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Preface—Please Read!

In all likelihood, the Universe of Statistical Science is “relatively” or “pri-
vately” infinite and expanding in a similar manner to our Universe, sat-
isfying the property of a science that is alive. Hence, it would be absolute 
impossibility to include everything in one book written by humans. One of 
our major goals is to provide the readers a small but efficient “probe” that 
could assist in Statistical Space discoveries.

The primary objective of the this book is to provide a compendium of statis-
tical techniques ranging from classical methods through bootstrap strategies 
to modern recently developed statistical techniques. These methodologies 
may be applied to various problems encountered in health-related studies.

Historically, initial developments in statistical science were induced by 
real-life problems, when appropriate statistical instruments employed 
empirical arguments. Perhaps, since the eighteenth century, the heavy con-
volution between mathematics, probability theory, and statistical methods 
has provided the fundamental structures for correct statistical and biosta-
tistical techniques. However, we cannot ignore a recent trend toward redun-
dant simplifications of statistical considerations via so called “intuitive” and 
“applied” claims in complex statistical applications. It is our experience that 
applied statisticians or users often neglect the underlying postulates when 
implementing formal statistical procedures and with respect to the inter-
pretation of their results. A very important motivation towards writing this 
book was to better refocus the scientist towards understanding the underpin-
nings of appropriate statistical inference in a well-rounded fashion. Maybe 
now is the time to draw more attention of theoretical and applied researchers 
to methodological standards in statistics and biostatistics? In contrast with 
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many biostatistical books, we focus on rigorous formal proof schemes and 
their extensions regarding different statistical principles. We also show the 
basic ingredients and methods for constructing and examining correct and 
powerful statistical processes.

The material in the book should be appropriate for use both as a text and 
as a reference. In our book readers can find classical and new theoretical 
methods, open problems, and new procedures across a variety of topics for 
their scholarly investigations. We present results that are novel to the current 
set of books on the market and results that are even new with respect to the 
modern scientific literature. Our aim is to draw the attention of theoretical 
statisticians and practitioners in epidemiology and/or clinical research to 
the necessity of new developments, extensions and investigations related to 
statistical methods and their applications. In this context, for example, we 
would like to emphasize for whom is interested in advanced topics the fol-
lowing aspects. Chapter 1 lays out a variety of notations, techniques and 
foundations basic to the material that is treated in this book. Chapter 2 intro-
duces the powerful analytical instruments that, e.g., consist of principles 
of Tauberian theorems, including new results, with applications to convo-
lution problems, evaluations of sequential procedures, renewal functions, 
and risk-efficient estimations. In this chapter we also consider problems of 
reconstructing the general distribution based on the distribution of some 
observed statistics. Chapter 3 shows certain nontrivial conclusions regard-
ing the parametric likelihood ratios. Chapter 4 is developed to demonstrate 
a strong theoretical instrument based on martingales and their statistical 
applications, which include the martingale principle for testing statistical 
hypotheses and comparisons between the cumulative sum technique and 
the Shiryayev–Roberts approach employed in change point detection poli-
cies. A part of material shown in Chapter 4 can be found only in this book. 
Chapter 5 can assist the statistician in developing and analyzing various 
Bayesian procedures. Chapter 8 provides the fundamental components for 
constructing unconventional statistical decision-making procedures with 
power one. Chapter 9 proposes novel approaches to examine, compare, and 
visualize properties of various statistical tests using correct p-value-based 
mechanisms. Chapter 10 introduces the empirical likelihood methodol-
ogy. The theoretical propositions shown in Chapter 10 can lead to a quite 
mechanical and simple way to investigate properties of nonparametric like-
lihood–based statistical schemes. Several of these results can be found only 
in this book. In Chapter 14 one can discover interesting open problems. This 
book also provides software code based on both the R and SAS statistical 
software packages to exemplify the statistical methodological topics and 
their applied aspects.

Indeed, we focused essentially on developing a very informative textbook 
that introduces classical and novel statistical methods with respect to vari-
ous biostatistical applications. Towards this end we employ our experience 
and relevant material obtained via our research and teaching activity across 
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10–15 years of biostatistical practice and training Master and PhD level stu-
dents in the department of biostatistics. This book is intended for gradu-
ate students majoring in statistics, biostatistics, epidemiology, health-related 
sciences, and/or in a field where a statistics concentration is desirable, par-
ticularly for those who are interested in formal statistical mechanisms and 
their evaluations. In this context Chapters 1–10 and 12–14 provides teach-
ing sources for a high level statistical theory course that can be taught in a 
statistical/biostatistical department. The presented material evolved in con-
junction with teaching such a one-semester course at The New York State 
University at Buffalo. This course, entitled “Theory of Statistical Inference,” 
has belonged to a set of the four core courses required for our biostatistics 
PhD program.

This textbook delivers a “ready-to-go” well-structured product to be 
employed in developing advanced biostatistical courses. We offer lectures, 
homework questions, and their solutions, examples of midterm, final, and 
Ph.D. qualifying exams as well as examples of students’ projects.

One of the ideas regarding this book’s development is that we combine 
presentations of traditional applied and theoretical statistical methods with 
computationally extensive bootstrap type procedures that are relatively 
novel data-driven statistical tools. Chapter 11 is proposed to help instruc-
tors acquire a statistical course that introduces the Jackknife and Bootstrap 
methods. The focus is on the statistical functional as the key component of 
the theoretical developments with applied examples provided to illustrate 
the corresponding theory.

We strongly suggest to begin lectures by asking students to smile!
It is recommended to start each lecture class by answering students’ inqui-

ries regarding the previously assigned homework problems. In this course, 
we assume that students are encouraged to present their work in class 
regarding individually tailored research projects (e.g., Chapter 14). In this 
manner, the material of the course can be significantly extended.

Our intent is not that this book competes with classical fundamental 
guides such as, e.g., Bickel and Doksum (2007), Borovkov (1998), and Serfling 
(2002). In our course, we encourage scholars to read the essential works of the 
world-renown authors. We aim to present different theoretical approaches 
that are commonly used in modern statistics and biostatistics to (1) analyze 
properties of statistical mechanisms; (2) compare statistical procedures; and 
(3) develop efficient (optimal) statistical schemes. Our target is to provide 
scholars research seeds to spark new ideas. Towards this end, we dem-
onstrate open problems, basic ingredients in learning complex statistical 
notations and tools as well as advanced nonconventional methods, even in 
simple cases of statistical operations, providing “Warning” remarks to show 
potential difficulties related to the issues that were discussed.

Finally, we would like to note that this book attempts to represent a part of 
our life that definitely consists of mistakes, stereotypes, puzzles, and so on, 
that we all love. Thus our book cannot be perfect. We truly thank the reader 
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for his/her participation in our life! We hope that the presented material can 
play a role as prior information for various research outputs.

Albert Vexler
Alan D. Hutson



xvii

Authors

Albert Vexler, PhD,  obtained his PhD degree in Statistics and Probability 
Theory from the Hebrew University of Jerusalem in 2003. His PhD advi-
sor was Moshe Pollak, a fellow of the American Statistical Association and 
Marcy Bogen Professor of Statistics at Hebrew University. Dr. Vexler was a 
postdoctoral research fellow in the Biometry and Mathematical Statistics 
Branch at the National Institute of Child Health and Human Development 
(National Institutes of Health). Currently, Dr. Vexler is a tenured Full Professor 
at the State University of New York at Buffalo, Department of Biostatistics. 
Dr. Vexler has authored and co-authored various publications that contribute 
to both the theoretical and applied aspects of statistics in medical research. 
Many of his papers and statistical software developments have appeared in 
statistical/biostatistical journals, which have top-rated impact factors and 
are historically recognized as the leading scientific journals, and include: 
Biometrics, Biometrika, Journal of Statistical Software, The American Statistician, 
The Annals of Applied Statistics, Statistical Methods in Medical Research, 
Biostatistics, Journal of Computational Biology, Statistics in Medicine, Statistics and 
Computing, Computational Statistics and Data Analysis, Scandinavian Journal of 
Statistics, Biometrical Journal, Statistics in Biopharmaceutical Research, Stochastic 
Processes and Their Applications, Journal of Statistical Planning and Inference, 
Annals of the Institute of Statistical Mathematics, The Canadian Journal of Statistics, 
Metrika, Statistics, Journal of Applied Statistics, Journal of Nonparametric Statistics, 
Communications in Statistics, Sequential Analysis, The STATA Journal; American 
Journal of Epidemiology, Epidemiology, Paediatric and Perinatal Epidemiology, 
Academic Radiology, The Journal of Clinical Endocrinology & Metabolism, Journal of 
Addiction Medicine, and Reproductive Toxicology and Human Reproduction.

Dr. Vexler  was awarded National Institutes of Health (NIH) grants to 
develop novel nonparametric data analysis and statistical methodology. His 
research interests are related to the following subjects: receiver operating 
characteristic curves analysis; measurement error; optimal designs; regres-
sion models; censored data; change point problems; sequential analysis; sta-
tistical epidemiology; Bayesian decision-making mechanisms; asymptotic 
methods of statistics; forecasting; sampling; optimal testing; nonparametric 
tests; empirical likelihoods, renewal theory; Tauberian theorems; time series; 
categorical analysis; multivariate analysis; multivariate testing of complex 
hypotheses; factor and principal component analysis; statistical biomarker 
evaluations; and best combinations of biomarkers. Dr. Vexler is Associate 
Editor for Biometrics and Journal of Applied Statistics. These journals belong to 
the first cohort of academic literature related to the methodology of biostatis-
tical and epidemiological research and clinical trials.



xviii Authors

Alan D. Hutson, PhD,  received his BA (1988) and MA (1990) in Statistics 
from the State University of New York (SUNY) at Buffalo. He then worked 
for Otsuka America Pharmaceuticals for two years as a biostatistician. 
Dr. Hutson then received his MA (1993) and PhD (1996) in Statistics from the 
University of Rochester. His PhD advisor was Professor Govind Mudholkar, 
a world-renown researcher in Statistics and Biostatistics. He was hired as a 
biostatistician at the University of Florida in 1996 as a Research Assistant 
Professor and worked his way to a tenured Associate Professor. He had 
several roles at the University of Florida including Interim Director of 
the Division of Biostatistics and Director of the General Clinical Research 
Informatics Core. Dr. Hutson moved to the University at Buffalo in 2002 as 
an Associate Professor and Chief of the Division of Biostatistics. He was the 
founding chair of the new Department of Biostatistics in 2003 and became a 
full professor in 2007. His accomplishments as Chair included the implemen-
tation of several new undergraduate and graduate degree programs and a 
substantial growth in the size and quality of the department faculty and stu-
dents. In 2005, Dr. Hutson also became Chair of Biostatistics (now Biostatistics 
and Bioinformatics) at Roswell Park Cancer Institute (RPCI), was appointed 
Professor of Oncology, and became the Director of the Core Cancer Center 
Biostatistics Core. Dr. Hutson helped implement the new Bioinformatics 
Core at RPCI. He recently became the Deputy Group Statistician for the 
NCI national NRG cancer cooperative group. Dr. Hutson is Fellow of the 
American Statistical Association. He is Associate Editor of Communications 
in Statistics, Associate Editor of the Sri Lankan Journal of Applied Statistics, and 
is a New York State NYSTAR Distinguished Professor. He has membership 
on several data safety and monitoring boards and has served on several high 
level scientific review panels. He has over 200 peer-reviewed publications. In 
2013, Dr. Hutson was inducted into the Delta Omega Public Health Honor 
Society, Gamma Lambda Chapter. His methodological work focuses on non-
parametric methods for biostatistical applications as it pertains to statistical 
 functionals. He has several years of experience in the design and analysis of 
clinical trials.



1

1
Prelude: Preliminary Tools and Foundations

1.1 Introduction

The purpose of this opening chapter is to supplement the reader’s knowledge 
of elementary mathematical analysis, probability theory, and statistics, 
which the reader is assumed to have at his or her disposal. This chapter is 
intended to outline the foundational components and definitions as treated 
in subsequent chapters. The introductory literature, including various foun-
dational textbooks in the fields, can be easily found to complete this chap-
ter material in details. In this chapter we also present several important 
comments regarding the implementation of mathematical constructs in the 
proofs of the statistical theorems that will provide the reader with a rigorous 
understanding of certain fundamental concepts. In addition to the literature 
cited in this chapter we suggest the reader consult the book of Petrov (1995) 
as a fundamental source. The book of Vexler et al. (2016 a) will provide the 
readers an entree into the following cross-cutting topics: Data, Statistical 
Hypotheses, Errors Related to the Statistical Testing Mechanism (Type 
I and II Errors), P-values, Parametric and Nonparametric Approaches, 
Bootstrap, Permutation Testing, Measurement Errors.

In this book we primarily deal with certain methodological and practical 
tools of biostatistics. Before introducing powerful statistical and biostatisti-
cal methods it is necessary to outline some important fundamental concepts 
such as mathematical limits, random variables, distribution functions, inte-
gration, convergence, complex variables and examples of statistical software 
in the following sections.

1.2 Limits

The statistical discipline deals particularly with real-world objects but its 
asymptotic theory oftentimes consists of concepts that employ the symbols 
“→” (convergence) and “∞” (infinity). These concepts are not related directly 
to a fantasy, they just represent formal notations associated with asymptotic 
techniques relative to how a theoretical approximation may actually behave 
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in real-world applications with finite objects. For example, we will use the 
formal limit notation →( )f x a as → ∞x  (or =

→∞
lim ( )f x a
x

), where a is a con-

stant. In this case we do not pretend that there is a real number such that 
= ∞x  or x has a value that is close to infinity. We formulate that for all ε > 0 

(in the math language: ∀ε > 0) there exists a constant A ∃ >( 0)A  such that the 

inequality ( )f x a− < ε  holds for all >x A. By the notation .  we mean gener-
ally a measure, an operation that satisfies certain properties. In the example 

mentioned above ( )f x a−  can be considered as the absolute value of the 

distance −( )f x a, that is, ( ) ( )f x a f x a− = − . In this context, one can say for 

any real value ε > 0 we can find a number A to such that −ε < − < ε( )f x a  for 
all >x A. In this framework it is not difficult to denote different asymptotic 
notational devices. For example, the form → ∞( )f x  as → ∞x  (or = ∞

→∞
lim ( )f x
x

)  

means ∀ε > 0: ∃ > 0A  ( )f x > ε , for ∀ >x A. The function f  can denote a 
series or a sequence of variables, when f  is a function of the natural number 

= 1,2,3,...n  In this case we use the notation fn and can consider, e.g., the for-
mal definition of 

→∞
lim f
n

n in a similar manner to that of 
→∞

lim ( )f x
x

.

Oftentimes asymptotic propositions treat their results using the symbols 

)(⋅ ,O  )(⋅ ,o  and ~, which are called “big Oh,” “little oh,” and “tilde/twiddle,” 
respectively. These symbols provide comparisons between the magnitude 

of two functions, say )(u x  and )(v x . The notation )() )( (=u x O v x  means that 

u x v x( ) ( )  remains bounded if the argument x is sufficiently near to some 

given limit L, which is not necessarily finite. In particular, )(1O  stands for 

a bounded function. The notation )() )( (= ,u x o v x  as → ,x L  denotes that 

lim 0u x v x
x L

{ }( ) ( ) =
→

. In this case, )(1o  means a function which tends to zero. By 

) )( (~ ,u x v x  as → ,x L  we define the relationship lim 1u x v x
x L

{ }( ) ( ) =
→

.

Examples

1. A function G( )x  with > 0x  is called slowly varying (at infinity) if 

for all > 0a  we have ) )( (~G ax G x , as → ∞x , e.g., )(log x  is a slowly 
varying function.

2. It is clear that we can obtain the different representations of the 

function )(sin x , including sin x O x( )( ) =  as → 0x , )()( =sin 2x o x  

as → ∞x , and ) )( (=sin 1x O .

3. )(=2 3x o x  as → ∞x .

4. 1 1 1 (1)
2

f n on ( )= − − =  as → ∞n .

1.3 Random Variables

In order to describe statistical experiments in a mathematical framework 
we first introduce a space of elementary events, say ω ω, , ...1 2 , that are 
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independent. For example, we observe a patient who can have red eyes that 
are caused by allergy and then we can represent these traits as ω = " "1 has , 
ω = " not "2 does have . In general, the space , ,....1 2{ }Ω = ω ω  can consist of a con-
tinuous number of points. This scenario can be associated, e.g., with experi-
ments when we measure a temperature or plot randomly distributed dots 
in an interval. We refer the reader to various probability theory textbooks 
that introduce definitions of underlying probability spaces, random vari-
ables, and probability functions in detail (e.g., Chung, 2000; Proschan 
and Shaw, 2016). In this section we shortly recall a random variable ξ ω( ) : 
Ω → E to be a measurable transformation of Ω  elements, possible outcomes, 

into some set E. Oftentimes, =E R, the real line, or Rd, the d-dimensional 
real space. The technical axiomatic definition requires both Ω and E to be 
measurable spaces. In particular, we deal with random variables that work 
in a “one-to-one mapping” manner, transforming each random event ω i to a 
specific real number, ξ ω ≠ ξ ω ≠( ) ( ), i ji j .

1.4 Probability Distributions

In clinical studies, researchers collect and analyze data with the goal of solic-
iting useful information and making inferences. Oftentimes recorded data 
represents values (realizations) of random variables. However, in general, 
experimental data cannot identically and fully characterize relevant ran-
dom variables. Full information associated with a random variable ξ can be 

derived from its distribution function, denoted in the form )(= ξ ≤ξ( ) PrF x x . 
In this example, we consider a right continuous distribution function of the 
one-dimensional real-valued random variable. The reader should be familiar 
with the ideas of left continuous distribution functions and the correspond-
ing definitions related to random vectors.

Assume we have a function ( )F x . In order for it to be a distribution function 
for a random variable there are certain conditions that need to be satisfied. 
For the sake of brevity we introduce the following notation: +∞ =

→∞
( ) lim ( )F F x

x
,  

−∞ =
→−∞

( ) lim ( )F F x
x

, + = +
↓

( 0) lim ( )
0

F x F x h
h

, and − = −
↓

( 0) lim ( )
0

F x F x h
h

, where 

the notation ↓ 0h  means that > 0h  tends to zero from above. Then we call 
a function ( )F x  a distribution function if ( )F x  satisfies the following condi-
tions: (1) ( )F x  is nondecreasing, that is, + ≥( ) ( )F x h F x , for all > 0h ; (2) ( )F x  is 
right-continuous, that is, + =( 0) ( )F x F x ; and (3) +∞ =( ) 1F  and −∞ =( ) 0F . This 
definition insures that distribution functions are bounded, monotone, and 
can have only discontinues of the first kind, i.e., 0x -type arguments at which 

− ≠ +( 0) ( 0)0 0F x F x .
Note that the definition mentioned above regarding a distribution func-

tion ( )F x  does not provide for the existence of ( )dF x dx in general cases. In 
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a scenario with an absolutely continuous distribution function ( )F x , one can 
define

 ( ) ( ) with ( ) ( )/ ,∫= =
−∞

F x f t dt f x dF x dx
x

where ( )f x  is the density function and the integral is assumed to be defined 
according to the chapter material presented below. In order to recognize a 
density function, one can use the definition of a distribution function to say 
that every function g( )x  is the density function of an absolutely continuous 
distribution function if ( )g x  satisfies the conditions: (1) ≥( ) 0g x , for all x, and 

(2) ∫+∞ = =
−∞

∞

( ) ( ) 1F g t dt . The ability to describe random variables using den-

sity functions is restricted by opportunities to prove corresponding density 
functions exist. The ideas presented above pertain to univariate distribu-
tion functions and extend to higher dimensions termed multivariate dis-
tribution functions. An excellent review book on continuous multivariate 
distributions is presented by Kotz et al. (2000).

Note that in parallel with the role of density functions for continuous 
random variables one can define probability mass functions in the con-
text associated with discrete random variables. Denote a set of a finite or 
countably infinity number of values , , , ...1 2 3u u u . Then a random variable ξ is 

discrete if ∑ )(ξ = =Pr 1uj
j

. The function )(= ξ =( ) Prf u u  is the probability 

mass function. In this case the right-continuous distribution function of ξ 

has the form ∑)(= ξ ≤ =
≤

( ) Pr ( )F x x f uj
u xj

.

Oftentimes, statistical propositions consider independent and identically 
distributed (iid) random variables, say ξ ξ ξ, , , ...1 2 3 . In these cases, a sequence 
or other collection of random variables is iid if each random variable has 
the same probability distribution as the others and all random variables are 
mutually independent. That is to say

 Pr( , , , ...) Pr( )Pr( )Pr( )...1 1 2 2 3 3 1 1 2 2 3 3t t t t t tξ ≤ ξ ≤ ξ ≤ = ξ ≤ ξ ≤ ξ ≤
      ( ) ( ) ( )...,1 2 3F t F t F t=

where the distribution function = ξ ≤( ) Pr( )1F t t .
In order to summarize experimental data our desired goal can be to esti-

mate distribution functions, either nonparametrically, semi-parametrically, 
or parametrically. In each setting the goal is to develop accurate, robust, and 
efficient tools for estimation. In general, estimation of the mean (if it exists) 
and/or the standard deviation (if it exists) of a random variable only partially 
describe the underlying data distribution.
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1.5 Commonly Used Parametric Distribution Functions

There are a multitude of distribution functions employed in biostatistical 

studies such as the normal or Gaussian, log-normal, t, χ2, gamma, F, bino-
mial, uniform, Wishart, and Poisson distributions. In reality there have 
been thousands of functional forms of distributions that have been pub-
lished, studied, and available for use via software packages. Parametric dis-
tribution functions can be defined up to finite set of parameters (Lindsey, 
1996). For example, in the one-dimensional case, the normal (Gaussian) 

distribution has the notation , 2( )μ σN , which corresponds to density func-

tion defined as ( ) ( 2 ) exp( ( ) (2 ))1 2 2= σ π − − μ σ−f x x , where the parameters 

μ and σ2 represent the mean and variance of the population and the sup-
port for x is over the entire real line. The shape of the density has been 
described famously as the bell-shaped curve. The values of the param-

eters μ and σ2 may be assumed to be unknown. If the random variable X 
has a normal distribution, then = exp( )Y X  has a log-normal distribution. 
Other examples include the gamma distribution, denoted Gamma(α,β), 
with shape parameter α and rate parameter β. The density function for the 

gamma distribution is given as β Γ α −βα α−( ( )) exp( )1x x , > 0x , where Γ α( ) is 
a complete gamma function. The exponential distribution, denoted exp(λ),  
has rate parameter λ with the corresponding density function given as 
λ −λexp( )x , > 0x . Note that the exponential distribution is a special case of the 
gamma distribution with α = 1. It is often the case that simpler well-known 
models are nested within more complex models with additional parameters. 
While the more complex models may fit the data better there is a trade-off in 
terms of efficiency when a simpler model also fits the data well.

Figure 1.1 depicts the density functions of the N(0,1), Gamma(2,1) and 
exp(1) distributions, for example.

Note that oftentimes measurements related to biological processes fol-
low a log-normal distribution (Koch, 1966). For example, exponential 
growth is combined with further symmetrical variation: with a mean con-
centration of, say, 106 bacteria, one cell division more or less will result in 

×2 106 or ×5 105 cells. Therefore, the range will be multiplied or divided 
by 2 around the mean, that is, the density is asymmetrical. Such skewed 
distributions of these types of biological processes have long been known 
to fit the log-normal distribution function (Powers, 1936; Sinnott, 1937). 
Skewed distributions that often closely fit the log-normal distribution are 
particularly common when mean values are low, variances are large, and 
values of random variables cannot be negative, as is the case, for instance, 
with species abundance and lengths of latent periods of infectious dis-
eases (Lee and Wang, 2013; Balakrishnan et al., 1994). Limpert et al. (2001) 
discussed various applications of log-normal distributions in different 



6 Statistics in the Health Sciences: Theory, Applications, and Computing

fields of science, including geology, human medicine, environment, atmo-
spheric sciences, microbiology, plant physiology and the social sciences.

1.6 Expectation and Integration

Certain important properties of random variables may be represented suf-
ficiently in the context of mathematical expectations, or simply expectations. 
For example, the terms: standard deviation, covariance, mean are examples 
of expectations, which are frequently found in the statistical literature. 
The expectation of a random variable ξ is denoted in the form ξ( )E  and is 
defined as the integral of ξ with respect to its distribution function, that is, 

∫ )(ξ = ξ ≤( ) PrE u d u . In general, for a function ψ about the random variable 

ξ we can define

 ∫{ }) )( ()(ψ ξ = ψ ξ ≤PrE u d u , e.g., ∫{ }( ) ( ) ( )ξ = − ξ ξ ≤Var u E d uPr .
2

When we have the density function = = ξ ≤( ) ( )/ , ( ) Pr( )f x dF x dx F x x  the 
definition of expectation is clear. In this case, expectation is presented as the 
traditional Riemann–Stieltjes integral, e.g., accurately approaching ξ( )E  by 
the sums

min , ( ) ( ) max , ,1 1 1 1f u f u u u E f u du f u f u u ui i i i

i

i i i i

i
∑ ∑∫{ } { }( ) ( ) ( ) ( ) ( ) ( )− ≤ ξ = ≤ −− − − −

where <u ui j, for <i j, partition the integral support.

x
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FIGURE 1.1
The density plots where the panels (a)–(c) display the density functions of the standard normal 

distribution, of the Gamma(2,1) distribution, and of the exp(1) distribution, respectively.
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In many scenarios, formally speaking, the derivative ( )dF x dx does not 
exist, for example, when a corresponding random variable is categorical 

(discrete). Thus, what does the component )(ξ ≤Prd u  in the ξ( )E  definition 
mean? In general, the definition of expectation consists of a Lebesgue–
Stieltjes integral. To outline this concept we define the operations infi-
mum and supremum. Assume that ⊂A R is a set of real numbers. If 

∈M R  is an upper (a lower) bound of A satisfying ≤ ′M M  ( ≥ ′M M ) for 
every upper (lower) bound ′M  of A, then M is the supremum (infimum) 

of A, that is, = sup( )M A  )( = inf( )M A . These notations are similar to the 
maximum and minimum, but are more useful in analysis, since they can 
characterize special cases which may have no minimum or maximum. For 

instance, let A be the set { }∈ ≤ ≤:x R a x b  for fixed variables <a b. Then 

= =sup( ) max( )A A b and = =inf( ) min( )A A a. Defining { }= ∈ < <: 0A x R x b , 
we have =sup( )A b and =inf( ) 0A , whereas this set A does not have a max-
imum and minimum, because, e.g., any given element of A could sim-
ply be divided in half resulting in a smaller number that is still in A,  
but there is exactly one infimum = ∉inf( ) 0A A, which is smaller than all 
the positive real numbers and greater than any other number which could 
be used as a lower bound.

Lebesgue revealed the revolutionary idea to define the integration 

∫ ψ( )u du
D

U

. He did not follow Newton, Leibniz, Cauchy, and Riemann who 

partitioned the x-axis between D and U , the integral bounds. Instead, 

= ψ
∈

l u
u D U

inf ( ( ))
[ , ]

 and = ψ
∈

L u
u D U
sup ( ( ))

[ , ]

 were proposed to be defined in order 

to partition the y-axis between l and L. That is, instead of cutting the area 

under ψ using a finite number of vertical cuts, we use a finite number of 
horizontal cuts. The panels (a) and (b) of Figure 1.2 show an attempting to 

integrate the “problematic” function )() )( (ψ = < + + ≥( ) 1 1 12 2u u I u u I u , where 

)( =. 0,1I  denotes the indicator function, using a Riemann-type approach 

via the sums ∑ ) )( (ψ −− −1 1u u ui i i

i

 and ∑ ) )( (ψ − −1u u ui i i

i

. Alternatively the 

hatched area in the panel (c) visualizes Lebesgue integration.
Thus, the main difference between the Lebesgue and Riemann inte-

grals is that the Lebesgue principle attends to the values of the function, 
subdividing its range instead of just subdividing the interval on which 
the function is defined. This fact makes a difference when the function 
is “problematic,” e.g., when it has large oscillations or discontinuities. 
For an excellent review of Lebesgue’s methodology we refer the reader to 
Bressoud (2008).

We may note, for example, observing n independent and identically dis-
tributed data points ξ ξ, ...,1 n, one can estimate their distribution function via 

the empirical distribution function ∑ )(= ξ ≤
=

( )
1

F t I tn i
i

n
. Then the average 
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∑ξ = ξ−

=

1

1
n i

i

n
, an estimator of )(ξE , can be presented in the integral form 

∫ ( )tdF tn  using Lebesgue’s integration.

1.7  Basic Modes of Convergence of a 

Sequence of Random Variables

In the context of limit definitions, the measure of a distance between func-

tions and their limit values denoted as .  was mentioned in Section 1.2. 
Regarding limits of sequences of random variables, this measure can be 
defined differently, depending on the characterizations of random variables 
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FIGURE 1.2
Riemann-type integration (a, b) and Lebesgue integration (c).
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in which we are interested. Thus, statistical asymptotic propositions can 
employ the following forms of convergence.

1.7.1 Convergence in Probability

Let ξ ξ, ...,1 n be a sequence of random variables. We write ξ →ζn
p

 as → ∞n , if 

limPr 1
n

n( )ξ − ζ < ε =
→∞

 for ∀ε > 0, where ζ can be a random variable. Equivalently 

we can formalize this statement in the following form: for ∀ε > 0 and ∀δ > 0,  

∃ ∀ >:N n N we have Pr n( )ξ − ζ ≥ ε ≤ δ . The formalism ξ →ζn
p

 is named con-
vergence in probability.

In this framework, frequently applied in the asymptotic analysis result, 
is the Continuous Mapping Theorem that states that for every continuous  

function ⋅( ),h  if ξ →ζn
p

 then we also have ( ) ( )ξ → ζh hn
p

 (e.g., Serfling, 2002).

1.7.2 Almost Sure Convergence

Let ξ ξ, ...,1 n be a sequence of random variables and let ζ  be a random variable. 
Define a sequence ξ − ζ| |n . Then ξ ξ, ...,1 n is said to converge to ζ almost surely 
(or almost everywhere, with probability one, strongly, etc.) if ξ = ζ =

→∞
Pr(lim ) 1

n
n .  

This can be written in the form 
. .ξ →ζn

a s
 as → ∞n .

The almost sure convergence is a stronger mode of convergence than that 
of the convergence in probability. In fact, an equivalent condition for conver-
gence almost surely is that ξ − ζ < ε ≥ =

→∞
lim Pr(| | , for all ) 1m n
n

m , for each ε > 0.

The almost sure convergence is essentially the pointwise convergence of 

a sequence of functions. In particular, random variables ξ ξ, ...,1 n and ζ can 
be regarded as functions of an element ω from the sample space S, that is, 

ξ ≡ ξ ω =( ), 1,...,i ni i , and ζ ≡ ζ ω( ). Then 
. .

ξ →ζn
a s

 as → ∞n , if the function ξ ω( )n  
converges to ζ ω( ) for all ω ∈S, except for those ω ∈ ⊂,W W S and =Pr( ) 0W . 
Hence this convergence is named almost surely.

1.7.3 Convergence in Distribution

Let ξ ξ, ...,1 n and ζ  be real-valued random variables. We say that ξn converges in 

distribution (converge in law or converge weakly) to ζ, writing n
Lξ →ζ ( n

dξ →ζ), 
if ξ ≤ → ζ ≤Pr( ) ( )x P xn  as → ∞n  at every point x that is a continuity point of 
the distribution function of ζ.

Convergence in distribution is one of the many ways of describing how 
ξn converges to the limiting random variable ζ. In particular, we are usually 
interested in the case that ζ is a constant and the ξi’s are sample means; this 
situation is formally stated as the (weak) law of large numbers.
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1.7.4 Convergence in rth Mean

For r > 0, we obtain that ξ ξ, ...,1 n, a sequence of random variables, converges 

in the rth mean to ζ, if lim 0E
n

n
rξ − ζ =

→∞
.

1.7.5 O(.) and o(.) Revised under Stochastic Regimes

For two sequences of random variables { }Un  and { }Vn , we formulate that 

the notation )(=U O Vn p n  denotes that 1U V On n p ( )= , where the subscript p  

means O(.) in probability. Similarly, the notation )(= ,U o Vn p n  denotes that 

0→U Vn n
p

.

1.7.6 Basic Associations between the Modes of Convergence

The following results are frequently useful in theoretical calculations:

1. Convergence in probability implies convergence in distribution.

2. In the opposite direction, convergence in distribution implies con-
vergence in probability only when the limiting random variable ζ is 
a constant.

3. Convergence in probability does not imply almost sure convergence.

4. Almost sure convergence implies convergence in probability, and 
hence implies convergence in distribution. It is the notion of conver-
gence used in the strong law of large numbers.

The fundamental book of Serfling (2002) covers a broad range of useful 
materials regarding asymptotic behavior of random variables and their 
characteristics.

1.8  Indicator Functions and Their Bounds as 

Applied to Simple Proofs of Propositions

In Section 1.6 we employed the indicator function (.)I . For any event G, the 
indicator function =( ) 1I G , if G is true and =( ) 0I G , if G is false.

Consider four simple results that can be essentially helpful for various sta-
tistical explanations. (1) = −( ) 1 (not )I G I G . (2) ≤ =( , ) ( ), 1,21 2I G G I G kk . (3) The 
indicator function ( )I G  denotes a random variable with two values 0 and 1. 

Therefore, { } { } { }= × = + × = =( ) 1 Pr ( ) 1 0 Pr ( ) 0 Pr is trueEI G I G I G G . For exam-

ple, for a random variable ξ, its distribution function )(= ξ ≤( ) PrF x x  satisfies 

{ })(= ξ ≤( )F x E I x . (4) It is clear that if a and b are positive then )( ≥ ≤ /I a b a b.
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Examples

1. Chebyshev’s inequality plays one of the main roles in theoretical 
statistical inference. In this frame, we suppose that a function 
ϕ >( ) 0x  increases to show that

 Pr Pr ,{ } { }( ) ( ) ( ) ( )( ) ( ) ( )ξ ≥ = ϕ ξ ≥ ϕ = ϕ ξ ≥ ϕ⎡⎣ ⎤⎦ ≤
ϕ ξ
ϕ

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
x x E I x E

x

where it is assumed that { })(ϕ ξ < ∞E . Defining > 0x , )(ϕ =x x, 

and , 0E r
r( )ξ = ζ − ζ > , we have Chebyshev’s inequality.

2. Let ξ ξ, ...,1 n be a sequence of iid positive random variables and 

∑= ξ
=1

Sn i
i

n
. Then, for > 0x , we have

 Pr Pr exp exp 1 exp ,S x S x eE S x eqn n n
n{ } { }( ) ( )( ) ( )≤ = − ≥ − ≤ − =

where exp 11q E x{ }( )= −ξ ≤  and e = exp(1).

3. A frequently used method for theoretical statistical evaluations 
is similar to the following strategy. For example, one may be 

interested in the approximation of the expectation { })(ψE An , 
where ψ  is an increasing function and An is a statistic with the 

property / 1A nn

p
→  as → ∞n . To get some intuition about the 

asymptotic behavior of { })(ψE An , we have, for < ε <0 1,

Pr ,

Pr ,

2
1/2

2
1/2

E A E A I A n n E A I A n n

E n n I A n n E A I A n n

n n E A A n n

E A E A I A n n E n n I A n n

n n E A I A n n

n n E A A n n

n n n n n

n n n

n n

n n n n

n n

n n

{ } { }

{ } { }

{ }

{ } { }

{ }

{ }

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

{ }

{ }

{ }

{ }

( ) ( ) ( )

( )

( )

( ) ( )

( )

( )

ψ = ψ ≤ + + ψ > +

≤ ψ + ≤ + + ψ > +

≤ ψ + + ψ > +⎡
⎣⎢

⎤
⎦⎥

ψ ≥ ψ ≥ − ≥ ψ − ≥ −

≥ ψ − − ψ < −

≥ ψ − − ψ < −⎡
⎣⎢

⎤
⎦⎥

ε ε

ε ε ε

ε ε

ε ε ε

ε ε

ε ε

where the Cauchy–Schwarz inequality, { } ) )( ()(ξζ ≤ ξ ζ
2 2 2E E E  

for random variables ξ  and ζ, was applied. Now, in order to 

show the remainder terms Pr
2 1/2{ }( ){ }( )ψ > +⎡

⎣
⎤
⎦

εE A A n nn n  and 

Pr
2

1/2

E A A n nn n{ }( ){ }( )ψ⎡
⎣⎢ < − ⎤

⎦⎥
ε

 potentially vanish to zero, a rough  
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bound for { })(ψ
2

E An  might be shown to be in effect. If this is 
the case then a Chebyshev-type inequality could be applied to 

)( > + εPr A n nn  and )( < − εPr A n nn . Note that, since ~A nn , we 

choose the “vanished” events { }> + εA n nn  and { }< − εA n nn  to be 
present in the remainder terms. In the case where ψ  is a decreas-
ing function, in a similar manner to that shown above, one can 
start with

 

,

.

E A E A I A n n E A I A n n

E n n I A n n E A I A n n

E A E A I A n n E n n I A n n

n n E A I A n n

n n n n n

n n n

n n n n

n n

{ } { }

{ } { }

{ } { }

{ }

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

{ }

{ }

( ) ( ) ( )

( )

( ) ( )

( )

ψ = ψ ≥ − + ψ < −

≤ ψ − ≥ − + ψ < −

ψ ≥ ψ ≤ + ≥ ψ + ≤ +

≥ ψ + − ψ > +

ε ε

ε ε ε

ε ε ε

ε ε

1.9 Taylor’s Theorem

An essential toolkit for statisticians to prove various theoretical propositions 
includes methods for expanding functions in powers of their arguments by 
a formula similar to that provided by Taylor’s theorem–type results. In math-
ematics, a Taylor series is a representation of a function as an infinite sum 
of terms that are calculated from the values of the function’s derivatives at a 
single point. The basic Taylor’s theorem states:

(i) When a function ( )g x  has derivatives of all orders at =x a, the infi-

nite Taylor series expanded about =x a is ( ) ( )( ) !( )

0

g x g a x a jj j

j

∑= −
=

∞

,  

where, for an integer k, ∏=
=

!
1

k i
i

k
 and ( ) ( )/( )

1

g a d g x dxk k

i

k

x a
∏=

= =
.

(ii) Assume that a function ( )g x  has + 1k  derivatives on an open interval 
containing a. Then, for each x in the interval, we have

 ( )
( )

!
( ) ( ),

( )

0

1g x
g a

j
x a R x

j
j

j

k

k∑= − +
=

+

  where the remainder term + ( )1R xk  satisfies =
+

−+

+
+( )

( )

( 1)!
( )1

( 1)
1R x

g c
k

x ak

k
k  

for some c between a and x, = + θ − ≤ θ ≤( ), 0 1c a x a .
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To display some intuition regarding the proof of Taylor’s theorem, we 
depict Figure 1.3.

Assume we would like to find the area under a function φ( )x  with ∈[ , ]x A D ,  
using a rectangle. It is clear the rectangle ABCD is too small and the rect-

angle AFMD is too large to represent ( )x dx
A

D∫ φ . The area of AUVD is (U–A)

(D–A) and is appropriate to calculate the integral. The segment UV should 
cross the curve of φ( )x , when ∈[ , ]x A D , at the point + θ − θ ∈( ), (0,1)D D A . 

Then ( ) ( ) ( )x dx D A c
A

D∫ φ = − φ , where ( )= + θ −c D A D . Define φ =( ) ( )/x dg x dx 

to obtain the Taylor theorem with = 0k . Now, following the mathematical 
induction principle and using integration by parts, one can obtain the Taylor 
result.

We remark that Taylor’s theorem can be generalized for multivariate func-
tions; for details see Mikusinski and Taylor (2002) and Serfling (2002).

Warning: It is very critical to note that while applying the Taylor expan-
sion one should carefully evaluate the corresponding remainder terms. 
Unfortunately, if not implemented carefully Taylor’s theorem is easily mis-
applied. Examples of errors are numerous in the statistical literature. A typ-
ical example of a misstep using Taylor’s theorem can be found in several 
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FIGURE 1.3
Illustration of Taylor’s theorem.
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publications and is as follows: Let ξ ξ, ...,1 n be a sequence of iid random 

variables with 01Eξ = μ ≠  and ∑= ξ
=1

Sn i
i

n
. Suppose one is interested in 

evaluating the expectation 1E Sn( ). Taking into account that = μES nn  and 

then “using” the Taylor theorem applied to the function 1 x , we “have” 

1 1
2E S n E S n nn n{ }( ) ( ) ( ) ( )≈ μ − − μ μ  that, e.g., “results in” 1 (1)nE S On( ) = . In 

this case, the expectation 1E Sn( ) may not exist, e.g., when ξ1 is from a normal 
distribution. This scenario belongs to cases that do not carefully consider 
the corresponding remainder terms. Prototypes of the example above can 
be found in the statistical literature that deals with estimators of regression 
models. In many cases, complications related to evaluations of remainder 
terms can be comparable with those of the corresponding initial problem 
statement. This may be a consequence of the universal law of conservation 
of energy or mere sloppiness.

In the context of the example mentioned above, it is interesting to show that 

it turns out that even when 1E Sn( ) does not exist, we obtain E S S m nm n( ) = ,  

for ≤m n, since we have 1 E S Sm n( )=
1
E S nE Si n

i

n

i n∑ ( ) ( )= ξ = ξ
=

 and then 

11E S nn( )ξ =  implies .
1

E S S E S mE S m nm n i n
i

m

i n∑( ) ( ) ( )= ξ = ξ =
=

Example

In several applications, for a function ϕ, we need to compare { }ϕ ξ( )E  with 

)( )(ϕ ξE , where ξ  is a random variable. Applying Taylor’s theorem to ϕ ξ( ),  
we can obtain that

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) /2, (0,1).
2E E E E E E( )( ) ( ){ } { } { }ϕ ξ = ϕ ξ + ξ − ξ ′ϕ ξ + ξ − ξ ′′ϕ ξ + θ ξ − ξ θ ∈

Then, provided that ′′ϕ  is positive or negative, we can easily obtain 

{ } )(ϕ ξ ≥ ϕ ξ( ) ( )E E  or { } )(ϕ ξ ≤ ϕ ξ( ) ( )E E , respectively. For example, 1/E ( )ξ ≥  
1/ ( )E ξ . This is a simple way for checking Jensen's inequality, which 
states that if ξ  is a random variable and ϕ is a convex or concave func-

tion, then { } )(ϕ ξ ≥ ϕ ξ( ) ( )E E  or { } )(ϕ ξ ≤ ϕ ξ( ) ( )E E , respectively.

1.10 Complex Variables

It is just as easy to define a complex variable = + iiz a b  with = −1ii  as it is 
to define real variables a and b. Complex variables consist of an imaginary 

unit i that satisfies = −12ii . Mathematicians love to be consistent, if we can 

solve the elementary equation − =1 02x  then we should know how to solve 

the equation + =1 02x . This principle provides a possibility to denote k roots 

of the general equation ∑ =
=

0
0
a xi k

i

k
 with an integer k and given coefficients 

,...,1a ak. Complex variables are involved in this process, adding a dimension 
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to mathematical analysis. Intuitively, we can consider a complex number 
= + iiz a b  as a vector with components a and b.
Formally, for = + iiz a b, ∈z C, the real number a is called the real part of the 

complex variable z and the real number b is called the imaginary part of z,  
expressing =Re( )z a and =Im( )z b. It can be noted that complex variables 
are naturally thought of as existing on a two-dimensional plane, there is no 
natural linear ordering on the set of complex numbers. We cannot say that 
a complex variable 1z  is greater or less than a complex variable 2z . However 
many mathematical operations require one to consider distances between 
variables and their comparisons, e.g., in the context of asymptotic mecha-
nisms or in different aspects of integrations. Toward this end, the absolute 
value of a complex variable is defined. The absolute value (or modulus or 

magnitude) of a complex number = + iiz a b  is 2 2r z a b= = + .
The complex conjugate of the complex variable = + iiz a b is defined to be 
= − iiz a b  and denoted as z.
The definitions mentioned above are simple, but in order to show 

completeness of complex analysis, e.g., in the context of analytic  
functions, we need to attend to the complicated question: do functions of 
complex variables belong to C, having the form ii+a b? If yes, then how does 
one quantify their absolute values using only the definitions mentioned 

above? For example, it is required to obtain a method for proving that )( =log z   

{ } { }( ) ( )+Re log Im logiiz z , )( =exp z  { })( +Re exp z  { }( )Im expii z , and so on. In this 
case Euler’s formula can be assigned to play a vital role.

In complex analysis, the following formula establishes the fundamental rela-
tionship between trigonometric functions and the complex exponential func-
tion. Euler’s formula states that, for any real number x, = +cos( ) sin( )iiiie x xx ,  
where e is the base of the natural logarithm.

Proof. Note that = −12ii , = −3ii ii, = 14ii , and so on. Using the Taylor expansion, 
we have

 
!
, sin( ) ( 1)

(2 1)!
, and cos( ) ( 1)

(2 )!
.

0

2 1
2 1

0

2
2

0

e
x
j

x
x
j

x
x

j
x

j

j

j
j

j

j
j

j

∑ ∑ ∑= = −
+

= −
=

∞
+

+

=

∞

=

∞

This result implies that

 
ii iiii 1
1! 2!

... cos( ) sin( ),
2

= + − + = +e
x x

x xx

yielding Euler’s formula.

Euler’s formula shows that = 1iie xt , for all ∈,x t R. Then, for example, for 

all random variables, ( )ξiiE e t  exists, since ( ) ≤ =ξ ξ 1ii iiE e E et t .

Thus, one can show that complex variables can be presented as r exp(iw), 
where r, w are real-valued variables. This assists to show that analytic 



16 Statistics in the Health Sciences: Theory, Applications, and Computing

functions of complex variables are “a + ib” type complex variables and then 
to define their absolute values.

Euler’s formula has inspired mathematical passions and minds. For exam-

ple, using 2x = π , we have = π/2ii iie , which leads to = −π/2iiii e . Is this a “door” 
from the “unreal” realm to the “real” realm? In this case, we remind the 

reader that exp( ) lim 1x x n
n

n( )= +
→∞

 and then interpretations of = −π/2iiii e  are left 

to the reader’s imagination.
Warning: In general, definitions and evaluations of a function of a complex 

variable require very careful attention. For example, we have = +cos siniie x xx ,  

but we also can write = + π + + πcos( 2 ) sin( 2 )iiiie x j x kx , = =1,2,.....; 1, 2,...j k , 
taking into account the period of the trigonometric functions. Thus it is not a 

simple task to define unique functions that are similar to log{ }( )ϕ z  and { })(ϕ 1/
z

p
,  

where p is an integer. In this context, we refer the reader to Finkelestein et al. (1997) 
and Chung (1974) for examples of the relevant problems and their solutions. In 
statistical terms, the issue mentioned above can make estimation of functions of 
complex variables complicated since, e.g., a problem of unique reconstruction of 

{ })(ϕ 1/
z

p
 based on )(ϕ z  is in effect (see for example Chapter 2).

1.11 Statistical Software: R and SAS

In this section, we outline the elementary components of the R (R Development 
Core Team, 2014) and SAS (Delwiche and Slaughter, 2012) statistical software 
packages. Both packages allow the user to implement powerful built-in rou-
tines and user community developed code or employ programming features 
for customization. For example, Desquilbet and Mariotti (2010) presented 
the use of an SAS macro (customized SAS code) using data from the third 
National Health and Nutrition Examination Survey to investigate adjusted 
dose–response associations (with different models) between calcium intake 
and bone mineral density (linear regression), folate intake and hyperhomo-
cysteinemia (logistic regression), and serum high-density lipoprotein cho-
lesterol and cardiovascular mortality (Cox model). Examples of R and SAS 
programs are employed throughout the book.

1.11.1 R Software

R is an open-source, case-sensitive, command line-driven software for sta-
tistical computing and graphics. The R program is installed using the direc-
tions found at www.r-project.org.

Once R has been loaded, the main input window appears, showing a short 
introductory message (Gardener, 2012). There may be slight differences in 
appearance depending upon the operating system. For example, Figure 1.4 
shows the main input window in the Windows operating system, which has 

http://www.r-project.org
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menu options available at the top of the page. Below the header is a screen 
prompt symbol > in the left-hand margin indicating the command line.

Rules for names of variables and R data sets:
A syntactically valid R name consists of letters, numbers and the dot or 

underline characters and starts with either a letter or the dot not followed by 
a number. Reserved words are not syntactic names.

Comments in R:
Comments can be inserted starting with a pound (#) throughout the R 

code without disrupting the program flow.

Inputting data in R:
R operates on named data structures. The simplest form is the numeric vec-

tor, which is a single entity consisting of an ordered collection of numbers. 
One way to input data is through the use of the function c(), which takes an 
arbitrary number of vector arguments and whose value is a vector got by con-
catenating its arguments end to end. For example, to set up a vector x, consist-
ing of four numbers, namely, 3, 5, 10, and 7, the assignment can be done with

> x<-c(3,5,10,7)

Notice that the assignment operator (<–), which consists of the two charac-
ters, less than (<) and minus (–), occurring strictly side-by-side and “points” 

FIGURE 1.4
The main input window of R in Windows.
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to the object receiving the value of the expression. In most contexts the 
equal operator (=) can be used as an alternative. In order to display the value 
of x, we simply type in its name after the prompt symbol > and press the  
Return key.

> x

As a result, R provides the following output:

[1]  3  5 10  7

Assignment can also be made using the function assign(). An equivalent 
way of making the same assignment as above is with:

> assign("x", c(3,5,10,7))

The usual assignment operator (<–) can be thought of as a syntactic short-
cut to this.

In some cases the elements of a vector may not be completely known 
and the vector is incomplete. When an element or value is “not available” or 
a “missing value” in the statistical sense, a place within a vector may be 
reserved for it by assigning it the special value NA. In general, without fur-
ther suboption specification, any operation on an NA becomes an NA.

Note that there is a second kind of “missing” values, which are produced 
by numerical computation, the so-called Not a Number, NaN, values. The 
following examples give NaN since the result cannot be defined sensibly:

> 0/0
> Inf - Inf

The function is.na(x) gives a logical vector of the same size as x with value 
TRUE if and only if the corresponding element in x is NA or NaN. The func-
tion is.nan(x) is only TRUE when the corresponding element in x is NaNs.

Missing values are sometimes printed as <NA> when character vectors 
are printed without quotes.

Manipulating data in R
In R, vectors can be used in arithmetic expressions, in which case the opera-
tions are performed element by element. The elementary arithmetic opera-
tors are the usual + (addition), – (subtraction), * (multiplication), / (division), 
and ^ (exponentiation). The following example illustrates the assignment of 

y, which equals + 32x :

> y <- x^2 + 3

R can be programmed to perform simple statistical calculations as well as 
complex computations. Table 1.1 shows some simple commands that produce 
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descriptive statistics of a vector x given a sample of measurements ,...,1x xn.  
The setting “na.rm = FALSE” is set to indicate a missing statistic value is 
returned if there are missing values in the data vector.

Instead of using the built-in functions contained in R, such as those shown 
in Table 1.1, customized functions can be created to carry out additional 
specific tasks. For this purpose the function() command can be used. The 
following example shows a simple function “mymean” that determines 
the running mean of the first i, …= 1, ,i n elements of a vector x, where n is 
the number of elements in x. Results are shown for x, our toy dataset from 
above, by applying the customized function mymean.

> # to define the function
> mymean <- function(x) {
+   tmp <- c()
+   for(i in 1:length(x)) tmp[i] <- mean(x[1:i])
+   return(tmp)
+ }
> # execute the function using the data defined above
> mymean(x)
[1] 3.00 4.00 6.00 6.25

Note that the symbol plus (+) is shown at the left-hand side of the screen 
instead of the symbol greater than (>) to indicate the function commands 
are being input. The built-in R functions “length,” “return,” and “mean” are 
used within the new function mymean. For more details about R functions 
and data structures, we refer the reader to Crawley (2012).

In addition to vectors, R allows manipulation of logical quantities. The 
elements of a logical vector can be values TRUE (abbreviated as T), FALSE 
(abbreviated as F), and NA (in the case of “not available”). Note however that 
T and F are just variables that are set to TRUE and FALSE by default, but are 
not reserved words and hence can be overwritten by the user. Therefore, it 
would be better to use TRUE and FALSE.

Logical vectors are generated by conditions. For example,

> cond <- x > y

TABLE 1.1

Selected R Commands That Produce the Descriptive Statistics 
of a Numerical Vector x

Syntax Definition

mean(x, na.rm = FALSE) Gives the arithmetic mean

sd(x, na.rm = FALSE) Gives the standard deviation

var(x, na.rm = FALSE) Gives the variance

sum(x, na.rm = FALSE) Gives the sum of the vector elements
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sets cond as a vector of the same length as x and y, with values FALSE 
corresponding to elements of x and y if the condition is not met and TRUE 
where it is. Table 1.2 shows some basic comparison operators in R.

A group of logical expression, say cond1 and cond2, can be combined with 
the symbol & (and) or | (or), where cond1 & cond2 is their intersection and 
cond1 | cond2 is their union (or). !cond1 is the negation of cond1.

Often, the user may want to make choices and take action dependent on 
a certain value. In this case, an if statement can be very useful, which takes 
the following form:

if (cond) {statements}

Three components are contained in the if statement: if, the keyword; 
(cond), a single logical value between parentheses (or an expression that 
leads to a single logical value); and {statements}, a block of codes between 
braces ({}) that has to be executed when the logical value is TRUE. When 
there is only one statement, the braces can be omitted. For example, the 
following statement set the variable y equal to 10 if the variable Gender 
equals “F”:

if (Gender == "F") y <- 10

To execute repetitive code statements for a particular number of times, a 
“for” loop in R can be used. For loops are controlled by a looping vector. In 
each iteration of the loop, one value in the looping vector is assigned to a 
variable that can be used in the statements of the body of the loop. Usually, 
the number of loop iterations is defined by the number of values stored in 
the looping vector; they are processed in the same order as they are stored 
in the looping vector. Generally, for loop construction takes the following 
form:

for (variable in seq) {
 statements
}

TABLE 1.2

Selected R Comparison Operators

Symbolic Meaning

== Equals

!= not equal

> greater than

< less than

>= greater than or equal

<= less than or equal

%in% determines whether specific elements are in a longer vector
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If the goal is to create a new vector, a vector to store member variables 
should be set up before creating a loop. For example,

x <- NULL
for (j in 1:50) {
 x[j] <- j^2
}

The program creates a vector of 50 observations = 2x j , where j ranges from 
1 to 50.

Printing data in R
In order to display the data or the variable, we can simply type in its name 
after the prompt symbol >, and press the Return key.

There are many routines in R developed by researchers around the 
world that can be downloaded and installed from CRAN-like repositories 
or local files using the command install.packages(“packagename”), where 
packagename is the name of the package to be installed and must be in 
quotes; single or double quotes are both fine as long as they are not mixed. 
Once the package is installed, it can be loaded by issuing the command 
library(packagename) after which commands specific to the package can be 
accessed. Through an extensive help system built into R, a help entry for a 
specified command can be brought up via the help(commandname) com-
mand. As a simple example, we introduce the command “EL.means” in the 
EL library.

> install.packages("EL")
Installing package into 'C:/Users/xiwei/Documents/R/win-library/3.1'
(as ‘lib’ is unspecified)
trying URL 'http://cran.rstudio.com/bin/windows/contrib/3.1/
EL_1.0.zip'
Content type 'application/zip' length 53774 bytes (52 Kb)
opened URL
downloaded 52 Kb
 
package 'EL' successfully unpacked and MD5 sums checked
 
The downloaded binary packages are in
 C:\Users\xiwei\AppData\Local\Temp\Rtmp4uRCPS\downloaded_packages
> library(EL)
> help(EL.means)

The EL.means function provides the software tool for implementing the 
empirical likelihood tests we will introduce in detail in this book.

As another concrete example, we show the “mvrnorm” command in the 
MASS library.

> install.packages("MASS")
Installing package into 'C:/Users/xiwei/Documents/R/win-library/3.1'
(as ‘lib’ is unspecified)

http://cran.rstudio.com/bin/windows/contrib/3.1/EL_1.0.zip
http://cran.rstudio.com/bin/windows/contrib/3.1/EL_1.0.zip
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trying URL 'http://cran.rstudio.com/bin/windows/contrib/3.1/MASS_7.3-34.zip'
Content type 'application/zip' length 1083003 bytes (1.0 Mb)
opened URL
downloaded 1.0 Mb
 
package 'MASS' successfully unpacked and MD5 sums checked
 
The downloaded binary packages are in
 C:\Users\xiwei\AppData\Local\Temp\Rtmp4uRCPS\downloaded_packages
> library(MASS)
> help(mvrnorm)

The mvrnorm command is very useful for simulating data from a 
multivariate normal distribution. To illustrate, we simulate bivariate 

normal data with mean (0,0)T and an identity covariance matrix with a 
sample size of 5.

> n <- 5  # define the sample size
> mu <- c(0,0)  # define the mean vector
> Sigma <- matrix(c(1,0,0,1), byrow=TRUE, ncol=2) # define covariance matrix
> set.seed(123)  # define the seed to fix the sample
> X <- mvrnorm (n, mu=mu, Sigma=Sigma) # generate data
> X
           [,1]        [,2]
[1,] -1.7150650 -0.56047565
[2,] -0.4609162 -0.23017749
[3,]  1.2650612  1.55870831
[4,]  0.6868529  0.07050839
[5,]  0.4456620  0.12928774

For more details about the implementation of R, we refer the reader to, e.g., 
Gardener (2012) and Crawley (2012).

1.11.2 SAS Software

SAS software is widely used to analyze data from various clinical trials and 
manage large datasets. SAS runs on a wide range of operating systems. More 
information about SAS can be found at the website: http://www.sas.com/.

SAS can be run in both an interactive and batch mode. To run SAS interac-
tively type SAS at your system prompt (UNIX/LINUX), or click the SAS icon 
(PC). Figure 1.5 shows the SAS interface in Microsoft Windows.

In the interactive SAS environment, one can write, edit, and submit pro-
grams for processing, as well as view and print the results.

A SAS program is a sequence of statements executed in order. A state-
ment provides instructions for SAS to execute and must be appropriately 
placed in the program. Statements can consist of SAS keywords, SAS names, 
special characters, and operators. SAS is a free format language in that SAS 
statements:

http://cran.rstudio.com/bin/windows/contrib/3.1/MASS_7.3-34.zip
http://www.sas.com/
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• Are not case-sensitive, except those inside of quoted strings

• Can start in any column

• Can continue on the next line or be on the same line as other 
statements.

The most important rule is that every SAS statement ends with a semicolon (;).

Rules for names of variables and SAS data sets
When making up names for variables and data sets (data set names follow 
similar rules as variables, but they have a different name space), the follow-
ing rules should be followed:

• Names must be 32 characters or less in length, containing only let-
ters, digits, or the underscore character (_).

• Names must start with a letter or an underscore; however, it is a 
good idea to avoid starting variable names with an underscore, 
because special system variables are named that way.

In SAS, there are virtually no reserved words; it differentiates user-defined 
names with keywords or special system variables names by context.

Comments in SAS
Note that there are two styles of comments in SAS: one starts with an asterisk 
(*) and ends with a semicolon (;) as is shown in the example. The other style 
starts with a backslash asterisk (/*) and ends with an asterisk backslash (*/). 

FIGURE 1.5
The interface of SAS.
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In the case of unmatched comments, SAS can’t read the entire program and 
will stop in the middle of a program, much like unmatched quotation marks. 
The solution, in batch mode, is to insert the missing part of comment and 
resubmit the program.

Inputting data in SAS
In SAS, DATA steps are used to read and modify data, and can also be used to 
simulate data. The DATA step is flexible relative to the various data formats. 
DATA steps have an underlying matrix structure such that programming 
statements will be executed for each row of the data matrix. There are multi-
ple ways to import data into SAS. Either way, you must type raw data directly 
in the SAS program, link SAS to a database, or direct SAS to the data file.

The following SAS program illustrates how to type raw data and use the 
INPUT and DATALINES statement:

* Read internal data into SAS data set Namelists;
DATA Namelists;
     INPUT Name $ Gender $ Age;
     DATALINES;
Lincoln M 46
Sara F 32
Catherine F 18
Mike M 35
     ;
RUN;

The keywords, e.g., DATA, INPUT, DATALINES, and RUN, identify the 
type of statement and instruct the execution in SAS. For example, the INPUT 
statement, a part of the DATA step, indicates to SAS the variable names and 
their formats. To write an INPUT statement using list input, simply list the 
variable names after the INPUT keyword in the order they appear in the 
data file. If the variable is a character, then leave a space and place a dollar 
sign ($) after the corresponding variable name.

Separating the data from the program avoids the possibility that data will 
accidentally be altered when editing the SAS program. For data contained 
in external files, the INFILE statement can be used to direct SAS to the data 
from ASCII files. The INFILE statement follows the DATA statement and 
must precede the INPUT statement. After the INFILE keyword, the file path 
and the file name are enclosed in quotation marks.

By default, the DATA step starts reading with the first data line and, if 
SAS runs out of data on a line, it automatically goes to the next line to 
read values for the rest of the variables. Most of the time this works fine, 
but sometimes data files cannot be read using the default settings. In the 
INFILE statement, the options placed after the filename can change the 
way SAS reads raw data files. For instance, the FIRSTOBS= option tells SAS 
at what line to begin reading data; the OBS= option can be used anytime 
you want to read only a part of your data file; the MISSOVER option tells 
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SAS that if it runs out of data, do not go to the next data line but assign 
missing values to any remaining variables instead; and the DELIMITER=, 
or DLM=, option allows SAS to read data files with other delimiters (the 
default is a blank space).

Moreover, SAS assumes that the number of characters including spaces 
in a data line (termed a record length) of external files is no more than 256 
in some operating environments, e.g., the Windows operating system. If the 
data contains records that are longer than 256 characters, use the LRECL= 
option in the INFILE statement to specify a record length at least as long as 
the longest record in the data file. For more details about the INFILE options, 
we refer the reader to Delwiche and Slaughter (2012). More complex data 
import and export features are available in SAS, but go beyond the scope of 
our applications.

To illustrate, the following program reads data from a tab-separated exter-
nal file into an SAS data set using the INFILE statement:

* Read internal data into SAS data set Namelists;
DATA Namelists;
     INFILE 'c:\MyRawData\Namelists.dat' DLM = '09'X;
     INPUT Name $ Gender $ Age;
RUN;

With SAS, there is commonly more than one way to accomplish the same 
result, including the input of data. For more details about other ways of 
inputting data, e.g., the IMPORT procedure, we refer the reader to Delwiche 
and Slaughter (2012).

When a variable exists in SAS but does not have a value, the value is said 
to be missing. SAS assigns a period (.) for numeric data and a blank for char-
acter data. By the MISSING statement, the user may specify other characters 
instead of a period or a blank to be treated as missing data. To illustrate how 
the missing data coding works, the following example declares that the char-
acter u is to be treated as a missing value for the character variable Gender 
whenever it is encountered in a record:

DATA two;
     MISSING u;
     INPUT $ Gender;
CARDS;
RUN;

Missing values have a value of false when used with logical operators such 
as AND or OR.

Manipulating data in SAS
In SAS, the users can create and redefine variables with assignment state-
ments using the following basic form:

variable = expression;
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On the left side of the equal sign is a variable name, either new or old. 
On the right side of the equal sign can be a constant, another variable, or a 
mathematical expression. The basic types of assignment statements may use 
operators such as + (addition), - (subtraction), * (multiplication), / (division), 
and ** (exponentiation). The following example illustrates the assignment of 
Newvar, which equals the square of OldVar plus 3:

NewVar = OldVar ** 2 + 3;

In the case where a simple expression using only arithmetic operators is 
not enough, SAS provides a set of numerous useful and built-in functions. 
Table 1.3 shows selected SAS numeric functions; see Delwiche and Slaughter 
(2012) for more numeric functions and character functions.

There are a variety of control statements that control the flow of execution of 
statements in the data step.

If the user wants to conditionally execute a SAS statement based on certain 
conditional logic, that is, to conduct computations under certain conditions, 
the IF-THEN statement can be used, which takes the following general form:

IF condition THEN action;

The condition is an expression comparing arguments, and the action is 
what SAS will execute when the expression is true, often an assignment 
statement. For example,

IF Gender = 'F' THEN y=10;

This statement tells SAS to set the variable y equal to 10 whenever the 
variable Gender equals F. The terms on either side of the comparison, sep-
arated by a comparison operator, may be constants, variables, or expres-
sions. The comparison operator may be either symbolic or mnemonic, 
depending on the user’s preference. Table 1.4 shows some basic comparison  
operators.

A single IF-THEN statement can only have one action. To specify multiple 
conditions, we can combine the condition with the keywords AND (&) or OR 
(|). For example,

TABLE 1.3

Selected SAS Numeric Functions

Syntax Definition

MEAN(arg-1,arg-2,…arg-n) Arithmetic mean of nonmissing values

STD(arg-1,arg-2,…arg-n) Standard deviation of nonmissing values

VAR(arg-1,arg-2,…arg-n) Variance of nonmissing values

SUM(arg-1,arg-2,…arg-n) Sum of nonmissing values
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IF condition AND condition THEN action;

A group of actions can be executed by adding the keywords DO and END:

IF condition THEN DO;
     action;
     action;
END;

The DO statement designates a group of statements to be executed as a 
unit until a matching END statement appears. The DO statement, the match-
ing END statement, and all the statements between them define a DO loop. 
There are several variations of the DO-END statement. The following exam-
ple presents an iterative DO statement that executes a group of SAS state-
ments repetitively between the DO and END statements:

DO index = start TO stop BY increment;
     statements;
END;

The number of times statements are executed is determined as follows. 
Initially the variable index is set to the value of start and statements are exe-
cuted. Next the value of increment is added to the index and the new value is 
compared to the value of stop. The statements are executed again only if the 
new value of index is less than or equal to stop. If no increment is specified, 
the default is 1. The process continues iteratively until the value of index is 
greater than the value of stop. We illustrate with a simple example:

DATA one;
     DO j = 1 TO 50;
     x = j**2;
     OUTPUT one;
END;
DROP j;
CARDS;
RUN;

TABLE 1.4

Selected SAS Comparison Operators

Symbolic Mnemonic Meaning

= EQ equals

¬ =, ^ =, or ~ = NE not equal

> GT greater than

< LT less than

>= GE greater than or equal

<= LE less than or equal

IN determine whether a variable’s value is among a 

list of values
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The program creates a SAS data set one with 50 observations and a vari-

able = 2x j , where the index variable j ranges from 1 to 50. The DROP state-
ment help get rid of the index variable j. The OUTPUT statement tells SAS to 
write the current observation to the output data set before returning to the 
beginning of the DATA step to process the next observation.

Printing data in SAS
The PROC PRINT procedure lists data in a SAS data set as a table of obser-
vations by variables. The following statements can be used with PROC 
PRINT:

PROC PRINT DATA = SASdataset;
     VAR variables;
     ID variable;
     BY variables;
     TITLE 'Print SAS Data Set';
RUN;

where SASdataset is the name of the data set printed. If none is specified, then 
the last SAS data set created will be printed. If no VAR statement is included, 
then all variables in the data set are printed; otherwise only those listed, 
and in the order in which they are listed, are printed. When an ID state-
ment is used, SAS prints each observation with the values of the ID variables 
first instead of the observation number, the default setting. The BY statement 
specifies the variable that the procedure uses to form BY groups; the obser-
vations in the data set must either be sorted by all the variables specified 
(e.g., use the PROC SORT procedure), or they must be indexed appropriately, 
unless the NOTSORTED option in the BY statement is used. For more details, 
we refer the read to Delwiche and Slaughter (2012).

Summarizing data in SAS
After reading the data and making sure it is correct, one may summarize 
and analyze the data using built-in SAS procedures or PROCs. For example, 
PROC MEANS provides a set of descriptive statistics for numeric variables. 
Vitually all SAS PROCs have additional options or features, which can be 
accessed with subcommands, e.g., one can use PROC MEANS to carry out a 
one-sample t-test.

As another example, the following program sorts the SAS data set Namelists 
by gender using PROC SORT, and then summarizes the Age by Gender using 
PROC MEANS with a BY statement (the MAXDEC option is set to zero, so no 
decimal places will be printed.):

* Sort the data by Gender;
PROC SORT DATA = Namelists;
     BY Gender;
* Calculate means by Gender for Age;
PROC MEANS DATA = Namelists MAXDEC = 0;
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     BY Gender;
     VAR Age;
     TITLE 'Summary of Age by Gender';
RUN;

Here are the results of the PROC MEANS by gender:

Summary of Age by Gender
For more details about the data summarization by descriptive statistics and/
or graphs, we refer the reader to Delwiche and Slaughter (2012).

For a majority of the examples in later chapters, the reader is expected to 
understand the basics commands of the DATA step, such as DO loops and 
the OUTPUT statement, and be familiar with the various statistical PROCs 
that he or she might use generally given parametric assumptions. Some 
knowledge of the basic SAS macro language and PROC IML (a separate way 
to program in SAS) will also be helpful. It is our goal that most of the code 
provided in this book will be easily modified to handle a variety of problems 
found in practice. It should be noted that R routines can be implemented 
within SAS PROC IML.

The MEANS Procedure 
Gender = F

Analysis Variable: Age

N Mean Std Dev Minimum Maximum

2 25 10 18 32

Gender = M

Analysis Variable: Age

N Mean Std Dev Minimum Maximum

2 41 8 35 46
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2
Characteristic Function–Based Inference

2.1 Introduction

In this chapter we present powerful characteristic function–based tools as an 
approach for investigating the properties of distribution functions and their 
associated quantities. As it turns out the information contained within the 
characteristic function structure has a one-to-one correspondence with the 
distribution function framework. In this context characteristic functions can 
be extremely helpful in both theoretical and applied biostatistical work. In 
particular, characteristic functions can be used to simplify many analytical 
proofs in statistics. In certain situations, the form of a characteristic function 
can easily define a family of distribution functions, thus generalizing known 
conjugate families. This is very important, for example, in parametric statis-
tics and the construction of Bayesian priors. Oftentimes a relatively simple 
characteristic function can mathematically represent a random variable in 
terms of its given properties even when the distribution function does not 
have an explicit analytical form.

In a similar manner to the analysis based on characteristic functions we 
also introduce Laplace transformations of distribution functions in this 
chapter. In the statistical context, oftentimes we need to estimate distribution 
functions based on observations subject to different noise effects or that are 
based on using data that are directly presented as sums or maximums. These 
scenarios and various tasks of statistical sequential procedures, as well as in 
the context of renewal theory, are examples of situations where characteristic 
functions and Laplace transformations can play a main role in analytical 
analyses.

We suggest that the reader who is interested in more details regarding 
characteristic functions beyond those presented in this book consult the 
book of Lukacs (1970) as a fundamental guide.

In Section 2.2 we consider the elementary properties of characteristic func-
tions as well as convolution statements in which characteristic functions can 
be involved. The one-to-one mapping propositions related to characteristic 
and distribution functions are presented in Section 2.3. In Section 2.4 we 
outline various applications of characteristic functions to biostatistical topics, 
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e.g., those related to renewal functions, sequential procedures, Tauberian 
theorems, risk-efficient estimation, the law of large numbers, the central 
limit theorem, issues of reconstructing the general distribution based on the 
distribution of some statistics, extensions and estimations of families of dis-
tribution functions. In this chapter we also attend to measurement error 
problems, cost-efficient designs, and several principles pertaining to Monte 
Carlo simulation.

2.2 Elementary Properties of Characteristic Functions

We define the characteristic function ( ), ,ϕ ∈ξ t t R  of a distribution function 

( ) Pr{ }= ξ ≤F x x , where ξ is a random variable, by the following expression:

 ii i( ) ( ) , 1.∫ ( )ϕ = = = −ξ

−∞

∞
ξt e dF x E etx t

Thanks to Euler’s formula, the characteristic function can be presented as 

( ) cos sini{ }) )( (ϕ = ξ + ξξ t E t t , which leads immediately to the following prop-
erties:

Proposition 2.2.1. Let ( )F x  denote a distribution function with characteristic 
function ( )ϕξ t . Then

1. ϕ =ξ(0) 1;

2. ϕ ≤ξ( ) 1t , for all t;

3. ( ) ( ),ϕ = ϕ−ξ ξt t  where the horizontal bar atop of ( )ϕξ t  defines the com-
plex conjugate of ( )ϕξ t .

For example, in order to obtain property (2) above we use the elementary 
inequality

 i i cos sin 1.2 2
1/2{ }( ) ( )( )≤ = ξ + ξ =ξ ξE e E e E t tt t

An attractive property of characteristic functions is related to the follow-
ing set of results. Consider independent random variables 1ξ  and 2ξ . The 
distribution function of the sum

 ( ) Pr 1 2 1 21 2 { }) )( (= ξ + ξ ≤ = ξ + ξ ≤ξ +ξF x x E I x
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has the form
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since it is clear that ( ) ( )∫=
−∞
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 with −∞ =( ) 0F . In the case with depen-

dent random variables 1ξ  and 2ξ , using the definition of conditional probabil-
ity one can show that the distribution of the sum is given as

 ( ) Pr | ( ).1 2 2 2 21 2 2∫ )(= ξ ≤ − ξ =ξ +ξ ξ

−∞

∞

F x x u u dF u  (2.1)

Intuitively, this equation means that in the right-hand side of the formula 
above the random variable 2ξ  is fixed. However, we allow 2ξ  to vary accord-
ing to its probability distribution. Thus, Equation (2.1) holds.

The integral form (2.1) of ( )
1 2ξ +ξF x  shown above is called a convolution. When 

we have 1>n  independent ,...,1ξ ξn random variables, it is clear that
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n
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Thus, the evaluation of distribution functions of sums of random variables 
using their components’ distribution functions is not a simple task, even 
when the random variables are iid.

In parallel to this issue, the characteristic function of a sum of independent 
,...,1ξ ξn random variables satisfies the simple equation

 

∏{ } { }ϕ = =( ) ( )
ξ +ξ + +ξ

ξ +ξ + +ξ ξ

=

( ) ....
...

1

1 2

1 2t E e E et t

i

n

n
n ii i

that is, ( )...1 2
ϕ =ξ +ξ + +ξ t qn

n  with 1i )(= ξq E e t , when ,...,1ξ ξn  are iid, since the random 

variables , 1,..., ,i =ξe i nt i  are independent, that is, ,i i i i) ) )( ( (=ξ + ξ ξ ξE e E e E et t t tk l k l  

1 ≤ ≠ ≤k l n. Thus characteristic functions can be used to derive the  
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distribution of a sum of random variables. Hence, we can bypass using the 
direct convolution method for determining the distribution of the sum 

...1ξ + + ξn, thus simplifying the analysis.
Note that we can completely enjoy the benefits of employing characteristic 

functions if we show that characteristic functions and distribution functions 
are equivalent in the context of explaining the properties of random variables.

2.3 One-to-One Mapping

The major reason for our interest in characteristic functions is that they 
uniquely describe the corresponding distribution functions. In order to show 
a one-to-one mapping between distribution functions and their correspond-
ing characteristic functions, we should begin by reporting that the conclu-
sion of part (2) of Proposition 2.2.1 states that characteristic functions exist for 
all random variables. This is important to note, since distribution functions 
do exist for all random variables by the definition. It is clear that the defini-

tion ( ) ( )i∫ϕ =ξ t e dF xtx  provides the characteristic function if the distribution 

function is specified. The second stage is to prove that probabilities of inter-
vals can be recovered from the characteristic functions using the following 
inversion theorem.

Theorem 2.3.1. (Inversion Theorem)

Suppose x and y are arguments of the distribution function ( ) Pr )(= ξ ≤F u u  
that is continuous at x and y. Then

 
i

i i

( ) ( ) lim
1

2
( ) ,

0

/22 2∫− =
π

− ϕ
σ→

− −
− σ

−∞

∞

F y F x
e e

t
t e dt

tx ty
t

 (2.2)

where i( )ϕ = ξ( )t E e t  is the characteristic function.

Comments:

 (i). The statement “the function F is continuous at x and y” does not 
mean F is a continuous function. We assume there are no saltus 
(jumps) of F specifically at x and y.

 (ii). The integral at (2.2) may have at first glance seemed to be problem-
atic around the point 0=t . However, even when 0σ = , by virtue of 

Taylor’s theorem applied to i i−− −e etx ty around 0=t , we have

 
i

i i

∫ ∫− ϕ = − ϕ + δ
− −

−δ

δ

−δ

δ

( ) ( ) ( ) ( )
e e

t
t dt y x t dt O

tx ty
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with ϕ ≤( ) 1t , for all t and fixed 0δ > . Thus, while restricting F (or ϕ) to hold

 ∫ ∫ϕ < ∞ ϕ < ∞
δ

∞

−∞

−δ

( )/ and ( )/ ,t t dt t t dt  (2.3)

for some 0δ > , we could put lim
0σ→
 into the integral at (2.2), yielding

 
i

i i

∫− =
π

− ϕ
− −

−∞

∞

( ) ( )
1

2
( ) .F y F x

e e
t

t dt
tx ty

 (2.4)

It turns out that in the case when the density function =( ) ( )/f u dF u du  

exists we can write ii i∫ ∫{ } ( )ϕ = =( ) ( ) ( ) /t e f u du f u de ttu tu  and then the reader 

can use the method of integration by parts to obtain conditions on F in order 

to satisfy (2.3). For example, ( )ϕ = +( ) 1/ 1 2t t  (a Laplace distribution), 

ϕ = −
( )t e t  (a Cauchy distribution) satisfy (2.3). Thus, we conclude that a class 

of distribution functions in the form (2.4) is not empty.

 (iii). Oftentimes, in the mathematical literature, the Inversion Theorem is 
presented in the form
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which is equivalent to (2.2).

2.3.1 Proof of the Inversion Theorem

We outline the proof of Theorem 2.3.1 via the following steps:
Step 1: Assume the random variable ξ is well-behaved so as to have a char-

acteristic function that satisfies constraint (2.3) and is integrable. Then, com-
ment (ii) above yields
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Since Euler’s formula provides

 i ii i
cos sin cos sin ,( ) ( )( ) ( ) ( ) ( )( ) ( )− = − ξ − − ξ − − ξ + − ξ( )( )− −ξ − −ξe e t x t x t y t yt x t y

we consider ∫ { }
−∞

∞

cos( )/t t dt. The fact that { }( )= − − −cos( )/ cos( )/t t t t  implies

 cos( )/ cos( )/ cos( )/ 0.
0
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t t dt t t dt t t dt
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and we need to attend to t t dt∫ { }
−∞

∞

sin( )/ . Note that this integral is interesting 

in itself. Taking into account that sin( ) (1)=t O  and ∫ ( ) = ∞
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that is, sin 1
0

2 1∫ )()( = +−
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which completes the proof of Theorem 2.3.1 in the case ξ is well-behaved.
Step 2: Assume the random variable ξ is not as well-behaved as required 

in Step 1 above. In this case we will use a random variable in the neighbor-
hood of ξ that does satisfy the requirements as seen in Step 1 above. The idea 
is that instead of considering ξ we can focus on ζ = ξ + η, where the random 
variable η is continuous and independent of ξ. In this setting the convolution 
principle can lead to

 ∫( ) ( )( )= η + ξ ≤ = η ≤ − ξ ≤ζF u u u x d x( ) Pr Pr Pr
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and then, for example, the density function ∫= = −ζ ζ η( ) ( )/ ( ) ( )f u dF u du f u x dF x  

with ( )ηf u  = η( )/dF u du  exists. Even when 1,2,...ξ =  is discrete, we have
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In this case, in accordance to Step 1, it is clear that
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Then “Der η hat seine Arbeit getan, der η kann gehen” (German: Schiller, 
2013) and we let η go. To formalize this result we start by proving the follow-
ing lemma.

Lemma 2.3.1.

Let a random variable η be normally ( )μ σN , 2  -distributed. Then the charac-

teristic function for η is given by ii( ) ( )ϕ = = μ − ση
η( ) exp /22 2t E e t tt .

Proof. If we define the random variable ~ (0,1)1η N  then its characteristic 

function is given as ( ) 2
1 /2

1

2i∫)(ϕ = πη
− −

−∞

∞

t e e dutu u , since the density function 

of 1η  is 2
1 /22)( π − −e u . Thus

 i ii i( )/ 2 2 .
1 /2 1 /2

1

2 2∫ ∫( ) ( )ϕ = π = − πη
− −

−∞

∞
− −

−∞

∞

d t dt ue du e detu u tu u

Integrating the above expression by parts, we arrive at

∫( )ϕ = − π = − ϕη
− −

−∞

∞

η( )/ 2 ( )
1 /2

1

2

1d t dt t e du t ttu ui , that is, { }ϕ ϕ = −η η( )/ / ( )1 1d t dt t t 

or ln ( ) /1{ })(ϕ = −ηd t dt t. This differential equation has the solution 

( )ϕ = − +η ( ) exp /22
1 t t C, for all constants C. Taking into account that (0) 11ϕ =η , 

we can admit only 0=C . Then ( )ϕ = −η ( ) exp /22
1 t t . The random variable 

N ( )η = μ + ση μ σ~ ,1
2  and hence has the characteristic function 

t e E e e tt t ti i i( )ϕ = = ϕ ση
μ σ η μ

η( ) ( )1
1 .

Now the proof of Lemma 2.3.1 is complete.
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Set ~ (0, )2η σN . Lemma 2.3.1 applied to Equation (2.6) yields

 ∫− =
π

− ϕ ζ = ξ + ηζ ζ

− − − σ

−∞

∞

( ) ( )
1

2
( ) , .2

2 2

F y F x
e e

t
t e dt

tx ty t

i

i i

Since the distribution function F of ξ is continuous at x and y, we have that

 ∫{ }− =
π

− ϕ
σ→

ζ ζ
σ→

− − − σ

−∞

∞

lim ( ) ( )
1

2
lim ( ) ,

0 0

2

2 2

F y F x
e e

t
t e dt

tx ty t

i

i i

which leads to

 ∫− =
π

− ϕ
σ→

− − − σ

−∞

∞

( ) ( )
1

2
lim ( ) ,

0

2

2 2

F y F x
e e

t
t e dt

tx ty t

i

i i

since ( )η > δ →Pr 0, for all 0δ > , as 0σ →  (here presenting ~ (0, )2η σNk k  it is 

then clear that we have ξ + η ⎯ →⎯⎯⎯⎯⎯⎯⎯ ξk
p

 and →ξ+ηF Fk  as 0σ →k , → ∞k ). This 
completes the proof of Theorem 2.3.1.

