Michat Smiatek - Wiktor Nowakowski

From Requirements
toJavainaSnap

Model-Driven Requirements Engineering
in Practice

@ Springer

From Requirements to Java in a Snap

Michal Smiatek - Wiktor Nowakowski

From Requirements
to Java in a Snap

Model-Driven Requirements Engineering
in Practice

@ Springer

Michat Smiatek Wiktor Nowakowski

Warsaw University of Technology Warsaw University of Technology
Warsaw Warsaw

Poland Poland

ISBN 978-3-319-12837-5 ISBN 978-3-319-12838-2 (eBook)

DOI 10.1007/978-3-319-12838-2
Library of Congress Control Number: 2014955320

Springer Cham Heidelberg New York Dordrecht London

© Springer International Publishing Switzerland 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

To Maria and Mieczystaw who helped

to choose the right path, and to Grazyna,
Magda, Zosia and Wojtek who constantly
motivate to keep the right path.

— Michat Smiatek

To my wife and children for being the true joy
of life.
—Wiktor Nowakowski

Foreword by Juan Llorens

Dear candidate reader, it is simple: read this book! As I am not the author, my duty
when writing these words is to describe the impressions I got when I read the
manuscript. And I have discovered that I have many positive impressions.

Software engineering is—slowly but steadily—converging with the rest of the
domain-specific “engineerings” (civil, industrial, aero-space, etc.). The convergence
is, of course, not based on the variability of the different domains, but on the
commonalty of the engineering processes applied to all of them. Even if it seems to
be a straightforward assertion, information systems are starting to be considered as
key elements within the other engineering disciplines. We can find large software
components in contemporary complex technical systems like aircrafts, trains, cars
or medical devices. The influence of software engineering in the development of
such systems is becoming clearer daily. The new standards for system development
and management include now the fundamentals of software engineering: separate
the problem from the solution, and test the solution with the needs described by the
problem statement.

More and more, engineering disciplines start to understand that in order to
develop a system (including information systems) it is necessary to declare and
describe what the stakeholder needs are. These needs allow to define stakeholder
requirements, which are turned into system requirements. And system requirements
are the basis for subsystem requirements. This decomposition in the specification
process should end only when the complexity of the system is properly “tamed”.

Thus: requirements, requirements and more requirements. They have to be
fulfilled by tracing them into design artefacts and code (in case of software); they
must satisfy higher level requirements; they must be verified from the product side;
they must be used for validation; they must be the means for certification purposes;
and, of course, they must be used to communicate humans with humans during the
software and system engineering life-cycle stages. Everything starts, and conse-
quently ends, in requirements.

On the other hand, it seems to be trendy in some sectors of the Software
Engineering community to attempt at producing software products by exclusively
applying models and model transformations. For its proponents, Model-Driven

vii

viii Foreword by Juan Llorens

Engineering (MDE) seems to become equivalent with the whole Software Engi-
neering. Some want to define the silver bullet for modern software development by
drawing graphical models, assuming that smart computers will produce exactly the
software the customer wants. The real issue, the real problem, is to include
requirements in this trend of model-based Software Engineering. MDE offers real
benefits to increase traceability, quality control, defect reduction and explicit
automation, but still calls for requirements to properly define needs, capabilities,
operations, properties and restrictions.

This book deals with one of the real problems of today: how to apply require-
ments-based Software Engineering while not forgetting MDE. This is called Model-
Driven Requirements Engineering. Until now, requirements engineering has always
been outside the kernel of application for MDE; it was, perhaps, too complicated to
connect both worlds. But now, this book really contributes to change this situation,
by describing and presenting a clear methodology to tackle the problem. The
methodology includes definition of a process, concrete methods, technology and
also tools. This book has the attributes to offer a solution to existing problems under
research today, particularly regarding the integration of requirements engineering
within the discipline of automated software engineering.

Long live executable requirements, and enjoy your reading!

Madrid, September 2014 Juan Llorens, Ph.D.
Professor, Universidad Carlos III de Madrid

CTO, The REUSE Company

Technical Director, NCOSE Spanish Chapter

Foreword by Audris Kalnins

Model-Driven Software Development (MDSD) is at crossroads now. In recent
years, the question asked at many major software engineering events is whether
MDSD—started in 2001 as Model-Driven Architecture (MDA)—has reached its
goals in providing a new road for industrial software development. The answer is
typically mixed—success stories are contrasted with observations that MDSD is
predominantly ignored by practitioners. This leads to tendencies to change the form
in which MDSD is practiced. The classical form of MDSD is a successive chain of
models, mainly in standard UML, finally leading to the system code. Intermediate
models are improved manually, which causes model synchronisation problems and
is seen as a key obstacle. In many successful cases, this form has given way to
approaches that use model-based Domain Specific Languages (DSL). DSLs with
their “one-stop” approach from initial model to the system code seem to have more
chance to be accepted in practice.

Fresh ideas in the area are sought eagerly—how to really proceed further. In that
sense, the book proposed by Michat Smialek is a real breakthrough. It originates in
the ReDSeeDS project, where the main innovative aspect was the introduction of a
suitable content for the first model in the MDSD chain—the CIM model. Specif-
ically, this involves requirements specified as use case models, refined with sce-
narios written in controlled natural language and linked to the conceptual data
model of the system to be built.

Now, in the book, this idea has reached its coherent and complete form. It offers
a consistent language RSL for requirements specification, which can be applied in
classical MDSD approach, or more precisely, in the step of Model-Driven
Requirements Engineering (MDRE). However, at the same time, this language can
be treated as a DSL. The book presents methods to transform automatically code for
the application layers from precise requirements. The language thus serves as a
broad domain-universal DSL for typical web-based systems—more precisely, for
the whole user-system interaction control aspects to be implemented in the Con-
troller layer of the MVC design pattern (or Presenter in the MVP pattern). RSL
covers also the basic elements of the screen forms (View in MVC) which then can
be extended for a specific framework. In addition, the language can easily be

ix

X Foreword by Audris Kalnins

combined with a narrow-domain DSL for describing also the data processing
aspects of the system (Model in MVC), thus enabling complete code generation for
the system. As a result, the book is a very promising further development of the
ReDSeeDS project, initiated by Michal Smiatek, where me and my colleagues
participated so enthusiastically.

Another especially interesting aspect of the book is the use of MOLA model
transformation language developed at the IMCS University of Latvia. The language
was intensively used throughout the ReDSeeDS project which was one of its major
use cases. Now, the book shows how to apply MOLA (and other similar languages)
to obtain even more interesting results than were achieved in ReDSeeDS: genera-
tion of Java code directly from RSL models. By presenting extensive and detailed
examples, the book can also very well play the role of a MOLA textbook. The
language is explained so clearly and precisely—all this based on M. Smiatek’s
significant experience as an educator in the area of software development.

Riga, September 2014 Audris Kalnins, Ph.D.
Senior Researcher, IMCS University of Latvia

Preface

Back in 1988, Gerald M. Weinberg, in his seminal book “Understanding the
Professional Programmer” [180] has formulated the following statement:
“...programming computers is by far the hardest intellectual task that human beings
have ever tried to do. Ever.” We can discuss this statement and argue with it but we
have to admit that software development is an extremely complex task, and this is
so for various reasons. Probably the most concise summary of these reasons was
given by Fred Brooks in his famous essay “No Silver Bullet” [26]. He has pointed
out that software is composed of two types of complexity: essential and accidental.
The essential aspect is inherent for the problem at hand and cannot be reduced. This
complexity has to “be there” in software so that it would be able to solve the actual
problem. The accidental aspect is associated with the computer technology and
includes things like programming language constructs, distributed calls, middle-
ware, Ul technologies and so on. This kind of complexity resides within the soft-
ware systems due to the complexity of computer technologies themselves.

The general diagnosis might be that “it has to be complex and we cannot do
anything about it”. Or maybe we can? We certainly cannot reduce the essential
complexity, because the reality is complex and we need to solve complex problems
in our reality. However, what we can try to do is to “tame” the accidental com-
plexity, or more specifically—hide this complexity from the software developers.
How could this be done? The first step would be to define ways of specifying
precisely the essence of the solution to the problem at hand. The second step would
be to build programs that would transform this essence into a working software
system. The more we automate this transformation, the better we hide the accidental
complexity...

It can be noted that the essential complexity of software is closely related to
requirements for software. Requirements define the problem to be solved but often—
at a more detailed level—they also offer essential descriptions of this problem’s
solution. Let us assume that we have a notation that can describe the various aspects
of the essential solution with “high precision” (whatever this means). With enough
precision we would have the potential to transform these detailed requirements

xi

xii Preface

descriptions automatically into executable artefacts. In other words: we elaborate
requirements with fine precision, and in a “snap” we obtain working code.

This scenario has one important obstacle: we somehow need to cater for the
accidental complexity. To implement the “snap” we immediately face the question
of where this complexity goes. For hints on answering to this question we can refer
to the bygone era of the domination of assembly language programming. Assembly
language programmers needed to deal with the complexity of computer architec-
tures which included such elements like processor registers, arithmetic logic units,
memory locations and so on. This complexity was abstracted away with the advent
of Third Generation Languages (3GLs) like FORTRAN, Algol, Pascal, and later—
Java or C#. Compilers for such languages contain specific rules that are “injected”
into the 3GL code to produce equivalent assembly and machine code. By analogy,
we can thus imagine “injecting” technology-related aspects during transformation
from requirements into more detailed software artifacts and finally—executable
code.

The process of translating from a 3GL code to assembly/machine code (or other
executable code) through a compiler, is completely automatic. What is more, we
can also apply automatic translation (transformation) to higher-level artefacts, like
design specifications. The main idea is to be able to create precise artefacts (models)
at certain levels of abstraction (or: complexity) and transform them to artefacts
(models) that are more detailed and complex, which finally includes also code. This
idea was formally formulated around the year 2000 and led to the concept known as
Model-Driven Architecture (MDA) [111]. Later, somewhat more general names of
Model-Driven Software Development (MDSD) and Model-Driven Software
Engineering (MDSE) emerged. Currently, this concept can certainly claim maturity
with more and more tools supporting it.

Still, it has to be noted that practically all the tools concentrate on transforma-
tions between various design-level models and generating code from these design
models. Moreover, these transformations have to be interlaced with manual inter-
ventions of software developers. For example, high-level architectural models
cannot be translated directly into code. They need to be transformed into detailed
design models and then adapted manually to cater for certain aspects not covered by
the automatic transformation engines. Only then can they be transformed into code,
which can be compiled and executed.

Can the model-driven concepts be extended onto requirements? Requirements
are usually seen as much less subject to formalization and thus not really suitable
for model transformation. Despite this, recently a new area of MDSD has emerged
in the form of Model-Driven Requirements Engineering (MDRE). It concentrates
on defining ways to formulate requirements as precise models and transforming
these models into various more detailed models with technology details “injected”
(design models, test models, etc.). It can be noted that the ultimate goal would be to
be able to transform requirements directly and automatically to executable code.
Though the question arises whether we can make requirements precise enough to
reach this goal, yet retaining their comprehension by customers. ..

Preface xiii

Purpose and Scope

There are many books that deal with issues of requirements engineering and the role
of requirements in the software engineering process [5, 13, 32,93, 130, 136, 164, 173,
183]. Most of these books concentrate on eliciting and formulating requirements of
good quality (unambiguous, consistent, understandable, complete, verifiable,...).
Some of the books propose to use modelling notations like use case models, class
models or data flow models. Such requirements are then placed within a process in
which requirements are the basis for implementing a software system.

Furthermore, there are also several books on Model-Driven Software Devel-
opment/Engineering (MDSDV/E) [18, 25, 66, 92, 106, 127, 167, 178]. These books
concentrate on defining models and transformations between them. This includes
explaining the precise meaning of models (semantics) and using this meaning to
develop automatic transformations to other, more precise models. These transfor-
mations are usually performed using various model transformation languages.
Some of the books present ways to define new modelling languages that can be
used to formulate problems in a specific domain. This particular area of MDSD is
called Software Language Engineering (SLE) [91].

This book is meant to provide the reader with a coherent approach to combine
both of the above worlds [187]. It presents systematic treatment of requirements
within the realm of modelling and model transformations [102], i.e. Model-Driven
Requirements Engineering. What is important as the aim of the book is to treat
MDRE as comprehensively as possible. The basic assumption in this comprehen-
sive treatment is that detailed requirements models are used as first-class artefacts
playing a direct role in constructing software. For this purpose, the book presents
the Requirements Specification Language (RSL) that enables precision and for-
mality, at the same time retaining end-user comprehensibility. This is important for
typical requirements engineering tasks like requirements elicitation, formulation
and usage.

In the book, we assume that requirements engineers use typical ways to elicit
requirements from the users and from the stakeholders, and we do not provide any
special guidelines in this respect. However, we provide the means to formulate
these elicited requirements in the form of precise RSL models. These models
facilitate assuring good quality of requirements, including coherence, unambiguity
(clarity) and completeness.

Good quality requirements models, expressed in RSL can be used in a standard
(“manual”) way, to produce design models and implementation. Yet, the book
offers a much broader use of requirements models. The ultimate goal of the book is
to give the reader the means to automate the process of turning requirements into a
working system. To achieve this, the book presents techniques to write and apply
model transformations and code generation to RSL. What is crucial, this is sup-
ported by a state-of-the-art tool suite that accompanies this book. The suite contains

Xiv Preface

an RSL editor with an integrated transformation engine (code generator)' and a
transformation development environment.” Together with this set of tools, the book
supplies the reader with what it promises: the means to get very quickly from
requirements to code (i.e. “in a snap”).

The transformations described in this book focus on processing two main types
of requirements: functional requirements and vocabulary requirements (domain
definitions). The reader will notice that quality requirements (or: non-functional
requirements) are left aside. We do not provide a specific notation or semantic rules
for them, but we discuss their influence on the final system architecture [23]. This is
definitely a very interesting topic that deserves further intensive research [55, 90].
However, currently we need to assume that the quality requirements are specified
using informal natural language. Such specifications are taken into account by the
transformation developers when writing the transformation programs.

Who is this Book for?

When writing this book, we concentrated on presenting many technical details of
requirements modelling and model transformations for requirements. This should
make the book suitable for researchers, graduate students and practitioners from the
industry. Researchers will find insight into possible research directions that stem
from the presented approach to MDRE. Students and practitioners will find
knowledge and practical techniques in several areas, including general requirements
engineering, architectural design, software language construction and model
transformation.

Our main goal was to present a comprehensive approach to MDRE that leads
beyond the current state-of-the-art and state-of-practice. We are convinced that the
presented technologies form good grounds for a very interesting field of research
and innovation. This new field could concentrate on overcoming the accidental
complexity of software through moving development efforts from 3GL programs
towards formalised requirements models. The results presented in this book are
meant to encourage the readers to join the effort of building research fundaments for
such a next-generation development framework. This effort encompasses research
on new ways to code application and domain logic at much higher levels of
abstraction. The book already presents some of the solutions that involve seman-
tically precise scenario notations and coherent development of domain models.

The research efforts can lead to important innovations in the area of software
development tools. This area seems to be in stagnation in terms of innovative
features and support for software developers. This particularly pertains to

! The ReDSeeDS tool is presented in Sect. 7.1 and can be downloaded fromhttp://www.redseeds.
eu/.

2 The MOLA Tool is presented in Sect. 6.1 and can be downloaded from http:/mola.mii.lu.lv/.

http://dx.doi.org/10.1007/978-3-319-12838-2_7
http://www.redseeds.eu/
http://www.redseeds.eu/
http://dx.doi.org/10.1007/978-3-319-12838-2_6
http://mola.mii.lu.lv/

Preface xv

requirements engineering tools [50]. Evaluations of such tools made more than 15
years ago [182] and recently [30] show little (or: practically no) progress in terms of
automatic handling of requirements and assuring their formal precision. In general,
it can be noted that software development tools generally do not form a coherent
framework that integrates requirements directly with implementation activities [71].
This is mainly because of clearly visible mismatch between representations for user
requirements and software requirements versus representations for architectural and
design models and code. This book aims at changing this situation, by proposing a
tooling environment that offers the means to bridge this gap through automatic
transformations.

Our second goal was to show how the techniques of MDRE could already now
support and increase productivity and quality in a typical software engineering
project. What is important, the presented techniques can be used in various con-
texts, for different purposes. Requirements engineers will certainly benefit from the
presented systematic approach to formulating requirements. RSL, as a notation, can
be used even without the tooling environment to keep high quality of requirements,
which includes precision, coherence and unambiguity. When the appropriate editor
is applied, the RSL notation gains additional support through syntax checking and
automatic domain model synchronisation. The editor can also support using
requirements-based patterns, thus increasing productivity in creating high quality
requirements models.

The presented techniques will also benefit software developers (architects,
designers, programmers). They will be able to work out their models and code at a
significantly higher level of abstraction—close to the problem domain. The
developers will be able to work on semantically precise (code-like) requirements
models in close cooperation with requirements engineers and end-users. This book
shows how they can be then relieved from caring about many of the “accidental”
aspects of software development which are encapsulated in the automatic trans-
formations from requirements to code. What is important is that the transformations
always generate high quality code with uniform architecture, well documented with
the generated UML models.

Apart from supporting these traditional roles in software engineering, the book
promotes the role of transformation engineer. This book provides the grounds for
readers interested in constructing and evolving model transformations, specifically
those operating on requirements. These skills are becoming very important in the
current world of changing software technologies. Having fast changing targets
of the transformations and code generation, we need skilled transformation
developers. The book concentrates on applying MDSD to requirements models but
the presented techniques can be used for any kind of model transformation task.

Finally, the book can benefit project managers through defining a clear path from
requirements to code. The managers receive guidelines on how to efficiently
organise software development effort around automatic model transformations from
requirements to code. This includes iterative development of software applications
with evolving functionality and with evolving implementation technology.

XVi Preface

Recommended Prerequisites

This book assumes at least some basic to intermediate knowledge of various aspects
of software engineering. The overall goal was to maintain it accessible for those not
yet familiar with MDSD, SLE or requirements modelling. At the same time, the
book goes far beyond the basics and covers several research-level topics and shows
possible research directions.

Generally, it is assumed that the reader is familiar with the software development
process and its phases like requirements specification, design and implementation.
Thus, it is recommended that student readers have already taken a course in
Software Engineering Fundamentals or similar, or alternatively—study a good book
on that topic [132, 159]. The book frequently presents UML and UML-like dia-
grams. The reader is thus expected to understand some of the commonly used UML
notations: class and object models, interaction models, activity models and use case
models. Good understanding of UML syntax and semantics of these five model
types is highly recommended. This is part of any good course or book on UML [24,
52, 128].

The book includes many examples and specifications that use Java or Java-like
code. It is thus recommended that the reader knows at least fundamentals of Java
programming, accessible through various courses and books like the widely known
“Thinking in Java” [42]. Readers familiar with other similar languages like C# or
C++ should also find the code parts easy to understand. Knowledge of imperative
programming (like in Java or C#) will be also needed to understand model trans-
formation programs. These programs use graphical notation similar to UML’s
activity diagrams.

The book treats the topics of use case development, software language devel-
opment and metamodelling. Readers familiar with them should find certain parts
of the book easier to understand. However, the book aims at explaining these topics
also to unfamiliar readers.

Structure of this Book

The book is divided into eight chapters with two appendices. The first two chapters
present the main concepts and give an introductory guide to requirements modelling
in RSL. The next two chapters concentrate on presenting RSL in a formal way,
suitable for automated processing. Chapters 5 and 6 concentrate on model trans-
formations with emphasis on those involving RSL and UML. The transformations
are presented using the model transformation language called MOLA. Chapters 7
and 8 provide a summary in the form of a systematic methodology with a com-
prehensive case study. The book is supplemented with two appendices containing
short summaries of RSL and MOLA notation.

http://dx.doi.org/10.1007/978-3-319-12838-2_5
http://dx.doi.org/10.1007/978-3-319-12838-2_6
http://dx.doi.org/10.1007/978-3-319-12838-2_7
http://dx.doi.org/10.1007/978-3-319-12838-2_8

Preface Xvii

Chapter 1 introduces the main concepts of the book. It presents rationale for
formulating requirements as precise models and explains approaches to use such
models as “first-class citizens” in the software development process. This chapter
also gives an introduction to MDRE as a new but already established and promising
branch of Model-Driven Software Development.

Chapter 2 explains how to formulate precise requirements using RSL. It presents
all the relevant RSL constructs using an example specification. All the important
details of the RSL concrete syntax are outlined and its usage shown in practice.
Also, good practices in formulating requirements using RSL are given. The main
purpose of this chapter is to provide an RSL tutorial for requirements engineers and
software developers. It should also be read as an introduction to reading the next
chapter on the RSL metamodel.

Chapter 3 gives a more formal definition of RSL forming the basis for per-
forming transformations from RSL to other modelling languages (mostly UML)
and code. An important purpose of this chapter is to give the reader practical
introduction to metamodelling. Consecutive sections present the language’s abstract
syntax in the form of a metamodel. For each of the syntactic elements, concrete
(visual and/or textual) syntax is presented through examples. The explanation of the
syntax is supplemented by informally presented semantics (meaning) of the various
language elements. At this level, semantics is given in reference to the concepts of
business modelling and requirements engineering.

Chapter 4 presents the translational semantics of RSL using Java. This consists
in a set of rules that translate RSL constructs into equivalent Java constructs. In
order to construct the rules, a specific architectural framework (pattern) with spe-
cific technological assumptions (Ul framework, data passing model, etc.) is chosen.
This framework is expressed in plain Java for all of its components. The selected
target code structure is used to explain RSL runtime semantics (semantics for
executing RSL specifications). Based on this, the translation rules are generalized in
order to be applicable to various technological contexts. This chapter should be read
by RSL developers to understand precisely RSL semantics for the working system.
Moreover, this chapter is important for transformation engineers. It shows the initial
steps in designing a transformation from RSL to a specific technology.

Chapter 5 presents an introduction to model transformations. It explains intri-
cacies of operating on models which are nonlinear graphs in contrast to text (cf.
programs) which is linear. The whole presentation in this chapter is accompanied by
various examples from the simple “Hello world” to more advanced transformations
using the MOLA model transformation language. This chapter should give the
reader the basis to understand model transformation and develop non-trivial
transformation programs.

Chapter 6 extend the previous introductory chapter with guidelines for devel-
oping complex transformations based on complex metamodels. The basis for this is
the RSL metamodel, the UML metamodel and the syntax of Java. This chapter thus
also gives some more details of the UML formal specification and the Java syntax.
For the chapter to be practical, the presentation is backed by a short introduction to
a MOLA development environment. After reading this chapter, the reader should be

http://dx.doi.org/10.1007/978-3-319-12838-2_1
http://dx.doi.org/10.1007/978-3-319-12838-2_2
http://dx.doi.org/10.1007/978-3-319-12838-2_3
http://dx.doi.org/10.1007/978-3-319-12838-2_4
http://dx.doi.org/10.1007/978-3-319-12838-2_5
http://dx.doi.org/10.1007/978-3-319-12838-2_6

Xviii Preface

able to understand the rules for developing complex transformations originating in
requirements models, and be able to tailor them to specific target technologies
(including those emerging in the future).

Chapter 7 summarizes the book by offering a methodology and tools to apply its
contents in practice. It gathers all the presented elements and places them in a
coherent software development framework. This framework complies with modern
iterative approaches, including agile software development. Software project
managers and software developers will benefit from this chapter by organizing
MDRE-based software projects according to its guidance.

Chapter 8 presents a comprehensive case study. Within the study, a specific
target platform with detailed technology solutions is applied. The case study
involves an example requirements model in RSL. The chapter presents some details
of the model and the system (UML, Java code, UI layouts) generated from this
model. It also discusses important details of the transformations that lead to gen-
erating this system.

Finally, there are two appendices. Appendix A offers a short reference of the
RSL concrete syntax and Appendix B does the same for MOLA. Each of the
syntactic elements is shortly summarized and an example given. The aim of the
appendices is to provide the language users (requirements engineers, software
developers) with an easily accessible and complete reference of the syntax.

Acknowledgments

The tool suite that accompanies this book has been developed within two projects
partially funded by the European Union: ReDSeeDS® and REMICS.* We would
like to thank all the Partners that have cooperated with us within these projects,
especially in developing the RSL language and the ReDSeeDS tool.

Warsaw, August 2014 Michal Smiatek
Wiktor Nowakowski

3 http://www.redseeds.eu/.
* http://www.remics.eu/.

http://dx.doi.org/10.1007/978-3-319-12838-2_7
http://dx.doi.org/10.1007/978-3-319-12838-2_8
http://www.redseeds.eu/
http://www.remics.eu/

Contents

1 Introducing Requirements-Driven Modelling 1
1.1 Why Model Requirements?. 2
1.2 Making Requirements Precise 9

1.2.1 Writing Good Stories, 9
1.2.2 Writing Stories About Software. 10
1.2.3 How About Quality Issues?. 15
1.3 What Is the Meaning of Requirements Models?. 16
1.3.1 Requirements Explained Through Observable
Behaviour. o il 16
1.3.2 Requirements Explained Through Translation
intoJava. 20
1.4 Towards Model-Driven Requirements Engineering. 22
1.4.1 “Traditional” Software Development 22
1.42 Model-Driven Software Development. 24
1.4.3 Software Development with DSLs
and Model-Driven Requirements 27

2 Presenting the Requirements Specification Language 31
2.1 How to Define a Modelling Language? 31
2.2 Structuring Requirements Specifications 33

221 BasicConceptsoviii i 34
2.2.2 Packaging and Presenting Requirements 36
2.3 Specitying the Problem Domains and Their Rules 39
2.3.1 Defining the Problem Domain. 40
2.3.2 Defining the Application Domain. 43
2.3.3 Defining the Domain Rules. 45
2.4 Specifying Functional Requirements. 48
24.1 Use Cases and Relationships. 49
242 Sentence Typescovtii i 55
243 Scenarios 59

XiX

http://dx.doi.org/10.1007/978-3-319-12838-2_1
http://dx.doi.org/10.1007/978-3-319-12838-2_1
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec1
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec1
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec2
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec2
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec3
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec3
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec4
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec4
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec5
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec5
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec6
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec6
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec7
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec7
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec7
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec8
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec8
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec8
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec9
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec9
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec10
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec10
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec11
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec11
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec12
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec12
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec12
http://dx.doi.org/10.1007/978-3-319-12838-2_2
http://dx.doi.org/10.1007/978-3-319-12838-2_2
http://dx.doi.org/10.1007/978-3-319-12838-2_2#Sec2
http://dx.doi.org/10.1007/978-3-319-12838-2_2#Sec2
http://dx.doi.org/10.1007/978-3-319-12838-2_2#Sec3
http://dx.doi.org/10.1007/978-3-319-12838-2_2#Sec3
http://dx.doi.org/10.1007/978-3-319-12838-2_2#Sec4
http://dx.doi.org/10.1007/978-3-319-12838-2_2#Sec4
http://dx.doi.org/10.1007/978-3-319-12838-2_2#Sec5
http://dx.doi.org/10.1007/978-3-319-12838-2_2#Sec5
http://dx.doi.org/10.1007/978-3-319-12838-2_2#Sec6
http://dx.doi.org/10.1007/978-3-319-12838-2_2#Sec6
http://dx.doi.org/10.1007/978-3-319-12838-2_2#Sec7
http://dx.doi.org/10.1007/978-3-319-12838-2_2#Sec7
http://dx.doi.org/10.1007/978-3-319-12838-2_2#Sec8
http://dx.doi.org/10.1007/978-3-319-12838-2_2#Sec8
http://dx.doi.org/10.1007/978-3-319-12838-2_2#Sec9
http://dx.doi.org/10.1007/978-3-319-12838-2_2#Sec9
http://dx.doi.org/10.1007/978-3-319-12838-2_2#Sec10
http://dx.doi.org/10.1007/978-3-319-12838-2_2#Sec10
http://dx.doi.org/10.1007/978-3-319-12838-2_2#Sec11
http://dx.doi.org/10.1007/978-3-319-12838-2_2#Sec11
http://dx.doi.org/10.1007/978-3-319-12838-2_2#Sec12
http://dx.doi.org/10.1007/978-3-319-12838-2_2#Sec12
http://dx.doi.org/10.1007/978-3-319-12838-2_2#Sec13
http://dx.doi.org/10.1007/978-3-319-12838-2_2#Sec13

Contents

Defining RSL.. e 67
3.1 Introduction to Metamodelling. 67
3.2 Overview of the RSL Metamodel. 72
33 Terms and Phrases. 74
3.4 Domain Elements and Relationships. 78
3.5 Constrained Language Sentences and Scenarios. 82
3.6 Requirements and Use Cases.vuo... 86
3.7 Domain and Requirements Specifications 91
3.8 Summary of Metamodelling 95
Explaining RSL with Java 101
4.1 Translational Framework. 101
4.2 Semantics Involving the General Structure 113
4.3 Semantics Involving the View Layer 119
4.4 Semantics Involving the Presenter and Model Layers 127
4.5 Summary Example. L 140
Understanding Model Transformations 149
5.1 OVeIVIEW . o .ottt e 149
5.2 “Hello World” in MOLA—Declarative Processing. 153
5.3 Variables and Procedures in MOLA—Imperative Processing. ... 157
5.4 More Advanced MOLA Constructs 162
5.5 End-to-End Transformation Example 169
5.6 Which Language to Choose?. 181
Writing Model Transformations for Requirements. 185
6.1 Using the MOLA Tools, 185

6.1.1 Specifying the Metamodel. 186

6.1.2 Specifying and Compiling Transformation Programs ... 188

6.1.3 Debugging Transformation Programs 191
6.2 Transformation Overview 194
6.3 Generation of the Basic Structure. 197
6.4 Generation of Data Transfer Objects. 204
6.5 Parsing of Use Case Scenarios. 210
6.6 Generation of the Presenter Layer Details 215
Applying MDRE in Practice. 225
7.1 Using the ReDSeeDS Tool 225
7.2 Introducing the ReDSeeDS Methodology 232

7.2.1 Overview of the ReDSeeDS Process. 233

7.2.2 Software System Evolution Process 236

7.2.3 Technology Evolution Process. 241

http://dx.doi.org/10.1007/978-3-319-12838-2_3
http://dx.doi.org/10.1007/978-3-319-12838-2_3
http://dx.doi.org/10.1007/978-3-319-12838-2_3#Sec1
http://dx.doi.org/10.1007/978-3-319-12838-2_3#Sec1
http://dx.doi.org/10.1007/978-3-319-12838-2_3#Sec2
http://dx.doi.org/10.1007/978-3-319-12838-2_3#Sec2
http://dx.doi.org/10.1007/978-3-319-12838-2_3#Sec3
http://dx.doi.org/10.1007/978-3-319-12838-2_3#Sec3
http://dx.doi.org/10.1007/978-3-319-12838-2_3#Sec4
http://dx.doi.org/10.1007/978-3-319-12838-2_3#Sec4
http://dx.doi.org/10.1007/978-3-319-12838-2_3#Sec5
http://dx.doi.org/10.1007/978-3-319-12838-2_3#Sec5
http://dx.doi.org/10.1007/978-3-319-12838-2_3#Sec6
http://dx.doi.org/10.1007/978-3-319-12838-2_3#Sec6
http://dx.doi.org/10.1007/978-3-319-12838-2_3#Sec7
http://dx.doi.org/10.1007/978-3-319-12838-2_3#Sec7
http://dx.doi.org/10.1007/978-3-319-12838-2_3#Sec8
http://dx.doi.org/10.1007/978-3-319-12838-2_3#Sec8
http://dx.doi.org/10.1007/978-3-319-12838-2_4
http://dx.doi.org/10.1007/978-3-319-12838-2_4
http://dx.doi.org/10.1007/978-3-319-12838-2_4#Sec1
http://dx.doi.org/10.1007/978-3-319-12838-2_4#Sec1
http://dx.doi.org/10.1007/978-3-319-12838-2_4#Sec2
http://dx.doi.org/10.1007/978-3-319-12838-2_4#Sec2
http://dx.doi.org/10.1007/978-3-319-12838-2_4#Sec3
http://dx.doi.org/10.1007/978-3-319-12838-2_4#Sec3
http://dx.doi.org/10.1007/978-3-319-12838-2_4#Sec4
http://dx.doi.org/10.1007/978-3-319-12838-2_4#Sec4
http://dx.doi.org/10.1007/978-3-319-12838-2_4#Sec5
http://dx.doi.org/10.1007/978-3-319-12838-2_4#Sec5
http://dx.doi.org/10.1007/978-3-319-12838-2_5
http://dx.doi.org/10.1007/978-3-319-12838-2_5
http://dx.doi.org/10.1007/978-3-319-12838-2_5#Sec1
http://dx.doi.org/10.1007/978-3-319-12838-2_5#Sec1
http://dx.doi.org/10.1007/978-3-319-12838-2_5#Sec2
http://dx.doi.org/10.1007/978-3-319-12838-2_5#Sec2
http://dx.doi.org/10.1007/978-3-319-12838-2_5#Sec3
http://dx.doi.org/10.1007/978-3-319-12838-2_5#Sec3
http://dx.doi.org/10.1007/978-3-319-12838-2_5#Sec4
http://dx.doi.org/10.1007/978-3-319-12838-2_5#Sec4
http://dx.doi.org/10.1007/978-3-319-12838-2_5#Sec5
http://dx.doi.org/10.1007/978-3-319-12838-2_5#Sec5
http://dx.doi.org/10.1007/978-3-319-12838-2_5#Sec6
http://dx.doi.org/10.1007/978-3-319-12838-2_5#Sec6
http://dx.doi.org/10.1007/978-3-319-12838-2_6
http://dx.doi.org/10.1007/978-3-319-12838-2_6
http://dx.doi.org/10.1007/978-3-319-12838-2_6#Sec1
http://dx.doi.org/10.1007/978-3-319-12838-2_6#Sec1
http://dx.doi.org/10.1007/978-3-319-12838-2_6#Sec2
http://dx.doi.org/10.1007/978-3-319-12838-2_6#Sec2
http://dx.doi.org/10.1007/978-3-319-12838-2_6#Sec3
http://dx.doi.org/10.1007/978-3-319-12838-2_6#Sec3
http://dx.doi.org/10.1007/978-3-319-12838-2_6#Sec4
http://dx.doi.org/10.1007/978-3-319-12838-2_6#Sec4
http://dx.doi.org/10.1007/978-3-319-12838-2_6#Sec5
http://dx.doi.org/10.1007/978-3-319-12838-2_6#Sec5
http://dx.doi.org/10.1007/978-3-319-12838-2_6#Sec6
http://dx.doi.org/10.1007/978-3-319-12838-2_6#Sec6
http://dx.doi.org/10.1007/978-3-319-12838-2_6#Sec7
http://dx.doi.org/10.1007/978-3-319-12838-2_6#Sec7
http://dx.doi.org/10.1007/978-3-319-12838-2_6#Sec8
http://dx.doi.org/10.1007/978-3-319-12838-2_6#Sec8
http://dx.doi.org/10.1007/978-3-319-12838-2_6#Sec9
http://dx.doi.org/10.1007/978-3-319-12838-2_6#Sec9
http://dx.doi.org/10.1007/978-3-319-12838-2_7
http://dx.doi.org/10.1007/978-3-319-12838-2_7
http://dx.doi.org/10.1007/978-3-319-12838-2_7#Sec1
http://dx.doi.org/10.1007/978-3-319-12838-2_7#Sec1
http://dx.doi.org/10.1007/978-3-319-12838-2_7#Sec2
http://dx.doi.org/10.1007/978-3-319-12838-2_7#Sec2
http://dx.doi.org/10.1007/978-3-319-12838-2_7#Sec3
http://dx.doi.org/10.1007/978-3-319-12838-2_7#Sec3
http://dx.doi.org/10.1007/978-3-319-12838-2_7#Sec4
http://dx.doi.org/10.1007/978-3-319-12838-2_7#Sec4
http://dx.doi.org/10.1007/978-3-319-12838-2_7#Sec5
http://dx.doi.org/10.1007/978-3-319-12838-2_7#Sec5

Contents XXi

7.3 Reuse Approaches with Requirements Models. 243
7.3.1 Applying MDRE to Existing (Legacy) Systems 243

7.3.2 Reusing Requirements Models Through Patterns 249

7.4 Summary: Is MDRE forMe? 254

8 CaseStudy 257
8.1 Study Assumptions and Context 257
8.2 Source Model in RSL.. 259
8.2.1 General Structure. L 259

8.2.2 Use Case Representation Details 262

8.3 General Architecture of the Generated System. 272

84 UserlInterface Code. 280

8.5 Application LogicCode 288
8.6 DISCUSSIONottt 293
Appendix A: Summary of RSL Syntax. 297
Appendix B: Summary of MOLA Syntax 317
Literature 333

http://dx.doi.org/10.1007/978-3-319-12838-2_7#Sec6
http://dx.doi.org/10.1007/978-3-319-12838-2_7#Sec6
http://dx.doi.org/10.1007/978-3-319-12838-2_7#Sec7
http://dx.doi.org/10.1007/978-3-319-12838-2_7#Sec7
http://dx.doi.org/10.1007/978-3-319-12838-2_7#Sec8
http://dx.doi.org/10.1007/978-3-319-12838-2_7#Sec8
http://dx.doi.org/10.1007/978-3-319-12838-2_7#Sec9
http://dx.doi.org/10.1007/978-3-319-12838-2_7#Sec9
http://dx.doi.org/10.1007/978-3-319-12838-2_8
http://dx.doi.org/10.1007/978-3-319-12838-2_8
http://dx.doi.org/10.1007/978-3-319-12838-2_8#Sec1
http://dx.doi.org/10.1007/978-3-319-12838-2_8#Sec1
http://dx.doi.org/10.1007/978-3-319-12838-2_8#Sec2
http://dx.doi.org/10.1007/978-3-319-12838-2_8#Sec2
http://dx.doi.org/10.1007/978-3-319-12838-2_8#Sec3
http://dx.doi.org/10.1007/978-3-319-12838-2_8#Sec3
http://dx.doi.org/10.1007/978-3-319-12838-2_8#Sec4
http://dx.doi.org/10.1007/978-3-319-12838-2_8#Sec4
http://dx.doi.org/10.1007/978-3-319-12838-2_8#Sec5
http://dx.doi.org/10.1007/978-3-319-12838-2_8#Sec5
http://dx.doi.org/10.1007/978-3-319-12838-2_8#Sec6
http://dx.doi.org/10.1007/978-3-319-12838-2_8#Sec6
http://dx.doi.org/10.1007/978-3-319-12838-2_8#Sec7
http://dx.doi.org/10.1007/978-3-319-12838-2_8#Sec7
http://dx.doi.org/10.1007/978-3-319-12838-2_8#Sec8
http://dx.doi.org/10.1007/978-3-319-12838-2_8#Sec8

Acronyms

3GL
CASE
CMOF
CRUD
DAO
DSL
DTO
EMOF
IDE
MDA
MDRE
MDSD
MOF
MOLA
MVC
MVP
OMG
QVT
RDB
RSL
SPEM
SPL
SQL
SVO
Ul
UML

Third Generation Language

Computer Aided Software Engineering
Complete MOF
Create-Read-Update-Delete

Data Access Object

Domain Specific Language

Data Transfer Object

Essential MOF

Integrated Development Environment
Model-Driven Architecture
Model-Driven Requirements Engineering
Model-Driven Software Development
Meta Object Facility

MOdel transformation LAnguage
Model-View-Controller
Model-View-Presenter

Object Management Group
Query/View/Transformations
Relational DataBase

Requirements Specification Language
Software and Systems Process Engineering Metamodel
Software Product Line

Sequence Query Language
Subject-Verb-Object

User Interface

Unified Modelling Language

XXiii

Chapter 1
Introducing Requirements-Driven Modelling

Requirements play a pivotal role in software development because they express the
needs of the customer. A quality software system can emerge only when the real
needs of the client are discovered. However, this is not enough. A typical software
development project faces the problem of translating the user needs into a working
system. These problems are dealt with by hundreds of books on various aspects of
software design and pertaining to the plethora of software development technologies
we can choose from. Related activities produce important artefacts that are treated
as primary in software development: design models and code. Software design and
coding directly contributes to the final system, and thus their results are treated as
first-class citizens in the world of software development.

By contrast, requirements engineering is treated as a much less crisp and precise
field of software development [33]. Requirements are treated as secondary artefacts
for software developers as they cannot be translated directly into code. They are
formulated as paragraphs of text structured to some extent, but still usually quite
ambiguous and necessitating disambiguation during the later stages of development.
They are obviously important but they do not contribute directly to the final effect.
Their contribution is indirect and is treated like a craft rather than as a discipline
of engineering. Various books on requirements engineering concentrate a lot on
communication with the client and the psychological aspects of requirements elici-
tation (which is obviously good). This also includes notations (languages, templates,
guidelines) with different levels of precision. However, there can be seen a lack of
approaches to formulate requirements in a way that would allow for automation in
their translation into code.

In this chapter, we introduce an approach to requirements engineering where
requirements are treated as first-class citizens [70], contributing directly to the pro-
duction of the final code. In this approach, requirements are formulated as models
[17]. These models are intended to be comprehensible even by “ordinary” people (not
software developers). At the same time, these models are formulated in a language
that is precise enough (has precise semantics) to be able to generate meaningful and
usable design models and code.

© Springer International Publishing Switzerland 2015 1
M. Smiatek and W. Nowakowski, From Requirements to Java in a Snap,
DOI 10.1007/978-3-319-12838-2_1

2 1 Introducing Requirements-Driven Modelling

1.1 Why Model Requirements?

If we could try to imagine an ideal dream of a software project manager, it would
most likely look as in Fig. 1.1. In this dream, requirements agreed-upon with the user
and written down in whatever format, would automatically transform themselves
into ready executable code of the target system [37, 148, 155, 179]. All that is
needed is an automaton that would encapsulate all the knowledge on the target
executable environment, logical and physical architecture, user interface design and
so on. Moreover, this automaton would need to be able to process natural language
and disambiguate it. Having such a tool, we would only need to press a button (“make
a snap”) and voila—here come the executables of the system.

Of course, this is just a dream. . . Or maybe not? Maybe we can bring this dream
closer to reality? First, let us take a look at Fig.1.2. It shows a similar situation
but at a much lower level of abstraction. Here we transform a program written in a
3rd Generation Language (3GL; like C++, Java or C#) into executable code. This is
done by an automaton known to all programmers and is called the compiler [3]. This
automaton encapsulates the knowledge about the hardware and the execution plat-
form (machine code, bytecode, registers, memory access, basic I/O access and so on).
During compilation, this knowledge is automatically “injected” into the executable
program and merged with the programming constructs that could be expressed in
the specific 3GL. The resulting code can be executed directly by the execution envi-
ronment (in a specific operating system, processor type, virtual machine, etc.). The
knowledge of this execution environment is to a large extent abstracted away in the
3GL code. As a result, the source code is significantly less complex (or: easier to
comprehend) than the machine code.

We can argue that the two situations are different. The 3GL code has precise syn-
tax and semantics (meaning) that determines its interpretation for execution (during
runtime). By contrast, the requirements are too ambiguous. They do not use a syn-

Fig. 1.1 From requirements
to code: ideal scenario

Fig. 1.2 From 3GL code to
executable code

3GL COde p Automatic

= translation

Complexity of the .
execution platform Compiler

1.1 Why Model Requirements? 3

User
Requirements
Manual
69““-
Complexity || Requirements || Automatic Code <
of the Model translation fz
problem ode ﬂ =

Complexity 3
of architectare | | Model Transformation

design and code Engine

Fig. 1.3 From requirements to code: a more realistic scenario

tactically and semantically precise language. Thus, it is not possible to develop an
automaton that would be able to process requirements and produce executable code.
Obviously, this is true for requirements written in natural language and using semi-
formal diagrams, even when certain templates and constraints on the requirements
structure are applied. However, we can think of a much more realistic scenario, as
illustrated in Fig. 1.3.

In this scenario, the less structured user requirements are manually transformed
into syntactically and semantically precise requirements models. These models cap-
ture the complexity of the problem using a high-level modelling language. This
includes the desired functionality of the system (application logic, user interface)
and a detailed description of the problem domain. The main issue here is to be able
to capture all such knowledge using this high-level language with “enough” preci-
sion. Provided that the precision is satisfactory, we will be able to develop a model
transformation engine (cf. a compiler) that produces a full code of the desired system.
This engine, by analogy to the compiler, would encapsulate the technological details
of the target programming platform. This includes the target architectural solutions,
detailed design decisions and intricacies of specific coding guidelines. Such techno-
logical knowledge is injected during translation and is combined with the description
of the problem (the requirements models) to produce fully operational code.

This last scenario (see again Fig. 1.3) refers to a clear separation of two kinds of
software complexity formulated by Fred Brooks [26, 27]. Back in the 1980s, Fred
Brooks distinguished the “essence” from “accidents” in programming. His definition
was that “the essence of a software entity is a construct of interlocking concepts: data
sets, relationships among data items, algorithms, and invocations of functions” and
“accidental tasks arise in representing the construct in language”. In our case, the
essential complexity is expressed through the requirements models. These models
contain the definition of the problem domain (data and relations) and the desired

4 1 Introducing Requirements-Driven Modelling

functionality (application and domain logic algorithms with their invocations). The
accidental complexity is expressed through the model transformation engine and
contains all the details of the target software and hardware platform.

The distinction made by Fred Brooks gives us a hint of the direction in which
we should move in our approach to software development. We should hide as much
accidental complexity as possible and promote the essential complexity. Compilers
(Fig. 1.2) indeed hide some of the accidental complexity. In the later parts of this
book, we provide an introduction to how to tackle the problem of hiding the remaining
“accidents” through constructing model transformation engines (Fig. 1.3). To develop
such an engine seems a much more complex task than to develop a compiler. However,
these two tasks have much in common. In both cases, we need a source language
which has a formal syntax. We also need translation rules that are based on the
semantics of the source language. This semantics defines how to express the (high
level) constructs of the source language through the (low level) constructs of the
target language.

3GL compilers allow us to express programming constructs at a significantly
higher level than machine/assembly code. However, this is done at a cost of less
programming freedom and usually worse performance. This is because the compilers
apply uniform translation rules to all the 3GL constructs and produce uniformly
structured and often not perfectly optimised output code. All the detailed decisions
on how to structure the output code were made by the compiler constructors. Despite
this, we do not really want to go back to the era of assembly language programming.
The advantage of abstracting away the complexity of the execution platform is much
higher than the minor disadvantages that were mentioned. Though, in some cases,
whenever it is necessary (e.g. for performance reasons), some subroutines can be
programmed in assembly language.

Still, we can try to move up the ladder of abstraction in software development. We
would like to define a language that abstracts away not only the execution platform
but the whole software technology platform. This includes the architectural design
(physical and logical architecture), approaches to persist data, ways to exchange data
through the user interface, divisions into programming units (packages, classes),
approaches to pass control between programming units (class dependencies) and so
on. The appropriate translator for this language would need to capture and unify
specific decisions in these areas. Thus, the developers that would use the new high-
level language would have a lot less freedom in making these decisions than when
they would program in Java or other 3GL. This would be the cost of “programming”
at the level of the problem domain (or: requirements [31, 69, 150]). The question
would be whether this cost would pay off just like in the case of 3GL to machine
code translators. Another question is how to develop such new translators and this is
what we want to answer in this book.

In the meanwhile, the reader would probably appreciate some more concrete
justification on why we should bother about modelling requirements in a semantically
precise way. Let us illustrate what we mean, through an elementary example. In
Fig.1.4, we can see a tiny requirements model. This model uses a notation that
should be familiar to many requirements engineers. It contains a single use case

1.1 Why Model Requirements? 5

User Show user account User account
login : text
1. User selects “show user account” password : text
2. System fetches user account name : text
3. System shows user account form quota: number
4. User selects “close”
5. System shows main menu

Fig. 1.4 Tiny example: source requirements model

JFrame
VMainMenu V-‘f VUserAccountForm
on_click(e) on_click(e)
show() mm uaf show(ua)
\sua sua
PShowUserAccount
start_selected() MUserAccount
close_selected() login : String

\ password : String

ua | name: String
quota: float

fetch(login)

Fig. 1.5 Tiny example: target code structure model

(the oval) and a single actor (the sticky figure). This simple notation was invented by
Ivar Jacobson and dates back to the beginning of the 1990s [2, 12, 34, 44,78, 96, 137,
141]. The use case diagram is supplemented by a textual scenario (sentences 1-5)
and a single definition of the domain notion (“user account”) used in this scenario.
The notion definition uses standard UML class notation [24, 52] and contains four
attributes (information components) of the notion.

The diagram in Fig. 1.4 is a requirements model that we claim is precise enough
to generate working code. Obviously, this generated code should be governed by
certain design decisions that would be uniformly and automatically applied. Here
we do not explain these rules in detail, instead we describe code that we would like
to have as an implementation of the source requirements model. The structure of this
code is presented in Fig. 1.5. This is a UML class diagram that depicts four classes
with their operations and relationships between them. A careful reader might notice
right away that we have applied an architectural pattern to this code structure.! It is
the Model-View-Presenter (MVP) pattern that is becoming more and more popular

! The examples in this chapter use very simplified Java with an imaginary programming framework.
Here we want to abstract away from any specific Java technology.

6 1 Introducing Requirements-Driven Modelling

in contemporary programming frameworks. This pattern consists of three layers. The
view layer (classes starting with a “V”’) contains code responsible for exchanging
data and commands with the user through the user interface. The classes in this layer
specialise in more general window frames. The presenter layer (classes starting with
a “P”) handles the application logic in terms of sequences of events happening in the
dialogue between the user and the system (including internal actions of the system).
The model layer (classes starting with an “M”) handles the domain logic that includes
data processing algorithms and storing (persisting) the data.

The code structure in Fig. 1.5 should be substantial enough to handle the simple
functionality defined in Fig. 1.4. Moreover, we may intuitively feel that there can
be specific rules determined for obtaining this code structure from the requirements
model. There can be seen specific traces from the elements of the requirements
model to the elements of the code model. For instance, the notion of “user account”
is reflected in two classes in code: VUserAccountForm and MUserAccount.

Of course, the structure alone is not enough to implement the functionality (sce-
nario) from Fig. 1.4. We need some dynamic code. This dynamics can be presented
using a UML sequence diagram as in Fig. 1.6. This diagram is a translation of the
scenario into a sequence of messages passed between objects in a running system.
These messages are equivalent to calling class methods either synchronously or
asynchronously. The current diagram reflects design decisions on how to structure

Q mm : VMainMenu sua : PShowUserAccount ua : MUserAccount

/I\

| I
on_click(e) 1 1
[
I
I

start_selected()

~

fetch(login}

uaf : VUserAccountForm [«- A

Il

close_selected()

show(ua)

on_click(e)

~ |

show() !

M

Fig. 1.6 Tiny example: target code dynamics model

1.1 Why Model Requirements? 7

code within individual methods in code. For instance, the method “start_selected”
in PShowUserAccount contains a call to “fetch”, a constructor call for VUserAc-
countForm and a call to “show”. Similarly to the case of the code structure, we can
intuitively see certain traces from the sequence of sentences in our example use case
scenario to the sequence of messages in the sequence diagram. For instance, the
sentence “User selects ‘show user account™ can be traced to the sequence of two
messages: “on_click” and “start_selected”.

The class diagram from Fig. 1.5 and the sequence diagram from Fig. 1.6 already
contain much of the target complexity. However, the final code has more details, as
presented in Fig. 1.7. The presenter (“PShowUserAccount”) code is a direct transla-
tion of the dynamics from the sequence diagram. However, the other class methods
contain code that adds more details. The view classes have specific code to show
individual widgets on the screen (here: a very simplified widget rendering frame-
work). The model class contains code to fetch persisted data from the database (here:
a very simplified inline SQL). In reality, this code would be significantly more com-
plex but we have removed much of the technical details for the sake of simplifying
this example. Despite this simplification, it can be seen that at this stage, the target
platform (technology) details were introduced. However, the individual instructions
in code can be intuitively traced back to the initial requirements model.

In the remainder of this book, we show that it is possible to automate the path
sketched in this simple example. The main prerequisite for this automation is the
ability to define the source requirements models precisely. This means using precise
syntax that allows to assure the coherence of the models similar to the coherence of
code. Moreover, we need a precise definition of the semantics that would explain the

class VMainMenu extends JFrame{ class VUserAccountForm extends JFramef

owllserf ount sua; PShowlse cunt sua;
void on click(Event e) { void on click(Event e)
sua.start_selected(); sua.close_selected();
! }
void show() { void show(ua: MUserBAccount)
show _option(“Show User Account”):; show text(ua.login):
| show_text (ua.name) ;
5;7 show_number (ua.quota) ;
] v
class PShowUserAccount |
VMainMenu mm; VUserAccountForm uaf; class MUserAccount
MUserBccount ua; String login, password, name;
login; flo

at guota;

tart selected() d fetch(String 1) |
ug._ethTlcqin:; T * FROM user accounts
uaf.show(ua) ; WHERE login=1"

ose selected() { ! &7

how() ;

Fig. 1.7 Tiny example: target code

8 1 Introducing Requirements-Driven Modelling

translation of requirements elements into specific code constructs. Assuring strict
precision of requirements involves additional effort in this phase of software devel-
opment. However, this effort should pay off with the possibility to apply automatic
translation into fully working code. In the above example, we have not considered
many other aspects of this translation which are explained in detail in the subsequent
chapters. Thus, although considerable effort is needed to develop the transformation,
this transformation can be reused many times similar to how we “reuse” transforma-
tions into machine code within compilers.

So, how do we answer the question “why model requirements?” There can be at
least two reasons (see Fig. 1.8). First, requirements models have very good commu-
nication capabilities. Using visual models, we can make requirements more compre-
hensible to the business people who order and use software. Visual models can thus
be used by less formal human readers. The second reason is more important, as its
effects can have a significant impact on the productivity of the developers. Require-
ments models can be made formal enough to be able to transform them automatically
into other artefacts like design models and code. Also, we can assure their coherence
through implementing certain automated validation mechanisms. The possibility to
generate code directly from requirements means a significant rise in abstraction for
activities that produce running code. This rise of abstraction is similar to that of 3GL
programming in relation to assembly language programming.

However, a significant problem we face is to design a language that is compre-
hensible to “ordinary people” and at the same time gives enough “power” to serve
as high-level code for software developers. This language must have a precise but
understandable syntax (grammar) and its constructs must possess strict meaning
(semantics) in terms of code generated from them. The following two sections pro-
vide an overview of these two aspects.

Translatability
Precision

~ Requirements
” ‘ language - '&,\,

Users Developers

LY
rd

Less formal More formal

"~

Fig. 1.8 Combining good communication with precision

1.2 Making Requirements Precise 9

1.2 Making Requirements Precise

1.2.1 Writing Good Stories

To answer the question of how to make requirements precise we start with an analogy
that may look odd at first sight. We start by explaining how to write a good adventure
novel. First, we have to have a good story. It should have an exciting action with
many possible resolutions. Preferably, the story should end with a happy ending but
there always has to be a possibility of the story ending sadly. Moreover, we should
place this action in an interesting environment. This should include the characters
that take part in the story, placed within the nature (forests, animals, etc.) and the
products of technology (buildings, vehicles, etc.) that surround them. The best novel
writers try to create a coherent new (future, alternative, sci-fi) environment, or try to
reflect the real environment existing some time in history or at the present.

One of the best examples of a coherent environment created by a talented writer
is the Middle-earth. J.R.R. Tolkien has described it in much detail throughout sev-
eral of his works like “Hobbit”, “The Lord of the Rings” and “Silmarillion”. The
environment of the Middle-earth consists of many different intelligent species (men,
hobbits, dwarfs and so on), a specific landscape with different landmarks (cities,
mountains, rivers), specific technical capabilities (weapons, means of transport, etc.)
and other features of the characters like their extra-natural capabilities. Being a good
novel writer, Tolkien gradually reveals to us the whole environment of the Middle-
earth. This is done along with the different stories being told. A good novel is thus a
balanced combination of stories and the description of a coherent environment. This
is illustrated in Fig. 1.9 where the descriptions of various events (forming the story)
are interweaved with the descriptions of the environment.

In order to be able to understand the environment of the Middle-earth better,
Tolkien provides us also with a sketch of its map. However, his text is so precise and

B: ‘: i

1. Gardenig

3. Camping

7o) |

4. Gardenig

New Dwelling

Fig. 1.9 Story and environment combined in a novel

10 1 Introducing Requirements-Driven Modelling

Mountain

4. Gar@lening

Fig. 1.10 Making the environment coherent with the story

coherent that many other authors have developed various other descriptions of the
Middle-earth. This includes atlases with detailed maps of various areas of Middle-
earth, encyclopaedias explaining all the notions, and vocabularies explaining all the
terms in various Middle-earth languages. In fact, from Tolkien’s various works on the
Middle-earth, there has been “extracted” a coherent (quasi-historical) description of
the whole environment. This can be generalised in that a good adventure novel should
provide an environment that can be described with a coherent conceptual framework,
e.g. using a map. An illustration of this can be found in Fig. 1.10. Now, all the events
from Fig. 1.9 are extracted to form the story. The events refer to specific places on
a coherent map of the territory. Each of the places is described in a vocabulary of
places (rivers, mountains, dwellings, ...). What is also important is that different
events happening at the same place should be positioned correctly in relation to
other events.

1.2.2 Writing Stories About Software

After this short digression on adventure stories, let us get back to dull business sys-
tems. With the above example, it is possible to write a story that is understandable
and at the same time—coherent and precise [147, 181]. Stories themselves are under-
standable because this is the most fundamental way in which people have been com-
municating for ages. Furthermore, stories about reality (testimonies, history reports)
can be verified by cross-checking their coherence with the environment (domain).
Thus, a natural choice for making requirements for business systems understandable

1.2 Making Requirements Precise 11

[User enters book data |

/ A
Subject Verb Object
1 | II
| |
‘ System validates book data ‘

Fig. 1.11 Sentences in a story

and precise would be to base them on stories. How can we write such stories for
software [7, 147]?

We can write them from the point of view of the system’s user. Then, the story
should tell about the dialogue between the user and the system. The story can consist
of simple sentences, as those shown in Fig. 1.11 [20, 61]. These sentences are indica-
tive and contain a subject, a verb and an object. We call them Subject-Verb-Object
(SVO) sentences. The SVO structure should be sufficient to present the interactions
between the users (when the subject is a user) and the system (when the subject is
the system). However, it is obviously not sufficient to explain the context for the
interactions. Thus, requirements specifiers often tend to insert such explanations as
continuations of sentences with such (or similar) structure. For instance, we receive
a complex sentence like, “The user enters book data, where book data contains the
book title and the author”. This can be compared to writing an adventure novel where
the story is interweaved with the descriptions of the environment. In another part of
the story (e.g. 20 pages later in the requirements document), we can have a sentence
like, “The system validates book data (author, title, issue date) by comparing the
issue date with the author’s lifespan”. This leads to significant confusion when we
want to define “book data”. Both definitions do not match—is it the same kind of
data we are talking about in both cases? To make things coherent, we need to use
the same technique as Tolkien and his followers did—create a detailed map of the
territory, coherent with the story.

Note that we have clearly emphasised the three sentence parts—the subject is in
bold, the verb is in italic and the object is underlined. This emphasis is important,
because we want to relate the verbs and the nouns to their centralised definitions.
This will make the “environment” coherent with the “story” as in our discussion on
the Middle-earth, as illustrated in Fig. 1.12. It can be seen that both sentence objects

User@nters:book data [name : Text] [birth : Date |
: \ 0 0

i ¥

| book data [~

—————— | enter book data Jko— title : Text |

-3l validate book data |l . fie5ie date : Date |

l Systemaalidatessbook data ‘

Fig. 1.12 Extending story sentences with domain definitions

12 1 Introducing Requirements-Driven Modelling

refer to one centrally defined domain element (here: “book data’). Moreover, the
sentence verbs refer to appropriate domain statements (here: “enter book data” and
“validate book data”) contained in the domain element (verb phrases). The domain
element definition is complemented by aggregated attributes (here: “author”, “title”
and “issue date”). The references from the SVO sentences can be seen as hyperlinks
[82] leading to a central “wiki” definition. We should note that this “wiki” contains
definitions of not only the nouns (“book data”) but also the verb phrases associated
with the nouns (“validate book data”).

Several SVO sentences can be formed into a story which we can also call a
scenario. An example can be found in Fig. 1.13. There we find in fact two scenarios.
One of them ends with a “happy end” (the book data are saved) while the other
one ends with a failure (an error message is shown). Both scenarios have the same
beginning (sentences 1-5) and what distinguishes them are the condition sentences
(book data either valid or invalid). These condition sentences can be compared to the
dilemma of a scenario writer for a TV “soap opera” (or an adventure novel writer).
She might wonder how to resolve a specific key scene in an episode. Depending
on this resolution, the plot might go into several different directions. The issue for
software system scenarios is that we need to specify all the possible “plots”...

When writing scenarios, we maintain their coherence with the domain definition
[10,20-22, 152, 165]. This definition grows through adding new notions and new verb
phrases. The notions are taken not only from the problem domain (like “book data™)
but also from the domain of the user-system dialogue [177], which includes window
frames (see «frame» in Fig. 1.13), button triggers (see «trigger») and message boxes
(see «message»). This forms a vocabulary of notions to be used coherently within

1. User selects add book --==3] «trigger»
2. System shows new book form- Save

3. User enters book data-----—-__ JET N /

4. User selects save —.———.... g T

5. System validates book data‘_,“ A e new book form
[book data valid]

6. System saves book data--—--.____ ! \

— book data
[book data invalid] N et iot G

6. System shows m\rlalld book TR Tt Dok dots

data message \ g save book data
7'. User selects close ™.

7 " -

L

_Hremove book data

«message» (}‘
invalid book data message A
i e 4. System removes book data
«trigger» [)
close

Fig. 1.13 The stories and their vocabulary

1.2 Making Requirements Precise 13

various scenarios throughout the whole requirements model. This is illustrated in
Fig. 1.13 by showing another (perhaps distant) scenario (at the bottom) which also
refers to the same domain notion as that referred to from the first two scenarios.
We can associate the various notions through relationships which makes also the
vocabulary internally coherent. For instance, we can indicate which of the domain
data elements (here: “book data”) should be presented in which of the window frames
(here: “new book window”).

Several similar scenarios can be combined to form a use case. Use cases were
introduced earlier in an example in the previous section but here we present them
more formally. There can be found many definitions of what use cases are in the
literature. Our definition tries to summarise them and concentrates on three main
features of use cases.

Definition A use case is a complete piece of functionality that possesses the follow-
ing characteristics:

1. Tt starts with the interaction of an outside actor with the system or assumes the
possibility of such an interaction to start it.>

2. It contains several scenarios that constitute sequences of interactions of an outside
actor (or actors) with the system, and replies (or requests) of the system.

3. It ends by reaching a goal of some value to the outside actor or failing to reach
that goal (despite trying).

Use cases are defined in relation to outside actors. Outside actors represent roles
that groups of people or outside systems play in relation to the currently considered
(specified) system. A representative of an outside actor can come into interaction
with the current system in accordance with the use cases related to this outside
actor. Note that the definition speaks of “outside actors” and not simply “actors” (as
is done in the literature and software engineering practice). This is due to certain
confusion that can occur for less-experienced modellers. They sometimes model
actors as internal elements within the modelled system (or even as the system itself).
The word “outside” makes it unambiguous that actors are never part of the current
system.

