni , Sn′ j ] = 0, (4.1.26)

[Sni , Sn′ j ] = i�δnn′
∑

k

εijkSnk, (4.1.27)

so that J satisfies Eq. (4.1.14). Also, Ln acts only on the coordinates of the nth
particle, so

[Lni , Xn′ j ] = i�δnn′
∑

k

εijk Xnk, [Lni , Pn′ j ] = i�δnn′
∑

k

εijk Pnk, (4.1.28)

while

[Sni , Xn′ j ] = [Sni , Pn′ j ] = 0. (4.1.29)

Without an explicit formula for S or J, it is important to be able to calculate
how angular momentum operators act on physical state vectors in general, using
just the commutation relations. We will work this out in the next section for J,
but exactly the same analysis applies to S and L, and to the total or spin or orbital
angular momenta of individual particles.
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112 4 Spin et cetera

4.2 Angular-Momentum Multiplets

We will now work out the eigenvalues of J2 and J3, and the action of J on a mul-
tiplet of eigenvectors of these operators, for any Hermitian operator J satisfying
the commutation relations (4.1.14).

First, we note that[
J3,

(
J1 ± iJ2

)]
= i�J2 ± i(−i�J1) = ± �

(
J1 ± iJ2

)
. (4.2.1)

Therefore J1 ± iJ2 act as raising and lowering operators: for a state vector �m

that satisfies the eigenvalue condition J3�
m = �m�m (with any m), we have

J3

(
J1 ± iJ2

)
�m = (m ± 1)�

(
J1 ± iJ2

)
�m,

so if
(

J1 ± iJ2

)
�m does not vanish, then it is an eigenstate of J3 with eigenvalue

�(m±1). Since J2 commutes with J3, we can choose �m to be an eigenvector of

J2 as well as J3, and since J2 commutes with
(

J1±i J2

)
, all the state vectors that

are connected with each other by lowering and/or raising operators will have the
same eigenvalue for J2.

Now, there must be a maximum and a minimum to the eigenvalues of J3

that can be reached in this way, because the square of any eigenvalue of J3 is
necessarily less than the eigenvalue of J2. This is because in any normalized
state � that has an eigenvalue a for J3 and an eigenvalue b for J2, we have

b − a2 =
(
�, (J2 − J 2

3 )�
)

=
(
�, (J 2

1 + J 2
2 )�

)
≥ 0.

It is conventional to define a quantity j as the maximum value of the eigenvalues
of J3/� for a particular set of state vectors that are related by raising and lower-
ing operators. We will also temporarily define j ′ as the minimum eigenvalue of
J3/� for these state vectors. The state vector � j for which J3 takes its maximum
eigenvalue � j must satisfy (

J1 + iJ2

)
� j = 0, (4.2.2)

since otherwise
(

J1 + iJ2

)
� j would be a state vector with a larger eigenvalue

of J3. Likewise, acting on the state vector � j with
(

J1 − iJ2

)
gives an eigen-

state of J3 with eigenvalue �( j − 1), unless of course this state vector vanishes.
Continuing in this way, we must eventually get to a state vector � j ′ with the
minimum eigenvalue � j ′ of J3, which satisfies(

J1 − iJ2

)
� j ′ = 0, (4.2.3)
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4.2 Angular-Momentum Multiplets 113

since otherwise
(

J1 − iJ2

)
� j ′ would be a state vector with an even smaller

eigenvalue of J3. We get to � j ′ from � j by applying the lowering operator(
J1 − iJ2

)
a whole number of times, so j − j ′ must be a whole number.

To go further, we use the commutation relations of J1 and J2 to show that(
J1 − iJ2

)(
J1 + iJ2

)
= J 2

1 + J 2
2 + i[J1, J2] = J2 − J 2

3 − �J3, (4.2.4)(
J1 + iJ2

)(
J1 − iJ2

)
= J 2

1 + J 2
2 − i[J1, J2] = J2 − J 2

3 + �J3. (4.2.5)

According to Eq. (4.2.2), the operator (4.2.4) gives zero when acting on � j , so

J2� j = �
2 j ( j + 1)� j . (4.2.6)

On the other hand, according to Eq. (4.2.3) the operator (4.2.5) gives zero when
acting on � j ′ , so

J2� j ′ = �
2 j ′( j ′ − 1)� j ′ . (4.2.7)

But all these state vectors are eigenstates of J2 with the same eigenvalue, so
j ′( j ′−1) = j ( j+1). This quadratic equation for j ′ has two solutions, j ′ = j+1
and j ′ = − j . The first solution is impossible, because j ′ is the minimum eigen-
value of J3/�, and therefore cannot be greater than the maximum eigenvalue j .
This leaves us with the other solution

j ′ = − j. (4.2.8)

But we saw that j − j ′ must be an integer, so j must be an integer or a half-
integer. The eigenvalues of J3 range over the 2 j +1 values of �m with m running
by unit steps from − j to + j . The corresponding eigenstates will be denoted�m

j ,
so that

J3�
m
j = �m�m

j , m = − j, − j + 1, . . . , + j, (4.2.9)

J2�m
j = �

2 j ( j + 1)�m
j . (4.2.10)

These are the same eigenvalues that we found previously in the case of
orbital angular momentum, with the one big difference that j and m may be
half-integers rather than integers.

The state vectors �m
j for different values of m are orthogonal, because they

are eigenvectors of the Hermitian operator J3 with different eigenvalues, and
they can be multiplied with suitable constants to normalize them, so that(

�m′
j , �

m
j

)
= δm′m . (4.2.11)

Also, we have noted that
(

J1±iJ2

)
�m

j has eigenvalue �(m±1) for J3, so it must

be proportional to �m±1
j :(

J1 ± iJ2

)
�m

j = α±( j,m)�m±1
j . (4.2.12)
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114 4 Spin et cetera

It follows then from Eq. (4.2.4) that

α−( j,m + 1)α+( j,m) = �
2[ j ( j + 1)− m2 − m]. (4.2.13)

In order to satisfy the normalization condition (4.2.11), it is necessary that

|α±( j,m)|2 =
(
(J1 ± iJ2)�

m
j , (J1 ± i J2)�

m
j

)
=
(
�m

j , (J1 ∓ iJ2)(J1 ± iJ2)�
m
j

)
,

and therefore, according to Eqs. (4.2.4) and (4.2.5),

|α±( j,m)|2 = �
2[ j ( j + 1)− m2 ∓ m]. (4.2.14)

We can adjust the phases of the coefficients α−( j,m) to be anything we want,
by multiplying the state vectors �m

j with phase factors (complex numbers
with modulus unity), which do not affect Eq. (4.2.11). (To adjust the phase of
α−( j, j), multiply � j−1

j by a suitable phase factor; then, to adjust the phase of

α−( j, j − 1), multiply �
j−2
j by a suitable phase factor; and so on.) It is con-

ventional to adjust these phases so that all α−( j,m) are real and positive, in
which case Eq. (4.2.13) requires that all α+( j,m) are also real and positive.
Equation (4.2.14) then gives these factors as

α±( j,m) = �

√
j ( j + 1)− m2 ∓ m, (4.2.15)

so that (
J1 ± iJ2

)
�m

j = �

√
j ( j + 1)− m2 ∓ m �m±1

j . (4.2.16)

It can now be revealed that the phases of the spherical harmonics Y m
� were cho-

sen in Section 2.2 so that the same relations apply to them, with Li and � in place
of Ji and j . Equations (4.2.9) and (4.2.16) provide a complete statement of how
the quantum-mechanical operators Ji act on the state vectors �m

j . In group the-
ory, we say that the relations (4.2.9) and (4.2.16) furnish a representation of the
commutation relations (4.1.14). (Of course, the state vectors �m

j can depend on
any number of other dynamical variables, which are invariant under the action
of the symmetry generators Ji .)

As an example, consider the case j = 1/2. We note that Eq. (4.2.16) here
gives

(J1 ± iJ2)�
∓1/2
1/2 = ��

±1/2
1/2 , (J1 ± iJ2)�

±1/2
1/2 = 0,

and of course

J3�
±1/2
1/2 = ±�

2
�

±1/2
1/2 .

These results can be summarized in the statement that(
�m′

1/2, J�m
1/2

)
= �

2
σ m′m, (4.2.17)
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4.2 Angular-Momentum Multiplets 115

where σi are 2 × 2 matrices, known as Pauli matrices:

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (4.2.18)

There is a simple application of Eq. (4.2.16) that is useful in many physical
calculations. Suppose we know that a system is in a state with normalized state
vector �m

j , and we want to know the probability that a certain measurement will
put the system in a state with normalized state vector �m

j (rather than any other
of a complete orthonormal set), where the various �m

j form a multiplet related
to each other by Eq. (4.2.16), and likewise for the �m

j . According to the general
principles of quantum mechanics, this probability is the absolute value squared
of the matrix element6 (�m

j , �
m
j ). Using Eq. (4.2.16), we can show that this

matrix element, and hence the probability, is independent of m. To see this, we
use Eq. (4.2.16) to calculate

�

√
j ( j + 1)− m2 ∓ m

(
�m±1

j , �m±1
j

)
=
(
�m±1

j , (J1 ± iJ2) �
m
j

)
=
(
(J1 ∓ iJ2)�

m±1
j , �m

j

)
= �

√
j ( j + 1)− (m ± 1)2 ± (m ± 1)

(
�m

j , �
m
j

)
= �

√
j ( j + 1)− m2 ∓ m

(
�m

j , �
m
j

)
,

and therefore (
�m±1

j , �m±1
j

)
=
(
�m

j , �
m
j

)
. (4.2.19)

This can be repeated, leading to the conclusion that
(
�m

j , �
m
j

)
is independent

of m, as was to be proved. By the same reasoning, if A is an operator (such as the

Hamiltonian) that commutes with J, then also its matrix elements
(
�m

j , A�m
j

)
are independent of m. This little theorem will be used in Section 4.4 to calculate
the m-dependence of matrix elements of operators with various transformation
properties under rotations.

∗ ∗ ∗ ∗ ∗
As we have seen, the angular momentum of bound-state energy levels deter-

mines the multiplicity of these levels. The components of angular momentum
can also be measured directly. The classic example of such a measurement is that

6 We consider only the matrix elements in which both state vectors have equal values of j and m, because
both state vectors are eigenstates of the Hermitian operators J2 and J3, so the matrix element would
vanish unless they both had the same eigenvalues.
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116 4 Spin et cetera

of Walter Gerlach (1889–1979) and Otto Stern (1888–1969) in 1922,7 already
briefly mentioned in Section 3.7 in connection with the interpretation of quan-
tum mechanics. In the Stern–Gerlach experiment, a beam of neutral atoms8 is
sent into a slowly varying magnetic field. The magnetic field is of the form

B(x) = B0 + B1(x), (4.2.20)

where B0 is a constant, and the variable term B1(x) is much smaller than B0.
As we will see, the direction of B0 determines what it is that is measured in this
experiment. We will take the three-axis to be in this direction. The precise form
of B1(x) is not very important, though of course it must satisfy the free-field
Maxwell equations

∇ · B1 = 0, ∇ × B1 = 0. (4.2.21)

For instance, we might have B1i = ∑
j Di j x j , with the constant matrix Di j

both symmetric and traceless. The atom is supposed to have a total angular
momentum J. The Hamiltonian of the atom is then

H = p2

2m
−
(
μ

� j

)(
J3|B0| + J · B1(x)

)
, (4.2.22)

where J2 = �
2 j ( j + 1), and μ is a property of the atom, known as its magnetic

moment. In the original Stern–Gerlach experiment, the atoms in question were
of silver, with angular momentum j = 1/2 arising from the spin of a single elec-
tron (though this was not known at the time), but it is just as easy to consider the
general case, of arbitrary j . According to the arguments of Ehrenfest described
in Section 1.5, the expectation values of the position and the momentum will
obey the equations of motion

d

dt
〈x〉 = 〈p〉/m,

d

dt
〈p〉 =

(
μ

� j

) 〈
∇
(

J · B1(x)
)〉
. (4.2.23)

For sufficiently large B0, the time dependence of the component of a state vector
having the eigenvalue �σ 	= 0 for J3 is dominated by a rapidly oscillating fac-
tor exp(iσμ|B0|t/� j). We have seen that the eigenvalues of J3 are �σ , where
σ = − j, − j + 1, . . . ,+ j . Also, Eq. (4.2.16) shows that J1 and J2 have matrix
elements only between eigenstates of J3 that differ by ±�, so these matrix ele-
ments are proportional to exp(±iμ|B0|t/j), and therefore vanish when averaged
even over short time intervals. Thus the equations of motion (4.2.23) of a particle
for which Jz = �σ become effectively

d

dt
〈x〉 = 〈p〉/m,

d

dt
〈p〉 =

(
μσ

j

)
〈∇B13(x)〉 . (4.2.24)

7 W. Gerlach and O. Stern, Z. Physik 9, 353 (1922).
8 Neutral atoms are used, both to avoid Coulomb forces from incidental electric fields, and to avoid the

Lorentz force produced by the motion of a charged particle through a magnetic field.
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4.3 Addition of Angular Momenta 117

For instance, in the case discussed above where B1i = ∑
j Dijx j , these two

equations can be combined to give a single second-order differential equation
for 〈x〉:

m
d2

dt2
〈xi 〉 =

(
μσ

j

)
D3i .

Whatever the form of B1, there are 2 j + 1 possible trajectories, and observation
of the actual trajectory that is followed by the particle tells us the value of σ .

4.3 Addition of Angular Momenta

It often happens that a physical system will contain angular momenta of two or
more different types. For instance, in the ground state of the helium atom there
are two electrons, each with its own spin, but no orbital angular momentum.
In the excited states of the hydrogen atom with � > 0 there is both an orbital
angular momentum and a spin angular momentum. The presence of interactions
between the individual angular momenta usually has the effect that they are not
separately conserved – that is, the individual angular momenta do not commute
with the Hamiltonian. In such cases it is useful to introduce a total angular-
momentum operator, given by the sum of the individual angular-momentum
operators, which does commute with the Hamiltonian. The problem is, how
to relate the states labeled by values of the total angular momentum to states
described in terms of the individual angular momenta?

Suppose we have two angular-momentum operator vectors J′ and J′′, which
may be spins or orbital angular momenta or the sums of spins and/or angular
momenta, with each satisfying the commutation relations (4.1.14):

[J ′
1 , J ′

2] = i�J ′
3, [J ′

2 , J ′
3] = i�J ′

1, [J ′
3 , J ′

1] = i�J ′
2, (4.3.1)

[J ′′
1 , J ′′

2 ] = i�J ′′
3 , [J ′′

2 , J ′′
3 ] = i�J ′′

1 , [J ′′
3 , J ′′

1 ] = i�J ′′
2 , (4.3.2)

but commuting with each other,

[J ′
i , J ′′

k ] = 0. (4.3.3)

We consider a set of states having two independent angular momenta j ′ and
j ′′, with J ′

3 and J ′′
3 taking values �m ′ and �m ′′, respectively,9 and with m ′ and

m ′′ running by unit steps from − j ′ to j ′ and from − j ′′ to j ′′, respectively. The
normalized state vectors �m′m′′

j ′ j ′′ of these states satisfy

J′2 �m′m′′
j ′ j ′′ = �

2 j ′( j ′ + 1)�m′m′′
j ′ j ′′ , (4.3.4)

J ′
3�

m′m′′
j ′ j ′′ = �m ′ �m′m′′

j ′ j ′′ , (4.3.5)

9 Of course there is no connection between the j ′ used here and that introduced temporarily in the
previous section.
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118 4 Spin et cetera

(
J ′

1 ± i J ′
2

)
�m′m′′

j ′ j ′′ = �

√
j ′( j ′ + 1)− m ′2 ∓ m ′ �m′±1,m′′

j ′ j ′′ , (4.3.6)

J′′2 �m′m′′
j ′ j ′′ = �

2 j ′′( j ′′ + 1)�m′m′′
j ′ j ′′ , (4.3.7)

J ′′
3 �

m′m′′
j ′ j ′′ = �m ′′ �m′m′′

j ′ j ′′ , (4.3.8)(
J ′′

1 ± i J ′′
2

)
�m′m′′

j ′ j ′′ = �

√
j ′′( j ′′ + 1)− m ′′2 ∓ m ′′ �m′ ,m′′±1

j ′ j ′′ . (4.3.9)

We can then introduce a total angular momentum

J = J′ + J′′, (4.3.10)

which also satisfies the commutation relations (4.1.14):

[J1 , J2] = i�J3, [J2 , J3] = i�J1, [J3 , J1] = i�J2. (4.3.11)

Both J′2 and J′′2 commute with all the components of J′ and J′′. On the other
hand, the Hamiltonian will in general contain interaction terms that do not com-
mute with either J′ or J′′, such as a possible term proportional to J′ · J′′. We then
have to look for other operators that do commute with such interaction terms.

This usually (though not always!) includes J′2 and J′′2, since they each com-
mute with both J′ and J′′. Also, as we have seen in Section 4.1, the total angular
momentum J commutes with all rotationally invariant operators. For instance,

J′ · J′′ = 1

2

[
J2 − J′2 − J′′2

]
,

and each term on the right-hand side commutes with J. Instead of states of defi-
nite energy being characterized by the values �

2 j ′( j ′+1), �m ′, �
2 j ′′( j ′′+1), and

�m ′′ of J′2, J ′
3, J′′2, and J ′′

3 , they will be characterized by the values �
2 j ′( j ′ +1),

�
2 j ′′( j ′′ + 1), �

2 j ( j + 1), and �m of J′2, J′′2, J2, and J3, respectively. Our prob-
lems are, what values of j occur for a given j ′ and j ′′, how many states for
a given j ′, j ′′, j, and m can be constructed from the states with state vectors
�m′m′′

j ′ j ′′ , and how can we express the state vectors of these states in terms of the

�m′m′′
j ′ j ′′ ?
The general rule is, that there is precisely one state for each j and m in the

ranges

j = | j ′ − j ′′| , | j ′ − j ′′| + 1 , . . . , j ′ + j ′′, m = j, j − 1, . . . ,− j. (4.3.12)

The normalized state vectors �m
j ′ j ′′ j of these states are then uniquely defined (up

to a common phase factor) by

J′2 �m
j ′ j ′′ j = �

2 j ′( j ′ + 1)�m
j ′ j ′′ j , (4.3.13)

J′′2 �m
j ′ j ′′ j = �

2 j ′′( j ′′ + 1)�m
j ′ j ′′ j , (4.3.14)

J2 �m
j ′ j ′′ j = �

2 j ( j + 1)�m
j ′ j ′′ j , (4.3.15)

J3�
m
j ′ j ′′ j = �m�m

j ′ j ′′ j , (4.3.16)

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316276105.006
http:/www.cambridge.org/core


4.3 Addition of Angular Momenta 119

(
J1 ± iJ2

)
�m

j ′ j ′′ j = �

√
j ( j + 1)− m2 ∓ m �m±1

j ′ j ′′ j . (4.3.17)

These state vectors may be expressed as linear combinations

�m
j ′ j ′′ j =

∑
m′m′′

C j ′ j ′′( j m ; m ′ m ′′)�m′m′′
j ′ j ′′ , (4.3.18)

where C j ′ j ′′( j m ; m ′ m ′′) are a set of constants known as Clebsch–Gordan coef-
ficients. Of course, since J3 = J ′

3 + J ′′
3 , the only non-vanishing Clebsch–Gordan

coefficients are those for which

m = m ′ + m ′′. (4.3.19)

To verify that the values of j for which the Clebsch–Gordan coefficients do
not vanish are limited by Eq. (4.3.12), we note first that the values of m =
m ′ + m ′′ can only lie between j ′ + j ′′ and − j ′ − j ′′, so the maximum possible
value for j is j ′+ j ′′. On the other hand, a state vector with m ′ = j ′ and m ′′ = j ′′
has j ≥ |m| = j ′ + j ′′, so it can only have j = j ′ + j ′′. Furthermore, the only
way to have m = j ′ + j ′′ is to have m ′ = j ′ and m ′′ = j ′′, so there is precisely
one state with j = j ′ + j ′′ and m = j ′ + j ′′, and hence only one state with
j = j ′ + j ′′ and any m between j ′ + j ′′ and − j ′ − j ′′. With an appropriate
choice of phase, the state vector for this state is simply

�
j ′+ j ′′
j ′ j ′′ j ′+ j ′′ = �

j ′ j ′′
j ′ j ′′ . (4.3.20)

That is,

C j ′ j ′′( j m ; j ′ j ′′) = δ j , j ′+ j ′′δm , j ′+ j ′′ . (4.3.21)

Now consider the state vectors �m′m′′
j ′ j ′′ with m = m ′ + m ′′ = j ′ + j ′′ − 1.

There are generally two such state vectors, one with m ′ = j ′ and m ′′ = j ′′ − 1,
and the other with m ′ = j ′ − 1 and m ′′ = j ′′. (The only exceptions occur for
j ′ − 1 < − j ′, or in other words j ′ = 0, in which case m ′ cannot equal j ′ − 1,
or for j ′′ − 1 < − j ′′, or in other words j ′′ = 0, in which case m ′′ cannot equal
j ′′ − 1.) One linear combination of these two state vectors is a state vector with
j = j ′ + j ′′, which is formed by operating with the lowering operator J1 − iJ2

on the state vector (4.3.20). The factor (4.2.15) here is√
j ( j + 1)− j2 + j = √

2 j = √
2( j ′ + j ′′),

so

�
j ′+ j ′′−1
j ′ j ′′ j ′+ j ′′ = (2( j ′ + j ′′))−1/2

(
J1 − iJ2

)
�

j ′+ j ′′
j ′ j ′′ j ′+ j ′′

= (2( j ′ + j ′′))−1/2
(

J ′
1 − i J ′

2 + J ′′
1 − iJ′′

2

)
�

j ′ j ′′
j ′ j ′′

= ( j ′ + j ′′)−1/2

(√
j ′ � j ′−1 , j ′′

j ′ j ′′ +√
j ′′ � j ′ , j ′′−1

j ′ j ′′

)
. (4.3.22)
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There is no other state vector with j = j ′ + j ′′ and m = j ′ + j ′′ − 1, because if
there were then there would also have to be two state vectors with j = j ′ + j ′′
and m = j ′ + j ′′, and we have seen that there is only one. Therefore the only
other state vector with m = j ′ + j ′′ − 1 must have the only other value of j
that is possible for such a state vector, j = j ′ + j ′′ − 1. The state vector with
this value of j must be orthogonal to the state vector (4.3.22), since it is a state
vector with a different value of J2, so (apart from an arbitrary choice of a phase
factor) if properly normalized it can only be the state vector

�
j ′+ j ′′−1
j ′ j ′′ j ′+ j ′′−1 = ( j ′ + j ′′)−1/2

(√
j ′′ � j ′−1 , j ′′

j ′ j ′′ −√
j ′ � j ′ , j ′′−1

j ′ j ′′

)
. (4.3.23)

That is,

C j ′ j ′′( jm; j ′ − 1 j ′′)

= δm , j ′+ j ′′−1

[√
j ′

j ′ + j ′′ δ j , j ′+ j ′′ +
√

j ′′

j ′ + j ′′ δ j , j ′+ j ′′−1

]
, (4.3.24)

and

C j ′ j ′′( jm; j ′ j ′′ − 1)

= δm , j ′+ j ′′−1

[√
j ′′

j ′ + j ′′ δ j , j ′+ j ′′ −
√

j ′

j ′ + j ′′ δ j , j ′+ j ′′−1

]
. (4.3.25)

Continuing in this way, we find that at first for each step down in m there
is just one new state vector �m

j ′ j ′′ j that is orthogonal to all the state vectors of
this type that are obtained by applying the lowering operator to the state vectors
already constructed (which have j = m + 1, m + 2, . . . , j ′ + j ′′), and that
therefore can only have j = m.

This procedure eventually stops, because m ′ is limited to the range from − j ′
to + j ′, and m ′′ is limited to the range from − j ′′ to + j ′′. It follows that for a
given m, m ′ = m − m ′′ runs up from the greater of − j ′ and m − j ′′ to the lesser
of + j ′ and m + j ′′. For m = j ′+ j ′′ the greater of − j ′ and m − j ′′ is m − j ′′ = j ′
and the lesser of + j ′ and m + j ′′ is j ′, so of course the value of m ′ is unique,
m ′ = j ′. As long as the greater of − j ′ and m − j ′′ is m − j ′′ and the lesser of
+ j ′ and m + j ′′ is j ′, each unit step down in m increases the range of m ′ by one,
giving a new value of j one unit lower at each step. But this continues only until
either m − j ′′ = − j ′ or m + j ′′ = j ′ – in other words, until m equals the greater
of j ′′ − j ′ and j ′ − j ′′, which is | j ′ − j ′′|. After that, we get no new values of j ,
which therefore is limited to the range (4.3.12).

As a check, let’s count the total number of all these state vectors. Suppose
that j ′ ≥ j ′′, so that (4.3.12) allows values of j running from j ′ − j ′′ to j ′ + j ′′,
each with 2 j + 1 values of m. The total number of state vectors �m

j ′ j ′′ j is then

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316276105.006
http:/www.cambridge.org/core
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j ′+ j ′′∑
j= j ′− j ′′

(2 j + 1) = 2
( j ′ + j ′′)( j ′ + j ′′ + 1)

2
− 2

( j ′ − j ′′ − 1)( j ′ − j ′′)
2

+ 2 j ′′ + 1

= (2 j ′ + 1)(2 j ′′ + 1), (4.3.26)

which is just the number of state vectors �m′m′′
j ′ j ′′ with m ′ and m ′′ taking 2 j ′ + 1

and 2 j ′′ + 1 values, respectively. Since the result is symmetric in j ′ and j ′′, the
same result applies for j ′′ ≥ j ′.

With the phase conventions adopted here, the Clebsch–Gordan coefficients
are all real. They also have another important property, that follows from their
role as the transformation coefficients between two complete sets of orthonormal
state vectors. To see this in general, suppose we have two sets of state vectors,
�n and �′

a , that satisfy the orthonormality conditions(
�n, �m

) = δnm,
(
�′

a, �
′
b

)
= δab,

and are related by a set of coefficients Cna ,

�n =
∑

a

Cna �
′
a. (4.3.27)

The orthonormality conditions require that

δnm =
(
�n,�m

)
=
∑
ab

C∗
naCmb

(
�′

a,�
′
b

)
=
∑

a

C∗
naCma. (4.3.28)

There is a general theorem of matrix algebra10 that tells us that when a finite
square array of complex numbers Cna satisfies this relation, then we also have∑

n

C∗
naCnb = δab. (4.3.29)

In consequence

�′
a =

∑
n

C∗
na�n. (4.3.30)

For the real Clebsch–Gordan coefficients the conditions (4.3.28) and (4.3.29)
read

10 In matrix notation, the relation
∑

a C∗
naCma = δnm is written CC† = 1, where the product AB of any

two matrices A and B is defined as a matrix with components (AB)mn ≡ ∑
a Ama Ban , and C† is the

matrix with C†
an = (Cna)

∗. Also, 1 is here the unit matrix with 1mn = δnm . The determinant of a prod-
uct of matrices is the product of the determinants, and the determinant of C† is the complex conjugate
of the determinant of C , so here |Det C |2 = 1. Since Det C 	= 0, C has an inverse, which in this case is
C†, so here also C†C = 1. The ab component of this equation tells us that

∑
n C∗

naCnb = δab .
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122 4 Spin et cetera

∑
jm

C j ′j ′′( jm; m ′m ′′)C j ′j ′′( jm; m̃ ′m̃ ′′) = δm′m̃′δm′′m̃′′, (4.3.31)

and ∑
m′m′′

C j ′j ′′( jm; m ′m ′′)C j ′j ′′( j̃ m̃; m ′m ′′) = δ j j̃δmm̃ . (4.3.32)

Also, the relation (4.3.18) may be inverted to read

�m′m′′
j ′j ′′ =

∑
jm

C j ′j ′′( jm; m ′m ′′)�m
j ′j ′′ j . (4.3.33)

Values for some Clebsch–Gordan coefficients are given in Table 4.1.
To take a physical example, consider the state vectors of the hydrogen atom,

now taking into account the spin 1/2 of the electron. For � = 0 the only possible
value of j is of course j = 1/2, while for � > 0 there are two values of j , that
is, j = � + 1/2 and j = � − 1/2. In a standard notation, the hydrogen states
are written n � j , with orbital angular momenta � = 0, 1, 2, 3, 4, . . . represented
by the letters s, p, d, f , g, and from then on alphabetically. Recall also that
� ≤ n − 1. We saw that the ground state, with n = 1, has � = 0, so this state has
a unique j value, j = 1/2, and is denoted 1s1/2. The first excited energy level,
with n = 2, has � = 0 and � = 1. The n = 2 state with � = 0 has j = 1/2,
and is denoted 2s1/2. The n = 2 state with � = 1 can be decomposed into states
with j = 1/2 and j = 3/2, denoted 2p1/2 and 2p3/2. The hydrogen states are
therefore 1s1/2, 2p3/2, 2p1/2, 2s1/2, 3d5/2, 3d3/2, 3p3/2, 3p1/2, 3s1/2, etc.

If for instance we measure the values S3 and L3 of the 3-component of the
electron’s spin and orbital angular momentum11 in the 2p3/2 state with m = 1/2,
then we will either get values 1/2 and 0, or values −1/2 and +1, with proba-
bilities equal to the squares of the corresponding Clebsch–Gordan coefficients,
which according to Table 4.1 are 2/3 and 1/3, respectively.

The spin–orbit interaction proportional to L · S splits the states with the same
n and � but different j from each other by what is known as the fine structure
of the hydrogen atom. For instance, the energy difference of the 2p1/2 and 2p3/2

states is 4.5283 × 10−5 eV. These effects would leave states with the same j
and n but different � with the same energy, but they are split by a smaller energy
difference known as the Lamb shift, due chiefly to a continual emission and

11 This can be done for example by a Stern–Gerlach experiment, with a strong magnetic field in the 3-
direction. As we will see in Section 5.2, L and S contribute differently to the magnetic moment of the
atom, so the interaction energy of the atom with the magnetic field will be different for different values
of m� and ms , even for states with the same value of m = m� + ms . If this interaction energy is large
compared with the interaction between the atom’s spin and orbital angular momentum, then the matrix
elements of the 1 and 2 components of the magnetic moment, which connect states with different values
for m� and/or ms , will oscillate rapidly, and will not contribute to the interaction energy. Thus if the
magnetic field also has a weak inhomogeneous term with a non-vanishing 3-component, the atom will
pursue different trajectories for different values of m� and/or ms .
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4.3 Addition of Angular Momenta 123

Table 4.1 The non-vanishing Clebsch–Gordan coefficients for the addition of angular
momenta j ′ and j ′′ with 3-components m′ and m′′ to give angular momentum j with
3-component m, for several low values of j ′ and j ′′

j ′ j ′′ j m m′ m′′ C j ′ j ′′( jm; m′m′′)

1
2

1
2 1 +1 +1

2 +1
2 1

1
2

1
2 1 0 ±1

2 ∓1
2 1/

√
2

1
2

1
2 1 −1 −1

2 −1
2 1

1
2

1
2 0 0 ±1

2 ∓1
2 ±1

√
2

1 1
2

3
2 ±3

2 ±1 ±1
2 1

1 1
2

3
2 ±1

2 ±1 ∓1
2

√
1/3

1 1
2

3
2 ±1

2 0 ±1
2

√
2/3

1 1
2

1
2 ±1

2 ±1 ∓1
2 ±√

2/3

1 1
2

1
2 ±1

2 0 ±1
2 ∓√

1/3

1 1 2 ±2 ±1 ±1 1

1 1 2 ±1 ±1 0 1/
√

2

1 1 2 ±1 0 ±1 1/
√

2

1 1 2 0 ±1 ∓1 1/
√

6

1 1 2 0 0 0
√

2/3

1 1 1 ±1 ±1 0 ±1/
√

2

1 1 1 ±1 0 ±1 ∓1/
√

2

1 1 0 0 ±1 ∓1 1/
√

3

1 1 0 0 0 0 −1/
√

3

reabsorption of photons by the electron. This splitting of the 2p1/2 and 2s1/2

states is 4.35152 × 10−6 eV.
The above discussion of the hydrogen spectrum ignored the effect of the mag-

netic moment of the proton. This is very small, because the proton’s large mass
gives it a much smaller magnetic moment than the electron. The effect of the
magnetic field of the nucleus of any atom on the atom’s energy levels is called
its hyperfine splitting. For instance, there are two 1s states of hydrogen, with
total proton plus electron spin equal to 1 or 0, separated by an energy difference
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124 4 Spin et cetera

5.87 × 10−6 eV, comparable to the Lamb shift of the n = 2 states. The radiative
transition between the states of total spin 1 and 0 is the famous 21-centimeter
line in the radio spectrum of hydrogen.

The Clebsch–Gordan coefficients have an important property of symmetry or
antisymmetry:

C j ′j ′′( jm; m ′m ′′) = (−1) j− j ′− j ′′C j ′′ j ′( jm; m ′′m ′). (4.3.34)

To see this, note that the state vectors � jm
j ′ j ′′ and �

jm
j ′′ j ′ both represent the same

state, one in which angular momenta J′ and J′′ combine to form a total angular
momentum J with J2 = �

2 j ( j + 1) and Jz = �m, and are therefore equal up to
a constant factor. By interchanging j ′ with j ′′ and then interchanging j ′′ with j ′
we must get back to the same state vector, so this factor must have unit square,
and is therefore just a sign. Further, since all the � jm

j ′′ j ′ with the same j ′, j ′′, and
j and different values of m are related to one another by multiplication with the
operators J1 + iJ2 or J1 − iJ2, which are symmetric between J′ and J′′, these
state vectors all have the same symmetry or antisymmetry property, the choice
depending only on j ′, j ′′, and j , so

C j ′j ′′( jm; m ′m ′′) = (±1) j j ′ j ′′C j ′′ j ′( jm; m ′′m ′).

For the case of maximum j and m, with j = m = j ′ + j ′′, Eq. (4.3.21) shows
that the sign is +1. There are two states with m ′ + m ′′ = j − 1, one with
j = j ′ + j ′′, which must have a Clebsch–Gordan coefficient that is symmetric
under interchange of j ′ and j ′′, as we see in Eq. (4.3.24), and another state vector
with j = j ′+ j ′′−1, which must be orthogonal to the state with m ′+m ′′ = j −1
and j = j ′ + j ′′, which requires it to have a Clebsch–Gordan coefficient that
is antisymmetric under interchange of j ′ and j ′′, as we see in Eq. (4.3.25). This
argument can then be repeated for all lower values of m, with the result that for
fixed j ′ and j ′′ the sign (±1) j j ′ j ′′ changes for each decrease of j by one unit,
with the result that (±1) j j ′ j ′′ = (−1) j− j ′− j ′′ , as was to be proved.

The result (4.3.34) can be observed in the entries in Table 4.1. For instance,
the state consisting of two particles of spin 1/2 is symmetric or antisymmetric in
the spin 3-components of the two particles depending on whether the total spin s
is s = 1, for which s −1/2−1/2 = 0, or s = 0, for which s −1/2−1/2 = −1.

There is an important special case of the addition of angular momenta: the
construction of a rotationally invariant state � with total angular momentum
j = 0, m = 0 from states that have two separate angular momenta j ′,m ′ and
j ′′,m ′′. According to Eqs. (4.3.12) and (4.3.19), this is only possible if j ′ = j ′′
and m ′ = −m ′′, so this rotationally invariant state must take the form

� =
∑
m′

C j ′m′�m′ −m′
j ′ j ′ .
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4.3 Addition of Angular Momenta 125

Rotational invariance requires this state to be annihilated by the raising
operator, so

0 = (J1 + iJ2)� = (J ′
1 + i J ′

2)� + (J ′′
1 + i J ′′

2 )�

=
∑
m′

[
C j ′m′

√
( j ′ − m ′)( j ′ + m ′ + 1� j ′ m′+1, j ′ −m′

+ C j ′m′
√
( j ′ + m ′)( j ′ − m ′ + 1� j ′ m′, j ′ −m′+1

]
.

Changing the summation variable in the second term in square brackets from m ′
to m ′+1, we see that this is equivalent to the requirement that C j ′m′ = −C j ′ m′+1.
We can therefore adjust the overall phase of C j ′m′ so that C j ′m′ = (−1) j ′−m′

N j ′ ,
with N j ′ real and positive. The normalization condition (4.3.32) then tells us that
N j ′ = 1/

√
2 j ′ + 1. Thus (dropping unnecessary primes) the Clebsch–Gordan

coefficient here is

C j j (00; m − m) = (−1) j−m

√
2 j + 1

. (4.3.35)

The reader can check that this is the same, with the same phase conventions, as
the results in the fourth line and the last two lines of Table 4.1.

In particular, we can use this result to combine spherical harmonic func-
tions of two different unit vectors â and b̂ to form a function of â and b̂ that
is rotationally invariant, and hence can only depend on â · b̂:

F�(â · b̂) =
�∑

m=−�
(−1)�−mY m

� (â)Y
−m
� (b̂).

We can identify the function F� by looking at the special case where b̂ =
ẑ ≡ (0, 0, 1) and â = (sin θ cosφ, sin θ sinφ, cos θ). The spherical harmonics
Y −m
� (ẑ) vanish except for m = 0, and in this case Eq. (2.2.18) gives

Y 0
� (â) =

√
2�+ 1

4π
P�(cos θ), Y 0

� (b̂) =
√

2�+ 1

4π
.

It follows that F�(cos θ) = [(2�+ 1)/4π ]P�(cos θ), which yields the important
addition theorem for spherical harmonics:

P�(â · b̂) = 4π

2�+ 1

�∑
m=−�

(−1)�−mY m
� (â)Y

−m
� (b̂). (4.3.36)

Instead of using Clebsch–Gordan coefficients to construct states of total
angular momentum j,m from states which have two individual angular
momenta j ′,m ′ and j ′′,m ′′, we can use these coefficients together with
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Eq. (4.3.35) to construct a state � of total angular momentum zero from a state
�m m′ m′′

j j ′ j ′′ with three individual angular momenta:

� =
∑

mm′m′′

(
j j ′ j ′′

m m ′ m ′′

)
�m m′ m′′

j j ′ j ′′ , (4.3.37)

where the coefficients are(
j j ′ j ′′

m m ′ m ′′

)
≡ (−1) j+m

√
2 j + 1

C j ′ j ′′( j −m; m ′m ′′), (4.3.38)

and are known as 3 j symbols. Because of the symmetric way in which the three
angular momenta appear in Eq. (4.3.37), it will not be a surprise that the 3 j
symbols are symmetric or antisymmetric not only under interchange of j ′,m ′
with j ′′,m ′′, as in Eq. (4.3.34), but also under interchange of j,m with j ′,m ′
(or j ′′,m ′′):(

j j ′ j ′′
m m ′ m ′′

)
= (−1)m′−m′′+m

(
j ′ j j ′′

m ′ m m ′′

)
. (4.3.39)

In other words,

C j j ′′( j ′ − m ′; mm ′′) = (−1) j− j ′−2m′+m′′
√

2 j ′ + 1

2 j + 1
C j ′ j ′′( j − m; m ′m ′′).

(4.3.40)

(The signs appearing here will play no role in what follows, and we will make
no attempt to derive them.) From the orthonormality condition (4.3.32), we then
obtain another useful orthonormality condition,∑

m′m′′
C j j ′′( j ′m ′; mm ′′)C j̄ j ′′( j ′m ′; m̄m ′′) = 2 j ′ + 1

2 j + 1
δ jj̄δmm̄). (4.3.41)

∗ ∗ ∗ ∗ ∗
There is an alternative description of angular momentum multiplets that

is useful in some contexts, and can be extended to other symmetry groups
of importance in elementary-particle physics. According to Eqs. (4.2.17) and
(4.1.12), the action of an infinitesimal rotation 1 + ω on a spin one-half state
vector �m (with m = ±1/2) is

�m →
∑

m′=±1/2

(
1 + i

2
ω · σ

)
mm′

�m′ . (4.3.42)

Now, for general real ω,

ω · σ =
(

ω3 ω1 − iω2

ω1 + iω −ω3

)
,
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4.3 Addition of Angular Momenta 127

which is the most general traceless Hermitian 2×2 matrix. Hence (4.3.34) is the
most general 2 × 2 unitary infinitesimal transformation with unit determinant.
(Recall that for M infinitesimal, Det(1 + M) = 1 + Tr M .) So, acting on spin
one-half indices, the three-dimensional rotation group is the same as the group
known as SU (2), the group of 2 × 2 unitary matrices that are “special” in the
sense of having unit determinant. We see that, at least for rotations that can
be built up from infinitesimal rotations, the three-dimensional rotation group
SO(3) is the same as the two-dimensional unitary unimodular group SU (2).
(There are similar relations in a few higher dimensions, for instance a similar
relation between SO(6) and SU (4), but nothing like this occurs in spaces of
general dimensionality.)

More generally, a state vector �m1...m N that combines N spin one-half angular
momenta, with each mi equal to ±1/2, transforms as a tensor under SU (2):

�m1...m N →
∑

m′
1...m

′
N

Um1m′
1
. . .Um N m′

N
�m′

1...m
′
N
, (4.3.43)

where U is a unitary 2 × 2 matrix with unit determinant. In general, from such a
tensor we can derive tensors with fewer indices. Note that the condition that U
has unit determinant means that∑

m′
1m′

2

Um′
1m1Um′

2m2εm′
1m′

2
= εm1m2, (4.3.44)

where

ε 1
2 ,− 1

2
= −ε− 1

2 ,
1
2

= 1, ε 1
2 ,

1
2

= ε− 1
2 ,− 1

2
= 0. (4.3.45)

It follows that by multiplying a general tensor �m1...m N with εmr ms (where r and
s are any two different integers between 1 and N ) and summing over mr and
ms , we can form a tensor with two fewer indices. The only sort of tensor, which
is irreducible in the sense that from it we cannot in this way form non-trivial
tensors with fewer indices, is one that is totally symmetric, for which the sum
over mr and ms would vanish.

To put this in the language of angular momentum, we note that by the rules
of angular momentum addition, a state vector �m1...m N can be expressed as a
sum of state vectors of various total angular momenta, just one of which will
be angular momentum N/2. From the fourth line of Table 4.1, we see that the
tensor (4.3.37) is essentially just the Clebsch–Gordan coefficient for combining
two angular momenta one-half to form angular momentum zero:

εm1m2 = √
2 C 1

2 ,
1
2
(0, 0; m1m2) (4.3.46)

so when we multiply �m1...m N with εmr ms and sum over mr and ms , we get a
state vector that combines N − 2 spin one-half angular momenta, which can be
expressed as a sum of state vectors of various total angular momenta, all of them
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128 4 Spin et cetera

less than N/2. Thus in order to isolate the part of a state vector �m1...m2 j that
contains only the angular momentum j , the state vector must be symmetrized in
the indices m1 . . .m2 j . The independent components of this symmetrized state
vector are entirely characterized by the numbers n and 2 j − n of indices with
m = +1/2 and m = −1/2, so the number of independent components is simply
the number of values of n between zero and 2 j , which is 2 j + 1. Thus a spin- j
state vector can simply be described as a symmetrized combination of 2 j spins
one-half. For instance, a multiplet with total angular momentum unity consists
of the three states

� 1
2 ,

1
2
, � 1

2 ,− 1
2
+�− 1

2 ,
1
2
, �− 1

2 ,− 1
2

in agreement (apart from normalization) with the first three lines of Table 4.1.
We can use this alternative formalism to work out rules for the addition of

angular momenta. When we combine spins j1 and j2, the state vector in this for-
malism takes the form �m1...m2 j1 ;m′

1...m
′
2 j2

, symmetrical in the ms and symmetrical

in the m ′s, but with no particular symmetry between the ms and m ′s. From this,
by multiplying with M factors εmr m′

s
and summing over indices, we can form a

tensor with M fewer m indices and M fewer m ′ indices. If we symmetrize with
respect to the remaining indices, we have a tensor that describes only angular
momentum 2 j1 + 2 j2 − 2M . Here M can be given any value from zero to the
lesser of 2 j1 and 2 j2. Hence by combining angular momenta j1 and j2, we can
form any angular momentum j = j1 + j2 − M , with 0 ≤ M ≤ min{2 j1, 2 j2},
or in other words, with | j1 − j2| ≤ j ≤ j1 + j2, just as we found earlier by the
use of raising and lowering operators.

4.4 The Wigner–Eckart Theorem

One of the advantages of the algebraic approach to angular momentum is that
we can deduce the form of the matrix elements of various operators if we know
their commutation relations with the rotation generators, which follow from the
rotation transformation properties of the corresponding observables. A set of
2 j + 1 operators Om

j with m = j, j − 1, . . . ,− j is said to have spin j if
the commutators of the rotation generators with these operators have the same
form as the formulas (4.2.9) and (4.2.16) for their action on state vectors �m

j of
angular momentum j : [

J3 , Om
j

] = �mOm
j , (4.4.1)[

J1 ± iJ2, Om
j

] = �

√
j ( j + 1)− m2 ∓ m Om±1

j . (4.4.2)

These conditions can be summarized in the statement that

[J, Om
j ] = �

∑
m′

J( j)
m′m Om′

j , (4.4.3)
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4.4 The Wigner–Eckart Theorem 129

where J( j)
m′m is the spin- j representation of the angular-momentum operators

[J ( j)
3 ]m′m ≡ mδm′m, [J ( j)

1 ]m′m ± i[J ( j)
2 ]m′m ≡

√
j ( j + 1)− m2 ∓ m δm′,m±1.

(4.4.4)

For instance, a scalar operator S is one that commutes with all components of J,
which trivially agrees with Eqs. (4.4.1) and (4.4.2) or equivalently with (4.4.3)
if we assign the operator j = m = 0, for which J(0)m′m = 0. Also, according to
Eq. (4.1.13), a vector operator V is one that satisfies the commutation relations[

Ji , Vj
] = i�

∑
k

εijkVk . (4.4.5)

We can define spherical components of this vector as the quantities

V +1 ≡ −V1 + iV2√
2

, V −1 ≡ V1 − iV2√
2

, V 0 ≡ V3. (4.4.6)

Then we can use the commutation relations (4.4.5) to show that

[J3, V m] = �mV m, (4.4.7)

and

[J1 ± iJ2, V m] = �

√
2 − m2 ∓ m V m±1, (4.4.8)

so the V m form an operator V m
1 with j = 1. A special case of such an operator

V m
1 is provided by the spherical harmonic Y m

1 (x̂), with x̂ treated as an operator.
Indeed, for any vector operator V, the �th-order polynomials |V|�Y m

� (V̂ ) are
operators of type Om

j with j = �.
We will prove a fundamental general result due to Wigner12 and Carl Eckart13

(1902–1973), known as the Wigner–Eckart theorem, that gives(
�m′′

j ′′ , Om
j �

m′
j ′
)

= C j j ′( j ′′m ′′; mm ′)
(
�||O||�

)
, (4.4.9)

where C j j ′( j ′′m ′′; mm ′) is the Clebsch–Gordan coefficient introduced in

Section 4.3, and
(
�||O||�

)
is a coefficient known as the reduced matrix

element that can depend on everything except the 3-components m, m ′, and m ′′.
To prove this result, consider a general operator Om

j of spin j . When multi-

plied with the angular momentum generators, the state vector �mm′
j j ′ ≡ Om

j �
m′
j ′

becomes

Ji �
mm′
j j ′ = [Ji , Om

j ]�m′
j ′ + Om

j Ji �
m′
j ′

= �

∑
m′′

[J ( j)
i ]m′′m�

m′′m′
j j ′ + �

∑
m′′

[J ( j ′)
i ]m′′m′�mm′′

j j ′ . (4.4.10)

12 E. P. Wigner, Gruppentheorie (Vieweg und Sohn, Braunschweig, 1931).
13 C. Eckart, Rev. Mod. Phys. 2, 305 (1930).
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130 4 Spin et cetera

In other words, Ji acts on �mm′
j j ′ just as if �mm′

j j ′ were a state vector for a system
consisting of two particles with spins j and j ′ and 3-components m and m ′.
Therefore

Om
j �

m′
j ′ =

∑
j ′′m′′

C j j ′( j ′′m ′′; mm ′)�m′′
j j ′ j ′′, (4.4.11)

where �m′′
j j ′ j ′′ is a state vector of angular momentum j ′′ with 3-component m ′′.

Applying Eq. (4.2.19) to the state vectors � and � then gives the desired result,
Eq. (4.4.9).

There is an immediate application of this result for vector operators: the
matrix elements of all vector operators for state vectors of definite angular
momentum are parallel. That is, for any pair of vectors V and W, as long as
(�||W ||�) does not vanish, we have

(�m′′
j ′′ , V m

1 �
m′
j ′
)

=
⎛
⎝
(
�||V ||�

)
(
�||W ||�

)
⎞
⎠(�m′′

j ′′ ,W m
1 �

m′
j ′
)
. (4.4.12)

Since this is true of the spherical components of the vectors, it is also true of the
Cartesian components

(
�m′′

j ′′ , Vi�
m′
j ′
)

=
⎛
⎝
(
�||V ||�

)
(
�||W ||�

)
⎞
⎠(�m′′

j ′′ ,Wi�
m′
j ′
)
. (4.4.13)

In particular, since J is itself a vector, we have(
�m′′

j ′ , Vi�
m′
j ′
)

∝
(
�m′′

j ′ , Ji�
m′
j ′
)
. (4.4.14)

We have written this last result only for the case j ′′ = j ′ because, since J com-
mutes with J2, the reduced matrix element (�||J ||�) would vanish if � and �
had different angular momenta. But it should not be thought that vector operators
generally have vanishing matrix elements between states of different total angu-
lar momentum; this is a general rule only for the angular momentum operator
itself.

We will use Eq. (4.4.14) in our treatment of the Zeeman effect in Section 5.2.
It is often explained “physically,” by arguing that any vector’s components
orthogonal to the angular momentum vector are averaged out by the rotation
of a system around J, but without the Wigner–Eckart theorem one might think
that this essentially classical explanation leaves open the possibility of quantum
corrections.

As a further application of the Wigner–Eckart theorem, we will derive the
selection rules obeyed by the most common sort of photon emission transition.
As we saw in Section 1.4, Heisenberg made use of the classical formula for
radiation by an oscillating charge to guess at a formula, Eq. (1.4.5), for the rate
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4.4 The Wigner–Eckart Theorem 131

of a transition from one atomic state to another. Generalizing to any number of
charged particles with position operators Xn (relative to the center of mass) and
charges en , this formula gives the rate of transition from initial atomic state a to
final atomic state b as

�(a → b) = 4(Ea − Eb)
3

c3�4

∣∣∣(b|D|a
)∣∣∣2 , (4.4.15)

where D is the dipole operator

D =
∑

n

enXn. (4.4.16)

We will give a quantum-mechanical derivation of this formula in Section 11.7.

As shown there, Eq. (4.4.15) gives the radiative transition rate (with
(

b|Xn|a
)

defined as the matrix element of the nth particle coordinate relative to the center
of mass, stripped of its momentum conservation delta function), in the approxi-
mation that the wavelength hc/(Ea − Eb) of the emitted photon is much larger

than the size of the atom, provided that the matrix element
(

b|D|a
)

does not

vanish. What concern us here are the conditions under which the matrix element
may not vanish.

The operator D is a three-vector, and so, as in Eq. (4.4.6), its components can
be written as linear combinations of a j = 1 multiplet of operators Dm :

D1 = 1√
2

(
−D+1 + D−1

)
, D2 = i√

2

(
D+1 + D−1

)
, D3 = D0. (4.4.17)

The matrix elements of the operators Dm have a dependence on m and on the
angular-momentum quantum numbers ja,ma and jb,mb of the initial and final
states given by a Clebsch–Gordan coefficient:(

b|Dm |a
)

∝ C ja1( jbmb; mam), (4.4.18)

with a constant of proportionality independent of m, ma , and mb. The transition
rate (4.4.15) therefore vanishes unless the angular-momentum quantum numbers
satisfy

| ja − jb| ≤ 1, ja + jb ≥ 1, |ma − mb| ≤ 1. (4.4.19)

There is a further parity selection rule, given in Section 4.7.
Where these selection rules are satisfied, and the transition rate is given to

a good approximation by Eq. (4.4.15), this is known as an electric dipole, or
E1, transition. Of course, not all possible atomic transitions satisfy these selec-
tion rules. Where the selection rules are not satisfied, photon transitions may
still be possible, but their rates are suppressed by additional factors of the
atomic size divided by the photon wavelength. Such transitions are discussed
in Section 11.7.
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132 4 Spin et cetera

It frequently happens that an atom or molecule or elementary particle of
angular momentum j ′ is unpolarized, with all values of m ′ between − j ′ and
j ′ equally likely, so that in finding the expectation value of an operator Om

j in a

state �m′
j ′ we must average over m ′. The Wigner–Eckart theorem then gives the

expectation value〈
Om

j

〉
= 1

2 j ′ + 1

∑
m′

(
�m′

j ′ , Om
j �m′

j ′
)

= 1

2 j ′ + 1

∑
m′

C j j ′( j ′m ′; mm ′)
(
�||O||�

)
. (4.4.20)

By setting j = m = 0 in the orthonormality relation (4.3.41) and using the
obvious relation C0 j ′′( j ′m ′; 0m ′′) = δ j ′ j ′′δm′m′′ we find∑

m′
C j j ′( j ′m ′; mm ′) = (2 j ′ + 1)δ j0δm0. (4.4.21)

Hence none of the operators Om
j have non-vanishing expectation values in unpo-

larized systems, except for those operators with j = m = 0. As we will see in
Section 5.9, this has important implications for the long-range forces between
electrically neutral atoms and molecules.

4.5 Bosons and Fermions

As far as we know, every electron in the universe is identical to every other
electron, except for the values taken by their positions (or momenta) and spin
3-components. The same is true of the other known elementary particles: pho-
tons, quarks, etc. For such indistinguishable particles, it can make no difference
what order we write the position and spin labels on a physical state: we can
say that in a state with state vector �x1,m1;x2,m2;... there is one electron with
position x1 and spin 3-component �m1, another electron with position x2 and
spin 3-component �m2, and so on, and not that the first electron has position x1

and spin 3-component �m1, that the second electron has position x2 and spin
3-component �m2, and so on. Thus for instance the state vector �x2,m2;x1,m1;...
must represent the same physical state as the state vector �x1,m1;x2,m2;.... This
does not mean that these state vectors are equal, only that they are equal up to a
constant factor,14 say α:

14 It is important in deriving Eq. (4.5.3) that α should depend only on the species of particle, not on the
particle’s momentum or spin. This follows from considerations of spacetime symmetry; a dependence
of α on momentum or spin would contradict invariance under rotations of the coordinate system or
transformations to moving coordinate systems. In two space dimensions there is an exotic possibility,
that α might depend on the paths by which the particles are brought to their positions or momenta, but
this is not possible in three or more space dimensions.
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4.5 Bosons and Fermions 133

�x2,m2;x1,m1;... = α�x1,m1;x2,m2;.... (4.5.1)

Because α does not depend on momentum or spin, we also have

�x1,m1;x2,m2;... = α�x2,m2;x1,m1;.... (4.5.2)

Inserting Eq. (4.5.1) in the right-hand side of Eq. (4.5.2), we see that

�x1,m1;x2,m2;... = α2�x1,m1;x2,m2...,

and therefore

α2 = 1. (4.5.3)

This argument applies to particles of any type, elementary or not. Particles with
α = +1 and α = −1 are known as bosons and fermions, respectively, named
after Satyendra Nath Bose (1894–1974) and Enrico Fermi (1901–1954).

One of the most important consequences of special relativity in quantum
mechanics is that all particles whose spins are half odd integers are fermions, and
all particles whose spins are integers are bosons.15 Thus electrons and quarks,
which have spin 1/2, are fermions. The heavy W and Z particles, which play
an essential role in the radioactive process known as beta decay, have spin one,
and are therefore bosons. (The definition of spin for a massless particle like the
photon requires some care. For our purposes here we note only that the com-
ponent of spin angular momentum in the direction of a photon’s motion can
only take the values ±�, corresponding to left- and right-circularly polarized
electromagnetic waves, and that photons are bosons.)

When we exchange a pair of identical composite particles, we exchange all
of their constituents, so we get a sign factor given by the product of all the
sign factors for the individual constituents. It follows that a composite parti-
cle consisting of an even number of fermions and any number of bosons is a
boson, and a composite particle consisting of an odd number of fermions and
any number of bosons is a fermion. Thus the proton and neutron, which each
consist of three quarks, are fermions. The hydrogen atom, which consists of
a proton and an electron, is a boson. Note that this rule is consistent with the
feature of angular-momentum addition that the addition of an odd number of
half-odd-integer angular momenta and any number of integer angular momenta
is a half-odd-integer angular momentum, while the addition of an even num-
ber of half-odd-integer angular momenta and any number of integer angular
momenta is an integer angular momentum. It would have been impossible for

15 This result was first presented in the context of perturbation theory by M. Fierz, Helv. Phys. Acta 12, 3
(1939) and W. Pauli, Phys. Rev. 58, 716 (1940). Non-perturbative proofs in axiomatic field theory were
given by G. Lüders and B. Zumino, Phys. Rev. 110, 1450 (1958) and N. Burgoyne, Nuovo Cimento 8,
807 (1958). Also see R. F. Streater and A. S. Wightman, PCT, Spin & Statistics, and All That (Benjamin,
New York, 1968).

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316276105.006
http:/www.cambridge.org/core


134 4 Spin et cetera

all integer-spin particles to be fermions, because a composite of an even number
of integer-spin particles would have integer spin, but would also be a boson.

The distinction between bosons and fermions is particularly important for
systems in which to a good approximation the Hamiltonian acts separately on
each particle. That is,

H�ξ1ξ2... =
∫

dξ ′
1 Hξ ′

1,ξ1�ξ ′
1ξ2... +

∫
dξ ′

2 Hξ ′
2,ξ2�ξ1ξ

′
2...

+ · · · , (4.5.4)

where Hξ ′,ξ is the matrix element of an effective one-particle Hamiltonian
between one-particle states,

Hξ ′,ξ ≡
(
�ξ ′, H eff�ξ

)
. (4.5.5)

(We are now using ξ to denote a particle momentum and spin z-component, and
an integral over ξ is understood to include an integral over the momentum vec-
tor and a sum over the spin z-component.) In atomic physics, this is called the
Hartree approximation.16 It is often a good approximation in many-particle sys-
tems, where any one particle can be assumed to respond to the potential created
by the other particles, while its response to this potential has negligible reac-
tion back on the potential. When the Hamiltonian takes the form (4.5.4), a state
� will be an eigenstate of the Hamiltonian if its wave function is a product of
single-particle wave functions:(

�ξ1,ξ2,···, �
)

= ψ1(ξ1)ψ2(ξ2) . . . , (4.5.6)

where the ψa are eigenfunctions of the one-particle Hamiltonian∫
dξ ′ Hξ,ξ ′ψa(ξ

′) = Eaψa(ξ). (4.5.7)

In this case, we have(
�ξ1,ξ2,···, H�

)
=
∫

dξ ′
1 H ∗

ξ ′
1,ξ1

ψ1(ξ
′
1)ψ2(ξ2) . . .

+
∫

dξ ′
2 H ∗

ξ ′
2,ξ2

ψ1(ξ1)ψ2(ξ
′
2) . . .+ · · · .

Using the Hermiticity of the one-particle Hamiltonian, we have H ∗
ξ ′,ξ = Hξ,ξ ′ ,

so with Eq. (4.5.7) this gives(
�ξ1,ξ2,···, H�

)
= (E1 + E2 + · · · )

(
�ξ1,ξ2,···, �

)
and therefore � is an eigenvector of H with energy E1 + E2 + · · · :

H� = (E1 + E2 + · · · )�. (4.5.8)

16 D. R. Hartree, Proc. Camb. Phil. Soc. 24, 111 (1928).
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4.5 Bosons and Fermions 135

But for identical particles Eq. (4.5.6) is in conflict with the requirement
that �ξ1,ξ2,... must be symmetric or antisymmetric in the ξs for bosons or
fermions, respectively. In this case, in place of (4.5.6), we must symmetrize
or antisymmetrize the wave function:(

�ξ1,ξ2,···, �
)

=
∑

P

δPψ1(ξP1)ψ2(ξP2) . . . , (4.5.9)

where the sum is over all permutations 1, 2, . . . �→ P1, P2, . . . , and δP for
fermions is +1 or −1 for even or odd permutations, respectively, while for
bosons δP = 1 for all permutations. The argument given above for the energy
of the wave function (4.5.6) applies to each term of this sum, so by the same
argument, � is again an eigenvector of H with eigenvalue E1 + E2 + · · · .

For instance, for a two-particle state there are just two permutations, the
identity 1, 2 �→ 1, 2 and the odd permutation 1, 2 �→ 2, 1, so(

�ξ1,ξ2, �
)

= ψ1(ξ1)ψ2(ξ2)± ψ1(ξ2)ψ2(ξ1),

the sign being plus for bosons and minus for fermions. For fermions, the wave
function in the general case is a determinant, known as a Slater determinant:17

(
�ξ1,ξ2,···, �

)
=

∣∣∣∣∣∣∣∣
ψ1(ξ1) ψ1(ξ2) ψ1(ξ3) . . .

ψ2(ξ1) ψ2(ξ2) ψ2(ξ3) . . .

ψ3(ξ1) ψ3(ξ2) ψ3(ξ3) . . .

. . . . . . . . . . . .

∣∣∣∣∣∣∣∣
. (4.5.10)

For bosons instead of a determinant the wave function is a permanent, which is
a determinant but with all minus signs replaced with plus signs.

For fermions it is impossible to form a state vector of the form (4.5.10) in
which any of the ψa are the same, because then two rows of the determinant
would be the same, and the state vector would vanish. This is known as the Pauli
exclusion principle.18 In contrast, for bosons we can even have a state in which
a macroscopic number of the ψa are the same. This is known as a Bose–Einstein
condensation.19 The peculiar properties of liquid 4He can be interpreted as due
to a Bose–Einstein condensation, but in this case the wave function cannot be
expressed approximately as a symmetrized sum of products of one-particle wave
functions. Only in recent years has a Bose–Einstein condensation been observed
for a gas of atoms,20 where this approximation is appropriate.

17 J. C. Slater, Phys. Rev. 34, 1293 (1929).
18 W. Pauli, Z. Physik 31, 763 (1925).
19 In a letter to Einstein, Bose described the theory of bosons like photons for which the number of particles

is not fixed. Einstein translated it himself from English to German, and had it published, as S. N. Bose,
Z. Physik 26, 178 (1924). Einstein then worked out the theory of gases of bosons with a fixed number
of particles, published in A. Einstein, Sitzungsber Preuss. Akad. Wiss. 3 (1925).

20 M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Science 269, 198
(1995).

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316276105.006
http:/www.cambridge.org/core


136 4 Spin et cetera

The exclusion principle does not apply to bosons, even bosons like the
hydrogen atom consisting of pairs of fermions, but it does have implications
for ensembles of such bosonic bound states. Consider a boson consisting of
a pair of fermions with coordinates ξ and η (each including a momentum
and spin z-component) and wave function ψ(ξ, η). A gas of such identical
bosons will have a wave function given by a product of bound-state wave func-
tions, but antisymmetrized among fermion variables, and therefore equal to a
determinant: ∣∣∣∣∣∣∣∣

ψ(ξ1, η1) ψ(ξ1, η2) ψ(ξ1, η3) · · ·
ψ(ξ2, η1) ψ(ξ2, η2) ψ(ξ2, η3) · · ·
ψ(ξ3, η1) ψ(ξ3, η2) ψ(ξ3, η3) · · ·

· · · · · · · · · · · ·

∣∣∣∣∣∣∣∣
.

There is no limit to how many of these identical bosons can co-exist.
The first great application of the exclusion principle was in explaining the

periodic table of the elements. As has already been mentioned, each electron
in a multi-electron atom may be considered approximately to move in a poten-
tial V (r) arising from the nucleus and the other electrons. This potential is very
close to a central potential, depending only on the distance r from the nucleus,
but it is not a simple Coulomb potential proportional to 1/r . It behaves instead
like −Ze2/r near the nucleus (whose charge is +Ze), and like −e2/r out-
side the atom, where the nuclear charge is screened by the negative charge of
Z − 1 electrons. Because the potential is a central potential we can still label
the wave functions ψa(ξ) of the individual electrons with an orbital angular
momentum � and a principal quantum number n, with 2(2�+ 1) of these states
for each n and � (the extra factor 2 arising from the electron’s spin). The inte-
ger n can be defined as � + 1 plus the number of nodes of the radial wave
function, just as for a Coulomb potential. But because the potential is not a
Coulomb potential we no longer have precisely equal energies for states of dif-
ferent � and the same n. Instead, there is a tendency of energy to increase with
�, because the wave function behaves near the origin like r �, so that electrons
with large � spend little time near the nucleus, where r |V (r)| is largest. For
atoms with a large number Z of electrons, it even sometimes happens that a
one-electron state of large � has a higher energy than a state of larger n and
smaller �.

The Pauli exclusion principle tells us that no two electrons can have the same
wave function ψa(ξ), so, as we consider atoms with more and more electrons,
the electrons must be placed in one-electron states of higher and higher energy
Ea . Of course, with increasing numbers of electrons the potential V (r) changes,
so the values of the energies Ea and even their order also change. Detailed cal-
culations show that the one-electron states are filled (with sporadic exceptions)
in the order (with energies increasing down the list)
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1s,

2s, 2p,

3s, 3p,

4s, 3d, 4p,

5s, 4d, 5p,

6s, 4 f, 5d, 6p,

7s, 5 f, 7p, . . . , (4.5.11)

where s, p, d, and f are the time-honored symbols for � = 0, � = 1, � = 2, and
� = 3. The one-electron states listed on the same line have approximately equal
energy, but increasing somewhat from left to right.

Taking spin into account, the total numbers of states for the energy levels
listed on each line of Eq. (4.5.11) are 2, 2 + 6 = 8, 2 + 6 = 8, 2 + 6 + 10 = 18,
2 + 10 + 6 = 18, 2 + 14 + 10 + 6 = 32, and so on. The first two elements,
hydrogen and helium, with Z = 1 and Z = 2, have electrons only in the first
(deepest) of the energy levels (4.5.11); the next eight elements from lithium to
neon have electrons also in the second of these energy levels; the eight elements
from sodium to argon have electrons in the third as well as the first and second
of these energy levels; and so on.

Now, the chemical properties of an element are generally determined by the
number of electrons in its highest energy level, which are least tightly bound.
(An important exception is noted below.) An element whose atoms have no elec-
trons outside filled energy levels is particularly stable chemically. Such elements
are called noble gases: helium with Z = 2, neon with Z = 2 + 8 = 10, argon
with Z = 2 + 8 + 8 = 18, krypton with Z = 2 + 8 + 8 + 18 = 36, xenon with
Z = 2+8+8+18+18 = 54, and radon with Z = 2+8+8+18+18+32 = 86.
For elements with a small number of electrons more or fewer than the number for
a noble gas, chemical properties are largely determined by that number, known
as the valence – positive for extra electrons, negative for missing electrons. Sta-
ble compounds that are held together by the Coulomb attractions of atoms that
have gained or lost one or more electrons are typically formed from elements
whose valences add up to zero. If there is just one electron in the highest energy
level then it is easily lost, so the element behaves as a chemically reactive metal
with valence +1. (Metals are characterized by their property of forming solids
in which electrons leave individual atoms and travel freely through the solid.
This gives metals their high thermal and electrical conductivity.) Such elements
are called alkali metals, and include lithium with Z = 2 + 1 = 3, sodium with
Z = 2 + 8 + 1 = 11, potassium with Z = 2 + 8 + 8 + 1 = 19, etc. Like-
wise, if there is just one electron missing in the highest energy level, then the
atom tends strongly to attract one extra electron, so it is a chemically reactive
non-metal, with valence −1, which can form particularly stable compounds with
the alkali metals. Such elements are called halogens, and include fluorine with
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Z = 2 + 8 − 1 = 9, chlorine with Z = 2 + 8 + 8 − 1 = 17, bromine with
Z = 2+8+8+18−1 = 35, and so on. Elements with two electrons more than
a noble gas are chemically reactive, though not as reactive as the alkali metals;
these are known as the alkali earths, with valence +2, and include beryllium
with Z = 2 + 2 = 4, magnesium with Z = 2 + 8 + 2 = 12, calcium with
Z = 18 + 2 = 20, and so on. Similarly, elements with two electrons fewer
than a noble gas are chemically reactive, with valence −2, though not as reac-
tive as the halogens. These include oxygen with Z = 10 − 2 = 8, sulfur with
Z = 18 − 2 = 16, and so on.

The inclusion of 4 f states in the sixth energy level and 5 f states in the
seventh energy level produces a striking feature of the periodic table of the
elements. Detailed calculations show that the mean radius of the 4 f orbits is
smaller than that of the 6s states, and the mean radius of the 5 f orbits is smaller
than that of the 7s states, so the numbers of 4 f or 5 f electrons have little
effect on the chemical properties of the atom, even where these are the highest-
energy electrons in the atom. Thus the 2(2 · 3 + 1) = 14 elements in which
the highest-energy electrons are in 4 f states are quite similar chemically, and
likewise for the 14 elements in which the highest-energy electrons are in 5 f
states. The elements of the first set are known as rare earths or lanthanides, and
have Z running from 2 + 8 + 8 + 18 + 18 + 2 + 1 = 57 (lanthanum)21 to
2 + 8 + 8 + 18 + 18 + 2 + 14 = 70 (ytterbium). The second set are known as
actinides, and have Z running from 2+8+8+18+18+32+2+1 = 89 (actinium)
to 2+8+8+18+18+32+2+14 = 102 (nobelium). Much beyond nobelium
the question of chemical behavior becomes moot, because for such large values
of Z the Coulomb repulsion among the protons makes the nucleus so unstable
that the atoms do not last long enough to participate in chemical reactions.

An analogous shell structure is seen in atomic nuclei.22 There are certain
“magic numbers” of protons or neutrons that form closed shells, as shown by
the fact that the nucleus with one additional proton or neutron has anomalously
small binding energy. The magic numbers observed in this way are

2, 8, 20, 28, 50, 82, 126 (4.5.12)

For instance, 4He is doubly magic, since it has two protons and two neutrons,
and in consequence there is no stable nucleus with one extra proton or neutron,
which is one of the reasons why nuclear reactions in the early universe produced
hardly any complex nuclei heavier than 4He. Other doubly magic nuclei such
as 16O and 40Ca do allow the binding of an extra proton or neutron, but with

21 Lanthanum is actually one of the sporadic exceptions to the rule of filling energy levels in the order
shown in Eq. (4.5.11). The 57th electron is in a 5d rather than a 4 f state. But in the next rare earth
(cerium) there are two electrons in the 4 f state, and none in the 5d state, and this pattern continues for
all the other rare earths. Similar exceptions occur for the actinides.

22 M. Goeppert-Mayer and J. H. D. Jensen, Elementary Theory of Nuclear Shell Structure (Wiley, New
York, 1955).
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substantially less binding energy than neighboring nuclei, and as a result these
isotopes of oxygen and calcium are produced in stars more abundantly than
neighboring nuclei.

The explanation of magic numbers in nuclei is similar to the explanation of
the atomic numbers Z = 2, 10, 18, etc. of noble gases, but of course with a
very different potential. To the extent that nucleons can be supposed to move in
a common potential V (r) in nuclei, the potential must be analytic in the three-
vector x at the origin, since unlike the case of atoms, in nuclei there is nothing
special about the origin. Thus, for r → 0, the potential must go as a constant
plus a term of order r 2. A simple potential that satisfies this condition is the
harmonic oscillator potential, V (r) ∝ V0 + mNω

2r2/2, with ω some constant
frequency. As we saw in Section 2.5, the first few energy levels (with energies
relative to the zero-point energy V0 + 3�/2) of a particle in this potential, and
the degeneracies of these levels, are as follows:

Energy States Degeneracy
0 s 2

�ω p 6
2�ω s & d 12
3�ω p & f 20
. . . . . . . . .

(4.5.13)

An extra factor 2 has been included in these degeneracies to take account of
the two spin states of the nucleon. Protons are fermions, and are all identical to
each other, so the number of protons in a nucleus with the lowest energy level
filled is 2; with all levels filled up to �ω it is 2 + 6 = 8; with all levels filled
up to 2�ω it is 2 + 6 + 12 = 20, and so on. Of course, the same applies to
neutrons.

This accounts for the first three magic numbers, but would suggest that the
next magic number should be 2 + 6 + 12 + 20 = 40, which is definitely not
the case. For all beyond the lightest nuclei, it is necessary to take into account
not only inevitable departures from the simple harmonic potential, but also the
spin–orbit coupling, which as discussed in Section 4.3 splits the 2(2�+1) states
with definite � into 2� + 2 states with total one-particle angular momentum
j = � + 1/2 and 2� states with j = � − 1/2. It turns out that the spin–orbit
coupling depresses the energy of the f state with j = 7/2 below the other states
in the 3�ω level. The degeneracy of the f7/2 state is 8, so the next magic number
beyond 20 is 20 + 8 = 28. Similar considerations explain the higher magic
numbers.

The distinction between bosons and fermions has a profound effect on the
way we count physical states in statistical mechanics. According to the general
principles of statistical mechanics, the probability of any state in thermal equilib-
rium is proportional to an exponential function of linearly conserved quantities –
that is, quantities whose sum over subsystems is conserved when the subsystems
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interact. These conserved quantities include the total energy23 E , and the num-
ber N of particles (strictly speaking, the numbers of certain kinds of particles,
such as quarks and electrons, minus the numbers of their antiparticles). This
exponential probability distribution is known as a grand canonical ensemble.
We will consider here a system like a monomolecular gas, for which the total
energy is the sum over one-particle states labeled n of the energies En of these
states times the numbers Nn of identical particles in the nth state. The probability
of any given set of Nn particles being in thermal equilibrium is then

P(N1, N2, . . . ) ∝ exp

(
− E

kBT
+ μN

kBT

)
= exp

(
−
∑

n

Nn(En − μ)/kBT

)
,

(4.5.14)

where N = ∑
n Nn and E = ∑

n Nn En are the total particle number and energy,
kB is Boltzmann’s constant, and T and μ are parameters describing the state of
the system, known respectively as the temperature and chemical potential.

So far, there is no difference between distinguishable and indistinguishable
particles, or for indistinguishable particles between bosons and fermions. The
difference enters when we sum over states in calculating thermodynamic aver-
ages. For distinguishable particles, we sum over the possible states of each
particle. For indistinguishable particles, we instead sum over the number of par-
ticles in each one-particle state. For bosons, the mean number of particles in the
nth state is then

N n =
∑∞

Nn=0 Nn exp(−Nn(En − μ)/kBT )∑∞
Nn=0 exp(−Nn(En − μ)/kBT )

= 1

exp((En − μ)/kBT )− 1
. (4.5.15)

(The sums over the numbers Nm of particles in states m 	= n other than n
cancel between numerator and denominator.) This is the case of Bose–Einstein
statistics.

For instance, the number of photons is not conserved in radiative processes,
so for photons we have to take μ = 0. As we saw in Section 1.1, there
are 8πν2 dν/c3 one-photon states between frequencies ν and ν + dν, each
with energy hν, so the energy per volume between frequencies ν and ν + dν
is 8πhν3 N dν/c3, which immediately yields the Planck black-body formula
(1.1.5).

For fermions the calculation of N n is precisely the same as for bosons, except
that in accord with the Pauli exclusion principle, the sum over each Nn runs only
over the values zero and one. Hence

23 We usually do not include the total momentum, even though it is linearly conserved, because we can
always choose a frame of reference in which the total momentum vanishes.
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N n = exp(−(En − μ)/kBT )

1 + exp(−(En − μ)/kBT )

= 1

exp((En − μ)/kBT )+ 1
. (4.5.16)

Note that N n ≤ 1, as of course is required by the Pauli principle. This is the case
of Fermi–Dirac statistics.

When the temperature is sufficiently small, the mean occupation number
(4.5.16) is well approximated by

N n =
{

1, En < μ,

0, En > μ.
(4.5.17)

The surface En = μ in momentum space provides the boundary of the space of
filled states, and is known as the Fermi surface. The existence of a Fermi surface
plays an important role for electrons in white dwarf stars and for neutrons in
neutron stars.

The Pauli principle has important implications also for the dynamics of elec-
trons in crystals. As we saw in Section 3.5, in a crystal the allowed energies of
an electron fall in several distinct bands. A crystal in which each band has all its
states occupied by electrons or all empty is an insulator; the electron states can-
not respond to an electric field because these states are completely fixed by the
Pauli principle. A crystal in which some band has both an appreciable number
of filled states and an appreciable number of unfilled states is a metal, with good
electrical and thermal conductivity, because in this case the Pauli principle does
not block the change of electron states to other states in an electric field, and
there are plenty of electrons to respond. A crystal in which some band is nearly
full or nearly empty, while all other bands are entirely full or empty, is a semi-
conductor. At zero temperature a pure semi-conductor is an insulator, but it can
be made into a conductor by doping it with impurities that either add electrons
to the nearly empty band or remove electrons from the nearly full band.

The distinction between Eq. (4.5.15) for bosons and Eq. (4.5.16) for fermions
evidently disappears when the exponential exp((En − μ)/kBT ) is much larger
than unity. In this case, we have simply

N n = exp(−(En − μ)/kBT ) , (4.5.18)

which is the familiar case of Maxwell–Boltzmann statistics.

4.6 Internal Symmetries

So far, we have considered only symmetry transformations that act on spacetime
coordinates. There are also important symmetry transformations that act instead
on the nature of particles, leaving their spacetime coordinates unaffected. This
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is a very large subject, to which only a very brief introduction can be given
here.

An early example grew out of the 1932 discovery of the neutron. From the
beginning it was striking that the neutron mass is nearly equal to the pro-
ton mass – they are respectively 939.565 MeV/c2 and 938.272 MeV/c2. This
suggested that there should be a “charge symmetry,” a symmetry under a trans-
formation that, acting on any state, turns neutrons into protons and protons
into neutrons. This would clearly not be an exact symmetry, since neutrons
and protons do not have precisely the same masses. It would not be a sym-
metry of the electromagnetic interactions at all, since protons are charged and
neutrons are not. But it was at least plausible that it would be a symmetry
of whatever strong nuclear forces hold neutrons and protons together inside
atomic nuclei and that presumably also have a large effect on neutron and
proton masses.

This charge symmetry has important implications for complex nuclei. For
light nuclei, where Coulomb forces are not dominant, each energy level of a
nucleus with Z protons and N neutrons should be matched by an energy level
of a nucleus with N protons and Z neutrons, with the same energy and spin.
This is well borne out by experiment. For instance, the spin-1/2 ground state
of 3H is so close in energy to the spin-1/2 ground state of 3He that the energy
difference is just barely enough to allow 3H to decay into 3He with the emission
of an electron and an approximately massless antineutrino. Likewise, the spin-1
ground state of 12B is matched with the spin 1 ground state of 12N.

Charge symmetry requires that the strong nuclear force between two neu-
trons be the same as between two protons, but it says nothing about the force
between a proton and a neutron. At first only the neutron–proton force could
be measured, both directly by scattering neutrons on hydrogen targets and indi-
rectly by measurement of the properties of the deuteron. The neutron–neutron
force could not be directly measured for obvious reasons: there are no neu-
tron targets, and no two-neutron bound states. The proton–proton force could
be measured, but at low energies the Coulomb repulsion between protons keeps
protons from coming close to each other, so the force is almost purely electro-
magnetic. By 1936 it had become possible to accelerate protons to sufficiently
high energy to measure effects of the nuclear force, and it was found that this
force was similar to the proton–neutron force. To be more precise, the energy
of the protons in this experiment was still small enough that the scattering
state had � = 0 (the connection between low energy and low � is explained
in Section 7.6), so because protons are fermions they had to be in an anti-
symmetric spin state, with total spin zero. It was possible to separate out the
force between protons and neutrons in the state with � = 0 and total spin
zero from neutron–proton scattering experiments by subtracting the force in
the state with � = 0 and total spin one, as measured from the properties of
the deuteron. It was found that the nuclear forces in the neutron–proton and
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proton–proton states with � = 0 and total spin zero were similar in strength and
range.24

This clearly called for a symmetry between protons and neutrons that
goes beyond charge symmetry. The correct symmetry transformations were
identified25 as (

p
n

)
�→ u

(
p
n

)
, (4.6.1)

where u is a general 2×2 unitary matrix with unit determinant. As we saw at the
end of Section 4.3, this is the same as the group of rotations in three dimensions,
but acting on the labels p and n instead of coordinates or momenta or ordinary
spin indices, and with the doublet (p, n) transforming the same way that a spin-
1/2 doublet of states transforms under ordinary rotations. These are known as
isospin transformations.

For these transformations to be symmetries of a quantum-mechanical theory,
there must exist a unitary operator U (u) for each 2 × 2 unitary matrix u with
unit determinant. These transformations are generated by Hermitian operators
Ta (with a = 1, 2, 3), in the sense that for an isospin transformation u close to
unity, of the general form

u = 1 + i

2

(
ε3 ε1 − iε2

ε1 + iε2 −ε3

)

(with εa real and infinitesimal), the operator U (u) takes the form

U → 1 + i
∑

a

εaTa. (4.6.2)

Because the structure of the isospin group is the same as the structure of the
rotation group, the generators satisfy the same commutation relations (4.1.14)
(without the conventional factor �) as ordinary angular momentum:

[Ta, Tb] = i
∑

c

εabcTc. (4.6.3)

The action of these generators on proton and neutron states can be derived in the
same way that we derived Eq. (4.2.17):

(T1 + iT2)�p = 0, (T1 − iT2)�p = �n, T3�p = 1

2
�p

(T1 + iT2)�n = �p, (T1 − iT2)�n = 0, T3�n = −1

2
�n. (4.6.4)

24 M. A. Tuve, N. Heydenberg, and L. R. Hafstad, Phys. Rev. 50, 806 (1936).
25 B. Cassen and E. U. Condon, Phys. Rev. 50, 846 (1936); G. Breit and E. Feenberg, Phys. Rev. 50, 850

(1936).

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316276105.006
http:/www.cambridge.org/core


144 4 Spin et cetera

We note that single-nucleon states have electric charge (1/2+T3)e. Hence states
consisting of A nucleons have electric charge

Q =
(

A

2
+ T3

)
e, (4.6.5)

which shows clearly the violation of isospin invariance by electromagnetic
interactions.

Isospin invariance has implications for nuclear structure that go beyond those
of charge symmetry. Each energy level in a light nucleus must be part of a mul-
tiplet of energy levels in 2t + 1 nuclei (where t is an integer or half-integer,
analogous to j), with the same atomic weight A and with T3 running by unit
steps from −t to +t , and hence with atomic numbers Z running from A/2− t to
A/2 + t , all of these nuclear states having the same spin and approximately the
same energy. For instance, not only do the ground states of 12B and 12N have the
same spin ( j = 1) and approximately the same energy – there is also an excited
state of 12C with the same spin and energy, indicating that these three nuclear
energy levels form an isospin multiplet with t = 1. (The t = 1 state in 12C is
not the ground state, which is 15 MeV/c2 below the t = 1 excited state, and has
spin j = 0 instead of j = 1.)

Isospin invariance requires that not only nuclei, but all particles that feel the
strong nuclear force, form isospin multiplets. Thus, for instance, in 1947 a pair
of unstable charged particles π± with charges +e and −e were discovered, in
reactions like N+N → N+N+π (where N can be either a neutron or a proton.)
These “pions” have nucleon number A = 0, so according to Eq. (4.6.5), the π+
and π− have T3 = +1 and T3 = −1, respectively. Isospin then requires that the
pions must be part of a multiplet of 2t + 1 approximately equal-mass particles
with t ≥ 1. In particular, there would have to be a neutral particle π0 with
T3 = 0, and indeed, such a neutral pion was soon discovered. But no doubly
charged pions were found, so the pions form a triplet, with t = 1.

The decays of these particles are quite different: the π± decay through weak
interactions (similar to those in nuclear beta decay) into a heavy counterpart
of the positron and electron, the μ±, and a neutrino or antineutrino, while the
π0 decays through electromagnetic interactions into two photons. But isospin
invariance is respected in any process that is dominated by the strong nuclear
forces. For instance, there is a multiplet of four unstable states �++, �+, �0,
and �− of a nucleon and a pion, all �s with spin 3/2 and masses of about 1240
MeV/c2. These states show a large uncertainty in energy, about 120 MeV/c2,
so by the uncertainty principle they must decay very rapidly, indicating that the
decay is not produced by weak or electromagnetic interactions, but by the strong
nuclear force, which respects isospin symmetry. Since the �s decay into a state
with one nucleon, they have A = 1, and hence according to Eq. (4.6.5) have
T3 respectively equal to 3/2, 1/2, −1/2, and −3/2. This is evidently an isospin
multiplet with t = 3/2. The amplitude M for a � with T3 = m to decay through
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strong interactions into a π with T3 = m ′ and a nucleon with T3 = m ′′ then has
a dependence on charges proportional to a Clebsch–Gordan coefficient:

M(m,m ′,m ′′) = M0C1 1
2

(
3

2
m; m ′m ′′

)
,

where M0 is independent of charges. The decay rates are of course proportional
to the squares of these amplitudes. Inspection of the fifth, sixth, and seventh
lines of Table 4.1 shows that these decay rates have ratios given by

�(�++ → π+ + p) = �(�− → π− + n) ≡ �0,

�(�+ → π+ + n) = �(�0 → π− + p) = 1

3
�0,

�(�+ → π0 + p) = �(�0 → π0 + n) = 2

3
�0,

all in good agreement with observation.26

The discovery in 1947 of new particles forced a significant change in the rela-
tion (4.6.5) between electric charge and isospin. For example (using modern
names), collisions between nucleons were found to produce a number of spin-
1/2 particles called hyperons – a neutral particle �0 with mass 1115 GeV/c2,
and a triplet of particles �+, �0, and �−, with masses 1189 GeV/c2, 1192
GeV/c2, and 1197 GeV/c2. These hyperons were always produced in associa-
tion with a doublet of spin-zero particles K+ and K0, with masses 494 GeV/c2

and 498 GeV/c2. (Superscripts indicate the electric charge in units of e.) It had
been thought that the number A of nucleons (minus the number of antinucleons)
was absolutely conserved in nature, but hyperons were observed to decay into
a nucleon and a pion, so it became necessary to extend this conservation law
to a quantity B called baryon number, the number of nucleons and hyperons,
minus the number of their antiparticles. But it is not enough just to replace A in
Eq. (4.6.5) with B. Since the �0 is not part of an isospin multiplet with other
particles, it must have t = 0 and hence T3 = 0, but if we replace A in Eq. (4.6.5)
with the baryon number B = 1, then this formula would give the �0 charge e/2,
not zero. Similar problems would arise with the �s and Ks. It was suggested
that one should replace Eq. (4.6.5) with27

Q =
(

B + S

2
+ T3

)
e, (4.6.6)

where S is a quantity known as strangeness, equal to zero for ordinary particles
like nucleons and pions, but equal to −1 for the � and �, and equal to +1 for

26 H. L. Anderson, E. Fermi, R. Martin, and D. E. Nagle, Phys. Rev. 91, 151 (1953); J. Orear, C. H. Tsao,
J. J. Lord, and A. B. Weaver, Phys. Rev. 95, 624A (1954).