Note that the difference ( ) ( )−F y F x  uniquely denotes the distribution func-
tion F. Thus, we conclude that characteristic functions uniquely define their 
distribution functions and vice versa.

Assume the density ( )f x  of ξ exists. In view of Theoerm 2.3.1, we can write

 
i

i i

( ) ( ) /
1

2
( ) ,F x h F x h

e e
ht

t dt
t x t x h

∫{ }+ − =
π

− ϕ
( )( )− − +

−∞

∞

using = +y x h. From this with → 0h  and the definitions { }( ) lim ( ) ( ) / ,
0

f x F x h F x h
h

= + −
→

   
i i i/ lim /

0
d e dx e e ht x

h

t x t x h{ }{ } = − −⎡
⎣

⎤
⎦

( )( ) ( )−

→

− − +  we have the following result.

Theorem 2.3.2.

Let the characteristic function ( )ϕ t  be integrable. Then

 
i( )

1

2
( ) .∫=

π
ϕ−

−∞

∞

f x e t dttx
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2.4 Applications

The common scheme to apply mechanisms based on characteristic functions 
consists of the following algorithm:

We apply this algorithm within the set of examples given below.

2.4.1  Expected Lengths of Random Stopping Times and Renewal 
Functions in Light of Tauberian Theorems

Assume, for example, that Hdenotes the hours that a physician can serve 
patients during a specific time span. The patients are surveyed sequentially 
and each patient, i, requires Xi hours to be observed. Suppose 0, 1,2,...,> =X ii  
are iid random variables. Then the physician will observe a random number 
of patients denoted as

 ∑= ≥ ≥
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪=

( ) min 1 : .

1

N H n X Hi

i

n

In this case, the physician will end his/her shift when 
1∑ =
Xi

i

n
 overshoots 

the threshold 0>H .

Transformed
problem based on 

characteristic functions

Transformed
Solution

Inverse
transformation 

Solution

Original problem
based on distribution

functions 
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In statistical applications, constructions similar to ( )N H  above fall in the 
realm of Renewal Theory (e.g., Cox, 1962). The integer random variable ( )N H  

is a stopping time and its expectation ( ){ }E N H  is called as a renewal  
function.

In general , 1,2...=X ii  can be negative. In this case the stopping time has 

the form ∑= ≥ ≥
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪=

( ) inf 1 :
1

N H n X Hi

i

n

 and we need to require that 

Pr ( ) 1{ }< ∞ =N H  in order to stop at all.

In this section we analyze the expectation ( ){ }E N H , when 0, 1,2,...> =X ii  
are continuous random variables. Toward this end we begin with the simple 
expression

 ( ) Pr ( ) Pr , ,
1 1

1

11

∑ ∑ ∑∑{ }{ } = = = < ≥
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪=

∞

=

−

==

∞

E N H j N H j j X H X H
j

i

i

j

i

i

j

j

where we define 0
1

0∑ =
=

Xi
i

 and use the rule that the process stops the first 

time at j when the event ∑ ∑< ≥
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪=

−

=

,
1

1

1

X H X Hi

i

j

i

i

j

 occurs. (Note that if not all 

0, 1,2...> =X ii , then we should consider ∑{ }= =
⎛

⎝
⎜

⎞

⎠
⎟ <

⎧
⎨
⎪

⎩⎪
≤ ≤ −

=

−

( ) max ,
1 1

1

1

N H j X H
k j

i

i

k

∑⎛
⎝
⎜

⎞

⎠
⎟ ≥

⎫
⎬
⎪

⎭⎪
≤ ≤

=

max
1

1

X H
k j

i

i

k

, see Figure 2.1 for details.) Thus

(a) (b)
j – 1 j n

ΣXii–1

n

HN(H)

ΣXii–1

j – 1 j n

n

N(H) H

FIGURE 2.1

The sum 
1

∑
=

Xi

i

n

 crosses the threshold H  at j when (a) all 0, 1, 2...> =X ii  and (b) we have several 

negative observations.
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 (2.7)

This result leads to the non-asymptotic upper bound of the renewal func-
tion, since by (2.7) we have

 

( ) 1 Pr exp
1

exp
1

E exp
1

E

E , exp(1),

1

1

1
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∑
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⎝
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⎠
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⎧
⎨
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⎫
⎬
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⎡
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⎦
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⎥
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⎛
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⎧
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⎫
⎬
⎪
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⎠⎟
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where the fact that > ≤( ) /I a b a b, for all positive anda b, was used. Noting 

that E 1/1 )( ≤−e X H  and using the sum formula for a geometric progression, we 
obtain

 ( ) 1 E 1 E .
1 1

1

1 1{ } ≤ +
⎛
⎝⎜

⎞
⎠⎟

−
⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

− −
−

E N H e e eH
X

H
X
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One can apply Taylor’s theorem to ( )−E /1e X H  by considering 1/H  around 0 as 

→ ∞H  to easily show that the upper bound for ( ){ }E N H  is asymptotically 

linear with respect to H , when 1
2)( < ∞E X .

Now let us study the asymptotic behavior of ( ){ }E N H  as → ∞H . Toward 
this end we consider the following nonformal arguments: (1) Characteristic 
functions correspond to distribution functions that increase and are bounded 
by 1. Certainly, the properties of a characteristic function will be satisfied if 
we assume the corresponding “distribution functions” are bounded by 2 or, 

more generally, by linear-type functions. In this context the function ( ){ }E N H  
increases monotonically and is bounded. Thus we can focus on the transfor-

mation ( ) ( ) of ( ) 0
0∫ { } { }ψ = ⎡⎣ ⎤⎦ >
∞

it e d E N u E N utu  in a similar manner to that of 

characteristic functions. (2) Intuitively, relatively small values of t can pro-

vide ( )ψ t  to represent a behavior of ( ){ }E N H , when H  is large, because sche-
matically it may be displayed that

 ( 0) ~ ( ) ~ ( ) .0

0

t e d E N u E N uu t∫ { } { }ψ → ⎡⎣ ⎤⎦ → ∞( )→
∞

i

In a rigorous manner, these arguments can be found in the context of Taube-
rian theorems (e.g., Korevaar, 2004; Subkhankulov, 1976; Yakimiv, 2005) that 

can associate formally ( )ψ t , as 0→t , with ( ){ }E N H , as → ∞H .
In this chapter we will prove a simple Tauberian theorem to complete the 

asymptotic evaluation of ( ){ }E N H  (see Proposition 2.4.1 below).
By virtue of (2.7), the function ( )ψ t  can be presented as

 

( ) 1 Pr Pr
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0
11

0
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11 1
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∫ ∑∑ ∫ ∑∑

∑∑ ∑
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⎧
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⎫
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∞
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∞

=

∞

i

i i

with i( )= 1q E e tX  and < 1q . The sum formula for a geometric progression 
provides

 ( )
1

.ψ =
−

t
q

q

Applying Taylor’s theorem to 1i )(=q E e tX  with respect to t around 0,  

we have 1 ( )1i )(= + +q E tX o t , when we assume 1
2)( < ∞E X , and then  
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i i{ } { }( ) ( )ψ − =( ) ~ 1/ /1 1t t E X tE X as 0→t . The transformation i { }( )/ 1tE X  cor-

responds to the function { }( )= >( ) / , 0,1A u u E X u  since (see Theorem 2.3.2)

 
i i ii∫ ∫( ) ( )

( ) ( )
( )=

π
=

π
− =−

−∞

∞

−∞

∞
( ) 1

2 2

cos sin 1

1 1 1

dA u
du

e
tE X

dt
E X

tu tu
t

dt
E X

tu

(see the proof of Theorem 2.3.1 to obtain values of the integrals ∫ { }
−∞

∞

cos( )/ut t dt  

and ∫ { }
−∞

∞

sin( )/ut t dt ). Thus { } ( )( ) ~ / 1E N H H E X  as → ∞H .

Let us derive the asymptotic result about ( ){ }E N H  given above in a formal 
way. By the definition of ( )N H  we obtain

 and then .
1

( )

1

( )

∑ ∑≥
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
≥

= =

X H E X Hi

i

N H

i

i

N H

Using Wald’s lemma (this result will be proven elsewhere in this book,  
see Chapter 4), we note that

 ∑ ( ) ( ){ } { }
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= ≥

=

( ) and then ( ) / .

1

( )

1 1E X E X E N H E N H H E Xi

i

N H

 (2.8)

Consider the following scenario where we define ( ) 0>g u  to be an increas-
ing function. Then the real-valued Laplace transformation of ( )g u  has the 

form ( ) ( ), 0
0∫= >−
∞

G s e dg u ssu . The form of the Laplace transformation 

belongs to a family of transformations that includes the characteristic func-
tions considered above. In this case, we have the Tauberian-type result given 
as follows:

Proposition 2.4.1. Assume 0>a  is a constant and the increasing function 

( )g u  satisfies the conditions (i) ( ) ≥g u au and (ii) ( ) ( )=g u o eu  as → ∞u . If 
( ) < ∞G s , for all 0>s , then

 ( )
1/

( 1)
,1( )≤

−
−

+ −g u
G u au

w
e auwew w

for all 0>u  and 1>w .
Proof. By virtue of condition (ii), integrating by parts, we obtain

 ( ) ( ) .
0∫= −
∞

G s s e g y dysu
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Since ( )g u  increases and ( ) ≥g u au, for ∈s R, we have

 

( ) ( ) ( ) ( )

( ) .

0

0

∫ ∫ ∫
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= + +

≥ + +

− − −
∞

− − −
∞

G s s e g y dy s e g y dy s e g y dy

sa e y dy sg u e dy sa e y dy

sy
u
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u
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sy
u

sy

u
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Thus

 ( ){ } { }( ) ( )≥ − + + − + +− − − −( ) 1 1 ( ) 1 .G s
a
s

e su g u e e
a
s

e suwsu su swu swu

Then, setting = 1/s u, we have

 ( )
(1/ ) 2 (1 )

1

1

1
≤ −

−
+ − +

−− −

− −

− −g u
G u au

e e
au

e w e
e ew

w

w . (2.9)

Taylor’s theorem provides { }− = − − + θ −⎡⎣ ⎤⎦
− − ( 1)exp 1 ( 1)1

1e e w ww  and  

2 (1 )1 − +− −e w e w { } { }= − + θ − − + θ −⎡⎣ ⎤⎦( 1) 1 ( 1) exp 1 ( 1)2 2w w w  with 0 , 11 2< θ θ < , 

where 1 −− −e e w  and 2 (1 )1 − +− −e w e w are evaluated as functions of w around 

1=w . Therefore ( 1)exp1 )(− ≥ − −− −e e w ww  and 2 (1 )1 − +− −e w e w ( 1) 1≤ − −w we . 
This modifies inequality (2.9) to the form

 ≤ −
−

+−
− +( )

(1/ )

( 1)
.1g u

G u au
w e

auwew
w

This completes the proof.

Proposition 2.4.1 with ( ) ( ){ }=g u E N u  and 1)(=a E X  implies
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where, in a similar manner to the analysis of i∫ { }ψ = ⎡⎣ ⎤⎦ = −
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2)( < ∞E X . This means that
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1 1
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Considering 1→w , we conclude that lim
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u
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u
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The asymptotic result ( ) ~ / 1{ } )(E N H H E X , as → ∞H , is called the elemen-

tary renewal theorem. Naïvely, taking into account that ∑ ( )⎛
⎝

⎞
⎠ =

=1
1E X nE Xi

i

n
 

and the definition ∑= ≥ ≥
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪=

( ) min 1 :
1

N H n X Hi

i

n

, one can decide that it is 

obvious that { } ( )( ) ~ / 1E N H H E X . However, we invite the reader to employ 
probabilistic arguments in a different manner to that mentioned above in 
order to prove this approximation, recognizing a simplicity and structure of 
the proposed analysis. Proposition 2.4.1 provides non-asymptotically a very 
accurate upper bound of the renewal function. Perhaps, this proposition can 
be found only in this book. The demonstrated proof scheme can be extended 
to more complicated cases with, e.g., dependent random variables as well as 
improved to obtain more accurate results, e.g., regarding the expression 

{ }{ } ( )−⎡
⎣

⎤
⎦

⎡
⎣⎢

⎤
⎦⎥→∞

−ω −
lim ( ) 1

1
u E N u E X u

u
 with 0 1≤ ω ≤  (for example, in Proposition 2.4.1 

one can define = + −ω1 log( )w u u ). The stopping time ( )N H  will also be stud-
ied in several forthcoming sections of this book.

Warning: Tauberian-type propositions should be applied very carefully. 
For example, define the function ( ) sin( )=v x x . The corresponding Laplace 

transformation is ( ) sin( )
0∫= −
∞

J s e d usu  = + >/(1 ), 0.2s s s  This does not lead us 

to conclude that since ( ) 0
0

→
→

J s
s

, we have ( ) 0→
→∞

v x
x

. In this case we remark that 

( )v x  is not an increasing function for ( , )∈ −∞ ∞x .

2.4.2 Risk-Efficient Estimation

An interesting problem in statistical estimation is that of constructing an 
estimate for minimizing a risk function, which is typically defined as a sum 
of the estimate’s mean squared error cost of sampling. Robbins (1959) initi-
ated the study of such risk-efficient estimates and the idea of assessing the 
performance of sequential estimates using a risk function became extremely 
popular in statistics. Certain developments in this area of estimation are 
summarized in Lai (1996).

Let θ̂n denote an estimate of an unknown parameter θ computed from a 

sample of fixed size n. Assume that ˆ ,
2

2)(θ − θ → σnE n  as → ∞n . If the cost of 

taking a single observation equals C, then the risk function associated with 

θ̂n is given by

 ( ) ˆ .
2( )= θ − θ +R C E Cnn n

Thus we want to minimize the mean squared error of the estimate balanced 
by the attempt to request larger and larger sets of data points, which is 
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restricted by the requirement to pay for each observation. For example, con-

sider the simple estimator of the mean 1)(θ = E X  based on iid observations 

, 1,...,=X i ni  is ∑θ = =
=

ˆ /
1

X X nn n i
i

n
. In this case = σ +( ) /2R C n Cnn  with 

var( )2
1σ = X .

Making use of the definition of the risk function one can easily show that 

( )R Cn  is minimized when { }= = σ/* 1/2n n CC . Since the optimal fixed sample 

size *nC depends on σ, which is commonly unknown, one can resort to 
sequential sampling and consider the stopping rule within the estimation 
procedure of the form

 ( ) inf : ˆ / ,0
1/2{ }= ≥ ≥ σN C n n n Ck

where 10 ≥n  is an initial sample size and σ̂k is a consistent estimate of 0σ > . 
We sample the observations sequentially (one by one) and will stop buying 

data points at ( )N C , obtaining our final estimate ˆ ( )θN C . The method presented 

in Section 2.4.1 can be adopted to show that the expected sample size ( ){ }E N C  

is asymptotically equivalent to the optimal fixed sample size *nC in the sense 

that { } →( ) / 1*E N C nC  as 0→C  (Vexler and Dmitrienko, 1999).
Consider, for another example, iid observations 0, 1,...,> =X i ni , from an 

exponential distribution with the density function ( ) exp1 1)(= θ − θ− −f u u , 0θ > . 

In this case, the maximum likelihood estimator of the parameter 1)(θ = E X  is 

∑θ = =
=

ˆ /
1

X X nn n i
i

n
 and ( )θ − θ = θˆ /

2
2E nn . Assume, depending on parame-

ter values, it is required to pay 4θ H for one data point. Then = θ + θ( ) /2 4R H n H nn  

and we have { }( )− = −θ − + θ−( ) ( ) / 11
2 4R H R H n n Hn n . The equation  

( ) ( ) 01− =−R H R Hn n  gives the optimal fixed sample size { }≈ θ− /* 1 1/2n HH , 
where θ is unknown. In this framework, the stopping rule is

 ∑{ }( )= ≥ ≥ θ = ≥ ≥
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

−

=

( ) inf : ˆ / min : 1/0

1
1/2

0

1

1/2N H n n n H n n X Hn i

i

n

and the estimator is ∑θ =
=

ˆ / ( )( )
1

( )

X N HN H i
i

N H
. It is straightforward to apply 

the technique mentioned in Section 2.4.1 to evaluate ( ){ }E N H  where the fact 

that 11 /

0

11 ∫)( { }= θ = + θ− − − − θ
∞

−E e e e du ssX su u  can be taken into account.

Note that naïvely one can estimate *nC using the estimator σ̂/ 1/2C . This is 

very problematic, since in order to obtain the estimator σ̂ of σ we need a 
sample with the size we try to approximate.
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2.4.3 Khinchin’s (or Hinchin’s) Form of the Law of Large Numbers

In this section we assume that random variables ,...,1ξ ξn are iid with 1)(ξ = θE . 

The average ,1

1∑ξ = = ξ−

=
n S Sn n n i

i

n
, can be considered as a simple estimator 

of θ. For all 0ε > , Chebyshev’s inequality states

 Pr Pr , 0.( ) { }( )ξ − θ > ε = ξ − θ > ε ≤
ξ − θ

ε
>

E
kn n

k k
n

k

k

Consider for example 2=k . It may be verified that
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2
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∑ ∑∑

∑ ∑∑

{ } ( )

( )

( )
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⎧
⎨
⎪
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⎫
⎬
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⎭⎪

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
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⎧
⎨
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⎩⎪

⎫
⎬
⎪
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= − θ
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⎨
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⎫
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i
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n
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n
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i

n

i j

j j i

n

i

n

This yields that ( ) ( )ξ − θ > ε ≤ − θ ε →Pr /( ) 01
2 2E X nn  as → ∞n , proving the 

law of large numbers, ξ →θn
p

 as → ∞n .

It is clear that to conduct proofs in a manner similar to the algorithm above, 

it is required that ( )ξ < ∞+δ
1

1
E  for some 0δ > . Let us apply a method based 

on characteristic functions to prove the property ξ →θn
p

 as → ∞n . We have 

the characteristic function of ξn in the form

 i i i( ) exp ln ./ / /1 1( ){ } ( )( ) ( )( )ϕ = = =ξ
ξ ξt E e E e n E etS n t n

n
t nn

Define the function ( ) ln 1i )( )(= ξl t E e t , rewriting

 ( )ϕ = = −⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ξ( ) exp ( / ) exp

( / ) (0)

/
,t nl t n t

l t n l
t n
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where (0) 0=l . The derivate ( )/dl t dt  is 
1

1 1ii i{ } { }) )( ( ξξ − ξE e E et t  and then 

( )= ξ = θ
=

( )/
0

dl u du E
u

i i . By the definition of the derivate

 i
( / ) (0)

/

( )

0

−⎛
⎝⎜

⎞
⎠⎟

→ = θ
=

l t n l
t n

dl u
du u

 as .→ ∞n

Thus ϕ →ξ
θ( )t e ti  as → ∞n , where θe ti  corresponds to a degenerate distribu-

tion function of θ. This justifies that ξ →θn
p

 as → ∞n  requiring only that 

( )ξ < ∞1E .

2.4.4 Analytical Forms of Distribution Functions

Characteristic functions can be employed in order to derive analytical forms 
of distribution functions. Consider the following examples.

1. Let independent random variables ,...,1ξ ξn be normally distributed. 
The sum ...1= ξ + + ξSn n  is normally distributed with  

1∑ )()( = ξ
=

E S En i
i

n
 and var var

1∑ )()( = ξ
=

Sn i
i

n
. Lemma 2.3.1 shows 

this fact, since the characteristic function of Sn satisfies

 

i

i

i( ) exp ( ) var( ) /2

exp ( )
2

var( ) .

1

2

1

1

2

1

∏ ∏

∑ ∑

( ) ( )ϕ = = ξ − ξ

= ξ − ξ
⎛
⎝⎜

⎞
⎠⎟

ξ

= =

= =

t E e tE t

t E
t

S
t

i

n

i i
i

n

i
i

n

i
i

n

n
i

2. Gamma distributions: Let ξ have the density function

 ∫=
γ ⎛

⎝⎜
⎞
⎠⎟

≥

<

⎧

⎨
⎪

⎩
⎪

λ λ− −γ γ − −
∞

( )
/ , 0,

0, 0

1 1

0f u
u e x e dx u

u

u x

with the parameters 0λ >  (a shape) and 0γ >  (a rate = 1/scale). 
In  a  similar manner to the proof of Lemma 2.3.1, using integra-
tion by parts, we have that the characteristic function of ξ satisfies 

iln ( ) / ln /( ) ( )( ) ( )ϕ = −λ γ −ξd t dt d t dt. Then, taking into account 

(0) 1ϕ =ξ , we obtain ( ) (1 / )iϕ = − γξ
−λt t .
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3. By virtue of the definition of the 2χn distribution function with n degrees 

of freedom, the random variable 2

1∑ζ = ξ
=

n i
i

n
 has a 2χn distribution if 

iid random variables ,...,1ξ ξn are (0,1)N  distributed. Note that

 Pr Pr
2

2
.1 1

/2

0

2∫( )( )ζ < = ξ < =
π

−u u e dxx

u

Thus, the density function of 1ζ  is ( )π − − −2
1/2 /2 1/2e uu  that corresponds 

to the gamma distribution from Example 2 above with parameters 
λ = 1/2 and γ = 1/2. This means the characteristic function of ζn is 

i− −(1 2 ) /2t n . Therefore we conclude that ζn is gamma distributed 
with parameters λ = /2n  and γ = 1/2.

2.4.5 Central Limit Theorem

Let ,...,1ξ ξn be iid random variables with 1)(= ξa E  and 0 var( )2
1< σ = ξ < ∞. 

Define the random variables 
1∑= ξ

=
Sn i

i

n
 and 2 1/2)( )(ζ = σ −

−
n S ann n . The cen-

tral limit theorem states that ζn has asymptotically (as → ∞n ) the (0,1)N  
distribution. We will prove this theorem using characteristic functions. 
Toward this end, we begin with the representation of ζn in the form 

∑{ }( )( )ζ = ξ − σ−

=
/

1/2

1
n an i

i

n
, where ( )ξ − σ =/ 01E a  and { }( )ξ − σ =var / 11 a , 

which allows us to assume 0, 1= σ =a  without loss of generality. In this case, 
we should show that the characteristic function of ζn, say ( )ϕζ tn , converges to 

/22−e t . It is clear that 
i i∏ { }( ) ( )ϕ = ∑⎛

⎝⎜
⎞
⎠⎟

= = ϕζ
ξ ξ

=
ξ

=( ) /
/ /

1

1t E e E e t n
t n t n

i

n n

n

ii

n
i , 

that is, ( )( )( )ϕ = ϕζ ξln ( ) ln /t n t nn . When → ∞n , →/ 0t n  that leads us to 

apply the Taylor theorem to the following objects: (1) ( )ϕξ /t n , considering 

/t n  around 0 and (2) the logarithm function, considering its argument 
around 1. That is

 ln ( ) ln 1
2 2 2

, .
2 2 2 2 2

( )ϕ = − +
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
= − +

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
→ − → ∞ζ t n

t
n

o
t
n

n
t
n

o
t
n

t
nn  

The proof is complete.
The simple proof scheme shown above can be easily adapted when ζn has 

more complicated structure or ,...,1ξ ξn are not iid. For example, when  
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, ...,1ξ ξn are independent but not identically distributed, we have 

∑ ( )( )( )ϕ =ζ
ξ

=
ln ( ) ln /

1

t E e t n

i

n

n
ii  and then the asymptotic evaluation of ln ( ))(ϕζ tn  

can be provided in a similar manner to that demonstrated in this section.

2.4.5.1 Principles of Monte Carlo Simulations

The outcomes of the law of large numbers and the central limit theorem yield 
central techniques applied in a context of Monte Carlo simulations (e.g., 
Robert and Casella, 2004).

Consider the problem regarding calculation of the integral ( )∫=J g u du
a

b

, 

where g is a known function and the bounds ,a b are not necessarily finite. 
One can rewrite the integral in the form

 
( )

( )
, ( ) ,∫ { }[ ]=

⎧
⎨
⎩

⎫
⎬
⎭

∈
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥−∞

∞

J
g u
f u

I u a b f u du

using a density function f . Then, we have { }[ ]= ξ
ξ

⎧
⎨
⎩

⎫
⎬
⎭

ξ ∈
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

( )

( )
,J E

g
f

I a b  with ξ, 

which is a random variable distributed according to the density function f . 

In this case, we can approximate J using ∑ { }[ ]= ξ
ξ

⎧
⎨
⎩

⎫
⎬
⎭

ξ ∈
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⎣
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⎢

⎤

⎦
⎥
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1 ( )

( )
,

1
J

n
g
f

I a bn
i

i
i

i

n
, 

where ,...,1ξ ξn are independent and simulated from f . The law of large  

numbers provides →J Jn  as → ∞n .
The central limit theorem can be applied to evaluate how accurate this 

approximation is as well as to define a value of the needed sample size n. 

That is, we have asymptotically { }[ ]( )− ξ
ξ

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
ξ ∈ −

⎡

⎣
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⎢

⎤

⎦
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⎥

⎛

⎝
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⎜
⎜
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⎟
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⎢

⎤

⎦
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⎥
⎥

−

( )

( )
, ~ (0, 1)1

1

1

2
1/2

n J J E
g
f

I a b J Nn   
and then, for example,

 

Pr 1 Pr Pr

1 / / ,( ) ( )
{ } { } { }− ≥ δ = − − < δ + − < −δ

≈ − Φ δ Δ + Φ −δ Δ

J J J J J J

n n

n n n

where ∫( )Φ = π−

−∞
/ 2/22

u e dxx
u

 and Δ  is an estimator of

{ }[ ]ξ
ξ

⎧
⎨
⎩

⎫
⎬
⎭

ξ ∈ −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣

⎢
⎢

⎤

⎦
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⎥

( )

( )
,1
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1/2

E
g
f

I a b Ji obtained, e.g., by generating, for a relatively 
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large  integer M, iid random variables ,...,1η ηM with the density function f , 
and defining
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Thus, denoting presumed values of the errors 1δ  and 2δ , we can derive the 
sample size n that satisfies

 Pr 1 / / .1 1 1 2( ) ( ){ }− ≥ δ ≈ − Φ δ Δ + Φ −δ Δ ≤ δJ J n nn

Note that, in order to generate random samples from any density function f , 
we can use the following lemma.

Lemma 2.4.1. Let F denote a continuous distribution function of a random 
variable ξ. Then the random variable ( )η = ξF  is uniformly [0,1] distributed.

Proof. Consider the distribution function

 
Pr( ) Pr 0 ( ) Pr ( ) (0 1) ( 1)

( ) (0 1) ( 1) (0 1) ( 1),

1

1

{ }
( )
{ }η ≤ = ≤ ξ ≤ = ξ ≤ ≤ ≤ + >

= ≤ ≤ + > = ≤ ≤ + >

−

−

u F u F u I u I u

F F u I u I u uI u I u

where 1−F  defines the inverse function. This completes the proof of  
Lemma 2.4.1.

From this result, it is apparent that generating ~ [0,1]η Uniform  we can com-
pute a ξ that is a root of the equation ( )η = ξF  to obtain the random variable 
ξ distributed according to F. We remark that an R function (R Development 
Core Team, 2014), uniroot (or optimize applied to minimize the function 

( )
2{ }η − ξF ), can be easily used to find numerical solutions for ( )η = ξF  with 

respect to ξ.
In many cases, the choice of the density function f  in the approximation to 

J given above is intuitional and a form of f  can be close to that of the inte-
grated function g. The function f  is assumed to be well-behaved over the 

support [a,b]. For example, to approximate ( )
1

1

∫=
−

J g u du, we might select f  
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associated with the Uniform[−1,1] distribution; to approximate ( )∫=
−∞

∞

J g u du, 
we might select f  associated with a normal distribution.

As an alternative to the approach shown above we can employ the  Newton–
Raphson method, which is a technique for calculating integrals numerically. 
In several scenarios, the Newton–Raphson method can outperform the 
Monte Carlo strategy. However, it is known that in various multidimensional 

cases, e.g., related to ( , , )1 2 3 1 2 3∫∫∫ g u u u du du du , the Monte Carlo approach is 

simpler, more accurate and faster than Newton–Raphson type algorithms. 
Regarding multivariate statistical simulations we refer the reader to the book 
of Johnson (1987).

Example

Assume , ..,1 )(T X Xn  denotes a statistic based on n iid observations 
, ..,1X Xn with a known distribution function. In various statistical inves-

tigations it is required to evaluate the probability Pr , ...,1{ })(= >p T X X Hn  
for a fixed threshold, H . This problem statement is common in the con-
text of testing statistical hypotheses when examining the Type I error 
rate and the power of a statistical decision-making procedure (e.g.,  
Vexler et al., 2016a). In order to employ the Monte Carlo approach, one 
can generate , ..,1X Xn from the known distribution, calculating 

, ...,1 1{ })(ν = >I T X X Hn . This procedure can be repeated M times to in 
turn generate the iid variables , ...,1ν νM. Then the probability p can be 

estimated as ∑= ν
=

ˆ /
1

p Mi
i

M
. The central limit theorem concludes that 

for large values of M we can expect

 { }{ } { }∈ − − + −⎡
⎣⎢

⎤
⎦⎥ ≈Pr ˆ 1.96 ˆ(1 ˆ)/ , ˆ 1.96 ˆ(1 ˆ)/ 0.95,

0.5 0.5
p p p p M p p p M

where it is applied that var( ) (1 )1ν = −p p  and the standard normal distri-

bution function ∫( )Φ = π ≈−

−∞
1.96 / 2 0.975/2

1.96
2

e dxx . Thus, for example, 

when p is anticipated to be around 0.05 (e.g., in terms of the Type I error 

rate analysis), it is reasonable to require ( )− <1.96 0.05(1 0.05)/ 0.005
0.5

M  
and then we can choose 8000>M , whereas, when p is anticipated to be 
around 0.5 (e.g., in terms of an analysis of the power of a test), it is reason-

able to require ( )− <1.96 0.5(1 0.5)/ 0.05
0.5

M  and then we can recommend 
choosing 500>M .

For example, to evaluate the Type I error rate of the t-test for 0H : 

01)( =E X  versus 1H : 01)( ≠E X  (e.g., Vexler et al., 2016a), one can apply the 
following simple R code:

MC<-10000 #the number of the Monte Carlo generations

n<-25

Decision<-array()

TestStatistic<-array()

for(i in 1:MC)
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{

 X<-rnorm(n)

 TestStatistic[i]<-t.test(X,alternative = c(“two.sided”)) $'statistic'

 Decision[i]<-1*(TestStatistic[i]>qt(0.95,n))

}

mean(Decision)

In this code we can change MC<-10000 to MC<-1000 and X<-rnorm(n) 
to X<-rnorm(n,0.1,1) in order to obtain the Monte Carlo power, when the 

alternative parameter is assumed to be 0.11)( =E X . Note that, assuming a 
value of the alternative parameter and a target value of the power, we 
can employ the R code above to determine n. This statement corresponds 
to the problem of the power calculation (or the sample size calculation) 
that is a common issue of study designs.

2.4.5.2 That Is the Question: Do Convergence Rates Matter?

Sums of random variables play vital roles in statistics. For example, loga-
rithms of likelihood functions considered in later chapters have forms of 
sums of random variables. The law of large numbers as well as the central 
limit theorem are partial solutions to a general problem of analyzing asymp-
totic behaviors of sums of random variables. For example, when ,...,1ξ ξn are 

iid random variables with , var 11 1( ) ( )ξ = ξ =E a , we have ( )ξ + + ξ →... /1 n an  

and ( )ξ + + ξ − → ζ... /1
1/2an nn  as → ∞n , where a is the constant, but ζ is a 

0,1)(N  random variable. Informally, one can say: “the sum ...1 )(ξ + + ξn  grows 
approximately at the same rate as an.” The question is what is happening “in 
between” the law of large numbers (when we divide the sum by n) and the 

central limit theorem (when we divide the sum by 1/2n ). Specifically, if we 

consider ( )ω = ξ + + ξ −... /1 an bn n n , where bn is intermediate in size between 
1/2n  and n, is ωn asymptotically a constant or a random variable? This is a 

nontrivial question. We invite the reader to think about this problem that 
will be discussed in several forthcoming sections of this book.

2.4.6  Problems of Reconstructing the General Distribution Based  
on the Distribution of Some Statistics

In various practical applications, researchers aim to estimate the distribution 
function of iid random variables, say ,..,1X Xn, observing only statistics based 

on ,..,1X Xn, e.g., in the forms ,
1∑ + ε

=
X Xi

i

m

i i or max )(Xi . Consider, for exam-

ple, the following practical problem. One of the main issues of epidemiologi-
cal research for the last several decades has been the relationship between 
biological markers (biomarkers) and disease risk. Commonly, a measure-
ment process yields operating characteristics of biomarkers. However, the 
high cost associated with evaluating these biomarkers as well as measure-
ment errors corresponding to a measurement process can prohibit further 
epidemiological applications (e.g., Armstrong, 2015: Chapter 31). When, for 
example, analysis is restricted by the high cost of assays, following 
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 Schisterman et al. (2011), we suggest applying an efficient pooling design to 
collection of data (see Figure 2.2 for an illustrative purpose).

In order to allow for the instrument sensitivity problem corresponding to 
measurement errors, we formulate models with additive measurement errors. 
Obviously, these issues require assumptions on a biomarker distribution, 
under which operating characteristics of a biomarker can be evaluated.

The existence of measurement error in exposure data potentially affects 
any inferences regarding variability and uncertainty because the distribu-
tion representing the observed data set deviates from the distribution that 
represents an error-free data set. Methodologies for improving the character-
ization of variability and uncertainty with measurement errors in data are 
proposed by many biostatistical manuscripts. Thus, the model, which cor-
responds to observing a biomarker of interest plus a measurement error, is 
not in need of extensive describing. However, note that, since values of a 
biomarker are functionally convolute with noisy measurement errors, usu-
ally distribution functions of measurement errors are assumed to be known. 
Moreover, on account of the complexity of extracting the biomarker distribu-
tion from observed convoluted data (say deconvolution), practically, nor-
mality assumptions related to the biomarker distribution are assumed. 
Under these assumptions parameters of an error distribution can be evalu-
ated by applying an auxiliary reliability study of biospecimens (e.g., a cycle 
of remeasuring of biospecimens) (Schisterman et al. 2001b).

Another stated problem dealing with the deconvolution is the exploration 
based on pooled data. Without focusing on situations where pooled data is 
an organic output of a study, we touch on pooling in the context of study 
design. The concept of a pooling-based design is extensively dealt with in the 
statistical literature starting with publications related to cost-efficient testing 
of World War II recruits for syphilis. In order to reduce cost or labor inten-
siveness of a study, a pooling strategy may be employed, whereby 2 or more 
(say p) individual specimens are physically combined into a single “pooled” 
unit for analysis. Thus, applying pooling design provides a p-fold decrease 

Pooling

• Physically combining
several individual

specimens, to create a
single mixed sample

• Pooled samples are the
averages of the

individual specimens

1
2 p

Pooled sample

Individual specimens

FIGURE 2.2
Pooling.
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of the number of measured assays. Each pooled sample test result is assumed 
to be the average of the individual unpooled samples; this is most often the 
case because many tests are expressed per unit of volume.

Thus, assuming that iid unobserved variables , ,...1 2X X  represent measure-
ments of a biomarker of interest, one can consider scenarios in which the dis-
tribution function of 1X  should be estimated based on the observations 

1

( -1) 1∑)(= −

= +
Z p Xj i

i p j

pj
 (pooling) or = + εW Xj j j (measurement error), where 

, ,...1 2ε ε  are iid random variables with a known distribution function, see for 
details, e.g., Vexler et al. (2008b, 2010a). In these cases the following idea can be 

used. The characteristic functions of 1Z  and 1W  satisfy { }ϕ = ϕ( ) ( / )t t pZ X
p
 and 

ϕ = ϕ ϕε( ) ( ) ( )t t tW X , respectively, where ( )ϕ tX  is the characteristic function of 

1X  and ( )ϕε t  is the known characteristic function of 1ε . The empirical estima-

tors of ( )ϕ tZ  or ( )ϕ tW  based on samples 
1

{ } ≥
Zj j

 or 
1

{ } ≥
Wj j

 can be easily obtained 

(e.g., Feuerverger and Mureika, 1977), which yields a possibility to estimate 
( )ϕ tX  under certain assumptions regarding the distribution function of 1X  

(Vexler et al., 2008b, 2010a), e.g., ϕ = ϕ ϕεˆ ( ) ˆ ( )/ ( )t t tX W , where ˆ ( )ϕ tW  is the empir-
ical estimator of ( )ϕ tW . Theorem 2.3.2 can be applied to develop an estimator 
of the distribution function of 1X , using an estimated ( )ϕ tX . For example, the 
estimator of the density function of 1X  can be presented as 

i∫=
π

ϕ−

−

ˆ( )
1

2
ˆ ( )f x e t dttx

X
T

T

, for a fixed 0>T . In practice, values of T can be cho-

sen to be 0.6, 0.7, 1.2, 1.3, 1.66, 1.7, etc.

Note that, in several situations, we observe max
( 1) 1

)(=
− + ≤ ≤

Z Xj
p j i pj

i . A method 

for reconstructing the distribution function of 1X  based on 
1

{ } ≥
Zj j

 is consid-
ered in Belomestnyi (2005).

2.4.7  Extensions and Estimations of Families of  
Distribution Functions

Relatively simple forms of characteristic functions can represent sets of families 
of distribution functions. For example, in Chapter 1 we introduce the notation 

( )μ σN , 2  to define a family of normally distributed random variables with the 

parameters μ and 2σ  that correspond to the mean and variance of the random 
variables. Consider, for instance, the parametric characteristic function

 

i i; , , , exp 1+ ( , )/ , ( , ),

( , )
tan( /2), if 1

2 ln / , if =1

0, (0, 2], 1, ( , ).

{ }( )

( )

( )ϕ α β γ = − γ β ω α ∈ −∞ ∞

ω α =
πα α ≠

π α

⎧
⎨
⎪

⎩⎪

γ ≥ α ∈ β ≤ ∈ −∞ ∞

α
t a at t t t t t

t
t
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We note that ω =t( , 2) 0 so that the class of distribution functions associated 

with ; , , , )(ϕ α β γt a  covers normal distribution functions for 2α = . The param-
eters , ,α β γ , and a are called the characteristic exponent, a measure of skew-
ness, the scale parameter and the location parameter, respectively. The 

definition of ; , , , )(ϕ α β γt a  is quite general and corresponds to many practical 
distributions, for example, the normal, 2α = ; the Cauchy, 1α =  and the stable 
law of characteristic exponent, 1/ 2α = . Thus, changing values of the param-
eters we can provide a modification of the classical type of a density function 

corresponded to ; , , , )(ϕ α β γt a . In cases with unknown , , ,α β γ a, one can use 
Theorem 2.3.2 to construct their maximum likelihood estimation (Vexler 
et al., 2008b).

Although we consider the parametric approach to describe the character-
istic function, estimation of the unknown parameters by using directly den-

sity functions corresponding to ; , , , )(ϕ α β γt a  is difficult; it is complicated by 
the fact that their densities are not generally available in closed analytical 
forms for all possible values of , , ,α β γ a, making it difficult to apply conven-
tional estimation methods.

Schematic R codes: The characteristic function ; , , , )(ϕ α β γt a  can be coded in 
the form

fi<- function(t,alpha,beta,gamma,a){
if (alpha==1) w<-2*log(abs(t))/pi else w<-tan(pi*alpha/2)
return(exp(1i*a*t-(gamma*abs(t)^(alpha))*(1+1i*beta*sign(t)*w))) }

where (alpha,beta,gamma,a) are the parameters. The corresponding density 
function is

fs<-function(u,alpha,beta,gamma,a){
integ1<-function(t) exp(-1i*u*t)*fi(t,alpha,beta,gamma,a)
integ1R<-function(t) Re(integ1(t))
integrate(integ1R,-Inf,Inf)[[1]]/(2*pi) }

Consider the following scenarios to be left for the reader’s imagination. 
Suppose, for example, we estimate α as 1.1 or 1.2, or 1.5. Is this a “drift” from 
one classical parametric family to other one, e.g., from Cauchy to Normal, or a 
“stay” between the families? Suppose we assume data follow a normal 

( )μ σN , 2  distribution and estimate the parameters ( )μ σ, 2 . In this case, it can 

be a vital mistake if the real data follow a Cauchy distribution. Perhaps, we 

can suggest to involve the ; , , , )(ϕ α β γt a -based inference to reduce this risk.
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3
Likelihood Tenet

3.1 Introduction

When the forms of data distributions are assumed to be known, the likelihood 
principle plays a prominent role in statistical methods research for develop-
ing powerful statistical inference tools. The likelihood method, or simply the 
likelihood, is arguably the most important concept for inference in parametric 
modeling when the underlying data are subject to various assumed stochas-
tic mechanisms and restrictions related to biomedical and epidemiological 
studies.

Without loss of generality, consider a situation in which n data points 
,...,1X Xn are distributed according to the joint density function ( ,..., ; )1f x xn θ  

with the parameter θ, where ,...,1x xn are arguments of f . Various useful 
modern statistical concepts are focused on the likelihood function of θ, 

θ = θL f X X cn( ) ( , ..., ; )1 , where c can depend on ,...,1X Xn but not on θ (usu-
ally 1c = ). If , ...,1X Xn are discrete then for each θ, ( )L θ  is defined as the 
probability of observing a realization of ,...,1X Xn. The likelihood function 
measures the relative plausibility of the range of values for θ given obser-
vations ,...,1X Xn, i.e., the likelihood informs us as to which θ most likely 
generated the observed data provided that model assumptions are correctly 
stated.

Beginning from the mid-1700s the problem of determining the most 
probable position for the object of observations, including determining the 
most likely parameter from a distribution that generated the data, was 
extensively treated in terms of mathematical descriptions by such historical 
figures as Thomas Simpson, Thomas Bayes, Johann Heinrich Lambert, and 
Joseph Louis Lagrange. Statistical literature has credited past figures with 
their contributions to likelihood theory, in particular Thomas Bayes in terms 
of the well-known Bayes theorem. However, it was not until Ronald Fisher 
(1922) revisited the likelihood principle via groundbreaking mathematical 
arguments that the approach exploded onto the statistical research land-
scape. Fisher suggested comparing various competing values of θ relative 
to their likelihood ratios, which in turn provides a measure of the relative 
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plausibility of the parameter. The essence of the modern argument of Fisher 
can be described in terms of sufficiency.

In modern statistical developments a statistic is defined as sufficient 
with respect to a model and its corresponding unknown parameter if “no 
other statistic that can be calculated from the same sample provides any 
additional information as to the value of the parameter” (Fisher, 1922). The 
function ( )L θ  provides a sufficient statistic with respect to θ. Assume that 

there are two estimates of θ from L(θ), say ˆ
Sθ  and ˆ

Aθ . Let ˆ
Sθ  be a sufficient 

statistic. Roughly, we can anticipate that ˆ Sθ  and ˆ Aθ  are approximately normal 
given large samples (in Section 3.3 we rigorously attend to the asymptotic 
normality of a ( )L θ -based estimator of θ). In accordance with Fisher (1922), 
we can consider the situation when ˆ

Sθ  and ˆ
Aθ  have a bivariate normal 

distribution (e.g., Balakrishnan and Lai, 2009; Borovkov, 1998, p. 109) with 

parameters that correspond to the following statements: ˆ ˆE ES A( ) ( )θ = θ = θ, 

var ˆ , var ˆ2 2
S S A A( ) ( )θ = σ θ = σ  and ˆ ˆ /E S A S A{ }( )( ) ( )θ − θ θ − θ σ σ = ρ. Intuitively, the 

assumption ˆ ˆE ES A( ) ( )θ = θ = θ represents our aim to provide the consistency 

of the estimates: ˆ
Sθ → θ and ˆ

Aθ → θ with large samples. Then the classical 

property of the bivariate normal distribution shows that the conditional 

expectation is given as ( ) ( )θ θ = = θ + ρ σ σ − θˆ |ˆ / ( )E u uA S A S . This statistic 

cannot be associated with θ, since ˆ
Sθ  is sufficient. Thus ( )ρ σ σ =/ 1A S  or 

S A Aσ = ρσ ≤ σ , that is, ˆ
Sθ  cannot have a larger mean squared error than any 

other such estimate ˆ Aθ  (if we accept the use of “approximate normality” of the 
estimators, in an informal manner). Thus, Fisher concluded that “Sufficiency 
implies optimality, at least when combined with consistency and asymptotic 
normality.”

In this book, for clarity of explanation, we will assume 1c =  in the defi-
nition of the likelihood function and provide our own arguments (see, for 
example, Section 3.5) to position the likelihood function as an essential and 
optimal tool in biostatistical inference. We suggest that the reader who is 
interested in more details regarding likelihood methodology and its epic 
story consult fundamental guides presented in many publications, includ-
ing Berger et al. (1988), Reid (2000) and Stigler (2007).

Likelihood methodology is addressed extensively in the literature. There 
are multitudes of books that consider different likelihood-based methods 
and their applications to biostatistical problems. In this chapter, we briefly 
introduce several principles and aspects of the maximum likelihood estima-
tion and its applications (Sections 3.2 and 3.3), likelihood ratio–based proce-
dures and their optimality (Sections 3.4 and 3.5), and maximum likelihood 
ratio tests and their properties (Section 3.6). In Section 3.7 we introduce an 
example related to correct model-based likelihood formations.
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3.2 Why Likelihood? An Intuitive Point of View

Let us assume that we observe ,...,1X Xn. Then the widely used least squares 
method for finding the likely parameter b that corresponds to the observed 

data is via the estimate of b given as ˆ arg min
2

1
b Xi

i

n∑ ( )= − ββ
=

. The idea 

behind this estimation method is clear and easily understandable in the 
context of minimization of the distances between data points and the esti-
mated parameter location. While focusing on ( )L θ , statisticians measure 
how “likely” θ is relative to generating the observations, oftentimes aim-
ing to detect values of θ that maximize ( )L θ . Avoiding considerations based 
on Bayesian perspectives (e.g., Bickel and Doksum, 2007, p. 114; Carlin and 
Louis, 2011 as well as Section 5.1), one can ponder the following questions: 
Why does the concept of max ( )L θθ  seem to be a simple and widely applica-
ble idea? Why maximize the joint density over the parameter space? Why is 
maximizing the likelihood often the optimal strategy as compared to other 
methods such as least squares or the method of moments? Why not rise to 
argue in favor of a method of minimum likelihood or even mediocre likeli-
hood? Even though conceptually the likelihood principle is straightforward 
on the face of it, the history of the topic shows that this “simple idea” is really 
anything but simple.

In most likelihood-based procedures it is anticipated that true values of 
the parameter are located around a maximum of the likelihood function. For 
pathological cases where the likelihood method fails we refer the reader to 
Smith (1985). To get some intuition about the likelihood principle we first con-

sider the expectation of the log likelihood ratio given as log /1 00E L L{ }( )( ) ( )θ θθ ,  

where the operator 0Eθ  means that the expectation should be derived pro-
vided that 0θ  reflects a true value of θ. In this case, Jensen’s inequality yields 
the following inequality:
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Similarly,
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Moreover,
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f x x
f x x

f x x dx dxn

n
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In a probability context, these results support the evaluation of Pr 00 L{ ( )θ ≤θ

1L }( )θ , where the subscript 0θ  shows that the probability is considered 
provided that the true value of θ is 0θ . Toward this end, we remark that 

( ) ( ; )
1

L f Xi
i

n∏θ = θ
=

 when n data points ,...,1X Xn are iid and 1X  is dis-

tributed according to the density function ( ; )1f x θ  with the parameter θ. 
Note that in the general case the function ( )L θ  can also be presented in the 
product-type chain rule form

 

( ) ( ,..., ; ) ( | ,..., ; ) ( ,..., ; )

( | ,..., ; ) ( | ,..., ; ) ( ,..., ; ) ...

( | ,..., ; ).

1 1 1 1 1

1 1 1 1 2 1 2

1 1

1

L f X X f X X X f X X

f X X X f X X X f X X

f X X X

n n n n

n n n n n

i i

i

n

∏

θ = θ = θ θ

= θ θ θ =

= θ

− −

− − − −

−

=

We highlight this form since commonly theoretical evaluations of statistical 
procedures employ propositions related to sums of random variables due to 
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their relative theoretical tractability. In this case a convenient form to work 

with is the log likelihood function ( ) log ( )l L( )θ = θ , which is a sum.
Consider the case with iid observations, in which

∑

∑( )

( )

( ) ( )

( ) ( )

( ) ( )

{ }( ) ( ) ( ) ( )

( ) ( )

θ ≤ θ = θ − θ ≥
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⎨
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⎩⎪

⎫
⎬
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θ − − θ − ≥ −
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⎩⎪

⎫
⎬
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θ θ

=

θ
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Pr Pr
1

log ; log ; 0
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1

log ; log ; ,

0 1 1 0
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1
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0

L L
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f X f X

n
f X a f X a a a

i i

i

n

i i

i

n

where, for ( )( )= θ =k f X i ni k0,1, log ; , 1,...,
 

are iid random variables with 

log ;10E f X ak k{ }( )( )θ =θ . Since 0 1a a≥  as shown above, it is clear that the analy-
sis mentioned in Section 2.4.3, where Chebyshev’s inequality is applied, leads 

to Pr 00 10 L L{ }( ) ( )θ ≤ θ →θ  as 0n → .
Thus, it is “most likely” “on average” and in probability that the true value 0θ  of the 

parameter θ satisfies max0L L( ) ( )θ ≈ θθ .

3.3 Maximum Likelihood Estimation

When the likelihood depends on an unknown parameter (or unknown 
parameters), it can be suggested that ranges of plausible values for the param-
eter (or parameters) can be directly obtained from the likelihood function, 
first by determining the maximum likelihood estimate. For n iid observa-

tions ,...,1X Xn the maximum likelihood estimate is any value ˆ
nθ  such that 

( ; ˆ ) max ( )
1

f X Li n
i

n∏ θ = θ
=

θ . Note that such a ˆ
nθ  need not exist, and when it 

does, it usually depends on what form of the density ( ; )f x θ  was assumed. In 

this section we assert that in regular cases ˆ
nθ  is asymptotically normal. We 

begin by first outlining the following regularity conditions necessary for the 
asymptotic normality of the parameter estimates to hold. In order to consider 
ˆ

nθ  we need its existence and uniqueness, then let

(i) possible values of θ belong to an open interval (not necessarily finite), 
where the term “open interval” means an interval that has no mini-
mum and maximum, e.g., (1, 2), ( , 0)−∞ , and

(ii) the set : ( ; ) 0A x f x{ }= θ >  be independent of θ.

For example, we cannot determine a maximum likelihood estimator in the 

situation when ( ; )
1

f Xi
i

n∏ θ
=

 is 0 for all values of θ.
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Chapter 2 introduces tools that can be applied to show the asymptotic nor-
mality of likelihood estimators via evaluating sums of iid random variables. 
The log maximum likelihood

 (ˆ ) log ( ; ˆ ) log ( ; ˆ )
1

1

l f X f Xn i n
i

n

i n

i

n

∏ ∑ ( )θ = θ⎛
⎝

⎞
⎠ = θ

=
=

is a sum, but its summands are dependent random variables 

log ( ; ˆ ) , i 1,..., .f X ni n( )θ =  Then tools shown in Chapter 2 cannot be directly 

applied to analyze the sum (ˆ )l nθ . However, Section 3.2 supports that we can 
anticipate that

(iii) θ →θˆ
n

p  as n → ∞, where θ represents a true value of the parameter.

Then Taylor’s theorem can be employed to evaluate an (ˆ )l nθ -based construc-
tion, considering ˆ nθ  around θ. Towards this end we should require that

(iv) ( )∂ θ ∂θ =log ( ; ) / , 1, .., 2f x kk k , exist, for all x A∈ .

Using Taylor’s arguments, remainder terms should be taken into account 
and then the following condition should be satisfied:

(v) There exists a positive number c and a function ( )M x  such that

 ( )∂ θ ∂θ ≤log ( ; ) / ( )3
0 0

3f x M x  for all x, ,0 c c( )θ ∈ θ − θ +  and ( )E M x{ } < ∞θ .

To state that the random variable ( )∂ θ ∂θlog ( ; ) /1f X  has finite positive 

variance, we denote the Fisher Information { }( )θ = ∂ θ ∂θθ( ) log ( ; ) /1

2
I E f X , 

conditioning

(vi) { } { }( ) ( )< θ = ∂ θ ∂θ = − ∂ θ ∂θ < ∞θ θ0 ( ) log ( ; ) / log ( ; ) /1

2
2

1
2I E f X E f X .

A more rigorous and detailed treatment regarding the regularity conditions 
may be found in Lehmann and Casella (1998, pp. 440–450).

The central limit theorem related to the maximum likelihood estimation 
has the following form.

Theorem 3.3.1

Assume that ,...,1X Xn are iid and satisfy the conditions (i–vi) mentioned 

above. Then the distribution function of ˆn n( )θ − θ  satisfies

 Pr ˆ Pr as ,n u u nn( )( ) ( )θ − θ < → ξ < → ∞θ
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where ξ is a normally distributed random variable with 0E( )ξ =  and 

var 1/ ( )I( )ξ = θ .
Proof. The idea of the proof is to apply Taylor’s theorem in order to repre-

sent a (ˆ )l nθ -based statistic as a sum of iid random variables and then use the 
technique shown in Chapter 2.

Consider the score function given as the derivative θ = ∂ ∂
=θ

l l u un u n
'(ˆ ) ( )/ ˆ . 

Expanding the score function '(ˆ )l nθ  about θ, a true value of the unknown 
parameter, we have

 �'(ˆ ) '( ) ˆ ''( ) 0.5 ˆ '''( )
2

l l l ln n n n( ) ( )θ = θ + θ − θ θ + θ − θ θ

with θ = ∂ ∂
=θ

l l u u
u

''( ) ( )/2 2 , �
�'''( ) ( )/3 3l l u un u n

θ = ∂ ∂
=θ

 and � nθ  that lies between θ 

and ˆ nθ . Since ˆ nθ  maximizes the log likelihood, '(ˆ ) 0l nθ = . This provides

 �0 '( ) ˆ ''( ) 0.5 ˆ '''( )l l ln n n{ }( ) ( )= θ + θ − θ θ + θ − θ θ ,

resulting in

 ( ) ( )θ − θ = θ
− θ − θ − θ θ

n
l n

l n l n
n

n n
�

ˆ '( )/

''( )/ 0.5 ˆ '''( )/
. (3.1)

Consider the remainder term �( )θ − θ θ0.5 ˆ '''( )/l nn n . Condition (v) implies
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1

l n M X nn n n i
i

n
� ∑( ) ( )θ − θ θ ≤ θ − θ

=

where ( ),..., ( )1M X M Xn  are iid random variables, and then using the 
results presented in Section 2.4.3 and condition (iii) we obtain that  

0.5 ˆ '''( )/ 0.5 ˆ (1) (1)l n O on n n p p
�( ) ( )θ − θ θ = θ − θ = as n → ∞, since ( )/

i 1

n
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=

{ }→ θ ( )1E M Xp
. Similarly, because ''( )l θ  is a sum of iid random variables 

{ }( )∂ θ ∂θ =f X i nilog ( ; ) / , 1, ..., ,2 2  we apply condition (vi) to conclude that 

− θ → θ''( )/ ( )l n Ip
 as n → ∞, where
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Formally speaking, the regularity conditions (i–vi) ensure that we can move 

the operator 
2

2

∂
∂θ

 outside the integration as was done above.

Thus Equation (3.1) can be rewritten as
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where '( )l θ  is a sum of iid random variables { }( )∂ θ ∂θ =log ( ; ) / , 1, ..., ,f X i ni  
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Then by virtue of the central limit theorem (Section 2.4.5) we complete the 
proof.

The maximum likelihood estimator ˆ
nθ  is a point estimator. One of 

the statistical applications of Theorem 3.3.1 is related to the construc-
tion of large sample confidence interval estimators. Towards this end, 
we consider a situation in which we are interested in obtaining an inter-
val, say [ , ]a b , based on ,...,1X Xn with coverage probability given as 

Pr ,..., , , ..., 11 1a X X b X Xn n{ }( ) ( )θ ∈⎡⎣ ⎤⎦ = − αθ  for a prespecified level α. In this 
case, for large n, we have

 { } ( ) ( )θ ∈ θ − θ θ + θ⎡⎣ ⎤⎦ ≈ Φ − Φ −θ −α −α −α −αPr ˆ ( )/ , ˆ ( )/1 /2 1 /2 1 /2 1 /2u I n u I n u un n ,

where the constant 1 /2u −α  is given as the root of ( )Φ = − α−α 1 /2,1 /2u

( )Φ − = α−α /21 /2u , and ∫( )Φ = π−

−∞
/ 2/22

u e dxx
u

 denotes the distribution 

function of a standard normal random variable. For example, � 1.961 /2u −α , 

if 0.05α = . Then, calculating a point estimator of ( )I θ  as ˆ(ˆ)I θ , we can 

obtain the equal tailed (1 )100%− α  confidence interval estimator given as 

= θ − θ = θ + θ⎡
⎣⎢

⎤
⎦⎥−α −α

ˆ ˆ(ˆ)/ , ˆ ˆ(ˆ)/ .1 /2 1 /2a u I n b u I nn n
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Theorem 3.3.1 can be used to show that in various scenarios the maximum 
likelihood method provides asymptotically normal estimators with mini-
mum variances (e.g., Lehmann and Casella, 1998).
Warning: The statement mentioned above is well addressed in textbooks 
related to elementary courses in statistics. In general, the maximum like-
lihood estimators might be outperformed by related superefficient esti-
mation procedures. This is almost true for special sets of values of θ with 
Lebesgue measure zero (Le Cam, 1953). Consider the following example. 
Let n iid observations ,...,1X Xn be ,1N ( )θ  distributed. In this case, the maxi-

mum likelihood estimator ∑θ =
=

ˆ /
1
X nn i

i

n
 of θ satisfies ˆ ~ (0,1)n Nn( )θ − θ . 

Define an estimator of θ in the form { } { }= θ θ ≥ + θ θ <− −ˆ ˆ ˆ ˆ1/4 1/4v I n a I nn n n n n  

with 0 1a< < . When 0θ ≠ , we have that the distribution function 
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as well as
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and, for large values of n and fixed θ, 03/4n nθ − > , applying Chebyshev’s 
in equality in a similar manner to that of Section 2.4.3, we obtain 

Pr ˆ 01/4nn{ }θ < →θ
−  as → ∞.n  Then asymptotically ~ (0,1)n v Nn( )− θ , if 

0θ ≠ .

It is clear that when 0θ =  we have
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1/4
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3/4n X nn i
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 as n → ∞.

Thus ~ (0, )2n v N an( )− θ , if 0θ = , and ~ (0,1)n v Nn( )− θ , if 0θ ≠ , as n → ∞ 
and 0 1a< < . This states that, in this case, the estimator vn is more efficient 

asymptotically than the maximum likelihood estimator (var var ˆvn n( )( ) ≤ θ , 
for large n) at least when 0θ = .

Remark 1. In general cases related to different data distributions we need to 
derive maximum likelihood estimators numerically. For example, consider 
n iid observations ,...,1X Xn from the Cauchy distribution with density func-

tion { }( )θ = π + − θ⎡
⎣

⎤
⎦

−
( ; ) 1

2
1

f u u . The maximum likelihood estimator ˆ nθ  of the 

shift parameter θ is a root of the equation '(ˆ ) 0l nθ = , i.e.,
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02
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,

that can be solved numerically, e.g., using the Newton–Raphson method (see, 
e.g., R procedure uniroot, R Development Core Team, 2014). In this Cauchy 
framework, the regularity conditions are satisfied and
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Thus, following Theorem 3.3.1, we have ˆ ~ (0,2)n Nn( )θ − θ  as n → ∞.

Remark 2. In cases of models with several unknown parameters, a multidi-
mensional version of Theorem 3.3.1 can be obtained under appropriate exten-
sions of the regularity conditions in higher dimensions (e.g., Serfling, 2002).

Remark 3. Properties of the maximum likelihood estimation where stan-
dard regularity conditions are violated are considered in Borovkov (1998).
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3.4 The Likelihood Ratio

Historically the likelihood concept has been associated with the likelihood 
ratio principle, which is the basis for developing powerful statistical infer-
ence tools for use in clinical experiments when the forms of data distribu-
tions are assumed to be specified.

Let us start by first outlining the likelihood ratio principle applied to sta-
tistical decision-making theory. Likelihood ratio–based testing was first pro-
posed and formulated in a series of foundational papers published in the 
period of 1928–1938 by Neyman and Pearson (1928, 1933, 1938). In 1928, the 
authors introduced the generalized likelihood ratio test and its association 
with chi-squared statistics. Five years later, the Neyman–Pearson lemma 
was introduced, showing the optimality of the likelihood ratio test. These 
seminal works provided us with the familiar notions of simple and compos-
ite hypotheses and errors of the first and second kind, thus defining formal 
decision-making rules for testing (e.g., Vexler et al., 2016a).

Without loss of generality, the principle idea of the proof of the Neyman–
Pearson lemma can be shown by using the following statement: Assume that 

data points …{ }=, 1, ,X i ni  are observed presenting for example biomarker 
measurements. In general, the observations do not need to represent values 

of iid random variables. We would like to classify …, ,1X Xn  corresponding 

to hypotheses of the following form: 0H  : …{ }=, 1, ,X i ni  are from a joint 

density function 0f , versus 1H : …{ }=, 1, ,X i ni  are from a joint density func-

tion 1f . For example, one can define ( ) ( )= θ, ..., , ..., ;1 1f x x f x xk n n k , where 0,1k =  
and ,0 1θ θ  are different values of the parameter of a joint density function f . 
In this context, in order to construct the likelihood ratio test statistic, we 

should consider the ratio between the joint density function of …{ }, ,1X Xn  

obtained under 1H  and the joint density function of …{ }, ,1X Xn  obtained 
under 0H . We then define the likelihood ratio (LR) as

 LR f X X f X Xn n n( ,..., ) ( ,..., ).1 1 0 1=

In this case the likelihood ratio test based decision rule is to reject 0H  if and 
only if LR Bn ≥ , where B is a prespecified test threshold that does not depend 
on the observations. This test is uniformly most powerful. In order to clar-
ify this fact we note that the term “most powerful” induces us to formally 
define how to compare statistical tests. According to the Neyman–Pearson 
concept of testing statistical hypotheses, since the ability to control the Type 
I error rate of statistical test has an essential role in statistical decision-
making, we compare tests with equivalent probabilities of the Type I error 
Pr test rejects H00H { } = α, where the subscript 0H  indicates that we consider 
the probability given that the null hypothesis is true. The level of significance 
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α is the probability of making a Type I error. In practice, the researcher 
should choose a value of α, e.g., 0.05α = , before performing the test. Thus, we 
should compare the likelihood ratio test with δ, any decision rule based on 

…{ }=, 1, ,X i ni , setting up Pr rejects H00H { }δ = α and Pr 0 LR BH n{ }≥ = α. This 
comparison is with respect to the power Pr test rejects H01H { }. Notice that 
to derive the mathematical expectation, in the context of a problem related 
to testing statistical hypotheses, one must define whether the expectation 
should be conducted under an 0H - or 1H -regime. For example,

 ( , , ) ... ( , , ) ( , , ) ,1 2 1 2 1 1 2 1 21E X X X x x x f x x x dx dx dxH n n n n… … … …∫∫{ }ϕ = ϕ

where the expectation is considered under the alternative hypothesis. In this 
framework we consider the trivial inequality

 0,A B I A B{ }( ) ( )− ≥ − ν ≥  (3.2)

for all A, B, where 0,1[ ]ν ∈  and ( )I A B≥  denotes the indicator function. 
Taking into account the comments mentioned above, we derive the expec-
tation under 0H  of inequality (3.2), where A LRn= , B is a test threshold, and 

( )ν = δ = δ , ...,1X Xn  represents any decision rule based on …{ }=, 1, ,X i ni . 
One can assume that 0,1δ = , and when 1δ =  we reject 0H . Thus, we obtain

 0 0E LR B I LR B E LR BH n n H n{ } { }( ) ( ) ( )− ≥ ≥ − δ .

And hence,
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 (3.3)

where 1 Pr 1 Pr rejects 00 0 0 0E E I HH H H H{ }( ) ( ) { }{ }δ = δ = = δ = = δ . Since we com-
pare the tests with the fixed level of significance

 Pr Pr rejects 00 0 0E I LR B LR B HH n H n H{ }( ) { }{ }≥ = ≥ = δ = α,
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inequality (3.3) leads to
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Since δ represents any decision rule based on …, 1, ,X i ni{ }= , including the 
likelihood ratio–based test, Equation (3.5) implies

 
( ,..., )

( ,..., )
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0 1
0 1E

f X X
f X X
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n
n H nH ( ) { }≥

⎧
⎨
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Applying this equation and Equations (3.5) to (3.4), we complete the proof 
that the likelihood ratio test is the most powerful statistical decision rule. 
This simple proof technique was used to show optimal aspects of differ-
ent statistical decision-making policies based on the likelihood ratio concept 
(Vexler and Wu, 2009; Vexler et al., 2010b; Vexler and Gurevich, 2009, 2011).

Remark. The approach shown above can be extended to be considered 
with respect to decision-making procedures that satisfy the requirement 

≥ αPr (reject )01 HH  for all levels α’s of significance. It is interesting to note 
that if one proposes a most powerful test, say V, in a set of tests that satisfy 

≥ αPr (reject )01 HH  for all α, then it is possible to construct a test, say G, that does 
not satisfy ≥ αPr (reject )01 HH  for some α, but the power of G outperforms that 
of V. In this context, we refer the reader to, e.g., Bross et al. (1994), Suissa and 
Shuster (1984), and Section 9.2.

Warning: Relativity of Optimality of Statistical Tests. Commonly, in 
accordance with a given risk function of hypothesis testing, investigators try 
to derive an optimal property of a test. Inequality (3.2) helps us to show the 
optimal property of the likelihood ratio test statistic in terms of maximizing 
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the power at a fixed Type I error rate. However, in the case when we have a 
given test statistic, say ϒ, instead of the likelihood ratio LRn, inequality (3.2) 
yields 0B I B{ }( ) ( )ϒ − ϒ ≥ − δ ≥ , for any decision rule [0,1]δ ∈ . Therefore, the 
test rule Bϒ >  also has an optimal property that can be derived using (3.2). 
The problem is how to obtain a reasonable interpretation of the optimal-
ity? Thus, in scenarios when one wishes to investigate the optimality of a 
given test in a general context, inequalities similar to (3.2) can be obtained 
by focusing on the structure of a test. Such inequalities could report an opti-
mal property of the test. However, translation of that property in terms of 
the quality of tests is the issue. Consider the following simple example. Let 
iid data points …, ,1X Xn be observed. We would like to test for 0H  versus 

1H . Randomly select Xk from the observations and define the test: reject 0H  
if X Bk > , where the threshold 0B > . By virtue of inequality (3.2), we have 
( ) ( )X B I X B X Bk k k{ }− > ≥ − δ, where 0,1δ =  is any decision rule based on 
…, ,1X Xn and the event 1{ }δ =  rejects 0H . Since

 E X B I X B E X BH k k H k( ) ( ) ,0 0{ }( ) { }− > ≥ − δ

we have

 E X I X B B X B E X B HH k k H k H k HPr Pr rejects .10 0 0 0{ }( ) ( ) { }{ }> − > ≥ δ − δ

Thus, considering decision-making procedures that satisfy 
E X I HH rejects1 00 { }( )δ = γ , for a fixed γ , we conclude that the test based on Xk 
has the smallest Type I error rate, since the inequality above yields

 B X B B HH k HPr Pr rejects .10 0 { }{ }γ − > ≥ γ − δ

In this instance we would like to preserve the condition that if we incorrectly 
reject 0H , the expectation of Xk is fixed at a presumed level.

Now, we define the test with the decision rule to reject 0H  if 

X Bk > − . Then ( ) ( )X B I X B X Bk k k{ }+ > − ≥ + δ and 1E X I X BH k k{ }( )> − +  

Pr Pr rejects 11 1 1B X B E X B HH k H k H( ) { }{ }> − ≥ δ + δ . Then consider tests with 

E X I HH k rejects 01 { }( )δ = γ , for a fixed γ . It follows that the test X Bk > −  

is the most powerful rule in a set of tests with the fixed characteristic 
E X I HH k rejects 01 { }( )δ = γ . This allows us to consider preserving the condi-
tions such as if we correctly reject 0H , the expectation of Xk is fixed on a pre-
sumed level.

The results above demonstrate that criteria for which a given test is opti-
mal can be declared by the structure of this test. Hence, probably almost any 
reasonable tests are in general optimal.

It is a common situation in statistical practice that we have several out-
comes of different tests regarding one test statement. Perhaps, in such cases, 
it is reasonable to attempt to focus on the optimal aspects of the tests in order 
to make an appropriate decision.
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In this book we will show several examples of determining the optimal 
properties of test procedures via (3.2)-type inequalities.

3.5  The Intrinsic Relationship between the Likelihood 

Ratio Test Statistic and the Likelihood Ratio of Test 

Statistics: One More Reason to Use Likelihood

The Neyman–Pearson testing concept, given by fixing the probability of a 
Type I error, has come under some criticism by epidemiologists and others. 
One of the critical points is about the importance of paying attention to 
Type II error rates, Pr test does not reject H01H { }. For example, Freiman et al. 
(1978) pointed out the results of 71 clinical trials that reported no statistically 
“significant” differences between the compared treatments. The authors 
found that in the great majority of these trials, the strong effects of new treat-
ment were clinically significant. It was argued that the investigators in these 
trials failed to reject the null hypothesis when it appeared the alternative 
hypothesis was more likely the underlying truth, which probably resulted in 
an increase in the Type II error. In the context of likelihood ratio–based tests, 
we present the following result that demonstrates an association between 
the probabilities of Type I and II errors.

Suppose we would like to test for 0H  versus 1H , employing the likelihood 

ratio ( )= / ( )1 0LR f D f DH H  based on data D, where fH defines a density func-
tion that corresponds to the data distribution under the hypothesis H. Say, 
for simplicity, we reject 0H  if LR C> , where C is a presumed threshold. In this 
case, we can then show the following proposition.

Proposition 3.5.1. Let ( )f uH
L  define the density function of the likelihood 

ratio LR test statistic under the hypothesis H. Then

 ( ) ( )1 0f u u f uH
L

H
L=  (3.6)

with 0u > .

Proof. In order to obtain the property (3.6), we consider, for nonrandom vari-
ables u and s, the probability
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1 1 1

1

0

0 0

u s LR u E I u s LR u I u s LR u f

I u s LR u
f
f

f I u s LR u LR f

H H H

H

H
H H

∫
∫ ∫ ( )

{ } { } { }

{ } { }

− ≤ ≤ = − ≤ ≤ = − ≤ ≤

= − ≤ ≤ = − ≤ ≤



74 Statistics in the Health Sciences: Theory, Applications, and Computing

This implies the inequalities

 Pr Pr1 0 0u s LR u I u s LR u u f u u s LR uH H H∫{ } { }( ) { }− ≤ ≤ ≤ − ≤ ≤ = − ≤ ≤

and

 u s LR u I u s LR u u s f u s u s LR uH H HPr Pr .1 0 0∫ ( ) ( ){ } { } { }− ≤ ≤ ≥ − ≤ ≤ − = − − ≤ ≤

Dividing these inequalities by s and employing 0s → , we obtain 

( ) ( )1 0f u f u uH
L

H
L= , where ( )0f uH

L  and ( )1f uH
L  are the density functions of the sta-

tistic =LR f fH H/1 0 under 0H  and 1H , respectively.
The proof is complete.
Thus, we can obtain the probability of a Type II error in the form of 

Pr {the test does not reject H0|H1 is true} = Pr{LR ≤ C|H1 is true} = 

0 0
1 0f u du uf u duH

L
C

H
L

C∫ ∫( ) ( )= . Now, if, in order to control the Type I error, the 

density function 0f uH
L ( ) is assumed to be known, then the probability of the 

Type II error can be easily computed.

The likelihood ratio property ( ) ( )1 0f u f u uH
L

H
L =  can be applied to solve dif-

ferent issues related to performing the likelihood ratio test. For example, in 
terms of the bias of the test, one can request to find a value of the threshold 
C that maximizes

 Pr the test rejects H |H is true Pr the test rejects H |H is true ,0 1 0 0{ } { }−

where the probability Pr the test rejects H |H is true0 1{ } depicts the power of 
the test. This equation can be expressed as
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Set the derivative of the above formula to be zero and solve the following 
equation:
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By virtue of the property (3.6), this implies 00 0Cf C f CH
L

H
L( ) ( )− + =  and then  

1C = , which provides the maximum discrimination between the power and 
the probability of a Type I error in the likelihood ratio test.

Likelihood Argument of Optimality: Assume that an investigator provides 
a test for hypotheses 0H  versus 1H , calculating a test statistic, say Τ, based on 
the underlying data. Suppose we would like to improve Τ in terms of relative 
efficiency. Towards this end, we made creative efforts to derive the density 

functions ( )0f uH
T  and ( )1f uH

T  of the statistic Τ under 0H  and 1H , respectively. 

According to Section 3.4, the statistic ( ) ( )1 0f fH
T

H
TΤ Τ  should outperform Τ.

In the case when Τ represents a likelihood ratio, Proposition 3.5.1 shows 
that one cannot improve the test statistic using only the values of Τ. In 

other words, the interesting fact is that the likelihood ratio /1 0f fH
L

H
L  based 

on the likelihood ratio =LR f fH H/1 0 comes to be the likelihood ratio, that is, 

/1 0f (LR) f (LR) LRH
L

H
L = . We leave it to the reader’s imagination to interpret this 

statement in terms of the information that this result provides.

Remark: Change of Measure. In this chapter we apply a very helpful tool 
for analyzing theoretical characteristics of statistical procedures. This tool 
is based on a change of measure. Consider for example a test statistic Tn 
that suggests rejecting 0H  for large values of Tn when n data points are 
observed. It is reasonable to assume that under the null hypothesis, when 
n increases, the behavior of Tn is difficult to anticipate, e.g., oftentimes we 
cannot expect any approximate trend of Tn. Thus, in many situations, the 

analysis of characteristics similar to ( )0E TH n{ }ψ , where ψ is a function, 
including the Type I error rate, is a very complicated issue. Commonly, 
under the alternative hypothesis 1H , a deterministic trend of Tn can be eas-
ily derived for relatively large n, e.g., ~T cnn , for a constant c, when we 

could expect the test is power one as n → ∞. Then, to evaluate ( )0E TH n{ }ψ  
one can change the measure

 ( ) ( ) ( ) ( )
( )

( )
( )d ( )

( )

( )
,0 0

0

1

1 1
0

1

E T u f u du u
f u
f u

f u u E T
f T
f T

H n H
H

H
H H n

H n

H n
∫ ∫{ }ψ = ψ = ψ = ψ

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

where ( )f uHk  is a density function of Tn under the hypothesis , 0,1,H kk =  and 
focus on properties of Tn under 1H . For example, Taylor’s arguments consid-
ering ~T cnn  can be employed.

Formally in this framework we shall use the Radon–Nikodym theorem 
(e.g., Chung, 2000; Borovkov, 1998). In this context the likelihood ratio can be 
referred to as the Radon–Nikodym derivative of the two measures at time n.  
An interesting example of an application of the algorithm mentioned above 
to examine properties of a statistical procedure for change point detection 
policies can be found in Yakir (1995).
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3.6 Maximum Likelihood Ratio

Various real-world data problems require consideration of statistical hypoth-
eses with structures that depend on unknown parameters. In this case, the 
maximum likelihood method proposes to approximate the most powerful 
likelihood ratio test, employing a proportion of the maximum likelihoods, 
where the maximizations are over values of the unknown parameters 
belonging to distributions of observations under the corresponding null and 
alternative hypotheses. We shall assume the existence of essential maximum 
likelihood estimators. The influential Wilks’ theorem provides the basic 
rationale as to why the maximum likelihood ratio approach has had tre-
mendous success in statistical applications (Wilks, 1938). Wilks showed that 
under the regularity conditions, asymptotic null distributions of maximum 
likelihood ratio test statistics are independent of the nuisance parameters. 
That is, Type I error rates of the maximum likelihood ratio tests can be con-
trolled asymptotically, and approximations to the corresponding p-values 
can be computed.

In order to  present Wilks’ theorem we suppose that { ,..., }1X X Xn=  are iid 
observations each with the density function f x( ; )θθ , where θθ is a real-valued 
vector of parameters. We are interested in testing if the vector θθ is in a speci-

fied subset 0Ω  of the parametric space Ω, i.e., H :0 0θθ ∈ Ω  versus H c:1 0θθ ∈ Ω ,  

where 0
cΩ  is a complement to 0Ω  in Ω. Let ∏θθ θθ=

=
( | ) ( ; )

1
L f Xi

i

n

x  be the like-

lihood function. In this case, the maximum likelihood ratio test statistic is 
x xMLR L Ln csup ( | ) sup ( | )0θθ θθ= θ∈Ω θ∈Ω . Then, under the null hypothesis, the 

statistic 2 log MLRn( ) follows a 2
dχ  distribution as n → ∞, where the degrees of 

freedom d equal to the difference in dimensionality of cΩ  and 0Ω . This prop-
osition requires that the regularity conditions hold. For simplicity and clar-
ity of exposition, we state Wilks’ theorem in the one-dimension case, where 
we are interested in testing :0 0H θ = θ  versus :1 0H θ ≠ θ , where θ is a scalar.

Theorem 3.6.1

Let x x( | ) log ( | )l L( )θ = θ  and θ̂ be the maximum likelihood estimator of θ 
under 1H , that is, xˆ arg max ( | )lθ = θθ , provided that it exists. Then, under 

the null hypothesis, the distribution of x x2 log 2 (ˆ| ) ( | )0MLR l ln { }( ) = θ − θ  is 

asymptotically a 1
2
dχ =  distribution as n → ∞.

Proof. Expand x( | )0l θ  in a Taylor series around θ̂, that is,

 x x
x x

l l
l l

R( | ) (ˆ| ) ( ˆ)
( | ) 1

2
( ˆ)

( | )
,0 0

ˆ
0

2
2

2
ˆ

θ = θ + θ − θ ∂ θ
∂θ

+ θ − θ ∂ θ
∂θ

+
θ=θ θ=θ
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where the remainder term 
�

= θ − θ ∂ θ
∂θ θ=θ

1

6
( ˆ)

( | )
0

3
3

3

x
R

l
, for some �θ between θ̂ 

and θ. Based on regularity condition (v) | log ( ; ) | ( )3 3f x M x∂ θ ∂θ ≤  for all x A∈ ,  

0 0c cθ − < θ < θ +  with ( )0E M X{ } < ∞θ  and the fact that O np⎢θ − θ ⎢= − +εˆ ( ),0
1/2  

ε > 0 (Section 3.3), we can obtain = = =− + ε − + εR O n n O n op p p( ) ( ) (1)3/2 3 1/2 3 , where 

ε can be chosen as ε < 1

6
. Noting that 

∂ θ
∂θ

=
θ=θ

( | )
0

ˆ

xl
, we have

 x x
x

l l
l

op( | ) (ˆ| )
1

2
( ˆ)

( | )
(1).0 0

2
2

2
ˆ

θ = θ + θ − θ ∂ θ
∂θ

+
θ=θ

By substituting x( | )0l θ  with its corresponding Taylor expansion, we con-
clude that

 

2 (ˆ| ) ( | ) ( ˆ)
( | )

(1)

( ˆ)
( | )

(1)

( ˆ)
( | )

(1).

0 0
2

2

2
ˆ

0

2
1

2

2
ˆ

0
1

2

2
ˆ

1/2
2

l l
l

o

n n
l

o

n n
l

o

p

p

p

{ }

{ }

θ − θ = − θ − θ ∂ θ
∂θ

+

= θ − θ − ∂ θ
∂θ

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
+

= θ − θ − ∂ θ
∂θ

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+

θ=θ

−

θ=θ

−

θ=θ

x x
x

x

x

Under the regularity conditions, we have that ( ˆ) (0,1 ( ))0 0n N Iθ − θ → θ  

(Theorem 3.3.1) and − ∂ θ
∂θ

→ θ−

θ=θ

( | )
( )1

2

2
ˆ

0

x
n

l
I  in probability (Chapters 1 and 2 can 

provide arguments to show this fact). Then θ − θ − ∂ θ
∂θ

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
−

θ=θ

( ˆ)
( | )

0
1

2

2
ˆ

1/2

x
n n

l
 

converges to (0,1)N  in distribution, and therefore x x2 (ˆ| ) ( | )0l l{ }θ − θ  con-

verges to 1
2χ  in distribution. (We also suggest the reader consult Slutsky’s 

theorem (Grimmett and Stirzaker, 1992) in this context.)
The proof is complete.
Note that, in the general situation with xMLR Ln csup ( | )= θθ∈Ω

xLsup ( | )0 θθ∈Ω , the proof mentioned above can be easily extended. In this 

case, under :0 0H θ ∈Ω , the statistic 2 log MLRn( ) follows asymptotically a 2
dχ  

distribution as n → ∞, where the degrees of freedom d equal to the differ-
ence in dimensionality of cΩ  and 0Ω  and are clarified by the amount of items 

similar to { }θ − θ − ∂ θ
∂θ

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎯ →⎯⎯−

θ=θ
→∞( ˆ)

( | )
(0,1)0

1
2

2
ˆ

1/2 2

2x
n n

l
Nn

 that should be 

presented in the corresponding log likelihood expansion.
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Comments: Thus, if certain key assumptions are met, one can show that 
parametric likelihood methods are very powerful and efficient statistical 
tools. We should emphasize that the role of the discovery of the likelihood 
ratio methodology in statistical developments can be compared to the devel-
opment of the assembly line technique of mass production. The likelihood 
ratio principle gives clear instructions and technique manuals on how to 
construct efficient statistical decision rules in various complex problems 
related to clinical experiments. For example, Vexler et al. (2011) developed a 
likelihood ratio test for comparing populations based on incomplete longitu-
dinal data subject to instrumental limitations.