This definition can be analysed through the example found in Fig. 1.13. We did not
name the use case in the figure, but it is obvious that the name could read as “Add new
book”. This name also specifies its goal. The use case (all of its possible scenarios)
starts with a specific interaction (selecting the “add book” button). It contains several
SVO sentences forming a sequence of interactions between the user (cf. outside actor)
and the system. It ends either by reaching the goal (saving “book data”) or failing to
reach it (presenting an error message). Note that after reaching the goal, the system
is in a stable state from the point of view of the user interface and internal system
transactions. This means that—for instance—the user can start the use case again.

2 The assumption of possible initial actor interaction is explained in Chaps.2 and 4. This pertains
to use cases invoked from within other use cases (see Fig.2.27 and rules P9 and P10).

http://dx.doi.org/10.1007/978-3-319-12838-2_2
http://dx.doi.org/10.1007/978-3-319-12838-2_4
http://dx.doi.org/10.1007/978-3-319-12838-2_2

14 1 Introducing Requirements-Driven Modelling

Application logic

Use case [] [Action on a vocabulary element]

- e

vocabulary element

+| action on an element 4+

Algorithm

Domain logic

Fig. 1.14 Use cases: stories forming the application logic that refers to domain logic

The functionality defined through use case scenarios can be also called the
application logic. This is in contrast to the domain logic illustrated in Fig.1.14.
The application logic contains all the possible alternative scenarios of user—system
interaction. Actions in the application logic refer (“hyperlink™) to specific actions in
the domain logic. The domain logic is organised around the vocabulary of notions as
presented above. The verb phrases (actions) that are contained in the notions can be
defined in more detail to form the domain logic. This includes specific notations to
denote data processing algorithms (e.g. how to “validate book data” or how to “cal-
culate mean book price””). We do not discuss these notations in detail here because
they are specific to the considered domains (cf. domain-specific notations mentioned
in the next section).

It should be emphasised that the presented notation for the requirements models
is domain agnostic. This means that it can be applied to any typical business domain,
thus making it universal. The domain vocabulary is constructed within the specifi-
cation and is then used to define the domain logic [47]. The notation is simple and
understandable by a “layman’ (not proficient in software engineering, e.g. a business
person). It consists mainly of simple SVO sentences and domain element definitions.
Its main characteristic is strict relation between the application logic (use case sce-
narios) and the domain logic (verb phrases). We call this notation the Requirements
Specification Language (RSL) [83, 118].3 This language allows us to implement
the “realistic” code translation scenario described in the previous section. For this
purpose, we need to define the meaning of RSL constructs in terms of application
logic and equivalent code. This is introduced in the next section.

3 The idea of requirements modelling started with the Requirements Modelling Language proposed
by Greenspan et al. [63, 64]. More recently, Helming et al. proposed the Unified Requirements
Modelling Language [16, 68]. Yet another approach was proposed by Beatty and Chen [13].

1.2 Making Requirements Precise 15

1.2.3 How About Quality Issues?

Note that use cases and the vocabulary identify two types of requirements: functional
requirements and vocabulary requirements (domain definitions). For a requirements
specification to be complete, we need to define quality requirements (known also as
non-functional requirements). The first two types of requirements define the way the
system functions, as seen by the outside user and defines what data are processed
and exchanged with the user. The quality requirements influence the internals of the
system. Architects use specific design solutions based on the required performance,
reliability or security. Moreover, they might need to apply certain constraints to the
target technology (e.g. a specific operating system or UI framework has to be used).

Quality requirements may highly influence the “accidental” aspects of the target
code. Thus, they need to be carefully considered when developing translation rules for
functional and vocabulary requirements. For some of the quality requirement types,
we can determine precise guidelines as to which architectural patterns or specific
software development frameworks should be applied. For instance, the requirement
that the application should be used on mobile devices determines many elements of
its architecture and various detailed design solutions. In case of other types, some
general guidance can be applied, and only later verified when some parts of the system
are ready. This is typically the case for performance requirements. Experienced
architects can use specific design solutions that are known to fulfil the desired system
performance (e.g. response time). However, there is no way to assure this in advance
at design time.

In this book, we assume the average quality requirements that influence the trans-
lation from requirements models to code. In particular, we assume that the system is
available through the Internet and thus a web application is needed. We also assume
that the response time can be average, and typical architectural solutions for web
application will be satisfactory. In case there are special quality constraints set on
the target system, the translation rules presented throughout this book should be
updated. This may, for instance, influence the code structure and its distribution
between processing nodes (physical/virtual machines). It may also involve develop-
ing code for different UI platforms or using a certain security framework.

In general, this may be reflected in several variants of translation programs that
produce code from requirements, selectable depending on the specific quality require-
ments. We may also think about automating this process, and selecting appropriate
transformation procedures depending on the values of the quality requirements. For
this purpose, we would need a precise modelling language for quality metrics and a
schema for parameterising code generation depending on these metrics. This topic
is still well beyond the current state-of-the-art and thus we will not elaborate on it
in this book. However, it seems a promising direction worth a significant research
effort in the future.

16 1 Introducing Requirements-Driven Modelling

1.3 What Is the Meaning of Requirements Models?

Being a language (and specifically—a modelling language), RSL communicates
some meaning. To understand this meaning we need to define its semantics. Seman-
tics is anecessary complement of the indexsyntax syntax (grammar) for any language
(including natural languages). To explain the semantics of a software language, we
can use various methods. In all of these methods, we need to specify the given lan-
guage in terms of simple concepts which have a known meaning (semantics). For
instance, to explain the semantics of a programming language, we can introduce a
simple automaton (with memory, processing capabilities, etc.). Then we can show
how specific constructs of the given language work during runtime in terms of oper-
ations of this automaton (called operational semantics). However, this approach—
although precise and formal—is usually hard to understand and use in practice.

A practical way of defining the semantics of a language is to specify the rules of
translating specifications (programs) in this language into specifications (programs)
in another language. Obviously, this other language has to have its semantics already
defined. This way of defining semantics is called translational semantics [91, 146].
We use this approach to specify the semantics of RSL in Chap.4. We offer rules
for translating RSL into Java (also explaining some constructs using UML). This is
helpful for constructing language translators. At the same time, it allows to understand
the meaning of specific language constructs by software engineers proficient in 3GL
programming.

However, it is also important to explain the meaning of RSL to domain experts
not proficient in software development. In this case, we should provide some account
on RSL constructs in terms of the behaviour of the specified systems as seen from
the outside. This would include the navigation and appearance of the user interface
and changes in the system state related to the domain (business) model. Again, these
semantics can be defined through some target language understandable to the reader
of the semantics definition (translational semantics). Yet, this definition might not
necessitate the level of precision as that for translating into, e.g. Java.

1.3.1 Requirements Explained Through Observable Behaviour

In this introduction to semantics, we start with the approach based on defining the
system’s observable behaviour. It allows us to be less formal. We explain use cases,
scenarios and vocabulary elements by translating them into sequences of user inter-
face elements that would appear to the user and changes in domain objects handled by
the system. A summary of this approach can be found in Fig. 1.15. It consists of three
parts: (1) control flow semantics, (2) individual sentence semantics and (3) vocab-
ulary element semantics. The first two parts pertain to the application logic of the
system to be built. The third pertains to the domain logic (see the previous section for
explanation of the distinction between application logic and domain logic). Control

http://dx.doi.org/10.1007/978-3-319-12838-2_4

1.3 What Is the Meaning of Requirements Models? 17

1. User selects

New book form

add book Author 1
2. System shows —> E;Ee date C— 1

new book form

3. User enters \

book data | book data |
4, User selects
save ~N E—-; Save |

5. System validates W
book data ¢ ‘ \
6. System saves
book data

| book data |
~

Application logic Domain logic

Fig. 1.15 Software language semantics explained through observable behaviour

flow semantics defines the sequence in which the individual interactions are to be
executed. In Fig. 1.15, it is depicted with a series of dots along a line, ending with
a “stop bar”. In our simple example, we have only one straight line because there
are no alternatives: we have a single scenario. Each of the dots represents a single
action equivalent to a single sentence in a scenario. Each of these sentences has a
specific meaning, which can be a user-triggered event, a Ul rendering action or a data
processing action. Detailed semantics of each of the actions can be determined by
examining the vocabulary elements linked from the associated scenario sentences.
These details include, e.g. the specific button to be pressed, the layout of a window
frame to be displayed or the specific data processing algorithm to be executed.

The semantics of use cases and especially their control flow semantics was not
the first concern of the literature on this subject [143, 170]. This is because use
cases were not intended for automatic translation into design and code. However, for
our purposes we need to be clear about this. The “use case language” has to define
precisely how a set of use cases may be “executed” in a running system. This is
illustrated in significant detail in Fig. 1.16. We can see two use cases related through
a relationship denoted with «invoke». This is complemented by two scenarios of the
first of the two use cases (“Show book list”’). The second use case is the already
presented “Add new book”. Note that we do not use the well-known «include» and
«extend» relationships because of their ambiguous control flow semantics, criticised
in the literature [57, 97, 108-110, 143]. Instead, we use a new kind of relationship
for which we introduce precise control flow semantics.

The control flow of this RSL model is explained through the diagram on the right
of Fig. 1.16. It shows how the individual scenario actions can be executed. There are
two alternative paths for “Show book list” starting after sentence 3 (see the left part of
the diagram). Two SVO sentences denote two alternative decisions by the actor—to

18 1 Introducing Requirements-Driven Modelling

«invoke»

Show book list Add new book

1. User selects show book list

2. System fetches book list

3. System shows book list window
«invoke» Add new book

4. User selects close

. User selects filter

5. System shows book filter window
6". User enters book filter

7. User selects filter

repeat from 2.

=

Fig. 1.16 Control flow semantics of use cases

either select “close” or “filter”. In “Add new book”, there are also two possible paths
(compare with Fig. 1.13) but the alternative is of a different kind. This time it does
not depend on the user’s decision but on the system’s state and data processing. This
is denoted by the black dot in the right part of the control flow diagram. The dot can
be expanded into several (here: two) alternative conditions (here: data are valid or
invalid) leading to selection of one of the outgoing paths.

The control flow diagram in Fig. 1.16 also presents the semantics of «invoke».
An invocation relationship exists between two use cases whenever an appropriate
«invoke» sentence is present in a scenario. In our example, “Add new book” is
invoked within sentence 3 of “Show new book”. The control flow semantics of this
RSL construct resembles a procedure call. Control is first passed to the first sentence
of the invoked use case. After reaching one of the final sentences of the invoked use
case, control is passed back to the invoking use case. However, the return of control
repeats the action associated with the invocation sentence. In our example, the action
to “show book list window” is performed after returning from “add new book™.

Having explained the control flow, we need to explain the meaning of individual
actions, associated with SVO sentences. In general, we can distinguish four types of
sentences as presented in Fig. 1.17. Their general meaning depends on their subject
and their object. Syntactically, the subject of an SVO sentence can be either one of
the outside actors or the system. Moreover, the object of an SVO sentence can be a
trigger or a domain element. Based on this division, we can define the four types of
SVO sentences.

1. User-to-system-event. These sentences denote interactions of an actor that passes
control to the system. This includes selecting menu options, pressing buttons or
other such events.

1.3 What Is the Meaning of Requirements Models? 19

=
aﬁ;ggzﬁk book data
[}

. ster selects add book | —
User ™=------ 1’User enters book data | —
{» System saves book data | —
asystem»
system
+Sy5tem shows new book form | [)

PR—

aframen
new book form

Fig. 1.17 SVO sentence semantics

2. User-to-system-input. These sentences denote passing data from the user to the
system. These data are compliant with some domain element and its components
(attributes).

3. System-to-user. These sentences denote presenting some message or data to the
user. Most often, these data are rendered through some graphical user interface.
These data can be read-only or editable in some part (subject to a further user-to-
system-input sentence).

4. System-to-system. These sentences denote performing some processing related
to specific domain elements that may include performing calculations, changing
system state or retrieving persistent data.

The exact meaning of a specific SVO sentence depends on the actual vocabulary
elements that are linked from this sentence. This is illustrated for system-to-user
sentences in Fig. 1.18. This example shows the effect of executing “System shows
new book form”, having a specific definition of “new book form”. This «frame» has
an associated domain element (“book data”) and a «trigger» (‘“save”). These two
elements are rendered on the window frame as shown on the right.

wtrigger»
save
[
«framen» [name : Text |[birth: Date | New book form
new book form e "™ []|
\ <$ <§ birth I |
<> | | Titl [I
bOOk data author Iss:edate
- | I
®
K >—{ issue date : Date |

Fig. 1.18 Vocabulary element semantics

20 1 Introducing Requirements-Driven Modelling

Two other types of SVO sentences are quite easy to explain without a separate
illustration. A user-to-system-event sentence is a reaction to interacting with the
specific «trigger» (e.g. “save” in our example) rendered on a window frame in a
preceding system-to-user sentence. In turn, a user-to-system-input sentence denotes
editing the fields rendered on a window frame, based on the associated domain
element (e.g. “book data”). Care should be taken to assure coherence of user-to-
system sentences with the vocabulary. The previously rendered window frame must
have the necessary elements available for editing or triggering.

Finally, the system-to-system sentences have their meaning dependent on the
actual contents of appropriate verb phases. The contents should specify appropriate
algorithms for processing, accessing and changing the state of data within the sys-
tem. This is the domain-specific part of a requirements model. For this purpose, a
domain-specific language can be developed or some general-purpose language with
known semantics can be used. In case of a lack of such language, we are left with
specifying the domain logic algorithms informally and leave them out of the auto-
matic transformation path. This is a very broad topic of domain-specific languages
and is out of the scope of this book. However, all the techniques for defining soft-
ware modelling languages that we describe can be used also for such domain-specific
languages.

1.3.2 Requirements Explained Through Translation into Java

So far, we have used elements observable by the user to explain the meaning of
requirements models. Now let us get back to the idea of defining requirements seman-
tics by offering equivalent 3GL (Java) code. This approach is fully formal and can
be used directly to construct automatic transformation engines. In this introductory
section we present the basics of the approach, and the details are given in Chap. 4.
The first step is to define the translational framework, illustrated in Fig. 1.19. The
translational framework assumes a certain code structure to which the requirements

Presentation - User interface
* View (MVP/MVC)

OO@

© L layer
-)) L 3 §
se cases] : : * Workflow logic
Applllcatlon + Controller (MVC)
] [] Logic layer | -presenter(mvp)
:’ :l i ‘ o) - Algorithms
] Domain Logic gor!
* Data access
Vocabulary ! layer)+ Model (MvP/MVC)

Fig. 1.19 General translational framework for RSL

http://dx.doi.org/10.1007/978-3-319-12838-2_4

1.3 What Is the Meaning of Requirements Models? 21

models are translated. Here we choose a standard three-layered architecture consisting
of Presentation, Application Logic and Domain Logic. This division is equivalent to
the architectural patterns of Model-View-Controller (MVC), Model-View-Presenter
(MVP), etc. This approach was earlier informally introduced in Sect. 1.1. The pre-
sentation layer is responsible for accepting and presenting data to the user. The
application logic layer contains code that pertains to the workflow of the application
which includes different flows of user-system interaction. The domain logic contains
code that does the actual data processing (algorithms) and accesses persistent data.

Figure 1.19 shows that use cases with their scenarios are translated mostly into the
code within the application logic layer. This is obvious in the face of what we have
already explained about the semantics of use cases. Use case scenarios can serve as
good controllers of the application logic. In turn, the vocabulary requirements influ-
ence mostly the other two layers. This is also obvious from the previous descriptions
of their semantics. The domain logic layer reflects the realisation of verb phases
with the associated algorithms. These algorithms process data as defined by domain
elements and their attributes. The presentation layer reflects the visualisation of the
same data to the user. The data are shown within specific UI elements that are also
defined in the vocabulary and relate to the domain elements.

Figure 1.19 provides an informal overview of the translation; more details are
required. A summary of several formal translation rules is presented in Fig. 1.20.
Here we use a UML class diagram to present the code structure. Moreover, the class
operation methods are expanded to show their code (in this example—only one of
the methods). The arrows with numbers show how RSL constructs are translated into
code constructs.

1. Use cases are translated into classes of the Presenter (application logic) layer.
2. User-to-system-trigger sentences are translated into operations of the Presenter
class translated from the current use case.

VBookWindow
+ show(bd: MBookData)

bw

Show book data

1. User selects show book
2. System fetches book data —
3. System shows book window -

shd

PShowBookData
—+select_show_book()

bd
= MBookData
void select_show_book() |
— bd. fetch () ; ~fetch()
® [~ bw.show(bd) ; -

}
(o)

Fig. 1.20 Use case translational semantics

22 1 Introducing Requirements-Driven Modelling

3. System-to-system sentences are translated into operations of the Model (domain
logic) class associated with the given domain element.

4. System-to-user sentences are translated into operations of the View (presentation)
class associated with the given Ul element.

5. System-to-system sentences are translated into procedure calls referring to appro-
priate operations in the Model layer. These calls are generated within the method
generated with rule 2.

6. Stem-to-user sentences are translated into procedure calls referring to appropri-
ate operations in the View layer. These calls are generated within the method
generated with rule 2.

Note that the presented translational framework uses simple programming con-
structs. It is not scalable for larger systems and was meant only for these introductory
notes. Our rules were also not presented in full detail and precision. In the actual
detailed presentation in Chap. 4, we use a more sophisticated framework, which will
also contain more rules and consider various configurations of RSL scenario sen-
tences and domain elements. However, even with the current simple introduction,
we can see that the intuitions from Sect. 1.1 can be substituted with very specific
translation rules.

1.4 Towards Model-Driven Requirements Engineering

All the elements presented in the previous sections lead to constructing a new
approach to software engineering. We call this approach Model-Driven Require-
ments Engineering (MDRE) [15, 114-116], although perhaps it would be more apt
to call it Requirements-Oriented Programming. The first name emphasises the way
we specify requirements—through constructing requirements models. The second
name concentrates on direct contribution of requirements (models) to the final code.
It also indicates that programming activities can be shifted closer to the level of
precisely specified requirements. Let us now analyse how this new approach may
change the way in which software is built.

1.4.1 “Traditional” Software Development

We will start with a typical (“traditional”) software development process [103, 132,
159], as illustrated in Fig.1.21. This process is far from the “dream scenario” of
Fig.1.1. However, the goal is the same—to get from the user requirements (top
left) to executable code (bottom left). To reach this goal, we need to go through
several steps. First, we need to determine the detailed functionality of the system
and describe the problem domain in terms of the data that need to be handled by the
system. This forms the detailed software requirements. Having these details, we can

http://dx.doi.org/10.1007/978-3-319-12838-2_4

1.4 Towards Model-Driven Requirements Engineering 23
o o
L
no 0
User l‘ n
Analyst Architect
1
User Manual Software Manual Architectural
Requirements | | transition / | Requirements | | transition Design
@
Manual
transition
A A
Automatic Code « Tool-assisted| | Detailed
translation ﬁ translation | | Design =7f
a jav.

G'ﬁ 1 [}I‘ﬁ

Programmer Generator Designer

Fig. 1.21 Traditional software development

start design activities. We develop the high-level architectural specifications, and then
determine the details of the individual components. This detailed design can then
be implemented in 3GL code. Finally, we obtain the executables through compiling
this code. This ends a typical path—user requirements to software requirements to
architectural design to detailed design to 3GL code to executable code. The cycle
can be repeated several times throughout a single project resulting in an iterative
lifecycle. Of course, we have greatly simplified the lifecycle, leaving out important
activities like quality assurance (testing) and deployment. Instead we concentrate
on representing a gradual shift from artefacts at a high level of abstraction (user
requirements) to those at the lowest level of abstraction (executable code).

This briefly sketched process involves various roles which use different techniques
and tools to produce intermediate and final artefacts. Software requirements are
normally created by analysts that cooperate with the users. This is usually a manual
transition from less precise user requirements. Often, some elements of modelling
are used, like use case diagrams to denote units of functional requirements and class
diagrams to denote domain elements. However, most often such specifications rely
on standard templates and natural language descriptions with some rigour in terms of
the structure of use case descriptions. Moreover, it is not often that the vocabularies
are made fully consistent with the functional specifications. The most frequently used
tools to specify requirements are traditionally word processors. In many cases, this is
supported by special-purpose CASE (Computer Aided Software Engineering) tools
for requirements management [29, 30]. These tools can facilitate the management
of requirements units, assigning attributes to requirements and tracing between user
requirements and software requirements. To draw use case diagrams, another group
of CASE tools is used—UML modelling tools [184].

The software requirements are taken by architects and turned into architectural
specifications [40]. This is again traditionally a manual process. During this step,
architects “inject” their knowledge on architectural frameworks and technological
solutions. This knowledge turns use cases and domain elements into, e.g. components

24 1 Introducing Requirements-Driven Modelling

and interfaces according to a chosen architectural framework. It can be noted that
the architectural decisions are to an important extent influenced by the quality (non-
functional) requirements. For instance, the choice of a specific UI framework can
depend on the usability and portability requirements.

Architectural specifications can be developed using various tools. Often, these are
simple graphical applications chosen ad hoc to draw diagrams showing the deploy-
ment of components or relationships between interfaces. Sometimes, a more rigorous
approach is taken and a UML modelling tool is used to draw deployment and com-
ponent diagrams.

The architectural specification is then subject to further design activities per-
formed by the designers. They specify the details of individual components (sub-
systems). This mainly consists of dividing component code into units (classes) that
realise the component interfaces. Sometimes, the component, internal dynamics in
terms of interactions between runtime objects is specified. This also includes the
design of detailed algorithms for especially complex data processing code. Detailed
design specifications are more and more often developed using UML CASE tools
[129]. This is due to their capability of generating code skeletons from class models.
Class diagrams are used for documentation purposes (as a visual “map of code”) and
thus their role becomes significant.

Designers are often the same people as the programmers. Thus, they often simul-
taneously design and program their components. This is obviously done using typical
IDEs (Integrated Development Environments) [88] that contain code editors, com-
pilers, debuggers and execution environments. The compilers form the final, most
automated step in “traditional” software development. Sometimes, the IDEs are inte-
grated with UML editors and generators. In this way, design models and code can
be developed hand-in-hand, thus making code more visual and understandable.

1.4.2 Model-Driven Software Development

Typical software development can be seen as mainly a manual process. There
exist some elements of code generation but we would certainly desire much more
automation. This has changed with the advent of Model-Driven Software Devel-
opment/Engineering (MDSD/E) [18, 25, 178]. Originally, the idea of MDSD was
launched by the Object Management Group (OMG)* and called Model-Driven Archi-
tecture (MDA)5 [56, 66, 92, 106, 111, 127, 167]. The underlying principle is that
the intermediate artefacts in the software development process are models that are
transformed to produce other, more detailed models. For example—generating the
user interface models from higher-level domain model [73]. MDA introduces three
basic levels at which models are produced.

4 http://www.omg.org/.
3 http://www.omg.org/mda/.

http://www.omg.org/
http://www.omg.org/mda/

1.4 Towards Model-Driven Requirements Engineering 25

e Computation-Independent Model (CIM). “A computation-independent model is
a view of a system from the computation-independent viewpoint. A CIM does
not show details of the structure of systems. A CIM is sometimes called a domain
model and a vocabulary that is familiar to the practitioners of the domain in question
is used in its specification”.

e Platform-Independent Model (PIM). “A platform-independent model is a view of
a system from the platform-independent viewpoint. A PIM exhibits a specified
degree of platform independence so as to be suitable for use with a number of
different platforms of similar type”.

e Platform-Specific Model (PSM). “A platform-specific model is a view of a sys-
tem from the platform-specific viewpoint. A PSM combines the specifications in
the PIM with the details that specify how that system uses a particular type of
platform”.

MDA in its specification is not precise as to what the exact boundaries are between
these layers. This also pertains to defining what a “platform” is. The definition offered
by the MDA Guide [111] is rather imprecise, although it gives some important hints.
“A platform is a set of subsystems and technologies that provide a coherent set of
functionality through interfaces and specified usage patterns, which any applica-
tion supported by that platform can use without concern for the details of how the
functionality provided by the platform is implemented”. It can be argued that the
division between platform-independent and platform-specific design is quite foreign
to “traditional” software developers. Thus, the postulate to create an artefact that is
“platform-independent” sounds somewhat artificial to them. This might be the rea-
son that MDA did not really spread widely in software engineering (at least not as
widely as it was initially expected and hoped for).

Nevertheless, the MDA approach introduces a fundamental concept of gradual
and automated transition from models that are close to the problem domain to mod-
els that are close to the target code. This transition is made by means of model
transformation, as illustrated in Fig. 1.22. The less detailed (general) models (e.g.
at the PSM level) can be transformed to more detailed (specific) models (e.g. at the
PIM level) by adding certain details inserted through the transformation. What is
important is that these inserted additional details can be configured to some extent—
the models can be marked with additional information. If several PSMs are the

Fig. 1.22 General model
transformation scheme

General Model
(PIM)

[]

Automatic ; ’Iif—| 3
transformation ; \ Platiorm mapping

Specific Model
(PSM)

s|iejep
UOHEULOSURL]

26 1 Introducing Requirements-Driven Modelling

5 [
e &
UseArnla}yst Architect

User

% Manual \ | Requirements | | Manual > Architectural
equirements iti transition i =
q transition Models o Design ‘ri

g

Automated Transformation
transition Engine
L

A
Automatic Code « Automated | | Detailed 'R

: =) : = -
translation o i) \ translation | HEEEEAREN-=} Transformation
Engineer

., B (i

r

Compiler &l‘ﬁ Code |

Programmer LSnerator Designer

B!

=

Fig. 1.23 Model-driven software development

potential targets of the transformation, it can be configured based on these mark-
ings. This configuration determines the kinds of mappings to the target platform
elements that will be used in the transformation. In this way, models leading to code
for different target platforms can be produced.

MDA transformations can be used in the software development process and thus
form the MDSD lifecycle as shown in Fig. 1.23. We retain the same process structure
asinFig. 1.21. The MDA layers of CIM, PIM and PSM can be mapped onto Software
Requirements, Architectural Design and Detailed Design respectively. This is not an
exact mapping but such division into layers and phases is familiar to software devel-
opers not acquainted with MDA. In the MDSD approach, we concentrate on using
models during all of these three main phases of software development. However, note
that we have not introduced any automation in the transition from Requirements Mod-
els (cf. CIM) to Architectural Models (cf. PIM). Such transitions are not supported
in industrial reality. Practically all of model transformation approaches concentrate
on transitions from PIMs to PSMs. This means shifting between design-level models
and not reaching as far back as the requirements models.

MDSD activities are performed by Architects and Designers. However, the role
of designers is significantly reduced because the design models are to a large extent
generated automatically. Instead, there needs to be introduced the role of the Transfor-
mation Engineer who is responsible for developing and maintaining transformation
programs executed within Transformation Engines. The role of the Architects is to
develop a general (platform independent) model and mark it with platform-specific
decisions. Then, the transformation should generate a platform-specific detailed
design model. Using MDA transformations we can also generate code. This can
add to standard CASE tool code generation capabilities and relieve Programmers
from developing many standard and repeatable code fragments.

1.4 Towards Model-Driven Requirements Engineering 27

MDSD can be practiced using various tooling environments. The most popular
are probably the various model transformation engines embedded into UML mod-
elling environments. Being the most widely used modelling language, UML is the
obvious choice for developing models also in the MDSD process. Thus, UML tool
producers have developed various model transformation modules. They introduce
model transformation languages usually specific to a given tool. Moreover, there can
be found several model transformation environments that are based on standardised
model transformation languages [38]. These environments are external to modelling
tools but interface with their model repositories [168]. We discuss this in detail in
Chap. 5.

When discussing the applicability of MDSD in practice, we can compare Fig. 1.23
with Fig. 1.21. The complexity of both processes is similar or one may even infer
that MDSD is in fact more laborious. This impression can be argued as incorrect
[112, 113] but it may be one of the reasons for the limited success of typical MDSD
approaches. MDSD would need to remove some phases in software development in
order for software developers to see the real benefits. This necessitates much more
automation and transformations coming right from requirements.

1.4.3 Software Development with DSLs and Model-Driven
Requirements

To shorten the path from requirements to code, we can try to remove or simplify
some of the phases. This is usually done when agile methodologies are applied.
Often, the detailed requirements are simplified to informal user stories combined
with sketched domain models as the exact requirements are worked out during an
iterative development process when the actual system is examined by the users.
Moreover, the design activities are also reduced and most of the design decisions
are made directly during coding. The great advantage is that we result with a system
that is developed precisely according to what the user needs—this is verified on-
the-go in very short validation cycles. However, this approach certainly influences
scalability and maintainability of systems. Further maintenance and extensions are
compromised due to lack of proper documentation and diagrams showing the code
structure and “how it works”.

Software developers consider detailed requirements and design documentation as
overhead. Writing code directly contributes to the final effect, while writing models
does not. However, it is obvious that for large systems to be maintainable, we need
design documentation. The model-driven approach brings a solution to this dilemma,
where the design models become first-class artefacts and not overhead. Developing a
model pays off through automatic transformation down to code. But, we would like
to have even more: to be able to construct a single model at a high level of abstraction
(as close to requirements as possible) and translate it directly into code.

http://dx.doi.org/10.1007/978-3-319-12838-2_5

28 1 Introducing Requirements-Driven Modelling
[]
(o)
n

> o
Userﬁ n
Developer Language

Engineer

pser Manual DSL
Requirements | | transition Models

Automatic Transformation
translation Engine

[
Automatic Code &

translation

Fig. 1.24 DSL-based software development

Transformation

El!gineel
r L

Programmer

il 1

The desire to shorten the software development path is reflected in the idea of
Domain-Specific Languages (DSL) [36, 54, 89]. Such languages allow us to create
models that are specific to a given problem domain and quickly transform into work-
ing code. This significantly reduces the number of steps in the process, as illustrated
in Fig. 1.24. We no longer need architects and designers, instead, we have only the
Developer role that cooperates with the User to produce DSL models. Also, the role
of 3GL programmers is significantly reduced or even not needed as most or all of
the target code is generated automatically through the transformation engine.

In the DSL-driven process, two additional roles are important. This is the Trans-
formation Engineer and the Language Engineer. We have already discussed the first.
The second role is necessary to develop and maintain the language in which the
users and developers create their domain-specific models. This is crucial because
the language has to be expressive and understandable but also formally precise (cf.
language semantics). Such languages are distinct for specific problem domains and
develop together with these domains. Moreover, they usually combine elements of
domain logic and application logic. A specific DSL may be created for only a single
system, and within the domain of a single business organisation.

The greatest advantage of the DSL approach is that in the realm of a suitable prob-
lem domain, significant productivity gains can occur [62]. This is mainly achieved
when a family of similar systems is needed (e.g. for different clients), leading to the
idea of Software Product Lines (SPL) [60, 131, 138, 171]. A fast process to generate
similar (variable) systems can be established through defining similar source models
based on a DSL. For isolated systems, productivity gains are not very impressive as
additional effort is needed to develop a DSL (Language Engineer) and then to develop
model transformations to the target platform (Transformation Engineer). This effort
pays off significantly only when several similar systems using the same DSL and

1.4 Towards Model-Driven Requirements Engineering 29

transformation are developed. To develop a DSL and associated transformations is
also a significant investment which forms a barrier for using this approach.

For the above reasons, it would be beneficial if we had a general-purpose (uni-
fied) language that would be able to substitute the plethora od domain-specific ones.
This language could be used in a wide range of domains and for various applica-
tion types. Moreover, we could develop many transformation variants for different
target platforms. These transformations could be reused many times and thus a unit
cost of their development could be spread among many projects throughout many
business organisations. This idea finally brings us to Model-Driven Requirements
Engineering. In this approach, we want to develop models in a unified Requirements
Specification Language and transform them directly to code.

Figure 1.25 illustrates this kind of process. It is similar to the previous one,
driven by DSLs. This time RSL is the source language for automatic transfor-
mations. Moreover, the Language Engineer is not needed because RSL is a uni-
fied language and is maintained across many projects and many organisations. The
main consequence of using RSL is that not all the code is generated from require-
ments models. This is due to lack of constructs to express the domain logic (data
processing). In DSLs, these constructs were developed as part of a specific lan-
guage. As a result, three possible scenarios for data processing formulation are pos-
sible: (1) it is coded directly in 3GL; (2) it is expressed using a DSL integrated
with RSL; (3) it is formulated in an RSL algorithmic extension (which necessitates
additional research). These three scenarios are discussed in detail in Chap. 7. In this
book, we mostly concentrate on the first one, where the generated code is clearly
marked with places where data processing code should be supplied by 3GL program-
mers. The marking can be performed using detailed design models showing the map
of necessary updates. This means a compromise between full code generation, limited

[
®
I

Userﬁ
Developer .
2
pser Manual RSL n
Requirements || transition Models Transtormation
Engineer
Automatic Transformation
translation Engine

Automatic Code &
java

translation

U+ [Detailed
l - 4 Design =N
Compiler ‘ﬁ

Programmer

il 1

Fig. 1.25 Model-driven requirements software development

http://dx.doi.org/10.1007/978-3-319-12838-2_7

30 1 Introducing Requirements-Driven Modelling

Fig. 1.26 RSL to code
transformation scheme

Scenarios +
Vocabulary Quality req.

Platform mapping

s|Iej=p
UoEULIOSUEL]

to specific domains (DSLs) and universality of approach with a more sophisticated
process (standard MDSD).

Technically, an RSL-based MDRE transformation can be implemented as a typ-
ical MDA transformation according to Fig. 1.22. The big shift however is that the
transformation source is equivalent to a CIM. A PSM together with working code is
thus generated directly from the CIM. This was not even present in the DSL-based
approach where the source models expressed in a DSL should be placed somewhere
between a CIM and a PIM (they are predominantly too technical to call them “require-
ments”). Instead of model marking and platform mapping, the transformation can
be controlled with quality requirements models as indicated in Fig. 1.26. This is an
important characteristic of this transformation. The architectural and detailed design
decisions pertaining to the target platform are embedded in the transformation and
marked through the values of quality metrics. For instance, a different target platform
may be chosen by the transformation if a mobile interface is required and a different
one for a web-based interface.

Both the DSL-based and the RSL-based approach promise significant gains in
productivity. However, in the first case, each specific problem domain has to be
equipped with a Domain-Specific Language. Moreover, model transformations have
to be developed that transform from the DSL-compliant models to the target plat-
form code. In the second case, both the language (RSL) and the transformations are
developed for various problem domains and various target platforms independent
of the potential problem domains. This obviously reduces the effort in a specific
software project or for a specific software product line. However, regardless of the
approach, several new competences are needed. First, we need to understand how
software modelling languages are constructed in terms of their syntax and seman-
tics. Second, we need to know how to develop model-to-model and model-to-code
transformations. The remainder of this book provides detailed guidelines in these
two areas.

Chapter 2
Presenting the Requirements Specification
Language

The key to any modelling activity is a modelling language. For a model-driven
approach that involves model transformations, we need to define this language pre-
cisely. Here, we present such language specific for requirements modelling, called
the Requirements Specification Language (RSL). In the previous chapter, we have
given some glimpses of its syntax and semantics and in this chapter we present it in
detail.

2.1 How to Define a Modelling Language?

For a language definition to be complete, it should consist of three parts: (1) the
abstract syntax, (2) the concrete syntax and (3) the semantics. The abstract syntax
specifies the possible language constructs and their correct arrangements and thus
determines the language grammar. Note that the grammars for visual modelling
languages have to be defined differently from the grammars for natural languages or
programming languages. Generally, models are graphs and they need to be defined as
such. A model normally consists of model nodes (e.g. classes ina UML class diagram)
and model edges (e.g. associations between classes) that can be arranged spatially in
various ways. Thus, a modelling language grammar is graph-based and determines a
possible arrangement of nodes, connected through edges. Compared with grammars
for typical textual languages (e.g. context-free grammars), in this case, the language
constructs (lexemes, e.g. keywords, identifiers) are arranged linearly (in a sequence).
The grammars for such languages determine the possible linear sequences of these
elements.

The abstract syntax of a modelling language defines all the possible graphs that
would form correct models in this language. It is called abstract as it abstracts away
the visible (graphical, textual) elements of the language. Using the abstract syntax
we could build the persistent storage (repository) for models but not necessarily their
editors for which, we need the concrete syntax. This part of a language definition
defines the language constructs in terms of their visual appearance.
© Springer International Publishing Switzerland 2015 31

M. Smiatek and W. Nowakowski, From Requirements to Java in a Snap,
DOI 10.1007/978-3-319-12838-2_2

32 2 Presenting the Requirements Specification Language

e For graphical language elements, the concrete syntax defines arrangements of
boxes, lines and other graphical shapes that are visible to the language user. For
instance, the concrete syntax for classes in UML is a rectangle with a textual name
inside.

e For textual language elements, the concrete syntax defines arrangements of tex-
tual units (lexemes) that form larger structures (sentences, expressions, etc.). For
instance, the concrete syntax for class attributes in UML is a sequence consist-
ing of a visibility marking, an attribute name, a colon and an attribute type (e.g.
“- name : String”).

The difference between abstract and concrete representation is illustrated in
Fig.2.1. It shows a typical class diagram in its concrete form (see right), contain-
ing two classes (one with an attribute) and an association between them. The same
model is presented in an abstract form through a UML object diagram (see left).! The
abstract version shows the possible arrangement (connections) between elements and
their information contents, and is suitable for data storage. The concrete version is
suitable for rendering it to users through, e.g. an editor.

In this chapter, we concentrate on presenting the RSL concrete syntax. We give
examples of various language constructs as seen by its users. We also present the
abstract syntax of RSL models, but only informally, through examples of possible
RSL element arrangements. The formal definition of the abstract syntax is discussed
in the next chapter.

For many of the RSL elements we also explain their semantics (meaning). As
indicated earlier, this can be done in different ways. At this initial stage, we do this
rather informally. Having a requirements language to explain, we concentrate on
presenting how the system should behave or how it should look for its users. We
can call this the “observational semantics”. For requirements engineers, this is the
most fundamental element in a requirements language. They need to assure that their
specifications will mean to everyone precisely what they want to express in terms of
the desired observable system behaviour. For instance, it has to be clear how use case

at: Attribute
cl: Class visibility = public
name = “book” name = “ISBN” book
] type = “String” +ISBN : String
a: Association #
] author
c2:Class b)
hame = "author” Abstract Concrete
4 4

Fig. 2.1 Abstract versus concrete model

! This object diagram is a simplification for illustrative purposes. The official definition of UML
would necessitate a slightly more complex arrangement of objects.

2.1 How to Define a Modelling Language? 33

scenarios and domain elements translate into sequences of user interface forms and
data presented in these forms. In Chap.4 we introduce the formal way of defining
semantics by translating RSL constructs into well-understood Java constructs.

When presenting RSL, we show examples of the various RSL constructs. For the
examples to be consistent and comprehensible, we use the library domain, which
should be familiar to all readers. We assume a simple Library Management System
that consists of functionalities like catalogue management, reader management and
loan management. The system handles the library collection and the reader data.
It also records loans. We want the system to work in a web environment and have
typical application logic with menus and forms.

This simple library system is presented in small fragments throughout this chapter
to Chap.4. It is not meant to form a complete case study, instead, we offer a full
summary example in Chap.8. The reader can refer to this example when studying
the consecutive RSL constructs and their semantics.

2.2 Structuring Requirements Specifications

Any rigorously written requirements specification has to conform to certain rules.
Often, these rules are codified through requirements document templates. In the
modelling world, an equivalent of a document template is a model structure template.
Having a well-structured model we should be able to easily move around it. The model
organisation is usually done within well-familiar tree browsers. If necessary (and it
most often is), the model can be turned into a linear document for documentation
and legal purposes. Many modelling tools allow for quick generation of documents
and thus working on models does not conflict with typical habits of average business
readers.

Analysis of typical requirements specification templates shows that they gen-
erally concentrate on two main issues: (1) how to determine and specify require-
ments units and (2) how to group and classify requirements units. Compliance with
such a template can be assured using minimum tooling with only a word processor
in place. However, quality of requirements specifications does not only consist in
compliance with the templates. An important aspect is that of coherence, which is
usually assured through maintaining relationships between requirements units. The
most effective way to assure coherence is to use specialised requirements manage-
ment tools or general-purpose modelling tools as it is difficult to trace relationships
between requirements using only a linear word processor. We need mechanisms to
visualise the links and to trace them. Also, keeping coherence using even specialised
tools is laborious, as the links need to be maintained and analysed manually.

RSL goes beyond the above typical approach to assure the requirements quality.
Unlike for most typical requirements modelling approaches, it introduces a mech-
anism to assure coherence of requirements automatically by introducing a central

http://dx.doi.org/10.1007/978-3-319-12838-2_4
http://dx.doi.org/10.1007/978-3-319-12838-2_4
http://dx.doi.org/10.1007/978-3-319-12838-2_8

34 2 Presenting the Requirements Specification Language

domain vocabulary. Unlike for manually maintained links between requirements
units, the vocabulary is created and attached automatically. For this reason, RSL
models distinguish between requirements specifications and domain specifications
in a precise way.

2.2.1 Basic Concepts

Any RSL model consists of two distinct parts: a requirements specification and a
domain specification. Requirements specifications can be composed of requirements
packages and domain specifications—of domain element packages. The notation is
similar to that found in UML and uses familiar folder icons. Figure2.2 presents the
specifics of this notation. The icon for a requirements specification is adorned with a
thick line on the left side (a), and the icon for a requirements package—with a double
line (b). The domain specification has an additional rectangle inside the icon (c) and
the domain elements package is denoted with a plain folder icon (d). Obviously, each
of the packaging elements has its name placed inside or near the package icon.
Packages can contain other packages of the same type and thus form a tree struc-
ture. The leaves of the tree are the requirements and domain elements. Requirements
can be placed only inside requirements packages while domain elements can
be placed only in domain element packages. The notation for generic requirements
shown in Fig.2.2e is arectangle with a double line on the left side. Requirements have

Fig. 2.2 Notation for (a) £ N (e)
a requirements specifications, b R123
i Library System
b requlfements paclfages, Requi\r{er%ents Response time
¢ domain specifications, for book searches
d domain packages,

e requirements,
f use cases, g domain (b) ()
elements and h actors

Uco71
Add new book

Quality
Requirements

© —— (2)

Library System book
Domain

Library Collection

/() %

User

2.2 Structuring Requirements Specifications 35

short names and can have identifiers. The most important special type of require-
ments are use cases. Their notation is taken from UML and use familiar oval icons
(Fig.2.2f). Also, similar to that in UML is the notation for domain elements. The
rectangles with names (Fig.2.2g) resemble UML classes. A special kind of domain
elements are actors (Fig.2.2h) whose notation is also taken from UML.

In RSL, requirements “as such” have just short names and identifiers and
their purpose is to divide the specifications into distinguishable units suitable
for handling. For project management, they can be additionally adorned with
attributes. Attributes are name—value pairs that specify project-specific informa-
tion. For instance, they can specify who is responsible for a particular requirement
(responsible = “John”), what is the version (version = 5) or what is the importance
(importance = HIGH)? Attributes can be placed inside notes attached to require-
ments icons, as illustrated in Fig.2.3 (see left). The requirements attributes do not
have any effect on the target system code. In this book we will not go into the details
of this aspect of RSL.

Requirements “as such” with their attributes are good for dividing work and man-
aging projects. However, we need to specify the details. This is done within detailed
specifications of requirements which in RSL are called “requirement representa-
tions”. The basic form of requirements representation is simply a piece of natural
language text attached to the given requirement. Figure 2.3 (see right) gives a couple
of examples—one for a quality requirement and another for a functional requirement
(use case). Note that also domain elements can have their representations.

So far, the basic constructs of RSL seem standard allowing for specifying typical
text-based requirements specifications with some graphical elements. The specificity
of RSL begins at the level of requirements representations. The language offers con-
structs which provide much more precision than the natural language. The first step
towards precision constitute the so-called “natural language hypertext” representa-
tions. The relevant syntax is illustrated in Fig.2.4 using an example of a use case
textual representation.

Note that the illustrated representation contains hyperlinks to domain elements.
This includes an actor (“User”), a business domain element (“book™) and a system

ble< " — % lll rR123 The system shall perform all
Iresponsrb e: I\:i?;‘?:um Responsetime ¢ T booksearch operationsin
Bnbsances ; for book searches less than 3 seconds.

_pThe system allows to add
—— new book data through a
special book form. The data
is validated before storing it.

responsible = "Mary"
importance = CRUCIAL
version=6

S~ Ucom1
Add new book

book .

*ltis a kind of collection item. It
has an author or editor and (...) .

vt

Fig. 2.3 Requirements, their representations and attributes

36 2 Presenting the Requirements Specification Language

" «frame»
book form |

uco71
Add new book

The system allows the user to { g

special book forni. The system ;"
validates book before storing it. A /

Fig. 2.4 Relationships at the requirements level versus hyperlinks in requirements representations

domain element (“book form™). Moreover, one of the hyperlinks points to a verb
phrase (“validate book™). To make text consistent with the domain model (because
of using the specific verb phrase), it had to be changed slightly in comparison to
that in Fig.2.3. However, it still retains the characteristics of unconstrained natural
language.

The hyperlinks to domain elements contained in a requirement representation can
be reflected also in a diagram at the requirements level. In Fig. 2.4, the hyperlink to
the actor has its counterpart in the actor-to-use case relationship (a solid line arrow).
Similarly, the hyperlinks to domain elements and phrases can be summarised through
relationships between the given requirement (here: the use case) and domain elements
(a dashed arrow).

The hyperlinks make requirements specification more coherent through consistent
use of domain terminology. This is similar to structuring hyperlink-based knowledge
bases like wiki dictionaries or the Wikipedia. This feature of RSL can be easily intro-
duced into its editor environments. However, hypertext still does not offer enough
precision. We cannot apply techniques of model transformation on natural language
text even when it is adorned with some hyperlinks. For this reason, RSL introduces
requirements representations with strictly controlled grammar. In addition to struc-
tured text, they also include graph-based notations. These representations are mainly
related to use cases which we present later in this chapter.

2.2.2 Packaging and Presenting Requirements

As we can see, the requirements specifications in RSL form a coherent, interlinked
structure. This structure needs to be organised into packages and presented in dia-
grams. The division into packages has its consequences when an RSL model is
transformed down to code. Thus, it is important to take care while determining
packages that should reflect logical groups of functionality or fragments of the prob-
lem domain. Experienced requirements engineers have their worked-out rules. In
a traditional setting, the task of structuring a requirements specification is done

2.2 Structuring Requirements Specifications 37

through determining document chapters and sections and this is captured in document
templates. In RSL this is very similar but chapters and sections are substituted by a
hierarchy of packages. As we have already seen, the fundamental division between
requirements and domain elements is made at the level of language definition. Thus,
the two top level elements of the hierarchy are the requirements specification and the
domain specification. Underneath these two major specification-level packages, the
requirements specifiers are free to define their own package structure.

Here, we present simple rules that assure good structuring of the model, neces-
sary for future model transformations. Of course, this structuring is meant not only
for facilitating MDRE but follows the best practices for structuring requirements
specifications as such. An example of our library system is shown in Fig.2.5. The
requirements specification package (“Library System Requirements”) is divided into
“Vision” and “Software Requirements”. The vision part is not meant for model trans-
formation as it contains only generic requirements with natural language representa-
tions. It contains generally formulated features of the system, describing its overall
functionality and quality characteristics. The details of how these features should be
included in the target system are provided by detailed software requirements.

Following the typical classification of requirements we can divide software
requirements into two packages: “Functional Requirements” and “Quality Require-
ments” (also called: non-functional requirements). The functional requirements
package contains all the use cases that define individual units of functionality as
seen by the outside actors (users). This functionality is usually complex and needs
further division into sub-packages. In case of our library system we decided to intro-
duce three packages of functionality (see again Fig.2.5): “Catalogue Management”,
“Reader Management” and “Loan Management”. This division can be done using
various criteria. Here, we have concentrated on identifying crisp areas of application
logic centering around the management of certain types of data. Other methods might

i Library System Requirements

[Vision I. Library System Requirements
[Software Requirements 1. Vision
Functional Requirements 2. 5gftvare Reglinseats
2.1. Functional Requirements
Catalogue Management
& 2.1.1. Catalogue Management
Reader Management
. 2.1.2. Reader Management
[lj Loan Management 2.1.3. Loan Management
Quality Requirements 2.2. Quality Requirements
E\ Library System Domain II. Library System Domain
[] Actors 1. Actors
E’ Domain Notions 2. Domain Notions
E’ Library Collection 1.1. Library Collection
1.2. Readers and Loans
EI Readers and Loans
2. Ul Elements V
E] Ul Elements

Fig. 2.5 Typical division into packages in a requirements model

38 2 Presenting the Requirements Specification Language

concentrate on division from the point of view of actors (user types) or menus in the
user interface. Each of the packages in our example do not contain more than 7-10
use cases and this is seen as a general rule-of-thumb. Packages containing more they
10-15 elements tend to become less manageable and understandable.

The quality requirements package contains all the aspects of a system that define
the criteria to evaluate the way it operates, but not its functionality (application logic
or domain logic). These requirements are important from the point of view of the
requirements model transformation as they influence the quality characteristics of
the target code. Such requirements can be further divided into more detailed classes.
A good way to approach this is to use a standard like the ISO 9126 [74] or ISO
25010 [76]. According to ISO 9126, quality requirements are divided into Func-
tionality (not to be confused with functional requirements), Reliability, Usability,
Efficiency, Maintainability and Portability. A similar classification is offered by the
FURPS model (Functionality, Usability, Reliability, Performance, Supportability).
As in packages containing use cases, quality requirements can be placed in pack-
ages under the main Quality Requirements package. For brevity, this is not shown in
Fig.2.5.

The second part of every RSL specification is the domain model. For our example
system, this model was called the “Library System Domain”. Every such model
should be divided into three main packages: “Actors”, “Domain Notions”, and “UI
Elements”; the names indicate clearly the purpose. The Actors package is distinct in
that it can only contain actors. The other packages can contain domain elements of
various kinds which are introduced later in this chapter. They can be further divided
into sub-packages as illustrated in Fig.2.5.

With a well thought-over model structure we can easily transform an RSL model
into a linear document. As shown in Fig. 2.5, the package hierarchy is a good basis
for structuring the chapter and section headings in the document. The contents are
filled with diagrams, requirement representations and domain element representa-
tions contained in the respective packages. From this point of view, let us now analyse
a fragment of the library system specification presented in Fig.2.6. When working
with the specification, each of the presented elements can be accessed from the

D Vision FR12
IT__] Fr12: Editing the catalogue Editing
. . the catalogue
E\ Software Requirements A 7 F

D Functional Requirements
D Catalogue Management Uco71
E Catalogue Management’:
(D UCo71: Add newbook . ‘
Q UCO072: Discontinuea book ™ Discontinue a book
.. 7

Fig. 2.6 Example requirements specification with requirements relationships

2.2 Structuring Requirements Specifications 39

project tree. Moreover, the individual requirement representations can be accessed
and traversed by following the various links between requirements and hyperlinks
contained within their text. When some version of the model is ready, it can be
“frozen” and transformed into a document that can serve legal or other purposes.

Relationships between requirements, seen in Fig.2.6 are not yet introduced. In
Fig.2.4 we have seen relationships at the requirements level but they connected
requirements with domain elements. Here, we notice that requirements can also refer
to each other. In our example, two use cases trace back to a vision-level requirement
and two other use cases “operationalise” a quality requirement. Such relationships
can be visualised in generic requirements diagrams as in Fig.2.6.

2.3 Specifying the Problem Domains and Their Rules

As indicated in Chap. 1, the key to assuring coherence of requirements is to define
their domain with precision. We need to express all the relevant domain vocabulary
elements and relationships between them. This should form a model that expresses
the “map” (some might say: an ontology) of the reality of the problem domain and
of the application that is supposed to support this problem domain. Moreover, it is
important that we can easily refer to these coherently related domain elements from
within the functional and quality requirements.

For requirements on software, the domain consists of two connected areas: (1)
the problem (business) domain and (2) the application domain. This distinction is
important, because the problem domain is independent of the actual application to be
built. It should have the same properties regardless of the characteristics of various
systems that support it. The problem domain is stable, and it changes along with the
changes of the reality. The application domain can (and should) be quite dynamic
and changes whenever new ideas emerge regarding the properties of the applications.

In RSL, the problem domain consists of domain notions (e.g. “book”, “publisher”)
that can have attributes (e.g. “title”, “name”). This is similar to other notations that
can serve domain modelling (e.g. UML class models). However, RSL introduces
other important elements like verb phrases and data views. Moreover, attributes are
treated in RSL as distinct from notions and can be referred to by other elements. This
is important for defining the application domain which—in RSL—is composed of UL
elements which can present values of individual attributes and a specific combination
of such values. Thus, we need ways to organise attributes not only from the point of
view of concrete domain notions but also their arrangements within the UL In this
section, we present these various elements of RSL’s domain specification.

http://dx.doi.org/10.1007/978-3-319-12838-2_1

40 2 Presenting the Requirements Specification Language

2.3.1 Defining the Problem Domain

The problem domain is the actual reality that the software system supports and/or
reflects. The examples in this section pertain to the library business domain and show
the suitability of RSL to define all kinds of business domains. However, we can also
define the problem domains for physical phenomena (e.g. the physics of airplanes) or
social relationships (e.g. family life). Regardless of the domain, we need to specify
a set of related concepts and the possible ways to view and process data related to
these concepts. This constitutes the so-called domain logic (or business logic) of the
system to be built.

The basic element of the domain model expressed in RSL is thus a Concept. Its
notation is simple and resembles that of a UML class. Figure 2.7 shows variants of the
Concept’s notation (see left). It is a rectangle with a name and the “Concept” tag or
the «concept» stereotype.? Concepts can also have no tag. The second type of domain
elements is Attributes. They are denoted with the “Attribute” tag or stereotype (see
Fig. 2.7—centre). Attributes can hold elementary data and thus their notation includes
additional information about the data type (included in brackets). The data types are
not limited by RSL but have to be specified in advance when a transformation from
RSL is planned. In our examples we use the following set of data types:

“text”—string of text;

“whole number”’—an integer number (negative or positive);
“real number”’—any number with a possible decimal;
“true/false”—a boolean value;

“date”—a value containing date and/or time;

“secret text”—encrypted string of text.

Depending on the problem domain, this basic set of data types can be extended
with, e.g. sound, graphics and binary data. Of course, for any new data type to be used
for code generation, the semantics during runtime have to be defined, as explained
in Chap.4. Also note that attributes are not graphically contained in Concepts, in
contrast to how it is done in UML. This has to do with the third type of domain
elements—Data views.

Simple data view
«concepty»
Concept Attribute (text) new book data
b title

ook List data view

book list

Fig. 2.7 Domain notion types

2 In future examples we will use the tag notation.

http://dx.doi.org/10.1007/978-3-319-12838-2_4

2.3 Specitying the Problem Domains and Their Rules 41

Data views are denoted with two types of tags/stereotypes: “Simple data view”
and “List data view” (see Fig.2.7—right). They do not contain attributes but can
refer to attributes contained in different concepts thus allowing to present attributes
in various configurations. Simple data views serve presenting single instances of
combined attributes. List data views, as expected, can present lists, containing many
such instances. The exact meaning of data views is explained in further examples
below.

The above three types of domain elements should be connected through appro-
priate relationships as illustrated in Fig.2.8. The most obvious relationship is the
association between concepts. RSL allows for any two concepts to be associated,
and the concrete notation of associations is similar to that in UML. Associations can
have multiplicities, with notation also taken from UML. In the example in Fig. 2.8 we
can see two associations with appropriate multiplicities. The concept ‘book’ is asso-
ciated with two other concepts— ‘author’ and ‘publisher’. The book should have at
least one author and can have many authors (‘1..*¥”). On the other hand, it should have
exactly one publisher (‘1”). Both the publishers and the authors can be associated
with any number of books (“*”).

The second type of relationship is containment of attributes within concepts. Its
notation is taken from UML’s aggregations, where the diamond is placed on the side
of the concept (the ‘whole’ containing the attribute). In the example in Fig. 2.8, the
‘book’ contains the ‘title’. This example also explains why the attributes are graph-
ically placed outside of concepts. This is associated with the attribute relationships
with data views. These relationships are denoted with arrows pointing always from
the data views to the attributes. Note that the relationships to attributes can have
multiplicities on the attribute side. Usually, this multiplicity is ‘1’ but sometimes it
might be necessary to indicate that more than one attribute of some type is contained
in a concept or referred to from a data view.

A more elaborate (although still quite simple) example of relationships for
attributes is presented in Fig.2.9. From the conceptual point of view, the problem
domain consists of three concepts: ‘book’, ‘author’ and ‘publisher’. These concepts
are explained in detail through the attributes they contain. For instance, the ‘book’
concept is composed of the ‘title’, the ‘issue date’, the ‘number of pages’ and contains
information whether it has ‘hard cover’. This conceptual model of the domain can
be viewed from different perspectives. Different applications (software systems) can
view different attributes in different settings and through different user interfaces.

Concept Attribute (text) 1 Simple data view
e i
book title new book data
* 4 1
1:.® 1 List data view
Concept Concept book list
author publisher

Fig. 2.8 Domain notion relationships

42 2 Presenting the Requirements Specification Language

Concept Concept Concept
/7 book author publisher
Q T

/
I

Attribute (text) Attribute (whole number) Attribute (text) Attribute (text)

title number of pages last name name
Attribute (date) Attribute (true/false)
issue date hard cover

\ List data view: Simple data view

book list book search criteria

Fig. 2.9 Concepts, their attributes and data views

This can be represented by the data views. They can point to attributes taken from
different (but related) concepts and group them together. In other words, a data view
groups several attributes under one name that can be used to describe the application
logic.

In our example in Fig.2.9, we have two data views that can be used, e.g. in
some user interface that searches through and presents lists of books. The ‘book
search criteria’ view groups three attributes (‘title’, ‘last name’ and ‘name’) that are
contained in the three presented concepts. Although the attributes are part of different
concepts, from the perspective of the user interface they can be presented together as
a single entity. The same situation is for the ‘book list” data view. This time it groups
four attributes from two different concepts. These attributes can—for instance—form
columns in a table listing several books. The specific table will contain four columns
associated with the four attributes.

The presented example illustrates the two distinct areas that define the problem
domain. One area defines the stable conceptual model. It is unlikely that the presented
concepts (‘book’, ‘author’, ‘publisher’), their relationships and attributes will change.
They are tightly associated with how the outside world (reality) is structured. On the
other hand, the second area is the data view model which is quite volatile. The
attributes to which various data views point depend highly on how the users would
like to view the data. In some cases, they would like to view four attributes in a book
list (as in the example), and perhaps in some applications this would change to show
more data.

From a practical point of view, the conceptual part of the domain model can
be developed independently of any application logic. We can discuss the concepts
within the currently analysed domain with the domain experts, abstracting away any

2.3 Specitying the Problem Domains and Their Rules 43

software systems. For the data view part, we need to consider the application logic.
Thus, in practise, the data views emerge along writing the functional requirements—
the use case scenarios. This is discussed in detail in Sect.2.4.

2.3.2 Defining the Application Domain

In most software applications, the problem domain is presented through the User
Interface. The Ul elements thus form the application domain. Through these UI
elements, the application!logic is expressed to the users (in general—to the objects
outside of the software system). The application logic is tightly related to the domain
logic. For this reason, the Ul elements have to be related to domain elements.

RSL offers four types of Ul elements, as illustrated in Fig.2.10. Three of them
are associated with presenting and handling data, and one is related to handling
various interactions from the user. The most comprehensive of the UI elements is
the Screen. These elements can be presented to the users, who can interact with
them. They can contain various data elements and can also serve updating these data
elements. Screens can represent various elements in the actual user interface like
data forms, list windows or media presentation windows. Screens do not specify the
way data are to be communicated to the users. This can be in the form of a graphical
user interface or using other methods (e.g. actuators in building/factory automation,
printers, light and sound devices and so on).

Screens can contain another type of Ul elements—7riggers. Triggers are associ-
ated with interactions of the user with the system. The most obvious kind of triggers
represent buttons in graphical user interfaces. However, they can represent all the
elements that the user can interact with like menu items, editable fields, physical but-
tons or sensors in automation systems. Whenever a trigger is accessed, some appli-
cation logic—controlled by the software system—is executed. A typical Screen can
contain several Triggers that determine various paths through the application logic,
depending on the choices of the user.

Fig. 2.10 Ul element types Sereen Trigger
book list window ok button
Message
book saved

“Book saved properly”

Confirmation

discontinue confirmation
“Are you sure?”

44 2 Presenting the Requirements Specification Language

In addition to Screens, RSL offers two other types of presentation elements
— Messages and Confirmations. These elements are included for convenience pur-
poses as their functionality could be realised with Screens and Triggers. These two
elements offer simple functionality for presenting information and accepting deci-
sions from the user. The Message element by default has only one option to choose
(equivalent to a single associated Trigger, like the ‘OK’ button) while the Confirma-
tion has more possible options (like ‘Yes’ and ‘No’ buttons). In both cases, we can
specify the message text as part of the element definition, as shown in Fig.2.10.

Screens and Triggers should be associated with the problem domain elements.
This is done through arrow relationships, as presented in Fig.2.11. In general, any
Screen can relate to one or more Data views (simple or list). There are two kinds
of relationships between Screens and Data views. The «present» relationship (arrow
pointing towards the Data view) means that a given view (i.e. the grouped attributes)
is shown within the given Screen for viewing by the user. This consist in rendering
appropriate screen elements to hold the data and showing the actual data values
(as retrieved from the system’s storage). The «update» relationship (arrow pointing
towards the Screen) means that the given view is shown to the user for editing
individual values of the grouped attributes and eventually—updating the system’s
storage. This also means rendering appropriate screen elements but leaving them
blank for editing. It is also possible to have both relationships between the same
Screen and Data view. In such cases, the system presents the actual retrieved data
values of the attributes and at the same time makes them available for editing.

The example in Fig. 2.11 presents two Screens that can handle attributes contained
in the associated Data views. The ‘book list window’ screen can present attributes

Simple data view

//«W book search criteria
Screen

book list window

\) List data view
l «present»

book list
Trigger
close button
Trigger
save button
|
Screen «update» Simple data view
new book form book data
\l «present» \L
Trigger Attribute (text)
check author button last name

Fig. 2.11 Relations between Ul elements and data views

2.3 Specitying the Problem Domains and Their Rules 45

grouped into two data views—‘book search criteria’ and ‘book list’. To determine
exactly what data is to be presented within the screen, we can refer to Fig.2.9.
Namely, the screen will show the values of the three attributes grouped by the ‘book
search criteria’ and will contain a list with four columns indicated by the attributes
grouped by the ‘book list’. The same situation is for the ‘new book form’ screen.
This screen presents the ‘book data’ view that was not yet introduced (not present in
Fig.2.9) but we can assume that it includes all the attributes found in Fig.2.9.