27 M. Gell-Mann, Phys. Rev. 92, 833 (1953); T. Nakano and K. Nishijima, Prog. Theor. Phys. (Kyoto) 10,
582 (1953).
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the K. These assignments fix the charges: the � and �s have B + S = 0, so
Q = T3e, while the Ks have B + S = 1, so Q = T3 + 1/2. The conservation
of strangeness in strong interactions requires that in nucleon–nucleon collisions
these hyperons must be produced in association with K particles, to keep the
total strangeness zero.

Other strange particles were discovered: a doublet �0 and �−, with masses
1315 GeV/c2 and 1322 GeV/c2, and the antiparticles K

−
and K

0
of the K+ and

K0. To get their charges right the � must be assigned strangeness −2, and the
anti-K strangeness −1. Strangeness is not conserved in the decay of hyperons
and Ks and K̄s into nucleons and pions, but these decays proceed through a class
of interactions much weaker than the strong nuclear forces. (Strange particles
typically have lifetimes around 10−8 to 10−10 seconds, which is enormously
long compared with the typical time scale of strong interactions, �/(1 GeV) =
6.6 × 10−25 seconds.) So strangeness is not conserved by the weak interactions
responsible for strange particle decays, but it is conserved by the strong (and
electromagnetic) interactions.

All of these approximate or exact conservation laws, of charge, baryon
number, and strangeness, can also be formulated as symmetry principles. For
example, we may construct a unitary operator,

U (α) ≡ exp(iαQ), (4.6.7)

where here Q is an Hermitian operator that, acting on any state, gives a factor
equal to the total electric charge q of the particles in the state, and α is an arbi-
trary real number. Acting on any state of charge q the operator U (α) gives a
phase factor, exp(iαq). Transition amplitudes are invariant under this symme-
try if and only if charge is conserved – that is, if and only if the Hamiltonian
H satisfies

U−1(α)H U (α) = H. (4.6.8)

The symmetry group here is U (1), the group of multiplication by 1 × 1 unitary
matrices, which of course are just phase factors. The conservation of baryon
number and strangeness can likewise be expressed as invariance under other
U (1) symmetry groups.

These U (1) symmetries were entirely separate from the SU (2) of isospin,
in the sense that their generators commuted with the generators Ta of isospin.
The question naturally arose, whether some of these symmetries could be com-
bined in a symmetry that united some of these isospin multiplets. The winning
candidate was SU (3), the group of all unitary 3 × 3 matrices with unit determi-
nant.28 The SU (2) transformations of isospin invariance form a subgroup, with

28 M. Gell-Mann, Cal. Tech. Synchrotron Laboratory Report CTSL–20 (1961), unpublished. Y. Ne’eman,
Nucl. Phys. 26, 222 (1961). [These are reproduced along with other articles on SU (3) symmetry in M.
Gell-Mann and Y. Ne’eman, The Eightfold Way (Benjamin, New York, 1964).]
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the isotopic spin generators Ta represented by 3 × 3 Hermitian matrices of the
form (

ta 0
0 0

)
,

where ta are the 2 × 2 Hermitian traceless matrices that represent the SU (2)
generators. There is also a U (1) subgroup with a generator known as the
hypercharge

Y ≡ B + S,

which is represented by the Hermitian traceless matrix

y =
⎛
⎝ 1/3 0 0

0 1/3 0
0 0 −2/3

⎞
⎠ .

We can find the particle multiplets by using the tensor formalism discussed in the
context of ordinary rotations at the end of Section 4.3. But there is a difference
here. In general, for a group of unitary matrices in N dimensions, the particle
multiplets form tensors �n1n2...

m1m2...
(where the ms and ns run from 1 to N ), with the

transformation property

�n1n2...
m1m2...

�→
∑

m′
1m′

2...

∑
n′

1n′
2...

um′
1m1um′

2m2 . . . u
∗
n′

1n1
u∗

n′
2n2

. . . �
n′

1n′
2...

m′
1m′

2...
.

In two dimensions, and only in two dimensions, there is a constant tensor
(4.3.37) with two indices. When this tensor is contracted with an upper index,
the index is converted into a lower index, so that it is not necessary to distin-
guish between upper and lower indices in two dimensions. For N = 3 we have
to distinguish between upper and lower indices, but we can still limit ourselves
to irreducible tensors that are completely symmetric in both sorts of indices,
because there exists a constant antisymmetric tensor εm1m2m3 that otherwise
would allow us to convert two upper indices into a lower index, or two lower
indices into an upper index. For irreducible tensors we must also impose the
condition of tracelessness

�rn2...
rm2...

= 0,

for otherwise we could separate out a tensor �rn2...
rm2...

with one fewer upper index
and one fewer lower index. For example, the nucleons, �, �s, and �s can be
united in an octet with j = 1/2, whose states form a traceless tensor �n

m , which
has eight independent components. Similarly, the πs, Ks, K̄s, and an eighth
spin-zero particle, the η, form another octet, but with j = 0. There is also a
10-member multiplet of spin-3/2 particles that contains the � discussed above,
corresponding to the symmetric tensor �m1m2m3 .
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Since particles belonging to different species are distinguishable, we can
adopt various conventions for how these particles are listed in the labels on
physical state vectors. For instance, in a state containing some protons and some
electrons, we could agree always to list the protons first, and then the electrons.
There is no need to make the state vector antisymmetric under the interchange
of protons and electrons. But when the different species all belong to the same
multiplet of some internal symmetry group, in the way that protons and neu-
trons belong to a t = 1/2 multiplet of the isospin symmetry, and these particles
are bosons or fermions, then the state vector must be respectively symmetric
or antisymmetric under interchange of all particle labels: orbital quantum num-
bers (which could be positions, or momenta, or the z-components m of orbital
angular momentum) and spin z-components and the quantum numbers for the
internal symmetry group.

For instance, consider a proton–neutron state:

�± =
∫

dξ1

∫
dξ2 ψ±(ξ1, ξ2)�p,ξ1;n,ξ2,

where ξ1 and ξ2 label both orbital and spin quantum numbers of the two nucle-
ons;

∫
dξ denotes an integral over momentum (or position) together with a sum

over the spin 3-component; and the wave function ψ± is either symmetric or
antisymmetric:

ψ±(ξ1, ξ2) = ±ψ±(ξ2, ξ1).

Applying the isospin raising operator to this state gives a two-proton state:

(T1 + iT2)�± =
∫

dξ1

∫
dξ2 ψ±(ξ1, ξ2)�p,ξ1;p,ξ2 .

Since protons are indistinguishable fermions, the two-proton state is antisym-
metric in ξ1 and ξ2, so (T1 + iT2)�+ = 0 but (T1 + iT2)�− 	= 0, and hence
�+ and �− respectively have isospin zero and one. According to Eq. (4.3.34),
the states of isospin zero and one are respectively odd and even in isospin
3-components, so a state that is symmetric or antisymmetric in spin and orbital
quantum numbers must be respectively antisymmetric or symmetric in isospin
3-components, and hence in either case is antisymmetric under exchange of all
quantum numbers. For instance, an s wave state of two nucleons can only have
total spin one and total isospin zero (as in the deuteron), or total spin zero and
total isospin one (as in low-energy scattering of two protons or two neutrons).

∗ ∗ ∗ ∗ ∗

The group SU (3) has another application, not as an internal symmetry, but
as a dynamical symmetry of the Hamiltonian for a harmonic oscillator in three
dimensions. As described in Section 2.5, this Hamiltonian is
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H = �ω

[
3∑

i=1

a†
i ai + 3

2

]
, (4.6.9)

where ai and a†
i are lowering and raising operators, satisfying the commutation

relations

[ai , a†
j ] = δi j , [ai , a j ] = [a†

i , a†
j ] = 0. (4.6.10)

The Hamiltonian and commutation relations are obviously invariant under the
transformations

ai �→
∑

j

ui j a j , a†
i �→

∑
j

u∗
i j a

†
j , (4.6.11)

where ui j is a unitary matrix, with
∑

j ui j u∗
k j = δik . This group is U (3), the

group of 3×3 unitary matrices. The degenerate states with energy (N +3/2)�ω
are of the form

a†
i1

a†
i2
. . . a†

iN
�0,

where �0 is the ground state with energy 3�ω/2; under the transformation
(4.6.11), these states transform as a symmetric tensor:

a†
i1

a†
i2
. . . a†

iN
�0 �→

∑
j1 j2... jN

u∗
i1 j1

u∗
i2 j2

. . . u∗
iN jN

a†
j1

a†
j2
. . . a†

jN
�0. (4.6.12)

The number (N + 1)(N + 2)/2 of independent states of energy (N + 3/2)�ω
found in Section 2.5 is also the number of independent components of a
symmetric tensor of rank N in three dimensions.

In the special case where ui j = δi j e−iϕ with ϕ real, the transformations
(4.6.11) are the same as

ai �→ exp(iHϕ/�ω) ai exp(−iHϕ/�ω),

a†
i �→ exp(iHϕ/�ω) a†

i exp(−iHϕ/�ω),
(4.6.13)

so the symmetry in this case is nothing new, just time-translation invariance. The
new symmetries that are special to the three-dimensional harmonic oscillator are
those for which Det u = 1, forming the group SU (3).

For infinitesimal transformations, we have

ui j = δi j + εi j , (4.6.14)

where εi j are here infinitesimal anti-Hermitian matrices, with ε∗
i j = −ε j i .

For SU (3), these matrices are also traceless. These infinitesimal transforma-
tions must induce corresponding unitary transformations on the Hilbert space of
harmonic oscillator states,

U (1 + ε) = 1 +
∑

i j

εi j Xi j , (4.6.15)
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150 4 Spin et cetera

where X†
i j = X ji are symmetry generators that commute with the Hamiltonian.

These symmetry generators are proportional to the operators ai a
†
j mentioned in

Section 2.5.

4.7 Inversions

We saw in Section 4.1 that the space inversion transformation Xn �→ −Xn of the
coordinate operators of particles (labeled n) is not a rotation, but a separate sort
of symmetry transformation. It therefore can have consequences beyond those
that can be derived from rotational invariance alone.

In a quantum theory that is invariant under space inversion, we expect there
to be a unitary “parity” operator P, with the property that

P−1XnP = −Xn. (4.7.1)

In a wide class of theories, the momentum operator Pn can be expressed as
Pn = (imn/�)[H,Xn], so if the Hamiltonian H commutes with P, then also

P−1PnP = −Pn. (4.7.2)

This transformation leaves invariant the sort of Hamiltonian we have been
considering, as for instance

H =
∑

n

P2
n

2mn
+ V,

where V depends only on the distances |Xn − Xm |.
As a consequence of Eqs. (4.7.1) and (4.7.2), the operator P commutes

with the orbital angular momentum L = ∑
n Xn × Pn . Consistency with

the angular-momentum commutation relations also requires that it commutes
with J and S.

For a system like the hydrogen atom, with a single particle in a central poten-
tial, it follows from Eq. (4.7.1) that if �x is an eigenstate of X with eigenvalue x,
then P�x is an eigenstate of X with eigenvalue −x. (Since P commutes with S3,
this state is also an eigenstate of S3 with the same eigenvalue as the state �x, so
for the present we will not need to display spin indices explicitly.) Hence, apart
from possible phases (about which more later),

P�x = �−x. (4.7.3)

A state�m
� with orbital angular momentum �� and 3-component �m has a scalar

product with �x (that is, a coordinate-space wave function) proportional to a
spherical harmonic: (

�x, �
m
�

)
= R(|x|)Y m

� (x̂). (4.7.4)
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The inversion property Y m
� (−x̂) = (−1)�Y m

� (x̂) thus gives(
�−x, �

m
�

)
= (−1)�

(
�x, �

m
�

)
.

Inserting the operator P−1P = 1 in the scalar product on the left and using
Eq. (4.7.3) and the unitarity of P, we find(

�x,P�m
�

)
= (−1)�

(
�x, �

m
�

)
,

and therefore

P�m
� = (−1)��m

� . (4.7.5)

This allows us to understand why, even when subtle effects like the Lamb shift
and spin–orbit coupling are included, the states of hydrogen with definite j also
have definite values of �, rather than being mixtures of states with � = j ± 1/2.
For instance, why when all these effects are taken into account, can we still talk
of the n = 2 states of hydrogen with j = 1/2 as pure 2s1/2 and 2p1/2 states?
The Hamiltonian of the hydrogen atom (including spin effects and relativistic
corrections) is invariant under space inversion, so space inversion applied to a
one-particle state vector of definite energy gives another state vector of the same
energy. With enough perturbations included to break all degeneracies between
states of a given J2, Jz, and n, the space inversion of the state vector of a state
of definite energy must give a result proportional to the same state vector, which
would not be true if the states of definite energy were mixtures of states with
both odd and even values of �, such as states with � = j + 1/2 and � = j − 1/2.

The space inversion symmetry of atomic physics has an immediate applica-
tion in the selection rules for the most common radiative transitions in atoms.
As noted at the end of Section 4.4, in the approximation that the wavelength
of the emitted photon is much larger than the atomic size, the transition rate is
proportional to the square of the matrix element of an electric-dipole operator
D = ∑

n enXn between the initial and final atomic states. It follows immediately
from Eq. (4.7.1) that P−1DP = −D. If the initial state �a and final state �b are
eigenstates of the parity operator with eigenvalues πa and πb respectively, then

πaπb

(
�b,D�a

)
= −

(
�b,D�a

)
,

so the matrix element and the transition rate vanish unless

πaπb = −1. (4.7.6)

In the case mentioned earlier, where the transition involves just a single electron,
we have πa = (−1)�a and πb = (−1)�b , where �a and �b are the orbital angular
momenta of the electron in the initial and final states, so in this case the parity
selection rule is just that � must change from even to odd or odd to even. For
instance, in the electric-dipole approximation the radiative 3p → 2p transition
in hydrogen is allowed by angular-momentum conservation but forbidden by the
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parity selection rule. Equation (4.7.6) applies also to transitions between states
with any number of charged particles.

Let us now return to the question of possible extra phase factors in transforma-
tion rules like (4.7.3) and (4.7.5). If the same extra phase factor appeared in the
transformation of all states, it would have no effect, for it could be eliminated by
a re-definition of the phase of the unitary operator P. There is, however, a less
trivial possibility, of a phase that depends on the nature of the particles in the
state, which would have important consequences for transitions in which new
particles are created or destroyed. We would expect the operator P to act sepa-
rately on each particle when the particles are far apart, and if P commutes with
the Hamiltonian, it would then continue to act separately on each particle when
they come together, so the extra phase in the transformation in a multiparticle
state would be the product of the phases ηn for the individual particles

P�x1,σ1;x2,σ2;... = η1η2 . . . �−x1,σ1;−x2,σ2;..., (4.7.7)

where the σ s are spin 3-components, and the phase factor ηn depends only on the
species of particle n. These factors are known as the intrinsic parities of the dif-
ferent particle types. The operator P2 commutes with all coordinates, momenta,
and spins. It could be an internal symmetry of some sort, but if it were a U (1)
operator that like (4.6.7) is of the form exp(iαA), where A is some conserved
Hermitian operator, then exp(−iαA/2) would also be an internal symmetry, and
we could define a new space inversion operator P′ ≡ P exp(−iαA/2) for which
P′2 = 1. Dropping the prime, we suppose that P is chosen so that P2 = 1. In
this case, all the intrinsic parities ηn in Eq. (4.7.7) are just either +1 or −1.

A classic example of the use of such a transformation rule is provided by
the disintegration of the 1s state of a mesonic atom consisting of a deuterium
nucleus and a negatively charged spin-zero particle, the π−, instead of an elec-
tron. The π− is observed to be quickly absorbed by the deuterium nucleus,
giving a pair of neutrons.29 Because neutrons are fermions, the two-neutron state
must be antisymmetric under an exchange of both spin and position, so it either
has total spin one (symmetric in spins) and odd orbital angular momentum, or it
has total spin zero (antisymmetric in spins) and even orbital angular momentum.
But the deuterium nucleus is known to have spin one, so the 1s state of the d–π−
atom has total angular momentum one, while a two-neutron state with total spin
zero and even orbital angular momentum cannot have total angular momentum
one. We can conclude then that the two-neutron final state here must have odd
orbital angular momentum, and therefore has parity −η2

n. This tells us then that
ηdηπ− = −η2

n. The deuterium nucleus is known to be a mixture of s and d states
of a proton and a neutron, so ηd = ηpηn, and hence ηpηπ = −ηn. We would
not expect the space inversion operator P to be part of an isotopic spin multi-
plet of independent inversion operators, so we expect P to commute with the

29 W. Chinowsky and J. Steinberger, Phys. Rev. 95, 1561 (1954).
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isospin symmetries discussed in the previous section,30 in which case ηp = ηn,
and therefore the π− has intrinsic parity −1. Isospin invariance then tells us
also that its antiparticle, the π+, and its neutral counterpart, the π0, also have
negative intrinsic parity.

It used to be taken for granted that nature is invariant under the space inver-
sion transformation. Then in the 1950s the use of this symmetry principle led to
a serious problem. Two charged particles of similar mass were found in cosmic
rays, a θ+ that decays into π++π0, and a τ+ that decays into π++π++π− (and
also into π+ + π0 + π0.) By studying the angular distribution of the πs in the
final state of τ decay, it was found that these πs had no orbital angular momenta,
so with πs having odd parity and spin zero, the τ+ would also have to have odd
parity and spin zero. On the other hand, with two pions in the final state, if the θ+
had spin zero like the τ+ it would have to have even parity, so it seemed that the
θ+ and τ+ could not be the same particle. But as measurements were improved,
it was found that both the masses and the mean lifetimes of the θ+ and τ+ were
indistinguishable. One could imagine some sort of symmetry that would make
their masses equal, but how could their lifetimes be equal, when they decay in
such different ways? Then in 1956, Tsung-Dao Lee and Chen-Ning Yang31 pro-
posed that the θ+ and τ+ are in fact the same particle (now called K+), and that
although invariance under space inversion is respected by the electromagnetic
and strong nuclear forces, it is not respected by the much weaker interactions
that lead to these decays. (The weakness of these interactions is shown by the
long lifetime of the K+ particle; it is 1.238×10−8 seconds, vastly longer than the
characteristic time scale �/mKc2 = 1.3 × 10−24 seconds.) Lee and Yang further
suggested that invariance under space inversions is badly violated in all weak
interactions of elementary particles, including nuclear beta decay, and suggested
experiments that soon showed that they were right.32

There are two other inversion symmetry transformations that commute
with the strong and electromagnetic interaction Hamiltonians. One is charge-
conjugation: a conserved operator C acting on any state simply changes every
particle into its antiparticle, with a possible sign factor depending on the nature
of the particles.33 Another is time-reversal: a conserved operator T reverses the
direction of time in the time-dependent Schrödinger equation. As we saw in

30 Even apart from isospin conservation, we can always define the operator P so that ηp = ηn = 1, if
necessary by including in the operator P a factor equal to (−1) to a power given by a suitable linear
combination of the conserved quantities electric charge and baryon number.

31 T.-D. Lee and C.-N. Yang, Phys. Rev. 104, 254 (1956).
32 C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes, and R. P. Hudson, Phys. Rev. 105, 1413 (1957);

R. Garwin, L. Lederman, and M. Weinrich, Phys. Rev. 105, 1415 (1957); J. I. Friedman and V. L.
Telegdi, Phys. Rev. 105, 1681 (1957).

33 As mentioned in footnote 14 in Section 3.6, Dirac interpreted the negative-energy solutions of the
Dirac wave equation as the wave functions of negative-energy states that are normally all filled, so
that the Pauli exclusion principle prevents positive-energy electrons from falling into these negative
energy states. He interpreted occasional unfilled states, or holes, in this sea of negative-energy states as
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Section 3.6, T must be antiunitary and antilinear. The same experiments that
showed that P is not respected by the weak interactions showed also that these
interactions do not respect invariance under PT. Subsequent experiments also
revealed a violation of CP.34 But any quantum field theory necessarily respects
invariance under CPT,35 and as far as we know CPT is exactly conserved, so
the violation of invariance under PT and CP immediately implied a violation
also of invariance under C and T. Thus it appears that CPT is the only inversion
under which the laws of nature are strictly invariant.

4.8 Algebraic Derivation of the Hydrogen Spectrum

As mentioned in Section 1.4, Pauli36 in 1926 used the matrix mechanics of
Heisenberg to give the first derivation of the energy levels of hydrogen and
their degeneracies. This derivation is an outstanding example of the use of
a dynamical symmetry: The symmetry generators not only commute with the
Hamiltonian, but have commutators with each other that depend on the Hamil-
tonian, in such a way that we can calculate energy levels by purely algebraic
means.

Pauli’s derivation is based on a device that is well known in celestial mechan-
ics, the Runge–Lenz vector.37 In a potential V (r) = −Ze2/r , this vector
(actually the original Runge–Lenz vector multiplied by the particle mass m) is

R = − Ze2x
r

+ 1

2m

(
p × L − L × p

)
, (4.8.1)

where L is as usual the orbital angular momentum L ≡ x×p. Classically there is
no difference between p×L and −L×p; it is the average of these operators that
appears in the quantum-mechanical derivation Eq. (4.8.1) because this average
is Hermitian, and therefore so is R:

R† = R. (4.8.2)

antielectrons, particles known as positrons with positive energy and positive charge. Dirac’s interpreta-
tion of antimatter is untenable, in part because it is now known that there are charged elementary bosons
like the W+ with a distinct antiparticle, the W−, and the exclusion principle does not apply to bosons.
Today it is pretty generally understood that the solutions of the Dirac equations are not a relativistic
generalization of probability amplitudes like the Schrödinger wave function, as Dirac thought. Instead,
the positive-energy solutions are matrix elements (�0, ψ(x)�1) of the quantized electron field ψ(x)
between various one-electron states �1 and the vacuum �0, while the negative-energy solutions are
matrix elements (C�1, ψ(x)�0) of the electron field between the vacuum and various positron states.

34 J. H. Christensen, J. W. Cronin, V. L. Fitch, and R. Turlay, Phys. Rev. Lett. 13, 138 (1964).
35 G. Lüders, Kon. Danske Vid. Selskab Mat.-Fys. Medd. 28, 5 (1954); Ann. Phys. 2, 1 (1957); W. Pauli,

Nuovo Cimento 6, 204 (1957).
36 W. Pauli, Z. Physik 36, 336 (1926).
37 For its application to motion in a gravitational field, see e.g. S. Weinberg, Gravitation and Cosmology

(Wiley, New York, 1972), Section 9.5.
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4.8 Algebraic Derivation of the Hydrogen Spectrum 155

Classically R is conserved, which has the consequence (unique to Coulomb
and harmonic oscillator potentials) that the classical orbits form closed curves.
The quantum-mechanical counterpart of this classical result is of course that R
commutes with the Hamiltonian:

[H,R] = 0, (4.8.3)

where H is the Coulomb Hamiltonian

H = p2

2m
− Ze2

r
. (4.8.4)

It is convenient to use the commutation relation [Li , p j ] = i�
∑

k εijk pk to
rewrite Eq. (4.8.1) as

R = − Ze2x
r

+ 1

m
p × L − i�

m
p. (4.8.5)

The angular-momentum operator is orthogonal to each of the three terms in
Eq. (4.8.5), so

L · R = R · L = 0. (4.8.6)

To calculate the square of R, we need formulas easily derived from the
commutators among x, p, and L:

x · (p × L) = L2, (p × L) · x = L2 + 2i�p · x, (p × L)2 = p2L2,

p · (p × L) = 0, (p × L) · p = 2i�p2.

A straightforward calculation then gives

R2 = Z2e4 +
(

2H

m

)(
L2 + �

2
)
. (4.8.7)

So we can find the energy levels if we can find the eigenvalues of R2.
For this purpose, we need to work out the commutators of the components of

R with each other. Another straightforward though tedious calculation gives

[Ri , R j ] = −2i

m
�

∑
k

εijk H Lk . (4.8.8)

Also, the fact that R is a vector tells us immediately that

[Li , R j ] = i�
∑

k

εijk Rk . (4.8.9)

Thus the operators L and R/
√−H form a closed algebra. We can recognize the

nature of this algebra by introducing linear combinations

A± ≡ 1

2

[
L ±

√
m

−2H
R
]
. (4.8.10)
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Then the commutators (4.8.8) and (4.8.9) and the usual commutation relations
for L yield

[A±i , A± j ] = i�
∑

k

εijk A±k, [A±i , A∓ j ] = 0. (4.8.11)

So we can see that the symmetry here consists of two independent three-
dimensional rotation groups. This is known as the group SO(3)⊗ SO(3).

Now, from our study of the ordinary rotation group, we know that (pro-
vided the operators A± are Hermitian) the allowed values of A2± take the form
�

2a±(a± + 1), where a± in general are independent positive integers (includ-
ing zero) or half-integers; that is, 0, 1/2, 1, 3/2, . . . . But here we have a special
condition (4.8.6), which with Eq. (4.8.10) tells us that

A2
± = 1

4

[
L2 +

(
m

−2H

)
R2

]
, (4.8.12)

so in this case a+ = a−. We will let a denote their common value, and take E
as the corresponding eigenvalue of H . Then, using Eq. (4.8.7), we have

�
2a(a + 1) = 1

4

[
L2 +

(
m

−2E

)
R2

]

= 1

4

[
L2 +

(
m

−2E

)
Z2e4 − (L2 + �

2)

]

=
(

m

−8E

)
Z2e4 − �

2

4
,

and therefore(
m

−8E

)
Z2e4 = �

2

(
a(a + 1)+ 1

4

)
= �

2

4
(2a + 1)2. (4.8.13)

We can define a principal quantum number

n = 2a + 1 = 1, 2, 3, . . . , (4.8.14)

and write Eq. (4.8.13) as a formula for the energy

E = − Z 2e4m

2�2n2
, (4.8.15)

which of course we recognize as the energy levels of hydrogen, whose 1913
calculation by Bohr is described in Section 1.2, and whose derivation using the
Schrödinger equation is given in Section 2.3.

Note that we have found only negative energies – that is, bound states. There
are of course also unbound states, with E > 0, in which an electron is scat-
tered by a nucleus. These states have not shown up in our calculation because,
acting on states for which H has a positive eigenvalue, the operators A± given
by Eq. (4.8.10) are no longer Hermitian, and this invalidates the derivation in
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4.8 Algebraic Derivation of the Hydrogen Spectrum 157

Section 4.2 of the familiar result that the allowed values of A2± can only take
the form �

2a±(a± + 1), where a± are positive integers or half-integers. (Mathe-
matically, one says that the algebra furnished by the commutators of the L and
R is not compact; that is, these are the generators of a symmetry group whose
parameters do not form a compact space. It is a well-known feature of such non-
compact algebras that the states connected by their generators form a continuum,
which is why the allowed positive values of E here form a continuum.)

We can use these algebraic results to work out not only the allowed values
of energy, but also the degeneracy of each energy level. Just as for ordinary
angular momentum, the eigenvalues of the operators A±3 can only take the 2a+1
values −a,−a+1, . . . , a, and since their eigenvalues are independent, there are
(2a + 1)2 = n2 states with a given n. This is the same as the degeneracy found
in Section 2.3.

This degeneracy has a pretty geometric interpretation. We have noted pre-
viously that the operators A± are the generators of two independent three-
dimensional rotation groups – that is, of SO(3) ⊗ SO(3). They can also be
regarded as the generators of the rotation group in four dimensions, denoted
SO(4), because these are the same symmetry groups. As we saw in Eq. (4.1.10),
the generators of the rotation group in any number of dimensions are operators
Jαβ = −Jβα, with α and β running over the coordinate indices, satisfying the
commutation relations

i

�

[
Jαβ , Jγ δ

]
= −δαδ Jγβ + δαγ Jδβ + δβγ Jαδ − δβδ Jαγ . (4.8.16)

In the case of four dimensions, α, β, etc. run from 1 to 4. If as before we let i ,
j , etc. run only from 1 to 3, and as in Eq. (4.1.11) take Ji j ≡ ∑

k εijkLk , then the
commutation relations with δ = β = 4 take the form

[Ji4, Jj4] = −i�Jji = i�
∑

k

εijkLk . (4.8.17)

This is the same as Eq. (4.8.8) if we take

Ri =
√−2H

m
Ji4. (4.8.18)

The others of the commutation relations (4.8.16) then give the commutator
(4.8.9) between Li and R j and the usual commutator between Li and L j . In
terms of the operators (4.8.10), we have

Ji j =
∑

k

εijk

(
A+ k + A− k

)
, Jk4 = A+ k − A− k . (4.8.19)

The states of the hydrogen atom with a given energy can thus be classified
according to their transformation under the four-dimensional rotation group.
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The condition that a+ = a− limits these states to those transforming as
four-dimensional symmetric traceless tensors. The number of independent com-
ponents of a symmetric tensor of rank r in four dimensions is (3 + r)!/3!r !,
while the condition of tracelessness for r ≥ 2 requires the vanishing of a sym-
metric tensor with r − 2 indices and hence with (1 + r)!/3!(r − 2)! independent
components, so the number of independent components of a symmetric traceless
tensor in four dimensions is

(3 + r)!
3!r ! − (1 + r)!

3!(r − 2)! = (r + 1)2,

which is the degeneracy found earlier if we identify the states with principal
quantum number n as transforming like a four-dimensional symmetric traceless
tensor of rank r = n − 1. For instance, the n = 1 state transforms as a four-
dimensional scalar; the n = 2 states transform as the components of a four-
dimensional vector vα, of which vi are the three p states and v4 is the s state;
and the n = 3 states transform as the components of a symmetric traceless
tensor tαβ , of which the components of the traceless part of ti j make up the five
d states, the components ti4 = t4i are the three p states, and

∑
i ti i = −t44

is the one s state. The relations between matrix elements of operators between
states of given energy but different values of � can be found using invariance
under four-dimensional rotations, if we know the transformation properties of
the operators under such rotations.

4.9 The Rigid Rotator

We will now take up the example of a system in which the positions of all par-
ticles are fixed, except that the whole system can rotate freely around any axis.
This is not literally the case for any real system, but it is a good approxima-
tion for molecules that are subject only to excitations of very low energy. The
energy required to excite the electrons in a molecule to a higher state is of the
same order as for atoms, roughly e4me/�

2, and we will see in Section 5.6 that
the energy required to excite vibrations of the nuclear positions in a molecule is
smaller, roughly (me/mN)

1/2 ×e4me/�
2, where mN is a typical nuclear mass. As

will be found in this section, the energy required to excite the rotational modes
of a molecule is smaller still, roughly (me/mN) × e4me/�

2. Therefore we can
work out the rotational spectra of molecules by treating the positions of nuclei as
if they were fixed at the minima of a potential calculated from a fixed electronic
wave function.

First, let us recall the treatment of rigid rotators in classical physics. We
suppose that the particles of a rigid body have positions

xni (t) =
∑

a

Ria(t)x
0
na, (4.9.1)
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where n labels individual particles; i is a coordinate index running over the
values 1, 2, 3, defined by coordinate axes fixed in the laboratory; a is a coor-
dinate index running over the values x, y, z, defined by coordinate axes fixed
in the body; x0

na are a set of time-independent particle coordinates in the coor-
dinate system fixed in the body; and Ria(t) is the only dynamical variable, a
time-dependent rotation satisfying the usual conditions (4.1.2) for a rotation:

(RT R)ba =
∑

i

Rib(t)Ria(t) = δab, (4.9.2)

from which it also follows that

(R RT)i j =
∑

a

Ria(t)R ja(t) = δi j . (4.9.3)

The energy of rotation of this system is then given by

H = 1

2

∑
ni

mn ẋ2
ni = 1

2

∑
niab

mn Ṙia Ṙibx0
na x0

nb, (4.9.4)

where mn is the mass of the nth particle. It is convenient to introduce a constant
matrix

Nab ≡
∑

n

mnx0
na x0

nb, (4.9.5)

so that Eq. (4.9.4) can be written

H = 1

2

∑
iab

Ṙia Ṙib Nab = 1

2
Tr
(

ṘN ṘT
)
. (4.9.6)

Because R satisfies the condition RT R = 1, its time derivative satisfies ṘT R+
RT Ṙ = 0, so that ṘT R is antisymmetric, and can therefore be written

(ṘT R)ab =
∑

i

Ṙia Rib =
∑

c

εabc�c, (4.9.7)

for some �c. (For rotation around a fixed axis, �c is in the direction of that axis,
and its magnitude is the rate of rotation.) Together with Eq. (4.9.3), this gives a
formula for Ṙ:

Ṙia =
∑
cd

Ricεacd�d . (4.9.8)

We can use this to write the rotational energy (4.9.6) as

H = 1

2

∑
iabcde f

Ric Rieεacdεbe f�d� f Nab

= 1

2

∑
abcd f

εacdεbc f�d� f Nab.
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160 4 Spin et cetera

This can be further simplified by using the identity∑
c

εacdεbc f = δabδd f − δa f δbd, (4.9.9)

which gives

H = 1

2

(∑
a

�2
a Tr N −

∑
ab

�a�b Nab

)
. (4.9.10)

For this reason, we introduce a moment-of-inertia tensor

Iab ≡ δab Tr N − Nab, (4.9.11)

and write the rotational energy as

H = 1

2

∑
ab

�a�b Iab. (4.9.12)

The rotational energy (4.9.12) can also be expressed in terms of an angular-
momentum vector. The components of the angular momentum in a coordinate
system fixed in the laboratory are defined by

Ji ≡
∑
njk

εijkxnj ẋnkmn. (4.9.13)

Using Eqs. (4.9.1), (4.9.5), and (4.9.8), this is

Ji =
∑
jkab

εijk R ja Ṙkb Nab =
∑
jkab

εijkεbcd R ja Rkc�d Nab.

We get a simpler formula for the components Je of angular momentum along
axes fixed in the rotating system:

Je ≡
∑

i

Rie Ji . (4.9.14)

The sum
∑

ijk εijk Rie Rja Rkc is totally antisymmetric in e, a, c, and therefore pro-
portional to εeac. The proportionality constant is just the determinant of R, which
for rotations (as distinct from inversions) is unity, so∑

ijk

εijk Rie R ja Rkc = εeac. (4.9.15)

Using the identity (4.9.9) again, this gives

Ja =
∑

b

Iab�b. (4.9.16)

In the generic case Iab has an inverse, and the rotational energy (4.9.12) may be
written
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4.9 The Rigid Rotator 161

H = 1

2

∑
ab

JaJb I −1
ab . (4.9.17)

Since Iab is a symmetric real matrix, we can find a basis in which it is diagonal,
say with components Ix , Iy , Iz on the main diagonal, in which case Eq. (4.9.17)
takes the form

H = 1

2Ix
J 2

x + 1

2Iy
J 2

y + 1

2Iz
J 2

z . (4.9.18)

We will come back at the end of this section to the special case where one of the
eigenvalues of Iab vanishes.

In making the transition to quantum mechanics, we introduce a set of Her-
mitian operators R̂ia , whose eigenvalues are the components Ria of specific
rotations R. (This is analogous to introducing a position operator for point par-
ticles, whose eigenvalues are specific positions. In this section we will install
hats over symbols to indicate that they are operators, not c-numbers.) All these
components commute with one another (but not with their time derivatives),
and satisfy the constraints (4.9.2) and (4.9.3). The operators x̂ni representing the
positions of individual particles are given by the quantum version of Eq. (4.9.1):

x̂ni (t) =
∑

a

R̂ia(t)x
0
na, (4.9.19)

where for a truly rigid rotator the x0
na are fixed c-numbers. (For a molecule

the x0
na are operators, but the tensors Nab and Iab are still c-numbers, cal-

culated by taking the expectation value of the sum in Eq. (4.9.5) in a given
electronic and vibrational state of the molecule.) As usual, we can define an
angular-momentum operator

Ĵi ≡
∑
njk

εijk x̂n j
˙̂xnkmn, (4.9.20)

with the usual commutation relations

[ Ĵi , Ĵi ] = i�
∑

k

εijk Ĵk . (4.9.21)

We can again define angular-momentum components in a basis fixed in the
rotator:

Ĵa =
∑

i

R̂ia Ĵi . (4.9.22)

Following the same reasoning as in the classical case, we can write the
Hamiltonian operator as the analog of Eq. (4.9.17):

Ĥ = 1

2

∑
ab

Ĵa Ĵb I −1
ab . (4.9.23)
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162 4 Spin et cetera

To find the energy eigenvalues, we need the commutation relations of the
operators Ĵa . We note first that under rotations of the laboratory coordinate axes,
the operators R̂ia transform not as a tensor, but as three three-vectors:

[ Ĵi , R̂ ja] = i�
∑

k

εijk R̂ka. (4.9.24)

(This incidentally shows why we did not have to worry about operator-ordering
in the definition (4.9.22); Ĵi commutes with R̂ ja in the case i = j .) It follows
from Eqs. (4.9.21) and (4.9.24) that Ĵa is a rotational scalar, in the sense that

[ Ĵi , Ĵa] = 0. (4.9.25)

Hence

[Ĵa, Ĵb] =
∑

j

[Ĵa, R̂ jb] Ĵ j =
∑

i j

R̂ia[ Ĵi , R̂ jb] Ĵ j

= i�
∑

ijk

εijk R̂ia R̂kb Ĵ j .

According to the theory of determinants, for any 3 × 3 matrix M with non-
vanishing determinant we have∑

ijk

εik j Mia Mkb = Det M
∑

c

εabc M−1
cj ,

so, for the unimodular orthogonal matrix R̂ of commuting operators,∑
ijk

εijk R̂ia R̂kb = −
∑

c

εabc R̂ jc,

the minus sign arising from the ratio of εijk and εik j . It follows then that

[Ĵa, Ĵb] = −i�
∑

c

εabcĴc. (4.9.26)

That is, the operators −Ĵa satisfy the same commutation relations as ordi-
nary angular-momentum operators. Also, because R̂ia satisfies Eq. (4.9.2), the
definition (4.9.22) gives ∑

i

Ĵ 2
i =

∑
a

Ĵ 2
a . (4.9.27)

By following the reasoning of Section 4.2, we can find states �M K
J that are

eigenstates of both
∑

i Ĵ 2
i and

∑
a Ĵ 2

a with equal eigenvalues �
2 J (J +1), where

J is a positive integer, and also eigenstates of both Ĵ3 and Ĵz , with eigenval-
ues respectively �M and �K , where M and K both run independently by unit
steps from −J to +J . (J is an integer, because in its definition (4.9.20) we
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4.9 The Rigid Rotator 163

are implicitly assuming that the rotator is composed of spinless particles, whose
total orbital angular momentum is J.)

In the general case the states �M K
J are not eigenstates of the Hamiltonian

(4.9.23). Things are much simpler for the symmetric rotator, for which two of
the eigenvalues of the moment-of-inertia tensor Iab are equal. In this case, by a
choice of body-fixed basis vectors, we can take this tensor to have the form

I =
⎛
⎝ Ix 0 0

0 Ix 0
0 0 Iz

⎞
⎠ (4.9.28)

and the Hamiltonian (4.9.23) is

Ĥ = 1

2Ix

(
Ĵ 2

x + Ĵ 2
y

)
+ 1

2Iz
Ĵ 2

z = 1

2Ix

∑
a

Ĵ 2
a +

(
1

2Iz
− 1

2Ix

)
Ĵ 2

z . (4.9.29)

Thus the states �M K
J are eigenstates of the Hamiltonian for a symmetric rotator,

with energy eigenvalues

E(J M K ) = �
2 J (J + 1)

2Ix
+
(

1

2Iz
− 1

2Ix

)
�

2 K 2. (4.9.30)

It is a consequence of rotational invariance that these energies are independent
of M , so that each energy level has a (2J + 1)-fold degeneracy.

There is no similar formula for the energy eigenvalues in the general case,
where all eigenvalues of Iab are unequal, but it is always possible to calculate
the energy eigenvalues for any given J by purely algebraic means. Using a basis
for which Iab is diagonal, the Hamiltonian operator is

Ĥ = 1

2Ix
Ĵ 2

x + 1

2Iy
Ĵ 2

y + 1

2Iz
Ĵ 2

z

= A(Ĵ 2
x + Ĵ 2

y + Ĵ 2
z )+ BĴ 2

z + C(Ĵ 2
x − Ĵ 2

y ), (4.9.31)

where

A = 1

4Ix
+ 1

4Iy
, B = 1

2Iz
− 1

4Ix
− 1

4Iy
, C = 1

4Ix
− 1

4Iy
. (4.9.32)

We also note that

Ĵ 2
x − Ĵ 2

y = 1

2

(
Ĵx + iJy

)2 + 1

2

(
Ĵx − iJy

)2
.

Thus in general the energy eigenstates are mixtures of �M K
J with fixed J and M

but with various values of K differing from each other by multiples of ±2. For
instance, for the case J = 1, in a basis with rows and columns corresponding to
K = +1, K = 0, and K = −1, the Hamiltonian (4.9.31) is
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164 4 Spin et cetera

Ĥ = �
2

⎛
⎝ 2A + B 0 C

0 2A 0
C 0 2A + B

⎞
⎠ .

The J = 1 energy eigenvalues E and corresponding eigenstates � are therefore

E =

⎧⎪⎨
⎪⎩

2A + B + C, � ∝ �
M,+1
1 +�

M,−1
1 ,

2A, � ∝ �
M,0
1 ,

2A + B − C, � ∝ �
M,+1
1 −�

M,−1
1 .

We don’t need to know wave functions to calculate energy eigenvalues for the
rigid rotator, but wave functions are needed for other purposes, such as the cal-
culations of electromagnetic transition amplitudes. We will calculate the wave
functions for the states�M,K

J (whether or not these states are energy eigenstates)
in a basis of states �K

R , defined as eigenstates of both the rotation operator R̂ and
the rotational invariant Ĵz:

R̂ia�
K
R = Ria�

K
R , Ĵz�

K
R = K�K

R . (4.9.33)

It is convenient at this point to return to the formalism of Section 4.1, and
for each c-number rotation R′ introduce a unitary operator U (R′) satisfying
the composition law (4.1.3), which acts on any three-vector operator as in
Eq. (4.1.4). In particular,

U−1(R′)R̂iaU (R′) =
∑

j

R′
ij R̂ ja, (4.9.34)

so U (R′)�K
R is an eigenstate of R̂ia with eigenvalue (R′ R)ia . In particular, if we

define �K
1 to be an eigenstate of R̂ia with eigenvalue δia , then we can take the

general eigenstate as

�K
R = U (R)�K

1 . (4.9.35)

Thus in this basis the wave function of the state �M,K
J is(

�K
R , �

M,K
J

)
=
(
�K

1 ,U (R−1)�
M,K
J

)
=
∑
M ′

D J
M ′ M(R

−1)
(
�K

1 , �
M ′,K
J

)
,

(4.9.36)

where D J
M ′ M(R) are unitary matrices38 representing the three-dimensional

rotation group, in the sense that D(R1)D(R2) = D(R1 R2), defined here by

38 The form of these matrices of course depends on the variables chosen to parameterize rotations. For
the usual case, where rotations are parameterized by Euler angles, the matrices D J

M ′ M (R) are given by
numerous authors, including A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton
University Press, Princeton, 1957), Chapter 4; M. E. Rose, Elementary Theory of Angular Momen-
tum (John Wiley & Sons, New York, 1957), Chapter IV; L. D. Landau and E. M. Lifshitz, Quantum
Mechanics – Non-Relativistic Theory, 3rd edn. (Pergamon Press, Oxford, 1977), Section 58; Wu-Ki
Tung, Group Theory in Physics (World Scientific, Singapore, 1985), Sections 7.3 and 8.1. We will not
need explicit formulas for these matrices in what follows.
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4.9 The Rigid Rotator 165

U (R)�M,K
J =

∑
M ′

D J
M ′ M(R)�

M ′,K
J . (4.9.37)

We still need to say something about the R-independent coefficients(
�K

1 , �
M ′,K
J

)
in Eq. (4.9.36). For this purpose, we note that

K
(
�K

1 , �
M ′,K
J

)
=
(
�K

1 , Ĵ3�
M ′,K
J

)
=
(
�K

1 ,
∑

i

R̂i3 Ĵi �
M ′,K
J

)
.

Acting to the left on the state �K
1 , the Hermitian operator R̂i3 gives a

factor δi3, so

K
(
�K

1 , �
M ′,K
J

)
=
(
�K

1 , Ĵ3�
M ′,K
J

)
= M ′

(
�K

1 , �
M ′,K
J

)
,

and therefore this matrix element vanishes unless M ′ = K :(
�K

1 , �
M ′,K
J

)
= cJ

K δM ′K . (4.9.38)

Using this in Eq. (4.9.36), we find the wave function39(
�K

R , �
M,K
J

)
= cJ

K D J
K M(R

−1). (4.9.39)

The constant factor cJ
K can be found (up to an arbitrary phase) from the

requirement that the wave function should be properly normalized.
We can now take up the special case in which one of the eigenvalues of Iab

vanishes. If the eigenvalues of the matrix Nab defined in Eq. (4.9.5) are Nx , Ny ,
and Nz , then the eigenvalues of the moment of inertia tensor Iab are Ny + Nz ,
Nz + Nx , and Nx + Ny . All the Na are positive, so unless Iab vanishes altogether,
at most one of its eigenvalues can vanish, and then only in the case where two
of the Na vanish. If we choose our coordinate axes so that Nx = Ny = 0, then
the eigenvalues of Iab are Ix = Iy = Nz and Iz = 0. This is necessarily the
case for a linear rotator, such as a diatomic molecule, lying along the z-axis,
with no extension in the x and y directions. We have here a special case of the
symmetric rotator treated earlier, whose energies are given by Eq. (4.9.30). In
order to avoid infinite energies for Iz = 0 (or very large energies for very small
Iz) it is necessary to consider only states with K = 0, for which the energies
(4.9.30) are

E(J M0) = �
2 J (J + 1)

2Ix
, (4.9.40)

39 This is the answer obtained in typical textbook treatments, such as that of L. D. Landau and E. M.
Lifshitz, Quantum Mechanics – Non-Relativistic Theory, 3rd edn. (Pergamon Press, Oxford, 1977),
Section 103, except that usually the argument of D J

K M is given as R, instead of R−1, indicating that
(perhaps to take account of the difference between rotating the system and rotating the coordinate axes)
their wave functions are calculated in the basis �K

R−1 rather than �K
R . Like most authors, Landau and

Lifshitz do not specify the basis for their wave functions. Of course, wave functions can be defined in
any basis we like.
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166 4 Spin et cetera

and the corresponding wave functions (4.9.39) are(
�0

R, �
m,0
�

)
= c�0 D�

0m(R
−1). (4.9.41)

(Since K = 0 is an integer, J and M must also be integers, which are now
accordingly denoted � and m.) In this case the function D�

0m(R
−1) is just

proportional to an ordinary spherical harmonic:

D�
0m(R

−1) = i−�
√

4π

2�+ 1
Y m
� (n̂), (4.9.42)

where n̂ is the direction into which the rotation R−1 takes the 3-axis. Since Y m
�

is a properly normalized wave function, here we have c�0 = √
(2�+ 1)/4π and

the rotator wave function is simply i−�Y m
� (n̂), where here n̂ is the direction in

the laboratory frame of the z-axis of the rotator.
There are important limitations on the values of � in diatomic molecules in

which the two nuclei are identical. If the spins of the individual nuclei are s ′,
and these spins add up to a total spin s, then according to Eq. (4.3.34) (with s ′ in
place of both j ′ and j ′′ and s in place of j), the interchange of the two nuclear
spins changes the spin wave function by a sign (−1)s−2s′

. Also, Eqs. (4.9.42)
and (2.2.17) show that this interchange multiplies the orbital part of the wave
function by a factor (−1)�. But the nuclei are bosons or fermions depending on
whether 2s ′ is even or odd, so the interchange of the two nuclei must change the
complete wave function by a factor (−1)2s′

. Therefore we must have

(−1)s−2s′ × (−1)� = (−1)2s′
,

and therefore (−1)� = (−1)s . Thus � is limited to even or odd values, depend-
ing on whether the total nuclear spin is even or odd. In these two cases,
the molecules are distinguished by the prefix para or ortho, respectively. For
instance, in parahydrogen the total nuclear spin is s = 0 and � is even, while in
orthohydrogen we have s = 1 and � is odd. The nucleus of deuterium has spin
s ′ = 1, so deuterium molecules can be either paradeuterium, with total nuclear
spin either s = 0 or s = 2 and � even, or orthodeuterium, with total nuclear spin
s = 1 and � odd.

The ground state is always the para state, but at room temperature the energy
difference between rotational levels is generally less than kBT , and all of the
2s + 1 individual ortho and para spin states are equally abundant. For instance,
in hydrogen gas at room temperature there are about three orthohydrogen
molecules for every parahydrogen molecule.

Finally, let’s consider the order of magnitude of molecular rotational energies
Erot. It is clear from Eq. (4.9.18) that in general these are of order �

2/mNa2,
where mN is a typical nuclear mass, and a is a typical molecular dimen-
sion. At least for simple molecules, a is of the same order as atomic sizes,
a ≈ �

2/mee2, so
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Erot ≈ �
2

mN

(
mee2

�2

)2

= m2
ee4

mN�2
,

which as noted earlier is less than typical electronic energies mee4/�2 by a
factor of order me/mN. For instance, if we take mN = 10mp then Erot is of
order 10−3 eV. As a check, note that the rotational energies of the cyanogen
molecule CN (whose excitation in interstellar space gave the first hint of a
3 K cosmic radiation background) are accurately given by Eq. (4.9.40), with
�

2/2Ix = 2.35 × 10−4 eV, in fair agreement with our crude estimate.

Problems

1. Suppose that an electron is in a state of orbital angular momentum � = 2.
Show how to construct the state vectors with total angular momentum
j = 5/2 and corresponding 3-components m = 5/2 and m = 3/2 as lin-
ear combinations of state vectors with definite values of S3 and L3. Then
find the state vector with j = 3/2 and m = 3/2. (All state vectors here
should be properly normalized.) Summarize your results by giving values
for the Clebsch–Gordan coefficients C 1

2 2( jm; msm�) in the cases ( j,m) =
(5/2, 5/2), (5/2, 3/2), and (3/2, 3/2).

2. Suppose that A and B are vector operators, in the sense that

[Ji , A j ] = i�
∑

k

εijk Ak, [Ji , B j ] = i�
∑

k

εijk Bk .

Show that the cross-product A × B is a vector in the same sense.

3. What is the minimum value of the total angular momentum J2 that a state
must have in order to have a non-zero expectation value for an operator Om

j
of spin j?

4. The Hamiltonian for a free particle of mass M and spin S placed in a
magnetic field B in the 3-direction is

H = p2

2M
− g|B|S3,

where g is a constant (proportional to the particle’s magnetic moment). Give
the equations that govern the time-dependence of the expectation values of
all three components of S.

5. A particle of spin 3/2 decays into a nucleon and pion. Assume that parity is
conserved in this decay. Show how the angular distribution in the final state
(with spins not measured) can be used to determine the parity of the decaying
particle.
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168 4 Spin et cetera

6. A particle X of isospin 1 and charge zero decays into a K and a K. Assume
that isospin is conserved in this decay. What is the ratio of the rates of the
processes X0 → K+ + K

−
and X0 → K0 + K

0
?

7. Imagine that the electron has spin 3/2 instead of 1/2, but assume that the one-
particle states with definite values of n and � in atoms are filled, as the atomic
number increases, in the same order as in the real world. What elements with
atomic numbers in the range from 1 to 21 would have chemical properties
similar to those of noble gases, alkali metals, halogens, and alkali earths in
the real world?

8. What is the commutator of the angular-momentum operator J with the
generator K of Galilean transformations?

9. Consider an electron in a state of zero orbital angular momentum in an atom
whose nucleus has spin (that is, internal angular momentum) 3/2. Express
the states of the atom with total angular-momentum z-component m = 1 (of
electron plus nucleus) and each possible definite value of the total angular
momentum as linear combinations of states with definite values of the z-
components of the nuclear and electron spins.
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5
Approximations for Energy Eigenvalues

Courses on quantum mechanics generally begin with the same time-honored
examples: the free particle, the Coulomb potential and the harmonic oscilla-
tor potential, covered here in Chapter 2. This is because these are almost the
only cases for which the Schrödinger equation for states of definite energy has
a known exact solution. In the real world, problems are more complicated, and
we have to rely on approximation schemes. Indeed, even if we could find exact
solutions for complicated problems the solutions themselves would necessarily
be complicated, and we would need to make approximations to understand the
physical consequences of the solutions.

5.1 First-Order Perturbation Theory

The most widely useful approach to finding approximate solutions to compli-
cated problems is perturbation theory. In this method one starts with a simpler
problem, which can be exactly solved, and then treats the corrections to the
Hamiltonian as small perturbations.

Consider an unperturbed Hamiltonian H0, like that of the hydrogen atom
treated in Section 2.3, which is simple enough that we can find its energy values
Ea and corresponding orthonormal state vectors �a:

H0�a = Ea�a, (5.1.1)(
�a, �b

)
= δab. (5.1.2)

Suppose we add a small term δH to the Hamiltonian, proportional to some
tiny parameter ε. (For instance, in the case of the hydrogen atom H0 was the
kinetic energy operator plus a potential proportional to 1/r , and we might take
δH = εU (x), where U (x) is an arbitrary ε-independent function of the position
operator x, representing perhaps a departure from the 1/r Coulomb potential
due to the finite size of the proton.) The energy values then become Ea + δEa ,
with corresponding state vectors �a + δ�a , where δEa and δ�a are presumably
given by power series in ε:

169
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170 5 Approximations for Energy Eigenvalues

δEa = δ1 Ea + δ2 Ea + · · · , δ�a = δ1�a + δ2�a + · · · , (5.1.3)

with δN Ea and δN�a proportional to εN . The Schrödinger equation takes the
form (

H0 + δH
) (

�a + δ�a

)
=
(

Ea + δEa

) (
�a + δ�a

)
. (5.1.4)

To collect the terms of first order in ε, we can drop the terms δH δ�a and
δEa δ�a in Eq. (5.1.4), whose power series start with terms of order ε2. We
then have

δH �a + H0 δ1�a = δ1 Ea �a + Ea δ1�a. (5.1.5)

To find δ1 Ea , we take the scalar product of Eq. (5.1.5) with �a . Because H0

is Hermitian, we have (
�a, H0 δ1�a

)
= Ea

(
�a, δ1�a

)
so these terms in the scalar product cancel, and we are left with

δ1 Ea =
(
�a, δH �a

)
. (5.1.6)

This is the first major result of perturbation theory: to first order, the shift in the
energy of a bound state is the expectation value in the unperturbed state of the
perturbation δH.

But this argument does not always work, even when δH is very small. To
see what may go wrong, let us calculate the change in the state vector produced
by the perturbation. This time, we take the scalar product of Eq. (5.1.5) with
a general unperturbed energy eigenvector �b. Again using the fact that H0 is
Hermitian, this gives(

�b, δH �a

)
= δ1 Ea δab +

(
Ea − Eb

) (
�b, δ1�a

)
. (5.1.7)

For a = b, this is the same as Eq. (5.1.6), so the new information is that(
�b, δH �a

)
= (Ea − Eb)

(
�b, δ1�a

)
for a 	= b. (5.1.8)

A problem arises in the case of degeneracy. Suppose there are two states�b 	=
�a for which Eb = Ea . Then Eq. (5.1.8) is inconsistent unless

(
�b, δH �a

)
vanishes, which need not be the case. But we can always avoid this problem
by a judicious choice of the degenerate unperturbed states. Suppose there are
a number of states �a1, �a2, etc., all with the same energy Ea . The quantities(
�ar , δH �as

)
form an Hermitian matrix, so according to a general theorem of

matrix algebra the vector space on which this matrix acts is spanned by a set of
orthonormal eigenvectors urn of this matrix, such that∑

r

(
�as, δH �ar

)
urn = �nusn. (5.1.9)
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5.1 First-Order Perturbation Theory 171

(See footnote 7 in Section 3.3.) We can define eigenstates of H0 with the same
energy Ea:

�an ≡
∑

r

urn�ar , (5.1.10)

for which(
�am, δH �an

)
=
∑

rs

u∗
smurn

(
�as, δH�ar

)
=
∑

s

u∗
smusn�n

= δnm�n, (5.1.11)

in which we have used the orthonormality relation
∑

s u∗
smusn = δnm . For these

states the off-diagonal matrix elements of the perturbation all vanish, so we
avoid the problem of inconsistency with Eq. (5.1.8) if we start with the �s
instead of the �s.

If we stubbornly insist on taking one of the �ar as our unperturbed state,

where some
(
�as, δH �ar

)
for s 	= r do not vanish, then perturbation theory

doesn’t work; even a tiny perturbation causes a very large change in the state
vector. For instance, suppose that H0 is rotationally invariant, and we add a per-
turbation δH = ε ·v, where v is some vector operator. As we saw in the previous
chapter, because H0 is rotationally invariant, there are 2 j+1 states with the same
unperturbed energy and the same eigenvalue �

2 j ( j +1) of J2. If our unperturbed
state is an eigenstate of J3, but ε is not in the 3-direction, then no matter how
small ε is, there will be a large correction to the state vector. The perturbation
forces the state into an eigenstate of J · ε. But if we take the unperturbed states
to be eigenstates of J · ε to begin with, then since δH commutes with J · ε the
change in the state vector will be of order ε.

The condition that (�a, δH �b) vanishes for all states with Ea = Eb and
a 	= b determines the unperturbed states �a uniquely in the case that all of
the corresponding first-order energy perturbations δ1 Ea = (�a, δH �a) are
unequal. But if there are a number of different unperturbed states that all have the
same zeroth-order energies and the same first-order energies, then any orthonor-
mal linear combinations of these states will have the same properties and so
can be taken as the unperturbed states. (This case typically arises when some
symmetry requires that all matrix elements of δH between states with a given
unperturbed energy vanish.) We will see in Section 5.4 that this remaining free-
dom in the unperturbed state vectors is typically removed by imposing the
condition that second-order perturbations do not produce a large change in the
energy eigenvectors.

Next, let’s calculate the perturbations to the state vectors. We will first con-
sider the case of no degeneracy; that is, where the states whose energies and
wave functions we want to calculate do not have the same unperturbed energies
as each other or any other states. Here Eq. (5.1.8) gives immediately

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316276105.007
http:/www.cambridge.org/core


172 5 Approximations for Energy Eigenvalues

(
�b, δ1�a

)
=
(
�b, δH �a

)
Ea − Eb

for a 	= b. (5.1.12)

To find the component of δ1�a along �a , we need to impose the condition that
�a + δ�a is properly normalized. This gives

1 =
(
�a + δ�a, �a + δ�a

)
= 1 +

(
�a, δ1�a

)
+
(
δ1�a, �a

)
+ O(ε2),

so, to order ε,

0 = Re
(
�a, δ1�a

)
. (5.1.13)

We are free to choose the imaginary part of
(
�a, δ1�a

)
to be anything we like,

as this just represents a choice of phase of the whole state vector. That is, multi-
plying the state vector �a by a phase factor exp(iδϕa), with δϕa an arbitrary real
constant of order ε, produces a change in δ1�a equal to i δϕa �a , which changes(
�a, δ1�a

)
by an amount i δϕa . So in particular, we can choose

(
�a, δ1�a

)
to

be real, in which case the normalization condition (5.1.13) becomes

0 =
(
�a, δ1�a

)
. (5.1.14)

With Eq. (5.1.12), the completeness of the state vectors with all definite values
of H0 tells us that

δ1�a =
∑

b

(
�b, δ1�a

)
�b =

∑
b 	=a

�b

(
�b, δH �a

)
Ea − Eb

. (5.1.15)

Next, let us consider the more complicated degenerate case, in which the
states we are interested in have the same unperturbed energies as some other
states. Equation (5.1.8) now tells us nothing whatever about the components of
δ1�a along unperturbed state vectors �b for which Eb = Ea , and Eq. (5.1.12)
only applies for Ea 	= Eb. Hence, in place of Eq. (5.1.15), we only know that

δ1�a =
∑

c: Ec 	=Ea

�c

(
�c, δH �a

)
Ea − Ec

+
∑

b: Eb=Ea

�b

(
�b, δ1�a

)
. (5.1.16)

What about normalization? We can impose on the perturbed degenerate states
the condition that they are orthonormal,(

�b + δ1�b + O(ε2),�a + δ1�a + O(ε2)
)

= δab for Ea = Eb.

The terms of zeroth order in ε on both sides of the equation are equal, so the
terms on the left of first order in ε must then vanish:(

�b, δ1�a

)
+
(
δ1�b, �a

)
= 0 for Ea = Eb. (5.1.17)
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5.1 First-Order Perturbation Theory 173

That is, the Hermitian part of the matrix
(
�b, δ1�a

)
must vanish, so that for

Ea = Eb we have (
�b, δ1�a

)
= Aba, (5.1.18)

where Aba is anti-Hermitian: that is, Aba = −A∗
ab. Neither the first-order

Schrödinger equation (5.1.5) nor the orthonormalization condition (5.1.16) tells
us anything further about the matrix Aab.

The undetermined anti-Hermitian matrix Aab found in the degenerate case
is a little like the undetermined phase factor exp(iϕa) in the state �a + δ1�a

in the non-degenerate case. But there is a large difference. The phase factor in
the non-degenerate case can be chosen to be anything we like, and in particular
can be chosen to give the convenient result (5.1.14). In contrast, as we will see
in Section 5.4, in the degenerate case we need to hold on to our freedom to
choose Aab to prevent second-order perturbations from introducing large shifts
in the first-order state vectors. That is, just as we had to choose the degenerate
unperturbed state vectors �a to make (�b, δ1 H �a) vanish for Eb = Ea and
b 	= a in order to allow a smooth transition to the perturbed state vectors in first
order, so in Section 5.4 we will have to make a specific choice of Aab and hence
of the first-order perturbed state vectors in order to allow a smooth transition to
the perturbed state vectors in second order.

It may be somewhat surprising that a tiny perturbation to the Hamiltonian can
tell us what we must take as the unperturbed energy eigenstates, but there is a
similar phenomenon in classical physics. Consider a particle moving in two or
more dimensions under the influence of a potential V (x), with enough friction
to bring the particle to rest at a local minimum of the potential. Suppose that the
potential consists of an unperturbed term V0(x) plus a perturbation εU (x). If the
local minima of V0(x) are at isolated points xn , then we would expect the local
minima of the complete potential to be at points xn + δxn , with δxn of order ε.
The condition that these are local minima of the perturbed potential reads

0 = ∂[V0(x)+ εU (x)]
∂xi

∣∣∣∣
x=xn+δxn

,

or, to first order in ε,

0 = ∂V0(x)
∂xi

∣∣∣∣
x=xn

+ ε
∂U (x)
∂xi

∣∣∣∣
x=xn

+
∑

j

∂2V0(x)
∂xi ∂x j

∣∣∣∣
x=xn

(δxn) j .

The first term vanishes because the xn are local minima of the unperturbed
potential, so this gives the condition on δx as

∑
j

∂2V0(x)
∂xi ∂x j

∣∣∣∣
x=xn

(δxn) j = −ε ∂U (x)
∂xi

∣∣∣∣
x=xn

.
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174 5 Approximations for Energy Eigenvalues

This solves the problem if Mi j ≡ [∂2V0/∂xi ∂x j ]x=xn is a non-singular matrix,
in which case

(δxn)i = −ε
∑

j

M−1
i j
∂U (x)
∂x j

∣∣∣∣
x=xn

.

But if there is a vector vi for which
∑

i viMij = 0, then the expansion around
xn breaks down unless

∑
i vi [∂U/∂xi ]x=xn = 0. This problem typically arises

when the local minima of the unperturbed potential are not at isolated points,
and instead lie on a curve x = x(s), so that for all s

0 = ∂V0(x)
∂xi

∣∣∣∣
x=x(s)

.

Differentiating this with respect to s gives

0 =
∑

j

∂2V0(x)
∂xi ∂x j

∣∣∣∣
x=x(s)

dx j (s)

ds
.

Following the same reasoning as before, the shift δx(s) in the position of the
local minimum is now governed by the equation∑

j

∂2V0(x)
∂xi ∂x j

∣∣∣∣
x=x(s)

δx j (s) = −ε ∂U (x)
∂xi

∣∣∣∣
x=x(s)

.

Because ∂2V0(x)/∂xi ∂x j is symmetric in i and j , the left-hand side of this
equation vanishes when multiplied with dxi (s)/ds and summed over i , so this
equation cannot be solved unless

0 =
∑

i

dxi (s)

ds

∂U (x)
∂xi

∣∣∣∣
x=x(s)

= dU (x(s))
ds

.

That is, in order for the perturbation εU (x) to make only a small shift in the par-
ticle’s equilibrium position, the particle must not only initially be on the curve
x = x(s) where the unperturbed potential is a local minimum, but must also be
at the point on this curve where the value of the perturbation on the curve is a
local minimum.

5.2 The Zeeman Effect

The shift of atomic energies in the presence of an external magnetic field pro-
vides an important example of first-order perturbation theory. This is known
as the Zeeman effect. The effect was first observed in the 1890s by the spec-
troscopist Pieter Zeeman1(1865–1943), as a splitting of the D lines of sodium
mentioned at the beginning of Chapter 4 (the same spectral lines that give the

1 P. Zeeman, Nature 55, 347 (1897).
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5.2 The Zeeman Effect 175

light from sodium vapor lamps their orange color) in a magnetic field, but it
could not be correctly calculated until the advent of quantum mechanics.

We will consider the effect of a magnetic field on the spectrum of an atom of
the alkali metal type, such as sodium. In such atoms we can concentrate on the
single electron outside closed shells, which feels an effective central potential
due to the other electrons and the nucleus. According to classical electrodynam-
ics, the interaction of an external magnetic field B with an electron moving in
an orbit with orbital angular momentum L gives the electron an extra energy
equal to (e/2mec)B · L, so in quantum mechanics we include a term in the
Hamiltonian of the form (e/2mec)B ·L, where L is here the angular-momentum
operator. We can guess that the interaction of the magnetic field with the spin
angular momentum S will produce an additional term in the Hamiltonian of the
form (ege/2mec)B·S, with a constant factor ge known as the gyromagnetic ratio
of the electron, but there is no reason to expect that ge = 1. In fact, to lowest
order in the fine structure constant e2/�c 
 1/137 quantum electrodynamics
gives ge = 2 (a result first obtained by Dirac using his relativistic wave equa-
tion), while corrections due to processes like the emission and absorption of
photons shift the predicted value to ge = 2.002322 . . . , in good agreement with
experiment. We therefore take the perturbation to the Hamiltonian as

δH = e

2mec
B ·

[
L + geS

]
. (5.2.1)

To calculate the shift in the energies of the states of the atom, we need the

matrix elements
(
�m′

n�j , δH �m
n�j

)
of the perturbation δH between state vectors

of the same unperturbed energy En�j , where

H0�
m
n�j = En�j�

m
n�j . (5.2.2)

Here H0 is the effective one-particle Hamiltonian of the electron in the absence
of the magnetic field. But what must be included in this Hamiltonian? The gen-
eral rule is that we can only ignore terms that produce energy shifts that are
small compared with the shift produced by the perturbation in question. For typ-
ical magnetic field strengths, this means that we must include in H0 not only
the effective electrostatic potential produced by the nucleus and the other elec-
trons, but also the interaction between the electron’s spin and orbital angular
momentum that produces the fine structure, the dependence of energy levels on
j for a given n and �. But we can usually neglect the smaller interaction between
the spins of the electron and nucleus that produces a splitting of spectral lines
known as the hyperfine effect.

In calculating these expectation values, we recall that Eq. (4.4.14) tells us

that for any three-vector operator V, the matrix element
(
�m′

n�j V�
m
n�j

)
is in the

same direction as the matrix element with V replaced with J, and has the same
dependence on m and m ′. In particular, this is true for the vector L + geS, so
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176 5 Approximations for Energy Eigenvalues

(
�m′

n�j , [L + geS]�m
n�j

)
= gnj�

(
�m′

n�j , J�m
n�j

)
, (5.2.3)

where gnj� is a constant independent of m and m ′, known as the Landé g-factor.
As mentioned in Section 4.4, this result is often explained in quantum mechanics
textbooks as due to the rapid precession of the vectors S and L around the total
angular momentum J, but this odd blend of classical and quantum-mechanical
reasoning is quite unnecessary; Eq. (5.2.3) is a simple consequence of the
commutation relations of angular-momentum operators with vector operators.

To calculate the Landé g-factor, note that because J commutes with J2, the
state vector J�m

n�j is itself just a linear combination of the same state vectors

�m′′
n�j with various values of m ′′, so we also have∑

i

(
�m′

n�j , [Li + geSi ]Ji�
m
n�j

)
= gnj�

∑
i

(
�m′

n�j , Ji Ji�
m
n�j

)
. (5.2.4)

The matrix elements on both sides are easily calculated. On the right, we use∑
i

Ji Ji�
m
n�j = �

2 j ( j + 1)�m
n�j ,

while on the left, using S = J − L,∑
i

Li Ji�
m
n�j = 1

2

[
− S2 + L2 + J2

]
�m

n�j

= �
2

2

[
−3

4
+ �(�+ 1)+ j ( j + 1)

]
�m

n�j ,

and, using L = J − S,∑
i

Si Ji�
m
n�j = 1

2

[
− L2 + S2 + J2

]
�m

n�j

= �
2

2

[
−�(�+ 1)+ 3

4
+ j ( j + 1)

]
�m

n�j .

(Note that, for any three-vector operator V, we have V · J = J · V, because
[Ji , Vj ] = i�

∑
k εi jk Vk vanishes for i = j .) Therefore Eq. (5.2.4) gives

1

2

[
−3

4
+ �(�+ 1)+ j ( j + 1)

]
+ ge

1

2

[
−�(�+ 1)+ 3

4
+ j ( j + 1)

]
= j ( j + 1)gnj�,

so that gnj� is independent of n, and given by

g j� = 1 + (ge − 1)

(
j ( j + 1)− �(�+ 1)+ 3/4

2 j ( j + 1)

)
. (5.2.5)
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5.2 The Zeeman Effect 177

Now let’s return to the problem of finding the perturbed energies. According
to Eqs. (5.2.1) and (5.2.3), the matrix elements we need are(

�m′
n�j , δH �m

n�j

)
= eg j�

2mec

(
�m′

n�j ,B · J�m
n�j

)
. (5.2.6)

For B in a general direction, this does not satisfy the condition for the use of
first-order perturbation theory found in the previous section, that the matrix ele-
ment of the perturbation between different state vectors of the same unperturbed
energy must vanish. We can avoid this problem by taking the unperturbed state
vectors to be eigenstates of B ·J instead of J3, but we can also avoid the problem
without introducing new state vectors in place of �m

n�j by simply using a coor-
dinate system in which the 3-axis is in the direction of B. In such a coordinate
system, the matrix elements (5.2.6) become(

�m′
n�j , δH �m

n�j

)
=
(

e�g j�B

2mec

)
mδm′m . (5.2.7)

We can therefore calculate the energy shifts using first-order perturbation theory,
which gives

δEnj�m =
(

e�g j�B

2mec

)
m. (5.2.8)

For instance, in the D lines of sodium studied by Zeeman, there are really
two spectral lines in the absence of a magnetic field, a D1 line caused by a
3p1/2 → 3s1/2 transition of the outer “valence” electron, and a D2 line caused by
the transition 3p3/2 → 3s1/2. (Recall that because the potential felt by the outer
electron is not simply proportional to 1/r , there is no degeneracy between states
with different values of �. Also, spin–orbit coupling gives energies a dependence
on j = � ± 1/2, indicated by a subscript, as well as on � and on a principal
quantum number n, which in this case has the value n = 3.) For the states
involved, Eq. (5.2.5) gives the Landé g-factors (in the approximation ge = 2):

g 3
2 1 = 4

3
, g 1

2 1 = 2

3
, g 1

2 0 = 2. (5.2.9)

The D1 and D2 lines are then split into components with photon energies
shifted by

�E1(m → m ′) = EB

(
2m

3
− 2m ′

)
, (5.2.10)

�E2(m → m ′) = EB

(
4m

3
− 2m ′

)
, (5.2.11)

where EB ≡ e�B/2mec. Since both the D1 transition and the D2 transition are
between states of opposite parity and j differing by 0 or 1, these are electric-
dipole transitions, which as shown in Section 4.4 only allow a change in m
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178 5 Approximations for Energy Eigenvalues

equal to zero or ±1. The D1 line is then split into four components with photon
energies shifted by the amounts

�E1(±1/2 → ±1/2) = ∓2EB/3, (5.2.12)

�E1(±1/2 → ∓1/2) = ±4EB/3, (5.2.13)

while the D2 line is split into six components with photon energies shifted by
the amounts

�E2(±3/2 → ±1/2) = ±EB, (5.2.14)

�E2(±1/2 → ±1/2) = ∓EB/3, (5.2.15)

�E2(±1/2 → ∓1/2) = ±5EB/3. (5.2.16)

Note that if ge were equal to unity, as would be expected classically, then
Eq. (5.2.5) would give a Landé g-factor g j� = 1 for all energy levels, so
Eq. (5.2.8) would give a formula for the energy shift that depends on no
properties of the energy level but the magnetic quantum number m:

δEnj�m =
(

e�B

2mec

)
m.

Both the D1 line and the D2 line would be split into three components, with pho-
ton energies shifted by amounts depending only on the change of the magnetic
quantum number:

�E1(�m = ±1) = �E2(�m = ±1) = ±EB,

�E1(�m = 0) = �E2(�m = 0) = 0.

The frequency shift EB/h = eB/4πmec was derived on classical grounds
by Hendrik Antoon Lorentz2 (1853–1928), and is known as the normal Zee-
man effect. Comparison of Lorentz’s formula with the early data of Zeeman
indicated that whatever charged particle inside the atom is involved in the emis-
sion of radiation has a charge/mass ratio e/m about a thousand times greater
than the charge/mass ratio of the hydrogen ions involved in electrolysis. This
was before Thomson’s discovery of the electron, and was the first indication
that charges in atoms are carried by particles much lighter than atoms. But
the correct splittings are those given by Eqs. (5.2.12)–(5.2.16). This is known
as the anomalous Zeeman effect, because it is not what would be expected
for ge = 1.

The results derived here for the anomalous Zeeman effect are valid only for
magnetic fields that are sufficiently small that the energy shift (5.2.8) is much
less than the fine-structure splitting between states of the same n and � but differ-
ent j . In the opposite limit, where the energy shift (5.2.8) is much greater than

2 H. A. Lorentz, Phil. Mag. 43, 232 (1897); Ann. Physik 43, 278 (1897).
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5.3 The First-Order Stark Effect 179

the fine-structure splitting (though still much less than the splittings between
states with different n or �), we have a larger set of essentially degenerate unper-
turbed states: all those with state vectors �n�m�ms with eigenvalues �m� for L3

and �ms for S3. With the magnetic field again taken in the 3-direction, the matrix
elements of the perturbation are

(
�n�m′

�m′
s
, δH �n�m�ms

)
=
(

e�B

2mec

)[
m� + gems

]
δm′

�m�
δm′

s ms . (5.2.17)

For different state vectors of the same unperturbed energy (i.e., the same values
of n and �) these matrix elements vanish, so we can use first-order perturbation
theory for the energy shift, and find

δEn�m�ms =
(

e�B

2mec

)[
m� + gems

]
. (5.2.18)

The transition from energies given by Eq. (5.2.8) to energies given by
Eq. (5.2.18) is known as the Paschen–Back effect.

5.3 The First-Order Stark Effect

We now turn to the shift of atomic energy levels in the presence of an external
electric field, an effect discovered in 1914, and known as the Stark effect.3 We
will concentrate here on the Stark effect in hydrogen, where the �-independence
of energies for states of a given n and j plays a crucial role. As we will see,
the Stark effect in hydrogen provides an example in which the problem of
degeneracy in first-order perturbation theory must be solved in a somewhat less
trivial way than for the Zeeman effect. The Stark effect in atoms other than
hydrogen (and in some hydrogen states) must be calculated using second-order
perturbation theory, the subject of the next section.

The interaction of an electron with an external electrostatic potential ϕ(x)
gives it an extra energy −eϕ(x). Since atoms are very small compared with the
scales over which ϕ(x) varies, we can replace ϕ(x) with the first two terms in its
Taylor series. Setting the (arbitrary) value of ϕ(x) at the position x = 0 of the
atomic nucleus equal to zero, this gives ϕ(x) = −E · x, where E ≡ −∇ϕ(0) is
the electric field at the nucleus, so the change in the Hamiltonian may be taken as

δH = eE · X, (5.3.1)

where to avoid confusion later we return here to denoting the position operator
as X.

3 J. Stark, Verh. deutsch. phys. Ges. 16, 327 (1914).
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180 5 Approximations for Energy Eigenvalues

Once again, we take the unperturbed Hamiltonian H0 to be the Hamiltonian
of the hydrogen atom in the absence of the electric field, including the fine-
structure splitting but neglecting the Lamb shift and the hyperfine splitting. The
degenerate unperturbed state vectors are then all the state vectors�m

n�j for a fixed
n and j . We need to calculate the matrix elements of the perturbation between
these state vectors:(

�m′
n�′ j , δH �m

n�j

)
= eE ·

(
�m′

n�′ j ,X�m
n�j

)
. (5.3.2)

As in the case of the Zeeman effect, to avoid non-vanishing matrix elements for
m ′ 	= m, we choose the 3-axis to lie in the direction of the electric field, in which
case this becomes(

�m′
n�′ j , δH �m

n�j

)
= eEδm′m

(
�m

n�′ j , X3�
m
n�j

)
. (5.3.3)

This is still not suitable for first-order perturbation theory, because the matrix
elements (5.3.3) do not vanish for �′ 	= �. Indeed, since X is odd under space
inversion, and space inversion gives factors (−1)�

′
and (−1)� when acting on the

state vectors �m
n�′ j and �m′

n�j , respectively, the matrix element (5.3.3) vanishes

unless (−1)�
′
(−1)� = −1, so that the only non-vanishing matrix elements are

those for which �′ 	= �.
For instance, in the energy levels of hydrogen with n = 1 and j = 1/2 or

n = 2 and j = 3/2, there is no first-order Stark effect, because in these energy
levels we only have � = 0 or � = 1, respectively. On the other hand, in the
n = 2, j = 1/2 energy level of hydrogen we have both a 2s1/2 and 2p1/2 state
for each m = ±1/2. Hence for n = 2 and j = 1/2 we have the non-vanishing

matrix elements
(
�

±1/2
2 1 1/2, X3�

±1/2
2 0 1/2

)
and

(
�

±1/2
2 0 1/2, X3�

±1/2
2 1 1/2

)
(where as usual

the state vectors are labeled �m
n�j , with s = 1/2 understood throughout). The

operator X3 acts on orbital angular-momentum indices but does not act on spin
indices, so to calculate its matrix elements between state vectors we need to use
Clebsch–Gordan coefficients to express the state vectors here in terms of state
vectors �m�ms

n� with S3 = �ms and L3 = �m�:

�m
n�j =

∑
m�ms

C� 1
2
( jm; m�ms)�

m�ms
n� . (5.3.4)

Because X3 does not involve the spin, the matrix elements of X3 between state
vectors with definite eigenvalues for L3 and S3 are(

�
m�ms
n� , X3�

m′
�m′

s
n′�′

)
= δms m′

s

∫
d3x Rn�(r)Y

m�

�

∗
(θ, φ)r cos θ Rn′�′(r)Y

m′
�

�′ (θ, φ). (5.3.5)

(Recall that the radial wave functions Rn�(r) are real.) The operator X3 com-
mutes with both L3 and S3, and since the s-wave state vector �±1/2

2 0 1/2 can only
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5.3 The First-Order Stark Effect 181

have m� = 0, the integrals of x3 between this state vector and the p-wave state
vector �±1/2

2 1 1/2 receive contributions only from the m� = 0 components of both
wave functions. The non-vanishing matrix elements are thus(

�
±1/2
2 1 1/2, X3 �

±1/2
2 0 1/2

)
=
(
�

±1/2
2 0 1/2, X3 �

±1/2
2 1 1/2

)
= C1 1

2

(
1

2
± 1

2
; 0 ± 1

2

)
C0 1

2

(
1

2
± 1

2
; 0 ± 1

2

)
I,

(5.3.6)

where

I ≡
∫

d3x r cos θ R2 1(r)Y
0
1 (θ)R2 0(r)Y

0
0 . (5.3.7)

The Clebsch–Gordan coefficients in Eq. (5.3.6) are

C1 1
2

(
1

2
± 1

2
; 0 ± 1

2

)
= ∓ 1√

3
, C0 1

2

(
1

2
± 1

2
; 0 ± 1

2

)
= 1, (5.3.8)

so the non-zero matrix elements (5.3.3) are4

(
�

±1/2
2 1 1/2, δH �

±1/2
2 0 1/2

)
=
(
�

±1/2
2 0 1/2, δH �

±1/2
2 1 1/2

)
= ∓eEI√

3
. (5.3.9)

Because there are non-vanishing matrix elements of δH between the degen-
erate state vectors �

±1/2
2 1 1/2 and �

±1/2
2 0 1/2, these are not the appropriate state

vectors for which to calculate perturbed energies. Instead, we must consider
the orthonormal state vectors

�m
A ≡ 1√

2

[
�m

2 1 1/2 +�m
2 0 1/2

]
, �m

B ≡ 1√
2

[
�m

2 1 1/2 −�m
2 0 1/2

]
. (5.3.10)

The non-vanishing matrix elements of δH between these state vectors are(
�

±1/2
A , δH �

±1/2
A

)
= −

(
�

±1/2
B , δH �

±1/2
B

)
= ∓eEI√

3
, (5.3.11)

while (
�

±1/2
A , δH �

±1/2
B

)
=
(
�

±1/2
B , δH �

±1/2
A

)
= 0. (5.3.12)

4 The fact that the matrix elements of δH between j = 1/2 state vectors depend on the value of m =
±1/2 through a sign factor ± can be understood more directly, as a consequence of the Wigner–Eckart
theorem. Here δH is proportional to X3, which is the spherical component xμ of a vector X with μ = 0,
so according to Eq. (4.4.9),

(
�m

2 1 1/2, δH �m
2 0 1/2

)
∝ C

1 1
2

( 1

2
m; 0 m

)
,

and according to Table 4.1, this Clebsch–Gordan coefficient has the value −2m/
√

3.
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Therefore first-order perturbation theory gives the energy shifts in these states as

δE±1/2
A = ∓eEI√

3
, δE±1/2

B = ±eEI√
3
. (5.3.13)

It remains to calculate the integral I. Equations (2.1.28) and (2.3.7) give the
radial wave functions as

Rn�(r) ∝ r � exp(−r/na) Fn�(r/na),

where a is the hydrogen Bohr radius given by Eq. (2.3.19), a = �
2/mee2, and

Eq. (2.3.17) gives

F2 1(ρ) ∝ 1, F2 0(ρ) ∝ 1 − ρ.

Normalizing these state vectors properly, we have

R2 0(r)Y
0
0 = 1√

4π
(2a)−3/2

(
2 − r

a

)
exp(−r/2a),

R2 1(r)Y
0
1 (θ) = cos θ√

4π
(2a)−3/2

( r

a

)
exp(−r/2a). (5.3.14)

Then Eq. (5.3.7) gives

I = 2π
∫ ∞

0
r2 dr

∫ π

0
sin θ dθ

1

4π
(2a)−3r cos2 θ

( r

a

) (
2 − r

a

)
exp(−r/a)

= −3a. (5.3.15)

In this calculation we have tacitly assumed that the electric field is so weak
that the Stark-effect energy shift is much less than the fine-structure splitting
(though larger than the Lamb shift and hyperfine splittings). In the opposite
limit, where the Stark-effect energy shift is much greater than the fine-structure
splitting, we have degeneracy among all the state vectors�m�ms

n� for a given value
of n. Since X3 does not act on spin indices, the spin is irrelevant here. For n = 2
we have non-vanishing matrix elements(

�
0 ms
2 1 , δH �

0 ms
2 0

)
=
(
�

0 ms
2 0 , δH �

0 ms
2 1

)
= eEI. (5.3.16)

The appropriate state vectors to use in connection with first-order perturbation
theory are then

�
ms
A = 1√

2

[
�

0 ms
2 1 +�

0 ms
2 0

]
, �

ms
B = 1√

2

[
�

0 ms
2 1 −�

0 ms
2 0

]
, (5.3.17)

and the energy shifts are

δEms
A = eEI, δEms

B = −eEI. (5.3.18)

This is the analog of the Paschen–Back effect, and is the result that is usually
quoted in quantum mechanics textbooks.
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5.4 Second-Order Perturbation Theory 183

These calculations show that even a very weak electric field will thoroughly
mix the 2s and 2p states. (It is only necessary that the Stark energy shift should
be large compared with the Lamb shift between the 2s1/2 and 2p1/2 states.) This
has the dramatic effect that the 2s state, which is metastable in the absence of
an electric field, can rapidly decay by single-photon emission into the 1s state
through its mixing with the 2p state in even a weak electric field.

5.4 Second-Order Perturbation Theory

We now consider the change in energies due to a perturbation δH , to second
order in whatever small parameter ε appears in the perturbed Hamiltonian. Of
course, second-order perturbations are of special interest when the first-order
perturbation vanishes, as it does for the Stark shift of atomic energy levels in an
electric field for the 1s1/2, 2p3/2, etc., states of hydrogen and almost all states of
other atoms. Nevertheless, here we will allow for the presence of perturbations
of first as well as second order.