Although many statistical publications continue to contribute to the likeli-
hood paradigm and are very important in the statistical discipline (an excel-
lent account can be found in Lehmann and Romano, 2006), several significant 
questions naturally arise about the general applicability of the maximum 
likelihood approach. Conceptually, there is an issue specific to classifying 
maximum likelihoods in terms of likelihoods that are given by joint den-
sity (or probability) functions based on data. Integrated likelihood functions, 
with respect to arguments related to data points, are equal to one, whereas 
accordingly integrated maximum likelihood functions often have values that 
are indefinite. Thus, while likelihoods present full information regarding the 
data, the maximum likelihoods might lose information conditional on the 
observed data. Consider this simple example: Suppose we observe X1, which 

is assumed to be from a normal distribution ( )μ, 1N  with mean parameter 

μ. In this case, the likelihood has the form ( )( )π − − μ−
2 exp ( ) /2

0.5
1

2X  and, cor-

respondingly, ∫ ( )( )π − − μ =−
2 exp ( ) /2 1

0.5
1

2
1X dX , whereas the maximum like-

lihood, i.e., the likelihood evaluated at the estimate of μ, μ =ˆ 1X , is )( π −
2

0.5
, 

which clearly does not represent the data and is not a proper density. This 
demonstrates that since the Neyman–Pearson lemma is fundamentally 
founded on the use of the density-based constitutions of likelihood ratios, 
maximum likelihood ratios cannot be optimal in general cases. That is, the 
likelihood ratio principle is generally not robust when the hypothesis tests 
have corresponding nuisance parameters to consider, e.g., testing a hypoth-
esized mean given an unknown variance.

An additional inherent difficulty of the maximum likelihood ratio test 
occurs when a clinical experiment is associated with an infinite-dimensional 
problem and the number of unknown parameters is relatively large. In this 
case, Wilks’ theorem should be re-evaluated, and nonparametric approaches 
should be considered in the contexts of reasonable alternatives to the para-
metric likelihood methodology (Fan et al., 2001).

The ideas of likelihood and maximum likelihood ratio testing may not be 
fiducial and applicable in general nonparametric function estimation/testing 
settings. It is also well known that when key assumptions are not met, para-
metric approaches may be suboptimal or biased as compared to their robust 
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counterparts across the many features of statistical inferences. For example, 
in a biomedical application, Ghosh (1995) proved that the maximum like-
lihood estimators for the Rasch model are inconsistent, as the number of 
nuisance parameters increases to infinity (Rasch models are often employed 
in clinical trials that deal with psychological measurements, e.g., abilities, 
attitudes, and personality traits). Due to the structure of likelihood functions 
based on products of densities, or conditional density functions, relatively 
insignificant errors in classifications of data distributions can lead to vital 
problems related to the applications of likelihood ratio type tests (Gurevich 
and Vexler, 2010). Moreover, one can note that, given the wide variety and 
complex nature of biomedical data (e.g., incomplete data subject to instru-
mental limitations or complex correlation structures), parametric assump-
tions are rarely satisfied. The respective formal tests are complicated, or 
oftentimes not readily available.

Author’s Note: In this book we will employ martingale-based arguments 
to demonstrate that in general situations the maximum likelihood ratios are 
vastly different from the likelihood ratio and thus cannot provide optimal 
non-asymptotic properties similar to those related to the likelihood ratios. 
Using the idea that commonly in the context of hypothesis testing we do not 
need to estimate unknown parameters, we only shall decide to reject or not 
to reject the null hypothesis, we will propose decision-making procedures, 
applying representative values instead of unknown parameters or more gen-
eral Bayes factor concepts in order to obtain optimal tests based on samples 
with fixed sizes.
Brief Example of the Maximum Likelihood Ratio MLRn. Assume that a sam-
ple of iid observations , ,...,1 2X X Xn follow an exponential distribution with 
the rate parameter λ, that is, …, ,  ~1X Xn ( ) exp( )f x x= λ −λ . We then describe 
the maximum likelihood ratio test statistic for the composite hypothesis 

: 10H λ =  versus : 11H λ ≠ . The log-likelihood function is

 ∑ ∑λ = λ = = λ − λ
= =

( ) ( | , ,..., ) log ( ) log .1 2
1 1

l l X X X f X n Xn i
i

n

i
i

n

To calculate the maximum likelihood estimation, we solve the equation  

( )
0

1

dl
d

n
Xi

i

n∑λ
λ

=
λ

− =
=

. The maximum likelihood estimator of λ is 

ˆ 1

1
X n Xi

i

n∑λ = =−

=
. Therefore, the maximum likelihood ratio test statistic is  

{ } { }( )= λ − = − − +MLR l l n X Xn2 log 2 ( ˆ ) (1) 2 log( ) 1 . The distribution of  2 log MLRn( ) 
under 0H  is approximately 1

2χ  and χ =1,0.95
2 χ χ =3.84(Pr( > ) 0.05)1

2
1,0.95
2 . We 

reject 0H  if 2 log 3.84MLRn( ) >  at the 0.05 significance level.
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Real data examples and their corresponding R codes for implementation 
are presented in Vexler et al. (2016a).

3.7  An Example of Correct Model-Based Likelihood  

Formation

Generally speaking, when data are available and model assumptions are fit-
ted, it is not a trivial issue to formulate correctly the corresponding likeli-
hood function. Let us include the following example to illustrate that we 
need carefully attend to the likelihood statement. Consider n data points 

,...,1X Xn that are assumed to satisfy the measurement model with autore-
gressive errors

 X i ni i i i i, , 0, 1,..., ,1 0= μ + ε ε = βε + ξ ε = =−

where μ and β are parameters, the errors ,...,1 nε ε  are unobserved and depen-
dent corresponding to the model 1i i iε = βε + ξ− , that is called as autoregres-
sion with iid noise ,...,1 nξ ξ  from a specified density function fξ.

By virtue of the model assumption, we have

 X X X i ni i i, (1 ) , 2,..., .1 1 1ξ = −μ ξ = −μ − β − β =−

Then one can write the likelihood function in the form

 L f X f X Xi i

i

n

( , ) ( ) ( (1 ) ).1 1

2

∏μ β = −μ −μ − β − βξ ξ −

=

Although this form is correct, the approach applied above might lead to 
incorrect likelihood forms in several general scenarios, since by definition 
the likelihood function should be constructed using distribution functions 
of observations that are ,...,1X Xn in this example.

Let us demonstrate the formal exercise to derive the likelihood function. 
To this end we start by noting that

 L f X X f X X Xn i i

i

n

( , ) ( ,..., ) ( | ,..., ).1 1 1

1

∏μ β = = −

=

Taking into account the autoregressive form of the model, we obtain
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 ( , ) ( ) ( | )1 1

2

L f X f X Xi i

i

n

∏μ β = −

=

.

Now we derive the joint density function of , 1X Xi i( )− , ( , ), 1f u vX Xi i− , that is

f u v
u v

X u X v

u v
X u X v

u v
X u X v X t f t dt

u v
t u t v X t f t dt

X X i i

i i i

i i i i X

i i X

i i

i

i

( , ) Pr ,

Pr (1 ) ,

Pr (1 ) , | ( )

Pr (1 ) , | ( )

,

2

1

2

1 1

2

1 1 1

2

1

1

1

1

∫

∫

( )

( )

( )

( )= ∂
∂ ∂

< <

= ∂
∂ ∂

ξ +μ − β + β < <

= ∂
∂ ∂

ξ +μ − β + β < < =

= ∂
∂ ∂

ξ +μ − β + β < < =

−

− −

− − −

−∞

∞

−

−∞

∞

−

−

−

u v
t u X t f t dt

u v
t u f t dt

u
u v f v f u v f v

i i X

v

i X

v

i X X

i

i

i i

Pr (1 ) | ( )

Pr (1 ) ( )

Pr (1 ) ( ) ( (1 ) ) ( ),

2

1

2

1

1

1 1

∫

∫

( )

( )

( )

= ∂
∂ ∂

ξ +μ − β + β < =

= ∂
∂ ∂

ξ +μ − β + β <

= ∂
∂

ξ < −μ − β − β = −μ − β − β

−

−∞

−∞

ξ

−

−

− −

where the convolution principle (see Chapter 2) is used and ( )1f vXi =−

Pr( )1
d
dv

X vi <− . Thus using conditional probability theory we conclude that

 ( | ) ( (1 ) ), 2,1 1f X X f X X ii i i i= − μ − β − β ≥− ξ −

and then ( , ) ( ) ( (1 ) )1 1

2

L f X f X Xi i

i

n

∏μ β = − μ − μ − β − βξ ξ −

=

.

An example of a potential use of the method shown above is related to a 
likelihood function that implements the autoregressive process of outcomes, 
incorporating the characteristics of the problematic longitudinal data in bio-
medical research, e.g., regarding mouse tumor experiments (Vexler et al., 
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2011). For example, one can consider a study with l treatment groups. For 
treatment group k k l( 1,..., )= , there are nk  experimental units. Each experi-
mental unit is followed by m equally spaced time points by a prespeci-
fied schedule. Let Xijk denote the jth measurement of the ith unit in group 
k j m i n k lk( 1,..., ; 1,..., ; 1,..., )= = = . The variable Xijk may reflect a tumor size in 
a tumor development model with mice. We can model successive measure-
ments within an experimental unit as

 Xijk jk ijk ijk v i j v k

v

r

ijk, ,, ,

1

∑= μ + ε ε = β ε + ξ−

=

for some integer r j< , where ijkξ  are iid with the mean of 0 and the vβ ’s 
describe the relationship between εijk’s. This model depicts the rth order of 
autoregressive associations between the observations.
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4
Martingale Type Statistics and Their 
Applications

4.1 Introduction

Probability theory has several fundamental branches that have been dealt 
with extensively in the theoretical literature associated with martingale 
techniques. Oftentimes, modern concepts of stochastic processes analysis 
are presented in the framework of martingale constructions. Historically, 
gambling theory and econometrics have employed martingale theory to 
model fair stochastic games when information regarding past events does 
not provide us the ability to predict the mean of future winnings.

There are a multitude of books that cover different martingale based 
methods. In this chapter, we will focus on the following three aspects that 
have straightforward connections with biostatistical theory and its applica-
tions: (1) A martingale can represent a statistic, say Mn, based on n data 
points such that the expectation of a future outcome 1Mn+ , which is calcu-
lated given knowledge regarding the present statistic Mn, is equal to the 
observed value Mn. For example, intuitively, if a test statistic, say Tn, based on 
n observations satisfies this martingale property, under the null hypothesis 
H0, then on average Tn values are relatively stable under H0 (Tn does not 

increase on average, E T T T TH n n n( ) =+ | , ...,1 10 , with respect to sizes of underlin-
ing data). Thus, this can reduce the chances that the test statistic T k nk >, , 
will overshoot a corresponding test threshold when more data points are 
available and H0 is true. (2) In previous chapters, we demonstrated that 
propositions based on sums of iid random variables can provide general 
proof schemes in the evaluation of various statistical procedures. The mar-
tingale machinery can extend different concepts based on sums of iid sum-
mands by taking into account things such as dependency structures between 
observations. (3) Martingale methodology plays a crucial role in the devel-
opment and examination of various statistical sequential procedures. 
 Common sequential statistical schemes involve random numbers of obser-
vations according to random stopping times (rules) for surveying data 
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(see, e.g., Chapter 2 for examples of sequential statistical procedures). In this 
context, martingales present a rather wide class of statistics, which are 
invariant relative to such operations as a continuous change of a measure 
and random change of time. Thus, we can extend statistical procedures 
based on statistics with a fixed number of data points to approaches based on 
statistics with random numbers of observations.

We suggest that the reader who is interested in further details regarding 
martingales to consult the essential works of Chow et al. (1971), Chung (1974, 
2000), Edgar and Sucheston (2010), Liptser and Shiryayev (1989) and Williams 
(1991).

This chapter will outline the following topics: Definitions and examples of 
martingale related components, including σ-algebras, conditional expecta-
tions with respect to σ-algebras, martingale type objects and stopping times 
(Section 4.2); The optional stopping theorem and its corollaries in the forms 
of Wald’s lemma and Doob’s inequality (Section 4.3); Applications of martin-
gale theory for developing the principles of efficient retrospective and 
sequential statistical procedures, including decision-making schemes, adap-
tive estimators, and change point detection policies (Section 4.4). The mate-
rial presented in Section 4.5 is optional to be demonstrated when Chapter 4 
is to be used in a course text development. The reader can consider Section 4.5 
as an advanced example of a scholarly statistical research presentation. We 
emphasize that Section 4.5 displays a novel discovery in martingale transfor-
mations of testing strategies and martingale  based comparisons between 
decision-making procedures. The authors are indebted to Professor Moshe 
Pollak and Dr. Aiyi Liu for many helpful discussions and comments related 
to the results shown in Section 4.5.

4.2 Terminology

To begin our chapter we need to first provide some of the key definitions 
used throughout its development.

In Section 4.1 we referred to the terms “information regarding past events” 
and “given knowledge regarding the present statistic.” In order to formalize 
these, we provide the following series of fundamental definitions:

Definition 4.2.1: Let A be a class of subsets. Then A defines an algebra if it 
satisfies the following conditions:

(i) the set of elementary events Ω  (see Section 1.3, taking into account 

that we require ( )Ω =Pr 1) belongs to A, Ω ⊆ A;
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(ii) the facts AA ⊆  and AB ⊆  imply AA B∪ ⊆  and AA B∩ ⊆ ;

(iii) if AA ⊆  then ⊆ AAc , where Ac  is the complement to A.

Definition 4.2.2: The class of subsets ℑ is a σ -algebra if ℑ is an algebra 

such that wherever Fn ⊆ ℑ then Fn

n
∩ ⊆ ℑ

=1

.

Note that in Definition 4.2.1 using condition (iii), we can require that 

AA B∪ ⊆  or AA B∩ ⊆ , since A B A Bc c c( )∪ = ∩ . Similarly, in Definition 

4.2.2, one can apply Fn

n
∪ ⊆ ℑ

=1

 instead of Fn

n
∩ ⊆ ℑ

=1

.

We shall associate the term “knowledge” mentioned above with informa-
tion provided by a statistic. Toward this end let us define a σ-algebra gener-
ated by a random variable X  or simply based on X .

Definition 4.2.3: If the σ-algebra ℑ consists of subsets A’s in the form of 

A X B{ }( )= ω ω ∈: , where B’s are Borel sets, then ℑ  is a σ-algebra generated 
by the random variable X .
In general, the elements of B can be quite complicated. However, if the ran-
dom variable X  is a statistic with real values we often can employ Definition 

4.2.3 to denote the σ -algebra based on X , noting it as X( )σ . In an intuitive 

manner (not a standard notation), it is very easy to understand that X( )ℑ = σ  
corresponds to a collection of all possible analytical functions of X . Similarly, 
if we have m statistics X Xm, ...,1  the σ-algebra X Xm mℑ = σ( , ..., )1  includes all 

possible analytic operations based upon X Xm, ...,1 . Some examples 

are given as: = ∈ ℑ1 ( ) ;1
0X m  + ∈ ℑ ;1X Xm m  ∈ ℑ− ;1X Xm m m  ( )+ ∈ ℑexp 1 1 2 2t X t X m, 

where m ≥ 2 and t t,1 2 are constants. However, in this setting we should  
be very careful with, e.g., X Xm+ +1 1, since in general if Xm+1  cannot be calcu-
lated using onlyX Xm, ...,1 , we have X Xm m+ ∉ℑ+1 1 . More formally the sym-
bols “∈” and “∉” should be interpreted in terms of measurability, i.e., for 
example the notation X Xm m+ ∈ℑ1  means X Xm+1  is mℑ -measurable for all 
subsets A m⊂ ℑ  and here the symbol “⊂” indicates that mℑ  includes A. Actu-
ally the “confusion” regarding the terms “to belong ∈” and “to be measur-
able” is not vital in the context of the materials presented in this chapter and 
we guess the meaning of, e.g., X Xm m+ ∈ℑ1  is more understandable than that 
of X Xm+1  is mℑ - measurable for all subsets A m⊂ ℑ , in the framework of this 
book.

Martingale methodology employs the conditional expectation concept. 
Consider, for example, a scenario where we observe data points nξ ξ, ...,1  and 
a statistic X  is calculated using values of nξ ξ, ...,1 , i.e., X X n= ξ ξ( , ..., )1 . Then 

the conditional expectation E X l k nl k{ }( )σ ξ ξ ≤ ≤ ≤| , ..., , 1  can be considered 
in intuitive fashion as a derivative of the expectation E X{ } at the moment 
when we condition on l kξ ξ, ...,  to be fixed with respect to this expectation.
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This leads us to conclude that | , ..., , ...,{ }( ) ( )σ ξ ξ ∈σ ξ ξE X l k l k , since in  

| , ...,{ }( )σ ξ ξE X l k  values of lξ ξ −, ...,1 1 and k nξ ξ+ , ...,1  are integrated out with 
respect to their joint distribution. For example, 

E l l k l l k{ }( ) ( )ξ σ ξ ξ = ξ ∈σ ξ ξ| , ..., , ..., ; { } { }( ) ( ) ( )ξ ξ σ ξ = ξ ξ σ ξ ∈σ ξ| |1 2 1 1 2 1 1E E , 

where { }( ) ( ) ( )ξ σ ξ = ξ ∈σ ξ|2 1 2 1E E  if 1ξ  and 2ξ  are independent;  

∑ ∑ ∑( ) ( ) ( )ξ σ ξ ξ
⎧
⎨
⎪
⎩⎪

⎫
⎬
⎪
⎭⎪

= ξ + ξ σ ξ ξ
⎧
⎨
⎪
⎩⎪

⎫
⎬
⎪
⎭⎪

∈ σ ξ ξ
= = = +

| ,..., | ,..., , ..., .
1

1
1 1

1 1E Ei
i

n

k i
i

k

i
i k

n

k k  Note 

that, to be a bit formal, since, in general, E X l k{ }( )σ ξ ξ| , ...,  is a l k( )σ ξ ξ, ...,

-measurable random variable, it would be “elegant” to write “almost sure” 

(see Section 1.7.2) in the examples shown above, e.g., 

| |1 2 1 1 2 1E E{ } { }) )( (ξ ξ σ ξ = ξ ξ σ ξ  a.s. Nevertheless we shall omit such obvious 
“a.s.” from now on. A general formal definition of a conditional expectation 
has the form shown below.

Definition 4.2.4: Let X  be a random variable with E X < ∞  and ℑ denote a 
σ-algebra. The conditional expectation of X  with respect to ℑ is the random 

variable |Y E X )(= ℑ , which has the following properties: (i) Y ∈ℑ ; (ii) for 

each A m⊂ ℑ , we have E Y I A E X I A{ } { }( ) ( )= , where I(.) is the indicator 
function.

Property (ii) of Definition 4.2.4 leads to a very useful rule of Probability 
Theory that oftentimes is called as the law of total expectation or the law 
of iterated expectation and formulated as

 { }= ℑ( ) ( | ) .E X E E X  (4.1)

For example, consider the simple scenarios when (1) X ∈ℑ then E X Xℑ =( | )  and 

it is clear that E E X E X{ }ℑ =( | ) ( ), and (2) X  is independent of ℑ then E X E Xℑ =( | ) ( ) 

and it is clear that E E X E E X E X{ } { }ℑ = =( | ) ( ) ( ). Note that one can show that the 
convolution principle (2.1) shown in Chapter 2 is a corollary of Equation (4.1).

Now, given our background material above, we can define a martingale in 
an appropriate manner relative to the main purpose of this chapter.

Definition 4.2.5: Let Mn denote a statistic based on n data points and 

nℑ ℑ, ...,1  be a sequence of σ-algebras such that nℑ ⊂ ℑ ⊂ ⊂ ℑ...1 2 , and 

E Mn < ∞ . The couple Mn n( )ℑ,  is called

a martingale, if it satisfies E M Mn n n( )ℑ =− −| 1 1;

a submartingale, if it satisfies E M Mn n n( )ℑ ≥− −| 1 1;

a supermartingale, if it satisfies E M Mn n n( )ℑ ≤− −| 1 1.
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It is clear that if ,( )ℑMn n  is a martingale then, for example, ,2( )ℑMn n  is  

a submartingale, whereas log ,Mn n)( )( ℑ  is a supermartingale, since  

( ) { }( )ℑ ≥ ℑ =− − −| |2
1 1

2

1
2E M E M Mn n n n n  and ( )( ) ( )( ) ( )ℑ ≤ ℑ =− − −log | log | log1 1 1E M E M Mn n n n n . 

In these cases Jensen's inequality was used. 

Warning: It is very important to draw the reader’s attention to Definition 4.2.5,  

which focuses on the pair Mn n( )ℑ, . Consider the example where we define 

Mn as the sum 
1

i
i

n∑ ξ
=

 of iid random variables ,...,1 nξ ξ  with ( )ξ =E 01  and let 

n n( )ℑ = σ ξ ξ, ...,1 . Then ∑ ∑( ) ( ) ( )ℑ = ξ + ξ ℑ = ξ + ξ = +−
=

−

−
=

−

−| | 01
1

1

1
1

1

1E M E E Mn n i
i

n

n n i
i

n

n n . 

This implies that ,Mn n)( ℑ  is a martingale. However, defining ( )ℑ = σ' , ...,1y yn n , 

where iid random variables ,...,1y yn are independent of ,...,1 nξ ξ , we obtain 

∑( ) ( )ℑ = ξ =−
=

E M En n i
i

n
| ‘ 01

1
 and then , 'Mn n)( ℑ  is not a martingale.

In a general aspect, one can consider martingale type statistics to extend 
the notion of a statistic consisting of a sum of iid random variables. For 

example, assume that ,...,0 nξ ξ  are iid random variables with 1E a)(ξ = . In this 

case, it is clear that , , ...,
1

1∑ ( )ξ − σ ξ ξ⎛
⎝

⎞
⎠=

ani
i

n

n  ai
i

n

n∑ ( ) ( )= ξ − σ ξ ξ⎛
⎝

⎞
⎠=

, , ...,
1

1  is 

a martingale as shown above. It turns out that by defining the statistic 

1
1

M a an i i
i

n∑ ) )( (= ξ − ξ −−
=

 we obtain

∑
∑
∑
∑

{ }

{ }

( ) ( )( ) ( )

( )( ) ( )( ) ( )

( )( ) ( ) ( )

( )( )

σ ξ ξ = ξ − ξ − σ ξ ξ
⎧
⎨
⎪
⎩⎪

⎫
⎬
⎪
⎭⎪

= ξ − ξ − + ξ − ξ − σ ξ ξ

= ξ − ξ − + ξ − ξ −

= ξ − ξ − =

− −
=

−

−
=

−

− −

−
=

−

−

− −
=

−

| ,..., | ,...,

| ,...,

0 1 1
1

0 1

1
1

1

1 0 1

1
1

1

1

1 1
1

1

E M E a a

a a E a a

a a a E a

a a M

n n i i
i

n

n

i i
i

n

n n n

i i
i

n

n n

i i n
i

n

  

and then , ,...,0 1Mn n )( )(σ ξ ξ −  is a martingale, where Mn represents a sum of 

dependent random variables (certainly, we assumed that ξ < ∞E 1  to apply 

Definition 4.2.5.). As another example, via taking into account Section 3.7, 

we propose analyzing observations nε ε, ...,1  that satisfy the autoregres-

sion model i ni i iε = βε + ξ =− , 1, ...,1 , with the iid noise ,...,1 nξ ξ  and 

0, 01 0( )ξ = ε =E .
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In this case we have ∑( )ε = ξ + β ξ + βε = = β ξ− −
−

=
k k k k

k j

j

k

j...1 2
1

, which yields

 ∑
∑ ∑
∑

{ } { }( ) ( )

( )

β ε σ ξ ξ = β β ξ + ξ σ ξ ξ
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= β β ξ + ξ
⎧
⎨
⎪
⎩⎪

⎫
⎬
⎪
⎭⎪

= β β ξ

= β β ξ = β ε >

−
−

− −

=

−

−

− −

=

−
− −

=

−

− − − −

=

−
− −

−

| ,..., | ,...,

, 1.

1 1
1

1

1 1

1

1

1

1

( 1) ( 1)

1

1
( 1)

1

E E

E

k

k
k k

k k j

j

k

j k k

k k j

j

k

j k
k k j

j

k

j

k k j

j

k

j
k

k

This implies that n
n n( )( )β ε σ ξ ξ− , , ...,1  is a martingale, where the observations 

nε ε, ...,1  are sums of independent and not identically distributed random 
variables.

Chapter 2 introduced statistical strategies that employ random numbers of 
data points. In forthcoming sections of this book we will introduce several 
procedures based on non retrospective mechanisms as statistical sequen-
tial schemes. In order to extend retrospective statistical tools based on data 
with fixed sample sizes to procedures stopped at random times we introduce 
the following definition:

Definition 4.2.6: A random variable τ is a stopping time with respect to 

σ-algebra nℑ  ( nℑ ⊂ ℑ ⊂ ⊂ ℑ...1 2 ) if it satisfies (i) n n{ }τ ≤ ⊂ ℑ , for all n ≥ 1;  

(ii) ( )τ < ∞ =Pr 1.
In the statistical interpretation, the idea is that only information in nℑ  at time n 
should lead us to stop without knowledge of the future, whether or not time τ  
has arrived. For example, assume τ is a stopping time. Then τ + 1 is a stopping 
time, since we can stop at τ  observing nℑ  and decide finally to stop our proce-
dure at the next stage τ + 1, i.e., by the definition of τ  and the σ-algebra, we 
have n n n n{ } { }τ + ≤ = τ ≤ − ⊂ ℑ ⊂ ℑ−1 1 1 . However τ − 1 is not a stopping time, 
since we cannot stop at τ  observing nℑ  and decide that we should stop our 
procedure at the previous stage τ − 1, i.e., n n n n{ } { }τ − ≤ = τ ≤ + ⊂ ℑ ⊄ ℑ+1 1 1 .

Examples:

1. It is clear that a fixed integer N  is a stopping time.
2. Suppose τ and ν are stopping times. Then min( , )τ ν  and max( , )τ ν   

are stopping times. Indeed, min( , )τ ν  and max( , )τ ν  satisfy con-

dition (ii) of Definition 4.2.6, since τ and ν are stopping times. 

In this case, the events { } { } { }τ ν ≤ = τ ≤ ∪ ν ≤ ⊂ ℑn n n nmin( , ) and 

max( , ){ } { } { }τ ν ≤ = τ ≤ ∩ ν ≤ ⊂ ℑn n n n.
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3. Let integers τ and ν define stopping times. Then τ + ν is a stop-

ping time, since n n n i
i∩{ } { } { } { }τ + ν ≤ = τ ≤ − ν = τ ≤ − ν ∩ ν = =
=

∞

1

n i i
i

n

n∩ { } { }τ ≤ − ∩ ν = ⊂ ℑ
=1

 

where { }τ ≤ = ∅0 .
4. In a similar manner to the example above, one can show that 

τ − ν is not a stopping time.

5. Consider the random variable inf 1 :n X an n{ }ϖ = ≥ ≥ , where 
, , , ...1 2 3X X X  are independent and identically uniformly [0,1] 

distributed random variables and 1 1/( 1) , 12a i ii ( )= − + ≥ . Defining 

, ...,1X Xn n)(ℑ = σ , we have max 01n X ak n k k n{ }{ } )(ϖ ≤ = − ≥ ⊂ ℑ≤ ≤ . 
Let us examine, for a nonrandom N ,

 

∏∏

∏

{ }
{ }

{ }

( ) ( )
( ) ( )

( ) { }

ϖ > = − ≤

= − ≤ − ≤

= − ≤ = ≤

=

≤ ≤

==

=

Pr Pr max 0

Pr 0, ..., 0

Pr 0 Pr

.

1

1 1

11

1

N X a

X a X a

X a X a

a

k N k k

N N

k k k k

k

N

k

N

k

k

N

In this case,

 ∏ ∑ ∑{ }
⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

= − + ≈ − +
= = =

log log(1 1/( 1) ) 1/( 1) ,

1

2

1

2

1

a k kk

k

N

k

N

k

N

where we apply the Taylor argument to represent − =log(1 )s  

− + +/2 ( )2 3s s O s  with = +1/( 1)2s k . Thus Pr not 0N)(ϖ > →  as 

N → ∞ and then Pr 1( )ϖ < ∞ < . This means ϖ is not a stopping 

time.

6. Defining 1 1/ 1 , 1a i ii ( )( )= − + ≥ , in Example (5) above, we obtain  

∏ ∑ ∑( ) ( )
⎛

⎝
⎜

⎞

⎠
⎟ = − + ≈ − + ≈ − → −∞

= = =

log log 1 1/( 1) 1/( 1) log( )
1 1 1

a k k Nk

k

N

k

N

k

N

as N → ∞ and then Pr 0( )ϖ > →N  that implies ϖ is a stopping 
time, in this case.

7. Consider the random variable inf 1 : 2 ( 1)2{ }= ≥ ≥ +W n S n nn , 

where ∑=S Xn i
i

n
 and 0, 0, 0,...1 2 3> > >X X X  are iid random 

variables with 11( ) <E X . Let us examine
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∑

∑
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∑
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{ }

( ) ( )

( )

( )

( )

< ∞ = =

= < < − ≥ +

≤ ≥ + ≤
+

=
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= <
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∞

−

=

∞

=

∞
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∞
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∞

Pr Pr

Pr 4, ..., 2( 1) , 2 ( 1)

Pr 2 ( 1)
2 ( 1)

2 ( 1)
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2
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1

1 1
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1
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1
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1
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W W n

S S n n S n n

S n n
E S

n n
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n n

E X
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n n

n

n

n

n

n

n

where Chebyshev’s inequality is used. Thus, although W n( )≤ ⊂

X Xn n( )ℑ = σ , ...,1 , W is not a stopping time.

4.3  The Optional Stopping Theorem and Its Corollaries: 

Wald’s Lemma and Doob’s Inequality

Historically, martingale type objects were associated with Monte Carlo rou-
lette games. Suppose Xn shows our capital obtained at a stage n while we are 
playing the Monte Carlo roulette game without any arbitrage, i.e., no one 
outside monitors the roulette wheel and provides us more money.
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It turns out that, in a fair game, , , ...,1( )( )ℑ = σX X Xn n n  is a martingale. Then 

on average { } { }( ) ( )( ) ( ) ( )= ℑ = = ℑ = =− − − −E X E E X E X E E X E Xn n n n n n| | ...1 1 1 2 1 , 
where the rule (4.1) is applied and 1X  displays our initial capital. One can 
wonder about a “smart” strategy, when the game will be stopped depending 

on the history of the game, e.g., at the time N n Xn{ }( )≥ ≥min , inf 1 : $100 , 
where N  is a fixed integer. Towards this end, consider the following result:

Proposition 4.3.1 (The Optional Stopping Theorem). Let Mn n( )ℑ,  be a 
martingale and τ ≥ 1 be a stopping time that corresponds to nℑ . Assume that 

E ( )τ < ∞ and, for all n ≥ 1 on the set n n{ }τ ≥ ⊂ ℑ −1, ( )− ℑ ≤− −E M M cn n n|1 1 , 

where c is a constant. Then E M E M( ) ( )=τ 1 .

Proof. For an integer N, define the stopping time NNτ = τmin( , ). It is clear 
that
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In this equation, by virtue of property (4.1) and the martingale and stopping 
time definitions, we have

 { }
{ } { }

{ }
( )

( ) ( )
( )

( )

τ ≤ − = τ ≤ − ℑ

= τ ≤ − ℑ

= τ ≤ −

−

−

−

1 1 |

1 |
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E M I i EE M I i
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( ) ( ) ( )

( )
( ) ( )

= τ ≤ − τ ≤ −

= τ ≤

= τ ≤ =

τ

=

−

=

1

, where 0 0.

1

1
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0

E M E M I i E M I i

E M I N

E M M I

i N

i
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i N

i
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N N

N N
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Since | | ...1 1 1 2 1E M E E M E M E E M E MN N N N N N{ } { }) )( () ) )( ( (= ℑ = = ℑ = =− − − − , we 

conclude with that 1E M E MN )( )(=τ . Now, considering N → ∞, we complete 
the proof.
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In Section 2.4.1 we applied Wald’s lemma to evaluate the expectation of 
the renewal function. Now we present Wald’s lemma in the following form:

Proposition 4.3.2. Assume that ,...,1 nξ ξ  are iid random variables with 

1E a)(ξ =  and ξ < ∞E 1 . Let 1τ ≥  be a stopping time with respect to 

,...,1n n)(ℑ = σ ξ ξ . If E )(τ < ∞, then

 ∑ ( )ξ
⎛

⎝

⎜
⎜⎜
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⎠

⎟
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= τ
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.

1

E aEi
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This implies that ani

i

n

n∑ξ − ℑ
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⎝
⎜

⎞

⎠
⎟

=

,
1

 is a martingale. Therefore the use of Propo-

sition 4.3.1 provides E a E ai

i
∑ ( )ξ − τ

⎛

⎝
⎜

⎞

⎠
⎟ = ξ − =

=

τ

0
1

1  and then E aEi

i
∑ ( )ξ

⎛

⎝
⎜

⎞

⎠
⎟ = τ

=

τ

1

, 

which completes the proof.
As has been mentioned previously, Chebyshev’s inequality plays a very 

useful role in theoretical statistical analysis. The next proposition can be 
established as an aspect of extending Chebyshev’s approach.

Proposition 4.3.3 (Doob’s Inequality). Let Mn n( )≥ ℑ0,  be a martingale. 
Then, for all ε > 0,

 ( ) ( )≥ ε ≤
ε≤ ≤

Pr max .
1

1M
E M

k n
k

Proof. Define the random variable n Mn{ }ν = ≥ ≥ εinf 1 : . Since it is possible                                                                                           

that ( )ν < ∞ <Pr 1, ν may not be a stopping time, whereas nnν = νmin( , ) 
defines a stopping time with respect to nℑ . Next, consider the probability
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 Pr Pr , Pr , .M M n M nn n n( ) ( ) ( )≥ ε = ≥ ε ν ≤ + ≥ ε ν >ν ν ν

It is clear that nν = ν , if nν ≤ ; nnν = , provided that nν > . Thus

 Pr Pr , Pr , ,M M n M nnn( ) ( ) ( )≥ ε = ≥ ε ν ≤ + ≥ ε ν >ν ν

where, by the definition of ν, M ≥ εν  a.s. and the event ,M nn{ }≥ ε ν > = ∅, 
since Mn{ }≥ ε  means n{ }ν >  is not true. This provides

 

( )( )≥ ε = ν ≤ = ≥ εν
≤ ≤

Pr Pr( ) Pr max .
1

M n M
k n

kn

That is Pr max Pr
1

M M E I M
k n

k n n)( { }) )( (≥ ε = ≥ ε = ≥ ε
≤ ≤

ν ν , where the indicator 

function I a b)( ≥  satisfies the inequality ( )≥ ≤I a b a b/ , where a and b are pos-

itive. Then Pr max /
1

M E M
k n

k n)( )(≥ ε ≤ ε
≤ ≤

ν  and the use of Proposition 4.3.1 com-

pletes the proof.
Note that Proposition 4.3.3 displays a nontrivial result: for 0Mn ≥  one 

could anticipate that max
1

M
k n

k
≤ ≤

 increases, providing Pr max 1
1

M
k n

k )( ≥ ε =
≤ ≤

 at 

least for large values of n, however Doob’s inequality bounds max
1

M
k n

k
≤ ≤

 in 

probability. We might expect that by using Proposition 4.3.3, an accurate 

bound for Pr max
1

M
k n

k )( ≥ ε
≤ ≤

 can be obtained. While evaluating Pr max
1

M
k n

k )( ≥ ε
≤ ≤

, 

we could directly employ Chebyshev’s approach, obtaining ( )≥ ε ≤
≤ ≤

M
k n

kPr max
1

( ) ε
≤ ≤

E M
k n

kmax /
1

, but that is probably not useful.

4.4 Applications

The main theme of this section is to demonstrate that the martingale meth-
odology has valuable substance when it is applied in developing and exam-
ining statistical procedures.

4.4.1 The Martingale Principle for Testing Statistical Hypotheses

Suppose we have a set of n observations ,...,1X Xn which are planned to be 
employed for testing hypotheses 0H  versus 1H . In this case, Section 3.4 
suggests applying the likelihood ratio ( ,..., ) ( ,..., )1 1 0 1LR f X X f X Xn n n=  if the 
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joint density functions 1f , under 1H , and 0f , under 0H , are available. Defining 

,...,1X Xn n)(ℑ = σ , we use the material of Section 3.2 to derive
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where the subscript 0H  indicates that we consider the expectation given that 

the hull hypothesis is correct. Then, following Section 4.2, the pair ,LRn n)( ℑ  

is an 0H -martingale and the pair ( )( ) ℑlog ,LRn n  is an 0H -supermartingale. 
This says—at the moment in intuitive fashion—that while increasing the 
amount of observed data points under 0H , we do not enlarge chances to 
reject 0H  for large values of the likelihood ratio, in average.

Now, under 1H , we consider
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where Jensen’s inequality is used and the subscript 1H  indicates that we con-
sider the expectation given that the alternative hypothesis is true. Regarding 

log 1LRn )( + , we have
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Then the pairs ( )ℑ,LRn n  and ( )( ) ℑlog ,LRn n  are 1H -submartingales. Thus, 
intuitively, under 1H , this shows that by adding more observations to be 
used in the test procedure, we provide more power to the likelihood 
ratio test.
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Conclusion: The likelihood ratio test statistic is most powerful given all of 
the assumptions are met. Therefore, generally speaking, it is reasonable to consider 
developing test statistics or their transformed versions that could have properties of 

0H -martingales (supermartingales) and 1H -submartingales, anticipating an opti-
mality of the corresponding test procedures. Note that in many testing scenarios 
the alternative hypothesis 1H  is “not 0H ” and hence does not have a specified 
form. For example, the composite statement regarding a parameter θ can be 
stated as θ = θ:0 0H  versus θ ≠ θ:1 0H , where θ0 is known. In this case,  

1EH  -type objects do not have unique shapes. Then we can aim to preserve 
only the 0H -martingale (supermartingales) property of a corresponding 
rational test statistic, following the Neyman–Pearson concept of statistical 
tests, in which 0H -characteristics of decision-making strategies are vital  
(e.g., Vexler et al., 2016a).

4.4.1.1 Maximum Likelihood Ratio in Light of the Martingale Concept

In Section 3.6 we pointed out a significant difference between the likelihood 
ratio and the maximum likelihood ratio test statistics. In order to provide a 
martingale interpretation of this fact, we assume that observations ,...,1X Xn 
are from the density function θ( , ..., ; )1f x xn  with a parameter θ. We are inter-
ested in testing the hypothesis θ = θ:0 0H  versus θ ≠ θ:1 0H , where 0θ  is 
known. The maximum likelihood ratio is

= θ θ θ = θθ( ,..., ; ˆ ) ( ,..., ; ), where ˆ arg max ( ,..., ; ).1 1 0 1MLR f X X f X X f X Xn n n n n n
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Thus the pair ( )ℑ,MLRn n  is an 0H -submartingale (not a martingale as wanted). 
This reinforces a concern that, in general, the maximum likelihood ratio statis-
tic can provide an optimal decision-making strategy based on data with fixed 
sample sizes. It follows that while increasing the amount of observed data 
points under 0H , we do increase the chances to reject 0H  on average for large 
values of the maximum likelihood ratio. One may then conclude that the viola-
tion of the 0H -martingale principle shown above yields that maximum likeli-
hood–based testing procedures are not very useful when sample sizes are 
very large. Almost no null hypothesis is exactly true in practice. Consequently, 
when sample sizes are large enough, almost any null hypothesis will have a 
tiny p-value, and hence will be rejected at conventional levels (Marden, 2000).

4.4.1.2 Likelihood Ratios Based on Representative Values

Let us repeat the idea that oftentimes in the context of hypothesis testing we 
do not need to estimate unknown parameters when we only are interested in 
the decision to reject or not to reject the null hypothesis. In this section we 
consider decision-making procedures based upon representative values that 
can substitute for unknown parameters.

Without loss of generality, we consider a straightforward example that 
introduces the basic ingredients for further explanations in this book.

Assume that we observe iid data points , ...,1X Xn and are interested in test-
ing the hypothesis

 = θ + θH X f x H X f x f x x: ~ ( ) versus : ~ ( ) ( )exp( ),0 1 0 1 1 1 0 1 2  (4.2)

where 0f  is a density function (known or unknown), and quantities θ1, θ2 are 
unknown, 2θ  can depend on 1θ . Let the sign of 1θ  be known, e.g., θ > 01 .

The statement of the problem above is quite general. For example, when 

μ σX N~ ( , )1
2  with unknown σ2, the considered hypothesis could have the 

form of μ = σ = η: 0,0H  versus μ ≠ σ = η: 0,1H , for some unknown η > 0. In 
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this case, we have ( )= − η πη( ) exp (2 ) 20
2 2 2f x x  and = θ + θ( ) ( )exp( )1 0 1 2f x f x x  

with θ = μ η/( )1
2  and θ = −μ η/(2 )2

2 2 , respectively.
By virtue of the statement (4.2), the likelihood ratio test statistic is

 exp .1
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where a and b  can be chosen arbitrarily and a is of the same sign of θ1, i.e., 
0a >  in this example, e.g., = =7, 0a b . The decision-making policy is to reject 

0H  if >T Cn , where 0C >  is a test threshold.
Suppose, only for the following theoretical exercise, that 

∫= + < ∞( )exp( )0c f u au b du . Then
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i.e., ( )ℑ/c ,Tn
n

n  is an 0H -martingale, where cn is independent of the underly-
ing data. Thus we can anticipate that the test statistic Tn can be optimal. This 
is displayed in the following result:

The statistic Tn provides the most powerful test of the hypothesis testing 
at (4.2).

Proof. Note again that the likelihood ratio test statistic LR X nn i
i

n∑= θ + θ⎛
⎝⎜

⎞
⎠⎟=

exp 1
1

2   

is most powerful. Following the Neyman–Pearson concept, in order to com-

pare the test statistics LRn  and Tn, we define test thresholds αCT  and αCLR to 
satisfy α = > = >α αPr ( ) Pr ( )0 0LR C T CH n

LR
H n

T  for a prespecified significance 
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level α, since the Type I error rates of the tests should be equivalent. In this 
case, using the definitions of the test statistics, we have

∑ ∑{ } { }( ) ( )α = > − θ θ
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That is, { } { }( ) ( )− θ θ = −α αlog log2 1C n C b aLR T  and then { }( ) ( )= − θ θ +α αlog log 2 1C a C n bT LR . 

Therefore, under 1H , the power
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i.e., the statistic Tn is the most powerful test statistic. (In this book, the nota-
tion Pr ( )AHk  means that we consider the probability of ( )A  given that the 
hypothesis Hk  is true, = 0,1k .) This completes the proof.

Since 1θ  and 2θ  are unknown, one can propose to estimate 1θ  and 2θ  by 
using the maximum likelihood method in order to approximate the likelihood 
ratio test statistic. In this case, the efficiency of the maximum likelihood ratio 
test may be lost completely. The optimal method based on the test statistic 

∑ +⎛
⎝

⎞
⎠=

exp
1

a X bi
i

n
 can be referred as a simple representative method, since 

we employ arbitrarily chosen numbers to represent the unknown parame-
ters θ1 and θ2.

In this section, we present the simple representative method, which can be 
easily extended by integrating test statistics through variables that represent 
unknown parameters with respect to functions that can display weights cor-
responding to values of the variables. This approach can be referred to as a 
Bayes factor type decision-making mechanism that will be described for-
mally in forthcoming sections of this book. For example, observing ,...,1X Xn, 
one can denote the test statistic

 
∫=

θ π θ θ

θ

( , ..., ; ) ( )

( , ..., ; )

1 1

0 1 0

BF
f X X d

f X X
n

n

n

to test for θ: , ..., ~ ( , ..., ; )0 1 0 1 0H X X f x xn n  versus : ,..., ~ ( ,..., ; ),1 1 1 1 1θH X X f x xn n  

1 0θ ≠ θ with known 0θ  and unknown 1θ , where π θ( ) represents our level of 
belief (probability-based weights) on the possible consequences of the deci-
sions and/or the possible values of θ under the alternative hypothesis. In this 

case, it is clear that ( )( )ℑ = σ, , ...,1BF X Xn n n  is an 0H -martingale.
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4.4.2 Guaranteed Type I Error Rate Control of the Likelihood Ratio Tests

As shown in Section 4.4.1 the pair ( > ℑ =0,LRn n )( )σ , ...,1X Xn  is an  

0H -martingale. Thus Proposition 4.3.3 implies ( )> ≤≤ ≤
−Pr max1

1
0 LR C CH k n k , 

since ∫ { }( ) = =( )/ ( ) ( ) 11 1 0 00E LR f u f u f u duH . This result insures that we can 

non-asymptotically control maximum values of the likelihood ratio test sta-
tistic in probability. For example, setting the test threshold = 20C , we guar-
antee that the Type I error rate of the likelihood ratio test does not exceed 5%, 
for all fixed ≥ 1n . This result could be conservative, however, we should note 

that the inequality ( )> ≤≤ ≤
−Pr max1

1
0 LR C CH k n k  was obtained without any 

requirements on the data density functions, e.g., we did not restrict the obser-
vations to be iid. It is clear that when the form of LRn is specified (in general, 
this form can be very complicated) one can try to obtain an accurate evalua-
tion of the corresponding Type I error rates, e.g., via Monte Carlo approxima-
tions (see Section 2.4.5.1). In this case, Doob’s inequality suggests the initial 
values for the evaluations.

Assume we observe sequentially (one-by-one) iid data points  
, , , ...1 2 3X X X  and need to decide , , , ... ~1 2 3 0X X X f  or , , , ... ~1 2 3 1X X X f ,  

provided that if  , , , ... ~1 2 3 0X X X f  it is not required to stop the sampling. In 

this case, we can define the stopping time ( )τ = ≥ ≥( ) min 1 :C k LR Ck . Then an 

error is to stop the sampling under , , , ... ~1 2 3 0X X X f  with the rate 

( ) ( )τ ≤ = > ≤≤ ≤
−Pr | ~ Pr max | ~1 0 1 1 0

1n X f LR C X f Ck n k , for all ≥ 1n . This deter-

mines the Type I error rate of the sequential procedure τ( )C  to be −1C -bounded. 
(In this context, see Section 4.4.4 and the forthcoming material of the book 
related to sequential statistical procedures.)

4.4.3 Retrospective Change Point Detection Policies

Change point problems originally arose in quality control applications, 
when one typically observes the output of production processes and should 
indicate violations of acceptable specifications. In general, the problem of 
detecting changes is found in quite a variety of experimental sciences. For 
example, in epidemiology one may be interested in testing whether the inci-
dence of a disease has remained constant over time, and if not, in estimating 
the time of change in order to suggest possible causes, e.g., increases in 
asthma prevalence due to a new factory opening.

In health studies there may be a distributional shift, oftentimes in terms of 
a shift in location either due to random factors or due to some known factors 
at a fixed point in time that is either known or needs to be estimated. For 
example, biomarker levels may be measured differently between two labora-
tories and a given research organization may switch laboratories. Then there 
may be a shift in mean biomarker levels simply due to differences in sample 
processing. As another example, the speed limit on many expressways in the 
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United States was increased from 55 miles per hour to 65 miles per hour in 
1987. In order to investigate the effect of this increased speed limit on high-
way traveling, one may study the change in the traffic accident death rate 
after the modification of the 55 mile per hour speed limit law. Problems 
closely related to the example above are called change point problems in the 
statistical literature.

We will concentrate in this section on retrospective change point prob-
lems, where inference regarding the detection of a change occurs retrospec-
tively, i.e., after the data has already been collected. Various applications, e.g., 
in the areas of biological, medical and economics, tend to generate retrospec-
tive change point problems. For example, in genomics, detecting chromo-
somal DNA copy number changes or copy number variations in tumor cells 
can facilitate the development of medical diagnostic tools and personalized 
treatment regimens for cancer and other genetic diseases; e.g., see Lucito 
et al. (2000). The retrospective change point detection methods are also use-
ful in studying the variation (over time) of share prices on the major stock 
exchanges. Various examples of change point detection schemes and their 
applications are introduced in Csörgö and Horváth (1997) and Vexler et al. 
(2016a).

Let , , ...,1 2X X Xn  be independent continuous random variables with fixed 
sample size n. In the formal context of hypotheses testing, we state the 
change point detection problem as testing for

 : , , ..., ~ versus : ~ , ~ , 1,..., 1, ,..., ,0 1 2 0 1 0 1 = − =v vH X X X f H X f X f i j nn i j

where ≠0 1f f  are density functions. Note that (1, ]∈v n  is an unknown param-
eter. This simple change point model is termed a so-called at most one 
change-point model. In the parametric fashion, efficient detection methods 
for the classical simple change point problem include the cumulative sum 
(CUSUM) and Shiryayev–Roberts approaches (e.g., Vexler et al., 2016a).

4.4.3.1 The Cumulative Sum (CUSUM) Technique

When the parameter v  can be assumed to be known, the likelihood ratio 

statistic Λv
n provides the most powerful test by virtue of the proof shown in 

Section 3.4, where
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f X
f X
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n i k

n
i
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n
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We refer the reader to Chapter 3 for details regarding likelihood ratio tests. 
When the parameter v is unknown, the maximum likelihood estimator 

v̂ = Λ≤ ≤arg max1 k n k
n of the parameter v  can be applied. By plugging the maxi-

mum likelihood estimator v̂ of the change point location v, we have
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 max ,ˆ
1

Λ = Λ = Λ
≤ ≤

vn
k n

k
n

which has the maximum likelihood ratio form. Note that log n( )Λ =  

max log ( )/ ( )
1

1 0f X f X
k n

i i
i k

n∑ ( )
≤ ≤ =

, which corresponds to the well-known cumula-

tive sum (CUSUM) type test statistic. The null hypothesis is rejected for large 

values of the CUSUM test statistic nΛ . It turns out that, even in this simple 
case, evaluations of 0H -properties of the CUSUM test are very complicated 
tasks.

Consider the σ-algebra ( )ℑ = σ , ...,X Xk
n

k n  and the expectation
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This  shows that ( )Λ ℑ,k
n

k
n  is an 0H -martingale that can be called an 

0H -nonnegative reverse martingale. Then a simple modification of Proposi-
tion 4.3.3 (Gurevich and Vexler, 2005) implies

 ( )( )Λ > ≤ Λ =C E C CH n H n
nPr / 1/0 0

that provides an upper bound of the corresponding Type I error rate. The 
arguments mentioned below Proposition 4.3.3 support that the bound C1/  
might be very close to the actual Type I error rate. The non-asymptotic Type 
I error rate monitoring via C1/  was obtained without any requirements on 
the density functions ,0 1f f . In several scenarios with specified ,0 1f f -forms, 

complex asymptotic propositions can be used to approximate ( )Λ >Pr 0 CH n  
(Csörgö and Horváth, 1997) as well as one can also employ Monte Carlo 

approximations to the Type I error rate. In these cases, the bound C1/  sug-
gests the initial values for the evaluations.

4.4.3.2 The Shiryayev–Roberts (SR) Statistic-Based Techniques

In the previous subsection, we considered the case where the change point 
location is maximum likelihood estimated, which leads to the CUSUM 
scheme. Alternatively taking into account Section 4.4.1.2, we can propose the 

statistic Λ =
Π
Π

=

=

( )

( )

1

0

f X
f X

j
n i j

n
i

i j
n

i
, where an integer j can be chosen arbitrarily. 
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Extending this approach, we obtain the test statistic ∑= Λ
=1

SR wn j j
n

j

n
, where 

the deterministic weights ≥ =0, 1, ..., ,w j nj  are known. For simplicity and  

clarity of exposition, we redefine

 .
1

∑= Λ
=

SRn j
n

j

n

The statistic SRn can be considered in the context of a Bayes factor type test-
ing, when we integrate the unknown change point with respect to the uni-
form prior information regarding a point where the change is occurred. In 
this change point problem, the integration will correspond to simple sum-
mation. This approach is well-addressed in the change point literature as the 
Shiryayev–Roberts (SR) scheme (Vexler et al., 2016a). The null hypothesis is 
rejected if >/SR n Cn , for a fixed test threshold > 0C .

Noting that ( )= +−
( )

( )
11

0
1SR

f X
f X

SRn
n

n
n , we consider the pair ( − ℑ =,SR nn n  

)( )σ , ...,1X Xn that satisfies

 ( ) ( )− ℑ = +
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⎨
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Then ( )− ℑ,SR nn n  is an 0H -martingale. Similarly, since
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one can show that ( )− ℑ,SR nn n  is an 1H -submartingale. Thus, according to 
Section 4.4.1, it is reasonable to attempt deriving an optimal property of the 
retrospective SR change point detection policy. (In this context, we would 
like to direct the reader’s attention again to the “Warning” in Section 3.4.)

It turns out that the retrospective change point detection policy based on 
the SR statistic is non-asymptotically optimal in the sense of average most 
powerful (via 1,...,=v n).

Proof. To prove this statement, one can use in equality (3.2) in the form

 
1 1

0,−
⎛
⎝
⎜

⎞
⎠
⎟ ≥

⎛
⎝
⎜

⎞
⎠
⎟ − δ

⎧
⎨
⎪
⎩⎪

⎫
⎬
⎪
⎭⎪

≥
n

SR C I
n

SR Cn n



104 Statistics in the Health Sciences: Theory, Applications, and Computing

where ( )δ = δ , ...,1X Xn  represents any decision rule based on { }=X i ni …, 1, , ,  
0,1δ = , and when 1δ =  we reject 0H . Then in a similar manner to the analysis 

of the likelihood ratio statistic shown in Section 3.4, we obtain
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This leads to the conclusion
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when the Type I error rates ( )≥Pr /0 SR n CH n  and ( )δPr rejects 00 HH  are equal. 
The proof is complete.

Remark 1. In the considered statement of the problem, the change point 
parameter (1, ]ν ∈ n  is unknown. In this case, how does one calculate the 
power of change point detection procedures? It is clear the test power is a 
function of ν, so is it unknown, in general? Suppose, for example, when 

10n >  a student defines a test statistic 10
nΛ . Then his/her test statistic can be 

powerless when, e.g., 1,2ν = , however when 10ν =  no one can outperform 

the power of 10
nΛ , since 10

nΛ  is the likelihood ratio, in this case. Thus it is inter-
esting to ask the question: what is the sense of “most powerful testing” in the 
change point problem? In this context, the meaning of the statement “most 
powerful in average” is clear.

Remark 2. Vexler et al. (2016a) presented a literature review, data examples- 
and relevant R codes in order to compare the CUSUM and SR retrospective 
change point detection procedures and their extended forms. The authors 

discussed properties of the maximum likelihood estimator ˆ arg max1ν = Λ≤ ≤k n k
n  
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of the change point parameter ν. Section 4.5 introduces a novel martingale 
based concept to compare the CUSUM and SR statistics.

4.4.4 Adaptive (Nonanticipating) Maximum Likelihood Estimation

In this subsection we introduce modifications of the maximum likelihood 
estimations that preserve the 0H -martingale properties of test statistics.
Consider the following scenarios:

(i) Let , ...,1X Xn be from the density function θ( , ..., ; )1f x xn  with a param-
eter θ. We are interested in testing the hypothesis :0 0H θ = θ  versus 

:1 0H θ ≠ θ , where 0θ  is known.
Define the maximum likelihood estimators of θ as

 ˆ arg max ( ,..., ; ), ˆ , 0,..., .1, 1 1,0 0θ = θ θ = θ =θ f X X k nk n

In this case, the maximum likelihood ratio test statistic MLRn =
f X X f X Xn n nθ θ( , ..., ; ˆ ) ( , ..., ; )1 1, 1 0   is
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Then the adaptive (nonanticipating) maximum likelihood ratio test statistic 
can be denoted in the form
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It turns out that ALR X Xn n n( )( )> ℑ = σ0, , ...,1  is an 0H -martingale, since 
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Thus Proposition 4.3.3 implies ALR C CH k n k( )> ≤≤ ≤
−Pr max1

1
0 .

(ii) Let X Xn, ...,1  be from the density function f x xn θ λ( , ..., ; , )1  with parame-
ters θ and λ. We are interested in testing the hypothesis H θ = θ:0 0  versus 
H θ ≠ θ:1 0 , where 0θ  is known. The parameter λ  is a nuisance parameter that 
can have different values under 0H  and 1H  , respectively.

A testing strategy, which can be applied in this case, is to try finding 
invariant transformations of the observations, thus eliminating the nui-
sance parameter from the statement of the testing problem. For example, 

when we observe the iid data points X X Nn μ σ, ..., ~ ( , )1
2  to test for  

H σ =: 10
2  versus : 11

2H σ ≠ , the observations can be transformed to be 
= − = − = −, ...,2 2 1 3 3 1 1Y X X Y X X Y X Xn n  and the likelihood ratio statistic 

based on Y Yn, ...,2 , where Y Yn, ...,2  are iid given 1X , can be applied with-
out any attention to μ ’s values. (In this context, one can also use 

= − = − = −Y X g Y X g Y X gk k n n k, ...,1 1 2 2 , where ∑=
=

g X kk i
i

k
/

1
 with a fixed 

k n<  or, for simplicity, = − = −, , ...1 2 1 2 4 3Y X X Y X X .) Testing strategies based on 

invariant statistics are very complicated in general and cannot be employed 
in various situations, depending on forms of f x xn θ λ( , ..., ; , )1 .

It is interesting to note that classical statistical methodology is directed 
toward the use of decision-making mechanisms with fixed significant levels. 
Classic inference requires special and careful attention of practitioners relative 
to the Type I error rate control since it can be defined by different functional 
forms. In the testing problem with the nuisance parameter λ, for any presumed 
significance level, α, the Type I error rate control may take the following forms:

(1). sup Pr (reject ) ;00 = αλ HH

(2). sup limPr reject based on observations ,..., ;0 10 ( ){ } = αλ
→∞

H X X
n

H n

(3). limsup Pr reject based on observations ,..., ;0 10 ( ){ } = α
→∞

λ H X X
n

H n

(4). Pr (reject ) ( ) , >0: ( ) 1.00∫ ∫π λ λ = α π π λ λ =H d dH

Form (1) from above is the classical definition (e.g., Lehmann and Romano, 
2006). However, in some situations, it may occur that HH =λsup Pr (reject ) 100 . 
If this is the case the Type I error rate is not controlled appropriately. In addi-
tion, the formal notation of the supremum is mathematically complicated in 
terms of derivations and calculations, either analytically or via Monte Carlo 
approximations. Form (2) above is commonly applied when we deal with 
maximum likelihood ratio tests as it relates to Wilks’ theorem (Wilks, 1938). 
However, since the form at (2) is an asymptotical large sample consideration, 

the actual Type I error rate HH ( )Pr reject 00  may not be close to the expected 

level α  given small or moderate fixed sample sizes n. The form given above 
at (3) is rarely applied in practice. The form above at (4) is also introduced in 
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Lehmann and Romano (2006). This definition of the Type I error rate control 
depends on the choice of the function π θ( ) in general.

Now let us define the maximum likelihood estimators of θ and λ as

( )θ λ = θ λ θ = θ λ = λ =( )θ λ
ˆ , ˆ arg max ( ,..., ; , ), ˆ , ˆ , 0,...,1, 1, , 1 1,0 0 1,0 10f X X k nk k n  and

 λ = θ λ =λ
ˆ arg max ( ,..., ; , ), 1,..., ,0,1, 1 0f X X k nk n

where 10λ  is a fixed reasonable variable. Then the adaptive maximum likeli-
hood ratio test statistic can be denoted in the form
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0 , where Hλ 0  is a true value of λ under H0. Then
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where it is clear that M X Xn n n( )( )> ℑ = σ0, , ...,1  is an 0H -martingale. Thus 
Proposition 4.3.3 implies

 sup Pr max sup Pr max .1 1
1

0 0 0 0( ) ( )> ≤ > ≤λ ≤ ≤ λ ≤ ≤
−ALR C M C CH k n k H k n kH H

This result is very general and does not depend on forms of f x xn θ λ( , ..., ; , )1 . 

(iii) Let ,...,1X Xn be from the density function f x xn θ λ( , ..., ; , )1  with parame-
ters θ and λ. Assume that we are interested in testing the hypothesis 

H L U( )θ ∈ θ θ: ,0  versus H L U( )θ ∉ θ θ: ,1 , where ,L Uθ θ  are known. The parame-
ter λ is a nuisance parameter that can have different values under 0H  and 1H , 
respectively.
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In this case, the adaptive maximum likelihood ratio test statistic can be 
denoted in the form

( | ,..., ; ˆ , ˆ )

( | ,..., ; ˆ , ˆ )
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1 1 1, 1 1, 1
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where

ˆ , ˆ arg max ( , ..., ; , ), ˆ , ˆ , 0, ...,1, 1, , , 1 1,0 10 1,0 10( )θ λ = θ λ θ = θ λ = λ =( )( )θ∉θ θ λ f X X k nk k nL U

 

and

ˆ , ˆ arg max ( , ..., ; , ), 1, ...,0,1, 0,1, , , 1( )θ λ = θ λ =( )( )θ∈θ θ λ f X X k nk k nL U

with ,10 10θ λ  that have fixed reasonable values.

In a similar manner to that shown in Scenario (ii) above, we obtain

( )> ≤{ }( )θ∈ θ θ λ ≤ ≤
−sup Pr max ., , 1

1
0 ALR C CH k n kL U

(iv) Let , ,...,1 2X X Xn  be independent continuous random variables with fixed 
sample size n. We state the change point problem as testing for

 
: , , ..., ~ ; versus : ~ ; , ~ ; ,

1,..., 1, ,..., ,

0 1 2 0 0 1 0 0 1 1( ) ( ) ( )θ θ θ

= ν − = ν

H X X X f u H X f u X f u

i j n

n i j

where 0θ  is an known parameter, 1θ  is an unknown parameter and forms of 
the density functions ,0 1f f  can be equivalent if 0 1θ ≠ θ . In many practical situ-
ations, we can assume that 0θ  is known, for example, when the stable regime 
under the null hypothesis has been observed for a long time. Applications of 
invariant data transformations (e.g., see Scenario (ii) above) can also lead 
us to a possibility to assume 0θ  is known to be, e.g., zero. In this case, the 
adaptive CUSUM test statistic is

 { }Λ = Π θ
Π θ

⎧
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⎪
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that implies the pair , , ...,X Xn k
n

k n )( )(Λ ℑ = σ  is an 0H -nonnegative reverse 
martingale (Section 4.4.3.1). Then, by virtue of Proposition 4.3.3, the Type I 
error rate of the considered change point detection procedure satisfies 

Pr 1/0 ( )Λ > ≤C CH n .
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(v) Let , ,...,1 2X X Xn be independent continuous random variables with fixed 
sample size n. Assume that the change point problem is to test for

 
: , , ..., ~ ; versus : ~ ; , ~ ; ,

1,..., 1, ,..., ,

0 1 2 0 0 1 0 0 1 1( ) ( ) ( )θ θ θ

= ν − = ν

H X X X f u H X f u X f u

i j n

n i j

where 0θ  and 1θ  are unknown.
In this case, the adaptive CUSUM test statistic is
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where 10θ  is a fixed reasonable variable. Then, using the techniques presented 
in Scenarios (i), (iii), and (iv) above, we conclude that the Type I error rate of 
this change point detection procedure satisfies the very general inequality 

sup Pr 1/0 0 ( )Λ > ≤θ C CH n .

Remark. In the context of general retrospective change point detection pro-
cedures based on martingale type statistics, we refer the reader, e.g., to Vexler 
(2006, 2008) and Vexler et al. (2009b), where the following issues are presented: 
multiple change point detection statements, martingale type associations 
between the CUSUM and SR techniques, martingale type transformations of 
test statistics, Monte Carlo comparisons related to the CUSUM and SR tech-
niques, and biostatistical data examples associated with change point detec-
tion problems.

4.4.5 Sequential Change Point Detection Policies

In previous sections we focused on offline change point detection or retro-
spective change point analysis, where inference regarding the detection of 
a change occurs retrospectively, i.e., after the data has already been col-
lected. In contrast to the retrospective change point problem, the so-called 
online (sequential) change point problem or an online surveillance change 
problem features methods in which a prospective analysis is performed 
sequentially. In this case, in order to detect a change as soon as possible, 
such that the consequences of such a change can be tackled effectively, the 
detection method is implemented after every new observation is collected. 
The online change point problems are widely presented and studied in 
fields such as statistical quality control, public health surveillance, and 
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signal processing. For instance, in a continuous production process, the 
quality of the products is expected to remain stable. However, in practice, 
for some known or unknown reasons, the process may fail to produce prod-
ucts of equal quality. Therefore, one may be interested in investigating when 
the quality of a product starts to deteriorate. Under such circumstances, 
online change point analysis can be used in the form of control charts to 
monitor output of industrial processes. Typically, control charts have a cen-
tral line (the mean) and upper and lower lines representing control limits, 
which are usually set at three-sigma (standard deviations) detection limits 
away from the mean. Any data points that fall outside these limits or 
unusual patterns (determined by various run tests) on the control chart sug-
gest that systematic causes of variation are present. Under such circum-
stance, the process is said to be out of control and actions are to be taken to 
find, and possibly eliminate the corresponding causes. A process is declared 
to be in control if all points charted lie randomly within the control limits. 
In order to illustrate the construction and operation of control charts we 
consider the following two data examples.

Example 1: We consider a data example containing one-at-a-time 
measurements of a continuous process variable presented in Gavit et al. 
(2009). Figure 4.1 shows the X-chart or control chart for the data. The 
horizontal upper and lower dashed lines represent the upper and lower 
three-sigma control limits, respectively. The middle solid horizontal 
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FIGURE 4.1
The X-chart for a data example containing one-at-a-time measurements of a continuous pro-

cess variable presented in Gavit, P. et al., BioPharm International, 22, 46–55, 2009.
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line is the mean. Based on the X-chart shown in Figure 4.1, there is no 
evidence showing that the process is out of control.

Implementation of Figure 4.1 is shown in the following R code:

> # install.packages("qcc") # install it for the first time
> library(qcc)
> dat.raw <- c(10.9,9.7,8.6,9.3,9.2,10.4,9.6,10.0,8.8,11.0,10.3,9
.3,11.1,9.9,8.9,10.2,10.6,12.2,10.7,11.2,10.9,11.2,11.5)
> dat <- qcc.groups(dat.raw, sample=1:length(dat.raw))
> obj <- qcc(dat, type="xbar.one",nsigmas = 3)

Example 2: We consider another data example obtained from the inside 
diameter measurements of piston rings for an automotive engine 
produced by a forging process (Montgomery, 1991). The inside diameter 
of the rings manufactured by the process is measured on 25 samples, 
each of size 5, for control phase I.

Figure 4.2 presents the X-bar chart, a type of Shewhart control chart 
that is used to monitor the arithmetic means of successive samples of 
constant size, for this calibration data. This control chart shows the cen-
ter line (CL) as a horizontal solid line and the upper limits (UCL) and 
lower control limits (LCL) as dashed lines, and the sample group statis-
tics are drawn as points connected with lines.

xbar Chart for phase I and phase II
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FIGURE 4.2
The Shewhart chart (X-bar chart) for both calibration data and new data, where all the statistics 

and the control limits are solely based on the calibration data, i.e., the first 25 samples.
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Implementation of Figure 4.2 is shown in the following R code:

> # install.packages(“qcc”) # install it for the first time
> library(qcc)
> data(pistonrings)
> diameter <- qcc.groups(pistonrings$diameter, 
pistonrings$sample)
> 
> # Plot sample means to control the mean level of a continuous variable

> `Phase I` <- diameter[1:25,]
> `Phase II` <- diameter[26:40,]
> obj <- qcc(`Phase I`, type="xbar", newdata=`Phase II`, nsigmas = 3)

In contrast to the simple strategies mentioned above, we consider a very 
efficient sequential change point detection policy based on the Shiryayev–
Roberts technique. Assume we sequentially (one-by-one) observe indepen-
dent continuous random variables , ,...1 2X X . The statement of the sequential 
change point detection problem consists of providing an indication (an 
alarm) regarding a possible change in distribution of the data points. We are 
interested in a sequential test for

 ν− ν ν+H X X f H X X f X X f: , , ... ~ versus : , ..., ~ , , , ... ~ ,0 1 2 0 1 1 1 0 1 1

where 0 1f f≠  are density functions.
In this case, the proposed change point detection procedure is based on 

the stopping rule:

 
∑{ }= ≥ > = Λ Λ =

Π
Π

>
=

=

=
N C n SR C SR

f X
f X

C

n n j
n

j

n

j
n i j

n
i

i j
n

i
( ) min 1 : , ,

( )

( )
,

0 is a test threshold,
1

1

0  

determining when one should stop sampling and claim a change has 
occurred. In order to perform the ( )N C  strategy, we need to provide instruc-
tions regarding how to select values of 0C > . This issue is analogous to that 
related to defining test thresholds in retrospective decision-making mecha-
nisms with controlled Type I error rates. Certainly, we can define relatively 
small values of C, yielding a very powerful detection policy, but if no change 
has occurred (under 0H ) most probably the procedure will stop when we do 
not need to stop and the stopping rule will be not useful. Then it is vital to 
monitor the average run length to false alarm ( )0 { }E N CH  in the form of 
determining 0C >  to satisfy ( )0 { } ≥E N C DH , for a presumed level D. Thus 
defining, e.g., 100D =  and stopping at ( ) 150N C =  we could expect that a false 
alarm is in effect and then just rerun the detection procedure after additional 
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investigations. In this context, we note that , , ...,1( )( )− ℑ = σSR n X Xn n n  is an 

0H -martingale (Section 4.4.3.2) and then Proposition 4.3.1 concludes with 

( ) 1 0( ) 10 0E SR N C E SRH N C H{ } { }− = − = , i.e., ( ) ( )0 0 { }{ } =E N C E SRH H N C . Thus, 

since, by virtue of the definition of ( )N C , ( )SR CN C ≥ , we have ( )0 { } ≥E N C CH . 
This result gives a rule to select values of C, controlling the average run 
length of the procedure to false alarm. It is clear that Monte Carlo simulation 

schemes can help us to derive accurate approximations to ( )0 { }E N CH  in spec-

ified scenarios of the data distributions. In these cases, the result ( )0 { } ≥E N C CH  
is still valuable in the context of initial values that can be applied in terms of 
the Monte Carlo study.

Note that the techniques described in Section 4.4.4 can be easily applied to 
extend the statement of the detection problem mentioned above preserving 

( )0 { } ≥⎡⎣ ⎤⎦E N C CH -type properties.

Remark. In order to obtain detailed information regarding sequential 
change point detection mechanisms and their applications, the reader can 
consult outstanding publications of Professor Moshe Pollak and Professor 
Tze Lai (e.g., Pollak, 1985, 1987; Lai, 1995).

4.5  Transformation of Change Point Detection Methods into a 

Shiryayev–Roberts Form

The Shiryayev–Roberts statistic SRn for detection of a change has the appeal-
ing property that, when the process is in control, −SR nn  is a martingale 

with zero expectation, thus the average run lengths to false alarm 0 ( )E NH  of 

a stopping time N  can be evaluated via 0 0( ) ( )=E N E SRH H N .
We apply an idea of Brostrom (1997) and show that in certain cases it is pos-

sible to transform a surveillance statistic into a Shiryayev–Roberts form. We 
demonstrate our method with several examples, both parametric as well as 
nonparametric. In addition, we propose an explanation of the phenomenon 
that simple CUSUM and Shiryayev–Roberts schemes have similar properties.

The Shiryayev–Roberts change point detection technique is usually based 
on ( )N C = the first crossing time of a certain statistic SRn over a prespecified 
threshold C. The statistic SRn has the property that SR nn −  is a martingale 
with zero expectation when the process is in control. Therefore, the average 
run lengths (ARL) to false alarm ( )0 { }E N CH  satisfies ( ) ( )0 0 { }{ } =E N C E SRH H N C , 

and since ( ) ≥SR CN C  one easily obtains the inequality ( )0 { } ≥E N C CH . (Renewal-
theoretic arguments can be applied often to obtain an approximation  

( ) ,0 { } ≈E N C aCH  where a is a constant.) Thus, if a constraint  ( )0 { } ≥E N C BH on 



114 Statistics in the Health Sciences: Theory, Applications, and Computing

the false alarm rate is to be satisfied, choosing =C B (or =C B a/ ) does the job  
(see Pollak, 1987, and Yakir, 1995, for the basic theory).

Alternative approaches do not have this property. When a method is 
based on a sequence of statistics { }Tn  that is an 0H -submartingale when 
the process is in control (such as CUSUM), we follow Brostrom (1997) in 
applying Doob’s decomposition to { }Tn  and extract the martingale com-
ponent. (The anticipating component depends on the past and does not 
contain new information about the future.) We transform the martingale 
component into a Shiryayev–Roberts form. We apply this procedure to 
several examples. Among others, we show that our approach can be used 
to obtain nonparametric Shiryayev–Roberts procedures based on ranks. 
Another application is to the case of estimation of unknown postchange 
parameters.

4.5.1 Motivation

To motivate the general method, consider the following example. Suppose 
that observations , , ...1 2Y Y  are independent, , ..., ~ (0,1)1 1ν−Y Y N  when the 
process is in control, , , ... ~ ( , 1)1 θν ν+Y Y N  when the process is out of control, 
where ν is the change point and θ is unknown. Let νP  and Eν denote the 
probability measure and expectation when the change occurs at ν. The value 
of ν is set to ∞ if no change ever takes place in the sequence of observations. 
Where θ is known, the classical Shiryayev–Roberts procedure would declare 

a change to be in effect if ≥SR Cn
I  for some prespecified threshold C, where

 exp /22

1

∑∑ ( )= θ − θ
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪==

SR Yn
I

i

i k

n

k

n

 (4.3)

(e.g., Pollak, 1985, 1987). When θ  is unknown, it is natural to estimate θ. In 
order to preserve the P∞-martingale structure, Lorden and Pollak (2005) and 

Vexler (2006) propose to replace θ in the kth  term of SRn
I  by /( )

1∑ −
=

−
Y i kj

j k

i
. 

(The same idea appears in Robbins and Siegmund (1973) and Dragalin (1997) 
in a different context.) A criticism of this approach is that foregoing the use 

of ,..., 1Y Yk i−  without ,...,Y Yi n when estimating θ in the kth term is inefficient 
(e.g., Lai, 2001, p. 398).

An alternative is to estimate θ in the kth term of SRn
I by the P kν=  maximum 

likelihood estimator ˆ /( 1), ∑θ = − +
=

Y n kk n j
j k

n
, so that SRn

I becomes

 ∑∑ ( )= θ − − + θ
⎧
⎨
⎪
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⎫
⎬
⎪

⎭⎪
+

==

−

SR Y n kn
I

k n i

i k
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k n

k

n

exp ˆ ( 1) ˆ / 2 1, ,

2

1

1

 (4.4)
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with the convention that ∑ = 0
1

0

 (the k n=  term is mechanically replaced by 

1 in order that 0 ( ) ( )= < ∞∞E SR E SRH n
I

n
I ). Note that , , ...,1( )( )ℑ = σSR Y Yn

I
n n  is a 

∞P -submartingale, for

 exp ˆ ( 1) ˆ /2 1, 1 , 1

2

1

1

∑∑ ( )≥ θ − − + θ
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(because the maximum is attained at ˆ ,θk n), so
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Generally, one can show that applying the maximum likelihood estima-
tion of the unknown postchange parameters to the initial Shiryayev–Roberts 
statistics of the parametric detection schemes leads to the same submartin-
gale property.

Our goal is to transform SRn
I  into SRn  such that ,( )− ℑSR nn n  is a P∞-martin-

gale with zero expectation, in such a manner that relevant information will 
not be lost. Rather than continue with this example, we present a general 
theory.

4.5.2 The Method

We assume that initially we have a series SRn
I{ } of test statistics that is a  

P∞-submartingale. Let 00SRI =  and define recursively

 
( )

( ) ( )=
+

ℑ
= = =

− −

∞ −
W

SR W

E SR
SR SR W W nn

n
I

n

n
I

n
n n

I
n

1

|
, , 0, 1, 2, ...

1 1

1

0  (4.5)

It is clear that ∈ ℑ −1Wn n  and therefore ( )ℑ = +∞ −| 11E SR SRn n n  so that ( )− ℑ,SR nn n  

is a ∞P -martingale with zero expectation. (If ,( )− ℑSR nn
I

n  is a ∞P -martingale 

with zero expectation, then Equation (4.5) provides 1, 1W nn = ≥ .) We will now 
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show that { }−SR nn  is a P∞-martingale transform of the martingale compo-
nent of SRn

I. Towards this end, we present the Doob’s decomposition result, 
representing several notations that appear in this section.

Lemma 4.5.1.

Let Sn be a submartingale with respect to nℑ  then Sn can be uniquely decomposed as 
= +S S Sn n

M
n
P  with the following properties:

S n
M  is a martingale component of Sn (i.e., ,( )ℑS n

M
n  is a martingale);

S n
P  is 1nℑ − -measurable, having the predictable property, 

1
≥ −S Sn

P
n
P  (a.s.), 

1
1

=S P  and |
1 1 1( )− = − ℑ− − −S S E S Sn

P
n
P

n n n .

Now we formulate the widely known definition of martingale transforms. 

If G n
M

 is a martingale with respect to nℑ , then a martingale transform G
n

M
'  

of G n
M

 is given by

 ' ' ,
1 1( )= + −

− −G G a G G
n

M

n

M
n n

M

n

M
 (4.6)

where 1∈ℑ −an n . Such transformations have a long history and interesting 
interpretations in terms of gambling. An interpretation is if we have a fair 
game, we can choose the size and side of our bet at each stage based on the 
prior history and the game will continue to be fair. An association of a sto-
chastic game with a change point detection is presented, for example, by 
Ritov (1990).

Thus, if SR n
M

  is a martingale transform (“transition: martingale- 

martingale”) of SRI

n

M
 ( ∈ℑSR n

M
n , but 1

1

1{ }∉ ℑ ∩⎧
⎨
⎩

⎫
⎬
⎭

−
=

−
SR SRn

M
n

I

k

M

k

n

), then 

this implies that the information in SRn about a change having or not having 

taken place is the same as that contained in SRI

n

M
, which in turn is the same 

as the information contained in the initial sequence { }SRn
I .

Proposition 4.5.1. Let ,( )ℑSRn
I

n  be a nonnegative P∞-submartingale 

00( )=SRI . Then, under P∞-regime,

1. ( )=SR SR Wn n
I

n  is a nonnegative submartingale with respect to nℑ ;

2. SR n
M

 is a martingale transform of SRI

n

M
, where Wn is defined 

by (4.5).



117Martingale Type Statistics and Their Applications

Proof. By applying the definition of ∈ℑ −Wn n 1, we obtain ( )ℑ =∞ − −E SR Wn n n| 1 1  

( ) + ≥− −SR SRn
I

n11 1 hence ( )=SR SR Wn n
I

n  is a nonnegative submartingale with 
respect to ℑn. It now follows from Lemma 4.5.1 that

 .= − = −SR SR SR SR n
n

M
n n

P
n

Therefore,

 1 1,
1 1 1 1( ) ( )− = − − = − −− − − −SR SR SR SR SR W SR W
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M
n n n

I
n n

I
n

where | 11 1 1{ }( ) ( )= ℑ −− − ∞ −SR W E SR Wn
I

n n
I

n n  by the definition of Wn. Conse-
quently,

 | .
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On the other hand, by Lemma 4.5.1 one can show that
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Since 1∈ℑ −Wn n , by definition (4.6) the proof of Proposition 4.5.1 is now com-
plete.

Consider an inverse version of Proposition 4.5.1.

Proposition 4.5.2. Assume ν = ∞ and 1an n∈ℑ −  exists, such that

 ' ' ,
1 1

SR SR a SR SR
n

M

n

M
n

I

n

M I

n

M( )= + −
− −

where ' ∈ℑSR n n  is a submartingale with respect to nℑ  and ( )ℑ =∞ −' | 1E SR n n

+−' 11SR n . Then ' ( )= + ςSR SR Wn n
I

n n, where 1∈ℑ −Wn n  is defined by (4.5), 

,( )ς ℑn n  is a martingale with zero expectation, and nς  is a martingale trans-

form of SRI

n

M
.
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Proof. We have 'SR SR Wn n
I

n n)(= + ς , where 'SR SR Wn n n
I

n n)(ς = − ∈ℑ . Consider 
the conditional expectation
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On the other hand, by the statement of this proposition, ( )ℑ =∞ −' | 1E SR n n  

+−' 11SR n . Therefore, we conclude with | 1 1( )ς ℑ = ς∞ − −E n n n .
From the basic definitions and Lemma 4.5.1 (in a similar manner to the 

proof of Proposition 4.5.1) it follows that
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This completes the proof of Proposition 4.5.2.

Interpretation: We set out to extract the martingale component SRI

n

M
 of 

SRn
I  and to get a martingale transform = −SR SR nn

M
n  of SRI

n

M
 such that 

−SR nn  is a P∞-martingale with zero expectation. However, if we are given 
any 'SR n with the property that ' −SR nn  is a P∞-martingale with zero expec-
tation, then Proposition 4.5.2 states that ' = + ςSR SRn n n  where nς  is a martin-

gale transform of SRI

n

M
. Therefore, note that the information in SRn and in 

'SR n is the same. In other words, from an information point of view, our 

procedure is equivalent to any other procedure based on a sequence SRn
I{ } 

that has the same martingale properties as SRn{ }.
An obvious property of our procedure is:

Corollary 4.5.1. Let ( ) min 1 : ,{ }= ≥ ≥N C n SR Cn  where SRn is defined by 

(4.5). Then ( )E N C C{ } ≥∞ .
Returning to the example of the previous section, we obtain (from 
Equation (4.4)) by a standard calculation:
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and Wn{ }, SRn{ } are obtained from (4.5).

Additional examples:
1. Let the prechange and postchange distributions of the independent 
observations , , ...1 2Y Y  be respectively the standard exponential (i.e., 

, ..., ~ ( ) exp( )1 1 0 = −ν−Y Y f u u ) and the exponential with an unknown parameter 

0θ >  (i.e., , , ... ~ ( ; ) exp( )1 1 θ = θ −θν ν+Y Y f u u ). Therefore, ∑θ = − +
=

n k Yk n j
j k

n
ˆ ( 1)/,  is 

the maximum likelihood estimator and the initial Shiryayev–Roberts 

statistic is
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and { }Wn , SRn{ } are obtained from (4.5).