Note that the data in the ‘book list window’ screen is only shown and is not
available for editing. If, for example, we would like to change this and allow edit-
ing of the ‘book search criteria’—we would need to add an «update» relationship.
This editing capability is available for ‘book data’ in the ‘new book form’. What is
important to observe is that editable data should be associated with triggers. This
is because editing causes data to be updated in the system’s storage and this update
has to be somehow triggered. In Fig.2.11 we can see one trigger associated with the
‘book list window’ and two triggers—with the ‘new book form’. The RSL notation
is simple—triggers are pointed at by arrows coming from screens.

To indicate data that need to be updated when a trigger is evoked, it can point to a
data view or to an attribute. In our example, the ‘save button’ points to ‘book data’.
This means that pressing this button causes ‘book data’ to be transferred from the
relevant screen for further processing (and possibly—for storage). A similar situation
is for the ‘check author button’. However, this trigger points only to a single attribute.
The meaning is similar to when a whole data view is pointed at by the trigger. Only
this time, the single data element is passed for processing.

The best way to explain the semantics of screens and triggers is to translate the RSL
constructs into concrete Ul elements. This is shown in Fig. 2.12. It shows two forms
that are equivalent to the Ul elements from Fig.2.11. The upper form is the ‘book
list window’. It presents the ‘book search criteria’ (three attributes) and the ‘book
list’ (four columns). Also, it contains the ‘close’ button. A similar situation is for
the lower form, presenting the ‘new book form’. Comparison with Figs.2.9 and 2.11
shows how RSL constructs can be represented in a real system. It must be emphasised
that RSL models are technology-independent and these technological details can be
added during transformation into design models and code, as presented in further
chapters. The actual type of the user interface (web-based, mobile, desktop, .. .) can
be determined through non-functional (quality) requirements and constraints.

2.3.3 Defining the Domain Rules

Concepts, data views and attributes define the structure of the problem and application
domains. For the description to be complete, we need to define the domain rules.
Here, by domain rules we mean the ways in which the data elements are processed. In
RSL, this data processing is organised through verb phrases contained within domain
elements as illustrated in Fig.2.13.

46

2 Presenting the Requirements Specification Language

Book list window

Book search criteria

Book u'tle| | Publist name| |
Author Iastnarne' |

Book list
Last name Title Issue date Number of pages

" Close I

New book form

Check
s — I

| Publisher name

Hard cover °

Fig. 2.12 Semantics of Ul elements with data views

Screen

book list window Trigger
show book list window | save button

select save button

Simple data view
book data
I validate book data | Concept
|saue book data | loan statistics
[calculate book statistics
| fetch book data |

Fig. 2.13 Verb phases within domain elements

A verb phrase consists of a verb (“show”, “validate”, “calculate”) and a noun
(more precisely: a noun phrase). The noun reflects the actual domain element that
contains the particular phrase. So, for instance, all the phrases with the noun “book
data” are contained in the domain element ‘book data’. Verb phrases to some extent
resemble class operations in UML, the main difference is that the phrases have the
defined verb-noun grammar and they have no parameters.

Verb phrases can be contained in most of the domain element types: Screens,
Messages, Confirmations, Data views, Triggers and Concepts. There is no limitation
as to which verbs and nouns can be used within verb phrases; however, certain

2.3 Specitying the Problem Domains and Their Rules 47

standard verbs can be used to denote typical types of domain rules. This reflects
typical actions within application and domain logic. The types of predefined actions
depend on the types of domain elements. For Screens, we use three predefined actions:
SHOW, CLOSE and REFRESH. Messages and Confirmations are limited and only
the SHOW action has a defined meaning. Also, the triggers can contain only one
type of predefined action: SELECT.

e SHOW—render a Ul element in the user interface and (if relevant) present the
data view attribute values. The following verbs can be used as keywords for the
SHOW action: ‘show’, ‘display’, ‘present’.

e CLOSE—remove the Ul element from the user interface. The following verbs can
be used as keywords for the CLOSE action: ‘close’, ‘shut’, ‘remove’.

o REFRESH—presents updated values of the data view attributes associated with the
given Ul element. The following verbs can be used as keywords for the REFRESH
action: ‘refresh’, ‘renew’, ‘repaint’, ‘update’.

e SELECT—evoke some application logic associated with selecting a trigger. The
following verbs can be used as keywords for the SELECT action: ‘select’, ‘press’,
‘push’, ‘choose’, ‘click’.

A different set of predefined actions is available for the problem domain elements
(Data views and Concepts). They include the popular CRUD operations (CREATE,
READ, UPDATE, DELETE) and validation (VALIDATE). Note that these actions
cover a vast majority of domain logic in typical business systems.

e CREATE—add new data items to the system’s storage, containing values of the
given domain element’s attributes. The following verbs can be used as keywords
for the CREATE action: ‘create’, ‘save’, ‘add’, ‘write’.

e READ—retrieve values from data items in the system’s storage, according to the
definition of the given domain element’s attributes. The following verbs can be
used as keywords for the READ action: ‘read’, ‘fetch’, ‘get’, ‘build’, ‘retrieve’,
‘search’.

e UPDATE—substitute data item values in the system’s storage with new values, in
accordance with the given domain element. The following verbs can be used as
keywords for the UPDATE action: ‘update’, ‘modify’, ‘edit’, ‘override’.

e DELETE—removes data items from the systems’s storage, in accordance with
the given domain element. The following verbs can be used as keywords for the
DELETE action: ‘delete’, ‘remove’, ‘destroy’, ‘erase’.

e VALIDATE—check the values of the given domain element’s attributes according
to specified validity rules. The following verbs can be used as keywords for the
VALIDATE action: ‘validate’, ‘verify’, ‘examine’, ‘inspect’, ‘check’.

Setting one of the above action types, or using one of the keywords has certain
consequences for the meaning of a given verb phrase. This meaning is used by the
code generation engine, as explained in Chap. 6. If the action type is not specified,
the domain logic needs to be specified trough additional means. Namely, some data
processing algorithm has to be given. In the current version of RSL, there are no
facilities to specify such algorithms. In such situations, the verb phrases serve as

http://dx.doi.org/10.1007/978-3-319-12838-2_6

48 2 Presenting the Requirements Specification Language

e, Concept
s Attribute (whole number)
loan statistics s
L — mean loan days
rcaicu!a te book statistics

SELECT book loan WHERE book loan -
finish date = this month

*
¢ Concept
SETloan statistics - mean loan days AS book loan
MEAN OF book loan - loan days .1,

C% Attribute (date) Attribute (whole number)
loan finish date loan days

Fig. 2.14 Verb phrases having domain (business) rules

placeholders for specifying the algorithms externally. One possible solution is to
use an existing Domain-Specific Language, or to develop one that is suitable for the
given problem domain. All the techniques in this book pertaining to defining RSL
can be used to define a suitable extension in the form of a DSL.

An elementary example of such an extension to RSL is given in Fig.2.14. We
can see an example activity-based notation for specifying algorithms that involve
numerical calculations. In this particular case, a language is developed where one of
its capabilities is to calculate mean values. This language uses specific notations to
access and set the attribute values and each of the activity-based models is attached
to a specific verb phrase.

2.4 Specifying Functional Requirements

Functional requirements in RSL are defined mostly through use case models. RSL’s
use cases are derived from UML but RSL introduces several new and changed fea-
tures. There are important modifications made at the level of use cases as such and
relationships between use cases and actors. These modifications are associated with
ambiguous semantics of the use case model, as defined in the UML specification.
RSL still maintains the overall semantics of use cases and actors but introduces much
more precision. This precision, at the level of use case units, is realised through new
relationships: «invoke», «use» and «participate».

The fundamental enhancement of RSL is that of use case representations (con-
tents). RSL introduces a comprehensive language to model use case scenarios and
links them to the domain model elements. This extended language is based on con-
strained natural language sentences that have strict and simple syntax complying with
the syntax of verb phrases described in Sect. 2.3.3 and with the «invoke» relationship.
Individual sentences are organised into scenarios and several scenarios form a use
case.

Note that the RSL constructs for use cases allow to define the whole appli-
cation logic of the considered software system. By application logic we mean
the observable behaviour of the application as seen by its users (outside actors).

2.4 Specitying Functional Requirements 49

It covers all the user-system interactions through the user interface, system responses
and actions of the system with results that affect its users. In this section, we present
the detailed RSL constructs that allow specifying the application logic through
detailed use case models.

2.4.1 Use Cases and Relationships

According to the definition provided in Sect. 1.2.2, use cases are pieces of observable
functionality that lead to goals of some value to outside actors. This general definition
is reflected in various RSL constructs. We start with the top level of use cases and
their relationship with actors and between themselves. An example notation at this
level is presented in Figs.2.15 and 2.16.

Figure 2.15 illustrates two types of relationships between use cases and actors.
The «use» relationship is denoted with an arrow pointing from an actor towards a
use case. The «participate» relationship is denoted with an arrow pointing in the

A

Librarian

[swipes a library card)

X

Reader

uco23
Lend a book

[settles card payment)

ucoz3
Pay for overdue
loans

Card Payment System

Fig. 2.15 Relationships between use cases and actors

uco71
Add new book

«usen

Librarian

«invoke»
wusen

Uco70
Show book list

«invoke» -

~._ «invoke»

ucao7s

""""""""""" Show book loan

Discontinue a book z
«invoke» i
histo

Fig. 2.16 Example use case diagram with use case relationships

http://dx.doi.org/10.1007/978-3-319-12838-2_1

50 2 Presenting the Requirements Specification Language

opposite direction. We can also use an alternative notation without the arrows but
with simple lines adorned with the above stereotypes.

The «use» relationship means that a particular actor initiates execution of a given
use case (or: of its scenarios). This actor is also the one who wants to reach the final
goal associated with the use case. The use cases that are in the «use» relationship with
some actor are accessible from some central place in the user interface for that actor.
Normally, in a graphical user interface, this is equivalent to choosing some option
in the main menu. Thus, in our example in Figs.2.15 and 2.16, the actor ‘Librarian’
will have three options available in the main menu: ‘lend a book’, ‘add new book’
and ‘show book list’.

The «participate» relationship means that a particular actor is prompted and
responds to the system during the actual execution of the use case scenarios. It
is important to observe that this interaction has to occur before the use case goal is
reached or—in general—before the use case execution terminates. It is a common
mistake of inexperienced use case modellers to model a «participate» relationship
in situations where the actor is informed about something already after the use case
terminates. An example of such an error would be the situation where the use case
execution ends with sending some SMS or email message to an actor. Here, the “par-
ticipating” actor does not interact with the system in any way during the execution
of this use case.

In Fig.2.15 we can see two «participate» relationships. The first one is for the
‘Lend a book’ use case. The use case is initiated by the ‘Librarian’ but the ‘Reader’
has to participate by swiping her library card during the course of use case execution
(in some of its scenarios). The second situation is for the ‘Pay for overdue loans’
use case. In this case, it is the ‘Reader’ that starts the use case and the actor that
participates is the ‘Car Payment System’. We can infer from this diagram that this
other system is contacted by our system to settle a card payment by the reader. This
example also shows how non-human actors can participate in use cases.

Figure2.16 also illustrates the «invoke» relationship. The notation is simple with
a dashed arrow pointing towards the invoked use case, adorned with the «invoke»
stereotype. In the example, three use cases can be invoked from the ‘Show book
list’ use case. Note that the ‘Add new book’ use case can be directly «use»d by
the librarian (e.g. started from some main menu) or it can be invoked from ‘Show
book list’. The invocation relationships clearly indicate navigation through the user
interface as part of the application logic. From the diagram we can infer that the
‘Show book list’ use case will include actions (cf. triggers in the domain model) that
would start the other three use cases.

The indexinvoke «invoke» relationship substitutes the UML’s «include» and «ex-
tend» relationships. This slight change in notation seems unimportant but the impor-
tant issue is the shift in semantics which we explain below. The difference in notation
in illustrated in Fig.2.17. As we can see, «invoke» can substitute «include» and does
not change the direction of the arrow. Whenever we would need to use an «include»
relationship in UML, we ca use «invoke» in RSL in the same manner.

2.4 Specifying Functional Requirements 51

uco70
Show book list

«invoke» .-

~.. «invoke»

uco72
Discontinue a book

Uco73

S i b Show book loan
«invoke»

histor:

uco70
Show book list

«extend» .’

._ «extend»

uco72
Discontinue a book

Uco73

Sy i Show book loan
«include»)
histor

Fig. 2.17 Comparison of «invoke» with «extend» and «include»

A different situation is for the UML’s «extend» relationship. We can also substitute
it with «invoke» but we need to change the direction of the arrow. In UML, it is the
extending use case that points at the extended one. In RSL we cannot extend use
cases but we can invoke them. Invocation is directed opposite because the invocation
has call semantics in contrast to the extension which has specialisation semantics.

To explain these changes introduced by RSL we need to refer to the official seman-
tics defined within the UML specification. For the «include» relationship it says: “An
include relationship between two use cases means that the behaviour defined in the
including use case is included in the behaviour of the base use case. The include
relationship is intended to be used when there are common parts of the behaviour of
two or more use cases. This common part is then extracted to a separate use case, to
be included by all the base use cases having this part in common.” and “Execution
of the included use case is analogous to a subroutine call. All of the behaviour of
the included use case is executed at a single location in the included use case before
execution of the including use case is resumed.”

From this definition we infer that inclusion has macro-like semantics. In other
words, all the contents of the included use case are inserted at one point in the
including case. This contents can then be executed like if the including use case had
all the included use case behaviour substitute the “inclusion point”. Unfortunately,
the UML’s specification of use cases does not specify “inclusion points”. Thus, to
determine precise semantics of UML’s inclusion we need to go beyond the official
UML specification as shown in Fig.2.18.

The including use case (here: ‘Discontinue a book’) contains an inclusion point.
This point is a distinguished action within the use case’s scenarios. The behaviour
defined by the use case starts when an actor interacts with the system in a specific
way (cf. ‘initial actor interaction’). Then, consecutive actions occur with possible
different paths that lead either to reaching the use case goal or failing to do so. On

52 2 Presenting the Requirements Specification Language

© wincludex» Q
Discontinue a book Show book Tean history

Possibly

Initial no initial actor
actor interaction
interaction

Fig. 2.18 Semantics of the «include» relationship in UML

one of these paths resides the inclusion point (see Fig.2.18). In a running system
(derived from this use case model), this inclusion point is substituted by all the paths
defined within the included use case (here: ‘Show book loan history’). This resembles
macros available in various programming language environments. We can specify a
macro as a piece of generic code suitable for inclusion into some other code (cf. an
included use case). Before compilation, this code is preprocessed and inserted into
the other places in code where the macro is used (cf. inclusion points).

Note that the included use case is usually not fully defined—it lacks the initial
user interaction. This is because when the inclusion point is reached, the including
use case is usually in the middle of some processing or after some user interaction.
Thus, it does not make sense to start the included use case with a user interaction,
but rather—begin with some actions performed by the system.

While the semantics of the «include» relationship seems straightforward, the
semantics of «extend» defined in the UML specification is much more twisted. The
specification says that: “Usually, a use case with extension points consists of a set
of finer-grained behavioural fragment descriptions, which are most often executed
in sequence. This segmented structuring of the use case text allows the original
behavioural description to be extended by merging in supplementary behavioural
fragment descriptions at the appropriate insertion points between the original frag-
ments (extension points). Thus, an extending use case typically consists of one or
more behaviour fragment descriptions that are to be inserted into the appropriate
spots of the extended use case. An extension location, therefore, is a specification
of all the various (extension) points in a use case where supplementary behavioural
increments can be merged. If the condition of the extension is true at the time the
first extension point is reached during the execution of the extended use case, then
all of the appropriate behaviour fragments of the extending use case will also be
executed.”

This leads to interweaving of scenarios of the extended and the extending use case,
as illustrated in Fig.2.19. The extended use case can have several extension points
where the functionality of the extending use case is to be merged. The extensions
are merged under certain conditions. In the figure, the condition is shown in a note

2.4 Specitying Functional Requirements 53
«wextend»

Add new book {scanner available} Scan book data

—— X
Initial
actor
interaction

—__h

Fig. 2.19 Semantics of the «extend» relationship in UML

I Suineamialul 3|q1ssod |

attached to the arrow. If the condition is met at the first point, the appropriate extending
actions are merged at this point. The same situation is for any other extension point.

In contrast to inclusion points, extension points are part of the official UML defi-
nition. Their notation is shown in Fig. 2.20. Each extension point is defined through
its name and place of extension. Note that this place is not formally associated with
any specific step within a use case. The illustration in the figure is only for compre-
hension purposes. UML does not offer any constructs to link extension points with
the use case “contents”.

Figure 2.20 explains the actual extension example. The ‘Add new book’ use case
has two extension points. The first extension can be made after the ‘main entry screen’
is displayed. If the scanner is available (see the condition in Fig.2.19), then the
appropriate steps from ‘Scan book data’ are performed (the title pages is scanned).
Later, when an ‘optional data screen’ is displayed (and the condition was met at

Add new book

name place

extension points g‘!
——eScan title page: main entry dcreen

/ Add new book

Fig. 2.20 Extension points in UML

o

54 2 Presenting the Requirements Specification Language

the first extension point), the second group of steps from ‘Scan book data’ can
be performed (library data is scanned). Note that when the condition is not met, the
extended use case (‘Add new book’) is executed without the steps of the extending use
case (‘Scan book data’). Thus, the extended use case should be written independent
of any extensions (although the extension points are defined within it).

As can be observed, the semantics of the «extend» relationship is difficult to
understand and follow [170]. In use case models that use extensions, the flow of
control is not easy to grasp. The extension points are presented independently of the
conditions (which control them). Moreover, the flow of control of the extended use
case is interwoven with the flow of control of the extending use case. This is close
to having several GOTO statements, which is always a source of confusion. Finally,
the UML’s definition does not make it clear as to how extension points should be
linked to the actual steps forming the flow of control of a use case.

For these reasons, RSL has dropped the «extend» relationship and substituted it
with «invoke». This move results in removing the possibility to interweave use cases.
Instead, the typical procedure call semantics is applied. In some cases, this necessi-
tates some changes in the use case model. However, situations as in Figs.2.19 and
2.20 are rare and can easily be modified. What is retained from the «extend» rela-
tionship is the possibility to define conditions. However, the actual flow of control is
organised differently for extensions. Certain instances of «invoke» can behave sim-
ilarly to «include». However, again, the macro semantics of «include» is substituted
by the procedure call semantics of «invoke».

The call semantics of «invoke» is explained through the example in Fig.2.21. It
shows three cases of invocation where two of them can be seen as partially equivalent
to UML’s extension and one—to UML’s inclusion. The ‘Show book list” use case
contains two invocation points associated with two «invoke» relationships it has

«invoke»

Q «invoke» O «invoke»)“@
Show book list Discontinue a book Show book loan history

=

Fig. 2.21 Semantics of the «invoke» relationship in RSL

2.4 Specitying Functional Requirements 55

with the two other use cases. Similarly, the ‘Discontinue a book’ use case has one
invocation point.

The presented diagram shows an overview of control flow for the invocation
points. Two situations can be distinguished. The first situation is present in both
inclusion points of the ‘Show book list” use case. The invocation point is associated
with some step in use case execution. When control flow reaches this step, a condition
associated with the inclusion point is evaluated. This makes the invoked use case
available to the user. The user (more generally: the actor) can then select to start the
invoked use case. This is equivalent to performing the first step in the invoked use
case (see the hand icons in the diagram), i.e. performing the initial user-to-system
interaction. Then, the control flow continues through the steps of the invoked use
case until it reaches one of its final points. After the invoked use case finishes its
execution, the control returns to the initial step of the invoking use cases with which
the invocation point is associated.

To illustrate this in Fig.2.21, we assume that ‘Show book list’ reaches some point
in one of its scenarios where a list of books is displayed. At this point, some condition
is evaluated which is associated with a switch that allows to discontinue books (which
normally is not allowed). With this switch on, the window that displays the list of
books presents a relevant button. By pressing the button, the user in fact “executes”
the first sentence in the ‘Discontinue a book’ use case. After this second use case
finishes (with success or perhaps with failure), the execution flow goes back to the
‘Show book list’ use case and returns to the step of displaying the list of books. A
similar situation is for the invocation of the ‘Show book loan history’ use case from
‘Show book list’.

A different situation is presented in the inclusion point contained in the ‘Dis-
continue a book’ use case. This time, the inclusion point is reached directly and
unconditionally as one of the steps in the use case control flow. After reaching this
step, control goes to the invoked use case (here: ‘Show book loan history’). Unlike
the previous cases of invocation, this time the user need not select any button. Thus,
the first sentence of the invoked use case is not “executed”. Control flow goes directly
to the second sentence. When the execution of the invoked use case finishes, control
goes to the next step after the initial invocation point.

The above explanation of invocation semantics does not go into the details of
particular use case steps and their individual semantics. To understand this issue
better we need to present more information about structuring individual steps in use
case logic and forming complete scenarios out of these individual steps. This includes
conditions for invocations that—as it can be noted—are not present at the use case
level. These issues are presented in the subsections that follow.

2.4.2 Sentence Types

In contrast to UML, RSL precisely defines the use case contents and provides appro-
priate notation. We start to present this notation from the basic building blocks, which
are individual sentences. In general, RSL uses constrained natural language for the

56 2 Presenting the Requirements Specification Language

Precondition: |Pre:co|lection maintenance is turned onl]— Initial

SVO: | User selects discontinue button |

Condition: |—)c0nd:booki5 on loan | - Body

Invocation: | —>invoke: Show book loan history |

Rejoin: | =>rejoin: Main scenario;
System presents
discontinue confirmation

Final (success): |—)final:success | ~ Final

Final (failure): |—)final:fai|ure I

Postcondition: | Post: book status is not changed

Fig. 2.22 Scenario sentence types

sentences. Each sentence denotes either an individual step in the use case logic or
controls the flow of steps. In Fig. 2.22, sentences were divided from the point of view
of their position within the use case contents. We can distinguish Initial sentences,
Body sentences and Final sentences.

A use case can be initiated with one type of sentences: Preconditions. Their
syntax is simple and starts with the keyword ‘Pre:” which is followed by free text
describing the actual condition. The meaning of this sentence is to provide a condition
for executing the given use case. If the condition is met, the use case is ready for
execution. If it is not met, the use case cannot be executed. In the context of the
invocation sentence (see the previous subsection), the precondition is the condition
that is checked when a sentence with an associated invocation point is reached.

The precondition sentence in Fig.2.22 refers to the example in Fig.2.21. In the
‘Show book list’ use case, a sentence showing a book list is reached. This sentence
has an associated invocation point which refers to the ‘Discontinue a book’ use case.
The condition that is checked at that point is the precondition of ‘Discontinue a book’
presented in Fig.2.22. If the precondition is not met (collection maintenance turned
off), the option to discontinue a book is ‘greyed out’ or not visible. If the precondition
is met, the user has an appropriate button available and can (if she wishes) start the
invoked use case. In case the precondition sentence is not present in the invoked use
case, it is assumed that the precondition is always met.

In the current version of RSL, preconditions have no defined syntax for their con-
dition parts. Thus, the appropriate code, checking the condition will not be generated
and will need to be updated by hand. This is explained in Chap. 6. However, the con-
dition text can be transferred to code as a comment and thus should be meaningful.
We should assume that the precondition specifies some system state and refers to the
domain elements.

http://dx.doi.org/10.1007/978-3-319-12838-2_6

2.4 Specitying Functional Requirements 57

The precondition sentence can be followed by various sentences that form the
use case body. There are three types of such sentences: SVO sentences, condition
sentences and invocation sentences. Again, the syntax of these sentences is simple
and consists of only a few elements (see again Fig.2.22). The SVO sentences are
normally composed of three parts: the Subject (S), the Verb (V) and the Object (O). In
some cases, a more elaborated syntax can be used with an additional (indirect) object
together with a preposition. In general, the simple SVO(O) sentences have proved
to serve as satisfactory means to express all the possible actions of the application
logic.

While SVO sentences define individual actions, the condition sentences and the
invocation sentences allow for controlling the flow of these actions. The syntax
for conditions sentences starts with the ‘—>cond:’ keyword followed by free text,
specifying the actual condition. Whenever a condition sentence is reached, the actual
condition is checked and if it is met, the flow of control goes to the sentence that
follows. If the condition is not met, the flow of control moves to another scenario,
which will be explained in the next subsection.

As in the case of preconditions, the conditions sentences in RSL have no specific
syntax for the part that follows the keyword. Despite this, code can be meaningfully
generated from several corresponding condition sentences. Again, the condition text
can be copied into code as a comment.

The syntax for the invocation sentence is also straightforward and consists of
the ‘—>invoke:” keyword followed by the name of the specific invoked use case.
The meaning of invocation sentences was already initially explained in the previous
subsection and when explaining the precondition sentences. More information is
given in the next subsection.

The body of each use case scenario has to be ended with one of the final sentences.
There are three types of such sentences where two of them can be followed by a
postcondition sentence (see Fig.2.22). The actual final sentences are denoted with the
‘—>final’ keyword which is followed either by the ‘success’ or the ‘failure’ keyword.
The meaning of these sentences is quite obvious. Whenever such sentence is reached,
the use case terminates its execution and passes control to where it was called from.
The additional keyword signals to the caller the final status of processing within
the current use case (whether the use case goal was reached or not). In addition to
this, the postcondition sentence can specify the state in which the system should be
at the end of the given scenario. The notation for postconditions is similar to that
of preconditions and differs in the keyword ‘Post:’. The postcondition text can be
copied to code similarly to how it is copied for preconditions.

In addition to the actual final sentences, RSL has a third final sentence which is
the rejoin sentence. Its syntax starts with the ‘—>rejoin:” keyword followed by the
identification of the rejoin point. This point is determined by giving the name of
the scenario and the SVO sentence at which the other scenario has to be rejoined.
Rejoining can be made only within the current use case. No ‘goto’ rejoins to other
use cases are allowed. Rejoin sentences facilitate writing scenarios which “detour”
from some main course of action but after some alternative steps—return control

58 2 Presenting the Requirements Specification Language

to that main course. Whenever a rejoin sentence is reached, control is passed to the
sentence which is pointed at through the rejoin.

After presenting all the sentence types we now return to SVO sentences. Their
syntax, despite being simple, allows for various combinations of the three sentence
parts leading to their various types. This variety allows to construct complex applica-
tion logic describing the dialogue between the actors and the system, with references
to the domain logic. In Fig.2.23 we see all the possible SVO configurations.

The main division is between sentences where the subject points to one of the
actors, and sentences where the subject points to the system. These are either ‘Actor-
to-’ or ‘System-to-’ sentences. Obviously, the actor sentences specify possible actor
interactions with system—triggering events or entering data. The system sentences
specify the system’s reactions to the actor’s interactions. These various interactions
and reactions are specified through the VO (Verb-Object) part of each sentence. Note
that these predicates are equivalent to the verb phrases that are part of the domain
model as illustrated in Fig. 2.23. We can recall from the previous sections that verb
phrases are contained in domain elements. Each SVO sentence predicate is in fact
a hyperlink to such a verb phrase. The sentence object indicates the actual domain
element, and the sentence verb selects the appropriate verb phrase. In an RSL editor
environment, these links should be maintained automatically. Whenever an SVO
sentence is created, its parts should be hyperlinked to appropriate phrases in the
domain model. If the domain models lacks a phrase—it should then be created.

«trigger»
discontinue button

Actor-to-Trigger:
I User selects discontinue button +

,«-| select discontinue button

«list data view»

«simple data view»
I User enters new book data + ------ . new book data

Actor-to-DataView: |

System-to-DataView: | enter new book data

| System validates new book data {

T validate new book data

System-to-Concept: SO

» - e ' j k
| System discontinues book + -------------- -

. | «messagexn
System-to-Dialogue: T
System presents discontinue discontinue confirmation
confirmation i{ present discontinue confirmation|
System-to-Screen: «screens
System shows new book form + ------ -5 __new book form
l show new book form ‘

Fig. 2.23 SVO sentence types

2.4 Specitying Functional Requirements 59

Figure2.23 shows six types of SVO sentences where two are the actor sentences
and four are the system sentences. The classification is straightforward and does
not need more elaborated explanation. Note that in general, the sentence subject
determines the allowed domain elements that can be hyperlinked by the sentence
predicate. The actor sentences can pertain to triggers and data views. The system
sentences can also pertain to data views but additionally—to concepts, dialogue ele-
ments (messages and confirmations) and screens. The example sentences in Fig.2.23
show the rationale behind such classification of sentences. It is also obvious that these
sentences should be combined in a certain order. The rules for ordering sentences
lead to forming use case scenarios, which are presented in the following subsection.

The reader has probably noticed that SVO sentences do not contain any articles
(‘a/an’ or ‘the’). This can be explained by the desire to simplify the constrained
grammar and to concentrate on links with the domain vocabulary and not on specifics
of a concrete natural language (here: English). With this approach, various national
languages with similar grammar can be used.

2.4.3 Scenarios

Every use case should have at least one scenario that leads to successful reaching
of its goal. Use cases with just one scenario are quite seldom and usually there are
alternative scenarios that either lead to failure or reach the final goal in a different way
than in the main scenario. Before we present example scenarios, we need to explain
various rules for putting individual scenario sentences together in sequences. These
rules are based on the fundamental notion of dialogue state.

The notion is explained in Fig.2.24. The dialogue can be in one of two states:
‘Actor’ or ‘System’. In the figure, these states are shown as lifelines in a UML-like
sequence diagram [6, 152]. The dialogue state is propagated and changed along the
scenario sentences. Each of the six SVO sentence types can be placed in a scenario in
places where the dialogue state is suitable for this sentence. The ‘Actor-to-’ sentences
can be placed when the dialogue state is ‘Actor’. Similarly, the ‘System-to’ sentences
can be placed when the dialogue state is ‘System’.

The ‘Actor-to-Trigger’ sentences shift the dialogue state from ‘Actor’ to ‘System’,
and the ‘System-to-Screen’ sentences shift in the opposite direction. Note that the
‘System-to-Dialogue’ sentences do not shift the dialogue state. This is for conve-
nience reasons. Such sentences relate to either messages or confirmations. The user
interactions for these Ul elements are limited to selecting a trigger. Thus, itis assumed
that the user must select some trigger and this is ‘builtinto’ the ‘System-to-Dialogue’
sentence. This approach saves some work on writing obvious ‘Actor-to-Trigger’ sen-
tences.

SVO sentences change the dialogue state but cannot change the control flow.
With only SVO sentences, the control would go from one sentence to another and
only one scenario for a use case could be written. Thus, we need to use condition
sentences. These sentences need to be introduced in at least pairs. For every condition

60 2 Presenting the Requirements Specification Language

% System

Actor

I 1

I 1

Actor-to-DataView /3 :
I 1

I 1

1 1

Actor-to-Trigger —m——————————

1
1
::iSystem-to-DataView
1

1

<3 System-to-Concept

1

1

i:iSystem—to—Dialcgue
1

1

1

— System-to-Screen

Fig. 2.24 SVO sentences: changing the dialogue state

sentence, at least one other associated condition has to exist forming a group of
alternative conditions. As shown in Figs.2.25 and 2.26, there can be two situations
where conditions can be used.

The first situation (Fig.2.25) is when a condition sentence group is placed at a
point where dialogue state is ‘Actor’. This means that the current actor should make
some decision leading to alternative paths through the use case. Thus, immediately
following each condition sentence in the group we need to place an ‘Actor-to-Trigger’
sentence. This situation is explained in the sequence diagram on the right of Fig.2.25.
The two alternative paths of control are depicted with two sections of the ‘alt’ com-
bined fragment (please refer to UML’s combined fragments) equivalent to an ‘if’
statement in most programming languages. In both cases, some trigger is selected by

% System

Actor

]

dialogue state = Actor & |

Any sentence where y |
]
]

dialogue state = Actor alt [option 1 seleéted]
¥ Actor-to-Trigger ET)’
1 e]
1 1 |
| —>cond: OK is selected IJ [option 2 selecdted] :
I
,b + Actor-to-Trigger ETD{
1]
!
I

Actor-to-Trigger E

Fig. 2.25 Condition sentences: changing control flow (1)

2.4 Specifying Functional Requirements 61

% System

any System-to-... sentence

Actor
] i
! & dialogue state = System
Any sentence where ! !
dialogue state = System [Lalt !
[state 1 met] i
¥ E‘T: System-to-Screen
I ' 1
| ->cond: book data valid IJ [stai'e 2 met] !
¥ + ! ——JSystem-to-DataView
: 1)

Fig. 2.26 Condition sentences: changing control flow (2)

the actor and thus the state of dialogue is changed to ‘System’. However, normally,
the two triggers are different (e.g. pressing ‘Save’ or pressing ‘Cancel’) and thus the
following actions (SVO sentences represented by dots) define different steps.

The second situation (Fig.2.26) happens when the dialogue state at which condi-
tion is situated—is ‘System’. Normally, this is equivalent to the system first perform-
ing some data validation, checking the state of some domain elements or executing
some data processing. This leads to several possible results (e.g. data valid or not
valid) which are guarded by several grouped conditions. These conditions can be
each followed by any possible ‘System-to-’ sentence. This might be some further
internal processing by the system (e.g. ‘System-to-DataView’) or presenting a Ul
element to the user (‘System-to-Screen’). As for the previous case, this is illustrated
with a sequence diagram containing the ‘alt’ combined fragment in Fig.2.26. Again,
depending on the result of some system operation (dialogue state = ‘System’), con-
trol within the use case logic can go through one of the alternative paths.

Having defined the notions of dialogue state and SVO sentences changing this
state, we can now proceed to explain how invocation sentences can be situated
in scenarios as illustrated in Fig.2.27. As explained previously, there can be two
situations—the invocation is unconditional or the invocation is conditional and
depends on the user interaction. For the latter situation, the ‘—>invoke:” sentence
has to be placed at a point in a scenario where dialogue state is ‘Actor’. In fact, we
can place several consecutive invocation sentences at such a place. These sentences
are not executed in sequence but are treated as parallel possibilities to start several
use cases.

This can be best explained with the example in Fig. 2.27. Somewhere in a scenario,
the dialogue state is changed to ‘Actor’ through the ‘System-to-Screen’ sentence
‘System shows book list window’. Sometimes, this sentence can be followed by
some ‘Actor-to-DataView’ sentences (e.g. ‘User enters book filter’) which do not
change the dialogue state. At this point, we can put one or more ‘—>invoke:’ sentences.
In our example, one of these sentences invokes ‘Show book loan history’. Other

62 2 Presenting the Requirements Specification Language

| System shows book list window |-<— S e

dialogue state = Actor ¥ T

| () |
dialogue state = Actor W

uco73
Show book loan
histor

| —>invoke: Show book loan history ”

T >| User selects history button | i

| () ¥ _ 'i
dialogue state = System * & ’I System fetches book loan history l
| —>invoke: Show book loan historyl—-—" | 0 I E
+ Il
|) I(¥ dialogue state = System/

{ —>final: success/failure f ==’

Fig. 2.27 Invocation sentences: passing control to other use cases

examples which refer to Fig.2.16 are ‘Add new book’ and ‘Discontinue a book’.
Initial triggers (e.g. buttons) for these three use cases have to be present in the ‘book
list window’.

When a running system reaches the point where invocations are situated, the
dialogue state is with the user, who may choose to start one of the use cases made
available for invocation. So, for example, when the user selects the available history
button, flow of control is taken by the first sentence of ‘Show book loan history’.
Then, this invoked use case ‘executes’ until it reaches one of its final points. Following
this, control is passed to the invoking use case. The point to which control is passed is
the last ‘System-to-Screen’ sentence before the ‘—>invoke:” sentence. In our example,
this is ‘System shows book list window’ which results in returning control back to
the same window from which the last invocation call was made.

This simple standard control flow semantics can be extended to cater for more
complex situations. In such case, the invocation sentences have to be combined with
condition and rejoin sentences. Each of the invocation sentences in the situation
described above could be placed in a separate alternative scenario, guarded by a
condition sentence. Then, flow of control after returning from invocation would go
to the next sentence in the given alternative scenario. This sentence would normally
be arejoin to the ‘System-to-Screen’ sentence as explained above. However, in some
situations this could involve other actions like refreshing the original window (here:
the ‘book list window”).

Figure2.27 presents an example of the second possible type of invocation, i.e.
the situation when the dialogue state is ‘System’. Note, in this situation, the invoked
use case is ‘executed’ beginning from its second sentence and the first ‘Actor-to-
Trigger’ sentence is omitted. This is a reasonable solution, considering that in the
dialogue state ‘System’ the actor has no control and cannot evoke a trigger event.

2.4 Specitying Functional Requirements 63

In this situation, it is the system that starts the invocation without any external actor
intervention. The invoked use case executes exactly the same as it would be triggered
by the user. The only difference lies in the initiating event.

It has to be stressed that at the final point of any use case the dialogue state has
to be ‘System’. This means that the invoked use case does not decide to which user
interface element control should be passed when it finishes. This is logical because
otherwise it would be impossible to invoke the same use case from several use cases.
Each of these invoking use cases might start invocation when a different window is
displayed. We would thus expect the invoked use case logic not to decide as to which
window should be displayed when it ends.

With control flow explained for individual sentences, we are finally ready to
assemble sentences of various types into full scenarios. In RSL we can use two
alternative notations. The first notation is purely textual, and the second notation
uses familiar activity notation taken from UML. These two notations are presented
in Fig.2.28. The lower activity diagram is almost fully equivalent to the upper four
scenarios in textual format. The minor difference is that the textual scenarios can
have names (e.g. ‘Invalid reader id’).

Analysing the presented example it can be noted that all the scenarios start with
the same set of sentences from 1 to 4. In general, for all kinds of use cases, the first
two sentences have to be the same. The first sentence is always an ‘Actor-to-Trigger’
sentence. Then it needs to be followed by a ‘System-to-’ sentence as an invocation
sentence. Only after this second sentence, the first possible condition sentence group
can occur. In our example in Fig.2.28 a condition group occurs after the fourth
sentence. This is the situation where the dialogue state is ‘Actor’, explained earlier
in this section. In the textual notation, presence of a condition group (here: two
alternative conditions) leads to having one scenario per indexcondition condition
(here: ‘Main scenario’ and ‘Main scenario with swiping’). In the activity notation,
the conditions are denoted as guards annotating the appropriate number of control
flows (arrows) leading from the previous sentence (here: sentence number 4).

It should be observed that the condition texts that are specified in the dialogue
state ‘Actor’ do not really matter. What matters are the ‘Actor-to-Trigger’ sentences
that follow (‘Librarian selects next button” and ‘Reader swipes through card reader’).
These sentences determine which application logic (i.e. further steps in scenarios)
will execute after the specific alternative interactions of the user with the system.
A different situation is for the condition sentences that occur at the dialogue state
of ‘System’. These conditions matter because they directly refer to the preceding
sentence (‘System validates reader id” in one case and ‘System validates reader card’
in another). So, the alternative scenarios execute depending precisely on the result
of this preceding sentence and evaluation of the following conditions.

The final observation for Fig.2.28 is related to sentence numbers 8 and 7. We
assume that these sentences are ‘System-to-Dialogue’ and thus the final dialogue state
is ‘System’. The ‘OK message’ defined in the domain model is type of «message».
If it was a «screen», then sentence 8 would need to be followed by another sentence
like ‘Librarian selects OK button’. The usage of a «message» instead of a «screen»
simply saves some work.

64 2 Presenting the Requirements Specification Language

Main scenario

1. Librarian selects lend button
2. System shows book scan window
3. Librarian scans book barcode
4. System shows reader window
->cond: enter reader id manually
5. Librarian selects next button

6. System validates reader id
=>cond: reader id valid

7. System registers book loan

8. System shows OK message
=final: success

Main scenario with swiping

1. Librarian selects lend button

2. System shows book scan window
3. Librarian scans book barcode

4. System shows reader window
—>cond: swipe reader card

5. Reader swipes through card reader
6". System validates reader card
=>cond: reader card valid

=>rejoin: 7

Invalid reader card

1. Librarian selects lend button
(...

5'. Reader swipes reader card
6". System validates reader card
=>cond: reader card invalid
rejoin: 7"

Invalid reader id

1. Librarian selects lend button
(=)

5. Librarian selects next button
6. System validates reader id

= cond: reader id invalid

7". System shows error message
—final: failure

H Librarian selects lend button)

(System shows book scan window)

v

(Librarian scans book barcode)

System shows reader window
[enter reader id rnanually]/’ [swios isader aand)

(Librarian selects next button) ' Reader swipes through card reader)

(System v alidates reader id) System v alidates reader card)
[reader id valid] [reader id invalid] [reader card valid] [reader card invalid]

(System registers book loan

(System shows OK message) (System shows error message)

{success} E @ —-~—{{rai:ure} fll

Fig. 2.28 Notation for scenarios: text and activity diagram

2.4 Specitying Functional Requirements 65

> winvoken
Show book loan history

()

2. System shows book list
window

—invoke: Show book loan history
—>invoke: Discontinue a book
—invoke: Add new book

4. Librarian selects close

(-

1. Librarian selects discontinue button
2. <invoke: Show book loan history
3. System shows discontinue confirmation

()

winvokes
Show book loan history
System shows
discontinue confirmation

Fig. 2.29 Textual and activity notation for invocations

In Fig.2.29 we have an example of alternative notations for the invocation sen-
tences. Again, we use both the textual and the activity notation. In the first case (the
upper part of the figure), we have the situation with a ‘System-to-Screen’ sentence
(‘System shows book list window’) followed by several invocation sentences. In
activity notation this can be represented as in the shown diagram. Each «invoke»
action can be reached through a control flow leading from the action containing the
‘System-to-Screen’ sentence. Another control flow points back to this initial action.
The second case in Fig.2.29 (lower part) shows an unconditional invocation. The
notation is self-explanatory and needs no further comments.

This concludes the introduction to various RSL constructs. In this introduction,
we have presented the elements most relevant for further automatic processing and
code generation. However, the presented part of the language does not claim to
exhaust all the possible twists in the application logic. The language can be extended
by introducing other domain element types through adding new stereotypes. Also,
certain other configurations of scenario sentences can be introduced. These exten-
sions would then need to be explained in terms of their semantics that influence the
generated code. In the next two chapters, we approach RSL in a more formal way to
prepare for developing an automatic model transformation from RSL to code.

Chapter 3
Defining RSL

In the previous chapter we presented the various constructs of RSL as they are visible
to the language users. This concrete syntax is important for comprehensibility of
the language but does not offer enough formality. In order to represent this syntax
in a modelling tool, we need a formally precise version of the syntax that allows
for creating storage and processing of RSL models—the abstract syntax. We use a
model to represent RSL models [145, 153], and such a model is called the metamodel
(“model of models™).

3.1 Introduction to Metamodelling

The notion of abstract syntax was introduced earlier in Sect.2.1. We know that the
abstract syntax specifies the arrangement of model elements treating them as an
abstract graph. Being graphs, models are composed of nodes (vertices) and edges.
To handle models in a tool we need to be able to store and process the nodes, edges
and the ways in which edges connect the nodes. When storing these elements we
do not include the visual form of the nodes and edges, nor do we store the spatial
relations between these elements. This information is abstracted away and specified
elsewhere. The visual forms of nodes and edges form the concrete syntax. The spacial
relations are specified in concrete model diagrams. When we remove the visual forms
and the diagram-related information what is left is called the abstract syntax.
Individual models can form different abstract graphs. However, for models that
conform to a specific modelling language—these graphs have to obey specific rules.
To define these rules we can also use models. The individual abstract graphs become
instances of these models. We thus have now two levels of models: the “actual
models” and the models that define possible arrangements of elements of these “actual
models”. Models at this second level of modelling are called metamodels.
Experience shows that the above explanation of metamodels is not enough to
understand to start metamodelling. Thus, we attempt to explain by starting with an

© Springer International Publishing Switzerland 2015 67
M. Smiatek and W. Nowakowski, From Requirements to Java in a Snap,
DOI 10.1007/978-3-319-12838-2_3

http://dx.doi.org/10.1007/978-3-319-12838-2_2

68 3 Defining RSL

Topographical Map

Map Legend

= building

Fig. 3.1 Maps and their legends

analogy that is known to most readers. Although we all know and use various kinds
of maps we seldom realise that maps are models of reality. Maps use a specific
language to reflect the reality. For readers to understand the map, this language has
to be explained. Each “syntactic” element in a map has a definition. Moreover, for
a specific type of map, the language should be coherently used. A typical way to
present the “map language” definition is to use a legend.

In Fig.3.1 we see an example of such a legend, defining the language for certain
kinds of topographical maps. Our “map language” is simple and consists of only four
elements: roads, rivers, bridges and buildings. Note that the legend is also a model
composed of these four elements. It is not a complete model, because it only enlists
the four syntactic elements of the “map language” and provides a mapping between
the abstract form (the element names) and the concrete form (the visual icons).

The legend lacks the information about possible arrangements of the map ele-
ments. This is assumed as obvious to the reader who knows the reality represented
by maps. However, in a language engineering context, we need to specify these rules
illustrated in Fig. 3.2. Here, the rules are expressed through graphical examples (left)
that are summarised with textual statements (right). If we remove the graphical exam-
ples we are left with abstract statements that specify how the syntactic elements can

Fig. 3.2 Syntactic rules for
maps roads can cross and connect

+ bridges overlap rivers
| —

== bridges connect to roads

rivers can disembogue

7 (but not cross)

N buildings do not overlap
s FiVErs and roads

3.1 Introduction to Metamodelling 69

Bridge Road

Fig. 3.3 Model representing a syntactic rule

be arranged. These statements abstract away the visual and spatial issues and con-
sist of only element names (‘bridge’, ‘road’) and relations between these elements
(‘connect’, ‘overlap’).

In defining the “map language” we can go a step further and present the above
rules through a model. For instance, to show that bridges can generally connect
to roads, we could write a simple diagram shown in Fig.3.3. This diagram is an
elementary example of a metamodel. The advantage of using a metamodel is that it
can be made formally precise and can contain well-organised information on various
other elements of the language syntax.

Modelling languages in software engineering are to some extent similar to our
“map language”. They are meant to represent a specific domain and are often called
Domain Specific Languages. One such language is RSL, where the domain it covers
is requirements engineering. Yet, before explaining the metamodel of RSL let us
present some general rules for creating metamodels. For this purpose, we use a
simple language (‘VSL’) presented through an example in Fig.3.4.

The figure contains an example model in its concrete (left) and abstract (right)
forms. We can see a circle and a pentagon connected with two arrows in opposite
directions. The circle and the pentagon contain three and two dots, respectively. The
diagram also contains a square. Note that the abstract form is in fact a UML-like
object diagram. The objects have names (e.g. ‘d1’, ‘a2’) and types (e.g. ‘Circle’,
‘Arrow’). The arrangements of objects are presented through links where each link
is equivalent to a physical connection between two model elements. For example,
the link between objects ‘pl” and ‘al’ is equivalent to the point where the outgoing
arrow touches the pentagon. This link is marked by an appropriate identifier (‘out’)

pl: Pentagon s1: Square

out in
in out

o O
&

Fig. 3.4 Defining an elementary modelling language

cl: Circle

d3: Dot

70 3 Defining RSL

Dot
0..3] dots
node /N 1 end in
1 0.1
Node Arrow
out
43 1 begin 0.1
Circle Pentagon Square

Fig. 3.5 Metamodel for the example modelling language

placed at one of its ends. In this way its role as the beginning of the arrow is clearly
determined. The other arrow object (‘a2’) is also clearly linked with the pentagon at
its incoming end (‘in’).

The presented example model is one of many possible configurations of the ele-
ments in ‘“VSL’. To specify all the possibilities we need to generalise the object
diagram into a class diagram. As shown in Fig.3.5. Each of the classes represent
one type of elements found in Fig.3.4, so the presented set of classes can serve
as the “legend” for this model. The syntactic rules are defined through the various
relationships between classes—associations, aggregations and generalisations. This
class model is the definition of the model syntax in “VSL’. In other words—it is a
model of models, or a metamodel. The classes and associations in the metamodel
can be distinguished by calling them metaclasses and meta-associations.

As we can see, the models in “VSL’ generally consist of ‘Nodes’ and ‘Arrows’.
The nodes can have up to three ‘Dots’, but may also not have any dot (see the
multiplicity ‘0..3”). Every dot has to belong to exactly one node. There are three
kinds of nodes: ‘Circles’, ‘Pentagons’ and ‘Squares’, which is denoted through the
generalisation relationships. Nodes of any kind can be connected through arrows. It
can have a maximum of one incoming (see ‘in’) and a maximum of one outgoing
(see ‘out’) arrow (see the multiplicities ‘0..1”). On the other hand, any arrow must
have one beginning node (see ‘begin’) and one end node (see ‘end’).

Note that there is nothing that prevents an arrow to connect a node with itself
(i.e. the beginning node for an arrow is the same as the end node) as illustrated in
Fig. 3.6. It illustrates several models that conform with (a, b) and are opposed to (c, d)
the metamodel in Fig. 3.5. The models that oppose the metamodel are syntactically
incorrect and should be rejected by appropriate tools like a Java or a C compiler would
reject an invalid program in the respective language and issue an error message. Of
course, if we want to extend the language to encompass also the non-conformant
models we need to change its metamodel. In case of the models in Fig. 3.6 this is
very easy. We only need to change the multiplicities of the metaassociations for

3.1 Introduction to Metamodelling 71

(a)

: (b)
(c)

On@

Fig. 3.6 Model conformance to metamodels

(d)

‘Arrow’ from ‘0..1° to ‘0..*’. Now the number of arrows coming out and into any
‘Node’ is unlimited.

Graph-based models can also have textual elements. For instance, the nodes in
‘VSL’ models can have names and other textual specifications. In Fig.3.7 we see an
example node (a pentagon) with the name (‘Penta27’) and an additional descriptor
(‘FIRE’). The descriptor is composed of a keyword, a sequence number (here: ‘3”)
and a procedure identifier (here: ‘Proc12’).

The metamodel for textual elements includes class attributes. These attributes rep-
resent atomic texts in the models. Figure 3.7 presents three alternative approaches to
model names and descriptors. In the first approach (top) the ‘Node’ metaclass con-
tains attributes of ‘name’, ‘fire_seq’ (fire sequence) and ‘fire_proc’ (fire procedure).
In the second approach (middle) an additional metaclass ‘Fire’ models the descriptor
clearly distinguishing it from the containing node. In the third approach (bottom),
the descriptor is modelled simply as a single string metaattribute (‘fire’). In such
a case we need to supplement the meta-attribute with the definition of the string’s

Node
name : String
fire_seq:int
Penta 27 fire_proc: String

Fire

FIRE: 3, Proc12 Node :
name : String 1

fire_seq:int
fire_proc: String

| =

Node

name : String
fire: String fire = FIRE : int, String

Fig. 3.7 Example metamodels for textual elements

72 3 Defining RSL

syntax. This can be done using a formal context-free grammar [3]. We will not go
into details of context-free grammars as the presented example is self-explanatory.
The grammar defines that every ‘fire’ descriptor is composed of the ‘FIRE’ keyword
followed by consecutive tokens that form the descriptor. Note that while the first
two approaches are purely abstract—the third approach reveals some of the concrete
syntax. In the first two cases, we cannot determine the actual keyword and sequence
of tokens of the ‘FIRE’ descriptor by examining the metamodel alone. This would
need to be done separately in the concrete syntax definition. In the third approach,
the concrete syntax has to be partially specified in order for the definition of all the
descriptor elements to be complete.

This simple metamodelling approach covers much of the necessary expressive-
ness to define a modelling language. The definition consists of simple class dia-
grams, sometimes supplemented by additional elements like context-free grammar
expressions and constraints. This abstract syntax has to be matched with the concrete
syntax. There are numerous possibilities of how elements symbolised by metaclasses
and metaattributes are presented graphically. They can overlap, touch each other, be
placed near each other and so on. In some cases, the elements can be hidden in a
diagram and shown in a separate descriptive element. In the following sections, we
see how this can be applied to RSL. We present the most important elements of its
metamodel and map it onto concrete models.

3.2 Overview of the RSL Metamodel

RSL is a complex modelling language and as such necessitates an elaborate meta-
model. If we analyse the RSL concrete syntax presented in the previous chapter, we
will come up with many dozens of metaclasses needed to represent the individual
RSL elements. To make the RSL metamodel manageable we need to divide it. Here,
we also use the familiar construct known from UML—the package. Each of the pack-
ages contain a distinct part of the language definition, starting from the most detailed
constructs and ending with the whole specifications. The actual RSL definition [83]
contains more than 20 packages and more than 200 metaclasses. In this book, we
present a slightly simplified version containing the most important subset of RSL
which is substantial enough to demonstrate various metamodelling techniques and
use for developing RSL editors and transformation engines.

Figure 3.8 shows seven packages that can be divided into those defining require-
ments specifications (four packages on the left) and those defining the domain
specifications (three packages on the right). The relationships between packages
denote usage (inclusion) of elements defined in one of the packages (pointed-at with
the arrow) within another package. For instance, the ‘Terms’ package uses meta-
classes from the ‘Phrases’ package to define metaassociations that link the various
terms with phrases within which they are used. In the actual definition of RSL,
we have various other packages that are not shown in Fig.3.8. However, the pre-
sented division gives a good overall view of the language structure. In the detailed

3.2 Overview of the RSL Metamodel 73
Sy Vi)
e
J Domain Elements

Requirements
Specifications

0 7w
y— —
r* : Pa¥an)
Requirements Phrases
Relationships o [l e
e o o
A : D
= Y
Lo : D e
B | e 0 ()

Requirements !
I
!
T —
==

Representations !

[J
i
i
i

A

ol
Representation
Uearian | [entes semchconeria
Sentences

Fig. 3.8 Structure of the RSL metamodel

descriptions in the following sections we refer to some other packages but they all
can be treated as sub-packages of the seven presented.
The highest level RSL constructs are defined in the ‘Requirements Specifications’
and ‘Domain Elements’ packages. ‘Requirements Specifications’ defines the most
general and structuring RSL elements like packages and requirements-as-such. Ele-
ments in this package also refer to domain specifications in ‘Domain Elements’.
Using the elements defined in these two packages we can build tree-like structures
familiar to all that use the various modelling tools and their “project browsers”. Within
the requirements specifications and domain specifications we can define packages,
sub-packages, requirements and domain elements.

Requirements and use cases have relationships and this is defined in the ‘Require-
ments Relationships’ package (with a sub-package ‘Use Case Relationships’). This
package uses the ‘requirements’ metaclasses from the ‘Requirements Specifications’
package and introduces additional metaelements that allow for connecting them, like

‘usage’ and ‘invocation’. In this way it allows for creating use case diagrams and
other graph-based diagrams composed of requirements units.

The next package—‘Requirements Representations’ introduces the modelling
levels that are below requirements as such. It contains top-level metaclasses for
defining requirements descriptions with varying precision. This includes simple tex-
tual representations but also structured language scenarios and activity models. The
more detailed representations are composed of sentences whose syntax is defined
in the ‘Representation Sentences’ package. This package contains constructs for

modelling SVO sentences and various control sentences.

74 3 Defining RSL

As we can see in Fig.3.8, ‘Representation Sentences’ use constructs from the
‘Phrases’ package. This is the main link between requirements and domain elements.
Hyperlinked sentences (like SVO sentences) are in fact composed of hyperlinks to
phrases defined in the domain models. Phrases constitute the centralised pool of
possible constructs in the RSL’s constrained natural language syntax. These phrases
are composed of individual terms like verbs and nouns. Terms are the most atomic
constructs of RSL and are defined in the ‘Terms’ package. The existence of terms is
important for assuring coherence of the language that uses different linguistic forms
of the same terms.

Phrases are further grouped into domain elements and this is where we again
reach the ‘Domain Elements’ package. Each domain element can contain several
phrases, centralised around a single noun phrase. These domain elements can also
contain other elements as their attributes and can be linked through relationships.
This forms the complete syntax for domain models. Now, we explain the structure
of RSL starting with the domain model elements and its fundamentals which are the
terms and phrases.

3.3 Terms and Phrases

Complex scenarios and sentences in RSL are composed of simple building blocks.
The simplest of them are “Terms’ contained in a central ‘“Terminology’. This part of
the metamodel is presented in Fig. 3.9 (up). Examples of concrete syntax are denoted
by numbers in circles referring to appropriate metaclasses. The terminology contains
many terms and can be filled with their names using various known terminology
databases like WordNet [49]. In this way, RSL users can consistently associate their

@ Jerms:) ® Terms:Term
o Lo 7 e keyword : String
term
) 1 name : String
£
i
©
o
g @ 2]
= Terms: Terms: Terms: Terms: Terms:
G Determiner G Modifier G Noun e Verb G Preposition

1

book list
(VALIDATE) inspect

Fig. 3.9 Metamodel for basic terms

ak
i

Concrete syntax

3.3 Terms and Phrases 75

specifications with the words available in a given natural language. If a given term
is not present it can be easily added to the terminology and extend it.

The term’s ‘name’ constitutes its value that is a string containing its basic linguistic
form. There are several types of terms represented by individual metaclasses that
specialise the “Term’ metaclass. The most commonly used types are ‘Nouns’ and
‘Verbs’ (examples for these types are shown in Fig. 3.9). Term names can consist of
several words, like in ‘book list’. Moreover, terms can have ‘keyword’ values that are
mostly used for the verbs. These keywords (like ‘READ’ or ‘VALIDATE) can reflect
the predefined actions assigned to the specific verbs, as explained in Sect.2.3.3.

Only one instance of each term can exist in a given RSL model, terms are thus
singletons. Whenever a term has to be used in a phrase, a hyperlink to it has to be
created. These hyperlinks are called ‘TermHyperlinks’, as presented in Fig.3.10.
For each term type there is defined a separate class of hypelinks, where appropriate
metaclasses specialise from “TermHyperlink’. Term hyperlinks contain information
about the various possible forms of the hyperlinked term (case, gender, mood, num-
ber, person, tense). Not all of these form types exist in every natural language but
the metamodel is prepared to adapt to various natural languages (English, Polish,
German etc.). In the example in Fig. 3.10 we can see that the term ‘fetch’ is pointed-
at by two term hyperlinks. One of them is formulated in the second person, and the
other—in the third person.

@ Terms: TermHyperlink
termcase : TermCase
gender : TermGender
mood : Termbood
number : TermNumber
person : TermPerson
tense : TermTense
- value : String
o
=
o
T
o
g 0
-~ Ic) Phrases: 2] Phrases: @pn ink| [c} Ph [} Phrases:
DeterminerLink ModifierLink PhraseVerbLink PhrasePrepositionLink
* | determinerLink * | modifierLink * [nounLink * | verbLink * | prepositionLink
target |1 target [1 target 1 target |1 target 1
(c) Terms: © Ter Modifi [k (© Terms:zVerb e Terms:
Determiner Preposition
= . fetch fetches
& @
% person = SECOND person = THIRD
5 y [2] ;
5 N
S S fetch e el

Fig. 3.10 Metamodel for term hyperlinks

http://dx.doi.org/10.1007/978-3-319-12838-2_2

76 3 Defining RSL
Term hyperlinks are the building blocks for phrases. In fact, any phrase
consists of just a sequence of term hyperlinks. In the abstract syntax, a phrase does
not contain any meta-attributes within its text but is associated with term hyper-
links specific for the given phrase. The metamodel is presented in Fig.3.11 and
defines two fundamental types of phrases: ‘NounPhrases’ and ‘VerbPhrases” which

(Phrases:=Phrase

¢ (3 PhraseszHounPhrase IWJ“‘
I 1

1| source 1

04| © Phrases:verbPhrase |

verbPhra:

source 1

x
w
=
E
>
@
]
2
i
a8
=

Concrete syntax

determiner maodifier

Phi =
e rases:

simpleVerbPhrase

Phrases:
G sesi

SimpleVerbPhrase [
—

ComplexVerbPhrase
——

1|source

[fc) Phrases:

werb |1
m.m.me lem::.ﬂi 0::::1‘.:3 Ie::::;.m

1|source

preposition
fc) Phrases:

PhrasePrepositionLink

determinerLink Mllml.ml noml.-nu * | verbLink * | prepositionLink
“""" WW‘ target |1 target |1 wront]t
Terms: Terms: Terms: (3 TermszVer T =
[Otmer| [Ol | [Omm=] Sy o
1 1 1 1 1
[svf: SimpleVerbPhrase [simeleVerbPhrase Jcyf; ComplexVerbPhrase |
verb object - prepasition object
vpl: PF:rase\.*eFEljnl npl: NounPhrase 11: P rasePre ositionLinl np2: NounPhrase I
value = "fetches" = value = ,according to" I_—
person = THIRD
noun noun
target ol: NounLink 02:Nounlink
TS value = "book list value = "search criteria
keyword = "READ"

name = "fetch"

va.'idal‘esé entered bookdata | |

H_)

H_)

e ©o

H_l

| fetchesf

book list

according to

the

selected search criteria | |

%_)

©

Fig. 3.11 Metamodel for phrases

3.3 Terms and Phrases 77

specialise in general ‘Phrases’. ‘NounPhrases’ are always associated with a single
‘NounLink’ which constitutes the actual ‘noun’ of the phrase. Moreover, any noun
phrase can contain a ‘modifier’ and a ‘determiner’. This is denoted by appropriate
multiplicity (‘0..1°) in the meta-associations between ‘NounPhrase’ and ‘Modifier-
Link’ or ‘DeterminerLink’. Appropriate examples of noun phrases with their term
hyperlinks are presented in the lower part of Fig.3.11. The noun phrase (1) ‘book
list” is composed of a single noun link (6). Other two examples show phrases with
modifier links (5: ‘entered’ and ‘selected’) and a determiner link (4: ‘the’).

A more complex metamodel is introduced for the verb phrases. RSL defines
two types of verb phrases: ‘SimpleVerbPhrases’ and ‘Complex VerbPhrases’. Their
concrete syntax shows that a simple verb phrase (2) consists of a phrase verb link (7)
and a noun phrase (1). A complex verb phrase (3) adds to this a preposition (8) and
a second phrase verb link (1). Both ‘VerbPhrases’ contain exactly one ‘NounPhrase’
in the role of the direct ‘object’. A ‘SimpleVerbPhrase’ contains a ‘PhraseVerbLink’
which has the role of the ‘verb’. Thus, in summary, the ‘SimpleVerbPhrase’ can be
composed of a ‘noun’ (possibly with a ‘modifier’ and a ‘determiner’) and a ‘verb’.

The definition of ‘ComplexVerbPhrases’ extends the syntax of ‘SimpleVerb
Phrases’. This is not realised through specialisation but through composition. Every
‘Complex VerbPhrase’ aggregates one ‘SimpleVerbPhrase’ and adds a ‘preposition’.
Note that the ‘ComplexVerbPhrase’ contains an additional indirect ‘object’ inher-
ited from the ‘VerbPhrase’. Thus, in summary a ‘Complex VerbPhrase’ contains one
‘verb’, two ‘objects’ (direct and indirect), one preposition and can contain a ‘modi-
fier’ and a ‘determiner’.

To explain how this works, let us analyse object relationships for an example
complex verb phrase (see the middle part of Fig.3.11). The complex verb phrase
‘cvf’ contains the simple verb phrase ‘svf’. This contained phrase is composed of
a phrase verb hyperlink ‘vpl’ with the value of “fetches”. This hyperlink points to
the actual verb ‘v’ with the name of “fetch”. The simple verb phrase contains also
the noun phrase ‘npl’, because this link is inherited from the generic verb phrase.
The noun phrase in turn contains the noun link ‘o1’ with the value of “book list”. The
complex verb phrase object contains another noun phrase ‘n2’ as it also inherits it
from the generic verb phrase. Finally, the phrase preposition link ‘ppl1’ completes the
composition of the phrase. Altogether it results in the phrase containing the following
hyperlink values: “fetches”, “book list”, “according to”, “search criteria”.