It will be of some interest (and very little extra trouble) now to include a
possible term δ2 H in the Hamiltonian that itself is of second order in ε, so that
H = H0 + δ1 H + δ2 H , with δN H of order εN . We return to the Schrödinger
equation (5.1.4), and equate the terms of second order in ε on both sides:

H0 δ2�a + δ1 H δ1�a + δ2 H �a = Ea δ2�a + δ1 Ea δ1�a + δ2 Ea �a. (5.4.1)

Let us again first consider the non-degenerate case, where none of the states
we are interested in have the same unperturbed energies. We found in Section 5.1
that in this case the first-order perturbations to the energies and state vectors are

δ1 Ea =
(
�a, δ1 H �a

)
, (5.4.2)

δ1�a =
∑
b 	=a

(
�b, δ1 H �a

)
Ea − Eb

�b. (5.4.3)

To find the second-order energy shift, we take the scalar product of Eq. (5.4.1)

with �a . Because H0 is Hermitian, the term
(
�a, H0 δ2�a

)
in the scalar prod-

uct of �a with the left-hand side of Eq. (5.4.1) is equal to Ea

(
�a, δ2�a

)
, and

therefore cancels this term in the scalar product of �a with the right-hand side,
leaving us with(

�a, δ1 H δ1�a

)
+
(
�a, δ2 H �a

)
= δ2 Ea + δ1 Ea

(
�a, δ1�a

)
. (5.4.4)

We drop the term proportional to δ1 Ea , because as explained in Section 5.1,
we choose the phase and normalization of the perturbed state vector so that(
�a, δ1�a

)
= 0. Using Eq. (5.4.3) in Eq. (5.4.4) then gives
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δ2 Ea =
∑
b 	=a

∣∣∣(�b, δ1 H �a

)∣∣∣2
Ea − Eb

+
(
�a, δ2 H �a

)
. (5.4.5)

When one says that an energy shift is produced by the emission and reabsorption
of some virtual particle, as for instance the Lamb shift is produced by the emis-
sion and reabsorption of a virtual photon by the electron in the hydrogen atom,
what is meant is that δ2 Ea (or a higher-order correction) receives an important
contribution from a state �b containing that particle.

One immediate consequence of Eq. (5.4.5) is that, if �a is the state of lowest
energy of a system, then (in the absence of δ2 H ) the second-order energy shift
of its energy is always negative, because all other states have Eb > Ea .

As an example of the use of Eq. (5.4.5), consider a two-state system, with
unperturbed energies Ea 	= Eb. According to Eqs. (5.4.2) and (5.4.5), in the
absence of δ2 H , to second order the perturbations to these energies are

δEa =
(
�a, δH �a

)
+
∣∣∣(�b, δH �a

)∣∣∣2
Ea − Eb

,

δEb =
(
�b, δH �b

)
−
∣∣∣(�b, δH �a

)∣∣∣2
Ea − Eb

,

so second-order corrections increase the higher energy by the same amount as
that by which they lower the lower energy.

We can also calculate the second-order shift in the state vectors. Taking the
scalar product of Eq. (5.4.1) with �b and using Eq. (5.4.3) gives, for b 	= a,

(
�b, δ2�a

)
= 1

Ea − Eb

⎡
⎣∑

c 	=a

(
�b, δ1 H �c

) (
�c, δ1 H �a

)
Ea − Ec

+
(
�b, δ2 H �a

)

−
δ1 Ea

(
�b, δ1 H �a

)
Ea − Eb

⎤
⎦ . (5.4.6)

The component of δ2�a along �a can be found by imposing the condition that
�a + δ1�a + δ2�a + · · · has unit norm. The terms in this condition of second
order in ε tell us that

2 Re
(
�a, δ2�a

)
= −

(
δ1�a, δ1�a

)
= −

∑
b 	=a

∣∣∣∣∣∣
(
�b, δ1 H �a

)
Ea − Eb

∣∣∣∣∣∣
2

. (5.4.7)

We can choose the phase of �a + δ1�a + δ2�a so that the matrix element(
�a, δ2�a

)
is real, and Eq. (5.4.7) then gives the needed formula for this matrix

element. The full second-order shift in the state vector in the non-degenerate
case is then
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δ2�a =
∑
b 	=a

�b

Ea − Eb

⎡
⎣∑

c 	=a

(
�b, δ1 H �c

) (
�c, δ1 H �a

)
Ea − Ec

+
(
�b, δ2 H �a

)

−
δ1 Ea

(
�b, δ1 H �a

)
Ea − Eb

⎤
⎦

− 1

2
�a

∑
b 	=a

∣∣∣∣∣∣
(
�b, δ1 H�a

)
Ea − Eb

∣∣∣∣∣∣
2

. (5.4.8)

Next let’s consider the more complicated degenerate case, in which some of
the states in which we are interested have the same unperturbed energies. First,
we note that the calculation of the second-order energy shift goes through much
as in the non-degenerate case. Taking the scalar product of Eq. (5.4.1) with �a

again gives Eq. (5.4.4). The orthonormality condition found in Section 5.1, that

the matrix
(
�b, δ1�a

)
for states with Eb = Ea must be chosen to be anti-

Hermitian, tells us that
(
�a, δ1�a

)
is imaginary, so it can again be made to

vanish by a suitable choice of phase of �a + δ1�a . We can use Eq. (5.1.16) for

δ1�a in the first term
(
�a, δ1 H δ1�a

)
on the left of Eq. (5.4.4). Since the unper-

turbed states have been chosen so that
(
�a, δ1 H �b

)
vanishes for Eb = Ea but

b 	= a, and we have chosen the phase of �a +δ1�a so that
(
�a, δ1�a

)
also van-

ishes, the second term in Eq. (5.1.16), which involves unknown matrix elements,
does not contribute to the first term in Eq. (5.4.4). We conclude then that

δ2 Ea =
∑

c: Ec 	=Ea

∣∣∣(�a, δ1 H �c

)∣∣∣2
Ea − Ec

+
(
�a, δ2 H �a

)
. (5.4.9)

This is the same result as in the non-degenerate case, except that here we have
to specify not only that the intermediate states �c have c 	= a, but also that they
have Ec 	= Ea .

Next, let’s return to the calculation of the first-order shifts δ1�a in the state
vectors. In Section 5.1 we were able to calculate the component of δ1�a along
any unperturbed state �c with Ec 	= Ea , but about its components along
unperturbed states �b with Eb = Ea , we were only able to conclude that

orthonormality requires the
(
�b, δ1�a

)
to form an anti-Hermitian matrix. We

can now go further by imposing the condition that second-order effects make
only a small change in the state vectors.

Taking the scalar product of Eq. (5.4.1) with any state �b for which Eb = Ea

but b 	= a gives
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(
�b, δ2 H �a

)
+
(
�b, δ1 H δ1�a

)
= δ1 Ea

(
�b, δ1�a

)
.

In the second term on the left we can insert a sum over a complete set of inter-
mediate states �c between δ1 H and δ1�a . Using the results of first-order pertur-

bation theory, that
(
�b, δ1 H �a

)
= δab δ1 Ea for Eb = Ea , and that (�c, δ1�a)

for Ec 	= Ea is given by Eq. (5.1.16), we have for Eb = Ea but b 	= a:

(
�b, δ2 H �a

)
+ δ1 Eb

(
�b, δ1�a

)
+

∑
c: Ec 	=Ea

(
�b, δ1 H �c

)(
�c, δ1 H �a

)
Ea − Ec

= δ1 Ea

(
�b, δ1�a

)
. (5.4.10)

This result allows a complete solution for δ1�a in the case in which the degen-
eracy in zeroth order is removed in first order – that is, that if b 	= a but Eb = Ea

then δ1 Ea 	= δ1 Eb. Then Eq. (5.4.10) provides a formula for the components(
�b, δ1�a

)
with Eb = Ea but b 	= a:

(
�b, δ1�a

)
= 1

δ1 Ea − δ1 Eb

⎡
⎣(�b, δ2 H �a

)

+
∑

c: Ec 	=Ea

(
�b, δ1 H �c

)(
�c, δ1 H �a

)
Ea − Ec

⎤
⎦ .

(5.4.11)

Inspection shows that the right-hand side is an anti-Hermitian matrix (the matrix
in square brackets is Hermitian, but the energy denominator in front is antisym-

metric), so this condition is allowed by the freedom in
(
�b, δ1�a

)
for Eb = Ea

that we were left with in Section 5.1 after using the Schrödinger equation and the

condition of orthonormality. This still leaves
(
�a, δ1�a

)
undetermined, but as

already noted we can choose this matrix element to vanish by a suitable choice
of phase of �a +δ1�a . So we have a complete expression for the first-order shift
in the state vector in the degenerate case:

δ1�a =
∑

c: Ec 	=Ea

(
�c, δ1 H �a

)
Ea − Ec

�c

+
∑

b 	=a,Eb=Ea

�b

δ1 Ea − δ1 Eb

⎡
⎣(�b, δ2 H �a

)

+
∑

c: Ec 	=Ea

(
�b, δ1 H �c

)(
�c, δ1 H �a

)
Ea − Ec

⎤
⎦�b. (5.4.12)
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This only applies if the zeroth-order degeneracy is removed in first order. If
any of the first-order perturbations δ1 Eb of energies for which Eb = Ea are

equal to δ1 Ea then Eq. (5.4.10) tells us nothing about
(
�b, δ1�a

)
, but instead

implies that if Eb = Ea and δ1 Eb = δ1 Ea but b 	= a then [δeff
2 H ]ba = 0, where

[δeff
2 H ]ba ≡

(
�b, δ2 H �a

)
+

∑
c: Ec 	=Ea

(
�b, δ1 H �c

)(
�c, δ1 H �a

)
Ea − Ec

. (5.4.13)

We noted in Section 5.1 that when there are states with the same values of the
zeroth- and first-order energies we can take the unperturbed state vectors to be
any orthonormal linear combination of these states. Since δeff

2 H is an Hermitian
matrix, by the same reasoning as we applied in Section 5.1 to δ1 H , we can
choose these linear combinations to diagonalize this matrix, so that if Eb =
Ea and δ1 Eb = δ1 Ea but b 	= a then in the new basis [δeff

2 H ]ba = 0. This
completely determines the unperturbed states unless some of the second-order
energies δ2 Ea = [δeff

2 H ]aa are equal. In this case we must look to higher orders
of perturbation theory to remove the degeneracy and fix the unperturbed states.

It is generally not easy to do the sums over states in Eqs. (5.4.5) or (5.4.9).
In some cases the sum can diverge; there are ultraviolet divergences that occur

when the matrix elements
∣∣∣(�b, δ1 H �a

)∣∣∣ do not fall off rapidly enough for

high-energy states �b to make the sum converge, and there are infrared diver-
gences that occur when there is a continuum of states �b with energies Eb

extending down to Ea . The treatment of these infinities has been a major
preoccupation of theoretical physicists since the 1930s.

There are two cases that allow δ2 Ea to be more easily calculated. In the first

case, the energies Eb of all the states �b with b 	= a for which
(
�b, δ1 H �a

)
is appreciable for a given state �a are clustered at a value Eb 
 Ea + �a , with
�a 	= 0. The completeness of the orthonormal state vectors�b allows us to write∑
b 	=a

∣∣∣(�b, δ1 H �a

)∣∣∣2 =
(
�a, δ1 H

∑
b

�b

(
�b, δ1 H �a

))
−
∣∣∣(�a, δ1 H �a

)∣∣∣2

=
(
�a, (δ1 H)2�a

)
−
(
δ1 Ea

)2
(5.4.14)

so in the absence of degeneracy δ2 Ea is given by what is called the closure
approximation:

δ2 Ea 
 1

−�a

∑
b 	=a

∣∣∣(�b, δ1 H �a

)∣∣∣2 +
(
�a, δ2 H �a

)

= −

[(
�a, (δ1 H)2�a

)
−
(
δ1 Ea

)2
]

�a
+
(
�a, δ2 H �a

)
. (5.4.15)
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The second case occurs when there is a small set of states �b for which(
�b, δH �a

)
is appreciable, and Eb is very close though not equal to Ea . In this

case, the sum in Eq. (5.4.5) or Eq. (5.4.9) can often be restricted to these states.
For instance, the second-order Stark shift in the 2p3/2 state of hydrogen can be
estimated by keeping only the 2s1/2 state, with which it is nearly degenerate, in
Eq. (5.4.5).

5.5 The Variational Method

Some problems cannot be solved by perturbation theory, because the Hamilto-
nian is not close to one with known eigenvalues and eigenstates. A classic case
is encountered in chemistry: there is no small parameter in which we can expand
the energies and state vectors of electrons in a molecule with several nuclei. In
such cases, it is often possible to get a good estimate at least of the ground state
energy, by a technique known as the variational method. It is based on a general
theorem that the true ground state energy is less than or equal to the expectation
value of the Hamiltonian in any state.

To prove this result, recall the expression (3.1.16) for the expansion of any
state vector � in a series of orthonormal state vectors �n:

� =
∑

n

�n

(
�n, �

)
, where

(
�n, �m

)
= δnm . (5.5.1)

We can take the �n to be exact eigenvectors of the Hamiltonian

H�n = En�n. (5.5.2)

This gives the expectation value of the Hamiltonian in the state � as

〈H〉� ≡
(
�, H�

)
(
�,�

) =
∑

n En

∣∣∣(�n, �
)∣∣∣2

∑
n

∣∣∣(�n, �
)∣∣∣2 . (5.5.3)

If Eground is the true ground state energy, then En ≥ Eground for all n, so

〈H〉� ≥ Eground, (5.5.4)

as was to be proved.
We can check that this result is respected by the approximations we found ear-

lier in perturbation theory. Recall that to first order in a small perturbation δH ,
the energy of a physical state with unperturbed state vector�(0)

n and unperturbed
energy E (0)

n is given by the expectation value of the total Hamiltonian

E (0)
n + δEn = E (0)

n +
(
�(0)

n , δH �(0)
n

)
=
(
�(0)

n , (H + δH)�(0)
n

)
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(provided that the unperturbed state vectors have been chosen so that(
�(0)

n , δH �(0)
m

)
= 0 if E (0)

m = E (0)
n but m 	= n). Further, we have seen that the

energy in second-order perturbation theory is less than this expectation value.
As we have now seen, this expectation value is not only an approximation to the
true energy in first-order perturbation theory, and an upper bound to the ground
state energy in second-order perturbation theory – it is an exact upper bound to
the ground state energy, whatever we choose for �(0)

n .
One nice thing about the variational principle is that, although the choice of

a trial state vector is a matter of judgment, there is an objective way of telling
which of two trial state vectors is better. Since the true ground state energy is
less than the expectation value of the Hamiltonian for any trial state vector, that
trial state vector that gives the smallest expectation value is better.

For a system consisting of a single particle of mass M moving in three
dimensions in a general potential V (X), the Hamiltonian is

H = P2

2M
+ V (X). (5.5.5)

So, since P is Hermitian,

〈H〉� =
∑

i

(
Pi�, Pi�

)
/2M +

(
�, V�

)
(
�,�

) (5.5.6)

= 〈T 〉� + 〈V 〉�, (5.5.7)

where

〈T 〉� =
∫

d3x (�2/2M)
∑

i

∣∣∂ψ(x)/∂xi
∣∣2∫

d3x |ψ(x)|2 ,

〈V 〉� =
∫

d3x V (x)|ψ(x)|2∫
d3x |ψ(x)|2 , (5.5.8)

where ψ(x) is the coordinate-space wave function (�x, �). The mean kinetic
energy 〈T 〉� is minimized by a ψ(x) that is as flat as possible, while for an
attractive potential like the Coulomb potential, the mean potential 〈V 〉� is min-
imized by a ψ(x) that is concentrated near the origin. The wave function that
minimizes 〈H〉� is therefore a compromise – somewhat concentrated near the
origin, but with some spread out to larger distances.

The energies of some other states besides the ground state may be given
by the minimum value of the expectation value 〈H〉� for � subject to certain
constraints. Suppose that there is some Hermitian operator A (such as L2) that
commutes with the Hamiltonian. Then if a trial state vector � is an eigenstate of
A, the expectation value of the Hamiltonian for that state vector gives an upper
bound on the energies of all eigenstates of H with the same eigenvalue of A.
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190 5 Approximations for Energy Eigenvalues

Thus, for instance, taking the trial wave function ψ(x) in Eq. (5.5.7) to have the
form R(r)Y m

� (x̂), this expectation value gives an upper bound on the energies of
all states of angular momentum �.

In a certain sense, the variational principle applies to all energy eigenstates.
For excited states the expectation value 〈H〉� is clearly not a minimum, but it
is stationary under any infinitesimal variation of the state �. The change in the
expectation value when we make an infinitesimal change δ� in the state vector
� is

δ〈H〉� = 2
Re
(
δ�, H�

)
(
�,�

) − 2

(
�, H�

)
Re
(
δ�,�

)
(
�,�

)2

=
2 Re

(
δ�, (H − 〈H〉�)�

)
(
�,�

) , (5.5.9)

which vanishes if � is an eigenstate of H , in which case H� = (〈H〉�)�.
In using the variational principle for either ground or excited states, one gen-

erally defines a trial state vector �(λ) as a function of a number of free complex
parameters λi , and looks for values of these parameters at which 〈H〉�(λ) is
stationary in the λi . The variation in the trial state vector when we make a
small variation δλi in these parameters is δ�(λ) = ∑

i (∂�(λ)/∂λi ) δλi , so the
corresponding variation in the expectation value of H is given by

δ〈H〉� =
2 Re

∑
i δλi

(
∂�(λ)/∂λi , (H − 〈H〉�)�

)
(
�,�

) . (5.5.10)

Since this must vanish at a stationary point for all complex δλi , we must have(
∂�/∂λi , (H − 〈H〉�)�

)
= 0 (5.5.11)

for all i . Since the state vector (H − 〈H〉�)� is thus orthogonal to all the state
vectors ∂�/∂λi , we can guess that if there are enough independent parameters
λi then H� − 〈H〉�� should be small, so that � will be close to an eigen-
vector of the complete Hamiltonian with energy 〈H〉� . The more independent
parameters λi we introduce, the closer to 〈H〉�� the state vector H� is likely
to be.

For a Coulomb potential there is a simple relation between the kinetic and
potential energy terms in Eq. (5.5.8) at the minimum of 〈H〉� , known as the
virial theorem. It is derived by introducing just one free parameter, the length
scale, using dimensional analysis to find the dependence of expectation val-
ues on this parameter. If we normalize the trial wave function ψ(x), so that∫

d3x |ψ(x)|2 = 1, then ψ has dimensionality [length]−3/2, so it must be of
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5.6 The Born–Oppenheimer Approximation 191

the form ψ(x) = a−3/2 f (x/a), where f (z) is a dimensionless function of a
dimensionless argument, and a is a length that can be varied freely when we
vary the wave function. By changing the variable of integration in Eq. (5.5.8)
from x to x/a, it is easy to see that when we vary a, 〈T 〉� goes as a−2, while
for a Coulomb potential 〈V 〉� goes as a−1. Since the derivative of the sum with
respect to a must vanish at the true energy eigenstate, we have

−2〈T 〉� − 〈V 〉� = 0, (5.5.12)

so 〈H〉� = −〈T 〉� . (It should perhaps be emphasized that this relation can
be applied only after a stationary point of 〈H〉� has been found; otherwise we
could minimize 〈H〉� by maximizing 〈T 〉� , which is certainly not the case.)
This applies to excited states as well as to the ground state, and similar results
hold for multi-electron atoms, or even for molecules, provided that the only
forces are Coulomb forces.

5.6 The Born–Oppenheimer Approximation

There are theories in which part of the Hamiltonian is suppressed by a small
parameter, and yet we cannot use a perturbation theory based on the expansion
of energies and eigenvalues to first or second order in this parameter. A good
example is provided by molecular physics, in which the kinetic energy of nuclei
is suppressed by the reciprocal of nuclear masses. Instead of ordinary perturba-
tion theory, here we can instead use an approximation introduced by Born and
J. Robert Oppenheimer (1904–1967) in 1927.5

The Hamiltonian for a molecule can be written6

H = Telec(p)+ Tnuc(P)+ V (x, X), (5.6.1)

where Telec and Tnuc are the kinetic energies of the electrons (labeled n) and
nuclei (labeled N ):

Telec(p) =
∑

n

p2
n

2me
, Tnuc(P) =

∑
N

P2
N

2MN
, (5.6.2)

and V is the potential energy

V (x, X) = 1

2

∑
n 	=m

e2

|xn − xm | + 1

2

∑
N 	=M

Z N Z Me2

|XN − XM | −
∑
nN

Z N e2

|xn − XN | , (5.6.3)

5 M. Born and J. R. Oppenheimer, Ann. Phys. 84, 457 (1927).
6 In this section we are giving up our usual practice of using upper case letters for operators and lower

case letters for their eigenvalues. Instead, here upper and lower case letters for coordinates and momenta
refer to nuclei and electrons, respectively. We leave it to the context to clarify whether the symbols for
coordinates and momenta denote operators or their eigenvalues.
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192 5 Approximations for Energy Eigenvalues

where Z N e is the charge of nucleus N . Of course, [xni , pmj ] = i�δnmδi j ,
[X Ni , PM j ] = i�δN Mδi j , and all other commutators of coordinates and/or
momenta vanish. We are using upper and lower case letters for the dynami-
cal variables of nuclei and electrons, respectively. Boldface as usual indicates
three-vectors, and when boldface (and vector indices) are omitted it should
be understood that x, p and X, P denote the whole set of dynamical vari-
ables for electrons and nuclei, respectively. We have ignored spin variables in
Eqs. (5.6.1)–(5.6.3), but if necessary one can include electron and nuclear spin
3-components among the variables denoted x, p and X, P .

We seek solutions of the Schrödinger equation:[
Telec(p)+ Tnuc(P)+ V (x, X)

]
� = E�. (5.6.4)

The Born–Oppenheimer approximation exploits the suppression of the nuclear
kinetic energy term by the large nuclear masses MN , so let’s first consider
the eigenvalue problem for the reduced Hamiltonian, with Tnuc omitted. The
nuclear coordinates X Ni commute with this reduced Hamiltonian, so we can
find simultaneous eigenvectors of both the reduced Hamiltonian and X :[

Telec(p)+ V (x, X)
]
�a,X = Ea(X)�a,X , (5.6.5)

where the subscript X here indicates the eigenvalue of the nuclear coordinate
operators (which were denoted X in Eq. (5.6.4)). In Eq. (5.6.5) the nuclear
coordinates XN can be regarded as c-number parameters, on which the reduced
Hamiltonian Telec+V and hence also its eigenvalues and eigenfunctions depend.
The reduced Hamiltonian is Hermitian, so these states can be chosen to be
orthonormal, in the sense that(

�b,X ′,�a,X

)
= δab

∏
Ni

δ
(

X ′
Ni − X Ni

)
. (5.6.6)

We can write the state �a,X as a superposition of states �x,X with definite values
of the electron as well as of the nuclear coordinates

�a,X =
∫

dx ψa(x; X)�x,X . (5.6.7)

With the �x,X given the usual continuum normalization(
�x ′,X ′,�x,X

)
=
∏
ni

δ(xni − x ′
ni )
∏
Nj

δ(XNj − X ′
Nj), (5.6.8)

the normalization condition (5.6.6) implies that for each X :∫
dx ψ∗

a (x; X)ψb(x; X) = δab. (5.6.9)
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5.6 The Born–Oppenheimer Approximation 193

Inserting Eq. (5.6.7) in (5.6.5) gives[
Telec(−i� ∂/∂x)+ V (x, X)

]
ψa(x; X) = Ea(X)ψa(x; X). (5.6.10)

This can be regarded as an ordinary Schrödinger equation in a reduced Hilbert
space, consisting of square-integrable functions of x .

Unfortunately, we cannot simply use first-order perturbation theory, with Tnuc

taken as the perturbation and the state vectors �a,X taken as unperturbed energy
eigenstates. This is because we are looking for discrete eigenvalues of the full
Hamiltonian, for which the eigenvectors � would be normalizable, in the sense

that
(
�,�

)
is finite, while Eq. (5.6.6) shows that

(
�a,X ,�a,X

)
is infinite.

We cannot expand in powers of a perturbation that converts a state vector with
continuum normalization into one that is normalizable as a discrete state.

Since the �a,X do form a complete set, the true solution � of the full
Schrödinger equation (5.6.4) can be written

� =
∑

a

∫
d X fa(X)�a,X . (5.6.11)

The normalization condition (�,�) = 1 here reads∑
a

∫
d X | fa(X)|2 = 1. (5.6.12)

Inserting the expansion (5.6.11) in the Schrödinger equation (5.6.4), and using
the reduced Schrödinger equation (5.6.5), we have

0 =
∑

a

∫
d X fa(X)

[
Tnuc(P)+ Ea(X)− E

]
�a,X . (5.6.13)

So far, this is exact, but it is complicated by the fact that the operator Tnuc does
not merely act on the X -index on �a,X . That is, acting on the basis states �x,X ,
an individual component of nuclear momentum gives7

PNi�x,X = i�
∂

∂X Ni
�x,X , (5.6.14)

so that, using Eq. (5.6.7) and integrating by parts,∫
d X fa(X)PN ,i�a,X = −i�

∫
dx

∫
d X

[
ψa(x; X)

∂

∂X Ni
fa(X)

+ fa(X)
∂

∂X Ni
ψa(x; X)

]
�x,X .

(5.6.15)

7 A reminder: according to Eq. (3.5.11), a momentum operator P acts on basis states �X as i� ∂/∂X , so
that

P
∫

d X ψ(X)�X =
∫

[−i� ∂ψ(X)/∂X ]�X .
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194 5 Approximations for Energy Eigenvalues

The Born–Oppenheimer approximation consists of dropping the derivative
of ψa(x; X) with respect to X in Eq. (5.6.15), so that, using Eq. (5.6.7)
again,

∫
d X fa(X)Tnuc(P)�a,X 


∫
d X �a,X

∑
N

( −�
2

2MN

)
∇2

N fa(X). (5.6.16)

We will make this approximation and see where it leads us, and then come back
to whether the solutions we find are consistent with this approximation.

With the approximation (5.6.16), the Schrödinger equation (5.6.13)
becomes

0 =
∑

a

∫
d X �a,X

[∑
N

( −�
2

2MN

)
∇2

N + Ea(X)− E

]
fa(X). (5.6.17)

Since the eigenvectors �a,X of the reduced Hamiltonian are independent, each
term in the sum must vanish, so for all a,

[∑
N

( −�
2

2MN

)
∇2

N + Ea(X)

]
fa(X) = E fa(X). (5.6.18)

That is, fa(X) satisfies a Schrödinger equation in which electron dynamical
variables no longer appear, except that the energy Ea(X) of the electronic
state with fixed nuclear coordinates X acts as a potential for the nuclei.
For this purpose all we need to calculate about the electrons is the energy
Ea(X), not the eigenvector �a,X . This still isn’t easy, but at least we can
(and usually do) find the lowest Ea(X) by applying the variational prin-
ciple to the reduced Hamiltonian Telec + V , with nuclear coordinates held
fixed.

The different electronic configurations have decoupled from each other, so
that we have solutions for each a in which all of the other fb vanish. From now
on we will drop the index a, keeping our attention on just a single electronic
configuration, which often is taken as the ground state, in which the electron
energy E(X) is the lowest of the Ea(X).

For multi-atom molecules the function E(X) is pretty complicated. It may
be expected to have several local minima, corresponding to different stable or
metastable molecular configurations. There will be solutions of Eq. (5.6.18) with
the wave function f (X) concentrated around one of these minima, correspond-
ing to various vibrational modes of the molecule in this configuration. Taking
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5.6 The Born–Oppenheimer Approximation 195

XN = 0 as the coordinates of one local minimum, for each such wave function
Eq. (5.6.18) may be approximated as8⎡

⎣∑
N

( −�
2

2MN

)
∇2

N + 1

2

∑
N N ′i j

KNi,N ′ j X Ni X N j

⎤
⎦ f (X) = E f (X), (5.6.19)

where

KNi,N ′ j ≡
[

∂2E(X)
∂X Ni ∂X N ′ j

]
X=0

. (5.6.20)

We note in passing that this program is made easier by using a result known
as the Hellmann–Feynman theorem,9 which states

∂E(X)
∂X Ni

=
∫

dx |ψ(x; X)|2 ∂V (x, X)

∂X Ni
. (5.6.21)

In other words, to calculate the first derivatives of E(X), as we need to do to find
its local minima, we do not need to calculate derivatives of the electronic wave
function ψ(x; X) with respect to the nuclear coordinates X . To prove this, we
note from Eq. (5.6.10) (dropping the subscript a) that

E(X) =
∫

dx ψ∗(x; X)
[
Telec(−i� ∂/∂x)+ V (x, X)

]
ψ(x; X),

so

∂E(X)
∂X Ni

=
∫

dx

[
∂

∂X Ni
ψ(x; X)

]∗ [
Telec(−i� ∂/∂x)+ V (x, X)

]
ψ(x; X)

+
∫

dx ψ∗(x; X)
[
Telec(−i� ∂/∂x)+ V (x, X)

] [ ∂

∂X Ni
ψ(x; X)

]

+
∫

dx |ψ(x; X)|2 ∂V (x, X)

∂X Ni

= E(X)
{∫

dx

[
∂

∂X Ni
ψ(x; X)

]∗
ψ(x; X)

+
∫

dx ψ∗(x; X)

[
∂

∂X Ni
ψ(x; X)

]}

+
∫

dx |ψ(x; X)|2 ∂V (x, X)

∂X Ni
.

8 It is not necessary for our purposes, but this can be rewritten as the Schrödinger equation for a set of
independent harmonic oscillators, by introducing new coordinates defined as linear combinations of the
X Ni . The wave function f is then a product of harmonic oscillator wave functions, one for each new
coordinate, and the energy E is the sum of the corresponding harmonic oscillator energies.

9 F. Hellmann, Einfühuring in die Quantenchemie (Franz Deutcke, Leipzig & Vienna, 1937); R. P.
Feynman, Phys. Rev. 56, 540 (1939).
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But the normalization condition (5.6.9) is satisfied for all X , so∫ [
∂

∂X Ni
ψ(x; X)

]∗
ψ(x; X)+

∫
dx ψ∗(x; X)

[
∂

∂X Ni
ψ(x; X)

]
= 0,

which yields the desired result (5.6.21).
We can now check the validity of the Born–Oppenheimer approximation, in

which we neglected the derivative of ψa(x; X) with respect to X in Eq. (5.6.15).
The eigenvalue equation (5.6.5) involves only electronic variables, so the only
dimensional parameters in this equation are me, e, and �. The distance scale over
which we must vary X to make an appreciable change in ψa(x; X) is therefore
the Bohr radius

a ≈ �
2/mee

2,

because this is the only quantity with the units of length that can be formed from
me, e, and �. On the other hand, the Schrödinger equation (5.6.19) for the vibra-
tional wave function f (x) of the molecule involves only the parameters �

2/M
(where M is a typical nuclear mass in this molecule) and K . Equation (5.6.20)
shows that the units of K are [energy]/[distance]2, so since K arises from the
electronic energy, it can only be of the order of atomic binding energies, roughly
e4me/�

2, divided by a2, so

K ≈ e4me

�2a2
= e8m3

e

�6
.

The only quantity that can be formed from �
2/M and K that has the dimensions

of length is

b =
(

�
2

M K

)1/4

≈ �
2

e2 M1/4m3/4
e

,

so this is the distance over which one must vary X to make an appreciable
change in fa(X). The ratio of the second to the first term in the square brackets
in Eq. (5.6.15) is then of order

second term

first term
≈ 1/a

1/b
≈
(me

M

)1/4
.

This varies from 0.15 for hydrogen to 0.04 for uranium. The corrections to the
Born–Oppenheimer approximation are suppressed by one or more powers of
this quantity. This shows a clear failure of first-order perturbation theory; the
corrections to the leading approximation here are not proportional to 1/MN , but
to 1/M1/4

N .
There is another, perhaps more physical, way of understanding the Born–

Oppenheimer approximation. The energies of excited electronic states in
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5.6 The Born–Oppenheimer Approximation 197

molecules are similar to those in atoms, of order e4me/�
2. In contrast, the

energies of the excited molecular vibrational states are of order

√
K�2/M ≈ e4m3/2

e

�2 M1/2
.

Hence vibrational excitation energies are smaller than electronic excitation ener-
gies by a factor of order

√
me/M . (This is why molecular spectra are generally

in the infrared, while atomic spectra are in the visible or ultraviolet.) The Born–
Oppenheimer approximation works because the motion of nuclei in a molecule
does not involve energies large enough to excite higher electronic states.

We can carry this further. We saw in Section 4.9 that the excitation energies
of rotational states of the whole molecule are of order10

�
2/Ma2 = m2

ee4/M�
2,

which is even smaller than the vibrational energies, by an additional factor√
me/M . Thus we have a hierarchy of energies:

Electronic: e4me/�
2

Vibrational: (me/M)1/2 × e4me/�
2

Rotational: (me/M)× e4me/�
2

In the language of modern elementary particle physics, in the Born–
Oppenheimer approximation the electronic states are “integrated out,” resulting
in an “effective Hamiltonian” for the nuclear motions. Similarly, we found in
Section 4.9 that to a first approximation we do not need to consider the electronic
and vibrational states of molecules in calculating rotational spectra.

In much the same way, from the beginning of atomic and molecular physics,
theorists employed effective Hamiltonians in which internal excitations of
atomic nuclei were implicitly ignored. Born and Oppenheimer were just the
first to make this sort of analysis explicit, though for them it was electronic
rather than internal nuclear excitations that were ignored. Today we usually
(though not always) study the internal structure of nuclei using an effective
Hamiltonian in which neutrons and protons are treated as point particles, ignor-
ing the structure of the proton and neutron as composites of quarks, since
the energies required to produce excited states of the proton and neutron are
larger than those encountered in ordinary nuclear phenomena. And, similarly,
we use the Standard Model of elementary particles without needing to know
what happens at the very high energies where gravitation becomes a strong
interaction.

10 These energies are of the order of the squared angular momentum divided by the moment of inertia.
The angular momentum is of order �, and the moment of inertia is of order Ma2, so these rotational
energies are of order �

2/Ma2 = m2
ee4/M�

2.

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316276105.007
http:/www.cambridge.org/core


198 5 Approximations for Energy Eigenvalues

5.7 The WKB Approximation

A particle of sufficiently high momentum will have a wave function that
varies very rapidly with position, much more rapidly than the potential. The
Schrödinger equation can be easily solved exactly for a constant potential, so
it can be solved approximately for a potential that varies much more slowly
than the wave function. This is the basis of an approximation introduced inde-
pendently by Gregor Wentzel11 (1898–1978), Hendrik Kramers12 (1894–1952),
and Leon Brillouin13 (1889–1969), known as the WKB approximation.

Consider a Schrödinger equation of the form

d2u(x)

dx2
+ k2(x) u(x) = 0, (5.7.1)

where

k(x) ≡
√

2μ

�2

(
E − U (x)

)
. (5.7.2)

This is the form of the Schrödinger equation for a particle of mass μ in one
dimension, with u(x) the wave function for a state of energy E and with U (x)
the potential, and it is also the form of the Schrödinger equation for a particle of
mass μ (or for two particles with reduced mass μ) in three dimensions, where
x is the radial coordinate, u(x) is x times the wave function ψ(x) for energy E ,
and

U (x) ≡ V (x)+ �
2

2μ

�(�+ 1)

x2
,

with V (x) a central potential. For the present we are assuming that U (x) ≤ E ;
later we will consider the case U (x) ≥ E .

If k(x) were constant, Eq. (5.7.1) would have a solution u(x) ∝ exp(±ikx),
so when k(x) is slowly varying, we expect a solution of the form

u(x) ∝ A(x) exp

[
±i
∫

k(x) dx

]
, (5.7.3)

where A(x) is a slowly varying amplitude. This will satisfy Eq. (5.7.1) exactly if

A′′ ± 2ik A′ ± ik ′ A = 0. (5.7.4)

Of course, this is no easier to solve than Eq. (5.7.1), but if A(x) is sufficiently
slowly varying we may be able to find an approximate solution by dropping the
term A′′. We will find such a solution, and then check under what conditions it
is a good approximation.

11 G. Wentzel, Z. Physik 38, 518 (1926).
12 H. A. Kramers, Z. Physik 39, 828 (1926).
13 L. Brillouin, Comptes Rendus Acad. Sci. 183, 24 (1926).
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With A′′ neglected, Eq. (5.7.4) becomes exactly soluble, with A(x) ∝
k−1/2(x), so that we have a pair of approximate solutions of Eq. (5.7.1):

u(x) ∝ 1√
k(x)

exp

[
±i
∫

k(x) dx

]
. (5.7.5)

These solutions are valid if the term A′′ in Eq. (5.7.4) is indeed much smaller
than k ′ A. For A = Ck−1/2 with C constant, we have

A′′ = C

[
− k ′′

2k3/2
+ 3k ′2

4k5/2

]
,

so we have |A′′| � |k ′ A| if |k ′′/k3/2| � |k ′/
√

k| and |k ′2/k5/2| � |k ′/k1/2|, or
in other words if ∣∣∣∣k ′′

k ′

∣∣∣∣ � k,

∣∣∣∣k ′

k

∣∣∣∣ � k. (5.7.6)

These conditions simply require that the magnitude of the fractional changes in
both k ′ and k in a distance 1/k be much less than unity.

In the classically forbidden region where U > E , the Schrödinger equation
takes the form

d2u(x)

dx2
− κ2(x)u(x) = 0, (5.7.7)

where

κ(x) ≡
√

2μ

�2

(
U (x)− E

)
. (5.7.8)

In exactly the same way as in the case U < E , we can find solutions

u(x) ∝ 1√
κ(x)

exp

[
±
∫
κ(x) dx

]
, (5.7.9)

which are good approximations provided∣∣∣∣κ ′′

κ ′

∣∣∣∣ � κ,

∣∣∣∣κ ′

κ

∣∣∣∣ � κ. (5.7.10)

At this point, our discussion has to divide between problems in one dimension
and problems in three dimensions.

One Dimension

In a typical bound-state problem in one dimension, we have U < E in a finite
range aE < x < bE , and U > E outside this range, where the wave function
must decay exponentially for x → ±∞. The conditions (5.7.6) and (5.7.10)
clearly are not satisfied near the “turning points” aE and bE , where U = E .
If the conditions (5.7.10) become satisfied for all x that are sufficiently greater
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200 5 Approximations for Energy Eigenvalues

than bE , then in order to have a normalizable solution, in this region we must
have

u(x) ∝ 1√
κ(x)

exp

[
−
∫
κ(x) dx

]
. (5.7.11)

On the other hand, for x in the range aE < x < bE , and sufficiently far from
the turning points, the solution is some linear combination of the two solutions
(5.7.5). To find this solution, we must ask what linear combination for x suffi-
ciently below bE fits smoothly with the solution (5.7.11) for x sufficiently above
bE . (We will come back later to the solution below aE .)

Unless E takes some special value, we expect that when x is near bE we have
U (x)− E ∝ x − bE , so that for x just a little above bE , we have

κ(x) 
 βE

√
x − bE , (5.7.12)

where βE ≡ √
2μU ′(bE)/�. To be more specific, Eq. (5.7.12) is a good approx-

imation if bE ≤ x � bE + δE , where δE ≡ 2U ′(bE)/|U ′′(bE)|. In this range of
x , it is convenient to replace x with a variable

φ ≡
∫ x

bE

κ(x ′) dx ′ = 2βE

3
(x − bE)

3/2 . (5.7.13)

In this case, the wave equation (5.7.7) takes the form

d2u

dφ2
+ 1

3φ

du

dφ
− u = 0. (5.7.14)

This has two independent solutions

u ∝ φ1/3 I±1/3(φ), (5.7.15)

where Iν(φ) is the Bessel function of order ν with imaginary argument:14

Iν(φ) = e−iπν/2 Jν
(
eiπ/2φ

)
,

where Jν(z) is the usual Bessel function of order ν.
Now, as long as Eq. (5.7.12) is a good approximation, we will have

κ ′

κ2
= 1

3φ
,

κ ′′

κκ ′ = − 1

3φ
,

so the conditions (5.7.10) for the WKB approximation will be satisfied if φ 
 1.
There will be some overlap between the regions of x in which the approximation
(5.7.12) and the WKB approximation are satisfied, provided φ(bE + δE) 
 1,
or in other words, if

2βE

3

(
2U ′(bE)

|U ′′(bE)|
)3/2

= κE L E 
 1, (5.7.16)

14 See, e.g., G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd edn. (Cambridge University
Press, Cambridge, 1944), Section 3.7.
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where κE ≡ √
2μ|E |/�, and L E is a length that characterizes the scale of

variation of the potential,

L E ≡ 25/2U ′2(bE)

3|U ′′(bE)|3/2|U (bE)|1/2
. (5.7.17)

We will assume from now on that κE L E 
 1, so that there is a region in which
the WKB approximation and the approximation (5.7.12) are both satisfied. As
we have seen, in this region we must have φ 
 1, in which case we can use the
asymptotic forms of the functions (5.7.15):

φ1/3 I±1/3(φ) → (2π)−1/2φ−1/6

[
exp(φ) (1 + O(1/φ))

+ exp(−φ − iπ/2 ∓ iπ/3) (1 + O(1/φ))

]
. (5.7.18)

Note that when Eq. (5.7.12) is satisfied, φ−1/6 ∝ κ−1/2, so the solutions (5.7.18)
do indeed match the form (5.7.9) for WKB solutions. It is now clear that in order
for the solution of (5.7.14) to fit smoothly with the decaying WKB solution
(5.7.11) when both are valid, we must take the solution near the turning point as
the linear combination

u ∝ φ1/3
[
I+1/3(φ)− I−1/3(φ)

]
. (5.7.19)

Similarly, on the other side of the turning point, where x is in the range bE −
δE � x ≤ bE , we can write

k(x) 
 βE

√
bE − x (5.7.20)

and it is convenient to introduce a variable

φ̃ ≡
∫ bE

x
k(x ′) dx ′ = 2βE

3
(bE − x)3/2. (5.7.21)

The Schrödinger equation (5.7.1) then becomes

d2u

dφ̃2
+ 1

3φ̃

du

dφ̃
+ u = 0. (5.7.22)

This has two independent solutions

u ∝ φ̃1/3 J±1/3(φ̃), (5.7.23)

where, again, Jν(z) is the usual Bessel function of order ν. To see what lin-
ear combination of these solutions fits smoothly with the linear combination
(5.7.19), we need to consider how both behave as x → bE .
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For φ → 0, the solutions φ1/3 I±1/3(φ) have the limiting behavior

φ1/3 I+1/3(φ) → φ2/3

21/3�(4/3)
= (2βE/3)2/3

21/3�(4/3)
(x − bE), (5.7.24)

φ1/3 I−1/3(φ) → 21/3

�(2/3)
. (5.7.25)

On the other hand, for φ̃ → 0 the solutions φ̃1/3 J±1/3(φ̃) behave as

φ̃1/3 J+1/3(φ̃) → φ̃2/3

21/3�(4/3)
= (2βE/3)2/3

21/3�(4/3)
(bE − x), (5.7.26)

φ̃1/3 J−1/3(φ̃) → 21/3

�(2/3)
. (5.7.27)

We see that φ1/3 I+1/3(φ) fits smoothly with −φ̃1/3 J+1/3(φ̃), while φ1/3 I−1/3(φ)

fits smoothly with +φ̃1/3 J−1/3(φ̃), so the solution (5.7.19) fits smoothly with

u ∝ φ̃1/3
[

J+1/3(φ̃)+ J−1/3(φ̃)
]
. (5.7.28)

As long as inequality (5.7.16) is satisfied, there will be values of x for which both
φ̃ 
 1, so that the inequalities (5.7.6) are satisfied, and also the approximation
(5.7.20) is satisfied, in which case we can use the asymptotic limit of Eq. (5.7.28)
for φ̃ 
 1:

φ̃1/3
[

J+1/3(φ̃)+ J−1/3(φ̃)
]

→
√

2

π
φ̃−1/6

[
cos

(
φ̃ − π

6
− π

4

)
+ cos

(
φ̃ + π

6
− π

4

)]
,

so

u ∝ φ̃−1/6 cos
(
φ̃ − π

4

)
∝ k−1/2(x) cos

(∫ bE

x
k(x ′) dx ′ − π

4

)
.

Everywhere between the turning points where the conditions (5.7.6) are satisfied
the wave function must be a fixed linear combination of the two independent
solutions (5.7.5), and so we can conclude that for all such x

u ∝ k−1/2(x) cos

(∫ bE

x
k(x ′) dx ′ − π

4

)
. (5.7.29)

The same arguments apply to the other turning point, at x = aE , except that
here U (x) increases with decreasing rather than with increasing x , so by the
same reasoning, we can conclude that everywhere between the turning points
where the conditions (5.7.6) are satisfied the wave function must have the form

u ∝ k−1/2(x) cos

(∫ x

aE

k(x ′) dx ′ − π

4

)
. (5.7.30)
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In order for both Eq. (5.7.29) and Eq. (5.7.30) to be correct, we must have

cos

(∫ bE

x
k(x ′) dx ′ − π

4

)
∝ cos

(∫ x

aE

k(x ′) dx ′ − π

4

)
,

for all such x . Further, since both cosines oscillate between +1 and −1, the
coefficient of proportionality can only be +1 or −1. This leaves us with just two
possibilities for the arguments of the cosines:∫ bE

x
k(x ′) dx ′ − π

4
=
∫ x

aE

k(x ′) dx ′ − π

4
+ nπ

or else ∫ bE

x
k(x ′) dx ′ − π

4
= −

[∫ x

aE

k(x ′) dx ′ − π

4

]
+ nπ,

where n is an integer, not necessarily positive. The first of these two alternatives
is ruled out because the left-hand side decreases with x while the right-hand
side increases with x , so we are left with the second possibility, which can be
written as ∫ bE

aE

k(x ′) dx ′ =
(

n + 1

2

)
π. (5.7.31)

The left-hand side is positive, so here the integer n can only be zero or
positive-definite.

Equation (5.7.31) is almost the same as the generalization (1.2.12) of Bohr’s
quantization condition introduced subsequently by Sommerfeld. In a whole
cycle of oscillation a particle goes from bE to aE and then back again, so
the WKB approximation gives the integral in the Sommerfeld quantization
condition as∮

p dq = 2�

∫ bE

aE

k(x ′) dx ′ = 2π�

(
n + 1

2

)
= h

(
n + 1

2

)
.

Hence Eq. (5.7.31) differs from the Sommerfeld quantization condition only
by the presence of the term 1/2 accompanying n. The derivation given here
suggests that Eq. (5.7.31) should work well only for large n, in which case the
term 1/2 is inconsequential, but in fact with this term for many potentials it
works surprisingly well for all n. In particular, for the harmonic oscillator we
have U (x) = μω2x2/2, so E = μω2b2

E/2 and aE = −bE . The integral in
Eq. (5.7.31) is then∫ be

ae

k dx = μωb2
E

�

∫ +1

−1

√
1 − y2 dy = μωb2

E

�

π

2
= Eπ

�ω

and Eq. (5.7.31) therefore gives E = �ω(n + 1/2), which is the correct exact
result for a harmonic oscillator potential.

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316276105.007
http:/www.cambridge.org/core


204 5 Approximations for Energy Eigenvalues

Three Dimensions with Spherical Symmetry

For the three-dimensional case, the radial coordinate r (now using r rather than
x for the coordinate) is of course limited to r > 0, so we do not have any
boundary condition for r → −∞. Instead, as we saw in Section 2.1, for any
potential that does not grow as fast as 1/r2 for r → 0, the reduced wave function
u(r) ≡ rψ(r) obeys the boundary condition that u(r) ∝ r �+1 for r → 0. We
generally will have an outer turning point at r = bE where U (bE) = E , and the
wave function must decay exponentially for r 
 bE , so that in at least a range
of r below bE the wave function will be of the form (5.7.29):

u(r) ∝ k−1/2(r) cos

(∫ bE

r
k(r ′) dr ′ − π

4

)
. (5.7.32)

For � 	= 0 we always also have an inner turning point at r = aE < bE where
U (aE) = E . The wave function (5.7.32) is then subject to the condition that
it fit smoothly with a solution for r < aE that goes as r �+1 rather than r−�
as r → 0. This can be complicated, especially because for � 	= 0 the WKB
approximation does not work for r → 0, where κ ∝ 1/r . Things are simpler
for the case � = 0, where there is no centrifugal barrier, and there may not be
any inner turning point. If there is no inner turning point, then for a reasonably
smooth potential the solution (5.7.32) will continue to be valid all the way down
to r = 0. In this case, the condition that u(r) ∝ r for r → 0 requires that the
argument of the cosine in Eq. (5.7.32) must take the value nπ − π/2 for r = 0,
where n is an integer, so that the condition for a bound state is that∫ bE

0
k(r ′) dr ′ =

(
n − 1

4

)
π, (5.7.33)

and hence n ≥ 1. For instance, for the � = 0 states of the Coulomb potential,
we have U (r) = −Ze2/r , so

k(r) =
√

2me

�2

(
E + Ze2/r

)
.

For E < 0 there is a turning point, at bE = −Ze2/E , and∫ bE

0
k(r) dr =

√−2me E

�2

∫ bE

0
dr

√
bE

r
− 1 = π

2

√
−2me

�2 E
Ze2.

The condition (5.7.33) then gives

E = − Z2e4me

2�2(n − 1/4)2
.

This is the same as the Bohr formula (1.2.11) for the nth energy level (which as
shown in Chapter 2 is the correct consequence of quantum mechanics), except
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5.8 Broken Symmetry 205

that n is replaced here with n − 1/4. Thus the WKB approximation works
very well for the high energy levels, for which n 
 1/4, as we would expect,
since for these energy levels the wave function oscillates many times. Even for
moderate n, the WKB quantization condition (5.7.33) works pretty well for the
Coulomb potential, but not as well as the Sommerfeld quantization condition
(1.2.12).

5.8 Broken Symmetry

It sometimes happens that a Hamiltonian has a symmetry, which is shared by
its eigenstates, but that the physical states that are actually realized in nature
are instead nearly exact solutions of the Schrödinger equation for which the
symmetry is broken. We can find examples of this in non-relativistic quantum
mechanics of great importance to chemistry and molecular physics.

For instance, consider a particle of mass m moving in one dimension in a
potential V (x) with the symmetry V (−x) = V (x). If ψ(x) is a solution of the
Schrödinger equation with a given energy, then so is ψ(−x), so in the absence
of degeneracy we must have ψ(−x) = αψ(x), with α some constant. It fol-
lows then that ψ(x) = αψ(−x) = α2ψ(x), so α can only be +1 or −1, and
the energy eigenfunctions will be either even or odd in x . The states of low-
est energies with even or odd wave functions will generally have quite different
energies.

But suppose that the potential has two minima, symmetrically spaced around
the origin, separated by a high thick barrier centered at x = 0. This is the case for
instance for the ammonia NH3 molecule, where x is the position of the nitrogen
nucleus along a line transverse to the plane formed by the three hydrogen nuclei,
and the barrier is provided by the strong repulsion between the positive charges
of the nitrogen and hydrogen nuclei. If the barrier were infinitely high and thick,
there would be two degenerate energy eigenstates with energies E0, one with
a wave function ψ0(x) that is non-zero only for x > 0, and the other with a
wave function ψ0(−x) that is non-zero only for x < 0. Each of these solutions
breaks the symmetry under x ↔ −x . From them, we could form even and odd
solutions, [ψ0(x)±ψ0(−x)]/√2, that would also be degenerate, with energy E0.
But if the barrier is high and thick but finite, then these even and odd solutions
are not degenerate, but only nearly degenerate.

To estimate the order of magnitude of the energy splitting, we can use the
WKB method described in the previous section. Within the barrier, the even and
odd wave functions take the form

ψ±(x) ∝ 1√
κ(x)

[
exp

(∫ x

0
κ(x ′) dx ′

)
± exp

(∫ −x

0
κ(x ′) dx ′

)]
, (5.8.1)
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206 5 Approximations for Energy Eigenvalues

where for a particle of mass m and energy E in a potential V (x),

κ(x) =
√

2m

�2

(
V (x)− E

)
. (5.8.2)

This should be a good approximation within the barrier if the barrier is high
enough and smooth enough that κ(x) is much larger than the logarithmic rates
of change of κ(x) and κ ′(x).

The logarithmic derivatives of these wave functions are

ψ ′±(x)
ψ±(x)


 − κ ′(x)
2κ(x)

+ κ(x)

⎡
⎣exp

(∫ x
0 κ(x ′) dx ′)∓ exp

(∫ −x
0 κ(x ′) dx ′

)
exp

(∫ x
0 κ(x ′) dx ′)± exp

(∫ −x
0 κ(x ′) dx ′

)
⎤
⎦ .

(5.8.3)

(For the validity of the WKB approximation it is necessary that |κ ′|/κ � κ , so
the first term in Eq. (5.8.3) is generally much less than the second term, but we
keep it here anyway, because it does not raise problems for our discussion.) For
a thick barrier extending from −a to +a with∫ a

0
κ dx =

∫ 0

−a
κ dx 
 1

the logarithmic derivatives at the barrier edges are

ψ ′±(a)
ψ±(a)

= −ψ ′±(−a)

ψ±(−a)

 − κ ′(a)

2κ(a)
+ κ(a)

[
1 ∓ 2 exp

(
−
∫ a

−a
κ(x ′) dx ′

)]
.

(5.8.4)

The energy is determined by the condition that these logarithmic derivatives
must match the logarithmic derivative of the wave function just outside the bar-
rier. Equation (5.8.4) shows that for a thick barrier, this condition is nearly the
same for the even and odd solution, the difference being a term proportional
to exp

(− ∫ a
−a κ(x

′) dx ′). Thus the even and odd wave functions have energies
E± 
 E1 ± δE , where E1 is approximately equal to the energy of both even and
odd states in the limit of an infinitely thick barrier, and δE is suppressed by a
factor exp

(− ∫ a
−a κ(x

′) dx ′).
Because δE is very small for a thick barrier, the broken-symmetry states,

with the wave function concentrated on one side or the other of the barrier,
are nearly energy eigenstates. But why should these broken-symmetry states
be the ones realized in nature, rather than the true energy eigenstates, which
are either even or odd under the symmetry? The answer has to do with the
phenomenon of decoherence, discussed in Section 3.7. The wave function will
inevitably be subject to external perturbations, which for a thick barrier produce
fluctuations in the phase of the wave function, with no correlation between the
phase changes on the two sides of the barrier. These fluctuations cannot change
a broken-symmetry wave function that is concentrated on one side of the barrier
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5.8 Broken Symmetry 207

into a solution that is wholly or partly concentrated on the other side, but they
rapidly change an even or odd wave function into one that is an incoherent mix-
ture of even and odd wave functions. The states realized in the real world are
the ones that are stable up to a phase under these fluctuations, and these are the
broken-symmetry states.

But the broken-symmetry states, though insensitive to external perturbations,
are not really stable. It is instructive to look at the time-dependence of a wave
function ψ(x, t) that at t = 0 takes the form ψ0(x), non-zero only for x > 0.
We can write this initial wave function as

ψ(x, 0) = 1

2
[ψ0(x)+ ψ0(−x)] + 1

2
[ψ0(x)− ψ0(−x)] ,

so at any later time t , the wave function is

ψ(x, t) 
 1

2
[ψ0(x)+ ψ0(−x)] exp

(
−i(E1 + δE)t/�

)
+ 1

2
[ψ0(x)− ψ0(−x)] exp

(
−i(E1 − δE)t/�

)
= exp

(
−i E1t/�

) [
ψ0(x) cos

(
δEt/�

)
− iψ0(−x) sin

(
δEt/�

)]
.

(5.8.5)

We see that a particle given the broken-symmetry wave function ψ0(x) will at
first leak through the barrier into the region x < 0, with an amplitude for the
other wave function ψ0(−x) increasing at a rate � = δE/�. Eventually the
amplitude for x < 0 builds up, until the particle begins to leak back into the
region x > 0. But if the barrier is very high and thick, the broken-symmetry
wave function ψ0(x) can persist for an exponentially long time. Indeed, there
are molecules like sugars and proteins that can exist in “chiral” configurations,
configurations with a definite left-handedness or right-handedness, that are sep-
arated by barriers much thicker than for ammonia. For such molecules, the
transition from one broken-symmetry state to another takes so long as to be
unobservable. This is why we can encounter left- and right-handed sugars and
proteins in nature.

These considerations point up a general feature of spontaneous symmetry
breaking: it is always associated with systems that in some sense are very large.
It is only the very large barrier in molecules like proteins and sugars that allows
these molecules to have a definite handedness. In quantum field theory, it is
the infinite volume of the vacuum state that allows other symmetries to be
spontaneously broken.15

15 For a discussion of this point, see S. Weinberg, The Quantum Theory of Fields, Vol. II (Cambridge
University Press, Cambridge, 1996), Section 19.1.
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5.9 Van der Waals Forces

There is of course no Coulomb force between electrically neutral atoms or
molecules. However, even between neutral systems, there are weaker elec-
trical forces that are of long range, in the sense that they decrease only as
inverse powers of the separation, not exponentially. The first sign of such
forces was found in corrections to the ideal gas equation of state, inter-
preted as an effect of long-range forces between molecules by Johannes
Diderik van der Waals (1837–1923), in his 1873 Ph.D. thesis at the Uni-
versity of Leiden. These forces can arise in first-order perturbation theory
between molecules with permanent electric multipole moments, but even
for atoms and molecules that are without such moments, there is always a
long-range force arising in second-order perturbation theory from mutually-
induced electric dipole moments. This was first calculated16 by Fritz London
(1900–1954).

Consider two systems A and B consisting of several point particles respec-
tively labeled a and b, with charges ea and eb. We assume that these systems are
stable in isolation, and massive enough that their centers of mass have a well-
defined separation vector R. We consider separations sufficiently large that there
is essentially no overlap between the spatial wave functions of the charged par-
ticles in each system, so that each charged particle can be considered to belong
either to system A or to system B. We take xa to be the distance of the ath
particle in system A from the center of mass of that system, and take yb to be
the distance of the bth particle in system B from the center of mass of that
system. Including only electrostatic interactions between the two systems, the
Hamiltonian is

H = H0 + H ′, (5.9.1)

where H0 is the sum HA + HB of the Hamiltonians of systems A and B in
isolation, and

H ′ =
∑
a∈A

∑
b∈B

eaeb

|xa − yb + R| . (5.9.2)

We are assuming here that the separation R ≡ |R| is large enough that the wave
function is negligible unless |xa| � R and |yb| � R. We can therefore expand
Eq. (5.9.2) in powers of |xa|/R and |yb|/R. For this purpose, we use the partial-
wave expansion of the denominator in the directions x̂a = xa/|xa|, ŷb = yb/|yb|,

16 R. Eisenschitz and F. London, Z. Physik 60, 491 (1930); F. London, Z. Physik 63, 245 (1930).
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5.9 Van der Waals Forces 209

and R̂ = R/|R|. Taking account of the invariance of |xa−yb+R| under rotations
of xa , yb, and R, this expansion takes the form17

1

|xa − yb + R| =
∑
��′L

f��′L(|xa|, |yb|, R)
∑

mm′ M
(−1)L−MC��′(L M; mm ′)

× Y m
� (x̂a)Y

m′
�′ (ŷb)Y

−M
L (R̂), (5.9.3)

where Y m
� , etc., are the spherical harmonics described in Section 2.2, and

C��′(L M; mm ′) are the Clebsch–Gordan coefficients discussed in Section 4.3.
Because a term with any given values of � and �′ must be a power series in the
Cartesian components of xa and yb, the function f��′L(|xa|, |yb|, R)must contain
at least � factors of |xa| and �′ factors of |yb|. In fact, these are the only powers
of |xa| and |yb| that do appear in f��′L(|xa|, |yb|, R). To see this, we need only
note18 that for any vectors u and v with |u| < |v|:

|u − v|−1 =
∞∑
�=0

4π

2�+ 1
|u|�|v|−�−1

�∑
m=−�

(−1)�−mY m
� (û)Y

−m
� (v̂). (5.9.4)

Using this formula with u = xa and v = −R + yb shows that the whole
dependence of f��′L(|xa|, |yb|, R) on |xa| is a factor |xa|�, while using this for-
mula with u = yb and v = R + xa shows that the whole dependence of
f��′L(|xa|, |yb|, R) on |yb| is a factor |yb|�′ . Dimensional analysis tells us then
that

f��′L(|xa|, |yb|, R) = N��′L R−1−�−�′ |xa|� |yb|�′, (5.9.5)

where the N��′L are numerical coefficients, generally of order unity, which we
will not attempt to calculate except in one case. Using Eqs. (5.9.3) and (5.9.5)
in Eq. (5.9.2), we find the perturbation Hamiltonian

H ′ =
∑
��′L

N��′L R−1−�−�′

×
∑

mm′ M
(−1)L−MC��′(L M; mm ′)Y −M

L (R̂)Em (A)
� Em′ (B)

�′ , (5.9.6)

17 The sum over m and m′ yields a function of x̂a and ŷb that transforms with angular momentum L , M ,
and then the sum over M gives a rotational scalar. We are here using Eq. (4.3.35), with the factor
1/

√
2L + 1 included in the coefficient f��′L .

18 This is equivalent to a formula given by W. Magnus and F. Oberhettinger, Formulas and Theorems for
the Functions of Mathematical Physics, transl. J. Wermer (Chelsea Publishing Co., New York, 1949),
p. 51, together with Eq. (4.3.36) for the expansion of Legendre polynomials as sums of products of
spherical harmonics.
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210 5 Approximations for Energy Eigenvalues

where Em (A)
� and Em′ (B)

�′ are the electric-multipole operators of systems
A and B:

Em (A)
� ≡

∑
a∈A

ea|xa|�Y m
� (x̂a), Em′ (B)

�′ ≡
∑
b∈B

eb|yb|�′Y m′
�′ (ŷb). (5.9.7)

These operators for � = 1, � = 2, � = 3, etc. are conventionally known as the
electric-dipole, -quadrupole, -octupole, etc., moments.

There are limitations on the terms that can actually appear in Eq. (5.9.6),
in addition to the limitations imposed by the presence of a Clebsch–Gordan
coefficient.

(i) There are no non-zero terms with � = 0 or �′ = 0. A term with � = 0 or
�′ = 0 is proportional to

∑
a∈A ea or

∑
b∈B eb respectively, and therefore

vanishes because both systems are assumed to have zero total charge.

(ii) There are no non-zero terms with L = 0. Any term with L = 0 arises from
the average of Eq. (5.9.2) over the directions of R, but this average is

1

4π

∑
a∈A

∑
b∈B

eaeb

∫
d2 R̂

1

|xa − yb + R| =
∑
a∈A

∑
b∈B

eaeb

R
(5.9.8)

and this vanishes because
∑

a∈A ea = ∑
b∈B eb = 0.

(iii) The only non-zero terms are those with � + �′ + L even. This is because
Eq. (5.9.2) is manifestly even under the joint reflection xa �→ −xa , yb �→
−yb, R �→ −R, but according to the space reflection property (2.2.18) of
the spherical harmonics, the product of spherical harmonics in Eq. (5.9.3)
changes under this joint reflection by a sign (−1)�+�′+L . Hence N��′L must
vanish unless �+ �′ + L is even.

Equation (5.9.6) shows that for R large the largest terms are those with �+ �′
smallest. Taking into account the presence of the Clebsch–Gordan coefficient in
Eq. (5.9.6) and the three above remarks, the leading terms are as follows.

Dipole–Dipole. These are terms with � = �′ = 1, which therefore go as R−3.
Since L = 0 and L = 1 are excluded by points (ii) and (iii) above, these
terms must have L = 2.

Dipole–Quadrupole. These are terms with � = 1, �′ = 2, or vice versa, and
therefore go as R−4. These terms have both L = 1 and L = 3.

Quadrupole–Quadrupole. These are terms with � = �′ = 2, and therefore go
as R−5. They have both L = 2 and L = 4.

Dipole–Octupole. These are terms with � = 1, �′ = 3, or vice versa, and
therefore also go as R−5. They too have both L = 2 and L = 4.

Let us take a closer look at the dipole–dipole term, which will turn out to be
most important. Expanding the denominator in Eq. (5.9.2) to first order in xa
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5.9 Van der Waals Forces 211

and in yb (and so dropping all terms that depend only on xa or yb, which do
not contribute in Eq. (5.9.2) because

∑
a∈A ea and

∑
b∈B eb are both assumed to

vanish), we find

[H ′]dipole−dipole = 1

R3

[
3R̂ · D(A) R̂ · D(B) − D(A) · D(B)

]
, (5.9.9)

where

D(A) ≡
∑
a∈A

eaxa, D(B) ≡
∑
b∈B

ebyb. (5.9.10)

Using the list of spherical harmonics in Section 2.2 and the table of Clebsch–
Gordan coefficients in Section 4.3, the reader can check that the expression
(5.9.9) is the same as the � = �′ = 1, L = 2 term in the expansion (5.9.6),
with N112 = (4π)3/2/3.

In first-order perturbation theory, when systems A and B are in states �α

and �β respectively, the perturbation Hamiltonian (5.9.6) produces a potential
energy given by the expectation value

V1(R) =
∑
��′L

N��′L R−1−�−�′ ∑
mm′ M

(−1)L−MC��′(L M; mm ′)Y −M
L (R̂)

× 〈Em (A)
� 〉α〈Em′ (B)

�′ 〉β. (5.9.11)

The multipole operators Em (A)
� and Em′ (B)

�′ change under space inversion by fac-
tors (−1)� and (−1)�

′
respectively, so their expectation values with � odd or �′

odd vanish if as usual the states �α and �β have definite parity. Thus in the
usual case, the leading term for large R in first-order perturbation theory is not
the dipole–dipole term, but the quadrupole–quadrupole term with � = �′ = 2,
which goes as R−5. But as remarked at the end of Section 4.4, the expectation
value of any operator Om

j with j 	= 0 vanishes for all unpolarized systems.
Thus if systems A and B are unpolarized, then in first-order perturbation theory
neither the quadrupole–quadrupole interaction nor any term in Eq. (5.9.11) con-
tributes to the interaction energy between these systems. To find the interaction
energy, we then have to go to second-order perturbation theory.

For any given multipole operators Em (A)
� and Em′ (B)

�′ including the electric-
dipole operators, there are always some excited states �α′ and �β ′ for which

the matrix elements
(
�α′, Em (A)

� �α

)
and

(
�β ′, Em′ (B)

�′ �β

)
do not vanish.

For instance, the electric-dipole moment has a non-vanishing matrix element
between the 1s ground state of the hydrogen atom and the 2p excited state,
which can be calculated from measurements of the rate of emission of Lyman-α
photons from this excited state. Thus in second-order perturbation theory we
expect the potential to be dominated for large R by the dipole–dipole term,
which has the least rapid decrease for R → ∞. According to Eqs. (5.4.5)
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212 5 Approximations for Energy Eigenstates

and (5.9.9), in second-order perturbation theory this makes a contribution to
the interaction energy when systems A and B are in states �α and �β , given by

V2(R) = 1

R6

∑
α′β ′

[
Eα + Eβ − Eα′ − Eβ ′

]−1

×
∣∣∣3R̂ ·

(
�α′,D(A)�α

)
R̂ ·

(
�β ′,D(B)�β

)
−
(
�α′,D(A)�α

)
·
(
�β ′,D(B)�β

)∣∣∣2 . (5.9.12)

There are no cancellations here that would cause this to vanish if we have to
average over the 3-components of the angular momenta of states �α and �β . In
fact, where these are the ground states, the energy denominator in Eq. (5.9.12) is
negative-definite, while the numerator is positive-definite, so V2(R) is negative-
definite. Since |V2(R)| also decreases monotonically with increasing R, this
energy represents a purely attractive force between systems A and B.

Problems

1. Suppose that the interaction of the electron with the proton in the hydrogen
atom produces a change in the potential energy of the electron of the form

�V (r) = V0 exp(−r/R),

where R is much smaller than the Bohr radius a. Calculate the shift in the
energies of the 2s and 2p states of hydrogen, to first order in V0.

2. It is sometimes assumed that the electrostatic potential felt by an electron in
a multi-electron atom can be approximated by a shielded Coulomb potential,
of the form

V (r) = − Ze2

r
exp(−r/R),

where R is the estimated radius of the atom. Use the variational method to
give an approximate formula for the energy of an electron in the state of
lowest energy in this potential, taking as the trial wave function

ψ(x) ∝ exp
(
−r/ρ

)
,

with ρ a free parameter.

3. Calculate the shift in energy of the 2p3/2 state of hydrogen in a very weak
static electric field E , to second order in E , assuming that E is small enough
that this shift is much less than the fine-structure splitting between the 2p1/2

and 2p3/2 states. In using second-order perturbation theory here, you can
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consider only the intermediate state for which the energy-denominator is
smallest.

4. The spin–orbit coupling of the electron in hydrogen produces a term in the
Hamiltonian of the form

�H = ξ(r)L · S,

where ξ(r) is some small function of r . Give a formula for the contribution
of �V to the fine-structure splitting between the 2p1/2 and 2p3/2 states in
hydrogen, to first order in ξ(r).

5. Using the WKB approximation, derive a formula for the energies of the
bound s states of a particle of mass m in a potential V (r) = −V0e−r/R ,
with V0 and R both positive.
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6
Approximations for Time-Dependent

Problems

The Hamiltonian of any isolated system is time-independent, but we often have
to deal with quantum-mechanical systems that are not isolated, but affected by
time-dependent external fields, in which case the part of the Hamiltonian rep-
resenting the interaction with these fields depends on time. Here we are not
interested in calculating perturbations to the energies of bound states, because
physical states are no longer characterized by definite energies. Instead, our
interest is in calculating the rates at which the quantum system undergoes
changes of one sort or another. Such calculations can be done exactly only in the
simplest cases, so again we find it necessary to consider approximation methods,
of which the simplest and most versatile is perturbation theory.

6.1 First-Order Perturbation Theory

We consider a Hamiltonian

H(t) = H0 + H ′(t), (6.1.1)

where H0 is the time-independent Hamiltonian of the system in the absence
of external fields, and H ′(t) is a small time-dependent perturbation. The state
vector � of the system satisfies the time-dependent Schrödinger equation

i�
d�(t)

dt
= H(t)�(t). (6.1.2)

We can find a complete orthonormal set of time-independent unperturbed state
vectors

H0�n = En�n,
(
�n, �m

)
= δnm, (6.1.3)

and expand �(t) in the �n ,

�(t) =
∑

n

cn(t) exp(−i Ent/�)�n, (6.1.4)

214
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6.2 Monochromatic Perturbations 215

with time-dependent coefficients cn(t) from which a factor exp(−i Ent/�) has
been extracted for later convenience. The perturbation H ′(t) acting on �n may
itself be expanded in the �m :

H ′(t)�n =
∑

m

�m

(
�m, H ′(t)�n

)
,

so the time-dependent Schrödinger equation (6.1.2) reads∑
n

[
i�

dcn(t)

dt
+ Encn(t)

]
exp(−i Ent/�)�n

=
∑

n

cn(t)

[
En�n +

∑
m

H ′
mn(t)�m

]
exp(−i Ent/�),

where

H ′
mn(t) =

(
�m, H ′(t)�n

)
.

Cancelling the terms proportional to En , then interchanging the labels m and n
on the right-hand side, and equating the coefficients of �n on both sides gives a
differential equation for cn(t):

i�
dcn(t)

dt
=
∑

m

H ′
nm(t)cm(t) exp(i(En − Em)t/�) . (6.1.5)

So far, this has been exact. Since the rate of change (6.1.5) of cn(t) is propor-
tional to the perturbation, to first order in this perturbation we can replace cm(t)
on the right-hand side with a constant, equal to the value of cm(t) at any fixed
time, say t = 0, in which case the solution is

cn(t) 
 cn(0)− i

�

∑
m

cm(0)
∫ t

0
dt ′ H ′

nm(t
′) exp

(
i(En − Em)t

′/�
)
. (6.1.6)

Higher-order approximations can be obtained by iterating this procedure.
In what follows, we will see that the way that perturbation theory is used

and the results obtained depend critically on the sort of time-dependence we
assume for H ′(t). We will consider two cases: monochromatic perturbations,
in which H ′(t) oscillates with a single frequency, and random fluctuations, for
which H ′(t) is a stochastic variable, whose statistical properties do not change
with time.

6.2 Monochromatic Perturbations

Let us now specialize to the case of a weak perturbation that oscillates at a single
frequency ω/2π :

H ′(t) = −U exp(−iωt)− U † exp(iωt), (6.2.1)
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216 6 Approximations for Time-Dependent Problems

with ω here taken positive. The integral in (6.1.6) is then trivial, and gives the
first-order solution for the coefficients cn(t) in Eq. (6.1.4):

cn(t) = cn(0)+
∑

m

Unmcm(0)

⎡
⎣exp

(
i(En − Em − �ω)t/�

)
− 1

En − Em − �ω

⎤
⎦

+
∑

m

U ∗
mncm(0)

⎡
⎣exp

(
i(En − Em + �ω)t/�

)
− 1

En − Em + �ω

⎤
⎦ . (6.2.2)

In particular, if all the cn(t) vanish at t = 0 except for c1(0) = 1, then the
amplitudes cn(t) for n 	= 1 are given by

cn(t) = Un1

⎡
⎣exp

(
i(En − E1 − �ω)t/�

)
− 1

En − E1 − �ω

⎤
⎦

+ U ∗
1n

⎡
⎣exp

(
i(En − E1 + �ω)t/�

)
− 1

En − E1 + �ω

⎤
⎦ . (6.2.3)

Both terms in Eq. (6.2.3) vanish at t = 0, and then for a while increase pro-
portionally to t . The increase of the first and second terms ends when t becomes
of the order of |(En − E1)/� −ω|−1 or |(En − E1)/� +ω|−1, respectively, after
which that term oscillates but no longer grows. The interesting case is when the
final state has an energy close either to E1 +�ω or to E1 −�ω, so that one of the
two terms in (6.2.3) can keep growing for a long time. In the case of absorption
of energy, where En 
 E1 + �ω, the second term stops growing long before the
first term, and will consequently become relatively negligible at late times, so
that

cn(t) → Un1

⎡
⎣exp

(
i(En − E1 − �ω)t/�

)
− 1

En − E1 − �ω

⎤
⎦ .

Then the probability after a sufficiently long time t of finding the system in state
n 	= 1 is

∣∣∣(�n, �
)∣∣∣2 = |cn(t)|2 
 4|Un1|2

sin2
(
(En − E1 − �ω)t/2�

)
(En − E1 − �ω)2

. (6.2.4)

Now, for large times we may approximate

2� sin2(W t/2�)

π tW 2
→ δ(W ), (6.2.5)
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6.2 Monochromatic Perturbations 217

because this function vanishes for t → ∞ like 1/t if W 	= 0, while it is so large
for W = 0 that∫ ∞

−∞
2� sin2(W t/2�)

π tW 2
dW = 1

π

∫ ∞

−∞
sin2 u

u2
du = 1.

Therefore, for large t Eq. (6.2.4) gives

|cn(t)|2 = 4|Un1|2
(
π t

2�

)
δ(E1 + �ω − En),

and the rate of transitions to the state n is therefore

�(1 → n) ≡ |cn(t)|2/t = 2π

�
|Un1|2δ(E1 + �ω − En), (6.2.6)

a formula often known as Fermi’s golden rule. In the case of stimulated emission
of energy, where �ω is close to E1 − En , we have instead

�(1 → n) = 2π

�
|U1n|2δ(En + �ω − E1).

We have treated the final states n as if they are discrete. In order to use
Eq. (6.2.6) in cases where the states n are part of a continuum (as for a free
electron produced by ionizing an atom) we may imagine that the whole system
is placed in a large box. To avoid spurious effects due to the box walls, it is
convenient to adopt periodic boundary conditions, which require that the wave
function be unaffected by a translation of any of the three Cartesian coordinates,
xi → xi + Li , where the Li are large lengths that will eventually be taken to
infinity. The normalized wave function of a free particle then takes the form

exp(ip · x/�)√
L1L2L3

(6.2.7)

with the components of p constrained by

pi = 2π�ni

Li
, (6.2.8)

with n1, n2, and n3 arbitrary positive or negative integers. When we sum the rate
(6.2.6) over free-particle states n, we are really summing over n1, n2, and n3.
Now, according to Eq. (6.2.8) the number of ni values in a range �pi 
 �/Li

is Li �pi/2π�, so the total number of states in a momentum-space volume
d3 p = �p1 �p2 �p3 is d3 p L1L2L3/(2π�)3. Thus we can sum the rate (6.2.6)
over continuum states by integrating over momenta, and supplying an extra fac-
tor L1L2L3/(2π�)3 in the rate for each free particle in the state. Equivalently,
we can supply an extra factor

√
L1L2L3/(2π�)3/2 in the matrix element Un1 for

each free particle in the state n. But the matrix element Un1 will also contain a
factor 1/

√
L1L2L3 from the wave function (6.2.7) for each free particle in the

state n, so the volume factors cancel, and we are left with a factor (2π�)−3/2

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316276105.008
http:/www.cambridge.org/core


218 6 Approximations for Time-Dependent Problems

for each free particle. Thus the rate (6.2.6) should be integrated rather than
summed over the momenta of the free particles in the final states, with their
wave functions taken as

exp(ip · x/�)
(2π�)3/2

, (6.2.9)

instead of Eq. (6.2.7). This is the free-particle wave function (3.5.12), with nor-
malization factor chosen to give the scalar product (3.5.13). (Alternatively, we
can integrate over wave numbers instead of momenta, but then we must drop the
factor � in the 3/2 power in Eq. (6.2.9).)

The delta function in Eq. (6.2.6) fixes the sum of the free-particle energies,
leaving only a finite integral over angles and energy ratios. An example is given
in the next section.

6.3 Ionization by an Electromagnetic Wave

As an example of the use of time-dependent perturbation theory in the case of
a monochromatic perturbation, consider a hydrogen atom in its ground state
placed in a light wave. Just as in Section 5.3, if the wavelength of the light is
much larger than the Bohr radius a, then the perturbation Hamiltonian depends
only on the electric field at the location of the atom, which for plane polarization
takes the form

E = E exp(−iωt)+ E∗ exp(iωt), (6.3.1)

with E constant. (We consider only the electric field, because the magnetic
forces on a non-relativistic charged particle in an electromagnetic wave are less
than the electric forces by a factor of order of the ratio of the particle velocity to
the speed of light.) The perturbation in the Hamiltonian is then

H ′(t) = eE · X exp(−iωt)+ eE∗ · X exp(iωt), (6.3.2)

where X is the operator for the electron position. If we take E to lie in the
3-direction, with magnitude E , then the operator U in Eq. (6.2.1) is

U = −eEX3. (6.3.3)

We need to calculate the matrix element of this perturbation between the
normalized wave function of the ground state

ψ1s(x) = exp(−r/a)√
πa3

(6.3.4)

(where a is the Bohr radius, given by Eq. (2.3.19) as a = �
2/mee2 = 0.529 ×

10−8 cm) and the wave function of a free electron of momentum �ke, normalized
as described in the previous section:

ψe(x) = (2π�)−3/2 exp(ike · x). (6.3.5)
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6.3 Ionization by an Electromagnetic Wave 219

We are justified in treating the emitted electron as a free particle only if it
emerges with an energy much larger than the hydrogen binding energy. Other-
wise, in place of Eq. (6.3.5) we should use the wave function of an unbound
electron in the Coulomb field of the proton. With the binding energy of the
hydrogen atom and the recoil energy of the hydrogen nucleus neglected, for
a light wave number kγ the energy of the emitted electron equals the photon
energy �ckγ, while the hydrogen binding energy (2.3.20) is e2/2a, so in using
Eq. (6.3.5) we are assuming that

kγa 
 e2/2�c 
 1/274. (6.3.6)

Note that this is not inconsistent with our assumption that the light wavelength
is much larger than the atomic size, which only requires that kγa � 1.

The matrix element of the perturbation (6.3.3) between the wave functions
(6.3.4) and (6.3.5) is

Ue,1s = − eE
(2π�)3/2

√
πa3

∫
d3x e−ike·xx3 exp(−r/a). (6.3.7)

We can do the angular integral here by recalling that in general∫
d3x e−ik·x f (r) = 1

k

∫ ∞

0
4πr f (r) sin kr dr.

Differentiating this expression with respect to k3 gives

−i
∫

d3x e−ik·x f (r)x3 = k3

k3

∫ ∞

0
4πr f (r)

[
− sin kr + kr cos kr

]
dr.

Applying this in Eq. (6.3.7) gives

Ue,1s = 4π ieEke3

k3
e (2π�)3/2

√
πa3

∫ ∞

0
exp(−r/a)

[
sin ker − ker cos ker

]
r dr. (6.3.8)

The integral here is given by∫ ∞

0
exp(−r/a)

[
sin ker − ker cos ker

]
r dr = 8k3

e a5

(1 + k2
e a2)3

.

With the final electron energy �
2k2

e/2me equal to the photon energy �ckγ, we
have

k2
e a2 
 2meckγa2

�
= 2kγa · �c

e2
,

which according to Eq. (6.3.6) is much greater than one, so Eq. (6.3.8) gives

Ue,1s = 8
√

2ieE cos θ

π�3/2k5
e a5/2

, (6.3.9)

where θ is the angle between ke and the direction of polarization of the
electromagnetic wave, taken here to be in the 3-direction.
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220 6 Approximations for Time-Dependent Problems

According to Eq. (6.2.6), the differential ionization rate is

d�(1s → ke) = 2π

�

∣∣Ue, 1s

∣∣2 δ (�ckγ − Ee
)
�

3k2
e dke d�, (6.3.10)

where Ee = �
2k2

e/2me, and d� = sin θ dθ dφ is the differential element of
solid angle of the final electron direction, so that �

3k2
e dke d� is the momentum-

space volume element of the final electron. (In accordance with our assumption
(6.3.6), in the delta function we are neglecting the hydrogen binding energy, as
well as the very small recoil energy of the hydrogen nucleus, compared with
Ee.) Now, dke = me d Ee/�

2ke, and the effect of the factor d Ee δ(�ω − Ee) in
any integral over ke is just to set ke equal to the value fixed by the conservation
of energy,

�ke = √
2me�ckγ, (6.3.11)

so the differential ionization rate is

d�(1s → ke)

d�
= 2πmeke

∣∣Ue,1s

∣∣2 , (6.3.12)

with ke given by Eq. (6.3.11). Using Eq. (6.3.9) in Eq. (6.3.12) gives our final
formula for the differential ionization rate,

d�(1s → ke)

d�
= 256e2E2me cos2 θ

π�3k9
e a5

, (6.3.13)

valid in the range of light wave numbers with

1

274
� kγa � 1. (6.3.14)

6.4 Fluctuating Perturbations

The monochromatic perturbations discussed in Section 6.2 can produce a finite
transition rate between a discrete state and a continuum, as in the ionization
process discussed in Section 6.3. But monochromatic perturbations cannot pro-
duce transitions between discrete states without fine-tuning the perturbation
frequency. (For a perturbation that lasts a time that is short compared with the
time t during which we let the system evolve, the width of the frequency dis-
tribution will be large compared with 1/t , and no fine-tuning is needed. But of
course, in this case the transition probability, called |cn(t)|2 in Section 6.1, does
not increase with time once the perturbation is ended, and so one cannot speak
of a transition rate.) There is, however, a kind of perturbation that can span a
wide range of frequencies, so that no fine-tuning is needed to produce transi-
tions between discrete states, and yet yields a transition probability proportional
to the elapsed time, so that there is a finite transition rate. It is the case of a

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316276105.008
http:/www.cambridge.org/core


6.4 Fluctuating Perturbations 221

perturbation that fluctuates randomly, but with statistical properties that do not
change with time.

To be specific, suppose that the correlation between the perturbations at two
different times depends only on the differences of the times, not on the times
themselves:

H ′
nm(t1)H

′∗
nm(t2) = fnm(t1 − t2), (6.4.1)

where a line over a quantity indicates an average over fluctuations. Fluctuations
of this sort are called stationary.

In the case where cn(0) = δn1, Eq. (6.1.6) gives the transition probability to a
state n 	= 1,

|cn(t)|2 = 1

�2

∫ t

0
dt1

∫ t

0
dt2 H ′

n1(t1)H
′∗
n1(t2) exp

(
i(En − E1)(t1 − t2)/�

)
,

(6.4.2)
so the average transition probability is

|cn(t)|2 = 1

�2

∫ t

0
dt1

∫ t

0
dt2 fn1(t1 − t2) exp

(
i(En − E1)(t1 − t2)/�

)
. (6.4.3)

We can write the correlation function fnm as a Fourier transform

fnm(t) =
∫ ∞

−∞
dω Fnm(ω) exp(−iωt) (6.4.4)

so that Eq. (6.4.3) becomes

|cn(t)|2 = 1

�2

∫ ∞

−∞
dω Fn1(ω)

∣∣∣∣
∫ t

0
dt1 exp

[
i
(
(En − E1)/� − ω

)
t1
]∣∣∣∣

2

= 4
∫ ∞

−∞
dω Fn1(ω)

sin2
[(

En − E1 − �ω
)

t/2�

]
(

En − E1 − �ω
)2 . (6.4.5)

Just as in Eq. (6.2.5), for large times we may approximate

2� sin2(W t/2�)

π tW 2
→ δ(W ) = 1

�
δ(W/�), (6.4.6)

so Eq. (6.4.5) gives a transition rate

�(1 → n) ≡ |cn(t)|2
t

= 2π

�2
Fn1

(
(En − E1)/�

)
. (6.4.7)

We will apply this result in the next section.
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222 6 Approximations for Time-Dependent Problems

6.5 Absorption and Stimulated Emission of Radiation

To illustrate the general results of the previous section, let us consider an atom in
a fluctuating electric field, such as that found in a gas of photons. The frequency
ω/2π of the fluctuations that drive a transition 1 → n between atomic states
equals (En − E1)/h, so the scale over which the electric field varies in space
is of the order of c/|ω| = hc/|En − E1|. This is typically several thousands of
Angstroms, much larger than atomic sizes, which are typically a few Angstroms.
So it is a good approximation here, as in Eq. (5.3.1), to take the perturbation as

H ′
nm(t) = e

∑
N

[xN ]nm · E(t), (6.5.1)

where E is the electric field at the position of the atom, the sum runs over the
electrons in the atom, and

[xN ]nm =
(
�n,XN�m

)
=
∫
ψ∗

n (x)xNψm(x)
∏
M

d3xM . (6.5.2)

We assume that the fluctuations of the electric field have a correlation function
of the form

Ei (t1)E j (t2) = δi j

∫ ∞

−∞
dω P(ω) exp

(
−iω(t1 − t2)

)
. (6.5.3)

(In setting this proportional to δi j , we are assuming that there is no preferred
direction for the electric field; δi j is the most general tensor that does not depend
on the orientation of the coordinate system.) Since the left-hand side is real and
symmetric under the interchange of t1 and i with t2 and j , we have

P(ω) = P(−ω) = P∗(ω). (6.5.4)

The correlation function of the perturbation is now given by

H ′
nm(t1)H

′∗
nm(t2) = e2

∣∣∣∣∣
∑

N

[xN ]nm

∣∣∣∣∣
2 ∫ ∞

−∞
dω P(ω) exp

(
−iω(t1 − t2)

)
. (6.5.5)

That is, the function Fnm(ω) introduced in Eqs. (6.4.1) and (6.4.4) is

Fnm(ω) = e2

∣∣∣∣∣
∑

N

[xN ]nm

∣∣∣∣∣
2

P(ω). (6.5.6)

Equation (6.4.7) then gives the rate at which an atom makes the transition from
an initial state m = 1 to a higher or lower energy state n:

�(1 → n) = 2πe2

�2

∣∣∣∣∣
∑

N

[xN ]n1

∣∣∣∣∣
2

P(ωn1), (6.5.7)

where ωnm = (En − Em)/�.
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6.5 Absorption and Stimulated Emission of Radiation 223

The function P(ω) can be related to the frequency distribution of energy in
the fluctuating field. In radiation the magnetic field B has the same magnitude as
the electric field, so the energy density (in unrationalized electrostatic units) is
[E2 + B2]/8π = E2/4π . Setting t1 = t2 and summing over i = j in Eq. (6.5.3),
we find the average energy density of radiation

ρ = 1

4π
E2(t) = 3

4π

∫ ∞

−∞
dω P(ω) = 3

2π

∫ ∞

0
dω P(ω), (6.5.8)

so the energy density between circular frequencies of magnitude |ω| and |ω| +
d|ω| is (3/2π)P(|ω|) d|ω|. For the purposes of comparison with the results cited
in Chapter 1, we can convert this into an energy distribution in frequency ν =
|ω|/2π . The energy density between frequencies ν and ν + dν is

ρ(ν) dν = (3/2π)P(|ω|) d|ω| = 3P(2πν) dν , (6.5.9)

so we can write Eq. (6.5.7) as

�(1 → n) = 2πe2

3�2

∣∣∣∣∣
∑

N

[xN ]n1

∣∣∣∣∣
2

ρ(νn1), (6.5.10)

where νnm = |ωnm|/2π = |En − Em |/h. As we saw in Section 1.2, Einstein
introduced a constant Bn

1 as the coefficient of ρ(νn1) in the rate of absorption (if
En > E1) or stimulated emission (if E1 > En), so in either case

Bn
1 = 2πe2

3�2

∣∣∣∣∣
∑

N

[xN ]n1

∣∣∣∣∣
2

. (6.5.11)

For hydrogen or an alkali metal, where it is essentially a single electron that
interacts with radiation, this takes the familiar form

Bn
1 = 2πe2

3�2
|[x]n1|2 . (6.5.12)

This agrees with the result (1.4.6), which was derived historically from the clas-
sical formula (1.4.1) for radiation from a charged oscillator and from the relation
(1.2.16), which was obtained from considerations of the equilibrium of such
an oscillator with black-body radiation. The historical derivation can now be
reversed; using Eqs. (6.5.11) and (1.2.16), we can infer the formula (1.4.5) for
the rate of spontaneous emission in a transition 1 → n:

An
1 = 4e2|ωn1|3

3c3�
|[x]n1|2, (6.5.13)

without relying on an analogy with classical electrodynamics. This derivation
was originally given in 1926 by Dirac.1 The same result will be obtained in

1 P. A. M. Dirac, Proc. Roy. Soc. A 112, 661 (1926).
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224 6 Approximations for Time-Dependent Problems

Section 11.7 by a direct calculation, in which we consider the interaction of an
atom with the quantized electromagnetic field.

