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Preface

The Theory of Machines was borne as a subject with the Industrial Revolution and
the birth of Reciprocating Steam Engine nearly 230 years ago. The reciprocating
steam engine was the main work horse for just over hundred years during the 19th
century and gradually lost its place in history by the turn of 20th century. It is then
the turn of Internal Combustion Engines and Rotating Machinery.

Kinematics and Dynamics of Reciprocating and Rotating machinery is the fun-
damental study to mechanical engineers before proceeding to stress design. These
analyses were done mainly by graphical methods for planar mechanisms as they
gave good insight into the mechanism and repetitive history of velocities, accel-
erations, static and dynamic forces, etc.

All machines are periodic in operation depending on thermodynamic cycles for
example one revolution in a two-stroke engine or two revolutions in a four-stroke
engine. Besides thermodynamics as a fundamental mechanical engineering subject,
Theory of Machines is the first subject a fresh entrant to mechanical engineering
studies faces. The concepts of moving machine members over a period of thermo-
dynamic cycle and the variation of displacements, velocities and accelerations form
the subject of Kinematics. Here we do not question what makes these machine mem-
bers move but merely find the kinematics when there is a motion. When we ask the
question of forces that make the motion, we are dealing kinetics; together we have
Dynamics of Machinery. When we include the machinery aspects such as links,
kinematic chains, mechanisms, etc., to form a given machine we have the subject of
Theory of Machines.

Usually this subject is introduced as a two-semester course, kinematics and ki-
netics simultaneously with Thermodynamics or Heat Engines before the design of
machine members begins. This book forms the material for first semester of Theory
of Machines.

As this subject is over 200 years old, there are several textbooks already available.
The new books that appear from time to time take into account new techniques
available; the subject matter itself has not changed particularly for the entry level.
What is the difference here then?

xi



xii Preface

This book attempts to bring in the machine live on to the screen and explain the
theory of machines concepts through animations and introduce how the problems
are solved in industry to get complete history in the shortest possible time rather
than using graphical (or analytical) methods that are in vogue even today. Thus the
student is introduced to the concepts through visual means and brings him close
to industrial applications by the end of the two semester program taking him well
equipped for design courses.

International Federation for the Promotion of Mechanism and Machine Science
(IFToMM) has developed a standard nomenclature and notation on Mechanism and
Machine Science and this book adopts these standards so that any communication
between scientists and teachers in classrooms across the world can be with the same
terminology causing no confusion.

This book adopts HyperWorks MotionSolve to perform the analysis and visual-
izations, though the book is independent of the requirement of any software. Having
this software helps in further studies and analysis. The avis in this book can be ac-
cessed from extras.springer.com by using the ISBN; they are: Figs. 2.1, 2.3, 2.4, 2.5,
2.6, 2.7, 2.8, 2.9, 2.10, 2.11b, 2.12a, 2.12b, 2.13, 2.20, 2.21, 2.22, 2.23, 2.24, 2.25,
2.26, 2.27, 2.28, 2.29, 2.30, 2.31, 2.32, 2.33, 3.1, 3.2a, 3.2b, 3.2c, 3.5a, 3.13f, 3.20,
3.28, 3.30, 3.38, 4.1, 4.2, 4.3, 4.4, 4.5,4.6, 4.8, 4.9, 4.10, 4.11, 4.12a, 4.12b, 4.12c,
4.13, 4.14, 4.15,4.16, 4.18, 4.19a, 4.19b, 4.20, 4.22a, 4.22b, 4.22c, 5.1, 5.2, 5.3, 5.4,
5.5a, 5.5b, 5.6a, 5.6b, 5.6c, 5.7, 5.17, 5.18a, 5.18b, 5.26, 5.29, 5.30, 5.31, 5.32-33,
5.34-35, 6.1, 6.2a, 6.5a, 6.7b, 6.10, 6.18a, 6.18b, 6.23a, 6.23b, 6.23c, 6.24a, 6.24b,
7.4c, 7.4d and 8.1.

The author acknowledges help given by various students and colleagues over
four decades. Of particular mention, I thank Professor J. Srinivas, Anil Sakhamuri,
Uday M. Udapi and Sundar Nadimpalli. I am also thankful to Mr. Pavankumar and
Mr. Nelson Dias of Altair Engineering India.

Finally, I am ever so thankful to my beloved wife Indira for her understanding in
my work and cooperation.



  



Chapter 1
Beginnings of the Theory of Machines1

It is always fascinating to know the origins of any subject. The subject of Theory
of Machines began during the era of James Watt with the Industrial Revolution. We
will look at what happened prior to this.

1.1 Beginning of the Wheel

During the Mesolithic, or Middle Stone Age, some many thousands of years ago,
man found that a section of a tree trunk could be moved more easily under the
force of gravity because it was round. If the branches and twigs of the trunk were
removed, the speed of the rolling log improved.

Early men began to place runners under a heavy load, which they discovered
would make it easier for the load to drag. This was the invention of the sledge.
Men then began to combine the roller and the sledge. As the sledge moved forward
over the first roller, a second roller was placed under the front end to carry the load
when it moved off the first roller. It was discovered that the rollers which carried the
sledge became grooved with use and that these deep grooves actually allowed the
sledge to advance a greater distance before the next roller was needed to come on.
Thus, the rollers were changed into wheels. In the process of doing so, sections of
wood between the grooves of the roller were cut away to form an axle and wooden
pegs were fastened to the runners on each side of the axle. A slight improvement
was made to the cart. This time, instead of using pegs to join the wheels to the axle,
holes for the axle were drilled through the frame of the cart. Axle and wheels were
now made separately.

The wheel is probably the most important mechanical invention of all time.
Nearly every machine built since the beginning of the industrial revolution involves
a single, basic principle embodied in one of mankind’s truly significant inventions.

1 This chapter is based on the paper “History of Rotating Machines”, IFToMM Workshop on the
History of Machines and Mechanisms, HMM 2007, Bangalore, December 14, 2007.

1
Science 18, DOI 10.1007/978-94-007-1156-3_1, © Springer Science+Business Media B.V. 2011  
J.S. Rao, Kinematics of Machinery Through HyperWorks, History of Mechanism and Machine 



2 1 Beginnings of the Theory of Machines

It is hard to imagine any mechanized system that would be possible without the
wheel or the idea of a symmetrical component moving in a circular motion on an
axis. From tiny watch gears to automobiles, jet engines and computer disk drives,
the principle is the same.

Agricultural villages had begun to develop by 8000 BC. This is known as the Ne-
olithic period, or New Stone Age. During this time the slow potter’s wheel was in-
vented. In about 3000 BC Egyptians developed the fast wheel, a completely mobile,
carefully balanced apparatus of stone. Based on diagrams on ancient clay tablets,
the earliest known use of this essential invention was a potter’s wheel that was used
at Ur in Mesopotamia (part of modern day Iraq) as early as 3500 BC. The first use
of the wheel for transportation was probably on Mesopotamian chariots in 3200
BC. It is interesting to note that wheels may have had industrial or manufacturing
applications before they were used on vehicles.

The wheel was furthered improved on later by the Egyptians, who made wheels
with spokes, which could be found on Egyptian chariots of around 2000 BC. Over
in Ancient India, chariots with spoked wheels dating back to around 1500 BC were
also discovered. The Greeks too, adopted the idea of wheel-making from the Egyp-
tians and made further improvements to it. Later, during the time of the Roman
Empire, the Romans too engaged themselves in wheel-making and produced the
greatest variety of wheeled vehicles. They had chariots for war, hunting, and racing,
two-wheeled farm carts, covered carriages, heavy four-wheeled freight wagons and
passenger coaches.

With the collapse of the Roman Empire in AD 476, the wheel became widely
used for war machines across the old empire. The grinding wheel was introduced
from Arabia to Europe in the middle ages, greatly improving the effect of bladed
combat weapons.

1.2 Archimedes (287–212 BC)

The first to systematize the simple machines and propound the theory of their func-
tions was Archimedes of Syracuse in Sicily. It was probably he who invented the
compound pulley, a device for increasing traction or lifting power and he pro-
pounded the theory of the lever, both one- and two-armed. He regarded the wheel as
a circular figure described by a rotating one-armed lever, and the screw as the circu-
lar analogy of the inclined plane. One of his famous sayings is “Give me a place to
stand and I will move the earth”.

Archimedes received his education at the University of Alexandria, where groups
of mathematicians and scientists worked, devoting themselves to the construction of
numerous fascinating machines. The greatest and most colorful of what is known as
the Alexandrian school of engineers was undoubtedly Hero who lived sometime
during the second century BC. His best invention was the aelopile, the first reaction
turbine, which converted heat into mechanical energy through the medium of steam.
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Hero’s aelopile, the first reaction turbine, could not produce useful work, as the
speed was not sufficient to create the required high head of steam. In the 1780s
James Watt worked on the theoretical operating conditions of a reaction turbine and
he concluded that such a turbine could not be built given the state of contemporary
technology.

1.3 Water Wheels

In all likelihood, the earliest tools employed by humankind for crushing or grind-
ing seeds, nuts, and other food-stuffs consisted of little more than a flat rock, upon
which the material was crushed by pounding with a stone or tree branch. The ar-
chaeological records show that as early as 30,000 years ago, Cro-Magnon artists
employed the mortar and pestle to grind and mix the pigments they used to create
their magnificent “cave-art”.

Far more efficient than the flat rock or even the mortar and pestle was the hand-
mill, which appears to have long pre-dated the agricultural revolution. The handmill
consists of a flat rock, often hollowed or concave, on which the grain, seeds, or other
materials is placed, and a grinding stone, which is rolled across the grain, thus re-
ducing the grain to flour. Although the handmill is still, today, in use in many parts
of the world, approximately 2,000 years ago humankind began to harness water-
power to turn the stones that ground its grain. They were probably the first tools for
creating mechanical energy that replaced humans and animals.

The first description of a water wheel is from Vitruvius, a Roman engineer (31
BC–14 AD), who composed a 10 volume treatise on all aspects of Roman engineer-
ing. From classical times, there have existed three general varieties of water wheels:
the horizontal wheel and two variations of the vertical wheel.

Waterpower was an important source of energy in ancient Chinese civilization.
One of the most intriguing applications was for iron casting. According to an ancient
text, in 31 AD the engineer Tu Shih invented a water-powered reciprocator for the
casting of (iron) agricultural implements. Waterpower was also applied at an early
date to grinding grain.

Renaissance engineers studied the waterwheel and realized that the action of
water on a wheel with blades would be much more effective if the entire wheel were
somehow enclosed in a kind of chamber. They knew very well that only a small
amount of the water pushing or falling on a wheel blade or paddle actually strikes
it, and that much of the energy contained in the onrushing water is lost or never
actually captured.
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1.4 Wind Mills

Over 5,000 years ago, the ancient Egyptians used wind to sail ships on the Nile
River. While the proliferation of the water mill was in full swing, wind mills ap-
peared to harness more inanimate energy by employing wind sails. Prototypes of
wind mills were probably known in Persia (present day Iran) as early as 7th century
AD with the sails mounted on a vertical axis. Towards the end of the 12th century,
wind mills with sails mounted on a horizontal axis appeared in Europe; the first of
this kind probably appeared in Normandy, England. These are post mills, where the
sails and machinery are mounted on a stout post and the entire apparatus has to be
rotated to face the wind.

Two centuries later the tower mill was introduced, enclosing the machinery in a
stationary tower so that only the cap carrying the sails needed to be turned to the
wind.

In 1854 Daniel Halliday obtained the first American windmill patent. His wind-
mill had four wooden blades that pivoted and would self adjust according to wind
speed. It had a tail which caused it to turn into the wind.

1.5 Renaissance Engineers

The credit for making pressure exerted by the atmosphere entirely explicit belongs
to Otto von Guericke, who in 1672 published the famous book in which he described
his air pump and the experiments that he made with it from the mid 1650s onwards.
Once it was understood that atmosphere exerts pressure, it was a matter of creating
a vacuum and utilizing atmospheric pressure to move the piston in a cylinder.

Denis Papin (1647–1712) a French physicist, mathematician and inventor is best
known for his pioneering invention of the steam digester, the forerunner of the steam
engine. He visited London in 1675, and worked with Robert Boyle from 1676
to 1679, publishing an account of his work in Continuation of New Experiments
(1680). During this period, Papin invented the steam digester, a type of pressure
cooker. He first addressed the Royal Society in 1679 on the subject of his digester,
and remained mostly in London until about 1687, when he left to take up an acad-
emic post in Germany. While in Leipzig in 1690, having observed the mechanical
power of atmospheric pressure on his ’digester’, he built a model of a piston steam
engine, the first of its kind.

Thomas Savery (1650–1715) was an English military engineer and inventor who
in 1698 patented the first crude steam engine, based on Denis Papin’s Digester or
pressure cooker of 1679. His machine consisted of a closed vessel filled with water
into which steam under pressure was introduced. This forced the water upwards and
out of the mine shaft. Then a cold water sprinkler was used to condense the steam.
This created a vacuum which sucked more water out of the mine shaft through a
bottom valve.
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In 1705 Papin developed a second steam engine, with the help of Gottfried Leib-
niz, using steam pressure rather than atmospheric pressure. Papin’s steam engine
was a breakthrough since Hero’s reaction turbine of the second century BC never
functioned in reality.

The Newcomen steam engine was the first practical device to harness the power
of steam to produce mechanical work. Newcomen’s first working engine was in-
stalled at a coal mine at Dudley Castle in Staffordshire in 1712. They were used
throughout England and Europe to pump water out of mines starting in the early 18th
century and were the basis for James Watt’s later improved versions. Although Watt
is far more famous today (due largely to Matthew Boulton’s tireless salesmanship),
Newcomen rightly deserves the majority of the credit for widespread introduction
of steam power.

1.6 Industrial Revolution

Between 1780 and 1850, in a space of just seven decades, the face of England was
changed by a far-reaching revolution, without precedent in the history of mankind.

Glasgow University had one of the Newcomen engines for its natural philoso-
phy class. In 1763, one hundred years after the birth of Newcomen, this apparatus
went out of order and Professor John Anderson gave the opportunity to James Watt
(1736–1819) to repair it. After the repair and while experimenting with it, he was
struck by the enormous consumption of steam; at every stroke, the cylinder and
piston had to be heated to the temperature of boiling water and cooled again. This
prevented the apparatus from making, with the available boiler capacity, more than
a few strokes every minute. He quickly realized that the wastage of steam is inher-
ent in the design of the engine and became obsessed with the idea of finding some
remedy. From the discovery of Dr. Joseph Black (1728–1799), he deduced that the
loss of latent heat was the most serious defect in the Newcomen engine. The work
of James Watt is thus the application of science to engineering that led to the birth
of industrial revolution.

In 1765 he conceived the idea of a separate condensing chamber for the steam
engine to separate the condensation system from the cylinder, injecting the cooling
water spray in a second cylinder, connected to the main one. When the piston had
reached the top of the cylinder, the inlet valve was closed and the valve controlling
the passage to the condenser was opened. External atmospheric pressure would then
push the piston towards the condenser. Thus the condenser could be kept cold and
under less than atmospheric pressure, while the cylinder remained hot. Important as
the separate condenser idea was, in the fully developed version of 1775 that went
into production, changes had to be more far-reaching. There was no spray, the con-
denser being immersed in a water tank and at each stroke the warm condensate was
drawn off and sent up to a hot well by a vacuum pump which also helped to evacuate
the steam from under the power cylinder. The still-warm condensate was recycled
as feed water for the boiler.
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Reciprocating machinery has inherent disadvantages at high speeds; they have
practically disappeared in the modern day world. There are still steam locomotives
operating in a few places, e.g., Fairy Queen, the oldest running vintage steam loco-
motive in the world built in the year 1855 by the British firm Kinston, Thompson
& Hewitson for the British firm East India Railways and occasional reciprocating
engines for producing small amounts of power in sugar mills, but otherwise they are
gone. Internal combustion engines still thrive for transportation, power generation,
and so on.

1.7 The Nature of This Book

The subject Theory of Machines is about 200 years old and has undergone tremen-
dous changes during these two centuries. It began with the need to develop un-
derstanding of various links of disparate mechanisms, followed by Kinematics that
explains displacements, velocities and accelerations inherent in these mechanisms.
The reciprocating steam engines were bulky and rigid, their speeds were very low
and rarely was a dynamic analysis needed. Their loads were calculated from dead
weights and statics and applied to the pursuit of better design. By the time the basic
concepts of Dynamics were perceived, the reciprocating steam engine was already
on its way out, with about a century left to go, and Reciprocating Internal Com-
bustion engines gained importance. Simultaneously, rotating steam turbines were
favored for high capacities and high speeds. Jet engines and Gas turbines came into
vogue nearly six decades ago. These new devices significantly enriched the subject
Theory of Machines. Dynamics assumed an increasingly central role in design.

While reciprocating machinery formed the central theme of Kinematics and Dy-
namics studies, there were several other elements that became important in the study
of the Theory of Machines, e.g., Cams in reciprocating engines, Gears in transmis-
sion units, Governors and Controls, etc. The studies of Reciprocating steam engine
soon disappeared from the curriculum.

Initially Kinematics and Kinetics of Machinery was conducted by using graphi-
cal methods and where possible analytical methods until the advent of computer era
in 1960s. With further advances in hardware and work centers the analysis and de-
sign was made simpler through simulation and visualization. Initially the designs
were all through expensive and time consuming tests, they got gradually trans-
formed to current day practice of simulation and optimization to arrive at the final
prototype in the fastest time thus reducing the design cycle time and bringing new
products to the market in the least possible time.

It is common practice nowadays for designers to use commercially available sim-
ulation tools or codes to achieve their finished designs. Most engineering instruction,
however, continues to follow a conventional curriculum of classical theory, followed
by computational tools, ending with amalgamation of this knowledge in order to
meet industry standards. In this book, we attempt to make the time of instruction
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more compact and to bring engineering students into the design industry in a faster
and more efficient manner.

For an engineer to be most effective for current day applications, it is necessary
to be well versed in the subject and have the ability to apply the basics to achieve
advanced designs using tools that are fast acting and efficient. Therefore the Theory
of Machines, taught usually in two semesters, is proposed to be given through simu-
lation tools to make a young engineer most efficient in a shorter period of time. The
two semester pattern can continue with additional tasks of practicing applications of
industrial nature. To assist in this model of instruction and learning, the subject mat-
ter is developed here through Altair MotionSolve and MotionView. The teacher can
instruct students in the basics of these tools to allow the students have imagination
and develop industrial practice skills while learning the basics of the subject.

Our approach to such instruction is to teach the visualization of moving mem-
bers of a machine, and correlation of these motions, to determine the most important
kinematic parameters in their design. We see it as a more effective path than imagin-
ing a motion period through several 2D figures of the machine. We believe that it will
more effectively help the beginning engineer understand the function and analysis
of a reciprocating engine, cams that open and close valves, gears that produce uni-
form angular velocities between two shafts in a transmission unit, governors, links
that provide reclining and movement of seats, earth moving elements handling large
quantities of earth material, special purpose machine tools as in bottling systems,
robots, etc., all machinery members and functions that one can imagine would have
applications of Theory of Machines.

We will first look at kinematics and later extend our discussion to kinetics. The
subject of kinetics will focus on important aspects of forces acting on machine mem-
bers that will subsequently need to be recognized in design.

Note that this is not an instruction manual for any commercial tool. An appro-
priate manual can be given out separately and the teacher can, if it seems desirable,
simultaneously teach the steps that will enable students to most effectively follow
the subject matter through visualization. While the time-honored and conventional
practice of drawing outlines and specifications on drafting tables will undoubtedly
be quickly discouraged, students should be encouraged to do free hand sketching to
express their ideas, particularly at the concept stage.



  



Chapter 2
Planar Mechanisms

Every machine has moving members to perform a designed job. There are Prime
Movers or Drives that use energy from some source to provide the necessary power
to a Driven Machine or Load. The Prime Movers can be reciprocating steam engines
(almost extinct now) which use steam from external combustion of coal in a boiler,
reciprocating diesel or petrol engines which contain internal combustion in a cylin-
der, steam turbines using steam from external combustion of coal, gas turbines that
use oil or gas in external combustion to produce hot gases or electrical machines that
use electric power produced in power plants and transmitted to the location where
it is needed. These prime movers drive a load that could be a propeller of a ship, an
automobile for road transportation, a reciprocating or rotating compressor in oil and
gas industries, an aircraft for air transportation, a generator to produce electricity or
a machine tool that removes metal in a manufacturing process, etc.

As an example, in Figure 2.1a we show a Shaping Machine. The power from an
electric motor is transferred through the crank, sliding block, rocker arm and con-
necting link to the cutting tool. These are rigid bodies to which the cutting tool is
connected in a suitable manner to give constrained motion and remove the metal by
shaping action. Theory of Machines is concerned with the layout of such members
in a given machine, their motion and understanding of how the kinematic quanti-
ties, displacement, velocity and acceleration vary with time and kinetics of these
members, viz., what forces and moments cause these motions. From these forces
and moments, we can determine the stresses and size the members of the machine
accordingly. That will be subject of Machine Design, which is not a part of Theory
of Machines.

Before we proceed to formally develop the subject in a systematic manner, let us
look at Figure 2.1b that depicts schematically the shaping machine of Figure 2.1a.
The crank, sliding block, rocker arm, connecting link and the ram here are repre-
sented simply by lines with joints connecting them and provide a transfer of motion
from the crank to the ram. Comparing Figures 2.1a and 2.1b we find the same mo-
tions are achieved by different bodies, e.g., watch the ram and the tool attached to
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Fig. 2.1 Shaping machine schematically represented

it.1 Therefore we recognize that we can schematically represent each machine mem-
ber by a rigid body. If all the bodies of the machine move in one plane as in this case,
the rigid bodies are simply represented by straight line between two joints where the
neighboring bodies of the machine are attached. The student should quickly learn to
imagine what would be the actual shape of a machine component which might be
schematically shown as a straight line (or as a triangle if there are three attachments
to this body). Now let us define these machine components in a systematic manner
to develop the subject further.

2.1 Basic Kinematic Concepts

The International Federation for the Promotion of Mechanism and Machine Science
(IFToMM) is a world body established in 1969 for promotion of Mechanisms and
Machines Science. One of its tasks is standardization of Mechanism and Machine
Science terminology, the first step of which resulted in a concise publication in
2003 covering various aspects of Mechanisms and Machines. In this book, where
necessary, all definitions are taken from these terminology standards.2

Machine

Mechanical system that performs a specific task, such as the forming of material,
and the transference and transformation of motion and force. It comprises of several
rigid bodies connected in such a way that it produces constrained relative motion
between them and transmit forces and couples from the source of input power to
result in motion, see Figures 2.1a and 2.1b.

1 The avis in this book can be accessed from extras.springer.com.
2 IFToMM Commission A, Terminology for the Mechanism and Machine Science, Mechanism
and Machine Theory, Vol. 38, Nos. 7–10, pp. 598–1111, 2003.
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Mechanism

System of bodies designed to convert motions of, and forces on, one or several bod-
ies into constrained motion of, and forces on, other bodies. When we deal with a
mechanism, the specific task to which it is assigned is not important, be it a shaping
machine or an internal combustion engine, etc. The emphasis is on motion and force
of the system and they may be applicable to any machine in which a specific mecha-
nism may be employed. It is also a kinematic chain with one of its components (link
or joint) connected to the fixed frame.

Planar Mechanism

Mechanism in which all points of its links describe paths located in parallel planes.

Link

Mechanism element (component) carrying kinematic pairing elements. Thus, the
crank, sliding block, rocker arm, connecting link and the ram are the links of the
shaping machine.

Bar

Link that carries only revolute joints.

Element (Pairing Element)

Assembly of surfaces, lines or points of a link through which it may contact some
other link so constituting a kinematic pair. The connecting rod of an internal com-
bustion engine is shown in Figure 2.2a. The big-end (one element) is connected to
the crank-pin and the small end (another element) to the piston-pin. Since it is a
rigid body, this link is usually represented as a line (as shown in Figure 2.2b) with
its two end elements represented by small circles (joint). In other words, the part of
a link that is connected to a neighboring link is called an element.

Joint

The physical realization of a kinematic pair.
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Fig. 2.2 (a) Con rod of an internal combustion engine actual rod represented by (b) a link; (c) dif-
ferent links

Kinematic Pair

Idealization of a physical joint that is concerned only with the type of constraint
that the joint offers. There are many types of links, a few of which are shown in
Figure 2.2c.
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Kinematic Chain

Assemblage of links and joints.

Linkage

Kinematic chain whose joints are equivalent to lower pairs only.

Degree of Freedom [Connectivity]

The number of independent coordinates needed to describe the relative positions of
pairing elements. A rigid body has six degrees of freedom as shown in Figure 2.3.
Depending on the constraints imposed on the motion, the body may loose one or
more of the six degrees of freedom.

Constraint

Any condition that reduces the degree of freedom of a system.

Closure of a Kinematic Pair

Process of constraining two rigid bodies to form a kinematic pair by force (force clo-
sure), geometric shape (form closure or self-closed), or flexible materials (material
closure).

Force-Closed [Open] Pair

Kinematic pair, the elements of which are held in contact by means of external
forces.

Form-Closed Pair [Self-Closed Pair]

Kinematic pair, the elements of which are constrained to contact each other by
means of particular geometric shapes.

Figure 2.4 shows a sphere between two parallel plates giving five degrees of
freedom for the kinematic pair. A circular cylinder between two parallel plates is
shown in Figure 2.5, giving rise to a four degree of freedom kinematic pair.
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Fig. 2.3 Rigid body with six degrees of freedom

Fig. 2.4 A sphere between two parallel plates giving five degrees of freedom

Planar Contact [Sandwich Pair]

Pair for which the degree of freedom is three and that allows relative motion in
parallel planes. A rectangular block between the two parallel plates in Figure 2.6
has only three degrees of freedom.

Spherical Pair

Pair for which the degree of freedom is three and that allows independent relative
rotations about three separate concurrent axes.
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Fig. 2.5 A circular cylinder between two parallel plates with four degrees of freedom

Fig. 2.6 A rectangular block between the two parallel plates has only three degrees of freedom

Cylindrical Pair

Pair for which the degree of freedom is two and that allows a rotation about a par-
ticular axis together with an independent translation in the direction of this axis. A
round shaft in a coaxial cylinder in Figure 2.7 has only two degrees of freedom.

Turning Pair [Revolute Pair, Hinge]

Pair that allows only a rotary motion between its elements, see Figure 2.8.
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Fig. 2.7 A round shaft in a coaxial cylinder has only two degrees of freedom

Fig. 2.8 Turning pair/revolute pair/hinge that allows only a rotary motion

Sliding Pair [Prismatic Pair]

Pair that allows only a rectilinear translation between two links, see Figure 2.9.

Screw Pair [Helical Pair]

Pair that allows only a screw motion between two links, see Figure 2.10.
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Fig. 2.9 Sliding pair/prismatic pair that allows only a rectilinear translation

Fig. 2.10 Screw or helical pair

Lower Pair

Kinematic pair that is formed by surface contact between its elements. If A and
B form a pair, the path traced by any point on element A relative to element B is
identical with the path traced by any point on element B relative to element A.

Higher Pair

Kinematic pair that is formed by point or line contact between its elements.
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Fig. 2.11 (a) Three links form a structure. (b) Simple kinematic chain with four links

2.2 Elementary Mechanisms

Minimum number of links to form a kinematic chain is three, as shown in Fig-
ure 2.11a. Since no relative motion is possible between these links, it forms a struc-
ture. The simplest kinematic chain has four links, as shown in Figure 2.11b.

Increasing number of links from four to five as in Figure 2.12a, the constraint of
the system is completely lost. If the number of links is increased to six as in Fig-
ure 2.12b, the constraint is regained. So we see it is necessary to develop a relation
that will tell us whether a given number of links can form a kinematic chain or not.

2.3 Grübler’s Criterion for Planar Mechanisms

The number of degrees of freedom, F , of a planar mechanism with n links, j lower
kinematic pairs and h higher kinematic pairs is

F = 3(n − 1) − 2j − h (2.1)
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(a)

(b)

Fig. 2.12 (a) Five-link chain has no constrained motion. (b) Six-link chain has constrained motion

For constrained motion (F = 1)

2j − 3n + h + 4 = 0 (2.2)

Although Grübler’s criterion is applicable in almost all cases, a few exceptions
exist, e.g., a fly-press shown in Figure 2.13.

Let us take an example of a six-bar linkage shown in Figure 2.14. Determine the
degrees of freedom. There are four binary links and two ternary links. The number
of joints are (you can count them directly or use the following formula)

j = 1

2
(2n2 + 3n3)

= 1

2
(2 × 4 + 3 × 2) = 7

The number of degrees of freedom from equation (2.1) is

F = 3 (6 − 1) − 2 × 7 = 1
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Fig. 2.13 A fly-press – an exception to Grübler’s criterion

Fig. 2.14 A six-bar linkage

Thus, this linkage has one degree of freedom. If the link 1 is fixed to a frame and
the link 2 is driven by a motor, the motions of the rest of the links 3 to 6 will be
unique.

Consider another example, an eight-bar linkage shown in Figure 2.15. Determine
the degrees of freedom.

There are five binary links (n2 = 5), two ternary links (n3 = 2) and one quater-
nary link (n4 = 1). The number of joints is
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Fig. 2.15 Eight-bar linkage

j = 1

2
(2 × 5 + 3 × 2 + 4 × 1) = 10

The number of degrees of freedom from equation (2.1) is

F = 3(8 − 1) − 2 × 10 = 1

Thus, this linkage has also one degree of freedom. If the link 1 is fixed to a frame
and the link 2 is driven by a motor, the motions of the rest of the links 3 to 8 will be
unique.

Now let us consider a seven-bar linkage in Figure 2.16, the number of degrees
of freedom can be shown to be two. If the link 1 is fixed to a frame, we need two
inputs, e.g., links 2 and 5 to be driven, and then the motions of the rest of the links
3, 4, 6 and 7 will be unique.

Finally consider a six-bar linkage in Figure 2.17 with link 6 having a sliding
motion on the fixed frame link 1. There are two binary links, 3 and 6; the remaining
four are ternary links. Here, the fixed link 1 has two lower pairs (joints or hinges)
and one higher pair (sliding pair) with link 6 which has a lower pair with link 5,
therefore it is a ternary link. The number of joints (lower pairs) are j = 7 and there
is one higher pair h = 1. Hence

F = 3(6 − 1) − 2 × 7 − 1 = 0

Thus, this linkage has no degrees of freedom. It forms a structure.
Finally, let us show that the five-bar linkage in Figure 2.18 is not capable of

producing relative motion. N = 5, j = 6 and therefore F = 0.
The study in Section 2.3 helps us in setting up a number of links with an ap-

propriate number of elementary pairs, lower or higher to obtain a desired motion
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Fig. 2.16 Seven-bar linkage

Fig. 2.17 Six-bar linkage

of a new machine or analyze an existing machine. Now let us consider a simple
kinematic chain and see what we can do with that.

2.4 Four-Link Chains

Four-link chains with lower pairs are schematically represented in Figures 2.19a,
2.19b, 2.19c and 2.19d.
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Fig. 2.18 Five-bar linkage

Fig. 2.19 (a) Quadric cycle chain with all turning pairs

Quadric Cycle Chain

Four-link chain with all turning pairs (joints or hinges), see Figure 2.19a.

Single Slider Chain

A quadric cycle chain with one of its turning pair replaced by a sliding pair, see
Figure 2.19b.
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Fig. 2.19 (b) Quadric cycle chain with single slider

Fig. 2.19 (c) Crossed double slider quadric cycle chain

Crossed Double Slider Chain

A quadric cycle chain with two sliding pairs located opposite to each other, Fig-
ure 2.19c.

Double Slider Chain

A quadric cycle chain with two sliding pairs located next to each other, Figure 2.19d.

Fig. 2.19 (d) Double slider quadric cycle chain with adjacent sliding pairs
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2.5 Kinematic Inversion

Four-Bar Linkage

Linkage with four binary links.

Four-Bar Mechanism

Mechanism with four binary links.

Crank

Link that rotates completely about a fixed axis.

Rocker [Lever]

Link that oscillates within a limited angle of rotation about a fixed axis.

Input [Driving] Link

Link where by motion and force are imparted to a mechanism.

Output [Driven] Link

Link from which required motion and forces are obtained.

Coupler [Floating] Link

Link that is not directly connected to the fixed link or frame.

Slider

Link that forms a prismatic pair (sliding pair) with one link and a revolute (turning)
pair with another link.
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Sliding Block

Compact element of a prismatic pair that slides along a guiding element.

Guide

Element of a prismatic pair that is fixed to a frame and constrains the motion of a
sliding block.

Crosshead

Component between a piston and a connecting rod which, by forming a prismatic
joint with the frame, provides a reaction to the component of force in the connecting
rod normal to the line of stroke of the piston.

Connecting Rod

Coupler between a piston and or a cross-head and a crank shaft.

Kinematic Inversion

Transformation of one mechanism into another by choosing a different member to
be the frame (fixed link).

We defined a mechanism in Section 2.1 as a kinematic chain with one of its
components (link or joint) connected to the fixed frame. We can choose any one of
the four links in a quadric cycle chain as a ground link that will produce different
versions of mechanisms from the same quadric cycle chain. The mechanisms thus
obtained are Kinematic Inversions of the original kinematic linkage.

Inversions of Quadric Cycle Chain

Kinematically speaking all inversions of a Quadric Cycle Chain are the same, how-
ever, by suitably altering the lengths of links, l1, l2, l3 and l4, different mechanisms
can be obtained. These are described here.

1. Crank-and-Rocker mechanism (Crank-Lever mechanism): This mechanism is
shown in Figure 2.20. Link 2 is the crank and link 4 is the rocker or lever. Link
proportions for this case are:
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Fig. 2.20 Crank-lever mechanism

Fig. 2.21 Double-lever mechanism

(l2 + l3) < (l1 + l4)

(l3 − l2) > (l1 − l4) (2.3)

2. Double-Rocker mechanism (Double-Lever mechanism): This is a four-bar mech-
anism with two rockers as shown in Figure 2.21. In this case

(l3 + l4) < (l1 + l2)

(l2 + l3) < (l1 + l4) (2.4)

3. Double-Crank mechanism: Four-bar mechanism with two cranks.
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Fig. 2.22 Parallel-crank mechanism

Fig. 2.23 Drag-link mechanism

a. Parallel-Crank mechanism Four-bar mechanism having cranks of equal length
and a coupler with length equal to that of the fixed link (frame), see Fig-
ure 2.22.

b. Drag-Link mechanism, see Figure 2.23. In this case, the ground link is the
shortest one and the coupler should be longer than that. Both the input and
output links perform complete 360◦ revolutions. The coupler satisfies the fol-
lowing conditions:

l3 > l1 and l4 > l2

l3 > (l1 + l4 − l2)

l3 < (l2 + l4 − l1) (2.5)

Branching Condition [Change Point Condition]

When
(l1 + l3) = (l2 + l4) (2.6)
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Fig. 2.24 Single slider chain obtained by replacing one revolute pair by a slider

the mechanism suffers from branching or a change point condition. At the change
point, the center lines of all links become collinear and the output link may suffer a
change in direction unless additional guidance is provided. (Note that a given four-
bar mechanism can be drawn in two configurations, one normal-linked and the other
cross-linked.)

Now let us find all the inversions of a quadric cycle chain with l1 = 10, l2 = 20,
l3 = 30 and l4 = 40 cm.

1. Crank-and-Rocker mechanism (Crank-Lever mechanism)
(a) l1 = 20, l2 = 10, l3 = 30 and l4 = 40 cm (Change Point)
(b) l1 = 20, l2 = 10, l3 = 40 and l4 = 30 cm
(c) l1 = 30, l2 = 10, l3 = 20 and l4 = 40 cm (Change Point)
(d) l1 = 30, l2 = 10, l3 = 40 and l4 = 20 cm
(e) l1 = 40, l2 = 10, l3 = 20 and l4 = 30 cm
(f) l1 = 40, l2 = 10, l3 = 30 and l4 = 20 cm

2. Double-Rocker mechanism (Double-Lever mechanism)
(a) l1 = 40, l2 = 20, l3 = 10 and l4 = 30 cm
(b) l1 = 30, l2 = 20, l3 = 10 and l4 = 40 cm
(c) l1 = 20, l2 = 30, l3 = 10 and l4 = 40 cm

3. Double-Crank mechanism
(a) l1 = 10, l2 = 20, l3 = 30 and l4 = 40 cm
(b) l1 = 10, l2 = 20, l3 = 40 and l4 = 30 cm (Change Point)
(c) l1 = 10, l2 = 30, l3 = 20 and l4 = 40 cm

Inversions of Single Slider Chain

Link 4 of a four-bar mechanism with turning pairs is replaced by a slider; see
Figure 2.24 to form a single slider chain.
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Fig. 2.25 Reciprocating engine mechanism

Fig. 2.26 Rotary engine with fixed crank

1. Inversion with link 1 fixed: Reciprocating engine mechanism, see Figure 2.25.
This is the most common mechanism used to day in all internal combustion en-
gines.