We have presented the above values in the order that complies with proper arrange-
ment of sentence parts. However, the abstract syntax (the metamodel) does not
enforce this order in any way. For this purpose we need to use another technique
which is a context-free grammar. The following expressions define such a grammar
for complex verb phrases:

e Start=Complex VerbPhrase —> SimpleVerbPhrase preposition NounPhrase
e SimpleVerbPhrase —> verb NounPhrase
e NounPhrase —> determiner modifier noun | modifier noun | determiner noun | noun

78 3 Defining RSL

According to this grammar, every ‘ComplexVerbPhrase’ starts with a
‘SimpleVerbPhrase’. This ‘SimpleVerbPhrase’ starts with a ‘verb’ followed by a
‘NounPhrase’. The ‘NounPhrase’ can be in one of four possible configurations which
always end with a noun. After returning to the ‘ComplexVerbPhrase’ we reach a
‘preposition” which is followed by a second ‘NounPhrase’.

Such grammars are typically used to formally define textual software languages
like Java. Here, we use this approach to support the metamodel and specify the
ordering of individual sentence parts in concrete syntax for verb phrases.

3.4 Domain Elements and Relationships

Having defined the syntax for terms and phrases we are ready to use this syntax to
formulate the domain elements. RSL distinguishes three types of domain elements:
‘Actors’, ‘SystemElements’ and ‘Notions’. As shown in Fig. 3.12, three correspond-
ing metaclasses specialise the ‘DomainElement’ metaclass. This general metaclass
provides the general characteristic of any domain element, to have a ‘name’ in the
form of a ‘NounPhrase’. Thus, the syntax of each of the three types of domain ele-
ments has to contain a hyperlink to a specific term in the terminology. In the concrete
syntax, this hyperlink is seen as the ‘value’ of the appropriate noun link contained
in the noun phrase. Let us take—for example—the “book data” notion shown in
Fig.3.12 (bottom-right). In concrete syntax its name is a string of characters. To see
how it is stored we should examine the abstract objects that form this model (see the
middle part—Ieft). Now we can see that in fact this string is contained as the ‘value’
of the ‘NounLink” which is the ‘noun’ contained in the ‘NounPhrase’ in the role of
the actual ‘Notion’s’ ‘name’.

Apart from this textual syntax, each of the domain element types has a graphical
syntax. For actors (1) this is a stick-man icon, and for system elements (2) and
notions (3) this is a (slightly differing) rectangle. These graphical elements can
be represented in model browsers (Fig.3.12, bottom-left) or in diagrams (bottom-
right). These two possible representations can differ in the arrangement of the domain
elements’ graphical layout and position of the textual name. For instance, in diagrams,
the notion names are centred inside and at the top of the rectangle icon.

The presence of ‘Notions” and ‘Actors’ in the domain model seems obvious,
however, the reader might wonder about ‘SystemElements’. In fact, normally we
have only a single system element which is the system under development. It is this
system’s name (e.g. in our ongoing example it is the “Library Management System”)
that we use in all the relevant parts of the requirements models. Specifically, we can
use this name in scenario sentences like “Library Management System validates
book data”. Normally, we should specify system sub-components during design
phases. However, in some situations we need to distinguish certain parts of the system
already at the level of the domain model. For this purpose RSL introduces this third
type of domain element—‘SystemElements’, which allows to construct more natural
sentences that use vocabulary more understandable to users. For instance, in some

3.4 Domain Elements and Relationships

79

DomainElement)

lc) DomainEiements::
ActorOrSystemElement

=

K

0..1|name

O Phrases:Phrase F’

Phrases:
° NounPhrase

name

: S - T Y : e
g statement) 1
E' © ActorszActor oY it © Mot b +| @ Mot _n
e Syskenitienment defauliVale - String [
E‘ isPersistent : Boolean | !
<

n: Notion | ds: DomainStatement

_Io statement | 3 eme I

name

| np: NounPhrase I"‘bjec‘

noun
nl: NounLink
value = "book data"

{ svf: SimpleVerbPhrase

verb ‘

pvl: PhraseVerbLink
value = ,save"

]| Library System Domain

o% Librarian

Domain Notions

Business Concepts

o E book

4@ System Elements
e‘:l System

Concrete syntax

Simple dota view

validate book data

Ceovebookaold) || + @
fetch book data

’ [«
e Wb:ck

book data

Fig. 3.12 Metamodel for domain elements

contexts it would be more natural to say “Library Card Scanner displays scan
signal” instead of using “Library Management System”.

‘Notions’, apart from having names can contain ‘DomainStatements’. As the
metamodel (Fig.3.12) shows, this is only the characteristic of notions—actors and
system elements do not contain domain statements. Each notion can contain many
(“*’) such ‘statements’. A domain statement is basically composed of a single
‘Phrase’. The metamodel may suggest that any phrase will do, but in fact it is impor-
tant to observe an important constraint. The domain statements in a specific notion
must contain phrases that point to the same noun phrase as for the notion’s name. This

80 3 Defining RSL

can be seen in the concrete syntax example of the “book data” notion. It has three
domain statements where all the phrases have ‘objects’ that read ‘book data’. This
is not only because the appropriate ‘NounLink’ ‘values’ are the same but because
the actual ‘NounLinks’ are the same object, illustrated through the abstract object
example in Fig.3.12. The example shows only one of the three domain statements
(‘ds’) but the rule is the same for all of them. The appropriate contained ‘Simple-
VerbPhrase’ is composed of a distinct ‘verb’ (here: “save”) but the ‘object’ is exactly
the same ‘NounPhrase’ that constitutes the ‘name’ of the containing ‘Notion’.

Having defined individual domain elements, we now introduce the metamodel for
relationships, presented in Fig.3.13. ‘DomainElements’ can be connected through
‘DomainElementRelationships’. Each such relationship connects one domain ele-
ment with another. One of the elements is treated as the ‘source’ of this relationship
and another one—its ‘target’. The ‘directed’ metaattribute of ‘DomainElementRe-
lationship’ indicates whether the source and the target need to be distinguished. In
concrete notation (see (2)—bottom of the figure), this differentiates between a line
or an arrow connecting two domain elements.

Relationships between domain elements can have multiplicities, which is mod-
elled by setting the ‘sourceMultiplicity’ and ‘targetMultiplicity’ strings present in
the ‘DomainElementRelationship’ metaclass. This abstract syntax for relationships is
very simple compared to the abstract syntax of relationships in UML. Readers famil-

i toTarget 1 D - i= AttributeDataTypes
© DomainElementRelationship [+ souee] © Domeiniement o
. —tex
sourceMuliplicdy : String toSource 1 whole_number
targetitutiphcty - String . target b
directed - Boolean -
x 46_ — true-false
£ —date
i3 — secret_text
5 = =
8 (® Notions:Notion
A Hotions: general 1| defaultValue : String
< NotionSpecialisation [+ source | isPersistent : Bookean parenthotion e
special 1
- (@ Notions=PrimitiveDataType|
o target notion 0.1 = Y
o = pre - : AttributeDataTypes

Concept
publication

*

Concept
book

Attribute (text) o
title

Concept 1.%
author o
Concept
publisher

Fig. 3.13 Metamodel for notion relationships

Concrete syntax

3.4 Domain Elements and Relationships 81

iar with the UML metamodel should remember that e.g. associations are connected
to classes through properties that have multiplicities. In RSL this is not necessary
because the domain model has sufficient expressiveness without the more complex
structures. As a result, the RSL metamodel preserves comprehensibility and provides
simple examples for patterns in metamodelling.

Relationships can be modelled between any domain elements (actors, system ele-
ments, notions). However, only notions can have specialisations and attributes. The
‘NotionSpecialisation’ is modelled exactly as the ‘DomainElementRelationship’.
The ‘target’ side of the specialisation is denoted with a closed arrowhead (see (3)).
The semantics of specialisations are similar to that in UML. In the transformation
programs in Chap. 6 we do not use specialisations, so we will not go into the details
on this kind of relationship.

On the other hand, attributes are very important for the transformations from RSL
to code. Attributes are defined in RSL as regular ‘Notions’ but with a ‘dataType’
attached. The data type is defined through the ‘PrimitiveDataType’ metaclass which
holds the ‘typeName’. This is an enumerated metaattribute whose possible values
can be seen in Fig.3.13 (top-right). These values reflect the possibilities presented
in Sect.2.3.

Notions can contain many other notions that serve as attributes. In the meta-
model in Fig. 3.13 this is defined through a metaaggregation that references from the
‘Notion’ metaclass to the same metaclass. The contained notions are in the roles of
‘notionAttributes’. The concrete notation for this containment is similar to an UML
aggregation (see (4)). However, this symbol is not reflected in any metaclass. It can
be seen as an extended “joining point” between the composite notion (here: “book”)
and the contained attribute(s) (here: “title”). This is different from ‘DomainElemen-
tRelationships’ and ‘NotionSpecialisations’ which, despite similar concrete notation,
have their respective metaclasses in the metamodel. This shows different possibilities
in shaping the metamodel and its concrete notation.

For the language to be coherent this metamodel has to be extended with some
additional constraints. The first constraint says that when a notion is an attribute (has
a ‘dataType’ attached), it cannot contain other attributes. Attributes are atomic and
thus cannot be further decomposed into “smaller” attributes. The second constraint
says that a notion can have other notions as its ‘notionAttributes’ only when these
other notions are in fact attributes, i.e. have appropriate ‘dataTypes’ attached. These
constraints are obvious but formally have to be specified because the pure metamodel
does not prevent certain incoherent situations.

Notions can have attributes but this is often not satisfactory. Thus all the domain
elements (and notions) can have additional ‘DomainElementRepresentations’, as
shown in Fig.3.14. A single domain element can have several separate represen-
tations if necessary. A representation is meant to provide detailed specification of
some domain element. In requirements specifications this is normally equivalent
to a vocabulary-like definition. RSL provides a special construct for this which
is the ‘NaturalLanguageHypertextSentence’. ‘DomainElementRepresentations’ are
sequences of such sentences, as aresult they allow for formulating free text with some
hyperlinks inside as shown in the example in Fig. 3.14 (see (2)). The hyperlinks can

http://dx.doi.org/10.1007/978-3-319-12838-2_6
http://dx.doi.org/10.1007/978-3-319-12838-2_2

82 3 Defining RSL

Qo z < = €] Hyper
E sentenceText : String
(3
iy 1 0 element N\
E representation 1. o_ a_
i3 DomainElementRepr i " i Repr tationSent,
0 P P . P
< C inElementRepr i .) Naturall yp
0.1
Description: o
x Coneept | Abook, magazine, etc, that |
j"‘ publication has been printed and made
o | available to the public.
5 /_’F | i e] i
=3
c
=]
o

Concept
book

Fig. 3.14 Metamodel for domain element representations

point to domain elements, which makes the whole domain model highly coherent.
Natural language hypertext sentences are not used in automatic transformations (see
Chap. 6) because of their ambiguous nature associated with free text contents. For
this purpose we need more structured sentences which are described in the next
section.

3.5 Constrained Language Sentences and Scenarios

The domain model presented in the previous sections provides the building blocks for
the actual requirements. Actors, notions and associated phrases define a consistent
language which can be used in forming requirements representations. We want the
requirements representation language to be very precise, much more precise than the
hyperlinked sentences used to represent domain elements. The hyperlinks in these
sentences allowed for simple linking between domain elements providing informa-
tion on semantic relationships between various domain elements. For instance, when
a hyperlink to ‘book’ is used in the definition of ‘publication’, it necessitates some
relationship between these domain elements (see Fig.3.14). However, the seman-
tics of such a hyperlink in the context of possible code generation is too weak as it
is placed within unstructured free text. Thus, appropriate transformation cannot be
developed.

For functional requirements representations we want to be able to produce oper-
ational code and thus we need strong semantics. This means that the abstract syntax
has to be highly structured. We need a constrained language consisting of constrained

http://dx.doi.org/10.1007/978-3-319-12838-2_6

3.5 Constrained Language Sentences and Scenarios 83

(O Elements::HyperlinkedSentence|
sentenceText : String

[c) ConstrainedLanguageSentences::
ConstrainedLanguageSentence

(c) Repr

HaturalLang HypertextSs

(Phrases: FhraseHyperlink |

(® svosentences:Subject (® svosentences:Predicate

Fig. 3.15 Hyperlinked sentences and phrase hyperlinks

language sentences. RSL provides the necessary constructs through the introduction
of the ‘ConstrainedLanguageSentence’ metaclass, as presented in Fig.3.15. These
sentences are also kind of ‘HyperlinkedSentences’. Unlike for ‘NaturalLanguage-
HypertextSentences’, they do not contain free text but their content is composed
of only ‘PhraseHyperlinks’ which form their ‘Subjects’ and ‘Predicates’. If we can
write our requirements using only constrained language, our functional requirements
specification would contain application logic which is completely defined using the
domain phrases contained in the domain model. This gives us good means to define
semantics that would translate this coherent RSL syntax into code, as described in
the next chapter.

To define the application logic we need several kinds of ConstrainedLanguage-
Sentences’. In Fig.3.16 we can see a complete hierarchy of such sentences. These
types reflect the possible concrete constructs of RSL scenarios that we have already
presented in Sect. 2.4. Note that there is no separate metaclass for the final sentences.
These sentences are joined with postcondition sentences because a post-condition is
always associated with a final sentence.

All the constrained language sentences can have free text content. This is because
all the appropriate metaclasses specialise the ‘HyperlinkedSentence’ (see Fig.3.15),
where we can find the ‘sentenceText’ metaattribute. In concrete syntax this free
sentence text is made visual for preconditions (see (6) in Fig.3.16), postconditions
(see (7)) and condition sentences (see (3)). Since this is only free text it is not used
for code generation apart from copying it to only code for commentary purposes. For
other constrained language sentences this text is not used because their other syntax
contains all the necessary elements. For instance, ‘RejoinSentences’ (see (4)) need
only a reference to some other sentence to which control should be passed during
rejoining. This is reflected in the metamodel by the appropriate metaassociation

http://dx.doi.org/10.1007/978-3-319-12838-2_2

84 3 Defining RSL

o B . : o

0.1 ’ scenario

scenarioStep [* {ordered)
e Eonnmmumoe&moe:

rejoin |*

sVO

oV O oo (chs e

-

»
o
£
E
>
o
=
e
a
a
4

ype ype ¥ ionType : onType : Boolean

s5: SVOSentence
scenarioStep IEE————_1 scenarioStep

[sci: ConstrainedLanguageScenario| [sc2: ConstrainedLanguageScenariol
scenarioStep lsﬁe‘nariasmp
cl: ConditionSentence c2: ConditionSentence
sentenceText = "valid" sentenceText = "not valid"

scenarioStep scenarioStep

|$6: SVOSEI"I‘!E!‘IBE' |56a: SVOSenten EEI

a Pre: User is not signed-in - o
1. User selects sign-in button

2. System shows sign-in window } o 1

o -> invoke: Recover password

E_ 3. User enters credentials

g 4. User selects OK

g <] 2] - cond: not valid €

£ 5. System validates credentials

= 6a. System shows error message
e —>cond: valid

=rejoin: 2 o

6. System shows main window €)

= final: success } o

Post: User is signed-in

Fig. 3.16 Metamodel for constrained language scenarios

connecting ‘RejoinSentence’ and ‘ConstrainedLanguageSentence’. The syntax for
SVO sentences and invocation sentences is explained later in this and the next section.

Constrained language sentences are grouped into ‘Scenarios’. The metamodel
in Fig.3.16 shows that each scenario (see (1)) can have any number of ordered

3.5 Constrained Language Sentences and Scenarios 85

constrained language sentences. In concrete notation this is represented by a sequence
of textual sentences, where SVO sentences are numbered (see (2)). The numbers
serve better referencing and readability, but can also be used as labels for the rejoin
sentences. All other types of sentences start with a respective keyword. The con-
crete keyword syntax was presented in the previous chapter and can also be seen in
Fig.3.16.

RSL does not specify the actual rules for structuring scenarios. However, for
the purpose of code generation, the rules specified in Sect.2.4 have to be used as
constraints. These rules define the correct sequences of sentence, that can be checked
by the code generation tools. For practical reasons it is recommended that each
scenario contains pointers to all of its sentences. However, as the example in Fig. 3.16
shows, scenarios can share sentences. In this case the sentences up to number 5 are
identical for both scenarios. Depending on the tool preferences, we could ask to show
or hide the common part. Moreover, for storage optimisation purposes, the actual
sentence objects for sentences up to 5 could be stored once but referred-to by both
scenarios.

An example solution for storing scenarios is shown in the middle part of Fig. 3.16.
This object diagram presents a fragment of the storage for the two scenarios presented
at the bottom in their concrete syntax. This fragment encompasses sentence 5, the
two condition sentences and sentences 6 and 6a. The object for sentence 5 (‘s5”)
is referred-to by both scenarios, and for the other sentences the scenarios split and
point to their own individual content.

The most often used type of sentence is the ‘SVOSentence’ (see (2) in Fig.3.16).
Having all the necessary constructs available in other parts of the RSL metamodel,
the abstract syntax for SVO sentences is extremely simple. It is composed of only
two metaclasses: ‘Subject’ and ‘Predicate’, as presented in Fig.3.17.

Both metaclasses represent phrase hyperlinks (see Fig.3.15), one pointing at a
‘NounPhrase’ and the other at a “VerbPhrase’. These two hyperlinks do not provide
any text that could be combined into the sentence text. Instead, they point to phrases
that have the appropriate text included, illustrated in the middle part of Fig.3.17. The
example refers to one of the sentences expressed in their-indexsyntax!concrete—
concrete syntax below (‘Librarian enters search criteria’). The actual sentence is
composed of the three objects highlighted in the figure with a darker background.
All the other objects in the figure are parts of the domain model. In order to construct
the sentence concrete text we need to follow the links to other objects. The ‘Subject’
points at a ‘NounPhrase’ which is the ‘name’ of an appropriate ‘Actor’ defined
in the domain model. This noun phrase has a ‘NounLink’ that contains the text
(“Librarian”) to be used in the relevant place in the SVO sentence. The ‘Predicate’
points ata ‘VerbPhrase’ thatis contained as a ‘name’ of a ‘DomainStatement’ of some
domain ‘Notion’. This verb phrase points to a ‘VerbLink’ (containing “enters”) and
indirectly points to a ‘NounLink’ (containing “search criteria”). Concatenated texts
of these two links finally form the text for the predicate part of our SVO sentence.

http://dx.doi.org/10.1007/978-3-319-12838-2_2

86 3 Defining RSL

o| (svOsentences:SVOSentence]

1|source 1|source
subject |1 predicate |1
e} SVOSentences: [c) SV0Sentences::
Subject Predicate o
* | subject * | predicate

rget

target |1 target |1
[® PhrasessliounPhrase| object 0.1[@ Phrases: verbPnrase |
| I| wverbPhrase I

Phrases: pd 0.1
| © Srmtarsoase |- © Comatetvorptisse
e L]
W]—[ds: DomainStatement |

»
bt
£
=
&
17}
o
<
]
a8
<

name

b
npl: NounPhrase et svf: SimpleVerbPhrase
target
noun verb
nl1l: NounLink pvl: PhraseVerbLin
value = "search criteria" value = "enters"

pr: Predicate

s: SVOSentence
| target _
: name : noun| NI2: NounLink
[La:Actor |—*"¢] no2; NounPhrase value = "Librarian"

i Librarian || enters search criteria |

2] @

System | fetches book list according to search criteria

Concrete syntax

Fig. 3.17 Metamodel for SVO sentences

3.6 Requirements and Use Cases

Scenarios serve describing requirements and they are called ‘RequirementsRepresent-
ations’ in the RSL metamodel. Figure 3.18 shows the appropriate fragment of the
metamodel. The official RSL specification provides two groups of requirements rep-
resentations: ‘DescriptiveRequirementRepresentations’ and ‘ModelBasedRequire-
mentRepresentations’. For the purpose of this book we concentrate on only one of
the possible representations, presented earlier in the previous section—‘Constrained

3.6 Requirements and Use Cases 87

o G quirement = Hyp

requirementid : String 9 0.4 T

o representation | 1.*

Specificati G RequirermentRepresentalions::
ReguirementRepresentation
name : String

© RszuseCase

b
o
-
£
>
)
-
1]
m
=
]
-
L4

RequirementRepresentations: (c) RequirementRepresentations::

Descriptivef ' 0!

c) DescriptiveRequirementRepresentations:: ActivityRepresentations::
o C i0 ActivityScenario o

FR12

Editing
the catalogue §]

System fetches
book list

System shows
book list window
User selects
close

Concrete syntax

Main scenario

1. User selects show book list

2. System fetches book list

3. System shows book list window
—invoke: Add new book

4. User selects close

winvokes
Add new book

Fig. 3.18 Metamodel for requirements and use cases

LanguageScenarios’. Alternatively, the language users can create ‘ActivityScenarios’.
We omit this part of the metamodel for brevity and also because it is not used for
code generation. Figure 3.18 shows concrete syntax of the two alternative representa-
tions (see (3) and (4)) which was presented in the previous sections. The metamodel
allows to formulate names for requirements representations. This is often used to
name individual scenarios (see (7)).

The ‘RequirementRepresentation’ metaclass finally brings us to the central ele-
ment of RSL which is the ‘Requirement’. It can be noticed in Fig.3.18 that every
requirement must have at least one representation and possibly can have more (mul-
tiplicity ‘1..*”). There is no restriction on the types of representations and various
types can be mixed. Moreover, requirements can have names which are ‘NaturalLan-
guageHypertextSentences’ presented in the previous sections. In addition, require-
ments have identifiers which can be any strings of text (see ‘requirementld’). This

88 3 Defining RSL

simple abstract syntax reflects the concrete elements visible to the language user, as
presented in the example in Fig.3.18 (see (6)). The requirement name (see (2)) can
contain hyperlinks to domain elements (here: “catalogue”).

Use cases in RSL are special types of requirements. This is reflected in the meta-
model in which the ‘RSLUseCase’ metaclass specialises from the ‘Requirement’
metaclass. Note that the metaclass for use cases is not named simply ‘UseCase’ to
avoid conflicts with the metamodel which we discuss further in this section. The
concrete notation for use cases is similar to that for requirements, because all the
elements (identifier, name) are inherited. The only difference is the shape of the use
case icon, aligned with the notation found in UML.

Use cases can also have different representations as illustrated in Fig.3.18. The
example (see (3) and (4) in the bottom part) shows two representations that are stored
together with the presented use case. In tools they are normally not shown together
with the use case icon but can be accessed from separate diagrams or textual editor
windows, linked with the current use case.

Use cases are made distinct from generic requirements not only to change the
icon in concrete syntax. As we remember from the previous chapter, use cases can
be in «invoke» relationships between themselves and can be in relationships with the
actors. The metamodel that provides the abstract syntax for these features of RSL
is shown in Fig.3.19. It introduces two additional metaclasses: ‘UsageRelationship’

©® Requi ificati UseCase 9; ipti qui Bepese

_o 1|useCase 1|source 1 |target o o..10mnan'o

scenarioStep |* {ordered)

[c) ConstrainedLanguage Sentences::
ConstrainedLanguage Sentence

usage* invoke |* inveked [*
o) Hse{neae_lalion_ships:: lc) UseCas, ionship

* |usage _o 1 |invocation e < C

x
]
£
=
a
i)
o
k7
£
<

actor | 1

(@ Actors:Actor b 14 @c¢ ions
i Type : ionType e
Show book list 1. User selects show book list
% 2. System fetches book list

3. System shows book list window
. ~»invoke: Add new book °

Add new book

Fig. 3.19 Metamodel for use case relationships

leranan «ln\roke»

Concrete syntax

4. User selects close

3.6 Requirements and Use Cases 89

and ‘InvocationRelationship’. The abstract syntax is simple and similar to the syntax
of relationships between domain elements. The metamodel defines that there can be
many invocation relationships (2) coming out or going into a particular use case. The
same situation is for the usage relationships (4). For the invocation relationships the
metamodel itself does not prevent from self-referencing relations (from a use case
to itself). Obviously, such a relationship is not valid and thus we have to explicitly
express a separate constraint to prevent this.

An important feature of the invocation relationship is that it is directly attached
to invocation sentences in scenarios. Every ‘InvocationRelationship’ must have at
least one corresponding ‘InvocationSentence’. On the other hand, every ‘Invocation-
Sentence’ must point to exactly one ‘InvocationRelationship’. This feature of the
metamodel enforces strict coherence of use cases and their representations. A single
use case can be invoked from several use cases and/or from several places of another
use case. This only depends on the other use case scenarios and how many invocation
sentences are associated with the appropriate invocation relationship. Of course, the
metamodel has to be appended with a constraint stating that the invocation sentence
attached to a given invocation relationship has to be present in a scenario of the
invoking use case, and not of the invoked one.

The RSL’s metamodel for use cases and their relationships can be contrasted with
the similar metamodel in UML. The UML version is presented in Fig. 3.20. The most
visible difference is the presence of the ‘Include’ and ‘Extend’ relationships. Note
that ‘include’ is owned by the ‘includingCase’. This means that the information about
inclusion is defined within the use case that includes another use case. By contrast, the
‘extendedCase’ is not aware about which other use cases extend it. This information
is stored in the ‘extension’, i.e. in the use case that extends another use case. In
RSL, these ownership considerations at the level of use cases are not relevant. This is
because ‘InvocationRelationships’ have to be combined with ‘InvocationSentences’
which are always contained in the invoking use case.

Despite the extending use case not being aware of the extending use cases, it has to
contain appropriate ‘ExtensionPoints’. The role of extension points is to denote places
where the behaviour of a use case can be extended through the ‘Extend’ relationships.
Extension points serve as ‘extensionl.ocations’. For unambiguous identification, they
need to have textual ‘names’. This is realised through the ‘ExtensionPoint’ metaclass
indirectly specialising from the ‘NamedElement’ metaclass. In general, most UML
constructs are named elements which is one of the reasons for having quite complex
specialisation hierarchies in the UML’s metamodel.

There has to be at least one extension point available for any ‘Extend’ to make
sense. Moreover, the extension points have to be ordered. This is necessary to unam-
biguously associate the extending behaviours with specific extension points. Unlike
for RSL’s invocations, the extension points need not be associated with any ‘Extend’
relationship and they can also be associated with more than one of them. By con-
trast, in RSL, an invocation sentence has to be identified with exactly one invocation
relationship.

Note from Fig. 3.20 that there is no equivalent for extension points related to the
‘Include’ relationship. There are no “inclusion points” in UML. This shows one of

90 3 Defining RSL

redefinedClassifier)® baseClassifier |*

BasicBehaviors (Kemel: Classifier
h f
BehavioredClassifier [iract - Bockean

0. |0 owningClassifier | subject

ownedUseCase * |useCase (c] Kernel.
© UseCase isLeaf : Boolean
© Actor
o useCase
(2] M

x
i
= 1 WincludingCase 1 | addition 1 ’OM!M 1| extendedCase
3
i}
£
g include | * includer | * extend | * extender |* extensionPaint |*
< @ include © Extend 1.+ fordered) © ExtensionPoint

extensionLocation

—0' _ LO m.?. G

0.1 [c) :_t‘umsl::]

G Kernel
DirectadReiationship

condition

(3 Kernsl- NamedElement
| name : String
vishiity : VisibiityKind

Show book list

wextend» o Discontinue
a book

{book is not on loan}

s

Librarian

extension points:
Book selected

Concrete syntax

Show book loan
history

Fig. 3.20 Comparison: metamodel for use cases in UML

the several deficiencies of the UML’s metamodel in this area. UML lacks any notation
for locating the actual points in the use case logic at which the inclusions are to be
made. This makes it impossible to define any control flow semantics in this respect.

To have some level of runtime semantic precision, use cases in UML need to
be defined in terms of their application logic. UML gives some possibilities in this
area which are realised through the ‘UseCase’ metaclass specialising in the so-called
‘BehavioredClassifier’. This abstract metaclass provides a common ground for var-
ious UML constructs that should expose some behaviour. It allows to append ‘Clas-
sifiers’ (like classes, use cases and actors) with behavioural models (like activities,
interactions and state machines). However, there are no specific syntactic rules for
using these behaviours within the use case models. The UML users are free to define
any such model in any possible way. Moreover, there is no syntax for determining

3.6 Requirements and Use Cases 91

the flow of control between different use case behaviours. Although ‘Extension-
Points’ exist in UML, there is no semantically unambiguous way to relate them to
such behavioural constructs like actions, transitions or messages. In RSL this is pre-
cisely defined through associating invocations with invocation sentences. Invocation
sentences are precisely located within use case scenarios. In this way, control flow
semantics is very strict and can easily serve to generate operational code.

When examining the UML’s use case metamodel in Fig.3.20, the reader may
notice three more issues. The first issue is the ‘Constraint’ metaclass associated with
the ‘Extend’ metaclass. Constraints are used in UML in various places to denote
statements that express some conditions. In this case, the extend relationship can have
an additional ‘condition’ which determines whether the particular extension instance
can take place or not. This again raises the question of control flow semantics. It is
not certain at which place (or places) in the extended use cases these conditions
would be checked and how control would flow within the use case behaviour. In
RSL, flow of control is unambiguously determined by condition sentences placed
within scenarios.

The second remaining issue is the lack of a metamodel element for relationships
between use cases and actors. This can be explained through both modelling ele-
ments specialising from ‘BehavioredClassifier’. Classifiers in general can be related
through association relationships. This part of the metamodel is defined elsewhere
and is not shown in this diagram. This however shows complexity of the UML’s meta-
model which necessitates traversing through complex hierarchies of metaclasses to
understand the full syntax.

The third issue is related with the ‘Classifier’ metaclass which is in two metarela-
tions with the ‘UseCase’ metaclass. This can be seen as equivalent to what is available
in RSL’s scenarios and sentences. Every SVO sentence in RSL can have a subject
which refers to a ‘SystemElement’. This makes it unambiguous as to what system is
defined through the use case that contains this sentence as part of its representation. In
UML there is no such construct. Yet, we would want to denote which system “owns”
the given use case and is the “subject” of its behaviour. The solution in UML was to
introduce such relations at the use case level rather than at the use case representation
(behaviour) level.

3.7 Domain and Requirements Specifications

To organise and group its various constructs, RSL uses the notion of package, which
is used extensively in UML. However, RSL introduces several specialisations of
packages and thus provides much more rigour in structuring requirements-related
models. A the highest level, this rigour is assured by dividing the specification into
two parts: one part holds the domain elements and their representations, and the other
part—the requirements with their representations.

92 3 Defining RSL

oeﬁ._ ficat

0.

' domain Specification

domainElementsPackage | *
fc) DomainElements::

DomainElementsPackage
g
c
&
£ I
H 0 | &) (4]
Kl [© ActorszActorsPackage | ™™™ ingPackage Y E nestingPackage
= O yotionspackage [® © >

0.1 1 —— 0.1

b package *|nestedpackage 0.1{package *[nestedPackage

actor |* nation |* systemElement |*

© ActorszActor o © Motions:Notion o o o) -

defautValue - String

1§ package | nested 0..

o |:| Library System Domain
-) e @
% Librarian o

Domain Notions o
Business Concepts

EI sook @
—E System Elements o
D System o

Concrete syntax

Fig. 3.21 Metamodel for domain specifications

Figure3.21 shows the structure of the first part. The topmost construct is the
‘DomainSpecification’ which is normally represented as the root in the specification
tree (see (1)). The ‘DomainSpecification’ metaclass specialises the UML’s ‘Package’
metaclass thus providing one of the links between the two metamodels. The same
specialisations are present for other package-related metaclasses in RSL. UML’s
packages can have names (as they are also specialising ‘NamedElements’), and thus
also RSLU’s packages can have names.

Domain specifications can contain several ‘DomainElementsPackages’. RSL pro-
vides specialised packages for actors (‘ActorsPackage’), notions (‘NotionsPackage’)
and system elements (‘SystemElementsPackage’). There are no restrictions on the
number of domain element packages that can be contained in the domain specifi-
cation. However, in a tool this can be restricted to just one of each kind. Each of
the kinds can contain ‘nested’ packages of the same kind. Thus, for instance, actors
packages can hold only other actors packages. This prevents from mixing concerns
and makes the whole specification coherent. Obviously, domain element packages
can hold respective domain elements (‘Actors’, ‘Notions’ and ‘SystemElements’).

3.7 Domain and Requirements Specifications 93

As for ‘nested’ packages, the type of the held elements matches the type of the pack-
age. As a result, we have a tree with three main branches holding domain elements
of the three types.

‘DomainSpecification’ pertains to a specific ‘systemUnderDevelopment’ (see
Fig.3.21). This is the top level ‘SystemElement’ that represents the actual system
for which this specification is developed. Domain specifications are local to sys-
tems. Each system under development has its domain specification separate from
specifications for possible other systems under development. This is important for
organisations that develop many systems and prevents from confusing vocabularies.
For instance, the notion of “user account” can have varying meanings (and associ-
ated attributes) in different systems. On the other hand, the term “user account” can
be reused many times as such, in its generic sense. This observation led to intro-
ducing the separate global ‘“Terminology’, presented in Sect.3.3. The terminology
can be common for many systems, leading to possible reuse of notions associated
with specific terms. Moreover, it allows to compare different domain elements and
requirements for possible matching and reuse.

‘DomainSpecifications’ are tightly coupled with ‘RequirementsSpecifications’.
In fact, it is a one-to-one relationship, as shown in Fig.3.22. Thus, for each system
under development we have a single domain specification and a single requirements

o o) Requirements Specifications::

1 0.1 0 requirements Specification

1 requirementsPackage |* o
DomainElementsz: i i
[It s C]

gl ge

Requirements|] -
0.1

) L e

requirement |*
Requirements Specifications::

o e Requirement

requirementid : String

Abstract syntax

o I Library System Requirements
Software Requirements }

Functional Requirements

O Show book list
O Add new book } o

Quality Requirements e

I]I:I Response time for book searches o
o @ Library System Domain

=
8
t
@
2
¥
]
£
o
(5]

Fig. 3.22 Metamodel for requirements specifications

94 3 Defining RSL

specification. These two specifications form two roots in the specification tree
structure. Just like for their domain counterparts, ‘RequirementsSpecifications’ spe-
cialise packages. They can contain many ‘RequirementsPackages’ which are nested
structures. Finally, requirements packages can contain many ‘Requirements’ (includ-
ing ‘UseCases’), which makes the metamodel complete. This abstract syntax is
reflected in the concrete syntax presented at the bottom of Figs.3.21 and 3.22. This
concrete syntax is familiar to all modelling tool users and was presented in detail in
the previous chapter.

With these top level modelling elements we conclude the presentation of the RSL’s
metamodel. Generally, this metamodel reflects the overall philosophy of stacking
more and more complex constructs on top of simpler ones. Specifications are com-
posed of requirements and domain elements. Requirements and domain elements
contain representations which consist of sentences. These sentences refer to phrases
which link to individual (and atomic) terms as illustrated in Fig.3.23 (generalised
and simplified metamodel to the right, concrete notation to the left). Note that the
connection between the domain specification and the requirements specification is at

’:‘ﬂ—ﬁ Specification

1]
‘ L . I I I ?
Data view uc127
book list Element

— Y
1. User selects show book list

2. Systam fetches book list

3. System shows book list window
=Hinvoke: Add new book

4. User selects close
]
]
'
1

Representation

[list of books (..}

f ! Sentence
i System . fetches book list
——
Phrase

{ fetches book list ‘<——

y
| (READ) fetch

Fig. 3.23 Summary of the RSL’s element stack

3.7 Domain and Requirements Specifications 95

the level of phrase hyperlinks. These links are a part of sentences in requirements rep-
resentations (mostly scenarios). The links point to phrases that are a part of domain
notions.

3.8 Summary of Metamodelling

When presenting the metamodel of RSL we have used class diagrams composed
of classes, associations, attributes and so on. We did this informally, assuming that
the reader is familiar with class diagrams. We have used a very limited subset of
what can be seen as the UML’s class model language. This subset is satisfactory for
developing metamodels and we call it a “metamodelling language”. As a modelling
language (suitable for modelling models), this language also needs to have its def-
inition. Obviously, we should also create a metamodel for this purpose which is a
level higher than the RSL metamodel, and we call it a meta-metamodel.

Because the language is simple, its metamodel is also simple. It contains only 7
metaclasses, as presented in Fig.3.24. In fact, only four metaclasses in this meta-
model represent concrete modelling elements: ‘Class’, ‘Property’, ‘Generaliation’
and ‘Association’ (marked with numbers in circles). The other three metaclasses pro-
vide general typing and naming scheme. As we can see, the metamodel is structured
similarly to that for RSL, however, there are some interesting features that we explain
below.

The ‘Generalisation’ relationship (see (2)) can link two classes (the ‘general’ one
with the ‘specific’ one). We can thus notice that our language allows for single gener-
alisation only. Any ‘specific’ class can have at most one ‘generalisation’ (multiplicity
‘0..1”). When we examine all the metamodel diagrams in this chapter, we can notice
that single generalisation is followed throughout. Only the use case metamodel taken
from the UML specification uses multiple generalisations (e.g. the ‘Extend’ meta-
class specialises two metaclasses, as shown in Fig.3.20). This metamodel is thus
not part of the RSL specification and it uses somewhat extended language. In our
meta-metamodel in Fig.3.24 we could easily update this by changing multiplicity
for ‘generalisation’ to ‘0..*’.

Another interesting feature of our meta-metamodel is the way it handles asso-
ciations. The ‘Association’ metaclass is not connected to the ‘Class’ metaclass but
is connected to ‘Property’. To explain this we use the object diagram available in
Fig.3.24. This diagram shows that classes (see ‘cl’) can contain “simple” proper-
ties and properties with associations. Simple properties serve as the class’ attributes.
Properties with associations serve as the roles of these associations. The object dia-
gram is equivalent to the respective part of the concrete syntax example in the bottom
part. The property ‘pl’ is contained in ‘cl’ and is connected to its counterpart ‘p2’
contained in ‘c2’ through the association ‘a’. In concrete notation, property ‘pl’
(“representation”) is visualised at the other end of the association. It also contains
the multiplicity string which is derived from two metaattributes: ‘lower’ and ‘upper’.
The upper limit is set to —1 which denotes infinity.

96 3 Defining RSL

NamedElement
name: String
Type type ypedE TypedElement
0.1 0.
E speciali general J_‘n La
Generalization [~ ™ 3 Class ciat Property
isAbstract: > ition: boolean
generalization specific 0.1 0. |lower Integer
- upper. Integer
0.1 1 g
x memberEnd 2
3
= association | 0.1
@
e Association
g L]
2
<
C1: Class
name = "Requirement” [Gjass]
class pl: Property

name = "representation”
composition = false
lower=1 upper=-1

p3: Property association

name = “requirementld" 3 Astociation
composition = false
lower=1 upper=-1 type association
t: Type
name = “String"

p2: Property
name = “requirement”
composition = true
lower=1 upper=-1
c2: Class | class |
name = "RequirementRepresentation” |

Requil Specifi " Rep ==
] Requirement 41 0.1 (¢} . -
requirementid : String 0.1 o i

g 1 @ requirement o
o . Qrmnulim 1

Specifi) RequirementRepresentations::

name : String a

£
o
8
=
s
@
W
o
o
=
]
o

c}

=
R5LUseCase

Fig. 3.24 Metamodel for the metamodelling language

Associations in our simple meta-language are binary (have two ends) and not
navigable (do not have arrows). To introduce n-ary and navigable associations, we
would need to substitute the metaassociation between ‘Association’ and ‘Property’.
Instead of one metaassociation with multiplicity ‘2° we would need two metaasso-
ciations with multiplicity ‘1..*’. In fact, this flexibility in shaping associations is the
main benefit of introducing the solution with associations linked through properties.
All the information about association ends (the ‘lower’ and the ‘upper’ value for
multiplicity, presence of the ‘composition’ diamond) can be contained in the prop-
erties instead of in some additional metaelements attached to associations.

3.8 Summary of Metamodelling 97

M3
(meta-metamodel)

M2
(metamodel
space)

RSL

Fig. 3.25 Levels of metamodelling

A careful reader may notice that our meta-metamodel (i.e. the upper part of
Fig.3.24) is also written in some language and this language would again neces-
sitate defining a metamodel (a meta—meta-metamodel?). This would lead us to an
infinite regression of metamodels. Fortunately, the meta-metamodel is written in
exactly the same language it defines, in other words, it is self-reflective. This limits
our meta-modelling hierarchy to only three levels, as illustrated in Fig. 3.25. Level M 1
contains individual models written in particular modelling languages (UML, RSL,
etc.). Level M2 contains metamodels defining the modelling languages. Models, in
order to be treated as correct have to comply with these metamodels. Metamodels
are written in a common metamodelling language (called “MOF” in the figure). This
common language also has a metamodel (level M3) that defines it and to which it
has to comply. This meta-metamodel is written in the same language (MOF) as the
metamodels it defines. So, the meta-metamodel complies with itself, providing a
“bootstrapping” mechanism.

The above hierarchy of metamodels defines a coherent framework for defining
various modelling languages. Using a single meta-language with its meta-metamodel
we can define many different languages that are defined using the same techniques.
This approach was developed as a continuation of the idea started in the first specifi-
cations of UML (versions 1.x). In these early days, UML was defined using UML’s
class diagrams in the same bootstrapping manner as the meta-modelling language
described above. Later, this class model language was extracted from UML and is
treated as a separate language dedicated to specifying metamodels—extending its
application from just UML to any other modelling language. This meta-language is
called Meta Object Facility (MOF, see again Fig. 3.25)! [123] and is managed by the
Object Management Group. MOF in one of its earlier versions is also standardised
by ISO [75].

! http://www.omg.org/mof/.

http://www.omg.org/mof/

98 3 Defining RSL

MOF is composed of two similar languages—EMOF (Essential MOF) and CMOF
(Complete MOF). EMOF only slightly differs from the language we have used to
present RSL. The metamodel in Fig.3.24 is a small simplification of EMOF. For
instance, EMOF allows for multiple generalisations and for class operations; it also
introduces other features like property ordering. The metamodel for UML use cases
in Fig.3.20 is drawn using EMOF. Other metamodel diagrams in this chapter also
comply with EMOF because they use a subset of it.

The most significant counterpart of EMOF is Ecore. This language is extensively
used in the Eclipse world and is part of the Eclipse Modelling Framework (EMF)?
[28]. Ecore is similar to EMOF and both languages can be easily translated into one
another. Both languages offer serialisation facilities. This means that graph-based
metamodels can be turned into serial text for the purpose of exchanging data. Tools
that handle EMOF and Ecore can usually read and write serialized forms for both
languages. This serialised form is based on XML and is called XMI (XML Metadata
Interchange) [124].

Official specifications of RSL? [83] and UML?* [121, 122] use a somewhat
extended metamodelling language. This is CMOF, which has several additional fea-
tures. It provides constructs for the management of more complex metamodels, con-
structed by merging many packages at several levels in the generalisation hierarchies.
The additional constructs allow for subsetting and redefining metaclass properties.
This makes large metamodels more readable and manageable but at the same time
does not allow for direct implementation using typical object-oriented languages—
no direct mapping from CMOF exists. For this purpose, a metamodel in CMOF has
to be transformed into its EMOF or Ecore version. Sometimes (for instance in the
case of Java), an even simpler language (with single generalisation) has to be used.

Metamodelling languages are the basis for several tools that allow for creating
modelling language environments. Such tools are called language workbenches [46],
where the term was introduced by Martin Fowler [53]. There are many language
workbenches on the market. Some of them are embedded in modelling tools, while
some are stand-alone. Their main characteristic is that they allow for specifying the
abstract syntax in the form of a metamodel and the concrete syntax in the form of
graphical element designs. Many language workbenches offer capabilities to define
the syntax of textual language elements. Using context-free grammars, as in the
example for verb phrases in Sect.3.3. In this sense, language workbenches can be
compared to compiler compilers that facilitate the development of compilers for
textual languages.

Apart from language workbenches, metamodels are used as a part of model
transformation languages and their tooling environments. In order to perform a
model transformation, we need to know the metamodels of the source and the tar-
get models. A model transformation language can use an external definition (e.g.
taken from the language workbench) or can allow to define the metamodel directly.

2 http://www.eclipse.org/modeling/emf/.
3 See the documentation section at http://www.redseeds.eu/.
4 http://www.uml.org/.

http://www.eclipse.org/modeling/emf/
http://www.redseeds.eu/
http://www.uml.org/

3.8 Summary of Metamodelling 99

Transformation Transformation
Workbench = Engine
(o)

Abstract syntax

9

Transformation

Engineer Model Storage
gen

(DSL) Model
Editor

(DSL) Language
Workbench

oY

n

Language
Engineer

Fig. 3.26 Process of developing a modelling language

A comprehensive solution to develop modelling languages should provide integra-
tion of the language workbench and model transformation tools as illustrated in
Fig.3.26. To develop a new language (e.g. a Domain Specific Language) we need to
know its abstract syntax (metamodel) and concrete syntax (graphical symbols and
textual grammars). These two elements are input by the language engineers to the
language workbench which can automatically generate a model editor together with
model storage. The abstract syntax of our new language should be also input to a
model transformation tool (we also call it a “transformation workbench’). We would
also need the abstract syntax of the target language. Having these two metamodels,
the transformation engineers can develop transformation programs and then gener-
ate transformation engines for the new language that result in a tooling environment
that consists of the (DSL) Model Editor, Model Storage and Transformation Engine.
This can be compared to IDEs (Integrated Development Environments) for program-
ming languages which contain syntax-checking editors and compilers that transform
source languages (e.g. Java) into target languages (e.g. bytecode).

Figure 3.26 lacks an important element which is necessary to build the transfor-
mation engine—the runtime semantics of the new language. Only having defined
this kind of semantics we can write a sensible model transformation that generates
code. The next three chapters are dedicated to this broad issue.

Chapter 4
Explaining RSL with Java

In Chaps.2 and 3, we presented the concrete (visual) and abstract syntax of RSL.
Chapter 2 also contains the conceptual semantics of RSL, which explains it in terms
of observable system behaviour. This quite informal explanation is sufficient for
the understanding of end-users and domain experts. However, to develop formal
transformations from RSL to code we need a much more formal definition of the
requirements semantics [144] in relation to the system runtime [154]. This chapter
presents all the necessary details.

4.1 Translational Framework

There exist several well-established ways to formally define the semantics of software
languages [98, 146, 186]. Many of these approaches use complex mathematical
frameworks which are hard to grasp by language implementers. We use an approach
that is more “user friendly” and uses a pragmatic engineering approach [174]. This
approach is to define the semantics of a language by translating it to the semantics
of another (simpler) language with already known semantics [48, 91].

We call this approach the translational semantics. Figure 4.1 illustrates the over-
all concept. To explain a language (“Source language”) we introduce another lan-
guage (“Target language”) and define rules for translating from the source language
to the target language. Every construct of the source language syntax is translated
into certain constructs of the target language syntax. The whole translation involves
only the syntax.

The target language is usually a simple language whose semantics is well-defined
(using other formal methods or even informally). The semantics of the source lan-
guage can thus be derived from the semantics of the target language. This is because
every source model or program can be translated into a target model or program. This
translation changes syntax (from source to target) but does not change the semantics.

© Springer International Publishing Switzerland 2015 101
M. Smiatek and W. Nowakowski, From Requirements to Java in a Snap,
DOI 10.1007/978-3-319-12838-2_4

http://dx.doi.org/10.1007/978-3-319-12838-2_2
http://dx.doi.org/10.1007/978-3-319-12838-2_3
http://dx.doi.org/10.1007/978-3-319-12838-2_2

102 4 Explaining RSL with Java

Source Language Target Language

Model or Program Model or Program

Language Syntax - Language Syntax

N

Language Semantics

Fig. 4.1 Explaining a language through translation

A typical example of applying translational semantics is the definition of high-level
imperative programming language. Such languages can be translated into a simple
assembly level language. Every instruction of a high-level language can be trans-
lated into several instructions of the assembly language. In this way, the meaning
of a particular instruction is well-defined through the meaning of the assembly lan-
guage instructions that substitute it. This approach is pragmatic in terms of its direct
application in compiler construction. The language engineers can take the language
semantics and use it directly to generate executable code. This is because the target
language in the definition of the translational semantics is easy to map onto the target
language of the particular compiler.

To apply translational semantics to RSL we only need to observe that it is a
higher level language than the current 3G languages like Java. We can thus propose
to translate RSL constructs into 3G language constructs [70]. Semantics of 3GLs is
well known and is applied daily by millions of contemporary programmers. Thus, this
approach should make the semantics of RSL understandable to them. Explaining the
semantics of RSL in terms of a 3GL is also very pragmatic. Based on the translation
rules we can relatively easily construct a transformation program that would generate
3GL code and ultimately executable code. We thus do not need to translate RSL into
assembly language—it is enough to translate it to a 3GL.

The target language that we use for translation from RSL in this chapter will be
a hybrid one. It will partially consist of UML class models and partially of Java-like
code. This will allow us to present the code structure in a more comprehensible way
than by using only Java. Moreover, this approach is more compatible with model
transformations that we introduce in the following chapters. It allows us to define a
full transformation from RSL to Java code using largely the UML metamodel (see
Chap. 6).

http://dx.doi.org/10.1007/978-3-319-12838-2_6

4.1 Translational Framework 103

VSomeScreen > VScreen

\vsomescreen
o someusecase
XSomeNotion

— PSomeUseCase > PUseCase

.

vmsomenotlon

MSomeNotion

Fig. 4.2 Translational framework structure

The language and its framework that we chose for the translational semantics
is arbitrary. The main rationale is pragmatics and further application of translation
rules in constructing an appropriate transformation from RSL to code. We chose
UML and Java as the overall approach because it is widely known to a vast majority
of software developers. However, we also need to decide on more detailed issues
like representing application and domain logic, and the user interface elements. This
is important because RSL has several constructs that necessitate translation into the
system’s logic and into the constructs that exchange data with the user through the
user interface.

The most appropriate architectural framework for code being the target of trans-
lation from RSL seems to be the Model-View-Presenter (MVP) pattern introduced
earlier in Sect. 1.1. The variant we use here is presented in Fig.4.2. The classes in
the View layer represent Ul screens and they specialise (inherit) from the standard
abstract class ‘VScreen’. By convention, the names of these classes start with the
letter “V’. Similarly, the classes in the Presenter layer represent use cases and spe-
cialise from the standard abstract class ‘PUseCase’. By convention, the names of
these classes start with the letter ‘P’. Finally, the classes in the Model layer represent
notions and their names start with the letter ‘M’.

Classes in the three layers are related through associations. Associations between
the Presenter layer and the View layer are bidirectional, and the associations from the
Presenter layer to the Model layer are unidirectional. This is due to the characteristics
of the MVP framework which uses the variant with active Presenter. This MVP variant
does not introduce any associations between the Model and the View layer classes.

Note that the framework we use refers to an abstract (non-existent) technology.
We assume that the View elements specialise from ‘VScreen’ and the Presenter
elements specialise from ‘PUseCase’ which do not in fact exist in any specific tech-
nology framework. Instead of using an arbitrarily chosen technology, we introduce a
simplified abstract framework which should be easy to comprehend and at the same
time easy to translate to specific frameworks like JavaFX, Echo3, GWT or similar.
In fact, the rules presented further in this chapter allow for relatively easy translation
into any framework that is based on the MVP (or MVC) pattern.

http://dx.doi.org/10.1007/978-3-319-12838-2_1

104 4 Explaining RSL with Java

XSomeMNotion
id: long
text: String
whole_number: integer
real_number: float
true_false: boolean
date: DateTime

Fig. 4.3 Attributes in Data Transfer Objects

Figure4.2 illustrates that the classes in all the three layers depend on certain
classes with their names starting with an ‘X’. These are special classes called Data
Transfer Objects (DTO). Instances of these classes are used to pass data between
layers—up from the user down to the database and vice versa. Each DTO has one or
more attributes that hold appropriate data values, as illustrated in Fig. 4.3. We assume
standard built-in data types like integer, float and boolean. Also, String and DateTime
are assumed as built-in. Every DTO class contains the standard ‘id’ attribute. This
attribute is a long integer and it holds the object’s unique identifier. These identifiers
are used to indicate objects within lists and can serve for organising object retrieval
from the database.

The target MVP classes have a specific structure as illustrated in Fig.4.4. This
structure is assumed in the translation rules presented in the following sections. The
classes follow strict rules regarding the attributes and operations they possess.

VScreen PUseCase
fields: FieldList invokingUC: PUseCase
show() returnSentence: String
close() invoke(puc: PUseCase)
init() return(res: integer)

onTrigger(trigger_id: integer)

1

returned(res: integer)

VSomeScreen

PSomeUseCase

tmpsimplenotion: XSimpleNotion
tmplistnotionid: long
result: integer

tmpsimplenotion: XSimpleNotion

setSimpleNotion(xsimplenotion: XSimpleNotion)
setListNotion(xlistnotion: XListNotion[])
getSimpleNotion() selectsTrigger(xsimplenotion: XSimpleNotion)
getListNotion(): long selectsTrigger(xlistnotionid: long)

init() returned(res:integer)

onTrigger(trigger_id: String)

MSomeNotion

actionSimpleNotion(xsimplenotion: XSimpleMotion): integer
actionListNotion(xlistnotionid: long): integer
getSimpleNotion(): XSimpleNotion

getListNotion(): XListNotion[]

Fig. 4.4 Operations in MVP classes

4.1 Translational Framework 105

All the View classes specialise from ‘VScreen’. This class defines one attribute,
two concrete operations and two abstract operations. The single attribute is of type
‘FieldList’ which is specific to our abstract UI framework. This is an ordered list of
data fields. Each field can represent data of one of the standard types (see Fig.4.3).
The fields can be simple (holding one value) or column (holding many values). The
fields can be defined, written and read using operations that are presented further in
this section.

The ‘fields’ attribute is used by the ‘show()’ operation. This operation opens a
new window or page, renders all the fields and presents them to the user. If the
fields have their values set, these values are also presented. The actual layout of the
simple fields in a window is not determined as this is not covered by the presented
semantics definition. Consecutive column fields are presented as one list containing
rows with appropriate values taken from the value lists associated with the columns.
The opposite of the ‘show()’ operation is the ‘close()’ operation which removes the
window associated with the current View element. This operation also shows the
window that was shown previously. In general, ‘show()’ and ‘close()’ operate on a
stack of windows. The first operation places a window on the stack, and the second
removes a window, showing the one that is at the top of the stack.

The above two operations are concrete and are assumed to be already implemented
as part of the framework. The two other operations of ‘VScreen’ are abstract and
have to be implemented by the concrete specialising classes. The ‘init()’ operation
contains code that defines all the fields in a given window. This code should add
field definitions to the ‘fields’ attribute. The ‘onTrigger()’ operation is a standard
event handler operation that is called by the operating system whenever an event
occurs within a user interface. Normally, this means pressing a button in a window
or selecting a menu option. This operation has to be implemented in a specialising
class with code that depends on the ‘trigger_id’ parameter. This parameter determines
the actual trigger (button, option) that was selected.

Each class that specialises from ‘VScreen’ has to implement the two abstract oper-
ations, but also to introduce some other operations and attributes. These operations
pertain to setting and getting field values based on DTO attribute values. Figure 4.4
presents an example involving a simple DTO and a list DTO. For simple DTOs there
have to be defined two operations and one attribute. The first operation should write
the fields from the DTO (here: ‘setSimpleNotion()’) and the second should read the
fields (‘getSimpleNotion()’) and set the DTO attribute (‘tmpsimplenotion’). For list
DTOs, we also need two operations but no attribute is needed. The first operation
should write the column fields from a DTO table, while the second operation should
return only the identifier (cf. ‘id” in Fig.4.3) of one DTO from the associated list—the
one currently selected by the user.

Also, the Presenter classes have a strict structure as they all specialise from ‘PUse-
Case’. This abstract class implements a generic invocation mechanism through two
attributes and three operations. This mechanism is in fact an invocation stack that
allows to control the flow of logic between the Presenter class instances. The attribute
‘returnSentence’ is used to remember the context in which the invocation was per-
formed. After returning from invocation, the context has to be restored and control

106 4 Explaining RSL with Java

flow should return to a particular “sentence”. The attribute ‘invokingUC’ is used
by the invoked Presenter class instance. It is tightly related to the ‘invoke()’ and
‘return()’ operations. The first one sets the invoking instance (a derivative of ‘PUse-
Case’) and the second returns control to this remembered invoking instance. Return
of control is done by calling the ‘returned()’ operation of the invoking instance. Its
‘res’ parameter passes the final state of the invoked use case. Every Presenter class
that is involved in invoking Presenter instances should implement the ‘returned()’
operation. We explain this mechanism in detail later in this section.

Invocation control is only part of the logic contained in the Presenter classes.
They must also implement event handlers that contain application logic. These event
handlers respond to triggers that are captured by the View classes. Figure 4.4 shows
a typical example of such operations. Their names reflect the events of selecting
certain triggers in the user interface (buttons, options). When needed, these operations
pass parameters. Two types of parameters are possible: simple DTOs or list DTO
identifiers. For each parameter in an event handler operation, a separate attribute
has to be declared in that class. These attributes are used as temporary storage for
exchanging data between the View layer and the Model layer. In addition to these
attributes, each Presenter class that calls operations of the Model layer should have
the ‘result’ attribute. This attribute is used to store the results of data processing
within the Model layer.

To explain the mechanism that uses the ‘result’ attribute, we use the sequence
diagram presented in Fig.4.5. This diagram generally serves to explain the presented

sc2 : VOtherScreen | n : MSomeNotion

uc : PSomeUseCase

scl : VSomeScreen

1 I
onTrigger(id)_ !

1
1
1
|
1
getNation() :

I

1

I

I

! |
selectdTrigger(xnl) n

1
1 ~
1 i “| | actionNotion(xn1)
1 I
1
1 I
N B
! ! . <TTETTT
I
: : 1 getNotion() 1
1 I :
: ' P I close() L= 2 J
! B\ | |
1
1 I : setNotion(xn2 :
1 I —
1
1 I |j
1 I . > :
: : I SI‘IOW{}]
«—
1 I :
1 I |

Fig. 4.5 Typical MVP dynamics

4.1 Translational Framework 107

variant of MVP in terms of its dynamics. The sequence presented in the diagram
implements a couple of steps in a use case scenario. Full implementation of a use
case will necessitate several of such sequences.

A typical sequence of actions starts with selecting some trigger by the user and
finishes with presenting some screen. After selecting a trigger, the operating sys-
tem calls the ‘onTrigger()’ operation of the currently displayed screen (here: ‘sc1’).
Depending on the trigger ‘id’, an appropriate event handling operation is called from
one of the Presenter class instances (here: ‘uc’). In case some data need to be passed,
a ‘getNotion()’ operation has to be called first. This operation collects data from
the current screen’s fields and places them in a temporary DTO attribute. Then, this
attribute is passed as the parameter (here: ‘xnl’) of the event handling operation
(here: ‘selectsTrigger()’). Communication between the View and the Presenter is
asynchronous, so the ‘selectsTrigger()’ message does not have a return message;
‘onTrigger()’ does not wait for ‘selectsTrigger()’ to finish.

After a Presenter class instance takes control, the sequence depends on the par-
ticular logic that is needed. This logic can involve performing some reading, writing
or processing data by the Model layer. It also involves calling operations from the
View layer. In the example in Fig.4.5 we see that this particular logic starts by
performing some domain logic action (‘actionNotion()’) on a Model class instance
(‘n’). The appropriate message is synchronous and thus can return a result. As we
can see in Fig.4.4, the appropriate operations of the Model layer classes return
integer values. These values can serve to make certain decisions by the Presenter
and branching the flow of control. Our example sequence diagram does not show
alternative flows and concentrates on only one of them. After some data manipula-
tion is done by the Model layer instance (‘n’), the logic may involve retrieving some
data and this is done through an appropriate data passing operation (‘getNotion()’).
The data passed from the Model can then be transferred to the View through calling
the appropriate setter operation in the View layer (‘setNotion()’). It can be noted
that both the getter and the setter operations are synchronous because the Presenter
needs to wait for their completion before commencing other actions. In our particular
example, after setting the data within the appropriate View instance (‘sc2’), it is then
shown to the user. In one of the previous actions, the Presenter can ask the previous
screen element (‘sc1’) to close itself (‘close()’).

This general structure and dynamics is implemented with detailed code which we
denote in a Java-like language. Figures4.6 and 4.8 present typical implementations
of the operations described above. The figures contain only the method contents, and
the appropriate operation signature (parameters, return types) can be found in the
UML notation in Fig.4.4.

Figure 4.6 presents the field-related code of the View layer classes. The ‘init()’
method is called at the beginning and initialises the ‘fields’ attribute for a given
View class. All the instructions in the method’s code operate on ‘fields’ and add
respective elements. There are several possible instructions to add fields of various
basic types. For simple fields, we can also add an optional label. For example, line
1 in our example adds a new text field (containing a string) with the label “Text”.

108 4 Explaining RSL with Java

init()
01: fields.addLabel ("Text"); fields.addTextField() :
02: fields.addLabel ("Number"); fields.addIntegerField() ;
03: fields.addIdClField()
04: fields.addTextClField("Text");
05: fields.addFloatClField("Real number") ;
06: fields.addButton("Save")

getSimpleNotion()

01: tmpsimplenotion.text = fields.getTextField(l) ;
02: tmpsimplenotion.number = fields.getIntegerField(2);

getListNotion()

01: return fields.getIdClField(3);

setSimpleNotion(...) |
01: tmpsimplenotion = xsimplenotion;
02: fields.setTextField(l,tmpsimplenotion.text) ;
03: fields.setIntegerField(2, tmpsimplenction.number) ;

setListNotion(...) |
Ol:for (int i=1; i<=len(xlistnotion); i++) {

02: fields.setIdField(3,xlistnotion[i].id);

03: fields.setTextField(4,xlistnotion[i].text) ;

04: fields.setFleoatField(5,xlistnotion[1l].realnumber) ;
05: }

Fig. 4.6 Typical code for the View classes (init/get/set)

Other possibilities include adding integer fields (see line 2), floating point number
fields (Float), date/time fields and Boolean fields.

In addition to simple fields that hold single values, we can add column fields. The
respective instructions contain the ‘Cl’ infix, like in lines 3—5. Possible column types
are identical as for the simple fields. A column field can contain a list of values which
are ordered in the sequence in which they were set. Several column fields that are
initialised together form a list field. Each of the columns in the list has a header text
which is specified as a string in a parameter within the ‘Cl” instructions. A special
type of column is the ID column (see line 3). This column holds object identifiers
that should match the ‘id’ attribute values of the respective list DTOs.

Finally, the screen can hold buttons and these can be added by the instruction
‘addButton()’ (see line 6). The sequence in which the fields are added determines
the layout of the screen. An example is shown in Fig.4.7. This layout is consistent
with the code of the ‘init()’ method shown in Fig.4.6. Note that the ID column is not
shown—it is only held internally for referencing selected rows in the list, which is
explained below.