6.6 The Adiabatic Approximation

In some cases the Hamiltonian is a function H [s] of one or more parameters that
we will collectively label s, which are slowly varying functions s(t) of time.2 For
instance, one might consider a spin in a slowly varying magnetic field, in which
case s(t) consists of the three components of the field. In such cases, we can
find the solution of the time-dependent Schrödinger equation by use of what is
known as the adiabatic approximation.3

For any s, we can find a complete orthonormal set of eigenstates �n[s] of
H [s] with eigenvalues En(s):

H [s]�n[s] = En[s]�n[s],
(
�n[s],�m[s]

)
= δnm . (6.6.1)

Since the �n[s] and �n[s ′] for any pair of parameters s and s ′ both form com-
plete orthonormal sets, they are related by a unitary transformation. In particular,
if we label the initial value of s(t) at t = 0 as s(0) = s0, then there exists a
unitary operator U [s] for which

�n[s] = U [s]�n[s0], U [s]−1 = U [s]†, U [s0] = 1, (6.6.2)

where U [s] is a sum of dyads:

U [s] =
∑

n

[
�n[s]�†

n[s0]
]
. (6.6.3)

We can transform the Hamiltonian

H̃ [s] ≡ U [s]† H [s]U [s] (6.6.4)

so that though its eigenvalues depend on s, its eigenstates do not:

H̃ [s]�n[s0] = En[s]�n[s0]. (6.6.5)

That is, if for any operator O we define

Onm ≡
(
�n[s0], O�m[s0]

)
, (6.6.6)

then in this basis the transformed Hamiltonian is

H̃nm[s] = En[s]δnm . (6.6.7)

2 In this section we use square brackets to indicate the dependence of various quantities on s, and
parentheses to indicate dependence on time.

3 This approximation was introduced in modern quantum mechanics by M. Born and V. Fock, Z. Physik
51, 165 (1928). For a more accessible reference, see Albert Messiah, Quantum Mechanics, Vol. II
(North-Holland Publishing Co., 1962), Chapter XVII, Sections 10–14.
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6.6 The Adiabatic Approximation 225

The time-dependent Schrödinger equation,

i�
d

dt
�(t) = H [s(t)]�(t), (6.6.8)

can now be put in the form

i�
d

dt
�̃(t) =

{
H̃ [s(t)] +�(t)

}
�̃(t), (6.6.9)

where

�̃(t) ≡ U [s(t)]†�(t) (6.6.10)

and

�(t) ≡ i�

[
d

dt
U [s(t)]

]†

U [s(t)]. (6.6.11)

We note that since U is unitary, U̇ †U + U †U̇ = 0, and so � is Hermitian.
At this point, it is tempting to neglect �(t), which involves the rate of change

of the eigenvectors of H [s(t)], as compared with H̃ [s(t)], which does not. How-
ever, this is not justified, because no matter how slowly the parameters s(t) of
the Hamiltonian evolve, we want to integrate the differential equation (6.6.9)
out to times sufficiently late that s(t) will have changed by a non-negligible
amount. The length of this time interval may compensate for the smallness of
�(t), which therefore cannot in general be neglected.

To deal with this, we perform one more unitary transformation. Define the
unitary operator V (t) by the differential equation

i�
d

dt
V (t) = H̃ [s(t)]V (t) (6.6.12)

and the initial condition V (0) = 1. The solution is trivial in the basis (6.6.6):

Vnm(t) = δnm exp
(

iφn(t)
)
, (6.6.13)

where φn(t) is a so-called dynamical phase:

φn(t) = −1

�

∫ t

0
En[s(τ )] dτ. (6.6.14)

Using Eq. (6.6.12), Eq. (6.6.9) may be written

i�
d

dt
˜̃
�(t) = �̃(t) ˜̃

�(t), (6.6.15)

where
˜̃
�(t) ≡ V (t)†�̃(t) = V (t)†U (t)†�(t) (6.6.16)

and

�̃(t) ≡ V (t)†�(t)V (t). (6.6.17)
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In the representation (6.6.6), Eq. (6.6.13) gives

�̃nm(t) = �nm(t) exp
[
iφm(t)− iφn(t)

]
= �nm(t) exp

[
i

�

∫ t

0
[En[s(t)] − Em[s(t)] dt

]
. (6.6.18)

Now, if the fractional rate of change of s(t) is very small compared with
(En[s]−Em[s])/� for all n 	= m (which is only possible in the absence of degen-
eracy), then in a time that is long enough for s(t) to change by an appreciable
amount the phase factor in Eq. (6.6.18) will oscillate many times for n 	= m,
preventing the build-up of the off-diagonal components of �̃. Thus the only
components of �̃ that contribute to the long-time evolution of the state vector
despite their smallness are the diagonal components, so that effectively we may
make the replacement

�̃nm(t) → δnmρn(t), (6.6.19)

where ρn(t) is the real quantity

ρn(t) ≡ �̃nn(t) = �nn(t) = i�

([
d

dt
U [s(t)]

]†

U [s(t)]
)

nn

= i�

(
d

dt
�n[s(t)],�n[s(t)]

)
. (6.6.20)

The solution of Eq. (6.6.15) is then

˜̃
�(t) =

∑
n

�n[s0] exp[iγn(t)]
(
�n[s0], ˜̃

�(0)
)

=
∑

n

�n[s0] exp[iγn(t)]
(
�n[s0], �(0)

)
, (6.6.21)

where γn(t) is the phase

γn(t) = −1

�

∫ t

0
ρn(τ ) dτ. (6.6.22)

Together with Eqs. (6.6.16), (6.6.2), and (6.6.13), this gives the solution of the
time-dependent Schrödinger equation (6.6.8) as

�(t) = U (t)V (t) ˜̃
�(t) =

∑
n

U (t)�n[s0]
(
�n[s0], V (t) ˜̃

�(t)
)

=
∑

n

exp[iφn(t)] exp[iγn(t)]�n[s(t)]
(
�n[s0], �(0)

)
. (6.6.23)

That is, aside from the phases φn(t) and γn(t), the prescription provided by
the adiabatic approximation is that we are to find the time-dependence of the
state vector by decomposing it into eigenstates of H [s(t)], and giving each
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6.7 The Berry Phase 227

component just whatever time-dependence is needed to keep it an eigenstate
of H [s(t)].

As already mentioned, this only applies in the absence of degeneracy. To deal
with the case of degeneracy, we can replace n with a compound index Nν: the
energy is labeled by N , M , etc., so that EN 	= EM if N 	= M , while ν, μ, etc.
label states with a given energy. In this case, �̃ in Eq. (6.6.15) is replaced with

�̃Nν,Mμ(t) → δN M R(N )
νμ (t), (6.6.24)

where R(N ) is an Hermitian operator in the space of states with energy EN :

R(N )
νμ (t) ≡ �̃Nμ,Nν(t) = �Nμ,Nν(t) = i�

([
d

dt
U [s(t)]

]†

U [s(t)]
)

Nμ,Nν

= i�

(
d

dt
�Nμ[s(t)],�Nν[s(t)]

)
. (6.6.25)

By the same reasoning that led to Eq. (6.6.23), the solution of the time-
dependent Schrödinger equation (6.6.8) is here

�(t) =
∑

N

exp[iφN (t)]
∑
μν

�(N )
μν (t)�Nμ[s(t)]

(
�Nν[s0], �(0)

)
, (6.6.26)

where the dynamical phase φN (t) is given by Eq. (6.6.14), with N in place of n,
and �(N )(t) is a unitary matrix, defined as the solution of the equation

i�
d

dt
�(N )(t) = R(N )(t)�(N )(t), (6.6.27)

with the initial condition �(N )(0) = 1. This unitary matrix takes the place of the
phase factor eiγn(t) in the degenerate case.4

6.7 The Berry Phase

The non-dynamical phase γn(t) appearing in the adiabatic solution (6.6.23) of
the time-dependent Schrödinger equation has interesting properties and physical
applications, first noted by Michael Berry.5 First, it should be noted that γn(t)
is geometric – that is, it depends on the path through the parameter space of the
Hamiltonian from s(0) to s(t), but not on the time-dependence of travel along
this path. This can be seen by combining Eqs. (6.6.20) and (6.6.22), and writing
the result as

γn(t) = −i
∫

C(t)

∑
i

dsi

(
∂

∂si
�n[s],�n[s]

)
, (6.7.1)

4 F. Wilczek and A. Zee, Phys. Rev. Lett. 52, 2111 (1984).
5 M. V. Berry, Proc. Roy. Soc. A 392, 45 (1984).
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where C(t) indicates that the integral is to be taken along the path through the
Hamiltonian’s parameter space traced by s(τ ) from τ = 0 to τ = t .

It is also important to note that γn(t) is itself not physically significant, for we
can always change the energy eigenstates �n[s] by arbitrary s-dependent phases

�n[s] → eiαn [s]�n[s]. (6.7.2)

This subjects the phase γn(t) to the shift

γn(t) → γn(t)+ αn[s(0)] − αn[s(t)], (6.7.3)

though of course the state vector (6.6.23) is unaffected. What is physically sig-
nificant is the classes of phases γn that are equivalent, in the sense that they can
be related to one another by the transformation (6.7.3).

As Berry noted, in general these classes are non-trivial – that is, it is not
generally possible to eliminate the phase γn(t) by a change (6.7.2) of the basis
states. To identify such cases, it is only necessary to consider the phase γn(t)
associated with a path C(t) that begins at t = 0 and ends at the same point at a
later time t . This phase is obviously independent of how we choose the phases
of the energy eigenstates �n[s] for s at intermediate points along this curve,
so if γn(t) can be eliminated by a transformation like (6.7.2), then the phase
γn(t) associated with a closed curve must vanish, whatever phases we choose
for �n[s]. Conversely, if the phases (6.7.1) associated with all closed curves
C(t) vanish, then the phase associated with a path from s(0) to s(t) must be the
same as the phase associated with any other such path, because the difference
of these phases is the phase associated with a closed curve that goes from s(0)
to s(t) on the first path and then back to s(0) along the second path. This would
mean that γn(t) is a function only of s(t), and can therefore be eliminated by a
transformation of the form (6.7.3). The phase γn associated with a closed path
C will from now on be denoted γn[C]; this is often called the Berry phase.

The Berry phase can be put in a form that is convenient for calculation, and
that makes manifest its independence of the phase convention used for the basis
states �n[s]. According to a generalized version of Stokes’ theorem, the line
integral (6.7.1) may be expressed as an integral over any surface A[C] bounded
by the closed curve C :

γn[C] = −i
∫ ∫

A[C]

∑
i j

d Ai j
∂

∂si

(
∂

∂s j
�n[s],�n[s]

)
, (6.7.4)

where d Ai j = −d A ji is the tensor element of surface area.6 For instance, in the
case where the Hamiltonian depends on just three independent parameters si ,

6 For a flat curve C in the k–l plane in any number of dimensions, the integral
∑

i j
∫

A[C] d Ai j Ti j of any
tensor Ti j is equal to the ordinary integral of Tkl − Tlk over the area A[C] bounded by C . The case of a
curve that is not flat can be dealt with by breaking up the area it bounds into small flat areas; the integral
is the sum of the integrals over these small areas.
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6.7 The Berry Phase 229

we have d Ai j = ∑
k εi jkek d A, where εi jk as usual is the totally antisymmetric

tensor with ε123 = +1; d A is the usual element of surface area; and e is the unit
vector normal to the surface. (We use e rather than the conventional n for the
unit normal to avoid confusion with the label n on the state vector.) In this case,
Eq. (6.7.4) is the result of the usual Stokes theorem:

γn[C] = −i
∫ ∫

A[C]
d A e[s] ·

(
∇ × (∇�n[s],�n[s])

)
, (6.7.5)

where the gradients here are taken with respect to the three si .
Returning now to the general case, we note that because d Ai j is antisymmetric

in i and j , Eq. (6.7.4) may be written

γn[C] = i
∫ ∫

A[C]

∑
i j

d Ai j

(
∂

∂si
�n[s], ∂

∂s j
�n[s]

)

= i
∫ ∫

A[C]

∑
i j

d Ai j

∑
m

(
∂

∂si
�n[s],�m[s]

)(
�m[s], ∂

∂s j
�n[s]

)
.

(6.7.6)

By differentiating (�n[s],�n[s]) = 1, we see that(
∂

∂si
�n[s],�n[s]

)
= −

(
�n[s], ∂

∂si
�n[s]

)
,

so the contribution of the term with m = n in Eq. (6.7.6) is

−i
∫ ∫

A[C]

∑
i j

d Ai j

(
∂

∂si
�n[s],�n[s]

)(
∂

∂s j
�n[s],�n[s]

)
,

and this vanishes because d Ai j is antisymmetric. On the other hand, the terms
with m 	= n can be put in a form not involving derivatives of the energy eigen-
states. By differentiating the Schrödinger equation (6.6.1) with respect to s j and
then taking the scalar product with �m[s] for m 	= n, we find(

En[s] − Em[s]
)(

�m[s], ∂

∂s j
�n[s]

)
=
(
�m[s],

[
∂H [s]
∂s j

]
�n[s]

)
, (6.7.7)

so that Eq. (6.7.6) may be written

γn[C] = i
∫ ∫

A[C]

∑
i j

d Ai j

∑
m 	=n

(
�n[s],

[
∂H [s]
∂si

]
�m[s]

)∗

×
(
�n[s],

[
∂H [s]
∂s j

]
�m[s]

)
× (Em[s] − En[s])−2. (6.7.8)

This makes it apparent that the Berry phase is independent of the phase con-
vention used for the energy eigenstates. Unlike the dynamical phase, the Berry
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phase is also independent of the scale of the Hamiltonian: multiplying H [s] with
a constant λ has the effect of multiplying both ∂H [s]/∂si and Em[s]−En[s] with
λ, so that the factors of λ cancel in Eq. (6.7.8). Another advantage of Eq. (6.7.8)
is that it is generally easier to calculate the derivative of the Hamiltonian
with respect to the parameters si than the derivative of the energy eigenstates.
This expression for the Berry phase is real, because the area element d Ai j is
antisymmetric.

In the special case where i and j run over three values, Eq. (6.7.8) takes the
form

γn[C] =
∫ ∫

A[C]
d A e[s] · Vn[s], (6.7.9)

where e[s] is the unit vector normal to the surface A[C] at the point s, and Vn[s]
is a three-vector in parameter space:

Vn[s] ≡ i
∑
m 	=n

{(
�n[s],

[
∇H [s]

]
�m[s]

)∗ ×
(
�n[s],

[
∇H [s]

]
�m[s]

)}

× (Em[s] − En[s])−2. (6.7.10)

This formalism has a natural application to the case of a particle or other
system with non-vanishing angular momentum J in a slowly varying magnetic
field. As mentioned earlier, the parameters si here are the components of the
magnetic field B. We take the Hamiltonian as

H [B] = κB · J + H0, (6.7.11)

where κ is a constant, related to the magnetic moment, and H0 is independent
of the magnetic field or any other external field, and hence commutes with J.
The energy eigenstates are eigenstates of the component of J along B and of J2

and H0:

B̂ · J�n[B] = �n�n[B], J2�n[B] = �
2 j ( j + 1)�n[B],

H0�n[B] = E0�n[B], (6.7.12)

with energies

En[B] = κ|B|�n + E0, (6.7.13)

where n is an integer or half-integer, running from − j to + j by unit steps. In
the spirit of the adiabatic approximation, we focus on one value of n and one
value of E0 as the magnetic field changes. As promised, the factors κ cancel in
the three-vector (6.7.10), which here takes the form

Vn[B] ≡ i

�2|B|2
∑
m 	=n

{
(�n[B], J�m[B])∗ × (�n[B], J�m[B])} (m − n)−2.

(6.7.14)
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6.7 The Berry Phase 231

We will first calculate this three-vector at one particular value of B in the
range A[C] in field space. For this purpose, it is convenient to choose the 3-axis
to lie along the direction of B. Since �m and �n are then eigenstates of J3, the
matrix element (�n[B], J�m[B]) with n 	= m has components only in the 1–2
plane, and so (6.7.14) is in the 3-direction. Also, the only states �m for which
either (�n[B], J1�m[B]) or (�n[B], J2�m[B]) do not vanish have m = n ± 1,
and for these states (m − n)2 = 1. Hence the only non-vanishing component of
the vector (6.7.14) is its 3-component:

Vn3[B] = i

�2|B|2
∑
±

[(
�n[B], J1�n±1[B]

)∗(
�n[B], J2�n±1[B]

)

−
(
�n[B], J2�n±1[B]

)∗(
�n[B], J1�n±1[B]

)]

= 1

2�2|B|2
∑
±

{∣∣∣(�n[B], (J1 + i J2)�n±1[B]
)∣∣∣2

−
∣∣∣(�n[B], (J1 − i J2)�n±1[B]

)∣∣∣2} .
According to the results of Section 4.2, the non-zero matrix elements here are(

�n[B], (J1 + i J2)�n−1[B]
)

= �

√
( j − n + 1)( j + n)

and (
�n[B], (J1 − i J2)�n+1[B]

)
= �

√
( j − n)( j + n + 1),

and so

Vn3[B] = n

|B|2 , Vn1[B] = Vn2[B] = 0.

We can put this in a form that does not depend on our choice of the 3-axis to lie
along B:

Vn[B] = nB
|B|3 , (6.7.15)

which in this form holds everywhere. The Berry phase (6.7.9) is therefore

γn[C] = n
∫ ∫

A[C]
d A

B · e[B]
|B|3 , (6.7.16)

the integral being taken over any area in the space of the magnetic field vector
surrounded by the curve C . We can evaluate this integral using Gauss’s theorem.
Draw a cone (not a circular cone unless C happens to be a circle) with base A[C]
and sides running from the origin in field space to the curve C . The integral
(6.7.16) may be written as an integral over the whole surface of this cone, since
on the sides of this cone the normal e is perpendicular to B, and so these sides do
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232 6 Approximations for Time-Dependent Problems

not contribute to the surface integral. But then Gauss’s theorem tells us that the
integral over A[C] of the normal component of the vector B/|B|3 is the same as
the integral of the divergence of this vector over the volume V [C] of the cone:

γn[C] = n
∫

V [C]
d3 B ∇ · B

|B|3 . (6.7.17)

The divergence of B/|B|3 vanishes everywhere except for a singularity 4πδ3(B)
at the origin. This singularity is spherically symmetric, so the integral over B in
Eq. (6.7.17) is just equal to 4π times the fraction of the whole sphere occupied
by the cone. This fraction is the solid angle �[C] subtended by C as seen from
the origin in field space divided by 4π , so the integral is just�[C], and the Berry
phase is simply

γn[C] = n �[C]. (6.7.18)

For instance, if the magnetic field changes only in direction, keeping its
3-component fixed, then C is a circle with both B3 and |B| fixed, and

γn[C] = n
∫ arccos(B3/|B|)

0
2π sin θ dθ = 2πn(1 − B3/|B|).

There are many other places in physics where a Berry phase, or a phase
analogous to the Berry phase, makes an appearance.7 We will encounter one
in Section 10.4, on the Aharonov–Bohm effect.

6.8 Rabi Oscillations and Ramsey Interferometers

In Section 6.2 we considered a system in an initial state with energy Em , exposed
to a perturbation with terms proportional to exp(∓iωt). We found that the prob-
ability after a time t has elapsed of finding the system in a different discrete
state with an energy En increases with time, eventually becoming peaked at a
frequency ω = ±(En − Em)/�, with the width of the peak of order 1/t . But if
we leave a system alone for a really long time, then the amplitude for the state
with energy En builds up so much that the system begins to make a transition
back to energy Em , and then back to energy En , and so on. This is known as a
Rabi oscillation,8 named for I. I. Rabi (1898–1988). As we shall see, this phe-
nomenon gets in the way of making accurate measurements of the transition
frequency (En − Em)/�, a problem solved by an interferometer9 developed by

7 Aspects of such phases are treated in Geometric Phases in Physics, ed. A. Shapere and F. Wilczek
(World Scientific Publishers Co., Singapore, 1989).

8 I. I. Rabi, Phys. Rev. 51, 652 (1937).
9 N. F. Ramsey, Phys. Rev. 76, 996 (1949). Also see N. F. Ramsey, Molecular Beams (Oxford University

Press, London, 1956), Chapter V. For historical reviews, see D. Kleppner, Physics Today, January, p. 25
(2013); S. Haroche, M. Brune, and J.-M. Raimond, Physics Today, January, p. 27 (2013).
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6.8 Rabi Oscillations and Ramsey Interferometers 233

Norman Ramsey (1915–2011), which allows extremely accurate measurements
of atomic and molecular transition frequencies.

To study Rabi oscillations we will again need to make an approximation,
ignoring terms in the time-dependent Schrödinger equation whose coefficients
oscillate very rapidly in time. This approximation was also used in Section 6.2,
but here we will keep terms of all orders in the oscillating perturbation.

We take the perturbation to be of the form (6.2.1). The exact time-dependent
Schrödinger equation (6.1.5) then takes the form

i�
d

dt
cn(t) = −

∑
m

cm(t)Unm exp
(

i(En − Em − �ω)t/�
)

−
∑

m

cm(t)U
∗
mn exp

(
i(En − Em + �ω)t/�

)
, (6.8.1)

where cn(t) are the components of the wave function defined by Eq. (6.1.4).
We assume that the perturbation frequency ω is tuned to be close to one of
the resonance frequencies, say (Ee − Eg)/� (where e and g conventionally
stand for “excited state” and “ground state,” though they can be any two states).
As in Section 6.2, we neglect all terms in Eq. (6.8.1) with coefficients that oscil-
late rapidly, keeping only terms with the relatively small oscillation frequency
±[ω − (Ee − Eg)/�]. Barring accidents, the only such terms in Eq. (6.8.1)
are those proportional to Ueg or U ∗

eg, so with this approximation, Eq. (6.8.1)
becomes

i�
d

dt
ce = −Uege−i�ω t cg, i�

d

dt
cg = −U ∗

egei�ω t ce, (6.8.2)

where�ω is the displacement of the applied frequency from its resonance value,

�ω ≡ ω − (Ee − Eg)/�. (6.8.3)

It is easy to find an exact solution:

cg(t) = Cei�ω t/2

[
−i�� cos(�t + δ)− ��ω

2
sin(�t + δ)

]
, (6.8.4)

ce(t) = CUege−i�ω t/2 sin(�t + δ), (6.8.5)

where C and δ are arbitrary complex constants, and the frequency � of the Rabi
oscillation is given by

�2 = �ω2

4
+ |Ueg|2

�2
. (6.8.6)

[To find this solution, first suppose that ce takes the form (6.8.5), with unknown
�. Inserting this in the first equation of Eq. (6.8.2) then gives Eq. (6.8.4) for cg.
Inserting this result for cg in the second equation of Eq. (6.8.2) gives a result for
ce that is consistent with Eq. (6.8.5), provided � satisfies Eq. (6.8.6).]
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234 6 Approximations for Time-Dependent Problems

For instance, suppose that cg(0) = 1 and ce(0) = 0. Then δ = 0 and
C = i/��, so the solution (6.8.4), (6.8.5) becomes

cg(t) = ei�ω t/2

[
cos(�t)− i�ω

2�
sin(�t)

]
, (6.8.7)

ce(t) = iUeg

��
e−i�ω t/2 sin(�t), (6.8.8)

so that if the system is in state g at t = 0, then at a later time t the probability
that it is in state e will be

|ce|2 =
∣∣∣∣Ueg

��

∣∣∣∣
2

sin2(�t). (6.8.9)

For |Ueg| � ��ω/2 we would have � 
 �ω/2, and Eq. (6.8.9) would be the
same as the result (6.2.4) of first-order perturbation theory.

At a given time t the probability (6.8.9) is peaked at�ω = 0, or in other words
at ω = (Ee − Eg)/�. so we can measure the transition frequency (Ee − Eg)/� by
finding the value of ω where the excitation probability |ce|2 reaches a maximum.
But the precision of this measurement is limited to the width of the peak in the
graph of |ce|2 versus ω. This width is of order 1/t as long as the elapsed time
t is much less than �/|Ueg|, in which case when �ω ≈ 1/t we can neglect the
term �

2/|Ueg|2 in Eq. (6.8.6) for �2, so that |�| 
 |�ω|/2. But although we
can improve the accuracy of the measurement of (Ee − Eg)/� up to a point by
increasing the time t that elapses before the excitation probability is measured,
this improvement comes to an end when t is of order �/|Ueg| and the precision
of the measurement is of order �/|Ueg|. This is not good enough to establish a
really precise frequency standard.

One can do better than this by using a famous trick invented by Ramsey. In
a Ramsey interferometer, a long waveguide is connected to a source of coher-
ent microwave radiation at circular frequency ω. The waveguide has two short
transverse projections at its ends. An atom (or molecule) in the ground state
g is directed into one of these projections, so that it is exposed to a pulse of
microwave radiation for a time t1; it then travels outside the waveguide along its
length for a much longer time T ; it then enters the projection at the other end
of the waveguide so that it is again exposed to a pulse of microwave radiation,
this time for another short time t2, and then passes outside the waveguide to a
detector that can count atoms in the ground state g or in a particular excited state
e. As we shall now see, the probabilities of finding the atoms in these excited
states are very sharply peaked at �ω = 0, so that by tuning ω to find this
peak, one can make a very accurate measurement of the resonance frequency
(Ee − Eg)/�.

According to Eqs. (6.8.7) and (6.8.8), after the atom has been exposed to the
first pulse for a time t1, it will be in a coherent superposition of the ground and
excited states, with amplitudes
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6.8 Rabi Oscillations and Ramsey Interferometers 235

cg(t1) = ei�ω t1/2

[
cos(�t1)− i �ω

2�
sin(�t1)

]
, (6.8.10)

ce(t1) = iUeg

��
e−i�ωt1/2 sin(�t1). (6.8.11)

The amplitudes cg(t) and ce(t) are defined to be time-independent in the absence
of perturbations, so Eqs. (6.8.10) and (6.8.11) also give the values of these
amplitudes during the time from t1 to t1 +T when the atom is outside the waveg-
uide, and hence also when it re-enters the waveguide at a time t1 + T . During
the second pulse the amplitudes are again given by Eqs. (6.8.4) and (6.8.5), but
now with the constants C and δ determined by requiring that at time t1 + T the
amplitudes (6.8.4) and (6.8.5) take the values (6.8.10) and (6.8.11):

Cei�ω (t1+T )/2

[
−i�� cos

(
�(t1 + T )+ δ

)
− ��ω

2
sin
(
�(t1 + T )+ δ

)]

= ei�ω t1/2

[
cos(�t1)− i�ω

2�
sin(�t1)

]
, (6.8.12)

CUege−i�ω (t1+T )/2 sin
(
�(t1 + T )+ δ

)

= iUeg

��
e−i�ωt1/2 sin(�t1). (6.8.13)

We can derive an equation that determines the constant δ by equating the ratios
of the left- and right-hand sides. After some cancellations, this gives

ei�ω T

[
cot

(
�(t1 + T )+ δ

)
− i

�ω

2�

]
=
[

cot
(
�t1

)
− i

�ω

2�

]
, (6.8.14)

and C is then given by Eq. (6.8.13):

C = ei�ω T/2

(
i

��

)
sin(�t1)

sin
(
�(t1 + T )+ δ

) . (6.8.15)

The amplitude for the excited state when the atom leaves the waveguide at the
time t1 + t2 + T is then given by Eq. (6.8.5), using the values we have found for
the constants δ and C :

ce(t1 + t2 + T ) = CUege−i�ω (t1+t1+T )/2 sin
(
�(t1 + t2 + T )+ δ

)
= e−i�ω (t1+t1)/2

(
iUeg

��

)

×
sin(�t1) sin

(
�(t1 + t2 + T )+ δ

)
sin
(
�(t1 + T )+ δ

)
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= e−i�ω (t1+t1)/2

(
iUeg

��

)
× sin(�t1)

[
sin(�t2) cot

(
�(t1 + T )+ δ

)
+ cos(�t2)

]
,

and therefore, using Eq. (6.8.14),

ce(t1 + t2 + T ) = e−i�ω (t1+t1)/2

(
iUeg

��

)
sin(�t1)

×
[

i
�ω

2�
sin(�t2)

(
1 − e−i�ω T

)+ e−i�ω T sin(�t2) cot(�t1)

+ cos(�t2)

]
. (6.8.16)

We will assume that ω is tuned to make �ω small enough that �|�ω| is much
less than |Ueg|, which implies that � is very close to |Ueg| and |�ω| is much less
than �. The probability of finding the atom in an excited state when it emerges
from the waveguide is then

Pe ≡ |ce(t1 + t2 + T )|2 = sin2(�t1)
∣∣e−i�ω T sin(�t2) cot(�t1)+ cos(�t2)

∣∣2 .
(6.8.17)

For large time intervals T , the phase factor e−i�ω T is very sensitive to changes
in ω, so to maximize the sensitivity of the whole expression it is usual to take
the coefficient of this phase factor equal to the T -independent term. That is, it
is best to adjust the times t1 and t2 so that sin(�t2) cot(�t1) = cos(�t2), and
therefore t1 = t2 ≡ τ , which just requires that the paths of the atom through
the two projections of the waveguide should have the same length. With this
assumption, Eq. (6.8.17) gives

Pe = sin2(�τ) cos2(�τ)
∣∣e−i�ω T + 1

∣∣2 . (6.8.18)

We can maximize the factor sin2(�τ) cos2(�τ) by taking �τ = π/4, in which
case

Pe = 1

2

[
1 + cos

(
�ωT

) ]
. (6.8.19)

(In principle � depends on ω, but because we assume that �|�ω| � |Ueg| this
dependence is very weak, so that we can find a value of τ for which �τ is very
close to π/4 for all interesting values of ω.)

The expression (6.8.19) has maxima equal to unity at �ω = 2nπ/T , with
n any integer, positive or negative or zero. As ω is varied through values near
(Ee−Eg)/�, the probability Pe experiences a rapid variation from one maximum
to the next. Because T is large, these maxima are very close together but also
very narrow, so that if we could identify the maximum corresponding to�ω = 0
then the value of ω for which that maximum is reached would provide a very
accurate measurement of the frequency (Ee − Eg)/�. But in itself, Eq. (6.8.19)
provides no clue to the identity of the maximum with �ω = 0.
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From the beginning, it has been clear that this problem is resolved if there
is some spread in the velocities of different atoms. Suppose that because of a
spread in velocities, the probability that an atom spends a time between T and
T + dT outside the waveguide between the first and the second pulses is a
Gaussian:

P(T ) dT = exp
(
−(T − T )2/�T 2

) dT

�T
√
π
, (6.8.20)

where T is the mean time between pulses, and �T is the spread in T . Then the
fraction of atoms that leave the waveguide in the excited state is

Pe = 1

2

∫ +∞

−∞
exp

(
−(T − T )2/�T 2

) dT

�T
√
π

[
1 + cos

(
�ω T

)]
,

= 1

2
+ 1

2
cos

(
�ω T

)
exp

(
−�ω2 �T 2/4

)
. (6.8.21)

The maximum at �ω = 0 still has Pe = 1, but the adjacent maximum at
�ω = 2π/T now has a smaller excitation probability,

Pe = [1 + exp(−π2 �T 2/T
2
)]/2.

For instance if�T = 0.3 T , then the maximum for�ω = 2π/T has Pe = 0.91,
which with adequate statistics should be clearly distinguishable from Pe = 1.
The actual distribution of T will in general be different from Eq. (6.8.20) (it is
actually the velocity rather than the time that has a Gaussian distribution for a
thermal distribution of velocities), so the height of the maximum at�ω = 2π/T
may be somewhat different from what we have calculated, but the measurement
of (Ee−Eg)/� only depends on the identification of the maximum with�ω = 0,
not on a precise knowledge of the heights of the other maxima. Some contem-
porary experiments have a much smaller spread in velocity, but the maximum at
�ω = 0 can still be identified as the one that occurs at a value of ω that is fixed
as the length cT of the waveguide is changed.

In any case, as long as the maximum with �ω = 0 is identified in one way or
another, Eq. (6.8.19) shows that by finding the value of ω at this maximum, we
can measure the frequency (Ee − Eg)/� with a precision of order 1/T , so the
precision can be improved by increasing T , without running into any obstacle
from the finite size of |Ueg|.

6.9 Open Systems

Closed systems are governed by time-independent Hamiltonians, so that their
density matrices have a time-dependence given by the unitary transformation
(3.6.24). This transformation is a special case of general linear transformations,
which give the components of ρ at one time as linear combinations of the
components of ρ at any other time. For a variety of open systems, systems that
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are exposed to external environments, although the time-dependence of the den-
sity matrix is more complicated than Eq. (3.6.24), it is still given by a linear
relation, of the general form

[ρ(t)]M N =
∑
M ′ N ′

KM M ′,N N ′(t − t ′)[ρ(t ′)]M ′ N ′, (6.9.1)

with coefficients taken to be functions only of the elapsed time t ′ − t , under the
assumption that the statistical properties of the system and its environment are
time-independent. (We are here taking the physical Hilbert space to have a finite
dimensionality d, so that the indices M , N , etc. run over d values, but these
considerations can often be extended to infinite-dimensional Hilbert spaces.)

As an example, suppose as in Section 6.4 that the effect of the environment is
to give the Schrödinger-picture state vector �(t) a time-dependence governed
by a rapidly and randomly fluctuating time-dependent Hamiltonian H(t):

i�
d

dt
�(t) = H(t)�(t).

The solution may be written

�(t) = U (t, t ′)�(t ′),

where U (t, t ′) is the solution of the differential equation

i�
d

dt
U (t, t ′) = H(t)U (t, t ′)

with the initial condition

U (t ′, t ′) = 1.

It follows that for any given history of fluctuations, the density matrix (3.3.35)
has a time-dependence given by the unitary transformation

ρ(t) = U (t, t ′)ρ(t ′)U †(t, t ′).

(We can easily see that U is unitary, because with H(t) Hermitian, Eq. (6.9.3)
tells us that U †(t, t ′)U (t, t ′) has vanishing rate of change, and it satisfies the
initial condition U †(t ′, t ′)U (t ′, t ′) = 1.) Where H(t) is rapidly and randomly
fluctuating, we are less interested in individual histories of the density matrix
than in its average over many fluctuations. Representing the average of any
quantity over many fluctuations by a bar over that quantity, we have an averaged
time-dependence

ρ(t) = U (t, t ′)ρ(t ′)U †(t, t ′).

If we assume that the density matrix changes little in the characteristic time
of the fluctuations in the Hamiltonian, then the average density matrix has the
time-dependence (6.9.1), with

KM M ′,N N ′(t − t ′) ≡ [U (t, t ′)]M M ′ [U †(t, t ′)]N ′ N .
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6.9 Open Systems 239

Remarkably, whether or not the kernel K takes this particular form, we can
use the general properties of the kernel to derive a useful differential equation for
the density matrix.10 The necessary and sufficient condition that ρ(t) given by
Eq. (6.9.1) should be Hermitian for any Hermitian ρ(t ′) is that K is Hermitian,
in the sense that

K ∗
M M ′,N N ′(τ ) = KN N ′,M M ′(τ ). (6.9.2)

Also, the necessary and sufficient condition that ρ(t) given by Eq. (6.9.1) should
have unit trace for any ρ(t ′) with unit trace is that∑

M

KM M ′,M N ′(τ ) = δM ′ N ′ . (6.9.3)

Because these conditions are so general, Eq. (6.9.1) with K satisfying
Eqs. (6.9.2) and (6.9.3) is also used to study the evolution of closed systems in
modified versions of quantum mechanics that have been introduced11 to resolve
the measurement problems discussed in Section 3.7.

From the Hermiticity condition (6.9.2), it follows that we can expand K as

KM M ′,N N ′(τ ) =
∑

i

ηi (τ )u
(i)
M M ′(τ )u

(i)∗
N N ′(τ ), (6.9.4)

where the u(i)M M ′(τ ) are eigenmatrices of the kernel KM M ′,N N ′(τ ); the ηi (τ ) are
the corresponding real eigenvalues∑

N ′ N
KM M ′,N N ′(τ )u(i)N N ′(τ ) = ηi (τ )u

(i)
M M ′(τ ) ; (6.9.5)

and the eigenmatrices satisfy the orthonormality conditions∑
N ′ N

u(i)∗N N ′(τ ) u( j)
N N ′(τ ) = δi j . (6.9.6)

The sum in Eq. (6.9.4) runs over all these eigenmatrices. The mapping (6.9.1)
now reads

ρM N (t) =
∑

i

∑
M ′ N ′

ηi (t − t ′)u(i)M M ′(t − t ′)ρM ′ N ′(t ′)u(i)∗N N ′(t − t ′), (6.9.7)

or in a matrix notation

ρ(t) =
∑

i

ηi (t − t ′)u(i)(t − t ′)ρ(t ′)u(i)†(t − t ′). (6.9.8)

10 The derivation described here follows the treatment of P. Pearle, Eur. J. Phys. 33, 805 (2012)
[arXiv:1204.2016].

11 G. C. Ghirardi, A. Rimini, and T. Weber, Phys. Rev. D 34, 470 (1986); P. Pearle, Phys. Rev. A 39, 2277
(1989); G. C. Ghirardi, P. Pearle, and A. Rimini, Phys. Rev. A 42, 78 (1990); P. Pearle, in Quantum
Theory: A Two-Time Success Story (Yakir Aharonov Festschrift), eds. D. C. Struppa & J. M. Tollakson
(Springer, Berlin, 2013), Chapter 9. [arXiv:1209.5082]. For a review, see A. Bassi and G. C. Ghirardi,
Physics Reports 379, 257 (2003).
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Also, the trace condition (6.9.3) now reads∑
i

ηi (τ )u
(i)†(τ )u(i)(τ ) = 1, (6.9.9)

with 1 the unit matrix.
The derivation of the differential equation for ρ(t) is now an exercise in first-

order perturbation theory. First, note that for t ′ = t Eq. (6.9.1) must give ρ(t ′) =
ρ(t) for any ρ(t), so in this case the kernel K is

KM M ′,N N ′(0) = δM ′ MδN ′ N . (6.9.10)

This has one eigenmatrix with eigenvalue d:

u(1)M M ′(0) = 1√
d
δM M ′, η1(0) = d, (6.9.11)

and d2 − 1 eigenmatrices denoted u(a)(0) with eigenvalue zero, taking the form
of traceless matrices: ∑

M

u(a)M M(0) = 0, ηa(0) = 0. (6.9.12)

But not any traceless matrices will do. Since the eigenvalue zero is degenerate,
we must apply the rules of degenerate first-order perturbation theory worked out
in Section 5.1. In order for the eigenmatrices u(a)(0) to connect smoothly with
eigenmatrices u(a)(τ ) of K (τ ) for small τ , these eigenmatrices must be chosen
to be not only eigenmatrices of K (0), and hence traceless, but also such that
the matrix elements of the term in K (τ ) of first order in τ in the limit τ → 0
between these eigenmatrices should be diagonal:∑

M ′ N ′ M N

u(b)∗M M ′(0)

[
d KM M ′,N N ′(τ )

dτ

]
τ=0

u(a)N N ′(0) = �aδab, (6.9.13)

where u(a)(τ ) is the eigenmatrix of K (τ ) that connects smoothly with u(a)(0).
Then the corresponding eigenvalue ηa(τ ) has derivative[

dηa(τ )

dτ

]
τ=0

= �a. (6.9.14)

To derive a differential equation for ρ(t), we consider the limit of Eq. (6.9.1)
when the elapsed time t ′−t becomes very small. Using Eqs. (6.9.8) and (6.9.11),
and the vanishing of ηa(0), the terms of first order in t ′ − t in Eq. (6.9.1) give

ρ̇(t) =
∑

a

�au(a)(0)ρ(t)u(a)†(0)+ Bρ(t)+ ρ(t)B†, (6.9.15)

where

B = 1

2d
η̇1(0)1 + d1/2u̇(1)(0). (6.9.16)
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To derive a more useful formula for the matrix B, we use the trace condition
(6.9.9). This condition is automatically satisfied for τ = 0 by the eigenmatrices
(6.9.11) and (6.9.12), but the derivative of Eq. (6.9.9) at τ = 0 gives a non-trivial
sum rule:∑

a

�au(a)†(0)u(a)(0)+ 1

d
η̇(1)(0)1 + d1/2u̇(1)(0)+ d1/2u̇(1)†(0) = 0,

or in other words

B + B† = −
∑

a

�au(a)†(0)u(a)(0). (6.9.17)

We can introduce a new sort of Hamiltonian, an Hermitian matrix H, by defining
−iH as the anti-Hermitian part of B, so that Eq. (6.9.17) reads

B = −iH − 1

2

∑
a

�au(a)†(0)u(a)(0). (6.9.18)

The differential equation (6.9.15) then takes the form

ρ̇(t) = −i[H, ρ(t)] +
∑

a

�a

[
u(a)(0)ρ(t)u(a)(0)† − 1

2
u(a)(0)†u(a)(0)ρ(t)

− 1

2
ρ(t)u(a)(0)†u(a)(0)

]
. (6.9.19)

There is an ambiguity in the definition of the Hamiltonian, that allows us to
replace the traceless matrices u(a)(0) in Eq. (6.9.19) with matrices Na that have
any trace we like. It is easy to see that if we define

Na ≡ u(a)(0)+ ξa1,

H′ ≡ H − 1

2i

∑
a

�a

(
ξau(a)(0)† − ξ ∗

a u(a)(0)
)
, (6.9.20)

with ξa any set of complex numbers, then the differential equation (6.9.19) may
be rewritten as

ρ̇(t) = −i[H′, ρ(t)] +
∑

a

�a

[
Naρ(t)N

†
a − 1

2
N †

a Naρ(t)− 1

2
ρ(t)N †

a Na

]
.

(6.9.21)
Since the u(a)(0) span the space of traceless matrices, this shows that unless we
specify the traces of the matrices Na , the Hamiltonian in Eq. (6.9.21) is well
defined only up to the Hermitian part of a general traceless matrix.

We have not made yet any assumptions here about positivity. A matrix A is
said to be positive if

∑
M N u∗

M AM N uN is positive (perhaps zero) for any uM .
The definition (3.3.35) makes it clear that the density matrix must be positive.
(This can also be seen from the requirement that the mean value Tr(Aρ) of any
observable represented by a positive operator A should be positive.) The density
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242 6 Approximations for Time-Dependent Problems

matrix ρ(t) will be positive for any positive ρ(t ′), if (though not only if12) all
eigenvalues η(i)(t − t ′) are positive. This is evident if we rewrite Eq. (6.9.8) for
ηi (τ ) ≥ 0 in what is known as the Kraus form:13

ρ(t ′) =
∑

i

A(i)(t − t ′)ρ(t ′)A(i)†(t − t ′), (6.9.22)

where A(i)(τ ) ≡ √
ηi (τ )u(i)(τ ).

The eigenvalue η(1)(τ ) has the value unity for τ = 0, so it is plausible that
η(1)(τ ) will be positive at least for τ in some neighborhood of τ = 0. On the
other hand, all η(a)(τ ) vanish for τ = 0, so according to Eq. (6.9.14) they will be
positive at least for a range of positive τ if all �a are positive, but in that case all
η(a)(τ ) will be negative for small negative τ . It is common to assume that all �a

are positive, and to use Eq. (6.9.21) only to predict the future, in which case we
are assured that if ρ(t ′) is positive then ρ(t) will be positive at least for a finite
range of t later than t ′, giving up any intention to use Eq. (6.9.21) to recover
the past. Equation (6.9.21) can then be put in the form known as the Lindblad
equation:14

ρ̇(t) = −i[H′, ρ(t)]+
∑

a

[
Laρ(t)L

†
a − 1

2
L†

a La ρ(t)− 1

2
ρ(t)L†

a La

]
, (6.9.23)

where La ≡ √
�a Na .

There is an argument that all eigenvalues of the kernel of any physically
allowed transformation of form (6.9.1) must be positive, as assumed in the
derivation of the Lindblad equation. This is based on the requirement of
complete positivity.15 A kernel is said to be completely positive if it not only
preserves the positivity of the density matrix for the system in question, but also
preserves the positivity of the density matrix for a system that is expanded by
including an isolated subsystem of arbitrary finite dimensionality on which the
kernel acts as the unit operator. A theorem of Choi16 shows that all eigenval-
ues of completely positive kernels are positive. But in the real world there are
no physical states on which time-translation acts trivially except the vacuum

12 The standard example of a transformation (6.9.1) for which the kernel K has negative as well as
positive eigenvalues but that nevertheless preserves the positivity of ρ is the transposition map, with
KM M ′,N N ′ = δM N ′δN M ′ . With this kernel, Eq. (6.9.1) converts ρ into its transpose, which is certainly
positive if ρ is. But the eigenmatrices (in the sense of Eq. (6.9.5)) of this kernel are all matrices that are
either symmetric or antisymmetric, with eigenvalues +1 and −1, respectively.

13 K. Kraus, States, Effects, and Operations – Fundamental Notions of Quantum Mechanics, Lecture Notes
in Physics 190 (Springer-Verlag, Berlin, 1983), Chapter 3.

14 G. Lindblad, Commun. Math. Phys. 48, 119 (1976); V. Gorini, A. Kossakowski and E. C. G. Sudarshan,
J. Math. Phys. 17, 821 (1976). The Lindblad equation can be derived as a straightforward application
of an earlier result of A. Kossakowski, Reports Math. Phys. 3, 247 (1972), Eq. (77).

15 W. F. Stinespring, Proc. Am. Math. Soc. 6, 211 (1955); M. D. Choi, J. Canad. Math. 24, 520 (1972).
For a review, see F. Benatti and R. Floreanini, Int. J. Mod. Phys. B19, 3063 (2005) [arXiv:quant-
ph/0507271].

16 M. D. Choi, Linear Algebra and its Applications 10, 285 (1975)
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6.9 Open Systems 243

state, which forms only a one-dimensional Hilbert space, so for some time it
was not clear that the Choi theorem is physically relevant. There is, however,
another requirement that does seem to be inescapably necessary, and that leads
to the same conclusion about positive eigenvalues. If some system S is physi-
cally realizable, then the system S⊗S consisting of two isolated copies of S will
presumably also be realizable. Any symmetry that acts on the density matrix of
S with a kernel K will act on the density matrix of the combined system with a
kernel given by a direct product K ⊗ K . Benatti, Floreanini, and Romano17 have
shown that in this case, in order for K ⊗ K to be positive (in the sense of trans-
forming all entangled positive Hermitian density matrices for S⊗S into positive
Hermitian density matrices) it is necessary not only that K be positive, but also
that it be completely positive, so that all eigenvalues of K are indeed positive.

The differential equation (6.9.23) has some especially interesting proper-
ties in the case where the La are Hermitian. One feature is that it yields a
non-decreasing von Neumann entropy.18 The rate of increase of the entropy
(3.3.38) is19

d

dt
S[ρ] = −kBTr

[
dρ

dt
[1 + ln ρ]

]
= −kBTr

[
dρ

dt
ln ρ

]
.

The first term in Eq. (6.9.23) makes no contribution to d S/dt , because

Tr
[
[H′, ρ] ln ρ

]
= Tr

[
H′[ρ, ln ρ]

]
= 0. We are left with

d

dt
S[ρ] = −kB

∑
a

Tr
[(

LaρLa − L2
aρ
)

ln ρ
]

= −kB

∑
a

∑
i j

|[La]i j |2(p j − pi ) ln pi ,

17 F. Benatti, R. Floreanini, and R. Romano, J. Phys. A Math. Gen. 35, L351 (2002).
18 The proof given here is a modified version of the proof given by T. Banks, L. Susskind, and M. H.

Peskin, Nuclear Phys. B 244, 125 (1984).
19 This follows immediately from the general rule that for any differentiable function f (ρ) of an arbitrary

operator function ρ(t), even where dρ/dt does not commute with ρ, we have

d

dt
Tr f (ρ) = Tr

[
f ′(ρ) dρ

dt

]
.

To see this, note that if ρ has eigenvalues pi with normalized eigenvectors �i , then

Tr

[
f ′(ρ) dρ

dt

]
=
∑

i

f ′(pi )
(
�i ,

dρ

dt
�i

)
,

but because the norm of �i is time-independent

dpi

dt
= d

dt

(
�i , ρ�i

)
=
(
�i ,

dρ

dt
�i

)
+ pi

(
�i ,

d

dt
�i

)
+ pi

( d

dt
�i , �i

)
=
(
�i ,

dρ

dt
�i

)
,

so

Tr

[
f ′(ρ) dρ

dt

]
=
∑

i

f ′(pi )
dpi

dt
= d

dt

∑
i

f (pi ) = d

dt
Tr f (ρ),

which is the desired relation. The final expression for Ṡ follows from the constancy of Tr ρ.
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where i and j label eigenvectors of ρ, and pi and p j are the correspond-
ing eigenvalues. Since we are assuming that the La are Hermitian, the factor
|[La]i j |2(p j − pi ) is antisymmetric in i and j , so the sum may be written

d

dt
S[ρ] = kB

2

∑
a

∑
i j

|[La]i j |2(p j − pi )
(

ln p j − ln pi

)
. (6.9.24)

But ln p is an increasing function of p, so that (p j − pi )
(

ln p j −ln pi

)
is always

positive, and the entropy S therefore never decreases, as was to be shown. In
particular, pure states for which S = 0 in general evolve into ensembles of
states with various probabilities, for which S > 0.

The late-time behavior of the density matrix provides another interesting fea-
ture of the case where all Lα are Hermitian. Because Eq. (6.9.23) is a linear
differential equation, we expect ρ(t) to be given by a sum20

ρ(t) =
∑

n

ρn exp(λnt), (6.9.25)

where ρn and λn are the eigenmatrices and eigenvalues of the linear operator in
Eq. (6.9.23):

λnρn = −i[H′, ρn] +
∑

a

[
Laρn L†

a − 1

2
L†

a Laρn − 1

2
ρn L†

a La

]
. (6.9.26)

In the case where all La are Hermitian, we have

λn Tr
(
ρ†

nρn

)
= −iTr

(
ρ†

n [H′, ρn]
)

− 1

2

∑
α

Tr
(
[ρn, La]†[ρn, La]

)
. (6.9.27)

The first term on the right-hand side is pure imaginary, because

Tr
(
ρ†

n [H, ρn]
)∗ = Tr

(
[ρ†

n ,H] ρn]
)

= Tr
(
ρ†

n [H, ρn]
)

, while the second term

is real and negative, so we can conclude that the real parts of all λn are negative.
Most terms in Eq. (6.9.25) therefore decay exponentially, leaving only the terms
with Re λn = 0, which according to Eq. (6.9.27) have ρn commuting with all La .

This discussion gives us an idea of what sort of operators La appear in systems
that are arranged to provide a measurement of some set of observables. As we
saw in Eq. (3.7.2), the effect of a measurement must be to convert the initial den-
sity matrix into a linear combination of projection operators �α = [�α�

†
α] on

the orthonormal eigenvectors �α of the observables being measured. According
to the above results, in order for the density matrix to have a late-time limit of
this form (aside from possible oscillations due to the “Hamiltonian” H′) all La

20 This is for the generic case, where none of the eigenvalues are degenerate. If the eigenvalue λn has an
N -fold degeneracy, then the exponential exp(λnt) is accompanied by a polynomial in t of order N −1.
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must commute with the �α. This condition requires that the La must be linear
combinations of the �α:21

La =
∑
α

laα�α, (6.9.28)

with coefficients laα that must be real in order that the La be Hermitian. It is
plausible that because measurement involves macroscopic apparatus, the rate of
change of the density matrix due to the La is much faster than the rate of change
in ordinary quantum mechanics, due to H′. Neglecting its first term, Eq. (6.9.23)
now takes the form

ρ̇(t) =
∑
αβ

Cαβ

[
�αρ(t)�β − 1

2
�α�βρ(t)− 1

2
ρ(t)�α�β

]
, (6.9.29)

where Cαβ = ∑
a laαlaβ . We can try a solution of the form

ρ(t) =
∑
αβ

fαβ(t)�αρ(0)�β. (6.9.30)

The completeness of the states �α implies that
∑

α �α = 1, so the initial con-
dition that the density matrix equals ρ(0) at t = 0 is satisfied if fαβ(0) = 1
for all α and β. Inserting (6.9.30) in Eq. (6.9.29) and again using the relation
�α�β = δαβ�α, we find that

ḟαβ = λαβ fαβ, (6.9.31)

where

λαβ = Cαβ − 1

2

(
Cαα + Cββ

)
= −1

2

∑
a

(
laα − laβ

)2
. (6.9.32)

The solution satisfying the initial condition fαβ(0) = 1 is of course fαβ(t) =
exp[λαβ t], so

ρ(t) =
∑
αβ

�αρ(0)�β exp[λαβ t]. (6.9.33)

In the generic case, where there are no different α and β for which laα and laβ

are equal for all La , all λαβ with α 	= β are negative-definite, so all terms in

21 It is obvious that this condition is sufficient, since �α�β = δαβ�α , so all �s commute with each other.
To see that it is necessary, note that the condition that La commutes with �α tells us that

La�α = La�α�α = �αLa�α = �α(�α, La�α),

so every �α is an eigenvector of each La . The La are therefore just functions of the observables being
measured. As we saw in Section 3.3, the most general such function is a linear combination of the
projection operators �α .
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Eq. (6.9.33) vanish for t → ∞, except those terms with α = β. Therefore for
late times

ρ(t) →
∑
α

�αρ(0)�α. (6.9.34)

This is just the behavior that according to Eq. (3.7.2) is expected for a mea-
surement of quantities whose eigenstates are �α. So we see that Eq. (6.9.29)
is general enough to reproduce not only the ordinary unitary evolution of the
density matrix in quantum mechanics, which occurs when the La terms in
Eq. (6.9.29) are much smaller than the H′ term, but also the change in the density
matrix produced by a measurement.

Problems

1. Consider a time-dependent Hamiltonian H = H0 + H ′(t), with

H ′(t) = U exp(−t/T ),

where H0 and U are time-independent operators, and T is a constant. What
is the probability to lowest order in U that the perturbation will produce
a transition from one eigenstate n of H0 to a different eigenstate m of H0

during a time interval from t = 0 to a time t 
 T ?

2. Calculate the rate of ionization of a hydrogen atom in the 2p state in
a monochromatic external electric field, averaged over the component of
angular momentum in the direction of the field. (Ignore spin.)

3. Consider a Hamiltonian H [s] that depends on a number of slowly varying
parameters collectively called s(t). What is the effect on the Berry phase
γn[C] for a given closed curve C , if H [s] is replaced with f [s]H [s], where
f [s] is an arbitrary real numerical function of the s?
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7
Potential Scattering

We do not observe the trajectories of particles within molecules or atoms or
atomic nuclei. Instead, information about these systems that does not come from
the energies of their discrete states we mostly have to take from scattering exper-
iments. Indeed, as we saw in Section 1.2, at the very beginning of modern atomic
physics, our understanding that the positive charge of atoms is concentrated in
a small heavy nucleus came in 1911 from a scattering experiment carried out in
Rutherford’s laboratory, in which alpha particles emitted by radium nuclei were
scattered by gold atoms. Today the exploration of the properties of elementary
particles is largely carried out by studying the scattering of particles coming
from high-energy accelerators.

In this chapter we will study the theory of scattering in a simple but important
case, the elastic scattering of a non-relativistic particle in a local potential, but
using modern techniques that can easily be extended to more general problems.
The general formalism of scattering theory will be described in the following
chapter.

7.1 In-States

We consider a non-relativistic particle of mass μ in a potential V (x). The
Hamiltonian is

H = H0 + V (x), (7.1.1)

where H0 = p2/2μ is the kinetic energy operator, and x is the position operator.
Later we will specialize to the case of a central potential V (r), that depends
only on r ≡ |x|, but for the present it is just as easy to consider this more
general case. We assume that V (x) → 0 for r → ∞. We will not be concerned
here with a particle in a bound state, which would have negative energy, but with
a positive-energy particle, which comes into the potential from great distances
with momentum �k, and is scattered, going out again to infinity, generally along
a different direction.

In the Heisenberg picture, this situation is represented by a time-independent
state vector � in

k , the superscript “in” indicating that this state looks like it
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248 7 Potential Scattering

consists of a particle with momentum �k far from the scattering center if mea-
surements are made at very early times. We have to be careful regarding what is
meant by this. At very early times the particle is at a location where the potential
is negligible, so it has an energy �

2k2/2μ, and this state vector is therefore an
eigenstate of the Hamiltonian, with

H� in
k = �

2k2

2μ
� in

k . (7.1.2)

In the Schrödinger picture, the time-dependent state exp(−i t H/�)� in
k is hence

just � in
k times a seemingly trivial phase factor exp(−i�tk2/2μ). In order to

interpret the above definition of � in
k , we must consider the time-dependence

of a superposition of states with a spread of energies:

�g(t) =
∫

d3k g(k) exp(−i�tk2/2μ)� in
k , (7.1.3)

where g(k) is a smooth function that is peaked at some wave number k0. The
state � in

k may be defined as the particular solution of the eigenvalue equa-
tion (7.1.2) that satisfies the further condition that, for any sufficiently smooth
function g(k), in the limit t → −∞,

�g(t) →
∫

d3k g(k) exp(−i�tk2/2μ)�k, (7.1.4)

where �k are orthonormal eigenvectors of the momentum operator P with
eigenvalue �k

P�k = �k�k,
(
�k,�k′

)
= δ3(�k − �k′), (7.1.5)

and hence eigenvectors of H0 (not H !), with eigenvalues E(|k|) = �
2k2/2μ.

(Even though these states are labeled with their wave number, it proves con-
venient to normalize them so that their scalar product is a delta function
of momentum, rather than of wave number.) The normalization condition(
�g, �g

)
= 1 then is equivalent to the condition

�
−3
∫

d3k |g(k)|2 = 1. (7.1.6)

The condition (7.1.4) can be expressed by rewriting the Schrödinger equation
as an integral equation. We can write equation (7.1.2) as

(E(|k|)− H0)�
in
k = V� in

k .

This has a formal solution

� in
k = �k +

(
E(|k|)− H0 + iε

)−1
V� in

k , (7.1.7)
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7.1 In-States 249

where ε is a positive infinitesimal quantity, which is inserted to give meaning to
the operator (E(|k|) − H0 + iε)−1 when we integrate over the eigenvalues of
H0. It is known as the Lippmann–Schwinger equation.1 (This is only a “formal”
solution, because � in

k appears on the right-hand side as well as the left-hand
side.)

Of course, we could have found a similar formal solution of the Schrödinger
equation with a denominator E(|k|)− H0 − iε in place of E(|k|)− H0 + iε. We
could even have taken any average of E(|k|) − H0 − iε and E(|k|) − H0 + iε,
or dropped the first term in Eq. (7.1.7). The special feature of the particular
“solution” (7.1.7) is that it also satisfies the initial condition (7.1.4).

To see this, we can expand V� in
k in the orthonormal free-particle states �q:

V� in
k = �

3
∫

d3q �q

(
�q, V� in

k

)
. (7.1.8)

Then Eq. (7.1.7) becomes

� in
k = �k + �

3
∫

d3q
(

E(|k|)− E(|q|)+ iε
)−1

�q

(
�q, V� in

k

)
. (7.1.9)

In calculating the integral over k in Eq. (7.1.3), we note that∫
d3k g(k)

exp(−i�tk2/2μ)

E(|k|)− E(q)+ iε

(
�q, V� in

k

)

=
∫

d�
∫ ∞

0
k2 g(k) dk

exp(−i�tk2/2μ)

E(k)− E(q)+ iε

(
�q, V� in

k

)
,

where d� = sin θ dθ dφ. We can convert the integral over k to an integral over
energy, using dk = μ d E/k�

2. Now, when t → −∞, the exponential oscillates
very rapidly, so the only values of E that contribute are those very near E(q),
where the denominator also varies very rapidly. Thus for t → −∞ we can set
k = q everywhere except in the rapidly varying exponential and denominator,
giving a result proportional to∫ ∞

−∞
exp(−i Et/�)

E − E(q)+ iε
d E .

(The range of integration has been extended to the whole real axis, which is per-
missible since the integral receives no appreciable contributions anyway from
the range |E − E(q)| 
 �/|t |.) For t → −∞ we can close the contour
of integration with a very large semi-circle in the upper half of the complex
plane, on which the integrand is negligible because, for Im E > 0 and t → −∞,
the numerator exp(−i Et/�) is exponentially small. But the only singularity of
the integrand is a pole at E = E(q) − iε, which is in the lower half plane, so

1 B. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950).
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250 7 Potential Scattering

the integral vanishes for t → −∞. This leaves only the contribution of the first
term in Eq. (7.1.9), which gives Eq. (7.1.4) for t → −∞.

To clarify the significance of the condition (7.1.4), consider its scalar product
with a state �x of definite position, using the usual plane-wave wave function of
states of definite momentum, which as we saw in Eq. (3.5.12) takes the form(

�x,�k

)
= (2π�)−3/2eik·x. (7.1.10)

This gives, for t → −∞,(
�x, �g(t)

)
→ (2π�)−3/2

∫
d3k g(k) exp

(
ik · x − i�tk2/2μ

)
. (7.1.11)

We will assume that the particle comes in from a great distance along the nega-
tive 3-axis, so we are interested in the limit of very large negative t and x3, but
with x3/t held finite. However, we will also assume that the particle velocity is
sufficiently closely confined to the 3-direction that, where the function g(k) is
not negligible,

�|t |k2
⊥/2μ � 1, (7.1.12)

where k⊥ is the two-vector (k1, k2). Equation (7.1.11) can then be written(
�x, �g(t)

)
→ (2π�)−3/2

∫
d2k⊥

∫ ∞

−∞
dk3 g(k⊥, k3) exp

(
ik⊥ · x⊥

)
× exp

(
i x2

3μ/2�t
)

exp
(
−i�t (k3 − μx3/�t)2/2μ

)
.

(7.1.13)

The rapid oscillation of the final factor as a function of k3 makes this integral
negligible for t → −∞ except for contributions from k3 close to its stationary
point at k3 = μx3/�t , so in the limit t → −∞ with x3/t fixed, the integral
becomes(

�x, �g(t)
)

→ (2π�)−3/2
∫

d2k⊥ g(k⊥, μx3/�t) exp
(

ik⊥ · x⊥
)

× exp
(

i x2
3μ/2�t

) ∫ ∞

−∞
dk3 exp

(
−i�t (k3 − μx3/�t)2/2μ

)

= (2π�)−3/2 exp
(

i x2
3μ/2�t

)√2μπ

i�t

×
∫

d2k⊥ g(k⊥, μx3/�t) exp
(

ik⊥ · x⊥
)
. (7.1.14)

We assume that the function g(k⊥, k3), though smooth, is strongly peaked at
k3 = k0 and k⊥ = 0, so the expression (7.1.14) is peaked at x3 = �k0t/μ,
corresponding to a particle moving along the x3 axis, with velocity �k0/μ.
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7.1 In-States 251

In particular, for t → −∞ the spatial probability distribution is∣∣∣(�x, �g(t)
)∣∣∣2 → μ

4π2�4t

∣∣∣∣
∫

d2k⊥ g(k⊥, μx3/�t) exp
(

ik⊥ · x⊥
)∣∣∣∣

2

,

(7.1.15)
and respects the conservation of probability:∫

d3x
∣∣∣(�x, �g(t)

)∣∣∣2 → μ

�4t

∫
d2k⊥

∫ ∞

−∞
dx3 |g(k⊥, μx3/�t)|2

= �
−3
∫

d2k⊥
∫ ∞

−∞
dk3 |g(k⊥, k3)|2 = 1. (7.1.16)

∗ ∗ ∗ ∗ ∗
We can see in greater detail how this works out by taking a simple example

for the function g(k),

g(k) ∝ exp

(
−�2

0

2
(k − k0)

2 − i
�k · k0t0

μ
+ i�t0k2

2μ

)
,

where t0 is a large negative initial time, k0 is in the 3-direction, and �0 is a
constant. (The terms in the exponent proportional to t0 are chosen so that, as
we will see, �0 is the spread of the coordinate-space wave function at time
t = t0. These terms are stationary in k at k = k0, so their presence does not
invalidate the argument leading to Eq. (7.1.14).) A straightforward calculation
using Eq. (7.1.11) gives a spatial probability distribution for t → −∞,∣∣∣(�x, �g(t)

)∣∣∣2 ∝ �−3 exp

(
− 1

�2

(
x − (�k0/μ)t

)2
)
,

where

� ≡
(
�2

0 + �
2(t − t0)2

μ2�2
0

)1/2

.

The probability distribution is thus centered on a point that moves with velocity
equal to the mean momentum �k0 divided by the mass μ, reaching the scattering
center x = 0 at t = 0.

The spread of this distribution is �0 at t = t0, but it begins to expand for
t − t0 > μ�2

0/�. This can easily be understood on simple kinematic grounds.
The wave function has a spread in velocity �v equal to �/μ times the spread
in wave number, and hence of order �/μ�0. After a time interval t − t0, this
contributes an amount �v(t − t0) ≈ �(t − t0)/μ�0 to the spread in position.
This becomes greater than the initial spread �0 for t − t0 > μ�2

0/�.
This expansion in the wave packet does not become significant in typical

cases. In order for the wave packet not to expand appreciably in the time inter-
val from t = t0 to t = 0, we need �2

0 > �|t0|/μ. But we also must have
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252 7 Potential Scattering

�0 � �k0|t0|/μ, in order that t0 should be sufficiently early that the wave packet
does not spread all the way to the scattering center at t = t0. These two condi-
tions are compatible if �k2

0 |t0|/μ 
 1, which just requires that the oscillation
of the wave function has time to go through many cycles before the particle hits
the scattering center. This requirement can be taken as part of what we mean by
a scattering process.

7.2 Scattering Amplitudes

In the previous section we defined a state that at early times has the appearance
of a particle traveling toward a collision with a scattering center. Now we must
consider what this state looks like after the collision.

For this purpose, we consider the coordinate-space wave function of the state
� in

k . Returning to Eq. (7.1.7), let us write

V� in
k =

∫
d3x �x

(
�x, V� in

k

)
=
∫

d3x �x V (x)ψk(x), (7.2.1)

where ψk(x) is the coordinate-space wave function of the in-state,

ψk(x) ≡
(
�x, �

in
k

)
. (7.2.2)

Then, by taking the scalar product of the Lippmann–Schwinger equation (7.1.7)
with a state �x of definite position, and using Eq. (7.1.10), we have

ψk(x) = (2π�)−3/2eik·x +
∫

d3 y Gk(x − y)V (y)ψk(y), (7.2.3)

where Gk is the Green function

Gk(x − y) =
(
�x, [E(k)− H0 + iε]−1�y

)
=
∫

�
3 d3q

(2π�)3

eiq·(x−y)

E(k)− E(q)+ iε

= 4π

(2π)3

∫ ∞

0
q2 dq

sin(q|x − y|)
q|x − y|

2μ/�2

k2 − q2 + iε

= −i
2μ

�2

1

4π2|x − y|
∫ ∞

−∞
eiq|x−y|q dq

k2 − q2 + iε

= −2μ

�2

1

4π |x − y|eik|x−y|. (7.2.4)

(The last expression is obtained by completing the contour of integration with a
large semi-circle in the upper half plane, and picking up the contribution of the
pole at q = k + iε.) For a potential V (y) that vanishes sufficiently rapidly as
|y| → ∞, Eq. (7.2.3) gives, for |x| → ∞,
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7.2 Scattering Amplitudes 253

ψk(x) → (2π�)−3/2
[
eik·x + fk(x̂)e

ikr/r
]
, (7.2.5)

where r ≡ |x| and fk(x̂) is the scattering amplitude,

fk(x̂) = − μ

2π�2
(2π�)3/2

∫
d3 y e−ikx̂·yV (y)ψk(y). (7.2.6)

Now let’s consider how the superposition (7.1.3) behaves for late times. We
consider the wave function

ψg(x, t) ≡
(
�x, �

in
g (t)

)
=
∫

d3k g(k)ψk(x) exp
(
−i�tk2/2μ

)
, (7.2.7)

in the limit t → +∞, with r/t held fixed, and x off the 3-axis. Using Eq. (7.2.5)
in this limit, Eq. (7.2.7) gives

ψg(x, t) → (2π�)−3/2

r

∫
d2k⊥

∫ ∞

−∞
dk3 g(k⊥, k3)

× exp
(

ik3r − i�tk2
3/2μ

)
fk0(x̂). (7.2.8)

We have taken the subscript on the scattering amplitude to be k0, because the
function g is sharply peaked at this value of k, and we have approximated

k ≡
√

k2
3 + k2

⊥ as k 
 k3 in the exponents, because g(k⊥, k3) is assumed to
be negligible except for |k⊥| � k3. As in the previous section, for large r and t
we can set k3 in g(k⊥, k3) equal to the value k3 = μr/�t where the argument of
the exponential is stationary, so that

ψg(x, t) → (2π�)−3/2

r
fk0(x̂)

∫
d2k⊥ g(k⊥, μr/�t)

×
∫ ∞

−∞
dk3 exp

(
ik3r − i�tk2

3/2μ
)

= (2π�)−3/2

r
fk0(x̂)

∫
d2k⊥ g(k⊥, μr/�t) exp

(
iμr2/2�t

)√2μπ

i�t
.

(7.2.9)

The probability d P(x̂) that the particle at late times is somewhere within the
cone of infinitesimal solid angle d� around the direction x̂ is then the integral
of |ψg(x, t)|2 over this cone:

d P(x̂, k0) = d�
∫ ∞

0
r2 dr

∣∣ψg(r x̂, t)
∣∣2

→ 1

(2π)2

μ

�4t
| fk0(x̂)|2

∫ ∞

0
dr

∣∣∣∣
∫

d2k⊥ g(k⊥, μr/�t)

∣∣∣∣
2

, (7.2.10)

or, changing the variable of integration r to k3 ≡ μr/�t ,
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254 7 Potential Scattering

d P(x̂, k0)

d�
= 1

(2π)2�3
| fk0(x̂)|2

∫ ∞

0
dk3

∣∣∣∣
∫

d2k⊥ g(k⊥, k3)

∣∣∣∣
2

. (7.2.11)

Now, the coefficient of | fk0(x̂)|2 in Eq. (7.2.11) has the dimensions of an
inverse area. In fact, it is precisely the probability per unit area that the particle
is in a small area centered on the 3-axis and normal to that axis:

ρ⊥ ≡ lim
∫ ∞

−∞
dx3

∣∣ψg(0, x3, t)
∣∣2 , (7.2.12)

for t → −∞. To see this, note that according to Eq. (7.1.15), with x⊥ = 0, the
quantity (7.2.12) is

ρ⊥ = μ

4π2�4t

∫ ∞

−∞
dx3

∣∣∣∣
∫

d2k⊥ g(k⊥, μx3/�t)

∣∣∣∣
2

= 1

4π2�3

∫ ∞

−∞
dk3

∣∣∣∣
∫

d2k⊥ g(k⊥, k3)

∣∣∣∣
2

, (7.2.13)

which is the coefficient appearing in Eq. (7.2.11). Hence Eq. (7.2.11) may be
written

d P(x̂, k0)

d�
= ρ⊥| fk0(x̂)|2. (7.2.14)

We define the differential cross section as the ratio

dσ(x̂, k0)

d�
≡ 1

ρ⊥
d P(x̂, k0)

d�
, (7.2.15)

so
dσ(x̂, k0)

d�
= | fk0(x̂)|2. (7.2.16)

We can think of dσ(x̂, k0) as a tiny area normal to the 3-axis, which the particle
must hit in order for it to be scattered into a solid angle d� around the direction
x̂ . Equation (7.2.15) then says that the probability of hitting this area equals the
ratio of dσ to the effective cross-sectional area 1/ρ⊥ of the beam.

From now on, we shall drop the subscript 0 on k0. Also, instead of writing
the scattering amplitude as a function of k and x̂ , we will generally write it as a
function of k and the polar angles θ and φ of x around the direction of k, so that
Eq. (7.2.16) reads

dσ(θ, φ, k) = | fk(θ, φ)|2 sin θ dθ dφ. (7.2.17)

This is our general formula for the differential cross section in terms of the
scattering amplitude.

Of course, to measure dσ/d�, experimenters do not actually send a particle or
particles toward a single target. Instead, they direct a beam of particles toward a
thin slab containing some large number NT of targets. (It is necessary to specify
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7.3 The Optical Theorem 255

a thin slab, to avoid the possibility of particles from the beam experiencing mul-
tiple scattering involving more than one target. This is why, in the discovery of
the atomic nucleus discussed in Section 1.2, the target was chosen to be a thin
gold leaf.) If scattering into some particular range of angles can occur only if
a particle from the beam hits a tiny area dσ around one of the targets, then the
number of particles that are scattered into this range of angles is the number NB

of beam particles per unit transverse area, times the total area NT dσ that they
have to hit.

7.3 The Optical Theorem

It may seem odd that the plane-wave term in Eq. (7.2.5) does not appear to
be depleted by the scattering of the incident wave. Actually, in the forward
direction there is an interference between the two terms in Eq. (7.2.5), which
does decrease the amplitude of the plane wave beyond the scattering center, as
required by the conservation of probability. In order for this to be the case, there
must be a relation between the forward scattering amplitude and the total cross
section for scattering. This relation is known as the optical theorem.2

To derive the theorem, we use the conservation condition for probabilities in
three dimensions, which has already been discussed in Section 1.5. In coordinate
space, the Schrödinger equation here is

− �
2

2M
∇2ψk + V (x)ψk = �

2k2

2M
ψk. (7.3.1)

We multiply this with the complex conjugate ψ∗
k , and then subtract the complex

conjugate of the product. For a real potential this gives

0 = ψ∗
k ∇2ψk − ψk ∇2ψ∗

k = ∇ ·
(
ψ∗

k ∇ψk − ψk ∇ψ∗
k

)
. (7.3.2)

Using Gauss’s theorem, it follows that, for a sphere of any radius r ,

0 = r2
∫ π

0
sin θ dθ

∫ 2π

0
dφ

(
ψ∗

k
∂ψk

∂r
− ψk

∂ψ∗
k

∂r

)
. (7.3.3)

In particular, we can take r large enough to use the asymptotic formula (7.2.5).
In this limit, with k in the 3-direction and recalling that x3 = r cos θ ,

(2π�)3ψ∗
k
∂ψk

∂r
→ ik cos θ + ik fkeikr(1−cos θ)

r
− fkeikr(1−cos θ)

r2

+ ik f ∗
k cos θ e−ikr(1−cos θ)

r
+ ik| fk|2

r2
− | fk|2

r3

2 The theorem has been given that name because it was first encountered in classical electrodynamics, as
a relation due to Lord Rayleigh between the absorption of light and the imaginary part of the index of
refraction. It was first derived for the scattering amplitude in quantum mechanics by E. Feenberg, Phys.
Rev. 40, 40 (1932). For a historical review, see R. G. Newton, Amer. J. Phys. 44, 639 (1976).

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316276105.009
http:/www.cambridge.org/core


256 7 Potential Scattering

so that

(2π�)3

[
ψ∗

k
∂ψk

∂r
− ψk

∂ψ∗
k

∂r

]

→ 2ik cos θ + ik(1 + cos θ)eikr(1−cos θ) fk

r
+ ik(1 + cos θ)e−ikr(1−cos θ) f ∗

k

r

− eikr(1−cos θ) fk

r2
+ e−ikr(1−cos θ) f ∗

k

r2
+ 2ik| fk|2

r2
. (7.3.4)

For kr 
 1 the exponentials e±ikr(1−cos θ) oscillate rapidly except where
cos θ = 1, so the integral over θ in Eq. (7.3.3) receives almost its whole con-
tribution from near θ = 0. For any smooth function g(θ, φ) of θ and φ, we can
therefore approximate∫ π

0
sin θ dθ

∫ 2π

0
dφ eikr(1−cos θ)g(θ, φ) → 2πg(0)

∫ π

0
sin θ dθ eikr(1−cos θ),

(7.3.5)
where g(0) is the φ-independent value of g(θ, φ) for θ = 0. Introducing the
variable ν ≡ 1 − cos θ , and replacing the limit ν = 2 with ν = ∞ (since the
oscillation of the integral makes the contribution for ν between 2 and infinity
exponentially small for large kr ) this is∫ π

0
sin θdθ

∫ 2π

0
dφeikr(1−cos θ)g(θ, φ) → 2πg(0)

∫ ∞

0
dνeikrν = 2π ig(0)/kr.

(7.3.6)
(To evaluate the integral over ν, we use the usual trick of inserting a factor e−εν
with ε > 0 in the integrand, and then letting ε go to zero after doing the integral.)
Applying this to the solid angle integral of Eq. (7.3.4) then gives

(2π�)3
∫ π

0
sin θ dθ

∫ 2π

0
dφ

(
ψ∗

k
∂ψ

∂r
− ψk

∂ψ∗
k

∂r

)

→
(

ik

r

)(
2π i

kr

)
2 fk(0)+

(
ik

r

)(−2π i

kr

)
2 f ∗

k (0)

+ 2ik

r2

∫ π

0
sin θ dθ

∫ 2π

0
| fk(θ, φ)|2 dφ + O

(
1

r3

)

→ −8π i

r2
Im fk(0)+ 2ik

r2

∫ π

0
sin θ dθ

∫ 2π

0
dφ | fk(θ, φ))|2 (7.3.7)

and so for large r , Eq. (7.3.3) gives

σscat ≡
∫ π

0
sin θ dθ

∫ 2π

0
dφ | fk(θ, φ))|2 = 4π

k
Im fk(0). (7.3.8)

This is a special case of what is known as the optical theorem, derived here
under the condition of elastic scattering by a real potential. In this case the total
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7.3 The Optical Theorem 257

cross section σtot (defined so that, if the initial particle is confined to a transverse
area A, then the total probability of scattering or any other reaction is σtot/A) is
the same as the elastic scattering cross section σscat, so we can just as well write
Eq. (7.3.8) as

σtot = 4π

k
Im fk(0). (7.3.9)

This is the optical theorem in its most general form, which will be proved for
general scattering processes in Section 8.3.

To see that Eq. (7.3.9) is what is required by the conservation of probability,
let us consider a plane wave traveling in the 3-direction that strikes a thin foil of
scatterers (thin enough to make multiple scattering negligible) lying in the x−y
plane, and calculate the wave function at a distance z 
 1/k behind the foil. For
this purpose we have to add up the contributions of the individual scatterers, by
multiplying the scattering amplitude with the number N of scatterers per unit
area of the foil and integrating over the foil area. This gives a downstream wave
function for x = y = 0:

ψk = (2π�)−3/2

[
eikz + N

∫ ∞

0

b db

(z2 + b2)1/2

×
∫ 2π

0
dφ fk(arctan(b/z), φ)eik(z2+b2)1/2

]

= (2π�)−3/2eikz

[
1 + N

∫ ∞

0

b db

(z2 + b2)1/2

×
∫ 2π

0
dφ fk(arctan(b/z), φ)eik[(z2+b2)1/2−z]

]
.

Expanding the square root in the exponent, we see that the integrand oscillates
rapidly for kb2/z 
 1, so the values of b that contribute appreciably to the
integral are limited to an upper bound of order

√
z/k. Since we are assuming

that kz 
 1, this means that most of the integral comes from values of b much
less than z, so that it simplifies to

ψk = (2π�)−3/2eikz

[
1 + π fk(0)N z−1

∫ ∞

0
db2 eik b2/2z

]
. (7.3.10)

As usual, we interpret
∫∞

0 eiax dx by inserting a convergence factor e−εx , cal-
culating the integral as 1/(ε − ia), and then setting ε = 0, so that Eq. (7.3.10)
gives

ψk = (2π�)−3/2eikz
[
1 + 2iπ fk(0)N k−1

]
. (7.3.11)
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258 7 Potential Scattering

To first order3 in N , the probability density in the plane wave is therefore
reduced by a factor

(2π�)3|ψk|2 = 1 − 4π Im fk(0)N
k

. (7.3.12)

This should equal 1 − P , where P is the probability that the particle is scattered
or in any other way removed from the beam. This probability is given by σtot/A
times the number N A of scatterers in the effective area A ≡ 1/ρT of the initial
wave packet, so that P = σtotN . Equating the quantity (7.3.12) to 1 − P then
gives the optical theorem in its general form (7.3.9). In this form, it applies to
every reaction initiated by an initial particle, relativistic or non-relativistic.

There is an immediate consequence of the optical theorem that provides
important information about scattering at high energies. If the scattering ampli-
tude fk(θ, φ) is a smooth function of angles, then there must be some solid
angle �� within which the differential scattering cross section | fk(θ, φ)|2 is
not much less than in the forward direction – to be definite, let’s say not less
than | fk(0)|2/2. Then

σtot(k) ≥ 1

2
| fk(0)|2 �� ≥ 1

2
|Im fk(0)|2 �� = k2σ 2

tot(k)��

32π2

and so

�� ≤ 32π2

k2σtot(k)
. (7.3.13)

As discussed in Section 8.4, in collisions of strongly interacting particles such as
protons, the total cross section becomes constant or grows slowly at high energy,
so the solid angle �� within which the differential cross section is no less than
half the value in the forward direction must vanish more or less as 1/k2. This
sharp peak of the scattering probability in the forward direction is known as the
diffraction peak.

7.4 The Born Approximation

One of the advantages of the approach we have followed is that it leads imme-
diately to a widely useful approximation, known as the Born approximation.4

This approximation is generally valid for weak potentials, or more precisely, if
relevant matrix elements of the potential V are much less than typical matrix
elements of the kinetic energy H0. In this case, since Eq. (7.2.6) for the scat-
tering amplitude already includes an explicit factor of the potential, it can be

3 Terms of higher order in N are of the same order as terms produced by multiple scattering in the foil,
which we are neglecting here.

4 M. Born, Z. Physik 38, 803 (1926).
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7.4 The Born Approximation 259

evaluated to first order in the potential by taking the “in” wave function ψk as
the free-particle wave function (2π�)−3/2 exp(ik · x), so

fk(x̂) 
 − μ

2π�2

∫
d3 y V (y) exp

(
i(k − kx̂) · y

)
. (7.4.1)

In particular, for a central potential, this gives

fk(θ, φ) 
 −2μ

�2

∫ ∞

0
r2 dr V (r)

sin(qr)

qr
, (7.4.2)

where �q is the momentum transfer;

q ≡ |k − kx̂ | = 2k sin(θ/2), (7.4.3)

with θ the angle between the incident direction k̂ and the direction x̂ of scat-
tering. The result that the amplitude is independent of the azimuthal angle φ is
an obvious consequence of the symmetry of the problem under rotations about
the 3-axis for central potentials, and does not depend on the Born approxima-
tion. On the other hand, the result that the scattering amplitude depends on k
and θ only in the combination q depends not only on the potential being only a
function of r , but also on the use of the Born approximation.

For example, consider scattering in a shielded Coulomb potential:

V (r) = Z1 Z2e2

r
e−κr . (7.4.4)

This is a crude approximation to the potential felt by a nucleus of charge Z1e
being scattered by an atom of atomic number Z2; at small r the incoming nucleus
feels the full Coulomb field of the atom’s nucleus, while for large r that charge
is screened by the atomic electrons. (A potential of this form is also known as a
Yukawa potential, because Hideki Yukawa (1907–1981) showed in 1935 that a
potential of this form is produced by the exchange of a spinless boson of mass
�κ/c between nucleons.5) Using this in Eq. (7.4.2) gives

fk(θ, φ) 
 −2μZ1 Z2e2

q�2

∫ ∞

0
dr e−κr sin(qr) = −2μZ1 Z2e2

�2

1

q2 + κ2
.