2. Consider the simple segmented linear regression model

 , 1.( )= θ ≥ ν +ε ≥Y x I i ii i i  (4.7)

where θ is the unknown regression parameter, , 1,x ii ≥  are fixed predictors, 
, 1,iiε ≥  are independent random disturbance terms with standard normal 
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density and I(⋅) is the indicator function. In this case, the maximum likeli-
hood estimator of the unknown parameter is

 ˆ .,
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∑
∑

θ = =

=

Y x

x
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j j
j k

n

j
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n  (4.8)

Since the conditional expectation of the estimator of the likelihood ratio is
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the transformed detection scheme for the model (4.7) has form (4.5), where
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 (4.9)

Note that, if the parameters of a segmented linear regression similar to (4.7), 
under regime P∞  are unknown (e.g., the intercept, under P∞ , is unknown), 
then the observations can be invariantly transformed into the case consid-
ered in this example (e.g., Krieger et al., 2003; Vexler, 2006).

4.5.3 CUSUM versus Shiryayev–Roberts

It is well accepted that the change point detection procedures based on  
Shiryayev–Roberts statistics and the schemes founded on CUSUM statistics 
have almost equivalent optimal statistical properties (e.g., Krieger et al., 2003: 
Section 1). Here we establish an interesting link between the CUSUM and 
Shiryayev–Roberts detection policies.

We assume that prior to a change the observations , ,...1 2Y Y  are iid with 
density 0f . Post-change they are iid with density 1f . The simple CUSUM pro-
cedure stops at
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and the simple Shiryayev–Roberts procedure stops at
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In accordance with the proposed methodology, we present the following 
proposition.

Proposition 4.5.3. The P∞-martingale component SR n
M

 of the Shiryayev-

Roberts statistic SRn is a martingale transform of Λ n
M

, which is the  
P∞-martingale component of the CUSUM statistic nΛ  (and vice versa).

Proof. We have
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  (4.10)

Since { }ℑ =∞ −E f Y f Yn n n( )/ ( )| 11 0 1  and 1 1Λ ∈ℑ− −n n , nΛ  is a P∞-submartingale 
with respect to nℑ . By applying Lemma 4.5.1, we obtain the P∞-martingale 
component of nΛ  in the form

 max ,1 .1 1∑{ }( )Λ = Λ − Λ − Λ− −n

M
n k k

k

n

Hence, by (4.10)
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On the other hand, it is clear that SRn  is a P∞-submartingale with respect to 

nℑ  and
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By virtue of ( ) ( )= Λ + ∈ ℑ− − −max ,1 / 11 1 1a SRn n n n  (or ( ) ( )= + Λ ∈ ℑ− − −1 / max , 11 1 1a SRn n n n ), 
the proof of Proposition 4.5.3 now follows from definition (4.6).

Thus, following our methodology, we can transform the CUSUM method 
into a martingale-based procedure (i.e., Equation (4.5) with ' = ΛSR n n). Here
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where max ,1 |1 1( )( )Λ = Λ ℑ− ∞ −En n n . Certainly, in a similar manner to 

Corollary 4.5.1, the stopping time '( ) min 1 : '{ }= ≥ ≥N C n SR Cn  satisfies 

'( ){ } ≥∞E N C C. Moreover, we have the following proposition.

Proposition 4.5.4. The classical Shiryayev–Roberts statistic SRn is the 
transformed CUSUM statistic (4.11) (and vice versa).

Proof. By substituting (4.10) in (4.11), we obtain
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the proof of Proposition 4.5.4 is now complete.
What this means is that the CUSUM scheme and the Shiryayev–Roberts 

policy are based on the same information. The difference between them 
stems from their different predictable components: that of Shiryayev–Roberts 

is n whereas that of CUSUM is max ,11 1
1

∑ { }( )Λ − Λ− −
=

k k
k

n
. In other words, 

CUSUM makes use of superfluous information contained in the observations. 
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Note that max ,11 1
1

∑ { }( )Λ − Λ− −
=

k k
k

n
 is increasing prior to a change, shorten-

ing the ARL to false alarm, but its increase is approximately zero postchange, 
so that it does not contribute toward shortening the average delay to detec-
tion. This explains why Shiryayev–Roberts is somewhat better than CUSUM.

4.5.4 A Nonparametric Example*

Consider the sequential change point problem where nothing is known 
about both the prechange and postchange distributions other than that they 
are continuous. In this case, an obvious approach would be to base surveil-
lance on the sequence of sequential ranks of the observations. Several proce-
dures have been constructed for this problem, e.g., Gordon and Pollak (1995). 
Here we consider a problem of a slightly different nature. Suppose one feels 

that the prechange observations may be 0, 2N )( σ  and the postchange obser-

vations , 2N )(θσ σ  ( ,θ σ are possibly unknown), but is not sure of this. If a 
nonparametric method could be constructed in a way that will be efficient if 

the observations were truly 0, 2N )( σ  and , 2N )(θσ σ  as above, one may well 
prefer the nonparametric scheme, as it promises validity of ARL to false 
alarm even if the normality assumption is violated. It is this problem that we 
address here.

Formally, let , , ...1 2Y Y  be independent random variables. When the process is 
in control, , 1Y ii{ }≥  are iid. If the process goes out of control at time ν, then 

,Y ii{ }≥ ν  are iid and have a distribution deferent from the in-control state. Define

 , /( 1), ( ), , ..., ,,
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,
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1∑ ( ) ( )= ≤ ρ = + = Φ ρ ℑ = σ ρ ρ
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−r I Y Y r n Zj n i j
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where 1Φ−  is the inverse of the standard normal distribution function. Note 

that the in-control distribution of the sequence , 1ii{ }ρ ≥  does not depend on 
the distribution of the Y ’s as long as it is continuous, and ,...,1 nρ ρ  are inde-
pendent. Clearly, under P∞, nρ  converges in distribution to U[0,1] and there-
fore (0,1)Z Nn → , as n→∞. Fix 0θ ≠  and define recursively
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 (4.12)

(Note that if , , ...1 2Z Z  were exactly standard normal, then (4.12) is the same as  
(4.3).) Applying our methodology, letting 0,0W =θ , define recursively

* This subsection was prepared by Professor Moshe Pollak.
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 (4.13)

 ( ) min 1 : ,{ }= ≥ ≥θ θN C n SR Cn

and therefore ( ){ } ≥∞ θE N C C.

Remark 1. For the sake of clarity, the example above was developed to give a 
robust detection method if one believes the observations to be approximately 
normal (and one is on guard against a change of mean). This method can be 
applied to other families of distributions in a similar manner.

Remark 2. Instead of fixing θ, one can fix a prior G for θ, and define the Bayes 
factor type procedure
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Note that if G is a conjugate prior (e.g., (., .)G N= ), then the integral in the 
denominator of Wn can be calculated explicitly. An alternative approach to Equa-

tion (4.14) is simply to define ( ),SR SR dGn n∫= θθ . However, the calculation of 

( ),SR dGn∫ θθ  involves an arduous numerical integration (after every observation).

4.5.5 Monte Carlo Simulation Study

Proposed transformation versus application of nonanticipating estimation. 
Let the simulated samples satisfy (4.7) with sin( )x ii = . In accordance with 
Krieger et al. (2003) and Lorden and Pollak (2005), denote the stopping rule

 ( ) min 1 : exp
1

2
ˆ 1

2
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based on the application of the nonanticipating estimation ˆ
, 1{ }θ −k i , where the 

maximum likelihood estimator 4.8 defines ˆ
,θk l  ( ˆ 0,k lθ = , if <l k ). Alterna-

tively, let
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 { }= ≥ ≥( ) min 1 : ,(2)N A n SR An

where SRn is defined by (4.5) with (4.9).
We ran 15,000 repetitions of the model for each procedure and at each 

point A = 50, 75, 100, 125,…. Figure 4.3 depicts the Monte Carlo averages of 
( )(1)N A  and ( )(2)N A  in this case, where every simulated observation is from 

(0,1)N  (i.e., ν = ∞ and this simulation run is independent of θ).

It appears that { }∞E N A A( ) /(1)  behaves nonconstantly, for the range of A. 

Note that, in the case where 1xi = , we have { }⎡⎣ ⎤⎦ =
→∞

∞E N A A const
A
lim ( ) /(1)  (see 

Lorden and Pollak, 2005). Figure 4.4 corresponds to the definition of 
the model (4.7), where 1ν =  and θ = 1/4,1/2.

In accordance with Figures 4.3 and 4.4, the detecting strategy 

( )(2)N A  tends to be a quicker detecting scheme (with estimated 

, : ( ) ( )1 2
(1)

1
(2)

1�{ } { }∞ ∞A A E N A E N A ). Moreover, in this experiment ( )1
(1){ }E N A  

is not a linear function of log( )A , as it usually is for parametric change point 
detections.
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FIGURE 4.3

Comparison between the Monte Carlo estimator of { }∞E N A A( ) /(1)  (�
�) and the Monte Carlo 

estimator of { }∞E N A A( ) /(2)  (—∘—). The curve (--∘--) images the Monte Carlo estimator of 

{ } { }∞ ∞E N A E N A( ) / ( )(1) (2) .
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Modification of CUSUM. Next, we investigate one conclusion of Section 4.5.3 
regarding the CUSUM detection scheme. In particular, Section 4.5.3 suggests 
that the stopping rule
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is somewhat better than the classical CUSUM stopping time
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FIGURE 4.4

Comparison between the Monte Carlo estimator of { }E N A A( ) /(5 log( ))1
(1)  (�
�) and the 

Monte Carlo estimator of { }E N A A( ) /(5 log( ))1
(2)  (—∘—). The curve (- - - -) images the Monte 

Carlo estimator of { } { }E N A E N A( ) / ( )1
(1)

1
(2) . The graphs (a) and (b) correspond to the model 

(4.7), where θ = 1/4,1/2 , respectively.
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We executed 15,000 repetitions of independent observations 
,..., ~ (0,1)1 1 0Y Y f N=ν− ; , ... ~ ( 0.5,1)1Y f N= θ =ν  for each Monte Carlo simu-

lation. In the case of ν = ∞ and A = 50, 100, 150, 200, 250, the Monte Carlo 

estimator of { }∞E N A A'( ) /  behaves approximately constantly and we evalu-

ate ( ) / 768.2(1)E N A A{ } ≈∞ . At that rate, we can conclude with 

{ } ≈∞E M A A( ) / 13.8. Figure 4.5 illustrates the accuracy of the considered con-
clusion of Section 4.5.3.
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FIGURE 4.5
The curved lines (—∘—) and (——) denote the Monte Carlo estimators of '( )50E N A{ } and 

( )50E M A{ }, respectively.
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Nonparametric procedure. Here, by basing on simulations of the process 
{ , ..., ~ (0, 1)1 1Y Y Nν− ; , ... ~ ( 0.5, 1)1Y f N= θ =ν }, we evaluate the efficiency of the 

policy (4.13). We employ the loss function ( ), ( )L N A E N A{( )ν = − νν | ( )N A }≥ ν
regarding the stopping time ( )N Aθ  from (4.13) and the optimal stopping time 

( ) min 1 :N A n SR Ao n
I{ }= ≥ ≥ , where SRn

I is given by (4.3). Applying the theo-
retical results by Pollak (1987) and Yakir (1995) leads to the estimated 

( ) 1.3316E N A Ao{ }∞ � . Running 15,000 repetitions of ( )N Aθ  at each point A = 50, 
75, 100,…, 550 (with ν = ∞) shows that the Monte Carlo estimator of { }∞ θE N A A( ) /  
behaves constantly and { }∞ θ �E N A A( ) / 1.3301.

Fixing B = 350 and B = 550, we calculate the Monte Carlo estimators of 

( )νL N Bo( /1.3316),  and ( )νθL N B( /1.3301),  based on 15,000 repetitions of 
N Bo( /1.3316) and θN B( /1.3301) at each point ν = 30, 40, 50,…. We depict the 
results of these simulations in Figure 4.6.

From these results we conclude that the proposed nonparametric method 
is asymptotically (as A → ∞ and ν → ∞) optimal in the considered case.
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FIGURE 4.6
The curved lines (—∘—) and (⋯⋅) denote the Monte Carlo estimators of ( )νθ=L N B( /1.3301),0.5  

and ( )νL N Bo( /1.3316), , respectively, plotted against ν.
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5
Bayes Factor

5.1 Introduction

Over the years statistical science has developed two schools of thought as it 
applies to statistical inference. One school is termed frequentist methodol-
ogy and the other school of thought is termed Bayesian methodology. There 
has been a decades-long debate between both schools of thought on the opti-
mality and appropriateness of each other’s approaches. The fundamental 
difference between the two schools of thought is philosophical in nature 
regarding the definition of probability, which ultimately one could argue is 
axiomatic in nature.

The frequentist approach denotes probability in terms of long run aver-
ages, e.g., the probability of getting heads when flipping a coin infinitely 
many times would be ½ given a fair coin. Inference within the frequentist 
context is based on the assumption that a given experiment is one realization 
of an experiment that could be repeated infinitely many times, e.g., the notion 
of the Type I error rate discussed earlier is that if we were to repeat the same 
experiment infinitely many times we would falsely reject the null hypothesis 
a fixed percentage of the time.

The Bayesian approach defines probability as a measure of an individu-
al’s objective view of scientific truth based on his or her current state of 
knowledge. The state of knowledge, given as a probability measure, is then 
updated through new observations. The Bayesian approach to inference is 
appealing as it treats uncertainty probabilistically through conditional 
distributions. In this framework, it is assumed that a priori information 
regarding the parameters of interest is available in order to weight the cor-
responding likelihood functions toward the prior beliefs via the use of Bayes 
theorem.

Although Bayesian procedures are increasingly popular, expressing accu-
rate prior information can be difficult, particularly for nonstatisticians and/
or in a multidimensional setting. In practice one may be tempted to use the 
underlying data in order to help determine the prior through estimation of 
the prior information. This mixed approach is usually referred to as empiri-
cal Bayes in the literature (e.g., Carlin and Louis, 2011).
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We take the approach that the Bayesian, empirical Bayesian, and frequen-
tist methods are useful and that in general there should not be much dis-
agreement between the scientific conclusions that are drawn in the practical 
setting. Our ultimate goal is to provide a roadmap for tools that are efficient 
in a given setting. In general, Bayesian approaches are more computationally 
intensive than frequentist approaches. However, due to the advances in com-
puting power, Bayesian methods have emerged as an increasingly effective 
and practical alternative to the corresponding frequentist methods. Perhaps, 
empirical Bayes methods somewhat bridge the gap between pure Bayesian 
and frequentist approaches.

This chapter provides a basic introduction to the Bayesian view on statisti-
cal testing strategies with a focus on Bayes factor–type principles.

As an introduction to the Bayesian approach, in contrast to frequentist meth-
ods, first consider the simple hypothesis test :0 0θ = θH  versus :1 1θ = θH , where 
the parameters 0θ  and 1θ  are known. Given an observed random sample 

{ ,..., }1=X X Xn , we can then construct the likelihood ratio test statistic 
( | ) ( | )1 0= θ θLR f X f X  for the purpose of determining which hypothesis is 

more probable. (Although, in previous chapters, we used the notation ( ; )θf X  
for displaying density functions, in this chapter we also state ( | )θf X  as the 
density notation in order to be consistent with the Bayesian aspect that — “the 
data distribution is conditional on the parameter, where the parameter is a 
random variable with a prior distribution.”) The decision-making procedure 
is to reject 0H  for large values of LR. In this case, the decision-making rule 
based on the likelihood ratio test is uniformly most powerful. Although this 
classical hypothesis testing approach has a long and celebrated history in the 
statistical literature and continues to be a favorite of practitioners, it can be 
applied straightforwardly only in the case of simple null and alternative 
hypotheses, i.e., when the parameter under the alternative hypothesis, 1θ , is 
known.

Various practical hypothesis testing problems involve scenarios where the 
parameter under the alternative 1θ  is unknown, e.g., testing the composite 
hypothesis :0 0θ = θH  versus :1 0θ ≠ θH . In general, when the alternative 
parameter is unknown, the parametric likelihood ratio test is not applicable, 
since it is not well defined. When a hypothesis is composite, Neyman and 
Pearson suggested replacing the density at a single parameter value with the 
maximum of the density over all parameters in that hypothesis. As a result 
of this groundbreaking theory the maximum likelihood ratio test became a 
key method in statistical inference (see Chapter 3).

It should be noted that several criticisms pertaining to the maximum like-
lihood ratio test may be made. First, in a decision-making process, we do not 
generally need to estimate the unknown parameters under 0H  or 1H . We just 
need to make a binary decision regarding whether to reject or not to reject 
the null hypothesis. Another criticism is that in practice we rely on the func-

tion ( |ˆ)θf X  in place of ( | )θf X , which technically does not yield a likelihood 
function, i.e., it is not a proper density function. Therefore, the maximum 
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likelihood ratio test may lose efficiency as compared to the likelihood ratio 
test of interest (see details in Chapters 3 and 4).

Alternatively, one can provide testing procedures by substituting the 
unknown alternative parameter by variables that do not depend on the 
observed data (see details in Chapter 4). Such approaches can be extended 
to provide test procedures within a Bayes factor type framework. We can 
integrate test statistics through variables that represent the unknown 
parameters with respect to a function commonly called the prior distribu-
tion. This approach can be generalized to more complicated hypotheses and 
models.

A formal Bayesian concept for analyzing the collected data X  involves the 
specification of a prior distribution for all parameters of interest, say θ, 
denoted by ( )π θ , and a distribution for X , denoted by Pr( | )θX . Then the pos-
terior distribution of θ given the data X  is

 Pr( | )
Pr( | ) ( )

Pr( | ) ( )∫
θ = θ π θ

θ π θ θ
X

X

X d
,

which provides a basis for performing formal Bayesian analysis. Note that 
maximum likelihood estimation (Chapter 3) in light of the posterior distri-
bution function, where Pr( | )θX  is expressed using the likelihood function 
based on X , has a simple interpretation as the mode of the posterior distribu-
tion, representing a value of the parameter θ that is “most likely” to have 
produced the data.

Consider an interesting example to illustrate advantages of the Bayesian 
methodology. Assume we observe a sample { ,..., }1=X X Xn  of iid data points 

from a density function | ,)( θf x  where θ is the parameter of interest. In order 
to define the posterior density

 ( | )
( | ) ( )

( | ) ( )

1

1

∏
∏∫

θ =
θ π θ

θ π θ θ
=

=

g X
f X

f X d

i
i

n

i
i

n ,

a parametric form of | )( θf x  should be known. Let us relax this requirement 
by assuming that the distribution function F of 1X  is unknown, but 

,...,1{ }∈F F FT , where ,...,1F FT  have known parametric forms and correspond 
to density functions ,...,1f fT, respectively. Then the posterior joint density 
function can be written as

 ( , | )
( | ) ( )

( | ) ( )

1

11

∏
∏∫∑

θ =
θ π θ

θ π θ θ
=

==

g k X
f X G

G f X d

k i
i

n

k

k k i
i

n

k

T ,
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where Gk denotes a prior probability weight regarding the event =F Fk . 

Suppose that, for simplicity, Exp(1/ ),N( ,1){∈ θ θF  and then using the poste-
rior density function we can calculate the posterior probabilities 1p , 2p , 3p , 

and 4p  of 0.1,0.2 , 1{ })(θ ∈ =k , 0.1,0.2 , 2{ })(θ ∈ =k , 0.2,0.25 , 1{ })(θ ∈ =k  and 

0.2,0.25 , 2{ })(θ ∈ =k , respectively. Assume that 1 2>p p  and 3 4<p p . Thus one 

can conclude that when 0.1,0.2)(θ ∈  we probably have the data from an expo-

nential distribution, whereas when 0.2,0.25)(θ ∈  we probably have the data 
from a normal distribution. For different intervals of θ values we can “pre-
fer” different forms of data distributions. In contrast, the common paramet-
ric frequentist approach suggests to fix one distribution function, fitting the 
data distribution, and to evaluate different values of θ.

We suggest that the reader who is interested in further details regarding 
Bayesian theory and its applications to consult the essential works of Berger 
(1985) and Carlin and Louis (2011).

In the following sections, we describe and explore topics regarding the 
use of Bayes factor principles. Under Bayes factor type statistical 
decision-making mechanisms, external information is incorporated into 
the evaluation of evidence about a hypothesis and functions that represent 
possible parameter values under the alternative hypothesis are considered. 
These functions can be interpreted in light of our current state of knowl-
edge, such as belief where we would like to be most powerful with regard 
to the external, or prior information on the parameter of interest under the 
alternative hypothesis. For example, a physician may expect the median 
survival rate for a new compound to fall in a certain range with a given 
degree of probability. Without loss of generality, we focus on basic scenar-
ios of testing that can be easily extended to more complicated situations of 
statistical decision-making procedures. In Section 5.2 we show an optimal-
ity property relative to using Bayes factor statistics for testing statistical 
hypotheses. In Section 5.3 we introduce Bayes factor principles in general 
scenarios, including considerations of the relevant computational aspects, 
asymptotic approximations, prior selection issues and we provide brief 
illustrations. In Section 5.4 we provide some remarks regarding a relation-
ship between Bayesian (Bayes factor) and frequentist (p-values) strategies 
for statistical testing.

5.2 Integrated Most Powerful Tests

In Section 4.4.1.2 we studied the simple representative method, which can be 
easily extended by integrating test statistics through variables that represent 
unknown parameters with respect to a function that links the corresponding 
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weights to the variables. This approach can be applied to develop Bayes 
factor type decision-making mechanisms that will be described formally 
below.

Without loss of generality, assume for the purpose of explanation that we 
have a sample { ,..., }1=X X Xn  and are interested in the composite hypothesis 

:0 0θ = θH  versus :1 0θ ≠ θH . Frequentist statistics are operationalized solely 
by the use of sample information (the data obtained from the statistical 
investigation) in terms of making inferences about θ, without in general 
employing prior knowledge of the parameter space (i.e., the set of all possible 
values of the unknown parameter). On the other hand, in decision-making 
processes attempts are made to combine the sample information with other 
relevant facets of the problem in order to make an optimal decision.

Typically, two sorts of external information are relevant to Bayesian 
methodologies. The first source of information is a set of rules regarding 
the possible cost of any given decision. Usually this information, referred 
to as the loss function, can be quantified by determining the incurred loss 
for each possible decision as a function of θ. The second source of informa-
tion can be termed prior information, that is, prior belief (weights) on the 
possible values of θ being true under the alternative hypothesis across the 
parameter space. This is information about the parameter of interest, θ, 
that is obtained from sources other than the statistical investigation, e.g., 
information comes from past experience about similar situations involving 
a similar parameter of interest; see Berger (1980) for more details in terms 
of eliciting prior information. In the clinical trial setting, one may for 
example gain insight into the behavior of the process in the early phases of 
clinical investigations and can then apply this information to the later 
phases of investigation.

More formally, let ( )π θ  represent our level of belief (probability based 
weights) for the likely values of θ under the alternative hypothesis satisfying 

( ) 1∫ π θ θ =d . One can extend the technique of Section 4.4.1.2 in order to pro-

pose the test statistic

 
( ,..., | ) ( )

( ,..., | )

1

1 0

1

0

∫=
θ π θ θ

θ
B

f X X d

f X X
n

H n

H n
,

where ,1 0f fH H  denote the joint density functions of , ,1 …{ }X Xn  under 1H  and 

0H  respectively. The decision rule is to reject the null hypothesis for large 
values of the test statistic.

It turns out that , , ...,1 )( )(ℑ = σB X Xn n n  is an 0H -martingale, since
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Thus, according to Section 4.4.1, we can anticipate that the test statistic Bn can 
be optimal. This is displayed in the following result: the decision rule based 
on Bn provides the integrated most powerful test with respect to the func-
tion ( )π θ .

Proof. Taking into account the inequality ( ) ( ) 0{ }− ≥ − δ ≥A B I A B , where δ 
could be either 0 or 1, described in Section 3.4, we define =A Bn and =B C (C 
is a test threshold: the event { }>B Cn  implies one should reject 0H ), and δ 
represents a rejection rule for any test statistic based on the observations; if 

1δ =  we reject the null hypothesis. Then it follows that

 
( ) ( ) ( ),

( ) Pr ( ) Pr 1 .

0 0 0

0 0 0 0 ( )
{ } { }

{ } ( )

≥ − ≥ ≥ δ − δ

≥ − ≥ ≥ δ − δ =

E B I B C CE I B C E B C

E B I B C C B C E B C

H n n H n H n

H n n H n H n H

Since we control the Type I error rate of the tests to be Pr Test rejects |0 0{ } = αH H , 
we have

 ( ) ( ).0 0{ }≥ ≥ δE B I B C E BH n n H n
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This concludes with
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completing the proof.
Note that the definition of the test statistic Bn corresponding to the point null 

hypothesis 0θ = θ  is widely addressed in the Bayesian statistical literature, e.g., 
Berger (1985, pp. 148–150, Equation 4.15), Bernardo and Smith (1994, pp. 391–
392), and Kass (1993).

Following this result, we can reconsider ( )π θ  with respect to the area under 
which it would yield the most powerful decision-making rule. For example, 
if ( ) { [ , ]}/( ),1 2 2 1 2 1π θ = θ ∈ − >I G G G G G G , where { }⋅I  is the indicator function, 
then Bn will provide the integrated most powerful test with respect to the 
interval [ , ]1 2G G . The values of 1G  and 2G  can be set up based on the practical 
meaning of the parameter θ under the alternative hypothesis.

Remark. The function ( )π θ  can be chosen in a conservative fashion, often-
times known as a flat prior, or it can be chosen in an anti-conservative fash-
ion such that we put more weight on a narrow range of values for θ or it can 
be chosen anywhere between. The benefit of the anti-conservative approach 
is that if our prior belief about the location of θ is corroborated by the 
observed data values we have a very powerful decision rule. In general, the 
following principles can be considered: (1) the function ( )π θ  depicts our 
belief on how good values of θ represent the unknown parameter, weight-
ing the θ values over the corresponding range of the parameter; (2) ( )π θ  
provides a functional form of the prior information; and (3) the function 

( )π θ  can be chosen depending on the area under which we would like to 
obtain the most powerful decision rule by virtue of the result regarding the 
integrated most powerful property of the Bayes factor based test statistics 
shown above. We also refer the reader to Section 5.3.2 for more details 
regarding the choice of ( )π θ .
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5.3 Bayes Factor

The Bayesian approach for hypothesis testing was developed by Jeffreys 
(1935, 1961) as a major part of his program for scientific theory. A large 
statistical literature has been devoted to the development of Bayesian meth-
ods on various testing problems. The Bayes factor, as the centerpiece in 
Bayesian evaluation of evidence, closely integrates human thought pro-
cesses of decision-making mechanisms into formal statistical tests. In a 
probabilistic manner, the Bayes factor efficiently combines information 
about a parameter based on data (or likelihood) with prior knowledge 
about the parameter.

Assume that the data, X , have arisen from one of the two hypotheses 0H  
and 1H  according to a probability density Pr( | )0X H  or Pr( | )1X H . Given 
a  priori (prior) probabilities Pr( )0H  and Pr( ) 1 Pr( )1 0= −H H , the data produce 
a posteriori (posterior) probabilities of the form Pr( | )0H X  and 

−H X H XPr( | ) =1 Pr( | )1 0 . Based on Bayes theorem, we then have

 
Pr( | )

Pr( | )
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Pr( | )

Pr( )

Pr( )

1

0

1

0

1

0

=H X
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H
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The transformation from the prior probability to the posterior probability is 
simply multiplication by

 
Pr( | )

Pr( | )
,10

1

0

=B
X H
X H

 (5.1)

which is named the Bayes factor. Therefore, posterior odds (odds = proba-
bility/ (1−probability)) is the product of the Bayes factor and the prior odds. 
In other words, the Bayes factor is the ratio of the posterior odds of 1H  to its 
prior odds, regardless of the value of the prior odds. When there are unknown 
parameters under either or both of the hypotheses, the densities Pr( | )X Hk  
(( 0,1)=k ) can be obtained by integrating (not maximizing) over the param-
eter space, i.e.,

 Pr( | ) Pr( | , ) ( | ) , 0,1∫= θ π θ θ =X H X H H d kk k k k k k ,

where θk is the parameter under Hk , ( | )π θ Hk k  is its prior density, and 
Pr( | , )θX Hk k  is the probability density of X , given the value of θk, or the like-
lihood function of θk. Here θk may be a vector, and in what follows we will 
denote its dimension by dk. When multiple hypotheses are involved, we 
denote Bjk as the Bayes factor for Hk  versus H j. In this case, as a common 
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practice, one of the hypotheses is considered the null and is denoted by 0H . 
Kass and Raftery’s (1995) outstanding paper provided helpful details related 
to the Bayes factor mechanisms.

5.3.1 The Computation of Bayes Factors

Bayes factors involve computation of integrals usually solved via numerical 
methods. Many integration techniques have been adapted to problems of 
Bayesian inference, including the computation of Bayes factors.

Define the density (integral) in the numerator or the denominator of the 
Bayes factor described in Equation (5.1) as

 Pr( | ) Pr( | , ) ( | )∫= = θ π θ θI X H X H H d .

For simplicity and for ease of exposition, the subscript k ( 0,1=k ) as the hypo-
thesis indicator is eliminated in the notation H  here.

In some cases, the density (integral) I may be evaluated analytically. For 
example, an exact analytic evaluation of the integral I is possible for expo-
nential family distributions with conjugate priors, including normal linear 
models (DeGroot, 2005; Zellner, 1996). Exact analytic evaluation is best in the 
sense of accuracy and computational efficiency, but it is only feasible for a 
narrow class of models.

More often, numerical integration, also called “quadrature,” is required 
when the analytic evaluation of the integral I  is intractable. Generally, 
most relevant software is inefficient and of little use for the computation of 
these integrals. One reason is that when sample sizes are moderate or 
large, the integrand becomes highly peaked around its maximum, which 
may be found more efficiently by other techniques. In this instance, gen-
eral purpose quadrature methods that do not incorporate knowledge of 
the likely maximum are likely to have difficulty finding the region where 
the integrand mass is accumulating. In order to demonstrate this intui-
tively, we first show that an important approximation of the log-likelihood 
function is based on a quadratic function of the parameter, e.g., θ. We do 
not attempt a general proof but provide a brief outline in the unidimen-
sional case. Suppose the log-likelihood function ( )θl  is three times differ-
entiable. Informally, consider a Taylor approximation to the log-likelihood 
function ( )θl  of second order around the maximum likelihood estimator 
(MLE) θ̂, that is,

 ˆ ( ˆ) ˆ ( ˆ)

2!
ˆ .

2( ) ( ) ( )( )θ ≈ θ + θ − θ ′ θ + θ − θ ′′ θl l l l
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Note that at the MLE θ̂, the first derivative of the log-likelihood function 

(ˆ) 0′ θ =l . Thus, in the neighborhood of the MLE θ̂, the log-likelihood function 

)(θl  can be expressed in the form

 ( ) ( )( )θ ≈ θ + θ − θ ′′ θˆ ( ˆ)

2!
ˆ .

2

l l l

(We required that ''' )(θl  exists, since the remainder term of the approximation 
above consists of a '''l  component.) The following example provides some 
intuition about the quadratic approximation of the log-likelihood function.

Example

Let { , ..., }1=X X Xn  denote a random sample from a gamma distribution 
with unknown shape parameter θ and known scale para meter 0κ . The 
 density function of the gamma distribution is  

( )θ κ =; , 0f x − κ Γ θ κθ− θexp( ) ( ( ) )1
0 0x x , where the gamma function 

( ) exp( )1

0∫Γ θ = −θ−
∞

t t dt. The log-likelihood function of θ is
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The first and the second derivatives of the log-likelihood function are
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respectively. In this case, there is no closed-form solution of the MLE of 

the shape parameter θ, which can be found by solving (ˆ) 0′ θ =l  numeri-
cally. Correspondingly, the value of the second derivative of the log- 

likelihood function at the MLE ˆ)(′′ θl  can be computed. Figure 5.1 presents 

the plot of log-likelihood (solid line) and its quadratic approximation 
(dashed line) versus values of the shape parameter θ based on samples of 
sample sizes 10, 25, 35, 50=n  from a gamma distribution with the true 
shape parameter of 20θ = θ =  and a known scale parameter 20κ = . It is 
obvious from Figure 5.1 that as the sample size n increases, the quadratic 
approximation to the log-likelihood function ( )θl  performs better in the 
neighborhood of the MLE of θ.

Implementation of Figure 5.1 is shown in the following R code:

> n.seq<-c(10,25,35,50)
> N<-max(n.seq)
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> shape0<-2
> scale0<-2
> X<-rgamma(N,shape=shape0,scale = scale0)
>
> #  Quadratic approximation to the log-likelihood function
> par(mar=c(3.5, 4, 3.5, 1),mfrow=c(2,2),mgp=c(2,1,0))
> for (n in n.seq){
+   x<-X[sample(1:N,n,replace=FALSE)]
+   # log-likelihood as a function of the shape parameter theta
+   loglike<-function(theta) (theta-1)*sum(log(x))-n*log(gamma(theta))-n*theta 
*log(scale0)-sum(x)/scale0
+   neg.loglike<-function(theta)-loglike(theta)
+
+   # the first derivative of loglikelihoodlog
+   loglike.D<-function(theta) sum(log(x)) - n*digamma(theta)-n*log(scale0)
+   # the second derivative of log-likelihood
+   loglike.DD<-function(theta) -n*trigamma(theta)
+
+   # one-dimensional optimization that maximize log-likelihood with respect to 
the shape parameter
+   init<-mean(x)^2/var(x)  # set initial value
+   theta.mle<-optim(init,neg.loglike,method="L-BFGS-B", lower=init-6*(-loglike.
DD(init)^(-1/2))/sqrt(n), upper=init+6*(-loglike.DD(init)^(-1/2))/sqrt(n))$par
+
+   loglike.DD.mle <- loglike.DD(theta.mle) # second derivative at MLE
+
+   # approximation of the log-likelihood
+   loglike.est<-function(theta) loglike(theta.mle)+loglike.DD.mle*((theta-theta.
mle)^2)/2
+
+   # plot: the plotting limit of x-axis
+   tc<-theta.mle
+   rg<-6*((-loglike.DD.mle)^(-1/2) )/sqrt(n)  # half range
+
+   # plot the true log-likehood
+   plot(Vectorize(loglike),c(tc-rg,tc+rg),xlim=c(tc-rg,tc+rg),type="l",lty=1,
lwd=2,cex.lab=1.2,xlab=expression(theta),ylab=expression(paste("Log-likeli-
hood( ",theta,")")), main=paste0("n=",n))
+   # plot the approximation to the log-likehood
+   curve(loglike.est,from=tc-rg,to=tc+rg,type="l",lty=2,lwd=2,add=TRUE,col= 
2)
+   lines(c(theta.mle,theta.mle), c(-1e+5,loglike(theta.mle)),lty=3)
+ }

>

It can be easily shown that the log-likelihood function ( )θl  is highly 
peaked near the MLE θ̂, e.g., in the case of large samples. In such cases, the 
posterior density function Pr( | )θ X  is highly peaked about its maximum �θ, 
that is, the posterior mode (“generalized MLE”), at which the log posterior 
is maximized and has slope zero. Assume that �θ exists and the prior ( )π θ  
(positive), as well as the log-likelihood function ( )θl , are three times dif-
ferentiable near the posterior mode �θ. Then the posterior density Pr( | )θ X  
for a large sample size n can be approximated by a normal distribution 
with mean �θ and covariance matrix ( ( )) 1� � �Σ = θ −lI , where the “generalized” 
observed Fisher information matrix � � � �I H( ) ( )θ = − θl l , i.e., minus the Hessian 
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matrix (second derivative matrix) of the log-posterior evaluated at �θ. Con-
sequently, in such cases, for relatively large sample size n, the Bayes factor 
is approximately equivalent to the maximum likelihood ratio (for details, 
see the analysis shown below). In addition, the asymptotic distribution of 
the posterior mode depends on the Fisher information and not on the prior 
(Le Cam, 1986). Intuitively and consistent with the Bayesian concept, when 
the sample size n is relatively large, the impact of prior information has 
less effect on the form of the Bayes factor, i.e., large amounts of data mini-
mize the weights of the prior knowledge in terms of the actual behavior of 
the likelihood function, since large data provide so much information that 
we do not need any prior knowledge.

For ease of exposition, and in an intuitive manner, we outline the proof of 
the normal approximation, considering a unidimensional case. Denote the 
log nonnormalized posterior

 �( ) log( ( )), where ( ) Pr( | , ) ( | ).θ = θ θ = θ π θl h h X H H
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FIGURE 5.1
The plot of log-likelihood (solid line) and its quadratic approximation (dashed line) versus the 

shape parameter θ based on samples of sizes 10, 25, 35, 50=n  from a gamma distribution with 

the true shape parameter of 20θ = θ =  and the known scale parameter 2.
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Similar to the way of obtaining the approximation to the log-likelihood 

function, applying a Taylor expansion of ( )� θl  of second order at the posterior 

mode �θ, we have

 � � � � � �Pr( | ) Pr( | , ) ( | ) exp( ( )) exp{ ( ) ( )( ) 2},2θ ∝ θ π θ = θ ≈ θ + ′′ θ θ − θX X H H l l l

where ∝ represents “proportionality.” Note that the posterior mode always 
lies between the peak of the prior and that of the likelihood, because it com-
bines information from the prior density and the likelihood. This posterior 
density approximation technique is often referred to as the modal approxi-
mation because θ is estimated by the posterior mode.

For relatively large samples the choice of the prior density is generally not 
that relevant, and in fact the prior ( )π θ  might be ignored in the above 
derivation. Generally speaking, relatively large data provide so much 
information that we do not need any prior knowledge. In such cases, the 

posterior mode �θ is replaced by the MLE θ̂ and the generalized observed 

Fisher information is replaced by the observed Fisher information (ˆ)− ′′ θl . 

Then ( )( ) ( )/ ˆ ( )/ ~2 1/2
2

1/2
2� � � � � � � { }{ } )()(′′ θ θ − θ = θ − θ ′′ θ θ − θ ′′ θl n l n n l n Normal, pro-

vided that θ is a true fixed value of the parameter (see Chapter 3). In this 

scenario, since �θ maximizes ( )� θl , i.e., '( ) 0� �θ =l , the Taylor argument applied to 
'( )� �θl  shows that

 � � �
�

�( ){ }( )=
θ

θ = θ + π θ + θ − θ
θ

θ θ =
θ=θ θ=θ θ=θ

d
d

l l
d
d

d
d

l l0 ( ) '(ˆ) log ( ) ˆ ( ) , with '(ˆ) 0
ˆ

2

2

and then

 � �
�{ }( )θ = θ − π θ

⎡

⎣
⎢

⎤

⎦
⎥ θ

θ
⎧
⎨
⎩

⎫
⎬
⎭

= θ +
θ=θ θ=θ

−
d
d

d
d

l op
ˆ log ( ) ( ) ˆ (1)

ˆ

2

2

1

,

where ˆ ,
� �)(θ ∈ θ θ  and �

�
θ

θ =
θ=θ

d
d

l O np( ) ( )
2

2
 as a sum of random variables. This 

may also be considered a case where frequentist and Bayesian methods align 
in some regards.

It is interesting to note that asymptotic arguments similar to those shown 
above and in the forthcoming sections can also be employed to compare the 
Bayesian and empirical Bayesian concepts (Petrone et al., 2014).

The fact that some problems are of high dimension may also lead to intrac-
table analytic evaluation of integrals. In this case Monte Carlo methods may 
be used, but these too need to be adapted to the statistical context. Bleistein 
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and Handelsman (1975) as well as Evans and Swartz (1995) reviewed various 
numerical integration strategies for evaluating integral I. In this chapter we 
outline several techniques available to evaluate the Bayes factor, including 
the asymptotic approximation method, the simple Monte Carlo technique, 
importance sampling, and Gaussian quadrature strategies, as well as 
approaches based on generating samples from the posterior distributions. 
For general discussion and references, see, e.g., Kass and Raftery (1995) and 
Han and Carlin (2001).

5.3.1.1 Asymptotic Approximations

(1) Laplace’s method. The Laplace approximation (De Bruijn, 1970; 
Tierney and Kadane, 1986) to the marginal density 

Pr( | ) Pr( | , ) ( | )∫= = θ π θ θI X H X H H d  of the data is obtained by approxi-

mating the posterior with a normal distribution. It is assumed that the pos-
terior density, which is proportional to the nonnormalized posterior 
h X H H( ) Pr( | , ) ( | )θ = θ π θ , is highly peaked about its maximum �θ, the poste-
rior mode. This assumption will usually be satisfied if the likelihood func-

tion Pr( | , )θX H  is highly peaked near its maximum θ̂, e.g., in the case of large 

samples. Denote ( ) log( ( ))� θ = θl h . Expanding ( )� θl  as a quadratic about �θ and 
then exponentiating the resulting expansion yields an approximation to ( )θh  

that has the form of a normal density with mean �θ and covariance matrix 
� � �Σ = − θ −H( ( )) 1l , where � �θH ( )l  is the Hessian matrix of second derivatives of the 

log-posterior evaluated at �θ. More specifically,  component-wise, 

� �
�

�

θ = ∂ θ
∂θ ∂θ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

θ=θ

H ( )
log ( )2

l
l

ij
i j

. Integrating the approximation to ( )θh  with respect 

to θ yields

 � � �ˆ (2 ) | | Pr( | , ) ( | ),/2 1/2= π Σ θ π θI X H HL
d

where d is the dimension of θ. Under conditions specified by Kass et al. 

(1990), it can be derived that ˆ (1 ( ))1= + −I I O nL  as ,→ ∞n  that is, the relative 
error of Laplace’s approximation to I is ( )1−O n . Therefore when Laplace’s 
method is applied to both the numerator and denominator of 10B  in Equation 
5.1, the resulting approximation leads to a relative error of order ( )1−O n .

Laplace’s method yields accurate approximations and is often computa-
tionally efficient. By employing Laplace’s methods, one can show that the 
asymptotic properties of Bayes factor type procedures based on data are 
close to those based on maximum-likelihood estimation methods.
(2) Variants on Laplace’s method. Laplace’s method may be applied in 
alternative forms by omitting part of the integrand from the exponent when 
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performing the expansion. (For the general formulation, see Kass and Vaid-
yanathan (1992), which followed Tierney et al. (1989).) An important variant 

on the approximation Î to I is

 ˆ (2 ) | ˆ | Pr( |ˆ , ) (ˆ| ),MLE
/2 1/2= π Σ θ π θI X H Hd

where Σ−ˆ 1 is the observed information matrix, that is, the negative Hessian 
matrix of the log-likelihood evaluated at the maximum likelihood estimator 

θ̂. This approximation again has relative error of order ( )1−O n .
Define G to be the set of all possibilities that satisfy hypothesis H , and 'G  

to be the set of all possibilities that satisfy hypothesis 'H . We will call 'H  a 
nested hypothesis within H  if ' ⊂G G.

Consider nested hypotheses, where there must be some parameterization 

under 1H  of the form ( , )θ = β ψ T such that 0H  is obtained from 1H  when 0ψ = ψ  
for some 0ψ , with parameter ( , )β ψ  having prior ( , )π β ψ  under 1H  and then 

:0 0ψ = ψH  with prior ( | )0π β H . For instance, it is desired to check whether or 
not the collected data, denoted by X , could be described as a random sample 
from some normal distribution with mean 0μ , assuming that they may be 
described as a random sample from some normal distribution with unknown 
mean μ and unknown variance 2σ . In this case, notation-wise, 0 0ψ = μ , ψ = μ, 
and 2β = σ .

Applying the approximation ˆMLEI , one can show that

 ≈ Λ + π β ψ − π β + − π + Σ − ΣH H d d2 log B log (ˆ , ˆ | ) log (ˆ*, ) ( )log(2 ) log| ˆ | log| ˆ |,10 1 0 1 0 1 0

where ( ) ( ){ }Λ = β ψ − β2 log Pr( |(ˆ , ˆ ), ) log Pr( |ˆ*, )1 0X H X H  is the log-likelihood ratio 

statistic having approximately a chi-squared distribution with degrees of 
freedom ( )1 0−d d , a difference between the numbers of the estimated param-

eters under 1H  and 0H , and β̂* denotes the MLE under 0H . Here the covari-

ance matrices Σ̂k could be either observed or expected information, under 
which case the approximation of 2 log B10 has relative error of order −( )1O n  or 

−( )1/2O n , respectively. For more information, we refer the reader to Kass and 
Raftery (1995).

Alternatively, we may consider the following MLE-based approach. We do 
not attempt a general proof but we instead provide an informal outline for 
the unidimensional case when regarding parameter θ we have the hypoth-
esis :0 0θ = θH  versus :1 0θ ≠ θH , where 0θ  is known. Note that in a Bayesian 
context, we are interested in testing for the model, where θ has a degenerate 
prior distribution with mass at 0θ  versus the model that states θ has a prior 
distribution ( )π θ . Recall that the log-likelihood ratio function ( ) ( ) ( )0θ = θ − θlr l l  
attains its maximum at the MLE θ̂, satisfying '(ˆ) 0θ =l , and the likelihood 
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function ( )θl  increases up to the MLE θ̂ and decreases afterward. Define 
1/2φ = −γc nn , where c is a constant and 1/6γ < . Then the marginal ratio (e.g., 

see the test statistic Bn defined in Section 5.2 when the observations are iid) 
can be divided into three components:

 /exp ( ) exp( ( )) ( ) exp( ( )) ( ) ,0 1 2
ˆ

ˆ

∫ ∫( )= θ = θ π θ θ = + + θ π θ θ
−∞

∞

θ−φ

θ+φ

B I l lr d I I lr dn
n

n

where exp( ( )) ( )1

ˆ

∫= θ π θ θ
−∞

θ−φ

I lr d
n

 and exp( ( )) ( )2
ˆ∫= θ π θ θ
θ+φ

∞

I lr d
n

. We first con-

sider the component 1I . Based on the fact that the log-likelihood ratio func-

tion ( )θl  is a nondecreasing function of θ for ( , ˆ )θ ∈ −∞ θ − φn  and that 

(ˆ )θ − φ → −∞lr n , under the null hypothesis, as → ∞n , it can be derived that

 exp( (ˆ )) ( ) exp( (ˆ )) 0, as ,1 ∫≤ θ − φ π θ θ = θ − φ → → ∞
−∞

∞

I lr d lr nn n

since the Taylor arguments can provide

 lr lr lr lr lr lrn n n nθ − φ ≈ θ − φ θ + φ θ = θ + φ θ(ˆ ) (ˆ) '(ˆ) ''(ˆ)/ 2! (ˆ) ''(ˆ)/ 22 2

(here φn is considered around 0), where, under 0H , 2 (ˆ)θlr  has approximately 
a chi-squared distribution with one degree of freedom and

 

lr n lr n n lr lr n

n O

n

p

� { }{ } ( )
( )

φ θ = − − θ − − θ − θ − θ θ

= − → −∞

γ γ

γ

''(ˆ) ''(ˆ) / ''( ) ˆ '''( ) /

1

2 2 2
0 0 0

2

(here θ̂ is considered around 0θ ) with ˆ 0θ − θ →( )  and 
lr n lr n lr lr∼ ∼( ) ( ) ( ) ( )θ θ θ θ0 0 0 0" , ''' ; " , '''  are sums of iid random variables.

This behavior is similar for the component 2I , since the log-likelihood 

function ( )θl  is a non-increasing function of θ for (ˆ , )θ ∈ θ + φ ∞n  and 

(ˆ )θ + φ → −∞lr n , under the null hypothesis, as → ∞n , we have

 exp( (ˆ )) ( ) exp( (ˆ )) 0, as .2 ∫≤ θ + φ π θ θ = θ + φ → → ∞
−∞

∞

I lr d lr nn n
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Therefore, we have that the Bayes factor /exp ( )0 )(= θB I ln  satisfies approxi-
mately

 /exp ( ) exp( ( )) ( ) , as .0
ˆ

ˆ

∫( )θ ≈ θ π θ θ → ∞
θ−φ

θ+φ

I l lr d n
n

n

In this approximation,

 
( ) ( ) ( ) (ˆ) ( ) ( ˆ) '(ˆ) ( ˆ) ''(ˆ)/ 2 ( )

(ˆ) ( ) ( ˆ) ''(ˆ)/ 2 ( ),

0 0
2

0
2

θ = θ − θ = θ − θ + θ − θ θ + θ − θ θ + θ

= θ − θ + θ − θ θ + θ

lr l l l l l l R

l l l R

where the remainder term 
� � ( )θ = θ − θ θ θ ∈ θ θR l( ) ( ˆ) '''( )/6, , ˆ3  satisfies θ = φR O O np n p( ) ( ) ( )3 , 

θ = =− + γR O n op p( ) ( ) (1)1/2 3 , when θ ∈ θ − φ θ + φ⎡
⎣

⎤
⎦n n

ˆ , ˆ , φ = −γc nn
1/2  and γ < 1/6. Then we 

 conclude with

 

/exp ( ) exp( (ˆ) ( ) ( ˆ) ''(ˆ)/ 2) ( )

exp( (ˆ) ( )) exp( ( ˆ) ( ''(ˆ))/ 2) ( ) ,

0 0
2

ˆ

ˆ

0
2

∫

∫

( )θ ≈ θ − θ + θ − θ θ π θ θ

≈ θ − θ − θ − θ − θ π θ θ

θ−φ

θ+φ

I l l l l d

l l l d

n

n

where exp( ( ˆ) ( ''(ˆ))/ 2) ( )2∫ − θ − θ − θ π θ θl d  is a Gaussian-type integral. This 

result can be easily applied to control asymptotically the Type I error rate of 

the test statistic /exp ( )0 )(= θB I ln  in the frequentist manner.
In a more formal manner, Vexler et al. (2014) used the asymptotic principle 

shown above for constructing and evaluating nonparametric Bayesian proce-
dures, where the empirical likelihood method was employed instead of the 
parametric likelihood. (Regarding the empirical likelihood approach, see 
Chapter 10.)

(3) The Schwarz criterion. It is possible to avoid the introduction of the 
prior densities ( | )π θ Hk k k  in Equation (5.1) by using

 log Pr( |ˆ , ) log Pr( |ˆ , )
1

2
( )log( ),1 1 0 0 1 0{ }= θ − θ − −S X H X H d d n

where θ̂k is the MLE under Hk, dk is the dimension of θk, = 0,1k  and n is the 
sample size. The second term in S acts as a penalty term that corrects for dif-
ferences in dimension between Hk, 0,1=k . The quantity S is often called the 
Schwarz criterion. The Bayesian information criterion (BIC) can be defined 
as minus twice the Schwarz criterion; sometimes an arbitrary constant is 
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added. The BIC is a criterion for model selection among a finite set of mod-
els. In this case, the model with the lowest BIC is preferred (e.g., Carlin and 
Louis, 2011). Schwarz (1978) showed that, under certain assumptions on the 
data distribution,

 log

log
0, as .10

10

− → → ∞S B
B

n

Thus, the quantity exp( )S  provides a rough approximation to the Bayes factor 
that is independent of the priors on the θk. Kass and Wasserman (1995) pro-
vided excellent discussion regarding the method mentioned above.

The benefits of asymptotic approximations in this context include the fol-
lowing: (1) numerical integration is replaced with numerical differentiation, 
which is computationally more stable; (2) asymptotic approximations do not 
involve random numbers, and consequently, two different analysts can pro-
duce a common answer based on the same dataset, model, and prior distri-
bution; and (3) in order to investigate the sensitivity of the result to modest 
changes in the prior or the likelihood function, the computational complex-
ity is greatly reduced; for more detail, we refer the reader to Carlin and Louis 
(2011). Among the asymptotic approximations described above, the Schwarz 
criterion is the easiest approximation to compute and requires no specifica-
tion of prior distributions. In addition, as long as the number of degrees of 
freedom involved in the comparison is reasonably small relative to sample 
size, the analysis based on the Schwarz criterion will not mislead in a quali-
tative sense.

However, asymptotic approximations also have the following limita-
tions: (1) in order to obtain a valid approximation, the posterior distribu-
tion must be unimodal, or at least nearly unimodal; (2) the size of the 
dataset must be fairly large, while it is hard to judge how large is large 
enough; (3) the accuracy of asymptotic approximations cannot be improved 
without collecting additional data; (4) the correct parameterization, on 
which the accuracy of the approximation depends, e.g., θ versus log( )θ , 
may be difficult to ascertain; (5) when the dimension of θ is moderate or 
high, say, greater than 10, Laplace’s method becomes unstable, and numer-
ical computation of the associated Hessian matrices will be prohibitively 
difficult; and (6) when the number of degrees of freedom involved in the 
comparison is large and the prior is very different from that for which the 
approximation is best, the asymptotic approximation based on the Schwarz 
criterion can be very poor; e.g., McCulloch and Rossi (1991) illustrated the 
poor approximation by the Schwarz criterion with an example of 115 
degrees of freedom. For more details, we refer the reader to, e.g., Kass and 
Raftery (1995) as well as Carlin and Louis (2011). Therefore, in such cases, 
researchers may turn to alternative methods, e.g., Monte Carlo sampling, 
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importance sampling, and Gaussian quadrature. These methods typically 
require longer runtimes, but can be programmed easily and can be applied 
in more general scenarios, which are the subject of the following section in 
this chapter.

5.3.1.2  Simple Monte Carlo, Importance Sampling, and  
Gaussian Quadrature

Dropping the notational dependence on the hypothesis indicator Hk , the 

integral I becomes Pr( ) Pr( | ) ( )∫= = θ π θ θI X X d . The simplest Monte Carlo 
integration estimate of I is

 Pr ( )
1

Pr( | ),1
( )

1

∑= θ
∧

=

X
m

X i

i

m

where { : 1,..., }( )θ =i mi  is a sample from the prior distribution; this is the 
average of the likelihoods of the sampled parameter values, e.g.,  Hammersley 
and Handscomb (1964)

The precision of simple Monte Carlo integration can be improved by 

importance sampling. It involves generating a sample { : 1,..., }( )θ =i mi  from 
a density * ( )π θ . Under general conditions, a simulation-consistent estimate 
of I is

 ˆ
Pr( | )

,

( )

1

1

∑
∑

=
θ

=

=

I
w X

w
MC

i
i

i

m

i
i

m

where ( )/ * ( )( ) ( )= π θ π θwi
i i , the function * ( )π θ  is known as the importance 

sampling function. Then the approximation of Bayes factor can be computed 
accordingly; for general discussion, see Geweke (1989). Although the Monte 
Carlo integration and importance sampling methods are less precise and 
more computationally demanding, they may be the only applicable methods 
in complex models.

Genz and Kass (1997) demonstrated the evaluation of integrals that are 
peaked around a dominant mode and provided an adaptive Gaussian 
quadrature method. This method is efficient especially when the dimension-
ality of the parameter space is modest.

5.3.1.3 Generating Samples from the Posterior

Several methods can be applied to generate samples from posterior distribu-
tions, including direct simulation and rejection sampling for the simplest 
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cases. In more complex cases, Markov chain Monte Carlo (MCMC) methods 
(e.g., Smith and Roberts, 1993) particularly the Metropolis–Hastings algo-
rithm and the Gibbs sampler, as well as the weighted likelihood bootstrap, 
provide general schemes.

These methods provide a sample approximately drawn from the posterior 

density Pr( | ) Pr( | ) ( )/ Pr( )θ = θ π θX X X . Substituting into ÎMC defined in Sec-
tion 5.3.1.2 yields as an estimate for Pr( )X ,

 ∑= θ
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

∧
−

=

−

X
m

X i

i

m

Pr ( )
1

Pr( | ) ,2
( ) 1

1

1

which is the harmonic mean of the likelihood values (Newton and Raftery, 
1994). This converges almost surely to the correct value, Pr( )X , as → ∞m , but 
it does not generally satisfy a Gaussian central limit theorem. See Kass and 
Raftery (1995) for additional modifications and discussion. Note that the 
MCMC methods have not yet been applied in many demanding problems 
and may require large numbers of likelihood function evaluations, resulting 
in difficulty in some cases.

5.3.1.4 Combining Simulation and Asymptotic Approximations

DiCiccio et al. (1997) provided a simulation based version of Laplace’s method 
using generated observations from the posterior distributions by employing 
Markov chain Monte Carlo or other techniques. Following the previous nota-
tions of �θ and �Σ described in Section 5.3.1.1 (Laplace’s method), let �θ be the 
posterior mode and let covariance matrix �Σ be minus the inverse of the Hes-
sian of the log-posterior evaluated at �θ. If no analytical form can be obtained, 
then �θ and �Σ can be estimated via simulation. The normal approximation to 
the posterior is ( ) ( ; , )� �ϕ ⋅ = ϕ ⋅ θ Σ , where ϕ ⋅ μ Σ( ; , ) denotes a normal density with 

mean vector μ and covariance matrix Σ. Let B T: ( ) ( )1 2 2
 � � � 
{ }= θ ∈Θ θ − θ Σ θ − θ < δ− , 

which has volume pp p | |/ ( /2 1)/2 1/2�υ = δ π ∑ Γ + , where u t t dtu( ) exp( )1

0∫Γ = −−
∞

 

and 1�[ ]=a a aT
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. Define Pr( ) Pr( | )∫= θ θB X d
B

 and 

� �∫α ϕ ( )= θ∑; .u du
B

A modification of Laplace’s method can be obtained that simply estimates 
the unknown value of the posterior probability density at the mode using 
the simulated probability assigned to a small region around the mode 
divided by its area. Observing that
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the volume-corrected estimator has the form

 
� �
�= θ π θ

ϕ θ
α

I
X

P
L

ˆ Pr( | ) ( )

( ) ˆ
,*

where P̂ is the Monte Carlo estimate of Pr( )B , that is, a proportion of the 
sampled values inside B. DiCiccio et al. (1997) demonstrated that the simu-
lated version of Laplace’s method with a local volume correction approxi-
mates the Bayes factor accurately, which is especially useful in the case of 
costly likelihood function evaluations.

The importance of sampling techniques can be modified by restricting 
them to small regions about the mode. To improve the accuracy of approxi-
mations, Laplace’s method can be combined with the simple bridge sam-
pling technique proposed by Meng and Wong (1996). For detailed information, 
we refer the reader to DiCiccio et al. (1997).

5.3.2 The Choice of Prior Probability Distributions

Implementation of Bayes factor approaches requires the specification of pri-
ors, as is the case in all Bayesian analysis. In principle, priors formally 
represent available external information, providing a way to combine other 
information about the values of the target parameter with the data.

Typically, prior distributions are specified based on information accumu-
lated from past studies or from the opinions of subject-area experts. The elic-
ited prior is a means of drawing information from subject-area experts, who 
have a great deal of information about the substantive question but are not 
involved in the model construction process, with the goal of constructing a 
probability structure that quantifies their specific knowledge and experien-
tial intuition about the studied effects.

In order to simplify the subsequent computational burden, e.g., make com-
putation of the posterior distribution easier, experimenters often limit the 
choice of priors by restricting ( )π θ  to some familiar distributional family. In 
choosing a prior belonging to a specific distributional family, some choices 
may have more computational advantages than others. In particular, if the 
prior probability distribution ( )π θ  is in the same distributional family as the 
resulting posterior distribution Pr( | )θ X , then the prior and posterior are 
called conjugate distributions, and the prior is called a conjugate prior for 
the likelihood function. For example, the Gaussian family is conjugate to 
itself (or self-conjugate) with respect to a Gaussian likelihood function. That 
is, if the likelihood function is Gaussian, choosing a Gaussian prior over the 
mean will guarantee the Gaussian posterior distribution.

Often in practice, there is no reliable prior information regarding θ that 
exists, or it is desired to make an inference based solely on the data. In such 
cases, the noninformative prior plays a major role in Bayesian analyses. 
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A noninformative prior can be constructed by some formal rule that con-
tains “no information” with respect to θ in the sense that no one θ value is 
favored over another, provided all values are logically possible. The simplest 
and oldest rule to determine a noninformative prior is the principle of indif-
ference, which assigns equal probabilities to all possibilities. Noninforma-
tive priors can express objective information such as “the variable is within 
a certain range.” For example, if we have a bounded continuous parameter 
space, say, [ , ]Θ = a b , −∞ < < < ∞a b , then the uniform distribution 

( ) { } ( )π θ = ≤ θ ≤ −I a b b a , where { }⋅I  is the indicator function, is arguably non-
informative for θ. If the parameter space is unbounded, i.e., ( , )Θ = −∞ ∞ , then 
the appropriate uniform prior may be ( )π θ = c, 0>c . It is worth emphasizing 

that even if this distribution is improper in that ( )∫ π θ θ = ∞d , Bayesian infer-

ence is still possible provided that Pr( | )∫ θ θ =X d K , < ∞K . Then

 

∫
θ = θ

θ θ
= θ

X
X c

X c d

X
K

Pr( | )
Pr( | )

Pr( | )

Pr( | )
.

Since Pr( | ) 1∫ θ θ =X d , the posterior density is indeed proper, and hence 

Bayesian inference may proceed as usual. Note that when employing 
improper priors, proper posteriors will not always result and extra care must 
be taken.

Krieger et al. (2003) have proposed several forms of a prior ( )π θ  and the cor-

responding distribution ( ) ( )∫θ = π θ θ
θ

H d  in the context of sequential change 

point detection (see Chapter 4). This method of choices of a prior can be 
adapted for the problem stated in this chapter. For example, if we suspect 
that the observations under the alternative hypothesis have a distribution 
that differs greatly from the distribution of the observations under the null, 
the prior distribution could be chosen as

 θ = Φ μ
σ
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  (5.2)

where Φ is the standard normal distribution function and ( 0)= ≥+a aI a . A 
somewhat broader prior is

 θ = Φ θ − μ
σ
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H( )
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.   (5.3)

Note that the parameters μ and 0σ >  of the distributions ( )θH  can be chosen 
arbitrarily. Krieger et al. (2003) recommended the specification of 0μ = , and 

1σ =  so that two forms of ( )θH  specified above are simplified. In accordance 



151Bayes Factor

with the rules shown in Marden (2000), where the author reviewed the Bayes-
ian approach applied to hypothesis testing, the function H  can be defined, 
e.g., for a fixed 0σ > , in the form

 ∈Ψ = Φ θ − μ
σ

⎛
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μ ∈ μ μ
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H lower upper
1

2
, ( , ) .   (5.4)

Here Ψ is a set of distribution functions. The following R code shows the 
way to plot the distribution functions of priors specified in Equations (5.2) 
through (5.4) as shown in Figure 5.2.

> # The distribution function defined by Equation (5.2).
> H1<-function(theta,mu,sigma) {
+   tmp<-pnorm((theta-mu)/sigma)-pnorm(-mu/sigma)
+   H<-ifelse(tmp>0,tmp,0)/pnorm(mu/sigma)
+   return(H)
+ }
>
>  # The distribution function defined by Equations (5.3) and (5.4).
> H2<-function(theta,mu,sigma) {
+   H<-(pnorm((theta-mu)/sigma)+pnorm((theta+mu)/sigma))/2
+   return(H)
+ }
> par(mfrow=c(1,2),mar=c(4,4,2,2))
> theta.seq<-seq(0,4,.1)
> H1.dist<-sapply(theta.seq,H1,mu=0,sigma=1)
> plot(theta.seq,H1.dist,type="l",xlim=c(-4,4),lty=1,lwd=2,xlab="theta",ylab=
"Probability")
>
> theta.seq2<-seq(-4,4,.1)
> H2.dist<-sapply(theta.seq2,H2,mu=0,sigma=1)
> lines(theta.seq2,H2.dist,lty=2,lwd=2)
>
> # fix sigma=1
> mu.seq<-seq(-5,5,1)
> H2.dist<-sapply(theta.seq2,H2,mu=mu.seq[1],sigma=1)
> plot(theta.seq2,H2.dist,lty=3,lwd=2,type="l",xlim=c(-4,4),ylim=c(0,1),xlab=
"theta",ylab="Probability")
> for (i in 2:length(mu.seq)){
+   H2.dist<-sapply(theta.seq2,H2,mu=mu.seq[i],sigma=1)
+   lines(theta.seq2,H2.dist,lty=i+2,lwd=2)
+ }

In Figure 5.2, the solid line and the dashed line in the left panel present ( )θH  
defined by (5.2) and (5.3) with 0μ =  and 1σ = , respectively, and the right 
panel presents ( )θH  defined by Equation (5.4) for μ changing from −5 to 5.

Example

As a specific example of the choice of the prior function, Gönen et al. 
(2005) provided a case study. Assuming the data points Yir  ( i 1, 2,=  

1, ...,=r ni) are independent and normally distributed with means iμ  and 
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a common variance 2σ , the goal is to test H : 00 1 2δ = μ − μ =  against 
: 01 δ ≠H . In order to obtain the usual two-sample t statistic, prior 

knowledge is modeled for δ σ  instead of ,δ  which can be specified as 

N|{ , , 0} ~ ( , )2 2δ σ μ σ δ σ ≠ λ σδ . For sample size calculations, prior infor-
mation to suggest the expected effect size λ is routinely used. The large-
sample size calculation formula for two-sample tests is given by

 n
z z2( )

( )

1 /2 1
2

2
=

+
δ σ

−α −β  with e duu
z1

2
1 21 2

221 2

∫π( )
= − α−
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e duu
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∫π
β
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−∞

β−
and
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2
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221

where 21 2= = = δn n n n  is the sample size per group, δ σ  is the prespeci-
fied anticipated standardized effect size, and α , β are the Type I and 
Type II error probability, respectively. Note that the value σδ can be 
expressed as a function of the prior probability that the effect is in the 
wrong direction. For example, in the case of 0.05,α =  0.2,β =  

(1.96 0.84) 2.801/2 1/2λ = + =δ
−

δ
−n n  and one thinks Pr( 0| 0) 0.10δ < δ ≠ = , one 

can obtain 2.19 1/2σ =δ δ
−n  using normal distribution calculations.

These calculations involved the choice of zero for the tenth percentile 
of the prior on δ σ . Note that other percentiles could have been selected 
as well. Another calibration would involve selection of σδ based on a 
prior assumed value for Pr( 2 | 0) 0.10δ σ > λ δ ≠ = . In order to ensure con-
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FIGURE 5.2
The cumulative distribution functions that correspond to the priors (5.2) through (5.4). The 

solid line and the dashed line in the left panel present ( )θH  defined by (5.2) and (5.3) with 0μ =  

and 1σ = , respectively. The right panel presents ( )θH  defined by (5.4), where 5,..., 5μ = − .
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sistency, it would be helpful to try several such values. The remaining 
parameter that needs to be specified is given in terms of the probability 
that 0H  is true, that is, Pr( 0)0π = δ = . Observing that it is unethical to 
randomize patients when the outcome is certain, the quantities Pr( 0)δ ≤  
and Pr( 0)δ >  should be roughly comparable. One may set 0.50π =  as an 
“objective” value (Berger and Sellke, 1987), which, in conjunction with 
Pr( 0| 0) 0.10δ < δ ≠ = , yields Pr( 0) 0.5 0.10 0.5 0.55δ ≤ = + × = . Alternati-
vely, the prior 0π  can be assigned to reflect prior belief in the null; one 
may set Pr( 0) 0.5δ ≤ = , which implies 0.4440π =  in conjunction with 
Pr( 0| 0) 0.10δ < δ ≠ = .

Note that a common criticism of Bayesian methods is that the priors may 
be chosen arbitrarily in some cases or subjective in a special way in other 
cases. Kass (1993) discussed that the value of a Bayes factor may be sensitive 
to the choice of priors on parameters in the competing models. A broad range 
of literature has discussed the selection of priors and various techniques for 
constructing priors, including Jeffrey’s rules and their variants; see, e.g., 
Berger (1980, 1985), Kass and Wasserman (1996) and Sinharay and Stern 
(2002) for additional information.

5.3.3 Decision-Making Rules Based on the Bayes Factor

The Bayes factor is a summary of the evidence provided by the data in favor 
of one scientific theory, represented by a statistical model, as opposed to a 
competing model. Jeffreys (1961) provided a scale of interpretation for the 
Bayes factor in terms of evidence against the null hypothesis; see Table 5.1 for 
details. It is suggested to interpret 10B  in half-units on the log10 scale.

It is interesting to note that in the frequentist manner of testing statistical 
hypotheses, mostly in the period before the Neyman–Pearson concept of set-
ting the Type I error rates to be fixed was widely accepted, decisions based 
on the maximum likelihood ratio statistics were reported in a similar man-
ner to those shown in Table 5.1 (e.g., Reid, 2000).

Probability itself provides a meaningful scale defined by betting, and so 
these categories are not a calibration of the Bayes factor, but rather a rough 
descriptive statement about standards of evidence in a scientific investiga-
tion; see Kass and Raftery (1995) for a detailed review.

TABLE 5.1

Bayes Factor as Evidence against the Null Hypothesis

Blog ( )10 10  B( )10 Evidence against H0

0–1/2 1–3.2 Weak

1/2–1 3.2–10 Substantial

1–2 10–100 Strong

>2 >100 Decisive
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Asymptotic approximations to the Bayes factor are easy to compute using 
the output from standard packages that maximize likelihoods. Recall that 
we described the asymptotic behavior of the Bayes factor in Section 5.3.1.1, 
e.g., the Schwarz criterion, given as

 { }= θ − θ − −log Pr( |ˆ , ) log Pr( |ˆ , )
1

2
( )log( ),1 1 0 0 1 0S X H X H d d n

which provides a rough approximation to the logarithm of the Bayes factor as 

→ ∞n . Note that 2 log Pr( |ˆ , ) log Pr( |ˆ , )1 1 0 0{ }Λ = θ − θX H X H  is the maximum 

log-likelihood ratio statistic, with approximately a 2
1 0χ −d d  distribution. Conse-

quently, Bayes factor type tests can be viewed as frequentist tests due to the 
asymptotic results, where corresponding critical values and powers can be 
obtained accordingly.

Example

Consider a straightforward but common example. Let { , ..., }1=X X Xn  be 
a random sample from some normal distribution with mean μ and vari-

ance 2σ . It is desired to test the one-sided hypothesis H X:0 0μ ≤ μ  versus 

μ > μH X:1 0, where μX 0  is a prespecified number of interest. Let X  denote 

the sample mean, 1

1∑= −

=
X n Xi

i

n
. We then consider two scenarios with 

known/unknown value of variance 2σ .

Scenario 1: (The variance 2σ  is assumed to be known.) Let the prior distribu-
tion function of μ be chosen in a conjugate manner to be normal, 

N( , )0 0
2μ τ . Then the posterior density is
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which is associated with a normal density function with the mean and 
the variance as
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respectively. Therefore, the posterior probability of 0H , denoted by 0q , is 
μ ≤ μ = Φ μ − μ τPr( | ) (( ) )0 0XX X n n , where Φ is the standard normal distribu-

tion function. Denote the value of prior probability of 0H , 
μ ≤ μ = Φ μ − μ τX XPr( ) (( ) )0 0 0 0 , by 0p . Thus, the Bayes factor, the ratio of 

the posterior odds to the prior odds, has the form
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Note that the prior precision, τ1 0
2 , and the data precision, 2σn , play 

equivalent roles in the posterior distribution. Thus, for a large sample 

size n, the posterior distribution is largely determined by 2σ  and the 

sample mean X ; see Gelman et al. (2003) for detailed discussion.

Scenario 2: (The variance 2σ  is assumed to be unknown.) Let the conditional 

distribution of μ  given 2σ  be normal and the marginal distribution of 2σ  

be scaled-inverse- 2χ  distribution, that is,

 μ σ μ σ κ σ − χ ν σN| ~ ( , ), ~ Inverse ( , ),2
0

2
0

2 2
0 0

2

where the probability density function of the scaled-inverse- ( , )2
0 0

2χ ν σ  

distribution is f y y
y
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− +ν , 0>y . Then 

the joint prior density, a product form of Pr( | )Pr( )2 2μ σ σ , is
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which is denoted as Normal-Inverse- ( , ; , )2
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2
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2χ μ σ κ ν σ .

Let 2s  denote the sample variance, that is, ( 1) ( )2 1 2

1∑= − −−
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n
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Correspondingly, the joint posterior density is
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which is Normal-Inverse- χ μ σ κ ν σ( , ; , )2 2 2
n n n n n , where
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To sample from the joint posterior distribution, we first draw 2σ  from its 

marginal posterior distribution Inverse- ( , )2 2χ ν σn n , then draw μ from its 

normal conditional posterior distribution ( , )2μ σ κN n n , using the gener-

ated value of 2σ .

The marginal posterior density of 2σ  is a scaled-inverse- 2χ  distribu-
tion, i.e.,

 | ~ Inverse ( , ).2 2 2σ − χ ν σX n n

The conditional posterior density of μ, given 2σ , is proportional to the joint 

posterior density in Scenario 1, where the value of 2σ  is assumed to be 
known, i.e.,

 μ σ μ σ κX N n n| , ~ ( , ).2 2
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Integration of the joint posterior density with respect to 2σ  shows that 
the marginal posterior density for μ  follows a nonstandardized Stu-
dent’s t distribution,

 μ ∝ + κ μ − μ
ν σ
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previous derivation. Thus, the Bayes factor has the form of 
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The results based on the one-sample problem can be easily generalized to 
the two-sample case. A classic example would be to compare the means  
of two normal distributions with unknown variances. Let { , ..., }11 1 1=X X X n1  
and { , ..., }21 2 2=X X X n2  be two independent random samples drawn from  
normal distributions μ σN( , )1 1

2
 and μ σN( , )2 2

2
, respectively, where ,1μ  ,2μ  1

2σ  and 
2
2σ  are unknown. We are interested in testing H : ,0 1 2 1

2
2
2μ = μ σ = σ  versus 

H : ,1 1 2 1
2

2
2μ ≠ μ σ ≠ σ .

As was mentioned above, Bayes factor type test statistics can be used in the 
context of traditional tests via a control of the corresponding Type I error 
rate, e.g., employing the asymptotic evaluations of the Bayes factor struc-
tures. We illustrate this principle in the following example.

Example

Let { , ..., }1=X X Xn , 30=n , be a random sample drawn from 1−Y , where 
~ exp( )λY , i.e., ( ; ) exp( ( 1))λ = λ −λ +f x x , 0, 1λ > > −x , is the density func-

tion of the observations. Denote the mean of X by θ ( 1 1θ = λ − ). Suppose 
it is of interest to test : 00 θ =H  versus : 01 θ ≠H . Under the alternative 
hypothesis, the prior function for θ is assumed to be the [0, 2]Uniform -dis-
tribution function. In this case, based on the Schwarz criterion approxi-
mation, the relevant maximum likelihood ratio can be well approximation 
to +log log( )/210B n , as → ∞n . The corresponding maximum likelihood 

ratio has an asymptotic 1
2χ  distribution under the null hypothesis. Com-

paring +2 log log( )10B n  with the critical values related to 1
2χ  distribution 
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one can provide an approach to make statistical decision rules from the 
traditional frequentist test perspective. Implementation of the testing 
procedure is presented in the following R code:

> n<-30
> lambda.true<-1/2
> 1/lambda.true-1 # theta.true
[1] 1
>
> set.seed(123456)
> x<-rexp(n,lambda.true)-1
> x
[1] 0.19113728 0.01426038 1.51633983 1.11874795 1.27664726 2.94610447 
-0.86056815 4.24772281 -0.76769938
[10] 0.22111551 -0.72606026 1.06624316 0.10882527 2.32608560 3.73953110 
1.89499414 2.52307509 1.35740018
[19] -0.76989244 -0.90812499 -0.83491881 0.29580491 3.72774643 -0.01274517 
-0.57838195 2.79788529 0.74200029
[28] -0.93858993 1.18364253 -0.28730946
>
> theta0<-0 # EX under H_0
> lambda0<-(theta0+1)^(-1)
>
> neg.loglike<-function(x,theta){
+   length(x)*log(theta+1)+(sum(x)+length(x))/(theta+1)
+ }
>
> # Bayes factor
> # likelihood
> like<-function(x,theta){
+   exp(-(length(x)*log(theta+1)+(sum(x)+length(x))/(theta+1)))
+ }
>
> # prior
> ll<-0;uu<-2
> prior<-function(theta) 1/(uu-ll)*(theta<=uu)*(theta>=ll)
>
> integrand<-function(theta) like(theta,x=x) #*prior(theta)
> BF<-integrate(Vectorize(integrand), ll, uu)$value/like(theta0,x=x)
> log10(BF)
[1] 3.227941
> stat.est<-log(BF)+1/2*log(n)
> p.BF<-1-pchisq(2*stat.est,df=1)
> p.BF
[1] 1.920634e-05
> p.t<-t.test(x,mu=theta0)$p.val
> p.t
[1] 0.003940047

In this example, the value of log ( )10 10B  is 3.2279, greater than 2, suggesting a 
decisive evidence against 0H . From the traditional testing viewpoint, the 
approach based on the Bayes factor leads to a p-value far below 0.0001, 
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 suggesting the rejection of the null hypothesis, which is consistent with the 
result based on the t-test shown in the R code above.

The following points about Bayes factors should be emphasized: (1) 
Bayes factors provide a way to evaluate evidence in favor of a null hypoth-
esis through the incorporation external information; (2) Bayes factor based 
decision-making procedures can be easily applied with respect to non-
nested hypotheses (see Section 5.3.1.1 for the definition of nested 
 hypotheses); (3) Technically, Bayes factors are simpler to compute as com-
pared to deriving non-Bayesian significance tests based on “nonstandard” 
statistical models that do not satisfy common regularity conditions; (4) 
When estimation or prediction is of interest, Bayes factors can be con-
verted to weights corresponding to various models so that a composite 
estimate or prediction may be obtained that takes into account structural 
or model uncertainty; (5) The use of Bayes factors allow us to feasibly 
assess the sensitivity of our conclusions relative to the choose of prior dis-
tribution; and (6) As shown in Section 5.2, Bayes factor type procedures 
can provide optimal decision rules as compared to other approaches. For 
more details, we refer the reader to Kass and Raftery (1995) as well as Vex-
ler et al. (2010b).

5.3.4 A Data Example: Application of the Bayes Factor

In order to illustrate a use of the Bayes factor mechanism, we consider a 
study of survival among turtles where the question of comparing two 
nested models is of interest. In this study, 244 turtle eggs of the same age 
from 31 clutches (or families) were removed from their nests in a site in Illi-
nois on the bank of the Mississippi River and taken to the laboratory where 
they were incubated and hatched (Janzen et al., 2000). Several days later, the 
baby turtles were released from the same place where the eggs were found. 
The turtles that traveled successfully to the water were marked as “sur-
vived.” Five days after their release, turtles not identified as having sur-
vived were assumed dead. The birth weight of each turtle was collected as 
a covariate. The objective is to assess the effect of birth weight on survival 
and to determine whether there is any clutch effect on survival. Figure 5.3 
shows a scatterplot of the birth-weight effect on survival status as well as 
the clutch effect on survival. The clutches are numbered from 1 through 31 
in an increasing order of average birth weight of the turtles. Figure 5.3 sug-
gests that the heaviest turtles tend to survive and the lightest ones tend to 
die. It also suggests some variability in survival rates across clutches. For 
example, in one clutch (with average birth weight 5.41), only 2 turtles out of 
12 survived while in a second clutch (with average birth weight 7.50), 9 tur-
tles out of 11 survived.
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Let yij denote the response (survival status with 1 denoting survival) and 
xij the birth weight of the jth turtle in the ith clutch, 1,2... 31, 1,2,...= = =i m j ni. 
The model we fit to the data is
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where the bi’s are random effects for clutch (family). The clutch effects are 
assumed to be the same for all birth weights. To assess the importance of 
clutch effects, we compare our alternative model, the probit regression 
model with random effects, with the null model, a simple probit regression 
model with no random effects.

Suppose ( )0 αp  is the prior distribution for α under the null model, while 

the prior distribution for ( , )α θ  under the alternative model is ( , )α θ =p
( ) ( | )2

1
2σ α σp p . Then, the Bayes factor for comparing the alternative model  

(M )1  against the null model (M )0  is BF ( |M )/ ( |M )10 1 0= p y p y , with
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FIGURE 5.3
The snapshot from the paper by Sinharay and Stern (2002) regarding the scatterplot with the 

clutches sorted by average birth weight.
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Furthermore, we use a proper vague prior distribution on α, a bivariate nor-
mal distribution with mean 0 and variance 20.1 under both models.

The approximated value of the Bayes factor, obtained using the impor-
tance sampling method, with an importance sample size of 5,000 under both 
models, is 0.31 with an estimated standard deviation of 0.01. The value of the 
Bayes factor indicates some evidence in favor of the null model.

We then investigate the sensitivity of the Bayes factor to the choice of prior 
distributions. The prior distributions on α under the two models do not affect 
the Bayes factor much because there are 244 data points in the dataset. How-

ever, the prior distribution for the variance component 2σ  is influential on any 

posterior inference because our ability to learn about 2σ  is determined by the 
number of clutches rather than the number of animals. Furthermore, there is 

little prior information available for 2σ  because very few studies like the tur-
tle study have been performed. To study the effect of the choice of the prior 

distribution for 2σ  on the Bayes factor, let 
10, 2σBF  denote the “point mass prior 

Bayes factor” comparing the probit regression model with random effects, 

where the variance component is fixed at 2σ , against the simple probit regres-

sion model without any variance component. For grid values of 2σ , the 

approximated values of the Bayes factor, 10, 2

∧
σBF , obtained by the importance 

sampling method are computed. Figure 5.4 presents a plot of 10, 2

∧
σBF  against 

2σ . The figure demonstrates that 110, 2 =
∧

σBF  when 02σ = , implying that the 
two models are identical at that value. The estimated Bayes factor then 
increases with increase in 2σ  until it reaches its maximum value of about 4.55 
at around 0.092σ = . This is sensible because the restricted maximum likeli-
hood estimate (REML) of 2σ  is 0.091. Also, when it comes to choosing between 

a small hypothesized value (by small here we mean less than 0.3) of 2σ  and 2σ  
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equal to zero, the approximated Bayes factor favors the small positive value of 
2σ . However, when it comes to choosing between a large value of 2σ  and 2σ  

equal to zero, the approximated Bayes factor favors the 2σ  equal to zero; we 
refer the reader to Sinharay and Stern (2002) for more details.