The next method in Fig.4.6 is ‘getSimpleNotion()’. It is an example implemen-
tation of an operation to produce a simple DTO from several fields contained in a
screen element. The presented code assumes that the containing class has an appro-
priate DTO attribute called ‘tmpsimplenotion’. The appropriate attributes of this
DTO are set with the values contained in consecutive fields. For instance, to get a

4.1 Translational Framework 109

Fig. 4.7 Example screen
layout Text I I

Number | |

Text Real number

Save

text field value, we need to use the instruction ‘getTextField(x)’. This instruction
has one parameter that determines the field sequence number. Fields are numbered
according to the sequence in which they were added to the ‘fields’ attribute in the
‘init()’ method.

Attribute values for simple DTOs are retrieved from simple fields. Lists, composed
of several column fields are handled differently as shown in the ‘getListNotion()’
method. As we can see in Fig.4.4, only one long integer value is returned in such
case. This value is taken from the appropriate ID field using the instruction ‘getld-
ClField(x)’. This instruction returns one value which is the ID value of the row
currently selected by the user within the current list element.

The remaining two methods in Fig. 4.6 represent the field setters. The first method
(“setSimpleNotion()’) is used to set the values of the simple fields associated with
a specific simple DTO. This method assumes a single parameter which is a DTO.
The fields are set with appropriate ‘set’ instructions (see lines 2 and 3) which are
analogous to the ‘add’ and ‘get’ instructions presented above. These instructions
have two parameters. The first parameter determines the field id number, like for the
‘get’ instructions, while the second parameter is the value to be set taken from an
appropriate attribute value of a DTO. This setting is supported by the class attribute
(here: ‘tmpsimplenotion’) which is assigned with the appropriate DTO parameter
(see line 1, compare with Fig.4.4).

The second setter method (‘setListNotion()’) pertains to list DTOs. It uses the
same instructions as for the simple fields (see lines 3 and 4) but applied to the column
fields. These instructions are called in a ‘for’ loop which iterates over objects in a
DTO table which is the parameter of the method. The ‘set’ instructions applied to
column fields add consecutive values to value lists held within these column fields.
Of course, also the ID column needs to be set with an appropriate ‘set’ instruction
(see line 2).

Fields are read and written as a result of certain actions performed by the user.
These actions are handled by the View layer classes through the ‘onTrigger()’ meth-
ods. A typical structure of code in this method is presented in Fig.4.8. It is a series
of ‘if” statements which check the ‘trigger_id’ passed as the method’s parameter.

110 4 Explaining RSL with Java

onTrigger(...)
01: if (trigger id == "Save") {
0z2: getSimplelotion() ;
03: psomeusecase. selectsTrigger (tmpsimplencotion) ;
04: }
selectsTrigger(...)
01: result = mothernotion.acticonOtherNotion(tmpsimplenotion) ;
02: if (result == 0) {
03: tmpothernotion = mothernotion.getOtherNotion() ;
04: vsomescreen.close() ;
05: votherscreen. setOtherNotion (tmpothernotion) ;
06: vothersecreen.show() ;
Q7: }
08: /* if (result == 1) etc. */

Fig. 4.8 Typical code for event handling (View and Presenter)

For a particular trigger, an appropriate Presenter layer operation is called (here:
‘selectsTrigger()’). Of course, the appropriate role identifier (here: ‘psomeusecase’)
is used to determine the specific Presenter class instance on which the operation is
called. If the particular trigger is supposed to pass data to the Presenter, the appro-
priate local ‘get’ operation is called which collects data from the screen’s fields and
puts them into a DTO. Then, this DTO is used as the parameter of the call to the
Presenter layer.

Note that this code is consistent with the typical MVP dynamics presented in
Fig.4.5. This also pertains to the method that implements the Presenter layer event
handler operation (‘selectsTrigger()” in Fig. 4.8). This method contains varying code
which depends on the desired application logic. In our example, the first instruction
is to call a data processing and retrieval operation in the Model layer (‘actionOther-
Notion()’). This operation passes the DTO received from the View layer and returns
an integer result. Depending on this result, different actions can be taken. Our exam-
ple code follows the dynamics presented in Fig.4.5 and performs a sequence of
calls. First, it retrieves data from the Model layer object (some result of previous
data retrieval/processing in the Model layer). Then it closes the current screen, sets
the data in some other screen and shows it to the user.

The above code is suitable for typical situations which involve a single Presenter
class instance. The situation where more Presenter classes are involved is illustrated in
Fig.4.9. Such situations implement the invocation relationships and invocation/final
sentences in RSL use case models. Invocation is equivalent to passing control of the
application logic to the code of another Presenter layer class instance.

The initial sequence of messages for an invocation is similar to the already pre-
sented event handling. It involves the ‘onTrigger()’ method which calls the appro-
priate ‘getNotion()’ and ‘selectsTrigger()’ type methods. The difference is in the
contents of the ‘selectsTrigger()” method. In the “invoking” class (here: ‘PSomeUse-
Case’), this method calls the ‘invoke()’ operation on the “invoked” class instance
(here: ‘POtherUseCase’) and passes reference to the current “invoking” instance

4.1 Translational Framework 111

uc2 : POtherUseCase

ucl: melse

onTrigger(id)

getNotion()

1
selectdTrigger(xnl)
1

selectsTrigger(xn1) :

1
1
1
:
1
>'_L invoke(ucl) |
\‘7< ________
1

1)

1 [}
D selectsOthdrTrigger(xn2) I
il 7%

return(res)

returned(res)

(.. D*‘—

Fig. 4.9 Typical invoke dynamics

(here: ‘ucl’). Then, it calls the ‘selectsTrigger()’ operation on the “invoked” class
instance. This second call passes control to the Presenter class instance associated
with the invoked use case. The contents of the second ‘selectsTrigger()’ operation is
consistent with the schema presented in Fig. 4.8 and implements appropriate appli-
cation logic.

When all the actions controlled by the “invoked” instance (here: ‘uc2’) are com-
pleted, control needs to be passed back to the “invoking” instance (here: ‘ucl’). This
is done in some event handler method which is related to the final sentences in a use
case scenario (e.g. pressing the final acknowledgement button). The last part of this
method’s code contains a return sequence. This consists of calling the local ‘return()’
method that in turn calls the ‘returned()’ method in the “invoking” instance. We may
remember that this is possible thanks to the ‘invoke()’ method which appropriately
sets the local ‘invokingUC” attribute to point back to ‘ucl’ (see also Fig.4.4).

Figure4.10 shows the details of the methods that implement the sequence in
Fig.4.9. The first piece of code is the “proxy” event handler function that starts the
invocation sentence (here: ‘selectsTrigger()’). It first saves the identifier that marks
the place in the original use case scenario to which control should be returned (see line
2). Later, this identifier is used to continue executing the correct application logic
after returning from the invocation. Further, the event handler calls the ‘invoke()’
method on the invoked Presenter class instance (here: ‘potherusecase’, see line 3).

112 4 Explaining RSL with Java

selectsTrigger() invoke()

01l: tmpnl = xnl; 01: invokingUC = pUC;

02: returnSentence = "7";

03: potherusecase.invecke(this) ; rEturn(]

04: potherusecase.selectsTrigger (tmpnl) ; 01: if (invokingUC '= null) {

02: invekingUC. returned(ret) ;

returned() 03: }

01: if (returnSentence == "7") {

02: /* some code */

03: }

Fig. 4.10 Code for the invocations

It passes the pointer to the current instance (‘this’) which is saved in the invoked
instance (see the one line code for ‘invoke()’). Finally, the event handler calls the
actual event handler with the same name (see line 4). If the event necessitates passing
DTOs, they are set as parameters (previously assigned to the temporary attribute in
line 1).

For the return sequence the ‘return()’ method contains very simple code that sim-
ply calls the ‘returned()’ method. This is a convenience method to avoid repeating in
several places. If there is no invoking instance saved under ‘invokingUC’, the return
function does nothing which is equivalent to terminating the whole application. In
other cases the ‘returned()’ method of the invoking instance continues processing.
It determines the value of the ‘returnSentence’ (see line 1) and performs code that
is relevant for the scenario that follows the invocation. Note that there can be sev-
eral possible ‘returnSentences’ and thus the ‘return()’ method can have more ‘if’
conditions.

This completes our definition of the translation framework. All the translation rules
presented in the following sections produce code that is compliant with this general
scheme. The scheme can be treated as a high-level “virtual machine” that would
execute models written in RSL. By translating RSL constructs into code compliant
with the scheme, we will define the runtime semantics of RSL. This is divided into
three parts, each related to a specific aspect of the translational framework. The
first part pertains to the general structural elements of the framework (classes and
associations) and the rules will be denoted with the letter ‘G’. The second part treats
the View layer code and the rules are denoted with ‘V’. Finally, the last part deals
with the Presenter layer and the rules are denoted with ‘P’.

In general, the rules should be applied in the above overall sequence and in the
sequence of their numbering. So first, the source RSL model should be subject to
translation according to the general rules from GO to G7. Then the View layer ele-
ments should be created according to rules V1-V8, and the Presenter layer elements
according to rules P1-P13. All the rules that pertain to sequences of sentences should
be applied in accordance with these sequences, observing sentence numbering in sce-
narios. The code for the sentences placed later in scenarios should be appended at
the end of the appropriate code for the sentences placed earlier.

4.2 Semantics Involving the General Structure 113

4.2 Semantics Involving the General Structure

The first part of our definition of RSL’s runtime semantics includes simple rules that
translate top-level RSL constructs into the MVP structure. For each rule we provide
a definition which includes (1) types and layout of the source RSL elements, (2)
types and layout of the target MVP elements. Each definition is illustrated with an
example diagram, where the left-hand side shows the source configuration and the
right-hand side the target configuration.

Rule GO. Every RSL model produces two top-level classes: ‘PUseCase’and
‘VScreen’. The PUseCase class contains two attributes: (1) ‘invokingUC’ of type
‘PUseCase’, (2) ‘returnSentence’ of type ‘String’. It also contains two concrete
operations: (1) ‘invoke()’ with parameter ‘pUC’ of type ‘PUseCase’, (2) ‘return()’
with parameter ‘ret’ of type ‘integer’, and one abstract operation ‘returned()’ with
the same parameter as ‘return()’. The VScreen class contains one parameter ‘fields’
of type ‘FieldList’. It also contains two concrete operations: (1) ‘show()’, (2)
‘close()’, and two abstract operations: (1) ‘init()’, (2) ‘onTrigger()’ with one para-
meter ‘trigger_id’ of type ‘integer’.

This rule, illustrated in Fig. 4.11, does not specify any source elements. Itis applied
to any RSL model regardless of its contents. The two created classes are the basis for
other classes, created according to rules G1 and G2. The attributes and operations
of ‘“VScreen’ and ‘PUseCase’ are used to control the screen-related logic and the
application logic, according to the descriptions in the previous section.

Rule G1. Every Use Case is translated into a Presenter class. The translated class
specialises from the ‘PUseCase’ class translated according to rule GO. The class
name is derived from the use case name by removing spaces, turning to upper camel
case notation and adding the ‘P’ prefix.

This simple rule is illustrated in Fig.4.12. Translation according to rule GlI is
obvious. Use cases generally define the application logic of the system. Thus, it is
natural to turn them into Presenter classes which control the application logic in
terms of scheduling the sequences of actions involving the View and the Model. The
Presenter classes all specialise from the ‘PUseCase’ class which is shown as already

VScreen PUseCase
- fields: FieldList invokingUC: PUseCase
translate > | show() returnSentence: String
close() invoke(puc: PUseCase)
init() return(res: integer)
onTrigger(trigger_id:integer) returned(res: integer)

Fig. 4.11 Rule GO: PUseCase and VScreen

114 4 Explaining RSL with Java

PUseCase

PAddNewBook

Fig. 4.12 Rule G1: Use cases to Presenter classes

uco71
Add new book

VScreen

Screen
VNewBookForm
new book form

init()
onTrigger(trigger_id: integer)

Fig. 4.13 Rule G2: Screen notions to View classes

existing (above the dashed line). Of course, their names have to be written without
spaces and the camel case notation is selected as one often used by programmers. !

Rule G2. Every Screen-type Notion is translated into a View class. The translated
class specialises from the ‘VScreen’ class translated according to rule GO. The
class name is derived from the notion name by removing spaces, turning to upper
camel case notation and adding the ‘V’ prefix. The class contains two concrete
operations: (1) ‘init()’, (2) ‘onTrigger()’ with one parameter ‘trigger_id’ of type
‘integer’.

This simple rule is illustrated in Fig.4.13. As for G1, translation for rule G2
is obvious. Screen-type notions naturally translate into View layer classes which
handle individual screens in the user interface. The View classes all specialise from
the “VScreen’ class which is shown as already existing (above the dashed line). Due
to this specialisation the View layer classes need to obtain the necessary operations
that concretise the two abstract operations of the “VScreen’ class.

Rule G3. Every View-type Notion is translated into a Model class. The class name
is derived from the notion name by removing spaces, turning to upper camel case
notation and adding the ‘M’ prefix.

This rule is illustrated in Fig. 4.14. The example shows a Simple View notion but
the same rule applies to List View notions as well. Translation according to rule G3

1 Upper camel case consists in writing compound words so that each word begins with a capital
letter. Camel case differs from upper camel case in that the first letter is small.

4.2 Semantics Involving the General Structure 115

Simple View
MBookData
book data

Fig. 4.14 Rule G3: Data Views to Model classes

assumes that data processing is divided between several classes and the division is
made according to the View notions. For each View notion, a class is defined that
can create, read, update and process data associated with this notion.

Rule G3 can also have its variant where the Model layer classes are translated from
Concept-type Notions instead of View-type Notions. In this variant, each Data View
Notion needs to be related to an appropriate “main” concept which determines the
Model layer class that will be used for data processing. This slightly complicates the
rules that involve the Presenter layer (see rules P5—P7) and thus we do not elaborate it
further in this chapter. The reader is encouraged to formulate the possible alternative
rules as an exercise.

Rule G4. Every View-type Notion with associated Attribute-type Notions is trans-
lated into a DTO class. The class name is derived from the notion name by removing
spaces, turning to upper camel case notation and adding the ‘X’ prefix. The Attribute
Notions are translated into the attributes of the DTO class. The attribute names are
copied from the Attribute Notion names. The attribute types are translated from the
Attribute Notion types (‘text’ to ‘String’, ‘whole number’ to ‘integer’, ‘real num-
ber’ to ‘float’, ‘true/false’ to ‘boolean’, ‘date’ to ‘DateTime’). In addition, each
DTO class obtains the ‘id’ attribute of type ‘long’.

Rule G4 is illustrated in Fig.4.15. The example shows a Simple View notion with
one Attribute but the same rule applies also to List View Notions and to all the View
Notions with many associated Attribute Notions. The purpose of this translation is to
provide constructs for passing data between the MVP layers. These data are grouped
into the various View Notions, thus it is natural to translate these elements into Data
Transfer Objects. Note that List Views also produce simple DTOs. However, in code,
these DTOs are further grouped into tables (e.g. XBookList []).

Simple View

book data

l ; XBookData
translate
id: long

title: String

Attribute (text)
title

Fig. 4.15 Rule G4: Data Views with attributes to DTO classes

116 4 Explaining RSL with Java

uco71
Add new book

VNewBookForm

vnewbookform
&) paddnewbook
{Sys;tem shows new I:!ook form PAddNewBook

Screen
new book form

Fig. 4.16 Rule G5: Associations between Presenter and View classes

Rule GS. Every Use Case with a hyperlink to a Screen Notion is translated into
a View—Presenter association. The Use Case contains at least one SVO Sentence
where the Predicate is a hyperlink to a Verb Phrase contained in a Notion of type
‘Screen’. This configuration is translated into an association navigable in both direc-
tions. The association connects two classes. The first class is the class translated
from the Use Case according to rule G1. The second class is the class translated
from the Notion according to rule G2. The role identifiers for the association are
derived from the class names—with all letters turned to small case. The association
end multiplicities are ‘1’ (UML default).

Rule GS5 is illustrated in Fig.4.16. The presented sentence is an SVO Sentence,
where the Predicate (‘show new book form’) refers to a Screen Notion. This means
that the Presenter class code will call some operation of the View class (here: to show
the screen element). For this purpose, an association from the Presenter to the View
is needed. The association has to be also directed in the other direction as the View
class code normally contains event handler code that will call some operations of the
Presenter class.

Rule G6. Every Use Case with a hyperlink to a View Notion is translated into a
Presenter—Model association. The Use Case contains at least one SVO Sentence
where the Predicate is a hyperlink to a Verb Phrase contained in a Notion of type
‘Simple View’ or ‘List View’. This configuration is translated into an association,
navigable from a Presenter class to a Model class. The Presenter class is the class
translated from the Use Case according to rule G1. The Model class is the class
translated from the Notion according to rule G3. The role identifier for the navigable
end is derived from the Model class name—with all letters turned to small case.
The association end multiplicities are ‘1’ (UML default).

Rule G6 is illustrated in Fig.4.17. The presented sentence is an SVO Sentence
where the Predicate (‘validate book data’) refers to a Simple View Notion. Anal-
ogous examples could also be made for a List View notion. The situation here is
similar to that in rule G5. The Presenter class code will call some operation of the

4.2 Semantics Involving the General Structure 117

uco71
Add new book

PAddNewBook

.
() mbookdata

{Syﬁtem validates bo'?k data MBookData

T4

Simple View
book data

Fig. 4.17 Rule G6: Associations between Presenter and Model classes

Model class (here: to validate some data). For this purpose an association from the
Presenter to the View is needed. Unlike in rule G5, the Model class code does not
call any operation from the Presenter class, so navigability in the opposite direction
is not needed.

Rule G7. Every «invoke» relationship between two Use Cases is translated into a
Presenter—Presenter association and an invoke-related operation. The association
is made between two classes that already exist and were translated from the two Use
Cases according to rule G1. The association is navigable in the direction consistent
with the direction of the «invoke» relationship. The role identifier for the navigable
end is derived from the respective class name—with all the letters turned to small
case. The class at the non-navigable end is appended with one operation: ‘returned’
with one parameter ‘ret’ of type ‘integer’.

Rule G7 is illustrated in Fig. 4.18. The purpose of the added association between
the Presenter classes is obvious, where the “invoking” class instances need to be able
to access the appropriate operations in the “invoked” class instances. The operation
created in the “invoking” class is the concretisation of the abstract operation defined in
the ‘PUseCase’ class (see rules GO and G1). This operation is called by an “invoked”

uco71 PAddNewBook

Add new book
i paddnewbook
«invoke»

uco70 PShowBookList

Show book list -
returned(ret: integer)

Fig. 4.18 Rule G7: Associations between Presenter classes

118 4 Explaining RSL with Java

class instance whenever control should return to an “invoking” class instance. Note
that access to the “invoking” class from the “invoked” class is not realised through
the association (not navigable in this direction) but is made possible through the
‘invokingUC” attribute inherited from the ‘PUseCase’ class.

Rule G8. Every usage relationship between an Actor and a Use Case is semantically
equivalent to an invoke relationship with an additional invoking Use Case. The
Actor is substituted by an additional Use Case which becomes the “main” use case
which is invoked at the start of the application. The usage relationship is substituted
by an «invoke» relationship. The substituting use case has a standard scenario
containing four sentences: (1) initial Actor-to-Trigger sentence, (2) System-to-
Screen sentence that shows the main application screen, (3) invocation sentence
that invokes the original Use Case that is in the relationship with the Actor, (3)
rejoin sentence that refers to sentence 2.

Rule G8 is illustrated in Fig.4.19, where the RSL model to the right of the thick
double arrow is the original model. It contains an Actor (‘Librarian’) which uses
a Use Case (‘Show book list”). The Actor is semantically substituted by an appro-
priately named new Use Case (‘Start librarian app’) and the usage relationship is
substituted accordingly. The new use case contains a scenario that generally shows
the application’s main screen (‘librarian main screen’); showing of this main screen
is part of the application’s startup sequence (equivalent to pressing the ‘start’ button).
The main screen contains appropriate Trigger elements that result from the contents
of the invoked Use Case. This equivalent RSL model is subject to other semantic rules
which define the target code structure, for instance, from rule V6c we obtain code
that generates an appropriate button that starts the invoked use case. In this way, we
can simplify the other semantic rules by suppressing the variants that involve actors
and usage relationships.

Trigger
start

ucooo Py
Start librarian app o 0
P] 1. Librarian selects start
Librarian R .
; 2. System shows librarian main screen
uco70
Show book list

«invoken | = invoke: Show book list
Fig. 4.19 Rule G8: Equivalence of usage relationships

4

Screen

librarian main screen

= rejoin 2
uco7o
Show book list

4.3 Semantics Involving the View Layer 119

4.3 Semantics Involving the View Layer

The next group of rules involves the RSL constructs that translate into the elements
of the View layer. The already presented general rules involved creating UML classes
with attributes and operations and associations between them, while the current group
of rules mostly pertain to creating detailed Java code of the methods that implement
the operations defined in UML classes according to rules GO—G7. However, this also
involves appending certain new operations and attributes to the existing classes.

Rule V1. Every Simple View Notion related with a Screen Notion is translated
to field initialisation code. The relation between the Simple View Notion and
the Screen Notion can be directed in either direction. The translation creates
code as part of the method of the existing ‘init()’ operation of the View class
created using rule G2. For each Simple View, the respective code is appended
to this method. The code consists of the instructions ‘fields.addLabel()’ and
‘fields.Add. . .Field()’. For every Attribute Notion that the Simple View Notion
points to, a pair of these instructions is created. The parameter of the ‘addLa-
bel()’ instruction is taken from the Attribute name. The type of the ‘Add. . .Field()’
instruction depends on the type of the Attribute Notion: for ‘text—‘AddTextField()’,
for ‘whole number’—‘AddIntegerField()’, for ‘real number’—‘AddFloatField’,
for ‘true/false’—‘AddBooleanField()’ and for ‘date’—°‘AddDateTimeField()’. The
translation also adds an attribute to the respective View class. The attribute is typed
as a DTO, created according to rule G4. The attribute name is derived from the
Simple View with spaces removed and ‘tmp’ added as prefix.

Rule V1 illustrated in Fig.4.20 is straightforward. We can see the class “VNew-
BookForm’ with the ‘init()’ operation that was created from the Notion ‘new
book form’ according to rule G2. The method for ‘init()’ is appended with two
instructions that create a single field from the only Attribute of ‘book data’—the
‘title’. In addition, the ‘tmpbookdata’ attribute is added to the class definition.

Screen
new book form
VNewBookForm
T (or) tmpbookdata: XBookData

Simple View =
init
book data 0
init()

= 01: fields.addLabel ("Title");
Attribute (text) 02: fields.addTextField() ;

title

Fig. 4.20 Rule V1: Screens with simple Views to field initiation

120 4 Explaining RSL with Java

It is typed with the appropriate DTO class (‘XBookData’), created with rule G4.
This attribute is used by the code created according to rules V3, V5 and V7.

Rule V2. Every List View Notion related with a Screen Notion is translated to
column initialisation code. The relation between the List View Notion and the
Screen Notion can be directed in either direction. The translation creates code
as part of the method of the existing ‘init()” operation of the View class created
using rule G2. For each List View, the respective code is appended to this method.
The code consists of one instruction ‘fields.addIdClField()’ followed by one or
more instructions ‘fields.add. . .CIField()’. For every Attribute Notion that the List
View Notion points to, one of the ‘add...ClField()’ instructions is created. The
parameter of the instruction is taken from the Attribute name. The type of the
instruction depends on the type of the Attribute Notion and is analogous to that
in rule V1. The translation also adds an attribute to the respective View class. The
attribute is typed as a table of DTOs, created according to rule G4. The attribute
name is derived from the List View with spaces removed and ‘tmp’ added as prefix.

Rule V2illustrated in Fig. 4.21 is similar to the example for rule V2. The difference
lies in that the field addition instructions (e.g. ‘addTextField()") are substituted with
column addition instructions (e.g. ‘AddTextClField()’). Also, the respective attribute
is defined as a DTO table (‘XBookList[]") instead of a single DTO.

Rule V3. Every Simple View Notion with a relation pointing at a Screen Notion
is translated to field setter code. The relation is in the direction from the Simple
View Notion to the Screen Notion. First, the translation creates an appropriate
setter operation. The operation’s name is derived from the Simple View name by
removing spaces, turning to upper camel case notation and adding the ‘set’ prefix.
The operation has one parameter which is of a DTO type, where the DTO is created
according to rule G4. The parameter’s name is the same as the type but with all
letters turned to small. Next, the method for the setter is filled with code that depends
on the Attributes that the Simple Notion points at. For each attribute, an appropriate
‘fields.set. . .Field()’ operation is added. These instructions are added in the same
sequence as the field initiation instructions according to rule V1. The types of
the ‘set. . .Field()’ instructions depend on the type of the given Attributes, and are
analogous to those listed in rule V1. These instructions have two parameters. The
first parameter is the field number, consistent with the field sequencing during their
addition in rule V1. The second parameter is the actual value, which is taken from
the appropriate DTO instance. The DTO instance is the temporary attribute created
according to rule V1. This attribute is initialised in the beginning of this code from
the setter operation’s parameter.

Figure 4.22 provides illustration for rule V3. As we can see, the ‘book data’ notion
is turned into the ‘setBookData’ operation in the class created from the related Screen.
The only attribute of ‘book data’ is translated into the ‘setTextField()’ instruction
(see line 2). The field is set from the ‘title’ of the ‘tmpbookdata’ object. This object
is initialised in line 1 with the operation’s parameter. This usage of the temporary

4.3 Semantics Involving the View Layer 121

Screen
book list window
VBookListWindow
T]

tmpbooklist: XBookList[]

List View A
init
] book list 0
l init) |

01: fields.addIdClField() ;

: 02: fields.addTextClField("Title");
title 03: fields.addIntegerClField('Pages") ;

Attribute (text)

Attribute (whole number)
pages

Fig. 4.21 Rule V2: Screens with List Views to column initiation

Soeen VNewBookForm
new book form
(...)

T setBookData(xbookdata: XBookData)

Simple View ’—I'> ()
t t
book data TEnes e,
setBookData()]

l 01: tmpbookdata = xbookdata;

Attribute (text) 02: fields.setTextField(l, tmpbookdata.title) ;
title

Fig. 4.22 Rule V3: Screens with Simple Views to field setters

variable (here: ‘tmpbookdata’) is used for convenience reasons and further potential
manual optimisation. It is not necessary in the scope of the current translation rules.

Rule V4. Every List View Notion with a relation pointing at a Screen Notion is
translated to column setter code. The relation is in the direction from the List
View Notion to the Screen Notion. First, the translation creates an appropriate
setter operation, with the name analogous to that in rule V3. The operation has
one parameter, analogous to that in rule V3 but the type is a DTO table. Next, the
method for the setter is filled with code that depends on the Attributes that the
List Notion points at. The code contains a ‘for’ loop that iterates through all the
elements of the DTO table. Within the loop, for each DTO attribute, an appropriate
‘fields.set. . .ClIField()’ operation is added. These instructions are added in the same
sequence as the column initiation instructions according to rule V3. The types of
the ‘set...ClField()’ instructions depend on the type of the given Attributes, and
are analogous to those listed in rule V1. These instructions have two parameters,
analogous to those described in rule V3. The DTO table instance is initialised
analogously to rule V3.

122 4 Explaining RSL with Java

Screen VBookListWindow
book list window ()

setBookList(xbooklist: XBookList[])
List Vi ,—\ (...)
= ;::ﬂkhst translate

’ setBookList() |

01: tmpkooklist = xbooklist:

Attribute (text) 02: for (int i=1; i<=len(xbooklist); i++) {

itl 03: fields.setIdField(l, tmpbocklist[i].id);

title 04: fields.setTextField(2,tmpbooklist[i].title):
05: fields.setIntegerField(3, tmpbooklist([i].pages)
06: }

Attribute (whole number)
pages

Fig. 4.23 Rule V4: Screens with List Views to column setters

Rule V4 is illustrated in Fig.4.23. This example presents a List View Notion
(‘book list”) with two Attributes. The code that is produced involves the DTO class
(‘XBookList’) derived from this notion. A table of DTO instances is passed as the
parameter and then assigned to a temporary variable (‘tmpbooklist’). The ‘for’ loop
iterates over all the instances contained in the ‘tmpbooklist’ table. For each object,
three columns are appended with data. Note that these columns were created accord-
ing to rule V2 (see Fig.4.21).

Rule VS. Every Data View Notion with a relation pointing from a Screen Notion
is translated to field getter code. The relation is in the direction from the Screen
Notion to the Data View Notion. First, the translation creates an appropriate getter
operation. The operation’s name is derived from the Data View name by removing
spaces, turning to upper camel case notation and adding the ‘get’ prefix. If the Data
View is a List View, then the getter returns a long integer, otherwise it has no return
value and no parameters. For a Simple View, the method code for the above oper-
ation consists of several assignment operations. Each assignment pertains to one
Attribute Notion pointed at by the Simple View. The assignment sets the attributes
of the temporary DTO which was created according to rule V1. The values for the
assignment are retrieved from the fields using the ‘fields.get. . .Field()’ instructions.
The instructions have one parameter—the field number, analogous to that in rule
V3. For the List View, the code for the operation consists of just one assignment—
the ‘return’ value is assigned with the ‘fields.getldCIField()’ instruction for the
appropriate column field number.

Rule V5isillustrated in Fig. 4.24. This example presents a Screen with two related
Data Views—‘book filter’ and ‘book list’. This produces two ‘get’ operations with
appropriate names derived from the Data View names. The code for the first operation
consists of one assignment, where the temporary DTO’s attribute ‘title’ is set with
the value of the appropriate text field, while the code for the second operation returns
the value of the respective ID column field.

4.3 Semantics Involving the View Layer 123

Screen VBookListWindow
[~ | book list window)

l getBookFilter()

simple View getBookList(): long
book filter]

getBookFilter()
Attribute (text) 01: tmpbockfilter.title = fields.getTextField(1l): |
2 getBookList)
01: return fields.getIdClField(2): |
List View
Lo -
book list

Fig. 4.24 Rule V5: Screens with Views to field getters

Rule V6. Every Trigger Notion in some relation with a Screen Notion is translated
into button initiation code. There can be three possible situations, (a) The Screen
directly points at the Trigger with a relationship, (b) The Trigger is hyperlinked
from an SVO sentence that directly follows an SVO sentence where the Screen is
hyperlinked, (c) The Trigger is hyperlinked from the first SVO sentence of a use
case and that use case is invoked directly after an SVO sentence where the Screen
is hyperlinked. For (b) and (c), the sentence that involves the Screen should shift
the dialogue state to “actor” and this state should not change until the sentence
with the Trigger is reached in control flow. The two sentences can be separated by
other sentences that do not change the dialogue state. For situations (a), (b) and (c),
the ‘init()’ operation of the class translated from the Screen notion (see rule G2) is
appended. For each relevant Trigger, a ‘fields.addButton()’ instruction is created
and added to the end of the current code. The instruction has one parameter—the
button name, which is derived from the Trigger name.

Rule V6 is illustrated in Figs.4.25, 4.26 and 4.27. Figure 4.25 shows the variant
(a). In this variant, the rule is elementary in terms of the source model—a Screen
(‘new book form’) points at a Trigger (‘save button’). This results also in a very
simple update of the target model—the ‘init()’ method is appended with one line
of code (line 1) which differs from case to case only with the parameter text (here
“Save”).

Exactly the same code as in Fig.4.25 is translated from the example model in
Fig.4.27. This situation pertains to version (b) of rule V6 and is more complex. We
have the same two domain elements, but the Screen (‘new book form’) does not
necessarily point directly to the Trigger (‘save button’). Their relation is determined
through the presence of hyperlinks to these two elements in a use case scenario.
The scenario has to contain a sentence which hyperlinks to the Screen element.
In our example, this is the sentence ‘System shows new book form’.This sentence

124 4 Explaining RSL with Java

VNewBookForm

Screen

newbookform | 3= = === 0 sseeeememeemneeeceeccneeeas
| it
01: fields.addButton("save") ;
Trigger

save button

Fig. 4.25 Rule V6a: Screens with Triggers to button initiation

uco71
Add new book

Screen
new book form

y

=) _

System shows new book form

()] 4 Trigger
:Js;arsefects save button - -~~~ save button

Fig. 4.26 Scenario configuration with Screen and Trigger (for rules V6b, V7b and V8b)

uco70
Show book list

() Screen
System shows book list window - -} - -~ =7 | hook list window
=>invoke: Show book loan history

()

Trigger
7| history button

User selects history button -~ List View
() book list

uco73
Show book loan
histor

Fig. 4.27 Scenario configuration with Screen, invoke and Trigger (for rules Vé6c, V7c, V8c)

is a System-to-Screen sentence and it shifts the dialogue state to ‘actor’.? This is
equivalent to showing some window in the user interface. This sentence can be
followed by any number of sentences that do not shift the dialogue back to ‘system’.
These are Actor-to-DataView sentences, similar to ‘User enters book data’. Finally,
our scenario reaches an Actor-to-Trigger sentence (‘User selects save button’). This

2 Dialogue state is explained in detail in Chap. 2, see Fig.2.24.

http://dx.doi.org/10.1007/978-3-319-12838-2_2
http://dx.doi.org/10.1007/978-3-319-12838-2_2

4.3 Semantics Involving the View Layer 125

means that the currently shown Screen element (‘new book form’) has to possess the
said ‘save button’.

This second variant of rule V6 allows to omit the relations between Screens and
Triggers. When developing an RSL model, the developers can concentrate on writing
precise scenarios that involve Triggers and do not care about linking these Triggers
with the Screen elements in an explicit manner. For the sake of coherence and better
comprehension, the links can be introduced into the source model. Moreover, we
suggest equipping the RSL editors with an appropriate mechanism to manage (add,
remove) these links based on the current configurations of sentences within scenarios.

The same code as for variants (a) and (b) is produced also in variant (c) of rule
V6. This is illustrated in Fig.4.27 which shows two use cases with an invocation
relationship. The configuration is somewhat similar to that in rule V6b. However, the
System-to-Screen and Actor-to-Trigger sentences are components of two different
use cases. The first sentence (‘System shows book list window”) has to be followed
by an invocation sentence. Then the second sentence (‘User selects history button’) is
the first sentence of the invoked use case. The appropriate Trigger (‘history button’)
should—obviously—be present in the current Screen element (‘book list window”)
for these scenarios to be possible. Thus, the appropriate button initiation code has to
be added according to the rule.

Rule V7. Every Trigger Notion (optionally pointing at one or more Simple Views) in
some relation with a Screen Notion is translated into event handler code. There can
be three possible situations: (a) The Screen directly points at the Trigger through
a relationship, (b) The Trigger is hyperlinked from an SVO sentence that directly
follows an SVO sentence where the Screen is hyperlinked, (c) The Trigger is hyper-
linked from the first SVO sentence of a use case which is invoked directly after an
SVO sentence where the Screen is hyperlinked. The event handling code is inserted
into the ‘onTrigger()’ method of the View class created according to rule G2 from
the Screen element. The generated code is an ‘if” statement checking the ‘trigger_id’
to be the name of the current Trigger. If it is, the appropriate operation is called
on the Presenter class instance in the form ‘instancename.operation(parameters)’.
The instance name is the name of the association role created according to rule
G5. The operation name refers to the operation created according to rule P4. The
parameters are optional and are created only if the Trigger points at one or more
Simple Views. The parameters are temporary (‘tmp. ..”) variables created from the
Simple Views according to rule V1. For each parameter, a getter operation (rule
V5) is called before the call to the Presenter class instance.

Rule V7 is illustrated in Figs.4.26 and 4.28. Figure4.28 shows variant (a) and
Fig.4.26 shows variant (b) where the source models are the same as in rule V6.
Figure4.27 refers to variant (c) but presents a situation with a List View element
and is discussed under rule V8. The example in Fig.4.28 shows a configuration
extended from that in Fig. 4.25. The Screen element (‘new book form’) and the related
Trigger element (‘save button’) are enough to create the appropriate ‘if” instruction
and condition in the correct ‘onTrigger()’ method. To create the calls inside the

126 4 Explaining RSL with Java

uco71
Add new book

L]
| User selects save bungn |

VNewBookForm

Screen) onTrigger(trigger_id: String)
new book form | |

l ’ onTrigger()
Trigger 01: if (trigger_id == "Save") {

save button 02: getBookData() ;
03: paddnewbook .

l 04: selectSaveButton (tmpbookdata) ;

Simple View 05: }
book data

Fig. 4.28 Rule V7a: Screens with Triggers (Simple View) to event handlers

‘if” instruction, we need the remaining elements of the source model. The example
shows a single Simple View element (‘book data’) pointed at by the Trigger. This tells
us which getter operation should be called (‘getBookData()’ and which temporary
variable (‘tmpbookdata’) to use as the parameter in the call to the Presenter layer. To
determine the Presenter instance name and the Presenter operation name, we need
to know the use case and the sentence in which the Trigger is hyperlinked. The use
case name (‘Add new book’) determines the instance name (‘paddnewbook’). The
sentence contents (the predicate ‘selects save button’) determine the operation name
(“selectsSaveButton()’).

Exactly the same code is created for the source model presented in Fig. 4.26 which
relates to rule V7b. The discussion of this model was made when discussing rule V6b.
Here, we only need to assume the ‘book data’ element which is pointed at by ‘save
button’ as in Fig.4.28.

Rule V8. Every Trigger Notion pointing at one or more List Views, in some relation
with a Screen Notion is translated into event handler code. There can be three
possible situations (a, b and c), which are exactly the same as for rule V7. The
event handling code is inserted into the ‘onTrigger()’ method of the View class
created according to rule G2 from the Screen element. The generated code is an
‘if” statement checking the ‘trigger_id’ to be the name of the current Trigger.
If it is, the appropriate operation is called on the Presenter class instance in the
form ‘instancename.operation(getter1(),getter2(),. . .)’. The instance name and the
operation name are created as in rule V7. The getters are calls to the operations
created according to rule V5 from the List Views.

Rule V8 is illustrated in Figs.4.26, 4.27 and 4.29. The situation is similar to that
illustrating rule V7. The difference is in the contents of the ‘if” statement, and in
particular—in the parameter of the call to the Presenter operation. In rule V8, the

4.3 Semantics Involving the View Layer 127

uco7o
Show book list

’ U;er selects select butt:._m |

VBookListWindow

Screen ! onTrigger(trigger_id: String)
book list window| |
»L ! onTrigger()
Trigger 01: if (trigger_id == "Select") {
select button 02: pshowbooklist.
J, 03: selectSelectButton (getBookList()) ;
o4: }
List View
book list

Fig. 4.29 Rule V8a: Screens with Triggers (List View) to event handlers

parameter is always a call to the local getter operation. In our example, the getter
is derived from the ‘book list’ element. Similar code is created for the situations
illustrated in Figs.4.26 (rule V8b) and 4.27 (rule V8c).

When we analyse rules V6, V7 and V8, we notice several constraints that must be
set on the source RSL model for the translated code to work. First, we need to make
sure that there are no two Triggers with the same name related to a given Screen
(in either of the situations a, b or c¢). Moreover, we need to assure that each Screen
element is used only in a specific use case. If it is used in another use case, then
the event handler code would have contradicting targets of the calls to the Presenter
layer operations. These and other similar restrictions can be removed by extending
the RSL definition. The problem of such an extension or RSL and its semantics can
be used by the reader as subject for an exercise.

4.4 Semantics Involving the Presenter and Model Layers

The last, and the largest group of rules involves the RSL constructs that translate
into the elements of the Presentation layer with some elements of the Model layer.
The Presentation layer code covers complete functionality of the application logic.
The Model layer is just a skeleton which can be later filled in with code of the
domain (business) logic. The presented rules create all the necessary operations of
both layers. For the Presentation layer, the rules cover also the method bodies for
these operations. As we remember, the classes for which the operations and methods
are introduced were created according to the general rules (G1, G3). We also assume
the existence of associations created according to rules G5-G7.

128 4 Explaining RSL with Java

uco71
Add new book

| §\rstem saves book data I PAddNewBook
tmpbookdata: XBookData

[Us:r selects save button l

W

Trigger

save button
\| Simple View
book data

Fig. 4.30 Rule P1: SVO sentences with Simple Views to DTO attributes

Rule P1. Every System-to-SimpleView and Actor-to-Trigger (SimpleView) sentence
is translated into a temporary DTO attribute in a Presentation class. The source
configuration involves a use case with a contained or related SVO sentences. There
can be three possibilities: (a) SVO sentence of type System-to-SimpleView con-
tained in a scenario of the use case, (b) SVO sentence of type Actor-to-Trigger,
where the trigger has a related Simple View, contained in a scenario of the use case,
(c) SVO sentence as in point ‘b’ but contained as the first sentence in a scenario
of a use case invoked from the considered use case. Any of these configurations is
translated into an attribute typed as the DTO class translated from the Simple View
element, according to rule G4. The name of the attribute is identical to that in rule
V1.

Rule P1 is illustrated in Fig.4.30. It shows a use case (‘Add new book’) and a
Presenter class (‘PAddNewBook’) that was created previously from the use case.
We also have two sentences that are contained in some scenarios of this use case.
The upper sentence (‘System saves book data’) hyperlinks directly to a Simple View
element (‘book data’). The lower sentence (‘User selects save button’) hyperlinks
to a Trigger (‘save button’) that points to the same Simple View, as the previous
sentence. Existence of any of these sentences causes creation of the appropriate
attribute (‘tmpbookdata’) in the mentioned class.

The attribute created using rule P1 is used by some other code created using
various rules in this group. Note that System-to-SimpleView sentences necessitate
passing a DTO from the Presenter layer to the Model layer (or vice versa), and the
Actor-to-Trigger (SimpleView) sentences—passing a DTO from the View layer to
the Presenter layer. The temporary attribute can be used to temporarily preserve the
DTOs passed by the application logic, between different actions that involve calls to
the View layer and the Model layer.

4.4 Semantics Involving the Presenter and Model Layers 129

Rule P2. Every System-to-ListView and System-to-Screen (DataView) sentence is
translated into a temporary DTO attribute in a Presentation class. The source
configuration involves a use case with a contained SVO sentences. There can be
two possibilities: (a) SVO sentence of the type System-to-ListView contained in
a scenario of the use case and (b) SVO sentence of the type System-to-Screen,
contained in a scenario of the use case in which the screen is pointed at by a List
View or a Simple View. Any of these configurations is translated into an attribute
typed as the DTO class translated from the Data View element according to rule
G4. For the configurations that involve List Views, the attribute is a DTO table.
The name of the attribute is identical to that in rule V1.

Rule P2 is illustrated in Fig.4.31. The configuration is somewhat similar to that
in rule P1. The figure illustrates two cases involving a List View. The first sen-
tence (‘System fetches book list’) hyperlinks element (‘book list’), while the second
sentence hyperlinks to a Screen (‘book list window’) pointed at by the same List
View. Existence of any of these sentences causes creation of the appropriate attribute
(‘tmpbooklist’), which is typed as a DTO table.

As in rule P1, the created attribute is used in some other code. The System-to-
ListView sentences necessitate passing a table of DTOs from the Model layer to the
Presenter layer. The System-to-Screen (DataView) sentences necessitate passing a
DTO (Simple View) or a table of DTOs (List View) from the Presenter layer to the
View layer. The temporary attribute can store these values between consecutive calls
within the application logic.

Rule P3. Every Actor-to-Trigger (ListView) sentence is translated into a temporary
ID attribute in a Presentation class. The source configuration involves a use case
with a contained SVO sentence. There can be two possibilities: (a) SVO sentence
of type Actor-to-Trigger, where the trigger has a related List View, contained in
a scenario of the use case and (b) SVO sentence as in point ‘a’ but contained as
the first sentence in a scenario of a use case invoked from the considered use case.
Any of these configurations is translated into an attribute typed as long integer.
The attribute name is derived from the List View name with spaces removed, ‘tmp’
added as the prefix and ‘id” added as the postfix.

Rule P3 is illustrated in Fig.4.32. This example is straightforward and involves
one sentence that hyperlinks to a Trigger (‘history button’). The Trigger points at
a List View (‘book list’) and thus an appropriate ID attribute (‘tmpbooklistid’) is
created. Note that the sentence can be contained in the actual use case, or in any
invoked use case. In the second case, it has to be the very first SVO sentence of that
invoked use case. The ID attribute can be used to pass information from the View
layer about the ID of the selected data object. This ID can then be passed to the
Model layer to be used, e.g. for retrieval. This is explained in detail when explaining
the code created using the remaining rules.

130 4 Explaining RSL with Java

uco71
Show book list

| §ystem fetches book list |

PShowBookList
tmpbooklist: XBookList[]

| Syste'm shows book list window |

Screen
book list window
T
List View
book list

Fig. 4.31 Rule P2: SVO sentences with List Views or Screens to DTO attributes

uco7o
Show book list

‘User selects history button | PShowBookList
! tmpbooklistid: long

W

Trigger
history button
List View
book list

Fig. 4.32 Rule P3: SVO sentences with List Views to list ID attributes

Rule P4. Every Actor-to-Trigger sentence is translated into an event handler oper-
ation in a Presentation class. The source configuration involves a use case with a
related Actor-to-Trigger SVO sentence. The sentence can be contained directly in
the use case or as the first sentence of some use case invoked from the use case.
In both cases, an operation is created in the Presenter class translated previously
from the use case according to rule G1. The operation’s name is derived from the
SVO sentence’s predicate by removing spaces and turning to camel case notation.
The operation’s parameters depend on the Data Views pointed at by the Trigger
hyperlinked by the SVO sentence. If there is no related Data View, no parameters
are created. For a Simple View, a regular DTO parameter is created: the parameter’s
type follows rule G4 and the parameter’s name is the same as the type, but with all
the letters turned to small. For a List View, an ID parameter of type ‘long’ is created.
In addition, the method of the created operation is initialised with instructions that
assign the temporary attributes (see rules P1, P3) with the values of the parameters.

4.4 Semantics Involving the Presenter and Model Layers 131

uco71
Add new book

.
| User selects save button

- translate >

PAddNewBook
tmpbookdata: XBookData
selectSaveButton(xbookdata: XBookData)

Trigger selectSaveButton() |
- kdata = kdata;
save button 01: tmpbookdata = xbookdata |
Simple View
book data

Fig. 4.33 Rule P4: Actor-to-Trigger sentences (Simple View)

Rule P4 is illustrated in Fig.4.33. The example shows one sentence which is
contained in a use case. The predicate part of the sentence (‘selects save button’) is
translated into the name of the operation (‘selectsSaveButton’). The Trigger hyper-
linked by the predicate (‘save button’) has a related Simple View (‘book data’). Thus,
the operation received one parameter whose name and type are derived from the Sim-
ple View’s name (‘xbookdata: XBookData’). This parameter is used in code (line
1) to set the value of the appropriate temporary variable (‘tmpbookdata’). This first
instruction initialises the variable that is used in the rest of the code for this method,
which should be translated according to the remaining rules.

Rule PS. Every ‘non-read’ System-to-SimpleView sentence is translated into a call
to a Model layer operation. The sentence should involve an action which is not
of type READ (CREATE, VALIDATE, etc.). Each such sentence is translated into
a call to the operation whose name is derived from the name of the sentence’s
predicate by removing spaces and turning into camel case notation. The call is
made on the Model layer class instance which is accessed through the role name,
translated using rule G6. The call has one parameter which is the temporary variable
associated with the Simple View (see rule P1). The call returns a result which is
assigned to the temporary variable ‘result’. The above code is appended at the end
of the operation translated using rule P4, from the last preceding Actor-to-Trigger
sentence. This code is synchronised with an operation in the appropriate Model
layer class which is created (if not yet created for some previous sentence).

Rule P5 is illustrated in Fig.4.34. Here, we see a use case with two sentences.
The first of these sentences (‘User selects save button’) determines the operation
(‘selectSaveButton’) whose code will be appended. The second sentence (‘System
validates book data’) determines the code that will be created. We also see that
the code uses two attributes (‘result’ and ‘tmpbookdata’) created previously using
other rules. The created operation call is consistent with the actual operation created
in the Model layer class (‘MBookData’). The diagram does not show one element
necessary to fully understand the new code. We assume that there already exists a

132 4 Explaining RSL with Java

PAddNewBook

tmpbookdata: XBookData
result: integer

selectSaveButton(xbookdata: XBookData)

UCo71
Add new book

. selectSaveButton()
User selects save button G
() v 01: result = mbookdata.
System validates book data 02: validateBookData (tmpbookdata) ;
MBookData

validateBookData(xbookdata: XBookData): int

Fig. 4.34 Rule P5: System-to-SimpleView sentences (create, update, validate)

directed association between ‘PAddNewBook’ and ‘MBookData’, and the role at
the Model side is ‘mbookdata’. This allows to use this as the instance name for the
operation call.

Rule P6. Every ‘read’ System-to-ListView (SimpleView) sentence is translated into
a “getter” call to a Model layer operation. The sentence should involve an action
which is of type READ. It should contain two sentence objects (direct and indirect).
The first object hyperlinks to a List View and the second—to a Simple View. Each
such sentence is translated into a call to the operation whose name is derived
from the name of the sentence’s predicate up to the direct object (cf. List View),
by removing spaces and turning into camel case notation. The call is made on
the Model layer instance which is accessed through the role name derived from
the List View, translated using rule G6. The call has one parameter which is the
temporary variable associated with the Simple View (see rule P1). The call returns
a result which is assigned to the temporary variable ‘result’. It is followed by a
call to a getter operation on the same Model class instance. The name of the getter
operation is derived from the List View name by adding the ‘get’ prefix and turning
to camel case notation. The getter returns a table of DTOs derived from the List
View according to rule G4. The above code is appended at the end of the operation
translated using rule P4, from the last preceding Actor-to-Trigger sentence. This
code (two operation calls) is synchronised with two operations in the appropriate
Model layer class which are created (if not yet created for some previous sentence).

Rule P6 is illustrated in Fig.4.35. The situation is similar to that illustrating rule
P5. The difference in the source model is that the second sentence is of type READ
(uses the verb ‘fetch’) and it has two objects (‘book list’ and ‘book search criteria’). In
code, this results in creating two operations and appropriate two operation calls. The
first call (‘fetchBookList()’) evokes appropriate domain logic that should retrieve the
data denoted by the direct object (‘XBookList[]’) based on the data denoted by the

4.4 Semantics Involving the Presenter and Model Layers 133

PShowBookList

tmpbooksearchcriteria: XBookSearchCriteria
tmpbooklist: XBookList[]
result: integer

selectSeekButton(xbooksearchcriteria: XBookSearchCriteria)

ucozo
Show book list

. selectSeekButton()
User selects seek button)
(...) 01: result = mbooklist.
S\"S“_!mfe“hes book list 02: fetchBookList (tmpbooksearcheriteria) ;
using book search criteria 03: tmpbocklist = mbocklist.getBookList();

MBookList

fetchBookList(xbooksearchcriteria: XBookSearchCriteria): int
getBookList(): XBookList[]

Fig. 4.35 Rule P6: System-to-DataView sentences (read, from Simple View)

indirect object (‘XBookSearchCriteria’). The second call (‘getBookList()’), passes
the retrieved data and stores it locally within the Presenter object.

Rule P7. Every ‘read’ System-to-SimpleView (ListView) sentence is translated into
a getter call to a Model layer operation. The sentence should involve an action
which is of type READ. It should contain two sentence objects (direct and indirect).
The first object hyperlinks to a Simple View and the second to a List View. Each
such sentence is translated into a call to the operation whose name is derived from
the name of the sentence’s predicate up to the direct object (cf. Simple View), by
removing spaces and turning into camel case notation. The call is made on the
Model layer instance which is accessed through the role name derived from the
Simple View, translated using rule G6. The call has one parameter which is the
temporary ID variable associated with the List View (see rule P3). The call returns
a result which is assigned to the temporary variable ‘result’. It is followed by a
call to a getter operation on the same Model class instance. The name of the getter
operation is derived from the Simple View name by adding the ‘get’ prefix and
turning to camel case notation. The getter returns a DTO derived from the Simple
View according to rule G4. The above code is appended at the end of the operation
translated using rule P4, from the last preceding Actor-to-Trigger sentence. This
code (two operation calls) is synchronised with two operations in the appropriate
Model layer class which are created (if not yet created for some previous sentence).

Rule P7 is illustrated in Fig. 4.36. At first sight, the example looks almost identical
to that illustrating rule P6. However, we need to note that the second SVO sentence
has reversed object types. The first object (‘book data’) hyperlinks to a Simple View,
and the second (‘book list’) to a List View. This results in creating a different call
to the domain logic. It passes an object identifier (‘tmpbooklistid’), instead of a
full object. The domain logic is supposed to retrieve the appropriate object (typed as

PShowBookList
selectSelectButton(xbooklistid: long)

134 4 Explaining RSL with Java
uco7o
RN EOURIIETIIIN =~ i e s R
selectSeekButton()

User selects select button)

{] 0l1: result = mbookdata.

Systgmferchef book data 0z: fetchBookData (tmpbooklistid) ;
using book list 03: tmpbookdata = getBookData() ;
(...)
MBookData

fetchBookData(xbooklistid: long): int
getBookData(): XBookData

Fig. 4.36 Rule P7: System-to-DataView sentences (read, from List View)

‘XBookData’). This object is then passed and stored in the current Presenter, through
the getter operation (‘getBookData()’).

The ‘result’” passed by the first call, translated with the rules
P5-P7 can be used for possible branching of application logic. Thus, the SVO sen-
tences from rule P6 can be followed by condition sentences that define alternative
scenarios depending on the result of processing or reading some data from the per-
sistent storage within the Model layer. The appropriate further code is determined
by the rule P13.

Rule P8. Every System-to-Screen sentence is translated into a call to a View layer
operation. The sentence object should hyperlink to a Screen element. Each such
sentence is translated into a call to ‘close()’ (for sentences of type CLOSE) or
‘show()’ (for other types of sentences), consistent with the rule GO. The call is
made on the View layer instance which is accessed through the role name derived
from the Screen, translated using rule G5. The call can be preceded by one or
more calls to setter operations of the same View layer instance (see rules V3 or
V4). Each setter is derived from a Simple View or a List View, that points at the
Screen element. The setter name is the same as in rule V3 or V4. The setter has
one parameter, and its name refers to the temporary variable created according to
rules P1 (Simple View) or P2 (List View). The above code is appended at the end
of the operation translated using rule P4, from the last preceding Actor-to-Trigger
sentence.

Rule P8 is illustrated in Fig.4.37. The second sentence (‘System shows book
list”) refers to a Screen (‘edit book form’) which is pointed at by a Simple View
(‘book data’). This creates a call (see line 2) to the ‘show()’ operation of a View
layer instance (‘veditbookform”) which derives from the Screen. This call is inserted
into the method (‘selectEditButton()’) indicated by the first sentence (‘User selects
edit button’). It is preceded (see line 1) by a call to the setter operation derived from
the Simple View element (‘book data’).

4.4 Semantics Involving the Presenter and Model Layers 135

uco74
Edit book

PEditBook
tmpbookdata: XBookData
selectEditButton(xbooklistid: long)

selectEditButton()
L =
User selects edit button)
{] 01: weditbookform.setBookData(tmpbookdata) ;
System shows edit book form 02: wveditbookform.show() ;

Screen
edit book form
T
Simple View
book data

Fig. 4.37 Rule P8: System-to-Screen sentences

Rule P9. Every invocation sentence in dialogue state ‘system’ is translated into
control passing code within the current event handler method. The source config-
uration involves an invocation sentence preceded by an Actor-to-Trigger sentence
(and possible other sentences in between that do not change the dialogue state). The
translated code is inserted at the end of the method associated with the operation
created previously from the Actor-to-Trigger sentence using rule P4. The code first
sets the ‘returnSentence’ attribute (see rule GO) of the containing Presenter class
instance. This is set to the identifier of the sentence directly following the invoca-
tion sentence. Then the code calls the ‘invoke(this)’ operation on the instance of
the Presenter class derived from the invoked use case (see rule G7). Finally, the
code calls the operation associated with the first sentence of the invoked use case
(see rule P4). This call is made on the same instance as the call to ‘invoke()’.

Rule P9isillustrated in Fig. 4.38. The source configuration contains several related
elements. Everything is centred around the invocation sentence (‘—>invoke: Show
book loan history’). The translated code is inserted into the method created from
the nearest preceding Actor-to-System sentence (‘User selects discontinue button’).
The first created statement marks the sentence following the invocation (‘7°) as the
returning point in the flow of control. Then, control is passed to the Presenter class
(‘PShowBookLoanHistory’) instance related with the invoked use case. First, the
pointer to the current Presenter instance (‘this’) is passed as the parameter of the
‘invoke()’ operation. Then the appropriate event handler (‘selectShowHistoryBut-
ton()’) of the other instance is called, thus definitely passing control to that other
instance. The parameters of this last call are derived from the Data Views associated
with the relevant Trigger. In our example, this is a List View (‘book list’) and thus
an ID value (‘tmpbooklistid’) is used.

136 4 Explaining RSL with Java

. User selects discontinue button PDiscontinueABook

(,>} s ;-b A returnSentence: String
invoke: Show book loan history tmpbooklistid: long

7. (..}
L]
Uco72
Discontinue a book
selectDiscontinueButton()]

 cinvokes =
01: returnSentence = "7";

02: pshowbookloanhistory.invoke (this)
03: pshowbookloanhistory.
04: selectShowHistoryButton (tmpbooklistid) ;

selectDiscontinueButton(...)

uco73
Show book loan
histo

TJser selects show history button
(...} o

Trigger
show history
button

List View
book list

Fig. 4.38 Rule P9: Invocation sentences (dialogue state = system)

Rule P10. Every invocation sentence in dialogue state ‘actor’ is translated into
control passing code within a dedicated event handler method. The source config-
uration involves an invocation sentence preceded by a System-to-Screen sentence
(and possible other sentences in between that do not change the dialogue state).
This is translated into an operation in the Presenter class derived from the current
use case (see rule G1). The operation name is derived from the first sentence of the
invoked use case, analogously to that in rule P4. This also pertains to the parameters
of this operation. The translated code is inserted at the end of the method associated
with this operation. The rules for the contents of this code are identical to those in
rule P9.

Rule P10 is illustrated in Fig.4.39. This example extends the one to rule P9.
It involves the same invoked use case. Thus, the generated code is almost identical
(except for the return sentence number) to that found in Fig. 4.38. The main difference
is in the method in which this code is placed. In rule P10, this is a method of a
newly created “proxy” event handler. This proxy (‘selectsShowHistoryButton()’)
calls the identically named operation with exactly the same ID parameter. As in rule
P9, this call is preceded with stack-related operations: saving the return sentence
(line 1) and setting the pointer to the current Presenter layer instance (line 2).

Rule P10 The generated code is modified from rule P10 so that the ‘returnSen-
tence’ parameter is set to —1 (meaning: no return sentence).

Rule P10’ seems as a slight modification of P10 but it changes the way the invoca-
tion sentences for the dialogue state ‘actor’ are interpreted. Setting ‘returnSentence’

4.4 Semantics Involving the Presenter and Model Layers 137

x. System shows book list window

()

> invoke: Show book loan history
PShowBookList
returnSentence: 5tring

9.(..)
L]
uco7o
Show book list tmpbooklistid: long

T selectShowHistoryButton(xbooklistid: lon
T involer i c

selectShowHistoryButton () |

uco73

Show book loan b5
histor 01: returnSentence = "§";
tJ - 02: pshowbookleoanhistory.invoke(this) ;
ser selects show hIS.tOr\f button 03: pshowbookloanhistory.
() — 04: selectShowHistoryButton (tmpbooklistid) ;
Trigger
show history
button
List View
book list

Fig. 4.39 Rule P10: Invocation sentences (dialogue state = actor)

to —1 means that no code is executed after returning control from the invoked Pre-
senter class object (see rules P11 and P12). This in turn means that control goes back
to the window that was active before the invocation was started. For the example in
Fig.4.39, the last window shown before the invocation is the ‘book list window’ (see
also rule P8).

Rule P11. Every final sentence is translated into return of control code. The final
sentence is contained in some invoked use case. Reaching this sentence translates
into a call to the local ‘return()’ operation (see rule GO). It has one parameter: for a
“success” final sentence, the value is ‘0’, and for a “failure” final sentence the value
is ‘1°. This call is placed at the end of the method derived from the nearest Actor-
to-Trigger sentence that precedes the final sentence (see rule P4). Furthermore, all
the invocation sentences that refer to the current use case need to be considered.
For each such situation, the ‘returned()’ method within a relevant Presenter class
derived from the invoking use case needs to be updated. The update consists in
adding an ‘if” statement with a condition that checks the previously set value of
the ‘returnSentence’ attribute (see rules P9 and P10).

Rule P11 isillustrated in Fig. 4.40. The example consists of two use cases related to
the «invoke» relationship. One of the use cases contains the final “success” sentence,
which is preceded by an Actor-to-Trigger sentence (‘User selects OK button’). This
configuration determines the method (‘selectsOKButton()’) in which the ‘return()’
call is created. The other use case contains the related invocation sentence. Since
the following sentence is numbered “9”, this number is checked in the ‘if” statement
created in the relevant ‘returned()’ method.

138 4 Explaining RSL with Java

PShowBookList

returned(ret: integer)

- invoke: Show book loan history
S.(..) PShowBookLoanHistory
selectsOKButton()
Uco70
- S
returned(...)

| «invoke» 01: if (returnSentence == "8") {

)
02: }

selectsOKButton ()

User selects OK button ()
(} [01: return(0) ;

uco73
Show book loan
histo

v
=2 final: success

Fig. 4.40 Rule P11: Final sentences

Rule P12. Every rejoin sentence is translated to code according to the indicated
(rejoined) sentence and the following sentences. When a rejoin sentence is reached
itis translated into code that stems from the sentences starting at the point of rejoin-
ing. This code is inserted into the method of the Presenter class, into which code
was inserted for the sentence preceding the rejoin sentence (rules P4-P10). If this
preceding sentence is an invocation sentence, code is inserted into the appropriate
‘returned()’ method according to rule P11. The inserted code is created as if the
rejoin sentence was substituted with the sentence in the rejoining point and all the
sentences that follow this sentence until a System-to-Screen or Actor-to-Trigger
sentence is reached. This is done according to rules P4-P11.

Rule P12 is illustrated in Fig.4.41. This example shows two situations involving
arejoin sentence. In the first situation, a rejoin sentence follows an Actor-to-Trigger
sentence (‘User selects repeat button’). Thus, the current method for inserting code is

ucorl
Add new book

’ i System shows new book form |

PAddNewBook

selectsRepeatButton()
returned(ret: integer)

7 7 selectsRepeatButton () |
User selects repeat button 3
[..) 01: vnewbookform.show() ;
—rejoin7
T returned...)
.—)irwoke'{ } 01: if (returnSentence == "9a") { // from P11
9a. 2rejoin 7 0z2: vnewbookform. show () ;
03: } // from P11

Fig. 4.41 Rule P12: Rejoin sentences

4.4 Semantics Involving the Presenter and Model Layers 139

the one that was derived from this sentence (‘selectsRepeatButton()’). In the second
situation, the rejoin sentence follows an invocation sentence. In this situation, the
place forinserting code is the ‘returned()’ method (see rule P11) inside the appropriate
‘if” statement. In both cases the inserted code is derived from the sentence at which
the rejoin sentence points (‘System shows new book form’). According to rule P8
this creates a call to an appropriate ‘show()’ operation in a View layer instance
(‘vnewbookform’). This terminates processing the specific rejoin sentence because
it already points at a System-to-Screen sentence.