(7.4.5)
In particular, the scattering amplitude for a pure Coulomb potential is given in
the Born approximation by setting κ = 0 in Eq. (7.4.5). This gives a scatter-
ing cross section identical to that derived by Rutherford in his analysis of the
scattering of alpha particles by gold atoms, which as discussed in Section 1.2
led in 1911 to the discovery of the atomic nucleus. Rutherford was lucky; his
derivation was strictly classical, and would not have given the same result as
the quantum-mechanical calculation for any potential other than the Coulomb

5 H. Yukawa, Proc. Phys.-Math. Soc. (Japan) (3) 17, 48 (1935).

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316276105.009
http:/www.cambridge.org/core


260 7 Potential Scattering

potential. We will see in Section 7.9 that the scattering amplitude receives sig-
nificant corrections from effects of higher order in the potential, but for the
special case of the Coulomb potential these corrections only change the phase of
the scattering amplitude, and hence do not affect the Coulomb scattering cross
section.

7.5 Phase Shifts

There is a useful representation of the scattering amplitude that is especially
convenient for spherically symmetric potentials. Since the incoming wave
exp(ikx3) is invariant under rotations around the 3-axis, and the Laplacian and
the potential are invariant under all rotations, the full wave function must also
be invariant under rotations around the 3-axis, and hence independent of the
azimuthal angle φ. Expanding it in spherical harmonics, we thus encounter only
terms with m = 0, or in other words, terms proportional to the Legendre polyno-
mials P�(cos θ) discussed in Section 2.2. We therefore write the complete wave
function as

ψ(r, θ) =
∞∑
�=0

R�(r)P�(cos θ). (7.5.1)

Also, the plane-wave term in Eq. (7.2.5) has a well-known expansion:

exp(ikr cos θ) =
∞∑
�=0

i�(2�+ 1) j�(kr)P�(cos θ), (7.5.2)

where j�(kr) is the spherical Bessel function:

j�(z) ≡
√
π

2z
J�+1/2(z) = (−1)�z�

d�

(z dz)�

(
sin z

z

)
. (7.5.3)

Equation (7.5.2) can be derived by noting that eikr cos θ = eikx3 satisfies the wave
equation (∇2 + k2)eikr cos θ = 0. According to Eqs. (2.1.16) and (2.2.1), if we
write the partial wave expansion of eikr cos θ as

eikr cos θ =
∞∑
�=0

f�(kr)P�(cos θ),

then the coefficient f�(kr) must satisfy the wave equation[
1

r2

d

dr
r2 d

dr
− �(�+ 1)

r2
+ k2

]
f�(kr) = 0.

It follows then that
√

r f�(kr) satisfies the Bessel differential equation for order
�+1/2. With the condition that f�(kr) is regular at r = 0, this tells us that f�(kr)
is proportional to j�(kr), as defined by the first equation in Eq. (7.5.3). The
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7.5 Phase Shifts 261

constant of proportionality can be found by calculating
∫ 1
−1 exp(ikrμ) P�(μ) dμ,

and using the orthonormality property
∫ 1
−1 P�′(μ)P�(μ) dμ = 2δ�′�/(2� + 1).

Unlike the ordinary Bessel functions, the spherical Bessel functions can be
written in terms of elementary functions; for instance,

j0(x) = sin x

x
, j1(x) = sin x

x2
− cos x

x
, (7.5.4)

and so on. The other solutions of the same wave equation that are not regular at
the origin are spherical Neumann functions

n0(x) = −cos x

x
, n1(x) = −cos x

x2
− sin x

x
, (7.5.5)

and so on.
To find the scattering amplitude, we must now consider the difference of the

wave function (7.5.1) and the plane wave (7.5.2) for r → ∞. If the potential
vanishes sufficiently rapidly for large r , the reduced radial wave function r R�(r)
for large r must become proportional to a linear combination of cos(kr) and
sin(kr), which without loss of generality we may write as

R�(r) →
c�(k) sin

(
kr − �π/2 + δ�(k)

)
kr

, (7.5.6)

where c� and δ� are quantities that may depend on k, but not on r . It is easy to
see that the radial wave function R�(r) is real, up to an overall constant factor.
(With a potential that does not grow as r → 0 as rapidly as 1/r2, the Schrödinger
equation (2.1.26), multiplied with 2μr2/�2 R�(r), takes the following form for
r → 0:

1

R�(r)

d

dr

(
r2 d

dr

)
R�(r) → �(�+ 1),

so as r → 0, R�(r) goes as a linear combination of r � and r−�−1. The condition
of normalizability requires that we choose R�(r) to go purely as r � for r → 0.
For a real potential, R∗

� (r) satisfies the same homogeneous second-order differ-
ential equation and the same initial condition on its logarithmic derivative as
R�(r), so it must equal R�(r) up to a constant factor, which tells us that R�(r)
is real, up to a complex constant factor.) Hence c� may be complex, but δ� is
necessarily real.

On the other hand, for large arguments the spherical Bessel functions
appearing in the plane wave have the asymptotic behavior

j�(kr) →
sin
(

kr − �π/2
)

kr
. (7.5.7)

In the absence of interactions we would just have the plane-wave term in the
wave function, so R�(r) would have to be proportional to j�(kr). Comparison

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316276105.009
http:/www.cambridge.org/core


262 7 Potential Scattering

of Eqs. (7.5.6) and (7.5.7) shows that in this case all δ� would vanish. For this
reason, the δ� are known as phase shifts.

To determine the coefficients c�, we impose the condition that for r → ∞,
the scattered wave ψ(r, θ) − exp(ikr cos θ) can contain only terms with r -
dependence proportional to the outgoing wave exp(ikr)/kr , not the incoming
wave exp(−ikr)/kr . Subtracting (7.5.2) from (7.5.1), and using Eqs. (7.5.6) and
(7.5.7), we see that the coefficient of P�(cos θ) exp(−ikr)/2ikr in the scattered
wave is

c�i
�e−iδ� − i2�(2�+ 1),

and therefore

c� = i�(2�+ 1)eiδ� . (7.5.8)

The scattered wave then has the asymptotic behavior

ψ(r, θ)− exp(ikr cos θ) → eikr

2ikr

∞∑
�=0

(2�+ 1)P�(cos θ)
(
e2iδ� − 1

)
, (7.5.9)

and the scattering amplitude is therefore

f (θ) = 1

2ik

∞∑
�=0

(2�+ 1)P�(cos θ)
(
e2iδ� − 1

)
. (7.5.10)

We can now verify the optical theorem. From Eq. (7.5.10) we find immedi-
ately that

Im f (0) = 1

2k

∞∑
�=0

(2�+ 1)(1 − cos 2δ�) = 1

k

∞∑
�=0

(2�+ 1) sin2 δ�. (7.5.11)

The orthonormality condition for the spherical harmonics gives

δ��′ = 2π
∫ π

0
Y 0
� (θ)Y

0
�′(θ) sin θ dθ = 2�+ 1

2

∫ π

0
P�(cos θ)P�′(cos θ) sin θ dθ,

(7.5.12)
so the elastic scattering cross section is

σscat = 4π

k2

∞∑
�=0

(2�+ 1) sin2 δ�. (7.5.13)

The comparison of Eqs. (7.5.11) and (7.5.13) gives the optical theorem (7.3.8).
One of the things that the phase-shift formalism is good for is to analyze the

behavior of the scattering amplitude at low energy. To deal with this, we will
first derive a formula for the phase shift that applies at any energy, and then
specialize to the case of low energy.

Suppose that the potential is negligible outside a radius a. (We are assuming
that the potential vanishes rapidly for r → ∞, so even if it is not strictly zero
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7.5 Phase Shifts 263

at any finite r , the results we obtain will be qualitatively reliable.) For r > a,
the radial wave function R�(r) for a given � is a solution of the free-particle
wave equation, which in general is a linear combination of the spherical Bessel
functions j�(kr) that are regular as r → 0 and functions n�(kr) that become
infinite at the origin. These functions have the asymptotic behavior for large
argument

j�(ρ) → sin(ρ − �π/2)

ρ
, n�(ρ) → −cos(ρ − �π/2)

ρ
. (7.5.14)

Hence the linear combination that has the asymptotic behavior given by
Eqs. (7.5.6) and (7.5.8) is

R�(r) = i�(2�+ 1)eiδ�
[

j�(kr) cos δ� − n�(kr) sin δ�
]

for r > a. (7.5.15)

The value of R′
�(r)/R�(r) at r = a (where the asymptotic formulas (7.5.14)

do not apply) is set by the condition that the wave function must fit smoothly
with the solution of the Schrödinger equation for r < a that is well behaved
(R� ∝ r �) at r → 0, which of course depends on the details of the potential.
This condition may be written

R′
�(a)/R�(a) = ��(k), (7.5.16)

with ��(k) depending only on the wave function for r < a. Equations (7.5.15)
and (7.5.16) together then give

tan δ�(k) = k j ′
�(ka)−��(k) j�(ka)

kn′
�(ka)−��(k)n�(ka)

. (7.5.17)

Now, for sufficiently small k, the term k2 R� in the Schrödinger equation for
the radial wave function has little effect, so ��(k) becomes essentially indepen-
dent of k for low energy. Also, the spherical Bessel functions for small argument
are

j�(ρ) → ρ�

(2�+ 1)!! , n�(ρ) → −(2�− 1)!!ρ−�−1, (7.5.18)

where, for any odd integer n,

n!! ≡ n(n − 2)(n − 4) . . . 1, (7.5.19)

with (−1)!! ≡ 1. Hence for ka � 1, Eq. (7.5.17) gives

tan δ� →
(

�− a��

a�� + �+ 1

)
(ka)2�+1

(2�+ 1)!!(2�− 1)!! . (7.5.20)

This shows that tan δ� vanishes as k2�+1 for k → 0, and hence δ�(k) either
vanishes or approaches an integer multiple of π . We can go further, and say
something about higher terms in k. Note that �� depends on k only through the
presence of a term k2 R� in the Schrödinger equation, so �� is a power series
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264 7 Potential Scattering

in k2. Also, k−� j�(ka), k1−� j ′
�(ka), k�+1n�(ka), and k�+2n′

�(ka) are all power
series in k2. Hence from Eq. (7.5.17), we see that also k−2�−1 tan δ� is a power
series in k2.

Evidently, if there is no selection rule that suppresses s-wave scattering, then
δ0 is the dominant phase shift for k → 0. It is conventional to express k cot δ0,
rather than its reciprocal k−1 tan δ�, as a power series in k2:

k cot δ0 → − 1

as
+ reff

2
k2 + · · · , (7.5.21)

where as and reff are constants with the dimensions of length, known respec-
tively as the scattering length and the effective range. According to Eq. (7.5.13),
the cross section for k → 0 approaches a constant

σscat → 4πa2
s . (7.5.22)

We will see in Section 8.8 that in the presence of a shallow s-wave bound state,
it is possible to derive a formula for as in terms of the energy of the bound state,
without having to know anything about the details of the potential.

I should mention that there is an exception to these results, in the case where
an s-wave bound state sits precisely at zero energy. In general at k = 0 the
� = 0 radial wave function R0 outside the range of the potential satisfies the
Schrödinger equation d/dr(r2 d R0/dr) = 0, so R0 is a linear combination of
terms that go as 1/r and a constant. With a bound state at zero energy, the
constant term must be absent, so R0 ∝ 1/r at r = a, and hence �0(0) = −1/a.
In this case the denominator a�0 + 1 in Eq. (7.5.20) vanishes, invalidating the
conclusion that tan δ0 → 0 for k → 0. In fact, we shall show on very general
grounds in Section 8.8 that in the presence of an s-wave bound state at zero
energy, tan δ0 at zero energy is infinite, not zero.

7.6 Resonances

There are other circumstances in which a phase shift will exhibit a characteristic
dependence on energy, independent of the detailed form of the potential. Con-
sider a potential V (r) that has a high value much greater than the energy E in a
thick shell around the origin, surrounding an inner region where the potential is
much smaller, with V � E . In these circumstances, the general solution of the
Schrödinger equation within the barrier is a linear combination of two solutions,
one solution R+(r, E, �) that grows exponentially with increasing r , and the
other R−(r, E, �) that decays exponentially. To see this, note that at any energy
E below the barrier height the Schrödinger equation (2.1.29) for the reduced
radial wave function u(r, E, �) ≡ r R(r, E, �) within the barrier can be put in
the form
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7.6 Resonances 265

d2u

dr2
= κ2u, (7.6.1)

where

κ2(r, E, �) ≡ 2μ

�2

[
V (r)− E

]
+ �(�+ 1)

r2
> 0. (7.6.2)

In assuming that the barrier is high and thick, we will specifically suppose that
κ is so large that both κ and κ ′ ≡ ∂κ/∂r change very little in a distance 1/κ;
that is, ∣∣∣∣κ ′

κ

∣∣∣∣ � κ,

∣∣∣∣κ ′′

κ ′

∣∣∣∣ � κ, (7.6.3)

with κ understood from now on as the positive square root of the quantity (7.6.2).
Under these circumstances, we can use the WKB approximation discussed in
Section 5.7 to find approximate solutions of Eq. (7.6.1), of the form

u±(r, E, �) ≡ r R±(r, E, �) = A±(r, E, �) exp

(
±
∫ r

κ(r ′, E, �) dr ′
)
,

(7.6.4)
where A± varies much more slowly than the argument of the exponential.
(Equation (5.7.9) shows that to a good approximation, A± ∝ 1/

√
κ .)

These solutions are to be continued outside the barrier and into the inner
region. Outside the barrier R+ is much larger than R−:

R−(r, E, �)

R+(r, E, �)
= O

(
exp

[
−2

∫
barrier

κ(r ′, E, �) dr ′
])

� 1, (7.6.5)

the integral being taken over the whole region in which V (r ′) > E . On the other
hand, the solution of the Schrödinger equation that in the inner region goes as
r � rather than r−�−1 as r → 0 must take the form

R(r, E, �) = c+(E, �)R+(r, E, �)+ c−(E, �)R−(r, E, �) (7.6.6)

with coefficients c±(E, �) that are generally of the same order of magnitude.
Now recall Eq. (7.5.17) for the phase shift:

tan δ�(k) = k j ′
�(ka)−��(k) j�(ka)

kn′
�(ka)−��(k)n�(ka)

, (7.6.7)

where ��(k) is the logarithmic derivative ��(k) ≡ R′(a, E, �)/R(a, E, �)
at a radius a just outside the barrier. For generic energies below the barrier
height, the wave function will be dominated by R+, and ��(k) will be equal
to R′+(a, E, �)/R+(a, E, �). For most energies, this gives tan δ�(E) a smoothly
varying value, which we will call tan δ�(E).

But suppose that in the limit of an infinitely thick barrier there would be a
bound-state solution of the Schrödinger equation at an energy E0 and orbital
angular momentum �0. At this energy the solution of the Schrödinger equation
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266 7 Potential Scattering

that goes as r �0 for r → 0 must decay inside the barrier, so c+(E0, �0) = 0.
As long as E is close enough to E0 that c+(E, �0)/c−(E, �0) is less than an
amount of order (7.6.6), the logarithmic derivative��0(k)will appreciably differ
from R′+(a, E, �0)/R+(a, E, �0), taking a value R′−(a, E, �0)/R−(a, E, �0) at
E = E0, where c+ vanishes. We conclude then that as the energy increases
past E0 the quantity tan δ�0(E) varies rapidly, suddenly near E = E0 becoming
appreciably different from tan δ�0(E), and then returns to the smoothly varying
value tan δ�0(E). The range in which tan δ�0(E) is appreciably different from
tan δ�0(E) is proportional to (7.6.6).

We will give an argument in the next section that a rapid decrease of the phase
shift would violate causality. Since tan δ�0(E) varies rapidly but returns to about
this same value as E passes E0, the phase shift must increase in a narrow range
of energies around E0 by 180◦ (or possibly an integer multiple6 of 180◦), and
therefore must become equal to 90◦ at an energy ER somewhere in that range.
The phase shift can therefore be assumed to take the form

δ�0(E) = δ�0(E)+ δ
(R)
�0
(E), (7.6.8)

tan δ(R)�0
(E) = −1

2

�

E − ER
, (7.6.9)

where � is a constant with the dimensions of energy, proportional to (7.6.6),
and ER is an energy differing from E0 by an amount at most of order �. (The
constant of proportionality is written as −�/2 for later convenience. In order for
Eq. (7.6.9) to give an increasing phase shift, we must have � > 0.) The rapid
growth of the phase shift at an energy ER is like the large resonant response
of a classical system to oscillatory perturbations whose frequency matches one
of the natural frequencies of the system, and for this reason the divergence of
tan δ�0(E) at an energy ER is known as a resonance; ER is the resonance energy.

The non-resonant phase shift δ�0(E) is typically much less than 90◦. In this
case, we can neglect the term δ�0(E) in Eq. (7.6.8), which then gives

sin2 δ�0(E) = tan2 δ�0(E)

1 + tan2 δ�0(E)
= �2/4

(E − ER)2 + �2/4
,

so that Eq. (7.5.13) for the total cross section gives

σscat 
 π(2�0 + 1)

k2

�2

(E − ER)2 + �2/4
. (7.6.10)

Equation (7.6.10) is known as the Breit–Wigner formula.7 We see that � is the
full width of the peak in the cross section at half maximum. The cross section

6 In the case where δ�(E) jumps up by 360◦, 540◦, etc., it must also pass through 270◦, 540◦, etc., and
the scattering cross section will exhibit several peaks at nearly the same energy. This case, of several
resonances that for some reason are at the same energy, will not be considered here.

7 G. Breit and E. P. Wigner, Phys. Rev. 49, 519 (1936).
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7.6 Resonances 267

at its maximum value will take the value 4π(2�0 + 1)/k2
R, or roughly a square

wavelength, independent of the details of the potential. A generalization of this
formula to a much wider variety of problems is given in Section 8.5.

The resonance width � has an important connection with the lifetime of the
resonant state. Using Eqs. (7.6.8) and (7.6.9) and some elementary trigonometry,
we easily see that the quantity exp(2iδ�0) in the scattering amplitude (7.5.10)
behaves near the resonance as

exp
(

2iδ�0(E)
)

= exp
(

2iδ�0(E)
) [

1 − i�

E − ER + i�/2

]
. (7.6.11)

If at t = 0 we put the system in the nearly stable state with angular momen-
tum �0 and radial wave function

∫
g(E)R(r, �0, E) d E , where g(E) is a smooth

function that varies slowly for E near ER, the resonant contribution to the time-
dependent wave function

∫
g(E)R(r, �0, E) exp(−i Et/�) d E will have a term

with a time-dependence proportional at late times to the integral∫ +∞

−∞
exp(−i Et/�) d E

E − ER + i�/2
= −2π i exp (−i ERt/� − � t/2�) . (7.6.12)

(This integral for t > 0 is most easily done by completing the contour of inte-
gration with a large semi-circle in the lower half of the complex plane.) The
factor exp(−i ERt/�) supports the interpretation that scattering occurs by for-
mation of a nearly stable state with energy near ER, and the factor exp(−� t/2�)

in the scattering amplitude, which gives a factor exp(−� t/�) in the scattering
probability, indicates that this state decays at a rate �/�.

There are cases in nuclear physics of states with a barrier so thick that their
decay rate � is very small, small enough that nuclei in these states can be
found in nature, rather than as resonances in scattering processes. The clas-
sical example is provided by nuclei that are unstable against the emission of
alpha particles, first treated quantum mechanically by George Gamow8 (1904–
1968). In transitions in which the alpha particle is emitted in an s wave, such
as 238U → 234Th + α and 226Ra → 222Rn + α, the barrier arises purely from
the Coulomb potential, which in alpha decay is V (r) = 2Ze2/r , where Z is the
atomic number of the final nucleus. The barrier extends from an effective nuclear
radius R out to a turning point where V (r) equals the final kinetic energy Eα of
the alpha particle. The barrier-penetration integral in Eq. (7.6.6) is then

2
∫

barrier
κ dr = 2

∫ 2Ze2/Eα

R
dr

√
2mα

�2

(
2Ze2

r
− Eα

)
. (7.6.13)

In many cases this exponent is quite large, giving extremely long lifetimes for
alpha-emitting nuclei. The lifetime of 238U is 4.47×109 years, long enough that

8 G. Gamow, Z. Physik 52, 510 (1928); also see E. U. Condon and R. W. Gurney, Phys. Rev. 33, 127
(1929).
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268 7 Potential Scattering

appreciable uranium has survived on earth from before the formation of the solar
system. Even 226Ra has a lifetime of 1600 years, long enough for radium from
a chain of radioactive decays originating with 238U to be found in association
with uranium ores. (Needless to say, � for 226Ra and 238U is far too small for
these states ever to be seen as resonances in the scattering of alpha particles on
234Th or 226Rn.) The exponential of the quantity (7.6.13) is an extremely sensi-
tive function of Eα and Z , which of course are known precisely, and also of R,
which is not so well known, so this formula was historically used together with
observed alpha decay rates to determine R.

Finally, recall that the Breit–Wigner formula (7.6.10) was derived here for the
case of a negligible non-resonant phase shift δ�0(E). But there are cases where
δ�0(E) is itself close to 90◦, in which case the total phase shift rises at a reso-
nance from 90◦ to 270◦. Where it passes through 180◦, we have a sharp dip rather
than a peak in the total cross section. This effect was first observed in 1921–2
independently by Ramsauer and Townsend,9 in the scattering of electrons by the
atoms of noble gases.

7.7 Time Delay

The demonstration in the previous section, that a resonance of width � repre-
sents a state that decays with a rate �/�, considered the time-dependence of a
superposition of scattering wave functions at a single position. To see what is
going on in the scattering, we need instead to consider the time-dependence of
such a superposition at late times and large distances. We did this in Section 7.2,
where we derived the behavior (7.2.9) of the wave function at late times and
large distances from Eqs. (7.2.5) and (7.2.7). But there we assumed that the
scattering amplitude fk depends on the wave number k much more smoothly
than the wave packet g(k) or the factors eikr or exp(−i�tk2/2μ). Now we want
to consider the possibility that the phase shift δ�(E) for any particular angular
momentum � may vary rapidly with energy.

According to Eq. (7.5.10), the wave function (7.2.7) contains a term that for
large r behaves as

(2π�)−3/2

2ikr

∫
d3k g(k) exp

(
ikr − i�tk2/2μ+ 2iδ�(E)

)
(2�+ 1)P�(cos θ),

(7.7.1)
where the argument of the phase shift is E = �

2k2/2μ. At late times the inte-
gral is dominated by the value of k where the argument of the exponential is
stationary, at which

9 C. Ramsauer, Ann. Physik 4, 64, 513 (1921); V. A. Bailey and J. S. Townsend, Phil. Mag. S.6, 43, 1127
(1922).
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7.7 Time Delay 269

r − �tk/μ+ 2δ′
�(E)�

2k/μ = 0,

or in other words

r = �k

μ

(
t −�t

)
, (7.7.2)

where10

�t = 2�δ′
�(E). (7.7.3)

(This of course applies only if t is positive as well as large; for t large and
negative, Eq. (7.7.2) would have no solution with r > 0, and this term would
be absent in the asymptotic form of the wave function.) Equation (7.7.2) shows
that �t is the time delay experienced by the incoming particle in entering and
then leaving the potential.

The result (7.7.3) justifies the remark made in the previous section, that phase
shifts generally can increase sharply but not decrease sharply with increas-
ing energy. The time at which a wave packet arrives at a scattering center is
uncertain by an amount of order R/v, where R is the range of the potential
and v is the velocity of the wave packet, so it is possible to have �t nega-
tive if it is no greater than this in magnitude, but a negative �t of much larger
magnitude would represent a failure of causality – the wave packet would be
emerging from the potential before it entered it. With Eq. (7.7.3), this sets
a crude upper limit to the rate of decrease of any phase shift with energy:
−δ′

�(E) ≤ R/2�v.
Equation (7.7.3) has a natural application to the case of resonance. Neglecting

the rate of change with energy of the non-resonant contribution δ�0(E) (where
�0 is the angular momentum of the nearly stable state), Eq. (7.6.9) gives the time
delay (7.7.3) near a resonance as the positive quantity

�t = 2�

1 + tan2 δ
(R)
�0
(E)

d

d E
tan δ(R)�0

(E) = ��

(E − ER)2 + �2/4
. (7.7.4)

In particular, at the resonance peak the time delay is 4�/�. We can understand
the factor 4 by noting that, according to Eq. (7.6.12), the mean time required for
the leakage of a wave packet (not the probability density) out of the potential
barrier is 2�/�, and it is plausible that this is also the time required for the
incoming wave packet to leak into the potential barrier, giving a total time delay
4�/�.

10 E. P. Wigner, Phys. Rev. 98, 145 (1955).
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270 7 Potential Scattering

7.8 Levinson’s Theorem

There is a remarkable theorem11 due to the mathematician Norman Levinson
(1912–1975), which relates the behavior of the phase shift for E > 0 to the
number of bound states with E < 0. It is most easily proved by supposing
the system to be enclosed in a large sphere of radius R, on which the particle
wave function must vanish. Recall that according to Eq. (7.5.6), the radial wave
function for orbital angular momentum � and positive energy E = �

2k2/2μ is

proportional to sin
(

kr −�π/2+δ�(E)
)

, so the boundary condition requires that

these states must have k equal to one of the discrete values kn for which

kn R − �π/2 + δ�(En) = nπ, (7.8.1)

where n is any integer for which this gives a positive value of kn . The number
N�(E) of states with orbital angular momentum � and energies between 0 and E
is the number of values of n for which Eq. (7.8.1) is satisfied with 0 ≤ En ≤ E ,

N�(E) = 1

π

(
k R + δ�(E)− δ�(0)

)
. (7.8.2)

In the absence of the interaction V the phase shift vanishes, and the correspond-
ing number of states is just k R/π , so the change in the number of scattering
states of energy between 0 and E due to the interaction is

�N�(E) = 1

π

(
δ�(E)− δ�(0)

)
. (7.8.3)

Now, when we gradually turn on the interaction, physical states can neither be
created nor destroyed, but states that were scattering states with energy E > 0
for V = 0 can be converted by the interaction to bound states with E < 0. The
fact that states are neither created nor destroyed tells us that the total change
�N�(∞) due to the interaction in the number of all positive-energy scattering
states with orbital angular momentum �, plus the total number of bound states
with this orbital angular momentum, must vanish, so that the number of bound
states is

N� = 1

π

(
δ�(0)− δ�(∞)

)
. (7.8.4)

This is necessarily positive, so the phase shift must either undergo no net change
or suffer a net decrease as the energy rises from zero to infinity. This does not
contradict the result of the previous section, which forbids only rapid decreases
in the phase shift. Since the phase shift grows rapidly by 180◦ at each resonance,

11 N. Levinson, Kon. Danske Vid. Selskab Mat.-Fys. Medd. 25, 9 (1949). Levinson’s proof relied on rig-
orous methods beyond the scope of this book. Levinson’s paper shows that the result derived here does
not apply if there happens to be a bound state with zero binding energy.
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7.9 Coulomb Scattering 271

it must also decrease gradually away from resonances by 180◦ times the total
number of resonances and bound states.

This is a remarkable result, but not a very useful one. It holds only for elastic
scattering due to a non-relativistic central potential, but it refers to the phase shift
at infinite energy, where inelastic channels are open and relativistic effects are
important. There have been many attempts to generalize this theorem to models
that are realistic at all energies, but so far without success.

7.9 Coulomb Scattering

Up to this point, in this chapter we have considered only potentials that vanish
as r → ∞ faster than 1/r . But the single most important example of potential
scattering is Coulomb scattering, say for a particle of charge Z1e scattered by
a scattering center of charge Z2e, for which V (r) = Z1 Z2e2/r . Fortunately in
this case it is possible to calculate the differential scattering cross section exactly,
without needing to rely on the Born approximation or even on the partial wave
expansion.

The Schrödinger equation for the Coulomb potential and a positive energy
E = �

2k2/2μ takes the form

− �
2

2μ
∇2ψ + Z1 Z2e2

r
ψ = �

2k2

2μ
ψ. (7.9.1)

It turns out that it is possible to find a solution of this equation that behaves well
as r → 0, and behaves like a plane wave plus an outgoing wave for r → ∞, in
the form

ψ(x) = eikzF(r − z). (7.9.2)

A straightforward calculation shows that the Laplacian of such a wave function
is

∇2ψ = eikz

[
− k2F(ρ)+ 2

r

[
(1 − ikρ)F ′(ρ)+ ρF ′′(ρ)

]]
, (7.9.3)

where ρ ≡ r − z. The Schrödinger equation (7.9.1) thus takes the form of an
ordinary differential equation

ρF ′′(ρ)+ (1 − ikρ)F ′(ρ)− kξF(ρ) = 0, (7.9.4)

where ξ is the dimensionless quantity

ξ = Z1 Z2e2μ

�2k
. (7.9.5)

This can be put in the form of a well-known differential equation by introducing
a new independent variable

s ≡ ikρ = ik(r − z). (7.9.6)
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272 7 Potential Scattering

Then Eq. (7.9.4) may be written

s
d2

ds2
F + (1 − s)

d

ds
F + iξF = 0. (7.9.7)

This is a special case of what is known as the confluent hypergeometric equation
or Kummer equation:

s
d2

ds2
F + (c − s)

d

ds
F − aF = 0, (7.9.8)

in our case with

c = 1, a = −iξ. (7.9.9)

The solution of Eq. (7.9.8) that is regular at s = 0 is known as the Kummer
function,12 and can be expressed as a power series

1 F1(a; c; s) = 1 + a

c

s

1! + a(a + 1)

c(c + 1)

s2

2! + · · · . (7.9.10)

With its normalization left to be determined, the wave function is

ψ(x) = Neikz
1 F1(−iξ ; 1; ik[r − z]) (7.9.11)

with N a constant to be chosen later. The asymptotic behavior of the Kummer
function for large complex argument is

1 F1(a; c; s) → �(c)

�(c − a)
(−s)−a

[
1 + O(1/s)

]+ �(c)

�(a)
essa−c

[
1 + O(1/s)

]
,

(7.9.12)
where �(z) is the familiar gamma function, defined for Re z > 0 by

�(z) =
∫ ∞

0
dx xz−1e−x

and by analytic continuation to other values of z. Hence the asymptotic behavior
of the wave function for large r with cos θ = z/r fixed is13

ψ → Neξπ/2

[ [k(r − z)]iξ

�(1 + iξ)
eikz + [k(r − z)]−iξ−1

i�(−iξ)
eikr

]

= Neξπ/2

�(1 + iξ)

[
eikz+iξ ln(kr(1−cos θ)) + fk(θ)

eikr−iξ ln(kr(1−cos θ))

r

]
, (7.9.13)

12 See, e.g., W. Magnus and F. Oberhettinger, Formulas and Theorems for the Functions of Mathematical
Physics, transl. J. Webber (Chelsea Publishing Co., New York, 1949): Chapter VI, Section 1.

13 In deriving the first line of Eq. (7.9.13), it is important to note that for s = ik[r − z], the phase of
−s in the first term of Eq. (7.9.12) must be taken as −π/2, and the phase of s in the second term of
Eq. (7.9.12) must be taken as π/2.
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where

fk(θ) = �(1 + iξ)

�(−iξ)

1

ik(1 − cos θ)
= −�(1 + iξ)

�(1 − iξ)

ξ

k(1 − cos θ)

= −�(1 + iξ)

�(1 − iξ)

2Z1 Z2e2μ

�2q2
. (7.9.14)

Here we have used the general formula �(1 + z) = z�(z), and define q2 ≡
2k2(1 − cos θ) = 4k2 sin2(θ/2).

It is shown in the following section that the terms in the phases in Eq. (7.9.13)
that go as ln(kr) are an inevitable feature of scattering by potentials that behave
as 1/r for r → ∞. The contribution of these terms becomes negligible com-
pared with kr for macroscopically large values of r , so Eq. (7.9.13) is effectively
the same as the standard formula (7.2.5) for the asymptotic wave function,
provided we take the normalization constant N in Eq. (7.9.11) to have the value

N = �(1 + iξ)e−ξπ/2(2π�)−3/2, (7.9.15)

and identify fk(θ) as the scattering amplitude.
We note that for |ξ | � 1, where the factor �(1 + iξ)/�(1 − iξ) is unity,

Eq. (7.9.14) gives the same scattering amplitude as the Born approximation
result (7.4.5) for infinite screening radius 1/κ . For all ξ , �(1 + iξ)/�(1 − iξ)
just affects the phase of the scattering amplitude, so the Born approximation here
gives the correct differential cross section to all orders. The total elastic scatter-
ing cross section is infinite, meaning that every particle in the incoming beam is
scattered by some amount, though in practice there always is some screening of
Coulomb potentials, and the total cross section is never really infinite.

7.10 The Eikonal Approximation

The eikonal approximation14 is an extension of the WKB approximation to prob-
lems in three dimensions, where no spherical symmetry is available to simplify
calculations. One such problem is potential scattering, in which even for a spher-
ically symmetric potential there is a preferred direction in space, the direction
of the incoming plane wave. In its application to scattering, the eikonal approx-
imation shows why classical mechanics can be used in some cases to calculate
scattering cross sections, and also provides information about the phase of the
scattering amplitude. We shall use the eikonal approximation again when we
come to the Aharonov–Bohm effect in Section 10.4.

14 For the eikonal approximation in optics, see M. Born and E. Wolf, Principles of Optics (Pergamon
Press, New York, 1959).

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316276105.009
http:/www.cambridge.org/core


274 7 Potential Scattering

Consider the general energy-eigenvalue problem for a single spinless15

particle with coordinate x:

H(−i� ∇, x)ψ(x) = Eψ(x). (7.10.1)

We are interested in solutions for which ψ(x) varies much more rapidly with
x than does the Hamiltonian H . Our experience with the WKB approximation
suggests that we should seek a solution of the form

ψ(x) = N (x) exp
(

i S(x)/�
)
, (7.10.2)

where the phase S(x) varies much more rapidly than the amplitude N (x). If we
ignore the variation of N (x) compared with that of S(x), then the gradient in
Eq. (7.10.1) will act chiefly on the exponential in Eq. (7.10.2). In this limit, the
phase should then satisfy the equation

H
(
∇S(x), x

)
= E . (7.10.3)

The problem here, which did not confront us in one dimension, is that this is
just one equation for the three components of ∇S. For instance, if the gradient
appears in the Hamiltonian in the form of the Laplacian ∇2, then Eq. (7.10.3)
tells us the magnitude of ∇S but tells us nothing about its direction. The remain-
ing information needed to calculate S is that the three-vector ∇S is a gradient.
The following prescription allows us to construct a function S(x)whose gradient
satisfies Eq. (7.10.3).

First, we need an appropriate initial condition. This is provided by the condi-
tion that S(x) should take some constant value S0 on an “initial surface.” This
surface is not arbitrary, but is determined by the problem at hand. For instance,
as we shall see, in scattering the initial surface is taken as a plane normal to the
direction of the incoming beam. With S(x) constant on the initial surface, ∇S(x)
is normal to the initial surface at all points on the surface.

Next, we define a family of “ray paths” starting at the initial surface. These
curves are defined by a pair of equations, similar to the equations of motion in
classical Hamiltonian dynamics:

dqi

dτ
= ∂H(p,q)

∂pi
,

dpi

dτ
= −∂H(p,q)

∂qi
, (7.10.4)

where here τ parameterizes the curves. The initial condition on these differential
equations is that each trajectory starts at τ = 0 with q(0) on the initial surface,

15 For a particle with spin subject to spin-dependent forces, it is necessary to extend the treatment here to
a set of coupled equations for the different spin components. The general treatment of multicomponent
wave propagation in anisotropic media in the eikonal approximation is given by S. Weinberg, Phys. Rev.
126, 1899 (1962).
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with p(0) normal to the surface at that point, and with the magnitude of p(0)
given by the condition that, at that point,

H(p(0),q(0)) = E . (7.10.5)

Although this is a time-independent problem, we can evidently regard τ as the
time required for a classical particle to travel to q(τ ) from the initial surface.

We assume that these ray paths without crossing fill at least a finite volume of
space adjacent to the initial surface, so that for each point x in this volume there
is a unique τx such that

q
(
τx

)
= x. (7.10.6)

The phase S is then given by

S(x) =
∫ τx

0
p(τ ) · dq(τ )

dτ
dτ + S0. (7.10.7)

Let us check that this solves our problem. It is easy to see that for all such τ ,

H(p(τ ),q(τ )) = E . (7.10.8)

This is because the differential equations (7.10.4) imply that

d

dτ
H(p(τ ),q(τ )) =

∑
i

∂H
(

p(τ ),q(τ )
)

∂pi (τ )

dpi (τ )

dτ

+
∑

i

∂H
(

p(τ ),q(τ )
)

∂qi (τ )

dqi (τ )

dτ

= 0, (7.10.9)

so since Eq. (7.10.8) is satisfied at τ = 0, it is satisfied for all τ , at least in a
finite range.

It only remains to show that p = ∇S. For this purpose, we note that an
infinitesimal change δx in x will not only change τx, say to τx + �τx, but will
also shift the ray path that connects the initial surface to the point x to a new
path, having q(τ ) and p(τ ) replaced with q(τ ) + �q(τ ) and p(τ ) + �p(τ ),
where �q and �p are infinitesimal, and

δx =
[

dq(τ )
dτ

�τx +�q(τ )
]
τ=τx

. (7.10.10)

The change in x produces a change in the S(x) given by Eq. (7.10.7):

δS(x) = �τx p(τx) · dq(τ )
dτ

∣∣∣∣
τ=τx

+
∫ τx

0

[
p(τ ) · d�q(τ )

dτ
+�p(τ ) · dq(τ )

dτ

]
dτ.
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We may re-arrange this to read

δS(x) = �τx p(τx) · dq(τ )
dτ

∣∣∣∣
τ=τx

+
∫ τx

0

d

dτ

[
p(τ ) ·�q(τ )

]
dτ

+
∫ τx

0

[
�p(τ ) · dq(τ )

dτ
− dp(τ )

dτ
·�q(τ )

]
dτ.

The first integral is given by the value of the integrand at the upper end-point
τ = τx ∫ τx

0

d

dτ

[
p(τ ) ·�q(τ )

]
dτ = p(τx) ·�q(τx).

The contribution of the lower end-point τ = 0 vanishes because on the initial
surface p is normal to the surface while �q is tangent to the surface, so that
p(0) ·�q(0) = 0. According to the ray path equations (7.10.4), the integrand of
the second integral is

�p(τ ) · dq(τ )
dτ

− dp(τ )
dτ

·�q(τ ) =
∑

i

�pi (τ )
∂H

(
q(τ ),p(τ )

)
∂pi

+
∑

i

�qi (τ )
∂H

(
q(τ ),p(τ )

)
∂qi

= �H
(

q(τ ),p(τ )
)
,

and this vanishes because, as we have seen, H has the same value H = E on all
ray paths. Using Eq. (7.10.10), we are left with

δS(x) = �τx p(τx) · dq(τ )
dτ

∣∣∣∣
τ=τx

+ p(τx) ·�q(τx) = p(τx) · δx (7.10.11)

and so

p(τx) = ∇S(x), (7.10.12)

as was to be shown.
We can learn about the amplitude N (x) by going to the next order in gradi-

ents. Using Eq. (7.10.2), the Schrödinger equation (7.10.1) may be expressed
exactly as16

H
(
∇S(x)− i� ∇, x

)
N (x) = E N (x). (7.10.13)

16 The function H
(
∇S(x)− i� ∇, x

)
is defined by its power-series expansion. In this expansion, it should

be understood that the operator −i� ∇ acts on everything to its right, including not only N but also the
derivatives of S.
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7.10 The Eikonal Approximation 277

With Eq. (7.10.3) satisfied, the terms of zeroth order in the gradients of N (x)
and ∇S(x) cancel. To first order in these gradients, the Schrödinger equation
then becomes

A(x) · ∇N (x)+ B(x)N (x) = 0, (7.10.14)

where

Ai (x) ≡
[
∂H(p, x)

∂pi

]
p=∇S(x)

,

B(x) ≡ 1

2

∑
i j

[
∂2 H(p, x)
∂pi ∂p j

]
p=∇S(x)

∂2S(x)
∂xi ∂x j

. (7.10.15)

Using Eq. (7.10.4), it follows from Eq. (7.10.14) that

d

dτ
ln N

(
q(τ )

)
= −B

(
q(τ )

)
,

and therefore

N (x) = N (x0) exp

(
−
∫ τx

0
B
(

q(τ )
)

dτ

)
, (7.10.16)

where x0 is the point on the initial surface connected by a ray path to x. The
important thing is that N (x) does not depend on its value at any point on the
initial surface other than x0, so that we can speak of the wave function as being
propagated from the initial surface along the ray paths.

In potential scattering we have

H(p, x) = p2

2m
+ V (q),

so

A(x) = 1

m
∇S(x), B(x) = 1

2m
∇2S(x),

and Eq. (7.10.14) therefore gives17

0 = 2Nm
[
A · ∇N + B N

]
= 2N

[
∇S · ∇N + N

2
∇2S

]

= ∇ ·
(

N 2 ∇S
)
. (7.10.17)

We can now see that the distribution of probabilities of scattering at various
angles is given in the eikonal approximation by classical scattering theory. First,
recall how scattering cross sections are calculated classically. Consider a beam

17 The quantity N 2 ∇S is proportional to the probability current ψ∗ ∇ψ −ψ ∇ψ∗ appearing in the prob-
ability conservation condition (1.5.5), so the vanishing of its divergence follows from Eq. (1.5.5) and
the time-independence here of |ψ |2.
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278 7 Potential Scattering

of particles, coming in toward a scattering center on parallel trajectories, say
along the z-direction. In order to be scattered into a small solid angle δ� in a
direction with polar and azimuthal angles θ and φ, the incoming particles must
initially occupy a small area δA(θ, φ) transverse to the z-axis, proportional to
δ�. The classical differential cross section is defined as the ratio(

dσ(θ, φ)

d�

)
classical

≡ δA(θ, φ)/δ�. (7.10.18)

That is, for any direction (dσ/d�)classical δ� is the area that the particle must hit
to be scattered into the solid angle δ� in that direction.

For example, suppose that by solving the classical equation of motion for
a spherically symmetric potential, it is found that in order for a particle that
approaches the scattering center along the z-axis to be scattered into an angle
θ it must initially travel along a line at some distance (the “impact parameter”)
b(θ) from the z-axis. Every particle that is scattered into the small solid angle
sin θ δθ δφ between angles θ and θ + δθ and between angles φ and φ + δφ

will have to approach the scattering center between impact parameters b(θ) and
b(θ)+ (db(θ)/dθ) δθ and between azimuthal angles φ and φ + δφ, so

dσ

d�
= |b db dφ/sin θ dθ dφ| = b(θ)

sin θ

∣∣∣∣db(θ)

dθ

∣∣∣∣ . (7.10.19)

In particular, for a particle of mass μ with initial velocity v0 scattered by the
Coulomb potential Z1 Z2e2/r , the classical equations of motion give b(θ) =
Z1 Z2e2/μv2

0 tan(θ/2). Using this in Eq. (7.10.19) we get a differential cross
section dσ/d� = Z2

1 Z2
2e4/4μ2v4

0 sin4(θ/2). This is how Rutherford calculated
the Coulomb scattering cross section in 1911.

Now consider how the cross section is calculated quantum mechanically in
the eikonal approximation. The “initial surface” on which the phase of the wave
function is constant can be taken to be a plane normal to the z-axis and far
upstream from the scattering center. Consider the tube formed by all the classi-
cal trajectories running from a small initial area δA(θ, φ) on the initial surface,
past the scattering center, and then out to a great distance within a solid angle
δ� around the direction defined by angles θ and φ. Using Gauss’s theorem, it
follows from Eq. (7.10.17) that the integral of the normal component of N 2 ∇S
over the surface of the tube vanishes. According to Eq. (7.10.12), this means
that the integral of the normal component of N 2p over the surface of the tube
vanishes. The sides of the tube are made up of particle trajectories, so p has
a vanishing component normal to these sides, and therefore the only contribu-
tions to the integral come from the initial area δA, where p is directed along
the normal but into the tube, and the final area r2 d�, where p is directed along
the normal out of the tube. Since the initial and final momentum have the same
magnitude, the vanishing of the surface integral tells us simply that

−δA(θ, φ) N 2
initial + r2 δ� N 2

final = 0. (7.10.20)
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7.10 The Eikonal Approximation 279

To find the initial and final values of N 2, recall that Eq. (7.2.5) gives the wave
function at large distances r from the scattering center as

ψk(x) → C
[
eik·x + fk(θ, φ)e

ikr/r
]
, (7.10.21)

where C is an unimportant normalization constant, and fk(θ, φ) is the scattering
amplitude. Hence, comparing this with Eq. (7.10.2),

Ninitial = C, Nfinal = Cf k(θ, φ)/r. (7.10.22)

The quantum-mechanical cross section is then given in the eikonal approxima-
tion by Eqs. (7.10.22) and (7.10.20) as(

dσ(θ, φ)

d�

)
eikonal

= | fk(θ, φ)|2 = N 2
finalr

2

N 2
initial

= δA(θ, φ)

δ�
=
(

dσ(θ, φ)

d�

)
classical

,

(7.10.23)

as was to be shown.
But the eikonal approximation goes beyond classical scattering theory in pro-

viding a formula for the phase of the scattering amplitude, not just its absolute
value. For scattering of a particle of mass μ by a central potential V (r), the
Hamiltonian is

H = p2
r

2μ
+ p2

ϑ

2μr2
+ V (r), (7.10.24)

from which we find that

ṙ = pr/μ, ϑ̇ = pϑ/μr2, (7.10.25)

a dot here denoting differentiation with respect to the trajectory parameter τ .
There are two constants of the motion here, the energy H and the angular
momentum pϑ , to which we can give the values

H = �
2k2/2μ, pϑ = −�kb, (7.10.26)

where k is the wave number of the incoming wave, and b is the impact param-
eter, the distance of closest approach to the scattering center if there were no
potential. The ϑ coordinate along the trajectory can then be related to the r
coordinate by

dϑ

dr
= ϑ̇

ṙ
= pϑ

r2 pr
= − �kb

r2 pr
. (7.10.27)

Using Eqs. (7.10.26) in Eq. (7.10.24) and solving for pr gives

pr = ±
√

�2k2 − �2k2b2/r2 − 2μV (r)/r2. (7.10.28)

From Eqs. (7.10.27) and (7.10.28), we find the integrand in Eq. (7.10.7) for the
phase S/� of the scattering amplitude:

[pr dr + pϑ dϑ]/� = ±κ(r) dr, (7.10.29)

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316276105.009
http:/www.cambridge.org/core


280 7 Potential Scattering

where

κ(r) =
√

k2(1 − b2/r2)− 2μV (r)/�2 + k2b2

r2
√

k2(1 − b2/r2)− 2μV (r)/�2
.

(7.10.30)
It is convenient in scattering problems to take the initial surface at a large
distance R from the scattering center, and let the constant phase of the wave
function on this surface be

S0 = −
∫ R

r0

κ(r) dr,

where r0 is the point of closest approach on the classical trajectory, given by the
solution of pr = 0 – that is,

k2(1 − b2/r2
0 )− 2μV (r0)/�

2 = 0. (7.10.31)

The phase of the outgoing part of the wave function is then given in the eikonal
approximation by Eqs. (7.10.7) and (7.10.29) as

S(r, θ)/� =
∫ r

r0

κ(r) dr, (7.10.32)

it being understood that b in Eq. (7.10.30) for κ(r) is the function b(θ), the
impact parameter for which the classical equations of motion give scattering at
an angle θ .

The integral (7.10.32) is generally quite complicated, but it gives simple
results for the phase at large r . In scattering problems V (r) must be assumed
to vanish at great distances from the scattering center. Assuming that it vanishes
at least as fast as 1/r , for r → ∞ Eq. (7.10.30) gives

κ(r) → k − μV (r)

�2k
+ O

(
1/r2

)
. (7.10.33)

We must now distinguish two cases.

● If V (r) vanishes as r → ∞ like r−N , with N > 1, then the terms in
Eq. (7.10.33) that go as 1/r2 or V (r) make a contribution to the integral in
Eq. (7.10.32) that becomes r -independent for r → ∞. In this case the phase
of the wave function approaches kr+C for r → ∞, where C is r -independent
but in general depends on b as well as k and hence on the scattering angle θ .

● For potentials V (r) that at large r go as U/r , with U constant, the integral∫ r V (r) dr does not converge at r → ∞, and for large r the phase of the
wave function goes as

S(r)/� → kr − μU

�2k
ln r + C, (7.10.34)

with C again in general dependent on θ as well as k but not on r . In particular,
for the Coulomb potential itself we have U = Z1 Z2e2 = ξ�

2k/μ, where ξ
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is the Coulomb scattering parameter introduced in the previous section. Thus
Eq. (7.10.34) yields the r -dependent factor

eikr−iξ ln r

in the outgoing part of the wave function (7.9.13). But by using the eikonal
approximation, we have seen that such ln r terms appear in the phase of the
outgoing part of the wave function not just for the Coulomb potential, but also
for any potential that goes as 1/r for r → ∞.

Problems

1. Use the Born approximation to give a formula for the s-wave scattering
length as for scattering of a particle of mass μ and wave number k by an arbi-
trary central potential V (r) of finite range R, in the limit k R � 1. Use this
result and the optical theorem to calculate the imaginary part of the forward
scattering amplitude to second order in the potential.

2. Suppose that in the scattering of a spinless non-relativistic particle of mass μ
by an unknown potential, a resonance is observed at energy ER, and that the
elastic cross section at the peak of the resonance is found to have value σmax.
Show how to use this data to give a value for the orbital angular momentum
of the resonant state.

3. Give a formula for the tangent of the � = 0 phase shift for scattering by a
potential

V (r) =
{ −V0, r < R,

0, r ≥ R,

for all E > 0, and to all orders in V0 > 0.

4. Suppose that the eigenstates of an unperturbed Hamiltonian include not only
continuum states of a free particle with momentum p and unperturbed energy
E = p2/2μ, but also a discrete state of angular momentum � with a negative
unperturbed energy. Suppose that when we turn on the interaction, the con-
tinuum states feel a local potential, but remain in the continuum, while also
the discrete state moves to positive energy, thereby becoming unstable. What
is the change in the phase shift δ�(k) as the wave number k increases from
k = 0 to k = ∞?

5. Find an upper bound on the elastic scattering cross section in the case where
the scattering amplitude f is independent of angles θ and φ.
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8
General Scattering Theory

The previous chapter described the theory of elastic scattering of a single
non-relativistic particle by a local potential. There are much more general cir-
cumstances to which scattering theory is applicable. The scattering can produce
additional particles; the interaction may not be a local potential; some or all of
the particles involved may be moving at relativistic velocities; some may be pho-
tons; and the initial state may even contain more than two particles. This chapter
will describe scattering theory at a level of generality that encompasses all these
possibilities.

In this chapter we will be using the relativistic formula for energies: the
energy of a particle of momentum p and mass m is (p2c2 + m2c4)1/2, where
c is the speed of light. This is because we want to consider inelastic scattering
processes, in which mass energy is converted to kinetic energy, or vice versa.
It is not entirely trivial to formulate dynamical theories consistent with special
relativity – the only really satisfactory approach is based on the quantum theory
of fields – but as far as general principles are concerned, quantum mechanics
applies equally to relativistic and non-relativistic systems.

8.1 The S-Matrix

We again assume that the Hamiltonian H is the sum of an unperturbed Hermitian
term H0, describing any number of non-interacting particles, plus some sort of
interaction V :

H = H0 + V . (8.1.1)

The only assumptions we make about V are that it is Hermitian, and that its
effects become negligible when the particles described by H0 are all far from
one another.

In Section 7.1 we defined an “in” state� in
k as an eigenstate of the Hamiltonian

that looks like it consists of a single particle with momentum �k far from the
scattering center if measurements are made at sufficiently early times. We gen-
eralize this definition, and define “in” and “out” states�+

α and�−
α as eigenstates

of the Hamiltonian

282
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8.1 The S-Matrix 283

H�±
α = Eα�

±
α (8.1.2)

that look like an eigenstate �α of the free-particle Hamiltonian

H0�α = Eα�α (8.1.3)

consisting of a number of particles at great distances from each other, provided
measurements are made at very early times (for �+

α ) or very late times (for �−
α ).

Here α is a compound index, standing for the types and numbers of the particles
in the state, as well as all their momenta and spin 3-components (or helicities).
It will be convenient to choose the states �α to be orthonormal(

�β,�α

)
= δ(β − α). (8.1.4)

The delta function δ(α − β) consists of a product of Kronecker deltas for the
numbers and types and spin 3-components of corresponding particles in the
states α and β, together with three-dimensional delta functions for the momenta
of the corresponding particles in these states.

The definition of �+
α and �−

α can be made more precise by specifying that if
g(α) is a sufficiently smooth function of the momenta in the state α, then (as a
generalization of Eqs. (7.1.3) and (7.1.4))∫

dα g(α)�±
α exp(−i Eαt/�) →

∫
dα g(α)�α exp(−i Eαt/�) (8.1.5)

for t → ∓∞. (Integrals over α in general include sums over the numbers and
types of particles along with the 3-components of their spins, as well as integrals
over the momenta of all the particles in the state α.) We can satisfy this condi-
tion by rewriting Eq. (8.1.2) as a generalization of the Lippmann–Schwinger
equation (7.1.7):

�±
α = �α + (Eα − H0 ± iε)−1V�±

α , (8.1.6)

with ε a positive infinitesimal quantity. Equation (8.1.5) then follows by a simple
extension of the argument used in Section 7.1. From Eq. (8.1.6) we have∫

dα g(α)�±
α exp(−i Eαt/�) =

∫
dα g(α)�α exp(−i Eαt/�)

+
∫

dα
∫

dβ
g(α) exp(−i Eαt/�)

(
�β, V�±

α

)
Eα − Eβ ± iε

�β. (8.1.7)

The rapid oscillation of the exponential in the second term on the right-hand
side kills all contributions to this integral except those from Eα near Eβ , where
the denominator varies rapidly. In particular, this allows us to extend the integral
to all real Eα, since no part of the range of integration except very near Eβ will
contribute anyway for |t | → ∞. This integral can be evaluated for |t | → ∞ by
closing the contour of integration over Eα with a large semi-circle in the upper
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284 8 General Scattering Theory

half of the complex plane for t → −∞ or in the lower half of the complex plane
for t → +∞, since in both cases the factor exp(−i Eαt/�) is exponentially
damped on the semi-circle. In both cases the pole at Eα = Eβ ∓ iε is outside
the contour of integration, so this integral vanishes, leaving us with Eq. (8.1.5).
(By the way, it is the ±iε term in the denominator in Eq. (8.1.6) that has led to
“in” and “out” states being conventionally denoted �+

α and �−
α , respectively.)

The “in” and “out” states inhabit the same Hilbert space, and are distinguished
only by how they are described, by their appearance at t → −∞ or at t → +∞.
Indeed, any “in” state can be expressed as a superposition of “out” states:

�+
α =

∫
dβ Sβα�

−
β . (8.1.8)

The coefficients Sβα in this relation form what is known as the S-matrix. If we
arrange a state so that it appears at t → −∞ like a free-particle state �α, then
the state is �+

α , and Eq. (8.1.8) tells us that the state will appear at late times
like the superposition

∫
dβ Sβα�β . As we will see, the S-matrix contains all

information about the rates of reactions among particles of any sorts.
We can derive a useful formula for the S-matrix by considering what the “in”

state looks like if measurements are made at late times. We again use Eq. (8.1.7)
for �+

α , but now because t > 0 we can only close the contour of integration of
Eα in the second term with a large semi-circle in the lower half of the complex
plane, so now we receive a contribution from the pole at Eα = Eβ − iε. Because
we are integrating over a closed contour running in the clockwise direction, the
contribution of this pole is −2π i times the same integral, but with the denomina-
tor dropped, and with the integration over Eα replaced by setting Eα = Eβ − iε
in the remainder of the integrand. Since ε is infinitesimal, this just amounts to
replacing (Eα − Eβ + iε)−1 in Eq. (8.1.7) with −2π iδ(Eα − Eβ), so that for
t → +∞∫

dα g(α)�+
α exp(−i Eαt/�) →

∫
dα g(α)�α exp(−i Eαt/�)

− 2π i
∫

dα
∫

dβ g(α) exp(−i Eαt/�)
(
�β, V�+

α

)
δ(Eα − Eβ)�β.

(8.1.9)

As remarked in the previous paragraph, the state �+
α looks at t → +∞ like the

superposition
∫

dβ Sβα�β , so from Eq. (8.1.9) we have

Sβα = δ(β − α)− 2π iδ(Eα − Eβ)Tβα, (8.1.10)

where

Tβα ≡
(
�β, V�+

α

)
. (8.1.11)

We have chosen the states �α to be orthonormal, and it follows then from
Eq. (8.1.6) that the “in” and “out” states are also orthonormal. This is fairly
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8.1 The S-Matrix 285

obvious from the condition (8.1.5), but we can also give a more direct proof. We

can evaluate the matrix element
(
�±
β , V�±

α

)
by using Eq. (8.1.6) in either the

right or left side of the scalar product. The results must be equal, so (using the
fact that H0 and V are Hermitian)(

�±
β , V�α

)
+
(
�±
β , V (Eα − H0 ± iε)−1V�±

α

)
=
(
�β, V�±

α

)
+
(
�±
β , V (Eβ − H0 ∓ iε)−1V�±

α

)
. (8.1.12)

We use the trivial identity

(Eα − H0 ± iε)−1 − (Eβ − H0 ∓ iε)−1 = − Eα − Eβ ± 2iε

(Eα − H0 ± iε)(Eβ − H0 ∓ iε)

so that, dividing by Eα − Eβ ± 2iε,

−
⎡
⎣

(
�α, V�±

β

)
Eβ − Eα ± 2iε

⎤
⎦

∗

−
(
�β, V�±

α

)
Eα − Eβ ± 2iε

=
(
�±
β , V (Eβ − H0 ∓ iε)−1(Eα − H0 ± iε)−1V�±

α

)
.

The only important thing about ε is that it is a positive infinitesimal, so we may
as well replace 2ε here with ε. According to Eq. (8.1.6), this tells us that

−
(
�α, [�±

β −�β]
)∗ −

(
�β, [�±

α −�α]
)

=
(
[�±

β −�β], [�±
α −�α]

)
,

and therefore (
�±
β ,�

±
α

)
=
(
�β,�α

)
= δ(α − β). (8.1.13)

By taking the scalar product of Eq. (8.1.8) with �−
β , we have now

Sβα =
(
�−
β ,�

+
α

)
. (8.1.14)

Thus Sβα is the probability amplitude that a state that is arranged to look at
t → −∞ like the free-particle state �α will look when measurements are made
at t → ∞ like the free-particle state �β .

Because Sβα is the matrix of scalar products of two complete orthonormal sets
of state vectors, it must be unitary. We can also show this directly by multiplying
Eq. (8.1.12) (for “in” states) with δ(Eα − Eβ), from which we learn that

δ(Eα − Eβ)
(

T ∗
αβ − Tβα

)
= 2iεδ(Eα − Eβ)

∫
dγ

T ∗
γβTγα

(Eα − Eγ )2 + ε2
.

For infinitesimal ε the function ε/(x2 +ε2) is negligible away from x = 0, while
its integral over all x is π , so in any integral it can be replaced with πδ(x). Multi-
plying with −2iπ , replacing δ(Eα−Eβ)δ(Eα−Eγ )with δ(Eβ−Eγ )δ(Eα−Eγ ),
and recalling Eq. (8.1.10), we have then
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286 8 General Scattering Theory

−[Sβα−δ(α−β)]−[S∗
αβ−δ(α−β)] =

∫
dγ [Sγβ−δ(β−γ )]∗[Sγα−δ(α−γ )]

or in other words ∫
dγ S∗

γβSγα = δ(α − β). (8.1.15)

In matrix language, S†S = 1, where as usual † denotes the transpose of the
complex conjugate.

If α and β were discrete states instead of members of a continuum, the unitar-
ity of the S-matrix would yield the result that the total probability

∑
β |Sβα|2 is

unity. The physical implications of unitarity in the real world, where these states
form a continuum, will be discussed in Section 8.3.

∗ ∗ ∗ ∗ ∗
The distinction between “in” and “out” states is contained in the sign of the

±iε term in the denominator in the Lippmann–Schwinger equation (8.1.6). To
make this a bit less abstract, let’s take a look at what the wave function of “out”
states looks like in the case studied in Chapter 7, a non-relativistic particle of
mass μ and momentum �k being scattered by a real local potential V (x). We
saw in Section 7.2 that the coordinate-space wave scattering function ψ+

k (x)
satisfies the integral equation (7.2.3):

ψ+
k (x) = (2π�)−3/2eik·x +

∫
d3 y G+

k (x − y)V (y)ψ+
k (y), (8.1.16)

where G+
k (x − y) is a Green function given by Eq. (7.2.4):

G+
k (x − y) =

(
�x, [E(k)− H0 + iε]−1�y

)
= −2μ

�2

1

4π |x − y|e
ik|x−y|, (8.1.17)

and we are now including a superscript “+” to make clear that this refers only to
“in” states. For “out” states, the wave function instead satisfies

ψ−
k (x) = (2π�)−3/2eik·x +

∫
d3 y G−

k (x − y)V (y)ψ−
k (y), (8.1.18)

where G−
k (x − y) is a different Green function

G−
k (x − y) =

(
�x, [E(k)− H0 − iε]−1�y

)
. (8.1.19)

Comparison of Eqs. (8.1.17) and (8.1.19) shows that

G−
k (x − y) = G+∗

k (y − x) = −2μ

�2

1

4π |x − y|e
−ik|x−y|. (8.1.20)

Hence the solution of Eq. (8.1.18) is simply

ψ−
k (x) = ψ+∗

−k(x). (8.1.21)
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8.2 Rates 287

In particular, in place of Eq. (7.2.5), the asymptotic form of the “out” space wave
function for large |x| is

ψ−
k (x) → (2π�)−3/2

[
eik·x + f ∗

−k(x̂)e
−ikr/r

]
, (8.1.22)

with r ≡ |x|.

8.2 Rates

The S-matrix given by Eq. (8.1.10) evidently conserves energy. Even where the
states α and β are different, Sβα is proportional to δ(Eα − Eβ). Also, the sym-
metry of invariance under spatial translations tells us that the Hamiltonian H
commutes with the momentum operator P, and since H0 evidently commutes
with P, so does V ; it follows then that Tβα and Sβα are proportional also to a
three-dimensional delta function δ3(Pα − Pβ), where Pα and Pβ are the total
momenta of the states α and β. In the case where α and β are not identical
states, we can write

Sβα = δ(Eα − Eβ)δ
3(Pα − Pβ)Mβα, (8.2.1)

where Mβα is a smooth function of the momenta in the states α and β, containing
no delta functions.1 The presence of the delta functions in Eq. (8.2.1) poses an
immediate problem: in setting the probability for the transition α → β equal to
|Sβα|2, what are we to make of the squares of δ(Eα − Eβ) and δ3(Pα − Pβ)?

The easiest way to deal with this problem is to imagine that the system is
contained in a box of finite volume V , and that the interaction is turned on only
for a finite time T . One consequence is that the delta functions, which as shown
in Section 3.2 can be represented as

δ3(Pα − Pβ) ≡ 1

(2π�)3

∫
d3x ei(Pα−Pβ)·x/�,

δ(Eα − Eβ) ≡ 1

2π�

∫ ∞

−∞
dt ei(Eα−Eβ)t/�,

are instead replaced with

δ3
V (Pα − Pβ) ≡ 1

(2π�)3

∫
V

d3x ei(Pα−Pβ)·x/�,

δT (Eα − Eβ) ≡ 1

2π�

∫
T

dt ei(Eα−Eβ)t/�.

(8.2.2)

1 Strictly speaking, this is true only if no subsets of particles in the states α and β have identical total
momenta. This condition is necessary to rule out the possibility that the transition α → β involves
several distant reactions having nothing to do with each other, in which case Sβα would include several
factors of momentum-conservation delta functions, one for each separate reaction. This possibility does
not occur in the scattering of just two particles.
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288 8 General Scattering Theory

Then we have [
δ3

V (Pα − Pβ)
]2 = V

(2π�)3
δ3

V (Pα − Pβ), (8.2.3)

[
δT (Eα − Eβ)

]2 = T

2π�
δT (Eα − Eβ). (8.2.4)

Also, in using the square of S-matrix elements as transition probabilities, we
must take the states to be suitably normalized. In coordinate space, this means
that instead of giving a one-particle state �p of momentum p the wave function
(6.2.9) with continuum normalization,(

�x,�p

)
= eip·x/�

(2π�)3/2
,

we take it to be normalized so that the integral of its absolute-value squared over
the box is unity: (

�x,�
Box
p

)
= eip·x/�

√
V

.

That is, we define the box-normalized state as

�Box
p ≡

√
(2π�)3

V
�p. (8.2.5)

For multiparticle states a product of factors of
√
(2π�)3/V appears in the

relation between box-normalized and continuum-normalized states. Hence the
S-matrix elements between box-normalized states are

SBox
βα =

[
(2π�)3

V

](Nα+Nβ)/2

Sβα, (8.2.6)

where Nα and Nβ are the numbers of particles in the initial and final states,
respectively. Putting this together, we see that the probability of the transition
α → β is

P(α → β) = ∣∣SBox
βα

∣∣2
= T

2π�

[
(2π�)3

V

]Nα+Nβ−1

δT (Eα − Eβ)δ
3
V (Pα − Pβ)

∣∣Mβα

∣∣2 .
The transition rate is the transition probability divided by the time T during
which the interaction is acting, or

�(α → β) = P(α → β)

T

= 1

2π�

[
(2π�)3

V

]Nα+Nβ−1

δT (Eα − Eβ)δ
3
V (Pα − Pβ)

∣∣Mβα

∣∣2 .
(8.2.7)
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8.2 Rates 289

But this is still not what is generally measured. Equation (8.2.7) gives the rate
of transition to a single one of the possible final states. But in a large box, these
states are very close together. As we saw in Section 6.2, the number of one-
particle states in a volume d3 p of momentum space is V d3 p/(2π�)3, so the
rate for transitions into a range dβ of final states is

d�(α → β) = [V/(2π�)3]Nβ�(α → β) dβ

= 1

2π�

[
(2π�)3

V

]Nα−1 ∣∣Mβα

∣∣2 δ(Eα − Eβ)δ
3(Pα − Pβ) dβ,

(8.2.8)

where dβ is here the product of the d3 p factors for each particle in the state. (We
have dropped the subscripts V and T on the delta functions, since this formula
will always be used in the limit V → ∞ and T → ∞, where the delta functions
(8.2.2) become the ordinary delta functions.) This is our final general formula
for transition rates.

The factor (1/V )Nα−1 in Eq. (8.2.8) is just what should be expected on phys-
ical grounds. For Nα = 1, this factor is unity, so the rate of decay of a single
particle into some set β of particles is independent of the volume in which the
decay takes place

d�(α → β) = 1

2π�

∣∣Mβα

∣∣2 δ(Eα − Eβ)δ
3(Pα − Pβ) dβ, (8.2.9)

as one would expect. For Nα = 2 this factor is 1/V , so the rate of producing the
final state β in the collision of two particles is proportional to the density 1/V of
either particle at the position of the other, again as would be expected. Since this
is a rate, it should actually be proportional to the rate per area uα/V at which
the beam of one of the particles strikes the other, where uα is the relative speed
of the two particles. The coefficient of uα/V in the transition rate d�(α → β)

is the differential cross section

dσ(α → β) ≡ d�(α → β)

uα/V
= (2π�)2

uα

∣∣Mβα

∣∣2 δ(Eα − Eβ)δ
3(Pα − Pβ) dβ.

(8.2.10)
We will mostly work in the center-of-mass frame, in which the two particles

have equal and opposite momenta – say, p and −p – in which case the relative
velocity is

u = |p|c2

E1
+ |p|c2

E2
= |p|

μ
, μ ≡ E1 E2

c2(E1 + E2)
, (8.2.11)

with

E1 =
√

p2c2 + m1c4, E2 =
√

p2c2 + m2c4.

In the non-relativistic case, where E 
 mc2, the quantity μ is the familiar
reduced mass m1m2/(m1 + m2).
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290 8 General Scattering Theory

There are even physically important collision processes with three particles in
the initial state, such as the first step e− +p+p → d+ν in the chain of reactions
that gives heat to the Sun. The rates of such reactions are naturally proportional
to the product of the densities of two of the particles at the position of the third,
or 1/V 2.

It is still necessary to explain how to deal with the factor δ(Eα − Eβ) ×
δ3(Pα − Pβ) dβ in Eqs. (8.2.8)–(8.2.10). For two particles in the final state, this
factor is just proportional to the differential element of solid angle. Let us work
in the center-of-mass frame, in which the total momentum of the initial state
vanishes. Then if the final state consists of two particles of momenta p1 and p1

and energies E1 and E2, this factor is

δ3(p1 + p2)δ(E1 + E2 − E) d3 p1 d3 p2 = δ(E1 + E2 − E)p2
1 dp1 d�1

= p2
1 d�1

|∂(E1 + E2)/∂p1|
= μp1 d�1, (8.2.12)

where μ is given by Eq. (8.2.11). In the final expression, p1 is the momentum
fixed by energy conservation, the solution of the equation E1 + E2 = E . (In

deriving this result, we use the fact that δ
(

f (p)
)

dp = 1/| f ′(p)|, where f ′(p)

is evaluated at the value of p where f (p) = 0.)
For instance, according to Eq. (8.2.9), the rate of decay of a single particle

into two particles is

d� = 1

2π�

∣∣Mβα

∣∣2 μβ pβ d�β, (8.2.13)

and Eq. (8.2.10) gives the differential cross section for a transition to a
two-particle final state in the collision of two particles in the center-of-mass
frame as

dσ(α → β) = (2π�)2

uα

∣∣Mβα

∣∣2 μβ pβ d�β = (2π�)2

(
pβ
pα

)
μαμβ

∣∣Mβα

∣∣2 d�β.

(8.2.14)
For the purpose of comparison with the results of the previous chapter, we

note that in the case of elastic scattering of a non-relativistic particle by a
fixed scattering center, there is no momentum-conservation delta function in the
relation (8.2.1), which here gives

Sk′,k = δ(E(k ′)− E(k))Mk′,k, (8.2.15)

where k and k′ are the initial and final wave numbers, and we are assuming here
that k′ 	= k. Comparing this with Eqs. (8.1.10) and (8.1.11) gives

Mk′,k = −2π i
(
�k′, V�+

k

)
= −2π i

∫
d3x (2π�)−3/2e−ik′·xV (x)ψk(x).

(8.2.16)
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8.3 The General Optical Theorem 291

Then Eq. (7.2.6) gives the relation between the scattering amplitude (in a slightly
different notation) and the M-matrix element:

f (k → k′) = −2π�iμMk′,k. (8.2.17)

Here μβ = μα ≡ μ and pα = pβ , so in this case Eq. (8.2.14) gives the
differential cross section dσ = | f |2 d�, as found in Section 7.2.

8.3 The General Optical Theorem

We now take up an important consequence of the unitarity of the S-matrix. Equa-
tion (8.2.1) applies only to the case of a reaction in which the states α and β are
different; more generally we have

Sβα = δ(α − β)+ δ(Eα − Eβ)δ
3(Pα − Pβ)Mβα. (8.3.1)

The condition of unitarity reads

δ(α − β) =
∫

dγ S∗
γβSγα

= δ(α − β)+ δ(Eα − Eβ)δ
3(Pα − Pβ)

[
Mβα + M∗

αβ

]
+
∫

dγ M∗
γβMγαδ(Eγ − Eβ)δ

3(Pγ − Pβ)δ(Eγ − Eα)δ
3(Pγ − Pα)

and so, for Pβ = Pα and Eβ = Eα,

0 = Mβα + M∗
αβ +

∫
dγ M∗

γβMγαδ(Eγ − Eα)δ
3(Pγ − Pα). (8.3.2)

This is particularly useful in the case α = β. In this case the last term of
Eq. (8.3.2) is proportional to the total rate for all reactions with initial state α,
which is given by Eq. (8.2.8) as

�α ≡
∫

dγ �(α → γ )

= 1

2π�

[
(2π�)3

V

]Nα−1 ∫ ∣∣Mγα

∣∣2 δ(Eα − Eγ )δ
3(Pα − Pγ ) dγ. (8.3.3)

Thus in the case α = β, Eq. (8.3.2) may be written

Re Mαα = −π�

[
V

(2π�)3

]Nα−1

�α. (8.3.4)

This is the most general form of the optical theorem.
In the special case of a two-particle state α, Eq. (8.3.4) becomes

Re Mαα = − π�

(2π�)3
uασα, (8.3.5)
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292 8 General Scattering Theory

where uα is the relative velocity, and σα = �α/(uα/V ) is the total cross section
for all possible results of the collision of the two particles. Using Eq. (8.2.17),
the imaginary part of the forward scattering amplitude is then

Im f (kα → kα) = −2π�μα Re Mαα = μαuα
4π�

σα = kα
4π

σα, (8.3.6)

which is the original optical theorem, derived in Section 7.3 for the special case
of potential scattering.

8.4 The Partial Wave Expansion

By using rotational invariance together with unitarity, we can derive a represen-
tation of the S-matrix that is much like the expression of the scattering amplitude
in terms of phase shifts in the previous chapter, but now in a much more general
context, including inelastic reactions and particles with spin.

We must first see how to express two-particle states �p1,σ1;p2,σ2 with momenta
p1 and p2, spins s1 and s2, and spin 3-components σ1 and σ2, in terms of states
of definite total energy E , total momentum P, total angular momentum J , total
angular-momentum 3-component M , orbital angular momentum �, and total
spin s. Let us define

�P,E,J,M,�,s,n ≡
∫

d3 p1
1√
μ|p1|δ(E − E1 − E2)

×
∑

σ1σ2σm

Y m
� ( p̂1)Cs1s2(sσ ; σ1σ2)Cs�(J M; σ m)�p1,σ1;P−p1,σ2;n.

(8.4.1)

Here n is a compound index, labeling the particle types, including their
masses m1 and m2 and spins s1 and s2; Y m

� is the spherical harmonic
described in Section 2.2; the Cs are the Clebsch–Gordan coefficients described
in Section 4.3; and the Ei are the energies

E1 ≡
√

m2
1c4 + p2

1c4, E2 ≡
√

m2
2c4 + (P − p1)2c4.

We will concentrate here on the center-of-mass system, for which P = 0. In this
case μ is the reduced mass defined by Eq. (8.2.11). The idea of the definition
(8.4.1) is that the two spins add up to a total spin s with 3-component σ , and
in the center-of-mass frame with P = 0, the total spin and the orbital angular
momentum add up to a total angular momentum J with 3-component M . As
we will now see, the factor (μ|p1|)−1/2 is inserted to give the states (8.4.1) a
simple norm.
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8.4 The Partial Wave Expansion 293

The states �p1,σ1;p2,σ2;n are taken to have the conventional continuum
normalization(
�p′

1,σ
′
1;p′

2,σ
′
2;n′,�p1,σ1;p2,σ2;n

)
= δn′nδ

3(p′
1 − p1)δ

3(p′
2 − p2)δσ ′

1σ1δσ ′
2σ2 . (8.4.2)

Let us check the normalization of the states (8.4.1). In the case of interest here,
where one of these states is taken to have zero total momentum, the scalar
product of these states is

(
�P′,E ′,J ′,M ′,�′,s′,n′,�0,E,J,M,�,s,n

)
= δn′nδ

3(P′)δ(E ′ − E)
∫

d3 p1

μ|p1|
× δ(E1 + E2 − E)

∑
σ1σ2m′mσ ′σ

Y m′
�′ ( p̂1)

∗Y m
� ( p̂1)

× Cs1s2(s
′σ ′; σ1σ2)Cs′�′(J ′M ′; σ ′ m ′)Cs1s2(sσ ; σ1σ2)Cs�(J M; σ m).

(8.4.3)

Using the defining property of the delta function, we have (for P = 0)∫ ∞

0
p2

1 dp1 δ(E1 + E2 − E) = p2
1

|(∂/∂p1)(E1 + E2)| = p1 E1 E2/Ec2 = μp1,

where here p1 is the solution of the energy-conservation equation E1 + E2 = E ,

with E1 ≡
√

m2
1c4 + p2

1c2 and E2 ≡
√

m2
2c4 + p2

1c2. This is canceled by the
factor 1/μp1 in Eq. (8.4.3), which is why we put the square root of this factor in
the definition (8.4.1). Thus Eq. (8.4.3) becomes(

�P′,E ′,J ′,M ′,�′,s′,n′,�0,E,J,M,�,s,n

)
= δn′nδ

3(P′)δ(E ′ − E)

×
∑

σ1σ2m′mσ ′σ

∫
d2 p̂1 Y m′

�′ ( p̂1)
∗Y m

� ( p̂1)

× Cs1s2(s
′σ ′; σ1σ2)Cs′�′(J ′M ′; σ ′ m ′)Cs1s2(sσ ; σ1σ2)Cs�(J M; σ m) .

(8.4.4)

Next, we use the orthonormality properties of the spherical harmonics and
Clebsch–Gordan coefficients:∫

d2 p̂1 Y m′
�′ ( p̂1)

∗Y m
� ( p̂1) = δ�′�δm′m,∑

σ1σ2

Cs1s2(s
′σ ′; σ1σ2)Cs1s2(sσ ; σ1σ2) = δs′sδσ ′σ

and then ∑
σm

Cs�(J ′M ′; σ m)Cs�(J M; σ m) = δJ ′ J δM ′ M ,
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294 8 General Scattering Theory

so Eq. (8.4.4) becomes the desired result:(
�P′,E ′,J ′,M ′,�′,s′,n′,�0,E,J,M,�,s,n

)
= δn′nδ

3(P′)δ(E ′ − E)δs′sδ�′�δJ ′ J δM ′ M .

(8.4.5)
The advantage of using the states (8.4.1) as a basis is that for these states the

Wigner–Eckart theorem and energy and momentum conservation tell us that the
S-matrix can be expressed as

SP′,E ′,J ′,M ′,�′,s′,n′;0,E,J,M,�,s,n = δ3(P)δ(E ′ − E)δJ ′ J δM ′ M S J
n′�′s′;n�s(E), (8.4.6)

where S J is a matrix with discrete indices labeling its rows and columns. It
follows that in this basis, the matrix Mβα in Eq. (8.3.1) takes the form

M0,E,J ′,M ′,�′,s′,n′;0,E,J,M,�,s,n = δJ ′ J δM ′ M
[

S J (E)− 1
]

n′�′s′;n�s
. (8.4.7)

But to calculate cross sections, we need this matrix in the original basis of states
with definite momentum for each particle. To go over to the original basis, we
use Eqs. (8.4.1) and (8.4.2) to calculate the scalar product(
�p1,σ1;−p1,σ2,n,�P,E,J,M,�,s,n′

)
= δnn′√

μ|p1|δ
3(P)δ(E − E1 − E2)

×
∑
σm

Y m
� ( p̂1)Cs1s2(sσ ; σ1σ2)Cs�(J M; σ m).

(8.4.8)

Then Eq. (8.4.5) gives

�p1,σ1;−p1,σ2;n =
∫

d3 P
∫

d E

×
∑

J M�sn′

(
�P,E,J,M,�,s,n′,�p1,σ1;−p1,σ2;n

)
�P,E,J,M,�,s,n′

= 1√
μ|p1|

∑
J M�msσ

Y m
� ( p̂1)

∗Cs1s2(sσ ; σ1σ2)Cs�(J M; σ m)

×�0,E1+E2,J,M,�,s,n, (8.4.9)

and from Eq. (8.4.7) we have

Mp′
1,σ

′
1,−p′

1,σ
′
2,n

′;p1,σ1,−p1,σ2,n = 1√
μ′|p′

1|
1√
μ|p1|

×
∑
J M

∑
�′m′s′σ ′

Y m′
�′ ( p̂′

1)Cs′
1s′

2
(s ′σ ′; σ ′

1σ
′
2)Cs′�′(J M; σ ′ m ′)

×
∑
�msσ

Y m
� ( p̂1)

∗Cs1s2(sσ ; σ1σ2)Cs�(J M; σ m)
[

S J (E)− 1
]
�′,s′,n′;�,s,n

.

(8.4.10)
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We will choose a coordinate system in which the initial momentum p1 is in the
3-direction, and use the property of the spherical harmonic, that in this case

Y m
� ( p̂1) = δm0

√
2�+ 1

4π
, (8.4.11)

so that Eq. (8.4.10) simplifies slightly:

Mp′
1,σ

′
1,−p′

1,σ
′
2,n

′;p1,σ1,−p1,σ2,n = 1√
μ′|p′

1|
1√
μ|p1|

×
∑
J M

∑
�′m′s′σ ′

Y m′
�′ ( p̂′

1)Cs′
1s′

2
(s ′σ ′; σ ′

1σ
′
2)Cs′�′(J M; σ ′ m ′)

×
∑
�sσ

√
2�+ 1

4π
Cs1s2(sσ ; σ1σ2)Cs�(J M; σ 0)

[
S J (E)− 1

]
�′,s′,n′;�,s,n

.

(8.4.12)

This gives a complicated differential cross section, but the result becomes
much simpler if we integrate over the direction of the final momentum, sum over
final spin 3-components, and average over initial spin 3-components. According
to Eq. (8.2.14), the total cross section for the transition n → n′ when spins are
not observed is

σ(n → n′; E) = (2π�)2μμ′

(2s1 + 1)(2s2 + 1)

(
p′

1

p1

)

×
∑

σ1σ2σ
′
1σ

′
2

∫
d�′

1

∣∣∣Mp′
1,σ

′
1,−p′

1,σ
′
2,n

′;p1,σ1,−p1,σ2,n

∣∣∣2 . (8.4.13)

The sum over J , M , �′, m ′, s ′, σ ′, �, s, σ in one factor of the M-matrix in
Eq. (8.4.12) is accompanied with a sum over independent variables J , M , �

′
,

m ′, s ′, σ ′, �, s, σ in the other factor of the M-matrix, but these double sums
collapse back to single sums if in turn we use the following relations in the
order listed: ∫

Y m′
�′ ( p̂′

1)Y
m′
�
′ ( p̂′

1)
∗ d�′

1 = δ
�′�′δm′m′, (8.4.14)∑

σ ′
1σ

′
2

Cs′
1s′

2
(s ′σ ′; σ ′

1σ
′
2)Cs′

1s′
2
(s ′, σ ′; σ ′

1σ
′
2) = δs′s′δσ ′σ ′, (8.4.15)

∑
σ ′m′

Cs′�′(J M; σ ′m ′)Cs′�′(J , M; σ ′m ′) = δJ JδM M , (8.4.16)

∑
σ1σ2

Cs1s2(sσ ; σ1σ2)Cs1s2(s σ ; σ1σ2) = δssδσσ , (8.4.17)

∑
Mσ

Cs�(J M; σ0)Cs�(J M; σ0) = 2J + 1

2�+ 1
δ��. (8.4.18)
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296 8 General Scattering Theory

After we have carried out this integral and these sums, Eq. (8.4.13) becomes

σ(n → n′; E) = π

k2(2s1 + 1)(2s2 + 1)

∑
J�′s′�s

(2J + 1)

∣∣∣∣(S J (E)− 1
)
�′s′n′,�sn

∣∣∣∣
2

,

(8.4.19)
where k ≡ p1/� is the initial wave number. For any matrix A,

∑
N ′ |AN ′ N |2 =

(A† A)N N . so the total cross section for producing two-particle final states is∑
n′
σ(n → n′; E) = π

k2(2s1 + 1)(2s2 + 1)

×
∑
J�s

(2J + 1)
[(

S J†(E)− 1
)(

S J (E)− 1
)]

�sn,�sn
.

(8.4.20)

This may be compared with the total spin-averaged cross section for all
reactions, given by the general optical theorem (8.3.5):

σtotal(n; E) = − 8π2
�

2μ

p1(2s1 + 1)(2s2 + 1)

∑
σ1σ2

Re Mp1,σ1,−p1,σ2,n;p1,σ1,−p1,σ2,n.

(8.4.21)
Using Eqs. (8.4.12) and (8.4.11) again, we then have

σtotal(n; E) = 2π

k2(2s1 + 1)(2s2 + 1)

∑
σ1σ2 J M�′s′σ ′�sσ

√
(2�+ 1)(2�′ + 1)

× Cs1s2(s
′σ ′; σ1σ2)Cs1s2(sσ ; σ1σ2)Cs′�′(J M; σ ′0)Cs�(J M; σ 0)

× Re
[
1 − S J (E)

]
�′s′n,�sn

.

Then Eqs. (8.4.17) and (8.4.18) (with primes instead of bars) give the total spin-
averaged cross section:

σtotal(n; E) = 2π

k2(2s1 + 1)(2s2 + 1)

∑
J�s

(2J + 1)Re
[
1 − S J (E)

]
�sn,�sn

.

(8.4.22)
In general, this is not equal to Eq. (8.4.20), because the sum in Eq. (8.4.20) runs
only over two-particle final states. The difference between (8.4.22) and (8.4.20)
is the cross section for reactions in which the final state contains three or more
particles:

σproduction(n; E) ≡ σtotal(n; E)−
∑

n′
σ(n → n′; E)

= π

k2(2s1 + 1)(2s2 + 1)

∑
J�s

(2J + 1)
[
1 − S J†(E)S J (E)

]
�sn,�sn

.

(8.4.23)
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8.4 The Partial Wave Expansion 297

It is only when the energy is too small to admit the production of extra particles
that the matrix S J (E) (which was defined in the space of two-particle states) is
unitary.

It sometimes happens that for a given n and E , the only final states that can be
produced from a set of initial states�0,E,J,M,�,s,n are the same states as the initial
ones. For instance, this is the case in the collision of two spinless particles with
energy too low to allow inelastic scattering, since we necessarily have � = J ,
and of course s = 0. The same is true (ignoring weak parity violation) in the
elastic scattering of particles with s1 = 0 and s2 = 1/2, as for instance pion–
nucleon scattering below the threshold for producing extra pions,2 since the two
states with � = J + 1/2 and � = J − 1/2 have opposite parity, and therefore
cannot be connected by non-zero elements of S J . In any such case, the assumed
vanishing of the production cross section (8.4.23) and the vanishing of S�′s′n′,�sn

unless �′ = �, s ′ = s, and n′ = n tells us that

1 = [
S J†(E)S J (E)

]
�sn,�sn

=
∣∣∣∣[S J (E)

]
�sn,�sn

∣∣∣∣
2

, (8.4.24)

and so in these cases we can write[
S J (E)

]
�′s′n′,�sn

= exp(2iδJ�sn(E)) δ�′�δs′sδn′n, (8.4.25)

where δJ�sn(E) is a real quantity, known (by analogy with its appearance in
potential scattering) as the phase shift. Using this in Eq. (8.4.19) gives the cross
section (which is here the total cross section)

σ(n → n; E) = 4π

k2(2s1 + 1)(2s2 + 1)

∑
J�s

(2J + 1) sin2
(
δJ�sn(E)

)
. (8.4.26)

This is a generalization of the corresponding result (7.5.13) for potential scat-
tering, but now applicable to the case of particles with spin, or with relativistic
velocities, or interactions more complicated than local potentials.