2. Inversions with link 2 fixed:

a. Rotary Engine: See Figure 2.26. The engine shown has five cylinders. Out of
the five connecting rods, one is a master connecting rod and the other four
are slave rods. The crank 2 is common to all five cylinders and is fixed. Link
1 is the engine block which rotates. Le Rhône 9C, a typical rotary engine of
WWI is shown on the left. The copper pipes carry the fuel-air mixture from
the crankcase to the cylinder heads.
The design was used mostly in the years shortly before and during World War
I to power aircraft, and also saw use in a few early motorcycles and cars.
By the early 1920s the rotary aircraft engine was becoming obsolete, mainly
because of an upper ceiling to its possible output torque, which was a fun-
damental consequence of the way the engine worked. It was also limited by
its inherent restriction on breathing capacity, due to the need for the fuel/air
mixture to be aspirated through the hollow crankshaft and crankcase, which
directly affected its volumetric efficiency. However, at the time it was a very
efficient solution to the problems of power output, weight, and reliability. The
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Fig. 2.27 Whitworth quick return motion mechanism

Fig. 2.28 Oscillating cylinder engine

Fig. 2.29 Quick return mechanism
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Fig. 2.30 Formation of a double-slider chain

rotation of the bulk of the engine’s mass produced a powerful gyroscopic fly-
wheel effect, which smoothed out the power delivery and reduced vibration.
Vibration had been such a serious problem on conventional piston engine de-
signs that heavy flywheels had to be added. Rotary and radial engines look
strikingly similar when they are not running and can easily be confused, since
both have cylinders arranged radially around a central crankshaft.

b. Whitworth Quick Return mechanism: See Figure 2.27. Link 3 is the crank here.
Slider 4 drives link 1. Link 1 drives a cutting tool through the connecting rod
5. The forward stroke starts with link 3 in position AQ and ends at AP through
AS. The return motion is faster from AP through AR to AQ. These linkages are
most useful in saving time, since the return stroke, which is an idle stroke, is
faster than a useful forward stroke when metal is removed.

3. Inversions with link 3 fixed

a. Oscillating Cylinder Engine: See Figure 2.28.
b. Quick Return Mechanism: See Figure 2.29. Link 2 is the crank; link 4 is the

rocker arm. The forward stroke starts with link 2 in position P and ends at Q

through S. The return motion is faster from Q through R to P .

4. Inversion with link 4 fixed: These are same as case 1.

Inversions of Double Slider Chain

Figure 2.30 illustrates how a double slider chain is formed.

1. Inversion with link 1 fixed: Scotch–Yoke mechanism, see Figure 2.31. This is a
four-bar mechanism in which a crank is connected by a slider with another link
which, in turn, forms a prismatic pair with the frame. Kinematically, this is the
same as fixing link 3.
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Fig. 2.31 Scotch–Yoke mechanism

Fig. 2.32 Oldham’s coupling

2. Inversion with link 2 fixed: This gives rise to Oldhams coupling in Figure 2.32.
Links 1 and 3 have slotted grooves to form sliding pairs with corresponding faces
of link 4.

3. Inversion with Link 4 fixed: This gives an Elliptic Trammel mechanism, see Fig-
ure 2.33.

We looked at a quadric cycle chain and various useful mechanisms it can generate
and that are exploited in developing machines. In a similar way, one can explore
multi-link chains and make a systematic study to identify possible new machines.
This is out of the scope of the present book.
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Fig. 2.33 Elliptic trammel mechanism

Fig. 2.34

2.6 Additional Problems

1. Refer to Figure 2.34. Identify (a) the number and type of links, (b) the different
elements, (c) the kinematic pairs and their type, (d) draw a schematic diagram
representing its kinematic chain, (e) is there a basic quadric cycle chain in the
linkage, if so what type, and (f) determine the number of degrees of freedom.

2. Refer to Figure 2.35. Identify (a) the number and type of links, (b) the different
elements, (c) the kinematic pairs and their type, (d) draw a schematic diagram
representing its kinematic chain, (e) is there a basic quadric cycle chain in the
linkage, if so what type, and (f) determine the number of degrees of freedom.

3. Refer to Figure 2.36. Identify (a) the number and type of links, (b) the different
elements, (c) the kinematic pairs and their type, (d) draw a schematic diagram
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Fig. 2.35

Fig. 2.36

representing its kinematic chain, (e) is there a basic quadric cycle chain in the
linkage, if so what type, and (f) comment on the number of degrees of freedom.

4. Refer to Figure 2.37. Compare this linkage with that of Figure 2.34 above and
make any comments you have.

5. Refer to Figure 2.38. Identify (a) the number and type of links, (b) different
elements, (c) kinematic pairs and their type, (d) draw a schematic diagram repre-
senting its kinematic chain, (e) is there a basic quadric cycle chain in the linkage,
if so what type, and (f) determine number of degrees of freedom.
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Fig. 2.37

Fig. 2.38



Chapter 3
Kinematic Analysis of Mechanisms

Kinematics

Branch of theoretical mechanics dealing with the geometry of motion, irrespective
of the causes that produce the motion.

Kinematic Analysis

Analysis of the kinematic aspects of mechanisms.

Motion

Changing position of a body relative to a frame of reference.

Absolute Motion

Motion with respect to a fixed frame of reference.

Relative Motion

Motion with respect to a moving frame of reference.

Translation

Motion of a rigid body in which each straight line rigidly connected with the body
remains parallel to its initial direction.

Science 18, DOI 10.1007/978-94-007-1156-3_3, © Springer Science+Business Media B.V. 2011  
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Rectilinear Translation

Translation in which the paths of points of a rigid body are straight lines. This is
linear motion, e.g., the piston in a reciprocating engine mechanism.

Rotation

Motion of a rigid body in which all its points move on circular arcs centered on the
same axis, e.g., the crank in a reciprocating engine mechanism.

Plane [Planar] Motion

Motion of a rigid body in which its points describe curves located in parallel planes.
This is a combination of translation and rotation; see Figure 3.1, e.g., the connecting-
rod in a reciprocating engine mechanism.

Displacement

Change of position of a body with respect to a fixed frame of reference.

Relative Displacement

Displacement with respect to a moving frame of reference.

Angular Displacement

Displacement of a rigid body in rotation.

Velocity

Rate of displacement with respect to time.

Absolute Velocity

Velocity with respect to a fixed frame of reference.
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Relative Velocity

Velocity with respect to a moving frame of reference.

Instantaneous Center [of Velocity]

Point in a rigid lamina moving in its own plane where the velocity relative to a frame
of reference is zero at the given instant; see Figure 3.1.

Acceleration

Rate of change of velocity with respect to time.

Normal Acceleration

Component of acceleration of a point normal to its velocity.

Tangential Acceleration

Component of acceleration of a point collinear with its velocity.

Absolute Acceleration

Rate of change of absolute velocity with respect to time.

Relative Acceleration

Rate of change of relative velocity with respect to time.

Centripetal Acceleration

Acceleration of a point towards the center of curvature of its path as it moves along
a fixed curve.
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Fig. 3.1 General motion of a rigid body M

Coriolis Acceleration

Component of the absolute acceleration of a point due to its velocity relative to a
rotating frame of reference. It equals twice the vector product of the angular velocity
of the moving frame of reference and the relative velocity of the given moving point.

Angular Acceleration

Rate of change of angular velocity with respect to time.

3.1 Velocities by the Centro Method

Of all the motions, rectilinear translation and rotation are simple compared to gen-
eral plane motion or space motion. For a general motion we can always imagine
a body to be rotating about a center instantaneously. The center of rotation will
be changing from instant to instant for a general motion. Therefore the concept of
instantaneous center for rotation becomes handy.

However in a linkage the motion of each link is dependent on others as well and
we need to develop a method for obtaining the instantaneous centers of rotation
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of all links for different linkage configurations. This method that depends on the
concept of rotation is the Centro Method.

Centro

Two coincident points, belonging to two rigid bodies having relative motion with
the following properties:

1. they have the same velocities; and
2. they form a point in one of the rigid bodies about which the other rotates and

vice-versa, which is perhaps true for only an instant.

Primary Centro

One that can be easily located by a mere observation of the mechanism, see Fig-
ure 3.2.

Secondary Centro

Centro that cannot be easily located.

Kennedy’s Theorem

For any three rigid bodies having relative motion, there are three centros all of which
lie on a straight line.

Proof. Consider three rigid bodies 1, 2 and 3 having relative motion as shown in
Figure 3.3. Link 1 is the reference link (frame). There are three centros, two primary
centros 12, 13 and a secondary Centro 23.

Let any arbitrary point P represent the Centro 23. Considering P to be a part
of body 2, its velocity VP 2 will be as shown in Figure 3.3. Similarly, when P is
considered as a part of body 3, VP 3 will be its velocity. These two velocities should
be identical, if centro P belongs to both bodies 2 and 3. This is possible only when
P lies on the line joining the centros 12 and 13. This proves Kennedy’s theorem.

Number of Centros in a Mechanism

For a mechanism of n links, the number of centros N is

N = 1

2
n (n − 1) (3.1)
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Fig. 3.2 Examples for locating primary centro
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Fig. 3.3 Relative motion of three rigid bodies 1, 2 and 3

Fig. 3.4 Determination of centros for a four-bar mechanism

Number of Lines of Centros

The number of lines of centros, L, for a mechanism with n links is

L = 1

6
n (n − 1) (n − 2) (3.2)
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Fig. 3.5 Determination of centros for a slider-crank mechanism

Procedure to Determine Centros

The procedure to determine centros is described briefly for three different linkages.

1. Four-Bar Linkage
Figure 3.4 gives a four-bar mechanism. Centros 12, 23, 34 and 14 are primary
centros. To keep track of centros determined, use the circle of centros or table
of centros. Primary centros are entered as full lines and secondary centros by
dashed lines.
To determine the secondary centros, use Kennedy’s theorem repeatedly. To de-
termine centro 23, choose two sets of three bodies, each set containing bodies 1
and 3 and any other body. For example, 1, 3 & 2 and 1, 3 & 4. Make sure that
you have already located two centros out of three in these two sets (the unknown
centro should form a diagonal in the circle). Centro 13 lies on 12–23 as well as
14–34. Similarly, centro 24 lies on 23–34 and 12–14.

2. Slider Crank Chain
Figure 3.5 gives a slider-crank mechanism. As before, centros 12, 23, 34 and 14
are primary centros. Note that primary centro 14 is at infinity perpendicular to
the path of the piston link 4.

3. Eight-Link Chain
An eight-link mechanism is given in Figure 3.6. Secondary centros 13 and 15 are
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Fig. 3.6 Determination of centros for an eight-link mechanism

only located to illustrate the procedure. Determine the remaining centros as an
exercise.

Determination of Velocities with the Help of Centros

Recall the following two properties:

• Every link in a mechanism has a common centro with the frame (fixed link).
Therefore, every link can be treated as rotating about a fixed axis for an instant
when the links of the mechanism occupy a given configuration.

• Every link has a common centro with the remaining links of the mechanism. That
is, for every combination of two links, there is a common point belonging to both
the links.

Two different methods can be used as described below.

(a) Link to Link Method. The following steps may be used.
Identify a known link, the link for which the velocities are known, e.g., the crank or
the driving link (let this be link 2).

Determine the velocity of the centro belonging to the known link and the next link
(i.e., centro 23). This centro is called a Transfer Centro, which enables the transfer
of information from one link to another.
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Now, the velocity of one point on link 3 is known. Its instantaneous center, i.e.
centro with the ground link is also known. Therefore, the velocities of link 3 can be
determined.

Identify the common centro of link 3 and its adjacent link 4 and determine its
velocity.

Repeat the process until all the desired velocities are obtained.
This method will be useful, if the velocities of all the links in a mechanism are

desired.
As an example consider the four-bar mechanism in Figure 3.4. Let crank 2 rotate

with an angular velocity ω2 rad/s. We follow the above mentioned steps.

1. Link 2 is the known link.
2. Centro 23 is at A. Its velocity is VA = ω2 × O2A(O2A is measured in meters).

We call the centro 23 a Transfer Centro, as it is used to transfer the information
from one link to the next link.

3. O3 (13) is the instantaneous center for link 3. Therefore, the angular velocity
of link 3 is ω3 = VA/O2A rad/s. Verify that this angular velocity is counter-
clockwise (ccw).

4. The common centro between links 3 and 4 is at B. Its velocity in body 3 is
VB = ω3 × O4B m/s.

5. O4 (14) is the instantaneous center for link 4. Therefore, the angular velocity of
link 4 is ω4 = VB/O4B rad/s. Verify that this angular velocity is clockwise (cw)
in direction.

(b) Line of Centers Method. In this method three links are chosen for the analysis,
(1) known link K , (2) unknown link U and (3) frame or fixed link F . The following
steps may be used:

1. Identify the three centros, the instantaneous centers KF , UF and the transfer
centro KU . Since these centros belong to three bodies having relative motion,
they should lie on one line, therefore the name Line of Centers method.

2. Determine the velocity of the centro KU .
3. Now, the velocity of one point on link U is known. Its instantaneous center, i.e.,

Centro with the fixed link UF , is also known. Therefore, the velocities of link U

can be determined.

This method will be useful if the velocities of only a few links in a mechanism are
desired.

As an example consider the reciprocating engine mechanism in Figure 3.5. Let
crank 2 rotate with an angular velocity ω2 rad/s. The velocity of the piston is desired.
Here, the known link is 2, the fixed link is 1 and the piston is link 4.

1. Identify the three centros instantaneous centers 12, 14, and transfer centro 24.
2. The velocity of the transfer centro 24 is V24 = ω2(12 − 24) m/s (measure the

distances in meters).
3. Link 4 has a pure translation, therefore, the velocity of piston is VB = V24.
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In another example of a Hack Saw mechanism of Figure 3.6, determine the velocity
of slider 5, when crank 2 is rotating with an angular velocity ω2 rad/s cw (clock-
wise).

Here, the known link is 2, the fixed link is 1 and the unknown link is 5.

1. The three centros required are, instantaneous centers 12, 15, and transfer centro
25.

2. The velocity of the transfer centro 25 is zero, since it coincides with the instan-
taneous center 12 (verify this yourself) in Figure 3.6.

3. Therefore, the velocity of link 5 is also zero.
4. From Figure 3.6, we note that crank 2 is connected to slider 3 through a hinge

which is perpendicular to rocker 4. Therefore, the rocker at this instant is station-
ary. Hence, link 5 attached to the rocker through a hinge will also be stationary.

5. The Method of Centros is powerful for determining velocities in a linkage; how-
ever for determining accelerations in the next step, it becomes complicated.
Hence we look for an alternate method; here we will discuss the Relative Ve-
locity Equation method.

3.2 Relative Velocity Equation

The relative velocity equation approach to determine velocities is given here.

3.2.1 Rotation of a Rigid Link about a Fixed Axis

Consider the body M in Figure 3.7 rotating about a fixed axis O. The coordinates
of point B in the OXY axis system are

xB = R cos θ

yB = R sin θ (3.3)

θ is measured in the counter-clockwise direction. The velocities are obtained by
differentiating the above with respect to time t . Let the angular velocity be ω =
dθ/dt . Then

V x
B = dxB

dt
= −Rω sin θ

V
y
B = dyB

dt
= Rω cos θ (3.4)

The total velocity is given by

VB = V x
B+ → V

y

B = −Rω sin θ+ → Rω cos θ = Rω (3.5)
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Fig. 3.7 Rotation of a rigid link about a fixed axis

This is shown vectorially in Figure 3.8. Since O is a fixed point, we normally do
not make it a point to say that the velocity of point B is with respect to O . In general
we can say that VBO = Rω.

3.2.2 Relative Velocity Equation of Two Points on a Rigid Body

Consider the body M to describe a general plane motion, see Figure 3.9. A is the
pole, i.e., its velocity is known. We wish to find the velocity of B at a distance R

making an angle θ with the positive direction of the X axis. The coordinates of point
B are

xB = xA + R cos θ

yB = yA + R sin θ (3.6)

The corresponding velocities are

V x
B = V x

A − Rω sin θ

V
y
B = V

y
A + Rω cos θ (3.7)

The total velocity of B is
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Fig. 3.8 Vectorial addition in equation (3.5)

Fig. 3.9 A rigid body describing general motion

VB = V x
A+ → V

y

A+ → Rω sin θ+ → Rω cos θ = VA+ → Rω (3.8)

Vectorial addition of these components is shown in Figure 3.10. The total veloc-
ity of B consists of two parts: (1) translational component VA, and (2) rotational
component Rω. These two components are shown in Figure 3.11. The rotational
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Fig. 3.10 Vector representation of total velocity of B

Fig. 3.11 Translational and rotational components of velocity of point B

component Rω represents the velocity of B, when A is stationary. Thus, the relative
velocity of B with respect to A is VBA = Rω and the total velocity is the sum of
velocity of A and relative velocity of B with respect to A. This gives the relative
velocity equation.

VB = VA + VBA (3.9)
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Fig. 3.12 A four-bar mechanism

As an example of velocity analysis, a four-bar mechanism is shown in Fig-
ure 3.12.

1. The velocity of point A is VA = ω2 × O2A as shown in Figure 3.13a.
2. Link 3 is shown separately in Figure 3.13b. Velocity of A is known in this link.

Information about B is not known.
3. Link 4 is shown in Figure 3.13c which indicates that the velocity of B is in a

direction perpendicular to O4B, however its magnitude and sense are not known.
4. Apply the relative velocity equation to link 3. First draw the velocity Ova of

point A to a suitable scale, see Figure 3.13d. Draw a line representing velocity of
point B, perpendicular to link 4 from Ov .

5. Next draw a line representing the velocity of B with respect to A from a. The
direction of this line is perpendicular to link 3. The direction of this relative
velocity is shown in Figure 3.13e.

6. The two lines thus drawn from Ov and a meet at V in Figure 3.13d. This gives
the velocity of point B in link 4.

7. The angular velocity of link 3 is ω3 = VBA/AB ccw (counter-clockwise).
8. The angular velocity of link 4 is ω4 = VB/O4B cw (clockwise).

The solution for the following data is given in Figure 3.13f: O2O4 = 8 cm,
O2A = 4 cm, AB = 4 cm, O4B = 3 cm, angle AO2O4 = 60◦, ω2 = 20 rad/s cw.

Instead of just one position of the crank, we can perform the analysis for several
positions; doing this manually takes a long time and a code like MotionSolve can
achieve this in a short span of time, just a few minutes. This solution is also shown
in Figure 3.13f.

Consider the slider crank mechanism in Figure 3.5. Let O2A = 4 cm, AB =
7 cm and angle AO2O4 = 45◦. The solution is given in Figure 3.5a.

The solution from MotionSolve is also given in Figure 3.5a.
Take another example and make a complete velocity analysis of a six-link mech-

anism in Figure 3.14.

1. The velocity of point A in link 2 is shown in Figure 3.15a.
2. Link 4 is shown in Figure 3.15b which indicates that the velocity of B is in the

horizontal direction.
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Fig. 3.13 (a)–(e) Velocity analysis of four-bar mechanism. (f) Example of four-bar mechanism

3. Link 3 is shown separately in Figure 3.15c. The velocity of A is known in this
link.

4. Apply the relative velocity equation to link 3. First draw the velocity of point
A to a suitable scale, see Figure 3.13d. Draw a horizontal line representing the
velocity of point B.
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Fig. 3.5a Velocity solution of slider crank mechanism in Figure 3.5

Fig. 3.14 A six-link mechanism

5. Next draw a line representing the velocity of B with respect to A. The direction
of this line is perpendicular to link 3 as shown in Figure 3.15f.

6. The two lines thus drawn meet at a, see Figure 3.15g. This gives the velocity of
link 4.

7. The angular velocity of link 3 is ω3 = VBA/AB cw.
8. Find the velocity of C by applying relative velocity equation VC = VA + VCA,

see Figures 3.15f and 3.15e.
9. Now, apply the relative velocity equation for link 5, VD = VC + VDC .
10. The complete velocity diagram is given in Figure 3.15g.
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Fig. 3.15 Solution of six-link mechanism in Figure 3.14

3.2.3 Relative Velocity Equation of Two Coincident Points
Belonging to Two Rigid Bodies

Consider two bodies M and N in plane OXY . Point A is the pole of body M having
general plane motion in the OXY axis system given in Figure 3.16. Body N has
relative motion with respect to body M (e.g., the slider block and the rocker arm in a
quick return mechanism). P is a coincident point at the instant shown in Figure 3.16;
specifically it is PM in body M and PN in body N . Since N has relative motion with
respect to body M which we want to study, let us fix another axis system Aξη to the
body M and the relative motion body N be determined in this moving frame with
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Fig. 3.16 Two coincident points, P , belonging to two rigid bodies M and N

respect to OXY . At the instant shown in Figure 3.16, Aξ makes an angle θ with the
positive direction of the X axis. The coordinates of point PN are

XN
P = XA + ξ cos θ − η sin θ

YN
P = YA + ξ sin θ + η cos θ (3.10)

The corresponding velocities are

V NX
P = V X

A − ξω sin θ + dξ

dt
cos θ − ηω cos θ − dη

dt
sin θ

V NY
P = V Y

A + ξω cos θ + dξ

dt
sin θ − ηω sin θ − dη

dt
cos θ (3.11)

In the above ω = dθ/dt is the angular velocity of body M , Uξ = dξ/dt is the
relative velocity of point PN with respect to body M in the direction of ξ axis and
Uη = dη/dt is the relative velocity of point PN with respect to body M in the
direction of η axis. Rewriting

V NX
P = V X

A − ω (ξ sin θ + η cos θ) + Uξ cos θ − Uη sin θ

V NY
P = V Y

A + ω (ξ cos θ − η sin θ) + Uξ sin θ − Uη cos θ (3.12)

The total velocity is
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Fig. 3.17 Addition of vectors [ω(ξ sin θ+ → ξ cos θ)+ → ω(η cos θ+ → η sin θ)]

V N
P =

[
V X

A + → V Y
A

]
+ → [ω (ξ sin θ+ → ξ cos θ) + → ω (η cos θ+ → η sin θ)]

+ → [(
Uξ cos θ+ → Uξ sin θ

) + → (
Uη sin θ+ → Uη cos θ

)]
(3.13)

The three rectangular bracketed quantities are identified as given below:

1. [V X
A + → V Y

A ] = VA.
2. The addition of vectors in [ω(ξ sin θ+ → ξ cos θ)+ → ω(η cos θ+ → η sin θ)]

is shown in Figure 3.17.
3. The first term in this bracket gives ω(ξ sin θ+ → ξ cos θ) = ωξ , which is paral-

lel to the η axis and the second term is ω(η cos θ+ → η sin θ) = ωη parallel to
the ξ axis. The sum of these two terms gives ωξ+ → ωη = ωR perpendicular
to AP .

4. The addition of vectors in [(Uξ cos θ+→Uξ sin θ)+→(Uη sin θ+→Uη cos θ)]
is shown in Figure 3.18. The result is Uξ+ → Uη = U making an angle ϕ =
arctan Uη/Uξ with the positive direction of ξ axis. This vector U is the total
velocity of PN relative to the body M and therefore it may be written as UPNPM

.

Therefore, equation (3.13) can be written as

V N
P = VA+ → ωR+ → UPN PM (3.14)

Since V M
P = VA+ → ωR, we can further write equation (3.14) as

V N
P = V M

P + → UPNPM (3.15)
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Fig. 3.18 Addition of vectors in [(Uξ cos θ+ → Uξ sin θ)+ → (Uη sin θ+ → Uη cos θ)]

Fig. 3.19 Quick return mechanism

Now, let us make a complete velocity analysis of the quick return mechanism in
Figure 3.19.

1. Figure 3.20a shows crank 2 with the slider 3 attached at point A. The velocity of
A in link 2 is the same as that in link 3, VA3 = VA2 = ω2 × O2A.
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Fig. 3.20 Velocity analysis of quick return motion linkage



3.3 Relative Acceleration Equation 59

2. Link 4 is shown in Figure 3.20b along with link 3 for the configuration at this
instant. We can identify link 3 to correspond to body N having relative motion
with link 4 as body M . Therefore, equation (3.15) for this case is VA3 = VA4+ →
VA3A4 . Since link 4 rotates about O4, the velocity of A4 is perpendicular to the
link and the relative motion of A3 with respect to A4 is along link 4.

3. Figure 3.20c gives this vector solution. (Note that the left-hand side of the equa-
tion is a known quantity.) The angular velocity of link 4 is ω4 = VA4/O4A4. The
velocity of point B in link 4 can be scaled directly from the rotating link 4 shown
in Figure 3.20d or determined from VB = ω4 × O4B.

A velocity analysis is important for us in understanding how fast each link in a
machine moves. We will learn later that high speed machines are advantageous in
advanced applications like steam or gas turbines and space applications. But there is
always a limitation on the speeds that we can use. In just the same way the displace-
ment relations are used to determine velocities by taking a time derivative of the
displacements; we determine accelerations by taking derivatives of velocities of the
linkage. We will study later that the forces acting on machine members depend on
the accelerations to which they are subjected (Newton’s law). Larger accelerations
mean larger forces, i.e., the stresses and the machine members should withstand
these forces without any failure. Therefore the acceleration study becomes impor-
tant.

The solution above is obtained for one position of the crank in its complete revo-
lution of 360◦. A designer would like to know the maximum values of velocity and
acceleration and when they occur during a full revolution. The earlier practice was
to repeat the above solution in, say, 5◦ intervals of the crank to make a plot of the
kinematic quantities. This is time consuming and the modern computer codes allow
us to determine the entire history in a very short turnover time, say a few minutes,
once the model is ready.

Such a solution obtained in MotionSolve is shown in the avi of Figure 3.20 for
the following data: O4O2 = 45 cm, O2C = 36 cm, O2A = 14 cm, O4B = 80 cm,
BC = 25 cm, and ω2 = 200 RPM.

3.3 Relative Acceleration Equation

The relative acceleration equation approach to determine accelerations is given here.

3.3.1 Rotation of a Rigid Link about a Fixed Axis

Consider the body M in Figure 3.21 rotating about a fixed axis O with angular
velocity ω rad/s and angular acceleration a = dω/dt rad/s2, both measured positive
in the ccw direction. The velocities of point B in the OXY axis system are given
by, see equation (3.4)
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Fig. 3.21 Rotating body with angular acceleration

V x
B = −Rω sin θ (3.16)

V
y

B = Rω cos θ (3.17)

Taking derivatives with respect to time, the accelerations are obtained.

aX
B = −Rω2 cos θ − Rα sin θ

aY
B = −Rω2 sin θ + Rα cos θ (3.18)

The total acceleration of B is

aB = aX
B + → aY

B = (Rω2 cos θ+ → Rω2 sin θ)+ → (Rα sin θ+ → Rα cos θ)

(3.19)
Addition of these vectors is shown in Figures 3.22 and 3.23. The first term in the

above gives the radial (normal) component ω2R which is always directed towards
the axis of rotation. The direction of tangential component αR from the second
terms above is in the same sense of the angular acceleration. For α clockwise, the
tangential component direction is illustrated in Figure 3.24.

3.3.2 Relative Acceleration of Two Points on a Rigid Body

Figure 3.25 shows the rigid body M . Velocities of point B were obtained earlier, see
equation (3.7)
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Fig. 3.22 Addition of Rω2 cos θ+ → Rω2 sin θ

Fig. 3.23 Addition of Rα sin θ+ → Rα cos θ

V x
B = V x

A − Rω sin θ

V
y
B = V

y
A + Rω cos θ (3.20)

The corresponding accelerations are
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Fig. 3.24 Tangential component when acceleration is clockwise

Fig. 3.25 Relative acceleration of two points on a rigid body

aX
B = aX

A − Rω2 cos θ − Rα sin θ

aY
B = aY

A − Rω2 sin θ + Rα cos θ (3.21)

The total acceleration is

aB = [aX
A+ → aY

A] + → [Rω2 cos θ+ → Rω2 sin θ ]
+ → [Rα cos θ+ → Rα sin θ ] (3.22)

Vectorial addition of the above three bracketed quantities is shown in Figure 3.26
and the relative acceleration equation is

aB = aA + aBA (3.23)
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Fig. 3.26 Vectorial addition in equation (3.23)

Fig. 3.27 Four-bar mechanism for acceleration analysis

Now make a complete acceleration analysis for the four-bar mechanism in Fig-
ure 3.27a. O2O4 = 24.0 cm, O2A = 11.18 cm, AB = 14.0 cm, O4B = 14.68 cm,
∠AO2O4 = 63.435◦, ω2 = 10 rad/sec, α2 = 10 rad/sec2.

1. The velocity diagram is obtained earlier and shown again in Figure 3.27b.
2. Figure 3.28a gives accelerations in the normal and tangential directions of link 2.
3. Link 3 is shown in Figure 3.28b. The acceleration of point A only is known at

this stage.
4. Link 4 is shown in Figure 3.28c. The normal component is known, since its

angular velocity is determined earlier. The tangential component is perpendicular
to link 4; its direction however is not known at this stage.
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Fig. 3.28 Acceleration analysis of the mechanism in Figure 3.27

5. Link 3 is shown again in Figure 3.28d, where the relative normal component of
acceleration is known. The relative tangential component of acceleration is not
known at this stage.
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Fig. 3.29 Six-link mechanism with velocity diagram

6. The relative acceleration equation for link 3 is an
B +at

B = an
A +At

A +an
BA +at

BA.
In this, the quantities an

B , an
A, at

A, an
BA are completely defined. The unknowns are.

Their magnitudes are not known, however, their directions are known. Hence, the
acceleration diagram in Figure 3.28e can be drawn.

7. First draw aA = an
A+at

A as shown to get the point A on the acceleration diagram.
8. Draw an

BA the normal component of acceleration of B with respect to A from
point A on the acceleration diagram. At the end of this component, draw a line
(perpendicular to link 3) representing the tangential component of acceleration
of B with respect to A.

9. Now, from Oa draw an
B , the normal component of acceleration of B in link 4. At

the end of this component, draw a line (perpendicular to link 4) representing the
tangential component of acceleration of B in link 4. This line intersects the line
drawn in step 8 above at B on the acceleration diagram.

The solution from MotionSolve for the crank rotation from 63◦ to 3◦ is shown in
Figure 3.28.

Next consider the six-link mechanism with the velocity diagram shown in Fig-
ure 3.29. Make a complete acceleration analysis.

1. Figure 3.30a gives the accelerations in the normal and tangential directions of
link 2. Note that the angular acceleration of link 2 is clockwise.

2. Link 3 is shown in Figure 3.30b. Acceleration of point A only is known.
3. Link 4 is a slider; therefore its total velocity is in the horizontal direction as

in Figure 3.30c. This is indicated in Figure 3.30b, its magnitude is yet to be
determined.

4. Link 3 is shown again in Figure 3.30d, where the relative normal component of
acceleration is known. The relative tangential component of acceleration is not
known at this stage.

5. The relative acceleration equation for link 3 is aB = an
A + at

A + an
BA + at

BA. In
this, the only unknowns are aB , at

BA. Their magnitudes are not known, however,
their directions are known. Hence, the acceleration diagram in Figure 3.30e can
be drawn.

obtained.
10. From this acceleration diagram, the angular accelerations of links 3 and 4 can be
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Fig. 3.30 Acceleration analysis of linkage in Figure 3.29
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6. Draw aA = an
A + at

A as shown to get the point A on the acceleration diagram.
7. Draw the normal component of acceleration of B with respect to Afrom point

A on the acceleration diagram. At the end of this component, draw a line (per-
pendicular to link 3) representing the tangential component of acceleration of B

with respect to A.
8. Now, from Oa draw a horizontal line representing the acceleration of B in link

4. This line intersects the line drawn in step 7 at B on the acceleration diagram.
9. From this acceleration diagram, the angular accelerations of links 3 and 4 can be

obtained.

The solution from MotionSolve for the crank rotation from 45◦ to 70◦ is shown in
Figure 3.30.

3.3.3 Relative Acceleration Equation of Two Coincident Points
Belonging to Two Rigid Bodies

The relative velocity equation of two coincident points PM and PN considered ear-
lier is extended to acceleration analysis. Figure 3.31 shows the two bodies, body N

having relative motion with respect to body M . Differentiating equations (3.12) we
get

aNX
P = aX

A − ω2(ξ cos θ − η sin θ) − a(ξ sin θ + η cos θ)

+ (aξ cos θ − aη sin θ) − 2Uξω sin θ − 2Uηω cos θ

aNY
P = aY

A − ω2(ξ sin θ + η cos θ) + a(ξ cos θ − η sin θ)

+ (aξ sin θ + aη cos θ) + 2Uξω cos θ − 2Uηω sin θ (3.24)

In the above aξ = dUξ/dt , aη = dUη/dt are the relative accelerations of point PN

with respect to the body M in ξ and η directions respectively. Vector addition of all
the components in equation (3.24) gives the total acceleration of PN .

1. aX
A+→aY

A is the total acceleration of the pole A in body M .
2. ω2(ξ cos θ+→η sin θ)+→ω2(ξ sin θ+→η cos θ ): Addition of these vectors is

shown in Figure 3.32. This is identified as the normal component of acceleration
of PM = ω2R.

3 and thus locates point C on the acceleration diagram.
11. Now, relative acceleration equation an

D + at
D = aC + an

DC + at
DC for link 5 is

n
D , aC +an

DC

nitudes of at
D , at

DC

applied. Here, a

10. Acceleration of B with respect to A is given by AB on the acceleration diagram.
Acceleration of C with respect to A is obtained by the ratio of AC to AB of link

are completely defined. The unknowns are the mag-
, their lines of action are known. Therefore, the acceleration

diagram can be completed as shown in Figure 3.30e.
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Fig. 3.31 Acceleration equation of two coincident points in two rigid bodies

Fig. 3.32 Addition of vectors ω2(ξ cos θ+→η sin θ)+→ω2(ξ sin θ+→η cos θ)

3. a(ξ sin θ+→ξ cos θ)+→a(η sin θ+→η cos θ): Figure 3.33 gives the addition
of these vectors giving the tangential component of acceleration of PM = Rα.
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Fig. 3.33 Addition of vectors a(ξ sin θ+→ξ cos θ)+→a(η sin θ+→η cos θ)

4. (aξ cos θ+ → aξ sin θ)+ → (aη cos θ+ → aη sin θ): Figure 3.34 gives the addi-
tion of these terms giving the relative acceleration ar of P in the body N with P

in the body M which is equal to (aξ + aη).
5. 2Uξω cos θ+→2Uξω sin θ : The addition of these two terms gives 2Uξω parallel

to the η axis as shown in Figure 3.35.
6. Addition of 2Uηω cos θ+ → 2Uηω sin θ gives 2Uηω parallel to the ξ axis. The

sum of the two vectors 2Uξω and 2Uηω gives a vector of magnitude 2Uω mak-
ing an angle β = arctan Uη/Uξ with the positive direction of the η axis. Since
the relative velocity vector makes an angle φ = arctan Uη/Uξ with the positive
direction of the ξ axis, the 2Uω vector is perpendicular to the relative velocity
vector.

The total acceleration of all components can now be summarized as

aN
P = aA+ → ω2R+ → αR+ → ar + 2Uω (3.25)

This can be further simplified as

aN
P = aM

P + → aPNPM
+ 2Uω (3.26)

The relative acceleration equation of two coincident points thus shows an ad-
ditional term 2Uω, if we compute the acceleration of P in the body N to consist
of acceleration of P in the body M plus the relative acceleration of P in the body
N with respect to P in the body M . The component PC = 2Uω is the Coriolis
component of acceleration. PC′ is for the clockwise ω direction. The direction of
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Fig. 3.34 Addition of vectors (aξ cos θ+→aξ sin θ)+→ (aη cos θ+→aη sin θ)

this vector can be determined by a simple rule as illustrated in Figure 3.36. At the
base of relative velocity vector U , draw a circle going in the direction of the angular
velocity ω and proceed in a direction perpendicular to U when it meets with the
relative velocity vector.

The quick return mechanism considered earlier is given in Figure 3.37 along with
the velocity diagram. Make a complete acceleration analysis.

1. Acceleration of A in link 2 or 3 is given by an
A = ω2

2 ×O2A and at
A = α2 ×O2A

as shown in Figure 3.38a.
2. Link 4 with slider 3 is shown in Figure 3.38b. Recall that link 4 is body M and

link 3 is body N .
3. Therefore, an

A3
+ → at

A3
= an

A4
+ → at

A4
+ → aA3A4+ → 2VA3A4ω4. In this,

an
A3

, at
A3

are completely known. an
A4

= ω2
4 × O4A is also a known vector. The

Coriolis component of acceleration 2VA3A4ω4 can also be determined completely
with the help of Figure 3.38c. The only unknown quantities are at

A4
, aA3A4 . Their

directions are however known and therefore, the acceleration diagram can be
drawn as shown in Figure 3.38d.

4. First draw the sum of normal and tangential components of acceleration of A2 or
A3 to give OaA in Figure 3.38d.
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Fig. 3.35 Addition of vectors 2Uξ a cos θ+→2Uξ ω sin θ and 2Uηω cos θ+→2Uηω sin θ

Fig. 3.36 Coriolis component direction
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Fig. 3.37 Quick return motion mechanism with velocity diagram

5. Next draw the normal component of acceleration of A4 from Oa . Note that this
term is on the right-hand side of the relative acceleration equation. A line per-
pendicular to this component is drawn to represent the tangential component of
acceleration of A4. The magnitude of this line is not known at this stage.

6. At the tip of acceleration vector of A3 set up a vector corresponding to the Cori-
olis acceleration 2VA3A4ω4 in the direction given by Figure 3.38c. Note that this
component is on the right-hand side of the relative acceleration equation and
therefore this vector should end at point A3 to give the total acceleration of A3.