Rule P13. Every set of condition sentences for dialogue state ‘system’ is translated
into an ‘if-else’ statement. The condition sentences form a set that follows some
sentence which initiates and finishes in the dialogue state ‘system’ (usually, a
System-to-DataView sentence). For such a set an ‘if-else’ statement is created. The
number of branches in the statement equals the number of condition sentences in
the set. In each branch the condition checks for the value of the ‘result’ attribute
(set according to rules P5-P7). The above statement is appended at the end of
the operation translated using rule P4 from the last preceding Actor-to-Trigger
sentence.

Rule P13 is illustrated in Fig. 4.42. The presented configuration involves two SVO
sentences and a set of two conditions. The first sentence (‘User selects save button’)
determines the method (‘selectsSaveButton()’) into which the new code is to be
appended. The second sentence produces code that sets the ‘result’ attribute (not
shown here, see Fig.4.34). Finally, the two condition sentences (‘book data valid’
and ‘book data invalid’) result in creating an ‘if-else’ statement with two branches.
The first branch contains code created from sentences that follow the first condition
sentence, and analogously—the second branch contains code for the second condition
sentence.

Relating to rule P13, note that condition sentences which occur in the dialogue
state ‘actor’ (usually after the System-to-Screen sentences) do not necessitate any
additional rule. This is because they need to be followed by several Actor-to-Trigger

PAddNewBook

selectsSaveButton()
returned(ret: integer)

uco71
Add new book

User selects save button selectsSaveButton (...) |

() €

System validates book data 01: if (result == 0) {

-» cond: book data valid)

(...) 02: } else if (result == 1) {
- cond: book data invalid =

(=) 03: }

Fig. 4.42 Rule P13: Condition sentences (dialogue state = system)

140 4 Explaining RSL with Java

2 !/ /
moael variant ' Add new book = book data
User enters book data -~ |
User selects save button- | -~ save button

sentences which are already handled through rules V6b, V7b, V8b and P4. Condition
sentences in this situation simply allow to fork scenarios through creating several
buttons with appropriate handling code.

Rules P1’, P3', P4, P9’and P10". The source model structure in rules P1, P3, P4,
P9 and P10 is modified for Actor-to-Trigger sentences. The source model is struc-
tured so that the Actor-to-Trigger sentences are preceded by Actor-to-DataView
sentences. In such case, the Trigger notions do not need to point at the respective
Data View (List View of Simple View) notions. The relationships between the Trig-
gers and the Data Views are thus substituted by the respective Actor-to-DataView
sentences. The generated target model and code does not change from that in rules
P1, P3 and P4.

The source model for the rules P1’, P3’, P4’, P9" and P10” is illustrated in Fig. 4.43.
This example refers to the example for rule P4, but the configuration for the other rules
is similar. As we can see, the configuration involves two sentences, of which the first is
an Actor-to-DataView sentence (‘User enters book data’) and the second is the Actor-
to-Trigger sentence shown previously in Fig.4.33. The first sentence hyperlinks to
the same Data View notion as in the example for rule P4. The difference in the
domain model is that the Trigger and the Data View need not be related explicitly.
This relationship is derived from the sequence of sentences in the scenario.

4.5 Summary Example

To summarise the presented semantic rules, and facilitate comprehension, we now
combine some of the examples shown in Figs.4.11,4.12,4.13,4.14,4.15,4.16,4.17,
4.18,4.19,4.20,4.21,4.22,4.23,4.24,4.25,4.26,4.27,4.28,4.29, 4.30, 4.31, 4.32,
4.33,4.34,4.35,4.36,4.37, 4.38, 4.39, 4.40, 4.41 and 4.42. This creates a small but
coherent RSL model fragment and shows complete code translated from this model.
Figure4.44 presents the use case part of the RSL model fragment. It contains
three use cases, of which two have their scenarios present. This configuration of use
cases and scenarios can be treated as typical in many situations. An actor (here: the
“Librarian”) can select to show some list (here: the “book list””) and this can invoke
some use cases that involve the context of this list. The use cases that do not involve
selecting a list item (like ‘Add new book’) can also be started independently.

4.5 Summary Example 141

~ | 1. Librarian selects add book button
2. System shows new book form

3. Librarian enters book data

4. Librarian selects save button

5. System validates book data
=>cond: book data valid

6. System closes new book form

7. System saves book data

—inal: success

->cond: book data invalid

UCo71
Add new book

i winvoke»

uco7o =*rejoin: 2
A ‘
Librarian . 1. Librarian selects book list button
Lainvoken N, 2. System fetches book list
. 3. System shows book list window
beor * =>invoke: Add new book

Show book loan

; =»invoke: Show book loan history
histo

6. Librarian selects close button
7. System closes book list window

Fig. 4.44 Example use case model (simplified fragment)

The ‘Show book list” use case has only one simple scenario. It basically involves
fetching the full book list and presenting a window that shows the list. This function-
ality can be extended to include filtering of the list and other such features. When the
window with the list is shown the user can invoke two use cases—‘Add new book’
and ‘Show book loan history’. Alternatively, she can select to close the window,
which ends the application. Of the two invoked use cases we present scenarios for
only one. To add a book the user has to select a button and this shows a form which
can be filled in. After pressing a button on this form the system validates book data
and if valid, saves it. If the data are not valid, the form is shown back again. Again,
this functionality is very basic and can be extended. One of the obvious extensions
would be to allow for cancelling of the operation. Despite this simplicity, our example
summarises most of the presented translation rules.

The presented scenarios refer to various domain elements shown in Fig.4.45.
We see the two Screen elements (‘new book form’ and ‘book list window’) found
in the scenarios, with several associated Trigger elements. Note that the ‘add book
button” Trigger is not related directly to ‘book list window’ and the appropriate
code is created using the appropriate configuration of scenario sentences. The ‘book
list button’ Trigger is also not related to any Screen, as this is out of the scope of
the functionality defined by the three use cases. The Screens and Triggers relate to
appropriate Data Views (‘book data’ and ‘book list’). These views point to Attributes
which should be presented to or entered by the user.

These RSL model elements translate into the code structure presented in Fig. 4.46.
All the classes, associations and DTO class attributes are translated using rules
G1-G7. We also see that the View layer classes specialise from ‘VScreen’, and
the Presenter layer classes specialise from ‘PUseCase’. These two general classes
are not shown as their content is constant and already shown in the definition of rule
GO.

142

4 Explaining RSL with Java

Trigger Trigger
add book button book list button
Screen Trigger Screen
he : 7
new book form close button book list window
Trigger Trigger
Simple View save button history button \ List View
book data book list
Attribute (whole number) Attribute (text) Attribute (text)
pages title author
Fig. 4.45 Example domain model (simplified fragment)
VScreen
VScraen VBookListWindow XBookData
VNew BookForm -
ist: XBookList] id: long
tmpbookdata: XBookData title: String
init() author. String
init() onTrigger(tigger_id :String) pages. integer
onTrgger(tigger_id :String) setBooklistxbooKist :XBookList])
getBookData() getBooklist() : long XBookList
vnewbockom vbooligwindow id: long
title: String
' pehowbaokid author. String
paddnewbook PRiowacoRI
paddnewbook PUseCase pshowbooKoanhistary
PUseCase

PAddNew Book

tmpbookdata: XBooklata
tmpbooHistid: long

PShowBookList

tmpbooMist: XBookLig[]
tmpbooHigtid: long

selectAddBookButton() selectAddBookButton()
mlectSaveButton(xbookdata :XBookData) slectH; B Mistid :long)
salectCloseButton()
returmed(ret ‘integer)
mbookdata mboolist
MBookData MBookList

validateBookData(xbookdata :XBookData) : integer
saveBookData(xbookdata :XBookData) : integer

fetchBoolList() : integer
getBooklList() : XBookList]]

PUseCase
PShow BookLoanHistory

(%8

id :long)

Fig. 4.46 Class model translated from the example RSL model (partial)

The two View layer classes have one temporary attribute each. These were trans-
lated using rules V1 and V2. The same attributes are present in the two associated
Presenter layer classes as the result of applying rules P1 and P2. In addition, both
classes have the same ‘tmpbooklistid” attribute which results from applying rule P3.
In one of the classes (‘PAddNewBook’) this is due to the basic variant (P3a), and in
the other class (‘PShowBookList’) due to the invocation variant (P3b).

4.5 Summary Example 143

Note (Fig.4.45) that ‘book data’ is connected to ‘new book form’ with one rela-
tionship pointing from the Screen to the Simple View. This results in applying rule
V5 and producing the getter operation (‘getBookData()’) in ‘VNewBookForm’. The
other Data View element (‘book list’) is connected to ‘book list windows’ with two
relationships in both directions. This results in applying both rule V5 and V4. Because
it is a List View, the setter accepts a table of appropriate DTOs (‘XBookList[]’) and
the getter returns a DTO id (long integer). Along with the getters and setters, appro-
priate ‘init()’ operations are created according to rules V1 and V2. Since the Screens
have associated Triggers the ‘onTrigger()’ operations are also created (rules V7, V8).

The operations in the Presenter layer classes are created using rules P4 and P10.
Each such operation reflects a single user-evoked event (selecting some Trigger in
a use case scenario—rule P4). For the events that involve use case invocations, two
identically named operations (one of them a proxy) are added (rules P4 and P10).
This is illustrated in Fig.4.46 by the two ‘selectAddBookButton()’ operations.

The operations in the Model layer are created using rules P5-P7. Four of such
operations are shown in Fig.4.46. Three of them reflect the appropriate System-to-
DataView sentences that indicate some domain logic actions. One of the operations
is a getter associated with the ‘fetchBookList()’ operation. The getter (‘getBook-
List()’) allows for transporting data from the Model layer up to the Presenter layer
after performing some data processing and retrieval within the ‘fetchBookList()’
operation.

The class model determines the code skeleton of the final code. This skeleton is
filled with code for the View and the Presenter layers. This is illustrated in Figs.4.47,
4.48, 4.49 and 4.50 which present full code for the four main classes. The two View

public class VNewBookForm extends VScreen {
private XBookData tmpbookdata;
private PAddllewBook paddnewbook;

publiec void init () {
fields.addLabel ("Title"); fields.addTextField() ;
fields.addLabel ("Author") ; fields.addTextField() ;
fields.addLabel ("Pages"); fields.addIntegerField() ;
fields.addButton("Save") ;

}

public void onTrigger (String trigger_ id) {
if (trigger_id == "Save") {
getBookData() ;
paddnewbook. selectSaveButton (tmpbookdata) ;
}
}

public void getBookData () {
tmpbookdata. title = fields.getTextField (1) ;
tmpbookdata.author = fields.getTextField(2) ;
tmpbockdata.pages = fields.getIntegerField(3);
}
}

Fig. 4.47 Code of VNewBookForm

144 4 Explaining RSL with Java

public class VBookListWindow extends VScreen {
private XBookList[] tmpbooklist;
private PShowBockList pshowbocklist;

public veid init () {
fields.addIdClField () ; fields.addTextClField ("Title") ;
fields.addTextClField ("Author"),; fields.addButton("Cleose");
fields.addButton ("Add book") ;

}

public void onTrigger (String trigger id)({
if (trigger_id == "Close") {
pshowbooklist.selectCloseButton() ;
}
if (trigger_ id == "Add book") {
pshowbooklist.selectSelectButton (getBookList ())
}
}

public veoid setBookList (K¥BoockList[] =xbooklist) {
tmpbooklist = xbooklist;
for (int i=1l; i<=len(xbooklist); i++) {
fields.setTIdField (1, tmpbooklist[i].id);
fields.setTextField (2, tmpbooklist[i]. title) ;
fields.setTextField (3, tmpbooklist[i].author) ;
}
}

public long getBookList () {
return fields.getIdClField (1) :
}
}

Fig. 4.48 Code of VBookListWindow

classes (Figs.4.47 and 4.48) contain complete code for initiating the UI fields and
buttons (‘init()’) and handling user-evoked events (‘onTrigger()’) using the rules V1,
V3, V6 and V7, V8. This code can be compared with the RSL model in Fig.4.45. It
contains all the field initiation for relevant Attribute elements and button initiation for
all the associated Trigger elements. The event handlers contain alternative processing
(“if” statements) for each of these initiated buttons.

The View layer code is completed with the contents of the setter and getter meth-
ods. Similar to the initiation methods, getters and setters are based on the relevant
Attributes in the RSL model. The ‘getBookData()’ method assigns three fields, which
is equivalent to the three Attributes pointed at by ‘book data’. The ‘setBookList()’
method assigns an id column and two fields that are equivalent to the two Attributes
pointed at by ‘book list’. This code is controlled by the rules V3-V5.

The Presenter layer methods (see Figs.4.49 and 4.50) are mostly event handlers
that contain logic evoked from the View layer’s ‘onTrigger()’ methods. In ‘PAddNew-
Book’ there are two such methods, translated from two Actor-to-Trigger sentences
(‘Librarian selects add book button’ and ‘Librarian selects save button’) using rule

4.5 Summary Example 145

public class PAddMNewBook extends PUseCase |
private XBookData tmpbookdata;
private long tmpbooklistid;
private VNewBoockForm vnewbookform;
private MBookData mbookdata;

public selectAddBookButton() {
vnewbookform. show () ;

}

public selectSaveButton (XBookData =xbookdata) {
tmpbookdata = xbookdata;
result = mbookdata.validateBookData (tmpbookdata) ;
if (result == 0) {
vnewbookform.close() ;
result = mbookdata.saveBookData (tmpbookdata) ;
return (0) ;
} else if (result == 1) {
vnewbookform. show () ;
}
}
}

Fig. 4.49 Code of PAddNewBook

P4. The contents of these methods are determined by the sentences that follow these
two sentences. The first method (‘selectAddBookButton()’) is simple, because only
one sentence needs to be considered here (‘System shows new book form’). By
applying rule P8 we obtain the presented single call to the ‘show()’ operation.

The second method (‘selectsSaveButton()’) is significantly more complex as it
involves three SVO sentences, a set of condition sentences, a final sentence and a
rejoin sentence. The first SVO sentence (‘System validates book data’) is translated
into a call to the Model layer using rule P5. Then we have a set of condition sentences
translated to the ‘if-else’ statement according to rule P13. One of the two alternatives
involves two SVO sentences (‘System closes new book form’ and ‘System saves
book data’) and a final sentence. Thus, rules P8, P5 and P11 produce the appropriate
two external operation calls and a local call to ‘return()’ in the ‘if” part. The other
alternative involves a rejoin sentence. This sentence points to sentence no. 2. Thus,
according to rule P12 we need to repeat code obtained from sentence 2, which
happens to be identical to that in ‘selectAddBookButton()’. This code is inserted
into the ‘else’ part.

If the rejoin sentence pointed to sentence 3 (‘Librarian enters book data’), the ‘else’
part of the condition statement would be empty. This would mean that nothing would
happen from the point of view of the user. The ‘new book form’ would still remain
open and waiting for user-evoked events. In the actual example, the ‘new book form’
is shown again. If we assume that ‘show()’ performed on an already open screen
element does nothing, then the two situations would be in fact equivalent.

146 4 Explaining RSL with Java

public class PShowBockList extends PUseCase {
private XBookList[] tmpbooklist;
private loeng tmpbooklistid;
private VBeookListWindow vbeooklistwindow,
private PAddNewBoock paddnewbook;
private PShowBookLoanHistory pshowbookleoanhistory;
private MBookList mbooklist;

public selectBookListButton() {
result = mbooklist.fetchBookList () ;
tmpbooklist = getBookList() ;
vbooklistwindow.setBookList (tmpbooklist) ;
vbooklistwindow. show() ;

}

public selectAddBookButton() {
returnSentence = "6";
paddnewbook. invoke (this) ;
paddnewbook. selectAddButton() ;
}

public selectHistoryButton(long xbocoklistid) {
tmpbocklistid = xbeocoklistid;
returnSentence = "6";
pshowbookloanhistory. inveke (this) ;
pshowboockloanhistory. selectHistoryButton (tmpbooklistid) ;

}

public selectCloseButton() {
vbooklistwindow.close () ;

}

public void returned(integer ret){
if (returnSentence == "6") {

}
}

Fig. 4.50 Code of PShowBookList

In ‘PShowBookList’ there are four event handlers. Two of them (‘selectBook
ListButton()’ and ‘selectCloseButton()’) are very simple as they involve one or two
SVO sentences. Their contents are thus the result of consecutive application of rules
P7 and P8. Two other methods (‘selectAddBookButton()’ and ‘selectHistoryBut-
ton()’) are proxies related with use case invocation (rule P10). The second method
additionally involves passing a parameter (‘tmpbooklistid’). This is caused by the
‘history button’ Trigger (see Fig.4.45) that points at the ‘book list” element. This is
not the case for the ‘add book button’ and thus the first method does not involve any
parameter passing.

The ‘PShowBookList’ class contains one additional method—‘returned()’,
because it is involved in use case invocations in the role of the calling class (see
rule P11). The code checks for the ‘returnSentence’ that was set in the two above-
mentioned proxy methods. The contents of the condition statement are empty because

4.5 Summary Example 147

sentence no. 6 in the ‘Show book list’ use case is an Actor-to-Trigger. This means
that no code needs to be performed after returning from the invocation. This is quite
logical. After we perform the logic associated, e.g. with ‘Add new book’ (the invoked
use case), we should place it back in the situation where the ‘book list window’ is
displayed. Note that this is exactly the case when the ‘return()’ operation is called
in ‘PAddNewBook’. The ‘new book form’ element is closed and this retrieves back
‘book list window’ from the window stack. Thus, there is no need to perform any
operation in the ‘returned()’ method.

Note that the code for the ‘returned()’ method is not optimal. Also, in several
other places code is not optimised. However, with the presented rules we aim at
presenting semantics in a comprehensible way and not at producing optimised code.
Code optimisation can be the subject of specific transformation programs that would
retain this semantics while at the same time producing the actual working code.

Regardless of the above remarks on code optimality, the presented rules give a
coherent framework for translating RSL models into code. A careful reader may
note some issues not covered by the presented rules. This is caused by the limitations
in the presented RSL syntax. For instance, there is no way to order fields in the
translated UI elements. However, this can be easily resolved by extending RSL and
adding new, or more fine-tuned semantic rules. This chapter should give the basis
for doing this. Using the presented approach the reader can also create other similar
languages and develop his own translational semantic rules.

Chapter 5
Understanding Model Transformations

The previous chapter explained the rules for transforming models of one kind (written
in RSL) to models of another kind (written in UML), and code. In order to implement
these rules, we need to write transformation programs. For this purpose, we could
use any programming language assuming we can access the model repository and
traverse through the source models and create the target models. However, writing
a Java program for the purpose of model transformation would then become a quite
laborious task due to the lack of necessary constructs to represent model elements
that form sophisticated graphs. Thus, instead of a typical programming language, we
use a dedicated model transformation language.

5.1 Overview

The purpose of writing model transformations is to help software developers to
perform modelling activities. A transformation program can uniformly apply
transformation rules to the source model and thus relieve developers from bor-
ing, repetitive tasks. In a typical software project environment we have Model
Developers (Analysts, Requirements Engineers, Architects, Designers, . . .) that use
standard model editors. Most often, these are UML modelling tools, but editors for
other model-based languages are also used. This includes editors for special-purpose
Domain Specific Languages built to specify problems in specific application (busi-
ness) domains.

Model Developers create their models in these tools and then transform them
into—usually more complex—other models. This is illustrated in Fig.5.1. As we
can see, a typical language environment consists of a Model Editor and a Model
Storage. If we want models in this language to be transformed, we also need an
integrated Transformation Engine. Both the Model Editor and the Transformation
Engine can access the Model Storage to update the models. Sometimes, we can
operate only within the base language environment. This is when the transformations
are endogenous, i.e. when they operate only on a single modelling language. In this
© Springer International Publishing Switzerland 2015 149

M. Smiatek and W. Nowakowski, From Requirements to Java in a Snap,
DOI 10.1007/978-3-319-12838-2_5

150 5 Understanding Model Transformations

First Language
Environment
Transformation -
: Second Language
endogenous Eleue ll Environgme%ut
transformation - exogenous
s transformation
:f Model Storage Model Storage
~
Model Editor Q A 7 Model Editor
n
Model
Developer

Fig. 5.1 Using model transformations

case, the Model Developer uses a single Model Editor. She first enters the source
model manually and then selects and runs an automatic transformation. After this,
she can access and further modify the transformed (target) model through the same
Model Editor.

It is necessary to note that in many endogenous transformation problems, the
target model will overlap with the source model. This is when the purpose of a
transformation is to update the source model with additional elements or to change
the arrangements of the original elements.

A different situation is when we want to perform an exogenous transformation.
This kind of transformation turns models written in one language into models written
in another language. Thus, it is usual that the Model Developer uses two distinct
language environments (see Fig.5.1), where the Transformation Engine has to have
access to the model storage of both environments. From the technical point of view,
it is often the case that the Engine operates on a local (unified) storage which is
interfaced with storage spaces of the individual language environments.

Performing an exogenous transformation is similar to the task of compiling a pro-
gram written in a contemporary programming language. We need to parse the input
program and then generate an equivalent program in another—more primitive—
language. Program parsing consists in lexical and syntactic analysis of linear text.
For graphical languages we cannot do linear parsing, instead we perform syntactic
analysis through traversing graphs. On output, compilers produce linear code that
complies with the operational semantics of the input program constructs. For model
transformations the output is not linear code but—again—a graph. Thus, “code gen-
eration” in this case consists in producing graph fragments and combining them into
the resulting bigger graph. To add to the complexity of this task, the input and output
graphs are often adorned with textual elements. These elements can also exhibit some
structure and syntax that needs to be reflected when parsing and generating them.

Note that some transformations—especially the endogenous ones—go beyond
typical “compilation-type” processing. Namely, they can also modify the source
model, which is unlike for any typical compiler. During compilation, compilers build

5.1 Overview 151

certain internal structures (e.g. abstract syntax trees) that are distinct from the source
code, which is not modified. However, when performing graph transformations, we
can in fact use both the source and the target graph, and update their contents. As
a result, the transformation task is performed through consecutive modifications of
the overall graph space.

Both the source and the target graphs have to comply with the definitions of the
respective languages. As we know from the previous chapters, this means compliance
with the appropriate metamodels, which are also graphs. It would thus be natural
to write programs that transform graphs, also in the form of graphs as illustrated
in Fig.5.2. The Transformation Engine runs programs that can traverse through
and update graphs stored in the model storage. This model storage is structured in
compliance with the appropriate metamodels. The programs use graphs to depict the
desired patterns in the source graph and in the target graph.

What is important is that the transformation programs have to comply with the
language metamodels. Based on the graphs that metamodels define, they have to
specify certain sub-graphs that need to be sought for or created to perform the trans-
formation. Hence, the transformation language syntax has to refer to the metamodel
elements and use them throughout most of its constructs. Thus, a crucial issue is how
the source and the target language are defined. This moves us back to Chap.3 and
the considerations about the modelling language infrastructures (see Fig.3.25). For
a model transformation language to define its transformations uniformly, it is best to
have both the source and the target language defined using the same approach, or—
in other words—using the same meta-metamodel. The languages can be completely
different in terms of their syntax but the (meta)language to define this syntax has to
be the same. Only then will the transformations be able to refer to the source and
target graphs in a uniform way. Fortunately, most contemporary modelling languages
have their metamodels that comply with this standard metamodelling infrastructure.

Programs
First Metamodel ¢ EDES Second Metamodel
I_,..‘;h|,,, i comply —P-r.__rl"h_ comply o) s
(”;LT—F__ e — = EEr==d
A h
comply g comply
o< == Iransformation | =
GS . Engine update —
Model Storage Model Storage

Fig. 5.2 Model transformation internals

http://dx.doi.org/10.1007/978-3-319-12838-2_3
http://dx.doi.org/10.1007/978-3-319-12838-2_3

152 5 Understanding Model Transformations

Their metamodels are expressed in MOF or MOF-compatible languages (like Ecore).
This allows model transformation languages to use these metamodels directly (or
after a simple adaptation) within their programming constructs.

In this book we present the model transformation language MOLA! [85, 169].
This language has a graphical syntax for model (graph) querying and processing, and
uses the MOF? notation, familiar to us from the previous chapters. What is important
for model-driven requirements is that MOLA can be easily interfaced with the model
storage of an RSL editor (ReDSeeDS Engine, see Chap. 7). At the same time, it can
produce models in UML and has satisfactory text processing capabilities.

MOLA, analogous to most model transformation languages, combines two pro-
gramming styles: declarative and imperative. The declarative part is used for querying
models and matching graph-based patterns. The imperative part is used for sequenc-
ing queries and defining steps for generating the target models.

In general, the purpose of declarative programming is to define the effect of
computations without defining its control flow. In other words, we define the “what”
instead of defining the “how”. For the task of graph transformations, the declarative
paradigm is realised through specifying patterns that need to be found or generated
in the model graphs. The programmer does not need to specify the algorithm for
matching the patterns, but instead the transformation environment does the task
internally. As a result of executing a declarative rule, certain objects in the model
graph are found and/or updated. These objects are then made available for further
processing through references (or variables).

The results of declarative processing can be used by the imperative elements of
the language. These elements can define sequences in which declarative rules are
to be executed. The imperative parts follow typical constructs of contemporary pro-
gramming languages. This means that a program is a sequence of statements that
change the state of the processing environment. In particular, for model transfor-
mations, these changes pertain to the state of the model graphs. The sequence of
changes depends on this state and it is thus also associated to conditional processing.
Moreover, the whole processing can be divided into smaller modules, or procedures
with parameters and local variables.

The combination of two programming paradigms results in a powerful environ-
ment for model/graph transformation. The programmer is flexible in constructing the
transformation algorithms, while abstracting away the issues associated with find-
ing and creating objects in the transformed models/graphs. In the following sections
we present all the MOLA programming constructs. This introduction uses examples
ranging from the simple to the advanced. These examples form typical problems
for model transformation systems [105], and are often used in model transformation
contexts [79, 133, 172]. At the same time, their gradually building complexity allows
for gradual introduction of programming elements, thus making it understandable
for a person new to this style of programming.

I MOLA is developed at IMCS, University of Latvia and can be accessed at http://mola.mii.lu.lv/.

2 In fact, MOLA uses a dialect of MOF, called MOLA-MOF, which slightly varies from the standard
but this difference in negligible for our purposes.

http://dx.doi.org/10.1007/978-3-319-12838-2_7
http://mola.mii.lu.lv/

5.2 “Hello World” in MOLA—Declarative Processing 153

5.2 “Hello World” in MOLA—Declarative Processing

We start our MOLA programming tour with the traditional “Hello world” example
[84]. This allows us to present the most basic declarative constructs of MOLA.
The task is to start with an empty model and result in a model that has a single
model element with the text “Hello world”. The desired effect is shown in Fig.5.3
(middle). We assume that before our program executes, the model does not contain
any elements. In our example the empty boxes symbolise the empty diagram window
in the concrete syntax and the empty model repository in the abstract syntax. After
the program executes, the model gets updated with a single object of type ‘Greeting’
with its ‘text’ attribute set with the desired text. In concrete syntax, this can have the
effect of some specifically shaped (e.g. a cloud shape) model element to appear on
the diagram.

The respective MOLA program is shown in the upper part of Fig. 5.3. The program
consists of two parts—the metamodel part and the actual program part. As we can
see, the metamodel is elementary and contains only a single metaclass ‘Greeting’
with a single attribute ‘text’ of type ‘String’. ‘String’ is a predefined type in MOLA
and can hold strings of texts of varying size.

The actual program in MOLA in Fig. 5.3 is self-explanatory. A careful reader can
deduce its meaning by simply examining the MOLA syntax legend at the bottom of
the figure. Let us explain its individual parts. The program execution starts from the
‘start symbol’ and ends at the ‘end symbol’. The sequence of program execution is

(© Greeting
text : String(0..1)

Metamodel
Program

Execution

Concrete syntax

I
| > g: Greeting

text = "Hello world"

g
&
T
E
£
<

- [A %

E [:] —rule S E—ObJEI‘.l create name: Metaclass - object name and type
R

g - —control flow

=} .] . :

= . —start symbol @ —end symbol attr:= expression — attribute assignment

Fig. 5.3 Basic “Hello world” example

154 5 Understanding Model Transformations

eeting b Grs
T opp_person_Gresrg o 1 [Greeting |- ohe.! _Gresing
(=] P
5 | suingResue
o person 0.4 grestingMessage [0 1 s
@ © Person © GreetingMessage result - String[0.1]
2 name : String[0..1] text - String[0..1]
opp_greetingMessage_Gresing : 9 : Greeting -opp person_Greding
R M R fhelloworldext}s == === =====5 "
gedinglessign} T B
“[fm: Greetinghiessage | : p : Person - "D©
helloworidext} + helloworident)
E text:="Hello™ - Enﬂme:=‘Mohzl' -
: o (T e
&
o opp_grestingMessage_Greding | 9 :Greeting [opp person_Gresing
® : @)
gredtingMessage 2 StringResut 3 PeISen
gm : GreetingMessage | 1 fresuh} . p : Person
o thelloworldext} 3 result = @gm text+” "+@p.name+T E fheloworidet}
P
i ([QI rleiio] vicha
=)
—
=
(5]
2
& [Hello § Michal [Hello Michal!
8
= i d1 end1
g l:l —object query SE— ~link query el -—= —link create
=]
=

Fig. 5.4 Extended “Hello world” example

indicated by the ‘control flow” arrows. The most common constructs in the program
sequence are ‘rules’ which form the declarative part of MOLA. Our “Hello world”
example contains only one rule. This particular rule contains a single ‘object’ element
whichin this caseis a ‘create object’. A stand-alone rule like this is executed only once
and in our case it will create a single object of type ‘Greeting’. The object name (‘g’)
is an important program element, as it defines the variable that can be referenced
in other rules. However, in this particular case it need not be used anymore. The
‘create object’ icon embeds an ‘attribute assignment’ statement that simply assigns
the famous “Hello world” to the ‘text’ attribute.

As we can see, the simplest MOLA program is easy to write and understand. As
we will later see, all MOLA rules follow the “what you see is what you get” principle.
They actually show the arrangement of objects in the abstract syntax which conforms
to the given metamodel as seen in the next example, shown in Fig.5.4.

5.2 “Hello World” in MOLA—Declarative Processing 155

The metamodel is now extended and is composed of two parts. The first part (top-
left of Fig.5.4) is the source language which is defined through three metaclasses.
The ‘Greetings’ elements contain two components: ‘Person’ and ‘GreetingMessage’.
Both these elements contain appropriate textual attributes (‘name’ and ‘text’, respec-
tively). The second part (top-right) is the target metamodel containing only a single
metaclass called ‘StringResult’. The task is now to first produce a ‘Greeting’ com-
posite and then derive a ‘StringResult’ containing text (‘result’) concatenated from
the texts in the two components of ‘Greeting’.

The desired effect (in concrete syntax only) is presented in the “Execution” part of
Fig.5.4.In an empty model, the transformation first creates a cloud-shaped ‘Greeting’
containing a ‘Person’ (here: “Michal”) and a ‘GreetingMessage’ (here: “Hello”).
Then, this is appended with another (scroll-shaped) element, whichis a ‘StringResult’
containing concatenated text (here: “Hello Michal”).

This transformation is composed of two programs. The first program creates the
‘Greeting’ and its components, while the second creates the ‘StringResult’. This
task could be developed with only a single program but we have divided it into two
programs deliberately to make the description more gradual. To create ‘Greeting’
we have written a rule that contains several ‘object create’ constructs that we know
from the previous example. These were appended with ‘link create’ constructs to
define the connections between the created objects. Note that these link constructs
are always adorned with association end names, which comply with the respective
metaassociations in the metamodel.

The second program in Fig.5.4 introduces query elements of MOLA. The rule
contains three ‘object queries’ linked through ‘link queries’ constituting a joint query
that seeks for elements that are exactly as in this arrangement. Here, the rule seeks
one ‘Greeting’ that is linked with one ‘GreetingMessage’ and one ‘Person’. Note that
this rule finds exactly one such pattern in the current model. If there were more model
elements linked in this way they would not be considered for processing. Which of
the patterns are chosen is not determined, and might be random. Later, we see how
to process many patterns in a loop. In our current example we assume that there is
only one arrangement like this, so this rule is enough to find it.

After matching the objects, the rule creates a ‘StringResult’ object and sets its
‘result’ attribute. This assignment is similar to the one from the previous example
but contains a text processing statement that uses the object names from the ‘object
queries’. It takes the ‘gm’ object and its ‘text’ attribute, and the ‘p’ object and its
‘name’ attribute. These two texts are concatenated with some additional characters,
which produces the final ‘result’ (“Hello Michal!”). Objects in text processing state-
ments are referred to with the ‘@’ character, and text concatenation is performed with
the ‘+’ operator.

The above program assumes that there are only single objects of each kind (‘Greet-
ing’, ‘Person’ and ‘GreetingMessage’) in the original model. However, this is a rare
situation and thus we need constructs to process multiple elements. Forinstance,

156 5 Understanding Model Transformations

we may want to use a modification of the metamodel from Fig.5.4, which is
presented in Fig.5.5 (top). The only modification is the multiplicity for the ‘per-
son’ role. Now, any ‘Greeting’ can be composed of many ‘Persons’ (and still up to
one ‘GreetingMessage’). We would thus want to modify the previous transforma-
tion to process many ‘Persons’, as shown in the “Execution” part of Fig.5.5. The
result would now include many ‘StringResults’ derived from the appropriate ‘Person’
names.

To query for many objects in the model, MOLA introduces the for-each loop
construct. In concrete notation, it is a thick box drawn around the rules that need to
be executed for many model elements. Every for-each loop must have a single loop
head object, which is drawn like a query object but with a thick border. When starting
to execute a for-each loop the MOLA processor evaluates all the possible objects
that match the rule containing the loop head (i.e. the loop head rule). It selects all the
objects in the model with the type (metaclass) matching the type of the loop head
object. For these objects, it further selects only those that match the query object
configuration as specified in the rule. The loop is thus executed as many times as the
loop head object is found to be in the exact configuration with the other objects in
the model specified in the loop head rule.

elinglessage_Greding
E opp_person_Gresing 0.191 opp_grestingMessage,
2 &=
resultz

g 0.* - | O Stngres
[1+3 person ot oo greetingMessage J0. 1
@ (© Person © GreetingMessage result : String(0.1]
E name : String[0..1] text : String[0..1]
g opp_greetingMessage Greding | 9:0¢t"9 opy person Gresing
©
= .

- poo ol GrsarsssssssssssssssEsEnws, parson| 00 | Reees)
%ﬂ & gredtingliessage | . £ StringResut ey D@
E : Greatingbessage | * fresur) : n 5 -

Lenal insd.l@nlm"?@.nmﬂ.‘ .
Hell.o Michal
c e —
o F
S o I
o ”
53 Wiktor [Hello Michal!
u .
[Hello Wiktor!

:] —for-each loop E - loop head object

Fig. 5.5 “Hello world” example with a loop

5.2 “Hello World” in MOLA—Declarative Processing 157

I ket FSu—~sprrmper LTI
{ gﬁre_etmg:- |

.t

person .." : greetm&Message te, person
pl: Person * gm: GreetingMessage * p2:Person
name = "Michal" tekt = "Hello" * name = "Wiktor"

Fig. 5.6 Evaluation of objects in a for-each loop

In our example in Fig. 5.5, the for-each loop is executed twice. This is illustrated
in Fig.5.6 which shows the four objects in the original model (a ‘Greeting’” with
a ‘GreetingMessage’ and two ‘Persons’). Each of the two iterations of the loop
execution retrieves three objects as indicated by the dotted aches. Note that within
the loop execution, some of the retrieved objects can overlap between loops; only
the loop head objects have to be different.

In a given loop, the retrieved objects are given names as determined by the loop
head rule. So, in one of the iterations the object referred to as ‘p’ (see the program in
Fig.5.5) has text equal to “Michal”, and in the other—equal to “Wiktor”. This results
in creating two separate ‘StringResult’ objects in the final model, with appropriately
set ‘result’ strings.

When constructing MOLA for-each loops we need to remember that they are still
declarative programming elements. They do not determine the sequence in which the
loops are going to be executed. Thus, normally we should not assume this sequence.
Each of the iterations in a loop execution should be treated independently of other
iterations.

5.3 Variables and Procedures in MOLA—Imperative
Processing

Most non-trivial transformation problems necessitate some kind of sequencing in
terms of rule execution. Sometimes, the sequence in which declarative rules are
executed is not important. However, in many cases, processing relies on some of the
rules changing the state of the model which is then processed by other rules. This
leads us to typical imperative processing with variables, control flows and procedures.

To illustrate imperative processing in MOLA, we introduce a more elaborate
example than the simple “Hello world”. We operate on graphs as defined through
the metamodel in Fig.5.7. ‘Graphs’ consist of ‘Nodes’ and ‘Edges’. Any ‘Edge’
connects a source (‘src’) ‘Node’ with a target (‘trg’) ‘Node’ and thus are directed. In
concrete notation, we denote nodes as pentagons and edges as arrows connecting the
pentagons. Note that the metamodel allows for “dangling” edges that have missing
source and/or target nodes. This is due to the multiplicity of ‘0..1" set for the ‘src’
and for the ‘trg’.

158 5 Understanding Model Transformations

opp_nodes_Graph G Graph opp_edges_Graph
0.1 - 0.4

]
o
g nodes * fordered} edges |* [ordered])
B (® Hode trg & () Edge
g name : String[0_1] |01 {ordered} opp_trg_Edge
0.1 {ordensd]} 1‘src % |opp‘_src_Eme
i@sk : Integer

g . n : Node nodes 9 : Graph |- -
T 1 {graph1} opp_nodes_Graph foraph1}

o Vi

oz T

shi=@sk+l

=
12)
)
=
3 > R
x
i
x®
g : s
Y | @var:Type | —variable — text statement (assignment)
3 : . :
g @var — variable referencein expressions

Fig. 5.7 Graph example with node counting

In addition to the graph metamodel we also use the ‘IntResult’ metaclass (not
shown in Fig.5.7). Objects of this type hold a single ‘result’ value of type ‘Integer’.
Their concrete syntax is a star with the integer value placed inside it. This model
element allows us to represent results of certain arithmetic calculations pertaining
to graphs.

Let us now introduce the first problem associated with the graphs. It is a simple
task to count all the nodes in a graph and create an element containing the result of
this counting. The expected effect is shown in the “Execution” part of Fig.5.7.

To perform this calculation we need to use the for-each loop, but we also need an
integer type variable that would hold the number of nodes. The program in Fig.5.7
contains the declaration of such a variable, called ‘sk’. As we can see, variable
declarations contain the ‘@’ prefix. Variables can be assigned values through text
statements with assignment clauses. Considering these explanations, the presented
program should be easy to understand. The program starts by setting the initial value
of the counter ‘sk’. Then control goes to the for-each loop. The loop runs for each of
the ‘Nodes’ contained in a ‘Graph’. For each node, the counter is incremented. After

5.3 Variables and Procedures in MOLA—Imperative Processing 159

all the loops execute, control is shifted to the last rule where an ‘IntResult’ object is
created and its attribute assigned the value of the ‘sk’ counter. Note that the for-each
loop finds any node in the model that is linked with any graph. So, regardless of the
number of independent graphs in the model, there will be created a single ‘IntResult’
with a summary value.

In this example, ‘sk’ is an explicit variable, which means that it is explicitly
declared through a variable declaration construct. In MOLA we can also use implicit
variables. These variables are not declared but are introduced as parts of the rules.
Any object in a rule has aname (e.g. ‘n’ or ‘g’ in our example program). These names
can be used in further rules and refer to specific objects found through applying the
original rule. We will see how explicit variables can be used in further program
examples. Both the explicit and the implicit variables can be used in expressions
using the ‘@’ prefix (as in ‘sk := @sk + 17).

The first graph problem was a simple one where we only had to count the nodes.
Now, we change the problem to count the edges instead of nodes. Furthermore, we
count only the edges that form “loops”, i.e. that connect nodes with themselves. We
also perform calculations separately for each distinct graph in the model. This prob-
lem is illustrated in the “Execution” part of Fig.5.8. There, we can see two distinct
graphs, therefore transformation should produce two ‘IntResult’ objects containing
the counted numbers of “loop” edges in each of the graphs.

count_loops

Program
o g : Graph
.......I:::U
g P Hgrapht} I> — |
Vi
0 : Graph
{grapht} 370
| m ‘Nupp_w_ﬁ:h ¢:Bdge Jadges @9 : Graph
Vi fgraph1} fgraph1}
T — e opp_sdges_Grch
; shom@sksl

Execution

o) (6] |y

@var: Type 1 - procedure parameter proc(@par) | —procedure call

MOLA syntax

Fig. 5.8 Graph example with edge counting

160 5 Understanding Model Transformations

To handle the problem of separate graphs we introduce a new MOLA
construct—the procedure call. The main program (top-left of Fig.5.8) contains a
simple for-each loop that queries for all the ‘Graph’ objects. Having found such
an object in a given loop, the program calls the “count_loops” procedure. This call
contains a parameter which is a reference to the found ‘Graph’ object. As expected,
the parameter refers (through the ‘@’ prefix) to the implicitly declared variable that
holds the reference to the found object (variable ‘g’).

The “count_loops” procedure has its parameter declared in a special MOLA con-
struct. The parameter icon contains the name of the parameter, its type (metaclass)
and its number. The number is necessary, as there can be more parameters than just
one and they need to be logically ordered—physical ordering through positioning in
the diagram is not available in MOLA.

As we can see, the structure of the “count_loops” procedure is similar to the
structure of the node counting program. The difference lies in the loop head rule.
The for-each loop runs through all the ‘Edge’ objects that connect a ‘Node’ object
with the same object. The rule is very clear that what needs to be found is a set of
two objects (a ‘Node’ and an ‘Edge’) connected through two links (an ‘src’ link and
a ‘trg’ link). It is also important that the ‘Edge’ has to be contained (see the ‘edges’
link) in a specific ‘Graph’ object. Namely, it has to be the very object that was passed
as the parameter of “count_loops”. This is again denoted with the ‘@’ prefix. Note
that without the ‘@’ in front of the ‘g’, the for-each loop would run through all the
‘Edges’ in any ‘Graph’, and not only in our given ‘Graph’.

For our example model with two graphs, the “count_loops” procedure is called
twice from the main programs for-each loop. In this way, two distinct ‘IntResult’
objects are created in the model. Also note that the program could be written without
the procedure. In this case, we would need to insert all the contents of the procedure in
place of the procedure call. This would create a situation with a for-each loop within
a for-each loop, which would certainly cause the program to be less understandable.

The same program structure can be used in other problems with several graphs.
Figure 5.9 shows two additional procedures. The first procedure calculates isolated
nodes, i.e. nodes that do not have any incoming nor outgoing edges. To find such
nodes we need to use anew MOLA construct which is the object query with the ‘NOT”
clause. When used in a rule, this kind of object query is true when the appropriate
object is NOT found. In our example procedure (“count_isolated”), the rule seeks
for the situations where a ‘Node’ is not linked to any ‘Edge’ object, both as its target
(‘trg’) and its source (‘src’).

The second procedure in Fig.5.9 (“count_dangling”) resolves a similar problem
but from the point of view of the ‘Edges’. It counts all the edges that are “dangling”,
i.e. that are not connected at one or both of its ends (source and target). The first
loop counts the ‘Edge’ objects that have no ‘Node’ object connected through the
‘src’ link. Note that this also covers the ‘Nodes’ that are not connected through both
the ‘src’ and the ‘trg’ link. In turn, the second loop counts all the ‘Edges’ that are

5.3 Variables and Procedures in MOLA—Imperative Processing 161

count_isolated |

@y : Graph g

> '

O,)]
Avi

{Nt:d} opp.#ro_Ecn s @3 : Graph
es : Bdge| e farapht} |09 {araph1}
foaptty | | "'Ga7, [opP-tra-Ece opp_nodes_Grgh

{araph1} L)

T

\/

count_dangling |

= |@9g : Graph
. > ! @sk : Integer
. Lamhl} :
AV

NO =
sn{: No.I:e bk o=l L @WI Gr““}:h

{graph1} | opp_src_Edge Ph 1 opp_edges_Graph

\/
¥

{NOT} @9 : Graph
t{l;: Nad; {graph1}

raph1

p
{NOT} —object NOT query ‘w —link NOT query

end2

Fig. 5.9 Graph examples with missing edges or nodes

connected with a ‘Node’ in the role of its source (‘src’) but not connected to any
‘Node’ in the role of its target (‘trg’).

In some situations we would also want to create a rule that determines not the
missing objects but the missing links. For instance, we would like to count ‘Node’

162 5 Understanding Model Transformations

objects that are “orphans”, i.e. not contained in any graph. We would thus need
to construct a rule saying that a ‘Node’ is not linked to a ‘Graph’. An appropriate
program would look almost exactly as our first graph example program in Fig.5.7;
the only difference would be the {NOT} clause attached to the link between the
objects ‘n” and ‘g’.

5.4 More Advanced MOLA Constructs

Rules with objects, for-each loops, control flows, variables and procedures are the
fundamental building blocks of MOLA programs. Out of these elements we can
build complex model transformation algorithms. In this section we introduce more
advanced constructs of MOLA which increase its flexibility, allowing for construct-
ing more advanced query rules and for model manipulations that involve deleting
model elements.

We will still work on the graph metamodel introduced in the previous section.
The first example problem will be to count cycles. We define a cycle as a set of three
nodes connected with edges so that it is possible to traverse through the three nodes
along the edges. Since there can be many edges linking two nodes, any three nodes
can participate in more than one cycle. Thus, the program becomes non-trivial in
terms of its algorithm.

We provide two solutions to the problem. The first solution is presented in Fig. 5.10
and is a brute-force counting of the edges involved in the cycles. The algorithm
necessitates three layers of for-each loops. In the outer layer, the program goes
through all the edges that participate in a cycle. The appropriate rule consists of three
‘Node’ objects and three ‘Edge’ objects connected through appropriately directed
links. Having found an edge that participates in a cycle, we need to determine all
the cycles that it participates in. For this purpose we enter the inner loop which now
finds all the edges that go out of the node being the target for the originally found
node. Having found a particular second edge in a cycle, we enter the innermost loop
which now searches for all the edges that close the cycle.

As we can see, the loops use references to implicit variables. The middle loop
uses references (‘@) to the nodes (‘nl’” and ‘n2’) found in the outermost loop. The
objects for ‘nl’ and ‘n2’ are not determined through querying the model but are
simply taken as objects already found in the outermost loop head rule. Note that the
objects ‘n3’ and ‘e3’ are determined anew. The object ‘n3’ found in the middle loop
is then used directly in the innermost loop. In this loop, the only object queried from
the model is the loop head (‘e3’).

The innermost loop also increments the cycle counter ‘sk’. This algorithm in fact
counts all the edges in all the cycles and, thus, the counted number is three times
the number of the actual cycles (each cycle contains three edges). Thus, the last rule
which creates the ‘IntResult’ object divides the final result by 3.

5.4 More Advanced MOLA Constructs

... r: IntResut
{result}
H @shk : Integer
n{::m::}e sre ¢! :Edge Jopp trg_Edge [nZ : Node
rap
elf <> @na)| PP o-Ecee Sowl o Rl

sre
opp_src_Edge

_trg_Edge llrg
3 : Bdge opp_sro_Edge n3 : Node trg e2 : Bige
{araph1} = {graphi1} opp_tro_Bdge {araph1}
Vi
& . B
e3 : Edge | onn sro_Edoe n3 : Node
{araph1} fgrapht}
sro
{self<>@n1 and self <>@n2}
opp_trg_Edge =
trg opp_trg_Bdge ['"9
@n1 : Node e2 : Bdge l opp_src_Edge @n2 : Node
{graph1} fgraph1} ro |_fa@ph1}
- B 7
AV
@n1 : Node trg 23 : Bdge opp_sre_Edod @n3 : Node
fgraph1} opp_trg_BEdge foraphl} sro farph}
‘ sh=(@sk+ '

{expression}

—object constraint expression

Fig. 5.10 Graph example with cycle counting

163

To understand better the execution of this algorithm we use the example in
Fig.5.11. This example shows one outermost iteration of the algorithm applied to a
specific graph. In this outermost iteration, an edge is found (denoted with a red bold
line) and two adjacent nodes (referred as ‘@nl’ and ‘@n2’, also denoted with a red
bold border). Of course, this edge and the two nodes are part of at least one cycle
(thus they comply with the loop head rule of the outermost loop).

164 5 Understanding Model Transformations

itl1 (@n2 It1.1 @n2 Y 1t1.1.1 @n2)
@nl 8 @nl) \@M @l J k=1

1t1.2 (@n2 \ 1t1.2.1 @n2 N

n3 n3|
- _Ment) [=3

1t1.3 @n2 N 1t1.3.1 @n2 N

n3 n3|
\ @n1) \ @l J [sk=3

Fig. 5.11 Graph example with cycle counting—execution

With this arrangement found in the outermost loop, the program enters the middle
loop. In the first sub-iteration (1.1) the loop finds a second edge with a connected node
(‘@n3’). Again, with this arrangement of objects the program enters the innermost
loop. In the sub-sub-iteration (1.1.1) the cycle is closed and the counter is incremented
(here: set to ‘1’). There are no other iterations of the innermost loop because there
are no other relevant edges between nodes ‘@n3’ and ‘@nl’. The middle loop iterates
another two times, because nodes ‘@nl’ and ‘@n2’ participate in three cycles. This is
illustrated with iterations 1.2 and 1.3. As in the first case (1.1), the innermost loops
(1.2.1 and 1.3.1) run only once.

In this way, we have found three cycles that contain the edge between the nodes
“@nl’ and ‘@n2’. Note that the same three cycles will be found two more times each.
In other iterations of the outermost loop, the other edges that participate in each of
the already counted cycles are selected. In this way, the resulting count will be three
times the number of cycles (i.e. 9).

A careful reader may have noticed that the rules in the outermost and in the
middle loop contained certain expressions as part of the query objects. This is a
MOLA construct that allows for constructing finer queries. In our case, we wanted
to make sure that the edge does not connect the same node. In a MOLA query,
different object variables can point to the same particular object in the models. So,
in case of looping edges (as e.g. in Fig.5.8), variables ‘nl’ and ‘n2’ would point
to the same object (the same ‘Node’ is the source and the target for the ‘Edge’). To
prevent from counting this we have introduced an object constraint expression. In our
example, it refers to the current object (‘self’) and compares it with another object
(‘@n2’) making sure that they are different (‘<>"). Expressions can contain logical
operators (‘and’, ‘or’) like in the constraint from the middle loop. Expressions can
also refer to object attributes, with the syntax identical to that used by us already in
the assignment constructs (attributes referenced through the dot °.” operator).

The above algorithm is certainly not optimal from the point of view of processing
time. Thus, we change the algorithm to consist of only one loop. This time, it is a

5.4 More Advanced MOLA Constructs 165

loopt (3 graphi:=Ed
Metamodel @ preen s L
o
AV
(_trg_Edge
il : Node o1 : Bdge opp_trg._| 0z 7Node
= graph1} OPPSTO_ECEE | bty 3] graphi}
© {self <>@n2 and self < @n3} e {self ©>@n1}
& irg foord U il sro
a i Gl Lo e
Em { temp) Sloopt ot
el T T - o ' loopt
{graph1} edgel 100p1 Senenan . : opp_gre_Edge
J edgel
|0PD_W_W n3:Nede | edgel e2 : Bige
Irg hi
sro {graph1} faraph}
\ opp_trg_Edge - —
{ELSE}

--------- P —alternative control flow

MOLA syntax

Fig. 5.12 Graph example with cycle counting—alternative solution with a while loop

‘while’ loop that can be constructed from the MOLA constructs we already know of.
However, to implement this new algorithm, we first need to update the metamodel
with an additional metclass as shown in Fig.5.12. The additional metaclass ‘Circle’
is associated with the already known ‘Edge’ metaclass. This new metaclass is only
a temporary construct that will allow us to mark the cycles already found.

The program is centred around a single rule which uses objects of the newly
introduced metaclass. The rule queries for ‘Node’ and ‘Edge’ objects that form cycles
as in the outermost rule in the previous program. However, in order for matching to
occur the ‘Edges’ in the cycle should not be attached to any ‘Circle’; if this is so, the
rule creates a new ‘Circle’ and attaches it to the found ‘Edges’.

As we can see, the main rule of this program is not a for-each loop. Thus, it is
executed once, whenever flow of control reaches it. When the program begins, the
rule finds a random set of objects that fulfil the rule and creates a new ‘Circle’ attached
to the ‘Edges’. Then control goes to the next statement which increments the cycle
counter ‘sk’. The program then loops back to the main rule and this time, some other

166 5 Understanding Model Transformations

arrangement of objects has to be found. The previous arrangement is already updated
with the new ‘Circle’ object and thus does not match the query rule anymore. This
implicit loop is executed until the rule is matched by any set of objects. If there are
no objects anymore that match the rule, control is passed through the control flow
arrow that is specially marked with the ‘{ELSE}” keyword. This alternative control
flow moves us to the final rule that sets the ‘result’ of the counting.

In general, any rule in MOLA can have up to two outgoing control flows—the
main flow and the alternative flow. When the rule is not matched, control moves
through the alternative flow. When there is no explicit alternative flow, control goes
to the final node in the current procedure or finishes processing within the current
for-each loop.

Note that the last program has linear complexity. The number of the loop iterations
is equal to the number of cycles to be counted. This effectiveness has the price of
additional storage needed to hold the temporary ‘Circle’ objects. Moreover, we can
observe that the program cannot be repeated to count cycles again. To be able to
repeat the program and receive correct results we need to clean-up the model. The
way to do this is shown in Fig.5.13. This is a simple for-each loop that finds all the
circles in the current model and then deletes them.

To delete objects in MOLA we use a delete object statement placed within a rule.
It can be noted that deleting an object also deletes all the connections of that object
with other objects. In our example, deleting a ‘Circle’ means also that all the links
of that ‘Circle’ with the ‘Edge’ objects are removed from the current model.

To illustrate the applications of element deletion we introduce a new example
problem around the graph metamodel. This problem reverses the directions of all
the ‘Edges’ in the graphs. The first solution to this problem is presented in the upper
part of Fig.5.14. This procedure takes a graph as its parameter and loops over the
edges of this graph. The for-each loop head rule finds the ‘Edge’ objects that connect
nodes. For each of such objects it creates another ‘Edge’ object which is connected
to the two found ‘Node’ objects, but with reversed links. Of course, the new ‘Edge’
object is also being linked with the current ‘Graph’ object.

Note that the above described rule also covers the situation of looping edges, i.e.
‘Edge’ objects which are linked to the same ‘Node’ object as its source (‘src’) and
target (‘trg’). So, in some iterations the implicit variables ‘s’ and ‘t” may point to the

it e

¢ : Circle
fremp}

—object deletion

MOLA syntax

Fig. 5.13 Element deletion example

5.4 More Advanced MOLA Constructs

167

@9 : Graph @
1
fgraph1}
LI
5 : Node @9: Graph |00 edges Graph » ne :Edge
faraph1} fgraphl} [ERSEEEStatatisE st edges »_{graph1} &
sre opp_edges_Grph opp_m_&blf i
edges ’“’E
e : Edge =
opp_trg_Edge t : Node
opp_sro_Edge | {graph1} Irg|_{8eht}

. @9 : Graph
1
P o ®
AV :
@g : Graph 3
foraph} PP =
edges
s:Node |HUL T ioiioy e:Edge |OPP.SToEdge t: Node
{grapht} opp_trg_Edge | {graphl} sro| fgraphl}
ol K SERIEG- US|
opp_sre_Edge trg
x
©
£
2 endl _____ —li i
S e link deletion
(=]
=

Fig. 5.14 Edge reversal examples with element and link deletion

same object. In this case, the rule will still work correctly and will create a second
edge that connects this ‘Node’ object just like the given ‘Edge’ but in the opposite

direction.

After the new ‘Edge’ object is created, the old ‘Edge’ object is deleted. Note that
we perform this deletion within the same for-each loop as the old ‘Edge’ objects
are no longer needed. In the previous example with the ‘Circle’ objects, they could
be deleted only after the “while” loop has finished. This was because the ‘Circles’
were used within this loop to mark the already processed graph cycles. They could
be deleted only after the original cycle counting was done.

168 5 Understanding Model Transformations

The second approach to reversing edges is much more elegant. It uses a new
MOLA construct of link deletion. This construct allows us to delete only links
between objects and not the objects themselves. As we can see, this possibility
significantly simplifies the program. This time, we simply delete the links between
the ‘Edge’ object and the two ‘Node’ objects. This deletion is done together with
querying. The MOLA engine first finds the objects with the links, and when found,
immediately deletes the links. Within the same rule, new links are then created, which
connect the three objects in the opposite direction.

Our final example in the graph domain presents a typical problem of model copy-
ing. It is often the case that we need to copy a model which is represented using a
certain metamodel, to another model which is represented in a different metamodel.
Both models may have a similar concrete syntax but the source and target storage
spaces are different in terms of their structure.

The new metamodel for graphs is presented in Fig.5.15 (top) and is a variation
of the original metamodel shown in Fig.5.7. This metamodel contains an abstract
metaclass (‘GraphComponent’) that defines the ‘text’ attribute which allows to store
names for both the ‘Nodes’ and the ‘Edges’.

In model copying problems, it is usually necessary to maintain temporary links
between the old models and their copies. These links are used in the transformation
programs to create proper structure of the copy. In our example, the new metamodel
is associated with the old metamodel through the additional metaassociation between
the old ‘Node’ (from the ‘graph1’ metamodel) and the new ‘Node’ (from the ‘graph2’
metamodel).

The copying program iterates over the graphs of the first kind ({graphl}) and for
each of them calls the procedure presented in Fig.5.15. The procedure first creates a
new ‘Graph’ {graph2} object. Then it runs a for-each loop over the ‘Node’ {graphl }
objects contained in the given ‘Graph’ {graphl} object (‘@g’). For each node found, a
new ‘Node’ {graph2} is created and linked with the newly created ‘Graph’ {graph2};
the new node is also linked with the old node.

In the second for-each loop the edges are copied. For this purpose the loop iterates
over the ‘Edge’ {graphl} objects. For each of the edges, the rule finds the old nodes
they connect (‘sn’ and ‘tn’) and the new nodes that were created in the previous
for-each loop (‘g2sn’ and ‘g2tn’). This is where the temporary links between the
old and the new nodes are needed without which the program would not be able to
determine the structure of the new graph. The new ‘Edge’ {graph2} object is created
and linked with the new ‘Nodes’ that are temporarily linked to the old ‘Nodes’. In
this way, the new graph maintains the exact structure as for the old graph.

The new graph preserves the node names from the old graph in the first for-each
loop. The statement which creates new ‘Nodes’ also assigns the ‘text’ attributes by
copying them from the ‘name’ attributes of the old ‘Nodes’. Since the old graph does
not cover edge names, the new graph has the edge names set to empty strings. This
is done in the second loop when creating the new ‘Edge’ objects.

5.5 End-to-End Transformation Example 169

| O GraphComponent | ges 0,1 | Graph
[text : String{0..1] lordersd] opp_ges_G
] _ .
3 .
rg *
E O Hode 0..1 {ordered} opp_trg_Edge G Em
g sre *
E grmmﬂ..‘l {ordered]} opp_src_Edge
graphi
(® graph1:Hode
name : String[0..1]
@9 : Graph
1
faraph1}
s : Node nodes @g : Graph
E fgapht} opp_nodes_Grph {grapht}
(] Y
—_ .
0 gy —
9 i1 gZn:Node _w @92 : Graph
o ae.s fgraphl} o ReneTooei ol {graph2}
graph2 L text:=@s.name & .
AV
: ™
sn : Node sro & : Edge opp_trg_Edge tn : Node
{graph1} opp_sro_Edge |_loeh1} o {graph1}
graphi edges - graph
edges_Graph | ar
R - @92 : Graph g2tn : Node
_JEle P— {graph2} faraph}
graph2 fgraph1} 1g2e : Bdge !
92sn:Node |cprn » fgraph2} Eeeemaaa sopp_gos_Graph itrg
fophZ} [opp sro_Edge stex=" iopptrg B i
N et "y

Fig. 5.15 Graph to graph transformation example

5.5 End-to-End Transformation Example

The example MOLA programs in the previous sections were simple and
consisted of a maximum of one main program and one additional procedure. Now
we present a more sophisticated problem. To solve it, we need to construct several

170 5 Understanding Model Transformations

procedures and—what is more—these procedures are used recursively. The example
also allows us to introduce certain MOLA constructs not yet presented previously.

Our new problem is a classical benchmark for model transformations and consists
in transforming a UML class model into a relational database (RDB) schema. The two
paradigms have several similar elements but there are also significant differences. The
main mismatch lies in the generalisation relationships present in the object-oriented
(class) models and that do not exist in the RDB paradigm. Thus, transformation will
need to resolve this issue through defining specific rules for turning generalizable
classes with their attributes to flatly structured tables with columns.

The UML and RDB metamodels used for our transformation are presented in
Figs.5.16 and 5.17. Both the metamodels are significantly simplified to make the
transformation program simpler to comprehend and to fit into the scope of this
introduction to model transformations.

The UML metamodel (Fig.5.16) is simplified even in comparison with the MOF
metamodel presented in Sect.3.8. All ‘UMLElements’ have ‘names’ and ‘kinds’.
The topmost element is ‘Package’. Packages cannot be nested—there can be only
one level of packages. Every package can contain several ‘PackagableElements’—
‘Classifiers’ and ‘Associations’. ‘Classifiers’ are ‘Classes’ and ‘PrimitiveDataTypes’.
‘Classes’ can be linked through ‘Associations’, similar to how ‘Edges’ link ‘Nodes’
in the previous examples in this chapter. Associations are always directed—they link
a single ‘source’ and a single ‘destination’ class. ‘Classes’ can have ‘Attributes’.
Every attribute has its ‘type’ which is a ‘Classifier’, i.e. either a ‘Class’ or a ‘Prim-
itiveDataType’. A great simplification of this metamodel is a lack of a separate
metaclassfor the generalisation relationship. Instead, there is a metaassociation that

© UMLElement

name : String

kind : String

(@ PrimitiveDataType

I

C{ ciessit]
I
1 lype A
1 forward * Ireverse
typeO e
’!"PE Fres source |1 destination |1
IG Attribute | ‘1| © Class | specitic
* attribute owne []
*|generd

Fig. 5.16 Simplified UML class metamodel

http://dx.doi.org/10.1007/978-3-319-12838-2_3

5.5 End-to-End Transformation Example 171

SimplUML::
G Package
1 |package
© RDBElkment
packageToSchera [| kind : String
name : String
) SimplUML::
Attribute
.| ©coumn | *
classToTable g type : String attribute ToColurnn

*leolurn * |eolumn

class |1
SimplUML::
o Class

SimplUML::
e Association I

1 |association

Torei grikey assocToFKey
Ll L]

+[@ Foreignkey|

refersToOpposite
. |I'ot &l grikey

Fig. 5.17 Simplified RDB metamodel

allows for “generalisation links” between classes. One of the classes is ‘specific’ and
the other is ‘general’.