More generally, Eq. (8.4.23) tells us that
[
S J†(E)S J (E)

]
�sn,�sn

is at most
unity, so in general∣∣∣∣[S J (E)

]
�sn,�sn

∣∣∣∣
2

≤ [
S J†(E)S J (E)

]
�sn,�sn

≤ 1. (8.4.27)

We can if we like write[
S J (E)

]
�sn,�sn

≡ exp(2iδJ�sn(E)) , (8.4.28)

but then in general Im δJ�sn(E) ≥ 0.

2 Strictly speaking, these remarks apply only to π+p or π−n scattering, since for the other cases we have
inelastic reactions such as π−p ↔ π0n. These other cases can be treated in the same way by taking
advantage of the conservation of isotopic spin as well as total angular momentum. That is, we have
phase shifts for states with definite J , �, and total isospin T , with T = 1/2 or T = 3/2.
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298 8 General Scattering Theory

We can use this formalism to get a good insight into the behavior of the var-
ious cross sections at high energy. If the energy is so large that the wavelength
h/p is much smaller than the characteristic radius R of the colliding particles –
that is, k R 
 1, where k = p/� – then it is plausible to invoke a classical
picture of the scattering.

Suppose that two hadrons, whose cross sections are disks of radius R1 and
R2, approach each other with momenta p1 and −p1 parallel to and at distances
b1 and b2 from some central line. Classically, the total angular momentum is
�� = |p1|b1+|p1|b2. The hadrons will plow into each other if R1+R2 ≥ b1+b2,
that is, if � ≤ k R, where k = |p1|/� and R = R1 + R2. We suppose that in this
case the particles collide destructively, with no chance of a transition �sn → �sn
in which nothing happens, while for � ≥ k R, there is no collision. That is, we
assume that

S J
� s n, � s n =

{
0, � < k R,
1, � > k R.

(8.4.29)

Together with Eq. (8.4.22), this gives

σtotal(n; E) → 2π

k2(2s1 + 1)(2s2 + 1)

k R∑
�=0

∑
J,s

(2J + 1). (8.4.30)

The values of J in this sum run from |� − s| to � + s. For k R 
 1 this sum is
dominated by large values of �, for which � 
 s, and hence 2J + 1 
 2�. The
number of values of J for � 
 s is 2s + 1. Further, the sum over s runs from
s = |s1 − s2| to s = s1 + s2, so the remaining sum over s is

s1+s2∑
s=|s1−s2|

(2s + 1) = 2

[
(s1 + s2)(s1 + s2 + 1)

2
− (|s1 − s2| − 1)|s1 − s2|

2

]

+ s1 + s2 − |s1 − s2| + 1

= (2s1 + 1)(2s2 + 1).

Finally,
k R∑
�=0

2� = k R(k R + 1) → (k R)2.

Putting this together, Eq. (8.4.30) now gives

σtotal(n; E) → 2πR2. (8.4.31)

The factor 2 in Eq. (8.4.31) may be surprising. One might have expected
that high-energy particles in the center-of-mass frame experience some sort of
reaction if and only if they approach each other along lines separated by no
more than a distance R, the range of their interaction. In that case, the asymptotic
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8.5 Resonances Revisited 299

value of the total cross section would be πR2, not 2πR2. The larger cross section
may be attributed to quasi-elastic scattering, with two particles in the final as
well as the initial state, due to the diffraction of particles that approach each
other at distances a little larger than R. We can estimate the relative contribution
of quasi-elastic scattering and particle production if we strengthen Eq. (8.4.29),
assuming that

S J
�′s′n′,�sn =

{
0, � < k R,
δ�′�δs′sδn′n, � > k R.

(8.4.32)

In this case, Eq. (8.4.23) gives

σproduction(n; E) → π

k2(2s1 + 1)(2s2 + 1)

k R∑
�=0

∑
J,s

(2J + 1) = πR2. (8.4.33)

The result that σproduction(n; E) → πR2 is not surprising. Particles that collide
well within the effective area πR2 cannot merely be scattered quasi-elastically,
but rather, like colliding glass spheres, must produce a shower of other particles.

The cross sections for strong-interaction scattering processes such as proton–
proton scattering3 actually do become nearly constant at very high energy. There
is a slow growth of the cross sections, which may be attributed to a slow increase
in R. We can guess that R is the distance at which a potential like the Yukawa
potential, V ∝ e−r/RY /r , falls below the kinetic energy �

2k2/2μ, which for
very large k gives R 
 RY ln k. The cross sections thus are expected to grow
as ln2 k, the fastest growth allowed under very general considerations.4 Per-
haps surprisingly, this all agrees pretty well with observation.5 Measurements
of proton–proton scattering at the Large Hadron Collider at 7 TeV and in cos-
mic rays at 57 TeV show that the cross sections really do increase as ln2 k, while
the ratio σproduction/σtotal approaches 0.491 ± 0.021, in agreement with the ratio
of Eqs. (8.4.33) and (8.4.31).

8.5 Resonances Revisited

In Section 7.6 we considered the scattering of a spinless non-relativistic particle
by a potential with a high thick barrier surrounding an inner region in which the
potential is much smaller. We found in Eq. (7.6.13) that the scattering amplitude
is proportional to (E − ER + i�/2)−1, where � is exponentially small, and ER is
the energy (up to terms of order �) of a state that would be a stable bound state
if the barrier were infinitely high or thick. By considering the time-dependence

3 In proton–proton collisions there is no appreciable transition to other two-particle states, so here we
do not need to distinguish between the “production” cross section (8.4.33) and the total inelastic cross
section.

4 M. Froissart, Phys. Rev. 135, 1053 (1961).
5 M. M. Block and F. Halzen, Phys. Rev. Lett. 107, 212002 (2011).
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300 8 General Scattering Theory

of a wave packet in Eq. (7.6.12), we were able to interpret the quantity �/� as
the decay rate of this unstable state.

This argument can be turned around and generalized. There are several pos-
sible reasons for the appearance of nearly stable states. One is the existence of
a barrier, like that treated in Section 7.6, through which a particle must tunnel
for the state to decay. This is the case for instance in nuclear alpha decay, such
as the radioactive decay of 235U or 238U, in which the alpha particle must tun-
nel through a Coulomb potential due to 90 protons. A nearly stable state can
also occur when the decay of the state is only possible because of an interaction
that is intrinsically weak. For instance, Eq. (6.5.13) shows that the rate �/� at
which atomic states decay by emission of a single photon is typically of order
e2ω3a2/c3

�, where a is a characteristic atomic size, andω ≈ e2/a� is the photon
frequency, of the same order as the frequency with which electrons classically
go around their orbits. The ratio of the decay rate to the orbital frequency is then
�/�ω ≈ e6/�3c3, which is very small because e2/�c 
 1/137 is small. It is also
possible for a state of a large number of particles to be nearly stable because
energy conservation allows the decay only if, through some fluctuation, much
of the energy of the state is concentrated on a single particle. Whatever the rea-
son for the existence of a nearly stable state, in all such cases the existence of a
state with energy ER and decay rate �/� implies the presence in the S-matrix of
a factor (E − ER + i�/2)−1, so that the probability of the reaction continuing
for a time t will be proportional to6

∣∣∣∣
∫ ∞

−∞
exp(−i Et/�) d E

E − ER + i�/2

∣∣∣∣
2

= 4π2 exp(−�t/�). (8.5.1)

The behavior of S-matrix elements near the resonance is largely determined
by the unitarity of the S-matrix, whatever the mechanism that is responsible
for the nearly stable state. To analyze this, it is helpful to generalize the basis
of states introduced in the previous section. For a given total energy E and
total momentum P, the space occupied by the allowed individual 3-momenta
has finite volume, so it is always possible to expand any multiparticle state
�p1,p2,p3,... in a series of states �E,P,J,M,N , analogous to the expansion (8.4.9) in
the two-particle case. Here E , P, J , and M are again the total energy, momen-
tum, angular momentum, and angular-momentum 3-component, and N is a
discrete index, a generalization of the compound index �, s, n for two-particle
states. In this basis we can write general S-matrix elements in the center-of-mass
frame as

6 This is calculated as usual by closing the contour of integration with a large semi-circle in the lower half
plane, and picking up the contribution of the pole at E = ER − i�/2. Of course, the actual integrand
involves other factors, including the amplitude of the wave packet, and these may also have poles in the
lower half plane, but for sufficiently narrow resonances, these poles will all be at a distance below the
real axis greater than �/2, and therefore will not contribute at very late times.
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8.5 Resonances Revisited 301

SE ′ P′ J ′ M ′ N ′ , E 0 J M N = δ(E ′ − E)δ3(P′)δJ ′ J δM ′ MS J
N ′ N (E). (8.5.2)

(The fact that the matrix element depends on M only through the factor δM ′ M
follows from the results of Section 4.2.) If these states are normalized so that(

�E ′,P′,J ′ M ′ N ′,�E,P,J M N

)
= δ(E ′ − E)δ3(P′ − P)δJ ′ J δM ′ MδN ′ N , (8.5.3)

then unitarity tells us that the matrix S J (E) must be unitary

S J†(E)S J (E) = 1, (8.5.4)

where 1 is of course here the matrix with 1N ′ N = δN ′ N .
Now, suppose that near the resonance the S J matrix takes the form

S J (E) 
 S(0) + R
E − ER + i�/2

, (8.5.5)

where S(0) and R are constant matrices. We don’t keep the label J on S(0)

and R, because Eq. (8.5.5) is supposed to hold only for one value of J , the
total angular momentum of the resonant state. (The term S(0) is analogous to
exp(2iδ), where δ is the slowly varying non-resonant phase shift in Eq. (7.6.8).)

The matrix S J†(E)S J (E) − 1 is a sum of terms proportional to (E −
ER)/[(E − ER)

2 + �2/4], to 1/[(E − ER)
2 + �2/4], and to a constant. Since

these three functions of E are independent, the unitarity relation (8.5.4) requires
the coefficients of each term to vanish. The constant term gives

S(0)†S(0) = 1 ; (8.5.6)

the terms proportional to (E − ER)/[(E − ER)
2 + �2/4] give

S(0)†R + R†S(0) = 0 ; (8.5.7)

and the terms proportional to 1/[(E − ER)
2 + �2/4] give

− i�

2
S(0)†R + i�

2
R†S(0) + R†R = 0. (8.5.8)

These conditions can be made more perspicuous by introducing another constant
matrix A, such that

R = −i�AS(0), (8.5.9)

which we know is possible because Eq. (8.5.6) shows that S(0) has an inverse.
Then Eqs. (8.5.7) and (8.5.8) tell us that

A† = A, A2 = A. (8.5.10)

Because A is Hermitian, it can be diagonalized – that is, it can be expressed as
uDu†, where u is a unitary matrix and D is a diagonal matrix. Further, because
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302 8 General Scattering Theory

A2 = A, the elements of D on the diagonal are all either zero or one. That is,
we can write

AN ′ N =
∑

r

uN ′r u∗
Nr , (8.5.11)

the sum here running over all the eigenvalues of A that are one rather than zero.
Because u is a unitary matrix, its elements uNr satisfy a normalization condition∑

N

u∗
Nr uNr ′ =

[
u†u

]
rr ′ = δrr ′ . (8.5.12)

Equations (8.5.5), (8.5.9), and (8.5.11) then give the matrix S(E) near a
resonance as

S J (E)N ′ N 

∑
N ′′

[
δN ′ N ′′ − i�

E − ER + i�/2

∑
r

uN ′r u∗
N ′′r

]
S(0)

N ′′ N . (8.5.13)

So far, this has been quite general. To go further, we will now make the sim-
plifying assumption that the scattering near the resonance is entirely dominated
by the resonance, so that S(0) 
 1, and Eq. (8.5.13) therefore gives

S J (E)N ′ N 
 δN ′ N − i�

E − ER + i�/2

∑
r

uN ′r u∗
Nr . (8.5.14)

We will further assume that the only degeneracy of the resonant state is that
associated with the 2J + 1 values of the 3-component M of the total angular
momentum. The index r therefore takes only one value, and can henceforth be
dropped. Then Eq. (8.5.14) becomes

S J (E)N ′ N 
 δN ′ N − i�

E − ER + i�/2
uN ′u∗

N , (8.5.15)

and the normalization condition (8.5.12) is here∑
N

|uN |2 = 1. (8.5.16)

Equation (8.5.15) shows that the probability of the resonant state decaying into
channel N is proportional to |uN |2, while Eq. (8.5.16) then tells us that the con-
stant of proportionality is unity – that is, |uN |2 is the probability of this decay,
known as the branching ratio.

In particular, for basis states containing just two particles, we can take N to be
the compound index �, s, n, where � is the orbital angular momentum, s is the
total spin, and n labels the species of the two particles, including their masses
and spins. In the notation of Section 8.4, Eq. (8.5.14) gives for two-particle states

S J (E)�′s′n′,� s n 
 δ�′�δs′sδn′n − i�

E − ER + i�/2
u�′s′n′u∗

� s n, (8.5.17)
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8.6 Old-Fashioned Perturbation Theory 303

and Eq. (8.5.16) gives ∑
� s n

|u� s n|2 +
∑

≥3 particles

|uN |2 = 1. (8.5.18)

Then Eq. (8.4.19) gives the cross section for the transition n → n′ (summed
over final spins, and averaged over initial spins) at energies near the resonance,

σ(n → n′; E) = π(2J + 1)

k2(2s1 + 1)(2s2 + 1)

�n�n′

(E − ER)2 + �2/4
, (8.5.19)

where �n is the partial width

�n ≡ �
∑
�s

|u�sn|2 . (8.5.20)

This is a generalization of the Breit–Wigner formula (7.6.10) derived earlier for
the special case of potential scattering. Also, Eq. (8.4.22) gives the total cross
section (averaged over initial spins) for all reactions with an initial state n:

σtotal(n; E) = π(2J + 1)

k2(2s1 + 1)(2s2 + 1)

�n�

(E − ER)2 + �2/4
. (8.5.21)

Note that the ratio of the specific cross section (8.5.19) and the total cross section
(8.5.21) is simply

σ(n → n′; E)

σtotal(n; E)
= �n′

�
=
∑
�s

|u�sn′ |2. (8.5.22)

Whatever the final state, the probability of forming the resonant state in a colli-
sion process is the same, so Eq. (8.5.22) gives the branching ratio, the probability
that the resonant state decays into the specific two-body final state n′. According
to Eq. (8.5.18), the sum of these branching ratios is unity if the resonant state
decays only into two-particle states; otherwise the sum is less than unity. Finally,
since �/� is the total decay rate of the resonance, it follows that �n′/� is the rate
at which the resonant state decays into the specific final state n′.

8.6 Old-Fashioned Perturbation Theory

The Lippmann–Schwinger equation (8.1.6) allows an easy formal solution by
iteration:

�±
α = �α + (Eα − H0 ± iε)−1V�α

+ (Eα − H0 ± iε)−1V (Eα − H0 ± iε)−1V�α + · · · . (8.6.1)
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304 8 General Scattering Theory

This in turn yields a series for the S-matrix (8.1.10) in powers of the interaction,
which we shall write as

Sβα = δ(α − β)− 2π iδ(Eβ − Eα)

(
�β,

[
V + V G(Eα + iε)

]
�α

)
, (8.6.2)

where, for an arbitrary complex W ,

G(W ) = K (W )+ K 2(W )+ · · · , (8.6.3)

and

K (W ) ≡ (W − H0)
−1V . (8.6.4)

This is called “old-fashioned perturbation theory” because it has been super-
seded for most (but not all) purposes by the time-dependent perturbation theory
described in the next section. The first term in square brackets in Eq. (8.6.2)
provides the Born approximation discussed in Section 7.4.

A question naturally arises about the convergence of expansions such as
(8.6.3). This is easy to answer if K is a number; the series converges if and only
if |K | < 1. It is also easy to answer if K is a finite matrix; the series converges
if and only if every eigenvalue of K has an absolute value less than one. More
generally, the branch of mathematics known as functional analysis tells us that
operators with a property known as complete continuity can be approximated
with arbitrary precision by finite matrices. In consequence, if K is completely
continuous, then the geometric series K + K 2 + K 2 +· · · will converge if all the
eigenvalues of K are less than one in absolute value.7 Complete continuity has a
rather abstract definition,8 which would not be of use to us here. The important
point for us is that an operator K is completely continuous if (though not only
if ) it has a finite value for the quantity

τK ≡ Tr
[

K † K
]
, (8.6.5)

with the trace understood to mean the sum over all discrete indices and the
integral over all continuous indices of the diagonal elements of the operator.
Also, the eigenvalues λ of K all satisfy

|λ|2 ≤ τK . (8.6.6)

Hence the power series (8.6.3) converges if (but not only if) τK < 1.

7 These matters and their application to scattering theory are discussed by me in some detail, with ref-
erences to the original literature, in Lectures on Particles and Field Theory – 1964 Brandeis Summer
Institute in Theoretical Physics (Prentice-Hall, Englewood Cliffs, NJ, 1965), pp. 289–403.

8 An operator A is said to be completely continuous if for any infinite set of vectors �ν , which is bounded

in the sense that all norms
(
�ν,�ν

)
are less than some number M , there exists a subsequence �n for

which A�n is convergent, in the sense that for some vector �, the norm of A�n − � approaches zero
for n → ∞.
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8.6 Old-Fashioned Perturbation Theory 305

Clearly, to have any chance of writing Eq. (8.6.3) as a series in powers
of a kernel K with a finite value for τK , we must deal with the momentum-
conservation delta functions in matrix elements of the operator (W − H0)

−1V .
This is no problem for theories with one particle in a fixed potential, where
K involves no momentum-conservation delta function. It is also no problem for
two particles with no external potential. In the latter case we can define operators
V and K, by factoring out a delta function(

�β, V�α

)
≡ δ3(Pβ − Pα)Vβα,(

�β, (W − H0)
−1 V �α

)
≡ δ3(Pβ − Pα)Kβα(W ),

and rewrite Eqs. (8.6.2) and (8.6.3) as

Sβα = δ(α − β)− 2π iδ(Eβ − Eα)δ
3(Pβ − Pα)

[
V + VG(Eα + iε)

]
βα
,

where, for an arbitrary complex W ,

G(W ) = (W − H0)
−1V + (W − H0)

−1V(W − H0)
−1V + · · · .

Since the single momentum-conservation delta function for two-body scattering
has been factored out, the matrix elements of K ≡ (W − H0)

−1V will be smooth
functions, at least in the sense of containing no more delta functions. It is then
at least possible to have τK finite, depending on the energy and the details of the
potential.

It is more difficult to use the methods for problems involving three or more
particles. Three-particle matrix elements of the operator (W − H0)

−1V contain
terms in which any one of the three particles’ momenta is conserved, as well
as the sum of all three momenta. These terms represent the unavoidable pos-
sibility that two particles interact, leaving the third free. These delta functions
can’t simply be factored out of the problem, as they are not the same delta func-
tions in each term. There are complicated ways to deal with this in any theory
with a fixed number of particles, involving a rewriting of the series (8.6.3).9 But
these methods fail for theories, such as quantum field theories, with unlimited
numbers of particles.

For these reasons, we will limit ourselves here to the case of a single particle
in a fixed potential or the equivalent problem of two particles in the absence of
an external potential. In the two-particle case we can eliminate the problem of
the momentum-conservation delta functions by factoring out the delta function,
as described above. For the sake of simplicity, from now on we concentrate on

9 This was first worked out for the case of three particles by L. D. Faddeev, Sov. Phys. JETP 12, 1014
(1961); Sov. Phys. Doklady 6, 384 (1963); Sov. Phys. Doklady 7, 600 (1963); and independently for
arbitrary numbers of particles by S. Weinberg, Phys. Rev. B 133, 232 (1964).
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306 8 General Scattering Theory

the case of scattering of a single non-relativistic particle by a local (though not
necessarily central) potential V (x).

Whether with one particle or two, there still is a problem with the singularity
of the operator (W − H0)

−1 when W approaches real values in the spectrum of
H0. As noted by many authors, this can usually be dealt with by expanding in
powers of a symmetrized operator, defined in the one-particle case by

K (W ) ≡ V 1/2(W − H0)
−1V 1/2. (8.6.7)

The S-matrix (8.6.2) can be written as

Sβα = δ(α − β)− 2π i δ(Eβ − Eα)

(
�β,

[
V + V 1/2G(Eα + iε)V 1/2

]
�α

)
,

(8.6.8)
where, for an arbitrary complex W ,

G(W ) = K (W )+ K (W )2 + · · · . (8.6.9)

Using a coordinate representation, we can represent the operator (E+iε−H0)
−1

using Eq. (7.2.4)

(
�x′, (E + iε − H0)

−1�x

)
= −2μ

�2

eik|x′−x|

4π |x′ − x| , (8.6.10)

where μ is the particle mass (in the two-particle case it would be the reduced
mass), and k is the positive root of E = k2/2μ. The trace (8.6.5) for the operator
K is then

τK ≡ Tr
[

K (E + iε)† K (E + iε)
]

=
(

2μ

�2

)2 ∫
d3x d3x ′ V (x′)V (x)

1

16π2|x′ − x|2 . (8.6.11)

This is convergent if V (x) diverges no worse than |x|−2+δ for |x| → 0, and
vanishes at least as fast as |x|−3−δ for |x| → ∞ (with δ > 0 in both cases).
For instance, for the shielded Coulomb potential V (r) = −g exp(−r/R)/r , we
have τK = 2μ2g2 R2/�4. Thus the perturbation series for the S-matrix converges
for |g| < �

2/μR
√

2. But for the unshielded Coulomb potential R is infinite, and
this test for convergence does not work.

Similar techniques can be used to set limits on the binding energies of possible
bound states. For this purpose, we need an expansion of the operator [W −H ]−1,
known as the resolvent:

[W − H ]−1 = [W − H0]−1 +
[

K (W )+ K 2(W )+ · · ·
]
[W − H0]−1, (8.6.12)

where K (W ) is the unsymmetrized kernel (8.6.4). (We could of course write this
in terms of the symmetrized kernel V 1/2[W − H0]−1V 1/2, but this is unnecessary
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8.6 Old-Fashioned Perturbation Theory 307

here because [W − H0]−1 is non-singular for W = −B < 0.) The resolvent
must become singular when W equals the energy −B of a bound state below the
spectrum of H0, because for such an energy W − H annihilates the state vector
of the bound state. But at an energy outside the spectrum of H0, each term in
Eq. (8.6.12) is finite, so the singularity in the resolvent can only come from a
divergence of the series in powers of K (−B). Hence a bound state with energy
−B is impossible if τK (−B) < 1, where τK (−B) ≡ Tr

[
K (−B)† K (−B)

]
.

Using Eq. (8.6.10) with k = +i
√

2Bμ/�, for a local potential we have

τK (−B) =
(

2μ

�2

)2 ∫
d3x d3x ′ V 2(x)

exp
(
−2
√

2Bμ/�2|x′ − x|
)

16π2|x′ − x|2

=
(

2μ

�2

)3/2 1

8π
√

B

∫
d3x V 2(x). (8.6.13)

Hence it is only possible to have bound states with binding energies subject to
the bound

B ≤
(

2μ

�2

)3 [ 1

8π

∫
d3x V 2(x)

]2

. (8.6.14)

It sometimes happens that V itself is not small enough for transition ampli-
tudes to be calculated using perturbation theory, but it is possible to write

V = Vs + Vw, (8.6.15)

where Vs is strong, but cannot by itself cause a given transition α → β, while
Vw can cause this transition, and is sufficiently weak that we can calculate the
amplitude for α → β to first order in Vw, though we need to include all orders in
Vs. For instance, in nuclear beta decay, the strong nuclear interaction and even
the electromagnetic interaction cannot be neglected, but they cannot themselves
change neutrons into protons or vice versa, or create electrons and neutrinos.
The beta decay amplitude thus would vanish if the weak nuclear interaction
were absent, and since this interaction is indeed weak, the amplitude can be
calculated to first order in the weak interactions. In other contexts Vw might
be the electromagnetic interaction, as in nuclear gamma decay. In elementary
particle decay processes such as the decay of a K meson into two or three pions,
Vs is the strong force holding quarks and antiquarks together inside the meson,
while Vw is the weak force that allows quarks of one type to change into quarks
of another type.

To calculate transition amplitudes to first order in Vw, let us first define states
that would be “in” and “out” states if Vw were zero:

�±
sα = �α + (Eα − H0 ± iε)−1Vs�

±
sα. (8.6.16)
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308 8 General Scattering Theory

Then we can write Eq. (8.1.11) as

Tβα =
(
�β, V�+

α

)
=
(
[�−

sβ − (Eβ − H0 − iε)−1Vs�
−
sβ], V�+

α

)
=
(
�−

sβ, V�+
α

)
−
(
�−

sβ, Vs(Eα − H0 + iε)−1V�+
α

)
,

and therefore, using the Lippmann–Schwinger equation again,

Tβα =
(
�−

sβ, V�+
α

)
−
(
�−

sβ, Vs�
+
α )+

(
�−

sβ, Vs�α

)
=
(
�−

sβ, Vw�
+
α

)
+
(
�−

sβ, Vs�α

)
. (8.6.17)

This is most useful in the case mentioned earlier, where the process α → β

cannot take place in the absence of the weak interaction. In this case the last
term in Eq. (8.6.17) vanishes, and we have

Tβα =
(
�−

sβ, Vw�
+
α

)
. (8.6.18)

So far, this is exact. Since Eq. (8.6.18) contains an explicit factor Vw, to
first order in Vw we can ignore the difference between �+

α and �+
sα, and write

Eq. (8.6.18) as

Tβα 

(
�−

sβ, Vw�
+
sα

)
. (8.6.19)

This is known as the distorted-wave Born approximation.
For example, in nuclear beta decay, we can take Vs to be the sum of the strong

nuclear interaction and the electromagnetic interaction, while Vw is the weak
nuclear interaction. In this case �+

sα in Eq. (8.6.19) is just the state vector of the
original nucleus, while�−

sβ is the state vector of the final nucleus and the emitted
electron (or positron) and antineutrino (or neutrino). The neutrino or antineu-
trino does not have strong nuclear or electromagnetic interactions with the final
nucleus, while the electron or positron has electromagnetic but no strong nuclear
interactions with the final nucleus. In a coordinate representation, the state vec-
tor�−

sβ is proportional to the product of a plane wave function for the neutrino or
antineutrino, which does not concern us, and the two-particle wave function of
the electron or positron and final nucleus. The weak nuclear interaction acts only
when the electron or positron and the nucleus are in contact, so (at least for non-
relativistic electrons or positrons) the matrix element is proportional to the value
of the Coulomb wave function at zero separation, given by Eqs. (7.9.11) and
(7.9.10) as the quantity (7.9.15). The rate for beta decay therefore has a depen-
dence on the quantity ξ = ±Z ′e2me/�

2ke (where Z ′e is the charge of the final
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8.7 Time-Dependent Perturbation Theory 309

nucleus, and the sign is plus or minus for positrons and electrons, respectively)
proportional to10

F(ξ) = |�(1 + iξ)|2 exp(−πξ) = 2πξ

exp(2πξ)− 1
. (8.6.20)

The same factor appears in the low-energy cross sections for ν + N → e− + N′
and ν + N → e+ + N′.

For |ξ | � 1 the factor F is unity, indicating that there is neither enhancement
nor suppression of the process. For ξ � −1, this factor is 2π |ξ |, indicating
a mild enhancement. For ξ 
 1, F 
 2πξ exp(−2πξ), indicating a severe
suppression. This suppression is nothing but the effect of the positive potential
barrier discussed in Section 7.6.

8.7 Time-Dependent Perturbation Theory

The energy denominators in the old-fashioned perturbation theory discussed in
the previous section give this formalism several disadvantages. Because these
denominators depend on energy but not momentum, they obscure the Lorentz
invariance of relativistic theories, and because the denominators depend on the
energies of all the particles involved in a reaction, they obscure the independence
of the rates for processes happening far from each other. Both disadvantages
are avoided by describing the same perturbation series in a different formalism,
known as time-dependent perturbation theory.

To derive a formula for the S-matrix in time-dependent perturbation theory,
let us return to the defining condition (8.1.5) of “in” and “out” states. Using the
energy eigenvalue conditions (8.1.2) and (8.1.3), we can write Eq. (8.1.5) as

exp(−i Ht/�)
∫

dα g(α)�±
α

t→∓∞→ exp(−i H0t/�)
∫

dα g(α)�α. (8.7.1)

This can be abbreviated as

�±
α = �(∓∞)�α, (8.7.2)

where

�(t) ≡ ei Ht/�e−i H0t/�. (8.7.3)

10 In evaluating this, we use the reality property �(z)∗ = �(z∗) and the familiar recursion relation �(1 +
z) = z�(z) to write

|�(1 + iξ)|2 = �(1 + iξ)�(1 − iξ) = iξ�(iξ)�(1 − iξ),

and then evaluate this product using the classic formula

�(z)�(1 − z) = π/sinπ z.
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310 8 General Scattering Theory

The limits t → ∓∞ are really only well defined when Eq. (8.7.2) is multiplied
with a smooth wave-packet amplitude g(α) and integrated over α, but we can
understand the limit intuitively, by noting that H effectively becomes equal to
H0 at very early or very late times, when the colliding particles are far from each
other.

Using Eq. (8.1.14), we see that the S-matrix is

Sβα =
(
�−
β ,�

+
α

)
=
(
�β,�

†(+∞)�(−∞)�α

)
=
(
�β,U (+∞,−∞)�α

)
,

(8.7.4)

where

U (t, t ′) ≡ �†(t)�(t ′) = ei H0t/�e−i H(t−t ′)/�e−i H0t ′/�. (8.7.5)

To calculate U , we can write Eq. (8.7.5) as a differential equation,

d

dt
U (t, t ′) = − i

�
ei H0t/�[H − H0]e−i H(t−t ′)/�e−i H0t ′/� = − i

�
VI(t)U (t, t ′),

(8.7.6)
together with the initial condition

U (t ′, t ′) = 1, (8.7.7)

where

VI (t) ≡ ei H0t/�V e−i H0t/�, (8.7.8)

and of course V ≡ H − H0. The subscript I stands for “interaction picture,” a
term used to distinguish operators whose time-dependence is governed by the
free-particle Hamiltonian H0, in contrast to operators in the Heisenberg picture,
whose time-dependence is governed by the total Hamiltonian H , or operators in
the Schrödinger picture, which do not depend on time.

The differential equation (8.7.6) and initial condition (8.7.7) are equivalent to
an integral equation

U (t, t ′) = 1 − i

�

∫ t

t ′
dτ VI(τ )U (τ, t ′), (8.7.9)

which can be solved (at least formally) by iteration:

U (t, t ′) = 1 − i

�

∫ t

t ′
dτ VI (τ )

+
(

− i

�

)2 ∫ t

t ′
dτ1

∫ τ1

t ′
dτ2 VI (τ1)VI (τ2)+ · · · . (8.7.10)

We can rewrite this by introducing a time-ordered product,

T {VI(τ )} ≡ VI(τ ),

T {VI(τ1)VI(τ2)} ≡
{

VI(τ1)VI(τ2), τ1 > τ2,

VI(τ2)VI(τ1), τ2 > τ1,
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and in general

T {VI(τ1) . . . VI(τn)}
≡
∑

P

θ(τP1 − τP2)θ(τP2 − τP3) . . . θ(τP[n−1] − τPn)VI(τP1) . . . VI(τPn),

(8.7.11)

where the sum runs over all n! permutations of 1, 2, . . . , n into P1, P2, . . . , Pn,
and θ is the step function

θ(x) ≡
{

1, x > 0,
0, x < 0.

(8.7.12)

The product of step functions in Eq. (8.7.11) picks out the one term in the sum
for which the VI are time-ordered, with the VI with the latest argument first on
the left, the next-to-latest second from the left, and so on. When we integrate
Eq. (8.7.11) over all τi from t ′ to t , each of the n! terms gives just the integral
appearing in the nth-order term in Eq. (8.7.10), so

U (t, t ′) =
∞∑

n=0

1

n!
[
− i

�

]n ∫ t

t ′
dτ1 . . .

∫ t

t ′
dτn T {VI (τ1) . . . VI (τn)} , (8.7.13)

the n = 0 term being understood as the unit operator. Equation (8.7.4) then gives
the Dyson perturbation series11 for the S-matrix:

Sβα =
∞∑

n=0

1

n!
[
− i

�

]n ∫ ∞

−∞
dτ1 . . .

∫ ∞

−∞
dτn

×
(
�β, T {VI (τ1) . . . VI (τn)}�α

)
. (8.7.14)

It is straightforward to calculate each term in this series – we only need to calcu-
late the matrix element between free-particle states of the integral of a product of
interaction-picture operators whose time-dependence, governed by H0, is essen-
tially trivial. Of course, when we limit the sum over n to a finite number of
terms, the result may or may not be a good approximation.

This formula makes Lorentz invariance transparent in at least some theories.
For instance, if VI(t) = ∫

d3x H(x, t), where H is a scalar function of field
variables, then Eq. (8.7.14) gives

Sβα =
∞∑

n=0

1

n!
[
− i

�

]n ∫
d4x1 . . .

∫
d4xn

×
(
�β, T {H(x1) . . .H(xn)}�α

)
, (8.7.15)

11 F. J. Dyson, Phys. Rev. 75, 486, 1736 (1949).
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312 8 General Scattering Theory

the integrals now running over all space and time. This at least appears Lorentz-
invariant, though we still have to worry about the time-ordering in Eq. (8.7.15).
The statement that a spacetime point {x′, t ′} is at a later time than a point {x, t}
is Lorentz-invariant if {x′, t ′} is inside the light cone centered at {x, t} – that is, if
(x′−x)2 < c2(t ′−t)2. Thus the time-ordering in Eq. (8.7.15) is Lorentz-invariant
if H(x, t) commutes with H(x′, t ′) whenever (x′ − x)2 ≥ c2(t ′ − t)2. (This
is a sufficient, but not a necessary condition, for there are important theories
in which non-vanishing terms in the commutators of H(x, t) with H(x′, t ′) for
(x′ − x)2 ≥ c2(t ′ − t)2 are canceled by terms in the Hamiltonian that cannot be
written as the integrals of scalars.)

Equation (8.7.14) also makes the independence of distant processes trans-
parent. Suppose that the transition α → β consists of two separate transitions
a → b and A → B, with all the particles in the states a and b far from all the
particles in the states A and B. If we assume that interactions become negligible
between sufficiently distant particles, then each VI(t) in Eq. (8.7.14) acts either
on the particles in the states a and b or on the particles in the states A and B,
but not on both. If VI(x, t) acts only on the particles in the states a and b while
VI(x′, t ′) acts only on the particles in the states A and B, then these operators
commute, and their time-ordered product can be replaced by an ordinary prod-
uct. For a given term of nth order in Eq. (8.7.14), we must sum over the number
m of operators that act on the particles in the states a and b from m = 0 to
m = n, with the remaining n − m operators acting on the particles in the states
A and B. The number of ways of selecting the m operators acting on a and b
from the n − m operators acting on A and B is n!/m!(n − m)!, so

SbB,a A =
∞∑

n=0

1

n!
[
− i

�

]n ∫ ∞

−∞
dτ1 . . .

∫ ∞

−∞
dτn

n∑
m=0

n!
m!(n − m)!

×
(
�b, T {VI (τ1) . . . VI(τm)}�a

) (
�B, T {VI(τm+1) . . . VI(τn)}�A

)
= Sba SB A.

This factorization ensures that the rates for the various final states b produced
from the initial state a do not depend on the existence of the transition A → B.
It is not easy to see this essential factorization in old-fashioned perturbation
theory.

In the exceptional cases where the VI with different τ -arguments all commute
with one another, we can drop the time-ordering in Eq. (8.7.14), so that the sum
is just the usual convergent series for the exponential function

Sβα =
(
�β, exp

[−i

�

∫ ∞

−∞
dτ VI(τ )

]
�α

)
.
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Even where (as is usual) this simple result does not hold, it is common to
abbreviate the result (8.7.14) as

Sβα =
(
�β, T

{
exp

[−i

�

∫ ∞

−∞
dτ VI(τ )

]}
�α

)
, (8.7.16)

the T indicating that this quantity is to be evaluated by time-ordering each term
in the power series for the expression in curly brackets.

For a very simple example, where the VI(τi ) do not commute with one
another, consider the classic example of a single non-relativistic particle being
scattered by a local potential. Here H0 is the kinetic energy, a function H0 =
p2/2μ of the momentum operator, and V is a function V (x) of the position
operator. Since the relation Eq. (8.7.8) between the interaction in the interaction
picture and in the Schrödinger picture is a similarity transformation, it gives (at
least for any potential that can be expressed as a power series)

VI(τ ) = V
(

xI(τ )
)
, (8.7.17)

where xI(τ ) is the position operator in the interaction picture

xI(t) ≡ ei H0t/�xe−i H0t/�. (8.7.18)

This operator satisfies the differential equation

d

dt
xI(t) = i

�
ei H0t/�[H0, x]e−i H0t/� = 1

μ
ei H0t/�pe−i H0t/� = p/μ, (8.7.19)

and the obvious initial condition

xI(0) = x, (8.7.20)

so

xI(t) = x + pt/μ, (8.7.21)

and therefore

VI(τ ) = V
(

x + pτ/μ
)
. (8.7.22)

(Here x and p are the time-independent position and momentum operators in the
Schrödinger picture.)

Because this involves both x and p, the xI(τ )with different τ s do not commute
with each other. Instead

[xIi (τ ), xI j (τ
′)] = i�

μ

(
τ ′ − τ

)
δi j . (8.7.23)

Therefore the VI(τ ) with different τ s do not commute with each other, and so
this is not an example where the Dyson series is simply the expansion of an
exponential function.
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314 8 General Scattering Theory

Although the S-matrix is a central concern of particle physics, it is not the
only thing worth calculating. We sometimes need to calculate the expectation
value of a Heisenberg-picture operator OH(t) (which may be given by a product
of operators, all at the same time t), in a state �+

α that is defined by its appear-
ance at very early times. (This is the problem that particularly concerns us in
calculating correlation functions in cosmology, where α is usually taken as the
vacuum state.) This entails a different version of time-dependent perturbation
theory, known as the “in–in” formalism.12 Any Heisenberg-picture operator can
be expressed in terms of the corresponding interaction-picture operator by

OH(t) = ei Ht/�Oe−i Ht/� = ei Ht/�e−i H0t/�OI(t)e
i H0t/�e−i Ht/�

= �(t)OI(t)�
†(t). (8.7.24)

We use this together with Eqs. (8.7.2) and (8.7.5) to write the expectation value
as (

�+
α ,OH(t)�

+
α

)
=
(
�α,�

†(−∞)�(t)OI(t)�
†(t)�(−∞)�α

)
=
(
�α,U †(t,−∞)OI(t)U (t,−∞)�α

)
. (8.7.25)

Then, using the perturbation series (8.7.13) for U (t,−∞), we have

(
�+
α ,OH(t)�

+
α

)
=
(
�α,

[
T

{
exp

[−i

�

∫ t

−∞
dτ VI(τ )

]}]†

× OI(t)T

{
exp

[−i

�

∫ t

−∞
dτ VI(τ )

]}
�α

)
, (8.7.26)

where T {·} has the same meaning as in Eq. (8.7.16); that is, we must time-order
the VI operators in the power-series expansion of the exponential. The adjoint of
the first time-ordered product in Eq. (8.7.26) means that the interaction operators
in this part of the expression are not time-ordered, but anti-time-ordered; that is,
the operator first on the left is the one with the earliest argument, and so on. Thus
the structure of the “in–in” expectation value (8.7.26) is very different from that
of the Dyson expansion (8.7.16) for the S-matrix.

12 J. Schwinger, Proc. Nat. Acad. Sci. USA 46, 1401 (1960); J. Math. Phys. 2, 407 (1961); K. T. Mahan-
thappa, Phys. Rev. 126, 329 (1962); P. M. Bakshi and K. T. Mahanthappa, J. Math. Phys. 4, 1, 12 (1963);
L. V. Keldysh, Sov. Phys. JETP 20, 1018 (1965); D. Boyanovsky and H. J. de Vega, Ann. Phys. 307, 335
(2003); B. DeWitt, The Global Approach to Quantum Field Theory (Clarendon Press, Oxford, 2003),
Section 31. For a review, with applications to cosmological correlations, see S. Weinberg, Phys. Rev. D
72, 043514 (2005) [hep-th/0506236].
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8.8 Shallow Bound States 315

8.8 Shallow Bound States

Sometimes when a bound state is sufficiently weakly bound, we can obtain
results for scattering amplitudes just from a knowledge of the binding energy,
with no detailed information about the interaction. For this purpose, we use a
tool known as the Low equation.13

To derive the Low equation, we operate on the Lippmann–Schwinger equation
(8.1.6) with the interaction V , so that

V�±
α = V�α + V [Eα − H0 ± iε]−1V�±

α . (8.8.1)

We can write the solution of this equation as

V�±
α = T (Eα ± iε)�α, (8.8.2)

where T (W ) is the solution of the operator equation

T (W ) = V + V (W − H0)
−1T (W ). (8.8.3)

We recall that the S-matrix is given according to Eqs. (8.1.10) and (8.1.11) as

Sβα = δ(β − α)− 2π iδ(Eβ − Eα)Tβα, (8.8.4)

where

Tβα ≡
(
�β, V�+

α

)
=
(
�β, T (Eα + iε)�α

)
. (8.8.5)

So far, there is nothing new here, except for a little formalism. Now note that
with some elementary algebra, we can write the solution of the operator equation
(8.8.3) as

T (W ) = V + V (W − H)−1V . (8.8.6)

We can evaluate the resolvent operator (W − H)−1 by inserting a sum over
a complete set of independent eigenstates of H . These include the scattering
“in” states �+

α , and any bound states. (We do not include the “out” states �−
α

here, because they are not independent; �−
α can be written as the superposition∫

dβ S∗
αβ�

+
β .) Thus

(
�β, T (W )�α

)
= Vβα +

∫
db

(
�β, V�b

)(
�α, V�b

)∗

W − Eb
+
∫

dγ
Tβγ T ∗

αγ

W − Eγ

,

(8.8.7)

where Vβα ≡
(
�β, V�α

)
, and b labels the properties of the various bound

states, including their total momentum. In particular, setting W = Eα + iε,
Eq. (8.8.7) gives

13 The equation is named for Francis Low. I have not been able to find a reference to the place where it
was first published.
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316 8 General Scattering Theory

Tβα = Vβα +
∫

db

(
�β, V�b

)(
�α, V�b

)∗

Eα − Eb
+
∫

dγ
Tβγ T ∗

αγ

Eα − Eγ + iε
. (8.8.8)

(We don’t need the iε in the denominator of the bound-state term, since the
energy of any bound state must be outside the spectrum of H0.) Equation (8.8.8)
is known as the Low equation.

The Low equation is a non-linear integral equation for Tβα, in which a non-
zero value for Tβα is driven by the first two terms in Eq. (8.8.8). For a shallow
bound state, whose energy is very near the continuum, it is plausible that the
bound-state term in Eq. (8.8.8) will dominate over the potential term, and
give Tβγ and Tαγ particularly large values when Eγ is nearest the bound-state
energies – that is, near the minimum continuum energy – provided these two
particles have � = 0, to avoid suppression of the matrix elements by factors
k�. Thus, when α is a two-particle state with � = 0, and β is a state of two
particles of the same two species as α, it is plausible to limit γ to two-particle
states of the same two species. (I have in mind here the low-energy scattering of
a proton and a neutron, where the shallow bound state is the deuteron, but will
continue for a while to keep the analysis more general.) As in Section 8.4, these
two-particle states can be labeled by their total energy, their total momentum
P, their total spin s, their orbital angular momentum � = 0, their total angular
momentum J = s, the 3-component σ of the total angular momentum (and total
spin), and the species of the two particles. Dropping the labels � = 0, s, and the
two species labels, which will be the same throughout, the free-particle states
can be denoted �E,P,σ , and the scattering “in” states can be denoted �+

E,P,σ . The
bound states that contribute in Eq. (8.8.8) must also have a spin s. If we assume
that there is only one such bound state, we can drop the label s and � = 0, and
denote the bound state only by its total momentum and spin 3-component, as
�P,σ , with the energy a fixed function of P. The relevant matrix elements in the
center-of-mass system then have the form

TE ′,P′,σ ′;E,0,σ = T (E ′, E)δ3(P′)δσ ′,σ , (8.8.9)

and (
�E,0,σ , V�P,σ ′

)
= G(E)δ3(P)δσ ′σ . (8.8.10)

From now on we will understand E as the energy measured relative to the total
rest mass in the two-particle state, so that it is integrated from zero to infinity, and
the bound-state energy in the center-of-mass frame is −B, with B the binding
energy. Neglecting the potential term in Eq. (8.8.8), the Low equation now reads

T (E ′, E) = G(E ′)G∗(E)
E + B

+
∫ ∞

0
d E ′′ T (E ′, E ′′)T ∗(E, E ′′)

E − E ′′ + iε
. (8.8.11)
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Now, as we have explained, we are interested in this equation in the case
where E and E ′ are small, comparable in magnitude to the binding energy B. In
this case, it is presumably a good approximation to write

G(E) = √
p(E) g, (8.8.12)

where g is a constant, and p(E) is the momentum of either particle in the center-
of-mass system when the total energy is E . With non-relativistic kinematics,
p(E) = √

2μE , where μ is the reduced mass. The factor p(E) is needed,
because we expect V�0,σ to have matrix elements with two-particle states of
individual momenta p and −p that are analytic in p near p = 0, and as shown in
Eq. (8.4.9), these two-particle states are given by the states �E,0,σ times a factor
proportional to 1/

√|p|. The Low equation (8.8.11) now reads

T (E ′, E) =
√

p(E ′)p(E) |g|2
E + B

+
∫ ∞

0
d E ′′ T (E ′, E ′′)T ∗(E, E ′′)

E − E ′′ + iε
. (8.8.13)

Inspection of this equation shows that it can be solved with an ansatz

T (E ′, E) = √
p(E ′)p(E) t (E), (8.8.14)

so that Eq. (8.8.13) is satisfied if

t (E) = |g|2
E + B

+
∫ ∞

0
d E ′ p(E ′)

|t (E ′)|2
E − E ′ + iε

. (8.8.15)

This can actually be solved exactly. As shown at the end of this section, the
solution for an arbitrary positive function p(E) is

t (E) =
[

E + B

|g|2 + (E + B)2
∫ ∞

0

p(E ′) d E ′

(E ′ + B)2(E ′ − E − iε)

]−1

,

as long as p(E) does not grow too fast as E → ∞. For the case p(E) = √
2μE ,

this gives

t (E) =
[

E + B

|g|2 + π(B − E)

2

√
2μ

B
+ iπ

√
2μE

]−1

. (8.8.16)

We can calculate the coupling g of the bound state to its constituents, by using
the condition that the bound-state vector �P,σ is normalized, in the sense that(

�P′,σ ′, �0,σ

)
= δ3(P′)δσ ′σ . (8.8.17)

The bare two-particle state �E,0,σ is an eigenstate of H0 with eigenvalue E ,
while the bound state �0,σ is an eigenstate of H with eigenvalue −B, so(
�E,0,σ , V�P′,σ ′

)
=
(
�E,0,σ , [H − H0]�P′,σ ′

)
= −(E + B)

(
�E,0,σ , �P′,σ ′

)
,
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or, using Eqs. (8.8.10) and (8.8.12),(
�E,0,σ , �P′,σ ′

)
= −δ3(P′)δσ ′σ

g
√

p(E)

E + B
. (8.8.18)

Thus, expanding in bare two-particle states, Eq. (8.8.17) gives

1 = |g|2
∫ ∞

0

p(E) d E

(E + B)2

and so14

|g|2 = 1

π

√
2B

μ
. (8.8.19)

Using this in the solution (8.8.16) of the Low equation, we have

t (E) = 1

π
√

2μ

[√
B + i

√
E
]−1

. (8.8.20)

We now have to convert this result into a formula for the � = 0 phase shift.
Equations (8.4.7) and (8.4.25) give the center-of-mass scattering amplitude in
the basis used here (suppressing the indices � = 0, s, n, and J = s) as

M0,E,σ ′;0,E,σ = δσ ′σ
[
e2iδ(E) − 1

]
.

Also, comparing Eqs. (8.3.1) and (8.8.4), and using Eq. (8.8.9), we have

δ3(P)MP,E,σ ′;0,E,σ = −2π i TE,0,σ ′;E,P,σ ′ = −2π i T (E, E)δ3(P)δσ ′,σ ,

so Eqs. (8.8.9) and (8.8.14) give

e2iδ(E) − 1 = −2π iT (E, E) = −2π i
√

2μE t (E). (8.8.21)

Using the solution (8.8.20), we have then

e2iδ(E) − 1 = −2i
√

E
[√

B + i
√

E
]−1

. (8.8.22)

Taking the reciprocal, we find that a term −1/2 appears on both sides, so after
cancelling this term, we have

cot δ = −√B/E . (8.8.23)

Note that this result is real, and so is consistent with the unitarity of the S-matrix,
a non-trivial consistency condition that would not be satisfied in the Born

14 More generally, if in addition to the continuum the eigenstates of H0 include an elementary particle
state with the same quantum numbers as the bound state, |g| is less than the value given in Eq. (8.8.19)
by a factor 1 − Z , where Z is the probability that an examination of the bound state will find it in
the elementary particle state rather than the two-particle state. The case Z 	= 0 is studied in detail by
S. Weinberg, Phys. Rev. B137, 672 (1965).
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approximation. The result (8.8.23) may be compared with the effective range
expansion (7.5.21). Setting E = �

2k2/2μ, we have k cot δ = −√
2μB/�, so the

scattering length is

as = �/
√

2μB, (8.8.24)

and the effective range and all higher terms in the expansion are negligible.
These are precise results in the limit of vanishing B and E , with E/B fixed.

As mentioned earlier, the classic application of this calculation is to low-
energy proton–neutron scattering in the state with the same total spin s = 1
as the deuteron. Here μ = mnmp/(mn + mp) 
 mp/2 and B = 2.2246 MeV, so
Eq. (8.8.24) gives as = 4.31 × 10−13 cm. On the other hand, experiment gives
as = 5.41 × 10−13 cm. The measured effective range is not zero, but consid-
erably smaller: reff = 1.75 × 10−13 cm. The range of nuclear forces is of the
order of 10−13 cm, so the accuracy of these predictions is as good as could be
expected.

Incidentally, note that for B → 0, Eq. (8.8.23) gives cot δ → 0, so δ → 90◦,
perhaps plus a multiple of 180◦. This is an exception to the low-energy limits
discussed in Section 7.5.

∗ ∗ ∗ ∗ ∗
We return here to the solution of the non-linear integral equation (8.8.15). We

define a function for general complex z:

f (z) ≡ |g|2
z + B

+
∫ ∞

0
d E ′ p(E ′)

|t (E ′)|2
z − E ′ , (8.8.25)

so that

t (E) = f (E + iε). (8.8.26)

We note that − f (z) is analytic in the upper half plane, where it has positive-
definite imaginary part

Im
[
− f (z)

]
= Im z

[ |g|2
|z + B|2 +

∫ ∞

0
d E ′ p(E ′)

|t (E ′)|2
|z − E ′|2

]
. (8.8.27)

The same is then also true of 1/ f (z). A general theorem15 tells us that any such
function must have the representation

f −1(z) = f −1(z0)+ (z − z0) f −1′
(z0)+ (z − z0)

2
∫ ∞

−∞
d E ′ σ(E ′)

(E ′ − z0)2(E ′ − z)
,

(8.8.28)

15 A. Herglotz, Ver. Verhandl. Sachs. Ges. Wiss. Leipzig, Math.-Phys. 63, 501 (1911); J. A. Shohat and
J. D. Tamarkin, The Problem of Moments (American Mathematical Society, New York, 1943), Chapter
II.
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320 8 General Scattering Theory

where σ(E) is real and positive, and z0 is arbitrary. (A formula of this sort
is called a “twice-subtracted dispersion relation.”) It is convenient to choose
z0 = −B. We know that f −1(−B) = 0 and f −1′

(−B) = 1/|g|2, so

f −1(z) = z + B

|g|2 + (z + B)2
∫ ∞

−∞
d E

σ(E)

(E + B)2(E − z)
. (8.8.29)

Now, what is σ(E)? Let us first tentatively assume that f (z) has no zeros on the
real axis. Then Eq. (8.8.29) gives

σ(E) = 1

π
Im f −1(E + iε) = − Im f (E + iε)

π | f (E + iε)|2
=
{

p(E), E ≥ 0,
0, E ≤ 0.

(8.8.30)

Using this in Eq. (8.8.29) gives

f (z) =
[

z + B

|g|2 + (z + B)2
∫ ∞

0

p(E ′) d E ′

(E ′ + B)2(E ′ − z)

]−1

. (8.8.31)

Setting z = E + iε gives t (E), and taking p(E) = √
2μE then yields

Eq. (8.8.16).
This solution is not unique, for we have assumed above that f (z) has no zeros

on the real axis. But any other solution will become indistinguishable from the
one found here in the limit as B is taken much smaller than the position of such
zeros.

8.9 Time Reversal of Scattering Processes

As we saw in Sections 3.6 and 4.7, in many contexts it is a good approx-
imation to assume a symmetry under the reversal of time, represented in
quantum mechanics by an antilinear and antiunitary operator T. Where time
reversal is a good symmetry, the operator T commutes with the Hamilto-
nian (with both terms, H0 and V ), but anticommutes with the momentum and
angular-momentum operators, so it converts a free-particle state �α into another
free-particle state:

T�α = �T α, (8.9.1)

where T α denotes a state of the same particles as α, but with all momenta
and spin z-components reversed. However, matters are more complicated when
interactions are taken into account. We define the “in” and “out” states �+

α and
�−
α as eigenstates of the Hamiltonian that look like the free-particle state �α at

early and late times, respectively, so the time-reversal operator T acting on these
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8.9 Time Reversal of Scattering Processes 321

states should give eigenstates of the Hamiltonian with the same energy that look
like the free-particle state �T α at late and early times, respectively. That is,

T�±
α = �∓

T α
. (8.9.2)

We can verify this by applying the operator T to the Lippmann–Schwinger equa-
tion (8.1.6). Using Eq. (8.9.1) and keeping in mind that T is not linear but
antilinear, we find that

T�±
α = �T α + (Eα − Eβ ∓ iε)−1V T�±

α , (8.9.3)

so T�±
α satisfies the same Lippmann–Schwinger equation as �∓

T α
.

Because T is antiunitary, time-reversal invariance does not tell us that Sβα
equals the S-matrix ST β T α for the same reaction with spins and momenta
reversed. Instead, recalling the defining property (3.4.10) of antiunitary oper-
ators, we have

Sβα = (�−
β ,�

+
α ) = (T�+

α ,T�−
β ) = (�−

T α
,�+

T β
) = ST α,T β. (8.9.4)

This is known as the Principle of Detailed Balance.
By itself, this tells us nothing about any one transition with α 	= β. We

get useful information about individual transitions if time-reversal invariance
is combined with certain approximations. For instance, to first order in the
interaction V , for β 	= α Eq. (8.6.2) gives the Born-approximation result

Sβα = −2π iδ(Eα − Eβ)
(
�β, V�α

)
, so since V is Hermitian, in this approxi-

mation we have Sα β = −S∗
β α, and therefore the time-reversal invariance result

(8.9.4) gives

Sβα = −S∗
T β T α. (8.9.5)

The minus sign and complex conjugation don’t matter when we calculate rates,
which involve absolute squares of S-matrix elements, so in the Born approxima-
tion time-reversal invariance does tell us that the rate for any process equals the
rate for the same process when all spins and momenta are reversed.

This result can be generalized by using a much more widely applicable
approximation, the distorted-wave Born approximation discussed in Section 8.6.
This approximation applies when we can write the interaction V as a sum

V = Vs + Vw, (8.9.6)

where the term Vs is much stronger than the term Vw, but cannot by itself produce
the reaction in question. (As shown by the examples discussed in Section 8.6,
Vs and Vw are not always the strong and weak nuclear interactions, though they
often are.) According to Eq. (8.6.19) in all such cases the distorted-wave Born
approximation gives the scattering amplitude for any reaction α → β to first
order in Vw but to all orders in Vs, as

Tβ α =
(
�−

sβ, Vw�
+
sα

)
, (8.9.7)
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322 8 General Scattering Theory

where Tβ α is the amplitude appearing in the general formula (8.1.10) for the
S-matrix

Sβ α = δ(α − β)− 2π iδ(Eα − Eβ)Tβ α (8.9.8)

and the subscript s on state vectors indicates that these “in” and “out” state
vectors are solutions of the Lippmann–Schwinger equation (8.1.6) with only Vs

included in the interaction V .
If we now assume that the time-reversal operator T commutes with Vw as well

as Vs and H0, and recall that T is antiunitary, we have

Tβ α =
(
T�+

sα, Vw T�−
sβ

)
=
(
�−

s T α
, Vw �

+
s T β

)
,

and using the fact that Vw is Hermitian, this gives

Tβ α =
(
�+

s T β
, Vw �

−
s T α

)∗
. (8.9.9)

This is what we need, except that we now have an “in” state on the left and an
“out”’ state on the right. We can fix this, by recalling the relation (8.1.8) between
“in” and “out”’ states and using the detailed-balance relation (8.9.4) for strong
scattering:

�+
s T β

=
∫

dβ ′ Ss
T β T β ′�−

s T β ′ =
∫

dβ ′ Ss
β ′ β�

−
s T β ′,

�−
s T α

=
∫

dα′ Ss∗
T α′ T α�

+
s T α′ =

∫
dα′ Ss∗

α α′�+
s T α′,

where Ss is the S-matrix calculated including only Vs in the interaction V . So
now, using Eq. (8.9.9) again,

Tβα =
∫

dα′
∫

dβ ′ Ss
β ′βSs

αα′ T ∗
T β ′,T α′ . (8.9.10)

This now relates the process α → β to the same process T α → T β with spins
and momenta reversed, which is what we wanted.

It should be noted that the integrals over α′ and β ′ in Eq. (8.9.10) (which con-
sist of integrals over momenta, and sums over discrete variables) run only over
states that can be produced respectively from α and β by the strong interaction
Vs. In particular, in a case like beta decay, in which the initial state α is a discrete
eigenstate of H0 + Vs that would be stable in the absence of the weak interaction
Vw, and the same is true of the final state β except for the presence of particles
like photons, electrons, and/or neutrinos, on which Vs has no effect, the S-matrix
factors in Eq. (8.9.10) are delta functions, and we have

Tβα = T ∗
T β,T α, (8.9.11)

just as in the Born approximation.
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More generally, we may be able to choose a basis of states like that discussed
in Section 8.4 for which the “strong” S-matrix Ss

β ′β is diagonal

Ss
β ′β = e2iδβ δ(β ′ − β), (8.9.12)

where δβ is a real phase shift. If the initial state α is a discrete eigenstate of Vs

that would be stable in the absence of Vw, then Eq. (8.9.10) tells us that

Tβα = e2iδβ T ∗
T β,T α. (8.9.13)

This is known as the Watson–Fermi theorem.16 It can be used together with data
on processes such as the K-meson decay mode K → 2π + e + ν to measure
the phase shifts for processes such as pion–pion scattering that are not easy to
measure by other means.17

Problems

1. Consider a general Hamiltonian H0+V , where H0 is the free-particle energy.
Define a state �0

α by the modified Lippmann–Schwinger equation

�0
α = �α + Eα − H0

(Eα − H0)2 + ε2
V�0

α,

where �α is an eigenstate of H0 with eigenvalue Eα, and ε is a positive
infinitesimal quantity. Define

Aβα ≡
(
�β, V�0

α

)
.

(a) Show that Aβα = A∗
αβ for Eβ = Eα.

(b) For the simple case of a non-relativistic particle with energy k2
�

2/2μ in a
local potential V (x), calculate the asymptotic behavior of the coordinate-

space wave function
(
�x, �

0
k

)
of the state �0

k for x → ∞. Express the

result in terms of matrix elements of A.

2. Consider a separable interaction, whose matrix elements between free-
particle states have the form(

�β, V�α

)
= f (α) f ∗(β),

where f (α) is some general function of the momenta and other quantum
numbers characterizing the free-particle state �α.

(a) Find an exact solution of the Lippmann–Schwinger equation for the “in”
state in this theory.

16 K. Watson, Phys. Rev. 88, 1163 (1952); E. Fermi, Nuovo Cimento 2, Suppl. 1, 17 (1965).
17 N. Cabibbo and A. Maksymowicz, Phys. Rev. B137, 438 (1965); 168, 1926 (1968).
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324 8 General Scattering Theory

(b) Use the result of (a) to calculate the S-matrix.
(c) Verify the unitarity of the S-matrix.

3. The scattering of π+ on protons at energies less than a few hundred MeV
is purely elastic, and receives appreciable contributions only from orbital
angular momenta � = 0 and � = 1.

(a) List all the phase shifts that enter in the amplitude for π+–proton scat-
tering at these low energies. (Recall that the spins of the pion and proton
are zero and 1/2, respectively.)

(b) Give a formula for the differential scattering cross section in terms of
these phase shifts.

4. By direct calculation, show that the terms of first and second order in
the interaction in time-dependent perturbation theory give the same results
for the S-matrix as the first- and second-order terms in old-fashioned
perturbation theory.

5. Assume isospin conservation, and suppose that the only appreciable phase
shift in the scattering of pions on nucleons is the one with quantum numbers
J = 3/2, � = 1, and T = 3/2. Calculate the differential cross sections for
the reactions π+ + p → π+ + p, π+ + n → π+ + n, π+ + n → π0 + p, and
π− + n → π− + n in terms of this phase shift.

6. The �0 is a particle of spin 1/2 and mass 1116 GeV/c2. It decays only
through the weak nuclear forces, into an isotopic spin-1/2 state of a nucleon
and a pion. Find the phases of the amplitudes for decay into states with � = 0
and � = 1, in terms of the phase shifts for s-wave and p-wave pion–nucleon
scattering with total angular momentum j = 1/2 and total isospin t = 1/2,
at total energy 1116 GeV. (This process does not conserve parity, but you can
assume time-reversal invariance.)
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To carry out calculations in quantum mechanics, we need a formula for the
Hamiltonian as a function of operators whose commutation relations are known.
So far, we have dealt with simple systems, for which it is easy to guess such a
formula. For a system of non-relativistic spinless particles interacting through a
potential V that depends only on particle separations, the classical formula for
the energy suggests that we should take

H =
∑

n

p2
n

2mn
+ V (x1 − x2, x1 − x3, . . . ),

where xn and pn are the position and momentum of the nth particle. We saw in
Section 3.5 that the commutator of the total momentum operator P = ∑

n pn

with the coordinate of the nth particle in any system is given by Eq. (3.5.3), and
from this it was a short jump to guess the commutation relation (3.5.6) of the
momenta and positions of individual particles:

[xni , pmj ] = i�δnmδi j .

But our task can be much harder in more complicated theories, dealing with
velocity-dependent interactions, or interactions of particles with fields, or
interactions of fields with each other.

This problem is generally dealt with by the rules of the canonical formal-
ism. As we will see in Section 9.1, the equations of motion in classical systems
can usually be derived from a function of generalized coordinate variables and
their time-derivatives, known as the Lagrangian. The great advantage of the
Lagrangian formalism, described in Section 9.2, is that it allows us to derive the
existence of conserved quantities from symmetry principles. One of these con-
served quantities is the Hamiltonian, discussed in Section 9.3. The Hamiltonian
is expressed in terms of generalized coordinates and generalized momenta. As
shown in Section 9.4, these variables must satisfy certain commutation relations
in order for the conserved quantities provided by the Lagrangian formalism to
act as the generators of symmetry transformations with which they are asso-
ciated, and in particular for the Hamiltonian to act as the generator of time
translations.
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326 9 The Canonical Formalism

I will illustrate all these points by reference to the theory of non-relativistic
particles in a local potential. In this case, the application of the canonical
formalism is pretty simple. It becomes more complicated for systems satisfying
a constraint, such as a particle constrained to move on a surface. Constrained
systems are discussed in Section 9.5. An alternative version of the canonical
formalism, the path-integral formalism, is derived in Section 9.6.

9.1 The Lagrangian Formalism

It is common to find that the dynamical equations that govern the general coordi-
nate variables qN (t) describing a classical physical system can be derived from
a variational principle, which states that an integral

I [q] ≡
∫ ∞

−∞
L
(

q(t), q̇(t), t
)

dt (9.1.1)

is stationary with respect to all infinitesimal variations qN (t) �→ qN (t)+δqN (t),
for which all δqN (t) vanish at the end-points of the integral, t → ±∞. The
function or functional L is known as the Lagrangian of the theory, while the
functional I [q] is called the action. In a theory of particles, N is a compound
index ni , with qN (t) the i th component xni (t) of the position of the nth particle
at time t . In a theory of fields, N is a compound label nx, with qN (t) the value
of the nth field at a position x and time t . We will treat N as a discrete index,
but we will find it easy in Chapter 11 to adapt the formulas we derive here to the
case of fields.

We are here letting L have an explicit dependence on time, to take account of
the possibility that the system is affected by time-dependent external fields, but
in the case of an isolated system L depends on time only through its dependence
on q(t) and q̇(t).

The condition that (9.1.1) should be stationary gives

0 = δ I [q]

=
∑

N

∫ ∞

−∞

⎡
⎣∂L

(
q(t), q̇(t), t

)
∂qN (t)

δqN (t)+
∂L
(

q(t), q̇(t), t
)

∂q̇N (t)
δq̇N (t)

⎤
⎦ dt.

The variation in the time-derivative is the time-derivative of the variation, so
we can integrate the second term by parts. Since the variations vanish at the
end-points of the integral, the result is

0 =
∑

N

∫ ∞

−∞

⎡
⎣∂L

(
q(t), q̇(t), t

)
∂qN (t)

− d

dt

∂L
(

q(t), q̇(t), t
)

∂q̇N (t)

⎤
⎦ δqN (t) dt.

(9.1.2)
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9.2 Symmetry Principles and Conservation Laws 327

This must hold for any infinitesimal functions qN (t) that vanish as t → ±∞, so
for each N and each finite t we must have

∂L
(

q(t), q̇(t)
)

∂qN (t)
= d

dt

∂L
(

q(t), q̇(t), t
)

∂q̇N (t)
. (9.1.3)

For instance, for a classical system consisting of a number of non-relativistic
particles with masses mn , interacting through a potential that depends only on
position, the Newtonian equations of motion are

mnẍni (t) = − ∂V

∂xni (t)
. (9.1.4)

These are just the Lagrangian equations (9.1.3), if we take the Lagrangian as

L =
∑

n

mn

2
ẋ2

n − V . (9.1.5)

One of the nice things about the Lagrangian formalism is that it makes it easy
to use any coordinates we like. For instance, consider a single particle of mass
m moving in two dimensions in a potential V (r) that depends only on the radial
coordinate. Here we can take the qN to be the polar coordinates r and θ , and
write the Lagrangian (9.1.5) as

L = m

2

[
ṙ2 + r2θ̇2

]
− V (r). (9.1.6)

The Lagrangian equations of motion (9.1.3) in these coordinates are

0 = d

dt

∂L

∂ ṙ
− ∂L

∂r
= mr̈ − mr θ̇2 + V ′(r), (9.1.7)

0 = d

dt

∂L

∂θ̇
− ∂L

∂θ
= d

dt

(
mr2θ̇

)
. (9.1.8)

We see in Eq. (9.1.7) the effect of centrifugal force, and in Eq. (9.1.8) the second
law of Kepler, in both cases derived without having to convert the Cartesian
equations of motion (9.1.4) directly into polar coordinates.

A more challenging example of the Lagrangian formalism is provided by the
theory of charged particles in an electromagnetic field, discussed in the next
chapter.

9.2 Symmetry Principles and Conservation Laws

The great advantage of the Lagrangian formalism is that it provides a simple
connection between symmetry principles and the existence of conserved quanti-
ties. Every continuous symmetry of the action implies the existence of a quantity
that, according to the equations of motion, does not change with time. This
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328 9 The Canonical Formalism

general result is due to Emmy Noether (1882–1935), and is known as Noether’s
theorem.1

Consider any infinitesimal transformation of the variables qN (t),

qN → qN + εFN (q, q̇), (9.2.1)

where ε is an infinitesimal constant, and the FN are functions of the qs and q̇s
that depend on the nature of the symmetry in question. This is a symmetry of
the Lagrangian if

0 =
∑

N

[
∂L

∂qN
FN + ∂L

∂q̇N
ḞN

]
. (9.2.2)

Using the Lagrangian equations (9.1.3) of motion in the first term, this is

0 =
∑

N

[(
d

dt

∂L

∂q̇N

)
FN + ∂L

∂q̇N
ḞN

]
= dF

dt
, (9.2.3)

where F is the conserved quantity

F ≡
∑

N

∂L

∂q̇N
FN (q, q̇). (9.2.4)

For instance, as long as the potential V depends only on differences of particle
coordinates, the Lagrangian (9.1.5) is invariant under translations

xni → xni + εi (9.2.5)

with the same εi for each particle label n. Then, for each i , we have a conserved
quantity, the i th component of the total momentum

Pi =
∑

n

∂L

∂ ẋni
=
∑

n

mn ẋni . (9.2.6)

Similarly, if V is rotationally invariant, then the Lagrangian (9.1.5) is invariant
under the infinitesimal rotations

xn → xn + e × xn, (9.2.7)

with the same infinitesimal 3-vector e for each particle label n. It follows that

d

dt
L = 0, (9.2.8)

where

e · L =
∑

ni

∂L

∂ ẋni
[e × xn]i =

∑
n

mn ẋn · [e × xn].

1 E. Noether, Nachr. König. Gesell. Wiss. zu Göttingen, Math.-phys. Klasse 235 (1918).
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Recalling that the triple scalar product of any vectors a, b, and c has the
symmetry property a · [b × c] = b · [c × a], we see that

L =
∑

n

mnxn × ẋn. (9.2.9)

This is only the orbital angular momentum, and of course it is not necessar-
ily conserved if the interaction involves the spin operators Sn of the particles,
because in that case the Lagrangian is not invariant under transformations like
(9.2.7) unless we also include transformations of the spin.

More generally, we can consider transformations that are not symmetries
of the Lagrangian, but that are symmetries of the action. It is important
to be clear about what is meant by this. In saying that an infinitesimal
transformation is a symmetry of the action, we do not mean only that the
transformation leaves the action invariant when the equations of motion are
satisfied, because all infinitesimal transformations leave the action invari-
ant when the equations of motion are satisfied – that is how the equations
of motion are derived in the Lagrangian formalism. A symmetry of the
action is a transformation that leaves the action invariant, whether or not
the equations of motion are satisfied. In this case, instead of Eq. (9.2.2), we
must have ∑

N

[
∂L

∂qN
FN + ∂L

∂q̇N
ḞN

]
= dG

dt
, (9.2.10)

where G(t) is some function of the qN (t) and q̇N (t), and perhaps also of t ,
that takes equal values (such as zero) at t = ±∞, so that

∫
Ġ dt = 0. To

repeat, Eq. (9.2.10) is required to be satisfied whether or not qN (t) and q̇N (t)
obey the equations of motion (9.1.13). Where they are satisfied, the left-hand
side of Eq. (9.2.10) equals dF/dt , and so this invariance condition yields the
conservation law

0 = d

dt
[F − G], (9.2.11)

with F again given by Eq. (9.2.4). We will see an example of such a symmetry
of the action in the next section.

9.3 The Hamiltonian Formalism

From the Lagrangian we can construct the quantity known as the Hamilto-
nian, whose usefulness we have seen repeatedly in the foregoing chapters.
The Hamiltonian is conserved if the Lagrangian has no explicit dependence on
time, and more generally its time-dependence arises solely from any explicit
time-dependence of the Lagrangian. The Hamiltonian is defined by
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H ≡
∑

N

q̇N
∂L

∂q̇N
− L . (9.3.1)

Using the Lagrangian equations of motion (9.1.3), its rate of change is

dH

dt
=
∑

N

q̈N
∂L

∂q̇N
+
∑

N

q̇N
∂L

∂qN
− dL

dt
.

But the total rate of change of the Lagrangian is

dL

dt
= ∂L

∂t
+
∑

N

q̈N
∂L

∂q̇N
+
∑

N

q̇N
∂L

∂qN
,

where ∂L/∂t is the rate of change of the Lagrangian due to any explicit time-
dependence, as in the case of time-dependent external fields. Hence

d H

dt
= −∂L

∂t
, (9.3.2)

and in particular the Hamiltonian is conserved for isolated systems, where the
Lagrangian has no explicit time-dependence.

The constancy of the Hamiltonian in cases where L has no explicit time-
dependence can be regarded as a consequence of the invariance of the action in
such cases under a symmetry transformation: time translation. When we shift
the time coordinate by an infinitesimal ε, the change in any variable qN (t) is
εq̇N (t), so in the notation of Eq. (9.2.1), we have here FN (t) = q̇N (t), and the
quantity (9.2.4) is

F =
∑

N

∂L

∂qN
q̇N .

This is not time-independent, because time-translation is a symmetry not of the
Lagrangian, but only of the action. Here we have∑

N

[
∂L

∂qN
FN + ∂L

∂q̇N
ḞN

]
=
∑

N

[
∂L

∂qN
q̇N + ∂L

∂q̇N
q̈N

]
= dL

dt
,

so the quantity G in Eq. (9.2.10) is here just G = L , and the conserved quantity
in Eq. (9.2.1) is

F − G =
∑

N

∂L

∂qN
q̇N − L = H.

Instead of the second-order differential equations of motion of the Lagrangian
formalism, we can use the Hamiltonian formalism to write the equations of
motion as first-order differential equations for twice as many variables: the qN ,
and their “canonical conjugates,”

pN = ∂L

∂q̇N
. (9.3.3)
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For this purpose, we must think of the Hamiltonian as a function H(q, p) of the
qN and pN , with q̇N in Eq. (9.3.1) regarded as a function of the qN and pN given
by solving Eq. (9.3.3) for q̇N . That is, Eq. (9.3.1) should be interpreted as

H(q, p) =
∑

N

q̇N (q, p)pN − L
(

q, q̇(q, p)
)
. (9.3.4)

Then
∂H

∂qN
=
∑

M

∂q̇M

∂qN
pM − ∂L

∂qN
−
∑

M

∂L

∂q̇M

∂q̇M

∂qN
.

The first and third terms cancel according to Eq. (9.3.3), and the Lagrangian
equation of motion (9.1.3) then gives

ṗN = − ∂H

∂qN
. (9.3.5)

Also,

∂H

∂pN
= q̇N +

∑
M

pM
∂q̇M

∂pN
−
∑

M

∂L

∂ ˙qM

∂q̇M

∂pN
.

Now the second and third terms cancel, leaving us with

q̇N = ∂H

∂pN
. (9.3.6)

Equations (9.3.5) and (9.3.6) are the general equations of motion in the
Hamiltonian formalism.

For a very simple example, consider the Lagrangian (9.1.5):

L =
∑

n

mn

2
ẋ2

n − V (x),

where here qni ≡ [xn]i . Equation (9.3.3) here gives the familiar result pn =
mn ẋn , which can be solved without much difficulty to give ẋn = pn/mn . The
Hamiltonian (9.3.1) is then

H =
∑

n

1

mn
p2

n − L =
∑

n

1

2mn
p2

n + V (x).

This is the familiar Hamiltonian on which we based our calculations in
Chapter 2. The equations of motion (9.3.5) and (9.3.6) are here

ṗni = − ∂V

∂xni
, ẋni = pni/mn,

which together yield the equations of motion (9.1.4).
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The Hamiltonian formalism can be used in any coordinate system. For
instance, for the two-dimensional system with Lagrangian (9.1.6), the canonical
conjugates to r and θ are

pr = mṙ , pθ = mr2θ̇ (9.3.7)

and the Hamiltonian is

H = p2
r

2m
+ p2

θ

2mr2
+ V (r). (9.3.8)

According to Eq. (9.3.5), the fact that the Hamiltonian does not depend on θ

tells us immediately that pθ is constant, in agreement with Kepler’s second law.

9.4 Canonical Commutation Relations

Up to this point, our discussion in this chapter has been in classical terms, though
it applies equally well to quantum-mechanical operators in the Heisenberg pic-
ture. Now we must make the transition to quantum mechanics by imposing
suitable commutation relations on the qN and pN .

To motivate these commutation relations, we return to the implementation of
symmetry principles in quantum mechanics. For the present, we shall restrict
ourselves to symmetries of the Lagrangian like space translation or rotation, for
which the functions FN introduced in Section 9.2 depend only on the qs, not the
q̇s. That is, we assume that the Lagrangian is invariant under an infinitesimal
transformation

qN → qN + εFN (q). (9.4.1)

In order to realize this symmetry as a quantum-mechanical unitary transforma-
tion

[1 − iεF/�]−1qN [1 − iεF/�] = qN + εFn(q), (9.4.2)

we need an operator F to serve as a generator of the symmetry, in the sense that

[F, qN ] = −i�FN (q). (9.4.3)

(The factor −i/� is extracted from F in Eq. (9.4.2), to maintain an analogy with
the formula (3.5.2) for the unitary operator that represents translations.) We saw
in Section 9.2 that the invariance of the Lagrangian under the transformation
(9.4.1) implies the existence of a conserved quantity (9.2.4), which we can now
write

F =
∑

N

pNFN (q). (9.4.4)

Such operators F satisfy the commutation relation (9.4.3) for all symmetries of
the form (9.4.1) if we impose the canonical commutation relations
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[qN (t), pN ′(t)] = i�δN N ′, (9.4.5)

[qN (t), qN ′(t)] = [pN (t), pN ′(t)] = 0. (9.4.6)

The commutation relation of ps with each other in Eq. (9.4.6) is not needed
to obtain Eq. (9.4.3), but with it, in simple cases, the operators (9.4.4) gen-
erate simple transformations of the pN as well as of the qN . For the case of
non-relativistic particles (labeled n) in a translation-invariant potential (where
N is the compound index ni), there is a symmetry under translations, in which
Eq. (9.4.1) takes the form (9.2.5), and the generator (9.2.6) takes the form

P =
∑

n

pn. (9.4.7)

In this case, it is obvious from Eq. (9.4.6) that the pn are all translation-invariant,

[P, pn] = 0. (9.4.8)

Likewise, for non-relativistic spinless particles in a rotationally invariant
potential, there is a symmetry under rotations, in which Eq. (9.4.1) takes the
form (9.2.7), and the generator (9.2.9) takes the form

L =
∑

n

xn × pn. (9.4.9)

(Because this is a cross-product of vectors, it does not involve products of the
same components of position and momentum, so the order of these operators is
here immaterial.) In this case, L acts as a generator of rotations on both positions
and momenta

[Li , xnj ] = i�
∑

k

εijkxnk, [Li , pnj ] = i�
∑

k

εijk pnk, (9.4.10)

where as usual εijk is the totally antisymmetric quantity with ε123 = 1. (To prove
this, write Eq. (9.4.9) as Li = ∑

n εi j ′k′ xnj ′ pnk′ .)
In theories of particles with spin, an operator that involves spins in scalar

combinations such as sn · pm or sn · xm will be rotationally invariant, but will
not commute with the orbital angular momentum L. The spin matrices sn are
defined to satisfy the usual commutation relations,

[sni , sn′ j ] = i�δnn′
∑

k

εijksnk, [sni , xn′ j ] = [sni , pn′ j ] = 0,

so the operator J ≡ L+∑n sn generates rotations on spins as well as coordinates
and momenta

[Ji , xnj] = i�
∑

k

εijkxnk, [Ji , pnj] = i�
∑

k

εijk pnk,

[Ji , snj] = i�
∑

k

εijksnk . (9.4.11)
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Thus J commutes with any rotationally invariant operator.
The symmetry of time-translation invariance again requires special treatment,

because it is a symmetry of the action but not of the Lagrangian, and because the
functions FN in the transformation rule (9.2.1) depend on the time-derivatives
q̇N . We note that, as a consequence of the commutation relations (9.4.5) and
(9.4.6), for any function f (q, p) of the qN and pN , we have

[ f (q, p), qN ] = −i�
∂ f (q, p)

∂pN
, (9.4.12)

[ f (q, p), pN ] = i�
∂ f (q, p)

∂qN
. (9.4.13)

(To prove Eq. (9.4.12), note that if we move qN in the product f (q, p)qN to the
left past all the ps in f (q, p), for each pN in f (q, p) we get a term −i� times
the function f (q, p)with that pN omitted. The sum of these terms is the same as
−i� ∂ f (q, p)/∂pN . The proof of Eq. (9.4.13) is similar. The derivatives must be
calculated by removing factors of pN or qN , leaving the order of all other opera-
tors unchanged. For instance ∂q2 p1 p2/∂p1 = q2 p2.) The Hamiltonian equations
of motion (9.3.5) and (9.3.6) thus can be written

ṗN = i

�
[H(q, p), pN ], q̇N = i

�
[H(q, p), qN ], (9.4.14)

so the Hamiltonian is the generator of time-translations. It follows also that for
any function f (q, p) that does not depend explicitly on time,

ḟ (q, p) = i

�
[H(q, p), f (q, p)]. (9.4.15)

In particular, since P commutes with any translationally invariant Hamilto-
nian, it is conserved in the absence of external fields. The spin matrices in the
Heisenberg picture are defined to have a time-dependence matching Eq. (9.4.14):

ṡn = i

�
[H, sn]. (9.4.16)

From Eqs. (9.4.15) and (9.4.16) we have the same for the total angular
momentum J = L +∑

n sn ,

J̇ = i

�
[H, J], (9.4.17)

so J is conserved if the Hamiltonian is rotationally invariant, as it will be for
isolated systems.

We can generalize Eqs. (9.4.12) and (9.4.13) to give a formula for the
commutator of two functions of both qs and ps:

[ f (q, p), g(q, p)] = i�[ f (q, p), g(q, p)]P, (9.4.18)
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where [ f (q, p), g(q, p)]P denotes the quantity known in classical dynamics as
the Poisson bracket

[ f (q, p), g(q, p)]P ≡
∑

N

[
∂ f (q, p)

∂qN

∂g(q, p)

∂pN
− ∂g(q, p)

∂qN

∂ f (q, p)

∂pN

]
.

(9.4.19)
(When we move f (q, p) to the right past g(q, p) we get a sum of terms: accord-
ing to Eq. (9.4.12) for each qN in g(q, p) we get a factor −i� ∂ f (q, p)/∂pN

times g(q, p) with that qN omitted, which gives the second term in Eq. (9.4.19),
and according to Eq. (9.4.13) for each pN in g(q, p) we get a factor
+i� ∂ f (q, p)/∂qN times g(q, p) with that pN omitted, which gives the first
term in Eq. (9.4.19). Again, in quantum mechanics one must specify the order of
the qs and ps in the Poisson bracket, which is best done on a case-by-case basis.)

Commutators have certain algebraic properties:

[ f, g] = −[g, f ], (9.4.20)

[ f, gh] = [ f, g]h + g[ f, h], (9.4.21)

and the Jacobi identity

[ f, [g, h]] + [g, [h, f ]] + [h, [ f, g]] = 0. (9.4.22)

It is easy to check directly that the Poisson bracket (9.4.19) satisfies the same
algebraic conditions.

As we saw in Section 1.4, on the basis of an analogy with the Poisson brackets
of quantum mechanics, Dirac in 1926 generalized the commutation relations
guessed at by Heisenberg to the full set (9.4.5), (9.4.6). But it would be difficult
to argue that this analogy or the canonical formalism itself has the status of a fun-
damental principle of physics, especially since there are physical quantities like
spin to which the canonical formalism does not apply. On the other hand, in the
present state of physics symmetry principles seem as fundamental as anything
we know. That is why in this section the canonical commutation relations have
been motivated by the necessity of constructing quantum-mechanical operators
that generate symmetry transformation, rather than by an analogy with Poisson
brackets.

9.5 Constrained Hamiltonian Systems

So far we have considered systems with equal numbers of independent qs
and ps, but in general these canonical variables may be subject to constraints.
We will see an important physical example of such a constrained system in
Chapter 11, but for the present we will illustrate the problem with a somewhat
artificial but revealing example: a non-relativistic particle that is constrained to
remain on a surface described by a constraint

f (x) = 0, (9.5.1)
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where f (x) is some smooth function of position. For instance, for a particle
constrained to move on a sphere of radius R, we could take f (x) = x2 − R2.

We can take the Lagrangian as

L(x, ẋ) = m

2
ẋ2 − V (x)+ λ f (x), (9.5.2)

where V (x) is a local potential and λ is an additional coordinate. The Lagrangian
equations of motion for x are

mẍ = −∇V + λ∇ f = 0. (9.5.3)

Also, since no time derivative of λ appears in the Lagrangian, the equation of
motion for λ just says that ∂L/∂λ = 0, which yields the constraint (9.5.1). (Note
that ∇ f (x) is in the direction of the normal to the surface (9.5.1) at x, because
for any infinitesimal vector u that is tangent to this surface at x, both f (x + u)
and f (x) must vanish, so f (x + u)− f (x) = u · ∇ f (x) = 0. Hence Eq. (9.5.3)
embodies the physical requirement that constraining the particle to the surface
(9.5.1) can only produce forces normal to this surface.)

Equation (9.5.1) is what is known as a primary constraint, imposed directly
by the nature of the system. There is also a secondary constraint, imposed by the
condition that the primary constraint remains satisfied as the particle moves: for
all x on the surface,

d f

dt
= ẋ · ∇ f (x) = 0. (9.5.4)

Then there is also the condition that this secondary constraint remains satisfied:

ẍ · ∇ f + (ẋ · ∇)2 f = 0. (9.5.5)

(The quantity (ẋ · ∇)2 f does not generally vanish, because Eq. (9.5.4) only
requires that ẋ · ∇ f must vanish when x is on the surface, so that its gradient
in directions off the surface need not vanish.) Equation (9.5.5) is not counted as
a new constraint, because it just serves to determine λ. Using the equation of
motion (9.5.3) in Eq. (9.5.5) gives

λ = 1

(∇ f )2

[∇ f · ∇V − m(ẋ · ∇)2 f
]
, (9.5.6)

so the equation of motion becomes

mẍ = −∇V + ∇ f
∇ f · ∇V

(∇ f )2
− m

(∇ f )2
∇ f (ẋ · ∇)2 f. (9.5.7)

The reader can check that this equation depends only on the surface to which the
particle is constrained, not on the particular function f (x) whose vanishing is
used to describe this constraint. That is, if we introduce a new function g(x) =
G
(

f (x)
)

, where G is any smooth function of f with a unique zero at f = 0,

then from the equation of motion with g(x) in place of f (x), we can derive the
equation of motion in the form (9.5.7) involving f .
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Since ∂L/∂λ̇ = 0, the Hamiltonian for this system is simply

H(x,p) = p · ẋ − L ,

where

p = mẋ.