7. At the foot of the Coriolis vector, draw a line corresponding to the relative accel-
eration aA3A4 , which is along the link 4. This intersects the tangential component
of acceleration of A4 and the acceleration diagram is now completed.

8. Produce the line OaaA4 in the same ratio as that of Figure 3.38b to give the total
acceleration of B.
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Fig. 3.38 Acceleration solution of quick return motion mechanism
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Fig. 3.39 Klein’s construction – velocity analysis

3.4 Acceleration Analysis of Reciprocating Engine Mechanism

Historically, the reciprocating steam engine was the main source of power in the
19th century. The reciprocating internal combustion engine began replacing the
steam engine in the 20th century. Thus, a reciprocating machine was the most com-
mon power source for nearly over two centuries. Therefore, designers had to develop
special graphical methods prior to the present computer era which began only in the
last three to four decades. We will study some of these methods to determine the ve-
locity and acceleration of reciprocating engine mechanism members when the crank
is rotating at constant speed.

3.4.1 Klein’s Construction

Figure 3.39 shows the crank making an angle θ with the line of stroke. The velocity
diagram of the mechanism is given by O2AC where C is the point obtained by the
intersection of line BA extended and the perpendicular to the line of stroke at O2.
O2C represents the magnitude of piston velocity to the scale O2A representing the
crank velocity and AC represents the relative velocity of B with respect to A. This
can be verified from the velocity diagram of the engine in Figure 3.40a and the
triangle O2AC in Figure 3.40b.

Figure 3.41 shows the construction of acceleration diagram O2AQP . The fol-
lowing steps are used in this construction:

1. Draw a circle with AB as diameter.
2. Draw a circle with A as center and AC as radius.
3. The two circles intersect at L and M .
4. Line LM intersects the connecting rod at Q and the line of stroke at P .

Triangles ALQ and ALB are similar, therefore
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Fig. 3.40 Velocity diagram

Fig. 3.41 Klein’s construction for acceleration

AQ

AL
= AL

AB

∴ AQ = AL2

AB
(3.27)

Since AL = AC

AQ = AC2

AB
(3.28)

Therefore AQ corresponds to the normal component acceleration an
BA of B with

respect to A to a scale O2A equal to ω2
2 × O2A.
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Fig. 3.42 Acceleration diagram

Fig. 3.43 Ritterhaus construction

Figure 3.42a shows the acceleration diagram drawn to the same scale as above by
using the relative acceleration equation. This acceleration diagram can be redrawn as
shown in Figure 3.42b (check the vectorial addition) and obtain an identical diagram
O2PQA as in Figure 3.41. O2P gives the acceleration of the piston.

3.4.2 Ritterhaus Construction

Figure 3.43 illustrates this construction procedure.

1. Erect a perpendicular at O2 to meet BA at C.
2. Draw a horizontal line from C to meet O2A at D.
3. Drop a perpendicular from D to intersect AB at Q.
4. Draw a line from Q perpendicular to AB. This line intersects the line of stroke at

P .
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Fig. 3.44 Bennet’s construction

From the two sets of similar triangles O2AC & ADQ and ACD & O2AB, we can
find that equation (3.28) is satisfied. Therefore, O2PQA in Figure 3.43 is the accel-
eration diagram.

3.4.3 Bennet’s Construction

The following steps describe the procedure:

1. Draw the mechanism configuration when the crank is at 90◦, O2A
′B ′ as in Fig-

ure 3.44.
2. Erect a perpendicular O2L to the line A′B ′ and measure the length A′L.
3. Locate this point L on the connecting rod in Figure 3.45.
4. Draw a perpendicular to the connecting rod from L to meet the line of stroke at

M .
5. Erect a vertical line from M to meet the connecting rod at Q.
6. Draw a perpendicular to the connecting rod from Q to meet the line of stroke at

P .
7. O2PQA is the required acceleration diagram.

3.5 Analytical Determination of Velocity and Acceleration of the
Piston

We notice that the piston goes through two dead centers for every revolution of the
crank. Its velocity becomes zero when the piston reaches top dead center and bottom
dead center. In these two positions, it has to reverse its motion and accelerate and
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Fig. 3.45 Bennet’s construction

then decelerate to reach the other dead center. This makes a reciprocating engine
not ideally suited for a good design. But we lived with the reciprocating steam en-
gine for more than a century before abandoning it in favor of the steam turbine that
became the most extensively used from the beginning of the 20th century. For an in-
ternal combustion engine, complex crank arrangements and cylinders were devised
leading to multicylinder engines that helped designers to raise speeds, get better
efficiencies and also balance the piston forces in every revolution. Thus the study
of piston acceleration became important in the study of Theory of Machines. The
graphical methods widely used in the 19th century were replaced by faster and more
accurate analytical methods.

The piston is at a distance x from the main bearing center, when the crank is
making an angle θ and the connecting rod an angle ϕ with the line of stroke as
shown in Figure 3.46. The radius of the crank is r and the length of the connecting
rod is l. At the outer dead center position of the crank, the piston is in the position
B ′ at distance r + l from the main bearing center.

x = r cos θ + l cos ϕ (3.29)

Note that r sin θ = l sin ϕ and, with n representing the ratio of connecting rod to
crank l/r

sin ϕ = 1

n
sin θ

cos ϕ =
√

1 − sin2θ

n2 (3.30)

Therefore

x = r cos θ + l

√
1 − sin2 θ

n2 (3.31)

Differentiating, the velocity of the piston is
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Fig. 3.46 Analytical derivation for acceleration

v = −rω

⎡
⎣sin θ + 1

2n

(
1 − sin2θ

n2

)− 1
2

sin 2θ

⎤
⎦ (3.32)

Differentiating once more, the acceleration of the piston is

a = −rω2

⎡
⎢⎢⎣cos θ + (n2 − 1) cos 2θ + cos4θ

n3
(

1 − sin2θ

n2

) 3
2

⎤
⎥⎥⎦ (3.33)

The above expression for piston acceleration is unwieldy for early day engineering
use. Also the engineers would like to know the velocity and piston as harmonic
components with the engine speed rather than exact periodically varying kinematic
quantities. We therefore use a harmonic analysis and find the required velocity and
acceleration components.

3.5.1 Harmonic Analysis for Velocity and Acceleration of the
Piston

Equations (3.32) and (3.33) are exact expressions for velocity and acceleration of
the piston. We can see that they are periodic functions of the crank angle θ . Using
the Binomial Theorem, we expand to the required number of terms the square root
term in equation (3.31)
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√
1 − sin2θ

n2
= 1 − sin2θ

2n2
− sin4θ

8n4
− sin6θ

16n6
− · · · (3.34)

Therefore

x = r

[
cos θ + n

(
1 − sin2θ

2n2 − sin4θ

8n4 − sin6θ

16n6 − · · ·
)]

(3.35)

Differentiating the above equation (3.35), we get the velocity and acceleration of
the piston.

v = −ωr (A1 sin θ + A2 sin 2θ + A4 sin 4θ + A6 sin 6θ + · · ·) (3.36)

a = −ω2r (A1 cos θ + 2A2 cos 2θ + 4A4 cos 4θ + 6A6 cos 6θ + · · ·) (3.37)

where

A1 = 1

A2 = 1

2n
+ 1

8n3 + 15

256n5 + 35

1024n7 + · · ·

A4 = − 1

16n3
− 3

64n5
− · · ·

A6 = 3

256n5 + 15

1024n7 − · · · (3.38)

Other than the first harmonic, we find that both velocity and acceleration have
even higher harmonics of the crank speed. The magnitudes of harmonics are also
given in series form. We find that these series are highly converging with n in the
denominator. From an engineering stand-point, we can neglect all higher harmonics
other than the second harmonic.

These harmonics can be used in developing primary and secondary forces and
their balancing; we will study these later in designing a good multi-cylinder en-
gine. These engines are ubiquitous in automobiles, Diesel Electric Railways, Power
Plants, Marine Propulsion Systems and they form what we call Drive Trains. These
drive trains will contain several gear boxes, couplings, propeller shafts, etc., in the
system and they are all subjected to the above harmonic fluctuations. Therefore the
acceleration analysis presented in this chapter forms the backbone of Theory of Ma-
chines and Design.

3.6 Additional Problems

1. Figure 3.47 shows a six-bar mechanism. Crank 2 is driven at 100 RPM in clock-
wise direction. Determine all the centros. Find the velocity of the slider by the
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Fig. 3.47

Fig. 3.48

Line of Centers method and show that the value obtained is the same as that
obtained by the Link to Link method.

2. Figure 3.48 shows a six-bar mechanism with two sliders. The crank is driven at
1800 RPM in clockwise direction. Find the velocities of the two sliders by the
method of centros.

3. Crank 2 in Figure 3.49 rotates at a speed of 60 RPM. Determine the velocity of
slider 5 by the method of centros. What is the total stroke of this slider?

4. A six-bar linkage is shown in Figure 3.50. Determine the velocity of link 6 by
the Method of Centros, Link to Link method and Line of Centers method.
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Fig. 3.49

Fig. 3.50

5. What are the angular velocities of links 5, 6 and 7 in the eight-bar linkage of
Figure 3.51? Also determine the velocities of both the sliders, links 4 and 8.

6. For the oscillating cylinder mechanism in Figure 3.52, locate all the centros.
What is the angular velocity of the oscillating cylinder for the instant shown?
Also determine the linear velocity of the piston.

7. Draw the linkage shown in Figure 3.53 and locate all the centros. Determine the
angular velocities of links 5 and 6 by the method of centros for the crank rotating
at 100 rad/s in counter clockwise direction.

8. Using the relative velocity approach, solve Additional Problem 1 above.
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Fig. 3.51

Fig. 3.52

9. Using the relative velocity approach, solve Additional Problem 2 above.
10. Using the relative velocity approach, solve Additional Problem 3 above.
11. Using the relative velocity approach, solve Additional Problem 4 above.
12. Using the relative velocity approach, solve Additional Problem 5 above.
13. Using the relative velocity approach, solve Additional Problem 6 above.
14. Using the relative velocity approach, solve Additional Problem 7 above.
15. Make a complete acceleration analysis of the mechanism in Figure 3.47.

link 5 in Figure 3.48.
16. Determine the accelerations of the two pistons and the angular acceleration of
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Fig. 3.53

to 7 and the linear accelerations of links 4 and 8.

Coriolis components of accelerations for links 3 and 5 (including the directions)?
18. Determine the angular accelerations of links 3, 4 and 5 and the acceleration of

the same in magnitude and sense. Determine the angular accelerations of links 3

17. Make a complete acceleration analysis of the linkage in Figure 3.49. What are the

the slider in Figure 3.50.

20. Find the angular accelerations of links 3 to 6 in Figure 3.53.

19. Refer to Figure 3.51. Identify the Coriolis component of acceleration and find



Chapter 4
Straight Line Motion and Universal Coupling

Every link in a mechanism performs a repeated motion. Therefore any point on
these links also performs a repeated motion passing through a specified curve called
a coupler curve. In this chapter we will study special cases where the path traced
is a straight line or special cases when two inclined shafts are connected through a
universal coupling.

Coupler Curve

Curve traced by a point on one of the coupler links in a mechanism.

Exact Straight Line Motion Mechanism

Mechanism containing a link in which a point describes a coupler curve as an exact
straight line.

Approximate Straight Line Motion Mechanism

Mechanism containing a link in which a point describes a coupler curve having a
portion of it as an approximate straight line.

The interest in straight line or approximate straight line motion became important
with the advent of beam engines such as those shown in Figure 4.13. Producing
an exact straight line is difficult and hence approximate straight line motion was
attempted. Watt’s approximate straight line motion played a significant role in the
initial designs of the reciprocating steam engine.

With further developments, engineers began to develop testing of their engines
and recording of the data. The initial instruments developed were Indicators and
a pen to record the motion. These indicators related some state quantities of the
engine and utilized the principles of straight line motions. Other applications were
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Fig. 4.1 Condition to be satisfied to generate an exact straight line

e.g., steering gears designed for steering an automobile around turns. We describe
these linkages below.

4.1 Condition for Exact Straight Line Motion

We will first study the conditions to be satisfied to generate an exact straight line.
Let O, T and S be three distinct points of a mechanism, which lie in a straight line,
for all configurations as shown in Figure 4.1.

The path of S will be a straight line perpendicular to the horizontal diameter
OH of the circle along the circumference of which T moves, provided OT.OS is a
constant. It follows from similar triangles OTH and OSX that

OX = OS × OT

OH
(4.1)
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Fig. 4.2 Paucellier mechanism

4.2 Exact Straight Line Motion Mechanisms

4.2.1 Paucellier Mechanism

Figure 4.2 shows this linkage in which link 2 is the driver. Links 5 to 8 are of equal
length so also are links 3 and 4. S traces an exact straight line perpendicular to
the base link 1 going through OO2. It can be easily shown that condition (4.1) is
satisfied from the triangles OAC and ACS

OA2 = AC2 + OC2

AS2 = CS2 + AC2 (4.2)

Subtracting one from the other,

OA2 − AS2 = OC2 − CS2 = OT × OS (4.3)

4.2.2 Hart Mechanism

This mechanism has links 3 to 6 forming a crossed parallelogram as shown in Fig-
ure 4.3. Crank 2 is the driving link connecting the base link 1 and crossed chain link
6 through the hinges O2 and T such that BO : BA = BT : BD. Point S on link 5
traces an exact straight line.

From similar triangles AOS and ABC

BC = BA × OS

OA
(4.4)
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Fig. 4.3 Hart mechanism

Similarly, from similar triangles BOT and BAD,

AD = BA × OT

OB
(4.5)

Therefore,
OS × OT = K × BC × AD (4.6)

From triangle ACD,

AC2 = AD2 + CD2 − 2 × AD × CD × cos AD̂C (4.7)

From Figure 4.3

cos AD̂C = BC − AD

2 × CD
(4.8)

Therefore

AC2 = AD2 + CD2 − AD (AD − BC)

= CD2 + BC × AD (4.9)

Hence BC × AD, therefore OS × OT is a constant.
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Fig. 4.4 Scott–Russel mechanism

4.2.3 Scott–Russel Mechanism

This mechanism has just four links as shown in Figure 4.4 with the condition O2A =
AB = AC.

4.3 Approximate Straight Line Motion Mechanisms

In several cases we use only approximate straight line motion, which will suffice,
e.g., James Watt in his reciprocating engine used approximate straight line motion
for the piston.

4.3.1 Modified Scott–Russel (Grasshopper) Mechanism

Here, the slider 4 in Figure 4.4 is replaced by a rocker link 4. The two extreme
positions of B are B and B1 as shown in Figure 4.5 corresponding to the positions
A or A′ and A1 respectively. The path traced by C on coupler 3 passes through C,
O2 and C′ and will approach a straight line if link 4 is sufficiently longer than the
other three links.

This mechanism can be further modified as shown in Figure 4.6, so that C

traces a path which is offset from the crank center O2. The links are proportioned
O2A/AB = AB/AC so that I is the instantaneous center of link 3 and C will
describe a vertical line in this position.
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Fig. 4.5 Modified Scott–Russel (grasshopper) mechanism

Fig. 4.6 Further modified Scott–Russel mechanism

4.3.2 Watt Mechanism

This is a four-bar linkage so arranged that point C on coupler link 3 describes an
approximate straight line. When rockers 2 and 3 are in horizontal position, the cou-
pler is made to be vertical, see Figure 4.7. The best position for C is determined

Y
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(a)

(b)

Fig. 4.7 (a) Watt mechanism; (b) Watt mechanism in displaced position

by using the concept of instantaneous center 13 of coupler 3 in a displaced position
with the coupler in A′B ′ position (′ positions refer to Figure 4.7b). In this position,
point C′ and the whole coupler will have a vertical motion. For small values of crank
rotations

A′C ′

C′B ′ = O4B
′

O2A′ (4.10)

Therefore,
AC

CB
= O4B

O2A
(4.11)

4.3.3 Tchebicheff Mechanism

As shown in Figure 4.8 this mechanism has its midpoint P on a coupler describing
an approximate straight line P2PP1. The proportions of the links are in the ratio

O2O4 : (O2A = O4B) : AB = 4 : 5 : 2 (4.12)
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Fig. 4.8 Tchebicheff mechanism

Fig. 4.9 Robert straight line mechanism
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Fig. 4.10 Special case of Robert straight line mechanism

Fig. 4.11 Pantograph

4.3.4 Robert Straight Line Mechanism

In this linkage shown in Figure 4.9, the rockers are of equal length. Choose an
instantaneous position and locate the instantaneous center (13). P is on the perpen-
dicular bisector of the coupler intersecting with the vertical line dropped from the
instantaneous center (13) of the coupler.

Figure 4.10 shows a special case of this linkage in which 2 × AB = O2O4.
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(a)

(b)

(c)

Fig. 4.12 Pantographs



4.3 Approximate Straight Line Motion Mechanisms 95

Fig. 4.13 Beam engine mechanism

4.3.5 Pantograph

A pantograph has an arrangement of links as shown in Figure 4.11. Link 1 is hinged
at O. AD is parallel to BC for all positions of the linkage.

OP

OQ
= OA

OB
(4.13)

Point Q traces a path similar to that of point P and vice versa. Figure 4.12 shows
three other arrangements of the pantograph.

4.3.6 Beam Engine

This mechanism was used by James Watt in his steam engine. This is an eight link
mechanism as shown in Figure 4.13. The steam piston is connected to the hinge
F , while the pump piston is connected to a hinge G on link 5. Links 4 to 7 form
a pantograph giving similar motions for G and F . Links 1, 4, 5 and 8 form Watt’s
linkage for approximate straight line motion for G and F . Hinge G is centrally
located on link 5 between E and C. O4C is made equal to O8E.

4.3.7 Richards Indicator

Here also, the Watt linkage is used in conjunction with a pantograph as illustrated
in Figure 4.14.
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Fig. 4.14 Richards indicator

Fig. 4.15 Crosby indicator

4.3.8 Crosby Indicator

This is a six-link mechanism as shown in Figure 4.15. For the configuration shown,
it can be seen that O5 is the instantaneous center of links 3 to 5. (36) is the centro
of links 3 and 6. Choose the point P on link 4 such that P (36) and O5 lie on a
horizontal line.
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Fig. 4.16 Dobbie–McInnes mechanism

4.3.9 Dobbie–McInnes Mechanism

Figure 4.16 shows this linkage. Point P on link 3 forming a horizontal line with
instantaneous center (13) describes a vertical line for the configuration shown. (One
can show that (13) is the same as centro (34) by considering links 1, 2, 3 and 1, 3,
4.)

4.4 Steering Gear Mechanism

The condition for correcting steering of all wheels in an automobile is to make them
turn about a single instantaneous center of rotation I as shown in Figure 4.17. Then

AC = EF = EI = FI = AE cot φ − CF cot θ

cot φ − cot θ = a

b
(4.14)

4.4.1 Davis Steering Gear Mechanism

This linkage is shown in Figure 4.18a where the arms AE and CF are fixed to the
axles in such a way as to form bell-crank levers BAE and DCF with equal angles.
These arms are also slotted and slide relative to the two die-blocks pivoted to the
link GH. Link GH is made to move parallel to AC at a distance h and it activates
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Fig. 4.17 Condition for correct steering linkage

steering to the right or left. In the neutral position, AE and CH make an angle α as
shown in Figure 4.18a.

When GH is displaced by a distance x, the linkage occupies the position as
shown. BA and CD in this position meet at I (not shown in figure). Let φ and θ

be the angles through which the arms AE and CF are turned by the displacement x

of GH. Let the difference between AC andGH be 2c, then

tan(α + φ) = tan α + tan φ

1 − tan α tan φ
= c + x

h
and tan α = c

h
,

and we get

tan φ = xh

h2 + c2 + cx
(4.15)

Similarly,

tan(α − θ) = tan α − tan θ

1 + tan α tan θ
= c − x

h

and this gives

tan θ = xh

h2 + c2 − cx
(4.16)

Therefore
cot φ − cot θ = 2 tan α (4.17)

From equation (4.14) we can now get the condition for correct steering in the
Davis linkage

tan α = a

2b
(4.18)

Figure 4.18b shows the linkage designed to satisfy the above relation. In the
accompanying plot you are given the left and right wheel angles as they change
with time during a right turn. The dash-dot line shows the relation (4.17) which
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(a)

(b)

Fig. 4.18 Davis steering linkages
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(a)

(b)

(c)

Fig. 4.19 (a) Ackermann linkage, (b) Ackermann linkage after a left turn, (c) Ackermann steering
gear
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remains the same throughout the turning process, thus giving exact steering to the
car.

4.4.2 Ackermann Steering Gear Mechanism

This is a four-bar linkage with links AE = CF , AC and EF. BAE and DCF form
bell-crank levers. The neutral position with links AE and CF making an angle α as
well as the position in one of the displaced configurations in a left turn condition are
shown in Figures 4.19a and b.

Figures 4.19b and c give MotionSolve solutions for the left and right turns during
steering respectively.

It can be seen that cot φ − cot θ = AC/GI where I is the point of intersection of
BA and CD. This is obviously not a constant for all steering positions and therefore
cannot satisfy the condition (4.14). The advantage of this linkage is that it has no
sliding pairs and therefore is easy to maintain without much wear and tear (thus
not introducing errors in the linkage positions). The best possible steering is found
when the point J from AC is at about 0.7 times the wheel base.

4.5 Hooke’s (Cardan, Universal) Joint or [Universal Coupling]

This is a kinematic joint connecting two shafts with intersecting axes, see Fig-
ure 4.20. It consists of three parts, two forks (driving and driven shafts) and a center
block or spider. This is actually a space linkage, which however, can be analyzed in
a simple manner.

The plan and elevation of the joint is shown in Figure 4.21 with δ representing
the inclination angle between the two shafts. The fork is represented by lines aa and
bb. When the driving shaft is rotated aa describes a circle, whereas the driven shaft
bb describes an ellipse as shown. For an angle of rotation of the input shaft α, aa
moves to a1a1, the projection of bb also moves through the same angle to b1b1. The
true position of bb is obtained from projecting b1 into the plan resulting in b′

1, which
again projected into the elevation gives b2.

Then

tan α = Oc1

b1c1

tan β = Oc2

b2c2
= Oc2

b1c1

Also, from the plan view,

cos δ = Oc1

Ob1
′ = Oc1

Oc2
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Fig. 4.20 Hooke’s joint

Therefore
tan α = tan β cos δ (4.19)

Differentiating the above,

ωasec2α = ωbsec2β cos δ = ωb(1 + tan2β) cos δ (4.20)

With the help of (4.19) and rearranging of equation (4.20), we get

ωb

ωa

= cos δ

1 − sin2 δ cos2 α
(4.21)

When cos α = ±1(α = 0, 180◦), the above ratio is maximum given by 1/ cos δ

and when cos α = 0(α = 90, 270◦), the speed ratio is minimum given by cos δ. The
coefficient of fluctuation of speed is therefore

1
cos δ

− cos δ

1
= sin δ tan δ (4.22)

From (4.21), we find that the driver and driven shafts have the same speed when

cos δ

1 − sin2 δ cos2 α
= 1

Upon simplification, we get
tan α = ±√

cos δ (4.23)

For a constant driving speed, ω̇a = 0 the acceleration of the driven shaft from
equation (4.21) can be obtained as
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Fig. 4.21 Analysis of Hooke’s joint

ω̇b = −ωa
2

[
cos δ sin2 δ sin 2α

(1 − sin2 δ cos2 α)
2

]
(4.24)

Differentiating the above with respect to α, we get the acceleration of the driven
shaft to be maximum at

cos 2α = sin2 δ(2 − cos2 2α)

2 − sin2 δ
≈ 2 sin2 δ

2 − sin2 δ
(4.25)
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(a)

(b)

Fig. 4.22 Double Hooke’s joint intermediate shaft forks in the same plane: (a) Arrangement a.
(b) Arrangement b

4.5.1 Double Hooke’s Joint

This type of coupling is used to transmit motion between two parallel shafts without
using gears, belts or chains. Figures 4.22a, b and c illustrate two different ways of
doing this.

In Figures 4.22a and b, the two forks at the end of the intermediate shaft are in
the same plane and the inclination angles are the same at both ends. From equa-
tion (4.19)

tan α = tan γ cos δ (4.26)
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(c)

Fig. 4.22 (Continued) (c) Arrangement c

where γ is the angle turned by the intermediate shaft C. Similarly,

tan β = tan γ cos δ (4.27)

Therefore, α = β and in this case, both the shafts turn through the same angle giving

ωb = ωa (4.28)

If the two end forks of the shaft C are set at right angles as in Figure 4.22c, then
equation (4.27) is

tan γ = tan β cos δ (4.27a)

Combining equations (4.26) and (4.27a), we get tan α = tan β cos2 δ. Differenti-
ating this relation, we get

ωb

ωa

= 1

cos2 δ cos2 α + sin2 α
cos2 δ

(4.28a)

Therefore, the output shaft speed is not constant, instead it varies between
ωa cos2 δ and ωa/ cos2 δ.

4.6 Solved Problems

Solved Problem 4.1

The dimensions of a Watt mechanism are O2O4 = 65 cm, O2A = O4B = 30 cm,
QA = QB = 7.5 cm. Trace the locus of the coupler point Q.
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Fig. 4.23

Figure 4.23 shows the linkage. The linkage is drawn when the two levers are in
a horizontal position so that the coupler curve is approximately a vertical line. This
position can be determined from the geometry given in Figure 4.23, viz., 32.52 +
302 − 7.52 = 2 × 32.5 × 30 × cos α giving 13.0028◦.

Solved Problem 4.2

Roberts’s straight line mechanism of Figure 4.10 has the following proportions:
O2B = BP = PC = CO4 and BC is half of the base link. Trace the locus of the
coupler point P for o ≤ O4Ô2B ≤ 75◦ (see Figure 4.24).

Solved Problem 4.3

For the Freemantle mechanism shown in Figure 4.25, show that the locus of the
point M is an exact straight line. The lengths OA = AB = MA.

Draw the linkage in any arbitrary position and a circle going through the three
points O, B and M . We find the sum of the angles to be p + q + (p + q) = 180◦.
Therefore the sum of angles p and q at O is 90◦. Therefore OM remains vertical in
all positions of the mechanism. The above result can also be obtained by observing
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Fig. 4.24

Fig. 4.25

that points M,O and B are on a semicircle with MB as a diameter. Therefore the
angle subtended at O is always 90◦.

Solved Problem 4.4

Design a pantograph for an indicator to obtain the indicator diagram of an engine.
The distance from the tracing point of the indicator is 100 mm. The indicator dia-
gram should represent four times the gas pressure inside the cylinder of an engine.

Refer to Figure 4.11. We are given OP/OQ = 1/4 and DQ = 100 mm.
Therefore OP = 25 mm. Also, OA/OB = 1/4. Choose OA to be 10 mm, then
OB = 40 mm.
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Fig. 4.26

Draw OA and AB as shown in Figure 4.26. Choose points D and P to be the same
where the piston rod of the indicator is connected. Draw arcs 25 mm with O and A

as centers to intersect at P. Extend OP to Q and complete the parallelogram ABCD.

Solved Problem 4.5

In a Davis steering gear mechanism, derive an expression for the condition of correct
steering. Find the inclination of the track arms to the longitudinal axis of the car
when the car is moving on a straight path. We are given that the distance between
the pivots of the front axle is 1.0675 m and the wheel base is 2.5925 m.

For the derivation see Section 4.4.1. From equation (4.18)

α = tan−1 1.0675

2 × 2.5925
= 11.634◦

Solved Problem 4.6

An Ackermann steering gear mechanism is used for an automobile with a track of
1.475 m and a wheel base of 2.745 m, with a track rod in front of the axle instead
of behind it. Determine the radius of curvature of the path followed by the near-side
front wheel when the automobile turns right and assuming correct steering exists.
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We are given that the length of the track rod is 1.334 m, the length of each track arm
is 0.1525 m and the distance between the front stub axle pivots is 1.22 m.

1. The Ackermann steering gear for this problem is drawn in Figure 4.27. From this
we find that

sin α = 1.334 − 1.22

2 × 0.1525

gives α = 21.9483◦.
2. Try various values of θ for the inner wheel and find the corresponding values of

φ e.g., for θ = 31◦, φ = 24.9493◦. From (4.14), however,

cot φ = cot 31◦ + 1.22

2.745
= 25.37◦

Therefore correct steering does not exist for this turning angle. For θ = 33◦,
φ = 27◦, for which equation (4.14) gives φ = 26.746◦. This position is taken
as the correct steering position. The radius of curvature of the automobile path is
then 5.2987 m as given in Figure 4.27.

Solved Problem 4.7

Two shafts are connected by a Hooke’s joint; the axes of the shafts are inclined at
15◦ and the speed of the driving shaft is 800 RPM. Find the highest and lowest
speeds of the driven shaft and its maximum acceleration.

Given ωa = (2π × 800)/60 = 83.7758 rad/s.

1. From equation (4.21), we find that ωb of the driven shaft is maximum for an-
gles of the driven shaft α at 0◦, 180◦, etc., and has a value of ωb = ωa/ cos δ.
Therefore, the highest speed of the driven shaft is ωb max = 83.7758/ cos15◦ =
86.7311 rad/s.

2. From equation (4.21), we find that ωb of the driven shaft is minimum for an-
gles of the driven shaft α at 90◦, 270◦, etc., and has a value of ωb = ωa cos δ.
Therefore, the lowest speed of the driven shaft is ωb min = 83.7758 cos 15◦ =
80.9212 rad/s.

3. Maximum acceleration for the driven shaft occurs at

cos 2α = 2 sin2 15◦

2 − sin2 15◦ = 0.0693087

see equation (4.25), or when α = 43.0129 and 223.0129◦.
4. Equation (4.24) gives the acceleration of the driven shaft and at the above values

of α, it is
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Fig. 4.27

ω̇b = ωa
2

[
cos δ sin2 δ sin 2α

(
1 − sin2 δ cos2 α

)2

]
= −83.77582

[
0.9659 × 0.06699 × 0.9976

(1 − 0.06699 × 0.53465)2

]

= −487.3 rad/s2

Solved Problem 4.8

Two shafts are connected by a Hooke’s joint, whose axes are inclined to each other
at an angle δ, show that the instantaneous ratio of speeds between these shafts is
given by sec2 θ/ sec2 φ cos δ where θ and φ are the angles through which the two
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halves of the Hooke’s joint have turned respectively from some datum. Determine
also the minimum and maximum values of this ratio when δ = 15◦.

Follow the derivation of equation (4.20)

ωb min

ωa
= cos 15◦ = 0.9659

ωb max

ωa

= 1

cos 15◦ = 1.0353

Solved Problem 4.9

A Hooke’s joint connects two shafts whose axes are inclined to each other by an
acute angle δ. The driving shaft rotates uniformly and the total variation in speed
of the driven shaft is not to exceed 10% of the mean speed. Determine the greatest
possible inclination of the center lines of the shafts.

1. From equation (4.22), the coefficient of speed fluctuation is given by (1/ cos δ)−
cos δ.

2. Therefore (1/ cos δ) − cos δ = 0.1.
3. 1 − cos2 δ − 0.1 cos δ = 0.
4. Hence

cos δ = 1

2

[ − 0.1 ± √
0.01 + 4

] = 0.951249 or − 1.05

5. Only the first value in the above is applicable, which gives the shaft angle being
17.964◦.

Solved Problem 4.10

Two shafts are connected by a Hooke’s joint and the speed of the driving shaft is
400 RPM. If the speed of the driven shaft should always be between 420 and 380
RPM, determine the greatest permissible angle between the two shafts. What are the
actual maximum and minimum shaft speeds for such an angle.

1. The permissible coefficient of fluctuation in speed is (420 − 380)/400 = 0.1.
2. From equation (4.22), we have (1/ cos δ) − cos δ and, as in the solved problem

4.9, the shaft angle δ = 17.964◦.
3. From equation (4.21), the actual maximum speed attainable for this angle of

inclination of the shafts is

ωb max = 400

cos 17.964◦ = 420.5 RPM

4. Similarly, the minimum attainable speed is ωb min = 400 × cos 17.964◦ =
380.5 RPM.



112 4 Straight Line Motion and Universal Coupling

Solved Problem 4.11

In a single Hooke’s joint where the angle between the shafts is θ , show that the ratio
of the fluctuation of speed to the mean speed is sin θ tan θ if the angular velocity of
the driving shaft is constant and the axes of the pins in the joint intersect.

When a double coupling is used, explain what conditions are necessary for the
driven shaft to have uniform angular velocity if that of the driving shaft is constant?
In such a double coupling, the driving and driven shafts are parallel and the angle
between each and the intermediate shaft is 20◦. Find the maximum and minimum
velocities of the driven shaft if the axis of the driving pin carried by the intermedi-
ate shaft has inadvertently been placed 90◦ in advance of the correct position. The
driving shaft speed is 200 RPM.

1. Follow the derivation of equation (4.22).
2. As shown in Figures 4.22a and b, the two forks at the end of the intermediate

shaft should be in the same plane and the inclination angles at both ends should
also be the same. Make the derivation given in equation (4.28) to show that under
these conditions the output shaft speed is the same as that of the input shaft.

3. If the two end forks of the intermediate shaft are set at right angles by mistake,
then

ωb

ωa

= 1

cos2 δ cos2 α + sin2 α
cos2 δ

Therefore, the minimum speed of the output shaft occurs at a = 90◦, i.e.,
ωb min = 200 × cos2 20◦ = 176.6 RPM.

4. The maximum speed of the output shaft occurs when a = 0◦, i.e.,

ωb max = 200

cos2 20◦ = 226.5 RPM

Solved Problem 4.12

Two shafts, the axes of which intersect but are inclined at 20◦ to each other are
connected by a Hooke’s joint. If the driving shaft has a uniform speed of 1000 RPM,
find from first principles the variation in the speed of the driven shaft. The driven
shaft carries a rotating mass of 15 kg having a radius of gyration 250 mm. Find the
accelerating torque on the driven shaft for the position when the driven shaft has
turned through 45◦ from the position in which its fork end is in the plane containing
two shafts.

Follow the derivation of equation (4.21).

1. From equation (4.19), the angle of the driving shaft α can be obtained by sub-
stituting for the given angle β of the driven shaft and the inclination angle.
tan α = tan 45◦ cos 20◦, i.e., α = 43.22◦.

2. The speed of the driving shaft is ωa = 2π(1000/60) = 104.7198 rad/s.
3. From equation (4.21), the speed of the driven shaft is given by
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ωb

ωa

= cos δ

1 − sin2 δ cos2 α

Therefore

ωb = 104.7198 cos20◦

1 − sin2 20◦ cos2 43.22◦ = 104.7198 × 0.9397

1 − 0.117 × 0.531
= 104.92 rad/s

4. The angular acceleration of the driven shaft is given by equation (4.24) and upon
substitution of appropriate values we get

ωb = −104.922
[

0.9397 × 0.117 × 0.9981

(1 − 0.117 × 0.531)2

]
= −13.68.1 rad/s

Therefore the accelerating torque is T = 15 × 0.252 × 1368.1 = 1282.6 Nm.

Solved Problem 4.13

Show that for two shafts connected by a Hooke’s joint, the ratio of angular velocities
is given by

ω2

ω1
= cos α

1 − sin2 θ sin2 α

where θ is the angle of rotation of shaft 1 from the position where the forked end is
perpendicular to the plane containing the shaft axes and α is the angle of deviation
of the drive.

Two shafts A and B are connected by a Hooke’s joint, the angle of deviation
being 20◦. When the shafts are set in motion and allowed to rotate freely without
friction, find the fluctuation of speed of shaft A as a percentage of its mean speed.

1. The equation for the ratio of angular velocities is derived, see equation (4.21).
Note that α in equation (4.21) is equal to 90◦ − θ and the shaft inclination angle
there is denoted by δ. With the changed notation, you can derive the required
relation.

2. The fluctuation in speed is given by equation (4.22) sin 20◦ tan 20◦ = 0.1245.

Solved Problem 4.14

For two shafts connected by a Hooke’s joint, show that, if shaft 1 has a uniform
angular velocity ω1, the angular acceleration of shaft 2 is given by

ω̇2 = −ω2
1

[
cos α sin2 α sin 2θ1

(1 − sin2 α cos2 θ1)2

]

where θ1 is the angle of rotation of shaft 1 from the position where its forked end
is in the plane containing the shaft and α is the angle of deviation of the drive. In
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a particular case, shaft 1 is driven at a constant speed of 500 RPM. Shaft 2 carries
a mass moment of inertia 1 kg m2 and is subjected to a constant resisting torque
of 2750 Nm. Find the torque input to shaft 1 at the instant when θ1 = 30◦. The
inclination angle is 25◦.

Follow the derivation of equation (4.24)
500 RPM = 52.36 rad/s

ω̇2 = −52.362

[
cos 25◦ sin2 25◦ sin 60◦

(1 − sin2 25◦ cos2 30◦)2

]
= −512.41 rad/s2

Therefore the torque to accelerate the driving shaft is

Tinertia = 1 × 512.41 = 512.41 Nm

T2 = 2750 − 512.41 = 2862.41 Nm

T1 = T2
ω2

ω1
= 2862.41

cos α

1 − sin2 α cos2 θ1
= 2862.41

cos 25◦

1 − sin2 25◦ cos2 30◦

= 2995.4 Nm

Solved Problem 4.15

Two parallel shafts are connected by an intermediate shaft with a Hooke’s joint at
each end. Show how the joints should be arranged to obtain a constant velocity ratio
between the driving and driven shafts.