The RDB metamodel (Fig.5.17) is also very simple and consists of only six
metaclasses. At the top it defines the generic abstract ‘RDBElement’ metaclass.
Through this metaclass all other RDB elements have ‘names’ and ‘kinds’ as the
UML class model elements in the previous metamodel. The topmost RDB element
is the ‘Schema’ which consists of “Tables’. ‘Tables’ contain ‘Columns’, ‘Keys’ and
‘ForeignKeys’. The ‘Keys’ can be associated with ‘Columns’, and the ‘ForeignKeys’
link ‘Keys’ with ‘Columns’.

For the models to be well formed, this simple metamodel should also have some
constraints defined. The main constraint is that ‘ForeignKeys’ should link ‘Keys’
and ‘Columns’ contained in different ‘Table’ objects, otherwise the role of the ‘For-
eingKeys’ would not reflect their meaning in typical RDB systems.

Also note that the RDB metamodel is connected with the UML class metamodel.
Instances of these metaassociations are used as temporary helpers—traceability
links—in the transformation program. As expected, the metaassociations connect
the analogous elements in both metamodels. Packages relate to Schemas, Classes
to Tables, Columns to Attributes and Associations to Foreign Keys. This reflects
the basic transition of elements from the UML class models to the RDB models.
Of course, the detailed rules are more complex than this simple transition and we
formulate them along the consecutive parts of the presented program. An important

172 5 Understanding Model Transformations

observation pertains to the metamodel in Fig.5.17, namely the multiplicity of ‘Col-
umn’ in association with ‘Attribute’ is “many” (‘*’). This means that an attribute
can be transformed into several columns, which is analogous to ‘Associations’ and
‘ForeignKeys’.

The “UML to RDB” transformation program is divided into several procedures.
At the top level it consists of three procedures being invoked in a sequence as shown
in Fig.5.18. These procedures reflect the main links between the UML metamodel
and the RDB metamodel shown in Fig. 5.17. The first procedure transforms packages
into schemas; the second deals with classes and their attributes and transforms them
into tables and columns; and the final procedure turns associations into foreign keys.

The first procedure, “PackageToSchema”, is simple and contains a single for-each
loop shown in Fig.5.19. The loop seeks all the ‘Packages’ and creates a ‘Schema’
for each of them. The schema has its name copied from the package name and the
newly created object is linked to the preexisting package through the appropriate
link. This link is consistent with the appropriate metaassociation from Fig.5.17 and
is used during further transformations.

The second procedure, “ClassToTable”, does the bulk of the work, together with
several procedures that are called from it. As shown in Fig.5.20, the procedure
contains a single for-each loop that seeks for classes in the model. Note that the
loop head ‘c’ contains a constraint (kind="Persistent”) that is applied to one of the
attributes, so only the classes of a specific ‘kind’ are found. For each such ‘Class’,
the rule retrieves also its containing ‘Package’ and the ‘Schema’ that was generated
in the previous step. Then the rule creates a ‘Table’ object and links it appropriately
with the ‘Schema’ object and also creates a temporary traceability link between the
‘Table’ and the ‘Class’.

In addition to generating the ‘Table’ itself, the rule generates also a primary key
and and an associated column. The primary key is an object of type ‘Key’ where

®

==

v
EE
=

Fig. 5.18 UML to RDB transformation—main procedure

5.5 End-to-End Transformation Example 173

its name is a concatenation of the table name and the “_pk” postfix. The associated
‘Column’ object is typed as “NUMBER” and named with the “_tid” postfix.

To illustrate the execution of the rule, we use the class model presented in Fig. 5.21.
The model consists of four classes, where three of them are in generalisation rela-
tionships. The fourth class is used as the type of one of the attributes of another class.
The loop head rule in Fig.5.20 runs through two of the classes—the ones that have
their ‘kind’ set to “Persistent”. In concrete syntax this is denoted with the stereotype
notation.

Figure 5.22 shows the result of one of the iterations, where the class named “C”
produced a table with the same name. The table contains the primary key (“C_pk”™)
and the column holding the table’s identifiers (“C_tid”). The primary key points to
the column. The figure shows both the concrete and the abstract versions of the model

PackageToSchema ‘
Vi :
= 2 sischema b
: package : [SimpIRDEMS} *
I e L
LS o » namei=p.name .
Asssmmsnmmmmmen

Fig. 5.19 Creating packages from schemas

ClassToTable
\vJ
e

~
o Class E““l‘f'i';b‘l-;“":
fesplint) R en: [SmolRDBMS) RS
ool bk classToTable: 3 o= c.name &
Nemmmamannnn anat
elements itables lowner
H
H Hecee o
Taespace sohama’ o Tty
p : Package " - Schema 3 k: E
i 3 : . {SimplRDBMS} -
- — T —:
7 s name:= c.name +”_pk” §
Apssmnsssssnnnnnmennns
~ =
AV

(AarbuteToColumn(@, @.))

Fig. 5.20 Creating tables from classes

174 5 Understanding Model Transformations

resulting from executing the loop head rule. In concrete syntax, the specific objects
are denoted with appropriate stereotypes («Table», «col» and «key»). The abstract
syntax shows the resulting arrangement of objects which matches the arrangement
of objects in the MOLA rule.

After producing the basic structure of the table the loop in “ClassToTable” calls
another procedure—"“AttributeToColumn”. This procedure shown in Fig.5.23 has
three parameters. These are: the class reference, the table reference and the prefix to
be appended to the attribute names. Prefixes are added to the column names derived
from attributes that are inherited through generalisation relationships and from the
classes used as attribute types. Initially, the prefix is set to an empty string (see
Fig.5.20). The class reference is obviously set to the current class object (‘c’) and
the table reference is set to the newly generated table object (‘t’).

The “AttributeToColumn” procedure is in fact a sequence of calls to three other
procedures. The first step is to create columns from “primitive” attributes, i.e. the
attributes directly included in the respective class and typed with primitive types. The
second step is to create columns from attributes with class types. The last step is to cre-
ate columns from attributes that the current class inherits through the generalisation

A
al: integer D
a2: D d1: Boolean
«Persistent» «Persistent»
B G
b1: real cl:integer
c2: Boolean

Fig. 5.21 Source class model for the transformation example

3 «Persistent» «Table»
(1]
® «key» C_pk = C_tid
£ «col» C_tid : NUMBER
(s}
¢l: Column
E name = "C_tid"
c type = "NUMBER"
|
E calumn
g key
a
<

... T Table KLKey
kind = "Persistent” A ey |HBME SCDK

Fig. 5.22 Example for the “ClassToTable” loop head execution

5.5 End-to-End Transformation Example 175

Fig. 5.23 Creating columns
from attributes—main

procedure .
: m
? 1
(Primitive AtributeTo Column @2, @. @pef)) {SimplLML} /
F AR

AttributeToColumn |

@t : Table

7
(ComplexAttributeToColumn(@s. @, @pref)) (simpiRDEMS} [

(SuperAtributeTo Column(@s, @ @prefd)) ¢

hierarchy. As we can see, all the three calls pass the class reference, the table reference
and the prefix. Later, we will also notice that the “AttributeToColumn” procedure
is used in implicit recursion; it is called from within two of the three procedures it
calls.

The first of the three procedures—*“Primitive AttributeToColumn” is not recursive,
as shown in Fig. 5.24. It processes only the attributes contained in the current class.
The procedure’s for-each loop seeks the attributes linked to the class passed as the
parameter. For each of these attributes it creates a column in the table that was
passed as the second attribute. After creating the column the procedure determines
the column’s ‘name’ and ‘type’. The ‘name’ is copied from the attribute’s name
(‘@a.name’) with the optional prefix added. Note that the procedure introduces a
new MOLA construct which is the text statement with a condition. Such conditions
(here: @prefix="") are evaluated and can determine the flow of control, using normal
and alternative (‘{ELSE}’) flows.

The column’s ‘type’ is determined within another procedure—‘PrimitiveType
ToSQL”. This procedure accepts a string with the primitive data type name (@p.name)
and returns a string with the SQL column type. After this, the column’s attributes are
assigned the appropriate values in a separate simple rule that ends the loop’s internal
processing. Note that attribute values can be set also within normal query objects and
not only while the object is created. In our example, the object is accessed through
a reference (implicit variable ‘cl’) and then its attributes are set through appropriate
assignment statements.

The “PrimitiveTypeToSQL” procedure shown in Fig.5.25 takes a string
(‘@primtype’) and returns a string (‘@sqltype’). The return values in MOLA can
be passed through in—out parameters. Normal parameters pass the actual values into
the procedure but are not changeable. The in—out parameters can change their val-
ues inside a procedure which can then be used outside of the procedure. Apart from

176 5 Understanding Model Transformations

PrimitiveAttributeToColumn |

(@c : Class @ : Table |@prefix : String
1 2 3

. ltSimpl UL} {SimpIRDBMS}
: @en - String | ‘@sqhm:m‘m ‘
ol ™
@c:Class |owner
) @ : Table
Renpite {SimplROBMS)
attribute -
:ow
a: Aribute y
S PamiiveDmaTor P {SimplunL) :
{SimplUML} type Opposit eolum:
E ¢l : Column E
* SimpIRDBMS]) *
p SRR
LT L
b =y

S eI [)Lcn::@preﬁx " +@a.namej

cni= @a.name

i@el : Column
{SimpIRDBMS}

name:=@cn
type:= @sqltype

—text statement with condition

MOLA syntax

Fig. 5.24 Creating columns from primitive attributes

introducing this new MOLA construct, “PrimitiveTypeToSQL” is very simple. It con-
tains three conditional text statements that set the output string based on the values
of the input string.

The last two procedures together produce columns in the current RDB table. To
illustrate this, we continue the example from Fig. 5.22. Figure 5.26 shows the situation
after executing “Primitive AttributeToColumn”, applied to the example class “C”” and
to the respective newly created table. The top-left part of the figure shows the original
situation in concrete syntax. In abstract syntax, we have the class (‘cl1’) and its two

5.5 End-to-End Transformation Example

PrimitiveTypeToSQL |

@primtype : String > <@‘W‘WP¢ : String >
1 2

i
@prmtype="Integer”
sqltype:="NUMBER"

‘

JELSE}
@primtype="Boolean"
qltype:="BOOLEAN"
HELSE}
i

sqltype:="VARCHAR"

MOLA syntax

@var: Type 2 —in-out parameter

Fig. 5.25 Determining column types

'
8
c
>
[
@
-
[
=
]
=
(=]
o

x
m
i
c
>
n
=
(=]
m
e
=}
wn
o
<

«Persistent»
(¢

cl:integer
c2: Boolean

«Table»
(&

«key» C_pk = C_tid
«col» C_tid : NUMBER

>

«Table»
C

«key» C_pk = C_tid
«col» C_tid : NUMBER
«col»cl: NUMBER
«col»c2 : BOOLEAN

ptl: PrimitiveDataType
name = "integer"

t1: PrimitiveDataType!|
name = "Boolean"

type type cl: Column
- - name = "C_tid"
al: Atnl?luti al: Atnl::ruti type = "NUMBER'|
name ="cl name ="c2
column
attribute Jllllbutt‘|
cl: Cl
name = "C"

kind = "Persistent"

key

class t1: Table
name ="C"

kl: Key
key | name = "C_pk"

name ="c1"
type = "NUMBER"

typ

column

name ="¢2"

e = "BOOLEAN"

Fig. 5.26 Example for “PrimitiveAttributeToColumn” execution

177

178 5 Understanding Model Transformations

attributes (‘al’ and ‘a2’ with their names “c1” and “c2”). Both attributes are linked
to the appropriate ‘PrimitiveDataType’ objects (‘ptl’ and ‘pt2’). Note that these two
data type objects are singletons and all the attributes with respective primitive types
are linked to these objects.

After running “PrimitiveAttributeToColumn” the table (‘t1’) is appended with
two additional ‘Column’ objects—*‘c02’ and ‘co3’. Their ‘names’ and ‘types’ are
derived from the respective attribute names and their primitive types.

When all the primitive type attributes are processed, control returns to the
“AttributeToColumn” procedure. It then calls two procedures to process inherited
and class-typed attributes. The respective procedures are presented in Figs.5.27 and
5.28. As we can see, they are similar in their structure. The first of them (“Complex-
AttributeToColumn”) iterates over ‘Attributes’ (‘a’) contained in the current ‘Class’
(‘c’). The attribute should be “complex”, i.e. it should be linked with a ‘Class’ as
its ‘type’. After finding this type class (‘tc’) it is passed as the first parameter to the
recursively called “AttributeToColumn” procedure. The second attribute is the cur-
rent table (‘t’); the prefix is set to contain the attribute name. In this way, the columns
generated from the complex attribute will have appropriately prefixed names.

The second procedure (“SuperAttributeToColumn”) iterates over ‘Class’ objects
(“sc’) that are ‘general’ for the current class (‘c’). As in the previous case, after
finding the general class, it is passed as the first parameter to the “AttributeToColumn”
procedure. The prefix is not changed, as the inherited attributes are treated just like
the “owned” attributes.

ComplexAttributeToColumn

@e : Class @ Table @prefix - String
3}
{SimplUML} S'MNRUBMS}

@

owner
@ : Class
{SimplUMLY atribuhl
a : Atribute
{Simpl UL}
te : Class b |
{SimpluML) | e

Vi
(AtributeToColumn(@to, @, @prefics’_"+@a rame))

B

Fig. 5.27 Creating columns from class-typed attributes

5.5 End-to-End Transformation Example 179

SuperAttributeToColumn ‘

(@0 : Class @t : Table @prefix : String
1 2 3 }
SimplUML} {SimpIRDBMS}

Vi

@ : Class ific s? : Class
{5implUML} {SimplUML}
generad

(AtributeToColumn(@so. @, prefid))

T
.

®

Fig. 5.28 Creating columns from inherited attributes

Both in the case of complex attributes and inherited attributes, the procedures use
indirect recursion. The “AttributeToColum” procedure is called for another class: the
attribute’s type or the super class. However, the table reference is maintained and
passed to the recurring procedures. Thus, the primitive attributes within the other
class are transformed into further columns of the current table. In case the other class
has complex attributes or super classes, the recursion goes even deeper. It ends when
there are only primitive attributes left in the class, at the given level of recursion.
For the columns generated from complex attributes, the column names have prefixes
which may sometimes be multiple when the type classes also have complex attributes.

Finally, note that the set of ... AttributeTo. ..” procedures handles any situation
involving combinations of complex attributes and super classes. For instance, it would
properly handle the situation where a super class has complex attributes in which the
respective type classes also have super classes with complex attributes, and so on.
This is illustrated in Fig.5.29.

The final procedure is called directly from the main program procedure (see
Fig.5.18). It covers the remaining issue of creating foreign keys from associations.
The procedure is called “AssocToFKey” and is presented in Fig.5.30. It contains a
simple for-each loop which queries for all the ‘Association’ objects. It finds only
the associations between the ‘Classes’ (see ‘sc’ and ‘dc’) for which ‘Tables’ were
created in the previous procedures (see ‘srcTbl’ and ‘destTbl’). This eliminates the
associations involving classes that are not «Persistent», for which tables were not
created.

Recall that according to our simplified UML metamodel, all the associations
are directed. Thus the query is simple and can easily determine which ‘Class’ is
the ‘source’ and which is the ‘destination’ for a given ‘Association’. Whenever a

180 5 Understanding Model Transformations

«Table»

. key» C_pk S) C_tid

= «key» C_p il
:;Z :;teger «col» C_tid : NUMBER

«col»cl : NUMBER
«col» c2 : BOOLEAN
D «col» al : NUMBER

«Persistent» «Persistent» «col» _a2_dl1:BOOLEAN
B (&
b1: real cl: integer «Table»
c2: Boolean B
«key» B_pk = B_tid
D «col» B_tid : NUMBER

«col» bl : VARCHAR
«col»al: NUMBER
«col»_a2_d1: BOOLEAN

d1: Boolean

Fig. 5.29 Example for “AttributeToColumn” execution

AssocToFKey
AV ;
g ™\
so:Class |class sreThl : Table e
{SimplUML} classToTable [SimpIRDBMS} EEEEE e
Source Lo E
i foreignkey E
1k : Foreignkey :
: . {SimpIRDBMS} .
a:Associatien | glements p: Package i inamesscnames”"+aname+” " +dcname ;
- H TR LY T RN LT EVEN Y AR mn s n s an o d
{SimplUmL} + : +foreignkey srefersToOpposite
: V .
reverse ' : :
column E column i H
ol : Column " H
{SimplRDBMS) :
Ename:: sc.name+"_"+aname+" "+dcname+"_tid" E
 type:="NUMBER" : :
destination (MTDE
de : Class z
; class destThl : Table o phey : ey
{SimplUML} - {SimpIRDEMS} — _{SimpIROBMS}
ey
. A

Fig. 5.30 Creating foreign keys from associations

5.5 End-to-End Transformation Example 181

b2a 2 «Table»

al:integer B

a2:D «key» B_pk = B_tid

«col» B_tid : NUMBER
|:> «col» bl : VARCHAR

«Persistent» «Persistent» «col» al : NUMBER
B c «col» _a2_d1: BOOLEAN
b1: real 1:int «fkey» B_b2c_C-> C_pk
22‘ glo;geearn «col» B_b2c_C_tid: NUMBER
b2c

Fig. 5.31 Transformation example with an association

match is found in the for-each loop, the ‘Table’ generated from the source ‘Class’
is appended with a ‘ForeignKey’ and a ‘Column’. The names of the new objects are
concatenated from the names of the source ‘Class’, the ‘Association’ and the target
‘Class’. Additionally, the newly created ‘ForeignKey’ is linked with the primary key
(‘pkey’) of the ‘Table’ generated from the destination ‘Class’.

This processing is illustrated in Fig.5.31. We have extended our example UML
model to contain two additional associations (‘b2a’ and ‘b2c¢’). The result of the
transformation is shown on the right (showing only the table generated from class
‘B’; the table for class ‘C’ is not relevant here). The table has two additional elements
in relation to the previous example—the appropriately named foreign key («fkey»)
and column («col»). The foreign key points to the primary key of table ‘C’. Note that
there is no second pair of «fkey» and «col»because class ‘A’ is not «Persistent» and
thus generation of the respective foreign key is not desired.

Note that the “AssocToFKey” procedure neglects the issue of inherited associa-
tions generating foreign keys only for the associations coming directly from the given
class and not from the general classes (if any). This would necessitate introducing
recursion, as in the attributes. We will leave solving this problem as an exercise for
the reader.

With this we conclude the end-to-end example, which resolves a practical problem
of UML to RDB transformation. The problem was solved for simplified metamodels.
The reader is now encouraged to continue the exercise and modify the solution
to comply with the other UML/MOF class metamodels presented in the previous
chapters of this book.

5.6 Which Language to Choose?

MOLA is one of many model transformation languages. Besides MOLA, there
is a wide variety of model transformation languages to choose from. Generally,
these languages can be divided into textual and graphical. Obviously MOLA is a

182 5 Understanding Model Transformations

representative of the graphical kind. Other examples include Fujaba? originating from
the University of Paderborn [51], QVT (Query/View/Transformations) Relations*
[120] which is a standard managed by the Object Management Group, GROOVE?
from the University of Twente [59] and Henshin® which is an Eclipse-EMF project
[11]. Graphical languages use various graphical notations to represent object queries.
These notations resemble those found in MOLA and they also define certain nota-
tions to denote changes made to the model. Some approaches involve defining the
“before” and “after” patterns (as in QVT Relations), while some other approaches
denote changes along with the queries (like in MOLA, and also in GROOVE and
Henshin). Graphical languages use mostly declarative constructs.

Textual transformation languages have to represent queries and model updates in
the form of a serialised text. They also use standard imperative constructs known from
typical programming languages. Such languages include QVT-Operational managed
by the OMG [120], ATL (Atlas Transformation Language)’ which was originally
developed by INRIA [19, 80], GReTL from the University of Koblenz-Landau [41]
and VIATRA2® from the Budapest University of Technology and Economics [175].
Such languages offer varying notations to represent model queries and model updates.
These notations are combinations of declarative rules and imperative procedures.

In this short overview we do not discuss the above listed languages in detail. The
reader is referred to websites and manuals of the respective languages. However, to
give the reader some directions we present some brief illustrations which allow for
comparison of MOLA with other languages.

Figure 5.32 shows a brief rule written in ATL which creates Tables from Classes
[81]. This rule is part of a larger program that transforms a UML class model into
an RDB schema, generally an equivalent of the end-to-end example from Sect.5.5.
The presented rule shows some of the syntax of the declarative constructs of ATL.
For a detailed comparison the interested reader can refer to the ATL documentation
and tutorials. We will not explain the notation of ATL but the current example is
self-explanatory when related to the equivalent MOLA rule. The example shows that
for simple problems the textual and graphical approaches can have similar expres-
siveness.

When the problem becomes larger and pertains to more than just single objects,
the textual notations have to use complex syntax to express graphs of objects as
illustrated in Figs. 5.33 and 5.34. These two examples present solutions to the graph
edge reversing problem, expressed in GReTL [72] and VIATRA2 [67]. The respec-
tive solution in MOLA can be found in Fig.5.14(2). As we can see, the textual
transformations have to somehow represent the layout of the edges and the nodes to

3 http://www.fujaba.de/.

4 QVT Relations also has a textual syntax variant.
3 http://groove.cs.utwente.nl/.

6 http://www.eclipse.org/henshin/.

7 http://www.eclipse.org/atl/.

8 www.eclipse.org/viatra2.

http://www.fujaba.de/
http://groove.cs.utwente.nl/
http://www.eclipse.org/henshin/
http://www.eclipse.org/atl/
www.eclipse.org/viatra2

5.6 Which Language to Choose? 183

1. rule PersistentClass2Table({

2. from .

3. c : SimplUML!Class (H @
4. c.ils_persistent Vi H
0) e
6. to . {;.-r}:[:.:,} : :s;.:;;m’nws} :
7. t : SimplRDB!Table ([Bind="Persistent} Pmmmm——
8. name <- c.name i Saasanszansaed
9.)

10. }

Fig. 5.32 Example rule in ATL versus an equivalent rule in MOLA

1. transformation ReverseEdges;

2. MatchReplace (’$[1]’) <-- {Edge_LinksToTrg}

3. ("$[01") —--> {Edge_LinksToSrc} (’$[2]")

4. <== from e : V{Edge_}

5. reportSet e, endVertex(srcEdge), endVertex (trgEdge),

6. srcEdge, trgEdge end

7. where

8. srcEdge := theElement (edgesFrom{Edge_LinksToSrc} (e)),
9. trgEdge := theElement (edgesFrom{Edge_LinksToTrg} (e)) ;

Fig. 5.33 Example transformation in GReTL for graph node reversing

rule reverseEdges () = seq{
forall Edge with find graphPatterns.Edge(Edge) do
let SR = undef , TR = undef in seqg{

try choose Source , SourceRelation with
find graphPatterns.srcAndRelForEdge
(Edge , Source , SourceRelation) do seqgf

update SR = SourceRelation;

}

try choose Target , TargetRelation with
find graphPatterns.trgAndRelForEdge
(Edge , Target , TargetRelation) do seqg{

update TR = TargetRelation;

}

if (SR != undef) seqgf
delete (instanceOf (SR, nemf.packages.graphl.Edge.src));
new (instanceOf (SR, nemf.packages.graphl.Edge.trqg)) ;

}

if (TR != undef) seqg{
delete (instanceOf (TR, nemf.packages.graphl.Edge.trqg));
new (instanceOf (TR, nemf.packages.graphl.Edge.src));

Fig. 5.34 Example rule in VIATRAZ2 for graph node reversing

184 5 Understanding Model Transformations

Fig. 5.35 Example rule in GROOVE for graph node reversing

be transformed in serial syntax. They also need to define the changes to the graph
based on the directions of the edges and nodes. As in the ATL example we do not
explain these two languages as our purpose is only to illustrate expressiveness of
text versus graphics. The interested reader can refer to appropriate documentation
and tutorials. In general, the best way to understand these programs is to draw the
respective graphs when reading/writing the rules. By contrast, the MOLA rule in
Fig.5.14 already offers such a graph drawing, simply as part of the language syntax.

To further understand differences between textual and graphical languages, take
a look at Fig.5.35. It shows the solution to graph edge reversal problem written in
GROOVE [58] is to some extent similar to that written in MOLA. The for-each loop
is substituted by the ‘for-all’ operator (V). Otherwise, the reader should be able to
understand this rule easily even without explaining the notation.

The transformation problems can be solved using different notations, however,
the main issue is to design the transformation rules. The language to express the
rules is a secondary issue and can be left to the preference of developers and other
factors—availability of tools (editor, transformation compiler), the transformation
compiler performance and the generated transformation performance. An important
factor is also the level of integration of the given transformation environment with
the modelling environments for the languages involved in the transformations. All
this needs to be evaluated before we choose the language and the environment to
solve our transformation problems.

MOLA is a natural choice for transformations that process RSL models and is also
used in the next chapter. Its graphical syntax complies very well with the complex
RSL metamodel and allows to solve complex transformation problems. It is also
well integrated with the RSL’s modelling environment (the editor and the model
repository). However, we need to be aware that graphical languages tend to produce
less efficient transformation code and the respective transformations are not well
optimised in terms of their performance. A general issue for most transformation
languages is their lack of high-level structuring like classes and components in object-
oriented and component-based programming. In the next chapter we show how to
develop a large model transformation with typical structural constructs like packages
and procedures.

Chapter 6
Writing Model Transformations
for Requirements

The MOLA transformations presented in the previous chapter were quite elementary
and could solve only very simple problems. To fulfil the goal of this book we need
to construct a much more sophisticated transformation that operates on the RSL
metamodel. This transformation should implement all the rules of RSL semantics
presented in Chap.4. For this purpose, the appropriate MOLA program needs to
access RSL models and create UML constructs with embedded textual elements in
Java. This means that the MOLA rules in this program should contain various object
configurations consistent with the complex RSL and UML metamodels. The RSL
models need to be processed (“parsed”) in compliance with their runtime semantics
and the generated code should be compatible with many detailed aspects of a specific
implementation technology. All these issues result in very significant complexity
of necessary MOLA code. To assure manageability and comprehension, this code
should be properly organised, using typical approaches of structural programming.

6.1 Using the MOLA Tools

Before we start analysing how to approach writing considerably sized MOLA pro-
grams, we first need to approach the practical issue of the programming environment.
In some cases this may influence the way we structure our code, especially in view
of compilation efficiency and debugging.

The MOLA development environment (MOLA Tool) is based on a metamodelling
tool development platform called METAclipse [87, 176], which is built on top of the
Eclipse framework. It offers a graphical MOLA editor and a MOLA compiler. The
environment also offers a debugging facility with a model graph browser, the MOLA
Tool offers the typical features of a software development environment. The main
difference is that MOLA programs are graphical and operate on graph-based storage.

© Springer International Publishing Switzerland 2015 185
M. Smiatek and W. Nowakowski, From Requirements to Java in a Snap,
DOI 10.1007/978-3-319-12838-2_6

http://dx.doi.org/10.1007/978-3-319-12838-2_4

186 6 Writing Model Transformations for Requirements

It is interesting to note that the compiler produces code in another (simpler)
transformation language with purely textual syntax called L3 [160]. It is the L3
compiler that produces the final executable code.! The type of the resulting executa-
bles depends highly on the source and target languages for transformation, and their
environments. These executables need to be able to access the model storages and
manipulate the models according to the source MOLA program.

6.1.1 Specifying the Metamodel

Before the compiler is executed we first need to enter the MOLA code. As we
know from the previous chapters this involves two elements: entering the metamodel
and entering the transformation procedures. If we wish to operate on some existing
languages (like RSL and UML), the metamodels should be already provided. In fact,
MOLA Tool can be installed equipped with a workspace, already containing the
metamodels for RSL and a subset of UML. These metamodels are consistent with
repositories and editors that handle concrete models. An appropriate environment,
compatible with MOLA Tool is presented in Sect.7.1.

In case we need to transform some Domain Specific Language we develop, the
process is more complicated. Together with defining the language’s metamodel we
need to develop appropriate editors. A good choice for METAclipse and MOLA Tool
is the EMF environment, introduced earlier in Sect. 3.8. This environment provides
facilities to develop our own graphical editors and model storage. We do not elaborate
on this issue further as our transformations operate only within an existing modelling
environment for RSL and UML.

Although we do not need to modify the metamodels, we will need to access the
metamodel editor frequently. The UML and RSL meatmodels need to be examined
when developing transformation procedures. Moreover, we sometimes might want to
develop our own diagrams for comprehension purposes without changing the actual
metamodel. These diagrams could show some parts of the metamodel, relevant for
particular procedures that we develop.

The metamodel editor is shown in Figs.6.1 and 6.2. The first figure presents a
fragment of the RSL metamodel within the MOLA Tool environment. It is contained
in the ‘RSL’ package, which is, in turn, contained in the main ‘MetaModel” package.
The RSL metamodel is divided into packages according to the division sketched
in Sect.3.2. Within each of the packages we find metamodel diagrams and four
types of metamodel elements: metaclasses, metaassociations, generalisations and
enumerations. All the elements are visible in the project browser, shown on the left
of Fig.6.1.

! In fact, the whole process is even more complicated, with the L3 compiler producing code in an
intermediate language, called LO.

http://dx.doi.org/10.1007/978-3-319-12838-2_7
http://dx.doi.org/10.1007/978-3-319-12838-2_3
http://dx.doi.org/10.1007/978-3-319-12838-2_3

6.1 Using the MOLA Tools 187

S8 METAckpse - SVOSentences - —
Eile [dt MNedgate Segrch Project Disgram Bun Window |Help
i <~ B0~ A~ v . w e | B M el 0% - 1 [Resource (B METAckpse |
1 METAclpse Explorer 1 5% 7 7 0|8 sigsentences —a
e Redseeds_transf =1 4 4 Palette
B Metahodel [0
o eomin [EEsana]
8 RsL El|| i Marquee s 1]
8 RSLDomsanElements © Class
 RlKernel = ;
} RidRequirementRiepresentations =3 Erumenpen @ Jporm 1[@ Predicate
1

i RILR 5 < 0 et | 1

L " ~ g
i ActivityRepresentation Generalation C . *[semtence i R
ConstrainedLanguageSentence 2 Note Hnking 3o recipient |01
[ConstrainedLanguageSente i e 1O DomanElements dctorCrSy stemBiement|
uf” Mote [1

@ ConstrainedLanguageSente
@ RejoinSentence
rgoincReoinSentence - rejo

o

be D ||G Freases verbenease
{1 weetPren 1 l

/' RejoinSentence ---> Constr
8 ControtSentences
£ RepresentationSentences
[RepresertaticaSentences
@ NaturallanguageHypertedt
SVOSentences
12 svOsentences
@ ConditionalConjunctionLini i
@ ConditionalSentence SsmainElueart
B ModalSVOSentence o1 domain Statement (0.1
B ModalVerblink EG I;'N'-« @
@ Predicate [——
@ Subject '
@ SV0Sentence I Properties £1 mT=n
conditionaiConjunction:Cor

7 conditionalSentenceCondt || O35 i e
mainClauseModalS¥OSent:
Gener. Name: MounPhease

modalVerb:ModalVerbLink - oo
/ sourceSVOSentence - predi | Altrbutes | o .
subject:Subject - sourceSW Style
/' ModaisVOSentence ---> 5V = Packsge: =MetaModel-RSL:RSL DomuinElements=Phra: i

'

Fig. 6.1 RSL metamodel fragment in MOLA Tool

For the transformations to work correctly, the metamodel must not be changed.
However, this does not pertain to diagrams, which can be created and deleted as
needed. After creating a new diagram, or modifying an existing one, we can place the
existing metamodel elements by selecting them in the project browser and choosing
the option to add to the current diagram. When removing elements from being visu-
alised in the diagrams we need to make sure not to delete them from the metamodel.

The same rules for manipulating metamodel elements pertain to the UML meta-
model which is shown in part in Fig.6.2. This part defines the UML’s kernel with
packages, classes, operations and properties (attributes). While examining the figure
we note (see the project browser on the left) that RSL and UML metamodels are
placed into two separate major packages and are accompanied by a third package
called ‘sclkernel’.” This third package contains metamodel elements that “connect”
the two metamodels and enable their handling within a coherent framework. We use
certain elements from ‘sclkernel’ in the transformation procedures presented further
in this chapter.

2 The figure shows also a fourth major package called ‘EA’. This package contains a metamodel
for interfacing with an external UML tool that supports a significantly simplified UML metamodel
and necessitates a separate transformation, not covered in this book.

188 6 Writing Model Transformations for Requirements

File Edit Mavigate Segrch Project Disgram Fun Window Help
C-HE $-0~ #- D-f -G e or Bl |BHO|EE 25 & R (RG]
T3 METAchipse Explorer 32 Ba -0 ﬁ%& - =5
1 Redseeds_tramst “lla & Paene
& Metahods i o
T L sl © . [Cmm IS)
8 RSt Bl 17 Marquee |peme:sing] | | enmingPachage
B selkemel © Class
b :‘:\nu = Enumenstion
B Activities # Association
8 AuniliaryConstructs F Generslization e 0t
® e s e .
& Dependencies 7 |
B Interfaces s Mok ok [
@ Kemel ‘Parameter InteralStnsctures::
B Cusses Cl = ::mn O Srcturedclassitier
B Kemell drecton:Fermuabinsionnd] I
@ Kemel2 tordeeet | meaprssmens [Lon oy e
@ Assccistion L2
g :du\aouliulm [Fers ErcactuisresCiassser |
Loty
© Chstr L]
O Comment epsratonlh_t I
sy © Gperton Jomusurnn 1[G i .
© DirectedRelationship e]] I
© Element — f
@ Elementimpon *for !
@ Enumeration owminghusocisonilll 1 ommedtea | (ordend) |
@ EnumesstionLitesal @ Associstion © Property
© Bxpression i5Derrved: Boniew ke 1" fordund) |isDierived : Boolem |
© Festure A1 meeberkrd | isDerivedUnion : Bocien L
e —
@ IrstanceSpecification I Properties &1 =0
© Instancelalue
@ LiteralBoslean Class: UML:Classes:Kernel::
@ Literallnteg
] me:lNuﬂ - General Hame: Parsmeter
@ LiteralSpeciication Attributes | Ly
© Litealstring
© LiterallnlimitedHlatural ~ Package “MetaModel-UML:Classes:Kemel [
L] 0 = -

Fig. 6.2 UML metamodel fragment in MOLA Tool

6.1.2 Specifying and Compiling Transformation Programs

The second part of a MOLA Tool project is called ‘MolaModel’ that contains all
the MOLA procedures grouped within a (potentially) hierarchical package structure.
One such procedure defined in the MOLA Tool environment is shown in Fig.6.3.
A new procedure is created under a selected package and is shown as an empty
diagram. The procedure in Fig. 6.3 is already filled with content and can be further
edited if necessary. Editing is done using a standard modelling tool approach, where
the program elements are selected from the ‘Pallette’ box and dragged onto the
procedure diagram.

All the details of various MOLA constructs can be edited in the ‘Properties’ box
(see bottom). Depending on a specific construct type (procedure, object, text state-
ment, procedure call) the programmer can define or select the various properties like
names, assignment attributes or constraint expressions. In many cases, the program-
mer is assisted through selection lists that limit the possibility of making a syntax
error or prevents inconsistencies with the metamodel. However, all the expressions
(constrains, assignment expressions) need to be entered by hand and are checked
only during compilation.

6.1 Using the MOLA Tools 189
Ele dt Nwigate Search Project Disgram Bun Window Help
il g~ ET 0' i - «| B m W% - £ (i Resource (B METACpse |

Mzucnpu Explocer 11 5% =0

=0

i Redseeds_transt
B MetaModel [Guaecan ATlUnTme Gowiene Cam [Gaemwrce Comr am.m..wsrw]
f B Molsbodel Fasrmmentoectemon Cratetagageiesiece
B Compiler messages 1} Marquee !
& e ol R 0 :
_ExporToEa loop ,-M
B ImportfromEA @ Rute
B Library B Class ,—V—“ — uewnmu NULL wa should start |
B _Usities dement [aee
B Generator DTO SEEA | : T
8 Generator_Presenter [eLsg)
B Generator View == Mote link
M
8 Finalizer Dnd H
@ Intializer v = - "
EBS(mueFlrw 1 Flowline @ firs1sentenca is shways
a getNetSentence > Parsmetes E
9 getNumberOfQutgoingConditions | gn Text
3 getPrevicusSentence Sastement [ELSE)
(@ ParselseCaseScenarios 1= I I S Y
@ ScenaniosToSimpifiedactiities Statement :
& Main 3 While locp : - '
 RSLtelavaFX - -
8 RSLtoSwing = ~ —
8w =1 et a
B Esternal proceduses el I
& reruk Procedure:
General Mame PaeseliseCaseScenanos.

Is main:
De not compile:
Debug on: 7

Package: =RiLtefchol=ScenancParser _

Fig. 6.3 MOLA procedure shown in MOLA Tool

Also note that MOLA Tool supports commenting. Comments can be placed as
stand-alone or they can be attached to specific elements within a given procedure.
The syntax for comments is similar to that in UML. Obviously, commenting on one’s
procedures is a good practice just like when using other programming languages.

Some of the procedures in ‘MolaModel’ constitute compilation units (separately
executed transformations). Every such unit has to possess exactly one main procedure
(see the ‘is main’ checkbox in the ‘Properties’ tab in Fig.6.3). This is the starting
procedure and all other procedures called (directly or indirectly) from here are linked
into the final executable program.

Compilation in MOLA Tool is a stepwise process as indicated at the beginning
of this section. For large programs it is also a lengthy process and it is thus advised
to compile only the packages that have been changed. For example, certain library
procedures can be placed in a separate package and precompiled. When used within
other units, these procedures do not need to be compiled again and can be linked
directly with the final executable.

The compilation process is illustrated in Fig. 6.4. We can prevent any procedure
from compiling by using the ‘do not compile’ checkbox. On the other hand, we
need to indicate the compilation unit to be compiled by selecting the ‘compile this’
checkbox. When this is done, we can select the compiler version depending on the
target environment. In our case we use ‘JGralLab’ as this is the standard repository

190 6 Writing Model Transformations for Requirements

& METAckpse - “METacipse =]
Eile Edt MNeagate Segrch Project Diagram Bun Windew Help
i3~ -0~ &~ 5l =¥ vipw gL B M - £ (i Resource (B METACkpse
B © = O|[8 ParseUseCaseSoenasios 1 =5
eeds b [| 4 <k Paterte - — 5 =
&} MetaModel - P (Geselie RELU1lme B Geresee Cam % Gaemtence ..'fl"am-ﬁ-ﬂﬁo‘w]
i PE- nE.w-Mn:d-; 55 1] & = ™ | oraaresargusgatenece "
pac 1.4 Marques:
B Add procedure ST | i @
§ Delete model Jotp ranet
g Compale » Compile to C++
H@sertence is NULL we showid start
Pl Compile All 3 Compile to JGraLab with processing the first sentance of
Import Synta check e ghven usecase.
E_ Export Compile to EMF
: Debug on Compile to TG
48
Debug off Coempile g =
i »
4 ca e |
@ Copr 0 Properties &2 = T=0
Tl Paste Model: MolaModel
0 getPrevicusSentence |
B Parsel) { MName: RiLtofchod
@ s ToSimpidiedA |
. f::..n enarios’ pifiedactiities ERE—
8 RSLtolrvaFX S 7
i RSLtoSwing
B Eternal procedures Compile this:
& result -
Package: e
|(® propeis 2 e =)
Compiler messages
| Compller messages [Message type: Message: L_W_ :
| 1 Emer B8 - No cutgoing contrel flow! - 5
2 Emon 66 - No incoming control flow!
¥ =z
g* £ 1 items selected

Fig. 6.4 Compilation in MOLA Tool

type for the RSL environment (see Sect.7.1). Another frequently used choice is
‘EMF’ for the modelling environments constructed using the Eclipse Modelling
Framework.

Detecting compilation errors might sometimes be tricky due to the graphical
nature of MOLA. The compiler cannot specify the line number in which an error has
occurred, instead it returns a set of compiler messages (see the bottom of Fig. 6.4), and
each of them is an active link to a specific MOLA procedure. Within the procedure
diagram the elements that cause errors are highlighted (see the upper part of Fig. 6.4).
The developer has to bear in mind that sometimes the highlighted elements might
not be visible. This is again due to the graphical nature of MOLA procedures—some
of the elements might be hidden behind other elements.

Obvious compilation errors associated with the control flow, object configuration
and assignments are detected by the upper level compiler, as described above. How-
ever, some of the errors are detected only at the level of the L3 compiler. These are
mostly errors associated with expressions and their evaluation. Practice shows that
detecting such an error is usually not easy because the compiler indicates only an
erroneous L3 (or even LO) construct and not the MOLA construct. The only solution
is to go through all the recently introduced expressions and seek for incorrect strings
or operands. This issue is characteristic of the current MOLA Tool environment and
might be improved in the future.

http://dx.doi.org/10.1007/978-3-319-12838-2_7

6.1 Using the MOLA Tools 191

The compilation normally results in producing a ‘jar’ file that is ready to be
transferred to the execution environment. We do not present detailed instructions
here because it is specific to the given transformation engine. In general, it consists
in copying (manually or automatically) the generated ‘jar’ into a specific place within
the transformation engine configuration. Then the transformation becomes available
as one of the options within the appropriate language—workbench interface. The
process for the RSL environment is outlined in Sect.7.1.

6.1.3 Debugging Transformation Programs

Compiled MOLA programs need to be debugged just like programs in any other
language. The MOLA compiler offers a debugger feature that allows for producing
debug traces. In case some procedure needs to be debugged we need to turn on its
debugging by selecting the ‘debug on’ checkbox (see the bottom of Fig.6.3).

With debugging turned on the MOLA transformation program produces a debug
trace file during its execution. This is illustrated in Figs. 6.5 and 6.6. The first figure
presents a fragment of a MOLA procedure and the second figure presents an example
trace through this fragment. For brevity, the figure shows only one execution of the
procedure, although the actual file contains traces for further executions.

Guc: ReLUsecase .. .- ->Etl_GetUseCaseName¢®Jc, @ucﬂm} . D(ull_ToPascaCase{@ucName, @chssnumeg)
]
{Requirement sSpecif ications) T
v

@uchName ; String t =gl + Py 1)

AV

@className ; String| -
| @uc - RSlUseCase requirement p - RequrementsPackage
1! pecil ications) e e fications}
- | e |
Eg';::::;lctPresemer : Classl ——
51 : Sterecty pe alocationToUML

{sclkemnel} sterectype a: IsAlocatedTo
(name = “packageZpresenter) relationship {sclkemed}
U - Package allocation ToR SL
{Kemef allocationTarget

- . ~
Vi
(.ﬂ_{zprr‘ ‘app. pr esent ,@abslrauﬁesente«.lme})
© " presenter - Class @up - Package
f (ool R TNNRNRENNEN| (<emo
: name: =@className E owningPackage

Fig. 6.5 Debugging MOLA programs: example procedure

http://dx.doi.org/10.1007/978-3-319-12838-2_7

192 6 Writing Model Transformations for Requirements

Starting Generator_Presenter_createPresenterBareClass ...
PARAMETERS:
rsl::rslrequirements: :requirementsspecifications::RSLUseCase uc=Show book list

CALL statement started ...
/* utl_GetUseCaseName() */
CALL statement ended.

CALL statement started ...
/* utl_ToPascalCase() */
CALL statement ended.

TEXT statement started ...

CONSTRAINT {} SATISFIED.

ASSIGNED: String className=ShowBookListPresenter
TEXT STATEMENT ended.

RULE started ...
Pattern MATCHED. [...]
not-changed: [...]::RSLUseCase uc=Show book list
not-changed: [...]::RequirementsPackage rp=Catalogue management
not-changed: uml::classes::kernel::Package up=catalogueManagement
not-changed: sclkernel::IsAllocatedTo a=v2@13: sclkernel.IsAllocatedTo
not-changed: sclkernel::Stereotype s1=v18: sclkernel.Stereotype

RULE ended.

CALL statement started ...
/* utl_GetClassFromDesignModel() */
CALL statement ended.

RULE started ...
pattern MATCHED. [...]
CREATED: uml::classes::kernel::Class presenter=ShowBookListPresenter

ASSIGNED: String name=ShowBookListPresenter

not-changed: uml::classes::kernel::Package up=catalogueManagement
CREATED: presenter.owningPackage.up

RULE ended.

|

Fig. 6.6 Debugging MOLA programs: debugger trace

The procedure accepts one parameter called ‘uc’ which is a reference to a use
case object. The presented trace shows that the actual execution was performed
for a specific object which is the ‘Show book list’ use case. The first step is to
determine the use case name, and then turn it to “Pascal case” (or upper camel
case). This is associated with calling appropriate utility (‘utl_’) procedures. These
procedures have their debug information turned off so that the debug trace contains
justinformation on their calling being performed, and no information on their internal
processing. The next lines in the trace present the result of assigning the derived
Pascal case name to a variable. As we can see, the name was calculated correctly
(‘ShowBookListPresenter’).

After this initial processing we reach the first rule. This rule queries for the require-
ments package in which our use case is contained. For this package, it also determines
the UML package generated in some previous processing. This is possible due to the
existence of a special ‘IsAllocatedTo’ relationship with a specific stereotype added
(‘package2presenter’). The ‘Package’ metaclass is part of the UML metamodel (see
Fig.6.2). The ‘IsAllocatedTo’ metaclass is part of the ‘sclkernel’ extension. This
example shows that this extension is necessary to construct appropriate links between
the source model in RSL and the target model in UML.

6.1 Using the MOLA Tools 193

data.TG file [C\ReDSeeDS5_Tools\ReDSeeD: ibeary Manag graph i IZ|
=N]
| Class | name e | requirementsSpe_
| I | |
|rsLrsirequirements requirementsspecifications RequirementsPackage (12 [Catalopue management |5 inks 3 |
.,
|42/ Repositary browser, == =
[[crass st {rs RSLUseCase all -1
ftsspecifications RSLUseCase (10) T
isspecifications Requirement {10) gock | [gowar_ | | savetocsv | | gotrosn | pupscate |
pecifications. Satistic .!
tionships invocationRelationship (5)
(11 R PR—|
Reload] | Save |

ons RSLUseCase (6677 6681 1 2inks. I I (T —
ons RSLUseCase |6568
. 16698 6710 2links ! I] !
] L1 L

st Naturall. ; |Snow booklist |19

Class |]

shi
rsi : I 292
rsirsirequirements usecaserelationships ImocabonRelationship [640

Fig. 6.7 Browsing model repositories

Debugging of a rule consists in providing information about whether the rule’s
pattern was matched or not. Further helpful information, which we can see in Fig. 6.6,
is the information on specific objects that were used for matching. The current trace
indicates the five objects that are part of the rule.> The trace for the second rule
illustrates additional debugging element types, because this rule contains object and
link creation. The trace shows that an appropriate ‘Class’ object was created and its
‘name’ attribute set with the specific value.

In addition to analysing debugger traces it is often necessary to analyse the current
contents of the model repository. This pertains both to the initial (source) and the
generated (target) models. To browse the model repository we can use a standalone
model browser, which is a simple application illustrated in Fig.6.7.

Note that the model browser gives much more information than a model editor.
The model editor shows only the elements in their concrete syntax which often hides
important details. The project browser shows all the elements in their abstract form,
including the metaattribute names and their values for specific objects.

3 Note that the trace was slightly abbreviated (marked with [...]), for brevity.

194 6 Writing Model Transformations for Requirements

To use the model browser we need to specify the model schema file containing the
metamodel definition and the actual model file. This is illustrated in the upper part
of Fig.6.7. The browser then seeks all the metaclasses and lists them together with
the numbers of associated concrete objects in the given model. We can then seek a
metaclass that interests us and observe the individual model objects. Figure 6.7 (mid-
dle) shows a fragment presenting the core RSL metamodel classes (‘RSLUseCase’,
‘InvocationRelationship’, etc.)

As we can see, the current model contains 10 use case objects, which we have
already listed in the browser. For each object we can determine its attribute and link
values. The links to other objects can be followed and their contents examined in
the same way. In many cases there is more than one link associated with a given
metaassociation. In the case of the use cases selected in Fig. 6.7 there are three links
to ‘invoke’ objects. This means that the use case invokes some three other use cases.
When we follow the link to the use case’s ‘name’, we see that it is the ‘Show book
list” use case which we remember from the examples in previous chapters. The use
case is contained in a package together with five other use cases.

6.2 Transformation Overview

A full transformation from RSL to Java code needs to cover all the semantic rules,
presented in Chap. 4. The number of these rules (almost 30) indicates that the trans-
formation program has to be highly structured to assure manageability and compre-
hension. We also need to remember that the semantic rules abstract away many of
the technology details, which need to be taken into account when writing a transfor-
mation that wants to be useful and produce working code.

The transformation we present in this chapter® consists of around 150 MOLA pro-
cedures. Our presentation includes some of the most important of these procedures,
which cover various techniques for dealing with complex RSL and UML models.
Obviously, presenting the full transformation program is out of the scope of this
book, as this would double its size and probably bore the reader.

The presented selection should provide enough examples for the reader to be
able to write and modify complex transformations involving requirements models. It
shows the challenges that have to be faced by the transformation developers. Note that
our experience shows that solving these challenges is a very interesting and creative
task, giving much satisfaction. The transformation problems at this level of com-
plexity often necessitate non-standard approaches and invention of new algorithms.

The general structure of our transformation is presented in Fig. 6.8. The main com-
pilation unit is the ‘RSLtoCode’ procedure and processing starts from the ‘Main’
procedure contained in it. To optimise compilation time the transformation contains

4 The transformation originates from previous simpler transformations operating on RSL. They pro-
duced only general architectural (platform-independent) models in UML [86], and some embedded
simple code constructs [155, 157].

http://dx.doi.org/10.1007/978-3-319-12838-2_4

6.2 Transformation Overview 195

4 {5} MolaModel
f# Compiler messages
3 _ExportToEA
8 _ImportFromEA
_Library
8 Generator DTO
8 Generator_ViewEcho3
8 Generator_ViewlavaFX
8 Generator_ViewSwing

3 RSLtoCode 4 £ Generator_Presenter
. 8 Finalizer # _Auxilliary
3 Generator_Presenter 8 ActorToSentences

. 8 Initializer 3 ConditionSentences
3 Parser_UseCase 3 InvocationSentence
@) Main £ PrePostSentences

£ Utilities . 3 SystemToSentences

3 External procedures

Fig. 6.8 RSL to code transformation structure

several other compilation units external to ‘RSLtoCode’. This includes the trans-
formation parts that generate the DTOs and the View layer (the ‘Generator_’ pack-
ages). The transformation is prepared for generating the Ul in different technologies
(Echo3, JavaFX.,® Swing’).

Other external compilation units contain library and utility procedures that are
used in many places within various procedures. These procedures are sometimes
quite complex as they traverse through the RSL or UML models to perform standard
operations like creating classes and associations, retrieving RSL sentence parts or
processing text. An example of one of the simpler utility procedures is given in
Fig.6.9. This procedure accepts a string containing a ‘name’ (the first parameter)
and returns (the second parameter) an object of type ‘PrimitiveType’” which has this
particular name. If the required object does not exist the procedure can create it, if
necessary (according to the third parameter). We will notice calls to this and other
similar utility procedures in many other places in this chapter.

Figure 6.8 indicates two additional units—°_ExportToEA’ and *_ImportFromEA’.
These are in fact separate transformations but are used in conjunction with
‘RSLtoCode’. These transformations are necessary to interface the ‘RSLtoCode’
transformation results with a standard UML editor (see Sect.7.1). Often, such edi-
tors implement a different metamodel than the one used by our transformation pro-
gram (and compliant with the official UML specification [121, 122]). Thus, simple
“export” and “import” transformations are needed to switch from one metamodel
version to another. The reader might remember a similar problem solved in Sect. 5.4
which pertained to copying graph models, using two different graph metamodels.

5 http://echo.nextapp.com/site/echo3.
6 http://www.oracle.com/technetwork/java/javase/overview/javafx-overview-2158620.html.
7 http://docs.oracle.com/javase/tutorial/uiswing/.

http://dx.doi.org/10.1007/978-3-319-12838-2_7
http://dx.doi.org/10.1007/978-3-319-12838-2_5
http://echo.nextapp.com/site/echo3
http://www.oracle.com/technetwork/java/javase/overview/javafx-overview-2158620.html
http://docs.oracle.com/javase/tutorial/uiswing/

196 6 Writing Model Transformations for Requirements

. @name : String @out : F iveTypa '.., ists : Boclean
1 : 2 3

{Kemel}

out:=NULL re—rer
................... = Mods ty pe : PrimitiveType
[ty peName: =@name] m°:°l = - owningPackage [Kemel)

=“Detailed Desh {name = @ty peName)
o
{ELSE} :
Vi
CEEmE B o@e
A
v ;
mods! - Wode " type: PrimitveType :
{Models} hninabeion SRR {Kemel} .
{name = *Detailed Design} packauedilamanl name: =@ty peName

Fig. 6.9 Example utility procedure: ‘utl_GetPrimitiveTypeFromDesignModel’

We can find four sub-packages within the main unit of our transformation. We
will discuss their contents in detail in the following sections. The most complex is
the package responsible for generating the Presenter layer. The respective procedures
are divided into groups associated with particular RSL sentence types that produce
specific code according to the semantic rules from Chap. 4.

The ‘Main’ procedure calls several major procedures contained in the above
presented packages as shown in Fig.6.10. The procedure is a simple sequence
of five calls that evoke the main steps of the transformation process. These steps
are interrupted with four other calls to the procedure called ‘showMsg’. This
is a special MOLA construct called the external call, which allows to interface
with procedures written in C++. There are several external call procedures avail-
able by default. The one used here shows an interactive message box and waits

._ _____ D(InitialiseTargetModel()

> showMsg("InitialiseTargetModel() DOME!")

(GenerateDTOs()
- showMsg("GenerateDTOs() DONEI")

showMsg("GenerateViews() DONE!")

(ParseUseCases()) ----- >

(CleanupSourceNodel() }[>©

Fig. 6.10 Transformation main procedure

showMsg("ParseUseCases() DONE!)

http://dx.doi.org/10.1007/978-3-319-12838-2_4

6.2 Transformation Overview 197

for user intervention. Other available external procedures include a decision box
(‘yes-no’) and a facility to write text to files. Such procedures can be used for debug-
ging purposes or to allow for simple user control over the transformation process.

Transformation starts by initialising the target model. This includes resetting its
content after possible previous transformations and building the basic structure with
packages and standard classes. Initialisation is based on the general (‘G’) RSL seman-
tic rules presented in Sect.4.2. This also pertains to the next step—generating the
Data Transfer Objects followed by generating the View layer classes. This part is
highly dependent on the specific UI technology and thus we will not present any
detail here. As a principle, all the procedures from this part follow the View layer
(*V’) semantic rules given in Sect.4.3.

The last major step is to parse use cases and generate the Presenter and Model layer
classes. This part does not depend on a specific Ul or database access technology but
complies with the standard MVP framework patterns. Analogously to the previous
steps, all the procedures in this step follow the ‘P’ rules, presented in Sect.4.4. The
transformation ends by cleaning up the source model from the temporary constructs
introduced during processing.

In the following three sections we present some of the important details of three
of the above introduced steps. We discuss the various programming solutions and
provide some examples of the models produced using the presented procedures. To
understand the transformation we need to refer to the RSL and UML metamodels.
The RSL metamodel was presented in significant detail in Sect.3.2., while we have
not yet introduced the UML metamodel. However, our transformation uses only a
small subset of UML mostly pertaining to class models. In most cases, the MOF meta-
model, which comprises classes, should suffice as being a close enough explanation.
The reader can refer to Sect.3.8 (see Fig.3.24).8 In cases where the transformation
program refers to metaclasses outside of the presented metamodel we will provide
the necessary explanations in text.

6.3 Generation of the Basic Structure

One of the first tasks of transformation is to generate the package structure of the target
UML model (and eventually—code). Packages were not covered by the semantic
rules in Chap.4 but this is a crucial issue for more complex models that need to
group the various resulting classes to assure comprehension and navigability through
the generated model. The appropriate procedure (‘CreateMVPPackageStructure’) is
presented in Fig.6.11 and is evoked as part of the target model initialisation process.

The first rule creates a basic package hierarchy under the already existing ‘Detailed
Design’ model. This main package was created in another procedure, not presented
here. All the other packages are created as ‘packagedElements’ within the model
or its sub-packages. Note (see e.g. Fig.6.2) that most of the UML’s metaclasses

8 The reader can also refer to Fig. 6.2 as containing a relevant fragment of the UML metamodel.

http://dx.doi.org/10.1007/978-3-319-12838-2_4
http://dx.doi.org/10.1007/978-3-319-12838-2_4
http://dx.doi.org/10.1007/978-3-319-12838-2_4
http://dx.doi.org/10.1007/978-3-319-12838-2_3
http://dx.doi.org/10.1007/978-3-319-12838-2_3
http://dx.doi.org/10.1007/978-3-319-12838-2_3
http://dx.doi.org/10.1007/978-3-319-12838-2_4

198 6 Writing Model Transformations for Requirements

]eesrnssnanana

Fig. 6.11 Procedure: ‘CreateMVPPackageStructure’

6.3 Generation of the Basic Structure 199

(including ‘Package’) specialise from the ‘PackagableElement’ metaclass. In this
way, most elements can be connected with a ‘Package’ element through the links
found in this first rule.

The structure generated in the first rule is constant for any source model. How-
ever, the model contents to be generated below this hierarchy depend on the
structure of the source RSL packages. This is implemented using two procedures
(‘RequirementsPackagesToUML’ and ‘NotionsPackagesToUML’) that are called
from ‘CreateMVPPackageStructure’. Each of the three calls to these two proce-
dures creates a variable package structure under the ‘presenter’, ‘model’ and ‘dto’
packages.

Before calling any of the three procedures our current procedure has to prepare the
parameters. This is done using two simple query rules. The rules find the appropri-
ate source packages specifically placed within the requirements specification or the
domain specification. Transformation assumes that all the use cases to be processed,
are placed under the ‘Use Cases’ requirements package. Similarly, it assumes that
concept-type and view-type Notions are placed under ‘Notions\Data Model’ and
‘Notions\Data Views’ respectively.

The three procedures are similar, so we concentrate our discussion on ‘Require-
mentsPackagesTOUML'. The procedure’s code is presented in Fig.6.12. The first
two parameters are obvious—they are the source RSL package and the destination

IPacki : Requi tsPack: F areot;]
(@rsIPackage : RequirementsPac agt: (@umlPackage : F'aclcag: @traceSterecty pe : S‘ETWWF’z __@umpankageuamg; String|
. {Requirements Specifications) {Kermel) {sclkemnel}

P
@rslPackage : RequirementsPackage @traceStereoty pe © Stereoly pe ‘@umiPackage : Package
{Requirements Specifications} {sclkernal} {Kernal}
H F rallocationTarget
:allomronscum rolationship ; S12reoPe i 9
I alloc: IsAllocatedTo :
G {sclkemel) :_aunmtonToRSl.
allocationToUML "= == === == =s===ecsccsces
k T
@rsiPackage : RequirementsPackage |,,M"gp,ch“ s age | Requi ackag
{Requi paci icati I { i ifications)
I | g

Gll_"“‘"""“""‘ .name, @umiPackag)
T

@umiPackage : Package :-:-n-ls'u-nb;a::;a;q-e- -F-’:;c-k-a-qé 3
{Kemer} IS ingPacKaps {Kemel) :

» name: =@umiF

v
(mqmntsmageﬂwu(@rsmmckm. ackage, & N"J)

Fig. 6.12 Procedure: ‘RequirementsPackagesToUML’

200 6 Writing Model Transformations for Requirements

UML package. The third parameter is used to control the creation of a supportive
traceability link between the source and the target package. This is done right in the
first rule of the procedure. The rule creates a special object of type ‘IsAllocatedTo’
which links the source element with the target element. This new object is assigned
the stereotype passed as the procedure’s parameter.

Traceability links are created also in many other places throughout the transfor-
mation program. They play an important role in reflecting the structure of the source
model in the structure of the target model [185]. We will see this role in some of the
procedures discussed later in this chapter. The two relevant metaclasses (‘IsAllocat-
edTo’ and ‘Stereotype’) are part of the supportive ‘sclkernel’ metamodel, mentioned
earlier in Sect.6.1.

After creating the traceability link, the ‘RequirementsPackagesToOUML’ proce-
dure executes a for-each loop that iterates over all the sub-packages of the source RSL
package. For each such package, it creates a new UML sub-package that is contained
in the current main UML package. The name of the created UML sub-package is
derived from the name of the relevant RSL package and turned into camel case format.

After finishing tasks at the current level of the source RSL package tree, the for-
each loop calls ‘RequirementsPackagesTOUML’ in a recursive manner. This enables
processing of the next level of the tree. The result of this is a copy of the RSL pack-
age tree, reflected in the UML package tree. All the packages are linked through
traceability links with their respective copies.

An example result of running ‘CreateMVPPackageStructure’ is presented in
Fig.6.13. It presents both the constant and variable parts. The tree fragments to the
left and in the middle show the structure generated using the first rule in Fig.6.11.
The tree fragment to the right shows the structure of the ‘presenter’ package derived
from the use case packages found in the source model. We can see that it has con-
tained three packages called ‘Book reviews’, ‘Catalogue browsing’ and ‘Catalogue
management’.

We also notice other elements that were generated using other procedures. The
additional elements in the left part are related to the particular Java environment.
They reflect the actual structure of the specific Java libraries used as the technological
framework of the generated application. Appropriate classes within these libraries
are used from within the main application classes, generated into the ‘app’ package.

5 [y Detailed Design 5 [presenter
= (5] app Q3 presenter
] dao] bookReviews
] dte __| catalogueBrowsing

] model = L view #] catalogueManagement
3 & P'ﬁeﬂt:f_/—. 23 view 1 [E AbstractUseCasePresenter
i] view ¥ (] awiliary # [E MainApplicationSenet

o (=] java o] messages &l MainPresenter
(5] nextapp + __l ssreens
¥ (8] org o [Viewlmpl

¥ =0 «interface= View

Fig. 6.13 Generation result for the MVP package structure

6.3 Generation of the Basic Structure 201

In order for the final ‘app’ code to contain proper references and specialisations, its
classes must have necessary relationships with the library classes. We discuss this in
detail further in this section.

The other additional elements in Fig.6.13 include several default classes and an
interface in the ‘view’ and ‘presenter’ layers, together with appropriate diagrams that
visualise them. Some of these classes are generated in the next procedure, shown in
Figs.6.14 and 6.15.

The ‘CreateAbstractPresenter’ procedure is generally responsible for creating
a quite elaborated structure of the ‘AbstractUseCasePresenter’ class. This class is
consistent with the semantic rule GO and is equivalent to the ‘PUseCase’ class (see
Fig.4.11). However, the contents and environment of ‘AbstractUseCasePresenter’
have to be extended and somewhat changed due to specific technologies used, and
in order to optimise the final code.