5.4 Remarks

The Bayes factor, the ratio of the posterior odds (not probability) of a hypoth-
esis to the prior odds, is equal to a likelihood ratio in the simplest case (and 
only then); see Good (1992) for details. It can be described as a multiplicative 
weight of evidence. In the frequentist setting of testing statistical hypothe-
ses, problems may arise when inference about the truth or believability of 
the null hypothesis is based on the classical formulation of a p-value (see 
forthcoming material in this book regarding p-values). In this context, it 
should be noted that the p-value is not the probability that the null hypoth-
esis is true. Unfortunately, many practitioners and students have tried to use 
the p-value to measure the evidence of the null hypothesis as the probabil-
ity that the null hypothesis is true. This is the wrong concept, since, in 
general, p-values are random variables. Formal arguments about incorrect 
interpretations of p-values are provided in Chapter 9. We also remark 
again (as in Chapter 4) that almost no null hypothesis is exactly true in 
practice. Consequently, when sample sizes are large enough, almost any 
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FIGURE 5.4
The snapshot from the paper by Sinharay and Stern (2002) regarding the plot of 10, 2

∧
σBF   

against 2σ .
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null hypothesis will have a tiny p-value, and hence will be rejected at con-
ventional levels. As alternatives to the classical formulation of p-values for 
testing hypotheses, Bayes factors have been suggested as a measure of the 
extent to which the observed data align with a given hypothesis by incorpo-
rating prior information about the parameter of interest. The use of thep-
value should not be discarded all together. A small p-value does not 
necessarily mean that we should reject the null hypothesis and leave it at 
that. Rather, it is a red flag indicating that something is up; the null hypoth-
esis may be false, possibly in a substantively uninteresting way, or maybe we 
got unlucky. On the other hand, a large p-value does mean that there is not 
much evidence against the null. For example, in many settings the Bayes fac-
tor is bounded above by 1/p-value. Even Bayesian analyses can benefit from 
classical testing at the model-checking stage (see Box (1980) or the Bayesian 
p-values in Gelman et al. (2013)). In this context, for more details, we refer the 
reader to Marden (2000).
Warning: Assume the parameter of interest is θ. In the frequentist manner, 
the meaning of testing statistical hypotheses, say :0 0θ = θH  versus 

:1 1 0θ = θ ≠ θH , is clear. In the Bayesian setting, we believe that θ is random. 

Then it is possible that the statement Pr Pr 00 1) )( (θ = θ = θ = θ =  has a sense. If 
your statistical world is completely Bayesian, you compare the model 

: ~0 0θ πH  with the model : ~1 1θ πH , where 0π  and 1π  are prior density func-
tions of θ. In this case, we can still write :0 0θ = θH , assuming that 0π  is an 
appropriate degenerated density function (e.g., Berger, 1985; Vexler et al., 
2010b). Let us consider briefly the following simple scenario, in which using 
the Bayes factor procedure we would like to compare the following models: 

: ~ [0,1]0 0π =M q Unif  versus : ~ [1,1.5]1 1π =M q Unif , where q is a quintile 
that satisfies ( ) 0.1= α ≡F q  for the independent and identically F-distributed 
data points ,...,1X Xn. Let ,...,1X Xn be exponentially distributed with the den-

sity function ( | )λf x q , where : ( | ) 0.1
0∫λ λ = α =f u duq q

q

. Then the Bayes fac-
tor statistic is

 

∏∫

∏∫
=

λ

λ

=

=

( | )

( | )

.11

1.5
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1BF

f X dq

f X dq

i q

i

n

i q

i

n

For illustrative purposes, we can simulate 5,000 times the scenario men-
tioned above under the model 0M  with 25=n  using the following R code:

alpha<-0.1
n<-25
MC<-5000
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BF<-array()
for(mc in 1:MC)
{
a0<-0
b0<-1
a1<-b0
b1<-b0+0.5
q<-runif(1,a0,b0) # model M0
#q<-runif(1,a1,b1)# model M1
QQ<-function(u) pexp(q,u)-alpha
lambda<-uniroot(QQ,c(0,1000000))$root # to find lambda corresponding to the q’s value
x<-rexp(n,lambda)
Intr <-function(uu){
        fix<-uu
        QQ1<-function(u) pexp(fix,u)-alpha
        QQ1V<-Vectorize(QQ1)
        lambda1<-uniroot(QQ1V,c(0,100000000))$root
        S<-sum(log(dexp(x,lambda1)))
        return(exp(S))
        }

# Intr(uu) is the function f Xi q

i

n

( | )
1

∏ λ
=

, where λq  corresponds to the argument uu

Inegr<-Vectorize(Intr)
Num<-integrate(Inegr,a1,b1)[[1]]
Den<-integrate(Inegr,a0,b0,stop.on.error = FALSE)[[1]]

BF[mc]<-Num/Den

print(length(BF[BF<1]))
print(length(BF[(BF>=1)&(BF<10^0.5)]))
print(length(BF[(BF>=10^0.5)&(BF<10^1)]))
print(length(BF[(BF>=10^1)&(BF<10^1.5)]))
}

We would like to invite the reader to run the code above and obtain the 
results, evaluating them with respect to Table 5.1.

Note again that, in the frequent perspective, the approaches mentioned in 
this chapter show that Bayes factor type procedures can provide very effi-
cient decision-making mechanisms.
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6
A Brief Review of Sequential Methods

6.1 Introduction

Retrospective studies are generally derived from already existing databases or 
combining existing pieces of data, e.g., using electronic health records to exam-
ine risk or protection factors in relation to a clinical outcome, where the out-
come may have already occurred prior to the start of the analysis. The 
investigator collects data from past records, with no or minimal patient follow-
up, as is the case with a prospective study. Many valuable studies, such as the 
first major case-control study published by Lane-Claypon (1926), investigating 
risk factors for breast cancer, were retrospective investigations. Prospective 
studies may be analyzed similar to retrospective studies or they may have a 
sequential element to them, which we will describe below, that is, data may be 
analyzed continuously or in stages during the course of study.

In retrospective studies it is common to have sources of error due to con-
founding and various biases such as selection bias, e.g., bias due to missing 
data elements, misclassification, or information bias. In addition, the inferen-
tial decision procedures for retrospective studies are based on data sets, 
where the corresponding samples sizes are fixed in advance and can often-
times be quite large. It is possible in these settings to have underpowered or 
overpowered designs. For example medical claims data may lead to an over-
powered design, i.e., a study that will detect small differences from the null 
hypothesis that may not be scientifically interesting. Consequently, retro-
spective studies may induce unnecessarily high financial and/or human cost 
or statistically significant results that are not necessarily meaningful. Armit-
age (1981) stated that

The classical theory of experimental design deals predominantly with 
experiments of predetermined size, presumably because the pioneers of 
the subject, particularly R.A. Fisher, worked in agricultural research, 
where the outcome of a field trial is not available until long after the 
experiment has been designed and started.

In fact, in an experiment in which data accumulate steadily over a period 
of time, it is natural to monitor results as they occur, with a view toward 
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taking action such as certain modifications or early termination of the study. 
For example, a disease prevention trial or an epidemiological cohort study 
of occupational exposure may run on a time scale of tens of years. It is not 
uncommon for phase III cancer clinical trials, where the primary objective 
is final confirmation of safety and efficacy, with a survival endpoint, to run 
10 years.

From a logistical and cost-effectiveness point of view it is natural to employ 
sequential statistical procedures. Sequential analysis will be performed as 
“a method allowing hypothesis tests to be conducted on a number of occa-
sions as data accumulate through the course of a trial. A trial monitored in 
this way is usually called a sequential trial” (Everitt and Palmer, 2010). In 
fully sequential approaches statistical conclusions are conducted after the 
collection of every observation. In group sequential testing, tests are con-
ducted after batches of data are observed. Both approaches allow one to 
draw decisions during the data collection and possibly reach a final 
conclusion at a much earlier stage as is the case in classical hypothesis test-
ing. In classical retrospective hypothesis testing where the sample size is 
fixed at the beginning of the experiment and the data collection is conducted 
without considering the data and/or the analysis, the sample size in sequen-
tial analysis is a random variable (see Chapters 2 and 4 for several examples).

The sequential analysis methodology possesses many advantages, 
including economic savings in sample size, time and cost. It also has advan-
tages in terms of ethical considerations and monitoring, e.g., a clinical trial 
might be stopped early if a new treatment is more efficacious than originally 
assumed. Sequential analysis methods have different operating characteris-
tics as compared to corresponding fixed sample size procedures. Given the 
potential cost savings and the interesting theoretical properties of sequential 
tests, many corresponding variations have become well established and 
thoroughly investigated. There are formal guidelines for use of sequential 
statistical procedures in many research areas (DeGroot, 2005; Dmitrienko 
et  al., 2005). For example, in terms of government regulated trials in the 
United States there are formal published requirements pertaining to interim 
analyses and the reporting of the corresponding statistical results. It is stated 
in a Food and Drug Administration Guideline (1988) that

The process of examining and analyzing data accumulating in a clinical trial, 
either formally or informally, can introduce bias. Therefore all interim analyses, 
formal or informal, by any study participant, sponsor staff member, or data 
monitoring group should be described in full even if treatment groups were not 
identified. The need for statistical adjustment because of such analyses should be 
addressed. Minutes of meetings of the data monitoring group may be useful (and 
may be requested by the review division).

Armitage (1975, 1991) argued that ethical considerations demand a trial be 
stopped as soon as possible when there is clear evidence of the preference for 



167A Brief Review of Sequential Methods

one or more treatments over the standard of care or placebo, which logically 
leads to the use of a sequential trial. In his publications cited above, Armit-
age described a number of sequential testing methods and their application 
to trials comparing two alternative treatments.

Sequential methods are well suited for use in clinical trials with short-term 
outcomes, e.g., a one-month follow-up value. When dealing with human sub-
jects, regular examinations of accumulating results and early termination of 
the study are ethically desirable (Armitage, 1975). Sequential methods touch 
much of modern statistical practice and hence we cannot possibly include all 
relevant theory and examples. In this chapter, we will outline several of the 
more well-applied sequential testing procedures, including two-stage 
designs, the sequential probability ratio test, group sequential tests, and 
adaptive sequential designs.
Warning: (1) Note that the scheme of sequential testing may result in very com-
plicated estimation issues in the post-sequential analyses of the data. Investiga-
tors should be careful applying standard estimation techniques to data obtained 
via a sequential data collection procedure. For example, estimation of the sample 
mean and variance of the data can be very problematic in terms of obtaining 
unbiased estimates (Liu and Hall, 1999). (2) In the retrospective setting, one can 
pretest parametric assumptions regarding underlying data and implement a 
parametric statistical procedure, e.g., estimation, adjusting its results with respect 
to the pretest. Oftentimes, parametric sequential procedures suppose paramet-
ric distribution assumptions even before the data is observed. (3) Common sta-
tistical sequential schemes stop at random times with lengths that depend on 
observations. Thus, in general, data obtained after sequential analyses cannot be 
evaluated for goodness-of-fit using the classical tests developed for retrospective 
testing. For example, the Shapiro–Wilk test for normality (e.g., Vexler et al., 2016a) 
has a Type I error rate that does not depend on the data distribution. This prop-
erty is not held if the number of observations is random with a distribution that 
depends on underlying data characteristics.

In Sections 6.2, 6.5, 6.6, and 6.7 we introduce two-stage sequential proce-
dures, concepts of group sequential tests, adaptive sequential designs and 
futility analysis. The classical sequential probability ratio test is detailed in 
Section 6.3. In Section 6.4 we show a technique that can be applied to evalu-
ate asymptotic properties of stopping times used in statistical sequential 
schemes. In Section 6.8 we provide some remarks regarding post-sequential 
procedures data evaluations.

6.2 Two-Stage Designs

The rudiments of sequential analysis can be traced to the works of Huygh-
ens, Bernoulli, DeMoivre, and Laplace with respect to the gambler’s ruin 
problem (Lai, 2001). The formal applications of sequential procedures started 
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in the late 1920s in the area of statistical quality control in manufacturing 
production. The early two-stage designs, which can be extended to multi-
stage designs, were proposed for industrial acceptance sampling of a pro-
duction lot where the decision was that the lot met specification or the lot 
was defective. In a two-stage acceptance sampling plan, there are six param-
eters: the sample sizes for each stage ( 1n  and 2n ), acceptance numbers ( 1c  
and  2c ), and rejection numbers ( 1d  and 2d ), where > + 11 1d c  and = + 12 2d c . To 
implement the plan, one first takes an initial sample of 1n  items, and if this 
contains 1c  defective items or fewer, the lot is accepted; but if 1d  defective 
items or more are found, the lot is rejected. Otherwise, the decision is deferred 
until a second sample of size 2n  is inspected. The lot is then accepted if the 
total cumulative number of defective items is less than or equal to 2c  and 
rejected if this number is greater than or equal to 2d ; see Dodge and Romig 
(1929) for more details. The two-stage sequential testing idea can be general-
ized to a multistage sampling plan where up to K stages are permitted (see 
Bartky, 1943, for details). This approach was subsequently developed by 
Freeman et al. (1948) to form the basis of the U.S. military standards for 
acceptance sampling.

A similar problem arises in the early stages of drug screening and in 
Phase II clinical trials, where the primary objective is to determine whether 
a new drug or regimen has minimal level of therapeutic efficacy, i.e., suf-
ficient biological activity against the disease under study, to warrant more 
extensive development. Such trials are often conducted in a multi- 
institution setting where designs of more than two stages are difficult to 
manage. Simon (1989) proposed an optimal two-stage design, which has 
the goal to “minimize the expected sample size if the new drug or regi-
men has low activity subject to constraints upon the size of the Type I 
error rate (α) and the Type II error rate (β).” These types of interim stopping 
rules are often termed a futility analysis; we will discuss futility analysis 
in detail in Section 6.7.

Simon’s two-stage designs are based on testing for the true response prob-
ability p that ≤:0 0H p p  versus ≥:1 1H p p , for some desirable target levels 0p  
and 1p . Each Simon’s two-stage design is indexed by four numbers 1n , 2n , 1r , 
and r, where 1n  and 2n  denote the numbers of patients studied in the first and 
second stage, and 1r  and r denote the stopping boundaries in the first and 
second stage, respectively. Let the total sample size be = +1 2n n n . The study 
is terminated at the end of the first stage and the drug is rejected for further 
investigation if 1r  or fewer responses out of 1n  participants are observed; oth-
erwise, the study proceeds to the second stage, with a total sample size n, 
and the drug is rejected for further development if r or fewer responses are 
observed at the end of the second stage, i.e., at the end of the study. A Type I 
error occurs when there are more than 1r  responses at the end of the first 
stage and more than r responses at the end of the study when ≤ 0p p . A Type 
II error occurs if there are 1r  or fewer responses in the first stage or there are 
r or fewer responses at the end of the study when ≥ 1p p . The values of 1n , 2n , 1r , 
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and r are found for fixed values of 0p , 1p , α (the Type I error rate), and β (the 
Type II error rate), and are determined as follows.

The decision of whether or not to terminate after the first or the second 
stage is based on the number of responses observed. The number of 
responses X , given a true response rate p and a sample size m, follows a 
binomial distribution, that is, = =Pr( ) ( ; , )X x b x p m  and ≤ =Pr( ) ( ; , )X x B x p m , 
where b and B denote the binomial probability mass function, and the bino-
mial cumulative distribution function, respectively. Therefore, the total 
sample size is random. The probability of early termination, and the 
expected sample size depend on the true probability of response p. By using 
exact binomial probabilities, the probability of early termination after the 
first stage, denoted as PET( )p , has the form ( ; , )1 2B r p n , and the expected 
sample size based a true response probability p for this design can be 

defined as E N p n p n( | ) 1 PET( )1 2{ }= + − . The probability of rejecting a drug 

with a true response probability p, denoted as ( )R p , is

 R p B r p n b x p n B r x p n
x r

n r

( ) ( ; , ) ( ; , ) ( ; , ).1 2
1

min{ , }

1 2
1

1∑= + −
= +

For pre-specified values of the parameters 0p , 1p , α and β, if the null hypoth-
esis is true, then we require that the probability that the drug should be 
accepted for further study in other clinical trials should be less than α, i.e., 
concluding that the drug is sufficiently promising. We also require that the 
probability of rejecting the drug for further study should be less than β 
under the alternative. That is, an acceptable design is one that satisfies the 

error probability constraints ≥ − α( ) 10R p  and ≥ − β( ) 11R p . Let Ω be the set of 
all such designs. A grid search is used to go through every combination of 1n ,  

2n , 1r  and r, with an upper limit for the total sample size n, usually between 
0.85 and 1.5 times the sample size for a single stage design (Lin and Shih, 
2004). The optimal design under 0H  is the one in Ω that has the smallest 
expected sample size ( | )0E N p . For more details, we refer the reader to Simon 
(1989). Extensions of this design for testing both efficacy and/or futility after 
the first set of subjects has enrolled are well developed, e.g., see Kepner and 
Chang (2003).

6.3 Sequential Probability Ratio Test

The modern theory of sequential analysis originates from the research of 
Barnard (1946) and Wald (1947). In particular, the method of the sequential 
probability ratio test (SPRT) has been the predominant influence of the 
subsequent developments in the area. Inspired by the Neyman–Pearson 
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lemma (Chapter 3), Wald (1947) proposed the SPRT, which provides a method 
of constructing efficient sequential statistical schemes.

The intuitive idea is this: while testing statistical hypotheses in many situ-
ations the decision-making procedures produce outcomes with respect to 
conclusions of the form to reject or not to reject the corresponding null 
hypothesis. Assume we have = 100n  observations and the appropriate likeli-
hood ratio test statistic based on first 35 data points is relatively too small. 
Then we will have a very rare chance to reject the null hypotheses using the 
full data. In this case we do not need to observe 100 data points to make the 
test decision. Similarly, we can consider situations when the likelihood ratio 
has relatively large values. Thus, one can terminate the testing procedure 
when the likelihood ratio is greater or smaller than presumed threshold val-
ues instead of calculating the test statistic based upon = 100n  observations.

Let , , ...1 2X X  be a sequence of data points with joint probability density 
function f . Consider a basic form for testing a simple null hypothesis 

=:0 0H f f  against a simple alternative hypothesis =:1 1H f f , where 0f  and 1f  
are known. Recall that the likelihood ratio has the form

 LR
f X X
f X X

n
n

n

( ,..., )

( ,..., )
.1 1

0 1

=

The goal of the SPRT is to inform a decision as to which hypothesis is more 
likely as soon as possible relative to the desired Type I and Type II error rates. 
To accomplish this goal, observations are collected sequentially one at a time; 
when a new observation has been made, a decision rule has to be made 
among the following options: (1) not to reject the null hypothesis and stop 
sampling; (2) reject the null hypothesis and stop sampling; or (3) collect 
another observation as a piece of information and repeat (1) and (2). Towards 
this end, we specify boundaries (thresholds) for the decision process given as 

< < < < ∞0 1A B , and sample , ,...1 2X X  sequentially until the random time N, 
where

 = = ≥ ∉inf{ 1 : ( , )},N N n LR A BA B n .

In other words, we stop sampling at time N and decide not to reject 0H  if 
≤LR AN  or decide to reject 0H  if ≥LR BN ; see Figure 6.1 for an illustration. 

The determination of A and B is given below.
Graphically we plot the likelihood value as a function of the sample size 

and examine the time series process as to whether it crossed either the A or 
B boundary. The R code for producing the plot is:

> # For any pre-specified A and B (0<A<1<B). For example, A=.11, B=0.
> A=.11
> B=9
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> muX0<-0 # A simple example where X~i.i.d. N(0,1) under H0
> muX1<-0.5 # A simple example where X~i.i.d. N(0.5,1) under H1
> L<-1
> n<-0
> L.seq.A<-c()
> while(L>A & L<B){
+   x<-rnorm(1,muX0,1)
+   L<-L*exp((muX1-muX0)*x+(muX0^2-muX1^2)/2) #dnorm(x,muX1,1)/dnorm(x,muX0, 
1)
+   L.seq.A<-c(L.seq.A,L)
+   n<-n+1
+ }
>
> L<-1
> n<-0
> L.seq.B<-c()
> while(L>A & L<B){

5 10 15 20
n

LR

A

1

B
Overshoot

Overshoot

FIGURE 6.1
The sampling process via the SPRT; the solid line shows the case where the sampling process 

stops when ≤LR AN  and that leads to the decision not to reject 0H , and the dashed line repre-

sents the case where the sampling process stops when ≥LR BN  and we decide to reject 0H . The 

shown overshoots have the values of −LR AN  or −LR BN , respectively.
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+   x<-rnorm(1,muX1,1)
+   L<-L*exp((muX1-muX0)*x+(muX0^2-muX1^2)/2)
+   L.seq.B<-c(L.seq.B,L)
+   n<-n+1
+ }
> # to plot
> par(mar=c(4,4,2,2))
> plot(L.seq.A,type="l",lty=1,ylim=c(0,9.3),yaxt="n",xlab="n",ylab="L")
> lines(L.seq.B,type="l",lty=2)
> abline(h=c(A,B))
> axis(2,c(A,1,B),label=c("A","1","B"),las=2)

The SPRT stopping boundaries: The thresholds A and B are chosen so that 
the Type I error and Type II error probabilities are approximately equal 
(bounded appropriately) to the prespecified values α and β, respectively, and 
formally defined as

 LR B B LR A AH N H NPr ( ) (1 ) and Pr ( ) (1 ).1
0 1α = ≥ ≤ − β β = ≤ ≤ − α−
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Similarly, it can be derived that Pr ( ) Pr ( )1 0LR A A LR AH N H Nβ = ≤ ≤ ≤ =  

1 Pr ( ) (1 ).0A LR B AH N( )− ≥ = − α  The proof is complete.
Note that the inequalities shown above account for values of the likelihood 

ratio that may “overshoot” the boundary at any given decision point; e.g., see 
Figure 6.1. Treating the above inequalities as approximate equalities and 
solving for α and β leads to the useful error rate approximations

 1
and

( 1)
;

A
B A

A B
B A

α ≈ −
−

β ≈ −
−

or equivalently, solving for A and B leads to the approximations of the thresh-
old values
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 ≈ β
− α

≈ − β
α1

and
1

A B ,

where the symbol “≈” means that the overshoot values are disregarded.
The Wald approximation to the average sample number (ASN): The 

expected stopping time ( )E N  is often called the average sample number 
(ASN). Being able to calculate the ASN is practically relevant in terms of the 
logistics of planning a given study. To study the ASN and the asymptotic 
properties of the stopping time N , we consider the following reformulation 
and make an additional assumption that the observations ≥, 1,X ii  are iid. 

Therefore, the log-likelihood ratio )(log LRn  is a sum of iid random variables 

{ }= log ( )/ ( )1 0Z f X f Xi i i , i.e., ∑)( = =
=

log
1

LR Z Sn

i

n

i n, where we define )(log LRn  as 

Sn for simplicity. Then the stopping time can be rewritten as

 inf{ 1 : or },, 1 21 2N N n S c S cc c n n= = ≥ ≤ − ≥

where )(= − log1c A  and )(= log2c B  are positive thresholds.

Denote E Z f x f x f x dxZi i i( ) log ( )/ ( ) ( )1 1 0∫ { }μ = =  and σ = − μE ZZi i Zi( )2
1

2, under 

the hypothesis Hi, = 0i ,1. By Wald’s fundamental identity (see Proposition 4.3.2 
in Chapter 4 as well as Wald, 1947), the Wald approximation to the expected 
sample size can be expressed in the form

 ≅ μ α − β
α

⎛
⎝⎜

⎞
⎠⎟ + − α β

− α
⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩

⎫
⎬
⎭

−E N Z log
1

(1 )log
1

0 0
1 , under H0

and

 (1 )log
1

log
1

,1 1
1E N Z≅ μ − β − β

α
⎛
⎝
⎜

⎞
⎠
⎟ + β β

− α
⎛
⎝
⎜

⎞
⎠
⎟

⎧
⎨
⎪
⎩⎪

⎫
⎬
⎪
⎭⎪

−  under H1,

where μ ≠ =0, 0, 1kZk . These approximations are obtained using Proposition 
4.3.2, which provides

 ∑{ }( ) ( )=
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= μ =

=

E LR E Z E N kk N k

i

N

i k Zklog , 0, 1
1

,

where, ignoring values of the overshoots, we can approximate

 log log( ) log( ) ,LR B I LR B A I LR AN N N( ) ( ) ( )≈ ≥ + ≤
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E LR B LR B A LR A k

LR B LR A LR A LR B

k N H N H N

H N H N H N H N

k klog log( )Pr log( )Pr , 0,1,

Pr 1 Pr , Pr 1 Pr ,0 0 1 1

{ }( ) ( ) ( )

( ) ( ) ( ) ( )

≈ ≥ + ≤ =

α = ≥ = − ≤ β = ≤ = − ≥

since LRN can take only values that satisfy ≥LR BN , ≈LR BN , or ≤LR AN , 

≈LR AN  with )(≈ β − α −
1

1A  and )(≈ − β α−1 1B .
Note that the Wald approximation to =( ),k 0,1E Nk  underestimates the 

true ASN. The accuracy of the Wald approximation to ( )E N  is mostly deter-
mined by the amount that SN will tend to overshoot − 1c  or 2c . If this over-
shoot tends to be small, the approximations will be quite good; otherwise, 
the approximation can be poor (Berger, 1985).

Asymptotic properties of the stopping time N : Define = min( , )1 2c c c  and 
suppose that = μ ≠E Z( ) 01 , where 1c  and 2c  are defined above. It is clear that, 

under 0H , ∫ { }μ = μ = = <E Z f x f x f x dxZ ( ) log ( )/ ( ) ( ) 00 0 1 1 0 0 , whereas, under 1H , 

E Z f x f x f x dxZ ∫ { }μ = μ = = >( ) log ( )/ ( ) ( ) 01 1 1 1 0 1  (see Section 3.2 for details). 

Based on the central limit theorem result shown by Siegmund (1968), it is 
easy to check that for μ > 0,

 μ − μ → σ μ → ∞−( / ) [ ( / )] (0, / ), as .2
1/2

2
2 2c N c N cd

Similarly, if μ < μ − μ → σ μ−0, then ( /| |) [ ( /| |)] (0, / )1
1/2

1
2 2c N c Nd

 as → ∞c . 
See Martinsek (1981) as well as the next section for more detail. Additionally, 
Martinsek (1981) presented the following result:

Theorem 6.3.1.

Let , , ...1 2Z Z  be iid with = μ ≠ = σ ∈ ∞E Z Z( ) 0, var( ) (0, )1 1
2 , and assume 

< ∞| |1E Z p , where ≥ 2p . Then

(1) If μ > =c o c0 and ( )2 1  as → ∞,c  then − μ ≥−c N c cp p{ | ( / )| : 1}2
/2

2  is uni-
formly integrable and hence − μ μ σ μ| ( / )| ~ ( / ) ( / ) | (0,1)|2 2

/2E N c c E Nr r r r 
as → ∞c , for r p0 ;< ≤

(2) If μ < =c o c0 and ( )1 2  as → ∞,c  then − μ ≥−c N c cp p{ | ( /| |)| : 1}1
/2

1  is uni-

formly integrable and hence ( )− μ μ σ μ| ( /| |)| ~ ( /| |) | | | (0, 1)|1 1
/2E N c c E Nr r r r 

as → ∞c , for < ≤0 r p. (Here the notation (0,1)N  presents a normally 
(0,1) distributed random variable.)

When = 2p , the asymptotic behavior of var( )N  is shown in the following 
corollary (Martinsek, 1981):
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Corollary 6.3.1. Let , , ...1 2Z Z  be iid with = μ ≠E Z( ) 01 , = σ ∈ ∞var( ) (0, )1
2Z . 

Then

(1) If μ > =c o c0 and ( )2 1  as → ∞c , then σ μ → ∞var ( ) ~ / as2
2 3N c c ;

(2) If μ < =c o c0 and ( )2 1  as → ∞ σ μ → ∞, then var ( ) ~ /| | as1
2 3c N c c ,

where c = min (c1,c2).

Example:

As a typical example of the SPRT, we consider the situation where 

μ σX N~ ( , )2 , σ = 12 , and it is desired to test μ = μH :0 0 versus μ = μH :1 1  

with α = 0.05 and β = 0.2, where μ = −1/20  and μ = 1/21 . For purpose of 
the comparison of the required sample size, in addition to the SPRT, we 
also considered the nonsequential likelihood ratio test (LRT), that is, the 

fixed sample size test. Define ∑= −

=

1

1
X n Xn i

i

n
. In this case, it is clear that 

the likelihood ratio is

 exp ( ) ( ) 2 ,1 0 0
2

1
2LR n X nn n( )= μ − μ + μ − μ

and

 α = > = > μ − μ + μ + μα αLR C H X C n Hn nPr( | ) Pr( log( ) ( ( )) ( ) 2| )0 1 0 1 0 0 ,

 1 Pr( | ) 1 Pr( log( ) ( ( )) ( ) 2| ).1 1 0 1 0 1LR C H X C n Hn nβ = − > = − > μ − μ + μ + μα α

Therefore, since X N nn ~ ( , / )2μ σ , one can easily obtain that 

μ − μ +αC nlog( ) ( ( ))1 0  μ + μ = Φ − αμ σ
−

n( ) 2 (1 )1 0 ( , / )
1

0
2 , where Φ − αμ σ

−
n (1 )

( , / )
1

0
2  

denotes the − α(1 )th quantile of a normal distribution with a mean of μ0  

and a variance of σ2 n. As a consequence, β = < Φ − αμ σ
−X Hn nPr( (1 )| ),
( , / )

1
1

0
2  

and hence the fixed sample size n in the nonsequential LRT test can be 

obtained by solving Φ β = Φ − αμ σ
−

μ σ
−

n n( ) (1 )
( , / )

1
( , / )

1

1
2

0
2 . In this example, assum-

ing α = 0.05 and β = 0.2, the nonsequential LRT test requires a sample 
size that is approximately 6.1826 (6.1826 corresponds to how much 
sample information is required to achieve the desired error probabili-
ties). Here we use the uniroot function in R to estimate the sample size. 
The R code to obtain the results is shown below:

## set up parameters
> alpha <- 0.05 # the significance level
> beta <- 0.2  # power=1-beta=0.8
> muX0 <- -1/2
> muX1 <- 1/2
>
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> ### Likelihood ratio test
> # power as a function of the number of observations n
> get.power <- function(n){
+   right.part <- qnorm(1-alpha,mean=muX0,sd=1/sqrt(n)
+   pnorm(right.part,mean=muX1,sd=1/sqrt(n))
+ }
> power <- 1-beta
> n.LR <- uniroot(function(n) get.power(n)-beta, c(0, 10000))$root
> n.LR
[1] 6.182566

For the sequential test, it can be easily obtained that the stopping 
boundaries of the SPRT are ≈ 4 19A  and ≈ 16B  based on α = 0.05 and β = 0.2. 

Note first by simple calculation that μ = μZi i  and σ = 12
Zi , = 0i ,1, and thus the 

Wald approximation to the ASN is 2.6832 and 3.8129 under the 0H  and 1H , 
respectively. The ASNs obtained via the Monte Carlo simulations (we refer 
the reader to Chapter 2 for more details related to Monte Carlo studies) 
are 4.1963 and 5.6990 under the null and the alternative, respectively. This 
proves that the Wald approximations are indeed underestimates of the ASN 
(however, considerably smaller than the sample size required in the nonse-
quential LRT test). The R code to obtain the results is shown below:

> ##### the function to get the ASN via Monte Carlo simulations ######
> # case: "H0" for the null hypothesis; "H1" or "Ha" for the alternative
> # alpha: the type I error rate, i.e., presumed significance level
> # beta: the type II error rate, where the power is 1-beta
> # muX0: the mean specified under the null hypothesis
> # muX1: the mean specified under the alternative hypothesis
> # MC: the number of Monte Carlo repetitions
>
> get.n<-function(case="H0",alpha=0.05,beta=0.2,muX0=-1/2,muX1=1/2,MC=5000){
+   if (missing(alpha)|missing(beta)) stop("missing alpha value or beta value 
")
+   if (missing(muX0)|missing(muX1)) stop("missing mean value under H_0 or H_ 
1") else {
+     if (case=="H0") mu<-muX0 else if (case=="H1"|case=="Ha") mu<-muX1 else 
stop("wrong specification of case")
+   }
+   if (!missing(alpha) & !missing(beta) & !missing(muX0) & !missing(muX1) & 
case%in%c("H0","H1","Ha")){
+     if (missing(MC)) MC<-5000
+     A<-beta/(1-alpha)
+     B<-(1-beta)/alpha
+     n.seq<-c()
+     for (i in 1:MC){
+       L<-1
+       n<-0
+       while(L>A & L<B){
+         x<-rnorm(1,mu,1)
+         L<-L*exp(-(2*(muX0-muX1)*x+muX1^2-muX0^2)/2)
+         n<-n+1
+       }
+       n.seq[i]<-n
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+     }
+     return(n.seq)
+   }
+ }
>
> ## SPRT under H_0
> 
n.seq.0<-get.n(case="H0",alpha=0.05,beta=0.2,muX0=-1/2,muX1=1/2,MC=50000)
> mean(n.seq.0)
[1] 4.1963
> var(n.seq.0)
[1] 11.2889
>
> ## SPRT under H_1
> 
n.seq.1<-get.n(case="H1",alpha=0.05,beta=0.2,muX0=-1/2,muX1=1/2,MC=50000)
> mean(n.seq.1)
[1] 5.6990
> var(n.seq.1)
[1] 13.5441

The SPRT is very simple to apply in practice and this procedure typically 
leads to lower sample sizes on average than fixed sample size tests given 
fixed α and β.

For this example the asymptotic ASN calculated based on Theorem 6.3.1 
under 0H  and 1H  is 3.1163 and 5.5452, respectively. The result is closer to the ASN 
obtained via the Monte Carlo simulations as compared to the Wald approxima-
tion to the ASN. The asymptotic var ( )N  calculated based on Corollary 6.3.1 
under 0H  and 1H  is 12.4652 and 22.1807, respectively, whereas the one obtained 
via the Monte Carlo simulations is 11.2889 and 13.5441, respectively.

In conclusion, there are a variety of fully sequential tests. The SPRT is the-
oretically optimal in the sense that it attains the smallest possible expected 
sample size before a decision is made as compared to all sequential tests that 
do not have larger error probabilities than the SPRT (Wald and Wolfowitz, 
1948). However, it should be noted that the SPRT is an open scheme with an 
unbounded sample size; as a consequence, the non-asymptotic distribution 
of sample size can be skewed with a large variance. For more detail, we refer 
the reader to Martinsek (1981) and Jennison and Turnbull (2000).

6.4 The Central Limit Theorem for a Stopping Time

In Chapter 2 we considered the stopping time

 N H n X Hi

i

n

( ) min 1 : ,

1

∑= ≥ ≥
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪=
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where > =0, 1,2,...,X ii  are iid random variables. The random process ( )N H  
has not only a central role in renewal theory, but also is widely applied in 
statistical sequential schemes. Evaluations of ( )N H  can demonstrate several 
basic principles that can be adapted to analyze various stopping rules used 
in sequential procedures.

In Chapter 2 we obtained the result { } )(( ) ~ / 1E N H H E X  as → ∞H . In 

order to derive an asymptotic distribution of ( )N H , we define  

E X X, var1
2

1( ) ( )μ = σ =  and provide the central limit theorem for the variable 

)()(ζ = − σ
−

( ) ( ) / /2 3 1/2
H N H H a H a  in the following proposition.

Proposition 6.4.1. If σ < ∞2 , then the distribution function of ζ( )H  
converges to the (0,1)N  distribution as → ∞H .

Proof. Following previous material of this book, we know how to deal with 
sums of iid random variables. Therefore we are interested in associating the 
distribution function of ζ( )H  with that of a sum of iid random variables. To 
this end, we note that

 Pr ( ) Pr Pr .
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It is clear that when we use → ∞k  and → ∞H  restricted to hold 

)()( − σ =
−2 1/2

H ak k u, where u is a fixed variable, the central limit theorem 

(Chapter 2) provides
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where Φ( )u  is the standard normal distribution function. Then let us solve 

)()( − σ =
−2 1/2

H ak k u with respect to k:

 k
H
a

u u aH u Ha
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H
a
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a

aH O H
2 1 / 4

2
1 .

1/2 2 2 1/2

2 2
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{ } { }( )
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= ± σ + −
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Thus, since )()(ζ = − σ
−

( ) ( ) / /2 3 1/2
H N H H a H a , we have

 N H k H u O H uPr ( ) Pr ( ) ( ).1/2{ }( ){ }≥ = ζ ≥ ± + → Φ−

Since the function Φ( )u  increases when its argument increases, we should 

choose { }( ){ }≥ = ζ ≥ − + −N H k H u O HPr ( ) Pr ( ) 1/2  to satisfy { }ζ ≥ −H u ↗Pr ( )  

when ↗u . Therefore, we have { }ζ ≥ − → ΦPr ( ) ( )H u u  as → ∞H .

Since Φ( )u  is a symmetric distribution function, we can rewrite

 H u u u H u uPr ( ) ( ) 1 ( ) or 1 Pr ( ) 1 ( ).{ } { }ζ ≥ − → Φ = − Φ − − ζ ≤ − → − Φ −

Defining = −v u, we conclude with { }ζ ≤ → ΦPr ( ) ( )H v v . This completes the 
proof of Proposition 6.4.1.

6.5 Group Sequential Tests

In practice, especially in the context of clinical trials, it is convenient to 
analyze the data after collecting groups of observations, as opposed to a 
fully sequential test in which the collection of a single observation at a time 
and continuous data monitoring can be a serious practical burden.

The introduction of group sequential tests has led to a wide use of 
sequential methods and has achieved the most efficient gains as compared 
with fully sequential tests. The group sequential designs and corresponding 
methods of analysis are particularly useful in clinical trials, where it is 
standard practice that monitoring committees meet at regular intervals to 
assess the progress of a study and to add formal interim analyses of the 
primary patient response. Group sequential tests address the ethical and 
efficiency concerns in clinical trials. They can be conducted conveniently 
with most of the benefits of fully sequential tests in terms of lower expected 
sample sizes and shorter average study lengths (Jennison and Turnbull, 
2000).

In this section, we introduce the general idea of group sequential tests. In 
group sequential designs, subjects are allocated in up to K groups of an equal 
group size m, according to a constrained randomization scheme, which 
ensures m subjects receive each treatment in every group and the accumulat-
ing data are analyzed after each group of 2m responses. The experiment can 
stop early to reject the null hypothesis if the observed difference is suffi-
ciently large. For each k = 1,...,K, assume that Sk is the test statistic computed 
from the first k groups of observations, Ck  is the corresponding threshold, 
and the decision rule is to reject 0H  when >S Ck k ; the test terminates if 0H  is 
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rejected, i.e., >S Ck k . If the test continues to the Kth analysis and S CK K< , it 
stops at that point and 0H  is not rejected.

The problem in which many authors are interested in the field of sequen-
tial analysis is the calculation of the sequence of critical values, { ,..., }1C CK , to 
give an overall Type I error rate. Various different types of group sequential 
test give rise to different sequences. In choosing the appropriate number of 
groups K and the group size m there may be external influences such as a 
predetermined cost or length of trial to fix mK  or a natural interval between 
analyses to fix m. However, it is useful to evaluate the statistical power con-
straint by the possible designs under consideration. Note that when signifi-
cance tests at a fixed level are repeated at stages during the accumulation of 
data, the probability of obtaining a significant result rises above the nominal 
significance level in the case that the null hypothesis is true. Therefore, 
repeated significance testing of the accumulated data is applied after each 
group is evaluated, with critical boundaries adjusted for multiple testing 
(e.g., Dmitrienko et al., 2010). For more details, we refer the reader to, e.g., 
Jennison and Turnbull (2000).

As a specific example, consider a clinical trial with two treatments, A and 
B, where the response variable for each patient to treatment A or B is nor-

mally distributed with known variance, σ2, and unknown mean, μA or μB, 
respectively. The group sequential procedure for testing μ = μH A B:0  versus 

μ ≠ μH A B:1  is specified by the maximum number of stages, K, the number 
of patients, m, to be accrued on A and B at each stage (assume equal sample 
sizes for each stage and for A and B), and decision boundaries ,...,1a aK. The 
sequential procedure is as follows: upon completion of each stage k of sam-
pling ( ≤ ≤1 k K), compute the test statistic

 2 ,
1

S m X Xk Ai Bi
i

k∑ ( )( )= − σ
=

where XAi  and XBi denote the sample mean to treatments A and B at the ith 
stage of m patients, respectively. If <| |S ak k and <k K , continue to the stage 

+ 1k ; if ≥| |S ak k or =k K, stop sampling. Let M denote the stopping stage. The 
null hypothesis is accepted if <| |S aM M or rejected if ≥| |S aM M. Note that 

− − −, , ...,1 2 1 1S S S S Sk k  are independent and identically distributed normal 

random variables with mean μ = μ − μ σn A B( ) ( 2 )  and variance one. 

Pocock (1977) proposed the boundaries = 1/2a akk , = 1,2,...,k K, where the 
constant a satisfies

 S a S a S akk1 Pr(| | ,| | 2 ,...,| | 0).1 2
1/2 1/2α = − < < < μ =

This group sequential design can sometimes be statistically superior to stan-
dard sequential designs. And the results based on a normal response can be 
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easily adapted to other types of response data. For more details and discus-
sion regarding other types of response data, we refer the reader to Pocock 
(1977).

The assumption of equal numbers of observations in each group can be 
relaxed and then more flexible methods for handling unequal and unpre-
dictable group sizes have been developed (Jennison and Turnbull, 2000).

6.6 Adaptive Sequential Designs

In recent years, there has been a great deal of interest in the work of adaptive 
sequential designs, an alternative and somewhat dissimilar methodology to 
the sequential approaches described above. Adaptive designs allow the 
modification of the design and the sample size after a portion of the data has 
been collected. This can be done using sequentially observed and estimated 
treatment effects at interim analyses to modify the maximal statistical infor-
mation to be collected or re-examine the variance assumptions about the 
original design based on estimates.

For each k = 1,...,K, assume that Sk is the test statistic computed from the 
first k groups of observations. Essentially, the technique of the adaptive 
design is based on the assumption of multivariate normality for ,...,1S SK 
and was first described by Bauer and Kohne (1994). The authors focused 
on a two-stage design and assumed that the data from each stage are inde-
pendent of those from the previous stage. We outline the basic idea with a 
simple two-arm parallel clinical trial as follows: suppose that it is desired 
to test the null hypothesis θ =: 00H , where θ represents the treatment dif-
ference between the experimental and control groups. Based on the data 
obtained from each of the two stages, two p-values, 1p  and 2p , can be 
obtained. Using Fisher’s combination method, Bauer and Kohne (1994) 
showed that −2 log( )1 2p p  follows a chi-square distribution on four degrees 
of freedom under the null hypothesis, giving the ability to combine the 
data from the two stages in a single test. The approach only assumes the 
independence of data from the two stages, leading to great flexibility in 
the design and analysis of trials without inflating the Type I error rate. The 
adaption methodology can be extended to trials with greater numbers of 
stages. The adaptations can be based on unblinded data collected in a 
trial, as well as external information. In addition, the adaptation rules 
need not be specified in advance.

Note that the adaptive design approach makes use of a test statistic, which 
is not a sufficient statistic for the treatment difference, resulting in a lack of 
power for the test. However, the enhanced flexibility of the adaptive design 
makes it extremely attractive and important.
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6.7 Futility Analysis

We introduced Simon’s two-stage designs in Section 6.2, which provide a 
simple futility rule for an early stop in clinical trials. The term futility refers 
to the inability to achieve its objectives in a clinical trial. Futility analyses 
involve the decision-making process to terminate a trial prior to completion 
conditional on the data accumulated so far when the interim results suggest 
that it is unlikely to achieve statistical significance. It can save resources that 
could be used on more promising research. One can combine the sequential 
testing concept with futility analysis.

Stochastic curtailment is one approach to futility analysis. It refers to a 
decision to terminate the trial based on an assessment of the conditional 
power, where conditional power is the probability that the final result will be 
statistically significant conditional on the data observed thus far and a spe-
cific assumption about the pattern of the data to be observed in the remain-
der of the study. Common assumptions include the original design effect, or 
the effect estimated from the current data, or under the null hypothesis. 
While a conditional power computation could be used as the basis for termi-
nating a trial when a positive effect emerges, a group sequential procedure is 
usually employed for such decisions. A conditional power assessment 
is usually used to assess the futility of continuing a trial when there is little 
evidence of a beneficial effect. In some studies such monitoring for condi-
tional power is done in an ad hoc manner, whereas in others a futility-
stopping criterion is specified.

There are other approaches proposed to assess futility, such as group 
sequential methods described in Section 6.5, predictive power, and predictive 
probability. For more details, we refer the reader to, e.g., Snapinn et al. (2006).

6.8 Post-Sequential Analysis

In the previous sections, we discussed the advantages of sequential proce-
dures. However, in the framework of sequential experiments, once data have 
been collected, the hypothesis testing paradigm may no longer be the directly 
useful one for the following statistical analysis; see, e.g., the discussion in 
Cutler et al. (1966). In practice, medical studies usually require a more com-
plete analysis rather than the simple “accept” or “reject” decision of a hypoth-
esis test. Once a sequential procedure is executed, generally speaking, we 
will meet the disadvantages of post-sequential analysis. The problem is that 
all simple statistical approaches based on retrospectively collected data 
should be completely modified when data is collected via sequential schemes. 
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Moreover, analyzing the data arising from sequential experiments com-
monly require very complicated adjustments.

The probability properties of the statistics obtained in a trial that is stopped 
early at only n samples are different from those attained in a similar trial that 
is run for a predetermined number of trials, even if they end up collecting 
the same number of samples. Because the sampling procedure stops ran-
domly during a sequential study, classical methods related to the fixed sam-
ple size test do not work for the sequential designs, in many situations. If 
these issues are not accounted for in the interpretation of the sequential trial, 
the results of analysis of data collected via sequential procedures will be 
biased. For a simple example, we assume N  is a stopping time based on 

sequentially obtained iid observations , ,...,1 2X X Xn, then ∑ =1
X Ni

i

N
 may 

not be an unbiased estimator of ( )1E X , that is, E X N E Xi
i

N
( )

1
1∑⎛⎝ ⎞

⎠ ≠
=

. Pianta-

dosi (2005) argued that the estimate of a treatment effect will be biased when 
a trial is terminated at an early stage: the earlier the decision, the larger the 
bias. Whitehead (1986) investigated the bias of maximum likelihood esti-
mates calculated at the end of a sequential procedure. Liu and Hall (1999) 
showed that in a group sequential test about the drift θ of a Brownian motion 

( )X t  stopped at time T, the sufficient statistic = ( , ( ))S T X T  is not complete 
for θ. In addition, there exist infinitely many unbiased estimators of θ and 
none has uniformly minimum variance.

Furthermore, most sequential analyses involve parametric approaches, 
especially in the group sequential designs. In contrast with the analysis of 
data obtained retrospectively, the parametric assumptions are posed 
before data points are observed. Even if we have strong reasons to assume 
parametric forms of the data distribution, it will be extremely hard, for 
example, to test for the goodness of fit of data distributions after the execu-
tion of sequential procedures. In this case, perhaps, e.g., the known Shapiro–
Wilk test for normality will not be exact and its critical value will depend on 
the underlying data distribution.

Therefore, it is important that proper methodology is followed in order to 
avoid invalid conclusions based on sequential data. For more information 
about the analysis following a sequential test, we refer the reader to Jennison 
and Turnbull (2000).
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7
A Brief Review of Receiver Operating 
Characteristic Curve Analyses

7.1 Introduction

Receiver operating characteristic (ROC) curve analysis is a popular tool for 
visualizing, organizing, and selecting classifiers based on their classification 
accuracy. The ROC curve methodology was originally developed during 
World War II to analyze classification accuracy in differentiating signal from 
noise in radar detection (Lusted, 1971). Recently, the ROC methodology has 
been extensively adapted to medical areas heavily dependent on screening 
and diagnostic tests (Lloyd, 1998; Zhou and Mcclish, 2002; Pepe, 2000, 2003), 
in particular, radiology (Obuchowski, 2003; Eng, 2005), bioinformatics (Lasko 
et al., 2005), epidemiology (Green and Swets, 1966; Shapiro, 1999), and labora-
tory testing (Campbell, 1994). For example, in laboratory diagnostic tests, 
which are central in the practice of modern medicine, common uses of ROC-
based methods include screening a specific population for evidence of dis-
ease and confirming or ruling out a tentative diagnosis in an individual 
patient, where the interpretation of a diagnostic test result depends on the 
ability of the test to distinguish between diseased and non-diseased sub-
jects. In cardiology, diagnostic testing and ROC curve analysis plays a fun-
damental role in clinical practice, e.g., using serum markers to predict 
myocardial necrosis and using cardiac imaging tests to diagnose heart dis-
ease. ROC curves are increasingly used in the machine-learning field, due in 
part to the realization that simple classification accuracy is often a poor stan-
dard for measuring performance (Provost and Fawcett, 1997). In addition to 
being a generally useful graphical method for visualizing classification 
accuracy, ROC curves have properties that make them especially useful for 
domains with skewed discriminating distributions and/or unequal 
classification error costs. These characteristics have become increasingly 
important as research continues into the areas of cost-sensitive learning and 
learning in the presence of unbalanced classes (Fawcett, 2006).

ROC curve analysis can also be applied generally for evaluating the accu-
racy of goodness-of-fit tests of statistical models (e.g., logistic regression) that 
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classify subjects into two categories such as diseased or non-diseased (e.g., in 
the context of a linear discriminant analysis). For example, in cardiovascular 
research, predictive modeling to evaluate expected outcomes, such as mor-
tality or adverse cardiac events, as functions of patient risk characteristics is 
common. In this setting, ROC curve analysis is very useful in terms of sort-
ing out important risk factors from less important risk factors.

The ROC curve technique has been widely used in disease classification 
with low-dimensional biomarkers because (1) it accommodates case-control 
designs and (2) it allows treating discriminatory accuracy of a biomarker 
(diagnostic test) for distinguishing between two populations in an efficient 
and relatively simple manner.

This chapter will outline the following ROC curve topics: ROC Curve 
Inference, Area under the ROC Curve, ROC curve Analysis and Logistic 
Regression, Best Combinations Based on Values of Multiple Biomarkers. 
These themes are considered in the contexts of definitions, parametric/ 
nonparametric estimation/testing and the relevant literature in the field of 
the ROC curve analyses.

7.2 ROC Curve Inference

In this chapter we assume, without loss of generality, that , ,1 …X Xn and 
, ,1 …Y Ym are iid observations from diseased and non-diseased populations, 

respectively and let F and G denote the corresponding continuous 
distribution functions of X  and Y. The ROC curve ( )R t  is defined as 

( ) 1 ( (1 ))1= − −−R t F G t , where 0, 1[ ]∈t  and the function 1−G  defines the inverse 
function of G, i.e., ( ) : ( ( ))1 1 =− −G t G G t t (e.g., Pepe, 2003). The ROC curve is a 
plot of sensitivity (true positive rate, 1 ( ))− F t  against one minus specificity 
(true negative rate, 1 ( ))− G t  for different values of the threshold t. Note that 
the ROC curve is a special case of a probability-probability plot (P-P plot) 
(e.g., Vexler et al., 2016a). As an example, we consider three biomarkers with 
their corresponding ROC curves presented in Figure 7.1, whose underlying 
distributions are ~ (0,1)1F N , ~ (0,1)1G N  for biomarker A (the diagonal line), 

~ (1,1)2F N , ~ (0,1)2G N  for biomarker B (in a dashed line), and ~ (10,1)3F N , 
~ (0,1)3G N  for biomarker C (in a dotted line), respectively.

The following R code is used to plot the ROC curves shown in Figure 7.1:

> t<-seq(0,1,0.001)
> R1<-1-pnorm(qnorm(1-t,0,1),0,1)  # biomarker A
> R2<-1-pnorm(qnorm(1-t,1,1),0,1)  # biomarker B
> R3<-1-pnorm(qnorm(1-t,10,1),0,1)  # biomarker C
> plot(R1,t,type="l",lwd=1.5,lty=1,cex.lab=1.1,ylab="Sensitivity",xlab="1-Spe 
cificity")
> lines(R2,t,lwd=1.5,lty=2)
> lines(R3,t,lwd=1.5,lty=3)
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It can be seen that the farther apart the two distributions F and G are in 
terms of location, the more the ROC curve shifts to the top left corner. A near 
perfect biomarker would have an ROC curve coming close to the top left 
corner, and a biomarker without any discriminability would result in an 
ROC curve that is a diagonal line from the points (0,0) to (1,1).

The ROC curve displays a distance between two distribution functions. 
The ROC curve is a well-accepted statistical tool for evaluating the discrimi-
natory ability of biomarkers (e.g., Shapiro, 1999). It is a convenient way to 
compare diagnostic biomarkers because the ROC curve places tests (bio-
markers values) on the same scale where they can be compared for accuracy.

There exists extensive research on estimating ROC curves from the para-
metric and nonparametric perspectives (e.g., Pepe, 2003; Hsieh and Turnbull, 
1996; Wieand et al., 1989). For example, assuming that both the diseased and 

non-diseased populations are normally distributed, that is, μ σ~ ( , )1 1
2F N  and 

μ σ~ ( , )2 2
2G N , the corresponding ROC curve can be expressed as

 R t a b t( ) ( ( )),1= Φ + Φ−

where = μ − μ σ( )/1 2 1a , b = σ σ/2 1, and Φ is the standard normal cumulative 
distribution function. This is oftentimes referred to as the bi-normal ROC 
curve. The estimated ROC curve is obtained by substituting the maximum 
likelihood estimators (MLE) of the parameters μ1, μ2, 1σ , and 2σ  into the for-
mula above. The nonparametric estimation of the ROC curve incorporates 
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FIGURE 7.1
The ROC curves related to the biomarkers. The solid diagonal line corresponds to the ROC 

curve of biomarker A, where ~ (0, 1)1F N  and ~ (0, 1)1G N . The dashed line displays the ROC 

curve of biomarker B, where ~ (1, 1)2F N  and ~ (0, 1)2G N . The dotted line close to the upper left 

corner plots the ROC curve for biomarker C, where ~ (10, 1)3F N  and ~ (0, 1)3G N .
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empirical distribution functions in place of their parametric counterparts. 
Toward this end we define the empirical distribution function of F based on 
iid observations ,...,1X Xn from F as

 F t
n

I X tn i

i

n

ˆ ( )
1

{ },

1

∑= ≤
=

where { }⋅I  denotes the indicator function. The empirical distribution function 

Ĝm of G can be defined similarly, using iid observations Y1 ,..., Ym from G. Esti-

mating F and G by their corresponding empirical estimates F̂n and Ĝm, 
respectively, gives the empirical estimator of the ROC curve in the form

 ˆ ( ) 1 ˆ ( ˆ (1 )),1R t F G tn m= − −−

which can be shown to converge to ( )R t  for large sample sizes n and m.
Figure 7.2 presents the nonparametric estimators of the ROC curves based on 
data related to generated values (n = m = 1000) of the three biomarkers 
described with respect to Figure 7.1, i.e., ~ (0,1)1F N , ~ (0,1)1G N  for bio-
marker A (the diagonal line), ~ (1,1)2F N , ~ (0,1)2G N  for biomarker B (in a 
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FIGURE 7.2
The nonparametric estimators of the ROC curves related to three different biomarkers based 

on n = 1000 and m = 1000 data points. The solid diagonal line corresponds to the nonparametric 

estimator of the ROC curve of biomarker A, where F N~ (0,1)1  and ~ (0, 1)1G N . The dashed line 

displays the nonparametric estimator of the ROC curve of biomarker B, where ~ (1, 1)2F N  and 

~ (0, 1)2G N . The dotted line close to the upper left corner plots the nonparametric estimator of 

the ROC curve for biomarker C, where ~ (0, 1)3F N  and ~ (10, 1)3G N .
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dashed line), and ~ (10,1)3F N , ~ (0,1)3G N  for biomarker C (in a dotted line), 
respectively, using the following R code:

> if(!("pROC" %in% rownames(installed.packages()))) install.packages("pROC")
> library(pROC)
> n<-1000
> set.seed(123)  # set the seed
> # Simulate data from the normal distribution
> X1<-rnorm(n,1,1)
> Y1<-rnorm(n,0,1)
> group<-cbind(rep(1,n),rep(0,n))
> measures<-c(X1,Y1)
> roc1<-roc(group, measures)
> plot(1-roc1$specificities,roc1$sensitivities,type="l",ylab="Sensitivity",x
lab="1-Specificity")
> abline(a=0,b=1,col="grey")  # add the diagonal line for reference

It should be noted that for large sample sizes, the ROC curves are well 
approximated by the nonparametric estimators.

In health-related studies, the ROC curve methodology is commonly related 
to case-control studies. As a type of observational study, case-control stud-
ies differentiate and compare two existing groups differing in outcome on 
the basis of some supposed causal attributes. For example, based on factors 
that may contribute to a medical condition, subjects can be grouped as cases 
(subjects with a condition/disease) and controls (subjects without the 
 condition/disease), e.g., cases could be subjects with breast cancer and 
 controls may be health subjects. For independent populations, e.g., cases and 
controls, various parametric and nonparametric approaches have been 
 proposed to evaluate the performance of biomarkers (e.g., Pepe, 1997; Hsieh 
and Turnbull, 1996; Wieand et al., 1989; Pepe and Thompson, 2000; McIntosh 
and Pepe, 2002; Bamber, 1975; Metz et al., 1998).

7.3 Area under the ROC Curve

A rough idea of the performance of a set of biomarkers, in terms of their 
diagnostic accuracy, can be obtained through visual examination of the 
corresponding ROC curves. However, judgments based solely on visual 
inspection of the ROC curve are far from enough to precisely describe the 
diagnostic accuracy of biomarkers. The area under the ROC curve (AUC) 
is a common summary index of the diagnostic accuracy of a binary bio-
marker. The AUC measures the ability of the marker to discriminate 
between the case and control groups (Pepe and Thompson, 2000; McIntosh 
and Pepe, 2002).
Bamber (1975) noted that the AUC is equal to Pr( )>X Y .
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Proof. By the definition of the ROC curve, ( ) 1 ( (1 ))1= − −−R t F G t , where 
0, 1[ ]∈t  and F and G are distribution functions of X  and Y , respectively, the 

AUC can be expressed as

 

R t dt F G t dt F w dG w

F w dG w X Y X Y

( ) (1 ( (1 )) (1 ( )) ( )

1 ( ) ( ) 1 Pr( ) Pr( ).

0

1

0

1
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∫

= − − = −

= − = − ≤ = >

−

−∞

∞

−∞

∞

The proof is complete.
Values of the AUC can range from 0.5, in the case of no differentiation 

between the case and control distributions, to 1, where the case and control 
distributions are perfectly separated. For more details, see Kotz et al. (2003), 
for wide discussions regarding evaluations of the AUC-type objectives.

7.3.1 Parametric Approach

Under binormal assumptions, where for the diseased population μ σ~ ( , )1 1
2X N  

and for the non-diseased population μ σ~ ( , )2 2
2Y N , a closed form of the AUC 

is presented as
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Noting that X  and Y  are independent, we obtain that

 

Pr( ) Pr( 0) 1 Pr
( ) ( )

1 .

1 2

1
2

2
2

1 2

1
2

2
2

1 2

1
2

2
2

1 2

1
2

2
2

A X Y X Y
X Y= > = − > = − − − μ − μ

σ + σ
≤ − μ − μ

σ + σ

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

= − Φ − μ − μ
σ + σ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ = Φ μ − μ

σ + σ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

The index 0.5≥A , when μ ≥ μ1 2. By substituting maximum likelihood esti-

mators for iμ  and 2σ i , 1, 2=i  into the above formula, the maximum likelihood 
estimator of the AUC can be obtained directly. Given the estimator of the 
AUC under binormal distributional assumptions, one can easily construct 
large-sample confidence interval-based tests for the AUC using the delta 
method (we outline this method below). For nonnormal data a transforma-
tion of observations to normality may first be applied, e.g., the Box–Cox trans-
formation (Box and Cox, 1964), prior to the parametric ROC curve approach 
being applied. In general, when data distributions are assumed to have 
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 parametric forms different than the normal distribution function for F 

and G, the AUC can be expressed as Pr( ) ( ) ( )∫> =X Y G x dF x , in a similar 

manner to the technique shown above (Kotz et al., 2003).
When parametric forms of the distribution functions F and G are specified 

in nonnormal shapes, methods for evaluating the AUC can be proposed in a 
similar manner to those shown above. The maximum likelihood estimation 

of Pr( ) ( ) ( )∫= > =A X Y G x dF x  can be provided by expressing one of param-

eters of F and G as a function of A. For example, the following approach  
can be easily extended to be appropriate for different parametric forms of  

F and G: when = Φ μ − μ
σ + σ

⎛

⎝
⎜

⎞

⎠
⎟

1 2

1
2

2
2

A , we have ( ) ( )μ = σ + σ Φ + μ− ,1 1
2

2
2 1

2A  where 

,1 )( )(Φ Φ =− u u  and then using the likelihood function based on observations 

from ( )( ) ( )σ + σ Φ + μ σ−~ ,1
2

2
2 1

2 1
2X N A  and μ σ~ ( , )2 2

2Y N , the maximum like-

lihood estimator of A can be calculated maximizing the corresponding like-

lihood with respect to ∈ μ σ >(0,1), , 02 1A  and 02σ > . It is clear the properties 
of the maximum likelihood estimator of A can be obtained via the material of 
Chapter 3 (see, e.g., Vexler et al., 2008a as well as Vexler et al., 2008b, for more 
details). Note that, statistical software packages such as R, SAS, or SPlus 
allow us to numerically perform the maximization of the corresponding log-
likelihood functions without using closed forms of the estimators of the 
unknown parameters. The basic procedure “optim” in R (R Development 
Core Team, 2014) can be carried out with respect to minimizing the negative 
log-likelihoods and the procedure “multiroot” can help finding these mini-
mizations.

The delta method for evaluating estimators of the AUC, e.g., in terms of 
their asymptotic variances and distributions, can be employed similarly to 

the following scheme: when μ σ~ ( , )1 1
2X N  and μ σ~ ( , )2 2

2Y N , one can esti-

mate the parameters μ σ μ σ, , ,1 1
2

2 2
2 as μ σ μ σˆ , ˆ , ˆ , ˆ1 1

2
2 2

2, obtaining the estimators 

δ = μ − μ
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 and ˆ (ˆ )= Φ δA  of A. Then Taylor’s theorem 

yields the approximation

 A Aˆ ( ) (ˆ ) '( ) (ˆ ) '( );� Φ δ + δ − δ Φ δ = + δ − δ Φ δ

see, e.g., Kotz et al. (2003) for details.

Example:

Assume that biomarker levels were measured from diseased and healthy 
populations, with iid observations 0.391 =X , 1.972 =X , 1.033 =X , and 

0.164 =X , which are assumed to be from a normal distribution μ σ( , )1 1
2N ,  
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and iid observations 0.421 =Y , 0.292 =Y , 0.563 =Y , = −0.684Y , and 5 =Y  

0.54− , which are assumed to be from a normal distribution μ σ( , )2 2
2N ,  

respectively. In this case, the maximum likelihood estimators of the 

parameters are μ =ˆ 0.88751 , μ =ˆ 0.012 , σ =ˆ 0.49221
2 , and σ =ˆ 0.26552

2 . Based 

on the definition described in Section 7.2, = μ − μ σ =ˆ ( ˆ ˆ ) ˆ 1.2511 2 1a  and 
ˆ ˆ ˆ 0.7342 1= σ σ =b , and therefore the ROC curve can be estimated as 
ˆ ( ) (ˆ ˆ ( )) (1.251 0.734 ( ))1 1= Φ + Φ = Φ + Φ− −R t a b t t . The AUC can be estimated as 

A ( )= Φ μ − μ σ + σ =ˆ ( ˆ ˆ ) ˆ ˆ 0.84331 2 1
2

2
2 , which summarizes the discriminat-

ing ability of the biomarker with respect to the disease. The interpreta-

tion of the AUC is that this particular marker accurately predicts a case 
to be a case and a control to be control 84% of the time and that 16% of the 
time the marker will misclassify the groupings.

7.3.2 Nonparametric Approach

Conversely, a nonparametric estimator for the AUC can be obtained as
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where , 1, ,= …X i mi  and , 1, ,= …Y j nj  are the observations for diseased and 
non-diseased populations, respectively (Zhou et al., 2011). It is equivalent to 
the well-known Mann–Whitney statistic, and the variance of this empirical 
estimator can be obtained using U-statistic theory (Serfling, 2002). Replacing 
the indicator function by a kernel function, one can obtain a smoothed ROC 
curve (Zou et al., 1997). For details regarding nonparametric evaluations and 
comparisons of ROC curves and AUCs we refer the reader to Vexler et al. 
(2016a).

Example:

Biomarker levels were measured from diseased and healthy popula-
tions, providing iid observations 0.391 =X , 1.972 =X , 1.033 =X , and 

0.164 =X , which are assumed to be from a continuous distribution, 
and  iid observations 0.421 =Y , 0.292 =Y , 0.563 =Y , 0.684 = −Y , and 

0.545 = −Y , which are also assumed to be from a continuous distribution, 
respectively. In this case, the empirical estimates of the distribution 

functions F and G have the forms ˆ ( )
1

4
( )4

1

4∑= <
=
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, respectively, and the empirical estimate of the 

ROC curve is ˆ ( ) 1 ˆ ( ˆ (1 ))4 5
1= − −−R t F G t . The AUC can be estimated as 

A I X Yi j
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, suggesting a moderate discriminat-

ing ability of the biomarker with respect to discriminating the disease 
population from the health population. Note that in this case, the non-
parametric estimator of the AUC is smaller than the estimator of the 
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AUC under the normal assumption (Section 7.3.1). For such a small data-
set used in our examples the difference in AUC estimates is likely due 
more to the discreteness of the nonparametric method than any real dif-
ference between the approaches.

7.4  ROC Curve Analysis and Logistic Regression:  

Comparison and Overestimation

In general, the discriminant ability of a continuous covariate, e.g., biomarker 
measurements, can be considered based on logistic regression or the ROC 
curve methodology (Pepe, 2003). Logistic regression has been proposed as a 
mean of modeling the probability of disease given several test results (e.g., 
Richards et al., 1996). It is often used to find a combination of covariates that 
discriminates between two groups or populations, for example, diseased 
and non-diseased populations. Suppose we have a data set consisting of a 
binary outcome, {0,1}∈q , which indicates the membership of the individual, 
and m components in covariate vector z. Table 7.1 illustrates the connection 
between the ROC curve and logistic regression with a case-control 
study.  Let  X  and Y  represent the measurements of the biomarker in the 
case  and   control  group, respectively. Individuals in the case group  
( 1=q ) have values of z given 1=q , that is, | 1= =X z q , while individuals in 
the control group ( 0=q ) have values of z given 0=q , that is, | 0= =Y z q .

The logistic regression models

 Pr( 1| )
1

,q z
e

e

z

z

T

T= =
+

β

β

where the covariate vector z can include a component with the value of 1 to 
present an intercept coefficient of the model and the vector β consists of the 

parameters of the regression, the operator T  denotes the transpose.
Logistic regression relies only on an assumption about the form of the con-

ditional probability for disease given the covariate vector z and does not 

TABLE 7.1

The outcome levels and the biomarker values z, where X  

and Y  represent values of measurements of the biomarker 
in the case and control group, respectively

Class z (Biomarker values)

Case ( 1=q ) | 1= =X z q  (values of z given 1=q )

Control ( 0=q ) | 0= =Y z q  (values of z given 0=q )
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require specification of the much more complex joint distribution of the 
covariate vector z.

It can be emphasized that logistic regression focuses on Pr( 1| )=q z  and the 
covariant z is assumed to be not a random variable, whereas the ROC curve 
methodology attends to Pr( | )z q  and z is assumed to be a random variable.

In this section, we present the fact that using the same data to fit both the 
discriminant score and to estimate its ROC curve leads to an overly optimistic 
estimate of the accuracy of the test as compared to how the model would 
perform on samples of future cases (Copas and Corbett, 2002). In general, for 
large studies data are split into training samples and validation samples. 
The training sample is used to fit the model and the validation sample is 
used to assess the performance of the model fit relative to how it would func-
tion on a future set of patients. This is discussed further below.

The ROC curve is a standard way of illustrating and evaluating the perfor-
mance of a discriminant score or screening marker. Let s be such a score, e.g., 

= βs zT , where z is the covariate vector. And we have two groups or popula-
tions indexed by the binary outcome {0,1}∈q , e.g., which represents the 
membership of the diseased or non-diseased populations. Then threshold u 
gives the false positive rate

 ( ) Pr( | 0)0 = ≥ =F u s u q

and the true positive rate

 F u s u q( ) Pr( | 1).1 = ≥ =

The ROC curve, R, is the graph of ( )1F u  against ( )0F u  as u ranges over all pos-
sible values,

 R F u F u u{( ( ), ( )), }.1 0= −∞ < < +∞

It is important to recognize that an empirical ROC curve, such as that 
shown in Figure 7.2, is a retrospective calculation, using the same data to 
estimate the score and to assess its performance. What we really want to 
know is how well this particular score would perform if it were to be adopted 
in practice. This would involve a prospective assessment of how well the 
score discriminates between future and independent cases with 1=q  and 

0=q . Thus we distinguish between the retrospective (training set) ROC, 

R̂(ˆ)β , the curve with ˆ= βs zT  and with 0F  and 1F  taken as the empirical distri-

butions of s in the sample, and the prospective (validation set) ROC, (ˆ )βR , the 

curve with the same score ˆ= βs zT  but with 0F  and 1F  taken as the true popu-

lation distributions of s. The term overestimation in the title of this section 
refers to the difference
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 R Rˆ (ˆ) (ˆ),β − β

where the difference between two curves denotes the curve of differences in 
vertical coordinates graphed against common values for the horizontal coor-
dinate. In other words, this is the difference in true positive rates having 
chosen the thresholds to match the false positive rates. Typically, the term 
overestimation is positive, that is, the retrospective ROC gives an inflated 
assessment of the true performance of the score.

Consider the classifier ˆ 1=q , if β̂ ≥z uT , and ˆ 0=q , if β̂ <z uT . Then it is well 
known that the retrospective error rate, namely the proportion of cases in the 
sample for which ˆ ≠q q, is a downward biased estimate of the true prospec-
tive error rate, which would be obtained if the classifier q̂ were to be applied 
to the whole population. Efron (1986) derives an asymptotic approximation 
to the expected bias. Efron’s formula is consistent with the approximation 
based on the ROC curve methodology, which we will present in the follow-
ing subsection.

7.4.1 Retrospective and Prospective ROC

Suppose we have a total sample size of n individuals with data ( , )z qi i , where 
q denotes the group membership as before and there are m components in 
covariate vector z, including the intercept term 11 =z . We assume through-
out that the data fit well to the logistic regression model
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Let β̂ be the maximum likelihood estimator of β. Then, if we apply the scores 

ˆ ˆ= βu zT
i to the data against a threshold u, the observed proportions of false 

and true positives are

 ˆ ( )
1

(1 )
( ˆ )(1 ), ˆ ( )

1
( ˆ )0 1∑ ∑=

−
− − = −F u

n q
H u u q F u

nq
H u u qi i

i

i i

i

,

respectively, where ∑= /q q ni  and H  is the Heaviside function: ( ) 1=H z  if 

0≥z , and ( ) 0=H z  if 0<z . The sums in these and subsequent expressions 

run from 1 to n. The ROC curve ˆ ˆ (ˆ )= βR R  is then the graph of ˆ ( )1F u  

against ˆ ( )0F u .
For the prospective ROC fit, suppose the random q’s in these data are rep-

licated a large number of times. Then, at each xi, we expect a proportion pi of 
replicated cases to have 1=q , where
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If the scores ûi are applied to the replicated data against a threshold v, the 
future proportions of false and true positives are
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where /∑=p p ni . Then (ˆ )= βR R  is the graph of F ( )1 v  and F ( )0 v .

7.4.2 Expected Bias of the ROC Curve and Overestimation of the AUC

To simplify the notation, let ,ε = −q pi i i  ( ˆ )= −H H u ui i , and H H ui i( ˆ )* v= − . 
Then we can obtain
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For large n, values of pi will be close to pu, which is the true value of 

Pr( 1| )= β =y z uT . Hence
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Similarly, we can obtain
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Define uv  to be the value of v such that n F u F{ ˆ ( ) ( )} 00 0 v− = . We have
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Note that ( )1/2ε = −O np . Let n p p z zi i
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The terms pu and ui in the right-hand side are functions of the true parameter 

vector β, and the terms di and p  depend on pi and hence are also functions of 

β. Estimating these in the obvious way using β̂ gives the corresponding esti-

mator ˆ( )S u . The corrected ROC curve

 { ˆ ( ) ˆ( ), ˆ ( )}*
1 0= −R F u S u F u

is an estimator of the ROC curve that would be obtained if the fitted score 

zTβ̂  were to be validated on a large replicated sample. As expected, this indi-
cates that this score discriminates between the two populations noticeably 
less well than the retrospective analysis seems to suggest.

The estimated AUC is
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Similar to the overestimation in the ROC curve described above, the overes-
timation in the AUC is

 

F u F u dF u
n q

q F u F

n q
H u u q A i u

n p p
p p b

n u u
b

j j u

j

i j i j

i j

i i ij

i j

j i

ij

j{ ˆ ( ) ( )} ˆ ( )
1

(1 )
(1 ){ ˆ ( ˆ ) ( )}

1

(1 )
( ˆ ˆ )(1 ) ( , ˆ )

1

2 (1 )
(1 )

( )
,

1 1 0 1 1 ˆ

2

,

5/2

1/2

vv ∑∫

∑ ∑

− =
−

− −

=
−

− − ≈
−

− ϕ
−⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪≠

where a z z zij j i
T

i= − Ω−( ) ,1  = + = − Ω −−( ) ( )2 1b a a z z z zij ij ji i j
T

i j . Therefore, the 
overestimation in the AUC is approximately

 
np p

E p p f u z U
1

(1 )
[ (1 ) ( )tr{ var( | )}],1

v v−
− Ω−

where U z f uT= has probability density function ( )β , (.)E  and var(.) denote the 
empirical expectation and variance over the empirical distribution of the 
sample covariate vectors ,...,1z zn. Note that the overestimation is again of 
the order ( )1−O n . For more details see Copas and Corbett (2002).
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7.4.3 Example

Let , ...,1X Xm and , ...,1Y Yn denote biomarker measurements from non-diseased 
and diseased populations, respectively. Assume that we would like to exam-
ine the discriminant ability of the biomarker based on the AUC, that is, test-
ing for : 1/20 =H AUC  versus : 1/21 ≠H AUC  as well as based on the logistic 
regression, i.e., testing for the coefficient, β, : 00 β =H  versus : 01 β ≠H .

As described in Section 7.3.2, a nonparametric estimator of the AUC is 
equivalent to the well-known Mann–Whitney statistic, which follows an 
asymptotic normal distribution, and the variance of this empirical estimator 
can be obtained using U-statistic theory (Serfling, 2002). Then the nonpara-

metric estimator of the AUC is ˆ 1
( )

11∑∑= >
==

A
mn

I X Yi j
j
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i

m
. Let Ri be the rank 

of Xi’s (the ith ordered value among Xi’s) in the combined sample of Xi’s and 

Yj’s, and Sj be the rank of Yj’s (the jth ordered value among Yj’s) in the com-
bined sample of Xi’s and Yj’s. Define
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Then the estimated variance of this empirical estimator of the AUC is
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Based on the asymptotic normal distribution of the empirical estimator of 
the AUC, the corresponding p-value can be easily obtained and the 95% con-
fidence interval of the AUC is − × + ×[ ˆ 1.96 , ˆ 1.96 ]A S A S .

The test for : 00 β =H  versus : 01 β ≠H  is based on the asymptotic distribu-
tion of the estimated coefficient β from the logistic regression fit (Hosmer 
and Lemeshow, 2004). It should be noted that the test : 00 β =H  versus : 01 β ≠H  
is a test of association, which is a less stringent measure than prediction.

In order to evaluate the test procedures described above, we conducted 
10,000 Monte Carlo generations of , ...,1X Xm and , ...,1Y Yn. In the simulation set-
ting, we assume that both the case group X and the control group Y follow a 
log-normal distribution μ σlog ( , )2N  with different μ’s and a common 2σ , 
where ( ) 3=E Y , ( ) 3= + δE X , and δ ranges from 0 to 2.

Figure 7.3 demonstrates the experimental comparison of the Monte Carlo 
powers between the test for : 1/20 =H AUC  versus : 1/21 ≠H AUC  (upper 
curves) and the test based on the logistic regression : 00 β =H  versus : 01 β ≠H  
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(lower curves) to detect the discriminant ability of the biomarker at the 0.05 
significance level, where the left and the right panel corresponds to the sam-
ple sizes 50= =n m  and 100= =n m , respectively. In these cases, the test based 
on the AUC concept demonstrates better discriminant ability of the bio-
marker compared to the test based on the logistic regression.
The R code to implement the procedures is presented below:

> # empirical AUC (Mann-Whitney stat), returns p-value for H_0: AUC=1/2 
versus H_1: AUC!=1/2
> AUC.pval<-function(x,y) {
+   m<-length(x)
+   n<-length(y)
+   x<-sort(x)
+   y<-sort(y)
+   rankall<-rank(c(x,y))
+   R<-rankall[1:m]
+   S<-rankall[-c(1:m)] # ranks of y
+
+   S10<-1/((m-1)*n^2)*(sum((R-1:m)^2)-m*(mean(R)-(m+1)/2)^2)
+   S01<-1/((n-1)*m^2)*(sum((S-1:n)^2)-n*(mean(S)-(n+1)/2)^2)
+   S2<-(m*S10+n*S01)/(m+n)
+
+   a<-wilcox.test(y,x)$statistic/(n*m)
+   AUC<-as.numeric(ifelse(a>=0.5,a,1-a))  # empirical AUC
+   pval<- 2*(1-pnorm(abs(AUC-0.5)/sqrt(S2/(m*n/(m+n)))))
+   return(pval)
+ }
>
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FIGURE 7.3
The experimental comparisons based on the Monte Carlo powers related to the test for 

=: 1/20H AUC  versus ≠: 1/21H AUC  (upper curves) and the test for : 00 β =H  versus : 01 β ≠H  

(lower curves). The tests were performed in order to detect the discriminant ability of the bio-

marker at the 0.05 significance level. The left and the right panels correspond to the sample 

sizes 50= =n m  and 100= =n m , respectively.
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> # logistic regression
> logistic.pval<-function(x,y){
+   if (!is.null(ncol(x))) {
+     Z<-rbind(x,y)
+     m<-nrow(x)
+     n<-nrow(y)
+   } else{
+     Z<-c(x,y)
+     m<-length(x)
+     n<-length(y)
+   }
+   q<-c(rep(0,m),rep(1,n))
+   newdata<-data.frame(cbind(q,Z))
+   glm.out = glm(q ~Z, family=binomial(logit), data=newdata)
+   return(summary(glm.out)$coef[-1,c(1,4)])
+ }
>
> MC<-10000
> alpha<-0.05
>
> Ex=3
> sigma2.x<-sigma2.y<-1
> delta.seq<-seq(0,2,.2)
> n.seq<-c(50,100)
>
> powers.all<-lapply(n.seq,function(n){
+   m<-n
+   powers<-sapply(delta.seq,function(delta){
+     Ey=Ex+delta
+     ux<-log(Ex)-0.5*sigma2.x
+     uy<-log(Ey)-0.5*sigma2.y
+     tmp<-sapply(1:MC,function(b){
+       x<-exp(rnorm(m,ux,sqrt(sigma2.x))) #x is lognormal
+       y<-exp(rnorm(n,uy,sqrt(sigma2.y))) #y is lognormal
+       pvals<-c(logistic.pval(x,y)[2]<alpha,AUC.pval(x,y)<alpha)
+       names(pvals)<-c("logistic","AUC")
+       return(pvals)
+     })
+     pow.delta<-apply(tmp,1,mean)
+     return(pow.delta)
+   })
+   colnames(powers)<-delta.seq
+   return(powers)
+ })
>
> names(powers.all)<-paste0("m=n=",n.seq)
> powers.all
$`m=n=50`
               0    0.2    0.4    0.6   0.8       1    1.2    1.4    1.6    1.8      2
logistic 0.0326 0.0332 0.0548 0.0796 0.1273 0.1695 0.2208 0.2743 0.3371 0.4046 0.4692
AUC      0.0540 0.0687 0.0998 0.1494 0.2286 0.2955 0.3845 0.4738 0.5499 0.6237 0.7055
$`m=n=100`
               0    0.2    0.4    0.6   0.8       1    1.2    1.4    1.6    1.8      2
logistic 0.0350 0.0501 0.0850 0.1423 0.2272 0.3317 0.4277 0.5252 0.6270 0.7122 0.7781
AUC      0.0538 0.0796 0.1414 0.2419 0.3710 0.5107 0.6464 0.7595 0.8397 0.9042 0.9422
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Note that in the case where both the case group X  and the control group Y  

follow a log-normal distribution N μ σlog ( , )2  with a common value for μ  and 

we vary the values for 2σ  between the case group and the control group, the 
AUC does not allow us to detect any significant difference between the two 
groups. This is because a simple log transformation of observed data points 
shows that the AUC is equal to 0.5 in this case. We refer the reader to Section 
7.3.1 for the computation of the AUC under normal assumptions.

7.5  Best Combinations Based on Values of  

Multiple Biomarkers

In practice, different biomarker levels are usually associated with disease in 
various magnitudes and in different directions. For example, low levels of 
high-density lipoprotein (HDL) cholesterol and high levels of thiobarbuturic 
acid reacting substances (TBARS), biomarkers of oxidative stress and anti-
oxidant status, are indicators of coronary heart disease (Schisterman et al., 
2001a). When multiple biomarkers are available, it is of great interest to seek 
a combination of biomarkers to improve diagnostic accuracy (e.g., Liu et al., 
2011). Due to the simplicity in practical applications, we will attend to the 
best linear combination (BLC) of biomarkers, such that the combined score 
achieves the maximum AUC or the maximum treatment effect over all pos-
sible linear combinations. We refer the reader to Pepe (2003) and Pepe and 
Thompson (2000) for information regarding general methods related to best 
combinations of biomarkers that improve diagnostic accuracy.