The intermediate shaft has a mass moment of inertia of 3 g m2 and is inclined
at 30◦ to the axes of the driving and driven shafts. If the driving shaft rotates uni-
formly at 2400 RPM with a steady input torque of 300 Nm, determine the maximum
fluctuation of the output torque.

1. As shown in Figures 4.22a and b, the two forks at the end of the intermediate
shaft should be in the same plane and the inclination angles at both ends should
also be the same. Make the derivation given in equation (4.28) to show that under
these conditions the output shaft speed is the same as that of the input shaft.

2. Maximum acceleration in the intermediate shaft occurs, see equation (4.25),
when

cos 2α = 2 sin2 30◦

2 − sin2 30◦ = 0.2857

i.e., when α = 36.7◦ and 216.7◦.
3. Maximum acceleration from equation (4.24) is

ω̇b = −ω2
a

[
cos δ sin2 δ sin 2α

(1 − sin2 δ cos2 α)2

]

4. ωa = 2π(2400/60) = 251.328 rad/s.
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5. ω̇b = −251.3282
[

0.866 × 0.25 × 0.9583

(1 − 0.25 × 0.6428)2

]
= −18605 rad/s2.

6. For α = 143.3◦ and 323.3◦, ω̇b = 18605 rad/s2 .
7. Steady torque in the system is 300 Nm.
8. Maximum torque in the intermediate shaft due to fluctuation in acceleration,

Tc max is given by 0.003 × 18605 = 55.815 Nm.
9. Similarly, the minimum torque Tc min 55.815 Nm.

Solved Problem 4.16

In a single Hooke’s joint, the angle of divergence is 22.5◦ and a steady torque 250
Nm is applied to the driving shaft while it is rotating at 120 RPM. What must be the
mass of a flywheel, whose radius of gyration is 250 mm, attached to the driven shaft
so that the output torque does not vary by more than 25%?

1. Maximum acceleration in the intermediate shaft occurs, see equation (4.25),
when

cos 2α = 2 sin2 22.5◦

2 − sin2 22.5◦ = 0.158

i.e., when α = 40.454◦ and 220.514◦.
2. Maximum acceleration from equation (4.24) is

ω̇b = −ω2
a

[
cos δ sin2 sin 2α

(1 − sin2 δ cos2 α)2

]

3. ωa = 2π
120

60
= 12.5664 rad/s.

4. ω̇b = −12.56642
[

0.9239 × 0.1464 × 0.9874

(1 − 0.1464 × 0.579)2

]
= −25.186 rad/s2.

5. For α = 139.546◦ and 319.546◦, ω̇b = 25.186 rad/s2.
6. From equation (4.21) the speed of the output shaft when maximum acceleration

occurs is given by

ωb = ωa cos 22.5◦

1 − sin2 22.5◦ cos2 40.45◦ = 1.0095ωa

7. The torque transmitted at this speed is 250/1.0095 = 247.
8. The output torque does not vary by more than 25%, therefore the lowest value of

the output torque is three fourths of 250 = 187.5 Nm. The accelerating torque is
the transmitted torque minus the output torque, i.e., 247.65−187.5 = 60.15 Nm.

9. Therefore, 60.15 = m × 0.0625 × 25.186 or m = 38.21 kg.

= −
mean torque of the output shaft torque is same as the input shaft

244.185 Nm, with a maximum fluctuation 111.63 Nm.

10. The
torque. Therefore, the output shaft torque will fluctuate between 355.815 and
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4.7 Additional Problems

1. Derive the condition for exact straight line motion. Show that the Paucellier
mechanism satisfies this condition.

2. Show that the Hart linkage generates an exact straight line.
3. State the conditions for a Scott–Russel mechanism to generate an exact straight

line. Describe how such a mechanism can be modified by replacing the slider
with a rocker and generate an approximate straight line. Modify this linkage
further so that the approximate straight line generated is offset from the crank
rotation center. Obtain the best point to describe an approximate straight line for
such a linkage by using the concept of instantaneous center.

4. A modified Scott–Russel mechanism has its crank, connecting rod, rocker and
ground links of lengths 1.65, 2, 2 and 4 units respectively. Draw the linkage
when the crank makes an angle of 60◦ from the base link. Find the best point
on the coupler that will describe an offset approximate straight line. Draw the
approximate straight line expected at this position of the linkage. Also find the
coupler curve equation for this point.

5. In a Watt’s linkage, the two rocking levers are in the ratio of 4 to 3 units. Show
how you can obtain approximate straight line motion for a suitable point on the
coupling rod. The coupler rod can be around 1.5 to 2 units in length.

6. State the conditions for generating an approximate straight line of a point on the
coupler rod of a Tchebicheff linkage. Using suitable proportions draw the linkage
and show the points through which the straight line will pass. Derive the coupler
curve equation of the point describing the approximate straight line.

7. Design a Davis steering gear linkage for an automobile with a wheel base 2.5 m.
The distance between the pivots of the front axle may be taken to be around 1 m.
Derive any relations used in the calculations.

8. An Ackermann steering gear mechanism is used for an automobile with a track
of 1.5 m and a wheel base of 2.75 m. Design the four-bar linkage to give the best
possible steering. You may take the distance between the front stub axle pivots
to be around 1.25 m. Make a plot of cot φ − cot θ as a function of θ and show
where the correct steering occurs.

9. Two horizontal shafts A and B whose axes intersect and are inclined at an angle
δ are connected by a Hooke’s joint. If A is the driving shaft and rotates at a
uniform angular speed ω rad/s, find an expression for the angular speed of the
shaft B when one of the cross arms A is turned through an angle θ from its
vertical position. Hence, determine for the case when δ = 30◦ the maximum and
minimum velocity ratios and the ratio of the fluctuation of the speed of B to the
mean speed.

◦

the fork end of the driving shaft has rotated 30◦ from the horizontal plane.

10. Two horizontal shafts are connected by a Hooke’s joint. The angle between the
shafts is 160 . The driving shaft rotates uniformly at 150 RPM. The driven shaft
carries a flywheel weighing 10 kg having a radius of gyration 10 cm. Find the
torque required on the driving shaft to overcome the inertia of the flywheel, when



Chapter 5
Cams

Cam

Component with a curved profile or surface whereby it imparts a displacement either
by point or line contact with a cam follower.

Cam Follower

Component that receives motion directly from a cam.

5.1 Types of Cams and Followers

Disk [Plate or Radial] Cam

Disk that rotates about an axis perpendicular to its plane and drives a follower
through contact with its profile, see Figure 5.1.

Cylindrical [Barrel] Cam

Rotating cylinder with a curved groove in its surface or a curved rib on its surface
whereby contact is made with a follower, see Figure 5.2.

Translation Cam

Cam with a translatory motion having a profile on one side whereby contact is made
with a follower, see Figure 5.3.
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Fig. 5.1 Disk cam with translating roller follower

Fig. 5.2 Cylindrical cam
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Face Cam

Rotating cam that makes contact with a follower by means of a groove in or a rib on
a plane surface that is perpendicular to the axis of cam, see Figure 5.4.

Spherical Cam

Rotating hollow sphere with a groove in or a rib on its inner surface to make contact
with a follower.

Yoke Cam

Constant-breadth radial cam designed to mesh with a yoke follower.

Translatory Follower

Follower receiving translatory motion that passes through the center of rotation of a
cam; see Figure 5.5a.

Knife Edge Follower

Follower with a knife edge point that makes contact with and receives motion from
a cam; see Figure 5.6a.

Roller Follower

A roller on the follower makes contact with and receives motion from a cam, see
Figure 5.1.

Flat Follower

A flat surface on the follower makes contact with and receives motion from a cam;
see Figure 5.5a.

Spherical Faced Follower

A spherical faced surface on the follower makes contact with and receives motion
from a cam; see Figure 5.5b.
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Fig. 5.3 Translation cam

Fig. 5.4 Face cam
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(a) (b)

Fig. 5.5 (a) Translatory follower through the center of a cam. (b) Spherical faced translatory fol-
lower

Offset Follower

A follower receiving translatory motion that is offset from the center of rotation of
a cam, see Figures 5.6b and c.

Oscillating Follower

A follower receives an oscillatory motion from a cam, see Figure 5.7.
The cam followers can be classified depending on the type of element that re-

ceives different types of motion, e.g., translatory roller follower, translatory offset
flat follower, oscillating roller follower, etc.

5.2 Displacement Diagrams

Cam-follower systems are designed to achieve a desired oscillatory motion as in the
case of internal combustion engine valves, machine tool drives, printing machinery,
computer drives, etc. Appropriate displacement diagrams are to be chosen for this
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(a) (b)

(c)

Fig. 5.6 (a) Translating knife edge offset follower. (b) Translating roller offset follower. (c) Trans-
lating flat offset follower
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Fig. 5.7 Oscillating follower

purpose before designing the cam surface. The cam is assumed to rotate at a constant
speed and the follower in each revolution raises, dwells, and returns or falls to its
original position and dwells again through specified angles of rotation of the cam
before rising again in the next cycle. Various types of displacement diagrams for
rise motion are described below.

Uniform [Constant Velocity] Motion

The total cam angle β and the lift L are divided into equal numbers of parts and
the follower displacement at any cam angle θ , say 2 is given by the point 2′, see
Figure 5.8a. Analytically, the displacement y can be represented as

y = cθ (5.1)

The constant c in the above is determined from the boundary conditions

y = 0 at θ = 0

y = L at θ = β (5.2)

Therefore

y = L

β
θ (5.3)

The velocity and acceleration are obtained by taking the derivative of y with time
and using (ω = dθ/dt)
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(a)

(b)

Fig. 5.8 (a) Uniform (constant velocity) motion. (b) Velocity and acceleration for uniform motion

v = dy

dt
= d

dt

(
L

β
θ

)
= L

β
ω (5.4)

a = d2y

dt2
= 0 (5.5)

Note that the velocity jumps from 0 to a constant value suddenly at time t = 0
and drops to zero again when θ = β . Therefore

a|θ=0 = +∞ and a|θ=β = −∞ (5.6)

The velocity and accelerations are shown in Figure 5.8b. This motion is denoted
by CV-1 for rise and CV-2 for fall motion.

We will learn later that the inertia force is a product of mass and acceleration and
if acceleration reaches infinity these forces become infinity or very large; therefore
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Fig. 5.9 Modified uniform motion

CV-1 and CV-2, though they are simple cannot be used even for fairly marginally
high angular velocities. They are limited to very slow speeds.

Uniform Motion Modified by a Circular Arc

Because of infinite inertias at the beginning and completion of rise motion in Fig-
ure 5.8, the uniform motion is generally rounded off by a circular arc as shown in
Figure 5.9. In early days such small modifications were used to retain simplicity and
ease in manufacturing.

Parabolic [Constant Acceleration] Motion

Graphical construction of this motion can be made as follows.
Choose any convenient length to represent the cam rotation angle β and draw a

vertical line to represent total lift L as shown in Figure 5.10a.

1. The cam angle is divided into equal parts, say six as shown in the figure. (This
number is chosen for the purpose of illustration, otherwise technicians can do a
better job in manufacturing with a larger number of divisions; alternatively nu-
merically controlled machine tools can, in the present day, do a far more accurate
job.)

2. Draw a convenient line and divide it in the ratio 1:3:5:5:3:1 (or 1:3:5:7:7:5:3:1 if
the cam angle is divided into eight parts, etc.).

3. The total lift is now divided in the same ratios by drawing parallel lines as shown.
4. Mark the corresponding points, 1′-1, 2′-2, . . . , 6′-6 and join them by a smooth

line.

Analytically, the parabolic motion can be represented by
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(a)

(b)

Fig. 5.10 (a) Parabolic motion. (b) Velocity, acceleration and jerk of parabolic motion

y = cθ2 (5.7)

upto the inflection point 3 in Figure 5.10. This is an important point, where the
maximum steepness of the cam is defined. The boundary conditions are

y = 0atθ = 0

y = 1

2
L at θ = 1

2
β (5.8)

Note that the number of boundary conditions is limited depending on the un-
knowns in equation (5.7). We take whatever velocities and accelerations result in
such a motion and cannot control them with simple motions such as CV-1, CV-2 or
parabolic motion. Therefore
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y = 2L

(
θ

β

)2

(5.9)

The velocity and acceleration for this region are

v = 4Lω

β2
θ (5.10)

a = 4Lω2

β2 (5.11)

Since the velocity increases uniformly with constant acceleration, parabolic mo-
tion is often referred to as Constant Acceleration Motion. The maximum velocity
occurs at the midpoint of the cam angle when θ = 1/2β , which is

v
∣∣
θ= 1

2 β
= 2Lω

β
(5.12)

For the second half of the motion we write the full second-degree equation for a
parabola

y = c1 + c2θ + c3θ
2 (5.13)

The boundary conditions are

y = 1

2
L at θ = 1

2
β, ẏ = 2Lω

β

y = L at θ = β (5.14)

Therefore, the constants in equation (5.13) are

c1 = −L

c2 = 4L

β

c3 = −2L

β2 (5.15)

Hence we can write the lift, velocity and acceleration as functions of rotation angle
θ :

y = L

[
1 − 2

(
1 − θ

β

)2
]

(5.16)

v = 4Lω

β

(
1 − θ

β

)
(5.17)

a = −4Lω2

β2 (5.18)
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We note that the acceleration is constant in the first and second halves of the
motion. In the first half, it rises to a positive acceleration 4Lω2/β2 from zero and
at its inflection point it changes to deceleration −4Lω2/β2 before returning to zero.
The rate of change of acceleration is defined as jerk J and is given for parabolic
motion by

θ = 0, J = +∞

θ = 1

2
β, J = −∞

θ = β, J = +∞ (5.19)

Figure 5.10b gives the above relations. Parabolic motion for rise is denoted as
PB-1 and for fall it is denoted by PB-2. Though parabolic motion gives finite accel-
eration, therefore, finite inertia forces, there are three infinite jerks in each revolution
which cause undue vibrations for high speed cams.

Trapezoidal Acceleration

The square wave’s discontinuities of acceleration in Figure 5.10b can be removed
by linearly increasing the acceleration in a cam angle β/8 at the start and finish
of the rise motion and decreasing the acceleration linearly through an angle β/4 at
the middle. Such a motion is denoted TP-1 for rise and TP-2 for fall motions. This
motion removes infinite jerks and makes them finite three times in each rise or fall
motion.

Modified Trapezoidal Acceleration

Here, the linear variation of acceleration or deceleration used in trapezoidal accel-
eration motion is replaced by split sine waves at the beginning, middle and end por-
tions of the constant acceleration motion. The displacement, velocity, acceleration
and jerk for this motion in different regions of the cam angle are given below.

Region 0 ≤ θ <
1

8
β

y = L

[
0.38898448

θ

β
− 0.0309544 sin

4πθ

β

]

v = 0.38898448
Lω

β

[
1 − cos

4πθ

β

]

a = 4.888124
Lω2

β2
sin

4πθ

β

J = 61.425769
Lω3

β3 cos
4πθ

β
(5.20)
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Region
1

8
β ≤ θ <

3

8
β

y = L

[
2.44406184

(
θ

β

)2

− 0.22203097
θ

β
+ 0.00723407

]

v = Lω

β

[
4.888124

θ

β
− 0.22203097

]

a = 4.888124
Lω2

β2

J = 0 (5.21)

Region
3

8
β ≤ θ <

5

8
β

y = L

[
1.6110154

θ

β
− 0.0309544 sin

(
4πθ

β
− π

)
− 0.3055077

]

v = Lω

β

[
1.6110154 − 0.38898448 cos

(
4πθ

β
− π

)]

a = 4.888124
Lω2

β2
sin

(
4πθ

β
− π

)

J = 61.425769
Lω3

β3 cos

(
4πθ

β
− π

)
(5.22)

Region
5

8
β ≤ θ <

7

8
β

y = L

[
−2.44406184

(
θ

β

)2

+ 4.6660917
θ

β
− 1.2292648

]

v = Lω

β

[
−4.888124

θ

β
+ 4.6660917

]

a = −4.888124
Lω2

β2

J = 0 (5.23)
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Region
7

8
β ≤ θ < β

y = L

[
0.38898448

θ

β
+ 0.0309544 sin

(
4πθ

β
− 3π

)
+ 0.6110154

]

v = 0.38898448
Lω

β

[
1 + cos

(
4πθ

β
− 3π

)]

a = −4.888124
Lω2

β2
sin

(
4πθ

β
− 3π

)

J = −61.425769
Lω3

β3 cos

(
4πθ

β
− 3π

)
(5.24)

Simple Harmonic [Cosine Acceleration] Motion

The displacement curve is shown in Figure 5.11a. The following steps may be fol-
lowed to construct this curve:

1. Draw a semi circle with lift L as diameter as shown in Figure 5.11a.
2. Divide the circle into the same number of parts as the cam angle β is divided.
3. Draw horizontal lines from the peripheral divisions of the circle to obtain 1′, 2′,

. . . , 6′.
4. Locate the points of the curve for different positions of cam angle 1, 2, . . . , 6 and

draw a smooth curve through these points as shown.

We call this a full harmonic and denote it as H-5. The equations for displacement,
velocity, acceleration and jerk relations for such a harmonic are

y = L

2

(
1 − cos

πθ

β

)

v = πLω

2β
sin

πθ

β

a = L

2

(
πω

β

)2

cos
πθ

β

J = −L

2

(
πω

β

)3

sin
πθ

β
for 0 < θ < β

J = +∞ for θ = 0 and β (5.25)

Since the acceleration is the cosine, the harmonic motion is also called “cosine
acceleration curve”. Even though there is a finite acceleration, there are still two
jerks in every revolution. The corresponding motion for fall is denoted by H-6.
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(a)

(b)

Fig. 5.11 (a) Simple harmonic (cosine acceleration or H-5) motion. (b) Velocity, acceleration and
jerk of simple harmonic motion

Cycloidal [Sine Acceleration] Motion

The construction procedure for this lift curve is as follows:

1. Construct a circle of radius L/2π with its center at full lift position as shown in
Figure 5.12a.

2. Divide the circle into the same number of parts as the cam angle has been divided,
in this case, six as shown in the figure.

3. Name the points thus obtained as 1′, 2′, . . . , 6′ in a clockwise manner beginning
from position 0 as shown in the figure.

4. Project these points onto the vertical line.
5. Join point 0 on the cam angle axis with the projected point 0′, which is the diag-

onal line in Figure 5.12a.
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(a)

(b)

Fig. 5.12 (a) Cycloidal (sine acceleration or C-5) motion. (b) Velocity, acceleration and jerk of
cycloidal motion

6. Draw parallel lines from the projected points of 1′, 2′, . . . , 6′ to the vertical line
to intersect the vertical lines at the corresponding positions 1, 2, . . . , 6 from the
cam angle axis.

7. Draw a smooth curve through these intersection points to give the cycloidal lift
curve.

This motion is a full cycloid, denoted by C-5. The equation for this motion along
with its velocity, acceleration and jerk are given below:

y = L

(
θ

β
− 1

2π
sin

2πθ

β

)

v = Lω

β

(
1 − cos

2πθ

β

)

a = 2Lπ

(
ω

β

)2

sin
2πθ

β
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J = 4Lπ2
(

ω

β

)3

cos
2πθ

β
(5.26)

This is also called “sine acceleration motion”. (One can begin with acceleration
expression a = C sin 2π(θ/β), integrate and use the appropriate boundary condi-
tions to derive the rest of the relations in the above equation). In this case, the jerk
is a finite quantity throughout the cam angle and therefore is more suitable for high
speed applications to keep the vibrations low. The corresponding motion for the fall
is denoted by C-6.

Modified Sine Acceleration Motion

Here two sine waves for acceleration are used; one of a period β/2 and the other
of period 3β/2. The first and fourth quarters of the first sine curve are fitted at the
first and last β/8 of the cam angle. The second and third quarters of the second
sine curve is placed in the slot β/8 to 7β/8 of the cam angle. The equations for the
acceleration of rise motion are given by

Region 0 ≤ θ <
1

8
β

y = L

[
0.43990085

θ

β
− 0.0350062 sin

4πθ

β

]

v = 0.43990085
Lω

β

[
1 − cos

4πθ

β

]

a = 5.5279571
Lω2

β2 sin
4πθ

β

J = 69.4663577
Lω3

β3
cos

4πθ

β
(5.27)

Region
1

8
β ≤ θ <

7

8
β

y = L

[
0.28004957 + 0.43990085

θ

β
− 0.31505577 cos

(
4π

3

θ

β
− π

6

)]

v = 0.43990085
Lω

β

[
1 + 3 sin

(
4π

3

θ

β
− π

6

)]
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a = 5.5279571
Lω2

β2
cos

(
4π

3

θ

β
− π

6

)

J = −23.1533
Lω3

β3 sin

(
4π

3

θ

β
− π

6

)
(5.28)

Region
7

8
β ≤ θ ≤ β

y = L

[
0.56009915 + 0.43990085

θ

β
+ 0.0350062 sin

4πθ

β

]

v = 0.43990085
Lω

β

[
1 − cos

4πθ

β

]

a = 5.5279571
Lω2

β2 sin
4πθ

β

J = 69.4663577
Lω3

β3
cos

4πθ

β
(5.29)

Polynomial Motion

The above displacement curves are chosen from known mathematical functions. We
have seen that some of them have infinite accelerations or jerks which cause severe
stresses and vibration problems. Moreover, we may like to have a specified function
for the displacement curve and it may produce sudden discontinuities in motion.
Therefore, polynomial functions of a desired degree can be generated to suit the
specific demands in a design problem. The simplest case of a polynomial function
is

y = C0 + C1θ (5.30)

Since only two constants are chosen, we choose two boundary conditions to be
satisfied. Let

y = 0 at θ = 0

y = L at θ = β (5.31)

Therefore

y = L

β
θ (5.32)

Next let us consider a third-degree polynomial with the boundary conditions
(choosing four)
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y = C0 + C1θ + C2θ
2 + C3θ

3

y = 0, ẏ = 0 at θ = 0

y = L, ẏ = 0 at θ = β (5.33)

The velocity of the follower for the motion in (5.33) is obtained by differentiating
the same with respect to time t:

ẏ = C1ω + 2C2ωθ + 3C3ωθ2 (5.34)

The constants in equation (5.33) can now be obtained, which are

C0 = 0

C1 = 0

C2 = 3L

β2

C3 = −2L

β3 (5.35)

Therefore the displacement, velocity, acceleration and jerk for this motion are

y = 3L

β2
θ2 − 2L

β3
θ3

v = 6L

β2 ωθ − 6L

β3 ωθ2

a = 6L

β2 ω2 − 12L

β3 ω2θ

J = −12L

β3 ω3 for 0 < θ < β

= +∞ at θ = 0

= −∞ at θ = β (5.36)

Since the constants C2 and C3 are only present in the displacement curve, this
cam is also called a 2-3 cam.

A 3-4-5 polynomial cam can be similarly derived from a fifth-degree polynomial
with the boundary conditions given below:

y = C0 + C1θ + C2θ
2 + C3θ

3 + C4θ
4 + C5θ

5 (5.37)
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y = 0, ẏ = 0 and ÿ = 0 at θ = 0

y = L, ẏ = 0 and ÿ = 0 at θ = β (5.38)

The constants C can be obtained as

C0 = 0

C1 = 0

C2 = 0

C3 = −10L

β3

C4 = −15L

β4

C5 = 6L

β5 (5.39)

Finally,

y = 10L

β3 θ3 − 15L

β4 θ4 + 6L

β5 θ5

v = 30L

β3 ωθ2 − 60L

β4 ωθ3 + 30L

β5 ωθ4

a = 60L

β3 ω2θ − 180L

β4 ω2θ2 + 120L

β5 ω2θ3

J = 60L

β3
ω3 − 360L

β4
ω3θ + 360L

β5
ω3θ2 (5.40)

The advantage with the above type of cam is that it has finite and continuous
accelerations and jerks throughout the cam angle for rise motion.

Combinations of Displacement Curves

A general procedure to choose displacement curves for rise and fall motions is to
combine suitable motions from the curves discussed so far and other harmonic,
cycloid and polynomial curves given in Figures 5.13, 5.14 and 5.15. H-1 to H-4 are
half harmonics, the first two of them for rise motion and the next two for fall motion
respectively. H-5 is a full harmonic discussed earlier and H-6 is for fall motion.
Note that these curves have different end conditions for velocity and acceleration.
Similarly Figure 5.14 gives C-1 to C-4 half Cycloidal motions and C-5 and C-6
full Cycloid motions. P-1 and P-2 are eighth-power polynomials for rise and fall
motions respectively as given in Figure 5.15.
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Fig. 5.13 Harmonic motion characteristics

As an example consider a follower that is required to dwell, rise with accelera-
tion, rise with uniform velocity, further rise with deceleration and then dwell again
according to the following requirements:

Point 1 Point 2 Point 3 Point 4

θ = 0 θ = θ2 θ = θ3 θ = θ4
y = 0 y = L1 y = L1 + L2 y = L1 + L2 + L3
v = 0 v = v1 v = v1 v = 0
a = 0 a = 0 a = 0 a = 0

Figure 5.16 gives a proposed solution. From point 1 to 2, C-1 half cycloid is chosen
to provide zero acceleration at the beginning and completion, while connecting with
uniform velocity of the next motion from point 2 to 3. From 3 to 4, half cycloid C-2
is used to couple the zero acceleration and constant velocity at the end of point 3 to
bring the follower to dwell position. In the displacement, velocity and acceleration
curves make sure there are no discontinuities.



138 5 Cams

Fig. 5.14 Cycloidal motion characteristics

Fig. 5.15 Eighth-power polynomial characteristics
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Fig. 5.16 Proposed solution

As another example compare maximum velocity, acceleration and jerks of con-
stant acceleration, cosine acceleration, sine acceleration and their modified versions
giving comments on each case.

Motion Max. Vel Max Accln. Max. Jerk Comments

Parabolic or
Constant Accln. 2Lω/β 4Lω2/β2 ∞ Jerk not acceptable
Trapezoidal Accln. 2Lω/β 5.3Lω2/β2 44Lω3/β3 Not as good as

modified trapezoid
Modified Trapezoidal 2Lω/β 4.888Lω2/β2 61Lω3/β3 Low acceleration but
Accln. rough jerk
Harmonic or Cosine Accln. 1.571Lω/β 4.945Lω2/β2 ∞ Jerk not acceptable
Cycloidal or Sine Accln. 2Lω/β 6.283Lω2/β2 40Lω3/β3 High acceleration,

lower jerk but both
are smooth

Modified Sine Accln. 1.76Lω/β 5.528Lω2/β2 69Lω3/β3 Low velocity,
moderate acceleration
but higher jerk
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5.3 Disk Cam with Knife-Edge Follower

In the graphical layout of the cam surface for a particular displacement of the fol-
lower, it is generally necessary to have as many divisions of the cam angle, so that
the desired surface can be accurately obtained. One can use appropriate graphics
software to do this as illustrated later in solved problems. However, in the examples
below, only few divisions (six) are made for the purpose of illustration.

Minimum Size [Base Circle]

Cam surface with zero lift.
The procedure involves in holding the cam stationary and rotating the follower

in a direction opposite to that of cam rotation.
The knife edge follower is rarely used in practice; however, it forms the basis

of layout of cam surfaces. Let the follower motion be CV-1 for rise through 2 cm
in 180◦ of cam rotation, dwell for 36◦ and then a return with CV-2 motion. The
minimum size of the cam (base circle diameter) is 4 cm and it rotates in a counter-
clockwise direction.

1. The first step is to draw the displacement diagram as shown in Figure 5.17a.
2. Draw the base circle 4 cm diameter and locate the starting point 0 as shown.
3. Divide the lift angle 180◦ into six equal divisions and mark these lines 1, 2, . . . , 6

in a direction opposite to that of the rotation of the cam, i.e., clockwise direction.
4. Project the displacements at positions 1, 2, . . . , 6 from the displacement diagram

onto the initial position of the follower as shown.
5. Next, transfer these distances to the corresponding radial lines, by drawing arcs

from the base circle center and draw a smooth curve through all these successive
lift positions.

6. Draw an arc of 36◦ from the full rise position to the beginning of the return
motion corresponding to the dwell.

7. Divide the fall angle 144◦ into six equal divisions and mark these lines 6, 7, . . . ,
12 in clockwise direction beginning from the fall position (end of dwell).

8. Project the displacements at positions 6, 7, . . . , 12 from the displacement diagram
onto the initial position of the follower.

9. Next, transfer these distances to the corresponding radial lines, by drawing arcs
from the base circle center and draw a smooth curve through all these successive
fall positions.
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Fig. 5.17 (a) Displacement diagram. (b) Knife edge follower cam construction or base circle

5.4 Translating Roller Follower

Trace Point

It is a theoretical point on the cam follower corresponding to a knife-edge follower.
This is used to generate a pitch curve.

Pitch Curve

This is a curve generated by the trace point. This is also the cam surface working
with a knife-edge follower.
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Prime circle

This is the minimum size of the cam through the pitch curve. Also, the base circle
with a knife-edge follower.

As an example, motion PB-1 and PB-2 are used to take a roller translating fol-
lower through 2 cm lift and return with equal duration and no dwell. The minimum
size of the cam is 4 cm and the roller diameter is 1 cm. The cam rotates in a counter-
clockwise direction.

The graphical layout of the cam surface is shown in Figures 5.18a and b. Follow
the steps given below:

1. Draw the base circle 4 cm diameter.
2. Draw the prime circle 2.5 cm radius (base circle radius + roller radius).
3. Draw the displacement diagram as described in Figure 5.10 for both rise and fall

each through 180◦.
4. Locate the trace point on the prime circle. This is the knife-edge point (the center

of roller of the follower) from which the pitch curve is generated.
5. Divide the lift angle 180◦ into six equal angles and mark these lines 1, 2, . . . , 6

in a direction opposite to that of the rotation of the cam, i.e., clockwise direction.
6. Project the displacements at positions 1, 2, . . . , 6 from the displacement diagram

onto the initial position of the follower (this is not shown to improve the clarity,
these steps are the same as in the previous example).

7. Next, transfer these distances to the corresponding radial lines, by drawing arcs
from the base circle center and draw a smooth curve through all these successive
lift positions.

8. Divide the fall angle 180◦ into six equal divisions and mark these lines 6, 7, . . . ,
12 in clockwise direction beginning from the full rise position (dwell equal to
zero).

9. Project the displacements at positions 6, 7, . . . , 12 from the displacement diagram
onto the initial position of the follower.

Pressure Angle

A pressure angle is the angle between the follower’s motion and normal to the pitch
curve (see Figure 5.18b). This angle gives the force direction of the cam and the
roller of the follower. If the pressure angle is too large, the follower may get jammed
in its bearings (recommended maximum pressure angle is 30◦). Note that Simple

fall positions.
11. The curve obtained through steps 7 and 10 is the pitch curve.

in the figure).
13. Draw a smooth curve tangent to all these circles to give the cam surface.

10. Next, transfer these distances to the corresponding radial lines, by drawing arcs
from the base circle center, and draw a smooth curve through all these successive

12. From the pitch curve draw several circles of radius 0.5 cm (only a few are shown
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(a)

(b) (c)

Fig. 5.18 (a) Displacement diagram. (b) Graphical layout of the cam. (c) Graphical layout of the
cam with offset roller follower

harmonic motion gives a minimum pressure angle compared with cycloidal or poly-
nomial motions.

Pitch Point

This is a point on the pitch curve where the maximum pressure angle occurs. For
parabolic motion, maximum steepness occurs at the inflection points and the pres-
sure angle is maximum here, also see Figure 5.18b.

Pitch Circle

This is a circle drawn through the pitch point with cam center.
Let the roller follower in a previous example be offset to the right of the cam

center by 1 cm.

1. Draw the base circle.
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2. Draw the offset circle as shown in Figure 5.18c.
3. Erect a vertical line to represent the translatory follower motion, which is tan-

gential to the offset circle and to the right of the cam center.
4. Locate point 0 on this line, which is at a distance 2.5 cm (base circle radius +

roller radius) from the center of the cam.
5. Divide the offset circle into the same number of divisions as the lift and fall

motions are divided in the displacement diagram (six each at 30◦ intervals).
6. Draw lines tangential to the offset circle at these points to denote the translating

roller follower position when the cam is held stationary and the follower is moved
in a direction (clockwise) opposite to the direction of cam rotation and mark them
with 1, 2, . . . , 6 and 7, 8, . . . , 12 as shown in the figure.

7. Next, transfer the displacements at the lift and fall positions to the corresponding
radial lines, from the tangency points on the offset circle.

8. Draw a smooth curve through these points to give the pitch curve.
9. Draw several circles on this pitch curve with radius equal to 0.5 cm.
10. Draw a smooth curve tangent to all these circles to obtain the cam surface.

Analytical Design

Referring to Figure 5.19, define the trace point displacement (pitch curve) by

R = R0 + f (θ) (5.41)

where R0 = Rc + Rr is the prime circle radius and f (θ) is follower displacement
as a function of the cam angle of rotation θ . The radius of curvature at any point on
the pitch curve is expressed as

ρ =
[
R2 + (

dR
dθ

)2
]1.5

R2 + 2
(

dR
dθ

)2 − R d2R
dθ2

(5.42)

Pointing [Undercutting]

Whenever the radius of curvature is less than the radius of the follower, pointing
occurs. Figure 5.20a shows the case when the radius of curvature is larger than the
radius of the roller of the follower. When the radius of curvature of the pitch curve
is equal to the roller radius, we have a limiting case, as shown in Figure 5.20b. In
Figure 5.20c, the radius of curvature of the pitch curve is less than the roller radius.
In this case, the cam misses some of the material which should be otherwise there
and the follower does not properly replicate the desired motion.

To avoid pointing or undercutting of the cam, the minimum radius of the pitch
curve in a complete revolution of the cam should be larger than the radius of the
roller follower. Equation (5.42) can be used to determine the radius of curvature at
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Fig. 5.19 Analytical design of cams

various positions of the cam in a complete revolution, 0 to 360◦, and determine the
minimum radius of curvature, ρmin, and its location. For no pointing or undercutting,
ρmin ≥ Rr .

For a given R(θ), equation (5.42) can be differentiated with respect to θ and thus
can find the location θmin where ρmin occurs. Upon substituting the value of θmin

in equation (5.42), ρmin can be determined. As this is not a simple mathematical
procedure, the minimum values of the radius of curvature for different follower
motions are given graphically in Figures 5.21 through 5.23 for different follower
motions. These figures can be used in the design of a translating roller follower and
ensure that the cam is not pointed.
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(a)

(b)

(c)

Fig. 5.20 (a) Radius of curvature larger than radius of the roller of the follower. (b) Radius of
curvature equal to radius of the roller of the follower – limiting case. (c) Radius of curvature less
than radius of the roller of the follower – pointing occurs.
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Fig. 5.21 ρmin for simple harmonic motion as a function of active cam angle β

Maximum Pressure Angle

As mentioned before, the pressure angle should be kept as low as possible to avoid
jamming of the follower in its bearings. Therefore, the maximum pressure angle
for a given motion should be determined and this should be lower than a specified
value.
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Fig. 5.22 ρmin for cycloid motion as a function of active cam angle β.

Refer to Figure 5.24; α represents the pressure angle for the position PQ of the
roller follower. For a small counter-clockwise rotation of the cam, i.e., clockwise
rotation of the follower with the cam held stationary, let the roller move to P ′Q′
from PQ. Then the angle α′ is

α′ = tan−1 P ′M
PM

(5.43)

Also,
∠OPM
θ→0 = 90o and ∠QPP ′


θ→0 = 90o (5.44)
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Fig. 5.23 ρmin for eighth-power polynomial motion as a function of active cam angle β.

That is, PL merges with PN as 
θ → 0, both approaching PM = R
θ . Therefore,

α = lim

θ→0

α′ = tan−1 1

R

dR

dθ
(5.45)

Solving the above equation for a given R(θ), the pressure angle can be determined
for various values of θ and the maximum value can also be determined. This is again
not an easy procedure and therefore, a nomogram devised by Varnum, is provided
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Fig. 5.24 Determination of the maximum pressure angle

Fig. 5.25 Varnum’s nomogram

in Figure 5.25 to determine the maximum pressure angle for three different follower
motions.
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As an example let a radial roller follower be required to have a total displacement
of 2 cm with cycloidal motion for a cam angle β of 60◦. Determine the minimum
radius of the cam and the maximum roller follower radius to limit the maximum
pressure angle to 30◦, and suggest suitable values.

1. From Figure 5.25, for β = 60◦ and αmax = 30◦, L/Ro = 0.35.
2. Therefore, Ro = 2/0.35 = 5.72 cm.
3. From Figure 5.22, for β = 60◦ and L/Ro = 0.35, ρmin/Ro = 0.55.
4. Hence, ρmin = 0.55 × 5.72 = 3.146 cm.
5. Therefore, we can choose Ro = 5.75 cm and Rr = 3.0 cm.

5.5 Translating Flat Follower

Graphical Layout

First we consider the graphical layout of a cam with a translating flat follower.
Draw the cam profile for a translating flat follower to rise and fall through 1.4

cm without any dwell in equal intervals. The minimum size of the cam is 4 cm; Use
simple harmonic motion.