Using the constraint (9.5.1), this is simply

H(x,p) = p2

2m
+ V (x). (9.5.8)

But we cannot here impose the usual canonical commutation relations [xi , p j ] =
i�δi j , because this would be inconsistent with both the primary constraint (9.5.1)
and the secondary constraint (9.5.4), which now reads

p · ∇ f = 0. (9.5.9)

So what commutation rules should we use?
A general answer was suggested by Dirac2 for a large class of constrained

Hamiltonian systems. Suppose there are a number of primary and secondary
constraints, which can be expressed in the form

χr (q, p) = 0. (9.5.10)

For instance, in the problem discussed above, there are two χs, with

χ1 = f (x), χ2 = p · ∇ f (x). (9.5.11)

Dirac distinguished two cases, distinguished by the properties of the matrix

Crs(q, p) ≡ [χr (q, p), χs(q, p)]P, (9.5.12)

where [ f, g]P denotes the Poisson bracket, defined by Eq. (9.4.19):

[ f (q, p), g(q, p)]P ≡
∑

N

[
∂ f (q, p)

∂qN

∂g(q, p)

∂pN
− ∂g(q, p)

∂qN

∂ f (q, p)

∂pN

]
,

(9.5.13)
with the constraints applied only after the partial derivatives are calculated. Con-
straints for which there exists some us for which

∑
s Crsus = 0 for all r are

called first-class constraints, and must be dealt with by imposing conditions
that reduce the number of independent variables. (For instance, in the example
of a particle constrained to a surface, if we kept λ as an independent variable
instead of imposing the condition (9.5.6), then the constraints in this example
would be first class. We will see another example of a first-class constraint in
Chapter 11, eliminated by a choice of gauge for the electromagnetic potentials.)
When this has been done, the constraints are of the second class, defined by the
condition that

Det C 	= 0, (9.5.14)

2 P. A. M. Dirac, Lectures on Quantum Mechanics (Yeshiva University, New York, 1964).
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so that the matrix C has an inverse C−1. Dirac proposed that in a theory with
only second-class constraints, instead of commutators being given by i� times
the Poisson bracket, as in Eq. (9.4.18), they are given by

[ f (q, p), g(q, p)] = i�[ f (q, p), g(q, p)]D, (9.5.15)

where [ f (q, p), g(q, p)]D is the Dirac bracket3

[ f (q, p), g(q, p)]D ≡[ f (q, p), g(q, p)]P −
∑

rs

[ f (q, p), χr (q, p)]P

× C−1
rs (q, p)[χs(q, p), g(q, p)]P . (9.5.16)

In particular, in place of the usual canonical commutation relations, Dirac’s
proposal requires that

[qN , pM ] = i�

[
δN M −

∑
rs

∂χr

∂pN
C−1

rs

∂χs

∂qM

]
, (9.5.17)

and

[qN , qM ] = i�
∑

rs

∂χr

∂pN
C−1

rs

∂χs

∂pM
, (9.5.18)

[pN , pM ] = i�
∑

rs

∂χr

∂qN
C−1

rs

∂χs

∂qM
. (9.5.19)

(Where the Dirac bracket involves non-commuting operators, it is necessary to
be careful with their ordering. Once again, this has to be dealt with on a case-by-
case basis.) Conversely, the general commutation relation (9.5.15) follows from
Eqs. (9.5.17)–(9.5.19).

This proposal satisfies a number of necessary conditions on commutators.
First, the Dirac bracket has the same algebraic properties (9.4.20)–(9.4.22) as
commutators:

[ f, g]D = −[g, f ]D, (9.5.20)

[ f, gh]D = [ f, g]Dh + g[ f, h]D, (9.5.21)

[ f, [g, h]D]D + [g, [h, f ]D]D + [h, [ f, g]D]D = 0. (9.5.22)

Further, the assumption (9.5.15) is consistent with the constraints. Note that the
Dirac bracket of any constraint function, say χr (q, p), with any other function
g(q, p) is given by Eqs. (9.5.12) and (9.5.16) as

[χr , g]D = [χr , g]P −
∑
r ′s

Crr ′C−1
r ′,s[χs, g]P = 0, (9.5.23)

3 There are various circumstances in which Eq. (9.5.15) can be derived from the usual canonical commu-
tation relations for a reduced set of canonical variables; see T. Maskawa and H. Nakajima, Prog. Theor.
Phys. 56, 1295 (1976); S. Weinberg, The Quantum Theory of Fields, Vol. I (Cambridge University Press,
Cambridge, 1995), Appendix to Chapter 7.
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so that Eq. (9.5.15) is consistent with the condition that the operator χr vanishes.
Let’s see how this works for the above example of a particle constrained to a

surface. The Poisson bracket of the constraint functions (9.5.11) is

C12 = −C21 = [χ1, χ2]D = (∇ f )2, (9.5.24)

and of course C11 = C22 = 0, so the inverse C-matrix has elements

C−1
12 = −C−1

21 = −(∇ f )−2, C−1
11 = C−1

22 = 0. (9.5.25)

Thus (9.5.17) gives

[xi , p j ] = i�

[
δij − ∂ f

∂xi
(∇ f )−2 ∂ f

∂x j

]
. (9.5.26)

Also, since χ1 does not depend on p, Eq. (9.5.18) here gives

[xi , x j ] = 0. (9.5.27)

It takes a little more effort to calculate the commutator of the ps. According to
Eq. (9.5.19), we have

[pi , p j ] = −i�

[
∂ f

∂xi
(∇ f )−2 ∂

∂x j
(p · ∇ f )− i ↔ j

]
. (9.5.28)

In general, this does not vanish. For instance, if we constrain the particle to
remain on a sphere of radius R, so that f (x) = x2 − R2, then Eq. (9.5.28) gives

[pi , p j ] = −i
�

R2

(
xi p j − x j pi

)
.

The difference between these commutation relations and the usual ones is the
non-vanishing of the commutator (9.5.28), and the presence of the second term
in Eq. (9.5.26), which is needed for the commutator of p · ∇ f with xi to be
consistent with the vanishing of p · ∇ f .

We can now work out the equations of motion in this example. Because
the Hamiltonian H is the generator of time-translations, we must as usual
have Ȯ = (i/�)[H,O] for any operator O. Using the commutation relations
(9.5.26)–(9.5.28) and Eq. (9.5.8) for H , we have

ẋi = i

2m�
[p2, xi ] = 1

m
p j

[
δi j − ∂ f

∂xi
(∇ f )−2 ∂ f

∂x j

]
,

and since p · ∇ f = 0, this gives the familiar result

ẋ = p/m. (9.5.29)
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On the other hand,

ṗ j = i

�

[(
p2

2m
+ V (x)

)
, p j

]

= 1

m(∇ f )2

∂ f

∂x j
(p · ∇)2 f −

∑
i

∂V

∂xi

[
δi j − ∂ f

∂xi
(∇ f )−2 ∂ f

∂x j

]

or in other words,

ṗ = − 1

m(∇ f )2
∇ f (p · ∇)2 f − ∇V + ∇ f

∇ f · ∇V

(∇ f )2
. (9.5.30)

Thus Dirac’s assumption (9.5.15) yields the same equations of motion (9.5.7) as
provided by the classical Lagrangian for this model.

9.6 The Path-Integral Formalism

In his Ph.D. thesis,4 Richard Feynman (1918–1988) proposed a formalism,
according to which the amplitude for a transition from one configuration of a
set of particles at an initial time to another configuration at a final time is given
by an integral over all the paths that particles can take in going from the initial
to the final configuration. Feynman seems to have intended this path-integral
formalism as an alternative to the usual formulation of quantum mechanics, but
as later realized, it can be derived from the usual canonical formalism.

Let us consider a set of Heisenberg-picture operators QN (t) and their canon-
ical conjugates PN (t), satisfying the usual commutation relations (9.4.5) and
(9.4.6):

[QN (t), PM(t)] = i�δN M , (9.6.1)

[QN (t), QM(t)] = [PN (t), PM(t)] = 0. (9.6.2)

(We are now using upper case letters to distinguish the operators from their
eigenvalues, which are denoted with lower case letters.) We can introduce a
complete orthonormal set of eigenvectors of all the QN (t):

QN (t)�q,t = qN�q,t , (9.6.3)(
�q ′,t , �q,t

)
= δ(q − q ′) ≡

∏
N

δ(qN − q ′
N ). (9.6.4)

Suppose we want to calculate the probability amplitude
(
�q ′,t ′, �q,t

)
for the

system to go from a state in which the QN (t) have eigenvalues qN to a state

4 R. P. Feynman, The Principle of Least Action in Quantum Mechanics (Princeton University, 1942;
University Microfilms Publication No. 2948, Ann Arbor, MI). Also see R. P. Feynman and A. R. Hibbs,
Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).
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in which the QN (t ′) have eigenvalues q ′
N , where t ′ > t . For this purpose, we

introduce into the time interval from t to t ′ a large number N of times τn , with
t ′ > τ1 > τ2 > · · · > τN > t , and use the completeness of the states �q,τ to
write(
�q ′,t ′, �q,t

)
=
∫

dq1 dq2 . . . dqN
(
�q ′,t ′, �q1,τ1

)(
�q1,τ1, �q2,τ2

)
. . .
(
�qN ,τN , �q,t

)
,

(9.6.5)

where
∫

dqn is an abbreviation for
∏

N

∫
dqN ,n . (The subscripts on the qs in

Eq. (9.6.5) are values of the index n, labeling different times, rather than values
of the index N , which labels different canonical variables.) So now we need to

calculate the scalar product
(
�q ′,τ ′, �q,τ

)
for a general q ′ and q (not necessarily

related to the q and q ′ in Eq. (9.6.5)) when τ ′ is very slightly larger than τ .
For this purpose, we recall that the Heisenberg-picture operators have a time-

dependence given by

QN (τ
′) = ei H(τ ′−τ)/� QN (τ )e

−i H(τ ′−τ)/�, (9.6.6)

so

�q ′,τ ′ = ei H(τ ′−τ)/��q ′,τ , (9.6.7)

and therefore (
�q ′,τ ′, �q,τ

)
=
(
�q ′,τ , e−i H(τ ′−τ)/��q,τ

)
. (9.6.8)

(Note that the argument of the exponential in Eq. (9.6.7) is i H(τ ′ − τ)/� rather
than −i H(τ ′ − τ)/� because �q ′,τ ′ is not the Schrödinger-picture state vector
at time τ ′, but is rather defined as an eigenstate of a Heisenberg-picture opera-
tor at this time.) Now, the Hamiltonian H may be written as a function of the
Schrödinger-picture operators QN and PN , or since the Hamiltonian commutes
with itself, it can just as well be written as the same function of QN (τ ) and
PN (τ ) for any τ . To evaluate the matrix element (9.6.8) we need to insert a com-
plete orthonormal set of eigenstates of the PN (t) to the right of the exponential,

(
�q ′,τ ′, �q,τ

)
=
∫

dp
(
�q ′,τ , exp

[
−i H

(
Q(τ ), P(τ )

)
(τ ′ − τ)/�

]
�p,τ

)
×
(
�p,τ , �q,τ

)
,

where
∫

dp ≡ ∏
N

∫
dpN , and

PN (τ )�p,τ = pN�p,τ , (9.6.9)(
�p′,τ , �p,τ

)
= δ(p − p′) ≡

∏
N

δ(pN − p′
N ). (9.6.10)
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We can always use the commutation relations (9.6.1) and (9.6.2) to write the
Hamiltonian in a form with all Qs to the left of all Ps, in which case the opera-
tors Q(τ ) and P(τ ) in the Hamiltonian can be replaced with their eigenvalues:5(
�q ′,τ ′, �q,τ

)
=
∫

dp exp
[
−i H(q ′, p)(τ ′−τ)/�

](
�q ′,τ , �p,τ

) (
�p,τ , �q,τ

)
.

(9.6.11)
Just as for ordinary plane waves, the scalar products remaining in Eq.
(9.6.11) take the simple form(

�q ′,τ , �p,τ

)
=
∏

N

eipN q ′
N /�√

2π�
,
(
�p,τ , �q,τ

)
=
∏

N

e−i pN qN /�

√
2π�

,

so Eq. (9.6.11) now reads(
�q ′,τ ′, �q,τ

)
=
∫ ∏

N

dpN

2π�
exp

[
− i H(q ′, p)(τ ′ − τ)/�

+ i
∑

N

pN (q
′
N − qN )/�

]
,

or in the form in which we need it in Eq. (9.6.5),(
�qn ,τn , �qn+1,τn+1

)
=
∫ ∏

N

dpN ,n

2π�

× exp

[
− i

�
H(qn, pn)(τn − τn+1)

+ i

�

∑
N

pN ,n(qN ,n − qN ,n+1)

]
, (9.6.12)

with the understanding that

q0 = q ′, τ0 = t ′, qn+1 = q, τn+1 = τ.

We can now use Eq. (9.6.12) for the matrix elements in Eq. (9.6.5), which
gives (

�q ′,t ′, �q,t

)
=
∫ [∏

N

N∏
n=1

dqN ,n

][∫ ∏
N

N∏
n=0

dpN ,n

2π�

]

× exp

[
− i

�

N∑
n=0

H(qn, pn)(τn − τn+1)

+ i

�

∑
N

N∑
n=0

pN ,n(qN ,n − qN ,n+1)

]
. (9.6.13)

5 Because H appears in the exponential, this is only valid for infinitesimal τ ′ − τ , in which case the
exponential is a linear function of H .

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316276105.011
http:/www.cambridge.org/core


9.6 The Path-Integral Formalism 343

We can introduce c-number functions qN (τ ) and pN (τ ) that interpolate between
the τn , in such a way that

qN (τn) = qN ,n, pN (τn) = pN ,n. (9.6.14)

Further, we can take the difference of successive τ s to be an infinitesimal dτ :

τn−1 − τn = dτ, (9.6.15)

so that, to first order in dτ ,

qN ,n − qN ,n+1 = q̇N (τn) dτ,

H(qn, pn)(τn − τn+1) = H(q(τn), p(τn)) dτ,

and therefore Eq. (9.6.13) may be written(
�q ′,t ′, �q,t

)
=
∫

q(t)=q; q(t ′)=q ′

∏
τ

dq(τ )
∫ ∏

τ

dp(τ )

2π�

× exp

[
i

�

∫ t ′

t
dτ

(∑
N

pN (τ )q̇N (τ )− H
(

q(τ ), p(τ )
))]

,

(9.6.16)

where ∫ ∏
τ

dq(τ )
∫ ∏

τ

dp(τ )

2π�
≡
∫ ∏

N

N∏
n=1

dqN ,n

∫ ∏
N

N∏
n=0

dpN ,n

2π�
.

That is, this is a path integral, an integral over all functions qN (τ ) and pN (τ ),
with qN (τ ) constrained by the conditions that qN (t) = qN and qN (t ′) = q ′

N .
One of the nice things about the path-integral formalism is that it allows an

easy passage from quantum mechanics to the classical limit. In macroscopic
systems, we generally have∫ t ′

t
dτ

(∑
N

pN (τ )q̇N (τ )− H
(

q(τ ), p(τ )
))


 �.

The phase of the exponential in Eq. (9.6.16) is then very large, so that the expo-
nential oscillates very rapidly, killing all contributions to the path integral except
from paths where the phase is stationary with respect to small variations in the
path. The condition that the phase is stationary with respect to variations of the
qN (τ ) that leave the values at the initial and final times unchanged is that

0 =
∫ t ′

t

[∑
N

pN (τ ) δq̇N (τ )− ∂H

∂qN (τ )
δqN (τ )

]

=
∫ t ′

t

[
−
∑

N

ṗN (τ )− ∂H

∂qN (τ )

]
δqN (τ ),
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so

ṗN = − ∂H

∂qN
.

Also, the condition that the phase is stationary with respect to arbitrary variations
of the pN (τ ) is that

q̇N = ∂H

∂pN
.

Of course, we recognize these as the classical equations of motion.
Feynman was motivated in part by the aim of expressing transition prob-

abilities in quantum mechanics in terms of the Lagrangian rather than the
Hamiltonian. (As discussed in Section 8.7, in Lorentz-invariant theories the
Lagrangian unlike the Hamiltonian is typically the integral of a scalar density.)
But the integrand of the integral in the exponential in Eq. (9.6.16) is not the
Lagrangian, because pN (t) here is an independent integration variable, not the
quantity ∂L/∂q̇N . There is one commonly encountered case in which the inte-
gral over p(τ ) can be evaluated by simply setting pN = ∂L/∂q̇N , so that the
integrand really is the Lagrangian. This is the case in which the Hamiltonian
is the sum of a term of second order in the ps, with constant coefficients, plus
possible terms of first and zeroth order in the ps, so that the exponential is a
Gaussian function of the ps. The integral of a Gaussian function is given in
general by the formula

∫ ∞

−∞

∏
r

dξr exp

{
i

[
1

2

∑
rs

Krsξrξs +
∑

r

Lrξr + M

]}

= [
Det(K/2iπ)

]−1/2
exp

{
i

[
1

2

∑
rs

Krsξ0rξ0s +
∑

r

Lrξ0r + M

]}
,

(9.6.17)

where ξ0r is the value of ξr at which the argument of the exponential is
stationary: ∑

s

Krsξ0s + Lr = 0. (9.6.18)

The value of pN (τ ) at which the integrand in Eq. (9.6.16) is stationary satisfies
the condition that

q̇N (τ ) =
∂H

(
q(τ ), p(τ )

)
∂pN (τ )

, (9.6.19)
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whose solution makes
∑

N pN (τ )q̇N (τ ) − H
(

q(τ ), p(τ )
)

equal to the

Lagrangian. So the integral over the ps in Eq. (9.6.16) gives

(
�q ′,t ′, �q,t

)
= C

∫
q(t)=q; q(t ′)=q ′

∏
τ

dq(τ ) exp

[
i

�

∫ t ′

t
dτ L

(
q(τ ), q̇(τ )

)]
,

(9.6.20)

with C a constant of proportionality that is independent of q and q ′, and inde-
pendent of the terms in the Hamiltonian that are linear in or independent of the
ps. It does, however, depend on the time interval t ′ − t , and on its splitting into
N +1 segments of length dτ . For instance, for a non-relativistic particle moving
in a potential in D dimensions, the term in the Hamiltonian that is quadratic in
p is p2/2m, which according to Eq. (9.6.17) is all we need in order to calculate
C . In this case6

C =
[

1

2π�

∫ ∞

−∞
dp exp

(
− i p2 dτ

2m�

)](N+1)D

=
[

m

2iπ� dτ

](N+1)D/2

. (9.6.21)

The remaining path integration in Eq. (9.6.20) is generally not easy. The cases
where it can be done easily are that of a free particle (or free field), or a particle
in a harmonic oscillator potential, for which the Lagrangian is quadratic in q̇N

and qN . Here again, with a quadratic Lagrangian, the integral can be done up
to a constant factor by setting q(t) equal to the function for which the integral
of the Lagrangian is stationary with respect to small variations in the functions
qN (τ ) for which qN (t ′) = q ′

N and qN (t) = qN are fixed – that is, for which
qN (τ ) satisfies the classical equations of motion

d

dτ

∂L(τ )

∂q̇N (τ )
= ∂L(τ )

∂qN (τ )
,

with qN (t ′) = q ′
N and qN (t) = qN . For instance, for a free particle in D dimen-

sions, we have L = mẋ2/2, and the solution of the classical equations of motion
has constant velocity

ẋ(τ ) =
(

x′ − x
t ′ − t

)
.

Hence Eq. (9.6.20) gives(
�x′,t ′, �x,t

)
= BC exp

(
im(x′ − x)2

2(t ′ − t)�

)
, (9.6.22)

6 Feynman and Hibbs, op. cit., give an indirect argument for this result, rather than obtaining it from the
integral over ps, which does not appear in their book.
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where B is, like C , a constant independent of x′ and x. A rather tedious
calculation along the lines of our calculation of C gives7

B = N−D/2

(
m

2iπ� dτ

)−DN /2

,

so, since N dτ = t ′ − t ,

BC =
(

m

2iπ�(t ′ − t)

)D/2

. (9.6.23)

We can check this, by noting that (9.6.22) must approach the delta function
δD(x′ − x) in the limit as t ′ → t . That is, for any smooth function f (x), in this
limit we must have∫

d Dx

(
m

2iπ�(t ′ − t)

)D/2

exp

(
im(x′ − x)2

2(t ′ − t)�

)
f (x) → f (x′).

For t ′ → t the exponential varies very rapidly with x except at x = x′, so the
integral can be done by setting the argument of f equal to x′, and all we need to
show is that ∫

d Dx

(
m

2iπ�(t ′ − t)

)D/2

exp

(
im(x′ − x)2

2(t ′ − t)�

)
= 1,

which follows from the standard formula for the integrals of Gaussian func-
tions. The x′-dependence of the matrix element (9.6.22) can be understood by
noting that this matrix element is nothing but the wave function of the state �x,τ ,
defined as an eigenstate of the x(τ ), in a basis in which the x(t′) are diagonal.
Thus this matrix element must satisfy the Schrödinger equation

−
(

�
2 ∇′2

2m

)(
�x′,t ′, �x,t

)
= i�

∂

∂t ′
(
�x′,t ′, �x,t

)
,

and it does. Thus the path-integral formalism allows us to find the solution of
the Schrödinger equation, without ever writing down the Schrödinger equation.

In an experiment in which a particle is made to pass from a point x on one side
of a screen in which there are several holes to a point x′ on the other side, there is
not just one trajectory x(τ ) for which the action

∫
L(τ ) dτ is stationary, but a tra-

jectory for each hole. The path-integral formalism thus allows us to understand
the interference pattern produced in such an experiment without wave mechan-
ics, but instead as a consequence of the superposition of contributions of several
possible classical paths.

More generally, for non-quadratic Lagrangians, the path integral (9.6.20) can-
not be calculated analytically. One way of dealing with this problem is to expand

7 Feynman and Hibbs, op. cit. pp. 43–44.
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in powers of the non-quadratic part of the Lagrangian, which yields a Lagrangian
version of time-dependent perturbation theory. The other approach is to divide
the range of integration from t to t ′ into a finite number of segments of duration
�τ , and calculate the integral of exp(i L(τ )�τ/�) over particle coordinates at
each segment end numerically. In quantum field theories one would also have
to represent space as a lattice of points, and integrate over fields numerically
at each point in the spacetime lattice. This approach can reveal features of a
problem that are not accessible through perturbation theory.8

Problems

1. Consider the theory of a single particle with Lagrangian

L = m

2
ẋ2 + ẋ · f(x)− V (x),

where f(x) and V (x) are arbitrary vector and scalar functions of position.

● Find the equation of motion satisfied by x.
● Find the Hamiltonian, as a function of x and its canonical conjugate p.
● What is the Schrödinger equation satisfied by the coordinate-space wave

function ψ(x, t)?

2. Show that Poisson brackets and Dirac brackets both satisfy the Jacobi
identity.

3. Consider a one-dimensional harmonic oscillator, with Hamiltonian

H = p2

2m
+ mω2x2

2
.

Use the path-integral formalism to calculate the probability amplitude for a
transition from a position x at time t to a position x ′ at time t ′ > t .

8 For applications of lattice methods to field theory, see M. Creutz, Quarks, Gluons, and Lattices (Cam-
bridge University Press, Cambridge, 1985); T. DeGrand and C. DeTar, Lattice Methods for Quantum
Chromodynamics (World Scientific Press, Singapore, 2006).
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10
Charged Particles in Electromagnetic

Fields

In this chapter we take up the problem of charged non-relativistic particles in
an external electromagnetic field – that is, a field produced by some macro-
scopic system whose quantum fluctuations are negligible. This problem is of
great physical importance in itself, and it also provides an example in which the
canonical commutation relations are somewhat surprising.

10.1 Canonical Formalism for Charged Particles

Consider a set of non-relativistic spinless particles with masses mn and charges
en , in a classical external electric field E(x, t) and magnetic field B(x, t). (Effects
of spin are considered in Section 10.3.) Because it is easy, we will also include
in the theory a local potential V depending on some or all of the various particle
coordinates. The equations of motion of the particles are

mn ẍn(t) = en

[
E
(

xn(t), t
)

+ 1

c
ẋn(t)× B

(
xn(t), t

)]
−∇nV

(
x(t)

)
. (10.1.1)

It is not possible to write a simple Lagrangian for this system directly in terms
of E and B; instead we must introduce a vector potential A(x, t) and scalar
potential φ(x, t), for which

E = −1

c
Ȧ − ∇φ , B = ∇ × A . (10.1.2)

(This is always possible, because E and B satisfy the homogeneous Maxwell
equations ∇ × E + Ḃ/c = 0 and ∇ · B = 0.)

Let us tentatively take the Lagrangian as

L(t) =
∑

n

[mn

2
ẋ2

n(t)− enφ
(

xn(t), t
)

+ en

c
ẋn(t) · A

(
xn(t), t

)]
− V(x) ,

(10.1.3)

348
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10.1 Canonical Formalism for Charged Particles 349

and check whether it gives the right equations of motion (10.1.1). Here φ and A
are external fields, not dynamical variables. (They will become dynamical vari-
ables when we quantize the electromagnetic field in the next chapter.) Therefore
we are concerned here with the differential equations (9.1.3) only where the
qN (t) are the coordinates xni (t). For the Lagrangian (10.1.3), we have (leaving
the time argument of xn to be understood)

∂L(t)

∂xni
= −en

∂φ(xn, t)

∂xni
+ en

c

∑
j

ẋn j
∂A j (xn, t)

∂xni
− ∂V(x)

∂xni
, (10.1.4)

∂L(t)

∂ ẋni
= mnẋni + en

c
Ai (xn, t) , (10.1.5)

and so

d

dt

∂L(t)

∂ ẋni
= mnẍni + en

c

∂Ai (xn, t)

∂t
+ en

c

∑
j

∂Ai (xn, t)

∂xnj
ẋn j . (10.1.6)

The equations of motion (9.1.3) are then

mnẍni = −en
∂φ(xn, t)

∂xni
− en

c

∂Ai (xn, t)

∂t

+ en

c

∑
j

ẋn j

[
∂A j (xn, t)

∂xni
− ∂Ai (xn, t)

∂xnj

]
− ∂V(x)

∂xni
. (10.1.7)

We recognize that, according to Eq. (10.1.2), the coefficients of en in the first
two terms on the right add up to give the electric field. Also, the sum in the third
term on the right is

∑
j

ẋn j

[
∂A j (xn, t)

∂xni
− ∂Ai (xn, t)

∂xnj

]
=
∑

jk

ẋn jεi jk[∇ × A(xn, t)]k

= [ẋn × B(xn, t)]i ,

where as usual εi jk is the totally antisymmetric tensor with ε123 = 1. Hence the
equation of motion (10.1.7) derived from this Lagrangian is indeed the same as
Eq. (10.1.1).

To calculate energy levels, we need to construct a Hamiltonian. According to
Eq. (10.1.5), here the time derivative of the coordinate is a function of both the
coordinate and its canonical conjugate:

ẋn = 1

mn

[
pn − en

c
A(xn, t)

]
. (10.1.8)

Equation (9.3.1) then gives the Hamiltonian as
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350 10 Charged Particles in Electromagnetic Fields

H(x,p, t) =
∑

n

1

mn
pn ·

[
pn − en

c
A(xn, t)

]

−
∑

n

{
1

2mn

[
pn − en

c
A(xn, t)

]2 − enφ
(

xn, t
)

+ en

mnc

[
pn − en

c
A(xn, t)

]
· A
(

xn, t
)}

+ V(x) ,
or more simply

H(x,p, t) =
∑

n

1

2mn

[
pn − en

c
A(xn, t)

]2 +
∑

n

enφ
(

xn, t
)

+V(x) . (10.1.9)

If we now used Eq. (10.1.8) to write the first term as
∑

n mn ẋ2
n/2, then it would

appear as if the dynamics of these particles was unaffected by the vector poten-
tial, but this is wrong; in using the Hamiltonian to derive dynamical equations,
we must consider it as in Eq. (9.3.4), as a function of the xn and pn , and not as a
function of the xn and ẋn . In particular, it is pn and not mn ẋn that appears in the
canonical commutation relations

[xni , pmj ] = i�δnmδi j , (10.1.10)

[xni , xmj ] = [pni , pmj ] = 0 . (10.1.11)

We will use this Hamiltonian and these commutation relations in Section 10.3
to find the energy levels of a charged particle in a uniform magnetic field.

The presence of the vector potential in the Hamiltonian (10.1.9) does not
invalidate the conservation of probability, but it does require a change in the
probability current introduced in Eq. (1.5.5). For simplicity, consider a system
containing just a single particle with mass m and charge −e. (For atomic nuclei,
replace −e with Ze.) In the Schrödinger equation for the coordinate-space wave
function ψ we replace p with −i� ∇, as required by the commutation relations,
so that

− i�
∂ψ(x, t)

∂t
= H(x,−i� ∇, t)ψ(x, t), (10.1.12)

where

H(x,−i� ∇, t) = 1

2m

[
−i� ∇ + e

c
A(x, t)

]2 − eφ
(

x, t
)

+ V(x) . (10.1.13)

Thus the rate of change of the probability density is

|∂ψ(x, t)|2
∂t

= i

�

(
ψ∗(x, t)H(x,−i� ∇, t)ψ(x, t)

− ψ(x, t)H(x,+i� ∇, t)ψ∗(x, t)

)
. (10.1.14)
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10.2 Gauge Invariance 351

The terms V , −eφ, and (e2/2mc2)A2 in H all cancel on the right-hand side, just
leaving us with the terms of first and second order in gradients. A straightfor-
ward calculation then allows us to put Eq. (10.1.14) in the form of a conservation
law analogous to Eq. (1.5.5):

|∂ψ(x, t)|2
∂t

+ ∇ · J (x, t) = 0 , (10.1.15)

where J (x, t) is the probability current

J = −i�

2m

[
ψ∗
[
∇ + ie

�c
A
]
ψ − ψ

([
∇ + ie

�c
A
]
ψ

)∗]
. (10.1.16)

10.2 Gauge Invariance

Different vector and scalar potentials can yield the same electric and magnetic
fields. Specifically, inspection of Eqs. (10.1.2) shows that we can change the
potentials by a gauge transformation

A(x, t) �→ A′(x, t) = A(x, t)+ ∇α(x, t) , (10.2.1)

φ(x, t) �→ φ′(x, t) = φ(x, t)− 1

c

∂

∂t
α(x, t) (10.2.2)

(where α(x, t) is an arbitrary real function), with no change in the electric and
magnetic fields. It is therefore striking that, although the Lagrangian (10.1.3)
depends on the specific choice of vector and scalar potentials, the equations of
motion derived from this Lagrangian depend only on the electric and magnetic
fields. We can understand this by noting that, under the transformation (10.2.1),
(10.2.2), the Lagrangian is transformed to

L(t) �→ L ′(t) = L(t)+
∑

n

en

c

[
∂α(xn, t)

∂t
+ ẋn · ∇nα(xn, t)

]

= L(t)+ d

dt

∑
n

en

c
α(xn, t) . (10.2.3)

The Lagrangian is thus not gauge-invariant, but the action
∫

dt L(t) is gauge-
invariant (provided we take α(x, t) to vanish for t → ±∞), and since the field
equations are the statement that the action is stationary with respect to small
variations of the dynamical parameters that vanish as t → ±∞, they too are
gauge-invariant.

The Hamiltonian, though, is not gauge-invariant. If we make the change
of gauge (10.2.1), (10.2.2) in the Hamiltonian (10.1.9), we obtain a new
Hamiltonian:
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H ′(x,p, t) =
∑

n

1

2mn

[
pn − en

c
A(xn, t)− en

c
∇α(xn, t)

]2

+
∑

n

enφ
(

xn, t
)

−
∑

n

en

c

α(xn, t)

dt
+ V(x) . (10.2.4)

Now, according to the commutation relations (10.1.10), (10.1.11), we can define
a unitary operator

U (t) ≡ exp

[
i
∑

n

en

�c
α(xn, t)

]
, (10.2.5)

for which

U (t)pn(t)U
−1(t) = pn(t)− en

c
∇α(xn, t) . (10.2.6)

The Hamiltonian (10.2.4) in the new gauge may therefore be expressed as

H ′(x,p, t) = U (t)H(x,p, t)U−1(t)+ i�

[
d

dt
U (t)

]
U−1(t) , (10.2.7)

with the second term on the right providing the next-to-last term in Eq. (10.2.4).
(We are taking the xn and pn here as time-independent operators in the
Schrödinger picture, which allows us to write the time-derivative in the sec-
ond term in Eq. (10.2.7) as d/dt instead of ∂/∂t .) It is then easy to see that, if
�(t) satisfies the time-dependent Schrödinger equation in the original gauge

i�
d

dt
�(t) = H(t)�(t) , (10.2.8)

then the unitarily transformed state vector

� ′(t) ≡ U (t)�(t) (10.2.9)

satisfies the time-dependent Schrödinger equation in the new gauge:

i�
d

dt
� ′(t) = U (t)H(t)�(t)+ i�

[
d

dt
U (t)

]
�(t) = H ′(t)� ′(t) . (10.2.10)

Recall that xn is the operator that multiplies the coordinate-space wave
function with the nth coordinate vector, so the transformation (10.2.9) is a
position-dependent change of phase of the coordinate-space wave functions,
with no change in the probability density in coordinate space. There is also no
change in the probability current (10.1.16) for a single particle of charge −e and
mass m. The gauge transformation (10.2.1), (10.2.2) induces on the wave func-
tion of this particle a change of phase by a factor exp(−ieα/�c), so the effect
in Eq. (10.1.6) of the change in the vector potential is canceled by the change of
the gradient of ψ .

It is of special interest to consider the effect of a gauge transformation on the
energy eigenvalues of the Hamiltonian in the case of time-independent electric
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10.3 Landau Energy Levels 353

and magnetic fields, for which the Hamiltonian is time-independent. To keep
the fields time-independent, we will take the gauge transformation to be also
time-independent.1 In this case, Eq. (10.2.7) is just a unitary transformation,
H ′ = U HU−1, so if � is an eigenstate of H with eigenvalue E , then � ′ = U�

is an eigenstate of H ′ with the same eigenvalue E . In cases where energies are
well defined, they are gauge-invariant.

10.3 Landau Energy Levels

As an example of the use of the theory of charged particles in an electromagnetic
field described in previous sections, we will now take up a classic problem first
treated in 1930 by Lev Landau (1908–1968): the quantum theory of motion
in two dimensions of an electron in a uniform magnetic field.2 Since electrons
have spin, we must add a term −μes ·B/(�/2) to the Hamiltonian, where μe is a
parameter known as the magnetic moment of the electron. The Hamiltonian for
an electron (with charge −e) in a general electromagnetic field is then

H = 1

2me

(
p + e

c
A(x, t)

)2 − eφ(x, t)− 2μe

�
s · B(x, t) . (10.3.1)

We are here neglecting any interaction between electrons, so that it is adequate
to consider one electron at a time. We assume that the magnetic field is in the
+z-direction, and has a constant value Bz . We also include an electric field along
the z-direction, which depends only on z, and has the function of confining the
electron in this direction, whether to a thin sheet or to the whole thickness of a
slab of material. We can then take the vector and scalar potentials to have the
form

Ay = x Bz , Ax = Az = 0 , φ = φ(z) . (10.3.2)

(This choice is of course not unique, but as shown in Section 10.2, the eigen-
values of the Hamiltonian are independent of the choice of potentials giving the
assumed electric and magnetic fields.) With these potentials, the Hamiltonian
(10.3.1) takes the form

H = 1

2me

(
p2

x + (py + eBz x/c)2 + p2
z

)− eφ(z)− 2μesz Bz/� . (10.3.3)

This Hamiltonian commutes with the operators py and sz , and with

H ≡ p2
z

2me
− eφ(z) , (10.3.4)

1 The transformed fields will also be time-independent if we let α(x, t) = λt , with λ independent of x
and t . This amounts to a change of an arbitrary additive constant in the electrostatic potential, and shifts
all energies in a system of total charge Q by the same amount, −λQ/c.

2 L. Landau, Z. Physik 64, 629 (1930).
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so we can look for states � that are eigenstates of all these operators,

H� = E� , sz� = ±�

2
� , py� = �ky� , (10.3.5)

as well as

H� = E� . (10.3.6)

The Schrödinger equation (10.3.6) then reads

1

2me

(
p2

x + (�ky + eBz x/c)2
)
� = (E − E ± μe Bz)� . (10.3.7)

We can put this in a more familiar form, by writing it as[
1

2me
p2

x + meω
2

2
(x − x0)

2

]
� = (E − E ± μe Bz)� , (10.3.8)

where

ω = eBz

mec
, x0 = −�kyc

eBz
. (10.3.9)

(The parameter ω is the circular frequency of classical electron orbits in a mag-
netic field Bz , and is therefore known as the cyclotron frequency.) Of course,
we recognize Eq, (10.3.8) as the Schrödinger equation for a harmonic oscillator,
discussed in Section 2.5. (Even though px in Eq. (10.3.7) is not simply equal to
me ẋ , it does satisfy the commutation relation [x, px ] = i�, and therefore acts as
the differential operator −i� ∂/∂x on the coordinate-space wave function, just
as for the ordinary harmonic oscillator.) The presence of x0 in Eq. (10.3.8) has
no effect on the energy eigenvalues, as it can be absorbed into a re-definition of
the coordinate, x �→ x ′ = x − x0. So the energies are given by

E = E ∓ μe Bz + �ω

(
n + 1

2

)
, (10.3.10)

where n = 0, 1, 2, . . . .
This takes an interesting form if we use the actual value of the electron

magnetic moment

μe = −e�(1 + δ)

2mec
, (10.3.11)

where δ = 0.001165923(8) is a small radiative correction. Equation (10.3.10)
then reads

E = E + �ω

(
n + 1

2
± 1 + δ

2

)
. (10.3.12)

We observe a near degeneracy: in the approximation δ 
 0, for a given E and
ky we have one state with energy E , and two states each with energies E + �ω,
E + 2�ω, etc.
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Because the energies (10.3.12) do not depend on ky , these energy levels
exhibit a very large further degree of degeneracy. Suppose the electrons are con-
fined in a square slab, with −Lx/2 ≤ x ≤ Lx/2 and −L y/2 ≤ y ≤ L y/2. The
harmonic oscillator wave functions (2.5.13) extend around x0 in the x-direction
over a microscopic distance 
 (�/meω)

1/2, which we assume to be very much
less than Lx , so x0 in Eq. (10.3.8) must have |x0| < Lx/2, which according
to Eq. (10.3.9) gives |ky| < eBz Lx/2�c. As in Eq. (1.1.1), the wave number
ky can only take values 2πny/L y , where ny is a positive or negative integer,
so the number of states with a given n, E , and sz , satisfying the condition that
|ky| is less than eBz Lx/2�c, is the number of positive or negative integers with
magnitude less than (eBz Lx/2�c)(L y/2π), which is

Ny = eBz A

2π�c
, (10.3.13)

where A = Lx L y is the area of the slab.
To go further, we need to make some assumption about the term H in the

Hamiltonian that governs the z-dependence of the wave function, given by
Eq. (10.3.4). We will concentrate on the simplest case, assuming that we are
dealing with a slab of metal so thin in the z-direction that the eigenvalues E of
H are very far apart, so that we can assume that all conduction electrons are in
the eigenstate of H with lowest energy E0.

If we assume that all of the harmonic oscillator states are occupied by elec-
trons up to a maximum energy EF (the Fermi energy less E0), then the total
number of conduction electrons will be

N = 2

( EF

�ω

)
Ny = EFme A

π�2
. (10.3.14)

Without a magnetic field, we would have just the same relation between the
Fermi energy and the number N/A of electrons per area:

N = 2

(
Lx

2π

)(
L y

2π

)∫ √
2meEF/�

0
2πk dk = EFme A

π�2
.

Where the magnetic field makes a difference is in the quantization of the
energy levels. According to Eq. (10.3.12) (with δ = 0), if all the energy levels
(10.3.12) up to some maximum energy are completely filled, then the partial
Fermi energy EF must be a whole-number multiple of �ω, which is not neces-
sarily true of the value of EF given according to Eq. (10.3.14) for a particular
number per unit area N/A of conduction electrons. When the partial Fermi
energy EF is not a whole-number multiple of �ω, the highest of the harmonic
oscillator energy levels is not completely filled. Specifically, if [EF/�ω] is the
largest integer less than or equal to EF/�ω, then all of the energy levels up to
�ω[EF/�ω] will be fully occupied, and the fraction f of the next highest energy
level that is occupied will be given by the condition that
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([ EF

�ω

]
+ f

)
�ω = EF ,

or in other words

f = EF

�ω
−
[ EF

�ω

]
. (10.3.15)

As the magnetic field increases, the ratio EF/�ω decreases as 1/Bz , so f
decreases until EF/�ω is an integer, where f = 0. With a continued increase
in Bz , the occupancy f will jump up from zero to nearly one, and then decrease
to zero again when EF/�ω equals the next lowest integer, and so on. Many prop-
erties of the metal therefore show a periodicity in 1/Bz , with a period equal to
the decrease in 1/Bz required for EF/�ω to decrease by one unit:

�

(
1

Bz

)
= �e

mecEF
. (10.3.16)

The observed periodicities in electrical resistivity and magnetic susceptibility
are known as the Shubnikov–de Haas effect and the de Haas–van Alphen effect,
respectively. By measuring such periodicities for various magnetic field orien-
tations, it is possible to determine the relation between electron energies and
momenta in a crystal.

Similar periodicities are also seen in slabs with a finite thickness in the z-
direction, in which many different eigenstates of H are occupied. Here the
eigenvalues E are functions of the z-component kz of the Bloch wave number,
and the oscillations are associated with maxima or minima in E(kz).

10.4 The Aharonov–Bohm Effect

As emphasized in Section 10.1, even though in classical physics the introduction
of vector and scalar potentials is a mere mathematical convenience, in quan-
tum mechanics it is essential. This is vividly demonstrated by the existence of
an effect predicted by Aharonov and Bohm,3 in which the vector potential can
have measurable effects on a charged particle, even though the magnetic field
vanishes everywhere along the particle’s path.

First let’s consider how to calculate the wave function of an electron (ignor-
ing spin effects) of energy E in a static electromagnetic field, in a case where
the scale of length over which the field varies appreciably is large compared
with the electron wavelength. In this case we can use the eikonal approximation
described in Section 7.10, with a Hamiltonian given by Eq. (10.1.9) for charge
−e and with no non-electromagnetic potential V:

3 Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).
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10.4 The Aharonov–Bohm Effect 357

H(x,p) = 1

2me

[
p + e

c
A(x)

]2 − eφ(x) . (10.4.1)

We write the wave function as

ψ(x) = N (x) exp(i S(x)/�) (10.4.2)

with N and S real, and we make the approximation that the phase S(x)/� varies
much more rapidly with position than does the amplitude N (x). As described in
Section 7.10, to find S we must construct ray paths, defined by the Hamiltonian
equations (7.10.4), which for the Hamiltonian (10.4.1) read

dxi

dτ
= 1

me

[
pi + e

c
Ai (x)

]
, (10.4.3)

dpi

dτ
= − e

mec

∑
j

[
p j + e

c
A j (x)

] ∂A j (x)
∂xi

+ e
∂φ(x)
∂xi

, (10.4.4)

where τ parameterizes the path through phase space. Boundary conditions on
the wave function are specified on an initial surface, on which to leading order
the phase of the wave function is a constant, which we can take as zero, on
which dx/dτ is normal to this surface, and on which the Hamiltonian H equals
the electron energy E . (For instance, if the potentials vanish for z large and
negative, and the wave function in this case is proportional to exp(ikz), then we
can take the initial surface to be any plane at large negative z normal to the z-
axis.) Equations (10.4.3) and (10.4.4) then give H = E along any path. For any
point x in at least a neighborhood of the initial surface there will be some point
X(x) on the initial surface such that the path starting from X(x) at τ = 0 and
obeying the Hamiltonian equations (10.4.3) and (10.4.4) will eventually reach
x, at some value τ = τx of the path parameter. The phase S(x)/� is then given
by the general formula

S(x) =
∫ τx

0
p(τ ) · dx(τ )

dτ
dτ . (10.4.5)

As shown in Section 7.10, this has the consequence that

p(τx) = ∇S(x) , (10.4.6)

with it understood here that p(τ ) is the solution of Eqs. (10.4.3) and (10.4.4) for
the ray path that runs from the initial surface to x. (This ensures that H(∇S, x) =
E , which is the Schrödinger equation in the approximation that gradients of
N are neglected.) In our case, using Eq. (10.4.3) and setting the Hamiltonian
(10.4.1) equal to E , Eq. (10.4.5) gives

S(x) =
∫ τx

0

[
−e

c
A(x(τ )) · dx(τ )

dτ
+ 2

(
E + eφ(x(τ ))

)]
dτ . (10.4.7)

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316276105.012
http:/www.cambridge.org/core


358 10 Charged Particles in Electromagnetic Fields

To calculate the amplitude N (x), we use the probability conservation law
(10.1.5). Since the wave function here is time-independent, this gives

∇ · J = 0 (10.4.8)

with the current J given by Eq. (10.1.6). Again neglecting gradients of N in the
eikonal approximation, this current is

J = 1

m
N 2
(
∇S + e

c
A
)
. (10.4.9)

Following the argument of Section 7.10, consider all the ray paths that reach
a small patch of area δa around x, normal to these paths. These paths will
have started on the initial surface in a small patch of area δA around X(x).
We can draw a thin tube, whose ends are these two patches, and whose sides
are formed from ray paths that go from the edges of the patch on the initial
surface to the edges of the patch around x. Equations (10.4.8) and (10.4.9)
and Gauss’s theorem tell us that the integral over this surface of the compo-
nent of N 2 (∇S + (e/c)A) in the direction of the outward normal to the surface
of the tube vanishes. According to Eqs. (10.4.3) and (10.4.6), the combination
S+(e/c)A is just proportional to dx/dτ , and hence points in the direction of the
ray path, so the normal component of N 2(∇S + (e/c)A) vanishes on the sides of
the tube, which are in the direction of the ray path. The vector N 2(∇S + (e/c)A)
on the patch at x is in the direction of the outward normal to this patch, while on
the corresponding patch on the initial surface it is in the direction of the inward
normal to this surface, so Gauss’s theorem tells us that

N 2(x)

∣∣∣∣∣
(

dx(τ )
dτ

)
τ=τx

∣∣∣∣∣ δa − N 2(X(x))

∣∣∣∣
(

dx(τ )
dτ

)
τ=0

∣∣∣∣ δA = 0 , (10.4.10)

it being understood that dx(τ )/dτ is here to be calculated for the ray path that
goes to x from the corresponding point X (x) on the initial surface. The only
feature of Eq. (10.4.10) that will be needed below is that the ratio of N 2 at x to
its value at the corresponding point X(x) on the initial surface depends only on
the energy E and on the field strengths B and E acting on the electron, but not
on the vector potential except as it affects these fields. This is because it follows
from Eqs. (10.4.3) and (10.4.4) that x(τ ) obeys an equation of motion analogous
to Eq. (10.1.1):

meẍ(t) = −e

[
E
(

x(t), t
)

+ 1

c
ẋ(t)× B

(
x(t), t

)]
, (10.4.11)

while according to Eqs. (10.4.1) and (10.4.3) the value of dx/dτ on the initial
surface depends only on E and φ. The ray paths x(τ ) therefore do not depend
on the vector potential, except as it affects the magnetic field, and the same is
then true of the path expansion ratio δa/δA and the ratio
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∣∣∣∣∣
(

dx(τ )
dτ

)
τ=τx

∣∣∣∣∣
/ ∣∣∣∣∣

(
dx(τ )

dτ

)
τ=0

∣∣∣∣∣ ,
so according to Eq. (10.4.10) it is also true of the ratio of N 2 at x to its value at
the corresponding point on the initial surface.

Now suppose that by some arrangement of fields, screens, and/or beam split-
ters, a single coherent beam of electrons is split into two parts, so that there are
two ray paths to a detector at x. The wave function at x will take the form

ψ(x) = N1(x) exp
(

i S1(x)/�
)

+ N2(x) exp
(

i S2(x)/�
)
, (10.4.12)

where the subscripts 1 and 2 denote the two paths to the detector. The probability
density at x then depends on the difference of the phases:

|ψ(x)|2 = N 2
1 (x)+ N 2

2 (x)+2N1(x)N2(x) cos
(
[S1(x)− S2(x)]/�

)
. (10.4.13)

According to Eq. (10.4.7), the phase difference appearing here may be written
as an integral over a curve that goes from the point X1(x) on the initial surface
along path 1 to x, and then back along path 2 to the point X2(x) on the initial
surface. But by definition the phase S is constant on the initial surface, so the
integral can just as well be taken over the closed curve C12 that goes from X1(x)
to x on path 1, then from x to X2(x) backward on path 2, and then on the initial
surface from X2(x) to X1(x):

1

�

[
S1(x)− S2(x)

]
= 1

�

∮
C12

[
−e

c
A(τ ) · dx(τ )

dτ
+ 2

(
E + eφ(x(τ ))

)]
dτ .

(10.4.14)
According to the Stokes theorem, the first term in the phase difference is
proportional to the magnetic flux through the surface A12 bounded by C12:

− e

�c

∮
C12

A(τ ) · dx(τ )
dτ

dτ = − e

�c
� , (10.4.15)

where the flux is

� =
∫
A12

B · n̂ dA, (10.4.16)

where n̂ is the unit vector normal to the surface A12. Thus the phase difference
(10.4.14) and hence the intensity (10.4.13) depend on the values of the magnetic
field in places in the interior of the curve C12, where the electron does not go.

In the particular case considered by Aharonov and Bohm, a magnetic solenoid
is inserted between paths 1 and 2, carrying a magnetic flux � that is entirely
contained within the solenoid. As we have seen, the ray paths and the values
of N 2 are only affected by the electric and magnetic fields along the paths, and
so are unaffected by the solenoid. But the vector potential of the solenoid does
extend outside it, and this contributes a term −e�/�c to the phase difference,
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360 10 Charged Particles in Electromagnetic Fields

even though the magnetic field of the solenoid vanishes along both ray paths.
There are other contributions to the phase difference (10.4.14), but the contribu-
tion of the solenoid can be observed by changing its flux �, while making no
other change to the system. As shown by Eqs. (10.4.13)–(10.4.15), the elec-
tron probability density at the detector will be periodic in �, with a period
2π�c/e = 4.14 × 10−7 Gauss cm2. This effect has been observed in a long
series of experiments.4

The Aharonov–Bohm effect has been described here in a time-independent
context, but we can also consider it to be the effect of the changing magnetic field
seen in the rest frame of the electron. In this sense, we can regard Eq. (10.4.15)
as an example of the Berry phase discussed in Section 6.7.

Problems

1. Consider a system in an external electromagnetic field. Suppose that the part
of the Lagrangian that depends on the scalar potential φ and vector potential
A takes the form

L int(t) =
∫

d3x [−ρ(x, t)φ(x, t)+ J(x, t) · A(x, t)] ,

where ρ and J depend on the matter variables but not on φ or A. What
condition must be satisfied by ρ and J for the action to be gauge-invariant?

2. Consider a homogeneous rectangular slab of metal, with edges Lx , L y , and
Lz . Assume that the electric potential φ vanishes within the slab, and that the
wave functions of conduction electrons in the slab satisfy periodic boundary
conditions at the slab faces. Suppose that the slab is in a constant magnetic
field in the z-direction that is strong enough that the cyclotron frequency
ω is very much larger than �/meL2

z . Suppose that there are ne conduction
electrons per unit volume in the slab. Calculate the maximum energy of
individual conduction electrons, in the limit ωmeL2

z/� → ∞.

3. Consider a non-relativistic electron in an external electromagnetic field.
Calculate the commutators of different components of its velocity.

4 R. G. Chambers, Phys. Rev. Lett. 5, 3 (1960); H. A. Fowler, L. Marton, J. A. Simpson, and J. A. Suddeth,
J. Appl. Phys. 22, 1153 (1961); H. Boersch, H. Hamisch, K. Grohmann, and D. Wohlleben, Z. Phys.
165, 79 (1961); G. Möllenstedt and W. Bayh, Phys. Blätter 18, 299 (1962); A. Tomomura, T. Matsuda,
R. Suzuki, A. Fukuhara, N. Osakabe, H. Umezaki, J. Endo, K. Shinagawa, Y. Sagita, and H. Fujiwara,
Phys. Rev. Lett. 48, 1443 (1982).
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11
The Quantum Theory of Radiation

We now come back to the problem that gave rise to quantum theory at the
beginning of the twentieth century – the nature of electromagnetic radiation.

11.1 The Euler–Lagrange Equations

In order to quantize the electromagnetic field, we will work with a Lagrangian
that leads to Maxwell’s equations. But before introducing this Lagrangian, it
will be helpful first to explain in general terms how in field theories the field
equations can be derived from a Lagrangian.

The canonical variables qN (t) in general field theories are fields ψn(x, t), for
which N is a compound index, including a discrete label n indicating the type
of field and a spatial coordinate x. Correspondingly, the Lagrangian L(t) is a
functional of ψn(x, t) and ψ̇n(x, t), depending on the form of all of the func-
tions ψn(x, t) and ψ̇n(x, t) for all x, but at a fixed time t . In consequence, the
partial derivatives with respect to qN and q̇N in the equations of motion must
be interpreted as functional derivatives with respect to ψn(x, t) and ψ̇n(x, t), so
that these equations read

∂

∂t

(
δL(t)

δψ̇n(x, t)

)
= δL(t)

δψn(x, t)
, (11.1.1)

where the functional derivatives δL/δψ̇n and δL/δψn are defined so that
the change in the Lagrangian produced by independent infinitesimal changes
δψn(x, t) and δψ̇n(x, t) in ψn(x, t) and ψ̇n(x, t) at a fixed time t is

δL(t) =
∑

n

∫
d3x

[
δL(t)

δψn(x, t)
δψn(x, t)+ δL(t)

δψ̇n(x, t)
δψ̇n(x, t)

]
. (11.1.2)

Likewise, the canonical conjugate to ψn(x, t) is

πn(x, t) = δL(t)

δψ̇n(x, t)
, (11.1.3)
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362 11 The Quantum Theory of Radiation

and in a theory with no constraints, the canonical commutation relations are

[ψn(x, t), πm(y, t)] = i�δnmδ
3(x − y) , (11.1.4)

[ψn(x, t), ψm(y, t)] = [πn(x, t), πm(y, t)] = 0 . (11.1.5)

Typically (though not always), the Lagrangian in a field theory will be an
integral of a local Lagrangian density L:

L(t) =
∫

d3x L
(
ψ(x, t),∇ψ(x, t), ψ̇(x, t)

)
. (11.1.6)

The variation of the Lagrangian action due to infinitesimal changes in the ψn

and their space and time derivatives that vanish for |x| → ∞ is

δ L(t) =
∫

d3x
∑

n

[
∂L
∂ψn

δψn +
∑

i

∂L
∂(∂iψn)

∂

∂xi
δψn + ∂L

∂ψ̇n

∂

∂t
δψn

]
.

Integrating by parts, this is

δ L(t) =
∫

d3x
∑

n

[(
∂L
∂ψn

−
∑

i

∂

∂xi

∂L
∂(∂iψn)

)
δψn + ∂L

∂ψ̇n

∂

∂t
δψn

]
.

This may be expressed as formulas for the variational derivatives of the
Lagrangian

δL

δψn
= ∂L
∂ψn

−
∑

i

∂

∂xi

∂L
∂(∂iψn)

, (11.1.7)

δL

δψ̇n
= ∂L
∂ψ̇n

. (11.1.8)

The equations of motion (11.1.1) then take the form of the Euler–Lagrange field
equations

∂L
∂ψn

−
∑

i

∂

∂xi

∂L
∂(∂iψn)

= ∂

∂t

∂L
∂ψ̇n

. (11.1.9)

(In relativistically invariant theories it is convenient to write this as

∂L
∂ψn

=
∑
μ

∂

∂xμ
∂L

∂(∂μψn)
. (11.1.10)

Here μ is a four-component index, summed over the values i = 1, 2, 3, and
0, with xi = xi and x0 = ct .) Similarly, in theories with a local Lagrangian
density, the field variable (11.1.3) that is canonically conjugate to ψn(x, t) is

πn = δL

δψ̇n
= ∂L
∂ψ̇n

. (11.1.11)
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11.2 The Lagrangian for Electrodynamics 363

11.2 The Lagrangian for Electrodynamics

The electric field E(x, t) and magnetic field B(x, t) are governed by the
inhomogeneous Maxwell equations:1

∇ × B − 1

c

∂E
∂t

= 4π

c
J , ∇ · E = 4πρ , (11.2.1)

as well as the homogeneous Maxwell equations, already encountered in
Section 10.1:

∇ × E + 1

c

∂B
∂t

= 0 , ∇ · B = 0 . (11.2.2)

Here ρ(x, t) is the electric charge density, defined so that the electric charge
within any volume is the integral of ρ over that volume, and J(x, t) is the electric
current density, defined so that the charge per second passing through a small
area is the component of J normal to the area, times the area. They satisfy the
charge conservation condition

∂ρ

∂t
+ ∇ · J = 0 , (11.2.3)

which is needed for the consistency of Eqs. (11.2.1). For instance, for a set of
non-relativistic point particles with charges en and coordinate vectors xn(t), the
charge and current densities are

ρ(x, t) =
∑

n

enδ
3
(

x − xn(t)
)
, J(x, t) =

∑
n

en ẋn(t)δ
3
(

x − xn(t)
)
.

(11.2.4)
It is easy to see that these satisfy the conservation condition (11.2.3), by use of
the relation

∂

∂t
δ3
(

x − xn(t)
)

= −ẋn(t) · ∇δ3
(

x − xn(t)
)
.

As in Section 10.1, to construct a Lagrangian for electromagnetism, we need
to express the electric and magnetic fields in terms of a vector potential A(x, t)
and a scalar potential φ(x, t):

E = −1

c
Ȧ − ∇φ , B = ∇ × A , (11.2.5)

so that the homogeneous Maxwell equations (11.2.2) are automatically satisfied.
We saw in Eq. (10.1.3) that the term in the Lagrangian for the interaction of a
set of non-relativistic particles with an electromagnetic field is

1 The factor 4π appears here because in this book we are using unrationalized units for electric charges
and currents, so that the electric field produced by a charge e at a distance r is e/r2 rather than e/4πr2.
These are sometimes called Gaussian units.
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L int(t) =
∑

n

[
− enφ

(
xn(t), t

)
+ en

c
ẋn(t) · A

(
xn(t), t

)]
.

This can be expressed as the integral of a local density

L int(t) =
∫

d3x Lint(x, t) , (11.2.6)

where

Lint(x, t) = −ρ(x, t)φ(x, t)+ 1

c
J(x, t) · A(x, t) . (11.2.7)

We will take this as the interaction Lagrangian density for any sort of charges
and currents.

To (11.2.7), we must add a Lagrangian density L0 for the electromagnetic
fields themselves, so that the part of the Lagrangian that involves electromag-
netic fields is the integral of the density

Lem = L0 + Lint . (11.2.8)

As we will now see, the electromagnetic field Lagrangian that yields the correct
Maxwell equations is

L0 = 1

8π

[
E2 − B2

]
, (11.2.9)

with E and B expressed in terms of A and φ by means of Eq. (11.2.5). The total
Lagrangian for the system is

L(t) =
∫

d3x Lem(x, t)+ Lmat(t) , (11.2.10)

where Lmat(t) depends only on the matter coordinates and their rates of change,
but not on the electromagnetic potentials, and therefore plays no role in
determining the electromagnetic field equations.

The derivatives of the Lagrangian density with respect to the potentials and
their derivatives are then

∂Lem

∂(∂ j Ai )
= − 1

4π

∑
k

εk ji Bk ,
∂Lem

∂ Ȧi
= − 1

4πc
Ei ,

∂Lem

∂Ai
= 1

c
Ji ,

(11.2.11)

∂Lem

∂(∂iφ)
= − 1

4π
Ei ,

∂Lem

∂φ̇
= 0 ,

∂Lem

∂φ
= −ρ , (11.2.12)

where i, j, k run over the three coordinate axes 1, 2, 3, and as before εk ji is
the totally antisymmetric quantity with ε123 = +1. It is then easy to see that the
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11.3 Commutation Relations for Electrodynamics 365

inhomogeneous Maxwell equations (11.2.1) are the same as the Euler–Lagrange
equations (11.1.9) for Ai and φ:

∂Lem

∂Ai
−
∑

j

∂

∂x j

∂Lem

∂(∂ j Ai )
= d

dt

∂Lem

∂ Ȧi
,

∂Lem

∂φ
−
∑

i

∂

∂xi

∂Lem

∂(∂iφ)
= d

dt

∂Lem

∂φ̇
.

(11.2.13)

So Lem can indeed be taken as the Lagrangian density for the electromagnetic
fields. Of course, we could multiply the whole Lagrangian L for matter and radi-
ation with an arbitrary constant factor, and still get the same electromagnetic
field equations and particle equations of motion. As we will see, the normaliza-
tion here of L is chosen to give sensible results for the energies of photons and
charged particles.

11.3 Commutation Relations for Electrodynamics

From Eqs. (11.2.12) and (11.2.11), we see that the canonical conjugates to Ai

and φ are2

"φ ≡ ∂L
∂φ̇

= 0 , (11.3.1)

"i ≡ ∂L
∂ Ȧi

= − 1

4πc
Ei = 1

4πc

[
1

c
Ȧ + ∇φ

]
i

. (11.3.2)

The constraint (11.3.1) is clearly inconsistent with the usual commutation rule
[φ(x, t),"φ(y, t)] = i�δ3(x − y). Also, the field equation for E tells us that "i

is subject to a further constraint,

∇ · � = −ρ/c . (11.3.3)

Equation (11.3.3) is inconsistent with the usual canonical commutation rela-
tions, which would require that [Ai (x, t)," j (y, t)] = i�δi jδ

3(x − y), and that
Ai (x, t) commutes with ρ(y, t).

In the language of Dirac described in Section 9.5, the constraints (11.3.1) and
(11.3.3) are “first class,” because the Poisson bracket of "φ and ∇ · � + ρ/c
vanishes. On the other hand (and not unrelated to the presence of first-class con-
straints), gauge invariance gives us a freedom to impose additional conditions
on the dynamical variables. There are various possibilities, but the most com-
mon choice is Coulomb gauge, in which we impose the condition that the vector
potential is solenoidal:

∇ · A = 0 . (11.3.4)

2 I am using an upper case letter for the canonical conjugate to Ai , in order to distinguish the Heisenberg-
picture operators Ai and "i from their counterparts in the interaction picture, which in Section 11.5
will be denoted ai and πi .
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366 11 The Quantum Theory of Radiation

(Note that this can always be done, because if ∇ · A does not vanish, then it can
be made to vanish by a gauge transformation (10.2.1), (10.2.2):

A �→ A′ = A + ∇α , φ �→ φ′ = φ − α̇/c ,

with ∇2α = −∇ · A, which makes ∇ · A′ = 0.) With the gauge choice (11.3.4),
the field equation ∇ · E = 4πρ gives ∇2φ = −4πρ, so φ is not an independent
field variable, but a function of x and of the matter coordinates at the same time:3

φ(x, t) =
∫

d3 y
ρ(y, t)

|x − y| =
∑

n

en

|x − xn(t)| . (11.3.5)

So now we don’t need to worry about the vanishing of the "φ . We do still
have two constraints, (11.3.3) and (11.3.4), which in line with the notation of
Section 9.5, we will write as χ1 = χ2 = 0, where

χ1 = ∇ · A , χ2 = ∇ · � + ρ/c . (11.3.6)

As in Section 9.5, we define a matrix

Crx,sy ≡ [χr (x), χs(y)]P , (11.3.7)

where [·, ·]P denotes the Poisson bracket (9.4.19), and r and s run over the values
1 and 2. (Recall that the Poisson bracket is what the commutators would be,
aside from a factor i�, if the canonical commutation relations applied here.)
This “matrix” has elements

C1x,2y = −C2y,1x =
∑

i j

δi j
∂2

∂xi∂y j
δ3(x − y) = −∇2δ3(x − y) , (11.3.8)

C1x,1y = C2x,2y = 0 . (11.3.9)

This has a matrix inverse

C−1
1x,2y = −C−1

2y,1x = − 1

4π |x − y| , (11.3.10)

C−1
1x,1y = C−1

2x,2y = 0 , (11.3.11)

in the sense that∫
d3 y

(
0 C1x,2y

C2x,1y 0

) (
0 C−1

1y,2z

C−1
2y,1z 0

)

=
(
δ3(x − z) 0

0 δ3(x − z)

)
. (11.3.12)

3 Here we are using the relation ∇2
y |y − z|−1 = −4πδ3(y − z). It is easy to check that this quantity

vanishes for y 	= z, because d/dr(r2 d/dr(1/r)) = 0. But Gauss’s theorem tells us that its integral
over a ball centered on z equals the integral of (d/dr)(1/r) over the surface of the ball, which is −4π .
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11.3 Commutation Relations for Electrodynamics 367

That is,

∫
d3 y C1x,2yC−1

2y,1z =
∫

d3 y
[−∇2δ3(x − y)

] [ 1

4π |y − z|
]

=
∫

d3 y
[
δ3(x − y)

] [−∇2 1

4π |y − z|
]

= δ3(x − z) ,

and likewise for
∫

d3 y C2x,1yC−1
1y,2z. We also note the Poisson brackets

[Ai (x, t), χ2x′(t)]P = ∂

∂x ′
i

δ3(x − x′) , [Ai (x, t), χ1x′(t)]P = 0 ,

[χ1y′(t)," j (y, t)]P = ∂

∂y′
j

δ3(y′ − y) , [χ2y′(t)," j (y, t)]P = 0 .

Then according to Eqs. (9.5.17)–(9.5.19), the commutators of the canonical
variables are

[Ai (x, t)," j (y, t)] = i�

[
δi jδ

3(x − y)−
∫

d3x ′
∫

d3 y′ [Ai (x, t), χ2x′(t)]P

× C−1
2x′,1y′ [χ1y′(t)," j (y, t)]P

]

= i�

[
δi jδ

3(x − y)−
∫

d3x ′
∫

d3 y′
[
∂

∂x ′
i

δ3(x − x′)
]

×
[

1

4π |x′ − y′|
][

∂

∂y′
j

δ3(y − y′)

]]

= i�

[
δi jδ

3(x − y)− ∂2

∂xi ∂y j

1

4π |x − y|
]
, (11.3.13)

[Ai (x, t), A j (y, t)] = ["i (x, t)," j (y, t)] = 0 . (11.3.14)

There is an awkward feature about the canonical commutation relations in
Coulomb gauge, that we have not yet uncovered. Although the commutators of
the particle coordinates xnj with Ai and "i all vanish, the particle momenta pnj

have non-vanishing commutators with "i . According to the Dirac prescription
and Eqs. (11.3.8)–(11.3.11), this commutator is
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368 11 The Quantum Theory of Radiation

["i (x, t), pnj (t)] = −i�
∫

d3 y
∫

d3z ["i (x, t), χ1y(t)]P

× C−1
1y,2z[χ2z(t), pnj (t)]P

= −i�
∫

d3 y
∫

d3z

[
− ∂

∂yi
δ3(x − y)

] [ −1

4π |y − z|
]

×
[

1

c

∂

∂ynj
ρ(z)

]

= i�en

4πc

∂2

∂xi ∂xnj

1

|x − xn(t)| . (11.3.15)

We can avoid this complication by introducing as a replacement for � its
solenoidal part

�⊥ ≡ � − 1

4πc
∇φ = 1

4πc2
Ȧ , (11.3.16)

for which in Coulomb gauge

∇ · �⊥ = 0 . (11.3.17)

The Dirac bracket of the term −∇φ/4πc with pnj is just the Poisson bracket, so[
∂

∂xi
φ(x, t), pnj (t)

]
= i�en

∂2

∂xi ∂xnj

1

|x − xn(t)| . (11.3.18)

So we see that

[�⊥(x, t), pnj (t)] = 0 . (11.3.19)

Also, since φ has vanishing Poisson brackets with χ1 and χ2, it has vanishing
commutators with A and �, and so the commutators of the components of �⊥
with each other and with A are the same as for �:

[Ai (x, t),"⊥
j (y, t)] = i�

[
δi jδ

3(x − y)− ∂2

∂xi ∂y j

1

4π |x − y|
]
, (11.3.20)

[Ai (x, t), A j (y, t)] = ["⊥
i (x, t),"⊥

j (y, t)] = 0 . (11.3.21)

Note that these commutation relations are consistent with the vanishing of the
divergences of both A and �⊥.

11.4 The Hamiltonian for Electrodynamics

Now let us construct the Hamiltonian for this theory. In Coulomb gauge, because
φ is no longer an independent physical variable, the total Hamiltonian is

H =
∫

d3x
[
� · Ȧ − L0

]+ Hmat, (11.4.1)
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11.4 The Hamiltonian for Electrodynamics 369

where L0 is the purely electromagnetic Lagrangian density (11.2.9), and Hmat is
the Hamiltonian for matter, now including its interaction with electromagnetism.
Because ∇ · A = 0, we can replace � in the first term with �⊥, and then use
Eq. (11.3.16) to replace Ȧ with 4πc2�⊥. We can also use Eqs. (11.3.16) and
(11.2.5) to replace E in L0 with −4πc�:

H =
∫

d3x

[
4πc2[�⊥]2 − 1

8π
[4πc�⊥ + ∇φ]2 + 1

8π
(∇ × A)2

]
+ Hmat .

Integrating by parts gives
∫

d3x �⊥ · ∇φ = 0 and

− 1

8π

∫
d3x (∇φ)2 = 1

8π

∫
d3x φ ∇2φ = −1

2

∫
d3x ρφ .

The Hamiltonian is then

H =
∫

d3x

[
2πc2[�⊥]2 + 1

8π
(∇ × A)2

]
+ H ′

mat , (11.4.2)

where

H ′
mat = Hmat − 1

2

∫
d3x ρφ . (11.4.3)

For instance, in the case where the matter consists of non-relativistic charged
point particles in a general local potential V , Eq. (10.1.9) gives

Hmat =
∑

n

1

2mn

[
pn − en

c
A(xn, t)

]2 +
∑

n

enφ
(

xn, t
)

+ V(x) .

and furthermore, here4

φ(x, t) =
∑

m

em

|x − xm(t)| ,
∫

d3x ρ(x, t)φ(x, t) =
∑
n 	=m

enem

|xn − xm(t)| .

Hence,

H ′
mat =

∑
n

1

2mn

[
pn − en

c
A(xn)

]2 + 1

2

∑
n 	=m

enem

|xn − xm | + V(x) . (11.4.4)

(Time arguments are suppressed here.) We recognize the second term as the
usual Coulomb energy of a set of charged point particles. The factor 1/2 in
this term arises from the combination of a term

∫
d3x ρφ in Hmat and the term

−(1/2)
∫

d3x ρφ in Eq. (11.4.3). This factor serves to eliminate double count-
ing; for instance, for two particles, the sum over n and m includes both a term
with n = 1, m = 2, and an equal term with n = 2, m = 1.

4 In imposing the restriction n 	= m on the sum over n and m, we are dropping an infinite c-number term
in the Hamiltonian, which only shifts all energies by the same amount, and has no effect on rates of
change derived from the Hamiltonian.
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370 11 The Quantum Theory of Radiation

Let’s check that we recover Maxwell’s equations from this Hamiltonian.
Using the commutators (11.3.20) and (11.3.21) and Eq. (11.3.17), the Hamil-
tonian equations of motion for A and � are

Ȧi = i

�
[H, Ai ] = 4πc2"⊥

i , (11.4.5)

"̇⊥
i = i

�
[H,"⊥

i ]

= − 1

4π
(∇ × ∇ × A)i

+
∑

nj

en

mnc

(
pnj − en

c
A j (xn)

)

×
[
δ3(x − xn)δi j − ∂2

∂xi ∂xnj

1

4π |x − xn|
]
. (11.4.6)

(The expression in the last factor of the last term in Eq. (11.4.6) arises from
the commutator (11.3.20). In Eq. (11.4.5) and in the first term of Eq. (11.4.6)
we do not need to keep the second term in this commutator, because �⊥ and
∇ × A both have zero divergence.) To make contact with Maxwell’s equations,
we recall that, according to Eq. (10.1.8), we have pn − enA(xn)/c = mnẋn .
Hence Eqs. (11.4.5) and (11.4.6) give

Ä = −c2 ∇ × B + 4πcJ − c ∇φ̇ ,

or in other words,

Ė = c ∇ × B − 4πJ ,

which is the same as the first of the inhomogeneous Maxwell equations (11.2.1).
In Coulomb gauge the other inhomogeneous Maxwell equation ∇ · E = 4πρ
just follows directly from the formula (11.2.5) for E in terms of Ȧ and ∇φ,
together with the constraint (11.3.4) and Eq. (11.3.5) for φ. The two homoge-
neous Maxwell equations (11.2.2) follow directly from the definition (11.2.5)
for the fields in terms of the potentials. So the Hamiltonian (11.4.2) together
with the commutation relations (11.3.20) and (11.3.21) does indeed complete
the set of Maxwell equations.

11.5 Interaction Picture

In order to use the time-dependent perturbation theory described in Section 8.7,
it is necessary to split the Hamiltonian H into a term H0 that will be treated to
all orders, plus a term V in which we expand:

H = H0 + V . (11.5.1)
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11.5 Interaction Picture 371

In order to calculate the rates for radiative transitions between otherwise stable
states of atoms or molecules, we split the Hamiltonian H given by Eqs. (11.4.2)
and (11.4.4) into

H0 = H0 γ + H0 mat, (11.5.2)

H0 γ =
∫

d3x

[
2πc2[�⊥]2 + 1

8π
(∇ × A)2

]
, (11.5.3)

H0 mat =
∑

n

p2
n

2mn
+ 1

2

∑
n 	=m

enem

|xn − xm | + V(x) , (11.5.4)

plus a term V consisting of the terms in (11.4.4) involving the vector potential:

V = −
∑

n

en

mnc
A(xn) · pn +

∑
n

e2
n

2mnc2
A2(xn). (11.5.5)

In the first term in V we have replaced A(xn) · pn + pn · A(xn) with 2A(xn) · pn ,
which is allowed because, in Coulomb gauge,

A(xn) · pn − pn · A(xn) = i� ∇ · A(xn) = 0 .

We also need to introduce interaction-picture operators, whose time-
dependence is governed by H0 instead of H . For the interaction-picture
vector potential a and the solenoidal part π⊥ of its canonical conjugate, the
time-dependence can be found in the interaction picture by calculating their
commutators with H0γ , in the same way as we did for the Heisenberg picture
operators in the previous section. The results will obviously be the same, except
that now there is no contribution from the interaction V , and so we find just
Eqs. (11.4.5) and (11.4.6), but with all terms involving the charges en dropped:

ȧ = 4πc2π⊥ , (11.5.6)

π̇⊥ = − 1

4π
∇ × ∇ × a . (11.5.7)

The interaction-picture operators are related to the corresponding Heisenberg-
picture operators at t = 0 by a unitary transformation

a(x, t) = ei H0t/�A(x, 0)e−i H0t/� , π⊥(x, t) = ei H0t/��⊥(x, 0)e−i H0t/� ,

(11.5.8)
so these operators satisfy the same time-independent conditions as the
Heisenberg-picture operators:

∇ · a = ∇ · π⊥ = 0 . (11.5.9)

In consequence, ∇×∇×a = −∇2a. By eliminating π⊥ from Eqs. (11.5.6) and
(11.5.7), we find a wave equation for a:

ä = c2 ∇2a . (11.5.10)
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372 11 The Quantum Theory of Radiation

The general Hermitian solution of Eqs. (11.5.9) and (11.5.10) may be
expressed as a Fourier integral

a(x, t) =
∫

d3k
[
eik·xe−i |k|ctα(k)+ e−ik·xei |k|ctα†(k)

]
, (11.5.11)

where the operator α(k) is subject to the condition

k · α(k) = 0 . (11.5.12)

Equation (11.5.6) then gives the solenoidal part of the canonical conjugate
to a as

π⊥(x, t) = − i

4πc

∫
|k| d3k

[
eik·xe−i |k|ctα(k)− e−ik·xei |k|ctα†(k)

]
.

(11.5.13)
We need to work out the commutators of the operators α(k) and their Her-

mitian adjoints. Again, since the interaction-picture operators are related to the
corresponding Heisenberg-picture operators at t = 0 by a unitary transforma-
tion, they must satisfy the same equal-time commutation relations (11.3.20),
(11.3.21) as the Heisenberg-picture operators:

[ai (x, t), π⊥
j (y, t)] = i�

[
δi jδ

3(x − y)− ∂2

∂xi ∂y j

1

4π |x − y|
]
, (11.5.14)

[ai (x, t), a j (y, t)] = [π⊥
i (x, t), π⊥

j (y, t)] = 0 , (11.5.15)

and both a and π⊥ commute with all matter coordinates and momenta. From
Eqs. (11.5.11) and (11.5.13), we find the commutator of ai (x, t) and π⊥

j (y, t):

[ai (x, t), π⊥
j (y, t)] = i

4πc

∫
d3k

∫
d3k ′ |k′|

×
[

ei(k·x−k′·y)eict (−|k|+|k′|)[αi (k), α
†
j (k

′)]

− ei(−k·x+k′·y)eict (|k|−|k′|)[α†
i (k), α j (k′)]

− ei(k·x+k′·y)eict (−|k|−|k′|)[αi (k), α j (k′)]
+ ei(−k·x−k′·y)eict (|k|+|k′|)[α†

i (k), α
†
j (k

′)]
]
. (11.5.16)

Equation (11.5.14) shows that this must be time-independent, so the terms with
positive-definite or negative-definite frequency must both vanish, and therefore

[αi (k), α j (k′)] = [α†
i (k), α

†
j (k

′)] = 0 . (11.5.17)

To calculate the remaining commutators, we use the Fourier transforms

δ3(x − y) =
∫

d3k

(2π)3
eik·(x−y) ,

1

4π |x − y| =
∫

d3k

(2π)3|k|2 eik·(x−y) ,
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11.5 Interaction Picture 373

and rewrite Eq. (11.5.14) as

[ai (x, t), π⊥
j (y, t)] = i�

∫
d3k

(2π)3
eik·(x−y)

[
δi j − ki k j

|k|2
]
. (11.5.18)

Comparing this with the first two terms in Eq. (11.5.16), we see that

[αi (k), α
†
j (k

′)] = 4πc�

2|k|(2π)3
δ3(k − k′)

[
δi j − ki k j

|k|2
]
. (11.5.19)

The commutation relations (11.5.15) then follow automatically.
Like any vector perpendicular to a given k, the operator α(k) may be

expressed as a linear combination of any two independent vectors e(k̂,±1)
perpendicular to k:

α(k) =
√

4πc�

2|k|(2π)3

∑
±

e(k̂,±1)a(k,±1) , (11.5.20)

with the factor
√

4πc�/2|k|(2π)3 inserted to simplify the commutation rela-
tions of the operators a(k,±1) that will be found. For instance, for k in the
z-direction, we can take

e(ẑ,±1) = 1√
2

(
1,±i, 0

)
(11.5.21)

and for k in any other direction, we take ei (k̂,±) = ∑
j Ri j (ẑ)e j (ẑ,±1), where

Ri j (k̂) is the rotation matrix that takes the z-direction into the direction of k. It
follows that for any k, we have

k · e(k̂, σ ) = 0 , e(k̂, σ ) · e∗(k̂, σ ′) = δσσ ′ . (11.5.22)

Also, ∑
σ

ei (k̂, σ )e
∗
j (k̂, σ ) = δi j − k̂i k̂ j . (11.5.23)

(It is easiest to prove Eqs. (11.5.22) and (11.5.23) by direct calculation in the
case where k̂ is in the z-direction, and then note that these equations pre-
serve their form under rotations.) The commutation relations (11.5.19) are then
satisfied if

[a(k, σ ), a†(k′, σ ′)] = δσ ′σ δ
3(k − k′). (11.5.24)

Also, the commutation relations (11.5.17) are satisfied if

[a(k, σ ), a(k′, σ ′)] = [a†(k, σ ), a†(k′, σ ′)] = 0 . (11.5.25)

We recognize Eqs. (11.5.24) and (11.5.25) as the commutation relations (2.5.8)
and (2.5.9) for the raising and lowering operators of a harmonic oscillator, but
with the 3-component indices i and j replaced here with the compound indices
k, σ and k′, σ ′.
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374 11 The Quantum Theory of Radiation

The Hamiltonian H0γ for the free electromagnetic field can be calculated in
the interaction picture by setting t = 0 in Eq. (11.5.3), and then applying the
unitary transformation (11.5.8), which gives a Hamiltonian of the same form:

H0 γ =
∫

d3x

[
2πc2[π⊥]2 + 1

8π
(∇ × a)2

]
. (11.5.26)

We can uncover the physical significance of the operators a(k, σ ) and
a†(k, σ ) by expressing the free-field Hamiltonian H0γ in terms of these oper-
ators. They appear in the formulas for a(x, t) and π⊥(x, t):

a(x, t) = √
4πc�

∑
σ

∫
d3k√

2k(2π)3

[
eik·xe−ictke(k, σ )a(k, σ )+ H.c.

]
,

(11.5.27)

π⊥(x, t) = −i

√
4πc�

4πc

∑
σ

∫
k d3k√
2k(2π)3

[
eik·xe−ictke(k, σ )a(k, σ )− H.c.

]
,

(11.5.28)

where k ≡ |k|, and “H.c.” denotes the Hermitian conjugate of the preceding
term. The integral over x in Eq. (11.5.26) gives delta functions for the wave
numbers times (2π)3. We then have∫

d3x (∇ × a)2

= 2πc�

∑
σ ′σ

∫
k d3k

[
e∗(k̂, σ ) · e(k̂, σ ′)a†(k, σ )a(k, σ ′)

+ e∗(k̂, σ ′) · e(k̂, σ )a(k, σ )a†(k, σ ′)

+ e(k̂, σ ) · e(−k̂, σ ′)a(k, σ )a(−k, σ ′)e−2ickt

+ e∗(k̂, σ ) · e∗(−k̂, σ ′)a†(k, σ )a†(−k, σ ′)e2ickt
]
,∫

d3x (π⊥)2

= − �

8πc

∑
σ ′σ

∫
k d3k

[
−e∗(k̂, σ ) · e(k̂, σ ′)a†(k, σ )a(k, σ ′)

− e∗(k̂, σ ′) · e(k̂, σ )a(k, σ )a†(k, σ ′)

+ e(k̂, σ ) · e(−k̂, σ ′)a(k, σ )a(−k, σ ′)e−2ickt

+ e∗(k̂, σ ) · e∗(−k̂, σ ′)a†(k, σ )a†(−k, σ ′)e2ickt
]
.

When we add the two terms in Eq. (11.5.26), we see that the time-dependent
terms cancel (as they must, since H0 γ commutes with itself). This is just as well,
since e(k̂, σ ) · e(−k̂, σ ) depends on how we choose the rotations that take ẑ into
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11.6 Photons 375

k̂ and −k̂. On the other hand, the two terms in Eq. (11.5.26) make equal contri-
butions to the time-independent terms. These remaining terms can be evaluated
using Eq. (11.5.22), which gives e∗(k̂, σ ) · e(k̂, σ ′) = δσ ′σ , and we find

H0 γ = 1

2

∑
σ

∫
d3k �ck

[
a†(k, σ )a(k, σ )+ a(k, σ )a†(k, σ )

]
. (11.5.29)

The physical interpretation of this result is described in the next section.

11.6 Photons

According to the commutation relations (11.5.24) and (11.5.25), the com-
mutators of the unperturbed electromagnetic Hamiltonian (11.5.29) with the
operators a†(k, σ ) and a(k, σ ) are

[H0γ, a†(k, σ )] = �cka†(k, σ ) , (11.6.1)

[H0γ, a(k, σ )] = −�cka(k, σ ) . (11.6.2)

Hence a†(k, σ ) and a(k, σ ) are raising and lowering operators for the energy.
That is, if � is an eigenstate of H0γ with eigenvalue E , then a†(k, σ )� is an
eigenstate with energy E + �ck, and a(k, σ )� is an eigenstate with energy
E − �ck.

Although not compelled by the formalism of quantum mechanics, we are led
by the stability of matter to assume that there is a state �0 of lowest energy. The
only way to avoid having a state a(k, σ )�0 of energy that is lower by an amount
�ck is to suppose that

a(k, σ )�0 = 0 . (11.6.3)

We can find the energy of the state �0 by using the commutation relations
(11.5.24) to write Eq. (11.5.29) as

H0γ =
∑
σ

∫
d3k �cka†(k, σ )a(k, σ )+ E0 , (11.6.4)

where E0 is the infinite constant

E0 =
∑
σ

∫
d3k

�ck

2
δ3(k − k) . (11.6.5)

We can give this a meaning of sorts by putting the system in a box of volume �.
Then δ3(k − k) becomes �/(2π)3, so we have an energy per volume

E0/� = (2π)−3
∫

d3k �ck . (11.6.6)

This energy may be attributed to the unavoidable quantum fluctuations in the
electromagnetic field. As shown by Eqs. (11.5.18) and (11.5.6), it is not possible
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376 11 The Quantum Theory of Radiation

for the vector potential at any point in space to vanish (or take any definite fixed
value) for a finite time interval; if the field vanishes at one moment, then its rate
of change at that moment cannot take any definite value, including zero. The
energy density (11.6.6) has no effect in ordinary laboratory experiments, as it
inheres in space itself, and space cannot normally be created or destroyed, but it
does affect gravitation, and hence influences the expansion of the universe and
the formation of large bodies like galaxy clusters. Needless to say, an infinite
result is not allowed by observation. Even if we cut off the integral at the high-
est wave number probed in laboratory experiments, say 1015 cm−1, the result is
larger than allowed by observation by a factor of roughly 1056. The energy due
to fluctuations in the electromagnetic field and other bosonic fields can be can-
celed by the negative energy of fluctuations in fermionic fields, but we know of
no reason why this cancellation should be exact, or even precise enough to bring
the vacuum energy down to a value in line with observation. Since E0/� was
known to be vastly smaller that the value estimated from vacuum fluctuations
at accessible scales, for decades most physicists who thought at all about this
problem simply assumed that some fundamental principle would be discovered
that imposes on any theory the condition that makes E0/� vanish. This possi-
bility was ruled out by the discovery5 in 1998 that the expansion of the universe
is accelerating, in a way that indicates a value of E0/� about three times larger
than the energy density in matter. This remains a fundamental problem for mod-
ern physics,6 but it can be ignored as long as we do not deal with effects of
gravitation.