Warning: Note that the implementation of logistic regression based on sev-
eral biomarkers does not aim to maximize the AUC, its objective is to maxi-
mize the likelihood function. However, we motivate the reader, e.g., via the 
Monte Carlo simulations, to compare the AUC based on BLC described in 
this section with the AUC based on the linear combinations of biomarkers 
obtained from logistic regression.

Consider a study with d continuous-scale biomarkers yielding measure-

ments ( ,..., )1= X Xi i di
TX , 1,..., ,=i n  on n diseased patients, and measurements 

( ,..., )1= Y Yj j dj
TY , 1,..., ,=j m  on m non-diseased patients, respectively, where T 

denotes the transpose. It is of interest to construct effective one-dimensional 

combined scores of biomarker measurements, i.e., ( ) =X Ta a X  and ( ) =Y Ta a Y, 
such that the AUC based on these scores is maximized over all possible lin-
ear combinations of biomarkers. Define ( ) Pr( ( ) ( ))= >A X Ya a a ; the statistical 
problem is to estimate the maximum AUC defined as ( ),0=A A a  where the 
vector 0a  consists of the BLC coefficients satisfying arg max ( )0 = Aa aa . For 
simplicity, we assume that the first component of the vector a equals 1. For 
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example, in the case of two biomarkers, i.e., 2=d , the AUC can be defined as 
( ) Pr( )1 2 1 2= + > +A a X aX Y aY .

7.5.1 Parametric Method

Assuming X X XNi μμ ΣΣ~ ( , ), 1, ,= …i n and Y Y YNj μμ ΣΣ~ ( , ), 1, ,= …j m, Su and 

Liu (1993) derived the BLC coefficients a CΣΣ μμ∝ −
0

1  and the corresponding opti-

mal AUC as ( )1/2Φ ω , where X Yμμ μμ μμ= − , X YCΣΣ ΣΣ ΣΣ= + , T
Cμμ ΣΣ μμω = −1 , and Φ is 

the standard normal cumulative distribution function.
Based on Su and Liu’s point estimator, we can derive the confidence inter-

val estimation for the BLC-based AUC under multivariate normality assump-
tions (e.g., Reiser and Faraggi, 1997).

7.5.2 Nonparametric Method

In the nonparametric context, the BLC-based maximum AUC can be evalu-
ated using different nonparametric schemes to estimate the probability 
Pr( ( ) ( ))>X Ya a  as a function of the vector a (e.g., Vexler et al., 2006; Chen et al., 
2015).

7.6 Remarks

Medical diagnoses usually involve the classification of patients into two or 
more categories. When subjects are categorized in a binary manner, i.e., 
 non-diseased and diseased, the ROC curve methodology is an important 
statistical tool for evaluating the accuracy of continuous diagnostic tests, 
and the AUC is one of the common indices used for overall diagnostic 
accuracy. In many situations, the diagnostic decision is not limited to a 
binary choice. For example, a clinical assessment, NPZ-8, of the presence of 
HIV-related cognitive dysfunction (AIDS Dementia Complex [ADC]) would 
discriminate between patients exhibiting clinical symptoms of ADC (com-
bined stages 1–3), subjects exhibiting minor neurological symptoms (ADC 
stage 0.5) and neurologically unimpaired individuals (ADC stage 0) (Nakas 
and Yiannoutsos, 2004). For such disease processes with three stages, 
binary statistical tools such as the ROC curve and AUC need to be extended. 
In this case of three ordinal diagnostic categories, the ROC surface and the 
volume under the surface can be applied to assess the accuracy of tests. For 
details, we refer the reader to, for example, Nakas and Yiannoutsos (2004). 
In contrast, logistic regression can be easily generalized, e.g., to multino-
mial logistic regression, in order to deal with multiclass problems.

There are several measurements that are often used in conjunction with 
the ROC curve technique. For example: (1) the Youden index is a summary 
measure of the ROC curve. It both measures the effectiveness of a diagnostic 
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marker and enables the selection of an optimal threshold value (cutoff point) 
for the biomarker. The Youden index, J, is the point on the ROC curve that is 
farthest from line of equality (diagonal line), that is, using the definitions 

applied in Section 7.2, one can show that { }( ) ( )= ≥ + ≤ −−∞< <∞J X c Y ccmax Pr Pr 1  

(e.g., Fluss et al., 2005; Schisterman et al., 2005). (2) The partial AUC (pAUC) 
has been proposed as an alternative measure to the full AUC. When using 
the partial AUC, one considers only those regions of the ROC space where 
data have been observed, or which correspond to clinically relevant values of 

test sensitivity or specificity, that is, U ∫= ( )pA C R t dt
a

b

 for prespecified 

0 1≤ < ≤a b . Assume, for example, random variables YD and YD are from the 
distribution functions FYD  and FYD

 that correspond to biomarker’s mea-

surements from diseased (D) and non-diseased (D) subjects, respectively. 
The partial area under the ROC curve is the area under a portion of the 
ROC curve, oftentimes defined as the area between two false positive rates 
(FPRs). For example, the pAUC with two fixed a priori values for FPRs 0t  
and 1t  is

 U ∫ { }( )= = > ∈ − −( ) Pr , ( ), ( ) ,1
1

1
0

0

1

pA C R t dt Y Y Y S t S t
t

t

D D D Y YD D

where SYD  and SYD
 are the survival functions of the diseased and healthy 

group, respectively. To simplify this notation, we denote ( )0
1

0= −q S tYD
 and 

( )1
1

1= −q S tYD
. Then

 U Pr , ( , ) .0 1pA C Y Y Y q qD D D{ }= > ∈
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8
The Ville and Wald Inequality: 
Extensions and Applications

8.1 Introduction

The purpose of this chapter is twofold with respect to: (1) Our desire to intro-
duce a very powerful theoretical scheme for constructing statistical proce-
dures, and (2) We would like to show again arguments against statistical 
stereotypes. For example, one generally can state that if a statistical test has 
a reasonable fixed Type I error rate then the test cannot be of power one. In 
this chapter, a test with power one is presented.

In previous chapters we employed the law of large numbers and the cen-
tral limit theorem to propose and examine statistical tools. In this chap-
ter we apply the law of the iterated logarithm. The material presented in 
this chapter may seem overly technical, however we encourage the reader 
to study the methodological technique introduced below in order to obtain 
beneficial skills in developing advanced statistical procedures.
The Ville and Wald inequality: In Chapter 4, Doob’s inequality was intro-
duced with a focus on developing a bound for the distribution of a statistic, 
which can be anticipated to be increasing when the sample size n increases. 
In this case, we concluded that Doob’s inequality can be expected to be 
very accurate in terms of such a bound. The right side of Doob’s inequal-
ity (the bound) does not depend on n. In the asymptotic framework this 
result begs the following question: Can we apply the symbolic expression 

“ ( )() = ≤→∞ →∞lim Pr . Pr lim The Boundn n ” with respect to Doob’s inequality? 

In general, since the probability can be written as ∫{ })( = =Pr . (.) (.)E I I , where 

(.)I  denotes the indicator function, the action “ )()( =→∞ →∞lim Pr . Pr limn n ” 
corresponds to complicated issues related to possibly plugging the opera-
tor →∞limn  into the integral. In this context, the Fatou–Lebesgue theorem 

(Titchmarsh, 1976) can justify the operation “ )()( =→∞ →∞lim Pr . Pr limn n ”, pro-
vided that the conditions of the theorem are satisfied. In this chapter, when 

= ∞n , we introduce a simple extension of Doob’s inequality that is entitled 
the Ville and Wald inequality. This result was presented by Ville in 1939 
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as well as by Wald in 1947 (Ville, 1939; Wald, 1947). As mentioned above 
the Ville and Wald inequality can be assumed to be extremely accurate. We 
will target to formulate the inequality in terms of sums of iid random vari-
ables, offering general opportunities to construct various powerful statistical 
procedures (see also Section 2.4.5.2 in this context) including, e.g., tests with 
power one.
The law of the iterated logarithm: In Section 2.4.5.2 we stated a question 

regarding the asymptotic behavior of the statistic /S bn n, where ∑=
=1

S Xn i
i

n
 

is a sum of n iid random variables with zero expectation and a deterministic 
sequence → ∞bn  as → ∞n , “in between” the law of large numbers ( =b nn ) 

and the central limit theorem ( = 1/2b nn ). The law of the iterated logarithm,

 
( )( )

( )
( ) ( )

=
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= =

→∞
Pr lim sup

2 var log log
1 1 log( ) 1

1

1/2

S

n X n
e

n

n ,

precisely assesses the asymptotic behavior of /S bn n. Thus we need to “press” 

on Sn a “little bit” more than = 1/2b nn  to force S bn n/  to not be considered 
as a random variable even with respect to its maximum values as → ∞n . 
Note that, in the statistical context and in many scenarios, the quality of a 
statistical tool depends on its possibility for predicting deterministically 
bounds of the random variable Sn. In this context we have the following 
scheme: (1) having the rule to control /S nn , one can provide several statistical 

procedures, e.g., consistent estimation; (2) having the rule to control / 1/2S nn , 
one can evaluate properties of statistical procedures at Item (1) above and 
develop efficient tests (see previous chapters in this book); and (3) the law of 
the iterated logarithm detects very accurately deterministic bounds for Sn, 
providing extremely efficient statistical algorithms (e.g., a test with power 
one we will show in this chapter) based on an anticipated deterministic 
(data-free) forecasting related to Sn’s values. It turns out that the sequence 

2 var( )log log1

1/2

n X n( )( )( )  increases about as slowly as is possible for sums of 

iid random variables with mean 0,

 

( ){ }
{ }

( )

( )

( )

( )

( )

( )

− ≥

= ≥ ≥ <

≤Pr max 2 var( )log log 0

Pr 2 var( )log log for some 1 1.

1 1

1/2

1

1/2

S n X n

S n X n n

n n

n

For example, when ,...,1X Xn are iid data points it is reasonable to reject the 

hypothesis )( = 01E X , if Sn does not follow the law of the iterated logarithm  

related to the case with )( = 01E X . For illustrative purposes, we generated 5,000 
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iid random variables = ξ − ≥ −1 1Xi i  with )(ξ < = − −Pr 1 exp( )1 u u  and com-

puted the sequence of ( ) ( )= = + = + +, /2 , /3 ,...1 1 2 1 2
1/2

3 1 2 3
1/2S X S X X S X X X . 

Values of / 1/2S nn  are depicted in Figure 8.1 against = 12,..., 5000n  using “◦” 
symbols. In this figure, panel (a) represents the bounds ±1 (the central limit 

theorem) and panel (b) represents the bounds )( )( )(± 2 log log
1/2

n (the law of the 
iterated logarithm).

It is clear that, in terms of the Type I error rate control, the law of the iter-

ated logarithm could insure the use of a test procedure based on / 1/2S nn  in a 
better manner than the use of the central limit theorem. And the “payment” 

for this improvement is only ( )( )( )2 log log
1/2

n , which clearly cannot signifi-

cantly impact the power of the test when )(~ 1S nE Xn  with )( ≠ 01E X .
In this chapter we will apply the law of the iterated logarithm to judge the 

proposed techniques.
The reader has all ingredients, including those provided in this book, to 

prove the law of the iterated logarithm. However, in actuality the proof is 
quite technical and thus we omit it, referring the reader to Petrov (1975). 
We suggest that the reader who is interested in more details regarding this 
chapter’s material consult the fundamental publications of Professor Herbert 
Robbins (e.g., Robbins, 1970).

In Section 8.2 we consider the Ville and Wald inequality. This inequality is 
extended and rewritten in terms of sums of iid random variables in Section 8.3. 
The statistical significance of the obtained results is introduces in Section 8.4.

2

1
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2
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0
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0 1000 2000
n
(a)

n
(b)
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FIGURE 8.1

Values of / 1/2S nn  (◦◦◦) plotted against = 12, ..., 5000n . Panel (a) represents the bounds ±1 and 

panel (b) represents the bounds ( )( )( )± 2 log log
1/2

n .
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8.2 The Ville and Wald inequality

Consider two assumptions H  and H ′. Under H  the random variables (not  
necessary iid) ,...,1X Xn with a specified joint distribution function P have  
a density function ( ,..., )1g x xn n , whereas under H ′ for each ≥ 1n  the 
sequence ,...,1X Xn is from P′, any other joint probability distribution, 

with a density function ′ ( ,..., )1g x xn n . In this case, the likelihood ratio is 
( , ..., )/ ( ,..., )1 1LR g X X g X Xn n n n n= ′  when >( ,..., ) 01g X Xn n . Then, under H , for 

any ε > 0,

 ( )≥ ε ≥ ≤ εPr for some 1 1/ .LR nH n

Proof. Define the stopping rule }{= ≥ ≥ εinf 1 :N n LRn  with = ∞N  if no such 
≥ ε:n LRn . Thus, we have

Pr for some 1LR nH n( )≥ ε ≥

 

Pr Pr

( ,..., ) ...

max ,
( ,..., )

( ,..., )
( ,..., ) ...

max ,
1

( ,..., ) ...
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1

( ,..., ) ...

1
( ,..., ) ...

1
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1
.
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1
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1
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1
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1

1

1

1

1 '

N N j E I N j

I N j g x x dx dx

I LR LR
g x x
g x x

g x x dx dx

I LR LR
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g x x dx dx

I LR LR g x x dx dx

I N j g x x dx dx N

H H

j

H

j

j j

j

j

k j
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j
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∑ ∑

∫∑

∫∑

∫∑

∫∑

∫∑

{ }( ) ( )

( )

( )

( )

( )

= < ∞ = = = =

= =

= < ε ≥ ε
⎛
⎝⎜

⎞
⎠⎟ ′

′

= < ε ≥ ε
⎛
⎝⎜

⎞
⎠⎟

′

≤ < ε ≥ ε
⎛
⎝⎜

⎞
⎠⎟ ε

′

=
ε

= ′ =
ε

< ∞ ≤
ε

=

∞

=

∞

=

∞

≤ <
=

∞

≤ <
=

∞

≤ <
=

∞

=

∞

This completes the proof.

Note that )()( ≥ ε ≥ = ≥ ε
≤ ≤∞

Pr for some 1 Pr max
1

LR n LRH n H
k

k  and LRn with the 

sigma algebra based on )( , ...,1X Xn  is an H -martingale. This supports our 
conclusion presented in Chapter 4 that statistics with martingale properties 
can provide efficient decision-making schemes. It turns out that even maxi-
mum values of the likelihood ratio are in control over all ≥ 1n .
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8.3  The Ville and Wald Inequality Modified in 

Terms of Sums of iid Observations

As discussed in Section 8.1, it is reasonable to study several techniques pre-
sented as examples of reformulations of the Ville and Wald inequality in terms 
of sums of iid observations. Towards this end, we will employ an approach 
that can be associated with the material presented in Chapter 5 when the 
likelihood function is proposed to be integrated over different values of the 
parameter. Let the observations ,...,1X Xn be iid (0,1)N , under H. In this case, 

∏= φ
=

( ,..., ) ( )1
1

g x x xn n i
i

n
 with ( ) (2 ) exp( /2)1/2 2x xφ = π −− . Assume that H ′ cor-

responds to a mixture of distribution functions θP , where θP  denotes that 

,...,1X Xn are iid θ( ,1)N , defining ∏∫ ) )( (′ = φ − θ θ
=−∞

∞

( ,..., )1
1

g x x x dFn n i
i

n
, for an 

arbitrary distribution function F. Thus we obtain the likelihood ratio

 ( ,..., )/ ( ,..., ) exp /2 , .1 1
2

1
∫ ∑( ) ( )= ′ = θ − θ θ =

−∞

∞

=
LR g X X g X X S n dF S Xn n n n n n n i

i

n

This likelihood ratio can be interpreted in the contexts shown in Chapter 5. 
Section 5.2 provides to the reader a necessary proof scheme to extend the 
Ville and Wald inequality to be appropriate for the Bayes factor, when the 
null hypothesis H  states that the parameter equals to zero. For reasons which 
will become apparent in the next sections related to applications of the pre-

sented method, we replace )(θF  by )(θ 1/2F m , where m is an arbitrary positive 
constant, since F is an arbitrary distribution function. Then we rewrite

 exp /2 .2 1/2∫ ( )( )= θ − θ θ
−∞

∞

LR S n dF mn n

Define the function

 , exp /2 .2∫ ( ) ( )( ) = −
−∞

∞

f x t yx ty dF y

Then

 

exp /2

exp (2 ) , / .

2 1/2

1/2 2 1 1/2

LR S n dF m

yS m ny m dF y f S m n m

n n

n n

∫

∫

( )

( ) ( )

( )

( )

= θ − θ θ

= − =

−∞

∞

− −

−∞

∞

−
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Thus the Ville and Wald inequality states

{ }
{ }

( )
( )

≥ ε ≥ =

≥ ε ≥ ≤ ε > ε >

−

θ=
−

Pr , / for some 1

Pr , / for some 1 1/ ( 0, 0).

1/2

0
1/2

f S m n m n

f S m n m n m

H n

n

The following examples illustrate the significance of the result above, consid-
ering particular choices of F.

Example 1. Suppose the distribution function F  corresponds to random 

variables having support over (0, )∞ . Then , exp /22

0

f x t yx ty dF y∫ ( ) ( )( ) = −
∞

 is 

an increasing function of x. This concludes with

 , if and only if , , for all 0,( ) ( )≥ ε ≥ ε >f x t x A t t

where )( ε,A t  is the positive solution x of the equation )( = ε,f x t , i.e., 

, ,f x A t t( )( )= ε = ε. In this case, the Ville and Wald inequality shows that

 

Pr / , for some 1

Pr / , for some 1 1/ .

1/2

0
1/2

S m A n m n

S m A n m n

H n

n

{ }

{ }

( )

( )

≥ ε ≥

= ≥ ε ≥ ≤ εθ=

This result remains valid if instead of being iid ( ,1)N θ  the observations are 

any iid random variables that satisfy exp 1E uX{ }( ) < ∞ for all 0 u< < ∞ (Robbins, 
1970). This comment is applicable regarding the following examples too.

Example 2. Suppose the distribution function F is degenerate with mass one 
assigned to the point 2 0a > . This scenario can be associated with the hypoth-
esis : 0H θ =  versus ' : 2H aθ = . As in Example 1 above, we have

 

, exp 2 2 if and only if log /(2 ),

for all 0.

2f x t ax a t x at a

t

( ) { }( ) ( )= − ≥ ε ≥ + ε

>

Thus

Pr / for some 1

Pr / for some 1 ,

1/2 1/2

0
1/2 1/2 2

S an m dm n

S an m dm n e

H n

n
ad

{ }

{ }

≥ + ≥

= ≥ + ≥ ≤θ=
−

where log( )/(2 ) 0d a= ε > , 0a >  and 0m > .
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Example 3. Suppose the distribution function F is defined by

( ) 0
2

1/2
/2

0

2∫( )= >
π

⎛
⎝
⎜

⎞
⎠
⎟ −F y I y e duu

y

. Then for 1t > −  we have
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2
/( 1)

( 1) ( 1)
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( 1) /2
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2

2

∫

∫{ }
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( )

=
π

⎛
⎝
⎜

⎞
⎠
⎟

=
+

+
Φ

+

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ Φ =

π

− − +
∞

−

−∞

f x t e dy

x t

t
x

t
u e dy

yx t y

y
u

 

Defining ( )1h u−  as the inverse function to ( ) 2 log ( )2h u u u( )= + Φ , one can 

obtain , ( 1) 2 log / 2 log 11/2 1A t t h t( )( )( ) ( )ε = + ε + +− , which yields

Pr ( ) ( ) log 1 for some 1

1

2 ( )
,

0
1/2 1

/22

S m n h h a
n
m

n

a
e

n

a

≥ + + +
⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ≥

⎧
⎨
⎪
⎩⎪

⎫
⎬
⎪
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≤
Φ

θ=
−

−

where 0 a<  satisfies 0 2 ( )
2

a ea< ε = Φ , 0m >  and it is known that
( ) ~ , ( ) ~2 1 1/2h u u h u u−  as u → ∞.

Example 4. Omitting technical details, one can show that the choice of

( ) 0
1

log 1/ log log 1/
for all 01

0

F y I y e
u u u

due
y

∫ { }( )
( )( ) ( )

= < < δ δ >−
+δ

provides that

 ( ){ } { }≥ ≥ = ≥ ≥ ≤ ε = εθ=Pr for some 1 Pr for some 1 1/ , / ,0
1/2S c n S c n c m A n mH n n n n n

with ~ 2 log log
1/2

c n nn ( )( )( )  as n → ∞  (Robbins and Siegmund, 1970).

Example 5. Define the distribution function F to be symmetric
− = − ∈ −∞ ∞( ( ) 1 ( ), ( , ))F u F u u . Then ( ) ≥ ε,f x t  if and only if ( )≥ ε,x A t , for all 

> 0t . For example, if = Φ( ) ( )F u u  we obtain

≥ + + +
⎛
⎝
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⎞
⎠
⎟

⎛

⎝
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⎞

⎠
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⎧
⎨
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⎭⎪
≤θ=

−Pr ( ) log 1 for some 1 ,0
1/2 2

1/2

/22

S m n a
n
m

n en
a

where > 0a  and > 0m . As a one-sided version of this inequality, noting that 

for all > 1t  ( ) ( )( ) ( )+ > +−log log( )2 1/2 1a t h h a t  (the reader can simply plot the 
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functions ( )( )+ log2 1/2
a t  and ( )( ) +− log( )1h h a t  against > 1t , where h and −1h  are 

defined in Example 3 above), we can use the output of Example 3 to obtain

 ≥ + + +
⎛
⎝
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⎞
⎠
⎟
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n e an
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In a similar manner to that shown above, Robbins (1970) and Robbins and 
Siegmund (1970) concluded with

 ( ) ( )≥ +
⎛
⎝
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⎞
⎠
⎟
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⎨
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1/2 /22
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n m a a a u en
u

Actually, in the above inequality we can see the role of > 0m , when it is 
stated that “ ≥for some n m.” The integer m can define a pre-sample size of 
observations after which we analyze ≤ <∞max Sm n n .

The preceding examples show how to transform the Ville and Wald  

inequality to the form { }≥ ≤ εPr for some 1/S c nH n n  or { }≥ ≤ εPr for some 1/ ,S c nH n n   

where cn depends on ε > 0. Example 2 derives / ~ /1/2 1/2 1/2= +c an m dm an mn ,  

Example 3 derives ( )= + + +
⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

−c ( ) ( ) log 1 ~ log( )1/2 1 1/2m n h h a
n
m

n nn  and 

Example 4 concludes with c ~ 2 log log
1/2( )( )( )n nn  as → ∞n . Let us focus again on 

the law of the iterated logarithm. The seq uence c ~ 2 log log
1/2( )( )( )n nn  increases 

about as slowly as is possible for sums of iid random variables with mean 0 and 

variance 1, { }≥ ≥ <Pr for some 1 1S c nH n n . Assume, for example, a researcher 

attempts to improve upon ( )( )( )c ~ 2 log log
1/2

n nn , with the aim of providing a 

limit to the expression { }( ) ( )≥Pr log(log(log( ))) / log(log( )) for some
1/2 1/2

S c n n nH n n . 

In this case, the law of the iterated logarithm implies that this approach would 

be invalid given that

{ }≥ =Pr log(log(log( ))) /log(log( )) for some 1.1/2 1/2S c n n nH n n

In order to demonstrate this point, we generated 10,000 iid random 
variables ~ (0,1)X Ni  and computed the sequence of ( )= = +, ,1 1 2 1 2S X S X X

( )= + + , ...3 1 2 3S X X X . Values of Sn are plotted in Figure 8.2 against 

= 150,...,10000n  using “◦” symbols. In this figure, we present the bounds 

( )( )( )± 2 log log
1/2

n n  (curves —) and ( )( )( )± 2 log log log( )
1/2

n n  (curves - - - -).
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8.4 Applications to Statistical Procedures

Consider the statistical significance of the results mentioned in Section 8.3.

8.4.1  Confidence Sequences and Tests with Uniformly Small Error 
 Probability for the Mean of a Normal Distribution 
 with Known Variance

Let the observations +, ..., , , ...1 1X X Xn n  be independent and identically θ( ,1)N  
distributed, where θ is an unknown parameter, −∞ < θ < ∞. We are inter-
ested in obtaining the intervals (( )/ ,( )/ )I S c n S c nn n n n n= − + , where ≥ 1n , 

= + +...1S X Xn n and cn is a sequence of positive constants, such that we can 
control the cover probability θ ∈ ≥θPr ( for every 1)I nn .

It is clear that

∑
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FIGURE 8.2

Values of Sn (◦◦◦) plotted against = 150, ..., 10000n . The figure presents the bounds ( )( )( )± 2 log log
1/2

n n   

(curves —) and ( )( )( )± 2 log log log( )
1/2

n n  (curves - - - -).
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Note that, in the equation above, we changed the measure θPr  to be θ=Pr 0, 

since, under the assumption θ~ ( ,1)X Ni , the expression 
− < θ < +S c
n

S c
n

n n n n  

is equivalent to S cn n< , when ~ (0,1)X Ni . Thus

 

Pr ( for every 1) Pr ( for every 1)

1 Pr ( for some 1).

0

0

I n S c n

S c n

n n n

n n

θ ∈ ≥ = < ≥

= − ≥ ≥

θ

Define [( )( log( / 1))]2 1/2c n m a n mn = + + + , with 0 / 0c nn< →  as → ∞n . In this 
case, Example 5 in Section 8.3 provides

 ≥ ≥ ≤ −Pr ( for some 1) .0
/22

S c n en n
a

Hence

 ∩θ ∈ ≥ = θ ∈
⎛

⎝
⎜
⎜

⎞

⎠
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⎟ ≥ −θ

=

∞
−Pr ( for every 1) Pr 1 ,0

1

/22

I n I en i

i

a

which can be made near 1 by choosing a sufficiently large, e.g., = 62a  yields 

)(− − ≅1 exp / 2 0.952a . Thus for = 62a  and any > 0m , the sequence In with 
cn defined above forms a 95% confidence sequence for an unknown θ with 
coverage probability ≥ 0.95.

Following the conventional concept of confidence interval constructions 
(see Chapter 9 in this context), one can use the fact = + + θ... ~ ( , )1S X X N n nn n  
to propose, for any fixed n,

 

{ } { }
{ } { }

{ } ( ) ( )

− < θ < + = θ < +

− θ < − = − − θ ≤ −

− + − θ ≤ = Φ − Φ − ≅

θ θ

θ θ
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Pr ( 1.96 )/ ( 1.96 )/ Pr ( 1.96 )/
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n n n
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n

However, by virtue of the law of the iterated logarithm, we conclude with

 { }− < θ < + ≥ =θPr ( 1.96 )/ ( 1.96 )/ for every 1 0.1/2 1/2S n n S n n nn n

The advantage of the confidence sequence In as compared to a fixed sample 
size confidence interval is that it allows us to “follow” the unknown param-
eter throughout the whole sequence ,...1X  with an interval In whose length 
shrinks to 0 as the sample size increases, in such a way that with probabil-
ity ≥ 0.95 the interval In contains the parameter at every stage. This advantage 

costs us a widening of the intervals ( 1.96 )/ ,( 1.96 )/1/2 1/2S n n S n nn n( )− +  to 

( )/ ,( )/S c n S c nn n n n( )− +  with respect to an asymptotic order of O n n[log( )] /1/2( )  
as → ∞n .
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8.4.2 Confidence Sequences for the Median

Let , ,...1 2Z Z  be iid data points with median M that satisfy ≤ =Pr( ) 0.51Z M . 
The usual confidence interval for M, provided that the sample size n is rela-
tively large, is

 { }≤ ≤ ≅ Φ −Pr 2 ( ) 1,( ) ( )

1 2
Z M Z aa

n
a
n

where ≤ ≤...1
( ) ( )Z Zn

n
n  denote the ordered values ,...,1Z Zn and

 
= = ≤ −

= = ≥ +

( ) largest integer 0.5( ),

( ) smallest integer 0.5( ).

1 1
0.5

2 2
0.5

a a n n an

a a n n an

Proof. As used in various proof schemes shown in this book, the idea of this 
proof is to rewrite the stated problem to a formulation in terms of sums of 
iid random variables and then to employ an appropriate theorem related to 
sums of iid random variables. In this case, we aim to use the central limit 
theorem (Section 2.4.5) via the following algorithm: Define the empirical 

distribution function ( ) /
1

F u I Z u nn i
i

n∑ ( )= ≤
=

. The function ( )F un  increases 
providing
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the proof is complete.
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In order to construct a confidence sequence for M, we define
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Note that, comparing the method based on { }≤ ≤ ≅ Φ −Pr 2 ( ) 1( ) ( )
1 2

Z M Z aa
n

a
n  

with the result above, one can compute, for large m, that

 a Φ −2 ( ) 1a a a aΦ − − φ2 ( ) 1 2 ( )

2 0.9546 0.7386

2.5 0.9876 0.9001

2.8 0.9948 0.9506

3 0.9947 0.971

3.5 0.9996 0.9933

We would like to emphasize again that, by virtue of the law of the iterated 
logarithm, we have

 ≤ ≤ ≥ =Pr(Z for every ) 0( ) ( )
1 2

M Z n ma
n

a
n

and in many practical situations, we do not know if the sample size n is large 

enough to hold the asymptotic proposition { }≤ ≤ ≅ Φ −Pr 2 ( ) 1( ) ( )
1 2

Z M Z aa
n

a
n .

8.4.3 Test with Power One

Assume that we can observe the independent and identically θ( ,1)N - 
distributed data points +, ..., , , ...1 1X X Xn n  in order to test for θ ≤: 00H  versus 

θ >: 01H . Define
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to apply the test procedure: when < ∞N , we stop sampling with XN and 
reject 0H  in favor of 1H ; if = ∞N , we continue sampling indefinitely and do 
not reject 0H . In this case, the Type I error rate has the form
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since θ ≤ 0k . Then
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As in Section 8.4.1, here we changed the measure θPr  to be θ=Pr 0. If we are using 

[( )( log( / 1))]2 1/2c n m a n mn = + + + , as presented in Example 5 of Section 8.3, 
then we have
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which controls the Type I error probability of the test.
The Type II error probability of the test is
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By virtue of the law of large numbers, under the alternative hypothesis, we 
have / 0S nn → θ > , whereas / 0c nn →  as → ∞n . Then one can find K such 
that for >n K , Pr ( / / ) 00 S n c nn n< =θ>  (see Section 1.2 for details). Thus

 1 Power Pr (we do not reject ) Pr ( / / for all 1) 00 0 0H S n c n nn n− = = < ≥ =θ> θ>

and the test has power one against the alternative θ > 0.
Regarding the expected sample size θ> ( )0E N , it can be shown that for any 

stopping rule N  based on ,...1X  the inequality ( ) 2 log Pr ( ) /0 0
2E N N( )≥ − < ∞ θθ>  

must hold for every θ > 0 (see Chapter 6). Thus if we are willing to tolerate an 

N  for which < ∞ =Pr ( ) 0.050 N , then necessarily ≥ θθ> ( ) 6/0
2E N  for every θ > 0; 

however, no such N  will minimize θ( )E N  uniformly for all θ > 0. For N  applied 

in this section, where [( )( log( / 1))]2 1/2c n m a n mn = + + + , a simple Monte Carlo 
study can evaluate θ> ( )0E N  for different values of θ > 0 and fixed > 0m .
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9
Brief Comments on Confidence 
Intervals and p-Values

9.1 Confidence Intervals

We assume the reader is familiar with the conventional principles of 
confidence interval estimation that is of a type given by an interval of a 
scalar parameter, which in turn can be generalized to the concept of a confi-
dence region for a set of parameters (or a vector of parameters).

In this section, we will essentially focus on the Bayesian approach for confi-
dence interval estimation because of its efficiency and natural interpretation, 
which provides wide applicability in statistical practice. However, the com-
ments shown in this chapter can be easily adapted to the frequentist frame-
work of confidence interval (or region) estimation. Two suggested detailed 
references pertaining to the core frequentist theory, as put forward by R.A. 
Fisher and J. Neman, are Schweder and Hjort (2002) and Singh et al. (2005).

The Bayesian display of the upper and lower bounds, which contains a 
large fraction of the posterior mass (typically 95%) related to a functional 
parameter, is an analog of the frequentist confidence interval and commonly 
termed in the literature as a credible set or simply “confidence interval” 
(e.g., Carlin and Louis, 2011). There is a rich statistical literature regarding the 
theoretical and applied aspects of the Bayesian confidence interval estima-
tion (e.g., Broemeling, 2007; Gelman et al., 2013). To outline this technique, 
we assume that the dataset X consists of n independent and identically 
distributed observations ( ,..., )1X X Xn=  from density function ( | )f x θ  with 
an unknown parameter θ of interest. For simplicity, we suppose θ is sca-
lar. In the Bayesian framework (Chapter 5) we define the prior distribution 

( )π θ , which represents the prior information about θ mapped onto a prob-
ability space. The prior information is updated conditionally on the observed 

data using the likelihood function ( | )
1

f Xi
i

n∏ θ
=

 via Bayes theorem to obtain 

the posterior density function of θ,

 ( | ) ( | ) ( ) ( | ) ( ) .
1 1∏ ∏∫θ = θ π θ θ π θ θ

= =
h X f X f X di

i

n

i
i

n
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We assume that ( | )h Xθ  is unimodal. The 1 100%)( − α  Bayesian confidence 

interval estimate for θ can be presented as an interval q qL U⎡⎣ ⎤⎦,  such that the pos-

terior probability Pr | 1q q XL U )( < θ < = − α (or simply Pr 1q qL U)( < θ < = − α  in 

this section) at a fixed significant level α, that is, ( | ) 1h X d
q

q

L

U

∫ θ θ = − α. In this 

case, the problem is that we have only one equation to find values of the 
two unknown quantities ,q qL U. Consider, for example, Figure 9.1, where, for 

0.05α = , we display the scenarios related to the intervals ⎡⎣ ⎤⎦,q qL U  that satisfy

 Panel (a) :
2

| ,
2

| ;∫ ∫( ) ( )α = θ θ α = θ θ
−∞

∞

h X d h X d
q

q
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U

 ∫ ∫( ) ( )α = θ θ α −⎛
⎝⎜

⎞
⎠⎟ = θ θ

−∞

∞

h X d h X d
q

q

L

U

Panel (b):
1.2

| , 1
1

1.2
|

and

 Panel (c) : ( | ) 1 , ( | ) ( | ).∫ θ θ = − α =h X d h q X h q X
q

q

L U
L

U

Warning:  Similar to the issue regarding the general Type I error rate defi-
nition mentioned in Section 4.4.4, it is reasonable to raise the question, 
“What kind of confidence interval definition do you use?” in terms of 
what is actually presented.
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FIGURE 9.1
The confidence interval definitions related to the following scenarios: (a) the posterior prob-

abilities ( ) ( )θ ≤ = θ ≥ = αPr Pr /2q qL U  and (b) the posterior probabilities Pr / 1.2qL)(θ ≤ = α , 

Pr (1 1/ 1.2)qU )(θ ≥ = α − , where 0.05α = . Panel (c) presents the interval q qL U⎡⎣ ⎤⎦,  calculated using 

the equations Pr 1q qL U )( < θ < = − α and h q X h q XL U=( | ) ( | ).
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In order to calculate the interval ⎡⎣ ⎤⎦,q qL U  a common approach found in the 
statistical literature suggests employing the following two strategies:

Method (I): The bounds qL and qU are computed as roots of the equations

 
2

| and
2

| .∫ ∫( ) ( )α = θ θ α = θ θ
−∞

∞

h X d h X d
q

q

L

U

This implies the Bayesian equal-tailed confidence interval estimation

Method (II): We can derive values for the bounds qL and qU as roots of the 
equations

 ( | ) ( | ) and ( | ) 1 .∫= θ θ = − αh q X h q X h X dL U
q

q

L

U

This implies the Bayesian highest posterior density confidence interval 
estimation (see, e.g., panel (c) of Figure 9.1). Method (I) is computation-
ally simple and oftentimes used in practice. The practical implemen-
tation of Method (II) usually requires using complicated computation 
schemes based on Markov Chain Monte Carlo techniques (e.g., Chen and 
Shao, 1999).

The length q qU L−  can characterize a quality of the confidence interval esti-
mation. This means that the rule for constructing the confidence interval 
should make as much use of the information in the data set and prior as 
possible. In this case, one way of assessing optimality is by the length of 
the interval so that a rule for constructing a confidence interval is judged 
better than another if it leads to intervals whose lengths are typically 
shorter. For example, it seems that panel (c) of Figure 9.1 depicts the shorter 
confidence interval. Let us derive qU and qL that minimize q qU L− , satisfy-

ing ( | ) 1h X d
q

q

L

U

∫ θ θ = − α. To this end, we employ the Lagrange method that 

implies solving the equations
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where λ is the Lagrange multiplier, with respect to qU and qL. Then we have 

1 ( | ) 0, 1 ( | ) 0h q X h q XU L− λ = − + λ = , obtaining ( | ) ( | )h q X h q XL U= .
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Thus, we conclude that (a) in general, the highest posterior density 
confidence interval does have the shortest length, and (b) in the case, where 
h is a symmetric function, the equal-tail setup is the optimal definition of 
the confidence interval in the context of its length.

Warning: In order to apply the above methods in practice, the form of the den-
sity function ( | )f x θ  needs to be specified. Daniels and Hogan (2008) showed sig-
nificant issues relative to verifying the parametric assumptions for various cases 
as to when the Bayesian confidence interval estimation can be applied efficiently. 
Zhou and Reiter (2010) demonstrated that when parametric assumptions are not 
met exactly, the posterior estimators are generally biased. The statistical literature 
has displayed many examples when parametric forms of data distributions are not 
available and there are vital concerns relative to using the Bayesian parametric con-
fidence interval approach. In this context, Vexler et al. (2016b) developed a robust 
nonparametric method for confidence interval estimation in the Bayesian manner. 
Toward this end, empirical likelihood functions (Chapter 10) were employed to 
replace the corresponding unknown parametric likelihood functions in the posterior 
probability construction.

In the frequentist framework, the use of confidence intervals or regions 
for decision making has a one-to-one mapping to hypothesis testing about 
a parameter, set of parameters or functions. For a single parameter, e.g., the 
population mean, one can construct a confidence interval based on manipu-
lating the probability statement that a parameter lies between a lower and 
upper bound, which are functions of the data (e.g., Section 3.3). In many 
instances the concept of a pivot can be used to manipulate the terms of the 
probability statement in order to obtain a confidence interval. Confidence 
intervals can be based on both parametric and nonparametric approaches, 
as well as large sample approximations.

In terms of confidence intervals and their relationship to hypoth-
esis tests, we would reject 0H  for a two-sided test if the parameter 
under 0H  fell outside the confidence interval bounds. Consider, for 

example, a simple scenario when a test statistic ( )0TS θ , as a function 

of 0θ  based on data, is proposed for testing the hypothesis :0 0H θ = θ ,  

where θ is the parameter of interest. Assume we reject the null hypothesis 
for large values of ( )0TS θ . In order to control the Type I error rate, we 
should derive an exact or asymptotic distribution of ( )0TS θ  under 0H , say 

{ }θ ≤ =
( )

Pr ( ) ( )0
or c

0 TS C G CH
onverges to

, for a fixed argument C. Then we reject the 

hypothesis 0H  when ( )0 1TS gθ ≥ −α, where 1g −α is the 100(1 )%− α  percentile 
of the distribution G, and α is the significance level. By virtue of the rela-
tion between the testing and confidence interval estimation, we can obtain 

the confidence interval estimator of θ in the form of { }= θ θ ≤α −αCI : ( )1- 1TS g , 
assuming that the nominal coverage probability is specified as 1 − α. In this 
context, shorter confidence intervals can correspond to greater statistical 
power in the parallel statistical hypothesis test.
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In various situations, Monte Carlo experiments (Section 2.4.5.1) can be used to 
evaluate and compare the qualities of proposed confidence interval estimators. 
In such cases, commonly, the Monte Carlo coverage probabilities (e.g., the aver-
age value of indicators { }θ ∈ −αI CI0 1  based on Monte Carlo generated data 
under 0H , in the terms of the example mentioned above) and the Monte Carlo 
average lengths of the considered confidence intervals (e.g., the average value of 

{ }θ θ ≤ −αmax : ( ) 1TS g  – { }θ θ ≤ −αmin : ( ) 1TS g  based on Monte Carlo generated 

data under 0H ) are basic factors to be computed. The Monte Carlo cover prob-
abilities can be compared to the expected coverage probability 1 − α.

9.2 p-Values

The p-value has long played a role in scientific research as a key decision-
making tool with respect to hypothesis testing and dates back to Laplace 
in the 1770s (Stigler, 1986). The concept of the p-value was popularized by 
Fisher as an inferential tool and is where the first occurrence of the term 
“statistical significance” is found (Fisher, 1925). In the frequentist hypothesis 
testing framework a test is deemed statistically significant if the p-value, 
which is a statistic having support over the real line in (0,1) space, is below 
some threshold known as the critical value. In a vast majority of studies the 
critical value is set at 0.05.

A majority of traditional testing procedures are designed to draw a 
conclusion (or make an action) with respect to the binary decision of reject-
ing or not rejecting the null hypothesis 0H , depending on locations of the 
corresponding values of the observed test statistics, that is, detecting whether 
test statistic values belong to a fixed sphere or interval. In simple cases, test 
procedures require us to compare corresponding test statistics values based 
on observed data with test thresholds. P-values can serve as an alternative 
data-driven approach for testing statistical hypotheses based on using the 
observed values of test statistics as the thresholds in the theoretical prob-
ability of the Type I error. P-values can themselves also serve as a summary 
type result based on data in that they provide meaningful experimental 
data-based evidence about the null hypothesis.

For example, suppose that the test statistic L has a distribution function F 
under 0H . Under a one-sided upper-tailed alternative 1H  the p-value is the ran-
dom variable 1 ( )F L− , which is uniformly distributed under 0H  (e.g., Vexler  
et al., 2016a).

The obvious correct use of the p-value is to simply draw a conclusion of 
reject or do not reject the null hypothesis. This principle simplifies and stan-
dardizes statistical decision-making policies. In this manner, for example, 
different algorithms for combining decision-making rules using their 
p-values as test statistics can be naturally derived (e.g., Vexler et al., 2017).
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Warning: The p-value is oftentimes misused and misinterpreted in the applied 
scientific literature where statistical decision-making procedures are involved. Many 
scientists misinterpret smaller p-values as providing stronger theoretical evidence 
against a null hypothesis relative to larger p-values. For example, some researchers 
draw conclusions regarding comparisons of associations between a disease and dif-
ferent factors using values of the corresponding p-values. In a hypothetical study, 
consider evaluating associations between a disease, say D, and two biomarkers, say 
A and B. It is not uncommon for scientists to conclude that the association between 
D and A is stronger than that between D and B if the p-value regarding the asso-
ciation between A and D is smaller than that of the association between B and D. 
This example demonstrates the noncareful use of the p-value’s concept, since perhaps 
data obtained in a different but relevant experiment might provide the contradict-
ing conclusion simply due to the stochastic nature of the p-value. These types of 
issues have led several scientific journals to discourage the use of p-values, with 
some scientists and statisticians encouraging their abandonment (Wasserstein and 
Lazar, 2016). For example, the editors of the journal entitled Basic and Applied Social 
Psychology announced that the journal would no longer publish papers contain-
ing p-value-based studies since the statistics were too often used to support lower-
quality research (Trafimow and Marks, 2015). Misinterpreting the magnitude of the 
p-value as strength for or against the null hypothesis or as a probability statement 
about the null hypothesis can lead to a misinterpretation of the results of a statisti-
cal test. Several common weaknesses or misinterpretations of the p-value are as fol-
lows: (1) employing the p-value as the probability that the null hypothesis is true can 
be wrong or even far from reasonable, as the p-value strongly depends on current 
data in use; (2) the p-value is not very useful for large sample sizes, because almost no 
null hypothesis is exactly true when examined using real data, and when the sample 
size is relatively large, almost any null hypothesis will have a tiny p-value, leading 
to the rejection of the null at conventional significance levels; and (3) model selection 
is difficult, e.g., simply choosing the wrong model among a class of models or using 
a model that is not robust to statistical assumptions will lead to an incorrect p-value 
and/or inflated Type I error rates.

The p-value is a function of the data and hence it is a random variable, 
which too has a probability distribution. The subtlety in terms of those that 
try to interpret the magnitude of the relative p-value is that the distribution 
of the p-value is conditional on either the null hypothesis being true or not. 
Under the null hypothesis, typically, p-values are exactly (or asymptotically) 
Uniform[0,1] distributed. However, if the null hypothesis is false p-values 
have a non-Uniform[0,1] distribution for which the shape of the distribution 
varies across several factors including sample size and the distance of the 
parameter of interest from the hypothesized value (null). Hence, for the same 
exact null and alternative values the distribution of the p-value may be small 
or large simply as a function of the sample size (statistical power). In the era 
of “big data” it would not be unusual to constantly find extremely small 
p-values simply as a function of a massively large sample size, with nothing 
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really to do with the scientific question. Likewise a large observed p-value 
may simply be due to a very small sample size.

Statisticians have long recognized the deficiencies in terms of interpreting 
p-values relative to their stochastic nature and have tried to develop remedies 
to aid scientists in the interpretation of their data. For example, Lazzeroni 
et al. (2014) developed prediction intervals for p-values in replication studies. 
This approach has certain critical points regarding the following problems: 
(1) in the frequentist context it is uncommon to create confidence intervals 
of random variables; (2) under the null hypothesis p-values are distributed 
according to a Uniform[0,1] distribution, whereas in many scenarios, if we 
are sure the alternative hypothesis is in effect, the prediction interval for the 
p-value is not needed; and (3) prediction intervals for p-values can be directly 
associated with those for corresponding test statistic values, linking to just 
rejection sets of the test procedures.

The stochastic aspect of the p-value has been well studied by Dempster 
and Schatzoff (1965), who introduced the concept of the expected signifi-
cance level. Sackrowitz and Samuel-Cahn (1999) developed the approach 
further and renamed it as the expected p-value (EPV). The authors pre-
sented the great potential of using EPVs in various aspects of hypothesis 
testing.

Comparisons of different test procedures, e.g., a Wilcoxon rank-sum test 
versus Student’s t-test, based on their statistical power is oftentimes prob-
lematic in terms of deeming one method being the preferred test over a 
range of scenarios. One reason for this issue to occur is that the comparison 
between two or more testing procedures is dependent upon the choice of a 
prespecified significance level α. One test procedure may be more or less 
powerful than the other one depending on the choice of α. Alternatively, 
one can consider the EPV concept in order to compare test procedures. In 
this chapter, we show that the EPV corresponds to the integrated power of 
a test via all possible values of (0,1)α ∈ . Thus, the performance of the test 
procedure can be evaluated globally using the EPV concept. Smaller values 
of EPV show better test qualities in a more universal fashion. This method is 
an alternative approach to the Neyman–Pearson concept of testing statistical 
hypotheses. The famous Neyman–Pearson lemma (Section 3.4) introduced 
us to the concept that a reasonable statistical testing procedure controls the 
Type I error rate at a prespecified significance level, α, in conjunction with 
maximizing the power in a uniform fashion. Thus, for different values of α 
we may obtain different superior test procedures. On the other hand, the 
EPV-based approach allows us to compare between decision-making rules in 
a more objective manner. The global test performance of testing procedures 
can be measured by one number, the EPV, and hence tests can be more easily 
rank-ordered.

We further advance the concept of the EPV. We prove that there is a strong 
association between the EPV concept and the well-known receiver operating 
characteristic (ROC) curve methodology (Chapter 7). It turns out that we can 
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use well-established ROC curve and AUC methods to evaluate and visualize 
the properties of various decision-making procedures in the p-value-based 
context. Further, in parallel with partial AUCs (Section 7.6), we develop a 
partial expected p-value (pEPV) and introduce a novel method for visual-
izing the properties of statistical tests in an ROC curve framework. We prove 
that the conventional power characterization of tests is a partial aspect of the 
presented EPV/ROC technique.

In order to exemplify additional applications of the EPV/ROC methodol-
ogy, we refer the reader to Vexler et al. (2017).

9.2.1  The EPV in the Context of an ROC Curve Analysis

In this section we present the following material: the formal definition of 
the EPV and the association between the EPV and the AUC. We also pro-
vide a new quantity called the partial EPV (pEPV), which characterizes a 
property of decision-making procedures using the concept of partial AUCs 
(see Section 7.6).

Let the random variable ( )T D  represent a test statistic depending on data 
D. Assume Fi defines the distribution function of ( )T D  under the hypoth-
esis =H ii , 0, 1 , where the subscript i indicates the null (i = 0) and alternative 

(i = 1) hypotheses, respectively. Given Fi is continuous we can denote 1Fi
−  

to represent the inverse or quantile function of Fi, such that ( ( ))1F Fi i γ = γ− , 

where 0 1γ <<  and i = 0,1. In this setting, in order to concentrate upon the 
main issues, we will only focus on tests of the form: the event ( )T D C>  
rejects 0H , where C is a prefixed test threshold. Thus the p-value has the form 

1 ( ( ))0F T D− . Sackrowitz and Samuel-Cahn (1999) proved that the expected 

p-value (1 ( ( ))| )0 1E F T D H−  is

 EPV Pr( ),0T T A= ≥   (9.1)

where independent random variables 0T  and T A are distributed according to 

0F  and 1F , respectively.

Proof. We have ∫ ∫ ( ) ( ){ }− = − = ≥ = ≥(1 ( ( ))| ) 1 ( ) ( ) Pr ( ) Pr0 1 0 1
0

1
0E F T D H F u dF u T u dF u T T A , 

which completes the proof.

The simple example of the EPV is when μ σ~ ( , )0
1 1

2T N  and μ σ~ ( , )2 2
2T NA . 

Then the EPV can be expressed as

 EPV ,1 2 1
2

2
2 1/2( )( )( )= Φ μ − μ σ + σ

−

where Φ is the cumulative standard normal distribution.
Note that the formal notation (9.1) is similar to that for the area under the 

corresponding ROC curve (Section 7.3). In this case, the ROC curve can assist 
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in measuring a distance between the distribution functions 0F  and 1F . In 
this context, one can reconsider the EPV in terms of the area under the ROC 
curve (AUC), obtaining that the EPV is 1 − AUC. This connection between 
the EPV and the AUC induces new techniques for evaluating statistical test 
qualities via the well-established ROC curve methodology.

9.2.2 Student’s t-Test versus Welch’s t-Test

Consider, for illustrative purposes, the following example related to appli-
cations of Student’s and Welch’s t-tests. The recent biostatistical literature 
has extensively discussed which test, Student’s t- or Welch’s t-test, to use in 
practical applications. The questions in this setting are: What is the risk of 
using Student’s t-test when variances of the two populations are different? 
Also, what is the loss in power when using Welch’s t-test when the variances 
of the two populations are equal (Julious, 2005; Zimmerman and Zumbo, 
2009)? In order to apply the ROC curve analysis based on the EPV concept, 
we denote Student’s t-test statistic as

 ,1 1 1/2 1

T X Y S n mS p( ) ( )= − +⎡
⎣⎢

⎤
⎦⎥

− −
−

and Welch’s t-test statistic as

 ,1
2 1

2
2 1 1/2( )( )= − +− − −

T X Y S n S mW

where X  is the sample mean based on the independent normally distrib-

uted data points , ...,1X Xn , Y  is the sample mean based on the indepen-

dent normally distributed observations , ...,1Y Ym, S X X ni
i

n∑= − −
=

( ) /( 1)1
2 2

1
 

and S Y Y mi
j

m∑= − −
=

( ) /( 1)2
2 2

1

 are the unbiased estimators of the variances 

( )1
2

1Var Xσ =  and σ = ( )2
2

1Var Y , respectively, and = − + − + −{( 1) ( 1) }/( 2)2
1
2

2
2S n S m S n mp   

is the pooled sample variance. Figure 9.2 depicts the ROC curves, 

( ) 1 { (1 )}, (0,1)1 0
1ROC t F F t t= − − ∈− , for each test when the distribution func-

tions ,0 1F F  of the t-test statistic (Student’s t-test statistic or Welch’s t-test sta-
tistic) are correctly specified corresponding to underlying distributions of 
observations with 1 1EX EYδ = − = 0.7 and 1 under 1H . These graphs show 
that there are no significant differences between the relative curves. In the 

scenario 10,n =  50,m =  4,1
2σ =  12

2σ = , 1δ =  Student’s t-test slightly dem-
onstrates better performance than that of Welch’s t-test. By using differ-

ent values of , , , ,1
2

2
2n m σ σ δ, we attempt to detect cases when significant 

differences between the relevant curves are in effect. Applying differ-

ent combinations of = 10, 20, ..., 150n ; = 10, 20, ..., 150m ; 1, 2 ,...,101
2 2 2σ = ; 

and 12
2σ = , we could not derive a scenario when one of the considered tests 
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clearly outperforms the other one with respect to the EPV. The corresponding 
AUC = (1 − EPV) values are given in Table 9.1. Thus, if the Type I error rates 
of the tests are correctly controlled, there are no critical differences between 
Student’s t-test and Welch’s t-test.
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FIGURE 9.2
The ROC curves related to Student’s t-test (“______”) and Welch’s t-test (“- - - -”), where graph 

(a) represents the case of 10n = , 50m = , 11
2σ = , 12

2σ = , 0.7δ = ; graph (b) represents the case 

of 20n = , 40m = , 11
2σ = , 12

2σ = , 0.7δ = ; graph (c) represents the case of 40n = , 20m = , 41
2σ = , 

12
2σ = , 0.7δ = ; graph (d) represents the case of 40n = , 20m = , 91

2σ = , 12
2σ = , 0.7δ = ; graph (e) 

represents the case of 10n = , 50m = , 41
2σ = , 12

2σ = , 1δ = ; and graph (f) represents the case of 

20, 40, 9, 1, 0.71
2

2
2n m= = σ = σ = δ = .

TABLE 9.1

The Areas Under the ROC Curves of the Student’s t-Test (A CSU ) and Welch’s  

t-Test (A CWU )

n m σ1
2

2
2σ δ A CSU A CWU

10 50 1 1 0.7 0.9217 0.9172

20 40 1 1 0.7 0.9619 0.9611

40 20 4 1 0.7 0.8959 0.8962

40 20 9 1 0.7 0.8269 0.8271

10 50 4 1 1.0 0.8614 0.8569

20 40 9 1 0.7 0.7631 0.7626
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The results shown above can be obtained analytically, since the distribu-
tion functions of the statistics TS and TW under 0H  and 1H  have specified 
forms. Alternatively, we provide the following R code that can be easily 
modified in order to evaluate various decision-making procedures using the 
accurate Monte Carlo approximations to the EPV/ROC instruments.

library(pROC)
N<-75000 # Number of Monte Carlo generations
n<-20
m<-20
T0E<-array() #Values of T_S under H_0
T0NE<-array() #Values of T_W under H_0
T1E<-array() #Values of T_S under H_1
T1NE<-array() #Values of T_W under H_1

for(i in 1:N){
x0<-rnorm(n,0,1)# X’s under H_0
y0<-rnorm(m,0,1)# Y’s under H_0

x1<-rnorm(n,1,1) #X’s under H_1
y1<-rnorm(m,0,4) #Y’s under H_1

T0E[i]<-t.test(x0,y0,alternative = c("greater"),var.equal = TRUE)$stat[[1]]
T1E[i]<-t.test(x1,y1,alternative = c("greater"),var.equal = TRUE)$stat[[1]]

T0NE[i]<-t.test(x0,y0,alternative = c("greater"),var.equal = FALSE)$stat[[1]]
T1NE[i]<-t.test(x1,y1,alternative = c("greater"),var.equal = FALSE)$stat[[1]]
}
par(mfrow=c(1,3))
Ind<-c(array(1,N),array(0,N))
TE<-c(T0E,T1E)
TNE<-c(T0NE,T1NE)
plot.roc(Ind, TE, legacy.axes=TRUE) #ROC curve (1-EPV) for T_S
lines.roc(Ind,TNE,col='red') #ROC curve (1-EPV) for T_W

TEroc<-roc(Ind, TE) #ROC curve (1-EPV) for T_S
TNEroc<-roc(Ind, TNE) #ROC curve (1-EPV) for T_S

##############Partial EPVs
#Values of (1-the partial EPVs) for T_S depending on alpha:
TEauc<-function(alpha) 1-auc(TEroc, partial.auc=c(0, alpha))
#Values of (1-the partial EPVs) for T_W depending on alpha:
TNEauc<-function(alpha) 1-auc(TNEroc, partial.auc=c(0, alpha))
TEaucV<-Vectorize(TEauc)
TNEaucV<-Vectorize(TNEauc)
plot(TEaucV,0,1)
plot(TNEaucV,0,1,col='red')

9.2.3 The Connection between EPV and Power

The value of 1 – EPV can be expressed in the form of the statistical power of 
a test through integration uniformly over the significance level α from 0 to 1; 
that is,
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The above expression of the EPV considers the weight of the significance 
level α from 0 to 1. It may appear to suffer from the defect of assigning most 
of its weight to relatively uninteresting values of α not typically used in 
practice, e.g., 0.1α ≥ . Alternatively, we can focus on significance levels of α in 
a specific interesting range by considering the pEPV; that is
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at a fixed upper level 1Uα ≤ . In the R code presented in Section 9.2.2, we 
provided an example of pEPV computations.

In general, one can define the function ( , ) 1 Pr | 1pEPV p value u H duL
L

U

U ∫ { }α α = − − ≤
α

α
  

and focus on (0, )
d

d
pEPV{ }

α
− α . Then, in this case, the 

d
dα

(0, )pEPV{ }− α  implies 

the power at a significance level of α. An essential property of efficient statis-
tical tests is unbiasedness (Lehmann and Romano, 2006). In this context, we 
can denote an unbiased statistical test when the probability of committing 
a Type I error is less than the significance level and we have a proper power 
function, that is, Pr(reject | )0 0H H ≤ α and Pr(reject | is not true)0 0H H ≥ α. 
In parallel with this definition, it is natural to consider the inequality

 (0, ) 1 Pr | 1 /2,0
0

2pEPV p value u H du∫ { }α ≤ − − ≤ = − α
α

since − ~ [0,1]p value Uniform  (i.e., { }− ≤ = ∈Pr | , [0,1]0p value u H u u ) under 

0H  and we assume 1 0H H≠ . In this case,
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 { }{ }
α

α = −
α

− α = −αd
d

pEPV H H
d

d
(0, ) Pr(reject | is not true) and 1 /2 .0 0

2

However, it is clear that the requirement α ≤ − αpEPV(0, ) 1 /22  is weaker 

than that of Pr(p value | is not true)0H− < α ≥ α.
Thus, the EPV based concept extends the conventional power characteriza-
tion of tests.

Remark. The Neyman–Pearson lemma framework for comparing, for exam-
ple, two test statistics, say 1M  and 2M , provides the following scheme: the Type 
I error rates of the tests should be fixed at a prespecified significance level α, 

( ) ≤ αPr rejects |1 0 0M H H  and Pr rejects |2 0 0M H H )( ≤ α; then 1M  is superior 

with respect to 2M , if Pr rejects | Pr rejects |1 0 1 2 0 1M H H M H H) )( (> . In gen-

eral the power functions, Pr rejects |1 0 1M H H )(  and Pr rejects |2 0 1M H H )( , 
depend on α. Thus, for different values of α we may theoretically obtain 
diverse conclusions regarding the preferable test procedure. The EPV and 
pEPV methods make the comparison more objective in a global sense. The 
test performance can be measured employing just the EPV or pEPV value 
by itself. Smaller values of the EPV or pEPV indicate a more preferable test 
procedure when comparing two or more tests. The definitions of EPV and 
pEPV show that for a most powerful test (e.g., the likelihood ratio test), the 
EPV and pEPV will be the minimum as compared to any other tests with the 
same 0H  versus 1H .

9.2.4 t-Tests versus the Wilcoxon Rank-Sum Test

In this section we compare and contrast the properties of two well-known 
two-sample test statistics, namely Welch’s t-test and the Wilcoxon rank-
sum test. In order to be concrete, we exemplify our points using a case-
control study’s statement of problem. The central idea of the case-control 
study is the comparison of a group having the outcome of interest to a 
control group with regard to one or more characteristics. In health-related 
experiments, the case group usually consists of individuals with a given 
disease, whereas the control group is disease-free. In such instances, the 
use of biomarkers to assist medical decision making and/or the diagnosis 
and prognosis of individuals with a given disease, is increasingly common 
in both clinical settings and epidemiological research. This has spurred an 
increase in exploration for and development of new biomarkers. For exam-
ple, myocardial infarction (MI) is commonly caused by blood clots block-
ing the blood flow of the heart leading to heart muscle injury. Heart disease 
is a leading cause of death, affecting about 20% of population, regardless 
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of ethnicity, according to the Centers for Disease Control and Prevention 

(e.g., Schisterman et al., 2001a, 2002). The biomarker “high density lipo-

protein (HDL) cholesterol” is often used as a discriminant factor between 

individuals with and without MI disease. The HDL cholesterol levels can 

be examined from a 12-hour fasting blood specimen for biochemical anal-

ysis at baseline, providing values of measurements regarding HDL bio-

markers to be collected on cases who survived an MI and on controls who 

had no previous MI. Note that oftentimes measurements related to bio-

logical processes follow a log-normal distribution (see for details Limpert 

et al., 2001; Vexler et al., 2016a, pp. 13–14). Thus, one may be interested 

in how often a log-transformed HDL cholesterol level of the case group, 

say X , “outperforms” a log-transformed HDL cholesterol level of the case 

group, Y . Typically, this research statement is associated with the mea-

sure Pr( )X Y>  that is assumed to be examined using n independent and 

normally distributed data points ,...,1X Xn as well as m independent and 

normally distributed observations ,...,1Y Ym (e.g., Vexler et al., 2008a&b). 

In this scenario, in order to test the hypothesis : Pr 0.50H X Y)( > =  versus 

: Pr 0.51H X Y)( > >  the traditional statistical literature strongly suggests 

using t-test type procedures (e.g., Browne, 2010). It is common that scholars 

are encouraged to apply t-test-type decision-making mechanisms when 

the underlying data follow a normal distribution.

We compare the one-sided two-sample Student’s t- and Welch’s t-tests 

with the corresponding Wilcoxon rank-sum test (e.g., Ahmad, 1996) in 

terms of their relative strengths and weaknesses. The Wilcoxon rank-sum 
test, which is a permutation test, is generally recommended when the data 
are assumed to be from a nonnormal distribution. In order to compare the 
tests we provide the following R code (R Development Core Team, 2014) 
that can be easily modified and applied to evaluate various decision-mak-
ing procedures using accurate Monte Carlo approximations to the EPV/
ROC instruments.

library(pROC)
N<-100000 #Number of Monte Carlo data generations
W0<-array()
T0<-array()
W1<-array()
T1<-array()
n<-25 #The sample size n
m<-25 #The sample size m

for(i in 1:N){
x0<-rnorm(n,0,1) #Values of X from N(0,1) generated under the hypothesis H0
y0<-rnorm(m,0,1) #Values of Y from N(0,1) generated under the hypothesis H0
x1<-rnorm(n,0,1) #Values of X from N(0,1) generated under the hypothesis H1
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y1<-rnorm(m,-0.5,10) #Values of Y from N(–0.5,10) generated under the hypothesis H1

W0[i]<-wilcox.test(x0,y0,alternative = c("greater"))$stat[[1]]/(n*m)
#Values of the Wilcoxon test statistic under H0
W1[i]<-wilcox.test(x1,y1,alternative = c("greater"))$stat[[1]]/(n*m)
#Values of the Wilcoxon test statistic under H1

EV<-FALSE #This parameter indicates the use of Welch’s t-test statistic
#EV<-TRUE #This parameter indicates the use of Student's t-test statistic

T0[i]<-t.test(x0,y0,alternative = c("greater"),var.equal = EV)$stat[[1]]
#Values of the t-test statistic under H0
T1[i]<-t.test(x1,y1,alternative = c("greater"),var.equal = EV)$stat[[1]]
#Values of the t-test statistic under H1
}

#Plotting the ROC cureves
Ind<-c(array(1,N),array(0,N))
W<-c(W0,W1)
T<-c(T0,T1)
plot.roc(Ind, W,type="l", legacy.axes=TRUE,xlab="t",ylab="ROC(t)")

lines.roc(Ind,T,col="red",lty=2)

To exemplify the proposed approach for comparing the test statistics, this R 
code provides simulation-based evaluations of the ROC curves based on val-
ues of the test statistics related to the null and alternative hypotheses, using 
the R built-in procedure pROC. In this scenario, we assume, for example, that 

,..., ~ (0,1)1X X Nn  and ,..., ~ (0,1)1Y Y Nm  under 0H , whereas ,..., ~ (0,1)1X X Nn  

and ,..., ~ ( 0.5,10)1Y Y Nm − . Figure 9.3 shows the ROC curves ( ),ROC t tT )(  and 

( ),ROC t tW )( , where

 ( ) 1 { (1 )} and ( ) 1 { (1 )}, (0,1)1 1
1 0 1 0ROC t F F t ROC t F F t tT T T W W W= − − = − − ∈− −

with the distribution functions FTk  and FWk  that correspond to the t-test statistic 
and the Wilcoxon rank-sum test statistic distributions under , 0,1H kk = , 
respectively.

According to the executed R Code (the parameter EV<-FALSE), we focus 
on Welch’s t-test statistic, which is reasonable in the considered setting 
of data distributions’ parameters. It is interesting to remark that when 
examining Student’s t-test statistic, setting the parameter EV<-TRUE the 
graphs show that there are no significant differences between the rela-
tive curves. Similar observations are in effect regarding the considerations 
shown below.

Analyzing EPVs for the one-sided, two-sample t- and Wilcoxon tests 
based on normally distributed data points ( = = 10, 20, 50n m ), Sackrowitz 
and Samuel-Cahn (1999) concluded that “The t test is best both for the Normal 
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distribution (not surprising!) and the Uniform distribution.” In order to com-
pute the EPVs corresponding to the considered example, we can execute 
the code

Troc<-roc(Ind, T)
Wroc<-roc(Ind, W)
EPV_t<-1-auc(Troc) # EPV of the t-test
EPV_W<-1-auc(Wroc) # EPV of the Wilcoxon test

Indeed, the computed EPV of the t-test is 0.431, which is smaller than the 
0.439 of that related to the Wilcoxon rank-sum test. However, Figure 9.3 dem-
onstrates that for (0,0.5)t ∈  the Wilcoxon test is somewhat better that the 
t-test. This motivates us to employ the pEPV for this analysis. Toward this 
end, we denote the function

 (0, ) (0, ) / (0, ),G pEPV pEPV pEPVW t t( ) { }α = α − α α
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FIGURE 9.3
Values of the functions ( )ROC tT  (curve “- - - -”) and ( )ROC tW  (curve “------”) plotted against 

(0, 1)t ∈ .
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where (0, )pEPVT α  and (0, )pEPVW α  are the function (0, )pEPV α  defined in 
Section 9.2.3 and computed with respect to the t-test and the Wilcoxon test, 
respectively. In order to depict the result we use the following code:

pEPV_t<-function(u) 1-auc(Troc, partial.auc=c(0,u))[[1]]
pEPV_W<-function(u) 1-auc(Wroc, partial.auc=c(0,u))[[1]]
G<-function(u) (pEPV_W(u)-pEPV_t(u))/(pEPV_t(u))
GV<-Vectorize(G)
plot(GV,0,1,xlab='alpha',ylab='G(alpha)')

Figure 9.4 presents the curve of ( )G α .
In this case, it is clear that the Wilcoxon test outperforms the t-test, when the 
significance level 0.8α < .

Let us fix α = 0.05  and calculate the corresponding powers of the tests 
using the following code:

Wc<-quantile(W0,0.95) # the 95% critical value of the Wilcoxon test
Tc<-quantile(T0,0.95) # the 95% critical value of the t-test
PowW<-mean(1*(W1>=Wc)) #the power of the Wilcoxon test
PowT<-mean(1*(T1>=Tc)) #the power of the t-test
print(c(PowT,PowW))
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FIGURE 9.4
The relative comparison between the t-test and the Wilcoxon test using their pEPVs via the 

function ( )G α  plotted against (0, 1)α ∈ .
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We obtain that the power of the Wilcoxon test is 0.12, whereas the power 
of the t-test is 0.08.

Remark 1. Assume we are interested in the measure >Pr( )X Y  . 
A fast way to evaluate Pr( )X Y>  can be based on the R command  
wilcox.test(X,Y,alternative = c("greater"))$stat[[1]]. For example, in the setting of 
the example mentioned in this section, one can use

nn<-5000000
x1<-rnorm(nn,0,1)
y1<-rnorm(nn,-0.5,10)
wilcox.test(x1,y1,alternative = c("greater"))$stat[[1]]/(nn*nn)

to obtain the approximated value of Pr( )X Y>  under 1H  as 0.5192665, which 

corresponds to ∫( )> = π ≈− −

−∞
Pr( ) 2 0.5181275

1/2 /2
0.5 2

X Y e dzz .

Remark 2. In various scenarios with ( ) ( )1 1Var X Var Y=  under 1H , it was 
observed using the function ( ), 0.1,G α α <  that the t-test procedures and the 
Wilcoxon rank-sum test provide approximately the same properties.

Remark 3. The R code presented in this section can be easily modified to 
provide the EPV/ROC analysis based on a real data. To this end the variables 
x0, y0 can be simulated corresponding to 0H  (e.g., as ,..., ~ (0,1)1X X Nn  and 

,..., ~ (0,1)1Y Y Nm ) and the variables x1, y1 can be sampled from observed 
,...,1X Xn and ,...,1Y Ym in a bootstrap manner at each loop iteration in “for(i in 

1:N){…” (see for details Vexler et al., 2017 as well as Chapter 11).

9.2.5 Discussion

We have seen that the EPV is a very useful and succinct measurement 
tool of the performance of decision-making mechanisms. We have dem-
onstrated a novel methodology to analyze and visualize characteristics 
of test procedures. Toward this end the “EPV/ROC” concept has been 
introduced. This approach provides us new and efficient perspectives 
toward developing and examining statistical decision-making policies, 
including those related to the partial EPVs, associations between the EPV 
and the power of tests, visualization of properties of testing mechanisms, 
development of optimal tests based on minimizing the EPVs, and cre-
ation of new methods for optimally combining multiple test statistics. 
Many possible avenues of research can be done based on the concept we 
introduced in this chapter. For example, a large sample theory can be 
developed to evaluate the EPVs in several parametric and nonparamet-
ric scenarios. In addition, Bayesian-type methods can be developed in 
order to evaluate test properties in the “EPV/ROC” frame. The proposed 
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technique can be easily applied to obtain confidence region estimation 
of vector parameters based on confidence interval estimates for the indi-
vidual elements. These topics warrant further strong empirical and meth-
odological investigations.

Remark. We shall note that there are different approaches to define p-value 
type mechanisms, see, for example, Bayarri and Berger (2000), Berger and 
Boos (1994), Berger (2003), Hwang and Yang (2001).
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10
Empirical Likelihood

10.1 Introduction

Over the long course of statistical methodological developments there been a 
shift from classic parametric likelihood methods to a focus towards robust 
and efficient nonparametric and semiparametric developments of various 
“artificial” or “approximate” likelihood techniques. These methods have a 
wide variety of applications related to biostatistical experiments. Many non-
parametric and semiparametric approximations to powerful parametric likeli-
hood procedures have been used routinely in both statistical theory and 
practice. Well-known examples include the quasi-likelihood method, which 
are approximations of parametric likelihoods via orthogonal functions, tech-
niques based on quadratic artificial likelihood functions, and the local maxi-
mum likelihood methodology (e.g., Wedderburn, 1974; Claeskens and Hjort, 
2004; Fan et al., 1998). Various studies have shown that artificial or approximate 
likelihood-based techniques efficiently incorporate information expressed 
through the data, and have many of the same asymptotic properties as those 
derived from the corresponding parametric likelihoods. The empirical likeli-
hood (EL) method is one of a growing array of artificial or approximate 
likelihood-based methods currently in use in statistical practice (e.g., Owen, 
2001; Vexler et al., 2009a, 2014). Interest and the resulting impact in EL methods 
continue to grow rapidly. Perhaps more importantly, EL methods now have 
various vital applications in an expanding number of health related studies.

In Sections 10.2 and 10.3, we outline basic components related to EL techniques 
and their theoretical evaluations. Sections 10.4 and 10.5 demonstrate valuable 
examples of EL applications. In Section 10.6, we provide arguments that can be 
accepted in favor of EL methods in order to be applied in statistical practice.

10.2 Empirical Likelihood Methods

As background for the development of EL-type techniques, we first out- 
line the conventional EL approach. The classical EL takes the form 
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F X F Xi i
i

n∏ )( − −
=

( ) ( )
1

, which is a functional of the cumulative distribution 

function F and iid observations Xi , …i n= 1, , . In the distribution-free setting, 

an empirical estimator of the likelihood takes the form of L pp i
i

n∏=
=1

, 

where the components pi, …i n= 1, , , estimators of the probability weights, 

should maximize the likelihood Lp, provided that pi
i

n∑ =
=

1
1

 and empirical 

constraints based on …X Xn, ,1  hold. For example, suppose we would like to 
test the hypothesis

 H E g X H E g X{ } { }θ = θ ≠: ( , ) 0 versus : ( , ) 00 1 1 1 ,

where g(.,.) is a given function and θ is a parameter. Then, in a nonparametric 

fashion, we define the EL function of the form EL L X X pn i
i

n∏θ = θ =
=

( ) ( ,..., | )1
1

, 

where pi
i

n∑ =
=

1
1

.

Under the null hypothesis, the maximum likelihood approach requires 
one to find the values of p pn< <0 ,..., 11  that maximize the EL given the 

empirical constraints pi
i

n∑ =
=

1
1

 and p g Xi i
i

n∑ θ =
=

( , ) 0
1

 that present an 

empirical version of the condition under H0 that E g X{ }θ =( , ) 01 . In situations, 
when there are no …p pn< <0 , , 11  to satisfy the empirical constraints, it is 
assumed that the null hypothesis is rejected in this stage. Further, following 
the Lagrange method, we define the function

 ∑ ∑ ∑( ) ( )= + λ −
⎛

⎝
⎜

⎞

⎠
⎟ + λ − θ

⎛

⎝
⎜

⎞

⎠
⎟

= = =

, ..., log 1 ( , )1

1

1

1 1

W p p p p p g Xn i

i

n

i

i

n

i i

i

n

,

where λ1 and λ are Lagrange multipliers. Then we have

( )∂ ∂, ..., /1W p p pn k  p g Xk k= − λ − λ θ− ( , )1
1 . Hence, to maximize W p pn)( , ...,1 , 

…p pn< <0 , , 11  should satisfy W p p pn k)(∂ ∂ =, ..., / 01  or equivalently 

, ..., / 01p W p p pk n k( )∂ ∂ = , 1,..., .k n=  This implies p W p p pk n k
k

n∑ { })(∂ ∂ =
=

, ..., / 01
1

. 

Thus, since pk
k

n∑ =
=

1
1

, we obtain n p g Xk k
k

n∑− λ − λ θ =
=

( , ) 01
1

, where, 

under H0, it is assumed that p g Xk k
k

n∑ θ =
=

( , ) 0
1

. This leads to n − λ = 01 . 

Therefore, using the equation W p p pn k)(∂ ∂ =, ..., / 01 , we obtain 

p n g X k nk k )(= + λ θ =−
( , ) , 1,...,

1
. That is to say, the Lagrange method provides

 EL p n g X
p p p p p g X

i

i

n

i

i

n

n i i i
∏ ∏ )(θ =

∑∑
= + λ θ

< < = θ = =

−

=

( ) sup ( , )
0 , ,..., 1, 1, ( , ) 0 1

1

11 2

,

where λ is a root of g X n g Xi i∑ )(θ + λ θ =−
( , ) ( , ) 0

1
. Note that the derivate
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 g X n g X g X n g Xi i i i∑ ∑) )( (∂
∂λ

θ + λ θ = − θ + λ θ ≤− −
( , ) ( , ) ( , ) ( , ) 0

1 2 2
.

Then, with respect to λ, the function g X n g Xi i∑ )(θ + λ θ −
( , ) ( , )

1
 monotonically 

decreases. Taking into account this fact, one can show that if 

g X g Xi n i i n i) )( (θ < < θ= =min ( , ) 0 max ( , )1,..., 1,...,  then one unique solution for λ can 

be found (see Owen, 2001, for details). Commonly, a numerical method is 

required to solve the equation g X n g Xi i∑ )(θ + λ θ =−
( , ) ( , ) 0

1
 with respect to λ.

Since under H1, the only constraint under consideration is pi∑ = 1, in a 
similar manner to that shown above, we have

 EL p n n
p p p p

i

i

n

i

n
n

n i
∏ ∏ )(=

∑
= =

< < = =

−

=

−
sup

0 , ,..., 1, 1 1

1

11 2

.

Finally, we obtain the EL ratio (ELR) test statistic

 ELR EL EL)(θ = θ/ ( )

for the hypothesis test of H0 versus H1. For example, when the function 
g u uθ = − θ( , ) , the null hypothesis corresponds to the expectation E X = θ( ) ,1  
for fixed θ. The EL ratio test strategy is that we reject H0 for large values of 

ELR )(θ .
Owen (1988, 1990, 1991) showed that the nonparametric test statistic 

ELR )( )(θ2 log  has an asymptotic chi-square distribution under the null hypo- 

thesis when E g X( , )1

3θ < ∞ . This result illustrates that Wilks’ theorem–type 
results continue to hold in the context of this infinite-dimensional problem 
(n, the number of p pn, ...,1 , is assumed to be large, n → ∞). The proof of this 
proposition is outlined in Section 10.3. Thus, we reject H0 when

 ELR{ }) )( (θ ≥ χ − α2 log 11
2 ,

where )(χ − α11
2  is the − α100(1 )% percentile of the chi-square distribution 

with degree of freedom one, and α is the significance level.
Consequently, there are techniques for correcting forms of ELRs to improve 

the convergence rate of the respective null distributions of the test statistics to 
chi-square distributions. These techniques are similar to those applied in the 
field of parametric maximum likelihood ratio procedures (Vexler et al., 2009a). 
The statement of the hypothesis testing above can easily be inverted with 
respect to providing nonparametric confidence interval estimators (Chapter 9).

In terms of the accessibility of this method, it should be noted that the num-
ber of EL software packages continues to expand, particularly the R-based 
software packages. For example, library(emplik) and library(EL) are R packages 
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that include the R functions el.test() and EL.test(). These simple R functions 
can be very useful for the EL analysis of data from statistical studies.

10.3 Techniques for Analyzing Empirical Likelihoods

The analysis presented in this section is relatively clear, and has the basic 
ingredients for more general cases. We posit that the following results can be 
associated with deriving different properties of EL-type procedures includ-
ing the power and Type I error rate analysis of the ELR test.

Properties of many statistical quantities based on parametric likelihoods 
can be studied by using the fact that parametric likelihood functions are 
often highly peaked about their maximum values (e.g., Chapters 3 and 5). 
The modern statistical literature considers a variety of semi- and nonpara-
metric procedures created by proposing to employ EL functions in efficient 
parametric schemes instead of parametric likelihoods. For example, in this 
context, the results of Qin and Lawless (1994) have a remarkable use with 
respect to operations with ELs in a similar manner to those related to para-
metric maximum likelihoods.

The following lemma illustrates a strong similarity between behaviors of 
empirical and parametric likelihood functions. Suppose the function g x θ( , ) 
appeared in the EL definition is once differentiable with respect to the sec-
ond argument θ. We then have the following.

Lemma 10.3.1.

Let Mθ  be a root of the equation n g Xi M
i

n∑ θ =−

=
( , ) 01

1
, where ∂ θ ∂θ <( , )/ 0g Xi  

(or ∂ θ ∂θ >( , )/ 0g Xi ), for all i=1, 2,…, n. Then the argument Mθ  is a global 
maximum of the function

 EL p p p p g Xi
i

n

i i
i

n

i
i

n

i∏ ∑ ∑{ }θ = < < = θ =
= = =

( ) max : 0 1, 1, ( , ) 0
1 1 1

,

which increases and decreases monotonically for Mθ < θ  and Mθ > θ , respectively.

Proof. It is clear that the argument Mθ , a root of n Xi M
i

n∑ θ =−

=
g( , ) 01

1
, maximizes 

the function EL )(θ , since in this case EL nM
n)(θ = −  with …p n i ni = =− , 1, , ,1  

which maximizes 
1

pi
i

n∏
=

 given the sole constraint 1,
1

pi
i

n∑ =
=

 0 1,pi≤ ≤  1, ,i n= … .

Using the Lagrange method, one can represent EL )(θ  as

 …EL p p
n g X

i ni i
ii

n

∏θ = < =
+ λ θ

< =
=

( ) , 0
1

( , )
1, 1, ,

1

,
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where the Lagrange multiplier λ  is a root of the equation

g X n g Xi i∑ )(θ + λ θ =−
( , ) ( , ) 0

1
 (e.g., Owen, 2001). This then yields the follow-

ing expression:

log ( ) ( , )/

( , )

( , )

( , )

( , )/

( , )
,

1 1 1

∑ ∑ ∑( )θ
θ

= −λ ∂ θ ∂θ
+ λ θ

− θ
+ λ θ

∂λ
∂θ

= −λ ∂ θ ∂θ
+ λ θ

= = =

d EL
d

g X
n g X

g X
n g X

g X
n g X

i

ii

n
i

ii

n
i

ii

n

where without loss of generality we assume …g X i ni∂ θ ∂θ > =( , )/ 0, 1, , .
Now define the function

 ( , ) ( , ) .
1

1
∑ ( )( )λ = θ + λ θ −

=
L g X n g Xi i

i

n

Since dL d)(λ λ </ 0, the function L )(λ  decreases with respect to λ and has just 

one root relative to solving L )(λ = 0. Consider the scenario with Mθ > θ . In 
this case when λ = 00  we can conclude that

 L g X n g X ni
i

n

i M
i

n∑ ∑)( ) )( (λ = θ ≥ θ =−

=

−

=
( , ) ( , ) 00

1

1

1

1
,

since g Xi θ( , ) increases with respect to θ ( g Xi∂ θ ∂θ >( , )/ 0).