1. Draw the displacement diagram with six equal intervals for the rise and fall mo-
tions as shown in Figure 5.26.

2. Draw the minimum size of the cam with radius equal to 2 cm.
3. Divide the base circle into the same number of parts for both the rise and fall

through 180◦ as the displacement diagram and mark the radial lines 1, 2, . . . , 12.
4. Project the displacements at positions 1, 2, . . . , 12 from the displacement diagram

onto the initial position of the follower. (This is not shown to improve the clarity;
these steps are same as in previous example.)

5. Next, transfer these distances to the corresponding radial lines, by drawing arcs
from the base circle center.

6. Draw lines normal to these radial lines at the corresponding lift positions to rep-
resent the flat follower positions.

7. Draw a smooth curve that is tangential to all the flat follower lines (do not join
these lift positions by lines or a smooth curve) to give the cam surface.

8. Note the position where the contact between the cam surface and the follower is
the farthest from the corresponding radial line; let this be W . Then the width of
the flat follower required is 2W .

Analytical Design

Consider Figure 5.27. The contact point denoted by (x, y) is located at a distance
w from the center line of the follower. The displacement of the follower from the
center of cam is
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Fig. 5.26 Graphical layout of translating flat follower

R = Rc + f (θ) (5.46)

From Figure 5.27,
dy

dx
= − cot θ

i.e.
dy

dθ
sin θ = −dx

dθ
cos θ (5.47)

and
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Fig. 5.27 Analytical design of a cam with translating flat follower

R = y sin θ + x cos θ

w = y cos θ − x sin θ (5.48)

From the above equation (5.48), we find

dR

dθ
= y cos θ − x sin θ

w = dR

dθ
= f ′ (θ) (5.49)

and solving the equations in (5.48), we get the cam surface

x = [
Rc + f (θ)

]
cos θ − f ′ (θ) sin θ

y = [
Rc + f (θ)

]
sin θ + f ′ (θ) cos θ (5.50)
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Cusp

A cusp is a point on the cam surface wherein the follower experiences no displace-
ment even though the cam has a rotation.

Such a condition of the cusp is illustrated in Figure 5.28, wherein the follower
at position (x, y) suffers no displacement, even though the cam rotates through an
angle dθ from position θ . This condition can be expressed mathematically by

dx

dθ
= dy

dθ
= 0 (5.51)

Obviously such a condition where a cam surface may have a cusp should be avoided.
The condition to avoid cusps on the cam surface with a flat follower can be obtained
as follows. Differentiate equation (5.50) with respect to θ to give

dx

dθ
= − [

Rc + f (θ) + f ′′ (θ)
]

sin θ

dy

dθ
= [

Rc + f (θ) + f ′′ (θ)
]

cos θ (5.52)

Equation (5.51) will be true only when

Rc + f (θ) + f ′′ (θ) = 0

Therefore, to avoid cusps,

Rc + f (θ) + f ′′ (θ) > 0 (5.53)

As an example determine the base circle diameter of a disk cam and the width
of the translating flat follower to have a total lift of 4 cm during 90◦ of rotation and
return with simple harmonic motion during 90◦, with two equal dwells.

f (θ) = 1

2
L

(
1 − cos

πθ

β

)
= 2 (1 − cos 2θ)

f ′ (θ) = 4 sin 2θ

f ′′ (θ) = 8 cos 2θ

To avoid cusps, Rc + f (θ) + f ′′(θ) > 0, i.e., Rc + 2 + 6 cos 2θ > 0.
Since the minimum value of cos 2θ = −1, Rc > 4 cm. Let Rc = 4.5 cm. The

width of the follower is given by twice that of the maximum value of w = dR/dθ =
f ′(θ) (because of symmetry).

Since f ′(θ)max = [4 sin 2θ ]max = −4, the follower width can be taken as 8.5
cm. The cam surface is plotted from equation (5.50)
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Fig. 5.28 Condition for a cusp

x = [6.5 − 2 cos 2θ] cos θ − 4 sin 2θ sin θ

y = [6.5 − 2 cos 2θ] sin θ + 4 sin 2θ cos θ

5.6 Oscillating Flat Follower

The minimum size of a cam to operate an oscillating flat follower is 10 cm. When
the flat follower is horizontal, its center of rotation is at a radius of 15 cm, making
an angle of 30◦ with a horizontal line passing through the cam center. The oscillat-
ing follower is required to move through a 20◦ angle with an arm 15 cm in length.
The lift motion for the rise is Parabolic with a cam angle of 180◦ following imme-
diately with a simple harmonic motion with a cam angle of 120◦. The cam rotation
is counter-clockwise.

• Draw a circle representing the minimum size of the cam as shown in Figure 5.29.
• Locate the center of the oscillating follower on the line making 30◦ with the

horizontal line at the cam center.
• Draw a horizontal line representing the flat surface of the follower in the zero lift

position.
• Draw a circle with the follower center of oscillation as the center and tangential

to the flat follower line in the zero lift position.
• Locate point G and mark GC as representing the follower arm.
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Fig. 5.29 Oscillating flat follower

• The linear lift length is 15×20×π/180 = 5.236 cm. Construct the displacement
diagram as shown in Figure 5.29 (details not given here). Only six divisions for
the lift and four divisions for the fall motion are shown for clarity.

• The lift at different locations should be converted to arc lengths while drawing
the cam surface.

• As usual keep the cam stationary and rotate the follower around in the opposite
direction of the cam rotation. The center of the follower for the first division is
marked B ′.

• For the first lift division, identify the G′C ′ for no lift. Mark the arc length CF
on CC1 and transfer this to the first division C′F ′, to give G′C′F ′. Draw the
follower position at the first division of the lift, G′F ′.

• Repeat the above step and locate the follower positions at all lift and fall posi-
tions.

• Draw a smooth curve tangential to all the follower positions to obtain the cam
surface.
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If you have an oscillating roller follower, first generate the pitch curve using the
trace point and then obtain the cam surface.

5.7 Cams of Specified Contour

Manufacturing of cams with simple contours is inexpensive and therefore they are
preferred in such applications where the cam follower path does not have to follow
a specified route.

Eccentric Circle Cam with Translating Flat Follower

This is a circular cam with the center of rotation offset from its geometric center.
Figure 5.30a shows such a cam with eccentricity E. Let the displacement of the
follower be y for a cam angle of rotation θ . This motion can also be generated
identically by an equivalent Scotch–Yoke mechanism shown in Figure 5.30b, in
which the displacement yε = y is obtained for the crank rotation angle ε = θ . Note
the starting positions in both the cam-follower and the Scotch–Yoke mechanisms.

Fig. 5.30 Eccentric circle cam with translating flat follower
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Fig. 5.31 Eccentric circle cam with translating roller follower

The displacement of the follower is

y = E (1 − cos θ) (5.54)

The corresponding velocity and accelerations are

v = Eω sin θ

a = Eω2 cos θ (5.55)

Eccentric Circle Cam with Translating Roller Follower

This cam and its equivalent reciprocating linkage are shown in Figure 5.31. In Fig-
ure 5.31b, the crank radius is E and the connecting rod length is l. From the starting
position ε = 0, with the slider at lower dead center C1, the displacement of the
slider is yε = y for ε = θ . We note that

l = r + Rr (5.56)

The lift expression can be obtained from
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Fig. 5.32 Circular arc cam [triple-curve] with translating flat follower (K0K1)

y = OC′ − OC1 = [E cos (180 − θ) + l cos ϕ] − [l − E]

= E − l − E cos θ + l cos ϕ

Since, sin ϕ = (π/l) sin θ we can rewrite the above equation as

y = E (1 − cos θ) − l +
√

l2 − E2 sin2 θ (5.57)

Circular Arc Cam [Triple-Curve] with Translating Flat Follower

This cam has three circular arcs K0K1 (rise), K1K2 (rise and fall equally divided)
and K2K3 (fall) having centers C1, C2 and C3 respectively as shown in Figure 5.32a.
The base circle radius is Rc and has a dwell period 2γ marked by the region K3KK0.
In general C1OK0, C2OK , C3OK3, C1C2K1 and C3C2K2 are all made to lie on
different lines as shown. It is also conventional to make OC1 = OC2 = OC3.

The equivalent Scotch–Yoke for the rise motion on K0K1 having the geometric
center at C1 and center of rotation at O is shown in Figure 5.32b. Here,

ε = θ − γ and y = yε (5.58)

Let the eccentricity of the first curve K0K1 given by OC1 be equal to E1. Then
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Fig. 5.33 Circular arc cam [triple-curve] with translating flat follower (K1K2)

y = E1 (1 − cos ε) (5.59)

The equivalent Scotch–Yoke for the motion on K1K2 is given in Figure 5.33. It is
evident that

ε = θ and y = yε (5.60)

Let
y = yε + X (5.61)

To determine X, consider the full lift position, where

L = 2E2 + X (5.62)

The eccentricity for this arc and nose radius ρN from Figure 5.33, are related by

E2 = L + Rc − ρN (5.63)

From the above two equations (5.62) and (5.63), we get

X = 2ρN − 2Rc − L (5.64)

Therefore,
y = E2 (1 − cos ε) + 2ρN − 2Rc − L (5.65)

For the arc K2K3 equations (5.58) and (5.59) will hold.
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Fig. 5.34 Circular arc cam [triple-curve] with translating roller follower for the arc K0K1

Circular Arc Cam [Triple-curve] with Translating Roller Follower

For the arc K0K1, the equivalent slider crank mechanism is shown in Figure 5.34.
The crank radius is E1 and the connecting rod length l1 = E1−Rc+Rr . It is evident
that

ε = θ − γ and y = yε (5.66)

y = E1 − l1 − E1 cos(θ − γ ) +
√

l1
2 − E1

2 sin2(θ − γ ) (5.67)

For the roller follower acting on the nose of the cam, the equivalent linkage is
shown in Figure 5.35. The crank radius is E2 and the connecting rod length is l2 =
ρN − Rr . It is evident that

ε = θ and y = yε (5.68)

Expressing y in a similar manner as in the case of translating flat follower, the
value of X in the equation y = yε − X can be determined as X = 2ρN − Rc − L,
see equation (5.64). Hence,

y = E2 (1 − cos ε) − l2 (1 − cos ϕ) + 2ρN − 2Rc − L (5.69)

Using sin ϕ = (π/l) sin θ the above equation can be written as

y = E2 (1 − cos θ) − l2 +
√

l2
2 − E2

2 sin2 θ + 2ρN − 2Rc − L (5.70)
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Fig. 5.35 Circular arc cam [triple-curve] with translating roller follower for the nose

Tangent Cam with Roller Follower

This is a triple curve cam in which the arcs K0K1 (rise) and K2K3 (fall) have infinite
radius, i.e., the two flanks now become straight lines tangential to the base and nose
circles. To determine the lift on the first straight line flank, consider the triangles
OK0I and IPC in Figure 5.36 from which we get

OI = Rc sec θ

IC = Rr sec θ (5.71)

Also,
y = OC − Rc − Rr (5.72)

Therefore
y = (Rc + Rr)(sec θ − 1) (5.73)

Differentiating once with respect to time, the velocity is given by

v = ω (Rc + Rr) sec θ tan θ (5.74)

The acceleration is given by one more differentiation
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Fig. 5.36 Tangent cam with roller follower

a = ω2 (Rc + Rr)
[
sec θ tan2θ + sec θ(1 + tan2θ)

]

= ω2 (Rc + Rr)
1 + sin2 θ

cos3θ
(5.75)

The action of the roller follower on the nose of the tangent cam is the same as
that of the triple curve circular arc cam.

5.8 Solved Problems

Solved Problem 5.1

Construct the profile of a disk cam with a translating roller follower. Base circle dia
15 cm, roller dia 1.5 cm, lift 5 cm in 180◦, return in 135◦ and then dwell. Both the
lift and return motions are to be harmonic. The cam rotates in a clockwise direction.
Check whether there will be undercutting on the cam profile. What is the maximum
pressure angle?

The displacement, velocity and acceleration of the rise and return motions in 10◦
intervals are calculated from (5.25) and tabulated below:
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θ y v a

0 0 0.00000 0.00000 2.5000
1 10 0.03798 0.43412 2.4620
2 20 0.15077 0.85505 2.3492
3 30 0.33494 1.25000 2.1651
4 40 0.58489 1.60697 1.9151
5 50 0.89303 1.91511 1.6070
6 60 1.25000 2.16506 1.2500
7 70 1.64495 2.34923 0.8551
8 80 2.06588 2.46202 0.4341
9 90 2.50000 2.50000 0.0000

10 100 2.93412 2.46202 –0.4341
11 110 3.35505 2.34923 –0.8551
12 120 3.75000 2.16506 –1.2500
13 130 4.10697 1.91511 –1.6070
14 140 4.41511 1.60697 –1.9151
15 150 4.66506 1.25000 –2.1651
16 160 4.84923 0.85505 –2.3492
17 170 4.96202 0.43412 –2.4620
18 180 5.00000 0.00000 –2.5000
19 190 4.93261 –0.76872 –4.3246
20 200 4.73408 –1.49600 –3.9717
21 210 4.41511 –2.14263 –3.4046
22 220 3.99290 –2.67374 –2.6540
23 230 3.49020 –3.06072 –1.7603
24 240 2.93412 –3.28269 –0.7718
25 250 2.35464 –3.32769 0.2584
26 260 1.78299 –3.19330 1.2747
27 270 1.25000 –2.88675 2.2222
28 280 0.78440 –2.42458 3.0500
29 290 0.41128 –1.83170 3.7133
30 300 0.15077 –1.14007 4.1764
31 310 0.01690 –0.38698 4.4144
32 315 0.00000 0.00000 4.4444

Figure 5.37 gives the construction of the cam profile. Note that the follower is
taken counter-clockwise around the cam.

1. Draw the base circle 15 cm diameter.
2. Draw the prime circle 8.25 cm radius (base circle radius + roller radius).
3. Locate the trace point on the prime circle. This is the knife-edge point (the center

of roller of the follower) from which the pitch curve is generated.
4. Divide the lift angle 180◦ into 18 equal divisions and mark these lines 1, 2, . . . ,

18 (not shown in figure) in a direction opposite to that of the rotation of the cam,
i.e., counter clockwise direction.

5. Transfer the displacements at positions 1, 2, . . . , 18 from the table above onto
the corresponding radial lines from the prime circle and draw a smooth curve
through all these successive lift positions to get the pitch curve.

6. Divide the fall angle 135◦ into 13 equal divisions of 10◦ and the last division of
5◦ corresponding to the positions given in table above. Mark these lines 19, 20,
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Fig. 5.37

. . . , 31, 32 in counter-clockwise direction beginning from the full rise position
(dwell equal to zero).

7. Transfer the displacements at positions 19, 20, . . . , 32 from the table above onto
the corresponding radial lines from the prime circle and draw a smooth curve
through all these successive lift positions to get the pitch curve in the return
motion. For the rest of the cam angle 45◦, in the dwell portion, the pitch curve is
the same as the prime circle.

8. From the pitch curve draw several circles of radius 0.75 cm.
9. Draw a smooth curve tangent to all these circles to give the cam surface.

1. Check for undercutting in the rise portion: L/R0 = 5/8.25 = 0.606.
2. From Figure 5.21a, ρmin/R0 = 1.35 for β = 180◦, ρmin = 11.1375 > 0.75.
3. Hence no undercutting occurs in the rise portion.
4. Check for undercutting in the return portion.
5. From Figure 5.21a, ρmin/R0 = 1.20 for β = 135◦, ρmin = 9.9 > 0.75.
6. Hence no undercutting occurs in the return motion also.
7. From Figure 5.25, αmax = 18◦ for β = 135◦ and αmax = 15◦ for β = 180◦.

Maximum pressure angle is 18◦.
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Solved Problem 5.2

In the above problem, the roller follower is offset by 2 cm and the lift portion is
cycloidal while the fall portion is parabolic. Construct the cam profile.

1. First construct the base circle and then the offset circle, see Figure 5.38.
2. Locate the trace point on the vertical line from zero position on the offset circle,

such that, the roller will touch the base circle at this position. Find the trace point
height which is 8.310385 cm.

3. Determine the lift displacements at conveniently divided number of cam angle
positions, here 12 in number at 15◦ intervals, see the table given below. (If you
prefer you can follow the graphical construction.)

4. Find the trace point distances at each of these locations from the offset positions
of the follower (tangential to the offset circle), see table given below. Locate these
points and join them to give a smooth curve (pitch curve).

5. Repeat the above two steps 3 and 4 for the return motion. (Use 12 steps for the
parabolic motion at 11.25◦ intervals.)

6. Complete the pitch curve by drawing a circle in the dwell period.
7. Draw several circles of roller radius at each of the pitch curve positions and draw

the cam surface which is tangential to all these rollers.

Cycloidal motion lift

y = L

(
θ

β
− 1

2π
sin

2πθ

β

)

θ y Trace point

0 0 0.0000 8.3104
1 15 0.0188 8.3292
2 30 0.1441 8.4545
3 45 0.4543 8.7646
4 60 0.9775 9.2879
5 75 1.6854 9.9958
6 90 2.5000 10.8104
7 105 3.3146 11.6249
8 120 4.0225 12.3329
9 135 4.5458 12.8562

10 150 4.8558 13.1662
11 165 4.9812 13.2916
12 180 5.0000 13.3104

Parabolic motion return

(First half) y = L

[
1 − 2

(
1 − θ

β

)2
]
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Fig. 5.38

θ y Trace point

13 191.25 4.9306 13.2409
14 202.50 4.7222 13.0326
15 213.75 4.3750 12.6854
16 225.00 3.8889 12.1993
17 236.25 3.2634 11.5743
18 247.50 2.5000 10.8104

Parabolic motion return

(Second half) y = 2L

(
θ

β

)2

19 258.75 1.7361 10.0465
20 270.00 1.1111 9.4215
21 281.25 0.6250 8.9354
22 292.50 0.2778 8.5882
23 303.75 0.0694 8.3798
24 315.00 0.0000 8.3104
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Solved Problem 5.3

Construct the profile of a disk cam with translating flat follower with the following
data: Rise 3 cm with harmonic motion in 180◦ of cam rotation, return with parabolic
motion in 150◦ of cam rotation and then dwell. The base circle diameter is 15 cm.
Determine the width of the follower face allowing 0.75 cm clearance. The cam
rotates in a counter-clockwise direction. Check the possibility for a cusp on the
cam.

1. For harmonic motion f (θ) = 1.5(1 − cos θ) and f ′(θ) = 1.5 sin θ . These values
are tabulated in the table given below.

2. The width of the follower required in accordance with the harmonic rise motion
above is w = 2f ′(θ)max + 2 × 0.75 = 4.5 cm.

3. For parabolic displacement upto the inflection point in the return motion for the
first 75◦ from 180◦ to 225◦

f (θ) = 3.0

[
1 − 2

(
1 − θ

β

)2
]

and f ′ (θ) = 12

β

(
1 − θ

β

)

These values are given in the table.
4. For parabolic displacement in the return motion f (θ) = 6.0(θ/β)2 and f ′(θ) =

12.0(θ/β2). These values are also tabulated. Figure 5.39 gives the cam profile.
5. For parabolic motion, at the point of inflection, w = 2 × 2.292 + 2 × 0.75 =

6.084 cm. Therefore the minimum width of the follower recommended is 6.1 cm.
6. In harmonic motion f (θ) = 1.5(1 − cos θ) and f ′(θ) = 1.5 sin θ and Rc +

f (θ) + f ′(θ) = 9.0 > 0, therefore there is no cusp here.
7. In parabolic motion

Rc + f (θ) + f ′ (θ) = 7.5 + 3.0

(
θ

β

)2

min
+ 6 × 1802

π2β2 = 8.3754 > 0

therefore no cusp occurs in this motion either.

θ f (θ) f ′(θ) x y

0 0.0000 0.0000 7.5000 0.0000
10 0.2280 0.2605 7.3633 1.5628
20 0.0946 0.5130 6.9572 3.0782
30 0.2010 0.7500 6.2942 4.5000
40 0.3509 0.9642 5.3944 5.7851
50 0.5358 1.1491 4.2851 6.8944
60 0.7500 1.2990 3.0000 7.7942
70 0.9870 1.4095 1.5782 8.4572
80 1.2395 1.4772 0.0628 8.8632
90 1.5000 1.5000 –1.5000 9.0000
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θ f (θ) f ′(θ) x y

100 1.7605 1.4772 –3.0628 8.8633
110 2.0130 1.4095 –4.5782 8.4572
120 2.2500 1.2990 –6.0000 7.7942
130 2.4642 1.1491 –7.2851 6.8944
140 2.6491 0.9642 –8.3944 5.7851
150 2.7990 0.7500 –9.2942 4.5000
160 2.9095 0.5130 –9.9572 0.0782
170 2.9772 0.2605 –10.3633 1.5628
180 3.0000 0.0000 –10.5000 0.0000
190 2.9733 –0.3056 –10.3673 –1.5177
200 2.8933 –0.6112 –9.9756 –2.9804
210 2.7600 –0.9167 –9.3438 –4.336
220 2.5733 –1.2223 –8.5023 –5.5387
230 2.3333 –1.5279 –7.4912 –6.5507
240 2.0400 –1.8335 –6.3579 –7.3451
250 1.6933 –2.1390 –5.1543 –7.9073
260 1.3067 –2.1390 –3.6358 –8.3015
270 0.9600 –1.8335 –1.8335 –8.4600
280 0.6667 –1.5279 –0.0866 –8.3079
290 0.4267 –1.2223 1.5625 –7.8667
300 0.2400 –0.9167 3.0761 –7.1614
310 0.1067 –0.6112 4.4213 –6.2200
320 0.0267 –0.3056 5.5693 –5.0721
330 0.0000 0.0000 6.4952 –3.7500
340 0.0000 0.0000 7.0477 –2.5652
350 0.0000 0.0000 7.3861 –1.3024
360 0.0000 0.0000 7.5000 0.0000

You can construct the displacement diagrams graphically and also plot the cam pro-
file in accordance to the construction procedure given in Figure 5.26.

Solved Problem 5.4

The follower in the above problem is offset by 2 cm. Construct the cam profile.
Follow the construction from Figure 5.40. The cam profile itself is obtained by

drawing a smooth curve tangential to all the flat faces of the follower.

Solved Problem 5.5

An oscillating flat follower driven by a disk cam is to rise through an arc of 25◦ with
parabolic motion in 135◦ of cam rotation, dwell for 45◦ and return with cycloidal
motion. Construct the cam surface and determine the dimensions of the flat follower.
Cam rotation is clockwise. Choose the minimum size of the cam to be 4 cm and
radius of oscillation to be 6 cm.

The lift is considered directly in degrees rather than a linear measure by convert-
ing the arc distance. At the starting position, full lines in Figure 5.41, the flat face is
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Fig. 5.39

Fig. 5.40
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Fig. 5.41

at an angle given by sin−1(2/6) = 19.4712◦. The angular displacement, rise, dwell
and fall are tabulated below.

Parabolic motion Cycloidal motion

θ ang. displ. θ ang. displ.

0 0.0000 180 25.0000
10 0.2743 190 24.9720
20 1.0974 200 24.7800
30 2.4691 210 24.2791
40 4.3896 220 23.3629
50 6.8587 230 21.9740
60 9.8765 240 20.1125
67.5 12.5000 250 17.8353
70 13.4088 260 15.2497
80 16.7010 270 12.5000
90 19.4444 280 9.7503

100 21.6392 290 7.1647
110 23.2853 300 4.8875
120 24.3827 310 3.0260
130 24.9314 320 1.6371
135 25.0000 330 0.7209
140 25.0000 340 0.2202
180 25.0000 350 0.0280

360 0.0000



172 5 Cams

1. Draw the base circle of 2 cm radius.
2. Draw the follower center circle of 6 cm radius.
3. Locate the starting position shown in full lines.
4. Note that the angle made by the follower from the horizontal is 19.4712◦.
5. Locate the follower center at the 10◦ position in a direction opposite to the cam

rotation.
6. The angle made by the follower in this position is 19.4712+0.2743 = 19.7455◦.
7. Repeat for all positions given in the above table.
8. The cam surface is a smooth surface drawn tangential to all the follower surface

lines.

Solved Problem 5.6

For an oscillating roller follower, construct the cam profile for the follower to have
the same motion as in the above problem. The roller radius is 0.75 cm.

1. In the starting position the oscillating arm makes an angle with the horizontal
given by

2 sin−1 2.75

2 × 6
= 26.496◦

2. At every interval, the angle made by the oscillating arm from the corresponding
position of the starting point horizontal line, is given by the sum of 26.496◦ and
the lift at the interval given in the table of the solved problem 5.5. e.g., in the first
position this angle is 26.496 + 0.2743 = 26.7703◦.

3. Construct the locations of the oscillating arm 6 cm long at all the chosen intervals.
4. Draw circles of 7.5 mm radius at the tip points of these arms.
5. Then draw a smooth curve tangential to all these rollers, which gives the cam

surface (see Figure 5.42 for the cam profile).

Solved Problem 5.7

A translating roller follower is to rise with acceleration, and rise further with a
constant velocity of 4 m/s through a lift of 2 cm, rise yet again with deceleration
and then finally fall through the total lift. A minimum dwell period of 45◦ is
required before rising again. The total lift could be 3 to 4 cm. Design a suitable
cam and follower to keep the inertia forces and jerks to a minimum and pressure
angle within 45◦. Check if there is any undercutting on the cam. The cam rotates in
a clockwise direction at 3000 RPM.

Solution 1

1. Rise angle for the uniform velocity portion is
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Fig. 5.42

β = Lω

v
= 2 × 3000 × 360

60 × 400
= 90◦

2. To minimize the inertia forces and jerks, choose C-1 (curve 1) to connect with
the uniform velocity portion (curve 2) and then H-2 (curve 3) to complete the
rise.

3. The return motion can be chosen to be P-2 (curve 4) to couple with H-2.
4. Notice that all the kinematic conditions are matched to obtain continuity at the

junction points (see Figures 5.13 and 5.14).
5. The dwell should be a minimum of 45◦. Therefore choose a cam angle of 45◦ for

C-1. The lift for this motion is given by (from equation 5.26)

vθ=β1 = 400 = 2Lω

β
or L1 = 0.5 cm

6. For H-2 motion,

vθ=0 = 400 = Lωπ

2β
for L3 = 0.5 cm

This gives

β3 = π2

16
= 35.34◦

(see Figure 5.13 for the displacement and differentiate this to obtain the velocity).



174 5 Cams

7. The end acceleration of H-2 motion is

y ′′
θ=β = −Lπ2

4β2 sin
πθ

2β

giving α = −32/π2.
8. Hence for P-2 motion (Figure 5.15)

−5.2683
L

β2 = − 32

π2

giving β4 = 126.5◦.
9. Choice of base circle: From the pressure angle relation (5.45), for uniform motion

with R = R0 + L(θ/β), tan α = 1 gives

R0 = L

β
(1 − θ) = 4

π
− 2

θ

β

The base circle radius thus varies from 1.273 to −0.7268 with the angle of ro-
tation from zero to 90◦, for a pressure angle of 45◦. Therefore choose the base
circle radius to be at least 1.273 cm.

find that the pressure angle is less than 45◦ for all the other three motions.

line motion is

R = R0 + f (θ) = 3.25 + 2
θ

β

12. From equation (5.42)

ρ =

[(
3.25 + 2 θ

β

)2 + 16
π2

]1.5

[(
3.25 + 2 θ

β

)2 + 32
π2

]

varies from zero to 90◦. Hence the roller radius should be less than 3.08 cm.
14. For the polynomial return motion,

L

R0
= 3

3.25
= 0.923, β = 126.5◦

min/R0 = 1.2, hence
ρmin = 3.9.

all the other motions.

cam.

10. Choosing the minimum radius of the pitch surface of the cam to be 3.25 cm, we

11. Choice of the roller: This is chosen so as to avoid any undercutting. The straight

15. Choosing the roller radius to be 0.75 cm, we find that there is no undercutting for

16. The following table gives values in cm and degrees for the pitch surface of the

13. The radius of curvature given above varies from 3.08 to 5.12 cm, as the cam angle

The condition for no undercutting from Figure 5.23 is ρ
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Fig. 5.43

C-1 H-2

3.25082 4.5 5.82822 138.534
3.25645 9.0 5.90451 142.068
3.27124 13.5 5.97700 145.602
3.29863 18.0 6.04389 149.136
3.34085 22.5 6.10355 152.670
3.39863 27.0 6.15451 156.204
3.47124 31.5 6.19550 159.738
3.55645 36.0 6.22553 163.272
3.65082 40.5 6.24384 166.806
3.75000 45.0 6.25000 170.340
Uniform motion P-2

3.95 54.0 6.171 182.99
4.15 63.0 5.937 195.64
4.35 72.0 5.562 208.29
4.55 81.0 5.081 220.94
4.75 90.0 4.552 235.59
4.95 99.0 4.049 246.24
5.15 108.0 3.642 258.89
5.35 117.0 3.381 271.54
5.55 126.0 3.268 284.19
5.75 135.0 3.250 296.84
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The final cam surface is obtained by drawing a tangent to all the roller positions as
given in Figure 5.43.

Solution 2.
There can be several solutions for such problems like this. One more alternative is
given here.

1. Choose an eighth-power polynomial to connect the uniform velocity portion on
either side of the rise and fall portions. Here the dwell should be minimum of
45◦. Therefore we can choose a total of 150◦ for rise and fall portions with a
dwell of 60◦. Each of the four eighth-power polynomials will thus take 30◦. The
linear motion is sandwiched between two eighth-power polynomials in both the
rise and fall portions of the displacement diagram.

2. Choice of base circle: The condition for the uniform motion is already given in
item 9 of the Solution 1 discussed above.

3. For the eighth-power polynomial portion with the cam angle 30◦ and pressure
angle 45◦, L/R ratio is 0.4. For L = 1, the minimum base circle radius required
is 2.5 cm. Let us choose this value to be 3.25 cm.

4. Choice of the roller: This is chosen so as to avoid any undercutting. The con-
dition for uniform motion is already discussed in item 11 of solution 1. For the
polynomial motion, the condition for no undercutting is, L/R = 1/3.25 and cam
angle 30◦, therefore, ρmin/R0 = 0.25 hence ρmin = 0.8125. The radius of the
roller should be less than this and it is chosen as 0.75 cm.

5. Displacement values: From the eighth-power polynomial equation in Fig-
ure 5.15, the displacement values for the entire 360◦ motion are calculated and
given in the table below. The cam surface is drawn in Figure 5.44.

θ S

0 360 0.0
6 294 0.04367

12 288 0.2663
18 282 0.6104
24 276 0.8950
30 270 1.0000
40 260 1.2222
50 250 1.4444
60 240 1.6666
70 230 1.8888
80 220 2.1111
90 210 2.3333

100 200 2.5555
110 190 2.7777
120 180 3.0000
126 174 3.04367
132 168 3.2663
138 162 3.6104
144 156 3.8950
150 150 4.0000
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Fig. 5.44

Solved Problem 5.8

A translating flat follower is required to rise through a lift of 4 cm during 120◦
of a high speed cam rotating at 3600 RPM in the counter-clockwise direction and
then fall through 120◦, to be followed by a dwell. Recommend a suitable cam
and follower with a proper displacement function. Make a layout of the cam pro-
file by graphical methods and check it with the parametric equations of the cam
surface.

An eighth-power polynomial is chosen to minimize the inertia forces and jerks.
The displacement and its derivative along with the x and y coordinates are given
below.

θ f (θ) f ′(θ) x y

0 0.0000 0.0000 4.0000 0.0000
11 0.0183 0.2814 3.8908 1.0430
21 0.1199 0.9291 3.5134 2.3438
31 0.3527 1.7491 2.8301 3.7410
41 0.7282 2.5322 1.9071 5.0131
51 1.2245 3.1094 0.8714 6.0170
61 1.7955 3.3787 –0.1454 6.7069
71 2.3841 3.3101 –1.0513 7.1139
81 2.9331 2.9355 –1.8148 7.3070
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θ f (θ) f ′(θ) x y

91 3.3952 2.3275 –2.4562 7.3535
101 3.7372 1.5742 –3.0216 7.2947
111 3.9410 0.7537 –3.5495 7.1435
120 4.0000 0.0000 –4.0000 6.9282
131 3.9115 –0.9203 –4.4959 6.5746
141 3.6794 –1.7324 –4.8778 6.1791
151 3.3115 –2.4635 –5.2005 5.6993
161 2.8289 –3.0318 –5.4698 5.0899
171 2.2678 –3.3500 –5.6666 4.2893
181 1.6780 –3.3519 –5.7356 3.2523
191 1.1175 –3.0164 –5.5990 1.9845
201 0.6423 –2.3875 –5.1896 0.5653
211 2.9453 –1.5817 –4.4957 –0.8561
221 0.0901 –0.7788 –3.5978 –2.0956
231 0.0101 –0.0191 –2.6720 –2.9963
240 0.0000 0.0000 –2.0000 –3.4641

Fig. 5.45

Figure 5.45 shows the plot of the above coordinates which gives the cam surface.
Figure 5.46 is the construction by a conventional graphical method and the cam
surface is identically the same as in Figure 5.45.
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Fig. 5.46

Solved Problem 5.9

A translating roller follower of 1 cm radius is driven by an eccentric circle cam of
radius 3.5 cm and eccentricity 1.2 cm, rotating at 200 RPM. Determine the displace-
ment, velocity and acceleration of the cam for one full rotation. Also, determine the
maximum pressure angle.

1. From equation (5.57),

y = E (1 − cos θ) − l +
√

l2 − E2 sin2 θ

2. l = 3.5 + 1.0 = 4.5 and l/E = 3.75.
3. In view of item 2 above, we can make an approximation for the square root term

in the above and use just one term,

x = E − l − E cos θ + l

(
1 − E2

2l2 sin2 θ

)

4. v = ω

(
E sin θ − E2

2l
sin 2θ

)

5. a = ω2
(

E cos θ − E2

l
cos 2θ

)

6. From (5.45),
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α = tan−11.2

sin θ − 1
7.5

sin 2θ√
1− sin2 θ

14.0625

−1.0 − 1.2 cos θ + 4.5
√

1 − sin2 θ
14.0625

You can tabulate the above values as a function of θ , the maximum vlue of pressure
angle, 21.691◦, occurs at θ equal to 85.5 and 274.5◦.

Solved Problem 5.10

A translating flat follower is to be driven by an eccentric circle cam of the above
problem. Determine the displacement, velocity and acceleration of the follower.
Also determine the width of the follower with a clearance of 0.75 cm on either
side.

y = 1.2 (1 − cos θ) , y ′ = 1.2 sin θ and y ′′ = 1.2 cos θ

v = 25.1328 sin θ cm/s and a = 526.38 cosθ cm/s2

w = 2y ′ (θ) + 2 × 0.75, wmin = 2.4 + 1.5 = 3.9 cm

Solved Problem 5.11

A triple curve cam rotating at 900 RPM is to have a total lift of 1.25 cm for a cam
rotation of 75◦. The maximum distance of cam profile from its center is 4.5 cm.
The follower roller radius is 1 cm and the nose radius 1.5 cm. Plot the profile of the
cam. Determine the displacement, velocity and acceleration expressions for one full
cycle. Also determine the pressure angle for one full revolution and determine its
maximum value and the location where it occurs. Check whether there is a possibil-
ity of undercutting.

1. L + Rc = 4.5 = E2 + ρn.
2. Rc = 4.5 − 1.25 = 3.25 cm and E2 = 4.5 − 1.5 = 3.0 cm.
3. E1 = E2 = E3 = 3.0 cm.
4. γ = 180 − 75 = 105◦.
5. Figure 5.47 gives the cam and follower for θ = 150◦, then equation (5.67) gives
6.

y = E1 − l1 − E1 cos(θ − 105) +
√

l2
1 − E2

1 sin2(θ − 105)

= 4.25 − 3 cos 45 +
√

7.252 − 9 sin2 45

= 0.56139

7. R = −3 cos(θ − 105) +
√

7.252 − 9 sin2(θ − 105).

8.
dR

dθ
= 3 sin(θ − 105) − 4.5 sin 2(θ − 105)√

7.252 − 9 sin2(θ − 105)
.
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Fig. 5.47

Fig. 5.48

9. α = tan−1 1

R

dR

dθ
= tan−1 0.30599 = 17.01◦.

The pressure angle above can also be determined from the equivalent mechanism
as 7.25/ sin 135 = 3/ sin α, therefore
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α = sin−1 3 × 0.7071

7.25
= 17.01◦

Solved Problem 5.12

The triple curve cam of the above problem is to drive a translating flat follower.
Determine the maximum velocity and acceleration. Also determine a suitable width
for the follower. Show that no cusps occur for the cam.

1. For the first curve (Figure 5.49) y = 3 − 3 cos(130 − 105) = 0.2811, see equa-
tions (5.58) and (5.59).

2. y ′ = 3 sin(θ − 105)

y ′′ = 3 cos(θ − 105)

Rc + y + y ′′ = 6.25 > 0

3. For the second curve (Figure 5.50), y = −1.75 − 3 cos 175 = 1.2386, see equa-
tions (5.60) and (5.65) and the value of X from the previous problem. (Note a
small error in the third decimal place in the graphical construction, arising from
drawing the flat face to touch the cam surface.)