We can now construct states spanning what is called Fock space:

�k1,σ1;k2,σ2;...;kn ,σn ∝ a†(k1, σ1)a
†(k2, σ2) . . . a

†(kn, σn)�0 , (11.6.7)

which according to Eq. (11.6.1) (and dropping the term E0) has the energy

�ck1 + �ck2 + · · · + �ckn .

We interpret this as a state of n photons, with energies �ck1, �ck2, . . . , �ckn .
To work out the momentum of these states, we note that according to the

general results of Section 9.4, the operator that generates the infinitesimal
translation ai (x, t) �→ ai (x − ε, t) is given by Eq. (9.4.4) as

ε · Pγ = −
∑

i

∫
d3x π⊥

i (x, t)(ε · ∇)ai (x, t) . (11.6.8)

(That is, the sum over N in Eq. (9.4.4) is replaced with a sum over the vector
index i and an integral over the argument x of the field.) Using the commutation
relations (11.5.14) and (11.5.15), we have

5 This is the independent result of two teams: The Supernova Cosmology Project [S. Perlmutter et al.,
Astrophys. J. 517, 565 (1999); also see S. Perlmutter et al., Nature 391, 51 (1998).] and the High-z
Supernova Search Team [A. G. Riess et al., Astron. J. 116, 1009 (1998); also see B. Schmidt et al.,
Astrophys. J. 507, 46 (1998).]

6 For a review, see S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316276105.013
http:/www.cambridge.org/core


11.6 Photons 377

[Pγ, ai (x, t)] = i� ∇ai (x, t) , [Pγ, π
⊥
i (x, t)] = i� ∇π⊥

i (x, t) . (11.6.9)

(The second term in square brackets in Eq. (11.5.14) does not contribute because
∇ · a = 0 and ∇ · π⊥ = 0.) Then Pγ commutes with H0 γ as it does with
the integral over x of any function of ai (x, t) and π⊥

i (x, t) and their gradients.
Inserting Eqs. (11.5.11) and (11.5.13) in Eq. (11.6.9) gives

[Pγ, a(k, σ )] = −�ka(k, σ ) , [Pγ, a†(k, σ )] = �ka†(k, σ ) . (11.6.10)

Assuming that the state �0 is translation-invariant, this tells us that the states
(11.6.7) have momentum

�k1 + �k2 + · · · + �kn .

So we can interpret these states as consisting of n photons, each with a momen-
tum �k and an energy �ck. Because the energy E of a photon is related to its
momentum p by E = c|p|, the photon is a particle of mass zero.

By using the commutation relations (11.5.24), we see that the operators
a(k, σ ) and a†(k, σ ) acting on the states (11.6.7) have the effect

a(k, σ )�k1,σ1;k2,σ2;...;kn ,σn ∝
n∑

r=1

δ3(k − kr )δσσr

×�k1,σ1;k2,σ2;...kr−1,σr−1;kr+1,σr+1;...;kn ,σn ,

(11.6.11)

a†(k, σ )�k1,σ1;k2,σ2;...;kn ,σn ∝ �k,σ ;k1,σ1;k2,σ2;...;kn ,σn . (11.6.12)

Thus a(k, σ ) and a†(k, σ ) respectively annihilate and create a photon of
momentum �k and spin index σ .

Now we must consider the physical significance of the σ label carried by each
photon. For this purpose, we need to work out the properties of the operators
a(k, σ ) under rotations. Let us consider a wave vector k in the z-direction ẑ,
and limit ourselves to rotations that leave ẑ invariant. According to Eq. (4.1.4),
under a rotation represented by an orthogonal matrix Rij , a vector like α(kẑ)
undergoes the transformation

U−1(R)αi (kẑ)U (R) =
∑

j

Rijα j (kẑ) . (11.6.13)

Inserting the decomposition (11.5.20), this gives∑
σ

ei (ẑ, σ )U
−1(R)a(kẑ, σ )U (R) =

∑
σ

∑
j

Rij e j (ẑ, σ )a(kẑ, σ ) .

The rotations that leave ẑ invariant have the form

Rij (θ) =
⎛
⎝ cos θ −sin θ 0

sin θ cos θ 0
0 0 1

⎞
⎠ .
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378 11 The Quantum Theory of Radiation

A simple calculation shows that∑
j

Rij (θ)e j (ẑ, σ ) = e−iσθei (ẑ, σ ) , (11.6.14)

so by equating the coefficients of ei (ẑ, σ ), we have

U−1(R)a(kẑ, σ )U (R) = e−iσθa(kẑ, σ ) . (11.6.15)

Now, for infinitesimal θ , Rij = δi j + ωi j , where the non-vanishing elements of
ωi j are ωxy = −ωyx = −θ , so according to Eqs. (4.1.7) and (4.1.11),

U (θ) → 1 − (i/�)θ Jz ,

and Eq. (11.6.15) becomes

(i/�)[Jz, a(kẑ, σ )] = −iσa(kẑ, σ ) .

Taking the adjoint gives

[Jz, a†(kẑ, σ )] = �σa†(kẑ, σ ) .

Assuming that the no-photon state �0 is rotationally invariant, the one-photon
state �kẑ,σ ≡ a†(kẑ, σ )�0 satisfies

Jz�kẑ,σ = �σ�kẑ,σ . (11.6.16)

There is nothing special about the z-direction, so we can conclude that a general
one-photon state �k,σ has a value �σ for the helicity, the angular momentum
J · k̂ in the direction of motion. For this reason, the photon is said to be a particle
of spin one, but it is a peculiarity of massless particles that the state with J·k̂ = 0
is missing. In classical terms, photons with helicity ±1 make up a beam of left-
or right-circularly polarized light.

Of course, photons do not have to be circularly polarized. In the general case,
a photon of momentum �k is a superposition

�k,ξ ≡
(
ξ+a†(k,+)+ ξ−a†(k,−)

)
�0 γ , (11.6.17)

where ξ± are a pair of generally complex numbers. According to Eq. (11.5.24),
the scalar products of these states are(

�k′,ξ ′ , �k,ξ

)
= δ3(k′ − k)

(
ξ ′
+

∗
ξ+ + ξ ′

−
∗
ξ−
)
, (11.6.18)

so in particular these one-photon states are properly normalized if |ξ+|2 +
|ξ−|2 = 1. Such a state is associated with a polarization vector

ei (k̂, ξ) ≡ ξ+ei (k̂,+)+ ξ−ei (k̂,−) , (11.6.19)

in the sense that(
�0 γ, a(x, t)�k,ξ

)
=

√
4πc�

(2π)3/2
√

2k
eik·xe−ickt e(k̂, ξ) . (11.6.20)
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11.6 Photons 379

Circular polarization is the extreme case where either ξ+ or ξ− vanishes, and the
photon has definite helicity. In the opposite extreme case, |ξ−| = |ξ+| = 1/

√
2,

the polarization vector is real up to an overall phase, and we have the case of
linear polarization. For instance, with k in the z-direction, we have a polarization
vector

e(ẑ, ξ) = (cos ζ, sin ζ, 0) (11.6.21)

if we take

ξ± = e∓iζ /
√

2 . (11.6.22)

(Since there is no physical difference between the state vectors �k,ξ and −�k,ξ ,
there is no physical difference between a polarization vector and its negative, or
between the polarization angles ζ and ζ+π .) One consequence of Eqs. (11.6.18)
and (11.6.22) that we will need in Section 11.8 is that if an observer finds a
photon to have linear polarization in a direction ζ , and then re-sets an analyzer
to tell if the photon has polarization direction ζ ′, the probability of a polarization
in this direction is

P(ξ �→ ξ ′) = ∣∣ξ ′
+

∗
ξ+ + ξ ′

−
∗
ξ−
∣∣2 = cos2(ζ − ζ ′). (11.6.23)

A complete orthonormal basis is provided by polarizations in directions ζ and
ζ + π/2 for any ζ .

The intermediate case in which |ξ+| and |ξ−| are unequal but neither vanishes
is the case of elliptical polarization.

It is characteristic of massless particles that they come in only two states, with
helicity ±� j , where j can be an integer or half-integer. We have seen that j = 1
for photons; the quantization of the gravitational field shows that for gravitons,
j = 2.

Because a(k, σ ) and a†(k, σ ) do not commute, it is not possible to find eigen-
states of both operators. But the a(k, σ ) commute with each other for all k
and σ , so we can find states �A that are eigenstates of all these annihilation
operators:

a(k, σ )�A = A(k, σ )�A , (11.6.24)

with A an arbitrary complex function of k and σ . These are called coherent
states. In a coherent state, the expectation value of the electromagnetic field
(11.5.11) is(

�A, a(x, t)�A
)

(
�A,�A

) =
∫

d3k
∑
σ

√
4πc�

2|k|(2π)3

×
[

eik·xe−ic|k|t e(k, σ )A(k, σ )

+ e−ik·xeic|k|t e∗(k, σ )A∗(k, σ )
]
. (11.6.25)
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380 11 The Quantum Theory of Radiation

(We have here used the defining property of the adjoint, that (�, a†�) =
(a�,�).) The coherent state �A appears classically as if the electromagnetic
vector potential has the value (11.6.25). This coherent state contains an unlim-
ited number of photons, for if �A were a superposition of states (11.6.7) with
some maximum number N of photons, then a(k, σ )�A would be a superposi-
tion of states with a maximum number N −1 of photons, and could not possibly
be proportional to �A.

11.7 Radiative Transition Rates

We now want to calculate the rate of atomic or molecular transitions a → b +γ,
where �a and �b are eigenstates of the matter Hamiltonian (11.5.4):

H0 mat�a = Ea�a , H0 mat�b = Eb�b . (11.7.1)

Both �a and �b are zero-photon states, with

a(k, σ )�a = a(k, σ )�b = 0 , (11.7.2)

for any photon wave number k and helicity σ . Hence the final state of the radia-
tive decay process, containing a photon γ with a particular wave number k and
helicity σ , may be expressed as

�b,γ = �
−3/2a†(k, σ )�b . (11.7.3)

The factor �
−3/2 is inserted here so that the scalar product of these states

involves a delta function for momenta rather than wave numbers; that is, using
Eqs. (11.7.2), (11.7.3), and (11.5.24)(

�b′,γ′, �b,γ

)
= �

−3δ3(k′ − k)
(
�b′, �b

)
= δ3(�k′ − �k)

(
�b′, �b

)
.

The S-matrix element for the transition a → b + γ is given to first order in
the interaction V by Eq. (8.6.2) [or by Eq. (8.7.14), using (�bγ, V (τ )�a) =
exp(−i(Ea − Eb − �ck)τ/�)(�bγ, V (0)�a)], as

Sbγ,a = −2π iδ(Ea − Eb − �ck)
(
�bγ , V (0)�a

)
= −2π i�−3/2δ(Ea − Eb − �ck)

(
�b, a(k, σ )V (0)�a

)
. (11.7.4)

The interaction V at τ = 0 is given by Eq. (11.5.5), which can be written
in terms of interaction-picture operators since they are the same as Heisenberg-
picture operators at τ = 0:

V = −
∑

n

en

mnc
a(xn) · pn +

∑
n

e2
n

2mnc2
a2(xn) . (11.7.5)
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11.7 Radiative Transition Rates 381

(We now are dropping the time argument τ = 0.) The a2 term in Eq. (11.7.5) can
only create or destroy two photons, or leave the number of photons unchanged,
so it can be dropped here, leaving us with

Sbγ,a = 2π i�−3/2δ(Ea − Eb − �ck)
∑

n

en

mnc

(
�b, a(k, σ )a(xn) · pn�a

)
.

We insert Eq. (11.5.27) and use the commutation relations (11.5.24) and
(11.5.25) to write this as

Sbγ,a = 2π i
√

4πc�√
2k(2π�)3

δ(Ea − Eb − �ck)e∗(k̂, σ ) ·
∑

n

en

mnc

(
�b, e−ik·xn pn�a

)
.

(11.7.6)
Of course, momentum as well as energy is conserved in the decay process.

To see how this works, and for reasons that will become clear later, let us define
relative particle coordinates xn as

xn ≡ xn − X, (11.7.7)

where X is the center-of-mass coordinate, and M is the total mass

X ≡
∑

n

mnxn/M , M ≡
∑

n

mn . (11.7.8)

(Of course, the xn are not independent, but are subject to a constraint∑
n mnxn = 0.) Thus the matrix element in Eq. (11.7.6) may be written as(

�b, e−ik·xn pn�a

)
=
(
�b, e−ik·xn pn�a

)
, (11.7.9)

where

�b ≡ eik·X�b. (11.7.10)

Note that [P, eik·X] = �keik·X, so the operator eik·X just has the effect of a
Galilean transformation of the state, that shifts its momentum by �k:

P�b = (pb + �k)�b . (11.7.11)

The operator P commutes with xn and with pn , so the matrix element (11.7.9)
vanishes unless pb + �k = pa , and can therefore be written(

�b, e−ik·xn pn�a

)
= δ3(pb + �k − pa)Dn ba(k̂) , (11.7.12)

with Dn ba(k̂) free of delta functions. (We write Dn ba(k̂) as a function of k̂ rather
than of k, because the value of k = |k| is fixed by energy conservation.)

To see how the calculation of this function works in practice, note that in
coordinate space the wave functions representing the states �a and �b take the
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382 11 The Quantum Theory of Radiation

form (2π�)−3/2 exp(ipa ·X/�)ψa(x) and (2π�)−3/2 exp(ipb ·X/�)ψb(x), so the
matrix element is(

�b, e−ik·xn pn�a

)

= (2π�)−3
∫

d3 X
∫ (∏

m

d3xm

)
δ3

(∑
m

mmxm/M

)

× exp(−ipb · X/�) ψ∗
b (x)

× exp(−ik · xn) exp(−ik · X) (−i� ∇n) exp(ipa · X/�)ψa(x) .

We will work in the center-of-mass frame, so pa = 0, and the X-dependent
factors can be combined into a single exponential. The integral over X then
gives

(
�b, e−ik·xn pn�a

)
= δ3(pb + �k)

∫ (∏
m

d3xm

)
δ3

(∑
m

mmxm/M

)

× ψ∗
b (x)e

−ik·xn (−i� ∇n)ψa(x) .

Comparing this with Eq. (11.7.12) for pa = 0, we have

Dn ba(k̂) =
∫ (∏

m

d3xm

)
δ3

(∑
m

mmxm/M

)

× ψ∗
b (x)e

−ik·xn (−i� ∇n)ψa(x) . (11.7.13)

Returning now to the calculation of the S-matrix element, we can put together
Eqs. (11.7.6), (11.7.9), and (11.7.12), and find

Sbγ,a = δ(Ea − Eb − �ck)δ3(pa − pb − �k)Mbγ,a , (11.7.14)

where

Mbγ,a = 2π i
√

4πc�√
2k(2π�)3

e∗(k̂, σ ) ·
∑

n

en

mnc
Dn ba(k̂) . (11.7.15)

The rate for the decay a → b + γ in the center-of-mass frame (where pa = 0
and pb = −�k), with k̂ in an infinitesimal solid angle d�, is then given by
Eq. (8.2.13) as

d� = 1

2π�
|Mβα|2μ�k d� , (11.7.16)

where μ is given by Eq. (8.2.11), which in the usual case where Eb ≈ Mc2 

�ck gives

μ ≡ Eb�ck

c2(Eb + �ck)

 �k

c
. (11.7.17)
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Using Eqs. (11.7.15) and (11.7.17) in Eq. (11.7.16) then gives

d�(k̂, σ ) = k

2π�

∣∣∣∣∣e∗(k̂, σ ) ·
∑

n

en

mnc
Dn ba(k̂)

∣∣∣∣∣
2

d�. (11.7.18)

When photon polarization is not measured, the transition rate is the sum of this
over σ . Using Eq. (11.5.23), this is

d�(k̂) ≡
∑
σ

d�(k̂, σ )

= k

2π�

∑
nmi j

enem

mnmmc2
Dnabi(k̂)D∗

mabj (k̂)
[
δi j − k̂i k̂ j

]
d�. (11.7.19)

It is frequently possible to make a great simplification in these results. A typ-
ical value of the energy �ck emitted in the transition is ≈ e2/r , where r is a
typical separation of particles from the center-of-mass. Hence the argument of
the exponential exp(−ik · xn) in Eqs. (11.7.12) and (11.7.13) is of the order
kr ≈ e2/�c 
 1/137. Since this is small, as long as Dn ba(k̂) does not vanish, it
is a good approximation to set the argument of the exponential exp(−ik · xn) in
Eq. (11.7.13) equal to zero, so that here

Dn ab(k̂) = (b|pn|a) (11.7.20)

with the reduced matrix element (b|pn|a) defined by Eq. (11.7.12) as just the
matrix element of pn without the delta function:(

�b, pn�a

)
= δ3(pa − pb − �k)(b|pn|a) . (11.7.21)

In coordinate-space calculations, we have

(b|pn|a) =
∫ (∏

m

d3xm

)
δ3

(∑
m

mmxm/M

)
ψ∗

b (x)(−i� ∇n)ψa(x) .

(11.7.22)
Because the reduced matrix element is now independent of the direction of k̂,
Eq. (11.7.19) gives the angular dependence of the transition rate explicitly:

d�(k̂) = k

2π�

∑
nmi j

enem

mnmmc2
(b|pni |a)(b|pmj |a)∗

[
δi j − k̂i k̂ j

]
d� . (11.7.23)

We can therefore integrate Eq. (11.7.19) over the directions k̂, and find the total
radiative decay rate

� = 4k

3�

∣∣∣∣∣
∑

n

en

mnc
(b|pn|a)

∣∣∣∣∣
2

. (11.7.24)
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384 11 The Quantum Theory of Radiation

We have seen this formula before, though in a somewhat different form,
involving matrix elements of coordinates rather than momenta. To see the
connection, note that

[H0 mat, xn] = −i�

[
pn

mn
− P

M

]
.

Because we are in the center-of-mass frame, with P�a = 0, we can drop
the second term in the square brackets, and write the matrix element in
Eq. (11.7.22) as(

�b, pn�a

)
= imn

�

(
�b , [H0 mat, xn]�a

)
= imn

�
(Eb − Ea)

(
�b xn�a

)
.

Because the state �b has momentum pb + �k = pa = 0, its energy Eb is not
precisely equal to Eb, but rather to Eb minus the actual recoil kinetic energy
(�k)2/2M . In any non-relativistic system, this recoil energy will be very small
compared with the energy splitting Eb − Ea = �ck, because Ea − Eb � Mc2.
Hence we can take Eb − Ea 
 �ck, so that(

�b, pn�a

)
= ickmn

(
�b, xn�a

)
. (11.7.25)

Of course, momentum is still conserved here, so we can write(
�b, xn�a

)
= δ3(pb + �ck)(b|xn|a) (11.7.26)

and by the same argument as that which led to Eq. (11.7.22)

(b|xn|a) =
∫ (∏

m

d3xm

)
δ3

(∑
m

mmxm/M

)
ψ∗

b (x)xnψa(x) . (11.7.27)

So Eq. (11.7.24) may be written

� = 4ω3

3c3�

∣∣∣∣∣
∑

n

en(b|xn|a)
∣∣∣∣∣
2

, (11.7.28)

where ω ≡ ck. The operator
∑

n enxn is the electric-dipole operator, so as
mentioned in Section 4.4, this is called an E1 or electric-dipole radiation.

This formula is a slight generalization of Eq. (1.4.5), which was derived in
1925 by Heisenberg on the basis of an analogy with radiation by a classical
charged oscillator. As discussed in Section 6.5, the same result was re-derived
by Dirac in 1926 on the basis of the calculation of stimulated emission in a clas-
sical light wave, together with the Einstein relation (1.2.16) between the rates of
stimulated and spontaneous emission. The derivation given here, due originally
to Dirac in 1927,7 was the first that showed how photons are created through the
interaction of a quantized electromagnetic field with a material system.

7 P. A. M. Dirac, Proc. Roy. Soc. A 114, 710 (1927).
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11.7 Radiative Transition Rates 385

The operators pn and xn are spatial vectors, and therefore as shown in
Eq. (4.4.6) behave under rotations like operators with j = 1. According to the
rules for addition of angular momentum described in Section 4.3, such opera-
tors have zero matrix elements between the states �a and �b unless the angular
momenta � ja and � jb of these states satisfy | ja − jb| ≤ 1 ≤ ja + jb. Also, these
operators change sign under a reflection of space coordinates, so these matrix
elements vanish unless the states a and b have opposite parity. As already men-
tioned, transitions satisfying the selection rules that | ja − jb| ≤ 1 ≤ ja + jb and
that a and b have opposite parity are called electric-dipole, or E1, transitions.
Thus for instance, aside from small effects involving electron spin, the formula
(11.7.28) can be used to calculate the rate of single-photon emission in transi-
tions in hydrogen such as the E1 Lyman-α transition 2p → 1s, but not 3d → 1s
or 3p → 2p.

To calculate the rates for single-photon emission in transitions that do not
satisfy the electric-dipole selection rules, we must include higher terms in the
expansion of the exponential in Eq. (11.7.13). Suppose we have a transition in
which the matrix elements (�b, pn�a) and (�b, xn�a) all vanish. In this case
we can try to calculate the transition rate by including the first-order term in the
expansion of the exponential in Eq. (11.7.13), so that in place of Eq. (11.7.20)
we have

Dnabi(k̂) = −i
∑

j

k j (b|xnj pni |a) , (11.7.29)

with the reduced matrix element of any operator O that commutes with the total
particle momentum defined by

(�b,O�a) = δ3(pb + �k − pa)(b|O|a) . (11.7.30)

The differential decay rate (11.7.19) can then be written

d�(k̂) = k3

2π�

∑
nmi jkl

enem

mnmmc2
(b|xnk pni |a)(b|xml pmj |a)∗k̂k k̂l

[
δi j − k̂i k̂ j

]
d� .

(11.7.31)
To integrate over the directions of k̂, we now need the formula8∫

d� k̂i k̂ j k̂k k̂l = 4π

15

[
δi jδkl + δikδ jl + δilδ jk

]
,

as well as the previously used formula∫
d� k̂k k̂l = 4π

3
δkl .

8 The right-hand sides of these formulas are, up to a constant factor, the unique combinations of Kro-
necker deltas that are symmetric in the indices. The numerical coefficients can be calculated by noting
that if we contract all pairs of indices, the integral must equal 4π .

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316276105.013
http:/www.cambridge.org/core


386 11 The Quantum Theory of Radiation

The decay rate is then

� = 2k3

15�

∑
nmi jkl

enem

mnmmc2
(b|xnk pni |a)(b|xml pmj |a)∗

[
4δi jδkl − δikδ jl − δ jkδil

]
.

(11.7.32)
It is helpful to decompose the final factor into a term symmetric in i and k and
in j and l, and a term antisymmetric in i and k and in j and l:

4δijδkl − δikδ jl − δ jkδil = 3

2

(
δijδkl + δk jδil − 2

3
δikδ jl

)
+ 5

2

(
δijδkl − δk jδil

)
.

(11.7.33)
Correspondingly, the rate (11.7.32) may be expressed as

� = 2k3

15�c2

∑
ij

[
3

4
|(b|Qij|a)|2 + 5

4
|(b|Mij|a)|2

]
, (11.7.34)

where

(b|Qij|a) ≡
∑

n

en

mn

[
(b|xni pnj |a)+ (b|xnj pni |a)− 2

3
δij

∑
l

(b|xnl pnl |a)
]
,

(11.7.35)

(b|Mij|a) ≡
∑

n

en

mn

[
(b|xni pnj |a)− (b|xnj pni |a)

]
. (11.7.36)

The reduced matrix elements (b|Qij|a) and (b|Mij|a) are known as the electric-
quadrupole (E2) and magnetic-dipole (M1) matrix elements. The operators
involved transform under rotations as operators with j = 2 and j = 1, so
these matrix elements vanish unless the following selection rules are satisfied:

E2: | ja − jb| ≤ 2 ≤ ja + jb , M1: | ja − jb| ≤ 1 ≤ ja + jb . (11.7.37)

Also, unlike the electric-dipole case, these matrix elements vanish unless the
states a and b have the same parity. Thus for instance, in hydrogen the transi-
tions 3d → 2s and 3d → 1s are dominated by the electric-quadrupole matrix
element, while the transition 3p → 2p receives contributions from both the
electric-quadrupole and the magnetic-dipole matrix elements.

The formulas (11.7.35) and (11.7.36) for the E2 and M1 matrix elements can
be put in a more useful form. In the same way that we derived Eq. (11.7.25), it
is easy to show that the E2 matrix element is

(b|Qij|a) = ick
∑

n

en

[
(b|xni xnj |a)− 1

3
(b|x2

n|a)
]
. (11.7.38)

We cannot use this trick for the M1 matrix element, but we note instead that

(b|Mij|a) =
∑

k

εi jk

∑
n

en

mn
(b|Lnk |a) , (11.7.39)

where Ln is the orbital angular momentum xn × pn of the nth particle.
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11.8 Quantum Key Distribution 387

So far, we have ignored any spin of the charged particles, but, to the accu-
racy of this calculation, we now need also to include the effects of magnetic
moments. As noted in Eq. (10.3.1), the effect of magnetic moments is to add to
the interaction a term

�V = −
∑

n

μn ·
(
∇ × a(xn)

)
, (11.7.40)

where (for any spin) μn = μnSn/sn , with Sn the spin operator of the nth particle
and μn the quantity known as the nth particle’s magnetic moment. Following the
same analysis that led to Eq. (11.7.34), we find that the effect of this addition of
Eq. (11.7.40) is to replace Eq. (11.7.39) with

(b|Mi j |a) =
∑

k

εi jk

∑
n

en

mn
(b|Lnk + gn Snk |a) , (11.7.41)

where gn is the gyromagnetic ratio, a dimensionless constant generally of order
unity, defined by μn = engnsn/2mn , or in other words, μn = engnSn/2mn . (For
electrons, g = 2.002322 . . . .) For instance, in the important transition of the 1s
state of the hydrogen atom with total (electron plus nucleon) spin equal to one
into the 1s state with total spin zero, which produces photons with a wavelength
of 21 cm, the rate is dominated by the M1 matrix element, arising entirely from
the second term in Eq. (11.7.41).

This analysis can be continued. The matrix element for a transition that
does not satisfy the selection rules for electric-dipole, electric-quadrupole, or
magnetic-dipole moments can be calculated by including terms in the exponen-
tial in Eq. (11.7.12) or (11.7.13) of higher than first order in k · xn . But there
is one kind of transition that is forbidden to all orders in k · xn – single-photon
transitions between states with ja = jb = 0. This rule follows immediately from
the conservation of the component of angular momentum along the direction k̂.
Where ja = jb = 0, the states a and b necessarily have value zero for this com-
ponent (or any component) of angular momentum, while the photon can only
have a value � or −� for this component. Thus, for instance, the decay of the
charged spinless meson K+ into the charged spinless meson π+ and a single
photon is absolutely forbidden.

11.8 Quantum Key Distribution

Since ancient times people have attempted to send messages that cannot be
understood by anyone but the designated recipient, even when the message is
intercepted by an eavesdropper. Any message can be regarded as a whole num-
ber m, for instance by interpreting the dots and dashes of Morse code as ones and
zeros, and treating the resulting string of ones and zeros as the binary expression
of a number. An encryption is a function, agreed on between the sender (Alice)
and the designated recipient (Bob) but unknown to a possible eavesdropper
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388 11 The Quantum Theory of Radiation

(Eve), that takes the message number m into some other whole number f (m).
If the same encryption is used many times, Eve can usually deduce the nature
of the encryption and read the messages by frequency analysis – for instance,
for English-language messages interpreting the most commonly encountered
sequence of ones and zeros as the letter e. For this reason, it is common to
let the encryption depend on a frequently changed key, which can be regarded
as another whole number k, so that a message m is sent as the number f (m, k)
depending on the key. One simple common method is to take f (m, k) as the
product km. Knowing k, it is trivial for Bob to retrieve the message m from the
encrypted signal km by just dividing by k, but if Eve does not know k, then it
is necessary for her to try all the possible factorizations of the signal km into a
product of whole numbers, which takes a time that grows with km faster than
any power. But if the key is to be frequently changed, Alice and Bob must fre-
quently exchange messages that establish new keys, and these messages too may
be intercepted by Eve. Quantum key distribution defeats Eve’s attempt to learn
the key by exploiting the feature of quantum mechanics that it is not possible
to measure any quantity without changing the state vector to one in which that
quantity has some definite value.

In the widely used BB84 protocol,9 Alice sends the key to Bob as a sequence
of linearly polarized photons, say with momentum along the 3-direction, and so
with polarization vectors of the form

e = (cos ζ, sin ζ, 0) ,

where the ζ are various angles. Alice represents ones and zeros by values of
the angle ζ in either one of two modes, which she chooses at random for each
successive photon. In mode I, a zero and a one are represented respectively by
the orthogonal polarization vectors with ζ = 0 and ζ = π/2, while in mode II a
zero and a one are represented respectively by two different orthogonal polariza-
tion vectors, with ζ = π/4 and ζ = 3π/4. (This is summarized in Table 11.1.)
Receiving the photon, Bob at random makes a choice between two modes of set-
ting his polarization analyzer: in mode I he measures whether ζ = 0 or ζ = π/2
(for instance by setting his analyzer so that all photons with ζ = 0 go through,
and all photons with ζ = π/2 are blocked) while in mode II Bob measures
whether ζ = π/4 or ζ = 3π/4. If Alice sends a photon in some mode and Bob
analyzes its polarization using the same mode, then Bob finds the value of ζ used
by Alice, and records the same one or zero as intended by Alice. But if Alice
uses mode I and Bob happens to use mode II, then he observes a polarization
angle ζ = π/4 or 3π/4 with probabilities each given by Eq. (11.6.23) as 50%,
so he records a one or a zero that has just a 50% chance of being what Alice
intended. The outcomes are the same if Alice chooses a polarization according

9 C. H. Bennett and G. Brassard, in Proceedings of the IEEE International Conference on Computers,
Systems, and Signal Processing, Bangalore, India, 1984 (IEEE, New York, 1984), pp. 175–179.
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11.8 Quantum Key Distribution 389

Table 11.1 The BB84 protocol

Mode Binary digit ζ

0 0

I

1 π/2

0 π/4

II

1 3π/4

to mode II and Bob measures the polarization using mode I. For each photon,
there is a 50% chance that Alice and Bob will be using different modes, and if
they are then there is a 50% chance that Bob will record the same one or zero
as sent by Alice, so 25% of the binary digits recorded by Bob will be wrong.
To weed these out, after all the photons have been sent and observed, Bob and
Alice compare notes about the modes they both used (using messages that can
be sent back and forth en clair, without encryption), and they discard the 50% of
binary digits for which Alice and Bob happened to have used different modes of
choosing and analyzing the photon polarization. The resulting string of binary
digits, which are the same for Alice and Bob, is the new key.

By intercepting the photons sent from Alice to Bob, Eve can prevent this key
distribution, but what Eve really wants is that Alice and Bob should establish
a key, but one that Eve knows, so that she can secretly read the messages sent
from Alice to Bob. Unfortunately for Eve, even though she may know all about
the BB84 protocol, her eavesdropping inevitably destroys the key, and this will
become known to Alice and Bob.10 The only way that Eve can eavesdrop is by
intercepting the photons sent by Alice, measuring their polarizations, and then
sending substitute photons with these polarizations on to Bob. But while this is
going on, Eve like Bob does not know the mode that Alice is using in choosing
each photon polarization. If for some photon Eve sets her polarization analyzers
in a mode different from the mode used by Alice to send the photon, then there
is only a 50% chance that the substitute photon sent by Eve to Bob will have
the same polarization that it had when it was sent by Alice. For instance, if
Alice using mode I sends a photon with ζ = π/2, representing a one, and Eve
happens to set her analyzers in mode II, then she will find either ζ = π/4 or
ζ = 3π/4, each with 50% probability. Whichever of these polarizations Eve

10 The security of the BB84 protocol was rigorously proved by P. W. Shor and J. Preskill, Phys. Rev. Lett.
85, 441 (2000).
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390 11 The Quantum Theory of Radiation

chooses for the photon she sends on to Bob, he will record either a zero or a one
with equal probability irrespective of whether he sets his analyzer in mode I or
mode II. After all this is over, when Alice and Bob compare notes, they identify
the photons that had been sent when Alice and Bob had by chance been using the
same modes, and Eve too may learn this information, but by then it is too late.
Even when Alice and Bob had been using the same mode for a given photon,
there is only a 50% chance that Eve had used the same mode that they had used,
and if she had not then there is only a 50% chance that Bob would have observed
the same polarization that had been sent by Alice, so 25% of the binary digits
in the key that Bob had received from Eve would not match the corresponding
digits in the key understood by Alice. When Alice and Bob try to communicate
using their respective keys, the keys generally will not work. For instance, if
Alice encrypts a message represented by a number m by multiplying by a key
represented by a number k, and Bob tries to decrypt this signal by dividing by the
number k ′ representing what he thinks is the key, the result mk/k ′ will typically
not be a whole number. Even if it is, and even if this number represents what
could have been a possible message, Alice and Bob can detect Eve’s intervention
by comparing a part of the key, and observing that 25% of the digits don’t match.
Eve will have succeeded only in preventing the construction of a key, not in
secretly learning a key that will be used by Alice and Bob.

Problems

1. Calculate the rate for emission of a photon in the transition 3d → 2p, and
in the transition 2p → 1s in hydrogen. Give formulas and numerical values.
You can use the facts that the proton is much heavier than the electron, and
the wavelength of the photon emitted in these processes is much larger than
the atomic size, and neglect electron spin.

2. What powers of the photon wave number appear in the rates for single-photon
emission in the decays of the 4 f state of hydrogen into the 3s, 3p, and 3d
states?

3. Consider the theory of a real scalar field ϕ(x, t), interacting with a set of
particles with coordinates xn(t). Take the Lagrangian as

L(t) = 1

2

∫
d3x

[(
∂ϕ(x, t)

∂t

)2

− c2
(
∇ϕ(x, t)

)2 − μ2ϕ2(x, t)

]

−
∑

n

gnϕ(xn(t), t)+
∑

n

mn

2

(
ẋn(t)

)2 − V
(

x(t)
)
,

where μ, mn , and gn are real parameters, and V is a real local function of the
differences of the particle coordinates.
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(a) Find the field equations and commutation rules for ϕ.
(b) Find the Hamiltonian for the whole system.
(c) Express ϕ in the interaction picture in terms of operators that create and

destroy the quanta of the scalar field.
(d) Calculate the energy and momentum of these quanta.
(e) Give a general formula for the rate of emission per solid angle of a sin-

gle ϕ quantum in a transition between eigenstates of the matter part of
the Hamiltonian (that is, the part of the Hamiltonian involving only the
coordinates xn and their canonical conjugates).

(f) Integrate this formula over solid angles in the case where the wavelength
of the emitted quanta is much larger than the size of the initial and final
particle system. What are the selection rules for these transitions?

4. Express the coherent state �A as a superposition of states (11.6.7) with
definite numbers of photons.
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12
Entanglement

There is a troubling weirdness about quantum mechanics. Perhaps its weird-
est feature is entanglement, the need to describe even systems that extend over
macroscopic distances in ways that are inconsistent with classical ideas.

12.1 Paradoxes of Entanglement

Einstein had from the beginning resisted the idea that quantum mechanics could
provide a complete description of reality. His reservations were crystallized in
a 1935 paper1 with Boris Podolsky (1896–1966) and Nathan Rosen (1909–
1995). They considered an experiment in which two particles that move along
the x-axis with coordinates x1 and x2 and momenta p1 and p2 were somehow
produced in an eigenstate of the observables x1 − x2 and p1 + p2: specifically,
p1 + p2 has an eigenvalue zero, and x2 −x1 = x0, where x0 is some length that is
taken to be macroscopically large, much too large for particles 1 and 2 to exert
any influence on each other. Quantum mechanics itself presents no obstacle to
this, for these two observables commute. Indeed, we can easily write the wave
function for such a state:

ψ(x1, x2) =
∫ ∞

−∞
dk exp[ik(x1 − x2 + x0)] = 2πδ(x1 − x2 + x0) . (12.1.1)

Of course, this wave function is not normalizable, but this is just the usual
problem with continuum wave functions; the wave function (12.1.1) can be
approximated arbitrarily closely with a normalizable wave function, such as

exp(−κ(x1 + x2)
2)

∫ ∞

−∞
dk exp[ik(x1 − x2 + x0)] exp

(
−L2(k − k0)

2
)
,

with L and κ both very small.
Einstein et al. imagined that an observer who studies particle 1 measures its

momentum, and finds a value �k1. The momentum of particle 2 is then known

1 A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).

392
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12.1 Paradoxes of Entanglement 393

to be −�k1, up to an arbitrarily small uncertainty. But suppose that the observer
instead measures the position of particle 1, finding a position x1, in which case
the position of particle 2 would have to be x1 + x0. We understand that the
measurement of the position of particle 1 can interfere with its momentum, and
vice versa, so that whichever measurement is done last would interfere with the
result of earlier measurement. But how can these measurements interfere with
the properties of particle 2, if the particles are far apart? And if they do not, then
must we not conclude that particle 2 has both a definite momentum −k1 and
a definite position x1 + x0, contradicting the fact that these observables do not
commute?

Einstein et al. did not spell out how to construct such a state, but one can
imagine that two particles that are originally bound in some sort of unstable
molecule at rest fly apart freely in opposite directions, with equal and opposite
momenta, until their separation becomes macroscopically large. If they have the
initial separation x init

1 − x init
2 , then (assuming that the particles have equal mass

m), after a time t their separation will be

x1 − x2 = x init
1 − x init

2 + (p1 − p2)t/m .

We cannot actually take the initial separation x init
1 − x init

2 to be precisely known,
because then the relative momentum p1 − p2 would be entirely uncertain, mak-
ing the separation x1 − x2 soon also uncertain. If we take the initial separation to
be known within an uncertainty �|x init

1 − x init
2 | = L , then the uncertainty in the

relative momentum will be at least of order �/L , and after a time t the uncer-
tainty in the separation will be at least of order L +�t/mL . This has a minimum
when L = √

�t/m, at which the uncertainty in x1 − x2 is also of order
√

�t/m.
But this does not obviate the Einstein–Podolsky–Rosen paradox, because we
can measure k2 as accurately as we like, and we can measure x2 to an accuracy
of about

√
�t/m, so the product of these uncertainties can be as small as we like,

contradicting the uncertainty principle.
The problem posed by Einstein, Rosen, and Podolsky was made sharper by

David Bohm2 (1917–1992). A system of zero total angular momentum decays
into two particles, each with spin 1/2. Using the Clebsch–Gordan coefficients
for combining spin 1/2 and spin 1/2 to make spin zero, the spin state vector is
then

� = 1√
2

[
�↑↓ −�↓↑

]
, (12.1.2)

where the two arrows indicate the signs of the z-component of the two parti-
cles’ spins. After a long time, the particles are far apart, and then measurements
are made of the spin components of particle 1. If the z-component of the spin

2 D. Bohm, Quantum Theory (Prentice-Hall, Inc., New York, 1951), Chapter XXII. Also see D. Bohm
and Y. Aharonov, Phys. Rev. 108, 1070 (1957).
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394 12 Entanglement

of particle 1 is measured, it must have a value �/2 or −�/2, and then the
z-component of the spin of particle 2 must correspondingly have a value −�/2
or +�/2, respectively. Bohm reasoned that since the two particles are so far
apart, the measurement of the spin of particle 1 could not have influenced the
spin of particle 2, so it must have had that z-component all along. But the
observer could have measured the x-component of the spin of particle 1 instead
of its z-component, and by the same reasoning, if a value �/2 or −�/2 were
found for the x-component of the spin of particle 1 then also the x-component
of the spin of particle 2 must have been −�/2 or �/2 all along. Likewise for
the spin y-components. So according to this reasoning, all three components of
the spin of particle 2 have definite values, which is impossible since these spin
components do not commute.

Bohm was led to suppose that either the content or the interpretation of quan-
tum mechanics needs modification. Most physicists today would instead respond
to both the Einstein–Podolsky–Rosen paradox and the Bohm paradox by accept-
ing that no matter how far apart the two particles are, the measurement of the
properties of one of them does affect the wave function of the other. Though the
particles are far apart, their properties remain entangled.

The existence of entanglement in quantum mechanics naturally raises the
question whether a measurement of one isolated part of an entangled system
can be used to send messages to another isolated part instantaneously, with
no limitation set by the finite speed of light. No, it can’t. In the Einstein–
Podolsky–Rosen case, there is no way that an observer of particle 2 can tell
that it does or does not have a definite momentum – if she measures the momen-
tum she gets some value, but she does not know whether there is any other
value she could have gotten. Even if this experiment is repeated many times, the
observer of particle 2 cannot tell what measurements have been made on par-
ticle 1. She may find various different values for the momentum of particle 2,
but she can’t know whether this is because the position of particle 1 was mea-
sured, or whether particle 1 was in a superposition of momentum eigenstates to
begin with.

This can be put in very general terms, described most simply for systems like
those considered by Bohm, in which the measured quantities take only discrete
values. As described in Section 3.7, both the deterministic unitary evolution of
states in quantum mechanics and the probabilistic change produced in a mea-
surement, or in any combination of unitary evolution and measurement, will
produce a linear transformation ρ �→ ρ ′ of the density matrix, which takes the
general form

ρ ′
M ′ N ′ =

∑
M N

KM ′ M,N ′ N ρM N , (12.1.3)

where K is some c-number kernel independent of ρ. In order for ρ ′ to have unit
trace for an arbitrary ρ with unit trace, it is necessary and sufficient that
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∑
M ′

KM ′ M,M ′ N = δM N . (12.1.4)

Suppose that a system consists of two isolated parts, subsystems I and II, and
replace the indices M , N , etc. with compound indices ma, nb, etc., with the first
letter labeling the states of subsystem I and the second the states of subsystem
II. The possibility of entanglement does not in general allow the density matrix
to factor into a product ρ(I )mnρ

(I I )
ab of density matrices for the two subsystems, but

if the subsystems are isolated (with no physical influence or information flowing
between them) then the kernel in Eq. (12.1.3) does factorize:

Km′a′ma,n′b′nb = K (I )
m′m,n′n K (I I )

a′a,b′b , (12.1.5)

where K (I ) and K (I I ) are the kernels that would describe the transformation of
the density matrix in subsystems I and II if the other subsystem did not exist.
For instance, if we make a measurement of some physical quantities in subsys-
tem I that take definite values in a complete orthonormal set of states �(I )

μ and
also make a measurement of some physical quantities in subsystem II that take
definite values in a complete orthonormal set of states �(I I )

α , then this puts the
whole system in a state with projection operator

[�μα]m′a′,ma = [�(I )
μ ]m′m[�(I I )

α ]a′a ,

where �(I )
μ and �(I I )

α are the projection operators onto the states �(I )
μ and �(I I )

α ,
respectively. According to Eq. (3.7.2) the effect of the joint measurement is a
mapping with kernel

Km′a′ma,n′b′nb =
∑
μα

[�μα]m′a′,ma[�μα]nb,n′b′

=
(∑

μ

[�(I )
μ ]m′m[�(I )

μ ]nn′

)(∑
α

[�(I I )
α ]a′a[�(I I )

α ]bb′

)
. (12.1.6)

In the case of the ordinary unitary evolution of state vectors, the factorization of
the kernel follows as a consequence of the property of isolated systems that

Hma,nb = H (I )
mn δab + H (I I )

ab δmn .

Since the two terms in each exponential in Eq. (3.7.3) commute, the exponential
of the sum is the product of the exponentials, and so here Eq. (3.7.3) gives

Km′a′ma,n′b′nb = [[exp(−i H (I )(t ′ − t)/�)]m′m[exp(+i H (I )(t ′ − t)/�)]nn′
]

× [[exp(−i H (I I )(t ′ − t)/�)]a′a[exp(+i H (I )(t ′ − t)/�)]bb′
]
.

(12.1.7)

Equations (12.1.6) and (12.1.7) exhibit the factorization (12.1.5) characteristic
of isolated subsystems. The same factorization applies for any combination of
measurements interspersed with ordinary unitary evolution.
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Now, since both K (I ) and K (I I ) are possible physical kernels, they each satisfy
the analog of Eq. (12.1.4):∑

m′
K (I )

m′m,m′n = δmn ,
∑

a′
K (I I )

a′a,a′b = δab . (12.1.8)

In the absence of any information about subsystem II, the density matrix of
subsystem I is

ρ(I )mn =
∑

a

ρma,na . (12.1.9)

As mentioned in Section 3.3, this follows from the requirement that the mean
value Tr(ρA) of any physical quantity represented by an operator of the form
Ama,nb = A(I )

mnδab, which acts non-trivially only on subsystem I, should be equal
to Tr(ρ(I )A(I )). According to Eqs. (12.1.3), (12.1.5), and (12.1.9) its evolution
is given by

ρ
(I )
m′n′ �→ ρ

′(I )
m′n′ =

∑
a′

∑
mnab

K (I )
m′m,n′n K (I I )

a′a,a′bρma,nb .

Using Eq. (12.1.8) for K (I I ) and Eq. (12.1.9), this is

ρ
′(I )
m′n′ =

∑
mn

K (I )
m′m,n′nρ

(I )
mn , (12.1.10)

so the evolution of ρ(I ) is independent of ρ(I I ). Therefore, even though in entan-
gled states it is possible to modify the state vector of subsystem I by making
measurements in subsystem I I or by modifying its Hamiltonian, this cannot
change the density matrix of subsystem I . The subsequent evolution of the
density matrix of subsystem I and the results of any measurements in this sub-
system depend only on the density matrix, so entanglement does not create any
possibilities of instantaneous communication at a distance.

But this is a special feature of quantum mechanics, arising from the fact that
both measurement and the Hamiltonian evolution of the state vector produce a
mapping of the density matrix into a linear function only of the density matrix,
not depending on the state vector. Any attempt to generalize quantum mechan-
ics by allowing small non-linearities in the evolution of state vectors risks the
introduction of instantaneous communication between separated observers.3

Of course, according to present ideas a measurement in one subsystem does
change the state vector for a distant isolated subsystem – it just doesn’t change
the density matrix. If it were possible to probe state vectors, other than by
making measurements, then faster-than-light communication could be possible.
As mentioned in Section 3.7, the phenomenon of entanglement thus poses an
obstacle to any interpretation of quantum mechanics that attributes to the wave

3 N. Gisin, Helv. Phys. Acta 62, 363 (1989); J. Polchinski, Phys. Rev. Lett. 66, 397 (1991).
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function or the state vector any physical significance other than as a means of
predicting the results of measurements.

∗ ∗ ∗ ∗ ∗
Section 3.3 described a quantity, the von Neumann entropy:

S ≡ −kBTr (ρ, ln ρ) = −kB

∑
N

λN ln λN , (12.1.11)

where the sum runs over all eigenvalues λN of the density matrix. This vanishes
for a pure state for which ρ is a projection operator with a single unit eigenvalue
and all other eigenvalues zero, and is positive-definite in all other cases.

Entropy defined in this way is a useful quantity because, as shown in
Section 3.3, in the absence of entanglement it is an extensive quantity. Matters
are very different for two isolated systems when they are entangled. In particu-
lar, in a pure state of the whole system the von Neumann entropy vanishes, but
the entropies of the individual subsystems do not vanish, but are in fact both
positive and equal. In a pure state � the density matrix has the components

ρma,nb = ψmaψ
∗
nb , (12.1.12)

where ψma are the components of the normalized state � along a complete
orthonormal set of state vectors with m and a labeling the states of subsystems
I and II, respectively. (This is of course not of the form (3.3.42) unless the wave
function itself factorizes, i.e., unless ψma is a function of m times a function of
a, which is the case of no entanglement.) According to Eq. (12.1.9), the density
matrix of subsystem I is

ρ(I )mn =
∑

a

ρma,na = (ψψ†)mn , (12.1.13)

where ψ is here the matrix with components ψma . The eigenvalues of ρ(I ) are
thus the eigenvalues of ψψ†, which are positive-definite or zero. Similarly, the
density matrix of subsystem II is

ρ
(I I )
ab =

∑
m

ρma,mb = (ψ†ψ)ba , (12.1.14)

so its eigenvalues are the eigenvalues of the matrix ψ†ψ , and also positive
definite or zero. These matrices have the same non-zero eigenvalues, because
if ψψ†u = λu then, multiplying with ψ†, we find (ψ†ψ)(ψ†u) = λ(ψ†u),
and ψ†u cannot vanish if λ 	= 0, so every non-zero eigenvalue of ψψ† is
an eigenvalue of ψ†ψ . In the same way, if ψ†ψv = λ′v and λ′ 	= 0 then
(ψψ†)(ψv) = λ′(ψv), so every non-zero eigenvalue of ψ†ψ is an eigen-
value of ψψ†. Since the non-zero eigenvalues of ρ(I ) and ρ(I I ) are the same,
their entropies are the same. This common value is known as the entanglement
entropy of the system.
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12.2 The Bell Inequalities

It might be supposed that the weird entanglement encountered in quantum
mechanics could be avoided by a modification of quantum mechanics, based on
the introduction of local hidden variables. Suppose that in the situation described
by Bohm, the two-electron state is not (12.1.2), but instead is an ensemble of
possible states, characterized by some parameter or set of parameters collec-
tively called λ, such that the value of the component of the first particle’s spin
in any direction â is a definite function (�/2)S(â, λ), where S(â, λ) can only
take the values ±1. Both experience and the conservation of angular momentum
then tell us that the component of the second particle’s spin in the same direc-
tion will be −(�/2)S(â, λ). The parameter λ is fixed before the two particles
separate from each other, so no non-locality is involved, but in order to imitate
the probabilistic features of quantum mechanics, the value of λ is taken to be
random, with some probability density ρ(λ), about which it is only necessary to
assume that ρ(λ) ≥ 0 and

∫
ρ(λ) dλ = 1. The correlation between the spins of

the two particles can be expressed as the average value of the product of the â
component of the spin of particle 1 and the b̂ component of the spin of particle 2:〈

(s1 · â) (s2 · b̂)
〉
= −�

2

4

∫
dλ ρ(λ)S(â, λ)S(b̂, λ) , (12.2.1)

where â and b̂ are any two unit vectors. In quantum mechanics, the spin of
particle 1 is an operator satisfying4

(s1 · â) (s1 · b̂) = �
2

4
â · b̂ + i

�

2

(
â × b̂

)
· s1 , (12.2.2)

so in the state (12.1.2), in which s2 = −s1 and s1 has zero expectation value, the
average of the product of spin components is〈

(s1 · â) (s2 · b̂)
〉
QM

= −�
2

4
â · b̂. (12.2.3)

There is no obstacle to constructing a function S and a probability density
ρ for which (12.2.1) and (12.2.3) are equal for any single pair of directions â
and b̂. So it is not possible experimentally to distinguish between local hidden-
variable theories and quantum mechanics by studying spin components in just
two directions. But in a 1964 paper5 John Bell (1928–1990) was able to show

4 The easiest way to see this is to recall that the spin operator s for spin 1/2 may be represented as (�/2)σ ,
where the components of σ are the Pauli matrices (4.2.18). Direct calculation shows that these matrices
satisfy the multiplication rule σiσ j = δi j 1+i

∑
k εi jkσk , from which Eq. (12.2.2) immediately follows.

5 J. S. Bell, Physics 1, 195 (1964). This journal is no longer published; the article by Bell can be found
in the collection Quantum Theory and Measurement, eds. J. A. Wheeler and W. Zurek (Princeton Uni-
versity Press, Princeton, NJ, 1983). For a review, see N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani,
and S. Wehner, Rev. Mod. Phys. 86, 419 (2014).
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12.2 The Bell Inequalities 399

that such a conflict does exist when one considers spin components for three
different directions â, b̂, and ĉ. In this case, the correlation functions (12.2.1)
satisfy inequalities that are not in general satisfied by the quantum-mechanical
expectation values (12.2.3).

To see this, we note that according to the general properties of local hidden-
variable theories assumed above,〈

(s1 · â)(s2 · b̂)
〉
− 〈

(s1 · â)(s2 · ĉ)
〉 = −�

2

4

∫
ρ(λ) dλ

[
S(â, λ)S(b̂, λ)

− S(â, λ)S(ĉ, λ)
]
.

(12.2.4)

Since S2(b̂, λ) = 1, this can be written〈
(s1 · â)(s2 · b̂)

〉
− 〈

(s1 · â) (s2 · ĉ)
〉 = −�

2

4

∫
ρ(λ) dλ S(â, λ)S(b̂, λ)

×
[
1 − S(b̂, λ)S(ĉ, λ)

]
. (12.2.5)

The absolute value of an integral is at most equal to the integral of the absolute
value, so∣∣∣〈(s1 · â) (s2 · b̂)

〉
− 〈

(s1 · â)(s2 · ĉ)
〉∣∣∣ ≤ �

2

4

∫
ρ(λ) dλ

[
1 − S(b̂, λ)S(ĉ, λ)

]
and therefore∣∣∣〈(s1 · â)(s2 · b̂)

〉
− 〈

(s1 · â)(s2 · ĉ)
〉∣∣∣ ≤ �

2

4
+
〈
(s1 · b̂)(s2 · ĉ)

〉
. (12.2.6)

This is the original Bell inequality.
The important thing is that, at least for some choices of the directions â, b̂, and

ĉ, this inequality is not satisfied by the quantum-mechanical correlation function
(12.2.3). For instance, suppose we take

b̂ · â = 0 , ĉ = [â + b̂]/√2 . (12.2.7)

Then for the quantum-mechanical correlation function (12.2.3), the left-hand
side of the inequality (12.2.6) is∣∣∣∣〈(s1 · â)(s2 · b̂)

〉
QM

− 〈
(s1 · â)(s2 · ĉ)

〉
QM

∣∣∣∣ = �
2

4
√

2
, (12.2.8)

while the right-hand side is

�
2

4
+
〈
(s1 · b̂)(s2 · ĉ)

〉
QM

= �
2

4
− �

2

4
√

2
. (12.2.9)

Needless to say, the quantity (12.2.8) is greater, not less, than the quantity
(12.2.9). So measurement of the correlation functions 〈(s1 · â)(s2 · b̂)〉,
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400 12 Entanglement

〈(s1 · â)(s2 · ĉ)〉, and 〈(s1 · b̂)(s2 · ĉ)〉 can provide a clear verdict between the
predictions of quantum mechanics and those of any local hidden-variable theory.

Not only can experiment deliver such a verdict; it has done so. The exper-
iments, carried out by Alain Aspect and his collaborators,6 actually tested a
generalization of the original Bell inequality. Consider any quantity Sn(â) for
a particle n that (like the electron spin component â · sn in units of �/2) can
only take the values ±1. In a local hidden-variable theory the measured value of
Sn(â) will be a definite function Sn(â, λ) of some parameter or set of parameters
λ whose value is fixed before the particles separate, with a probability ρ(λ) dλ
of getting a value between λ and λ + dλ. The correlation between the value of
S1(â) for particle 1 and the value of S2(b̂) for particle 2 is the average of the
product: 〈

S1(â)S2(b̂)
〉
=
∫

dλ ρ(λ)S1(â, λ)S2(b̂, λ) . (12.2.10)

Consider the quantity〈
S1(â)S2(b̂)

〉
−
〈
S1(â)S2(b̂

′)
〉
+
〈
S1(â

′)S2(b̂)
〉
+
〈
S1(â

′)S2(b̂
′)
〉

=
∫

dλ ρ(λ)
[

S1(â, λ)S2(b̂, λ)− S1(â, λ)S2(b̂
′, λ)

+ S1(â
′, λ)S2(b̂, λ)+ S1(â

′, λ)S2(b̂
′, λ)

]
for four different directions, â, b̂, â′, and b̂′. For any given λ, each product S1S2

in the square brackets can only have the value ±1, so the sum can only have the
value7 0, +2, or −2. The average must therefore satisfy the inequality∣∣∣〈S1(â)S2(b̂)

〉
−
〈
S1(â)S2(b̂

′)
〉
+
〈
S1(â

′)S2(b̂)
〉
+
〈
S1(â

′)S2(b̂
′)
〉∣∣∣ ≤ 2 .

(12.2.11)
Note that this inequality holds for a wider class of theories than the original Bell
inequality (12.2.6), because in its derivation we did not need to use the previous
assumption that S2(â, λ) = −S1(â, λ) for all directions â.

For the inequality (12.2.11) to be of use in distinguishing hidden-variable the-
ories from quantum mechanics, the value of the left-hand side given by quantum
mechanics must violate the inequality. To calculate this value, we need of course

6 A. Aspect, P. Grangier, and G. Roger, Phys. Rev. Lett. 47, 460 (1981); 49, 91 (1982); A. Aspect, J.
Dalibard, and G. Roger, Phys. Rev. Lett. 49, 1804 (1982). The discussion here mostly follows the second
of these papers.

7 It is not possible for the sum in the integrand to have the value +4 for any λ, because in order for the first
three terms to have the value +1 it would be necessary to have S1(â, λ) = S2(b̂, λ) = −S2(b̂

′, λ) =
S1(â

′, λ), which would make the fourth term equal to −1, and the sum equal to +2 rather than +4.
Similarly, it is not possible for the sum to have the value −4 for any λ, because in order for the first
three terms to have the value −1 it would be necessary to have S1(â, λ) = −S2(b̂, λ) = S2(b̂

′, λ) =
S1(â

′, λ), which would make the fourth term equal to +1, and the sum equal to −2 rather than −4.
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12.2 The Bell Inequalities 401

to specify a particular experimental arrangement. Following earlier experiments
of Clauser et al.,8 Aspect et al. measured photon polarization correlations in
a two-photon transition that had been previously studied by Kocher and Com-
mins.9 The two photons are emitted in a cascade decay in calcium atoms, the first
from a state with j = 0 and even parity to a short-lived intermediate state with
j = 1 and odd parity, and the second from that state to another state with j = 0
and even parity. These photons are directed into polarizers. One polarizer sends
photon 1 into one photomultiplier if it has linear polarization along a direction
â (orthogonal to the photon direction k̂), in which case a value S1(â) = +1
is recorded, and into a different photomultiplier if it is linearly polarized along
a direction orthogonal to both â and k̂, in which case a value S1(â) = −1 is
recorded. Similarly, the other polarizer sends photon 2 into one photomultiplier
if it has linear polarization along a direction b̂ (orthogonal to the photon direc-
tion −k̂), in which case a value S2(b̂) = +1 is recorded, and into a different
photomultiplier if it is linearly polarized along a direction orthogonal to both b̂
and −k̂, in which case a value S2(b̂) = −1 is recorded. The polarizers can be
rotated so that either â is replaced with â′ or b̂ is replaced with b̂′, or both. Since
the two-photon transition is between atomic states with j = 0, the amplitude for
the transition must be a scalar function of the two polarizations, and since the
initial and final atomic states have even parity the scalar k̂ · (e1 × e2) is ruled
out, so the amplitude must be proportional to e1 · e2, and the probability of parti-
cle 1 having polarization in the direction â and particle 2 having polarization in
the direction b̂ is therefore (â · b̂)2/2. (The factor 1/2 is fixed by the condition
that the sum over two orthogonal directions of â and of b̂ must be unity.) By
adding S1(â)S2(b̂) for the four possibilities S1(â) = ±1, S2(b̂) = ±1 weighted
with these probabilities, we see that the quantum-mechanical expectation value
of S1(â) times S2(b̂) is

〈
S1(â)S2(b̂)

〉
QM

= 1

2

(
cos2 θab − sin2 θab − sin2 θab + cos2 θab

) = cos 2θab ,

(12.2.12)
where θab is the angle between â and b̂. Thus in quantum mechanics, the left-
hand side of Eq. (12.2.11) is

〈
S1(â)S2(b̂)

〉
QM

−
〈
S1(â)S2(b̂

′)
〉
QM

+
〈
S1(â

′)S2(b̂)
〉
QM

+
〈
S1(â

′) S2(b̂
′)
〉
QM

= cos 2θab − cos 2θab′ + cos 2θa′b + cos 2θa′b′ . (12.2.13)

8 J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Lett. 23, 880 (1969). For a review
of various versions of Bell inequalities and their experimental tests, see J. F. Clauser and A. Shimony,
Rep. Prog. Phys. 41, 1881 (1978).

9 C. A. Kocher and E. D. Commins, Phys. Rev. Lett. 18, 575 (1967).
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402 12 Entanglement

This is a maximum10 if θab = θa′b = θa′b′ = 22.5◦ and θab′ = 67.5◦, in which
case〈

S1(â)S2(b̂)
〉
QM

−
〈
S1(â)S2(b̂

′)
〉
QM

+
〈
S1(â

′)S2(b̂)
〉
QM

+
〈
S1(â

′)S2(b̂
′)
〉
QM

= 2
√

2 = 2.828 .

Because the polarizers in this experiment were not perfectly efficient, the
expected value was only 2.70 ± 0.05. The experimental result for the left-hand
side of Eq. (12.2.11) was 2.697 ± 0.0515, in good agreement with quantum
mechanics, and in clear disagreement with the inequality (12.2.11) satisfied by
all local hidden-variable theories.

12.3 Quantum Computation

In recent years much attention has been given to the opportunities provided
for computation by quantum mechanics.11 This section will give only a brief
glimpse of the capabilities of quantum computers, and their limitations.

It is the existence of entanglement in quantum mechanics that provides a
possibility of calculations with quantum computers that in a classical computer
would require exponentially greater resources. The working memory of a quan-
tum computer may be considered to consist of n qbits, elements like atoms of
total angular momentum 1/2 or electric currents in superconducting loops, for
which some physical quantity, such as the z-component of the angular momen-
tum or the direction of the current, can only take two values. We will label these
two values with an index s, that only takes the values 0 and 1, and define�s1s2...sn

as the normalized state vector in which the qbits take values s1, s2, . . . , sn . The
general state of the memory is then

� =
∑

s1s2...sn

ψs1s2...sn�s1s2...sn , (12.3.1)

where the ψs1s2...sn are complex numbers, subject to the normalization condition∑
s1s2...sn

∣∣ψs1s2...sn

∣∣2 = 1 . (12.3.2)

Since the moduli of the ψs1s2...sn are subject to this condition, and the over-all
phase of ψs1s2...sn is irrelevant, there are 2n − 1 independent coefficients, which

10 All the directions â, b̂, â′, and b̂′ are normal to k̂, so they all lie in the same plane. The maximum value
of (12.2.13) is achieved by putting them in an order such that θab′ = θab +θa′b +θa′b′ , and then setting
the derivatives of the expression (12.2.13) with respect to θab and θa′b and θa′b′ all equal to zero.

11 See, e.g., N. D. Mermin, Quantum Computer Science – An Introduction (Cambridge Univer-
sity Press, Cambridge, 2007). For an on-line review of quantum computation, see J. Preskill,
http://www.theory.caltech.edu/people/preskill/ph229/#lecture.
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can be taken as the ratios of theψs1s2...sn . Hence a quantum computer with n qbits
has a memory that can contain 2n−1 independent complex numbers, in the sense
that this is the information on which the computer can act during calculations.
(As we shall see, this information is not in general available to be read out from
the memory.)

This may be compared with a classical digital computer. The state of a clas-
sical memory containing n bits is just a string of n zeros and ones, which can be
regarded as the binary expression of a single integer taking a value between 0
and 2n − 1. It is the comparison of a quantum memory containing 2n − 1 uncon-
strained complex numbers and a classical memory containing a single integer
between 0 and 2n − 1 that makes the difference between quantum and classical
computers. A classical digital computer can do anything a quantum computer
can do, but at the cost of needing an exponentially larger memory.

As with a classical computer, we can think of the indices s1, s2, . . . , sn on ψ
and � as a string of zeros and ones, and replace them with a single integer ν
between zero and 2n − 1 whose binary expansion is s1s2 . . . , sn . (For instance,
in the case n = 2, we would define �0 ≡ �00, �1 ≡ �01, �2 ≡ �10, and
�3 ≡ �11.) We can thus write Eq. (12.3.1) as

� =
2n−1∑
ν=0

ψ(ν)�ν , (12.3.3)

and think of ψ(ν) as a single complex-valued function of the integer ν.
By exposing the n qbits to various external influences, it is possible in princi-

ple to act on their state vector with an operator of the form exp(−i Ht/�), where
H is any sort of Hermitian operator, and in this way subject the state vector to
any unitary transformation � → U� we like. The effect on the wave function
will be

ψ(ν) �→
2n−1∑
μ=0

Uμνψ(μ), (12.3.4)

where Uνμ is some more-or-less arbitrary unitary matrix. In this way, a quantum
computer can convert functions into other functions. For example, the construc-
tion of an algorithm for finding the prime factors of large integers12 makes use
of a unitary transformation with

Uμν = 2−n/2 exp
(

2iπμν/2n
)
, (12.3.5)

by which ψ(ν) is converted to its Fourier transform:

12 P. W. Shor, J. Sci. Statist. Comput. 26, 1484 (1997). The use of such factorization in cryptography is
briefly described in Section 11.8.
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ψ(ν) �→ 2−n/2
2n−1∑
μ=0

exp
(

2iπμν/2n
)
ψ(μ). (12.3.6)

This is unitary, because for μ and μ′ integers between 0 and 2n − 1, we have

2n−1∑
ν=0

UμνU
∗
μ′ν = 2−n

2n−1∑
ν=0

exp
(

2iπ(μ− μ′)ν/2n
)

= δμμ′ .

In order not to lose the advantages of quantum computers, it is necessary to build
up such useful unitary transformations out of “gates” – unitary transformations
that act on no more than a fixed number of qbits at a time. For instance, the
reference cited in footnote 12 shows that it is possible to construct the unitary
transformation (12.3.5) by using gates of just two kinds: a gate R j that acts on
the two states of the j th qbit with a unitary matrix

R j : 1√
2

(
1 1
1 −1

)
,

and a gate Si j that acts on the four states of the j th and kth qbits (with j < k):

Sj,k :

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 exp(iπ2 j−k)

⎞
⎟⎟⎠ ,

in which the rows and columns correspond to the two-qbit states with indices
00, 01, 10, and 11, in that order.

Quantum computation is subject to limitations, both intrinsic and extrinsic.
It faces intrinsic limitations in reading out the contents of the memory of a
quantum computer. For a memory in a general state (12.3.3) with unknown coef-
ficients ψ(ν), no single measurement of the state of each qbit can by itself tell us
anything precise about the values of these coefficients. Even if we repeat identi-
cal computations many times and measure the state of each qbit each time, we
only learn the values of the moduli |ψ(ν)|. On the other hand, if we know that a
computation has put the memory into one of the basis states�ν , then we can find
the integer ν by measuring the state of each qbit. In particular, in factoring large
numbers into products of primes, the output is a set of numbers, represented by
states �ν , and there is no problem in finding these numbers by a measurement
of the state of each qbit.

More general measurements are also possible. If we know that a quantum
computation has put the memory in a state for which

2n−1∑
ν=0

Ar
μνψ(ν) = arψ(μ)
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with some set of Hermitian matrices Ar , then by appropriate measurements we
can find the eigenvalues ar . (The previously mentioned example, where a com-
putation leaves the memory in a state �ν , is just the case where these matrices
are Aν

μ′μ = νδνμ′δνμ.)
Another intrinsic limitation: because of the linearity of the operations U

that can be carried out on the contents of a memory register, there are some
things that can be done easily with a classical computer that cannot be done
with a quantum computer. One of them is copying the contents of one mem-
ory register into another register.13 The state of two independent registers can
be represented as a direct product, � ⊗ �, where � and � are the states of
the two registers. (That is, if � = ∑

ν ψ(ν)�ν and � = ∑
μ φ(μ)�μ, then

� ⊗ � = ∑
νμ ψ(ν)φ(μ)�νμ.) A copying operator U would be one with the

property that

U (� ⊗�0) = � ⊗� , (12.3.7)

where � is an arbitrary state of the first register and �0 is some fixed “empty”
state of the second register. If this is true for any �, it must be true when � is a
sum �A +�B , so

U
(
(�A +�B)⊗�0

)
= (�A +�B)⊗ (�A +�B)

= �A ⊗�A +�A ⊗�B +�B ⊗�A +�B ⊗�B .

(12.3.8)

But if U is linear, then

U
(
(�A +�B)⊗�0

)
= U

(
�A ⊗�0

)
+U

(
�B ⊗�0

)
= �A ⊗�A +�B ⊗�B ,

(12.3.9)
in contradiction with Eq. (12.3.8).

The extrinsic limitation on quantum computation is the necessity of coun-
teracting errors, which if not dealt with will accumulate during extended
calculations, making such calculations useless. One sort of error is a change
of phase, in which interaction with its environment changes the state of some
qbit from ψ0�0 +ψ1�1 to eiα0ψ0�0 + eiα1ψ1�1. Even if the phases αi are very
small this amounts to a change of the complex number ψ1/ψ0 represented by
this qbit. For large uncontrolled phase changes the entanglement between this
qbit and other qbits is destroyed. A disentangled state, in which ψs1...sn is effec-
tively a product of functions of the indices, can contain only n − 1 rather than
2n − 1 independent complex numbers, so that the advantage of quantum com-
puters over classical computers is lost. Another sort of error is a bit flip; the state
�1 of some qbit changes to �0, or vice versa.

13 W. R. Wooters and W. H. Zurek, Nature 299, 802 (1982); D. Dicks, Phys. Lett. A 92, 271 (1982).
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It is possible to give a quantum computer the ability to detect and correct such
errors by writing programs in terms of synthetic qbits, which are assembled from
a number of real qbits.14 In one popular scheme,15 nine real qbits are joined into
three triplets, forming a single synthetic qbit. Its general state is

ψ0

(
�000 +�111

)
⊗
(
�000 +�111

)
⊗
(
�000 +�111

)
+ ψ1

(
�000 −�111

)
⊗
(
�000 −�111

)
⊗
(
�000 −�111

)
, (12.3.10)

in which the direct products symbolized by ⊗ should be understood in the sense
that, for instance,�000⊗�111⊗�000 is the nine-qbit state�000111000. This allows
errors affecting a single real qbit to be detected and corrected by majority rule.
(The details of the procedure are described in the references cited in footnotes
14 and 15.) A phase change of any one real qbit that alters the state of one of the
triplets of qbits from �000 +�111 or �000 −�111 to any other linear combination
(perhaps �000 −�111 or �000 +�111, respectively) can be corrected by changing
its state to the state of the other two triplets. A bit flip, which converts one of
the triplet states into an illegal state in which one qbit is in the 0 state and two
are in the 1 state, can be corrected by converting this triplet into the legal state
�111, while a bit flip that converts a triplet state into an illegal state in which one
qbit is in the 1 state and two are in the 0 state can be corrected by replacing this
triplet with the other legal state, �000.

Phase changes and bit flips do not act directly on synthetic qbits, but only on
the real qbits from which they are formed. Hence, if errors affecting real qbits
are corrected by methods like those described above, no errors will disturb the
coefficients ψ0 or ψ1 in the synthetic qbit state (12.3.10), or similar coefficients
in entangled states formed from the assemblage of many such synthetic qbits.
The development of error-correcting codes of this sort, together with impressive
progress in the physical performance of individual qbits,16 leaves the problems
of combining hundreds of qbits in a useful quantum computer, and of writing
programs for such computers.

14 For reviews, see J. Preskill, http://www.theory.caltech.edu/people/preskill/ph229/#lecture, Chapter 7;
D. Gottesman, in Quantum Computation: A Grand Mathematical Challenge for the Twenty-First Cen-
tury and the Millennium, ed. S. J. Lononaco, Jr. (American Mathematical Society, Providence, RI,
2002), pp. 221–235.

15 P. W. Shor, Phys. Rev. A 52, 2493 (1995).
16 For example, see T. P. Harty, D. T. Allcock, C. J. Ballance, L. Guidoni, H. A. Janacek, N. M. Linke,

D. N. Stacey, and D. M. Lucas, Phys. Rev. Lett. 113, 220501 (2014) [arXiv:1403.1524].
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components, 365–368

of Galilean group generators,
85–86

of general symmetry generators,
77–78

of momentum and position
operators, 20–21, 23, 27, 78–79

of raising and lowering operators,
50

also see canonical commutation
rules, Dirac brackets

compact groups, 157
complete positivity, 242–243
completely continuous operators, 304
completeness, 58, 67
Compton scattering, 5–6
conservation laws, see Noether’s

theorem, symmetry principles
consistent histories interpretation, see

decoherent histories
interpretation

constrained Hamiltonian systems,
335–340

continuous symmetries, 76–77
continuum normalization, 61–64
cooling of hot gases, 46
Copenhagen interpretation, 86–88
correlation function, 221
correspondence principle, 9
Coulomb gauge, 365
Coulomb potential, 8, 43, 259–260,

369
also see Coulomb scattering,

hydrogen atoms
Coulomb scattering, 259–260,

271–273, 278, 280–281
CPT symmetry, 84, 154
creation and annihilation operators,

373, 375
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cross section
classical, 277–278
differential cross section defined,

254
for diffraction scattering, 298–299
general formula, 289–290
high energy, 298–299
low energy, 262–264
resonant, 266, 303
also see Coulomb scattering,

optical theorem, partial wave
expansions

crystals, 80–82, 141
cyanogen, 167
cyclotron frequency, 354

D lines of sodium, 104, 174, 177–178
dark energy, see zero point energy
Davisson–Germer experiment, 14
de Broglie waves, 13
de Haas–van Alphen effect, 356
decay rates, 289–290

also see radiative transitions,
resonances

decoherence, 88, 91–92, 206–207
decoherent-histories approach, 94–96
degeneracy

in adiabatic approximation, 227
in harmonic oscillator, 51–52, 149
in hydrogen atom, 46, 137–138
in perturbation theory, 170–174,

185–187
of Landau energy levels, 355

delta functions, 62–64, 216–217, 287
� particles, 144–145, 147
density matrix, 72–73, 86–88,

237–239, 394
positivity, 241–242

detailed balance, 321
deuteron, 48–49, 142, 152, 319
diagonalization, 67
diffraction peak, 258
dimensionality of vector spaces, 58
Dirac brackets, 338–339, 367–368
Dirac equation, xviii, 105, 153–154,

175

distorted-wave Born approximation,
308–309, 321–323

dyads, 71–72
dynamical phase, 225–226
Dyson series, 311

effective Hamiltonians, 197
effective range expansion, 264, 319
Ehrenfest’s theorem, 26, 116
eigenstates, eigenvectors, eigenvalues,

27, 66
eikonal approximation, 273–281,

356–359
Einstein A and B coefficients, 11–13
Einstein–Podolsky–Rosen paradox,

392–393
electromagnetic vector and scalar

potentials, 348, 356, 363–368
electron

charge, xxii, 4
discovery, 4
mass, 4
spin, 104–105
also see atomic spectra, Bloch

waves, Compton scattering,
Davisson–Germer experiment,
hydrogen atoms, gyromagnetic
ratio, Landau energy levels,
magnetic moment, photoelectric
effect

energy, see atomic spectra, bound
states, Hamiltonian, perturbation
theory

entanglement, 392–406
entropy, 397
experimental tests, 403–404
faster-than-light communication?,

394–396
in quantum computing, 402–403
paradoxes, 392–397
also see Bell inequalities

εijk tensor, xxi, 33, 36, 109–110, 160
entropy, see entanglement entropy,

von Neumann entropy
equipartition, 3, 5
Euler–Lagrange equations, 361–362
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exclusion principle, see Pauli
exclusion principle

expectation values, 26, 68–69

factorizable solutions, 38
factorization

of evolution kernels, 395
of S-matrix elements, 311

Faddeev equation, 305
faraday, 4
Fermi surface, 141, 355
Fermi–Dirac statistics, 141
fermions, see bosons and fermions
Fermi’s golden rule, 217
field theory, see Euler–Lagrange

equations, Maxwell equations,
quantum electrodynamics

fine structure, 105, 122, 175
fine structure constant, 300
first and second class constraints, 337
Fock space, 376
Froissart bound, 299

Galilean invariance, 84–85
gamma function, 272
gauge invariance, 351–353
Gaussian integrals, 344
generators of symmetries, 77

also see angular momentum, boost
generator, commutators of
symmetry generators,
Hamiltonian, momentum

grand canonical ensemble, 140
gravitons, 379
Green’s function, 252, 286
group velocity, 13–14
groups of symmetry transformations,

76
gyromagnetic ratio, 175, 387

halogens, 137–138
Hamiltonian, 16, 21, 24–25

derived from Lagrangian, 329–332
derived from time translation

symmetry, 82, 330, 334
effective Hamiltonians, 197
for central potential, 32

for charged particle in
electromagnetic field, 349–350

for electromagnetic field, 368–370
for harmonic oscillator, 50
for rigid rotator, 159–161
for two-body problem, 47

harmonic oscillator, 49–54, 139, 203,
354

Hartree approximation, 134
Heisenberg picture, 83, 247, 332
Heisenberg uncertainty principle, 28,

69–70
helicity, 378
helium nuclei, see alpha particles
Hellmann–Feynman theorem,

195–196
Herglotz theorem, 319
Hermite polynomials, 51
Hermitian matrices and operators, 20,

21, 25, 27, 35, 64, 77
hidden variables, 88, 398–402
Hilbert space, 55–60
hydrogen atom, 8–10, 21, 43–47,

122–123, 151, 154–158,
204–205

hydrogen molecule, see
parahydrogen, orthohydrogen

hypercharge, 147
hyperfine splitting, 123–124, 175
hyperons, 145–146

identical particles, see bosons and
fermions

impact parameter, 278
“in” states, 247, 282–285, 309
independent state vectors, 57–58
induced emission, see stimulated

emission
infrared divergences, 187
“in–in” formalism, 314
instrumentalist interpretations, 92
insulators, 141
interaction picture, 310, 370–375
internal symmetries, see charge

symmetry, isospin invariance,
strangeness, SU(3)
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interpretations of quantum mechanics,
102

also see Copenhagen interpretation,
decoherent histories
interpretation, instrumentalist
interpretations, many-worlds
interpretation, realist
interpretations

isospin invariance, 143–145

Jacobi identity, 335

K mesons, 145–146, 153, 387
Kraus form, 242
Kuhn–Thomas sum rule, 18–19
Kummer function, 272

Lagrangians, 326–327
and symmetry principles, 327–329
density, 362
for charged particle in

electromagnetic field, 348
for electromagnetic field, 363–365
for particle in general potential, 327
in path integral formalism, 345

Laguerre polynomials, 45
Lamb shift, 122–124, 183
Landau energy levels, 353–356
Landé g-factor, 176
lanthanides, 138
lasers, 12–13
lattice calculations, 347
Legendre polynomials, 42, 125, 260
Levinson’s theorem, 270–271
Lindblad equation, 242–245
linear operators, 65
Lippmann–Schwinger equation,

248–250, 283–284, 303
Lorentz invariance, 86, 311–312, 344
Low equation, 315–316
Lyman-α line, 47

magic numbers, 138–139
magnetic moment, 116, 353–354

also see gyromagnetic ratio
many-worlds interpretation, 97–102
matrix algebra, 19–21

matrix mechanics, 16–21, 154
Maxwell–Boltzmann statistics, 141
Maxwell equations, 363, 370
measurement, 89–92, 244–246

also see interpretations of quantum
mechanics

metals, 137, 141
molecules, 158, 188

also see ammonia,
Born–Oppenheimer
approximation, broken
symmetry, chirality, cyanogen,
orthohydrogen and
orthodeuterium, parahydrogen
and paradeuterium, rigid rotator

moment-of-inertia tensor, 160
momentum, 78–80, 328, 333

negative energies, 84
neutron, 142
no-copying theorem, 405
noble gases, 137, 268
Noether’s theorem, 328–329
norms, see scalar products
nucleus, see atomic nucleus

O(3) symmetry, 107
open systems, 237–246
operators, 64–65
optical theorem, 255–258, 262,

291–292, 296
orthogonal matrices, 106–107
orthogonal state vectors, 57–58
orthohydrogen and orthodeuterium,

166
orthonormal state vectors, 22, 60
“out” states, 282–287, 309

parahydrogen and paradeuterium, 166
parity, see space inversion
partial wave expansion, 292–299
Paschen–Back effect, 179
path-integral formalism, 340–347
Pauli exclusion principle, 135–141
Pauli matrices, 115
periodic boundary conditions, 2, 217
periodic table of elements, 136–138
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permanents, 135
perturbation theory

convergence, 304–307
for general energy levels, 169–174,

183–188
for transition rates, 214–218,

220–221
old-fashioned, 303–304
time-dependent, 214–215, 309–314
also see Born approximation

phase shifts, 260–262, 297
low energy, 262–264
resonant, 266
for shallow bound state, 318
also see Levinson’s theorem, time

delay
photoelectric effect, 5
photoionization, 218–220
photons, 5–6, 133, 140, 376–379
pions, 144, 152–153, 323
Planck distribution (of black-body

radiation), 3, 12, 140
Planck’s constant h, 3–4, 9
plane waves, 14, 80
pointer states, see classical states
Poisson brackets, 21, 335
polar coordinates, 35
polarization vectors, 373, 378–379,

388–390
positivity, see density matrix
primary and secondary constraints,

336–337
principal quantum number n, 45–46,

156
probabilities, 25, 30, 59–60

conservation, 26, 255, 257–258,
350–351

probability density, 25–26, 62
projection operators, 71
proton, 10, 142

magnetic moment, 123

qbits, 402
synthetic qbits, 406

quantum computers

advantage over classical computers,
402–403

error-correcting codes, 406
gates, 404
limitations, 404–406
also see no-copying theorem, qbits

quantum electrodynamics, 23–24,
365–387

quantum key distribution, 387–391

Rabi oscillations, 232–234
radiative transitions, 17, 53–54, 300,

380–383
electric-dipole transitions, 17,

130–131, 151, 177–178,
383–384

electric-quadrupole and
magnetic-dipole transitions,
385–387

selection rules, 46–47, 131,
151–152, 386

also see Einstein A and B
coefficients, spontaneous
emission, stimulated emission

raising and lowering operators, 50,
112, 149, 373

Ramsauer–Townsend effect, 268
Ramsey interferometers, 232,

234–237
rare earths, 138
ray paths, 274
rays, 60, 75–76
Rayleigh–Jeans distribution, 3
realist interpretations, 97–98
recombination of hydrogen, 47
reduced mass, 10, 32, 47
reduced matrix element, 129
resolvent operator, 306, 315
resonances, 264–268, 299–303
rigid rotator, 158–167
Ritz combination principle, 8
rotational symmetry, 106–111

unitary representations D(R), 164
also see angular momentum, SU(2)

formalism
Runge–Lenz vector, 154–155
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scalar products, 57, 59
scattering, 25

general scattering theory, 282–323
potential scattering theory, 247–281

scattering amplitude, 252–254, 262,
273, 291

also see cross section, optical
theorem

scattering length, 264, 319
Schrödinger equation, 15–16

for central potential, 32–39
for Coulomb potential, 43, 271
for harmonic oscillator, 49
time-dependent equation, 24, 82

Schrödinger picture, 82
Schrödinger’s cat, 91–92, 98
Schwarz inequality, 69
second class constraints, see first and

second class constraints
semi-conductors, 141
Shubnikow–de Haas effect, 356
similarity transformations, 77
Slater determinant, 135
S-matrix, 284–287, 310–311

at resonance, 301–302
Solvay Conferences, 30
SO(3), see rotational symmetry
SO(3)⊗ SO(3) (or SO(4))

symmetry, in hydrogen, 157–158
Sommerfeld quantization condition,

11, 203, 205
space inversion, 42, 46, 51, 107,

150–153
intrinsic parity, 152–153

space translation, 78–79, 332
spherical Bessel and Neumann

functions, 260–261, 263
spherical components of vectors, 39,

129, 130
spherical harmonics, 39–42, 114, 166

addition theorem, 125
spin, 104–106, 110, 333
spin–orbit coupling, 105, 139, 175

also see fine structure
spontaneous emission, 11–12, 17,

223, 380–387

spontaneous symmetry breaking, see
symmetry breaking

Stark effect, 179–183, 188
state vectors, 56–57

also see eigenstates, independent
state vectors, orthogonal state
vectors, orthonormal state
vectors

statistical matrix, see density matrix
statistics, see Bose and Fermi

statistics
Stefan–Boltzmann constant σ , 4
Stern–Gerlach experiment, 90–91, 97,

116, 122
stimulated emission, 11–12, 222–224
strangeness, 145–146
strong interactions, 142–146
SU(2) formalism for angular

momentum, 126–128
SU(2) symmetry in particle physics,

143
SU(3) symmetry

for harmonic oscillator, 148–150
in particle physics, 146–147

symmetries, 74–78
also see charge symmetry, CPT

symmetry, Galilean invariance,
isospin invariance, rotational
symmetry, SO(3) ⊗ SO(3) (or
SO(4)) symmetry, space
inversion, space translation,
strangeness, SU(2) symmetry
SU(3) symmetry, time
translation, time reversal, U(1)
symmetries

3 j symbols, 126
time delay, in scattering, 268–269
time-ordered products, 310–311
time reversal, 84, 153–154, 320–323
time translation, 82–83
traces of operators, 70–71
transformation theory, 23, 55
translations, see space translation,

time translation
21 centimeter radiation, 387
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two-slit experiment, 346

ultraviolet catastrophe, 3
ultraviolet divergences, 187
uncertainty principle, see Heisenberg

uncertainty principle
unitarity, 75–76

of the S-matrix, 285–286, 300–301,
318

unpolarized systems, 132, 211
U (1) symmetries, 146

vacuum state, 375
valence, 137
Van der Waals forces, 208–212
variational method, 188–191, 194
vector spaces, 56–57
virial theorem, 190–191
virtual particles, 184
von Neumann entropy, 73–74,

243–244

W and Z particles, xviii, 133
Watson–Fermi theorem, 323

wave function, see probability
density, Schrödinger equation,
state vector, wave mechanics,
wave packets

wave mechanics, 13–15
wave packets, 14, 56, 251–252
weak interactions, 144, 153
Wien displacement law, 12
Wigner–Eckart theorem, 128–132,

181, 294
Wigner’s symmetry representation

theorem, 76
WKB approximation, 198–207, 265,

274
work function, 5

X-rays, 10

Yukawa (or shielded Coulomb)
potential, 259, 299, 306

Zeeman effect, 174–179
zero-point energy, 24, 51, 375–376
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