The function L )(λ  decreases. This implies that the root of L )(λ = 0 should 
be located on the right side from λ = 00  and then this root is positive. For 
a graphical representation of this case see Figure 10.1a below. 

(a)

L(
λ)

n
L(λ0) =∑ g(Xi, θ)/n < ∑ g (Xi, θM)/n = 0

0

(b)
λ

L(
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FIGURE 10.1
The schematic behaviors of L λ( ) plotted against λ  (the axis of abscissa), when (a) Mθ > θ  and (b) 

Mθ < θ , respectively.
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Thus, by virtue of
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we prove that the function EL θ( ) decreases, when Mθ > θ .

Taking the same approach, one can show that the root of L )(λ = 0 should be 
to the left of λ = 00 , when Mθ < θ . For a graphical representation of this case 

see Figure 10.1b. This result combined with d EL
d

g X
n g X

i

ii

n

∑)( θ
θ

= −λ ∂ θ ∂θ
+ λ θ

=

log ( ) ( , )/

( , )
1

 

completes the proof of Lemma 10.3.1.
Note that Mθ  plays a role that is similar to that of parametric maxi - 

mum likelihood estimators. For example, when g u uθ = − θ( , ) , we obtain 

X n XM i
i

n∑θ = = −

=

1

1

; if, for a given function z u( ), g u z uθ = − θ θ >( , ) ( ) , 02  then 

n z XM i
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1
.

Turning to the task of developing asymptotic methods based  
on ELs, we provide the proposition below. Without loss of generality  
and for simplicity of notation, we set g u uθ = − θ( , )  in the definition of the 

empirical likelihood ratio function ELR )(θ . Thus, EL pi
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The proof of Proposition 10.3.1 is based on technical computations.

This proposition can support a variety of evaluations of ELR )(θ -type proce-

dures. To show the relevant examples, we should note that ELR M{ })(θ =log 0, 
since, in this case, = 1/p ni , for all i, and EL ELMθ =( ) . It is also clear that, 
when Mθ = θ , λ θ =( ) 0, since …p n i ni = =1/ , 1, ,  maximize EL EL≥ θ( ), for all  

θ, and satisfy automatically the constraint p g Xi i∑ θ =( , ) 0, when Mθ = θ , by 

virtue of the definition of Mθ . Thus, for example in the case of g u uθ = − θ( , ) , 
one can use Proposition 10.3.1 to obtain the Taylor expansion for the function 

ELR{ })(θlog  at argument XMθ = , in the form
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as n → ∞. This approximation depicts Wilks’ theorem when EXθ = 1. (In the case 

of EXθ = 1 and n → ∞, n Xθ −( )0.5  has a normal distribution, θ − →( ) 03n X p
, and 

X X n Xi
i

n∑ − →
=

( ) / var( )2

1
1 .) Using Proposition 10.3.1 to figure more terms in 

the Taylor expansion can provide high order approximations to the null distri-
bution of the ELR test, e.g., to obtain the Bartlett correction of the ELR structure 
(e.g., Vexler et al., 2009a). Under the alternative hypothesis EXθ ≠ 1, the approxi-
mation above shows the power of the ELR test. In this context, we note that Lazar 
and Mykland (1999) considered a general form of ELRs and the case where 

EX O n~1
0.5( )θ − − . The authors compared the local power of ELR to that of an 

ordinary parametric likelihood ratio. Their notable research shows that there is 
no loss of efficiency in using an EL model up to a second-order approximation.
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In a similar manner to Proposition 10.3.1, more complicated ELR structures 
can be analyzed. For example, one can consider the null hypothesis: 

H E X = θ: ( )0 1 1 and E X = θ( ) .1
2

2  In this case, under the null hypothesis, the EL 
function is given as
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Then using the Lagrangian
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we obtain p n X Xi i i= + λ − θ + λ − θ −{ ( ) ( )}1 1 2
2

2
1, where λ1 and λ2 are roots of 

X pi i∑ )( − θ = 01  and X pi i∑ )( − θ = 02
2 . The Appendix presents several results 

that are similar to those related to the evaluations of ELR )(θ  mentioned above.
To exemplify how close the empirical likelihood is to its parametric coun-

terparts, we consider the following example. Let X Xn{ ,..., }1  denote a random 
sample from the following distributions: (1) normal distribution N θ( ,1), and 
(2) Exponential(θ), where θ is the rate parameter. Define, in the normal case, 
the minus maximum log-likelihood ratio test statistic as
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. In 

the case of the exponential distribution, the minus maximum log-likelihood 
ratio test statistic is

{ }( )θ = − θ = θ − θ + +( ) log log logM MLR n n X n X n

and the minus log-empirical likeilhood ratio test statistic for = θ( ) 1/1E X  is

∑ { }{ }( )θ = − θ = − + λ − θ
=

( ) log log 1 ( 1/ )/ .
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E ELR X ni
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n

Generating X1,…,Xn ~ N(1,1) and X1,…,Xn ~ Exp(1), we obtained Figure 10.2. 

This figure presents the plots of the parametric maximum log-likelihood ratios 

and the log-empirical likelihood ratios versus values of the parameter θ based 

on samples of sizes n = 25,50,150, where the solid line and the dashed line 
represent the functions E(θ) and M(θ) when the underlying distribution is nor-
mal, respectively, while the dotted line and dot-dash line represent the func-
tions E(θ) and M(θ) when the underlying distribution is exponential, respectively. 
Figure 10.2 illustrates Lemma 10.3.1. This figure shows that the empirical 
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likelihood ratio behaves in a similar manner to the parametric maximum 
 likelihood ratio and approaches to the parametric maximum likelihood ratio 
asymptotically. Furthermore, as the sample size n increases, the log-empirical 
likelihood ratio approximates the maximum log-likelihood ratio well in the 
neighborhood of the maximum likelihood estimators. The log-empirical like-
lihood (ratio) increases monotonically up to the maximum likelihood estima-
tor and then decreases monotonically.
The R code for implementation of the procedure is shown below.

library(emplik)
theta0<-1
n.seq<-c(25, 50, 150)

# normal
plot.norm<-function(X){
  get.elr<-function(theta) sapply(theta,function(pp) el. test(X,mu=pp)$'-2LLR'/(-2)) # log EL
  get.plr<-function(theta) sapply(theta,function(pp) sum(-(X-pp)̂ 2/2)+sum((X-mean(X))̂ 2/2)) #log(PL)
    rg<-6/sqrt(length(X))  
  curve(get.elr,xlim=c(max(0,mean(X)-rg),mean(X)+rg),type="l",lty=1,lwd=2,add=TRUE,col=1)
  curve(get.plr,xlim=c(max(0,mean(X)-rg),mean(X)+rg),type="l",lty=2,lwd=2,add=TRUE,col=2)
}

#exponential
plot.exp<-function(X){
  get.elr.exp<-function(theta) sapply(theta,function(pp) el.test(X,mu=1/pp)$'-2LLR'/(-2)) #log EL
get.l.exp<-function(theta) sum(log(dexp(X,rate=theta)))
get.plr.exp<-function(theta) sapply(theta,function(pp) get.l.exp(pp)-get.l.exp(1/mean(X))) #log(PL)
rg<-6/sqrt(length(X))
curve(get.elr.exp,xlim=c(max(0.1,1/mean(X)-rg),1/mean(X)+rg)type="l",lty=3,lwd=2,add=TRUE,col=3)
curve(get.plr.exp,xlim=c(max(0.1,1/mean(X)-rg),1/mean(X)+rg),type="l",lty=4,lwd=2,add=TRUE,col=4)

}
 
#add legend for the plot
add_legend <- function(...) {
  opar <- par(fig=c(0, 1, 0, 1), oma=c(0, 0, 0, 0), 
    mar=c(0, 0, 0, 0), new=TRUE)
  on.exit(par(opar))
  plot(0, 0, type='n', bty='n', xaxt='n', yaxt='n')
  legend(...)
}
par(mar=c(5.5, 4, 3.5, 1.5),mfrow=c(2,3),mgp=c(2,1,0))
 
# normal
for (n in n.seq){ 
rg<-2/sqrt(n)  
X<-rnorm(n,theta0,1)

  plot(theta0,1,xlim=c(max(0,mean(X)-rg),mean(X)+rg),xlab=expression(theta),               ylim=c(-
2.5,0.005),ylab=expression(paste(“E(“,theta,”),M(“,theta,”)”)), main=paste0("n=",n),cex.axis=1.2)
plot.norm(X)
abline(v=mean(X),lty=2,col="grey")

}
# exponential
for (n in n.seq){ 
rg<-2/sqrt(n)
X<-rexp(n,rate=theta0)

  plot(theta0,1,xlim=c(max(0,1/mean(X)-rg),1/mean(X)+rg),xlab=expression(theta),               ylim=c(-
4.5,0.005),ylab=expression(paste(“E(“,theta,”),M(“,theta,”)”)), main=paste0("n=",n),cex.axis=1.2)
plot.exp(X)
abline(v=1/mean(X),lty=2,col="grey")

}
add_legend("bottom", legend=c("Normal, EL","Normal, PL","Exp, EL","Exp, PL"), lwd=2,
      lty=1:4, col=1:4, horiz=TRUE, bty='n', cex=1.1)
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10.3.1 Practical Theoretical Tools for Analyzing ELs

In this section we show several simple propositions that can assist in analyz-
ing empirical likelihood type procedures. For example, the remainder term 
in the approximation
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mentioned below Proposition 10.3.1 can be evaluated using the propositions 
presented in this section. The analysis is relatively clear, and has the basic 
ingredients for more general cases.

Proposition 10.3.2. Assume E X )( < ∞1
3

. Then X o ni n i p )(==
+εmax 1,...,

1/3 , for 
all ε > 0.

Proof. Chebyshev’s inequality (Chapter 1) provides that

 Pr max Pr 0.1,...,
1/3 1/3

1

3

1 3

1
3

3

1

∑ ∑( ) ( )≥ ≤ ≥ ≤ = ⎯ →⎯⎯⎯⎯⎯=
+ε +ε

=
+ ε ε

=
→∞X n X n

E X
n

E X
n

i n i i

i

n
i

i

n

n

This completes the proof.
In many cases, while analyzing EL-type procedures, we need to evaluate 

forms similar to X Xi iλ θ λ θ( ) , '( ) , and so on for all θ. Proposition 10.3.2 shows 

X o n i ni p )(= =+ε , 1,...,1/3 . Proposition 10.3.1 connects kλ θ( )( )  with λ θ( ), k = 1,.., 4. 

The following results examine λ θ( ).
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This completes the proof.
Proposition 10.3.5 provides the exact non-asymptotic bounds for λ. Owen 

(1988) used complicated considerations to obtain the approximate bounds for 

λ as n → ∞. Proposition 10.3.5 immediately demonstrates that, for all ε > 0, 

o np
1/2( )λ = +ε  under H0, since the bounds presented in Proposition 10.3.5 are 

based on the sums of iid random variables. The propositions above can be 
useful in the context of numerical computations of ELs, providing, e.g., the 
exact bounds for λ, where λ is a numerical solution of
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This result leads to
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In the case with g u uθ = − θ( , ) , one can use Proposition 10.3.6 to obtain the 
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10.4  Combining Likelihoods to Construct Composite  

Tests and to Incorporate the Maximum Data-Driven 

Information

Strictly speaking, EL techniques and parametric likelihood methods are 
closely related concepts. This provides the impetus for an impressive expan-
sion in the number of EL developments, based on combinations of likeli-
hoods of different types (e.g., Qin, 2000).

Consider a simple example, where we assume to observe independent cou-
ples given as X Y( , ). In this case, the likelihood function can be denoted as 
L X Y( , ). Suppose that the data points related to X ’s are observed completely, 
whereas a proportion of the observed data for the Y’s is incomplete. Assume 
a model of Y  given X , i.e., Y X| , is well defined, e.g., Y Xi i i= β + ε , where β 
denotes the model parameter and iε  is a normally distributed error term, for 

…i n= 1, , . Then, we refer to Bayes theorem to represent the joint likelihood 
=( , ) ( | ) ( )L X Y L Y X L X , where L X( ) can be substituted by the EL to avoid para-

metric assumptions regarding the distribution of X’s.
In this context, Qin (2000) shows an inference on incomplete bivariate data, 

using a method that combines the parametric model and ELs. This method 
also incorporates auxiliary information from variables in the form of con-
straints, which can be obtained from reliable resources such as census 
reports. This approach makes it possible to use all available bivariate data, 
whether completely or incompletely observed. In the context of a group com-
parison, constraints can be formed based on null and alternative hypotheses, 
and these constraints are incorporated into the EL. This result was extended 
and applied to the following practical issues.
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Malaria remains a major epidemiological problem in many developing 
countries. In endemic areas, an individual may have symptoms attributable 
either to malaria or to other causes. From a clinical viewpoint, it is important 
to attend to the next tasks: (1) to correctly diagnose an individual who has 
developed symptoms, so that the appropriate treatments can be given; and 
(2) to determine the proportion of malaria-affected cases in individuals who 
have symptoms, so that policies on intervention program can be developed. 
Once symptoms have developed in an individual, the diagnosis of malaria 
can be based on the analysis of the parasite levels in blood samples. How-
ever, even a blood test is not conclusive, as in endemic areas many healthy 
individuals can have parasites in their blood slides. Therefore, data from this 
type of study can be viewed as coming from a mixture distribution, with the 
components corresponding to malaria and nonmalaria cases. Qin and Leung 
(2005) constructed new EL procedures to estimate the proportion of clinical 
malaria using parasite-level data from a group of individuals with symp-
toms attributable to malaria.

Yu et al. (2010) proposed two-sample EL techniques based on incomplete 
data to analyze a Pneumonia Risk Study in an ICU setting. In the context of 
this study, the initial detection of ventilator-associated pneumonia (VAP) for 
inpatients at an intensive care unit requires composite symptom evaluation, 
using clinical criteria such as the clinical pulmonary infection score (CPIS). 
When CPIS is above a threshold value, bronchoalveolar lavage (BAL) is per-
formed, to confirm the diagnosis by counting actual bacterial pathogens. 
Thus, CPIS and BAL results are closely related, and both are important indi-
cators of pneumonia, whereas BAL data are incomplete. Yu et al. (2010) and 
Vexler et al. (2010c) derived EL methods to compare the pneumonia risks 
among treatment groups for such incomplete data.

In semi- and nonparametric contexts, including EL settings, Qin and 
Zhang (2005) showed that the full likelihood can be decomposed into the 
product of a conditional likelihood and a marginal likelihood, in a similar 
manner to the parametric likelihood considerations. These techniques aug-
ment the study’s power by enabling researchers to use any observed data 
and relevant information.

10.5 Bayesians and Empirical Likelihood

The statistical literature has shown that Bayesian methods (e.g., Chapter 5) 
can be applied for various tasks for the analysis of health-related experi-
ments. Commonly, the application of a Bayesian approach requires the 
assumption of functional forms corresponding to the distribution of the 
underlying data and parameters of interest. However, in cases with data sub-
ject to complex missing data problems, parametric estimation is complicated 
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and formal tests for the relevant goodness-of-fit are often not available. The 
statistical literature has shown that tests derived from empirical likelihood 
methodology possess many of the same asymptotic properties as those 
based on parametric likelihoods. This leads naturally to the idea of using the 
empirical likelihood instead of the parametric likelihood as the basis for 
Bayesian inference.

Lazar (2003) demonstrated the potential for constructing nonparametric 
Bayesian inference based on ELs. The key idea is to substitute the parametric 
likelihood (PL) with the EL in the Bayesian likelihood construction relative 
to the component of the likelihood used to model the observed data. It is 
demonstrated that the EL function is a proper likelihood function and can 
serve as the basis for robust and accurate Bayesian inference. This Bayesian 
empirical likelihood method provides a robust nonparametric data-driven 
alternative to the more classical Bayesian procedures.

Vexler et al. (2014) developed the nonparametric Bayesian posterior expec-
tation fashion by incorporating the EL methodology into the posterior likeli-
hood construction. The asymptotic forms of the EL-based Bayesian posterior 
expectation are shown to be similar to those derived in the well-known para-
metric Bayesian and Frequentist statistical literature. In the case when the 
prior distribution function depends on unknown hyper-parameters, a 
nonparametric version of the empirical Bayesian method, which yields double 
empirical Bayesian estimators, can be obtained. This approach yields a non-
parametric analog of the well-known James–Stein estimation that has been 
well addressed in the literature dealing with multivariate-normal observa-
tions (e.g., Stein, 1956).

Vexler et al. (2016b) provided an EL-based technique for incorporating 
prior information into the equal-tailed and highest posterior density confi-
dence interval estimators (Chapter 9) in the Bayesian manner. It was demon-
strated that the proposed EL Bayesian approach may correct confidence 
regions with respect to skewness of the data distribution.

The EL Bayesian procedures can serve as a powerful approach to incorpo-
rating external information into the inference process about given data, in a 
distribution-free manner.

10.6  Three Key Arguments That Support the Empirical 

Likelihood Methodology as a Practical Statistical  

Analysis Tool

One of the important advantages of EL techniques is their general applicabil-
ity and an assessment of their performance under conditions that are com-
monly unrestricted by parametric assumptions. When one is in doubt about 
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the best strategy for constructing statistical decision rules, the following 
arguments can be accepted in favor of EL methods:

Argument 1: The EL methodology employs the likelihood concept in a 
simple nonparametric fashion in order to approximate optimal para-
metric procedures. The benefit of using this approach is that the EL 
techniques are often robust as well as highly efficient. In this con-
text, we also may apply EL functions to replace parametric likeli-
hood functions in known and well-developed constructions.

Argument 2: Similarly to the parametric likelihood concept, the EL 
methodology gives relatively simple systematic directions for con-
structing efficient statistical tests that can be applied in various com-
plex statistical experiments.

Argument 3: Perhaps the extreme generality of EL methods and their 
wide scope of usefulness partly follow from the ability to easily set 
up EL-type statistics as components of composite parametric, semi-
parametric, and nonparametric likelihood–based systems, efficiently 
attending to any observed data and relevant information. Paramet-
ric, semiparametric, and empirical likelihood methods play roles 
complementary to one another, providing powerful statistical proce-
dures for complicated practical problems.

In conclusion, we note that EL-based methods are employed in much of 
modern statistical practice, and we cannot describe all relevant theory and 
examples. The reader interested in the EL methods will find more details 
and many pertinent articles across the statistical literature.

Appendix

( )θ θELR ,1 2 : Several results that are similar to those related to the evalua-
tions of ELR )(θ . 
One can show that the logarithm of the ELR test statistic for the null hypoth-

esis: H E X = θ: ( )0 1 1 and E X = θ( )1
2

2 has the form
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257Empirical Likelihood

 

( )
,

( )
,

( )( )
.1

1

2 2 2 2

1 2

2

2 2

1 1

2

2

1

2 2 2

1

n X X n X X n X X X Xi
i

n

i
i

n

i i
i

n∑ ∑ ∑∂λ
∂θ

=
−

Δ
∂λ
∂θ

=
−

Δ
∂λ
∂θ

= ∂λ
∂θ

=
− −

Δ
= = =

∑∑
∑∑

∂ λ
∂θ

=
Δ

− ∂λ
∂θ

− + ∂λ
∂θ

− − −

− − ∂λ
∂θ

− + ∂λ
∂θ

− −

==

==

1
[2 ( ){ ( ) ( )} ( )( )

2 ( ){ ( ) ( )} ( ) ],

2
1

1
2

2 2 1

1

2

1

2 2 2 2 2

11

1

1

2

1

2 2 2 2 2 2

11

n
X X X X X X X X X X

X X X X X X X X

i i i i i
i

n

i

n

i i i i
i

n

i

n

∑∑
∑∑

∂ λ
∂θ

=
Δ

− ∂λ
∂θ

− + ∂λ
∂θ

− − −

− − ∂λ
∂θ

− + ∂λ
∂θ

− −

==

==

1
[2 ( ){ ( ) ( )} ( )( )

2 ( ){ ( ) ( )} ( ) ],

2
2

1
2

1

1

2

1

2 2 2 2 2

11

2 2 1

1

2

1

2 2 2 2

11

n
X X X X X X X X X X

X X X X X X X X

i i i i i
i

n

i

n

i i i i
i

n

i

n

∑∑
∑∑

∂ λ
∂θ

= ∂ λ
∂θ ∂θ

=
Δ

− ∂λ
∂θ

− + ∂λ
∂θ

− − −

− − ∂λ
∂θ

− + ∂λ
∂θ

− −

==

==

1
[2 ( ){ ( ) ( )} ( )( )

2 ( ){ ( ) ( )} ( ) ],

2
1

2
2

2
2

1 2

2 2 1

2

2

2

2 2 2 2 2

11

1

2

2

2

2 2 2 2 2 2

11

n
X X X X X X X X X X

X X X X X X X X

i i i i i
i

n

i

n

i i i i
i

n

i

n

∑∑
∑∑

∂ λ
∂θ

= ∂ λ
∂θ ∂θ

=
Δ

− ∂λ
∂θ

− + ∂λ
∂θ

− − −

− − ∂λ
∂θ

− + ∂λ
∂θ

− −

==

==

1
[2 ( ){ ( ) ( )} ( )( )

2 ( ){ ( ) ( )} ( ) ],

2
2

1
2

2
1

1 2

1

1

2

1

2 2 2 2 2

11

2 2 1

1

2

1

2 2 2 2

11

n
X X X X X X X X X X

X X X X X X X X

i i i i i
i

n

i

n

i i i i
i

n

i

n

where { ( )( )} ( ) ( )2 2 2 2

1

2 2 2

11

X X X X X X X Xi i i
i

n

i
i

n

i

n ∑ ∑∑Δ = − − − − −
= ==

.

Then, in a similar manner to the analysis shown in Section 10.3, one can 

show that, under H0, ELR )(θ θ χ2 log , ~1 2 2
2 , as n → ∞.
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11
Jackknife and Bootstrap Methods

11.1 Introduction

Jackknife and bootstrap methods and other “computationally intensive” 
techniques of statistical inference have a long history dating back to the per-
mutation test introduced in the 1930s by R.A. Fisher. Ever since that time 
there has been work towards developing efficient and practical nonparamet-
ric models that did not rely upon the classical normal-based model assump-
tions. In the 1940s Quenouille introduced the method of deleting “one 
observation at a time” for reducing a bias of estimation. This method was 
further developed by Tukey for standard error estimation and coined by him 
as the “jackknife” method (Tukey, 1958). This early work was followed by 
many variants up to the 1970s. The jackknife method was then extended to 
what is now referred to as the bootstrap method. Even though there were 
predecessors towards the development of the bootstrap method, e.g., see Harti-
gan (1969, 1971, 1975), it is generally agreed upon by statisticians that Efron’s 
(1979) paper in which the term “bootstrap” was coined, in conjunction with 
the development of high-speed computers, was a cornerstone event towards 
popularizing this particular methodology. Following Efron’s paper there 
was an explosion of research on the topic of bootstrap methods. At one time 
nonparametric bootstrapping was thought to be a statistical method that 
would solve almost all problems in an efficient easy-to-use nonparametric 
manner. So why do we not have a PROC BOOTSTRAP in SAS, and why are 
bootstrap methods not used more widely? One answer lies in the fact that 
there is not a general approach to bootstrapping along the lines of fitting a 
generalized linear model with normal error terms. Oftentimes the bootstrap 
approach to solving a problem requires writing new pieces of sometimes-
difficult SAS code that only pertains to a specific problem. Another reason 
for the bootstrap method’s failure to take off as a general approach is that it 
sometimes does not work well in certain situations, and that the method for 
correcting these deficient procedures are oftentimes difficult or tedious.

Our focus will be on problems where the simple bootstrap methods are 
known to work well. Even though the bootstrap method is primarily 
considered a nonparametric method, it can also be used in conjunction with 



260 Statistics in the Health Sciences: Theory, Applications, and Computing

parametric models as well. We will touch on how to employ the parametric 
bootstrap method as well.

Complicated problems in practice where the bootstrap method is a reason-
able approach are situations such as repeated measures analyses, where one 
wishes to treat the correlation structure as a nuisance parameter, as opposed 
to assuming something unreasonable, or the case where there are unequal 
numbers of repeated measurements per subject.

The most common use of the bootstrap method is to approximate the sam-
pling distribution of a statistic such as the mean, median, regression slope, 
correlation coefficient, and so on. Once the sampling distribution has been 
approximated via the bootstrap method, estimation and inference involving 
the given statistic follows in a straightforward manner. Note however that the 
bootstrap does not provide exact answers. It provides approximate variance 
estimates and approximate coverage probabilities for confidence intervals. As 
with most statistical methods these approximations improve for increasing 
sample sizes. The estimated probability distribution of a given statistic based 
upon the bootstrap method is obtained by conditioning on the observed data-
set and replacing the population distribution function with its estimate in 
some statistical function such as the expected value. The method may be car-
ried out using either a parametric or nonparametric estimate of the distribu-
tion function. For example, the parametric bootstrap distribution of the sample 
mean x under normality assumptions is given simply by = Φ −F x n x x sˆ( ) ( ( )/ ),  
where Φ denotes the probit function, n is the sample size, and x and s are the 
sample mean and sample standard deviation, respectively. The 95% paramet-
ric bootstrap percentile confidence interval is given simply by the 2.5th and 

97.5th percentiles of F xˆ( ) or simply + ×x s n1.96/ . This should look familiar 
to anybody who has opened an introductory statistics book as the approxi-
mate normal theory confidence interval for the sample mean.

Oftentimes the calculations are not so straightforward or we wish to apply 
the bootstrap method in a nonparametric fashion, that is, we don’t wish to con-
strain ourselves to a parametric functional form such as the normal distribu-
tion when specifying the distribution function F x( ). In the majority of cases we 
need to approximate the bootstrap method through the generation of boot-
strap replications of the statistic of interest. Using a resampling procedure we 
will be able to approximate bootstrap estimates for quantities such as standard 
errors, p-values, and confidence intervals for a complicated statistic without 
relying on traditional approximations based upon asymptotic normality.

There are many well-known books on bootstrapping such as Efron and 
Tibshirani (1994), Davison and Hinkley (1997), and Shao and Tu (1995) that 
we can suggest to the reader who is interested in further details regarding 
jackknife and bootstrap methods.

This chapter will outline the following topics: jackknife bias estimation, 
jackknife variance estimation, confidence interval definition, approximate 
confidence intervals, variance stabilization, bootstrap methods, nonpara-
metric simulation, resampling algorithms with SAS and R, bootstrap 
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confidence intervals, use of the Edgeworth expansion to illustrate the accu-
racy of bootstrap intervals, bootstrap-t percentile intervals, further refine-
ment of bootstrap confidence intervals, and bootstrap tilting (Sections 11.2 
through 11.14, respectively).

11.2 Jackknife Bias Estimation

Quenouille (1949, 1956) developed a nonparametric estimate of the large 
sample bias of a given statistic that has first order bias of 1/n. The methodol-
ogy Quenouille developed was coined the jackknife method by Tukey (1958). 
In terms of demonstrating the method let …X X Xn, , , 1 2  be a set of iid obser-
vations from a distribution function F with a density function θf x( ; ) and let 
θ = θ …X X Xn
ˆ ˆ( ,  , ,  )1 2  be an estimator of some population quantity θ = t F( ), 
where t F( ) is what is referred to as a statistical functional, e.g., the expecta-
tion, quantile, etc. An estimate of t F( ) is given by θ = t Fˆ ( ˆ ), where 

∑ )(= ≤
=

F x I X x ni
i

n
ˆ( ) /

1
 is the empirical distribution function and I(.) denotes 

the indicator function. For example, if ∫)( =t F xdF is the expectation then 

∫ ∑θ = = =
=

t F xdF x X n
i

n

i
ˆ ( ˆ )   ˆ( ) /

1

 is the sample mean (see also Section 1.6 in this 

context).
The bias of the statistic is given by

 = −bias E t F t F[ ( ˆ ) ( )].

Quenouille derived an estimate of the bias by deleting one observation Xi 

and then recalculating θ = θ Fˆ ( ˆ ), given as

 )(θ = = θ … …− +t F X X X X Xi i i i n
ˆ ˆ ˆ( ,  , ,  , ,  )( ) 1 2 1, 1, ,

along with the average ∑θ = θ
=

n
i

n

i
ˆ ˆ /(.)

1

( ) . Then the estimate of the bias is given 

as )( − θ − θ)(n 1 (ˆ  ˆ) .  such that the bias-corrected jackknife estimator for θ is 
given as

 �θ = ⋅θ − − θn nˆ ( 1)ˆ
(.).

Note however, there is a statistical price to pay for such a correction in terms 
of bias-variance trade-offs. This approach to bias correction is most useful 
for statistics that have expectations of the form
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 )(θ = θ + + + −E
a F

n
a F

n
O nˆ ( ) ( )

( )1 2

2
3 ,

when the constants a F( )1  and a F( )2  do not depend on n. Oftentimes expecta-
tions of maximum likelihood estimators have values of the form above, e.g., 
see Firth (1993) for a general description of the problem.

The mechanism for which the jackknife method works follows by noting 
that

 )(θ = θ +
−

+
−

+ −E
a F
n

a F
n

O nˆ ( )

1

( )

( 1)
( )(.)

1 2

2
3 .

Hence,

 �)(θ = θ −
−

+ −E
a F

n n
O n

( )

( 1)
( )2 3

such that �θ has bias of order −O n( )2 , whereas θ̂ has bias of order −O n( )1 . As an 
example denote the population variance as

 ∫ )() )( (= −t F u E X dF u( )
2

with the corresponding moment estimator given as

 ∫ ∑)(= − = −
=

t F u X dF u X X n
i

n

i( ˆ )   ˆ( ) ( ) /
2

1

2 ,

where /
1

∑=
=

X X ni
i

n

. Then an estimate of the bias is given as /( 1 )

1

2∑( ) ( )− −
=

X X n n
i

n

i  

such that the jackknife bias-corrected estimator is given as � /( 1)

1

2∑( )θ = − −
=

X X n
i

n

i . 
In this case �θ is precisely unbiased.

A variant of the delete one observation at a time approach towards bias 
reduction is the grouped jackknife approach. Let =n gh, where g and h are 
integers such that we can remove g distinct blocks of size h from …X X Xn,  , , 1 2  
given as …X X Xh,  ,  ,1

*
2
* * then

 � ˆ 1 ˆ ,.( )θ = θ − − θ()g g
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where 
n
h

i

i

�
∑θ = θ

⎛

⎝⎜
⎞

⎠⎟
ˆ ˆ /(.)  and 

i�
∑ denotes the summation over all possible 

subsets. The blocked jackknife biased corrected estimator has smaller vari-
ance than the leave one out at a time classic estimators (Shao and Wu, 1989).

11.3 Jackknife Variance Estimation

Tukey (1958) put forth the idea that the jackknife method is a useful tool for 
estimating the variance of θ = θ Fˆ ( ˆ ) in the iid setting. The variance estimate 

for θ̂ takes the form � ∑ )(θ = θ − θ) )( (
=

Var n
i

n

i(ˆ) ˆ ˆ /
1

.

2

. In general, the variance estima-

tor works for a class of statistics that are so-called smooth statistics and not 

so well in other instances, that is, in many instances �{ })( θ − θ ≠
→∞

n Var Var
n
lim (ˆ) ˆ ( ) 0, 

where )( )(= −Var X E X EX( )
2 2

 . In fact, �{ }θ > θE Var Var(ˆ) (ˆ). We outline the con-

cept of smoothness in the bootstrap methods section below.

For a simple example, let ∫ ∑θ = = =
=

t F xdF X n
i

n

i
ˆ ( ˆ )   ˆ /

1

 be the sample mean; 

then 
n X

n
i

iθ = θ −
−

ˆ  ˆ

1
( ) , θ = θˆ ˆ

(.)  and θ − θ = θ −
−

X
n

i
iˆ ˆ  

1
( ) (.) . This yields 

� ∑ )()(θ =
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− =
=

Var
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X X
S
n

i

n

i(ˆ)
1

1
1

2
2

. There may in general be a temptation to 

use �θ ± θ− αt Varn
ˆ   (ˆ)1, /2  for a confidence interval about θ. However, intervals 

of this type have notoriously poor coverage probabilities. We will illustrate 
that the bootstrap approach described below provides a more suitable 
approach for generating approximate confidence intervals.

11.4 Confidence Interval Definition

Let X denote a random variable and let a and b denote two positive real num-
bers. Then

 

 and 

 and 

( ).

( ) ( )< < = < <

= > <⎛
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The interval =G X X
bX
a

( ) ( , ) is then a random interval and assumes the value 

G x( ) whenever X assumes the value x. The interval G X( ) contains the value b 
with a certain fixed probability. Now in this framework denote θ ∈ Θ ⊆ R. 

For < α <0 1 a function satisfying P X( )θ ≤ θ ≥ − α( ) 1 , ∀θ is called a lower con-
fidence band at level α, where Xθ( ) does not depend on θ and X  is a random 
vector of observations. A similar definition holds for the upper confidence 

band Xθ( ). A family of subsets XS( ) of Θ is said to constitute a family of con-

fidence sets at confidence level − α1  if P X( )∈Θ ≥ − αS( ) 1 , ∀θ ∈Θ. A special 

case X X X( ) ( )= θ θS ( , ( ))  is called a confidence interval provided 

P X X( )( )θ < θ < θ ≥ − α( ) 1 , ∀θ.
A key towards generating a standard confidence interval used in applica-

tions is to develop a so-called pivot. For example, let …X X Xn,  , , 1 2  be iid 
observations from a density function θf x( ; ) and denote the statistic 

X… θ = θT X X X Tn( , , ,  ; )   ( ; )1 2 . The goal in confidence interval generation is to 
start by choosing λ1 and λ2 such that the probability statement

 λ < θ < λ = − αXP T( ( ; ) )  11 2

may be written in the form discussed above and given as

 X X( )( )θ < θ < θ ≥ − αP   ( ) 1 .

This can be accomplished by finding a pivot within the form of the statistic 
X θT( ; ) about the parameter θ. If the distribution function of X θT( ; ) has a 

form that is independent of θ then X θT( ; ) is called a pivot. For example, let 

… θ σX X X Nn,  , ,  ~ ( ,  )1 2 ; then the pivot X θ = − θ σ−T n x N( ; ) ( ) ~ (0,1)1 , where 

∑=
=

x X ni
i

n
/

1
, that is, X θT( ; ) has a distribution that is θ free. Hence we can 

pivot about θ to arrive at the exact − α1  confidence interval for θ with the 

classic form ( )− σ < θ < + σ ≥ − αθ −α −αP x z n x z n/   / 11 /2 1 /2 .

11.5 Approximate Confidence Intervals

When the distribution of the statistic X θT( ; ) is unknown or analytically 
intractable oftentimes it can be approximated with large sample approxima-
tions given certain regularity conditions, e.g., the existence of moments. The 
reason as to why the distribution of X θT( ; ) may be unknown is that we do 
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not wish to assume a form for a density function θf x( ; ) or we simply do not 
know what it may be based on experience.

A well-known approximation is the case when X θT( ; ) takes the form of a 
sum of iid observations. Then we have in the general case the asymptotic 
approximation X θ θ σT AN nT( ; ) ~ ( , / )2 , where X( )θ = σVar T nT( ; ) /2 . The clas-
sic large sample confidence interval or z-interval then takes the form 

X θ ± σ−αT z nT( ; ) /1 /2 . The general problem with this approximate confidence 

interval is that in general the nuisance parameter σ T
2  is unknown.

Typically, some consistent estimator of σ T
2  is used in the confidence inter-

val approximation. Now, however, unlike the classic case when …X X,  , , 1 2  
θ σX Nn ~ ( ,  )2  and we can apply the t-distribution given σ̂ 2 is the sample 

standard deviation to generate a precise confidence interval, the confidence 
interval X θ ± σ−αT z n( ; ) ˆ /1 /2  is an approximation of an approximation. In 

general, if X θ θ σT AN nT( ; ) ~ ( , / )2  and σ → σ
P

Tˆ    2 2  then X θ ± −αT z( ; ) 1 /2 σ nˆ /
has coverage probability that converges to − α1  as the sample size → ∞n . 
However, in many instances approximate confidence intervals of this type 
may have poor coverage in small finite samples and should be used with 
caution.

In certain instances these types of approximate intervals may be improved 
upon using some common techniques such as variance stabilization trans-
formations, symmetry transformations (e.g., the log transform) or incorpo-
rating some functional knowledge about θf x( ; ).

11.6 Variance Stabilization

When the large sample variance of the statistic X θ = θT( ; ) ˆ  depends on θ, that is, 

( ) ()θ θ θ σ⎛
⎝⎜

⎞
⎠⎟

AN
h

n
hTˆ ~ , ,  where  .

2

 is a continuously differentiable function, then 

one may consider a function g such that g AN
c

n
T�θ θ σ⎛

⎝⎜
⎞
⎠⎟

( ) ~ , .
2

 For illustration 

purposes consider X1, …X Xn  , , 2  to be iid data points from an exponential 

density function θ = − θ θf x x( ; ) exp( / )/ . Then we know )( = θE x   , = θxVar( ) 2, 

and θ θx AN n~ ( , / )2 . One variant of a − α(1 ) large sample confidence interval 

for θ would be ± −αx z x n/1 /2  due to the variance being dependent on the 
parameter of interest. Alternatively, consider that θx AN nlog  ~ (log ,1/ ) with 
variance that does not depend on θ. Hence a − α1  large sample confidence 

interval for θlog  would be ± −αx z n log 1/1 /2 . This interval then can be back-
transformed to the original scale by exponentiating the lower and upper 
bounds.
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11.7 Bootstrap Methods

The term “bootstrap” was coined by Efron (1979). Hartigan (1969) first dis-
cussed what we now refer to as the bootstrap method. Bootstrap methods 
are a very valuable inference tool if properly used. The primary usage of this 
method is around bias estimation, variance estimation, and confidence inter-
val generation and inference. In some sense, bootstrap methods generalize 
the jackknife described earlier. The bootstrap method is a resampling method 
based on sampling from the original dataset with replacement. For small 
samples we can enumerate all possible subsamples, which we will refer to as 
the exact bootstrap method. For larger samples Monte Carlo approaches are 
generally applied. The key idea is to extract “extra” information from the 
data via sampling with replacement. An alternative approach termed per-
mutation methods will be described in a later section, which in its most basic 
form is a sampling without replacement approach.

For the purpose of introducing the method we will start with the univari-
ate standard case where we assume …X X Xn,  , , 1 2  is a set of iid observations 

from θf x( ; ). The empirical distribution function ˆ( ) /
1

∑ ( )= ≤
=

F x I X x ni
i

n

 plays 

a key role in classic bootstrap methods. More formally, ˆ( ) ( )/

1

∑= −
=

F x H x X n
i

n

i , 

where H u( ) is the unit step function defined as

 
0,  0,

1,    0.
( ) =

<
≥

⎧
⎨
⎪

⎩⎪
H u

u
u

Note that H u( ) is in a sense also a discrete-valued distribution function. Hence, 

by convention the derivative of H u( ), ( )′ = ( )H u h u , is a degenerate density func-
tion with point mass at =u 0. Note also that we will use the empirical quantile 
estimator as well to illustrate bootstrap methods and aid in resampling 
approaches. Let < < … <X X X n (1) (2) ( ) denote the order statistic. Then the empir-
ical quantile function estimator in the absolutely continuous case for 

)( =−F u Q u( )1  is given as )( = [ ]+Q u X nu
ˆ

( 1), where [.] denotes the floor function. The 
alternative definition for the empirical distribution function about H   provides 

a more formal method for calculating quantities, e.g., ∫ )(g x dF xˆ( ), which if done 

analytically provides so-called exact bootstrap solutions, where g x( ) denotes a 
generic function corresponding to the population quantity of interest, e.g., 

)( =g x x corresponds to the calculation of E X( ).
The heart of bootstrap methods revolves around understanding statistical 

functionals. Notationally, a statistical functional has the form θ = t F( ) such that 
the estimator has the form θ = t Fˆ ( ˆ ). The function θ = t F( ) is central to nonpara-
metric estimation. The key assumption that we will operate under is that some 
characteristic of F is defined by θ. Note that F and θ may be multidimensional. 
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In general, bootstrap methods work well in terms of the performance character-
istics when the statistical functional of interest has the form θ = t F( ). In other 
scenarios caution must be taken when using bootstrap methods, e.g., estimat-
ing properties of a threshold parameter. As a general rule-of-thumb if θ = t Fˆ ( ˆ ) 
can be assumed to be asymptotically normal and consistent then the bootstrap 
methods that we will outline will work well.

As a straightforward example of the relationship between a statistical 
functional and its corresponding estimator, consider the statistical func-

tional ∫)(θ = =t F xdF, which is the expectation. Then the estimator is given 

by “plugging-in” F̂ for F and given as

 

ˆ ˆ ˆ( )
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1
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1

1
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that is, the sample average. Oftentimes in terms of direct calculations the 
quantile form of the statistical functional is worth considering, e.g., for the 
average we have

 ∫ ∫) )( (θ = = =t F xdF Q u du
0

1

and hence ˆ   ˆ 1 ˆ 1
,

0

1

1 ( 1)/

/

1

( )∫ ∑ ∫ ∑( ) ( )θ = = = =
= − =

Q u du
n

Q u du
n

X X
i

n

i n

i n

i

n

i  where )( = [ ]+Q u X nu  ˆ
( 1)  

and [.] denotes the floor function.

11.8 Nonparametric Simulation

In many scenarios )(θ = t F  can be estimated directly via the plug-in method 

by )(θ = t Fˆ ˆ  or via Monte Carlo simulation. The reason one may wish to use 
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simulation is that direct calculations may be complex. Many quantities of 
interest around the statistical functional such as confidence intervals are dif-
ficult to calculate directly. For example, say we are interested in the statistical 
functional pertaining to the quantile of the sample average. In this case

 )(θ = = − θ + α − − θ
θ

t F E X Xmin [| | (2 1)( )],

where α denotes the quantile of X , < α <0 1. This quantity can be calculated 
directly for small samples, but becomes computationally, analytically infea-
sible for even moderate sample size. Or as another complex example say we 

were interested in the statistical functional of )( =t F Var S x( / ) where S is the 
sample standard deviation. In this case, direct calculation is not possible. 
However a simulation approached based on sampling with replacement pro-
vides a powerful tool for calculating such quantities.

Let us take a simple example of estimating the variance for the coefficient 

of variation. In this case ) )( (θ = = ×t F Var X E X100  / ( ) such that 

( )θ = = ×t F S Xˆ ˆ 100 / . Deriving the estimator � ×Var S X(100  / ) of the coefficient 
of variation is nontrivial even when the parametric form of the density is 
assumed known. Suppose we observe a sample of size =n 10 with observed 
data X={0.25, 0.40, 0.46, 0.27, 2.51, 1.24, 4.11, 6.11, 0.46, 1.35}. The estimate in this 

case is )(θ = =t Fˆ ˆ 114.6. For the nonparametric bootstrap approach we sample 

with replacement from F̂ in order to form bootstrap replicates. One single 
randomly sampled bootstrap replicate in this example was x* ={0.25, 0.40, 
0.46, 0.27, 1.29, 1.29, 4.11, 6.11, 0.25, 1.37} such that the bootstrap replicate statis-

tics was )(θ = =t Fˆ ˆ 124.29* * , where F̂* is the empirical distribution function 
based on the resampled values. If we repeat this process say with =B 10,000 
bootstrap replications we obtain the approximate distribution for 

( )θ = = ×t F S Xˆ ˆ 100 /  illustrated in Figure 11.1. Similar to the jackknife a non-

parametric estimate of the variance of ˆ ˆt F( )θ =  is ˆ 1

1
ˆ ˆ

1

* *
2

Var t F
B

t F t F
i

B

i
� ∑( ) ( )( ) ( ) ( )≈

−
−

=

, 

where ∑) )( (=
=

t F
B

t F
i

B

i
ˆ 1 ˆ*

1

* . For our example, � )( )( =Var t F̂ 514.6. Note that there 

are two sources of variance in the approximation, Monte Carlo error and 
stochastic error. The Monte Carlo error goes to 0 as → ∞B . We will demon-
strate that this resampling approach can be extended to generating approxi-

mate bootstrap confidence intervals for )(θ = t F .
The general steps one needs to follow in order to utilize the power of clas-

sic bootstrap methods are as follows:

(1) Have a clear definition of )(θ = t F .

(2) Ensure that the estimator for )(θ = t F  has the form )(θ = t Fˆ ˆ .



269Jackknife and Bootstrap Methods

(3) Generate B bootstrap samples of size n from F̂ with replacement 
denoted …X X Xn, , , .1

*
2
* *

(4) Calculate bootstrap replicates of the statistic ) ) )( ( (…t F t F t FB
ˆ , ˆ , , ˆ

1
*

2
* * .

(5) Utilize ) ) )( ( (…t F t F t FB
ˆ , ˆ , , ˆ

1
*

2
* *  to approximate the distribution of 

)(θ = t Fˆ ˆ  to calculate the quantity of interest, e.g., an estimate of the 

variance for )(θ = t Fˆ ˆ .
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FIGURE 11.1 
B = 10,000 bootstrap replications for the coefficient of variation example.
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11.9 Resampling Algorithms with SAS and R

The majority of nonparametric bootstrap procedures discussed from this point 
forward rely upon the ability to sample from the data with replacement. In this 
chapter we will discuss the pieces of code needed to carry out the simple boot-
strap in the univariate setting. When we get to more complicated repeated mea-
sures and cluster-related datasets later in the book we will use the code provided 
below as a jumping off point. The basic idea is that once you understand the 
syntax provided in this chapter you should be able to easily modify it for most 
bootstrap-related problems that would be encountered in practice.

It turns out that resampling from the data with replacement can be accom-
plished relatively easily through the generation of a vector or set of multino-
mial random variables. The algorithms outlined below will be the “front-end” 
for most of the bootstrap procedures we intend to discuss. The key to pro-
gramming the nonparametric bootstrap procedure is to consider carefully 
how data is managed internally within SAS. The point of the procedures 
outlined below is to avoid having to create a multitude of arrays or special-
ized macros, and to try maximize efficiency, thus making it easier for the 
novice to carry out the bootstrap procedures. In other instances we will be 
able to take advantage of PROC SURVEYSELECT, which is an already built-
in procedure that allows us to resample the data with replacement. Note 
however, for certain problems one may not be able to avoid using macros or 
arrays. We will deal with a few specialized cases later in the book.

Let us start with an example dataset =X {0.5, 0.4, 0.6, 0.2} of size =n 4. If we 
sample from this dataset once with replacement, we might obtain a bootstrap 

replication denoted =∗x {0.5, 0.4, 0.6, 0.2}. Note that this is equivalent to keep-
ing track of the set of multinomial counts c={2,1,0,1} corresponding to the 
original dataset x as listed and outputting each observation X i the corre-
sponding ci number of times, where X i denotes the ith observation and ci 
denotes the corresponding count, e.g., =X 0.42  and =c 12 . In other words 
sampling with replacement is exactly equivalent to generating a set of random 
multinomial counts with marginal probabilities 1/n, and outputting the data 
value the corresponding number of times. One way to do this in SAS easily 
and efficiently is to generate random binomial variables conditioned on the 
margins as described in Davis (1993) and given by the following formula:

 C B n C
n i

i j

j

i

∑−
− +

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=

−

~ ,
1

1
0

1

 (11.1)

for = −i n1,..., 1, where = =C p 00 0 , ∑= −
=

−
C n Cn j

j

n

0

1

, and B n p( , ) denotes a 

standard binomial distribution. Random binomial variables may be gener-
ated using the RANBIN function in SAS. Even though this formula may look 
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intimidating at first glance, it is relatively straightforward to program. Again, 
note that we are sticking with the convention that a capital “C” represents a 
random quantity, and a lowercase “c” represents an observed value. There-
fore, in bootstrap parlance, the data X is considered fixed or observed for a 
given bootstrap resampling procedure, and the multinomial counts C vary 
randomly every bootstrap replication. The theoretical properties of boot-
strap estimators can be examined fairly straightforward within this frame-
work by noting that the multinomial counts C are independent of the data X. 
For our simple example of n = 4 observations we would have for a single 
bootstrap resample:

(1) C1 is a random binomial variable B(4,1/ 4).

(2) C2 is a random binomial variable −B C(4 ,1/ 3)1 .

(3) C3 is a random binomial variable − −B C C(4 ,1/ 2)1 2 .

(4) = − − −C C C C44 1 2 3.

We would then want to output the value Xi Ci number of times for one 

bootstrap resample. Note that if ∑− <
=

−
n Ci

j

i
0

0

1

 then stop; all subsequent Ci’s 

should be set to “0”. The algorithm is easily accomplished in SAS a multiple 
number of times in a variety of ways. For the first example let us focus on the 
most straightforward approach. Let us generate counts for X={0.5,0.4,0.6,0.2}, 
B = 3 bootstrap replications without doing anything fancy. We need to gener-
ate random binomial variables using the function RANBIN(seed, n, p), where 
n and p are the parameters of the binomial distribution. The seed dictates the 
random number stream; a “0” produces a different random number stream 
each successive run of the program. Note that there are practical reasons for 
choosing a nonzero seed, such as the need to re-create a given analyses. In 
this case one may choose a positive integer such as 123453. Seeds less than 
“0” may also be employed. We refer the reader to the SAS technical docu-
ments for further details (see Section 1.11).

In order to understand the basic resampling code written below, one 
must be familiar with the SORT command, in conjunction with the FIRST 
and LAST command. In addition, knowledge of the RETAIN command is 
needed. The function RANBIN will be used to generate random binomial 
variables.

data original;
n=4;          /*set the sample size*/
input x_i @@;
do b=1 to 3;  /*output the data B times*/
 output;
end;
cards;
0.5 0.4 0.6 0.2;
proc sort;by b;
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This first piece of code in data original just outputs the same data-
set three times in a row. We then need to sort the values by b. Now all 
we do in the next set of code is carry out the generation of multinomial 
random variables sequentially via a marginal random binomial number 
generator.

/*SAS PROGRAM 11.1*/
data resample;
set original;by b;
retain sumc i;   /*need to add the previous
           count to the total */
if first.b then do;
 sumc=0;
 i=1;        /*set counters*/
end;
p=1/(n-i+1);  /*p is the probability of a "success"*/

if ^last.b then do;
if n>sumc then c_i=ranbin(0,n-sumc,p); /*generate the binomial variate*/
 else c_i=0;
 sumc=sumc+c_i;
end;
i=i+1;
if last.b then c_i=n-sumc;
proc print;
var b  c_i x_i;

The statement “else c_i=0” is just a shortcut needed for the cases where we 

hit the limit of the constraint that ∑−
=

−

n Cj

j

i

0

1

 must be positive. All the other 

statements are needed for counting purposes and updating the marginal 
binomial probabilities.

Basically what we have done is keep track of ∑−
=

−

n Cj

j

i

0

1

 and 
− +n i

1

1
 for 

B = 1, and then we repeated the resampling scheme for B = 2, and for B = 3. 
The output for a given run is below.

                   OBS    B    C_I    X_I
                    1     1     3     0.5
                    2     1     0     0.4
                    3     1     0     0.6
                    4     1     1     0.2
                    5     2     2     0.5
                    6     2     0     0.4
                    7     2     0     0.6
                    8     2     2     0.2
                    9     3     1     0.5
                   10     3     0     0.4
                   11     3     0     0.6
                   12     3     3     0.2
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What this program above does is basically the nuts and bolts of most uni-
variate bootstrapping procedures. It is easily modified for the multivariate 
procedures. Note that if there are missing values they should be eliminated 
within the first data step.

As an example consider how the program would work for a simple 

statistic such as the sample mean ∑=
=

X X ni
i

n
/

1
. A bootstrap replication of 

the mean would simply be ∑=∗

=
x C X ni i

i

n
/

1
, or for our example 

= × + × =x (3 0.5 1 0.2)/ 4 0.4261
* , or for those of you who prefer matrix 

notation = XC'
X

n
.*  To carry out this process in SAS simply add the following 

code to the end of SAS PROGRAM 11.1:

proc means;by b;
var x_i;
weight c_i;
output out=bootstat mean=xbarstar;

For the sample mean we can take advantage of the WEIGHT statement 
built in to PROC MEANS. Since the sample size of =n 4 is small we would 
basically only need to increase the value of B up to say =B 100 in this exam-
ple in order to get a very accurate approximation of the distribution of the 
sample mean for this dataset. Guidelines for the number of resamples will be 
discussed later. Through the use of the WEIGHT statement PROC MEANS is 

“automatically” calculating ∑=∗

=
x C X ni i

i

n
/

1
 for each value of B via the BY 

statement. In a variety of problems from regression to generalized linear 
models we will utilize the fact that the WEIGHT utility is built in to a num-
ber of SAS procedures. From a statistical theory standpoint in the case of the 

sample mean one can easily prove that if = μE X( )  that = μ∗E X( )  as well. 
Note that

 ∑ ∑= = = μ∗

= =
E X E C X n E C E X ni i

i

n

i i
i

n
( ) ( / ) ( ) ( )/

1 1
,

given =E Ci( ) 1, that is, remarkably all bootstrap resampled estimates of the 
mean are unbiased estimates of μ.

Note that the number of bootstrap replications is typically recommended 
to be =B 1000 or higher for moderately sized datasets, e.g., see Booth and 
Sarkar (1998). However, if you can feasibly carry out a higher number of rep-
lications the precision of the bootstrap procedure can only increase, that is, 
from a theoretical statistical point of view you can never take too many boot-
strap replications. From a practical point of view you may stretch the mem-
ory capacity and speed of your given computer. In general, one should shoot 
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for =B 1000. If a value for B >1000 can be practically used then by all means 
use it. Obviously, the memory requirements for the above algorithm can 
expand rapidly for moderately sized datasets and values of B around 1000. 
The program (SAS PROGRAM 11.1) will run very rapidly, however it is a 
“space hog” with respect to disk space.

In some instances we can keep the code even more simple by replacing the 
data-step resample in the previous approach with PROC SURVEYSELECT as 
seen in the following example.

/* SAS PROGRAM 11.2 */
proc surveyselect data=original
method=urs sampsize=4 out=resample;
by b;

proc print noobs;
var b numberhits x_i;

data restar;set resample;
do ii=1 to numberhits;
 output;
end;

The R code is as following:
> resamples <- lapply(1:3, function(i)
+     sample(data, replace = T))
> b1<-c(4,mean(resamples[[1]]),sd(resamples[[1]]),min(resamples[[1]]),max(res
amples[[1]]))
> names(b1)<-c("N","Mean","Std Dev", "Minimum", "Maximum")
> b2<-c(4,mean(resamples[[2]]),sd(resamples[[2]]),min(resamples[[2]]),max(res
amples[[2]]))
> names(b2)<-c("N","Mean","Std Dev", "Minimum", "Maximum")
> b3<-c(4,mean(resamples[[3]]),sd(resamples[[3]]),min(resamples[[3]]),max(res
amples[[1]]))
> names(b3)<-c("N","Mean","Std Dev", "Minimum", "Maximum")

The method=urs implies unrestricted random sampling with replacement 
and needs to be specified. Also, note that the sampsize=4 corresponds to the 
sample size of n = 4 for this example and needs to be modified manually for 
different sized datasets. Finally, the output from PROC SURVEYSELECT for 
this example will look as follows:

              Number
        b      Hits     x_i
        1       2       0.5
        1       2       0.4
        2       1       0.4
        2       1       0.6
        2       2       0.2
        3       1       0.5
        3       1       0.4
        3       2       0.2



275Jackknife and Bootstrap Methods

Therefore, the additional need to output each observation in the dataset 
resample numberhits times in dataset restar. The data from restar 
is what would then be used in order to calculate the resampled statistic of 
interest. This approach is slightly more inefficient than the straight 
 generation of conditional multinomial counts but may be somewhat more 
straightforward for the novice user. The multinomial approach is what 
would be recommended if we were carrying out the bootstrap method 
within PROC IML.

As an alternative to outputting the dataset B number of times in the 
input dataset we can use SAS macros, which will carry out the same task 
as before albeit somewhat slower. Note however macros tend to be more 
efficient in terms of space requirements. You do not need to be an expert 
in macro programming in order to modify your own programs. The same 
basic macro language concepts will be used throughout the book without 
too much modification. We refer the reader to SAS® 9.3 Macro Language 
(SAS Institute Inc., 2011) Reference for further details. From our point of 
view a macro processor basically simplifies repetitive data entry and data 
manipulation tasks. The macro facility makes it possible to define complex 
input and output “subroutines.” However with respect to bootstrapping 
we need to know only a few basic concepts:

1. All macros have a user-defined macro name, a beginning and an 
end.

2. Variables can be passed to macros upon the macro being called.

3. It is possible to repeat a data step over and over again via looping 
within a macro.

4. Macro variables can be passed to data steps and certain PROCs.

The key macro statements that we will use in the bootstrapping program 
below and throughout the book consist of the following:

1. %macro multiwt(brep); The beginning of the macro is defined by 
the %macro statement. We have chosen to name the macro multiwt 
and pass it the variable named brep, which represents the number of 
bootstrap replications that we have chosen. For this example the 
number of bootstrap replications =B 3.

2. %do bsim=1 %to &brep; The beginning of the macro do loop is 
given by the %do command. The macro variable &brep is given at 
the macro call. The variable bsim is the looping index variable.

3. b=&bsim; The macro variable &bsim is passed to the data step in 
order to indicate the current bootstrap resample. An ampersand 
indicates to the compiler that bsim is a macro variable.

4. %end; The %end closes the macro do loop.
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5. %mend; The %mend command signifies the end of the macro mul-
tiwt.

6. %multiwt(3); The command %multiwt(3) is the macro call which 
passes the value of 3 to the macro variable brep.

Based on these definitions we developed a macro version of the bootstrap 
program contained earlier in this chapter. In addition, we “automatically” 
determine the value for the sample size n in this program via the NOBS com-
mand. The macro variable brep is used to represent the number of bootstrap 
replications B. All that has basically changed as compared to the previous 
code is that we are generating the c’s one macro iteration at a time. Later on 
we will illustrate what additional calculations will be carried out within the 
macro multiwt and what calculations will be carried out outside the scope of 
the macro.

/* SAS PROGRAM 11.3 */
data original;
input x_i @@;
cards;
0.5 0.4 0.6 0.2;

data sampsize;
 set original nobs=nobs;  /*automatically obtain the sample 
size*/
 n=nobs;

%macro multiwt(brep);
%do bsim=1 %to &brep;

data resample;
set sampsize;
retain sumc i;   /*need to add the previous
            count to the total */
b=&bsim;
if _n_=1 then do;
 sumc=0;
 i=1;
end;
p=1/(n-i+1);  /*p is the probability of a "success"*/

if _n_<n then do;
if n>sumc then c_i=ranbin(0,n-sumc,p); /*generate the binomial variate*/
 else c_i=0;
 sumc=sumc+c_i;
end;
i=i+1;
if _n_=n then c_i=n-sumc;

proc append data=resample out=total;
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%end;
%mend;
%multiwt(3);

proc print data=total;
var b c_i x_i;

The same program may be rewritten using PROC SURVEYSELECT. Note 
that we had to create a variable called dummy in order to automatically input 
the sample size into PROC SURVEYSELECT. We also no longer have the abil-
ity to weight observations. As noted earlier this may be slightly more ineffi-
cient than the previous code.

/* SAS PROGRAM 11.4 */
options ls=65;
data original;
input x_i @@;
dummy=1;  /*need a dummy variable for surveyselect*/
cards;
0.5 0.4 0.6 0.2
;

data sampsize;
set original nobs=nobs;
_nsize_=nobs;   /*control variable for surveyselect*/
if _n_=1 then output;

%macro multiwt(brep);

%do bsim=1 %to &brep;

proc surveyselect data=original  noprint
method=urs sampsize=sampsize out=resample;
strata dummy;

data restar;set resample;
b=&bsim;
do ii=1 to numberhits;
output;
end;

proc append data=restar out=total;

%end;
%mend;
%multiwt(3);

proc print;
var b  x_i;

Oftentimes for simple univariate samples it is much more efficient in 
terms of storage issues to use PROC IML in order to carry out the bootstrap 
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resampling methodology. From SAS/IML User’s Guide we have the following 
description: “(SAS/IML) is a multilevel, interactive programming language 
with dynamic capabilities. You can use commands to tune in to the finest 
detail or to reach out to grand operations that can process thousands of val-
ues.” With respect to bootstrap methods, PROC IML is very useful through 
the efficient use of its array structure. We can use IML in conjunction with 
other PROCs, macros, or as a stand-alone programming language. Carrying 
out the multiwt macro from above in similar fashion using PROC IML con-
sists of the following code.

/* SAS PROGRAM 11.5 */
data original;
input x_i @@;
cards;
0.5 0.4 0.6 0.2;

proc iml;
use original;
read all into data;

/*Create a n by 1 vector of data original
called data*/

n=nrow(data); /*Calculate the sample size*/
bootdata=1:n; /*Array to hold one bootstrap resample*/

brep=3;        /*Set the number of bootstrap resamples*/
do i=1 to brep;
do j=1 to n;
 index=int(ranuni(0)*n)+1;
 bootdata[j]=data[index];
end;
print i bootdata;
end;

quit;

/*********Listing File******************/
I  BOOTDATA
1     0.5   0.4   0.5   0.5
I  BOOTDATA
2     0.4   0.5   0.4   0.5
I  BOOTDATA
3     0.6   0.5   0.4   0.2

The USE and READ statements simply retrieve SAS datasets and import 
them into PROC IML. Alternatively, data may be entered directly in PROC 
IML with a statement such as

data={0.5, 0.4, 0.6, 0.2};
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There are infinitely many possibilities with respect to utilizing this 
basic IML code. We may want to carry out some calculations within IML 
and/or outside IML. We will modify the code below for specific cases 
throughout the book. The main concept is the generation of a random 
indexing function labeled index in the IML code. Basically we are gener-
ating a random integer from 1 to n. This allows us to easily resample from 
the data original using a simple array structure. We see the results for 
three successive bootstrap resamples with =∗x1 {0.5,0.4,0.5,0.5}, 

=∗x2 {0.4,0.5,0.5,0.5}, and =∗x3 {0.6,0.5,0.4,0.2}. The only real disadvantage 
of utilizing PROC IML is that it requires an additional SAS programming 
skill set.

11.10 Bootstrap Confidence Intervals

Recall from the previous section that the goal in confidence interval estima-
tion is to find λ1 and λ2 such that Xλ < θ < λ = − αTP( ( ; ) )  11 2  given X θT( ; )  
is monotone in θ. In terms of statistical functions we can write 

�( ) ( )θ = θ − θXT t F t F( ; ) ; ; , e.g., −X E X( ), where we are essentially centering the 

statistic of interest about the parameter of interest to form a pivot. If the dis-

tribution function for ( )θ;t F�  is known we could find a αt  such that 

( ) ( )θ − θ ≤ = αα( ; ; ) .P t F t F t�  Then a one-sided confidence interval for )( θt F ;  is 

( ( )−∞ θ − α, ;t F t� ). In the nonparametric bootstrap setting we do not assume a 

form for the distribution function of ( )θ;t F� . In this case we approximate the 

confidence interval machinery by replacing ( ) ( )θ − θ; ;t F t F�  with the bootstrap 

approximation ( ) ( )θ − θˆ ; ;*t F t F�  and αt  with αt*  estimated from bootstrap resa-

mpling. The pivotal one-sided interval is then ( )−∞ θ − α( , ; )*t F t� , where αt*  is the 

αth quantile of ( ) ( )θ − θˆ ; ;*t F t F�  obtained from B bootstrap resamples. As 

shown in Shao and Tu (1995) we then have

 �; ; 1 O .* 1/2( )( ) ( )( )θ − > θ = − α +α
−P t F t t F n

The result can be proven via an Edgeworth expansion technique. Note that 
the nuisance parameter about scale is “built in” to the bootstrap resampling 
process. The two-sided × − α100 (1 ) confidence interval becomes 

( ) ( )θ − θ −−α α( ; , ; )1 /2
*

/2
*t F t t F t�� .

Returning to our coefficient of variation example with α = 0.10 we arrive at

 = − = −α −αt t71.6 114.6 and 146.3 114.6/2
*

1 /2
*
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such that the two-sided confidence interval is (114.6–(146.3–114.6), 114.6–
(71.6–114.6)) = (82.9, 157.6). For moderate to large sample sizes this approxima-
tion works well. Also, unlike traditional confidence intervals we are not 
constrained that the interval is symmetric about the test statistic of interest. 
Improvements and modifications can be made to this approach based on 
various additional approximations that we will touch on. Under symmetry 

assumptions regarding the sampling distribution of ( )θ;t F� , which hold approx-

imately when we can assume that �( )θt F ;  has an asymptotic normal distribu-
tion, we can simplify the calculations above to what is known as the 

percentile confidence interval and given as ( α −αb b, /2
*

1 /2
* ), where αb*  is the αth 

quantile from the resampling distribution for )( θt F̂ ;* . The percentile interval 

is probably the most used technique in general practice and given as (71.6, 
146.3) for our coefficient of variation example.

The general lemma around percentile intervals is as follows. Suppose 

( ) ( )θ − θ

σ
→

; ;   

ˆ

t F t F
T

n

d�
 and 

( ) ( )θ − θ

σ
→

  ˆ ; ;

ˆ

*

*

t F t F
T

n

d�
, where �( )( )θ = σVar t F n; . Then 

the random variable T does not need to follow a normal distribution, but 

does need to be symmetric. The percentile interval is then asymptotically 

correct at level − α1 . As a general rule if ( )θ;t F�  has an asymptotic normal 
distribution then bootstrap methods fit the general lemma and will be cor-
rect in the asymptotic sense.

Similar to jackknife methods bootstrap methods tend to work best for 
so-called smooth statistics. The “smoothness” of a statistic can be exa 

mined if we as can assume an expansion of )(t F̂  of the form 

∑)( ) )( (= + φ +
=

t F t F
n

X R
i

n

F i n
ˆ  

1

1

. One can examine the quadratic term in the 

expansion of )(t F̂ . If the quadratic term of ∑ )(φ
=

n
X

i

n

F i
1

1

 does not “dominate” 

the series typically of the order −o n( )1  the statistic is “smooth.” There is no set 

definition of smoothness. A von Mises type expansion having the form 

∑)( )()(= + − − +
=

t F t F
n

t H x X F R
i

n

i n
ˆ  

1
' ( )

1

( )  would be one expansion for which to 

examine smoothness when the derivative t ' exists. The sample mean is an 
example of a smooth statistics whereas the sample median based on a single 
order statistic is not.

Let us illustrate the bootstrap percentile confidence interval method 
using CD4 counts obtained from newborns infected with HIV, e.g., see 
Sleasman et al. (1999) for a detailed description. Suppose that we are inter-
ested in calculating the 95% percentile confidence interval for the CD4 
count data using a less standard measure, but more robust measure of 
location, say the α-trimmed mean statistic. The trimmed mean statistic is 
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defined so as to “slice off” α × 100 percent of the extreme observations from 
both tails of the empirical distribution and takes the form of Equation (11.2) 
below. For symmetric distributions this statistic has the same expectation 
as the sample mean. For asymmetric distributions the trimmed mean will 
be less influenced by observations in the tail, that is, in general its expecta-
tion will be to the right or left of that of the sample mean in a direction 
opposite that of the tail. The median is a specific case of the trimmed mean 
as α → 1/ 2 in the limit of the general statistic. One may calculate the 
trimmed mean within SAS’s PROC UNIVARIATE using the TRIMMED 
command along with its approximate 95% confidence interval under the 
assumption that the data are sampled from a symmetric population. The 
actual trimmed mean statistic is given as

 ˆ 1

2
,

1

( )∑( ) = =
−α

= +

−

t F X
n k

X
i k

n k

i   (11.2)

where X i( ) denotes the ith ordered observation, α denotes the trimming pro-
portion and = αk n[ ], and the function [.] again denotes the floor function. 
Suppose we specify for our continuing example the trimming proportion of 

α = 0.05 with a sample size of =n 44. That implies that [ ]= × =44 0.05 2 k  
observations are trimmed from each tail. Given that this trimming strategy 
seems very straightforward we need to step back and ask: what is the popu-
lation parameter that we are estimating? It is very important to have an 
understanding of what you are estimating prior to carrying out any boot-
strap estimation procedure. The α-trimmed mean statistic is an estimator of 
the population trimmed mean:

 ∫)( = =
− αα

α

−α

−

−

t F E X xdF x
F

F

( )
1

1 2
( )

( )

(1 )

1

1

,

that is, the population parameter in this instance is αE X( ), not the expected 
value of X , E X( ). For the specific case where the distribution is symmetric 
about the mean =αE X E X( ) ( ). This is not the case for asymmetric distribu-
tions. Therefore, in this case our goal is to obtain a 95% confidence interval 
for αE X( ).

Within SAS PROGRAM 11.6 corresponding to our example the CD4 count 
data from =n 44 subjects is read into data original. As an alternative to 
what is provided in PROC UNIVARIATE we can calculate the bootstrap per-
centile confidence interval nonparametrically and compare the results. Note 
that the “guts” of the sample program is the same as what we have been 
utilizing throughout for simple bootstrapping. Within the simple bootstrap 
algorithm we can calculate the trimmed mean in PROC UNIVARIATE using 
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the TRIMMED command and output the value via SAS’s ODS system to the 
dataset tr, that is, there is no real additional programming to be done other 
than to use the already built-in calculations within PROC UNIVARIATE. 
The lower and upper bootstrap percentiles are then calculated and output 
via a separate run of PROC UNIVARIATE using the command pctlpts=2.5 
97.5 pctlpre=p.

For our example dataset the trimmed mean and its standard deviation 
(of the trimmed mean) turned out to be = ±x 304.9 76.8.05  as compared to 
the sample mean = ±x 377.7 74.3. The difference between the two statis-
tics again illustrates the asymmetry in the data, and reinforces the fact 
that the built-in confidence interval procedure should probably be 
avoided. For this example the 95% semi-parametric confidence interval 
for the trimmed mean, as calculated in PROC UNIVARIATE under an 
asymmetry assumption, turned out to be (149.3, 460.6). For =B 1000 resa-
mples the indices for the percentile interval are λ = 2501  and λ = 97502 . 
Therefore, the 95% bootstrap interval would be the 250th and 9750th 

ordered resampled values, or namely ∗ ∗T F X T F Xn n( ( ( )), ( ( )))(250) (9750) . After 
B = 10000 resamples the 95% bootstrap percentile interval was calculated 
as (181.8, 466.0). Also note that the percentile interval is not constrained to 
be symmetric about the statistic x = 304.9.05 , thus making it much more 
flexible with respect to underlying assumptions. Given the moderately 
large sample size of n = 44 and the smoothness of the trimmed mean sta-
tistic we should feel fairly confident about the coverage accuracy of the 
bootstrap percentile confidence for this example. We will compare this 
interval with other more complicated bootstrap methods given later on. 
At the minimum the percentile method is useful for examining the 
assumptions of parametric or semi-parametric methods in terms of their 
validity. As noted earlier, in general the bootstrap-t method is what we 
would generally recommend. It will be described in the next section. 
Below is the basic SAS program used to carry out the trimmed mean per-
centile interval calculations for our example.

/* SAS PROGRAM 11.6*/
data original;
label x_i='CD4 counts';
input x_i @@;
cards;
1397 471 64 1571 663 1128 719 407
480 1147 362 2022 10 175 494 31
202 751 30 27 118 8 181 1432 31 18
105 23 8 70 12 504 252 0 100 4
545 226 390 230 28 5 0 176;

proc univariate trimmed=.05;
var x_i;
ods listing select trimmedmeans;
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/***********Begin Standard Resampling Algorithm*****************/
data sampsize;
 set original nobs=nobs;
 n=nobs;
do b=1 to 10000; /*output the data B times*/
 output;
end;

proc sort data=sampsize;by b;

data resample;
set sampsize;by b;
retain sumc i; /*need to add the previous
           count to the total */
if first.b then do;
 sumc=0;
 i=1;
end;
p=1/(n-i+1);  /*p is the probability of a "success"*/

if ^last.b then do;
 if n>sumc then c_i=ranbin(0,n-sumc,p); /*generate the binomial variate*/
 else c_i=0;
 sumc=sumc+c_i;
end;
i=i+1;
if last.b then c_i=n-sumc;

data main;set resample;
if c_i >0 then do;
do i=1 to c_i;
 output;
end;
end;

/*************End Standard Resampling Algorithm*****************/
/******Calculate 10000 Trimmed Means**************************/

proc univariate trimmed=.05;by b;
var x_i;
ods listing close;
ods output trimmedmeans=tr;

/******Calculate Percentile Interval**************************/

proc univariate data=tr noprint;
var mean;
output out=quantile pctlpts=2.5 97.5 pctlpre=p;

/******Print Results**************************/
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proc print data=quantile;
title '95% Bootstrap Percentile Confidence Interval';

The R code is as follows:

> data<-c(1397, 471, 64, 1571, 663, 1128, 719, 407,
+         480, 1147, 362, 2022,  10, 175,  494, 31,
+         202, 751, 30, 27, 118, 8, 181, 1432, 31, 18,
+         105, 23, 8, 70, 12, 504, 252, 0, 100,  4,
+         545, 226, 390, 230, 28, 5,  0, 176)
> data_sort<-sort(data)
> resamples <- lapply(1:1000, function(i)
+     sample(data, replace = T))
> each_mean<-lapply(1:1000, function(i)
+     mean(resamples[[i]]))
> vector<-c()
> for (i in 1:1000){
+     vector<-c(vector,each_mean[[i]])
+     i<-i+1
+ }
> quantile(vector,c(0.025,0.975))
    2.5%    97.5%
243.0193 530.7216

11.11  Use of the Edgeworth Expansion to Illustrate the 

Accuracy of Bootstrap Intervals

We will apply the Edgeworth expansion technique (Hall, 1992) to illustrate 
the accuracy of the coverage probabilities of bootstrap confidence intervals. 
The Edgeworth expansion is a series that approximates a probability 
distribution in terms of its cumulants. The rationale for using the Edgeworth 
expansion over standard asymptotic normal methods is that it provides 
more precise statements about the error terms pertaining to the bootstrap 
approximations.

The version of the classic Edgeworth expansion for an approximation to 

the distribution function for �( )θ;t F  is given as

 ( ) ( ) ( ) ( ) ( ) ( )= Φ − φ γ + γ + γ⎡
⎣⎢

⎤
⎦⎥

+( )θ
−1

6

1

24

1

72
( )

; 1 2 2 3 1
2

5
1F x x x H x H x H x o nt F� ,

where )(Φ x  and )(φ x  denote the standard normal cdf and pdf, 

) )( (= − = −H x x H x x x1,   32
2

3
3  and )( = − +H x x x x10 155

5 3  are Hermite poly-
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nomials, and γ 1 and γ 2 denote the skewness and kurtosis respectively. In 

general, )( = − −H x e
d
dx

er
r x

r

r
x( 1)

2 2

 and additional series terms can be added to 

improve the degree of accuracy of the approximation.
A classic example for the Edgeworth approximation is as follows. Let iid 

observations ,  , ,  ~ (0,1)1 2 …X X X Nn  and let ∑=
=

V X
i

n

i

1

2; then it is well known 

that χn~ 2 . Asymptotically we have that = −
T

V n
n

AN
2

~  (0,1) such that we 

have that the approximate distribution function for T is ) )( (≅ ΦF xT x , that is, 
the first term in the Edgeworth expansion above. More precisely we know 

that in this example γ =
n

2 2
1  and γ =

n
 

12
2 . Hence, a more precise approxi-

mation for the distribution function for T is given as

 ( ) ( )( ) ( ) ( )≅ Φ − φ − + − + − +
⎡

⎣
⎢

⎤

⎦
⎥F x x

n
x x x x x xT  x

2

3
( 1)

1

2n
3

1

9n
10 152 3 5 3

with error of order −o n( 1).
To prove the bootstrap consistency of our bootstrap pivotal quantity 

( ) ( )θ − θˆ ; ;*t F t F�  we start by examining the pivotal quantity �; ;( ) ( )θ − θt F t F . Equiv-

alently, we can use the pivotal quantity �( ; ; )( ) ( )θ − θn t F t F , which aids in the 

technical components of the proofs. Let �,  , ,   |F ( ; ; )1 2 ( )( ) ( )= … = θ − θK K X X X n t F t Fn . 

Denote the distribution function of K as )( = <G k P K k FK F ( | )| . Denote the boot-

strap replication of K  as    , ,   ,  |F ˆ ; ;*
1
*

2
* * *K K X X X n t F t Fn

�( )( ) ( )( )= … = θ − θ  with distribu-

tion function )( = <G k Pr K k FK F ( | ˆ)
|ˆ

*
* . If the bootstrap confidence works well 

in a given scenario then )(G kK F|ˆ*  should be “close” to )(G kK F| .

In order to prove the consistency of the bootstrap distribution function 
estimator we need to show that

 )( ) )( (− > ε → → ∞P G k G k nK F K F| | 0,
|ˆ |* .

For specific cases this proof can be straightforward. However the general 
result is technically challenging. Specific cases often require a key piece of 
knowledge about the given problem to complete the proof. For example, take 

)()( θ = = θt F E X F; | . Then � )( θ =t F x;  and ∑ ∑)( θ = =
= =

t F C X x
i

n

i i

i

n

i
ˆ ;  *

1 1

*, where the Ci’s 

can be considered multinomial random variables, that is, the data are fixed 
and the resampling counts follow a multinomial distribution. The classic 
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proof of bootstrap consistency in this case utilizes Mallow’s distance. If we 
have two distribution functions with X H~   and Y G~  then Mallow’s dis-

tance measure is denoted as H G
inf

E X Y X Y
xy

r r( )( )ρ =
τ

− = ρ, || || ( , )
1/

, where 

τxy  is the set of all possible joint distribution functions for X  and Y whose 

marginal distributions are H  and G, respectively, where x  is the Euclidean 
norm in p-dimensional real space (Mallows, 1972).

In the bootstrap setting we apply the known Mallow’s distance res  ults 

ˆ , 0,
.( )ρ →F F

a s
 , ( , ) ,  , , ,

0 0 0

2∑ ∑ ∑ ( ) ( )ρ
⎛

⎝

⎜
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⎞

⎠
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e.g., see Shao and Tu (1995). For example, using the notation from above let 

( )( )( ) ( )= … = θ − θ = − θ  ,  , ,   |F ; ; ( )1 2K K X X X n t F t F n Xn
�  and
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1
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2
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 in combination with the known Mallow’s distance results out-

lined above. Hence, )(G kK F|ˆ*  is ρ-consistent for this example, which implies it 
can be used to develop approximate confidence that converge to the appro-

priate α level for large samples. The consistency of )(G kK F|ˆ*  can be shown 
oftentimes via the Berry–Esse’en inequality.

In the general case, why does the simple percentile interval generate a 

valid confidence interval with coverage that converges to 100 )(× − α1 % as 

→ ∞n ? As before let )(θ = θt F  ˆ ˆ ;* *  and ( )θ = θ  ;t F� . For the more general case 
we will employ Edgeworth expansion techniques, which provide less pre-
cise statements about the large sample coverage of bootstrap percentile 
intervals.

As in the specific case using Mallow’s distance the goal is prove a large 

sample equivalence between θ − θ ≤Pr x F(ˆ | ) and θ − θ ≤Pr x F(ˆ ˆ | ˆ)* . In this 
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regard let us first examine the Edgeworth expansions of each of these quan-
tities such that we have

 �( )θ − θ ≤ = Φ
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where q1 and q2 are a rearrangement of the Hi’s from our introduction of the 

Edgeworth expansion above and r* denotes the remainder term. Then we have
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Hence, we have that

 ( ) ( )θ − θ ≤ − θ − θ ≤ = −P x F P x F O n
x

psup ˆ | ˆ ˆ | ˆ ( )* 1 ,

where )(θ − θ ≤P x Fˆ ˆ | ˆ*  is a random quantity. It is important to note that just 
because the asymptotic theory is mathematically correct that there is no 
guarantee that the finite sample coverage will be accurate for these types of 
intervals. An alternative approach to the Edgeworth expansion for these 
problems is to use Cornish–Fisher expansions (Cornish and Fisher, 1937).

The general lemma for the percentile method is as follows. Suppose 

θ − θ
σ

→ T
dˆ

ˆ
   and 

θ − θ
σ

→ T
dˆ ˆ

ˆ
 

*

*
. If we assume σ → σˆ  and σ → σˆ ˆ*  and T is distrib-

uted according to a symmetric distribution function then the percentile con-

fidence interval ( α −αb b, /2
*

1 /2
* ) described above is asymptotically correct at 

level − α1 . Note that if T is asymptotically normal then we know that the 
distribution of T will be symmetric asymptotically. Hence, as a rule of 
thumb asymptotically normally distributed T’s will provide valid large 
sample percentile bootstrap confidence intervals for the statistical func-

tional )( θt F ; .

Warning. A common mistake of practitioners is to start with the statistic 
and not consider exactly what the function it links to is. Hence, they are 
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interpreting their confidence intervals about the wrong parameter, e.g., Sup-

pose  )( θ =t F E X Fn; ( | )( ) . Then the T of interest is not the sample maximum 

X n( ) but is E X Fn( | ˆ)( ) , which is a weighted average of a linear combination of 
order statistics. We can refine the percentile method to have better accuracy 
in finite samples using the approaches below.