4. y ′ = 3 sin θ

y ′′ = 3 cos θ

Rc + y + y ′′ = 1.5 > 0

5. Hence there is no cusp on the cam surface.

◦
X = 2ρN − 2Rc − L = −4.75 and

11.
y = E2 − l2 − E2 cos θ +

√
l2
2 − E2

2 sin2 θ + X

= −4.25 − 3 cos 175 +
√

6.25 − 9 sin2 175

= 1.22487

12. R = −3 cos θ +
√

6.25 − 9 sin2 θ .

13.
dR

dθ
= 3 sin θ − 4.5 sin 2θ√

6.25 − 9 sin2 θ
.

14. α = tan−1 1

R

dR

dθ
= tan−1 0.10516 = 6.0◦.

15. Also

α = sin−1 3 × sin 5

2.5
= 6.0◦

radius of the roller follower. Hence, there will be no undercutting or pointing.
16. The minimum radius of curvature of the cam is 1.5 cm, which is more than the

10. Figure 5.48 gives the cam and follower for θ = 150 , then equation (5.64) gives
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Fig. 5.49

Fig. 5.50

Solved Problem 5.13

A tangent cam is to drive a roller follower through a total lift of 1.25 cm for a cam
rotation of 75◦. The cam speed is 600 RPM. The distance between cam center and
follower center at full lift is 4.5 cm and the roller is 2 cm in diameter. Find the cam
proportions and determine the displacement for 10◦ and 65◦ of rotation of the cam
in the lift portion.
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Fig. 5.51

1. 4.5 = Rc + 1.25 + Rr , therefore Rc = 2.25 cm.
2. For 10◦ of cam rotation in the lift portion, Figure 5.51, the displacement is given

by y = 3.25(sec θ + 1), see equation (5.73).
3. R = R0 + f (θ) = 3.25 sec θ .

4.
dR

dθ
= 3.25 sec θ tan θ .

5. α = tan−1 tan θ = θ .
6. Refer Figure 5.52 for cam rotation 65◦ into the lift portion, i.e., θ = 170◦, the

displacement

7. y = E2(1− cos θ)− l2 +
√

l2
2 − E2

2 sin2 θ +2ρN −2Rc −L, see equation (5.70).

y = 1.7(1 − cos θ) − 2.8 +
√

2.82 − 1.72 sin2 θ + 2 × 2.25 − 1.25 = 1.2086.
8. R = R0 + f (θ) = 4.4586.

9.
dR

dθ
= 1.72 sin θ − 1.7 sin 2θ

2
√

2.82 − 1.72 sin θ
= 0.47276.

10. α = tan−1 0.47276

4.4586
= 6.05◦.

the roller radius, no undercutting occurs.
11. Since the minimum radius of curvature of the cam is 1.8 cm which is more than
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Fig. 5.52

5.9 Additional Problems

1. A push rod operated by a cam, is to rise and fall with simple harmonic motion
along an inclined straight path. The least radius of the cam is 5 cm and the push
rod is fitted at its lower end with a roller of 3.75 cm diameter. When in its lowest
position, the roller center is vertically above the cam axis. The maximum dis-
placement of the roller is 5 cm in a direction 30◦ to the right of the vertical. The
cam rotates at 100 RPM in a clockwise direction. The time of lift is 0.15 sec and
the time of fall 0.10 sec with a period of rest of 0.05 sec at the upper position.
Draw the cam profile.

2. In the above problem, obtain the cam profile if the roller follower is to be replaced
by a flat faced follower.

3. A cam rotating on a horizontal axis operates a vertical rod which is fitted with a
roller 4 cm diameter at its lowest end. The axis of the rod does not pass through
the cam axis, but is offset, 2 cm. The rod rises during 60◦ rotation of the cam,
falls during the following 60◦, and remains at rest for the following 240◦. The
rod moves with parabolic motion during both strokes. Taking the least radius of
the cam to be 5.5 cm, draw the profile of the cam.

4. In the above problem, obtain the cam profile if the roller follower is to be replaced
by a flat faced follower.

5. An oscillating roller follower is required to operate through an angle of 30◦ with
cycloidal motion in a cam angle of rotation 120◦ for rising motion and return
without a dwell through 150◦ of cam rotation. The minimum size of the cam is
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5 cm. The center of the oscillating follower is located at 12 cm in the horizontal
direction to the right of the cam center and 8 cm vertically upwards. The radius
of the lever is 11 cm at the tip of which the roller of radius 1.5 cm is mounted.
Draw the cam profile.

6. In the above problem, the lever should be at the same location at the starting
point of lift, however, it should carry at its end a flat surface instead of the roller.
Draw the cam surface to obtain the same motion for the lever and also specify
the geometry of the flat face follower.

7. A follower is required to move at a constant velocity of 5 cm/sec for one second.
This motion can be preceded and followed by other motions so that the cam
action is smooth without any jerks and returned to the starting point. The total
cycle time is 2.75 seconds. Design a cam for a follower radius of 1.25 cm and a
maximum pressure angle 30◦. Make sure that there is no undercutting.

8. In the above problem, replace the roller follower by a flat follower and design a
suitable cam. The possibility of any cusp should be avoided.

9. A circular cam plate of 7.5 cm diameter is used to lift a translating roller fol-
lower of diameter 3.75 cm. The distance between the axis of rotation and the
center of the cam plate is 2.5 cm. The cam rotates at 60 RPM counter-clockwise.
Determine the velocity of the follower when the cam center is at 45◦ from the
horizontal line passing through the cam axis of rotation.

◦

when the cam shaft speed is 500 RPM.

roller of radius 3 cm.

◦

the cam rotates at 1000 RPM.
◦

straight flank, when the cam is rotating at 500 RPM.

10. A cam with convex flanks, operating a flat follower whose lift is 3 cm, has a base
radius of 6 cm and a nose radius of 1.6 cm. The cam is symmetrical about a line
drawn through the center of curvature of the nose and the center of the camshaft.
If the total angle of cam action is 120 , find the radius of the convex flanks.

11. Solve the above problem if the follower is a translating roller follower fitted with

Determine the maximum velocity and the maximum acceleration and retardation

12. A valve is operated by a cam which has a base circle diameter 7 cm and a lift
of 2.5 cm. The cam has tangent flanks and a circular nose and the total angle of
action is 120 . The follower which has a roller of 3 cm diameter moves along a
straight line passing through the cam axis. Find the maximum acceleration when

13. A symmetrical cam has a base circle of 6 cm radius, arc of action 110 , and
straight flanks with the tip of a circular arc. The line of action of the follower
passes through the center line of the camshaft. The follower which has a 4 cm
diameter roller has a lift of 2.6 cm. Calculate the velocity and acceleration of
the follower when moving outwards and contact is just reaching the end of the



Chapter 6
Spur Gears

Gear

Wheel with teeth on its surface designed to mesh with another gear or rack.

6.1 Classification of Gears

Cylindrical Gear

Gear with teeth formed on a cylindrical surface.

Spur Gear

Cylindrical gear with external teeth parallel to the axis of shaft, see Figure 6.1. The
line of contact between the mating teeth is always parallel to the shaft axis.

Internal Spur Gear [Annulus]

Cylindrical gear with internal teeth.

Gear Sector [Segment]

Segment of a spur gear or annulus.
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Fig. 6.1 Spur gear

Pinion

(1) The smaller of a pair of meshing cylindrical gears. (2) Cylindrical gear meshed
with a rack.

Rack

Segment of a cylindrical gear of infinite radius.

Spur Rack and Pinion

Rack whose motion is perpendicular to the axis of pinion.

Helical Gear

Gear with teeth wrapped helically on a cylindrical surface, see Figure 6.2a.

Herring-Bone Gear [Double-Helical]

Gears comprising two integral helical gears, the helices of the gears being of oppo-
site hand, see Figure 6.2b.
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Fig. 6.2 (a) Helical gear. (b) Herringbone gear

Fig. 6.3 Spiral gears

Spiral [Crossed-Helical] Gear

Helical gear used in transmission of motion between two skew shafts, see Figure 6.3.

Spiral Rack and Pinion

Rack whose motion is not perpendicular to the axis of pinion.

Bevel [Conical] Gear

Gear with teeth formed on a conical surface.

External Bevel Gear

Bevel gear with pitch angle of the cone is less than 90◦, see Figure 6.4a.
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Fig. 6.4 Bevel gears

Crown Wheel

Bevel gear with pitch angle equal to 90◦, see Figure 6.4b.

Internal Bevel Gear

Bevel gear with pitch angle less than 90◦ , see Figure 6.4c.

Straight Bevel Gear

Bevel gear whose teeth are radial to the point of intersection of the shaft axes.

Mitre Gear

Bevel gears with gear ratio 1:1 connecting two perpendicular shafts.

Spiral Bevel Gear

Spiral bevel gear has the same relationship with straight bevel gear, as helical gears
have the relation with spur gears.

Hypoid Gear

Spiral bevel gear pair with offset between the gear axes.
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Fig. 6.5 Worm gears. (a) Straight worm. (b) Enveloping worm

Worm Gear

Gear with one or more teeth wrapped helically on a cylinder, the pitch of the helix
being less than the diameter of the gear, see Figure 6.5a. It is also commonly known
as worm or straight worm.

Enveloping Worm

An enveloping worm, see Figure 6.5b.

Worm Wheel

Gear that mates with a worm gear.
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Idler

Gear intermediate between a driving and a driven gear, which affects the sense of
direction of the latter but does not affect the velocity ratio.

Planetary [Planet] Gear

Gear that rotates on an axle whose own axis is constrained to rotate about another
axis.

Sun Wheel

Gear with a mating planet.

6.2 Types of Motion

Combined Rolling and Sliding

Motion transmitted from a driver to a driven member with direct contact where
rolling and sliding both occurs simultaneously.

Figure 6.6a illustrates this motion. P is the direct contact point at the instant
shown. NN is the common normal and the normal component of velocity Pn of the
common point in both the bodies is the same. The tangential components, P2t2 and
P3t3 however, could be different as illustrated.

Pure Rolling

No single point on one of the members makes contact with two successive points
on the second member. The two tangential components, P2t2 and P3t3 are same and
there is no relative sliding (see Figure 6.6b). The point of contact between the two
bodies lies on the line of centers.

Pure Sliding

Here, a single point belonging to one of the members makes contact with all the
successive points of the second member. One of the members is at rest and there is
no component of velocity in the normal direction (see Figure 6.6c).

In the general case, the velocity of the driving member 2 rotating at ω2 rad/s is
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Fig. 6.6 (a) Combined rolling and sliding. (b) Pure rolling. (c) Pure sliding
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P2V2 = O2P2 × ω2 (6.1)

Because the normal component should be the same for both bodies (otherwise
there will be digging), we have

ω3 = P3V3

O3P3
(6.2)

and
ω3

ω2
= P3V3

O3P3

O2P2

P2V2
(6.3)

Follow the construction shown in the figure and confirm that O2P2a and nP2V2,
and O3bP 3 and P3V3n are two sets of similar triangles. Hence

ω3

ω2
= P3n

O3b

O2a

P2n
= O2a

O3b
(6.4)

Further the triangles O2aC and O3bC are also similar, therefore

ω3

ω2
= O2C

O3C
(6.5)

Angular Velocity Ratio

Therefore, the ratio of angular velocities for a pair of rigid bodies transmitting mo-
tion with direct contact is equal to the inverse ratio of segments into which the line
of centers is divided by a common normal through the point of contact.

6.3 Nomenclature

Refer to Figure 6.7.

Pitch Circle

This is a right section of an imaginary cylinder (pitch cylinder), that the toothed gear
may be considered for replacement.

Pitch Diameter, D

Diameter of pitch cylinder; also commonly called diameter of gear.
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(a)

(b)

Fig. 6.7 (a) Gear geeth representation. (b) Pair of mating gears

Pitch Point

The point of tangency of the pitch circles of a pair of mating gear wheels.

Common Tangent

Tangent to the pitch circles at the pitch point.
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Common Normal

Normal to the mating profiles at the point of contact.

Addendum Circle

Circle that passes through all the tooth ends.

Addendum

Radial distance between pitch circle and addendum circles.

Dedendum [Root] Circle

Bounds the space between the teeth.

Dedendum

Radial distance between the pitch circle and Dedendum circle.

Clearance

The difference between Dedendum of one gear and addendum of the mating gear.

Top Land

Top surface of the tooth.

Bottom Land

Bottom surface of the tooth.

Face

Part of the tooth between the pitch cylinder and addendum cylinder.
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Face Width

Width of the face along the tooth.

Flank

Part of the tooth between the pitch cylinder and Dedendum cylinder.

Tooth Thickness

Thickness of the tooth measured along the arc of the pitch circle.

Tooth Space

Circular distance between two successive teeth measured along the pitch circle.

Backlash

Difference between the tooth space of one gear and tooth thickness of the mating
gear.

Circular Pitch, pc

Sum of tooth thickness and tooth space, measured along a pitch circle.

Diametral Pitch, pd

Number of teeth of a gear per unit pitch diameter.

Module, m

Inverse of diametral pitch.

The diametral pitch (module) should be the same for two mating gears (as well as
circular pitch). If the number of teeth on the gear is T , then
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Fig. 6.8 Gear tooth action

pc = πD

T

pd = T

D

pc × pd = π (6.6)

6.4 Law of Gear Tooth Action

The common normal must always pass through the pitch point.
The above condition is shown in Figure 6.8. Equation (6.5) gives the speed ratio

as ω3/ω2 = O2P/O3P . This ratio will remain constant as long as the common
normal in all positions of mating passes through the pitch point.
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Fig. 6.9 Involute

Conjugate Profiles

Two mating profiles that satisfy the law of gear tooth action.

6.5 Involute as a Gear Tooth Profile

Involute

Curve (AA′B) traced by a point (A) on a straight line (CD) as it rolls without
slipping on a base circle, see Figure 6.9. Note the following:

• Arc distance AA1 = A1A
′.

• Instantaneous center of rotation of the line at any instant C ′D′ is at the contact
point A1 touching the base circle.

• The generating line C′D′ itself is the normal to the involute at any instant.
• Consequently, any normal to an involute is tangential to the base circle.

An involute profile can be easily generated by a trace point T on a tight cord by
unwrapping it from the base cylinder as shown in Figure 6.10. Join the lines OT0,
OT and OA and denote the angles by ∠AOT = ϕ and ∠T OT0 = α. Let the radius
of the base cylinder be rb, then

AT0 = rb (ϕ + α) = AT = rb tan ϕ
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Fig. 6.10 Involute of a gear tooth profile

Therefore,
α = tan ϕ − ϕ = inv ϕ

and
OT = r = rb

cos ϕ
(6.7)

Involute as a Tooth Profile

Choose two base cylinders and wrap a cord tightly as shown in Figure 6.11a. Choose
a tracing point T and rotate the cylinders slowly (keeping the cord always tight) to
trace two involute curves CD and EF. Now, imagine two templates cut to the profiles
CD and EF and fix them to the two base cylinders as shown in Figure 6.11b, to
occupy the previous position of the traced involutes. You now have two conjugate
profiles that can transmit motion at constant angular velocity ratio. Note that AB
is the common normal to the involute profiles and it always intersects the line of
centers at point P , which is the pitch point. The circles passing through the pitch
point are pitch circles.

Path of Contact

Path traced by the contact point.
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Fig. 6.11 Verification of the law of gear tooth action

Line of Action

Normal to both the mating profiles at the contact point.

Pressure Line

Path of contact being normal to the involute profiles is the pressure line.

Pressure Angle

Angle made by the pressure line with the horizontal.

6.6 Layout of an Involute Gear Set

As an example, draw the profile of the involute of the gear wheel and layout of
the gear with the following specifications. The pinion 2 of 5 cm diameter and 4-
diametral pitch mates with a gear wheel 3 with 50 teeth. The pressure angle is 20◦.

• d3 = T3/pd = 50/4 = 12.5 cm.
• Number of teeth on pinion t2 = d2 × pd = 5 × 4 = 20.
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(a)

(b)

Fig. 6.12 Layouts of involute gear set
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• Construct the pitch circles of diameters 5 and 12.5 cm respectively to touch at
point P as shown in Figure 6.12a.

• Draw the pressure line inclined at ϕ = 20◦ to the horizontal.
• Drop perpendiculars O2A and O3B on the pressure line to represent the base

circle radii of the pinion and the wheel respectively.
• Draw the two base circles with O2A and O3B as radii.
• To generate the gear wheel involute, choose a convenient starting point O3E1.
• Construct a suitable number (say 6) of equal angle, say 10◦, radial lines O3E1 to

O3E6. The arc distance on the base circle of the wheel between the successive
radial lines is given by 12.5 ×10 ×π/180 = 2.18166 cm. (Use any software and
make these divisions smaller to get very accurate profile.)

• Draw perpendicular lines to each of these radial lines.
• Mark points on each of these perpendicular lines consecutively at distances

2.18166, 4.363323, 6.544983, . . . beginning from the radial line position O3E2.
Draw a smooth curve passing through these points to give the gear wheel involute
tooth profile.

• Cut templates corresponding to the tooth profile thus drawn and the opposite side
of the profile by turning over the previous template.

• pc = π/pd = π/4 = 0.7853 cm. Therefore the width of the tooth space is
0.39265 cm.

• Layout points which are 0.39265 cm apart on pitch circles of the gear wheel. (or
simply draw radial lines at 360/(2 × 50) = 3.6◦).

• The standard addendum is one module, i.e., 1/4 = 0.25 cm and the dedendum
is 1.157 times the module, i.e., 1.157/4 = 0.28925 cm. Draw the addendum and
dedendum circles.

• Using the templates cut earlier; trace the involute profile through the points
marked on base circles.

• In the clearance portion of the gear, the involute may be rounded to form a fillet
with the dedendum circle.

• Repeat the above process for the pinion.
• In this case, for the pinion, the dedendum circle is below the base circle and no

involute portion exists in this region, see Figure 6.12b. In such cases, the involute
profile is extended by a radial line and a fillet formed with the dedendum circle.
This causes interference in gears which is discussed later.

Interference

Mating of a pinion with gear whose teeth profiles are not conjugate.
The construction of an internal gear or annulus driven by a pinion is shown in

Figure 6.13. The internal gear tooth profile is concave, instead of convex for an
external gear. Here, interference can occur if the base circle is larger than the adden-
dum circle, i.e., a portion of the profile on the face is not an involute, unlike in an
external gear where a portion of the tooth profile on the flank is not an involute. The
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Fig. 6.13 Involute profile for internal gears

base circle of an internal gear should therefore be smaller than the addendum circle
as shown in Figure 6.13.

Influence of Center Distance on Speed Ratio

The speed ratio of the gear pair is given by ω3/ω2 = O2C/O3C, see equation (6.5).
Since triangles O2AP and O3BP are similar, the speed ratio is

ω3

ω2
= O2A

O3B
(6.8)

Therefore, the velocity ratio is also equal to the inverse ratio of the base circle radii.
This is a great advantage for the involute tooth profile that the center distance of the
gears need not be very exact, as far as the speed ratio is concerned, since the base
circle radii do not change with mounting inaccuracies.
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Fig. 6.14 Forming process

6.7 Producing Gear Teeth

Forming Process

A milling cutter, so shaped that the required tooth outline is obtained by setting the
cutter to the desired depth, is used for machining the material in the space of gear
blank on a milling machine, see Figure 6.14.

Generating Process

Correct profiles are produced by making one of the gears of a set a cutting tool and
the other a blank. The pitch circle of the cutter is forced to roll with the pitch circle
of a gear blank as though they are mating with each other.

Undercutting

If conditions similar to the pinion of Figure 6.13 exist, where the tooth profile ex-
tends below the base circle (interference of the tooth profile), the generating cutter
removes the interfering portion of the blank. This process is called undercutting,
which automatically avoids interference in the gears; however, it weakens the tooth
at the root.

The generating process is usually accomplished by three types of cutters: (1) hob,
(2) pinion shaped cutter, and (3) rack shaped cutter.
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Fig. 6.15 Hobbing process

Fig. 6.16 The generating process of a gear tooth shown by a pinion shaped cutter

Hobbing

In the hobbing process, a hob resembling a worm-shaped cutter is advanced through
a gear blank when both are rotating as shown in Figure 6.15.

Generating by Pinion Shaped Cutter

Both the cutter as well as the blank are rotated, as if they are in mesh, with a small
feed for every revolution of the blank, see Figure 6.16.

Generating by Rack Shaped Cutter

Most accurate method of generating process, since an involute rack has straight
teeth, see Figure 6.17.
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Fig. 6.17 The process of cutting a gear by the use of a rack shaped cutter

6.8 Meshing Gears and Line of Contact

Consider a gear pair with 40 and 20 teeth as shown in Figure 6.18a The adden-
dum and dedendum taken are 6.366 and 7.957 mm with pressure angle 25◦. Center
distance is 190.985 mm.

A close-up view of meshing teeth is shown in Figure 6.18b. In this position the
gear tooth tip is in contact with the pinion tooth flank where the engagement be-
gins at point A on the pressure line and the disengagement at point B. AB is the
path of contact in the meshing process of the gear tooth pair. A further close-up of
engagement and disengagement is shown in Figure 6.18c.

6.9 Interference of Involute Gears

Figure 6.19 shows two mating teeth of a driving and driven gear. Here, the deden-
dum circles of both the wheels are below their base circles. When mating takes
place, the first contact is at point A and the non-involute flank portion of the driving
gear transmits motion with the involute face portion of the driven gear and inter-
ference occurs. When the gear tooth pair is disengaged from the transmission of
motion, interference on the flank of the driven gear takes place as shown in Fig-
ure 6.19. O2C and O3D are perpendiculars dropped onto the pressure line. AB is
the total path of contact out of which only CD has correct tooth action.

To avoid interference two methods can be used.

1. Increase the pressure angle, so that A and B lie within the maximum allowed
path of contact CD.
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(a)

(b)

Fig. 6.18 (a) Mating gears. (b) Close-up view of meshing teeth and line of contact
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(c)

Fig. 6.18 (Continued) (c) Close-up view engagement and disengagement in meshing

Fig. 6.19 Two mating teeth of a pair of gears

2. Decrease the addendum and dedendum of the gear wheel, i.e., increase the di-
ametral pitch which means increase the number of teeth.

Since the pinion has a lesser number of teeth, there should be a minimum number
of teeth on the pinion for a given pressure angle to avoid any interference.
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Fig. 6.20 Addendum circles of a pinion and a wheel

6.10 Minimum Number of Teeth to Avoid Interference

First draw the pitch and base circles of a mating pair of wheels, the pinion 3 and gear
2. Also, draw the pressure line and drop the perpendiculars O2C and O3D from the
gear and pinion centers as shown in Figure 6.20. The involute profile can exist for
a path of action beginning from C and ending at D, therefore draw the addendum
circle for the pinion through C and for gear through D. Since the addenda for both
the pinion and the wheel are same, the governing addendum is that of the wheel, aw.

From the triangle O2PD

O2D
2 = O2P

2 + DP 2 − 2 × O2P × PD × cos O2PD

= O2P
2 + DP 2 + 2 × O2P × PD × sin ϕ (6.9)

From the triangle O3PD

PD = O3P × sin ϕ (6.10)

Therefore equation (6.9) can be written as
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O2D
2 = O2P

2 + O3P
2sin2ϕ + 2 × O2P × O3P × sin2ϕ

= O2P
2
[

1 + O3P

O2P

(
O3P

O2P
+ 2

)
sin2ϕ

]
(6.11)

Or

O2D = O2P

[
1 + O3P

O2P

(
O3P

O2P
+ 2

)
sin2 ϕ

]
(6.12)

The addendum of the wheel is aw = O2D−O2P , which from the above equation
(6.12) can be expressed as

aw = O2P

[√
1 + O3P

O2P

(
O3P

O2P
+ 2

)
sin2 ϕ − 1

]
(6.13)

Let t be the number of pinion teeth, T be the number of teeth on the wheel, then
O2P = T/2pd and O3P/O2P = t/T . Therefore, equation (6.13) becomes

aw = T

2pd

[√
1 + t

T

(
t

T
+ 2

)
sin2ϕ − 1

]
(6.14)

Or

T = 2awpd[√
1 + t

T

(
t
T

+ 2
)

sin2ϕ − 1

] (6.15)

Therefore, the minimum number of teeth on the pinion to avoid interference is given
by

tmin = 2aw
t
T

pd[√
1 + t

T

(
t
T

+ 2
)

sin2 ϕ − 1

] (6.16)

For a rack and pinion, the corresponding figure is given in Figure 6.21. Here the
addendum of the rack, ar , is the governing value and should not exceed DV.

DV = PD sin ϕ (6.17)

Also,
PD = O3P sin ϕ (6.18)

Therefore,
DV = ar = O3P sin2ϕ (6.19)

Further, O3P = t/2pd and hence

ar = t

2pd

sin2ϕ (6.20)

Or
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Fig. 6.21 A pinion mating with a rack

tmin = 2arpd

sin2 ϕ
(6.21)

6.11 Contact Ratio

Arc of Approach

Arc distance on the pitch circle from the point of engagement to pitch point.

Arc of Recess

Arc distance on the pitch circle from the pitch point to point of disengagement.

Arc of Action

Sum of arc of approach and arc of recess.
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Fig. 6.22 Engaging and disengaging positions of a tooth pair

Path of Approach

Length measured along the pressure line from the point of engagement to the pitch
point.

Path of Recess

Length measured along the pressure line from the pitch point to the point of disen-
gagement.

Path of Contact

Sum of the path of contact and recess.
Figure 6.22 shows a pair of teeth in contact without any interference. The arc

distance GP on the pitch circle of gear wheel 2 or KP on the pitch circle of pinion 3
is the arc of approach. Similarly, the arc distance PH or PL on pitch circles of gear
wheel 2 and pinion 3 respectively is the arc of recess. The total arc distance GH or
KL is the arc of action.
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Contact Ratio

The ratio of arc of action to circular pitch. Obviously, this should be more than 1, as
otherwise there will be no new pair coming into action after one pair has completed
its job.

The length of path of contact is

AB = AP + PB (6.22)

Also,

AP = AN − PN =
√

R2
3 − r2

3 cos2ϕ − r3 sin ϕ (6.23)

and

PB = BM − PM =
√

R2
2 − r2

2 cos2ϕ − r2 sin ϕ (6.24)

Substituting the above two equations (6.23 and (6.24) in (6.22), the total path of
contact is

AB =
√

R2
3 − r2

3 cos2ϕ +
√

R2
2 − r2

2 cos2ϕ − (r2 + r3) sin ϕ (6.25)

From the properties of the involute, we have the arc CD on the base circle equal
to the path of contact AB given in equation (6.25). Therefore,

Arc CD =
√

R2
3 − r2

3 cos2ϕ +
√

R2
2 − r2

2 cos2ϕ − (r2 + r3) sin ϕ (6.26)

From Figure 6.22 we note that O2P = O2M/ cos ϕ (see also equation 6.7) is the
property of involute. Therefore the arc distance GH on the pitch circle is equal to
arc distance CD on the base circle divided by cos ϕ. Hence,

Arc of Approach =
√

R2
3 − r2

3 cos2ϕ − r3 sin ϕ

cos ϕ
(6.27)

Arc of Recess =
√

R2
2 − r2

2 cos2ϕ − r2 sin ϕ

cos ϕ
(6.28)

Arc of Contact =
√

R2
3 − r2

3 cos2ϕ +
√

R2
2 − r2

2 cos2ϕ − (r2 + r3) sin ϕ

cos ϕ
(6.29)

and the contact ratio is

Contact Ratio =
√

R2
3 − r2

3 cos2ϕ +
√

R2
2 − r2

2 cos2ϕ − (r2 + r3) sin ϕ

pc cos ϕ
(6.30)
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Fig. 6.23 Cycloidal tooth profiles

6.12 Cycloidal Tooth Profiles

Cycloid

Curve described by a point on the circumference of a circle (generating circle) as it
rolls without slipping on a straight plane, see Figure 6.23a.

Epicycloid

The path traced by a point on the generating circle as it rolls on another circle (base
circle), see Figure 6.23b.

Hypocycloid

The path traced by a point on the generating circle as it rolls on the inside of base
circle, see Figure 6.23c.

Generation of Cycloidal Gear Teeth

Figures 6.24a and b show the generation of cycloidal gear teeth on the gear wheel 3
and pinion 2 respectively.
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Fig. 6.24 (a) Generation of cycloidal tooth on gear and (b) pinion

• Draw the pitch circle of the gear. This will serve as the base circle for generation
of a cycloid tooth form.

• Choose a generating circle G2 (usually smaller than the pitch circle of the gear).
Draw this circle with its center lying on the line of centers of the gear pair and in
the initial position touching the pitch circle of gear 3 at the pitch point P .
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Fig. 6.25 Generated pinion and gear

• Roll the generating circle G2 clockwise on the pitch circle (AP = AP ′) to
generate the face of the tooth by an epicycloid obtained from P on the generating
circle.

• Choose a generating circle G3 (usually larger than the generating circle G2, but
smaller than the base circle). Draw this circle with its center lying on the line of
centers of the gear pair and in the initial position touching the pitch circle of gear
3 at the pitch point P .

• Roll the generating circle G3 counter-clockwise on the pitch circle (BP = BP ′′)
to generate the flank of the tooth by a hypocycloid obtained from P on the gen-
erating circle.

• Follow the same procedure to draw the tooth profile for the pinion. Remember
the same generating circles should be used.

• You can make templates of these profiles and the ones turned over and use them
to complete the tooth profiles all around the pitch circle at appropriate angular
distances depending on the circular pitch of the gear pair.

• Draw the addendum and dedendum circles and complete the formation of tooth
profiles.

Figure 6.25 shows the pinion and gear with cycloidal teeth in mesh. When the two
pitch circles rotate without slipping, the generating circles will also roll over each
other simultaneously without slipping. If the pinion is the driver, the engagement
starts at point A, the intersection of addendum circle of the gear wheel and the
generating circle G2, and the disengagement takes place at point B which is the
intersection of addendum circle of the pinion with the generating circle G3.

Gear
driven

03

G3

G2

02

A

P

C

B

Line of 
centers

Path of
contact

Pitch circle of
Pinion

Pitch circle of gear

Pinion
driver
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The path of contact is APB. The common normal to the mating profiles at any
instant always passes through the pitch point. However, the common normal makes
different angles during the path of contact with a maximum value at the engagement
and disengagement positions and zero at the pitch point. Therefore, the pressure an-
gle in cycloidal gears is not constant, as in the case of involute gears. This variation
of pressure angle leads to noise in cycloidal gears which is not present in involute
gears. However, the main advantage of cycloidal gears is that the question of inter-
ference does not arise as in the case of involute gears.

6.13 Cycloidal and Involute Tooth Forms

1. The involute profile is single and simple in nature, unlike the epicycloid and
hypocycloid combination forming a tooth in cycloidal gears.

2. The involute is a straight line for the case of a rack, which is the fundamental
form of cutting tools. Therefore, the generation of involute gears is very accurate
and less expensive.

3. The pressure angle of involute gears is constant, making them less noisy when
compared with cycloidal gears which have a varying pressure angle.

4. In the case of involute gears, their center distance need not be very accurately
maintained as shown in equation (6.8), thus allowing a slight change in the center
distance while mounting the gears and shafts.

5. The main advantage of cycloidal gears is that there is no possibility of interfer-
ence to occur, provided the center distance is accurately maintained.

In view of a large number of advantages of the involute profile, it has superseded
the cycloidal profile to the extent that no standard systems for interchangeable gears
exist for cycloidal profiles.

6.14 Solved Problems

Solved Problem 6.1

A 2-DP, 24 tooth pinion drives a 36 tooth gear using 14.5◦ full depth involute system
layout of the gears. Determine the arcs of approach, recess and contact ratio of the
gear pair.

1. Pitch radius of pinion r3 = 1/2 × 24/2 = 6 cm.
2. Pitch radius of the gear r2 = 36/24 × 6 = 9 cm.
3. Pinion base circle radius 6 × cos 14.5 = 5.808886 m.
4. Gear base circle radius 9 × cos 14.5 = 8.713329.
5. Use standard addendum a = 1/pd = 0.5. Therefore R3 = 6.5 and R2 = 9.5 cm.
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6. Draw the pitch circles, base circles and addendum circles of the gear and pinion
as shown in Figure 6.26.

7. Draw the pressure line.
8. Drop perpendiculars from gear centers on to the pressure line and mark the points

M and N as shown in figure.
9. Also mark the points A and B, the intersection points of pressure line with the

addendum circles.

Solved Problem 6.2

A pinion of 20 teeth is to drive an internal wheel of 64 teeth. Using 20◦ full depth
involute system and 2.5 DP, make a drawing of the pinion tooth profile.

1. Pinion pitch circle radius r3 = 1/2 × 20/2.5 = 4 cm.
2. Pinion base circle radius 4 cos 20 = 3.75877 cm.
3. Use standard addendum a = 1/pd = 0.4. Therefore R3 = 4.4 cm.
4. Standard dedendumd = 1.157/pd = 0.4628. Therefore dedendum circle radius

is 3.5372 cm.
5. Draw the various circles as shown in Figure 6.27.
6. Use 5◦ sector positions (seven used in the figure) on the base circle and draw the

radial lines, starting from position 0 at a convenient location to position 7.
7. At these radial line positions, draw tangents as shown.
8. Mark on each tangent, distances 4 × 5 × π/180 = 0.349066 cm and tangent line

till the seventh tangent line and join these points by a smooth curve to give the
tooth profile. Note that the profile is a radial line below the base circle up to the
dedendum circle.

10. Measure the path of approach AP = 1.4161 cm.
11. Determine the arc of approach 1.4161/ cos 14.5 = 1.4627 cm.
12. From (6.23)

AP =
√

R2
3 − r2

3 cos2ϕ − r3 sin ϕ

=
√

6.52 − 62cos214.5 − 6 sin 14.5

= 1.41437

13. Therefore the calculated values of arc of approach 1.41437/ cos14.5 =
1.4609 cm.

in Figure 6.26 as 1.5804 cm and from equation (6.24) as 1.5820 cm.
15. Total arc of contact is 1.4627 + 1.5804 = 3.0431 cm.
16. Circular pitch pc = π/2 = 1.5708 cm.
17. Therefore, the contact ratio is 3.0431/1.5708 = 1.9373.

14. Repeat steps 10 to 13 above for the arc of recess to get the value from construction
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(a)

(b)

Fig. 6.26

Solved Problem 6.3

Layout a 2-DP 24 tooth gear meshing with a rack, using 20◦ full depth involute
system. Determine the contact ratio of this rack and pinion set.

1. Pitch radius of pinion r3 = 1/2 × 24/2 = 6 cm.



6.14 Solved Problems 221

(a)

(b)

Fig. 6.27

2. Pinion base circle radius r2 = 6 cos 20 = 5.638156 cm.
3. Addendum a = 1/pd = 0.5. Therefore R3 = 6.5 Cm.
4. Dedendum d = 1.157/pd = 0.5785. Therefore dedendum circle radius is

5.4215 cm.
5. Draw all the pinion circles as shown in Figure 6.28.
6. Draw a horizontal line touching the point P to represent the pitch line of the rack.
7. Draw parallel lines to the rack pitch line at distances 0.5 cm above and 0.5785

cm below to represent the rack addendum and dedendum lines.
8. Draw the pressure line MN.
9. AB is the path of contact, measure this value which is 2.6442 cm.
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Fig. 6.28

10. Arc of contact is 2.6442/ cos 20 = 2.8139 cm.
11. Circular pitch pc = π/pd = 1.5707 cm.
12. Contact ratio is 2.8139/1.5707 = 1.79.

Solved Problem 6.4

Draw the profile of a cycloidal rack tooth mating with a pinion having 16 teeth.
The circular pitch is 6 cm and the rolling circle for the face as well as flank has a
diameter equal to the pitch circle diameter of a 12 tooth pinion.

1. Addendum a = 1/pd = pc/π = 1.909859 cm.
2. Dedendum d = 1.157a = 2.209707 cm.
3. Generating circle diameter pc × T/π = 6 × 12/π = 22.9183 cm.
4. Draw the addendum, pitch and dedendum lines of the rack and the generating

circles as shown in Figure 6.29.
5. Roll the generating circles on the pitch line of the rack in opposite directions in

equal intervals, following the procedure outlined in Section 6.12 to obtain the
cycloidal tooth of the rack.

Solved Problem 6.5

What is the smallest number of teeth that can be used on each of two equal gears to
avoid interference, if the pressure angle is 14.5◦?
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(a)

(b)

Fig. 6.29

1. From equation (6.16), we have

tmin = 2aw
t
T

pd[√
1 + t

T

(
t
T

+ 2
)

sin2 ϕ − 1

]

2. Use standard value for addendum aw = 1/pd .
3. t/T = 1.
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4. Therefore,

tmin = 2[√
1 + 3 sin2 14.5 − 1

]

= 22.226

= 23

Solved Problem 6.6

Determine the addendum of the teeth of a gear pair consisting of two spur wheels
each having 30 teeth to have a minimum contact ratio equal to 2. The circular pitch
is 2.5 cm and the pressure angle is 20◦.

1. Contact ratio is
√

R2
3 − r2

3 cos2ϕ +
√

R2
2 − r2

2 cos2ϕ − (r2 + r3) sin ϕ

pc cos ϕ

2. Since both the gears are of same size, the contact ratio is

2

2.5 cos 20

[√
R2

2 − r2
2 cos220 − r2 sin 20

]
= 2

3. The pitch radius is given by r2 = 30 × 2.5/2π = 11.9366 cm.
4. Therefore,

√
R2

2 − 11.93662 × 0.93972 = 0.342 × 11.9366 + 2.34935

5. Squaring both sides R2
2 − 125.817 = 41.3651.

6. Therefore R2 = 12.9299 cm and the addendum is 12.9299 − 11.9366 =
0.9933 cm.

Solved Problem 6.7

Two gear wheels 10 and 15 cm pitch diameters have involute teeth of 1.6 DP and
pressure angle 20◦. The addenda are 3 mm. Determine 1. Length of path of contact,
2. Contact ratio and 3. The angle turned through by the pinion while any one pair of
teeth is in contact.