Let us now analyse the procedure that creates the generic presenter class. The
first part is a sequence of several calls to utility procedures of the kind presented
in Fig.6.9. The first call (‘utl_GetClassFromDesignModel’) creates the actual class
object and places it under the ‘presenter’ package as illustrated in Fig. 6.13.

The next four calls are associated with the Spring framework used in the tar-
get application to manage dependencies between class objects. They create three
technology-specific classes referenced from within the definition of ‘AbstractUse-
CasePresenter’. It should be emphasised that these classes are created only to reflect
the contents of the appropriate parts of Spring. These classes will not have their code
generated during the transformation, instead the application code will refer to these
classes and link (‘#include’) appropriate library files.

In addition to creating the Spring classes the procedure creates the main View layer
interface, named ‘IView’. This interface is placed in the ‘view’ package. The interface
has also its implementation class (‘ViewImpl’) created, as presented in Fig. 6.13. This
is done in a similar way in another procedure within the transformation program,
which is not discussed here.

The features of the ‘AbstractUseCasePresenter’ class are generated within two
significantly sized rules. The first of the rules (see the bottom part of Fig. 6.15) creates
the properties (attributes) and all the properties have appropriate types defined. Also,
some of the properties have specific default values added.

Two of the properties reflect the properties present in the semantic rule GO. This
is ‘invokingPresenter’ and ‘resumeld’. The actual property names and their types are
slightly different than in the rule. The ‘resumeld’ property (cf. ‘returnSentence’) is
typed as an integer instead of as a String. This will be explained later (see Sect. 6.6)
when we discuss the processing of invocation sentences. The ‘invokingPresenter’
property is typed as ‘AbstractUseCasePresenter’ (cf. ‘PUseCase’), which is consis-
tent with the rule GO.

The ‘view’ property partially reflects the semantic rule GS5. It links the Presenter
layer class with an element in the View layer. However, this element is not a specific
View layer class, but a common interface (‘IView’). It is this common interface, and
its implementation class that distributes responsibility between concrete View layer

http://dx.doi.org/10.1007/978-3-319-12838-2_4

202 6 Writing Model Transformations for Requirements

name:="beanFactory™
visibility :=PROTECTED

|

A
1
Eg;

visibility :=PRIVATE

' gg

name:="numberOf OpenedPages™; o
visibility :=PRIVATE

Fig. 6.14 Procedure: ‘CreateAbstractPresenter’ (part 1)

classes. However, the semantics contained in rule G5 is retained, but implemented
differently. This approach allows for good separation of the layers and facilitates
switching between different UI technologies.

6.3 Generation of the Basic Structure 203

%

g LS

%

name:="notif y Inv oki

; ingUseCase"
visitility :=PROTECTED

Fig. 6.15 Procedure: ‘CreateAbstractPresenter’ (part 2)

The second major rule of the ‘Create AbstractPresenter’ procedure (see the upper
part of Fig. 6.15) creates the operations of ‘AbstractUseCasePresenter’. Again, three
of these operations reflect the three operations of ‘PUseCase’ specified in semantic
rule GO. These are: ‘invoke’, ‘notifyInvokingUseCase’ and ‘resumeUseCase’. Apart
from changed names the procedures maintain parameters found in Fig.4.11. The
only difference is that ‘notifyInvokingUseCase’ does not use any parameter, but uses
a relevant property of the main class (‘resumeld’).

http://dx.doi.org/10.1007/978-3-319-12838-2_4

204 6 Writing Model Transformations for Requirements

AbstracUseCasePresenter Li‘ Operation: noti - — g
invokingPresenter: Abstractl!seCasePresenter = null fpag} o .
Behavior:

numberOfOpenedPages: int = 0 {bag) Betiavior |Prg | s, [Iaggecabues

resumeld: int =-1 {bag} Show Behavior in [iagram
useCaseResult: int =-1 {bag}
beanFactory: BeanFactory {bag}
view: IView {bag}

maw o+ oo

closeCumentPageAndFinalizeUseCase(): veid

getNumberOfOpenedPages() : int fritial Code

getResumeld(): int 1if (invokingPresenter != null) {

getliseCaseReslt]) : int 2 invekingPresenter.resumelseCase (useCaseResults)

invoke(AbstractUseCasePresenter) : void 3}

resumelseCase(int) : void

setBeanFactory(BeanFactory) : vold

setResumeld(int) : void

satUsaCaseResult{int) : void Intial Code

setViewlView) : veid |— i this.invokingPresenter = invokingPresentesz: l J

finalizeUseCase() : void

notifylnvokingUseCase() : veid

pageClosed() : void
pageOpened() : void

MEBB A b+ A

Fig. 6.16 Generation result for the AbstractUseCasePresenter

The procedure continues by creating the necessary getter and setter procedures
for some of the properties. The features of ‘AbstractUseCasePresenter’ have specific
visibility constraints defined. Since some of the private and protected properties need
to be accessed from outside of the class, the setters and getters are necessary. The
calls to the ‘utl_CreateGetterAndSetter’ procedure accept the properties for which
a getter and/or a setter needs to be generated, and two additional parameters that
respectively determine their creation.

The final sequence of four procedure calls creates method contents of some of the
previously created operations. Since these contents are constant, no text processing
is necessary. The appropriate code is simply added to the relevant methods through
directly specified strings of text. The ‘utl_AddOperationCode’ procedure appends a
particular operation object with an additional comment object. This comment holds
the actual method text expressed in Java.

The result of the ‘CreateAbstractPresenter’ procedure is presented in Fig.6.16.
We can compare this result in concrete syntax with the procedure’s internals that
operate on the abstract syntax. Moreover, we can see the contents of two of the
operations, which are similar to those found in Fig.4.10 (cf. ‘invoke’ and ‘return’)
which defines the basis for the semantic rule GO.

6.4 Generation of Data Transfer Objects

According to rule G4, Data Transfer Objects are translated from View-type notions
and associated Attributes. For practical reasons, our transformation program will
also generate DTOs for Concept-type notions. Such DTOs can be used to transfer
data within the Model layer and for exchanging data with the persistent storage.
The semantic rule G4 is not complex. However, the appropriate realisation of this
rule has to consider additionally the package structure generated as described in the
previous section. Moreover, we need to remember the good practices in structuring

http://dx.doi.org/10.1007/978-3-319-12838-2_4

6.4 Generation of Data Transfer Objects 205

* ®

BdtoPackage | Package, i@constr : Operation|

@notionTy pe Slriog] @dtoName : Stringl

{Kemel} |Kemer}
Vi :
....D(“"- i on, @noti .wa) (= D
nation : Notion y @'W‘IDH.. Notion
{Notions} v {Notions}
@notionTy pe = “tagConcept” or waton
@nctionTy pe = “lagSimpleView" of package
@notionTy pe = tagListView" age : : =
T {Notions}
H

allocationSource
allocation ToUML

(NomameToD‘lONamatwim, @nationTy pe, Waﬂ“*}. sremmnad [allac - IsAllocatedTd

relationship

allocationToRSL

dioPackage:=@umiPackage ol DT LT T PR stereotype

. {sclkernel)
V {name = "packageZdto’}
@dtoPackage : Package) " " oto: Class : allocationTarget|
{Kemel} .‘:ﬂl.".’.".‘ff‘.!‘. et {Kemel} 3 umiPackage : Package
- . {Kermel}
» name: =g
"""""" & -] _
L. {ELSE}
AV ' !
CreateClassConstructor(@dto, @const
(""' =D 'ﬁ GII_G«UuPackWﬂlo'. mwcwD
Vi
tion : Noti Eotior - [sAllocatedTo
®N:Nm-ms} on allocationSource :alloc . ITNMMTO: allocationToRSL Rk C:;ass
hasassssssssssssssssssaasssnnanss K sssssssssssssssssssssssssass [Kemal
TolIML - Ech el : Target
....... e
stereoly pe © Stereoly pa srelationship
{sclkernel} o .

[name = "notion2dto’)

Fig. 6.17 Procedure: ‘CreateDTOClasses’

code, and thus the appropriate “getter” and “setter”” operations should be also gener-
ated.

The first procedure for DTO generation is presented in Fig.6.17. It contains a
single for-each loop which iterates over all the ‘Notions’ in the entire model. Since
determining the notion type is not a trivial task we need to call an appropriate utility
procedure (‘utl_GetNotionType’). Further processing within the iteration is done
only when the current notion turns out to be a concept or a data view.

The processing starts by determining the DTO name which is done by a call to a
simple text processing procedure. Then the procedure determines the UML package
in which the newly created DTO class will be placed using the ‘IsAllocatedTo’
objects (traces) introduced in the previous section. In this situation, we consider the
objects that are adorned with the ‘package2dto’ stereotype. They were created in one
of the previous procedures in a way similar to that discussed in the previous section.
As we can see, the role of traces is very important as they allow for easy access to
the target model structure from the particular source model elements.

206 6 Writing Model Transformations for Requirements

The next step is to create the actual DTO class which is done using an obvious
and simple MOLA rule. The class (‘packagedElement’) is placed inside the package
(‘owningPackage’) determined in the previous step. If the relevant UML package
was not created in some previous procedure, the DTO class is placed in the main
DTO folder (‘app.dto’).

After creating the DTO class we need to generate its contents—attributes with get-
ters and setters. This is done using several procedures, with the top-level one shown in
Fig.6.18. This is a simple for-each loop which iterates again over the ‘Notion’ objects
and finds related ‘Class’ objects. Depending on the notion type, it calls either ‘cre-
ateClassMembersForConcept’ or ‘createClassMembersForDataView’. Both proce-
dures are similar, so we discuss the more interesting one which pertains to data
views.

The appropriate procedure contents are shown in Fig. 6.19. The procedure signif-
icantly extends the simple semantic rule G4 (see Fig.4.15) and takes into account
several additional elements that make the generated code much more practical and
versatile.

The first for-each loop iterates over ‘Notion’ objects that serve as attributes and
are pointed-at from the current data view notion. If the loop-head rule was limited
to only this part it would be directly implementing semantic rule G4. However, the
rule is extended by also querying for another ‘Notion’ object, which is a concept
(‘parentNotion’) that contains this particular attribute (‘notionAttribute’). Moreover,
this concept is also related to the data view as its so-called “main concept”. Attributes
in such a configuration are then turned into the properties of the appropriate DTO
class by calling the ‘attributeToClassMembers’ procedure.

® ®

i i lloc @ 1AM ITe dio : Class
notion : Notion | atiocationSource dloc : 1SAIOCHEATO | gyio catinToRSL fkomel)

{Motions}

ToUML ionTarget

stereoty pe : Stereoty pe
{scik 3 i relationship

{name = "noticn2dta’)
AV

E====D

W

"""""""">(me w‘)

H{ELSE}

[@notionTy pe = TagSimpleView"]___“________>(m=m— WD

{{ELSE}

Fig. 6.18 Procedure: ‘CreateDTOClassMembers’

http://dx.doi.org/10.1007/978-3-319-12838-2_4

6.4 Generation of Data Transfer Objects 207
(@simpleView : Notion @dto : Class i@concept : Notion|
1 2 {Notions)
H [Notions} {Kernel}
AV
@simpleView : Notion
PR R toTarget BT Lo s mer : D
{DomainElements} source toTarget {DomainElements}
toSource toSource
attribute : Motlon notionAtribute mainGoncept : Notion target
{Nations} {Nations}
target
-) ()
H
'
. createldProperty (@concept, @dio, false)).
> E .
' Y
@simpleView : Notion
ar : DomainElementRelationship |toTarget {Notions} source mer : DomainElementRelationship
{DomainElements} source g {0 '
toSource toSource
target targat
: Notion Attrib relatedConcept : Notion mainConcept : Notion
{Nations} {Notions} {Nations}
P
target source
rel : DomainElementRelationship
{Domai toTarget
A J/
T
[@rel. targelM.lIllphcrly ="] _____ D(attributeToClassMembers(@atinbute2, @dto, true) } _____________
{ELSE} (createldProperty (@relatedConcept, @dto, true))
____________ D(o, mse;)
_________________________ D(createldProperty (@relatedConcept, @dto, false))
AV
@simpleView : Notion
ar : DomainElementRelationship | toTargat {Notions} source mcr © DomainElement Relationship
{DomainElements) source g {Domai
Lo T e -) Seeeeee e ee=eooilL

Fig. 6.19 Procedure: ‘CreateClassMembersForDataView’

To better understand the reason for determining the “main concept”, let us analyse
Fig.6.20. It shows a simple domain model with one simple data view (‘book search
criteria’) and two concepts (‘book’ and ‘author’). The data view relates to attributes
contained in both concepts. However, one of the concepts is distinguished by an

additional relationship from the data view. This additional semantic adornment pro-
vides information that can allow the generator to structure the DTO in a more fine-
tuned manner. The attributes contained in the main concept are always unary, i.e. are
included in the DTO class as properties with simple types. However, the attributes

208 6 Writing Model Transformations for Requirements

Concept Concept
book 0.* T author
Attribute (text) Attribute {whole number) Attribute (text)
title number of pages last name

BookSearchCriteriaDTO

Simple data view 5 .
book search criteria |:> Ble string

numberOfPages: String
lastName: List<String>

Fig. 6.20 DTO class generation example

contained in other (not main) concepts are treated depending on the multiplicity
between them and the main concept. If the multiplicity is greater than one, the DTO
class properties are created as lists of objects with the appropriate simple type.

The attributes contained in the “secondary” (non-main) concepts are handled
by the second and third for-each loops in the ‘CreateClassMembersForDataView’
procedure. Both loops are similar and differ only in the direction (‘target’ vs. ‘source’)
of the relationship between the main and the other concept in the loop-head rule. Thus,
we discuss only the first of the loops.

The loop-head rule is an extension of the loop-head rule from the first for-each
loop.? This time there are two ‘Notion” objects—one of them being the main concept
and the other being the related concept. The loop determines the multiplicity string
(‘targetMultiplicity’) in a text condition statement. Depending on the multiplicity,
the class property is created as a simple type (‘false’) or as a list (‘false’).

The creation of properties for attribute-type notions is presented in Fig.6.21. The
procedure accepts a ‘Notion’ and a ‘Class’ as parameters. The first parameter is
the source attribute-type notion and the second attribute is the target class in which
the properties need to be generated. The third parameter determines whether the
generated property is to be a collection (list) or a simple element.

The first part of the procedure determines the appropriate names for the property
and its getter and setter operations. Then these elements are added to the DTO class
using appropriate object creation constructs. The added elements have their metaat-
tributes, like ‘visibility’, set according to typical programming practice. Moreover,
the newly created property is traced (‘IsAllocatedTo’) from the original attribute-type
notion. The third part of the procedure is a series of conditions and text statements
which determine the data type for the newly created property and for the parameters
of the getter and the setter. This data type depends on the type of the source attribute

9 The differences are clearly visible in the colour version of the procedure’s diagram. This is an
illustration of additional capability of the MOLA environment to mark objects with different colours.
Colouring is an additional valuable way to comment MOLA diagrams for better comprehension.

6.4 Generation of Data Transfer Objects 209

1
{Notions} {Kemel}

type : PrimitiveDataType | [°*
|

. |@.nm:m @dto : Class > @Colulinn:sodun> i., -n-l:Slnngl Ic ascal : String
2

'"'D(@ty peName = STRING-)_'D(M.W)FELSE}

HeLse) T——

v
(mm:“m.)---b(w'm}"

E{EI.SE} {ELSE}E,,

+ |@interfaceTy pe : Interface
 |ontertaces)

Fig. 6.21 Procedure: ‘AttributeToClassMembers’

210 6 Writing Model Transformations for Requirements

and on the ‘isCollection’ switch. For lists, the Java environment uses the ‘List’ inter-
face which needs to be added to the appropriate package in the ‘java’ tree. For the
code to be properly generated in the UML tool, the DTO class has to be related with
the ‘List’ interface using a dependency relationship.

Two final statements of the procedure, generate the contents of the getter and the
setter. This code is obvious and consists of a ‘return’ statement for the getter and an
assignment statement for the setter. The resulting UML class with embedded code
fragments can be now used to generate the final code, ready to be accessed from
other parts of the generated code.

6.5 Parsing of Use Case Scenarios

Generating the basic structure and the DTOs is a straightforward part of the trans-
formation program. The ultimate and the most challenging task is to process use
cases. This part generally consists in going through use case scenarios and gener-
ating classes with code, according to semantic rules P1-P13 (see Sect.4.4). The
top-level procedures of this process can be compared to a programming language
parser. However, it is difficult to distinguish a definite border between pure parsing
and model/code generation. Thus, this section will deal with the procedures where
RSL parsing dominates. The next section will present these parts of the transforma-
tion process which concentrate on generating the various target elements, and are to
a significant extent technology-specific.

The main use case processing procedure is presented in Fig. 6.22. In general, this
procedure processes all the ‘UseCase’ objects and their scenarios. The first for-each
loop implements one of the general semantic rules—rule G1. It loops (“parses”)
through all the use cases and for each use case it calls a procedure to generate the
appropriate Presenter layer class. This is a simple procedure which creates a class with
certain default operations and a generalisation from the ‘AbstractUseCasePresenter’
class.

The next step in ‘ParseUseCases’ is to structure use case scenarios into simplified
activity models. This step is necessary because RSL scenarios are kept as linear
sequences of sentences. We first need to turn these linear sequences into a graph where
common parts of the scenarios are joined and condition sentences form conditional
flows within the activity graph. We discuss this in detail further in this section.

The second for-each loop in ‘ParseUseCases’ assumes that scenarios are initially
processed. For each use case, it calls a procedure to parse the use case scenarios. The
details of this procedure are also explained later in this section. At this point it is worth
noting that an important element in scenario processing is the ‘currentOperation’.
This parameter indicates the operation into which relevant code needs to be inserted.
At the beginning, the ‘currentOperation’ is set to ‘invoke’. This operation is the first
to be called in the running application when the application logic for a given use
case is initiated. This approach is a modification and optimisation of the approach

http://dx.doi.org/10.1007/978-3-319-12838-2_4

6.5 Parsing of Use Case Scenarios 211

@ '

useCase : RSLUseCase o :craaleﬁesenlsrﬁa s(@uueCauD T 'D(Scenarcs ToSimplif iedActivities())

, @

-
useCase - RSLUSeCase @presenter : Class class currentOperation : Operation
| (RequirementsSpecif ications) $ {)
| {name = "inv oke}
- . iy :
v ' H
s : :
| @useCase : RSLUseCase |y iongource | 210° ° 1sAlocaledTo g5 cationToRSL ""’"’E“K.‘:” g E‘”s
el 5
|) ToUML llocationTarg :
— H
relationship H
stereotype E
5 : Sterectype H
{sclkemel} E
{name = "ucZpresenterClass”)| B,
A H
. AV
The rule gels the presenter class ios(@useCase, ©p MULL, @currentOperation, 0}
created fromthe current use case.

Fig. 6.22 Procedure: ‘ParseUseCases’

described by the semantic rules P9 and P10. Two separate calls to ‘invoke’ and some
trigger operations are substituted by a single call to ‘invoke’. For this reason, the
‘invoke’ method contains also code for the first trigger operation and thus is the
‘currentOperation’ for the initial sentences in the use case scenarios.

Let us now discuss the procedure that preprocesses use case scenarios presented
in Fig. 6.23. The procedure is constructed as a set of three embedded for-each loops.
The outer loop iterates over use cases, the middle loop iterates over scenarios, and the
inner loop iterates over sentences. For each scenario sentence the inner loop creates
an activity node—an object of type ‘RSLActivityNode’.!? If the current sentence
was already parsed in another scenario, the node is not created again.

The main effect of the procedure is the creation of ‘RSLActivityEdge’ objects
that connect the activity nodes. To illustrate this effect we can refer to the example
presented in Fig.2.28. The activity edges form the arrows that connect nodes that
contain sentences. The creation of edges is important for processing alternative flows
that result from condition sentences. They would not be necessary in case of only
linear processing, because sentences in scenarios are ordered in the repository and
thus can be processed in the right sequence by the for-each loop. As we will see, the
activity graph will be processed as a tree, in a recursive manner.

10 The RSL’s metamodel is extended with a simple activity notation. This part was not presented
in Chap. 3 but is self-explanatory in the current context.

http://dx.doi.org/10.1007/978-3-319-12838-2_2
http://dx.doi.org/10.1007/978-3-319-12838-2_3

212

6 Writing Model Transformations for Requirements

|@l

=
|{cmsaminenLanguageSenlencesl

ype : Slni|g|

?

. |@Tulsenlence Boolean

useCase : RSLUseCase

v

BuseCase - RSLUseCase | roquirement scen : ConstrainedLanguageScenario
|t L I fon | DescriptiveRreq
————i
[@scen ConslramedLanguaqucsnanu |mﬁar|o sent : ConstrainedLanguageSentence|
D s .
| | el
L i P

@sent : C

{c

-

- .|>| previousSentence:=@sent

(@sent : C
{Cmlmmeal.anguageSenlencesl |'

—

L | node :
.......................
7 J
utl_GetSentenceDetaiedTy pe(@sent, @iy pe) 05 St ancala T B
"""""" firstSentence: =false

HELSE}

Ensures that every sentence
has "type_" stereotype.

\

(] B
L J node ihctlvltyRepresemmlon} :
uu!ﬂulngCnnwlFlouE
edge RSLActivity Edge' E
..............l'.".:wwnv ion)
urgelﬂodlu E :
(@sent : C | makerd : RSLActi ity Node
| {ConstrainedLanguageSentences) ! odal_tActivity P
~ 4

Fig. 6.23 Procedure: ‘ScenariosToSimplifiedActivities’

The recursive procedure to parse the activity graph is presented in Fig. 6.24. The
recursion is not evident because it is indirect and implemented using another pro-
cedure which will be discussed next. The ‘ParseUseCaseScenarios’ procedure tra-
verses through all the sentences and calls other procedures that perform appropriate

processing and generation

for each sentence type.

6.5 Parsing of Use Case Scenarios 213

. (BuseCase | RSLUseCase - Class = i @currentOperation Oommn>
1 2 3 4
H { {Kamel} {Kemel}

{ConstrainedLanguageSentences]

AV .
If @sentence is NULL w e should start -
eammeol=NUID) | with processing the first sentence of (@sentenceCounter : Inlegesr
sentenceCounter:=0 the given use case.

{ELSE} (aezodmmmjmm)

T

v T
@_Gotmmmmwm. @emncﬂ _________________ Pl ool e
[= }{ELSE} D@ :

b+

T
—

v
UL {ELSE}
e =0
¥ P @“ﬂmﬂyp@

pa RSL:: O
««=[>|RelLRag Vo :

H{ELSE} @curentOperaton, @sentenceCounter

kv
(@sentenceTy pe = “ActorToTrigger” } pagrsmlofroTnow‘Sonmoo(RSL:: }
- RSL i

VC @:
:{ELSE} @presenter, @currentOperation)

Ve PorodoE
[@sentenceType = "SystemToScreen”)_ parseSy 10 E HE
-- RSL oo

. VO -

[
-----.-.-.-...D

r’_'é\q.............................

EETEEETPT TP EREERTR

JERRURNRRRRRR 1
=
SR |4
>
=

v

)

Fig. 6.24 Procedure: ‘ParseUseCaseScenarios’

When analysing ‘ParseUseCaseScenarios’ we need to observe certain issues. The
‘sentence’ parameter is an important factor in the recursion process. If it is set to
NULL, it means that the procedure is called at the beginning of scenario processing.
In this case, the precondition sentence needs to be processed first. In other cases, the
procedure starts processing from the currently passed ‘sentence’. Another important

214 6 Writing Model Transformations for Requirements

parameter is the ‘currentOperation’ discussed above. This parameter is used by the
various individual sentence parser procedures to control inserting code into the proper
method bodies within the presenter class.

For all the sentence types, except for condition sentences, processing is iterative.
Note that procedures for specific sentence types need appropriately typed objects.
For this reason the procedure calls necessitate appropriate type-casting for the cur-
rent ‘sentence’ which is typed as a generic ‘ConstrainedLanguageSentence’. After a
particular sentence is processed, the iterative process calls ‘getNextSentence’ which
traverses through the activity edge between the current sentence and the next one.
This is followed by a command to increment the ‘sentenceCounter’ variable. This
variable is used for generating invocation code which is discussed in the next section.

When a condition sentence is found (see the bottom part of Fig. 6.24), the recursive
process is initiated by calling ‘ParseConditionSentence’. This procedure is presented
(in a simplified form) in Fig. 6.25. Its content generally implements the semantic rule

(@useCase - RSLUseCase @ : Class tG i @ ounter : Integer
1 2 3 5
H {RequirementsSpecifications) {Hemel} {ConstrainedLanguageSentences}

Y

@eurrentOperation : Operation
G. @ @ @ .-) s
H {Kemel} @
H
H
! [@orevSentenceType - String [@e : G i I G i | :
: & | o | i
H | Ly L :
' ™
|@e : Constrai quag | sentenceNode : RSLActivity Node)
! ic: GG ! e {Activity L
sourceNode
5 1 Stereaty pe
iy ‘edge : RSLActivity Edge
v ity R ntation
* | {name = "ty pe_ConditionSentence’}
incomingControlFlow
targetNoda
- G RSLS y Nod
{c = {Activity
- . S
AV
@p Ty pé = "Sy stem g parseConditi RSL
[o ; o oy
v SVO
------+{ELSE}
--------------------- e e -
AV AV AV AV AV AV AV
C °)
T
E‘aﬁwsocmscenariuswasa, @p ; Operation n-nlnﬂ

Fig. 6.25 Procedure: ‘ParseConditionSentence’

6.5 Parsing of Use Case Scenarios 215

P13. The main goal is to generate an “if-else” statement with full contents, including
the conditions and logic for all the statement’s branches.

The first important action within the procedure is to determine the type of the
sentence that stands prior to the current condition sentence. This is in accordance
withrule P13 (see Fig. 4.42) which is applied only when the dialogue state is ‘system’.
The next step is to iterate over all the condition sentences that follow the “previous”
sentence. This allows to generate all the branches of the “if-else” statement. In fact,
the loop-head rule iterates over ‘RSLActivityNode’ objects, but ultimately the related
condition sentences are found.

For each condition sentence in the current group of condition sentences, the pro-
cedure calls another procedure that generates the appropriate condition code. This
generated code is somewhat different for the various “previous” sentence types. Thus,
there are different individual procedures for sentences of such types as System-to-
Message or System-to-Simple View.

In any case, generation of a particular condition branch is followed by generation
of the branch contents. This is done by a recursive call to ‘ParseUseCaseScenarios’,
presented earlier. This time, the procedure is called with the sentence following the
current condition sentence, as its parameter. In this way, the following code generation
actions will append code to the current “if-else” branch.

When a particular scenario finishes, ‘ParseUseCaseScenarios’ returns control to
the current for-each loop within ‘ParseConditionSentence’. The loop continues and
starts processing the next condition sentence. In this way, all the alternative scenario
branches are processed and the appropriate code generated are within the respective
branches of the “if-else” statement. It can be also observed that code is generated
within the current operation and the current “if-else”, only until the dialogue state
in the processed scenario is ‘system’. Whenever an Actor-to-Trigger sentence is
found, it changes the current operation and the code starts being generated elsewhere,
according to the appropriate semantic rules.

6.6 Generation of the Presenter Layer Details

In the previous section we avoided discussing the procedures that generate anything
in the target model and code. Processing in the already discussed procedures involved
only the source RSL model and traversing through use case scenarios. Here we go into
the details of how particular UML elements and Java statements are generated from
specific scenario sentence types. We concentrate on three sentence types: Actor-to-
Trigger sentences, System-to-Screen sentences and invocation sentences. This allows
us to show more details on implementing the semantic rules presented in Chap.4.

Each of the sentence types is handled by a separate procedure, called from
‘ParseUseCaseScenarios’ (see Fig.6.24). The Actor-to-Trigger sentences are proc-
essed by ‘ParseActorToTriggerSentence’. This is a simple procedure shown in
Fig.6.26 and it partially implements semantic rule P4.

http://dx.doi.org/10.1007/978-3-319-12838-2_4
http://dx.doi.org/10.1007/978-3-319-12838-2_4

216 6 Writing Model Transformations for Requirements

L BV, : Class @out : Operation
@) ‘ , AN
H {SVOSentences) {Kemel} {Kemel)

This procedure returns the new ly
- - 1created operation corresponding

H to @sentence.
W/
e __DE;:LG«smsemmﬁmmaenmm. @aCIionD |@a€"°n String ﬁ*:ll'::'gmec' * Notion

©q...{EL§E}.M ________‘%N_Gets\fobirmobj@u(@mlm. @dimclobjeclﬁ

|@direc|0njecmame : String

|@opem|innName : String|

C.l_,sqnormam(mlmoma. @omzomcmameD

Cnt_l’ocemdcam@ﬂ*mr‘)<}_______________................E

(operationNarme: s@operationNarme + “Triggered”
“"“"“D-k

v

esenter : Class ¥ " “operation : Cperation & 52 : Stereol
ty pe
{Kermel} class 4 {Kemel} 1 {sckemel}
[e = Z
ownedOperation ! name:=@operationName + {name = "sentance_presentarOparation”)
1 visibility :=sPUBLIC] Tstereotype
............ P c
rallocationTargot relationship |
T B0 e peessessasaseaess Favannusy
: e alloc2 : IsAliocatedTo &
(SVOSentences} {sclkemel}
cssssssssssssssssssssssssmsnennns C
B I AAASaaaasasasasanasssyy -

AV —_—
BT o)o®

Fig. 6.26 Procedure: ‘ParseActorToTriggerSentence’

The procedure accepts two parameters: the current sentence, and the current
Presenter layer class. Its main goal is to create and return an event handler oper-
ation within the said Presenter class. Note that the procedure does not create any
parameters of the new operation because a slightly different method of data pass-
ing is used for this implementation of rule P4. Instead of adding parameters to
the event handler, separate setter operations and their methods are created in the
Presenter class. The procedure for creating these setters is associated with Actor-
to-DataView sentences, according to rule P4’ (see Fig.4.43). This other procedure is
quite simple and we do not discuss it here.

Returning to ‘ParseActorToTriggerSentence’, note that its main functionality is
associated with determining the new operation’s name and creating the actual oper-
ation’s object in the target model. Reference to this object is returned (‘out’) to the
calling procedure. In this way, the new operation is now ready to be used as the target
for the code generated according to all the other rules that refer to P4.

One of the procedures that generate code for the above new operation is the
‘ParseSystemToScreenSentence’ shown in Fig. 6.27. This procedure implements rule
P8 which covers code generated for System-to-Screen sentences. It needs only two
parameters: the current SVO sentence and the current operation (the one created
using ‘ParseActorToTriggerSentence).

The first part of the procedure determines the name of the procedure to be called
on the View layer. Recall from Sect. 6.3 that the View layer is accessible through the
‘view’ property which points to an ‘IView’ interface. Thus, the calls to this interface

http://dx.doi.org/10.1007/978-3-319-12838-2_4

6.6 Generation of the Presenter Layer Details 217

& L VO -1} : Operation
1 2

SVOSen
{SVOSentences} {Kamed} If @operation = NULL, it means that there's no

Actor-to-trigger sentence preceding the
..................{>© --------currently parsed System-to-screen sentence so
'w e don't know the operation in w hich the

H {E LSE} respective code shoud be generated.
Vi -

@_&usvos«mmw,.u_ wbn) |655-B’n”:"s'{r}'ﬁ'gl

(@directObject - Notion|
{Notions))

AV — == = {ELSE}
@I_Gusmmmm. mlm}" i ‘{@ﬁm £ UM IONE OF GRiion S ekt olomic: ol foton }___ S _[>©

= "actionref resh”

.

AVi
qu_GuNﬂwamammﬂml. lemm%“ oo _@_ﬁm@mlm@m “action", -D

s)

|@|n6er|t : String

lgchreclﬂb,ecmame : String|

l@opermmNune : String

wwmmzm[m]
(:)

v
(utl_f @ Object, @)Q "__"{@al:tinnx'shcm‘u@acﬁon-'mlrashj

H{ELSE}
:'"'"""(ul,,mupommcmmmm @indent "vm."mmum"n:m'})q...........l

@action = “show”
............Dﬁ,‘wwmcwwmm+w0pmn;m}........

*{ELSE}

;@actmn CEE" freesesscsscssescescnessstss s s et a st sm s e s nnannnnn]

- mwm:wmwm.mvmcmxm}m,m,

Fig. 6.27 Procedure: ‘ParseSystemToScreenSentence’

have to distinguish between individual Screen elements. The actual code will look
like: ‘view.showEditBookForm()’ instead of ‘veditbookform.show()’. Note that this
approach to structure code is slightly different from the one presented in the semantic
rule definition, although it still preserves the actual semantics.

For the ‘show’ and ‘refresh’ type actions the call to the Ul rendering procedure has
to be preceded by data passing—calls to setters with DTO parameters. This is done
in the ‘utl_AddSetterCalls’ procedure which is not discussed in detail. Generally,
this procedure analyses the sentence’s direct object and looks for all the Data Views
associated with the Screen Notion hyperlinked from the direct object. For each such
Data View, a call to a setter is generated, according to rule P8.

For the ‘show’ and ‘close’ actions the procedure generates calls to ‘pageOpened()’
and ‘pageClosed()’. These two operations control the window stack and change
the ‘numberOfOpenPages’ attribute in the Presenter class object. The appropriate
semantic framework for this was discussed in Sect. 4.1 (see the description of ‘show’
and ‘close’ in Fig.4.4). In implementation, the stack is controlled mainly by the
Presenter classes.

http://dx.doi.org/10.1007/978-3-319-12838-2_4
http://dx.doi.org/10.1007/978-3-319-12838-2_4

218 6 Writing Model Transformations for Requirements

(@presenter : Class @invoke : Invocat Operation : Operation @sentenceCounter : Integer
1 2 3 4
{Kemal} {ControlSentences} {Kermnel}

AV
@invoke © 1o akaDascrlall inv : InvecationRelationship involed targetUC : RSLUseCase ‘
{c {UseC { Ications}
target]
|allocationSource
targetPresenter : Class alloc © IsAliocatedTo | allocationToUML
allocationTarget :
{Kemel} 9 s : Stereoty pe
ToRSL
Storaotype [name = "uc2presenterClass’)
T
(atePresenterProperty ion(@invoke, @ @targetPresenten)). ____________.._._.,
(eate @i . & @targetPresenter, @lamlUCD

AV
Gs,s:amorusmmmm&wom. @invoml'ype)
> @invokeType = Tinvoke_system” } {ELSE} D@
If “invoke” is performed by R (el bbb

the system, then generate
appropriate method bodies in
the presenter.

| i
(@invoke, Operation, n.......)

Fig. 6.28 Procedure: ‘ParselnvocationSentence’

Somewhat more complex processing has to be done for invocation sentences cov-
ered mainly by the semantic rules P9 and P10 (alternatively P9’, P10’ or P10”). The
main procedure is shown in Fig. 6.28. It starts by determining the target use case for
the current invocation sentence. Recall from Chap. 3 that every ‘InvocationSentence’
object has arelated ‘InvocationRelationship’ which points at an ‘RSLUseCase’. This
feature of the RSL’s metamodel is used in the introductory rule of ‘Parseinvocation-
Sentence’. Additionally, the appropriate Presenter class, traced from the target use
case (see ‘IsAllocatedTo’), is found.

After this the main procedure calls three other procedures. The first two are called
unconditionally and the third is called only for the invocation sentences that are in
the ‘system’ state.

The first procedure (‘CreatePresenterPropertyForInvocation’) updates the target
model with a property to access the ‘targetPresenter’ class object from the current
‘presenter’ class object. This in fact implements one of the general semantic rules,
namely—rule G7 (see Fig. 4.18). The rule is implemented by analysing the scenarios
rather than by analysing the use case relationships. In this way there is no need for
a separate iterative process that seeks all the ‘InvocationRelationship’ objects.

The actual procedure that implements G7 is simple and is presented in Fig. 6.29.
It first checks if the particular property (‘targetProp’) was already created when
processing some other invocation sentence. If not, then it creates the property together
with the respective ‘Association’ object. In this way the resulting UML model thus
becomes more readable due to the existence of the appropriate visual association link

http://dx.doi.org/10.1007/978-3-319-12838-2_3
http://dx.doi.org/10.1007/978-3-319-12838-2_4

6.6 Generation of the Presenter Layer Details 219

- - “"“‘"“"‘"““")
1 2 3
[(Kemel} {{Kernel)

Fig. 6.29 Procedure: ‘CreatePresenterPropertyForInvocation’

between the two classes. Note that the code would be the same without the ‘Associ-
ation’ object, thus its creation is purely for documentation and readability purposes.

After creating the new property the procedure creates a traceability link
(‘IsAllocatedTo’) between the property and the invocation sentence that was the
source for its creation. This traceability link additionally explains the approach to

220 6 Writing Model Transformations for Requirements

generate properties according to rule G7 by analysing invocation sentences instead
of invocation relationships. For a given invocation relationship we can have several
invocation sentences (see Fig. 3.19) and thus several traces can be created. The traces
point to every invocation sentence that invokes a given use case and they later play
an important role in other areas of the transformation program.

The second procedure that processes invocation sentences is ‘CreatePresenter-
OperationForInvocation’. The previous procedure operated only on the Presenter
classes. This procedure needs also a reference to the target use case, as it needs to
analyse its first sentences. Thus, it accepts one more parameter, as shown in Fig. 6.30.

In general, the role of the procedure is to create an appropriate operation that
contains code similar to that presented in the definitions of the semantic rules, P9
and P10. The first few actions are dedicated to determining the new operation’s
name and making sure that the operation was not already created for a previously
processed invocation sentence. The operation’s name is derived from the name of
the target Presenter class (‘targetPresenter.name’) with the ‘invoke’ prefix added and
the ‘Presenter’ postfix removed.

Assuming that there is no operation with this name already created (see {ELSE}),
the procedure creates two overloaded operations with the same name. One of the
operations has a parameter called ‘resumeld’, while the second has no parameters.
Obviously, these two operations are attached to the current ‘presenter’ class. The
reason for creating two identically named operations is pragmatic. The one with the
parameter is used for situations compliant with semantic rule P9, and the other is
used for situations compliant with P10 (or, more precisely—with P10”).

This can be better explained when we analyse code generated in the last part of
the procedure. The first line of this code creates a new Presenter layer object using
the Bean Factory mechanism.!! This object is made accessible through the property
created in ‘CreatePresenterPropertyForInvocation’ (see again Fig. 6.29 and compare
‘targetPropName”’).

The next lines of code are created within another MOLA procedure called ‘addIn-
vocationParameters’. This procedure (not presented in detail here) analyses the target
use case and generates the appropriate setter operations, and calls to these setter oper-
ations. This is done similar to the approach discussed for processing Actor-to-Trigger
sentences above. However, the currently analysed Actor-To-Trigger (and Actor-to-
DataView) sentences are taken from the beginning of the invoked use case.

The final three actions of ‘CreatePresenterOperationForlnvocation’ create the
code that prepares for returning control from the invoked Presenter object and even-
tually passes this control through calling the ‘invoke’ operation. The whole code is
inserted into the methods of the operations created a few steps earlier. Note that the
operation without the parameter simply calls the operation with the parameter, where
the actual value of the parameter is — 1. This is equivalent to implementing rule P10”
which assumes that no resuming of control is necessary and everything is handled
by the window stack operations.

1 We will not go into the details of this technology-specific issue.

http://dx.doi.org/10.1007/978-3-319-12838-2_3

6.6 Generation of the Presenter Layer Details

221

® -

(ControlSentances)

'>

: Class BtargetPresenter : Class @targetlC : RELUseCase
2 : | 4
(Kemel} {Kemel} (Requirements Specif ications}

‘@mm © String] [amel - Sting] | @i aram ; &ﬁng]
i | | |
L;,.,n...p targ mn}_______DE,.L mmw-D
Vi
@inv okeOperationName : String| @type ; PrimitiveTy pel L-w ckeOperationName:="inv ake” + mlmokewemmmm)
[Kamel}
H
Y
®-------------------------- mﬂw‘w:clﬂbs hvﬂeow‘lm:opﬁmm
e emmneennennae (Kemel}] {Kemei}
. = @invokeOy
& (ELSE) fi=esae
QL““ v poF i int”, @ty pe. :mD
.
H
AV
@presenter : Class, * " invokeOperation : Operation & {7 D Parameter
Kemell | class {Kemel} opsmion e {Kemel} :
3 name: =@ H ownedParameter |, o —resumeld”
3 visibilly :=PUBLIC b + invokeOperation? - Operation & 0TI HEREgTIns
m LT : ﬂ:ﬂnﬂﬂ . WE
! name: s@i Bty pe : PrimitiveTy pe
BLIC {Kemei}
.
Y - :
(ull_ToCameiCase(@targelPresenter. name, @targetProphame)) agetPrphiamne : 3""‘“‘ |@“’de ¥ S'"""‘
.

name + °) bea Y

+ @targetProphame + -“WZJ:WJ

((@ @tage @targetUC my
v
L @rode + his \n" + @largatPropName + *.invoke(this):")
(utl_AddC (@ @code))
(@

[w_nw

WWIMM*'!—I):'D__“"_“D@

Fig. 6.30 Procedure: ‘CreatePresenterOperationsForInvocation’

The third procedure called from ‘ParselnvocationSentence’ generates additional
code which is necessary to handle invocation sentences in the ‘system’ state. This
simple procedure presented in Fig. 6.31 usually generates two pieces of code (see two
‘utl_AddOperationCode’ calls). The first piece of code is generated in the ‘current-
Operation’. Note that when the ‘system’ invocation sentence is processed, the actual
invocation call has to be made from the current event handler procedure (i.e. the ‘cur-
rentOperation’) as defined in the semantic rule P9. In the presented implementation,

222 6 Writing Model Transformations for Requirements

(5% : Class @i : i @ Operation : Operation @sentenceCounter : Integer
. 1 2 3 4
{Kemel} {C4 {Kemai}

AV
getk L { . @inv okeOperation) @nv okeOperation : Operation
{Kemel}
T
M p{ ouCodeindentation(@incent) ‘@imm : SM‘
{ELSE) § v
Ell_nddﬂperslloncwe(@cunemopuaﬂ\an. @indent + his." + @i okeCperation.name = " + toString(@sentenceCounter) + -’""-D
AV
GrrssgisElCiase class resumellseCaseOperation | Operation
- LET) (Kemel}
{ELSE} |b—nuv-— {name = “resumelseCase’}
L BT T (LG 2, T (2 R = i currentOperation: =@resumel seCaseOperation
(@sentenceCounter) +pn7) ke

(se!Cudelnznlatiun[ﬂ }"_ I D@

Fig. 6.31 Procedure: ‘CreateMethodBodyForInvocationSentence’

the main code for the rules P9 and P10 is generated into a separate method (the
‘invokeOperation’), using the previously presented MOLA procedure (‘CreatePre-
senterOperationForInvocation’). The ‘currentOperation’ code contains just a call to
this generic method.

The ‘invokeOperation’ accepts a parameter which is then used to set the revoking
point after returning from invocation. The value for this parameter (see ‘resumeld’
in Fig. 6.30) is determined through the ‘sentenceCounter’ variable which is updated
successively when processing scenario sentences.

The parameter value is also used within the operation that resumes control
after invocation. The contents of this operation is the second piece of code gen-
erated by ‘CreateMethodBodyForInvocationSentence’. This code is generated into
the ‘resumeUseCase’ operation. Moreover, this operation becomes the ‘current
Operation’ and further code generation will be shifted there. Note that this approach
partially implements the semantic rule P11 for the final sentences. In fact, final sen-
tences have to be handled already when processing invocation sentences.

To summarise and better understand the procedures that generate the Presenter
layer we can use the simple example shown in Fig. 6.32. The example contains two
generated Presenter classes with their features. The classes, obviously, implement
the application logic for two use cases in an invocation relationship. We can see
the appropriate two invocation operations (‘invokeShowBookDetails’) generated in
the Presenter class for the invoking use case. The invocation involves passing data
to the invoking use case, so there were also generated appropriate setter operations

6.6 Generation of the Presenter Layer Details 223

AbstractUseCasePresenter
Show BookListPrasentsr -showBookDetallsPresenter

invokeBookD: Long = null I AbstractUseCasePressnter|

Show BookDetailsPresenter

ter) : void i . =

invokeShowBookDetails(int) - void JEEeaHE= L ong = null
invokeShowBookDetails() : void ke
getinvokeBookiD() : Long
setinvokeBookiD{Long) : void

OKTri d() : void
bookListButtonT riggered() : void
resum eUseCase(int) : void

tUseCasePresenter) ; void

+
+ setinputBockD{Long) : void
+ getinputBookiD{) : Long
+
*
*

bookDetail sButton Triggered() : void
noSuchBookinfoOKT riggered() : void
resumellseCase(int) : void

e R

el Code
1 ail - a1l 3 ¥ | ail Yi
2 rBookDH 1 secl: BookID(1 10) 2

3 this.setResumeld|zesumeld):
4 showBookDetailsPresenter.invoke (chis);

Fig. 6.32 Presenter class generation example

(‘set...BookID’) and properties (‘...BookID’) both in the invoking and in the invoked
Presenter class. These features are used in the code of the ‘invokeShowBookDetails’
operation which is shown in the lower part of the figure.

Chapter 7
Applying MDRE in Practice

After reading the previous chapters of this book, the reader might wonder how to
apply the presented approach in the software engineering practice. It is obvious that
in order to use Model-Driven Requirements Engineering, developers will need to
update their everyday practices in software development [149]. They will also need
to use tools that enable the new and modified practices [153, 166]. In this chapter we
present a methodology that provides guidelines in this respect. It encompasses a tool
that implements the presented MDRE technology. It also presents necessary mod-
ifications to the roles, work products and tasks in a software development project,
and especially to standard approaches to requirements engineering [77, 104]. The
methodology generally treats the development of new systems, but it is also sup-
plemented with techniques to reuse legacy software and apply patterns to reuse
reoccurring behaviour.

7.1 Using the ReDSeeDS Tool

Practicing Model-Driven Requirements Engineering is inherently associated with
using a tool that implements the requirements language and the transformations
from this language down to code.! The tool is fundamental for any method-
ology associated with applying MDRE in real-life projects. Thus, we start our
considerations on practicing MDRE by introducing such a tool. The tool is called
ReDSeeDS (Requirements-Driven Software Development System)2 [156, 158] and
it implements all the concepts presented in the previous chapters. Its overview is
presented in Fig.7.1. The actual tool contains an RSL editor, a MOLA trans-
formation engine and a model repository. It also interfaces with MOLA Tool by

! Note that such tools would significantly extend the capabilities of typical Requirements Engineer-
ing tools [29, 104].

2 http://www.redseeds.eu/.

© Springer International Publishing Switzerland 2015 225

M. Smiatek and W. Nowakowski, From Requirements to Java in a Snap,
DOI 10.1007/978-3-319-12838-2_7

http://www.redseeds.eu/

226 7 Applying MDRE in Practice

Requirements

MOLA MOLA
Compiler program
ReDSeeDS
RSL Trans:‘“;rl:nnlaticn
Editor Engzne

Editor

UML model
+
method code

Model repository

Fig. 7.1 ReDSeeDS overview

accepting compiled MOLA programs, and with an external UML editor to visualise
the generated models and to further generate code.

The ReDSeeDS model repository implements the RSL metamodel as described
in Chap. 3. This serves as the storage for the RSL models used by the RSL Editor.
The editor provides extensive editing capabilities for RSL models and complies with
the RSL’s concrete syntax. It also supports RSL semantics by providing certain facil-
ities that help in structuring scenarios and domain models for better code generation.
The ReDSeeDS repository implements also much of the UML metamodel. It thus
allows for storing the results of the transformations as explained in Chap.6. It is
possible to store full class and component models, together with comments that can
hold method bodies.>

Apart from the capability to edit RSL models, the ReDSeeDS tool can visu-
alise the structure of the generated UML models and show the generated code.
It does not contain a full UML viewer/editor because it relies on the existing tools.
Currently, it interfaces with Enterprise Architect from Sparx Systems* and Mode-
lio from Softeam.> Modelio can be used in the open source version. The generated
UML models can be easily exported to one of the above UML editors for further

3 The ReDSeeDS repository can also store other UML models like activity models or interaction
models. However, these capabilities are not used by the presented transformations.

4 http://www.sparxsystems.com/.
3 http://modelio.org/.

http://dx.doi.org/10.1007/978-3-319-12838-2_3
http://dx.doi.org/10.1007/978-3-319-12838-2_6
http://www.sparxsystems.com/
http://modelio.org/

7.1 Using the ReDSeeDS Tool 227

processing. Then, standard code generation facilities of the UML tools can be used
to generate the final code.

The ReDSeeDS tool is compatible with the executable transformation code,
generated from MOLA Tool. The MOLA compiler turns MOLA programs into exe-
cutable files which form the MOLA Transformation Engine. This code can access
the current ReDSeeDS repository and perform all the queries and operations that
are available in the MOLA syntax. ReDSeeDS provides an environment to man-
age and run MOLA executable files (the MOLA Transformation Engine). There
are some standard transformations built into ReDSeeDS, available though context
menus. However, users can develop their own transformations in MOLA Tool, and
integrate them through a special transformation browser.

From the point of view of the tool user (software developer, domain expert), the
usage of ReDSeeDS is fairly simple (see again Fig.7.1). First, we need to formulate
our RSL model. Then we select a transformation to execute. The transformation pro-
duces a UML model with possible code embedded in comments. We can then export
this model to a UML tool and generate code using standard code generation capa-
bilities. For the standard (built-in) transformations, the process is simpler because
the UML model export and code generation is evoked from within ReDSeeDS auto-
matically. Following this, the developer can open one of the available programming
environments and use the generated code for producing the final system.

We now illustrate this generally presented process with the actual functionality
of the ReDSeeDS tool. Our aim here is not to provide a detailed user guide which
is already available from the ReDSeeDS website. Instead, we want to provide an
insight into the features that seem necessary for the tools that aim at implementing
the concepts of MDRE. The main goal for ReDSeeDS is to automate many of the
typical tasks and provide an environment that keeps the RSL models coherent.

The first step is to create a new project. In ReDSeeDS, projects are called “software
cases”, so we select File —> New and then New Software Case Project. After naming
the project we obtain the initial project structure. To define the RSL model we have
to fill-in the main Requirements Specification package, together with the contained
Domain Specification package.

Within the Requirements Specification we can perform actions as we would expect
from a typical CASE tool. We can create new requirements packages and new require-
ments diagrams. This can be done from the context menu in the project browser tree.
In diagrams and in the project browser, we can define new elements like use cases and
actors. An example result of such actions is illustrated in Fig.7.2, which shows an
initial use case diagram, created within a project tree. As we can see, we have created
a specification for a Library System with one requirements package (“Book man-
agement”) containing an identically named use case diagram. We have also started
creating a use case model.

Note that the actor (“librarian”) has been added by the tool to the “Actors” pack-
age. This is because according to RSL’s definition, actors are part of the Domain
Specification. Another observation is that the palette in the use case diagram does
not provide the means to add an invocation relationship between use cases. This is

228 7 Applying MDRE in Practice

5 ReDSeeDS - Library/CurrentSC/Use Cases Diagrams/Book management.ssecasediagram_diagram - TALE Engine [P
c e g
File Edit Disgram Havigate Seprch Project ReDSeeDS Run Window Help
L2 D] ik A D SR A 7 [ReDseeds] & 5°
Tahoma 1 - - - — ‘_r“ v vis -
&8 Cument SC 52 = % 7 7 O d) Baok management.usecasediagram, diagram 13 . =)
1= Libeary | Palette b
& Library SRt |
(& Requirements Specification L E aw r
I |
@ Book management Add new bock (& Elements 1|
[© Add new book 2 e |
" © Show book list / ol ‘
i & Show bock loan history - |
) Book management (= Connections <
B / o
-
Ll 2 librarisn librasian
! & Notions
& SystemElements |
! (& Architecture
l_‘ g:‘::“ s Show bock boan history
= SportsCentre

e —

e sEaBoe |

Fig. 7.2 Starting a new ReDSeeDS project

because invocations have to be coherent with the use case scenarios. They appear
automatically, as we will show in further description. This is one of the aspects of the
tool, which assures coherence of the model and clear separation of concerns, right
from the beginning.

After introducing use cases, we can start entering their scenarios as
illustrated in Fig. 7.3. We can enter consecutive SVO sentences that are automatically
numbered by the editor. We can also introduce condition sentences by selecting the
“fork” icon that automatically creates a new scenario which forks from the current
scenario after the currently selected sentence. “Forking” a scenario creates its sibling
which has exactly the same initial sentences (1-5 in Fig.7.3). The forked scenario
can be ended either with a final sentence or with a rejoin sentence that points to a
specific sentence in the original scenario (see sentence 2 in Fig.7.3).

Directly after entering, the SVO sentences are “raw” and have to be additionally
marked. We need to determine the sentence parts (the subject, the verb and the
objects) and the sentence type. For some of the sentences we can also specify the
type of the action based on certain keyword verbs. As we can see in Fig.7.3, each
SVO sentence can be marked with these two elements (sentence type and action
type) which are initially void.®

Sentence marking is done semi-automatically. We should select and mark sentence
parts by selecting appropriate context menu options. The relevant phrases can be also
added to the domain specification if necessary (if not yet present). This can be done

6 The third element is “recipient” which is not used by the presented transformations and will not
be discussed.

7.1 Using the ReDSeeDS Tool

229

e ST X W B
(@ Sk mansgemr st dngom (USSR =5
Name: Main scenario Sentence Type Action Type Recipient
precondition:
1. Librarian selects add book button v - -
2. System shows new book form = - -
3. Librarian enters book data - - -
4. Librarian selects save button v - v
5. System validates book data - - - _‘:'_ﬂ_
=>cond: book data valid
6. System closes new book form - - - ient
7. System saves book data v - -
final: success b
postcondition: book saved =
| UC Editor | Main scenario | Alternative scenario | Graphic view | -
4. Librarian selects save button l - - -
5. System validates book data [z = =
=>cond: book data invalid
=2 reoE [Mmumo '}[Sywunshmmbookiorm v]
UCEdmr|Mam i sc'ei'\é;iditematw' escmario'GrapHic view|
Fig. 7.3 Editing use case scenarios
B B G 7 = 0@ sockmnspementusecasediogram diogam |© Add newbook 51 =5
a&m min e “|| Name: “Main scenaro Sentence Type Action Type Recipient
2 @ ons 1 I.Iﬂ-hwremudbeelhﬂon |Actorto T [select +]
4 B sddbock buten cdorto Togge |
) 2dd book button 2. System shows new book form [wmm - [SMW M| -
) select add book button 3. Librarian eners book data [kwm&wh“m ! [nia .} -
4 nbe?"km 4. Librarian slects save button [M"h"’iﬂ“ o | P -
beock data 4
@ eoterbock daa 5. System validotes book data [Srﬂﬂnlﬂﬁwﬂ‘u | | Validate | -
@ validate bock data =>cond: book data vad
@ save book data 6. System closes new book form Systemto Screen <) [Closecm) =
4| new bock form L 1. System soves book data | System to Simple View v||Create * -
& new book form | finak success
€ show new book form posteondition: book saved
@ close new bock form S E . e —
+ B svebut UCEditor Main scenario Altematrve scenanio| Graphic view
© savebution [newbookfom £\
 selectsave button S 5
d) Library Notions T 1
fi Tvoe | vl
(@ SystemElements Hawae .o ok o V€ |Screen v K|
Architecture || Pathe Notions (none) =

Fig. 7.4 Organising SVO sentences

automatically after selecting the given phrase. An example result of such marking is
shown in Fig.7.4. The SVO sentences are now appropriately divided into their parts.
Moreover, the domain specification (see the project tree to the left) is automatically

populated with appropriate domain notions and phrases.

230 7 Applying MDRE in Practice

The editor also automatically determines the notion types by using certain con-
textual information. For instance, it is assumed that the sentence object in the first
sentence in a scenario should be a Trigger element. The editor also analyses the
verbs. Based on certain standard keywords it is possible to determine the type of the
element associated with the noun phrase. For instance, the keywords “show” and
“close” indicate that the related noun phase is a Screen element. The same mecha-
nism is used to determine the sentence type and the action type (see the relevant two
columns in Fig.7.4). As a result, the user needs to specify these elements by hand
only in some situations, and most of this work is done by the editor. If necessary,
every domain element can be edited (e.g. its type changed), which is shown in the
bottom right part of Fig.7.4.

A distinct type of sentence is the invocation sentence. As we remember from
the RSL definition, every invocation sentence has to be attached to an invocation
relationship. Thus, adding such a sentence to a scenario automatically attaches it to
a relevant relationship. If the relationship is not present—it is automatically created.
The ReDSeeDS tool implements this feature of RSL, which is illustrated in Fig.7.5.
The invocation relationships cannot be added manually. They are always derived
from appropriate invocation sentences, which assures strict coherence of the model
for invocations.

After specifying the scenarios we obtain an already populated domain specifica-
tion. However, not all the details can be derived from the scenarios and this includes
relationships between notions and attributes. The best way to specify these additional
elements is to create notion diagrams and drag the existing elements onto them as
illustrated in Fig.7.6. The attributes need to be added manually. We can group them
into a separate package in the project browser (see top-left). Then we can create all
the necessary connections according to the desired characteristics of the system. To
produce correct code we need to observe the syntactic and semantic rules presented
in the previous chapters.

The RSL models are managed by the ReDSeeDS editor with all the hyperlink
characteristics stemming from the RSL’s metamodel. Thus, the actual scenario
sentences do not contain the actual phrases, but point to phrases in the domain

© Shew book et | 4] Book
Marme: Add mew book Sentence Type Action Type Racipient — * | ik Palene
precondte: : . I// H\\ L8 =
L. Librasian seiects add book button | Actorto Trigger v |Seect - (St & Elemants
L System feiches book it Systern bo List View - |Resd = - (\J - A 2 Actor
L System ook list windew | Siztem o Screen » |Show = - Sy // T o Useasn
= imeoke/TSERT | dd new book - r] _’,L'————,,_‘\ =
o —— Connect
=rieweke/TERT [gho book =| — g
s : oy % (Showbookiat) haocis
4. Uiasian eivcts chote button Actorto Trgger -||seiect =/ T 4 b /" i
5. System cioces BN st windew | Systern to Screen | rree——— = | a———
W
X
= ~

™
mei laan histery)'|
— "
U Editor | Add new book Graphic view

Fig. 7.5 Managing invocations

7.1 Using the ReDSeeDS Tool 231

. &2 =5 - Sl e new bool il Library Notions.notiondiagram_diagram &2
=3 Current SC © Add new book d] Library Not tiond d
4\ Notions 2~ * | 2% Palette

A 1 o b
- "ﬁ“"h”"‘ 4Fm| Fdd bock buuu4 E@aD-
author

B page & Blements
B tte _ [Notion
[B 2dd book button {Concept)
& add book button
) select add book button
B book
4 [book data
B book data
) enter book data
&) validate book data
B save book data
B new book form
& new book form
B show new book form
) close new book form =
4 [savebutton B suther
) save button) a
) select save button Name author Tvoe | Attribute -
il Library Notions
& SystemElements

(& Connections
E /“Generalahtm
/ Attribute
Relation

Directed
Relation

/ Indirect Relation

Path: \Motiens\Attributes Text -

Fig. 7.6 Defining the domain model

specification. This makes it easy to perform changes to the domain elements that get
propagated throughout the whole model. For instance, when we change the name of
anotion (e.g. from “book data” to “book details”), this change should be reflected in
all the SVO sentences that use this notion. The editor does this automatically because
the sentences contain hyperlinks that can be easily updated with the new name they
point to.

Whenever we judge the RSL model ready, we can run a MOLA program in the
transformation engine. This is as simple as selecting an appropriate option in the
context menu for the requirements specification. This runs the selected transforma-
tion program as that presented in Chap. 6. The target UML model with embedded
code is placed in the repository along the source RSL model. Then, the ReDSeeDS
system automatically transfers this model to one of the available UML tools. Finally,
it evokes the code generator which produces the final code. The result of this process
for our example model is presented in Fig.7.7.

If the RSL model was formed correctly, the resulting code can be compiled and
run. The ReDSeeDS tool does not provide facilities to manage the generated UML
models and code. It can be used only for browsing the structure, as shown in Fig.7.7.
We can see that the whole MVP structure, together with the DTOs and DAOs is
generated. We can update this code in a programming IDE (Integrated Development
Environment) of our choice. If we use the Eclipse IDE, ReDSeeDS can already place
this code in the right workspace and make it ready for instant compilation.

The ReDSeeDS tool is currently the only implementation of RSL and thus it
can be postulated to widen the selection of available tools. It can be noted that any
RSL editor would need to have several characteristics that are not present in typical
modelling tools. The main effort seems to be in implementing the scenario editor
with its grammar enforcement, and strict rules for hypelinking to domain elements.
Other RSL constructs should be possible to be implemented using standard profiling

http://dx.doi.org/10.1007/978-3-319-12838-2_6

232 7 Applying MDRE in Practice

=3 Current SC £ g Y0 =0
| 4 = Library -
4 [l Requirements Specification 4] PAddNewBook java I
Book management : package App.Presenter.BookManagement; -
& Domain Specification # import App.Presenter.IInvoke:[]
4\l Architecture
« \d App
& DAO
d DTO
d Model
|l Presenter
4 () BookManagement
B pPAddNewBook
B PShowBookList
B PShowBookLoanHistor
B Presentedmpl
=0 Onvoke
=0 [Presenter

public class PAddNewBook implements IInvoke {

IInvoke callingPClass;
int res:

int sentence no;
public IModel model:
public IView view;

> Il View public PAddNewBock() {
d java
\d nextapp }
\d Detailed Design
a4 (= Code public void finalize() throws Throwable {
« & App
= Dao }
& 010
= Model
4 (= Presenter
4 (= BookManagement
[4) PAddNewBookjava
|4] PShowBookList.java
4] PShowBookLoanHistor
4] Onvokejava
[4] IPresenterjava - ;i -

‘ m b “ (] "

public void _first(IInvoke i_uc){

Fig. 7.7 Generating the UML model and code

mechanisms present in many UML tools or standard metamodelling capabilities of
language workbenches and DSL environments.

These editing capabilities should be integrated with a model transformation
engine. Many UML tools have already implemented some form of such engine or
can be integrated with an external model transformation tool. However, we need to
make sure that the transformation language is powerful enough to be able to perform
complex transformations that involve both declarative and imperative elements. Hav-
ing assured this we need to implement the semantics of RSL according to the rules
presented in Chap. 4. We can use the algorithms presented in Chap. 6 as general guid-
ance. MOLA syntax provides visual documentation which can be easily translated
to any other model transformation language.

7.2 Introducing the ReDSeeDS Methodology

Having the necessary tooling environment, we can start applying MDRE in real
projects. However, we need to remember that the tool is not enough. This is especially
visible in larger projects with many use cases and vast domain models. We need

http://dx.doi.org/10.1007/978-3-319-12838-2_4
http://dx.doi.org/10.1007/978-3-319-12838-2_6

7.2 Introducing the ReDSeeDS Methodology 233

ways to organise the development effort, taking into account all the typical issues of
software engineering.

7.2.1 Overview of the ReDSeeDS Process

As we have noted in Chap. 1 (see Sect. 1.4), MDRE can significantly shorten the path
from