1. From equation (6.25)
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AB =
√

532 − 502cos220 +
√

782 − 752cos220 − 125 sin 20

= 15.195 mm

2. Substituting known values, r3 = 50 mm and r2 = 75 mm and using given
addenda 3 mm

AB =
√

532 − 502cos220 +
√

782 − 752cos220 − 125 sin 20

= 15.195 mm

3. Contact ratio is arc of contact divided by circular pitch. Arc of contact is path of
contact divided by cos ϕ.

4. Arc of contact is 1.5195/ cos 20.
5. Circular pitch is π/pd .
6. Therefore the contact ratio is (1.5195/0.9396) × 1.6/π = 0.8235.
7. Angle turned by pinion while any one pair of teeth in contact is given by the arc

of contact divided by the radius, i.e.,

Angle turned by pinion =
1.5195

0.93969

5
= 0.3234 rad

= 18.53◦

Solved Problem 6.8

Determine the minimum number of teeth that can be employed on the pinion to
mesh with a rack, if the pressure angle is 14.5◦ and the addendum is one module. If
the number of teeth is to be reduced from the value you find and that interference
should be avoided, what changes would you recommend in the gear pair?

1. From equation (6.21)

tmin = 2arpd

sin2 φ
= 2

sin2 14.5
= 32

2. If the number of teeth is to be less than 32 as obtained above, the pressure angle
can be increased to avoid interference. e.g., if the number of teeth allowed is 18,
sin2 φ = 2/18, a pressure angle of 20◦ can be employed. If the number of teeth
is to be further decreased to say 12, the pressure angle has to be increased to 25◦.

Solved Problem 6.9

Determine the maximum addenda in terms of circular pitch of a pair of spur gears
having 12 and 20 teeth, if undercutting is to be avoided. The pressure angle is 20◦.
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1. From equation (6.14)

aw = T

2pd

[√
1 + t

T

(
t

T
+ 2

)
sin2ϕ − 1

]

2. Substituting the known values,

aw = 20

2π

[√
1 + 0.6 (0.6 + 2) sin2 20 − 1

]
pc

= 0.2783pc

3. Therefore the maximum addendum that can be used is 0.2783 times the circular
pitch.

Solved Problem 6.10

Determine the minimum number of teeth on each wheel of an involute gear pair
of speed ratio 3.5. The pressure angle is 14.5◦ and it is necessary that the arc of
approach should be more than the circular pitch.

1. Equation (6.27) gives

Arc of Approach =
√

R2
3 − r2

3 cos2ϕ − r3 sin ϕ

cos ϕ

2. Taking the arc of approach to be at least the circular pitch, we have the condition
that

pc cos 14.5 =
√(

r3 + pc

π

)2 − r2
3 cos214.5 − r3 sin 14.5

3. The relation between r3, pc and number of teeth t , is

r3 = pct

2π
= 0.15915pct

4. Therefore,

pc cos 14.5 =
√(

0.15915pct + pc

π

)2 − (0.15915pct)
2cos214.5 − 0.15915pct sin 14.5

5. Cancelling pc

0.9681 =
√(

0.15915t + 1

π

)2

− (0.15915t)2 × 0.9373 − 0.15915 × 0.2504t
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6. The above gives t = 34.6.
7. To get the exact speed ratio, the nearest teeth numbers are t = 36 and T = 126.

6.15 Additional Problems

1. Determine the pitch diameter, circular pitch, addendum, dedendum, tooth thick-
ness and clearance of a 22 tooth gear with standard full depth involute of diame-
tral pitch 2.

2. A spur gear pair has pitch diameters of 12 and 30 cm. What is the largest tooth
size, in terms of diametral pitch, that can be used without having any interfer-
ence? Take the pressure angle to be 20◦.

3. Two mating gear wheels have 20 and 40 involute teeth of diametral pitch 1 and
20◦ pressure angle. The addendum of each wheel is to be made of such a length
that the line of contact on each side of the pitch point has half the maximum
possible length. Determine the addenda and the length of arc of contact.

4. Two gear wheels mesh externally and are to give a velocity ratio of 3. The teeth
are involute form with diametral pitch 2. Use standard addendum values and
pressure angle is 18◦. Determine 1. the number of teeth in each wheel to avoid
interference, 2. the lengths of path and arc of contact, 3. the number of pairs of
teeth in contact and 4. the angle of rotation of the pinion whilst any one pair of
teeth are in contact.

5. State the essential requirements of the mating profiles of two gear teeth for a
constant velocity ratio and show how these are satisfied by involute profiles. De-
termine graphically or otherwise, the length of path of contact when a pinion of
18 teeth meshes with an internally toothed wheel with 72 teeth. The pressure an-
gle is 20◦ and the diametral pitch is equal to 2. The addenda on pinion and wheel
are 0.9 and 0.4 cm respectively.

6. A pinion of 20 involute teeth and 12.5 cm pitch circle diameter drives a rack. The
addendum of both the pinion and the rack is 6 mm. What is the least pressure
angle which can be used to avoid undercutting? With this pressure angle find the
length of arc of contact and the minimum number of teeth in contact at a time.

7. A gear wheel having 20 teeth of involute form of diametral pitch 2 and pressure
angle 20◦ drives another wheel of the same dimensions. Determine the addendum
of the wheel so that the arc of contact is maximum possible. What is the length
of such an arc?

8. A gear wheel having 20 involute teeth of 1.25 cm circular pitch is to be gener-
ated by means of a straight rack cutter. The addendum of the cutter and of the
wheel is 0.4 cm. What is the smallest pressure angle which may be employed, if
undercutting is to be avoided? Calculate, from first principles, the length of the
arc of contact when two such wheels, each of 20 teeth mesh together correctly.

9. Two equal gear wheels of 15 cm pitch circle diameter and diametral pitch 4 are
in mesh. The teeth are of involute form with pressure angle 20◦. Determine the
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minimum addendum necessary if there are to be at least two pairs of teeth in
contact.

time.

10. A pinion with 24 involute teeth of 15 cm pitch circle diameter drives a rack.
The addendum of the pinion and rack is 0.6 cm. What is the least pressure angle
which can be used if interference is to be avoided? Using this pressure angle, find
the length of arc of contact and the minimum number of teeth in contact at one



Chapter 7
Helical, Spiral, Worm and Bevel Gears

7.1 Involute Helicoid

Cut a paper into the shape of a parallelogram and wrap it around a cylinder. The
edge of the paper makes an angle ψb called the base helix angle. When you unwrap
the paper, keeping it tight, so that it is tangential to the cylinder, see Figure 7.1,
you are generating several involute profiles placed side by side starting from a line
inclined at the base helix angle ψb to the cylinder axis. The surface thus generated
is an involute helicoid and forms the shape of a tooth on a helical gear. If the helix
angle is clockwise, then we have a right-hand helical tooth, otherwise it is a left hand
helical tooth. The plan view of a left-handed helical gear is shown in Figure 7.2.

To understand how two helical gears can mate, fold two A-4 size sheets to form
roughly 30 cm by 5 cm size papers. On one of them draw lines representing right-
hand teeth at any suitable helix angle and on the other draw lines with the same helix
angle but with left-hand teeth. Fold them to form two cylinders and place them one
above the other to understand how helical gears mate. Notice that these two gears
have to be of opposite hand.

Because of the helix angle, there is always a thrust accompanied with the trans-
mitted force. The net force is in the normal direction to the teeth in action as shown
in Figure 7.2.

7.2 Helical Gear Tooth Relations

Figure 7.3 shows a helical rack in which lines LM and NO represent the center lines
of two consecutive teeth.

229
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Fig. 7.1 Shape of a tooth on a helical gear

Fig. 7.2 Left-handed helical gear

Helix Angle, ψ

Angle made by a tooth center line with the gear axis.
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Fig. 7.3 Helical rack

Lead Angle, α

Complement of helix angle is 90 − ψ .

Right-Handed Gear

Helical gear with helix angle in clockwise direction.

Left-Handed Gear

Helical gear with helix angle in anti-clockwise direction.

Transverse [Circular] Pitch, pt

Distance between two consecutive teeth in the transverse direction.

Normal Pitch [Pitch], pn

Distance between two consecutive teeth in the normal direction.

pn = pt cos ψ (7.1a)
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Axial Pitch, px

Distance between two consecutive teeth in the axial direction.

px = pt

tan ψ
(7.1b)

Transverse [Circular] Diametral Pitch, ptd

ptd = π

pt

(7.2a)

Normal Diametral Pitch [Diametral Pitch], pnd

pnd = π

pn

(7.2b)

pnd = ptd

cos ψ
(7.3)

Transverse [Circular] Pressure Angle, ϕt

Pressure angle of helical rack tooth in transverse plane, see section A–A in Fig-
ure 7.3.

Center Distance for Helical Gear Pair, C

C = t2 + T3

2ptd

= t2 + T3

2pnd cos ψ
(7.4)

Normal Pressure Angle, ϕn [Pressure Angle]

Pressure angle of helical rack tooth in normal plane, see section B–B in Figure 7.3.

tan ϕn

tan ϕt

= cos ψ (7.5)
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Fig. 7.4 (a) Two base cylinders with one helical tooth on each. (b) Contact pattern

Helical Gear Contact Ratio

Ratio of face width F to transverse pitch pt . General recommendation for helical
gears is

F >
1.15pt

tan ψ
(7.6)

7.3 Contact of Helical Gear Teeth

Figure 7.4a shows the two base cylinders each with one helical tooth. The top cylin-
der gear tooth is left-handed and the bottom one is right-handed. The plane of action
is tangential to both the base cylinders. The contact begins at one end of the tooth,
and if it is a driver, it starts at a point B on the flank as shown in Figure 7.4b. As the
driver rotates, the contact gradually increases as shown, with the line of contact at an
instant given by the line AC. The contact afterwards gradually decreases during the
disengagement and finally disappears at the addendum circle point D on the face. If
the gear is a driven gear, the contact begins at a point on the addendum circle and
disappears somewhere in the bottom region of the flank.
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(c)

(d)

Fig. 7.4 (Continued) (c) Two helical gears in action. (d) Engagement of helical gears

In spur gears, the contact takes place on a line parallel to the axis abruptly and
disengagement is also abrupt. In helical gears, the loading and unloading is gradual
and therefore, the action is smoother and less noisy.

Two helical gears in action are shown in Figures 7.4c and d.
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7.4 Helical Gear Calculations

A spur gear pair of 20◦ full depth with 24 and 60 teeth having a diametral pitch
6 is proposed to be replaced by a helical gear pair of the same pressure angle and
diametral pitch. Keep the center distance to be the same as in a spur gear pair and
the side thrust to be as small as possible.

1. For the existing spur gear pair, the center distance of the shafts is C = (t2 +
T3)/2pd .

2. With t2 = 24, T3 = 60 and pd = 6, we have C = 7 cm.
3. Speed ratio R = 60/24 = 2.5.
4. For helical gear pair, the center distance is C = (t2+T3)/2ptd , see equation (7.4).
5. Using T3 = 2.5t2 and C = 7 cm, ptd = 3.5t2/14 = t2/4.
6. Since the teeth number should be an integer, let t2 = 20, then T3 = 50 and

ptd = 5.
7. From equation (7.3),

pnd = ptd

cos ψ

Therefore cos ψ = 5/6 = 0.8333.
8. Hence, the helix angle ψ = 33◦34′.
9. The above helix angle is too large and hence the side thrust.

7.5 Spiral [Crossed Helical] Gears

The only condition to be satisfied here is that both the gears should have the same
normal pitch. The contact takes place at only one point; therefore, their load carrying
capacity is very small. Typical application example is the distributor drive in an
automobile engine.

For two mating spiral gears, let pn be the normal pitch; pt2 the transverse (circu-
lar) pitch of wheel 2; pt3 the transverse (circular) pitch of wheel 3; t2 the number of
teeth on wheel 2; T3 the number of teeth on wheel 3; ψ2 the helix angle of gear 2;
ψ3 the helix angle of gear 3; θ the shaft angle; D2 the pitch circle diameter of wheel
2; and D3 the pitch circle diameter of wheel 3.

Then, the following relations are valid:

10. Let t2 = 22, then T3 = 55 and ptd = 5.5.
11. This gives

ψ = cos−1 5.5

6
= 23◦38′

12. Selecting the above gears, from equation (7.2a), pt = π/5.5 = 0.571.
13. Therefore the face width is, from equation (7.6),

F >
1.15 × 0.571

tan 23◦38′ = 1.5 cm
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R = T3

t2

pt2 = pn

cos ψ2

pt3 = pn

cos ψ3

D2 = t2pt2

π
= t2pn

π cos ψ2
= t2

pnd cosψ2

D3 = T3pt3

π
= T3pn

π cos ψ3
= T3

pnd cos ψ3
(7.7)

The center distance between the shafts is then given by

C = 1

2
(D2 + D3) = t2pn

2π

(
1

cos ψ2
+ R

cos ψ3

)

= t2

2pnd

(
1

cos ψ2
+ R

cos ψ3

)
(7.8)

Note that the two mating crossed helical gears could be of the same hand or opposite
hand. The shaft angle will depend on the helix angles and their hand. In Figure 7.5a,
both the mating gears are left-handed, then, the shaft angle θ = ψ2 + ψ3. If the
crossed helical gears are of opposite hand, then as shown in Figure 7.5b, we have
shaft angle θ = ψ2 − ψ3. Hence the shaft angle for a spiral gear pair is

θ = ψ2 ± ψ3 (7.9)

7.6 Worm Gearing

Generally used for transmitting power at very high velocity ratio in one stage be-
tween two non-intersecting shafts. The worm is shown in mesh with the gear wheel
(also called worm wheel) in Figure 7.6. The pitch diameters of the worm and wheel
are denoted Dw and Dg , and the helix angle as ψ . The lead angle is α = 90 − ψ .

Conditions for Worm and Wheel at Right Angles

The necessary conditions are

1. Axial pitch of the worm paw should be equal to circular pitch pcg of the gear
wheel, see Figure 7.6.

2. Lead angle of the worm α should be equal to helix angle ψg of the gear.
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Fig. 7.5 (a) Two left-handed helical gears. (b) Two gears with opposite helix angles

Fig. 7.6 Worm and worm gear

Lead of Worm

Distance traveled by a point on the worm thread in axial direction for one turn of
the worm.

If one turn of the worm is unwrapped, it forms the hypotenuse of a right angled
triangle as shown in Figure 7.7. If tw is the number of threads on the worm, then the
lead l is given by
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Fig. 7.7 One turn of the worm unwrapped

l = patw (7.10)

From Figure 7.7,

tan α = patw

πDw

(7.11)

If Tg is the number of teeth on the gear, its diameter can be obtained from

Dg = pcTg

π
(7.12)

The speed ratio is
nw

Ng

= Tg

tw
(7.13)

Using (7.12) and (7.13), the speed ratio becomes

nw

Ng

= Dg

Dw tan α
(7.14)

For right-angled shafts, we have ψw = 90 − α and ψg = α, therefore

nw

Ng

= Dg cosψg

Dw cosψw

= πDg

l
(7.15)
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Fig. 7.8 Bevel gears

Fig. 7.9 Pitch cones of gear and pinion

7.7 Bevel Gears

The pitch cones roll over each other without slipping, with their apexes meeting at
the same point as shown in Figure 7.8. Figure 7.9 shows two bevel gears in mesh
with θ as their shaft angle. The shaft angle is the sum of the pitch cone angles.

θ = γ2 + γ3 (7.16)
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The velocity ratio is
n2

N3
= r3

r2
= T3

t2
(7.17)

Since OP = r2/ sin γ2 = r3/ sin γ3,

sin γ2 = r2

r3
sin γ3 (7.18)

Using (7.16),

sin γ2 = r2

r3
sin(θ − γ2) (7.19)

Expanding the above equation and dividing it by cos γ2, we get

tan γ2 = sin θ

cos θ + r3
r2

(7.20)

Similarly,

tan γ3 = sin θ

cos θ + r2
r3

(7.21)

For right angled shafts, θ = 90◦, therefore

tan γ2 = r2

r3
(7.22)

tan γ3 = r3

r2
(7.23)

7.8 Formation of Bevel Gears

Figure 7.10 illustrates the formation of a bevel gear tooth profile. The cone OHI is
the base cone and ODC is the pitch cone. Imagine a paper wrapped around the cone
with its edge along OE. When the paper is slowly unwrapped, say, to position OG,
the edge OE generates a spherical involute OF. This spherical involute forms the
profile of the bevel gear tooth. Since OE = OF at all stages, the point E moves on
the surface of a sphere HAI.

It is difficult to layout the gear tooth in this form for a kinematic study; an ap-
proximation is made. The sphere HAI is replaced by a back cone CBD with back
cone angle β , which is normal to the pitch cone OCD, i.e., β = 90 − γ . This back
cone is also normal to the sphere HAI on the pitch circle CD. The teeth are laid
out on the back cone developed surface as shown in the figure. This forms the tooth
profile at the large end of the teeth, and all the tooth elements form straight lines
with the pitch cone center O.

In the study of bevel gears, equivalent spur gears are used. The equivalent pitch
radius of such a spur gear is
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Fig. 7.10 Straight bevel gear tooth

re = r

sin β
= r

cos γ
(7.24)

The number of teeth on the equivalent spur gear is

te = 2πre

p
(7.25)

where p is the circular pitch of the bevel gear at the large end of the teeth. This is a
formative number of teeth; therefore, it may not be a whole number.

Consider a 2-DP straight bevel pinion (Tp = 14 teeth) which drives a gear
(Tg = 24 teeth). The shaft angle is 90◦ and the pressure angle is 20◦. The following
proportions are used to calculate various parameters of the bevel gear pair.

1. Working depth is 2/pd = 1 cm.
2. Whole depth is (2.188/pd) + 0.005 = 1.099 cm.
3. Addendum of gear

aG = 0.54

pd

+ 0.4

pd

(
Tp

TG

)2

= 0.338 cm

4. Addendum of pinion

ap = 2

pd

− aG = 0.662 cm

5. Dedendum of gear
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dg = 2.188

pd

− aG = 0.756 cm

6. Dedendum of pinion

dp = 2.188

pd

− ap = 0.432 cm

7. Circular pitch pc = π/pd = 1.571 cm.
8. Circular thickness of gear

tG = 1

2
pc − (ap − aG) tan ϕ = 0.6675 cm

7.9 Solved Problems

Solved Problem 7.1

Two shafts are to be connected by helical gears for a speed reduction of 1.5:1. The
center distance between the shafts is 6 cm. Using 4-DP 20◦ full depth gears deter-
mine the number of teeth and pitch diameter of each gear and also the diametral
pitch. The helix angle can be around 20◦.

1. With helix angle 20◦, the transverse pitch diameter ptd = 4 × cos 20 = 3.7587
cm.

2. In equation (7.4) (t2 + T3)/2C = ptd , substitute for T3 = 1.5t2 and other known
values 2.5t2/12 = 3.7587. Therefore the number of teeth on the pinion and the
gear are t2 = 18 and T3 = 27.

3. The transverse pitch diameter is

10. Pitch cone angle of pinion

γ2 = tan−1 r2

r3
= tan−1 14

24
= 30.26◦

11. Pitch cone angle of gear

γ3 = tan−1 r3

r2
= tan−1 24

14
= 59.74◦

12. Pitch radius of the equivalent spur pinion r2 = 14/(2 × 2) = 3.5 cm.
13. Pitch radius of the equivalent spur gear r3 = 24/(2 × 2) = 6 cm.
14. Base radius of the equivalent spur pinion re2 = 3.5/ cos 30.26 = 4.05 cm.
15. Base radius of the equivalent re3 = 6/ cos 59.74 = 11.91 cm.

9. Circular thickness of pinion tp = pc − tg = 0.9035 cm.
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ptd = 18 + 27

2 × 6
= 3.75 cm

4. The helix angle for this pair is ψ = cos−1(3.75/4) = 20.364◦.
5. Pitch diameters are D = 18/3.75 = 4.8 cm and cm D3 = 27/3.75 = 7.2 cm.
6. Diametral pitch pnd = 3.75/ cos 20.364 = 4.

Solved Problem 7.2

It is proposed to replace a 6-DP 20◦ full depth spur gear pair of 32 and 80 teeth by
a helical gear pair, without altering the center distance and speed ratio. Keeping the
helix angle as small as possible, design the gear pair keeping the width to be below
1.25 cm.

1. For spur gear pair, the center distance is C = (32 + 80)/(2 × 6) = 9.333.
2. The speed ratio is R = 80/32 = 2.5.
3. For the helical gear pair T3 = 2.5t2. From equation (7.4)

ptd = 3.5t2

2 × 9.3333
= 0.185t2

4. From the face width condition in equation (7.6) 1.25 > 1.15π/ptd tan ψ . Or
1.25 > 1.15π/pnd sin ψ .

5. Therefore

ψ > sin−1 1.15π

6 × 1.25
= 28.8◦

6. Then ptd = 6 cos 28.8 = 5.25784.
7. Number of teeth on pinion t2 = 5.25784/0.1875 = 28.
8. Number of teeth on gear is 70.
9. Work backwards to get ptd = 0.1875 × 28 = 5.25 cm.
10. ψ = cos−1(5.25/6) = 28.95◦.
11. Transverse circular pitch pt = π/5.25 = 0.5984.
12. Face width F = (1.15 × 0.5984)/ tan 28.95 = 1.225 cm.

Solved Problem 7.3

A 5-DP 24 tooth spur pinion drives two gears, one of 36 teeth and the other 80.
It is required to replace all three gears by helical ones without altering the center
distances, diametral pitch as well as gear ratios. Use 20◦ full depth involute system.

1. For spur gears, the center distances are C1 = (24 + 36)/(2 × 5) = 6 cm and
C2 = (36 + 80)/(2 × 5) = 11.6 cm.

2. The speed ratios are R1 = 36/24 = 1.5 and R2 = 80/36 = 2.222.
3. For the helical gear pair 1: ptd1 = 2.5t2/(2 × 6) = 0.20833t2.
4. For the helical gear pair 2: ptd2 = 3.222t2/(2 × 11.6) = 0.1388t2.
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5. To keep pnd = 5 and ptd < 5, we try different combinations, and finally ptd is
chosen as 3.75.

6. This gives the following for gear pair 1: t2 = 18 and T3 = 27.
7. For gear pair 2: Since there is a common gear, gear 2 in this pair should have

same teeth as gear 3 of the gear pair 1, i.e., t2 = 27 and T3 = 60.
8. So, ψ = cos−1(3.75/5) = 41.41◦.
9. Face width from equation (7.6)

F = 1.15π

3.75 tan 41.41
= 1.1 cm

Solved Problem 7.4

Using a 30 teeth 30◦ helix angle and 2-DP pinion, two shafts are to be connected
by crossed helical gears to give an angular velocity ratio 1.5. The center distance
between the shafts is 20 cm. Determine the shaft angle using a gear having the same
hand as the pinion.

1. Using the second relation in equation (7.7), pt2 = pn/ cosψ2, we have
30/D2 cos 30 = 2. Hence the diameter of pinion D2 = 17.3205 cm.

2. Since the center distance is 20, D3 = 40 − 17.3205 = 22.6795 cm.
3. Number of teeth on gear 3 is T3 = 30 × 1.5 = 45.
4. Therefore 45/22.6795 cosψ3 = 2, i.e., ψ3 = 7.2134◦.
5. Since both the gears are of same hand, the shaft angle θ = ψ2 +ψ3 = 37.2134◦.

Solved Problem 7.5

Design a proper spiral gear pair (or a helical one) to connect two shafts whose center
distance is 12.5 cm. The angular velocity ratio is to be 2.0.

1. Choose gears of 4-DP (or any value you like).
2. From equation (7.4)

12.5 = t2 + 2t2

2 × 4 cosψ2

3. This gives t2/ cos ψ2 = 33.333.
4. Choose t2 = 25.
5. Choose a left-handed helical pinion with a helix angle

ψ2 = cos−1 25

33.333
= 41.41◦

6. T3 = 50.

10. Gear diameters of pair 1: D2 = 18/3.75 = 4.8 cm and D3 = 27/3.75 = 7.2 cm.
11. Gear pair 2: D2 = 27/3.75 = 7.2 cm and D3 = 60/3.75 = 16 cm.
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7. For a helical gear pair, the two shafts are non-intersecting and the gears should be
opposite in hand. In that case, the helix angle of both the gears should be same.
Therefore, choose a right-handed gear with helix angle 41.41◦.

8. You may like to try another pair with a suitable shaft angle and find the gear helix
angle.

Solved Problem 7.6

The pinion of a spiral gear pair has 30 teeth and a normal diametral pitch 3. The
center distance between the shafts is 25 cm; the shaft angle is 60◦ and the velocity
ratio 3.5. Calculate the helix angles and pitch diameters if the gears have the same
hand.

1. From equation (7.8) the center distance

C = t2pn

2π

(
1

cos ψ2
+ R

cos ψ3

)

2. Substituting the known values

25 = 30π

3 × 2π

(
1

cos ψ2
+ 3.5

cos(60 − ψ2)

)

3. Therefore (
1

cos ψ2
+ 3.5

cos(60 − ψ2)

)
= 5

or ψ2 = 41◦ and ψ3 = 19◦.
4. From equation (7.7)

D2 = t2

pnd cosψ2
= 30

3 cos 41
= 13.25 cm

D3 = T3

pnd cosψ3
= 30 × 3.5

3 cos 19
= 37.02 cm

Solved Problem 7.7

A double threaded worm which has a lead of 5 cm drives a worm gear. The velocity
ratio is 20 and the shaft angle is 90◦. Determine the pitch diameter of worm and
worm gear, if the center distance is 20 cm.

1. From equation (7.15)

R = nw

Ng

= πDg

l
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2. Therefore gear diameter can be obtained as 20 = πDg/l and we get Dg =
100/π = 31.831 cm.

3. Since Dg + Dw = 40, the worm diameter is Dw = 8.169 cm.

Solved Problem 7.8

A right-angled worm and worm gear set is required to have a velocity ratio 25. Using
a center distance of 15 cm and axial pitch 1 cm of the worm, determine the smallest
diameter worm that can be used.

1. Using equation (7.15),

25 = πDg

l
= π(30 − Dw)

l

2. Therefore Dw = 30 − 7.96l.
3. From equation (7.10) l = patw = tw.
4. The worm diameter will be smallest when it has a maximum number of threads,

usually not more than three. Therefore choosing tw = 3, we have Dw = 6.12 cm.

Solved Problem 7.9

A four threaded worm drives a 48 tooth worm gear having a pitch diameter 18 cm
and helix angle 20◦. Calculate the lead and pitch diameter of the worm if the shaft
angle is 90◦.

1. ψg = 20◦ and since the shafts are at right angles, ψw = 70◦.
2. Using equation (7.15)

nw

Ng

= Dg cos ψg

Dw cos ψw

we have
48

4
= 18 cos 20

Dw cos 70

3. Therefore the worm diameter is Dw = 4.12 cm.
4. Once again using equation (7.15), nw/Ng = πDg/l, we get 18π/l = 12.
5. The lead is therefore l = 4.712 cm.

Solved Problem 7.10

A pair of straight tooth bevel gears is to be used for a shaft angle of 90◦. If the driver
is to have 20 teeth and speed ratio 3.5, determine the pitch angles.

1. From equation (7.22) tan γ2 = r2/r3 = 3.5.
2. Therefore γ 2 = 74.05◦.
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3. For the driven gear, tan γ3 = 1/3.5 and γ 3 = 15.95◦.
4. Or γ 3 = 90 − 74.05◦ = 15.95◦.

Solved Problem 7.11

Two straight tooth bevel gears having 16 and 24 teeth are to be mounted at a shaft
angle 120◦. What are the pitch angles?

1. From equation (7.20),

tan γ2 = sin θ

cos θ + r3
r2

= sin 120

cos 120 + 1.5

2. Therefore the pinion pitch angle

γ2 = tan−1 0.866

1
= 40.89◦

3. Similarly from (7.21), the driven member pitch angle is

γ3 = tan−1 0.866

0.166
= 79.1◦

7.10 Additional Problems

1. Two spiral gear wheels A and B of the same hand and equal diameter are used
in a machine tool drive. The normal pitch is 1.25 cm. The center distance should
be around 15 cm and the shaft angle is 80◦. The speed of shaft A is 1.25 times
that of shaft B. Determine (a) the spiral angle of each wheel and (b) the number
of teeth on each wheel.

2. A pair of spiral gears is required to connect two shafts 17.5 cm apart, the shaft
angle being 70◦. The speed ratio is 1.5 and the faster wheel has 80 teeth and a
pitch circle diameter of 10 cm. Find the spiral angles of each wheel.

3. Two shafts are to be connected by spiral gears with a velocity ratio 3:1. The shaft
angle is 45◦ and the least distance between the shaft axes is to be 22.5 cm. The
normal diametral pitch is to be 5 and the pinion is to have 20 teeth. Determine
the pitch circle diameters and the spiral angles if they are of the same hand.

4. Two spiral gear wheels A and B have 45 and 15 teeth at spiral angles 20◦ and 50◦
respectively. Both wheels are of the same hand and wheel A is 15 cm diameter.
Find the distance between the shafts and the angle between the shafts.

5. Design a worm wheel to be driven by a double threaded worm with a lead of 4
cm. The velocity ratio required is 16 and the shaft angle is to be 90◦. The center
distance can be around 25 cm.
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6. A worm drives a 48 tooth worm gear having a pitch diameter 18 cm and helix
angle 20◦. Design the worm to obtain a speed ratio of 12. Use a shaft angle 90◦.

7. Design the rolling cones for a 3:1 ratio and a 60◦ included angle between the
shafts and make a layout.

8. A bevel gear pair is required to transmit motion with a velocity ratio 4:1. The
shaft angle is 40◦. Design the rolling cones.



Chapter 8
Gear Trains

8.1 Classification of Gear Trains

Simple Gear Train

Gear train which has no more than one gear mounted on a shaft.

Compound Gear Train

Two or more gear pairs arranged in series with at least one shaft carrying more than
one gear.

Reverted Gear Train

A compound gear train with the driving and driven gears on coincident axes.

Epicyclic [Planetary] Gear Train

One gear in the train rotates over another gear causing an epicyclic path.

Differential Gear Train

An epicyclic gear train when all the members are free to rotate.
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Fig. 8.1 Simple gear train

Coupled Epicyclic Gear Train

Two or more epicyclic trains are coupled together.

8.2 Simple Gear Trains

Figure 8.1 shows a simple gear train. A is the driver, B is the idler and C is the
driven member. The speed of the driver is represented by n and the driven member
speed is N . For gears mounted on shafts A and B, the speed ratio is

n

ωi

= ti

t1
(8.1)

where ωi is the speed of the idler.
For gears mounted on shafts B and C,

ωi

N
= T1

ti
(8.2)

Therefore,

R = n

N
= T1

t1
(8.3)

and the speed ratio R is independent of the idler wheel. In fact there can be any
number of idler wheels; the speed ratio is still governed by equation (8.3). The
purpose of idler wheels is only to reverse the direction of speed or bridge a gap.
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Fig. 8.2 Compound gear train

8.3 Compound Gear Trains

Figure 8.2 shows a compound train with two gear pairs t1, T1 and t2, T2. The speed
of the wheels mounted on shaft B is the same, i.e., the follower of the first pair and
the driver of the second pair have the same speed. Then

N1 = n1
t1

T1
(8.4)

n2 = N1 (8.5)

N2 = n2
t2

T2
(8.6)

Therefore,

N2 = n1
t1

T1

t2

T2
(8.7)

Hence the overall gear ratio is

R1,2 = n1

N2
= T1T2

t1t2
(8.8)

In general for a compound train with n simple gear pairs,

R1,2,...n = T1T2 · · ·Tn

t1t2 · · · tn (8.9)

Since the number of teeth is a whole number we can write
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R = U

u

U = T1T2 . . . Tn

u = t1t2 . . . tn (8.10)

8.4 Synthesis of Gear Trains

Simple Gear Train

If the gear ratio desired can be expressed by two simple whole numbers U and u,
and if these two whole numbers can represent convenient tooth numbers, then a
simple gear train is possible.

As an example design a simple gear train for R = 2.4. We can write

R = U

u
= 24

10
= 12

5

Then we can choose gear trains with teeth 24 and 10 (if this is not good as interfer-
ence may take place with the pinion having only 10 tooth) or 36 and 15, or 48 and
20, etc.

Compound Gear Train

When a simple train is not possible as above, a compound train may be tried.
Let us design a gear train for a speed ratio of 24.149. Here

R = U

u
= 24149

1000

We can factorize the above to give

R = U

u
= 19 × 31 × 41

2 × 5 × 2 × 5 × 2 × 5

The above terms can be rewritten to represent convenient tooth numbers, e.g.,

R = U

u
= 76

20
× 93

24
× 41

25

Therefore, we can use a compound gear train with three simple gear trains, 76/20,
93/24 and 41/25 in series. Gear with 20 teeth in the first pair and the gear with 93
teeth in the second pair are mounted on the same shaft, shaft 2; Gear with 24 teeth
in the second pair and the gear with 41 teeth in the third pair are mounted on the
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Fig. 8.3 Change gear train

same shaft, shaft 3. Shaft 1 with gear 76 teeth is the input shaft and shaft 4 with gear
25 teeth will form the driven shaft.

Note that it is not desirable to have a common factor between the teeth numbers
in a pair, to distribute any successive impulsive forces. If there is a common factor,
it is advisable to provide an additional tooth called hunting tooth.

8.5 Gear Train Applications to Machine Tools

Machine tools are classical examples of gear trains. They require many different
drives, e.g., main drive to the spindle, automatic traverse of the cross slide, etc.

Change Gear Trains

Figure 8.3 shows a change gear train, usually employed for screw cutting in ordi-
nary lathes. Gear A is mounted on the main spindle and it drives the output gear
D through either one idler wheel B or set of idlers C and B. A reversing tumbler
quadrant is used for the purpose of changing the direction of rotation of wheel D.
This enables cutting of right-hand as well as left-hand screw threads on a lathe.

From gear D, the motion is transmitted to the quick change gear box, through a
compound train. Pick off gears for the set of gear wheels E and F are provided to
get the desired speed of the lead screw.
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Fig. 8.4 Reverted gear train

Reverted Gear Train

The back gear arrangement in the head stock of a lathe is a good example of a
reverted train. As shown in Figure 8.4, the cone pulley and gear A form an integral
block and it may run loose or fast on the main spindle. Gears B and C are mounted
on the back gear shaft, and the motion is transmitted through them to gear D, which
is keyed to the main spindle.

All-Geared Head Stocks

Machine tool spindle drives need a number of speeds to achieve a minimum loss of
cutting speed for any diameter of the job. It is found that the best arrangement for
such a condition is to arrange the speeds in a geometrical progression.

Consider a six-speed gear box (n1, n2, . . . , n6) with three shafts. The speeds are
to be arranged in a geometrical progression, therefore

n2

n1
= n3

n2
= n4

n3
= · · · n6

n5
= ϕ (8.11)

Or

log n2 − log n1 = log n3 − log n2 = log n4 − log n3 = · · · = log ϕ (8.12)

Using equation (8.12) a kinematic layout diagram may be drawn as shown in Fig-
ure 8.5a. Shaft A is the input shaft running at a constant speed. Shaft B is an inter-
mediate shaft, which can be made to run at any of the three speeds indicated in the
figure by shifting a gear block (Note that a shifting gear block can give a maximum
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Fig. 8.5 Kinematic layout of a six-speed gear box

three speeds). The output shaft C can be made to run at six speeds, two different
speeds for each speed of shaft B.

The arrangement can also be chosen as in Figure 8.5b, in which the intermediate
shaft has only two speeds and corresponding to each of these speeds, the output
shaft has three speeds. It is advisable to keep the input and intermediate shafts at
as high speeds as possible so that the torque transmitted by them is restricted to a
minimum value.

A Headstock of a machine tool is to have six speeds in the range 50 to 1600
RPM. The main drive runs at 1450 RPM. Suggest a kinematic layout and show
schematically the arrangement of such a gear box.

1. Since there are six speeds, the value of ϕ from equation (8.11) can be determined
as ϕ5 = 1600/50 = 32 or ϕ = 2.
It is necessary to have at least two reduction stages to obtain all the speeds on the
output shaft. The input shaft can be coupled directly to the motor, in which case
it will have a speed of 1450 RPM. This is shown in the ray diagram of Figure 8.6,
where all the shaft speeds are marked on the log scale, with each division equal
to log ϕ.

2. The intermediate shaft is chosen to have only two speeds, so that its minimum
speed can be kept as high as possible. These shaft speeds are chosen at 1600 and
200 RPM to be consistent with the ratios of speed reduction in the second stage
to cover all the desired speeds on the output shaft. Note that the reductions from
1600 and 200 RPM on the intermediate shaft will be in the same ratio, i.e., there
are three pairs of lines which are parallel on the diagram between the shafts B

and C.
The gear box layout to achieve the ray diagram thus drawn is shown in Figure 8.7.
Note the locations of shifting gear blocks on input and output shafts and that the
intermediate shaft carries only fixed gears. In the figure shown, gear pair 1 and
3 are in action. You can keep gear pair 1 in action and choose gear pairs 3 or 4
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Fig. 8.6 Ray diagram for the example problem

or 5 to mate by shifting the gear block to appropriate position which gives the
speeds 1600, 800 and 400 RPM to the output shaft. If you choose gear pair 2 to
be in action, then speeds 200, 100 or 50 RPM are obtained. The tooth numbers
can now be calculated as follows.

3. The speed ratio for gear set 1 is

n1

N1
= T1

t1
= 1450

1600
= 29

32

Let this be represented as n1/N1 = 29x/32x, where x is a common factor to be
determined later.

4. The speed ratio for gear set 2 is

n2

N2
= T2

t2
= 1450

200
= 29

4

Let this be represented by n2/N2 = 29y/4y.
5. Since all the gears used are of the same diametral pitch, t1 + T1 = t2 + T2.
6. Therefore, (29 + 32)x = (29 + 4)y, i.e., y = 1.85x.
7. Since the tooth numbers are whole numbers, it is clear that the desired speeds of

shaft B cannot be obtained as in the ray diagram.
8. One recommended combination of teeth of gear pairs 1 and 2 is t1 = 96 and

T1 = 87 and t2 = 22 and T2 = 161.
9. Obviously, there is no unique solution. You may like to try finding the numbers

of teeth for gear pairs 3, 4 and 5.
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Fig. 8.7 Gear box layout for the example problem of Figure 8.6

8.6 Epicyclic Trains

Figure 8.8a shows the simplest epicyclic train in which shafts A and B represent
the input and output members. These two shafts are connected by a simple reverted
train. The block of gears having teeth T1 and t2 are mounted in a casing C. If C is
fixed, we have a simple reverted train.

In epicyclic trains, the casing C is made free and in order to have one degree
of freedom, either shaft A or shaft B is restrained from rotation. Let the shaft A

be fixed, then the gear block along with the casing C rotates over the fixed gear
on shaft A. Therefore, gear A becomes the sun wheel and the gear block becomes
planet wheels and C is the planet carrier.

When the casing C is fixed, the overall speed ratio of the reverted train R0 is
defined as the basic ratio of the epicyclic train.

R0 = −T1

t1
(8.13)

For the train in Figure 8.8a,

R0 = T1T2

t1t2
(8.13a)

Other versions of the simple epicyclic train are given in Figures 8.8b and c. In the
train of Figure 8.8b, an annulus is used on shaft B instead of an external gear of
Figure 8.8a. Then, the basic ratio of the train is

R0 = −T1T2

t1t2
(8.13b)
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Table 8.1 Case A/C speed ratio calculations

Operation Revolutions of
A B C

Member C fixed R0 1 0
En bloc rotation –1 – 1 –1
Net resulting motion R0 − 1 0 –1

The train in Figure 8.8b can be simplified to have one planetary wheel instead of a
block, then the basic ratio becomes

R0 = −T1

t1
(8.13c)

In all three cases above, we find that there are three common elements

1. Input shaft, A.
2. Output shaft, B.
3. Planet carrier, C.

In fact all epicyclic trains have these three elements; you must learn to recognize
them in a given example. When C is fixed, the epicyclic train becomes a simple re-
verted train and the speed ratio of this train is a basic ratio. Three different arrange-
ments of an epicyclic train are shown in Figure 8.9a (B fixed), Figure 8.9b (C fixed
– reverted train) and Figure 8.9c (A fixed). Symbolically, all that you need is to write
the train as shown in Figure 8.9d.

8.7 Inversions of Epicyclic Trains

Case A/C (B Fixed) Figure 8.8a

First consider when C is fixed as in a reverted train, rotate the shaft A, by sufficient
number of rotations, to cause one complete revolution of shaft B. This requires R0
revolutions of shaft A.

Next rotate the whole epicyclic train, en bloc by a −1 revolution, to bring the
shaft B to its original position, during which the shaft A as well as casing C also
have made a −1 revolution. These two processes are given in Table 8.1.

The speed ratio RAC is therefore

RAC = NA

NC

= 1 − R0 (8.14a)
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Fig. 8.8 (a) Single epicyclic train. (b) Output shaft with an internal gear. (c) Epicyclic train with a
simple planet wheel

Table 8.2 Case B/C speed ratio calculations

Operation Revolutions of
A B C

Member C fixed R0 1 0
En bloc rotation −R0 −R0 −R0
Net resulting motion 0 1 − R0 −R0

Case B/C (A Fixed) Figure 8.8c

First consider when C is fixed as in a reverted train, rotate the shaft A, by a sufficient
number of rotations, to cause one complete revolution of shaft B. This requires R0
revolutions of shaft A. (This operation is the same as above.)

Next rotate the whole epicyclic train, en bloc by −R0 revolution, to bring the
shaft A to its original position, during which the shaft B as well as casing C also
have made −R0 revolution. These two processes are given in Table 8.2.

The speed ratio RBC is therefore



260 8 Gear Trains

Fig. 8.9 (a), (b), (c) Different arrangements of epicyclic trains. (d) Elements in an epicyclic train

RBC = NB

NC

= R0 − 1

R0
(8.14b)
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The main advantage of an epicyclic train is that a wide range of speed ratios can be
obtained by simple alterations, see the example below.

The basic ratio of an epicyclic gear train is 1.05. Find the speed ratios that can
be obtained by two epicyclic arrangements. What would be the speed ratios of the
same trains, if the basic ratio is changed to −1.05?

• Basic Ratio is 1.05
Case A/C (B Fixed): From (8.13)

RAC = NA

NC

= 1 − R0. ∴ RAC = 1 − 1.05 = − 1

20

Case B/C (A Fixed): From (8.14)

RBC = R0 − 1

R0
. ∴ RBC = 1.05 − 1

1.05
= + 1

21

• Basic Ratio is −1.05
Case A/C (B Fixed): From (8.13)

RAC = NA

NC

= 1 − R0. ∴ RAC = 1 + 1.05 = +41

20

Case B/C (A Fixed): From (8.14)

RBC = R0 − 1

R0
. ∴ RBC = −1.05 − 1

−1.05
= +41

21

8.8 Differential Trains

Common forms of differential trains are shown in Figures 8.10a and b. The general
expression for speed ratios can be derived as follows:

1. First let member A be fixed. Then NC = NB/RBC .
2. Next let member B be fixed. Then NC = NA/RAC .
3. Now let A and B be free and rotate simultaneously, the total revolutions of mem-

ber C will then be NC = NB/RBC + NA/RAC .
4. Substitute these results of equations (8.13) and (8.14) in the above equation of

step 3, which gives

NC = NBR0

R0 − 1
+ NA

1 − R0
(8.15)

5. Multiplying throughout by (1 − R0) and rearranging

NA − NBR0 + NC (R0 − 1) = 0 (8.16)
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Fig. 8.10 Common forms of differential gear train

The differential train is a two-degree of freedom system, since you need two inputs
to get a unique output or two output shafts are necessary for an input shaft.

Figure 8.10a is a common form of differential used in automobile transmission.
Shafts A and B are coupled to the rear wheels and the planet carrier is driven by
the propeller shaft (connected through a simple bevel gear). Since T = t , the basic
ratio is −1 and equation (8.16) for this case becomes NA + NB − 2NC = 0. Under
normal conditions NA = NB = NC . If the speed of one of the wheels increases
due to slipping, the speed of the other wheel reduces, such that the sum of the two
speeds of the wheels is equal to twice that of the drive shaft speed.

8.9 Torque Distribution in Epicyclic Trains

Besides the input and output torques, we have a holding torque on the fixed member
in an epicyclic train. One condition is given from the equilibrium of the system

MA + MB + MC = 0 (8.17)

where MA, MB and MC represent the torques on members A, B and C respectively.
The second condition is taken from the fact that the sum of the work done by all

the three members is zero. Therefore

MANA + MBNB + MCNC = 0 (8.18)
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Fig. 8.11 Epicyclic train example

8.10 Example of an Epicyclic Train

Figure 8.11 shows an epicyclic train which consists of a planet carrier C driving
the sun wheel A. The sun wheel B is fixed and the number of teeth on the gears is
shown in the figure. Determine the speed of output shaft A, if C runs at 1500 RPM.
Also determine the torques on all the members if the power transmitted is 10 HP.

1. First identify the three members of the basic epicyclic train as in Figure 8.9d.
Figure 8.11 is the same as the case in Figure 8.8a, the planet carrier C here is
made coaxial and the sun wheel shaft A runs inside the fixed shaft B. Remember
that all epicyclic trains have the same elements, only their constructional features
make them look different from one another. Once you make correct identifica-
tion, solution of the problem becomes simple.

2. The basic ratio from equation (8.13a) is

R0 = T1T2

t1t2
= 24 × 20

16 × 20
= 1.5

3. The speed ratio is given by equation (8.14a), RAC = 1 − R0 = −0.5.
4. Therefore the speed of shaft A is 1500 × (−0.5) = −750 RPM.
5. The input torque is obtained from

2π × 1500 × MC

60 × 746
= 10 HP
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Fig. 8.12 Coupled epicyclic train

6. Or MC = 47.49 Nm.
7. From equation (8.17), MA + MB + 47.49 = 0.
8. From equation (8.18), MANA + MBNB + 47.49NC = 0.
9. Substituting in the above, we have MA(−750) + 47.49 × 1500 = 0 or MA =

94.98 Nm.
10. Hence, 94.98 + MB + 47.49 = 0, i.e., MB = −142.47 Nm.

8.11 Coupled Epicyclic Trains

In these trains, two or more of the simple epicyclic elements A,B or C appear in
the coupled epicyclic trains. Ordinarily in a coupled epicyclic train made up of, say,
two single trains, the two sets of elements A1, B1 and C1 of the first train and A2,
B2 and C2 of the second train, must be present. An example of such a train is shown
in Figure 8.12.

Determine the output speed of shaft A2 for the input speeds of A1 and C1 given
by −400 and +200 RPM respectively.

1. For the first train R01 = −75/25 = −3.
2. Equation (8.16) for the first train is

NA1 − NB1R01 + NC1(R01 − 1) = 0

−400 + 3NB1 + 200(−4) = 0

NB1 = 400 RPM
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Fig. 8.13 Epicyclic train with three annular members and equivalent train
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Fig. 8.14 Wilson four-speed automobile gear box

3. For the second train, NC2 = NB1 = 400 RPM and NB2 = 0.
4. The basic ratio for the second train is R02 = 30×35

20×25 = 2.1.
5. Applying (8.16) for the second train, NA2 − NB2R02 + NC2(R02 − 1) = 0, we

get the speed of the output shaft NA2 = −400 × (2.1 − 1) = −400 RPM.

Quite often, it may be difficult to identify the three sets of elements A1, B1 and C1
of the first train and A2, B2 and C2 of the second train. This is because; it is possible
to design systems wherein, the job of one element can be duplicated by another
one. In such cases, we have to imagine the presence of a member for the purpose of
kinematic analysis. The following example illustrates this.

A compound epicyclic train is shown in Figure 8.13a. There are three annular
members, the input shaft, output shaft and the fixed member in addition to the planet
carrier. Find the two simple epicyclic trains that make up this compound train.

We can first identify the input shaft as A1 and the planet carrier as C1. If we
ignore the output shaft in Figure 8.13a, the fixed annulus can be taken as fixed
member B1 of the first train. This leaves us apparently just one additional output
shaft without two other members of the second train. Draw the first train separately,
see Figure 8.13b and try to find a way of determining the second train members.

Imagine now A2 also to be present, but separated from the first train. To have
the second train, we need another planet carrier and a wheel or annulus. Extend the
planet carrier C1 to act as planet carrier for the second train also and choose the
planet as a duplicate of the second gear in the gear block mating with the fixed an-
nulus. All we need then is another identical fixed annulus as shown in Figure 8.13b.

In the train of Figure 8.13a, the annulus B1 duplicates the work of fixed annulus
B2, so also the planet carrier C1 functioning as planet carrier C2. Therefore, to find
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the speed ratios of the train in Figure 8.13a, we first find all the elements that would
have to be present in a compound train and perform the analysis.

Instead of duplicating the annulus B1, an equivalent train, wherein the sun wheel
A1 is duplicated by another wheel A2 to drive the second epicyclic train, can as well
be chosen for the kinematic analysis of the problem in Figure 8.13a.

8.12 Wilson Four-Speed Automobile Gear Box

This gear box contains four coupled single epicyclic trains as shown in Figure 8.14.
The individual elements of all the four elements are marked. Breaking pads on the
elements B4, B3, A2, A1 and the clutch are used to give different speeds as explained
below.

Reverse Speed. Figure 8.15a shows the effective train when B4 is fixed. Here,
trains 3 and 4 act together as a compound epicyclic train.

Fig. 8.15 (a) Reverse speed

First Speed. When B3 is fixed, the train number 3 alone comes into operation as
shown in Figure 8.15b.

Fig. 8.15 (b) First speed

Second Speed. When A2 is fixed, trains 2 and 3 come into operation as shown in
Figure 8.15c.
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Fig. 8.15 (c) Second speed

Top Speed. When A1 is fixed train 1 is only in operation as shown in Figure 8.15d.

Fig. 8.15 (d) Top speed

Third Speed is obtained by pressing the clutch. This makes the sun wheel A1

rotate at the speed as the input arm C1. Further this necessitates that the planet
carrier C3 and the sun wheel A3 rotate at the same speed. Hence all the trains 1 to 4
run en-bloc at the same speed and the output shaft will have the same speed as the
input shaft.

8.13 Solved Problems

Solved Problem 8.1

A spur gear pair of DP 2 is to be used to connect two parallel shafts. The distance
between the shaft axes is approximately 21.5 cm and the velocity ratio 4. Design the
gear pair.

1. From the definition of diametral pitch, we have t1 = 2 × d1 and T1 = 2 × D1,
where d1, D1 are the pitch diameters of the pinion and gear respectively.

2. From the given value of center distance, (d1 + D1)/2 = 21.5 cm.
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3. Therefore, t1 + T = 2 × 2 × 21.5 = 86.
4. We further have that T1 = 4t1.
5. Hence, 5t1 = 86. We choose the nearest number t1 = 17.
6. Then, T1 = 68.
7. The center distance actually obtained is (17 + 68)/4 = 21.25 cm.
8. You can choose the center distance to be 21.5 cm; however, the speed ratio will

then not be 4. For example, if you choose t1 +T1 = 86 as in step 3, i.e., T1 = 69,
then R = 4.06.

Solved Problem 8.2

Design a compound gear train to give a total speed reduction of 250 to 1, in four
steps. Use a DP ranging from 0.5 to 4. The center distances of the shafts should not
incur decimal places. Make sure no interference takes place.

1. We first factorize the speed ratio,

250 = 4 × 4 × 15.625 = 80

20
× 80

20
× 75

20
× 75

18

2. For the first two stages with the same reduction, choose the diametral pitch to be
2.5.

3. Then the center distance in these two stages is

C1 = C2 = 80 + 20

2 × 2.5
= 20 cm

4. For the third stage, let the diametral pitch be 1.9, then

C3 = 75 + 20

2 × 1.9
= 25 cm

5. Similarly for the fourth stage of reduction let the diametral pitch be 1.5 to give a
whole number for the center distance,

C4 = 75 + 18

2 × 1.5
= 31 cm

Solved Problem 8.3

Design a suitable gear train for the following speed ratios: (1) 5.3, (2) 7.9, (3) 2.09,
(4) 5.39, (5) 11.83, (6) 13.409.
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(1)
53

25
× 50

20
; (2)

79

35
× 70

20
; (3)

33

30
× 38

20
;

(4)
49

25
× 55

20
; (5)

39

25
× 39

18
× 63

18
; (6)

53

20
× 55

25
× 46

20

Solved Problem 8.4

Design a four-speed gear box with three indirect speeds for an automobile, to give
speed ratios approximately 1.5 to 1, 2.5 to 1 and 4 to 1.

1. Let us assume a center distance of 15 cm and a module of 0.5 cm.
2. Let A be the gear mounted on drive shaft 1.
3. Let the gears B, C, E and G be all mounted in that order from the left on shaft 2.
4. Gears A and B are always in mesh.
5. The output shaft 3 carries three gears D,F and H in that order from the left side.
6. Shafts 1 and 2 can be coupled by a simple clutch to get the direct drive; in this

position none other than gears A and B will be in mesh.
7. When the clutch is disengaged either gears D and C or F and E or H and G can

be brought into mesh giving rise to third, second and first gears respectively.
8. I gear: R = 4.
9. TA + TB = TG + TH = 2 × 15 × 2 = 60.

Solved Problem 8.5

A reverted train is to attain a speed ratio of 3.5. Design a train, using no wheel less
than 15 teeth. The DP of the gears can be used in the range of 1 to 2.

Refer to Figure 8.4 of the text.

TA = 50, TB = 20, TC = 35, TD = 25.

Solved Problem 8.6

In a brick making machine, a wide roller 25 cm dia mounted on shaft E is driven by
a motor carrying a pulley A, which is 15 cm dia. The pulley in turn drives another
pulley of 120 cm dia mounted on shaft B. On the same shaft B, a spur gear of 20
teeth is mounted, which meshes with a spur gear of 160 teeth mounted on shaft C.

10. Choose TA = 19, TB = 41, TG = 21, TH = 39.

the teeth in each pair is avoided.
12. II gear: R = 2.5.
13. TE = 28, TF = 32 and R = 2.47.
14. III gear: R = 1.5.
15. TC = 35, TD = 25 and R = 1.54.

11. The above teeth give a speed ratio of 4.0075. Note that a common factor between
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The shaft C also carries another spur gear of 20 teeth which drives a 30 tooth gear on
shaft E, through an idler of 112 teeth mounted on shaft D. Sketch the arrangement
and determine the speed of conveyor belt running on the wide roller. The driving
motor speed is 1450 RPM.

1. Overall speed ratio of the pulley and gear drive is

R = 120

15
× 160

20
× 30

20
= 96

2. The idler has no function in the speed ratio.
3. The speed of shaft E is

1450

96
× 2π

60
= 1.5817 rad/s

4. Therefore, the speed of the conveyor belt is 1.5817 × 12.5 = 19.77 cm/s.

Solved Problem 8.7

In a simple lathe, the right-handed single threaded lead screw has 8 mm pitch. The
pick-off gears available are 20, 25, 30, . . . , 120 tooth. Sketch a tumbler train and
determine a suitable gear train connecting the spindle and lead screw when (a) a
right-hand screw thread with 10 threads per centimeter, and (b) a left-hand screw
thread with 16 threads per centimeter have to be cut.

1. Refer to Figure 8.3. We consider gears A, D, E and F for the drive of the lead
screw shaft carrying gear F .

2. Case (a): Pitch of lead screw is 0.8 cm.
3. Ten threads per cm (0.1 cm pitch) requires a speed ratio R = 8.
4. Therefore, choose from the pick-off gears, TA = 20, TD = 40, TE = 25 and

TF = 100.
5. Case (b): Pitch of lead screw is 0.8 cm.
6. Sixteen threads per cm (0.0625 cm pitch) requires a speed ratio R = 12.8.
7. Since we require a left-handed thread, the idler is used to reverse the speed.

Therefore, choose from the pick-off gears, TA = 25, TD = 80, TE = 20 and
TF = 80.

Solved Problem 8.8

Design the gear box of a turret lathe to have a reduction of six speeds from 25 to
800 RPM. The main drive is a 1450 RPM AC motor. It is recommended that each
stage ratio be less than 4.

1. φ = (800/25)1/(6−1) = 2.
2. Output speeds are 25, 50, 100, 200, 400 and 800 RPM.
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(a)

(b)

Fig. 8.16

3. You may adopt the kinematic layout shown in Figure 8.16a. Draw four vertical
lines representing the input and output shafts and the two stages. Locate all six
speeds at equal intervals.

4. The second stage consists of three speed ratios. From 400 RPM, draw lines repre-
senting the speed ratios of stage II to 800, 400 and 200 RPM. Draw parallel lines
to these reductions from 50 RPM location to give 100, 50 and 25 RPM speeds on
the output shaft.

5. Evidently stage I needs only two reduction lines. Let these reductions be from
200 RPM of the input shaft of stage I.

6. Use a belt drive to reduce the speed of the motor from 1450 RPM to 200 RPM.
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Fig. 8.17

7. Figure 8.16b shows the arrangement of gears.
8. Stage I: TA/TB = 1/4 and TC/TD = 1/2. Hence we may choose TA = 24,

TB = 96, TC = 80 and TD = 40.
9. Repeat the above for stage II.

Solved Problem 8.9

The head stock of a lathe is to be designed to give 18 speeds in the range of 50 to
2000 RPM. The main drive is a 1450 RPM AC motor. Sketch the head stock unit
and the kinematic layout and determine the tooth numbers of all gears.

1. φ = (2000/50)1/(18−1) = 1.2423353.
2. This gives the output shaft speeds to be 50, 62 (1.2423353×50 = 62.117 ≈ 62),

77, 96, 119, 148, 184, 228, 284, 352, 438, 544, 676, 840, 1043, 1296, 1610 and
2000 RPM.

3. The ray diagram is shown in Figure 8.17. (Draw the headstock layout.) Three
stages of reduction are used. The first stage has two speed ratios, stage II has
three and the third stage another three making the 18 speeds possible as shown.

4. Stage I: TA/TB = 1/2.96 and TC/TD = 2.386.
5. Hence choose TA = 24, TB = 71, TC = 67 and TD = 28.

10. TE/TF = 1/2, TG/TH = 1 and TI /TJ = 2. Hence TE = 30, TF = 60,
TG = 45, TH = 45, TI = 60 and TJ = 30.
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6. Actual speeds rounded to the first digit obtainable are 119 and 842 RPM respec-
tively.

7. Stage II: TE/TF = 1/1.92, TG/TH = 1 and TI /TJ = 1.916.
8. Hence TE = 26, TF = 50, TG = 38, TH = 38, TI = 50 and TJ = 26.
9. Actual speeds rounded to the first digit obtainable are 62, 119, 228, 437, 840 and

1615 RPM.
10. Stage III: TK/TL = 1/1.24, TM/TN = 1a nd TO/TP = 1.242.
11. Hence TK = 25, TL = 31, TM = 28, TN = 28, TO = 31 and TP = 25.

Solved Problem 8.10

In an epicyclic train of the type shown in Figure 8.8b, the tooth numbers are t1 = 52,
T1 = 15, t2 = 25 and T2 = 92. The planet carrier C rotates at 200 RPM and the
input torque is 100 Nm. Determine the output speed of member A, if the internal
wheel B is fixed. Also determine the output and holding torques.

1. From equation (8.13b), the basic ratio

R0 = −T1T2

t1t2
= −15 × 92

52 × 25
= −1.06154

2. From equation (8.14a), the speed ratio of the train RAC = 1 − R0 = 2.06154.

3. Therefore the output shaft speed is NA = 200 × 2.06154 = 412.3 RPM.
4. From (8.18) MANA +MBNB +MCNC = 0 gives 412.3 ×MA +200 ×100 = 0

or MA = −48.5 Nm.
5. The holding torque is MB = −MA − MC = 48.5 − 100 = −51.5 Nm.

Solved Problem 8.11

In a compound epicyclic train, the input shaft A1 of the first train is connected to
a sun wheel S1 having 24 teeth. A planet wheel P1 carried by the planet carrier C1
drives an internal wheel B1 having 66 teeth. The internal wheel B1 is compounded
with a sun wheel S2 which has 28 teeth, while the planet carrier C1 drives a pinion
P2 actuated on the sun wheel S2 connecting a fixed internal wheel B2 of 62 teeth.
The planet carrier C1 or C2 forms the output shaft. Sketch the arrangement. If the
input shaft speed is 1500 RPM and its torque is 500 Nm, determine the output shaft
speed and torque and the holding torque.

1. Make a sketch first and identify the two epicyclic trains.
2. For the second train, the basic ratio is R02 = −T2/t2 = −62/28 = −2.2143.
3. Since B2 is fixed, equation (8.14a) is applicable. NA2/NC2 = 1−R02 = 3.2143.
4. Therefore, NA2 = 3.2143NC2.

184, 228, 283, 353, 437, 542, 677, 840, 1041, 1302, 1615 and 2003 RPM.
12. Actual speeds rounded to the first digit obtainable are 50, 62, 77, 96, 119, 148,
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5. Since, as per the construction, NA2 = NB1 and NC2 = NC1, we have NB1 =
3.2143NC1.

6. For the first train, the basic ratio from (8.13c) R01 = −T1/t2 = −66/24 =
−2.75.

7. The first train is a differential as all three members are free to rotate. Therefore,
using equation (8.16) NA−NBR0+NC(R0 − 1) = 0 we have 1500+2.75NB1−
3.75NC1 = 0.

8. Substituting NB1 = 3.2143NC1, we get 1500+ 2.75 × 3.2143NC1− 3.75NC1 =
0.

9. Therefore

NC1 = − 1500

2.75 × 3.2143 − 3.75
= −294.8 RPM

Solved Problem 8.12

In the compound epicyclic train shown in Figure 8.13, the input wheel has 30 teeth
and the output wheel 40 teeth. The fixed member has 80 teeth. The compound wheel
has a 35 tooth gear meshing with the input wheel and a 20 tooth gear meshing with
the output. Determine the speed ratio of the train.

1. Make the equivalent train as shown in Figure 8.13b.
2. Basic ratio of the first train

R01 = −T1T2

t1t2
= −35 × 80

30 × 20
= −4.6667

3. Basic ratio of the second train

R02 = −T1

t1
= −80

40
= −2.0

4. From the first train

NA1

NC1
= 1 − R01 = 5.6667 = NA1

NC2

5. From the second train,
NA2

NC2
= 1 − R02 = 3.0

6. Therefore, the speed ratio

10. The output torque is

TC = 500 × 1500

−294.8
= −2545 Nm

11. The holding torque is TB2 = −2545 − 500 = −3045 Nm.
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NA2

NA1
= 3

5.6667
= 0.529

Solved Problem 8.13

In the Wilson epicyclic gear box of the type shown in Figure 8.14, the following
data are given:

TA1 = 30, TB1 = 82

TA2 = 32, TB2 = 68

TA3 = 38, TB3 = 76

TA4 = 37, TB4 = 77

Determine the four speed ratios:

1. Reverse Gear: Trains 3 and 4 coupled together.

• R03 = −76/38 = −2.0.
• NA3 − NB3R03 + NC3(R03 − 1) = 0, we have NA3 + 2NB3 − 3NC3 = 0.
• R04 = −77/37 = −2.081.
• NB3 = NA4 and NC3 = NC4.
• NA4/NC4 = 1 − R04 = 1 + 2.081 = 3.08.
• NA3 − NB3R03 + NC3(R03 − 1) = 0 gives

NA3 + 2NA4 − 3

3.081
NA4 = 0

• Therefore, NA3 − 1.02NA4 = −3.143NC3.
• The speed ratio for the reverse gear is NC3/NA3 = −0.318.

2. I Gear: Train 3.

• R03 = −2.0.
• NB3 = 0.
• NA3 + NC3(R03 − 1) = 0 gives NC3/NA3 = 0.333.

3. II Gear: Trains 2 and 3 connected together.

• R02 = −68/32 = −2.125.
• NB2/NC2 = 1.4706 = NC3/NB3.
• NA3 + 2NB3 − 3NC3 = 0, i.e., NA3 + 1.363NC3 − 3NC3 = 0.
• NC3/NA3 = 0.61.

4. Top Gear: Gear train 1.

• R01 = −82/30 = −2.7333.
• NA1 − NB1R01 + NC1(R01 − 1) = 0, i.e., 2.7333NB1 − 3.7333NC1 = 0.
• NB1/NC1 = 1.366.
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8.14 Additional Problems

1. Design a compound gear train for an exact train ratio of 180:1.
2. Design a reverted compound train for a speed ratio 18:1.
3. In a simple epicyclic train, the sun wheel has 40 teeth, the planet has 20 teeth and

the annulus has 80 teeth. The planet carrier is driven at 200 RPM in a clockwise
direction and the sun wheel gets an independent drive at 100 RPM also in a
clockwise direction. What is the output shaft speed?

4. An epicyclic train is designed to have a common planetary wheel of 20 teeth
operating on three sun wheels of 100, 99 and 101 teeth placed side by side in the
order given. The center distances between all sun gears and the planet are kept
the same (this is possible because of involute tooth properties). The planet carrier
is given an input of 100 RPM in a counter-clockwise direction and the sun wheel
of 100 teeth is fixed. Show that the other two wheels rotate slowly at just about 1
RPM in opposite directions.

5. A differential gear train consists of a planet carrier carrying two planets, a sun
wheel and an annulus all rotating about a common axis. The sun wheel has 30
teeth and meshes with one of the two gears in the first planet block which has
45 teeth. The second gear of this planet block has 25 teeth and meshes with the
second planet wheel (carried by the same planet carrier arm) having 50 teeth. The
second planet wheel is a single wheel and meshes in turn with the annulus having
200 teeth. If the planet carrier arm rotates at 50 RPM in a clockwise direction and
simultaneously the annulus rotates at 20 RPM in a counter-clockwise direction,
what is the speed of the sun wheel?

6. In an epicyclic gear train of the type in Figure 8.13a, the input sun wheel has
30 teeth and the output sun wheel 40 teeth. The input sun wheel mates with the
planet wheel of 35 teeth and the planet wheel mating with the output wheel has
20 teeth. The fixed annulus has 100 teeth. Determine the speed ratio of the train.
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2-3 cam, 135
3-4-5 polynomial cam, 135

absolute acceleration, 39
absolute motion, 37
absolute velocity, 38
acceleration, 39
acceleration analysis of reciprocating engine

mechanism, 74
Ackermann steering gear mechanism, 101
addendum, 196
all-geared head stocks, 254
analytical design, 144
analytical determination of velocity and

acceleration of the piston, 77
angular acceleration, 40
angular displacement, 38
angular velocity ratio, 194
annulus, 187
approximate straight line motion mechanism,

85
arc of action, 212
arc of approach, 212
arc of recess, 212
axial pitch, 232

backlash, 197
barrel cam, 117
base circle, 140
beam engine, 95
Bennet’s construction, 77
bevel gear, 189, 239
big-end, 11
bottom land, 196
branching condition, 28

cam, 117

cam follower, 117
cam of specified contour, 157
Cardan Joint, 101
center distance for helical gear pair, 232
centripetal acceleration, 39
centro, 41
change gear trains, 253
circular arc cam, 159
circular diametral pitch, 232
circular pitch, 197, 231
circular pressure angle, 232
clearance, 196
closure of a kinematic pair, 13
combination of displacement curves, 136
combined rolling and sliding, 192
compound gear train, 249
condition for correcting steering, 97
conical gear, 189
conjugate profiles, 199
connecting rod, 11, 26
connectivity, 13
constant acceleration motion, 125
constant velocity motion, 123
constant-breadth radial cam, 119
constraint, 13
contact of helical gear teeth, 233
contact ratio, 212, 214
Coriolis acceleration, 40, 69
cosine acceleration motion, 130
coupled epicyclic gear train, 250
coupled epicyclic train, 264
coupler, 25
coupler curve, 85
crank, 25
crank-and-rocker mechanism, 26
crank-lever mechanism, 26
crank-pin, 11
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Crosby indicator, 96
crossed double slider chain, 24
crossed helical gear, 189, 235
crosshead, 26
crown wheel, 190
cusp, 154
cycloid, 215
cycloidal and involute tooth form, 218
cycloidal motion, 131
cycloidal tooth profile, 215
cylindrical cam, 117
cylindrical gear, 187
cylindrical pair, 15

Davis steering gear mechanism, 97
dedendum, 196
degree of freedom, 13
diametral pitch, 197, 232
differential gear train, 249, 261
disk cam, 117
displacement, 38
displacement diagram, 121
Dobbie–McInnes mechanism, 97
double Hooke’s joint, 104
double slider chain, 24
double-crank mechanism, 27
double-helical gear, 188
double-lever mechanism, 27
drag-link mechanism, 28
driven link, 25
driving link, 25

eccentric circle cam, 157
eight-link chain, 44
element, 11
elementary mechanism, 18
elliptic trammel, 33
enveloping worm, 191
epicyclic gear train, 249, 257
epicycloid, 215
exact straight line motion, 86
external bevel gear, 189

face, 196
face cam, 119
flank, 197
flat follower, 119
floating link, 25
force closure, 13
formation of bevel gears, 240
forming process, 205
four-bar linkage, 22, 25, 44

gear, 187

gear sector, 187
gear tooth action, 198
gear train applications to machine tools, 253
generating by pinion shaped cutter, 206
generating by rack shaped cutter, 206
generation of cycloidal gear teeth, 215
Grübler’s criterion, 19
grasshopper, 89
guide, 26

harmonic analysis for velocity and acceleration
of the piston, 79

Hart mechanism, 87
helical gear, 188, 229
helical gear calculations, 235
helical gear contact ratio, 233
helical pair, 16
helix angle, 230
herring-bone gear, 188
higher pair, 17
hinge, 15
hobbing, 206
Hooke’s joint, 101
hypocycloid, 215
hypoid gear, 190

idler, 192
influence of center distance on speed ratio, 204
input link, 25
instantaneous center, 39
instantaneous center of velocity, 39
interference, 203, 207
internal bevel gear, 190
internal spur gear, 187
Inversions of double slider chain, 32
inversions of epicyclic trains, 258
inversions of quadric cycle chain, 26
inversions of single slider chain, 29
involute, 199
involute helicoid, 229

Kennedy’s Theorem, 41
kinematic analysis, 37
kinematic chain, 13
kinematic inversion, 25, 26
kinematic pair, 11, 13
Klein’s construction, 74
knife edge follower, 119

layout of an involute gear set, 201
lead angle, 231
lead of worm, 237
left-handed gear, 231
lever, 25
line of action, 201
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line of centers method, 46
link, 11
link to link method, 45
linkage, 13
lower pair, 17

machine, 10
maximum pressure angle, 147
mechanism, 11
meshing gears, 207
minimum number of teeth to avoid

interference, 210
minimum size, 140
mitre gear, 190
modified Scott–Russel mechanism, 89
modified sine acceleration motion, 133
modified trapezoidal acceleration, 128
module, 197
motion, 37

normal acceleration, 39
normal diametral pitch, 232
normal pitch, 231
normal pressure angle, 232
number of centros in a mechanism, 41
number of lines of centros, 43

offset follower, 121
Oldhams coupling, 33
oscillating cylinder engine, 32
oscillating flat follower, 155
output link, 25

pairing element, 11
pantograph, 95
parabolic motion, 125
parallel-crank mechanism, 28
path of approach, 213
path of contact, 200, 213
path of recess, 213
Paucellier mechanism, 87
pinion, 188
piston-pin, 11
pitch, 231
pitch circle, 143, 194
pitch curve, 141
pitch diameter, 194
pitch point, 143, 195
planar contact, 14
planar mechanism, 11
planar motion, 38
planetary gear, 192
planetary gear train, 249
plate cam, 117

pointing, 144
polynomial motion, 134
pressure angle, 142, 201, 232
pressure line, 201
primary centro, 41
prime circle, 142
prismatic pair, 16
producing gear teeth, 205
pure rolling, 192
pure sliding, 192

quadric cycle chain, 23
quick return mechanism, 32

rack, 188
radial cam, 117
radius of curvature, 144
rectilinear translation, 38
relative acceleration, 39, 59, 63, 67
relative displacement, 38
relative motion, 37
relative velocity, 39, 47, 54
reverted gear train, 249, 254
revolute pair, 15
Richards indicator, 95
right-handed gear, 231
rigid body, 13
Ritterhaus construction, 76
Robert straight line mechanism, 93
rocker, 25
roller follower, 119
root circle, 196
rotary engine, 30
rotation, 38
rotation of a rigid link, 47, 59

sandwich pair, 14
Scotch–Yoke mechanism, 32
Scott–Russel mechanism, 89
screw pair, 16
secondary centro, 41
self-closed pair, 13
simple gear train, 249
simple harmonic motion, 130
sine acceleration motion, 131
single slider chain, 23, 29
Slider, 25
slider crank chain, 44
sliding block, 26
sliding pair, 16
small end, 11
spherical cam, 119
spherical faced follower, 119
spherical pair, 14
spiral gear, 189, 190, 235
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spiral rack and pinion, 189
spur gear, 187
spur rack and pinion, 188
steering gear mechanism, 97
straight bevel gear, 190
sun wheel, 192
synthesis of gear trains, 252

tangent cam, 162
tangential acceleration, 39
Tchebicheff mechanism, 91
tooth space, 197
tooth thickness, 197
top land, 196
torque distribution in epicyclic trains, 262
trace point, 141
translating flat follower, 151
translating roller follower, 141
translation, 37
translation cam, 117

translatory follower, 119
transverse diametral pitch, 232
transverse pitch, 231
transverse pressure angle, 232
trapezoidal acceleration, 128
triple-curve cam, 159
turning pair, 15

undercutting, 144, 205
uniform motion, 123
uniform motion modified by a circular arc, 125
universal coupling, 101

Watt mechanism, 90
Whitworth quick return mechanism, 32
Wilson four-speed automobile gear box, 267
worm and wheel at right angles, 236

yoke cam, 119
yoke follower, 119
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