11.12 Bootstrap-t Percentile Intervals

The bootstrap-t percentile interval is a slight modification of the percentile 
method used in order to get better finite sample coverage probabilities. The 

key idea is to add a correction by replacing the quantity ( ) ( )θ − θ  ˆ ; ;*t F t F�  with 

( )( ) ( )σ
σ

θ − θˆ ; ;( ˆ )
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t F t Ft F

t F
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2
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* , where )( θt F̂ ;*  is the average of the 

bootstrap resampled values. If an analytical expression for σ ( )θ;
2

t F�  is unavail-

able or not easily calculated a double bootstrap approach is necessary, e.g., see 

SAS PROGRAM 11.9. The heuristic idea is that percentile intervals tend to 

suffer undercoverage in small samples; the scalar correction 
σ
σ

t F

t F

( ˆ )

( ˆ )*

 provides 

slightly wider intervals and hence better coverage probabilities. Similar to the 

percentile interval proofs let )(θ = θt F  ˆ ˆ ;* *  and ( )θ = θ  ;t F� . Then one can use an 
Edgeworth expansion technique to show that
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as compared to −O np( )1/2  for the percentile interval. There is no guarantee 
that the bootstrap-t percentile approach will work better than the percentile 
method, but it has been our experience that it is worth the additional effort 
in the small sample setting. The tricky issue here is that there are oftentimes 

not closed form solutions for the correction factor 
σ
σ

t F

t F

( ˆ )

( ˆ )*

. In this case a double 

bootstrap method resampling method is used to approximate 
σ
σ

t F

t F

( ˆ )

( ˆ )*

 with 
σ
σ

t F

t F

( ˆ )

( ˆ )

*

**

, where σt F 
( ˆ )**  is obtained from subsamples of the original resamples.
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Example. Let us revisit our example from the percentile interval section 
involving the trimmed mean αx . As you recall we were interested in mea-
sures of location for CD4 count data. Previously we calculated 95% bootstrap 
percentile confidence intervals for E X( ).05  and E X( ).25  based upon the trimmed 
means −T F X xn( ( )) .05 and −T F X xn( ( )) .25, respectively. In order to recalculate 
these intervals for the same dataset using the bootstrap-t method, as com-
pared to the percentile interval approach, we need some additional program-
ming steps. These are given in the example SAS PROGRAM 11.7.

The first step in modifying the existing programs is to create a dummy 
variable used to merge bootstrap quantities labeled dummy. For this exam-
ple dummy = 1 for every data and resample value. To calculate the trimmed 
mean and its standard deviation we employed the SAS ODS system with the 
command ods output trimmedmeans=trbase in conjunction with PROC 
UNIVARIATE. This allows us to output the trimmed mean and standard 
deviation to the dataset trbase within our sample program. It is important to 
note that the standard deviation estimate is labeled as the standard error in 
SAS, that is, what is calculated is the standard error estimate for X and the 

standard deviation for the statistic αX .
After outputting the trimmed mean and its standard deviation from PROC 

UNIVARIATE we reassigned them new variable names within the dataset 
rename. This was necessary so that values were not overwritten when 
merged with the bootstrap resampled trimmed means and standard devia-
tions of the same name. As with the original trimmed mean calculation the 
bootstrap resampled statistics were also calculated using PROC UNIVARI-
ATE and output using ODS to dataset combine. In addition, within dataset 

combine we calculated the ( )( ) ( )σ
σ

θ − θˆ ; ;
( ˆ )

( ˆ )

*

*

t F t Ft F

t F

� ’s needed in order to cal-

culate the interval. The bootstrap-t interval based on the ordered  

( )( ) ( )σ
σ

θ − θˆ ; ;
( ˆ )

( ˆ )

*

*

t F t Ft F

t F

� ’s was then processed via PROC UNIVARIATE. We also 

recalculated the percentile interval within this program for comparison. The 
intervals were distinguished by the percentile prefixes pp and pt, for the 
percentile and bootstrap-t methods, respectively.

For our example run B = 10000 resamples were used. The 95% percentile 
interval turned out to be (179.9, 471.1) as compared to the previous run 
given in the earlier section of (181.8, 466.0). This gives you an idea of how 
much the intervals might change from successive runs, even with B = 10000 
resamples. The bootstrap-t 95% confidence interval turned out to be 

⋅ ⋅ =∗ ∗S S( ( ), ( )) (170.5, 537.1)(250) (9750) . Recall also that the semi-parametric interval 
built in to SAS, calculated under the assumption of symmetry, yielded the 
interval (149.3, 460.6). Given the apparent skewness in our example CD4 
count dataset the bootstrap-t interval may be shown to be theoretically 
preferable to the semi-parametric interval calculated by SAS in this 
instance. The bootstrap-t interval for this example is reflective of the skew-
ness of the original dataset, and is wider than the percentile method since 
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it was scaled more appropriately. Also, notice how the bootstrap-t interval 
is shifted slightly to the right as compared to the semi-parametric interval, 
again due to the asymmetry of the original dataset.

Note that the symmetry assumption may be relaxed somewhat if the trim-
ming proportion is increased. Let us examine the effect of the choice of trim-
ming proportion as well, e.g., say we wished to use a more robust measure of 
location. We can rerun the example with a trimming proportion of α = .25, as 
compared to α = .05 above, that is, in this case we will eliminate 25% of the 
extreme observations from either tail of the distribution prior to estimating 
the mean. For our CD4 count data = ±x 210.1 61.5.25  as compared to 

= ±x 304.9 76.8.05 , and = ±x 377.7 74.3. The confidence intervals in turn for x.25 
were (108.0, 351.1), (99.3, 397.2), and (82.3, 338.0) for the percentile, bootstrap-t, 
and semi-parametric method, respectively. The intervals are not too dissimi-
lar. In general, the more trimming that takes place the more we can relax the 
assumption of an underlying symmetrical distribution.

/* SAS PROGRAM 11.7 */
data original;
label x_i='CD4 counts';
input x_i @@;
 dummy=1; /*define a dummy variable to merge on*/
cards;

1397 471 64 1571 663 1128 719 407
480 1147 362 2022  10 175  494   31
202 751 30 27 118 8 181 1432 31 18
105 23 8 70 12 504 252 0 100  4
545 226 390 230 28 5  0 176
;

proc univariate trimmed=.05;by dummy;
var x_i;
ods listing select trimmedmeans;
ods output trimmedmeans=trbase; /*output trimmed mean and standard deviation*/

data rename;set trbase;     /*re-label the variables*/
keep dummy tbase stdbase;
tbase=mean;
stdbase=stdmean;

/***********Begin Standard Resampling Algorithm*****************/

data sampsize;        
 set original nobs=nobs;
 n=nobs;
do b=1 to 10000;  /*output the data B times*/
 output;
end;

proc sort data=sampsize;by b;

data resample;



291Jackknife and Bootstrap Methods

set sampsize;by b;
retain sumc i;   /*need to add the previous
            count to the total */
if first.b then do;
 sumc=0;
 i=1;
end;

p=1/(n-i+1);  /*p is the probability of a "success"*/

if ^last.b then do;
 if n>sumc then c_i=ranbin(0,n-sumc,p); /*generate the binomial variate*/
 else c_i=0;
 sumc=sumc+c_i;
end;
i=i+1;
if last.b then c_i=n-sumc;

data main;set resample;
if c_i >0 then do;
do i=1 to c_i;
 output;
end;
end;

/*************End Standard Resampling Algorithm*****************/
proc univariate trimmed=.05;by dummy b;
var x_i;
ods output trimmedmeans=tr;

data combine;merge tr rename;by dummy;
s=tbase-stdbase*(mean-tbase)/stdmean;

proc gplot data=combine;
plot stdmean*mean;

proc gchart;
vbar s;

proc univariate data=combine noprint;
var mean s;
output out=quantile pctlpts=2.5 97.5 pctlpre=pp pt;

proc print data= quantile;
title '95% Bootstrap Percentile and t Confidence Intervals';

11.13 Further Refinement of Bootstrap Confidence Intervals

The two key features that tend to drive bootstrap confidence interval accu-
racy in finite samples are symmetry and scale adjustments, particularly as 
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they pertain to the percentile interval. The bootstrap-t interval provides a 
scale adjustment, but does not overcome potential asymmetry of the test sta-
tistic distribution in finite samples. In general, if some monotone function 
exists such that

 �( )( )( ) ( )φ θ − φ θ < = ψ; ( ; ) ( )P t F t F x x

holds for all possible F’s where ψ x( ) is a continuous and symmetric function, 

that is )(ψ = − ψ −x x1 ( ) is assumed continuous, then the lower bound = 

( )( )( )φ φ θ −−
α;1

/2t F z� , where = ψα
−z /2

1(α / 2) and )(φ x  is a monotone increasing 

transformation. As a simple example let )(φ =x x, ( )θ =;t F X� , )( θ = θt F ;  with 

)(ψ = Φ σx nx( / ), where σ is a scale parameter. So, for the relationship above 
to hold the big assumption is symmetry. The bootstrap percentile interval 
version of this framework is

 )( )( ) )( (φ θ − φ θ < = ψP t F t F x xˆ ; ( ˆ ; ) ( )* * ,

where the key assumption is that )(φ θt F( ˆ ; )  is symmetric given large samples, 
such that the percentile interval holds approximately to a first-order approx-
imation.

Using this framework second-order finite sample corrections can be devel-
oped. Now consider

 ( )( )( ) ( )( )φ θ − φ θ + < = ψ; ; ( )0P t F t F z x x� ,

where z   0  is a constant. In order to illustrate the concept we start with a 
nonbootstrap example around Fisher’s z-transformation, e.g., see Fisher 

(1921). In this case )(φ = −x n xtanh ( )1 , )( θ =t F rˆ ; , and )(φ θ = ρt F( ; ) , where r is 
Pearson’s sample correlation and ρ is the population correlation. Then 

)( − ρ− −n rtanh ( ) tanh ( )1 1  has a more symmetric variance-stabilized distribu-

tion than − ρn r( ). However, in finite samples tanh ( ) tanh ( ) / 21 1( )− ρ −ρ− −n r n 

is an even better approximation to that of )( − ρ− −n rtanh ( ) tanh ( )1 1  in general 
if φ, ρ, and z0 are known, e.g., see Konish (1978). Then the lower bound for the 
confidence interval for ρ in the case can be written in the form 

( )( )( )φ φ θ − +−
α;  1

/2 0t F z z� .

The bootstrap variant of this approach, termed the bootstrap bias-corrected 
approach, starts with a calibration step where we write
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 )( ) )( () )( (φ θ − φ θ + < = ψP t F t F z x xˆ ; ˆ ; ( )*
0

* ,

where )( )( )(= ψ θ−z K t F̂ ;0
1 * *  and )( θK t F( ˆ ; )* *  is the distribution function of 

)( ) )( (φ θ − φ θt F t Fˆ ; ( ˆ ; )* . If the distribution of )( θt F̂ ;*  is symmetric about )(φ θt F  ( ˆ ; )  

then =z 00 , and we have the same result as the standard percentile interval. 
Calculating z0 in practice is difficult since in general we do not know the 

form of ψ(x). In applications we can consider approximating ψ(x) with )(Φ x , 
the standard normal distribution function. Then the estimator 

)( )( )(= Φ θ−z K t Fˆ ˆ ;0
1 * * . If the distribution of )( θt F̂ ;*  is symmetric about )(φ θt F  ( ˆ ; )  

then ≈ẑ 00 , that is, )( )( θ ≈K t F̂ ; 1/ 2* * . The confidence bounds for θt F( ; ) then 
become

 = Φ + Φ α⎡⎣ ⎤⎦( )θ
− −F zt Flower ˆ (2 ˆ ( /2))*
ˆ ;

1
0

1
* ,

 = Φ + Φ − α⎡⎣ ⎤⎦( )θ
− −F zt Fupper ˆ (2 ˆ (1 /2))*
ˆ ;

1
0

1
* .

The example below is to calculate the 95% confidence interval for Tukey’s 
trimean:

/* SAS PROGRAM 11.8 */
*********************************;
** Bias Corrected Percentile Method****;
*********************************;
* The program below estimates the trimean and its confidence interval;

data counts;
label pl_ct='platelet count';
input pl_ct @@;
cards;
1397 471 64  1571 663 1128 719 407
480 1147 362 2022 10  175 494 31
202 751 30  27  118 8 181 1432 31  18
105 23  8 70  12  504 252 0 100 4
545 226 390 230 28  5 0 176
;

proc iml;
 use counts;
 read all into data;

 *reset print;

 n=nrow(data);
 brep=5000;        * Number of bootstrap replications;
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total=n*brep;
bootdata=j(total,3, 0);

* Create bootstrap replications;
do i=1 to total;
index=int(ranuni(0)*n)+1;
bootdata[i,1]=data[index]; bootdata[i,2]=int((i-1)/n)+1;  * This is 
the number of replications;
end;

call sortndx(ndx, bootdata, {2, 1});
        * Sort data by replication number and values;
bootdata=bootdata[ndx,];

do i=1 to total;
bootdata[i,3]=mod(i,n) + (mod(i,n)=0)*n;
        * This is the order of each replicated data;
end;

* Find trimmed mean;

subset=bootdata[loc(bootdata[,3]=int(n/4)+1|bootdata[,3]=int(n/2)+1
         |bootdata[,3]=int(3*n/4)+1),1];
matrix1=I(brep);
matrix2={0.25 0.5 0.25};
matrix3=matrix1 @ matrix2;
tukey = matrix3 * subset;

call sort(tukey, {1});
tukey=tukey;

* Find trimmed mean for the original data;
call sortndx(ndx, data, {1});
data=data[ndx,;
trimmean=1/4 * data[int(n/4)+1,1]+1/2 * data[int(n/2)+1,1]
 + 1/4 * data[int(n*3/4)+1,1]; 

*Calculate b;
subset = tukey[loc(tukey[,1] <= trimmean),];
p=nrow(subset)/brep;
b=quantile('NORMAL', p); * b=z_0;

* Calculate confidence interval;
alpha=0.05;
z_alpha_2 = quantile('NORMAL', alpha/2);
Q_l=int(brep*probnorm(2*b + z_alpha_2));
Q_u=int(brep*probnorm(2*b - z_alpha_2));

if Q_l=0 then Lower=0;
 else Lower=tukey[Q_l];
 Upper=tukey[Q_u];

CI=trimmean||p||b||Lower||Upper;
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colname={'trimmean' 'P' 'b' 'lower' 'upper'};
print CI[colname=colname];

quit;

The results of SAS program 11.8 are given in Table 11.1.

If the statistic )( θt F̂ ;*  cannot be estimated directly, a double-bootstrap strat-
egy may be needed.

The corresponding macro version of the SAS program is:

/* SAS PROGRAM 11.9 */
data original;
label x_i='CD4 counts';
input x_i @@;
 dummy=1; /*define a dummy variable to merge on*/
cards;
1397 471 64 1571 663 1128 719 407
480 1147 362 2022  10 175  494   31
202 751 30 27 118 8 181 1432 31 18
105 23 8 70 12 504 252 0 100  4
545 226 390 230 28 5  0 176
;

ods listing close;

proc univariate trimmed=.05;by dummy;
var x_i;
ods listing select trimmedmeans;
ods output trimmedmeans=trbase;

data rename;set trbase;
keep dummy tbase ;
tbase=mean;

ods printer ps file='trim_BC.ps';

TABLE 11.1 

The Estimated Confidence Interval for the Population Trimean Based on 5000 
Replications

Trimean P b lower upper

223.5 0.4388 –0.154012 112.25 386.75
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data sampsize;
 set original nobs=nobs;
 n=nobs;
do b=1 to 10000;  /*output the data B times*/
 output;
end;

proc sort data=sampsize;by b;

data resample;
set sampsize;by b;
retain sumc i;   /*need to add the previous
            count to the total */
if first.b then do;
 sumc=0;
 i=1;
end;
p=1/(n-i+1);  /*p is the probability of a "success"*/

if ^last.b then do;
 if n>sumc then c_i=ranbin(0,n-sumc,p); /*generate the binomial variate*/
 else c_i=0;
 sumc=sumc+c_i;
end;
i=i+1;
if last.b then c_i=n-sumc;

data main;set resample;
if c_i >0 then do;
do i=1 to c_i;
 output;
end;
end;

proc univariate trimmed=.05;by dummy b;
var x_i;
ods output trimmedmeans=tr;

data combine;merge tr rename;by dummy;
ind=0;
if mean<tbase then ind=1;

proc means mean noprint;
var ind;
output out=bias mean=phat;

%macro bc;

data percents;set bias;
alpha=0.05;
z0=probit(phat);
lower=100*probnorm(2*z0+probit(alpha/2));
upper=100*probnorm(2*z0+probit(1-alpha/2));  /*need percentiles*/
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call symput('lll',lower);
call symput('uuu',upper);

proc univariate noprint pctldef=4 data=combine;
var mean;
output out=quantile pctlpts= &lll &uuu pctlpre=p;

%mend;
%bc;

proc print;

ods listing;

The 95% bias corrected confidence interval is (179.92, 471.49).
The next extension for finite samples involves two correction factors and is 

known as the bias-corrected and accelerated (BCa) interval; whereas above 

bias refers to the first-order term in the bias of )( )( θE t F̂ ; , in this case we write 
our corrected distribution function as

 P
t F t F

a t F
z x x

( ) ( )
( )
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+ <
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where a is what is known as the acceleration constant, which adjusts for 

finite sample skewness for the distribution of )( ) )( (φ θ − φ θt F t Fˆ ; ( ˆ ; )* . In this 

case we again approximate z0 and a such that are approximate upper and 
lower bounds become
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general, the bias-corrected and bias-accelerated intervals may not perform as 
expected due to the fact that we are estimating z0 and a.
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/* SAS PROGRAM 11.10*/
*********************************;
** Bias-Corrected and Accelerated Method****;
*********************************;
* The program below estimates the trimean and its confidence  
interval;

data counts;
 label pl_ct='platelet count';
 input pl_ct @@;
 cards;
 1397 471 64  1571 663 1128 719 407
 480 1147 362 2022 10  175 494 31
 202 751 30  27  118 8 181 1432 31  18
 105 23  8 70  12  504 252 0 100 4
 545 226 390 230 28  5 0 176
 ;
/*
 data counts;
 label pl_ct='platelet count';
 input pl_ct @@;
 cards;
 230 222 179 191 103 293 316 520 143 226
 225 255 169 204  99 107 280 226 143 259
 ;
*/
proc iml;
 use counts;
 read all into data;

*reset print;

 n=nrow(data);
 brep=500;        * Number of bootstrap replications;

 total=n*brep;
 bootdata=j(total,3, 0);

* Create bootstrap replications;
 do i=1 to total;
 index=int(ranuni(0)*n)+1;
 bootdata[i,1]=data[index]; bootdata[i,2]=int((i-1)/n)+1;  *
 This is the number of replications;
end;

call sortndx(ndx, bootdata, {2, 1});
         * Sort data by replication number and values;
 bootdata=bootdata[ndx,];

do i=1 to total;
 bootdata[i,3]=mod(i,n) + (mod(i,n)=0)*n;
         * This is the order of each replicated data;
end;

* Calculate a;
call sort(data, {1});
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col=(1:n)`;
data_perm=data||col;

do i=1 to n;
 permut=data_perm[loc(data_perm[,2] ^= i),];
 col2=(1:n-1)`;
 permut=permut||col2;

 trim_perm=1/4 * permut[int((n-1)/4)+1,1] + 1/2 * 
 permut[int((n-1)/2)+1, 1]
                + 1/4 * permut[int((n-1)*3/4) +1,1];
 perm_a=perm_a//trim_perm;
end;
print perm_a;

a_vector=perm_a||col||col||col;
a_vector[,4] = a_vector[+,1]/n;
a_vector[,2] = (a_vector[,1] - a_vector[,4])##3;
a_vector[,3] =  (a_vector[,1] - a_vector[,4])##2;
a=a_vector[+,2] /6/a_vector[+,3]##1.5;                            *a;

* Find trimmed mean;
subset=bootdata[loc(bootdata[,3]=int(n/4)+1|bootdata[,3]=int(n/2)+1
                    |bootdata[,3]=int(3*n/4)+1),1];
matrix1=I(brep);
matrix2={0.25 0.5 0.25};
matrix3=matrix1 @ matrix2;
tukey = matrix3 * subset;

call sort(tukey, {1});
tukey=tukey;

* Find trimmed mean for the original data;
call sortndx(ndx, data, {1});
data=data[ndx,];
trimmean=1/4 * data[int(n/4)+1,1] + 1/2 * data[int(n/2)+1, 1]
          + 1/4 * data[int(n*3/4) +1,1];

*Calculate b;
subset = tukey[loc(tukey[,1] <= trimmean),];
p=nrow(subset)/brep;
b=fuzz(quantile('NORMAL', p)); * b=z_0;

* Calculate confidence interval;
alpha=0.05;
z_alpha_2=quantile('NORMAL', alpha/2);
Q_l=int(brep *probnorm(b + (z_alpha_2 + b)/(1 - a * (z_alpha_2 + b))));
Q_u=int(brep*probnorm(b + (- z_alpha_2 + b)/(1 - a * (- z_alpha_2 + b))));

if Q_l=0 then Lower=0;
 else Lower=tukey[Q_l];
Upper=tukey[Q_u];

CI=trimmean||p||a||b||Lower||Upper;
colname={'trimmean' 'P' 'a' 'b' 'lower' 'upper'};
 print CI[colname=colname];
quit;
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The results are shown in Table 11.2

The BCa method produces a narrower confidence interval than BC method.
A corresponding macro version of SAS PROGRAM 11.10 follows:

/* SAS PROGRAM 11.11 */
data original;
 label x_i='platelet count';
 input x_i@@;
 dummy=1;
 cards;
1397 471 64 1571 663 1128 719 407
480 1147 362 2022 10 175 494 31
202 751 30 27 118 8 181 1432 31 18
105 23 8 70 12 504 252 0 100 4
545 226 390 230 28 5 0 176
;

* The trimmed mean of the original data;
proc univariate data=original trimmed=.05;by dummy;
var x_i;
ods listing select trimmedmeans;
ods output trimmedmeans=trbase;
quit;

data rename;set trbase;
keep dummy tbase ;
tbase=mean;

ods printer ps file='trim_BC.ps';

data sampsize;
 set original nobs=nobs;
 n=nobs;
do b=1 to 10000;  /*output the data B times*/
 output;
end;

proc sort data=sampsize;by b;

*Bootstrap sampling;
data resample;
set sampsize;by b;
retain sumc i;   /*need to add the previous
                  count to the total */

TABLE 11.2 

The Estimated Confidence Interval for the Trimmed Mean Based on 5000 
Replications

Trimean P a b lower upper

223.5 0.4348 –0.011665 –0.164167 116 376.25
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if first.b then do;
 sumc=0;
 i=1;
end;
p=1/(n-i+1);  /*p is the probability of a "success"*/

if ^last.b then do;
 if n>sumc then c_i=ranbin(0,n-sumc,p); /*generate the binomial variate*/
 else c_i=0;
 sumc=sumc+c_i;
end;
i=i+1;
if last.b then c_i=n-sumc;

data main;set resample;
if c_i >0 then do;
do i=1 to c_i;
output;
end;
end;
run;

* The estimated trimmed mean of the bootstrap samples;
proc univariate data=main trimmed=.05;by dummy b;
var x_i;
ods output trimmedmeans=tr;
run;

data combine;merge tr rename;by dummy;
ind=0;
if mean<tbase then ind=1;
run;

* Calculating z0, the bias;
proc means data=combine mean noprint;
var ind;
output out=bias mean=phat;
run;

* Calculating a, the acceleration;
data temp;
 set original;
 id=_n_;
run;

%macro jackknife();
%do i=1 %to 44;
dm "log;clear;output;clear";
proc univariate data=temp trimmed=.05;by dummy;
var x_i;
where id ne &i;
ods output trimmedmeans=jack;
run;

proc append data=jack out=jackknife;



302 Statistics in the Health Sciences: Theory, Applications, and Computing

run;
%end;
%mend;
%jackknife;

proc means data=jackknife noprint;
 var mean;
 by dummy;
 output out=summary mean=mean_trimean;
run;

data jk;
 merge jackknife summary;
 by dummy;
 num=( mean_trimean - mean )**3;
 den=(  mean_trimean - mean )**2;
 keep mean mean_trimean num den;
run;

proc means data=jk;
 var num den;
 output out=summary sum=sum_num sum_den;
run;

data bias;
 merge bias summary;
 ahat=sum_num/6/sum_den**1.5;
run;

%macro bc;

data percents;set bias;
alpha=0.05;
z0=probit(phat);
lower=100*probnorm(z0 + (z0 + probit(alpha/2))
    /(1 - ahat*(z0 +probit(alpha/2) )));
upper=100*probnorm(z0 + (z0 + probit(1-alpha/2))
    /(1 - ahat*(z0 +probit(1-alpha/2) )));
/*need percentiles*/
call symput('lll',lower);
call symput('uuu',upper);

proc univariate noprint pctldef=4 data=combine;
var mean;
output out=quantile pctlpts= &lll &uuu pctlpre=p;
run;
%mend;
%bc;

proc print;
run;

ods listing;

The 95% confidence interval is (186.09, 482.38).
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The R code is as follows:

> data<-c(1397, 471, 64, 1571, 663, 1128, 719, 407,
>         480, 1147, 362, 2022,  10, 175,  494, 31,
>         202, 751, 30, 27, 118, 8, 181, 1432, 31, 18,
>         105, 23, 8, 70, 12, 504, 252, 0, 100,  4,
>         545, 226, 390, 230, 28, 5,  0, 176)
> library(boot)
> my.mean = function(x, indices) {
+     return( mean( x[indices] ) )
+ }
> time.boot = boot(data, my.mean, 5000)
> boot.ci(time.boot,type="bca")
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 5000 bootstrap replicates

CALL :
boot.ci(boot.out = time.boot, type = "bca")

Intervals :
Level       BCa
95%   (253.1, 550.7 )
Calculations and Intervals on Original Scale

11.14 Bootstrap Tilting

The direct linkage between empirical likelihood (EL) methods outlined in 
Chapter 10 and bootstrap methodologies is through a specific technique 
developed by Efron (1981) who coined the term nonparametric tilting, 
which now is referred to as bootstrap tilting. In fact one could make the 
case that bootstrap tilting is essentially one of the forerunners to 
nonparametric EL methods. As we outline the procedure for bootstrap tilt-
ing we note that this is an approach developed by Efron (1981) for hypothesis 
testing via bootstrap methodology with an eye towards improved Type I 
error control of test procedures as compared to more straightforward boot-
strap resampling schemes.

The general bootstrap tilting approach as given as follows: Suppose we 
are interested in testing θ = θH :0 0, equivalently written in terms of the 

notation of statistical functionals as ) )( (=H t F t F: 0 0  versus ) )( (>H t F t F: 0 0 , as 
opposed to confidence interval generation. The idea behind tilting is to use 
a nonparametric estimate of F0 relative to maintaining the Type I error con-

trol, that is, minimize statistical functional-based distances such as 

| )( )( )(> − αPr t F t F Hˆ |  0 0 0 | under H0 for a desired α-level such as 0.05. This 

approach implies using a form of the empirical estimator constrained under 
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H0 of the form F x w I X xn

i

n

i i∑= ≤
=

( )   { }0,

1

0, . The w i0, ’s are chosen to minimize 

the distance from =w ni 1/ , = …i n1,2,  , , under the null hypothesis con-

straint )( = θt F̂0 0 and constraints on the weights of ∑ =
=

w
i

n

i 1
1

0,  given all 

> = …w i ni 0,  1,2,  .0, . One approach for determining the weights is via the 
Kullback–Leibler distance, e.g., see Efron (1981). Other distance measures 
such as those based on entropy concepts may also be used. The weights 
obtained using the Kullback–Leibler distance-based approach are identical 
to those obtained via the EL method described in this entry. Once the w i0, ’s 
are determined the null distribution can be estimated via Monte Carlo resa-

mpling B   times from F̂0. In rare cases the null distribution may be obtained 
directly, e.g. when the parameter of interest is the population quantile given 

as ( ).1θ = −F u  The approximate bootstrap p-value estimated via Monte Carlo 

resampling is given as θ > θs B#(ˆ ' )/0
*

0 , where θ̂0
* denotes the estimator 

obtained from a bootstrap resample from F̂0. For the specific example 

∫θ = =t F xdF( )  is the mean, the weights w i0,  are chosen that minimize the 

Kullback–Leibler distance ( , ) log( )0

1

0,   0,  ∑=
=

w wD w nw
i

n

i i  subject to the con-

straints ∑ = θ
=

w x
i

n

i i

1

0, 0, ∑ =
=

w
i

n

i 1
1

0, , and all > = …w i ni 0,  1,2,  .0, . Parametric 

alternatives follow similarly to those described relative to confidence inter-

val generation given above, that is, resample from μFˆ 0
, where μ̂0 is estimated 

under H0. An interesting example of use of the bootstrap tilting approach in 
clinical trials is illustrated in Chuang and Lai (2000) relative to estimating 
confidence intervals for trials with group sequential stopping rules where a 
natural pivot does not exist. The R package tilt.boot (R package version 1.1–1.3) 
provides a straightforward approach for carrying out these calculations.
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12
Examples of Homework Questions

In this chapter we demonstrate examples of homework questions related to 
our course. In order to solve several tasks shown below, students will be 
encouraged to read additional relevant literature. It is suggested to start each 
lecture class by answering students’ inquiries regarding the previously 
assigned homework problems. In this manner, the material of the course can 
be extended. In the following sections, in certain cases, we provide com-
ments regarding selected homework questions.

12.1 Homework 1

1. Provide an example when the random sequence ξ ⎯ →⎯ ξn p , but 
ξ ⎯ →⎯ ξnot . .n a s .

2. Using Taylor’s theorem, show that t t t= +i iexp( ) cos( ) sin( ), where 

i = 1−  satisfies = −i 12 .

3. Find ii.

4. Find x x dx∫ −
∞

exp( s )sin( )
0

. (Hint: Use the rule vdu vu udv∫∫ = − .)

5. Obtain the value of the integral 
sin( )

0

t
t

dt∫
∞

.

6. Let the stopping time ( )N H  have the form ∑= ≥
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪=

N H n X Hi

i

n

( ) inf :
1

, 

where , ,....1 2X X  are iid random variables with 01E X )( > . Show that 

( ) ( )
1

EN H P N H j
j
∑ { }= ≥

=

∞

. Is the equation ∑∑= <
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪==

∞

EN H P X Hi

i

j

j

( )
11

 

correct? If not what do we require to correct this equation?

7. Download and install the R software. Try to perform simple R pro-
cedures, e.g., hist, mean, etc.
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12.2 Homework 2

1. Fisher information ɩ(.):
Let μX N~ ( ,1),  where μ is unknown. Calculate ɩ μ( ).

Let σX N~ (0, ),2  where 2σ  is unknown. Calculate ɩ σ( ).2

Let λX Exp~ ( ), where λ is unknown. Calculate ɩ λ( ).

2. Let , 1,X ii ≥  be iid with EX = 01 . Show an example of a stopping 

rule N  such that ∑⎛
⎝
⎜

⎞

⎠
⎟ ≠

=

E Xi

i

N

0
1

.

3. Assume ,...,1X Xn are independent, 0, var( ) ,2E X Xi i i( ) = = σ < ∞  

, 1,..., .
3E X i ni < ∞ =  Prove the central limit theorem (CLT) based 

result regarding 
1

,
1

2

1
B

X B
n

i

i

n

n i

i

n

∑ ∑= σ
= =

 as n → ∞. In this context, 

what are conditions on 2
iσ  that we need to assume in order for the 

result to hold?

4. Suggest a method for using R to evaluate numerically (experimen-
tally) the theoretical result related to Question 3 above, employing 
the Monte Carlo concept. Provide intuitive ideas and the relevant R 
code.

12.3 Homework 3

1. Let the random variables X Xn…, ,1  be dependent and denote the 

sigma algebra as { }ℑ = σ X Xn n…, ,1 . Assume that ( ) = μE X1  and 

( )ℑ = μ =E X i ni i| , 2,..,-1 , where μ is a constant. Please find ∏⎛⎝⎜
⎞

⎠
⎟

=

E Xi

i

n

.
1

2. The likelihood ratio (LR) with a corresponding sigma algebra is  
an H0-martingale and an H1-submartingale. Please evaluate in  

this context the statistic ( )LRnlog  based on dependent data points 
…, ,1X Xn, when the hypothesis H0 says X X fn…, , ~1 0  versus H1 : 

X X fn…, , ~1 1, where 0f  and 1f  are joint density functions.

3. Assume ,Xn n)( ℑ  is a martingale. What are ( )ℑXn n,  and ( )ℑXn n,
2

?

4. Using the Monte Carlo method calculate numerically the value of 

∫= −
−∞

∞

J u u u duexp( ) sin( )
1.7 3 . Compare the obtained result with a 

result that can be conducted using the R function integrate. Find 
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approximately the sample size N such that the Monte Carlo estimator 

JN  of J satisfies { }− > ≅J JNPr 0.001 0.05 .

5. Using the Monte Carlo method, calculate numerically

  J u t uexp( )
1.7 2 3

4

5

∫∫= − −
−∞

∞

−

sin( cos( ))u t dtdu, approximating this inte-

gral via the Monte Carlo estimator JN . Plot values of −J JN  against 

ten different values of N  (e.g., 100,250,350,500,600,N =  etc.), where 

N  is the size of a generated sample that you employ to compute JN  in 
the Monte Carlo  manner.

12.4 Homework 4

The Wald martingale.

1. Let observations …, ,1X Xn be iid. Denote ( )tφ  to be a characteristic 

function of 1X . Show that ∑= − φ
=

−W t X tj k

k

j
jexp(( 1) ) ( )1/2

1

 is a martingale 

(here define an appropriate σ −algebra).
Goodness-of-fit tests:

2. Let observations …, ,1X Xn be iid with a density function f. We would 
like to test for H0 : f = f0 versus H1 : 0f f≠ , where a form of f0 is known.

2.1  Show that in this statement of the problem there are no most 
powerful tests.

2.2  Assume f0 is completely known; prove that to test for H0 is 
equivalent to testing the uniformity of f.

2.3  Research one test for normality and explain a principle on 
which the test is based.

Measurement model with autoregressive errors:

3. Assume we observe X Xn, ,1 …  from the model X e e ei i i i i, ,1= μ + = β + ε−  
e i n0, 1, ,0 …= = , where iε , i = 1,....,n, are iid random variables with a 
density function f and μ is a constant.

3.1  Derive the likelihood function based on the observations 
…, ,1X Xn.

3.2  Assuming Ni ~ (0,1)ε , derive the most powerful test for H0 : 0,μ =
0.5β =  verus H1 : μ = β =0.5, 0.7  (the proof should be presented).

3.3  Assuming ~ (0,1)Niε , find the maximum likelihood estimators 
of μ β,  in analytical closed (as possible) forms.
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3.4  Using Monte Carlo generated data (setup the true μ = β =0.5, 0.7), 
test for the normality of distributions of the maximum likeli-
hood estimators obtained above, for n = 5,7,10,12,25,50. Show 
your conclusions regarding this Monte Carlo type study.

Comments. Regarding Question 2.2, we can note that if …, , ~1 0X X Fn  then 

…, , ~ (0,1)0 1 0F X F X Un) )( ( . Regarding Question 2.3, it can be suggested to read 
the Introduction in Vexler and Gurevich (2010). As an example, the following 
test strategy based on characterization of normality can be demonstrated. 
Assume we observe …, ,1X Xn that are iid. In order to construct a test for 

normality, Lin and Mudholkar (1980) used the fact that μ σX X Nn…, , ~ ( , )1
2   

if and only if the sample mean and the sample variance based on  
…, ,1X Xn are independently distributed. In this case one can define 

11 2

1:

1

1:

2

Y n X n Xi j

j j i

n

j

j j i

n

∑ ∑( )= − −
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

−

= ≠

−

= ≠
 and consider the sample correlation bet ween 

1
1

1:

∑( )− −
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−

= ≠

X n Xi j

j j i

n

 and Yi or between ∑( )− −
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−

= ≠

X n Xi j

j j i

n

1
1

1:

 and 1/3Yi . 

The 0H -distribution of the test statistic proposed by Lin and Mudholkar 

(1980) does not depend on μ σ( , )2 . Then the corresponding critical values of 
the test can be tabulated using the Monte Carlo method.

12.5 Homework 5

Two-sample nonparametric testing.

1. Assume we have iid observations …, , ~1X X Fn X that are indepen-
dent of iid observations …, , ~1Y Y Fm Y, where the distribution func-
tions F FX Y,  are unknown. We would like to test for F FX Y= , using the 

ranks-based test statistic G
nm

I X Ynm i j

j

m

i

n

∑∑ { }= ≥ −
==

1 1

2
11

. For large 

values of this statistic, we reject the null hypothesis.

1.1.  What is a simple method that can be used to obtain critical  
values of the test? (Hint: Use the Monte Carlo method, generating 
samples of …, , ~1X X Fn X and …, , ~1Y Y Fm Y to calculate approxi-
mate values of : Pr 0.050.05 0.05C G CF F nmX Y { }≥ ==  based on  
X Y N X Y Unif X Y N, ~ (0,1); , ~ ( 1,1); , ~ (100,7)−  with, e.g., n = m = 20. 
Make a conclusion and try to prove theoretically your guess.)
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1.2.  Conduct simulations to obtain the Monte Carlo powers of the 
test via the following scenarios:

10, ~ (0,1), ~ [ 1,1]; 15, ~ (0,1), ~ [ 1,1];

40, ~ (0,1), ~ [ 1,1]; 10, 30, ~ (0,1), ~ [ 1,1];

30, 10, ~ (0,1), ~ [ 1,1]; 10, ~ (1, 2), ~ [0, 5]

= = − = = −

= = − = = −

= = − = =

n m X N Y Unif n m X N Y Unif

n m X N Y Unif n m X N Y Unif

n m X N Y Unif n m X Gamma Y Unif

   at Pr 0.050.05{ }α = ≥ == G CF F nmX Y  (please formulate your results in 
the form of a table).

Power calculations:

2. Consider the simple linear regression model

 …, ~ (0,1), 1, ,Y X iid N i ni i i i= β + ε ε = .

Assume that in a future study we plan to test for 0β =  versu 0β ≠ , 
applying the corresponding maximum likelihood ratio test MLRn 
based on (Y|X) (here, the symbol “|” means “given”). X’s are expected 
to be close to be from the Unif(-1,1) distribution. To design the future 
study, please fix the Type I error rate as 0.05 and fill out the following 
table, presenting the Monte Carlo powers of the test with respect to 
the situations shown in the table below.

Sequential Probability Ratio Test (SPRT):

3. Assume that we survey sequentially iid observations …,1 2Y Y .Then 
answer the following:

3.1 Write the SPRT for : ~ (0,1) versus : ~ (0.5,1)0 1H Y N H Y N .

3.2  Calculate values of the corresponding thresholds to use in the 
SPRT, provided that we want to preserve the Type I and II errors 
rates as 0.05, 0.15α = β = , respectively.

3.3  Using Monte Carlo techniques evaluate the expectation of the 
corresponding stopping time under the null hypothesis H0 as 
well as under the alternative hypothesis H1.

3.4  Suppose that we observe retrospectively iid data points …, ,1X Xn 
and the likelihood ratio (LR) based on …, ,1X Xn is applied to test 
for : ~ (0,1) versus : ~ (0.5,1)0 1H Y N H Y N  at 0.05α = . What 

Expected Effect ββ

ββ == 00..11 ββ == 00..55 ββ == 11
n = 10

n = 20

n = 50

n = 100
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should the sample size n be to obtain the power 1 1 0.15− β = − ? 
(Hint: You can use the CLT to obtain the critical value of  
the log(LR) test statistic as well as to evaluate the needed n  
under H1.)

3.5 Compare the results of 3.4 with 3.3.

Comments. Regarding Question 1.1, one can note that

 ∑∑∫ { }{ }≥ = ≥ − ≥
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
Ψ=

==

G C I
nm

I X Y C dF F nm i j

j

m

i

n

nmX YPr
1 1

2
0.05

11

0.05 ,

where nmΨ  is the joint distribution function of the random variables  

I X Yi j{ }≥ , 1,.., , 1,...,i n j m= = . Under the hypothesis F FX Y= , we have 

, 1,..., , 1,...,I X Y I F X F Y i n j mi j X i Y j{ }{ } )()(≥ = ≥ = =  and then their joint distri-

bution does not depend on F FX Y= . Then the test statistic is exact, meaning 
that its distribution is independent of the underlying data distribution, under 
the hypothesis F FX Y= . Regarding Question 3.4, we suggest application of the 
Monte Carlo approach. One can also use the distribution function of the log-

likelihood ratio 
1

i

i

n

∑ξ
=

, where ξ =
⎛
⎝⎜

⎞
⎠⎟

=f X
f X

i ni
H i

H i
log

( )

( )
, 1, ...,1

0

 with 1fH  and 0fH , 

which are the density functions related to (0,1)N  and (0.5,1)N , respectively. 
Alternatively, defining the test threshold as C, we note that

 

Pr
( ) ( )

0.05 and

Pr
( ) ( )

0.85.
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H
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H

H

Then, using the CLT, we can derive n and C, solving the equations

 1
( )

0.05, 1
( )

0.85,
1

1/2
1

1/2

1
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1/2
0

0
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where ( ) (2 ) 1/2uΦ = π − /22

e dzz
u

∫ −

−∞
. It can be suggested to compare these 

three approaches.

12.6 Homeworks 6 and 7

In order to work on the tasks presented in this section, students should use 
real-world data. In our course, we consider data from a study evaluating bio-
markers related to atherosclerotic coronary heart disease. In this study, free 
radicals have been implicated in the atherosclerotic coronary heart disease 
process. Well-developed laboratory methods may grant an ample number of 
biomarkers of individual oxidative stress and antioxidant status. These 
markers quantify different phases of the oxidative stress and antioxidant sta-
tus process of an individual. A population-based sample of randomly 
selected residents of Erie and Niagara counties of the state of New York, 
USA., 35–79 years of age, was the focus of this investigation. The New York 
State Department of Motor Vehicles driver’s license rolls were utilized as the 
sampling frame for adults between the ages of 35 and 65; the elderly sample 
(age 65–79) was randomly selected from the Health Care Financing Admin-
istration database. A cohort of 939 men and women were selected for the 
analyses yielding 143 cases (individuals with myocardial infarction, MI=1) 
and 796 controls (MI=0). Participants provided a 12-hour fasting blood spec-
imen for biochemical analysis at baseline, and a number of parameters were 
examined from fresh blood samples.

We evaluate measurements related to the biomarker TBARS (see for details 
Schisterman et al., 2001).

Homework 6

1. Using the nonparametric test defined in Section 12.5, Question 1, test 
the hypothesis that a distribution function of TBARS measurements 
related to MI=0 is equal to a distribution function of TBARS mea-
surements related to MI=1.

2. Please provide a test for normality based on measurements of TBARS 
that correspond to MI=0, MI=1, and the full data, respectively. Plot 
relevant histograms and Q-Q plots.

3. Consider the power (Box–Cox) transformation of TBARS measure-
ments, that is,

 h X
sign X X

sign X X

λ =
−

λ
λ ≠

λ =

⎧

⎨
⎪⎪

⎩
⎪
⎪

λ

( , )

( ) 1
, 0

( )log , 0,
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where …, ,1X Xn are observations and …( , ), , ( , )1h X h Xn{ }λ λ  is the 
transformed data.

Assume λ μ σh X N( , ) ~ ( , )2 , where the parameters , , 2λ μ σ  are 
unknown.

3.1  Calculate values of the maximum likelihood estimators ˆ , ˆ , ˆ
0 1 fλ λ λ  

of λ based on the data with MI=0, MI=1, and the full data, 
respectively (using numerical calculations).

3.2 Calculate the asymptotic 95% confidence intervals for ˆ , ˆ , ˆ
0 1 fλ λ λ .

3.3  Test transformed observations ( , ˆ )0h TBARS λ  (on data with MI=0), 

( , ˆ )1h TBARS λ  (on data with MI=1), and ( , ˆ )h TBARS fλ  (on the full 
data) for normality, e.g., applying the Shapiro–Wilk test.

4. Calculate a value of the 2log maximum likelihood ratio

 ∏ ∏ ∏λ λ λ
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

= = =

f h TBARS f h TBARS f h TBARS
MI MI

f

MI

2 log ( ( , ˆ )) ( ( , ˆ )) ( ( , ˆ ))0

0

1

1 0,1

to test for the hypothesis from Question 1. Compare results related 
to Questions 1 and 4.

Comments. Regarding Question 3.1, we suggest obtaining the estimators of 

μ and 2σ  in explicit forms, whereas the estimator of λ can be derived by 
using a numerical method, e.g., via the R built-in operator uniroot or optimize. 
The corresponding schematic R code can have the form

G<-function(λ){

∑
∑( )

μ = λ

σ = λ − μ

=

=

h X n

h X n

i

i

n

i

i

n

ˆ ( , )/

ˆ ( , ) ˆ /

1

2 2

1

return log 2 ˆ exp( 1/ 2)2 /2( )( )πσ −⎛
⎝

⎞
⎠

−n

}
GV<-Vectorize(G)

λ̂ =optimize (GV,maximum = TRUE)$maximum

Homework 7
Let us perform the following Jackknife-type procedure.

Denote TBARS measurements related to MI=1 as Data A with the sample 
size NA and TBARS measurements related to MI=0 as Data B with the sample 
size NB.
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Consider the next algorithm:
Define 0n = .

Step 1: Randomly select N nA −  observations from Data A; and N nB −  
observations from Data B. (The R operator sample can be used in this 
step.)

Step 2: Use the selected observations in Step 1 to calculate values of the 

maximum likelihood estimators ˆ , ˆ
0 1λ λ  of λ (see Homework 6, Ques-

tion 3) and then test transformed observations ( , ˆ )0h TBARS λ  (based 

on the selected sample from Data A) and ( , ˆ )1h TBARS λ  (based on the 
selected sample from Data B) for normality, e.g., applying the 
Shapiro–Wilk test. Record the corresponding p-values as 0p  and 1p , 
respectively.

Step 3: Repeat Steps 1–2 5000 times, obtaining average values based on 

0p ’s and 1p ’s, say 0P pN n
A

A =−  and 1P pN n
B

B =− .

Redefine 10n n= +  and perform Steps 1–3.

The outputs of the procedure above are the average p-values 

, , , , ...10 20 30P P P PN
A

N
A

N
A

N
A

A A A A− − −  and , , , , ...10 20 30P P P PN
B

N
B

N
B

N
B

B B B B− − −  that can be plotted 
against the sample sizes , 10, 20, 30,...N N N NA A A A− − − . This can be used to 

evaluate models of functional dependencies between Pu
k and u, where ,k A B= . 

For example, we can estimate the models 
exp

1 exp
P

a b u
a b u

u
k k k

k k

)
)

(
(= +

+ +
, where ak and 

bk  are coefficients, ,k A B= .

One can employ the obtained models to extrapolate values 

of Pu
k for u Nk> , ,k A B= . In this case, assume that ′α  denotes a fixed level. 

Then we can consider the scheme below.

If PN
k

k > ′α  and the extrapolated values of Pu
k increase, we can conclude that 

probably while increasing the sample size we could not reject the corre-
sponding null hypothesis.

If PN
k

k > ′α  and the extrapolated values of Pu
k decrease, we can forecast the 

sample size : 1 exp0 0

1
u a b uk k{ })(+ − − = ′α−

, when we could expect to reject 
the corresponding null hypothesis.

The procedure demonstrated above can be easily modified for application 
as an experimental data-driven sample size calculation method in various 
practical situations.
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13
Examples of Exams

In this chapter we demonstrate examples of midterm, final, and qualifying 
exams. In the following sections, in certain cases, we provide comments 
regarding a subset of selected exam questions.

13.1 Midterm Exams

Example 1:

11 AM–12:20 PM

This exam has 4 questions, some of which have subparts. Each ques-
tion has an indicated point value. The total points for the exam are 100 
points.

Show all your work. Justify all answers.
Good luck!

Question 1 (30 points) Characteristic functions

Provide a proof about the one-to-one mapping proposition related to the 
result: “For every characteristic function there is a corresponding unique 
distribution function.” (Hint: Show that for all random variables its 
characteristic function φ exists. Formulate and prove the inversion theo-
rem that shows ( ) ( )−F y F x  is equal to a functional of ( )φ t , where F and φ are 
the distribution and characteristic functions, respectively. Consider cases 
when we can operate with ( )dF u du and when we cannot use ( )dF u du. If 
you need, derive the characteristic function of a normally distributed ran-
dom variable.)
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Question 2 (30 points)

Assume data points …, ,1X Xn are from a joint density function …( , , ; )1 θf x xn ,  
where θ is an unknown parameter. Suppose we want to test for : 00 θ =H  
versus : 01 θ ≠H  then complete the following:

 2.1 Write the maximum likelihood ratio MLn and formulate the maxi-
mum likelihood ratio test. Write the corresponding Bayes factor type 
likelihood ratio, BLn, test statistic. Show an optimality of BLn in the 
context of “most powerful decision rules” and interpret the 
optimality.

 2.2  Derive the asymptotic distribution function of the statistic MLn, 
under H0. How can this asymptotic result about the MLR test be 
used in practice?

Question 3 (20 points)

Consider the test statistics MLn and BLn from Question 2. Under 0H , are they 
a martingale, submartingale, or supermartingale? Can you provide relevant 
conclusions regarding the expected performance of the tests based on MLn 
and BLn test statistics?

Question 4 (20 points)

Formulate the SPRT (Wald sequential test), evaluating the Type I and II errors 
rates of the test.

Example 2:

11 AM–12:20 PM

This exam has 4 questions, some of which have subparts. Each question 
has an indicated point value. The total points for the exam are 100 points.

Show all your work. Justify all answers.
Good luck!

Question 1 (20 points) Characteristic functions

 1.1 Define the characteristic function ( )φ t  of a random variable X. Show 
( )φ t  exists, for all X and t. Assume X  has a normal density function 

( ) 2 exp( /(2 ))2 1/2 2 2f u uσ σ( )= π −
−

. What is a form of ( )φ t ? Assume X  

has a density function ( ) exp( ) 0)(= − >f u u I u . What is a form of ( )φ t ?
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 1.2 Let …, ,1X Xn be iid with μ=1EX  ( , 01
1 < ∞ ε >+εE X  is not required). 

Prove that … μ( )+ + →/1X X nn  as → ∞n .

Question 2 (30 points)

See Question 2, Section 13.1, Example 1.

Question 3 (15 points)

 3.1 Provide the definition of a stopping time, presenting an example of 
a stopping time (prove formally that your statistic is a stopping 
time).

 3.2 Let v and u be stopping times. Are u u umin( 1, ),max( , ), 1− +v v  stop-
ping times? (Relevant proofs should be shown.)

Question 4 (35 points)

 4.1 Formulate and prove the optional stopping theorem for martingales 
(provide formal definitions of objects that you use in this theorem).

 4.2 Prove the Dub theorem (inequality) based on nonnegative martin-
gales.

 4.3 Sequential change point detection. Suppose we observe sequentially 
iid measurements …,1 2X X . To detect a change point in the data 
distribution (i.e., to test for … …: , ~ vs. : , , ,0 1 2 0 1 1 2H X X f H X X

…~ ; , , ~ ,1 0 1 1ν− ν ν+X f X X f  where the densities ,0 1f f  are known, the 
change point ν is unknown) we use the stopping time 

( ) inf :
( )

( )
1

0
1

∏∑= = >
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪==

N H n SR
f X
f X

Hn
i

ii k

n

k

n

 (we stop and reject H0). Derive 

the lower bound for the expression E N HN H ( ) .( ) { }  Why do we need this 

inequality in practice?

Example 3:

11 AM–12:20 PM

This exam has 4 questions, some of which have subparts. Each question 
indicates its point value. The total is 100 points.

Show all your work. Justify all answers.
Good luck!
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Question 1 (37 points) Characteristic functions

See Question 1, Section 13.1, Example 1.

Question 2 (19 points)

Assume data points …, ,1X Xn are iid with a density function ( | )θf x , where 
θ is an unknown parameter. Define the maximum likelihood estimator of 

θ to be θ̂n, which is based on …, ,1X Xn. Derive the asymptotic distribution 

of ˆ0.5 )(θ − θn n  as → ∞n . Show the relevant conditions and the correspond-
ing proof.

Question 3 (25 points)

Assume data points …, ,1X Xn are from a joint density function …( , , ; )1 θf x xn , 
where θ is an unknown parameter. Suppose we want to test : 00 θ =H  versus 

: 01 θ ≠H . Complete the following:

 3.1 Write the Bayes factor type likelihood ratio BLRn; Show the optimal-
ity of BLRn in the context of “most powerful decision rules.”

 3.2 Find the asymptotic ( → ∞n ) distribution function of the statistic 
MLRn, the maximum likelihood ratio, under H0.

Question 4 (19 points)

See Question 4.1, Section 13.1, Example 2.

Example 4:

11 AM–12:20 PM

This exam has 3 questions, some of which have subparts. Each question 
indicates its point value. The total is 100 points.

Show all your work. Justify all answers.
Good luck!

Question 1 (41 points) Characteristic functions

See Question 1, Section 13.1, Example 1.
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Question 2 (36 points)

Let …, ,1ε εd be iid random variables from (0,1)N . Assume we have data 
points …, ,1X Xn that are iid observations and 1X  has a density function f  that 

has a form of the density function of 
2

1∑ )(ε
=

i
i

d
, where the integer parameter 

d is unknown and 10≤d .

 2.1 Write the maximum likelihood ratio (MLR) statistic, MLRn, and 
formulate the MLR test for :0 1 0= θH EX  versus :1 1 0≠ θH EX , where 

0θ  is known. (Hint: Use characteristic functions to derive the form 
of f .)

 2.2  Propose an integrated most powerful test for :0 1 0= θH EX  versus 
:1 1 0≠ θH EX  ( 0θ  is known), provided that we are interested in obtain-

ing the maximum integrated power of the test when values of the 
alternative parameter can have all possible values with no prefer-
ence. (Hint: Use a Bayes factor type procedure.). Formally prove that 
your test is integrated most powerful.

Question 3 (23 points)

(Here provide formal definitions of objects that you use to answer the fol-
lowing questions, e.g., the definition of a martingale.)

See Questions 4.1–4.2, Section 13.1, Example 2.

Example 5:

11 AM–12:20 PM

This exam has 4 questions, some of which have subparts. Each question 
indicates its point value. The total is 100 points.

Show all your work. Justify all answers.
Good luck!

Question 1 (17 points) Characteristic functions

See Question 1, Section 13.1, Example 2.

Question 2 (19 points)

See Question 2, Section 13.1, Example 3.
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Question 3 (27 points)

Assume data points …, ,1X Xn are from a joint density function …( , , ; )1 θf x xn , 
where θ is an unknown parameter. Suppose we want to test for : 00 θ =H  
versus : 01 θ ≠H  then answer the following:

 3.1 See Question 3.1, Section 13.1, Example 3.

 3.2 Assume the observations are iid random variables with an unknown 
distribution. Define the corresponding empirical likelihood ratio 
test for : 00 θ =H  versus : 01 θ ≠H , where EX1θ = . Show (and prove) 
the asymptotic 0H -distribution of the 2log of the empirical likeli-
hood ratio.

Question 4 (37 points)

 4.1  Let v and u be stopping times. Are u u umin( 1, ),max( , ), 1− +v v , 
u/10, 10u stopping times?

4.2–4.3 See Questions 4.1, 4.3, Section 13.1, Example 2.

 4.4  Assume iid random variables 0, 0,...1 2> >X X . Defining the inte-

ger random variable ( ) inf :
1

∑= >
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪=

N H n X Hi

i

n

, show: (1) ( )N H  is 

a stopping time; (2) the non-asymptotic upper bound for ( )EN H .

Example 6:

11 AM–12:20 PM

This exam has 5 questions, some of which have subparts. Each question 
indicates its point value. The total is 100 points.

Show all your work. Justify all answers.
Good luck!

Question 1 (35 points) Characteristic functions

See Question 1, Section 13.1, Example 1.

Question 2 (8 points)

Let the statistic LRn define the likelihood ratio to be applied to test for 0H  

versus 1H . Prove that ( )/ ( )1 0 =f u f u uH
LR

H
LR , where fH

LR denotes the density func-

tion of LRn under 0=H H  or 1=H H , respectively.
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Question 3 (21 points)

Let …, ,1ξ ξd be iid random variables from (0,1)N , …, ,1η ηd denote iid random 
variables from (0,1)N , and …, ,1ω ωd be iid random variables that just have 
the two values 0 and 1 with Pr 0 0.51{ }ω = = . Let the random variables d1, ,…ξ ξ , 

d1, ,…η η  and d1, ,…ω ω  be independent and i i i i i i d(1 ) , 1, ,…ε = ω ξ + − ω η = .

Assume we have data points …, ,1X Xn that are iid observations and 1X  has 

a density function f  that has a form of the density function of 
2

1∑ )(ε
=

i
i

d
, 

where the integer parameter d is unknown and 10≤d .

 3.1 Write the maximum likelihood ratio (MLR) statistic, MLRn, and 
formulate the MLR test for :0 1 0= θH EX  versus :1 1 0≠ θH EX , where 

0θ  is known. (Hint: Use characteristic functions to derive the form 
of f .)

 3.2 Propose, giving the corresponding proof, the integrated most pow-
erful test for :0 1 0= θH EX  versus :1 1 0≠ θH EX  (here 0θ  is known), 
provided that we are interested to obtain the maximum integrated 
power of the test when values of the alternative parameter can have 
all possible values with no preference.

Question 4 (27 points)

(Here provide the formal definitions of objects that you use to answer the 
following questions, e.g., the definition of a martingale.)

4.1– 4.2 See Questions 4.1–4.2, Section 13.1, Example 2.

 4.3  Suppose iid random variables …> >0, , 0,...1X Xn  have = =( ) 11 1EX Var X . 
Define

 inf 0 : .

1

0.7n X n ni

i

n

∑τ = > ≥ −
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪=

Is τ a stopping time? (Hints: consider the event { }τ ≥ N  via an event based on 

1

∑
=

Xi

i

N

, use the Chebyshev inequality to analyze the needed probability, and 

let → ∞N .)

Question 5 (9 points)

Define ∑τ = > ≥
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪=

( ) inf 0 :
1

H n X Hi

i

n

, where iid random variables …> >0, , 0,...1X Xn  

have 1 =EX a. Show how to obtain a non-asymptotic upper bound for ( ){ }τE H  
that is linear with respect to H  as → ∞H .
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Comments. Regarding Question 4.3, we have
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Example 7:

11 AM–12:20 PM

This exam has 4 questions, some of which have subparts. Each question 
indicates its point value. The total is 100 points.

Show all your work. Justify all answers.
Good luck!

Questions 1 (42 points) Characteristic functions

 1.1 See Question 1, Section 13.1, Example 1.

 1.2 Assume ( )f x  and ( )φ t  are the density and characteristic functions of 
a random variable, respectively. Let ( )φ t  be a real function ( ( )φ t  has 
real values for real values of t). Using a proposition that you should 
show with the proof to answer Question 1.1, prove that

 ∫ ( )=
π

φ
−∞

∞

( )
1

2
cos ( ) ,f x tx t dt

provided that ( )φ t  is an integrable function.

Question 2 (17 points)

 2.1 See Question 2, Section 13.1, Example 6.

 2.2 See Question 2, Section 13.1, Example 3.



323Examples of Exams

Question 3 (17 points)

 3.1. Let …, ,1X Xn be iid observations. Suppose we are interested in test-

ing for : ~0 1 0H X f  versus : ~ ( )exp1 1 0 1 2)(θ + θH X f u u , where ( )0f u  is a 
density function, and the 1H -parameters 0,1 2θ > θ  are unknown. In 
this case, propose the appropriate most powerful test, justifying the 
proposed test’s properties.

 3.2. See Question 3.2, Section 13.1, Example 3.

Question 4 (24 points)

 4.1 Formulate and prove the optional stopping theorem.

 4.2  Suppose we observe sequentially …, ,1 2 3X X X  that are iid data points 
from the exponential distribution ( )= − − λ ≥ = <( ) 1 exp / , 0; ( ) 0, 0F u u u F u u . 
To observe one X we should pay A dollars depending on values of λ. 
Suppose we want to estimate λ using the maximum likelihood esti-

mator λ̂n based on n observations.

4.2.1 Propose an optimal procedure to minimize the risk function 

( ) ˆ4
2( )= λ + λ − λL n A n E n .

4.2.2 Show a non-asymptotic upper bound of 
1

∑⎛⎝ ⎞
⎠=

E Xi
i

N
, where N  is 

a length (a number of needed observations) of the procedure 

defined in in the context of Question 4.2.1. The obtained form of 
the upper bound should be a direct function of A and λ. Should 
you use propositions, these propositions must be proven.

Comments. Regarding Question 1.2, we have )( { })(φ = = ξξ( ) cos .t E e E tti  Then

 ∫ ∫ ( ) ( )( ) ( )=
π

ϕ =
π

− ξ−

−∞

∞

−∞

∞

f x e t dt E tx tx t dttx ii( )
1

2
( )

1

2
cos sin cos ,

where sin cos 0∫ )()( ξ =
−∞

∞

tx t dt , since sin cos sin cos) )( () )( (− − ξ = − ξtx t tx t .
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Example 8:

11 AM–12:20 PM

This exam has 5 questions, some of which have subparts. Each question 
indicates its point value. The total is 100 points.

Show all your work. Justify all answers.
Good luck!

Question 1 (29 points) Characteristic functions

 1.1 See Question 1, Section 13.1, Example 1.

 1.2 Let X  and Y  be independent random variables. Assume −X Y and 
+X Y are identically distributed. Show that the characteristic func-

tion of Y  is a real-valued function.

Question 2 (21 points)

See Question 4.2, Section 13.1, Example 7.

Question 3 (18 points)

Assume we observe iid data points …, ,1X Xn and 1X  is from a density func-
tion ( )f x . Suppose we want to test :0 0=H f f  versus : ( ) ( )exp( ),1 0= θ + φH f x f u u  
where 0θ > .

If the alternative parameters θ and φ are known, write the corresponding 
most powerful test statistic, providing a relevant proof.

Question 4 (15 points)

 4.1 Let iid observations …, ,1X Xn be from a ,1)(θN  distribution. Suppose 
we want to test for :0 0θ = θH  versus :1 1θ = θH , using the most powerful 
test statistic. Provide an explicit formula to calculate the expected p-value 
related to the corresponding test, showing the corresponding proof.

 4.2 Let TSn define a likelihood ratio. Obtain the likelihood ratio based on 
TSn, showing a needed proof.

Question 5 (17 points)

 5.1 Write the definition of a stopping time and provide an example.
Write the definition of a martingale and provide an example.

 5.2 Formulate and prove the optional stopping theorem.
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Comments. Regarding Question 1.2, we have ) )( () )( (− = +exp expE t X Y E t X Yi i . 

Then exp exp .E t Y E t Yi i( ) ( )( ) ( )− =  Thus cos sin cos sinE tY tY E tY tYi i( ) ( )( ) ( ) ( ) ( )− = + . 

This implies sin 0)( )( =E tY .

Example 9:

11 AM–12:20 PM

This exam has 6 questions, some of which have subparts. Each question 
indicates its point value. The total is 100 points.

Show all your work. Justify all answers.
Good luck!

Question 1 (33 points)

See Question 1, Section 13.1, Example 1.

Question 2 (7 points)

See Question 2, Section 13.1, Example 6.

Question 3 (9 points)

Assume that a random variable ξ has a gamma distribution with density 
function given as

 
( ; , )

/ ( ), 0

0, 0,

1

f u
u e u

u

u

α γ = α Γ γ ≥
<

⎧
⎨
⎪

⎩⎪

γ γ− −α

where α > 0, γ  are parameters, and ( )Γ γ  is the Euler gamma function 

1

0∫ γ − −
∞

u e duu . Derive an explicit form of the characteristic function of ξ (Hint: 

The approach follows similar to that of normally distributed random variables).

Question 4 (15 points)

See Question 3.1, Section 13.1, Example 6.
(Hint: To give a complete answer, you can use the characteristic func-

tion based method to derive the form of f , a density function of the 
observations.)
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Question 5 (27 points)

See Question 4, Section 13.1, Example 6.

Question 6 (9 points)

See Question 5, Section 13.1, Example 6.

13.2 Final Exams

Example 1:

11:45 AM–02:45 PM

This exam has 5 questions, some of which have subparts. Each question 
indicates its point value. The total is 100 points.

Show all your work. Justify all answers.
Good luck!

Question 1 (25 points)

 1.1 Describe the basic components of receiver operating characteristic 
curve analyses based on continuous measurements of biomarkers.

 1.2 Assume a measurement model with autoregressive error terms of 
the form

 , , 0, 1, , ,1 0X i ni i i i iμ β= +ε ε = ε + ξ ξ = =− …

where …, 1, ,ξ =i ni , are independent identically distributed  
(iid) random variables with the distribution function 

2 exp( /(2 ))2 1/2 2 2u du
u

∫σ σ( )π −
−

−∞
; μ β σ, ,  are parameters. Suppose we 

are interested in the maximum likelihood ratio test for 
: 0, 0, 10H μ β σ= = =  versus : 0, 0, 11H μ β σ≠ ≠ = . Write the maxi-

mum likelihood ratio test in an analytical closed (as possible) form. 
Provide a schematic algorithm to evaluate the power of the test 
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based on a Monte Carlo study, when n is fixed, and we focus on the 
test power, when 0.1, 0.5μ β= = .

Question 2 (25 points). Formulate and prove the following 

propositions

 2.1 The optional stopping theorem for martingales;

 2.2 The Dub theorem (inequality) based on nonnegative martingales;

 2.3 The Ville and Wald inequality.

Question 3 (20 points)

 3.1 Write a definition of a stopping time, providing an example of a sta-
tistical inference based on a stopping time.

 3.2 Let v and u be stopping times. Are − +min( 1, ), max( , ), 2v u v u u  
stopping times (provide relevant proofs)?

 3.3 Prove the Wald theorem regarding the expectation of a random sum 
of iid random variables. Can you use the Wald theorem to calculate 

∑⎛
⎝
⎜

⎞

⎠
⎟

=

τ−

E Xi

i 1

1

, where …X Xn, ,1  are iid with =EX 11  and τ is a stopping 

time with τ =E 25?

Question 4 (15 points)

Prove the following propositions.

 4.1 Let …X Xn, ,1  be iid with , ( ) ,1 1
2

1
3EX Var X E Xμ σ= = < ∞. Then the 

statistic …( )+ + −X X a bn n n/1  has asymptotically (as → ∞n ) a stan-

dard normal distribution, where please define the forms of an and bn. 

 4.2 See Question 1.2, Section 13.1, Example 2.

Question 5 (15 points)

Let …X Xn, ,1  be iid observations with 1EX μ= . Suppose that we are inter-
ested in testing : 00H μ =  vs. : 01H μ ≠ . In this case, provide the corresponding 
empirical likelihood ratio test. Derive a relevant asymptotic proposition 
about this test that can be used in order to control the Type I error rate of 
the test.
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Example 2:

03:30 PM–05:00 PM

This exam has 4 questions, some of which have subparts. Each question 
indicates its point value. The total is 100 points.

Show all your work. Justify all answers.
Good luck!

Question 1 (40 points)

See Question 1, Section 13.1, Example 1.

Question 2 (35 points)

Assume data points …X Xn, ,1  are iid. Suppose we are interested in testing 
the hypothesis = θH EX:0 1 0 versus ≠ θH EX:1 1 0, where θ0 is known.

 2.1 Let ~ ( , )X Gamma α β . Derive the maximum likelihood ratio (MLR) 

test statistic MLn and formulate the MLR test for : ,0 1 0 0H E X β β( ) = θ =  

versus : ( ) ,1 1 0 0H E X β β≠ θ ≠ , where ,0 0βθ  are known. Find the asymp-

totic distribution function of the test statistic MLn2 log( ) under H0 

(Wilks’ theorem).

 2.2 See Question 3.2, Section 13.1, Example 5. Show (and prove) the 
asymptotic distribution of the empirical likelihood ratio test statistic 
under H0 (the nonparametric version of Wilks’ theorem).

Question 3 (10 points)

Formulate and prove the Ville and Wald inequality.

Question 4 (15 points)

Assume the measurement model with autoregressive error terms of the 
form

 , , 0, 1, ,1 0X i ni i i i iμ β= +ε ε = ε + ξ ε = =− … ,

where …ξ =i ni , 1, , , are independent identically distributed (iid) random 
variables with the distribution function
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 ∫{ } ( )ξ < = π −−

−∞
u u du

u

Pr 2 exp( / 2)1
1/2 2 ; μ β,  are parameters.

Show how to obtain the likelihood function based on …{ }=X i ni 1, , , in a 
general case. Derive the likelihood function based on observed …X Xn, .1

Example 3:

04:30 PM–07:30 PM

This exam has 7 questions, some of which have subparts. Each question 
indicates its point value. The total is 100 points.

Show all your work. Justify all answers.
Good luck!

Question 1 (29 points) Characteristic functions

 1.1 Define the characteristic function φ t( ) of a random variable X. Show 
φ t( ) exists, for all X and t. Assume X  has the density function 

( ) 2 exp( ( ) /(2 ))2 1/2 2 2f u uσ μ σ( )= π − −
−

 with parameters μ and 2σ . Write 

out the expression for φ t( ).

 1.2 See Question 1, Section 13.1, Example 1.

 1.3 See Question 1.2, Section 13.1, Example 2.

Question 2 (8 points)

Formulate and prove the central limit theorem related to the stopping time 

∑= ≥
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪=

( ) inf :
1

N H n X Hi

i

n

, where > >0, 0,...1 2X X  are iid, σ= = < ∞, ( )1 1
2EX a Var X  

and → ∞H . (Here an asymptotic distribution of N H( ) should be shown.)

Question 3 (21 points)

Assume data points …X Xn, ,1  are from a joint density function … θf x xn( , , ; )1 , 
where θ is an unknown parameter. Suppose we want to test θ =H : 00  versus 

θ ≠H : 01 . Complete the following:

 3.1 Write the maximum likelihood ratio MLRn and formulate the MLR 
test. Write the Bayes factor type likelihood ratio BLRn. Show an 
optimality of BLRn in the context of “most powerful decision rules” 
and interpret the optimality.
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 3.2 Find the asymptotic ( → ∞n ) distribution function of the statistic 
MLRn2 log( ), under H0.

 3.3 Assume …X Xn, ,1  are iid and the parameter θ = EX1. Let … θf x xn( , , ; )1  
be unknown. To test for θ =H : 00  versus θ ≠H : 01 , formulate the 
empirical likelihood ratio test statistic ELRn. Find the asymptotic 
( → ∞n ) distribution function of the statistic ELRn2 log( ), under H0, 

provided that < ∞E X1
3

.

Question 4 (5 points)

What are Martingale, Submartingale and Supermartingale? Consider 
the test statistics MLRn and BLRn from Question 3. Under H0, are these 
statistics  Martingale, Submartingale, or Supermartingale? Justify your 
response.

Question 5 (11 points)

 5.1 Formulate and prove: the Dub theorem (inequality) based on non-
negative martingales and the Ville and Wald inequality

 5.2 See Question 4.3, Section 13.1, Example 2.

Question 6 (10 points)

See Question 4, Section 13.1, Example 1.

Question 7 (16 points)

 7.1 Show (in detail with all needed proofs) that

 
∑ { }≥ + ≥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
≤ − = ε

ε > >

=

P X
an

m
dm n ad d

a

a

i

i

n

, for some 1 exp 2 ,
log( )

2
,

for all 0 and 0,

1

0.5
0.5

where …X Xn, ,1  are iid and X N~ (0,1)1 . Here a proof of the general 
inequality

 ∑ ≥ ε ≥
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
≤

ε
=

P X m
n
m

ni

i

n

A( , ) for some 1
1

1

0.5  (A(.,.) is a function that you 

should define) is required to be presented.
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 7.2 Suppose we are interested in confidence sequences with uniformly 
small error probability for the mean of a normal distribution θN( ,1). 
Carry out the following:

7.2.1 Define the relevant confidence sequences.

7.2.2 Show the corresponding proofs.

7.2.3 Show how to operate with the required result.

7.2.4 Compare this approach with the conventional non-uniform confi-
dence interval estimation.

Example 4:

11 AM–12:20 PM

This exam has 5 questions, some of which have subparts. Each question 
indicates its point value. The total is 100 points.

Show all your work. Justify all answers.
Good luck!

Question 1 (25 points)

Prove the following theorem (the inversion formula). Let f define a density 
function of a random variable X. Then

 ( )
1

2
, 1, 1.2f x e E e dttx tX i i =i i∫ ( )=

π
= − −−

−∞

∞

Question 2 (19 points)

Assume we have data points …X Xn, ,1  that are iid observations from a den-
sity function f  and = θEX1 . We would like to test for θ = θH :0 0 ver-
sus θ = θH :1 1. Let f  and θ1 be unknown. Write the empirical likelihood ratio 
test statistic ELRn. Find the asymptotic ( → ∞n ) distribution function of the 
statistic ELRn2 log , under H0.

How can one use this asymptotic result to carry forth the ELR test in practice?

Question 3 (19 points)

See Question 2, Section 13.2, Example 3.
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Question 4 (17 points)

 4.1 Prove the Wald lemma regarding the expectation of a random sum 
of iid random variables. Can you use the Wald lemma to calculate 

∑⎛
⎝
⎜

⎞

⎠
⎟

=

τ−

E Xi

i 1

1

, where …X Xn, ,1  are iid with =EX 11  and τ is a stopping 

time with τ =E 25? Relevant formal definitions of objects that you 
use (e.g., of a σ -algebra) should be presented.

 4.2 See Question 4.3, Section 13.1, Example 2.

Question 5 (20 points)

Define statistics an and An based on a sample …z zn, ,1  of iid observations with 

the median M, such that the probability { }≤ ≤ ≥a M A n mn nPr for every  can 
be monitored (m is an integer number). The relevant proof should be present.

Example 5:

11:45 AM–1:05 PM

This exam has 6 questions, some of which have subparts. Each question 
indicates its point value. The total is 100 points.

Show all your work. Justify all answers.
Good luck!

Question 1 (12 points)

See Question 2, Section 13.2, Example 3.

Question 2 (16 points)

Assume that data points …X Xn, ,1  are from a joint density function 
… θf x xn( , , ; )1 , where θ is an unknown parameter. Suppose we want to test 

for θ =H : 00  versus θ ≠H : 01  then answer the following:

 2.1 Write the maximum likelihood ratio MLRn and formulate the MLR 
test. Find the asymptotic ( → ∞n ) distribution function of the statis-
tic MLRn2 log , under H0. Show how this asymptotic result can be 
used for the MLR test application.
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 2.2 Assume we would like to show how the asymptotic distribution 
obtained in Question 2.1 above is appropriate to the actual (real) 
distribution of the statistic 2logMLRn, when the sample size n is fixed. 
In this case, suggest an algorithm to compare the actual distribution 
of the test statistic with the asymptotic approximation to the actual 
distribution, when n is, say, 10, 20, 30.

Question 3 (19 points)

Relevant formal definitions of objects that you use to answer the ques-
tion below (e.g., of a stopping time) should be presented. Formulate and 
prove:

 3.1 The Dub theorem (inequality).

 3.2 The Ville and Wald inequality.

Question 4 (13 points)

See Question 4, Section 13.1, Example 1.

Question 5 (14 points)

Confidence sequences for the median. See Question 5, Section 13.2, Example 4.

Question 6 (26 points)

See Question 3.3, Section 13.2, Example 3.

Example 6:

11.45 AM–1:05 PM

This exam has 7 questions, some of which have subparts. Each question 
indicates its point value. The total is 100 points.

Show all your work. Justify all answers.
Good luck!
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Question 1 (19 points)

Assume we observe iid data points …X Xn, ,1  and iid data points …Y Yn, ,1 . It is 

known that = σ < ∞var( )1
2X X , = σ < ∞var( )1

2Y Y , { } { }{ }≤ ≤ = ≤ ≤Pr , Pr PrX u Y v X u Y vi j i j   
for ≠i j, and = σX Yi i XYcov( , ) , where ,2 2

X Yσ σ  and σXY are known. An investi-

gator wants to use the test statistic ∑ ∑= −
⎛

⎝
⎜

⎞

⎠
⎟

= =

G n
n

X
n

Yn i

i

n

i

i

n
1 1

1 1

 to test for the 

hypothesis =:0 1 1H EX EY . Using the method based on characteristic functions, 
propose an approach to control asymptotically, as →n 0, the Type I error rate 
of the test: reject H0 for large values of Gn. The corresponding proof should be 
shown. Do we need additional assumptions on the data distributions?

Question 2 (15 points)

See Question 2, Section 13.1, Example 3.

Question 3 (29 points)

Assume we have data points …X Xn, ,1  that are iid observations and 
= θEX1 . Suppose we would like to test θ = θH :0 0 versus θ = θH :1 1. Com-

plete the following:

 3.1 Let X1 have a density function f  with a known form that depends on 
θ. When θ1 is assumed to be known, write the most powerful test 
statistic (the relevant proof should be shown).

 3.2 Assuming θ1 is unknown, write the maximum likelihood ratio MLRn 
and formulate the MLR test based on …X Xn, ,1 . Find the asymptotic 
( → ∞n ) distribution function of the statistic MLRn2 log , under H0.

 3.3 Assume f  and θ1 are unknown. Write the empirical likelihood ratio 
test statistic ELRn. Find the asymptotic ( → ∞n ) distribution function 

of the statistic ELRn2 log , under H0, provided that < ∞E X1
3

.

Question 4 (10 points)

See Question 4, Section 13.1, Example 1.

Question 5 (9 points)

See Question 4.3, Section 13.1, Example 2.
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Question 6 (9 points)

If it is possible, formulate a test with power 1. Relevant proofs should be 
shown.

Question 7 (9 points)

See Question 4, Section 13.2, Example 2.

Example 7:

11:00 AM–12:20 PM

This exam has 7 questions, some of which have subparts. Each question 
indicates its point value. The total is 100 points.

Show all your work. Justify all answers.
Good luck!

Question 1 (15 points)

 1.1 Let …X Xn, ,1  be independent identically Cauchy-distributed random 

variables with the characteristic function −exp( )t  of X1. What is a 

distribution function of …( )+ +X X nn /1 ?

 1.2 See Question 1.2, Section 13.1, Example 2.

Question 2 (14 points)

See Question 2, Section 13.3, Example 3.

Question 3 (14 points)

Let …ξ ξd, ,1  be iid random variables from N(0,1), …η ηd, ,1  denote iid random 
variables from (0,1)N , and …ω ω, ,1 d  be iid random variables that have only the 
two values 0 and 1 with { }ω = =Pr 0 0.51 . The random variables …ξ ξ, ,1 d , …η η, ,1 d , 
and …ω ωd, ,1  are independent and ε = ω ξ +i i i …− ω η =i di i(1 ) , 1, , .

Assume we have data points …X Xn, ,1  that are iid observations and X1 has 

a density function f  that has a form of the density function of ∑ ( )ε
=

i
i

d
2

1
, 

where the integer parameter d is unknown and ≤d 10. Propose, giving the 



336 Statistics in the Health Sciences: Theory, Applications, and Computing

corresponding proof, the integrated most powerful test for = θH EX:0 1 0 
versus ≠ θH EX:1 1 0 (here θ0 is known), provided that we are interested to 
obtain the maximum integrated power of the test when values of the alterna-
tive parameter can have all possible values with no preference. Should you 
need to use f , the analytical form of f  should be derived. (Hint: Use charac-
teristic functions to derive the form of f .)

Question 4 (19 points)

 4.1 Define a martingale, submartingale, and supermartingale.

 4.2 See Question 4.1, Section 13.1, Example 5.

 4.3 Let ( 0, )Xn n> ℑ  denote a martingale with 11EX = . Is ( ) min 0 :H n X Hn{ }τ = > > , 
where >H 1, a stopping time? (Corresponding proof should be 
shown.)

Question 5 (9 points)

Formulate and prove the Dub theorem (inequality).

Question 6 (14 points)

See Question 4.3, Section 13.1, Example 2.

Question 7 (15 points)

Confidence sequences for the median. See Question 5, Section 13.2, Example 4.

Example 8:

11:00 AM–12:20 PM

This exam has 9 questions, some of which have subparts. Each question 
indicates its point value. The total is 100 points.

Show all your work. Justify all answers.
Good luck!

Question 1 (18 points)

 1.1 See Question 1.2, Section 13.1, Example 2.

 1.2 Prove that the characteristic function of a symmetric (around 0) ran-
dom variable is real-valued and even.



337Examples of Exams

Question 2 (9 points)

Assume that …X Xn, ,1  are iid random variables and  

…( )= + +~ (1),1 1X Exp S X Xn n  . Let N  define an integer random variable 

that satisfies …σ{ } { } ( )< ∞ = ≥ ∈Pr 1, , ,1N N n X Xn , where …( )σ X Xn, ,1   
is the σ-algebra based on …( )X Xn, ,1 . Calculate a value of 

( )+ − = −exp log(1 ) , 12E tS N tNi i i , where t is a real number. Proofs of the 
theorems you use to solve this problem do not need to be shown.

Question 3 (9 points)

Biomarker levels were measured from disease and healthy populations, pro-
viding the iid observations = = = =X X X X0.39, 1.97, 1.03, 0.161 2 3 4  that are 
assumed to be from a normal distribution as well as iid observations 

= = = = − = −Y Y Y Y Y0.42, 0.29, 0.56, 0.68, 0.541 2 3 4 5  that are assumed to be from 
a normal distribution, respectively.

Define the receiver operating characteristic (ROC) curve and the area 
under the curve (AUC).

Obtain a formal notation of the AUC.

Estimate the AUC.

What can you conclude regarding the discriminating ability of the bio-
marker with respect to the disease?

(Values that may help you to approximate the estimated AUC:  
Pr 0.56, 1, ~ (0.7, 4);x when x N{ }ξ < ≈ = ξ  Pr 0.21, 0, ~ (0.8,1)x when x N{ }ξ < ≈ = ξ ; 

{ }ξ < ≈ = ξPr 0.18, 1, ~ (0.9,1)x when x N  { }ξ < ≈ = ξPr 0.18, 0, ~ (0.9,1)x when x N .)

Question 4 (11 points)

See Question 2, Section 13.1, Example 3.

Question 5 (14 points)

See Question 2, Section 13.2, Example 4.

Question 6 (11 points)

See Question 3, Section 13.2, Example 4.

Question 7 (10 points)

See Question 4, Section 13.1, Example 1.
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Question 8 (9 points)

See Question 4.3, Section 13.1, Example 2.

Question 9 (9 points)

Confidence sequences for the median. See Question 5, Section 13.2, Example 4.

Comments. Regarding Question 1.2, we have = − −F u F u( ) 1 ( ). Then

 
( ) ( ) ( ) 1 ( ) ( )

.

t E e e dF u e dF u e d F u e d F u

E e

t tu tu tu tu

t

i i i i i

i

∫ ∫ ∫ ∫( )

( )

( ) ( )φ = = = − = − =

=

ξ

−∞

∞
−

∞

−∞
−

∞

−∞
−

−∞

∞

− ξ

Thus

 cos sin ( ) cos sin ( ),tu tu dF u tu tu dF ui i∫ ∫( ) ( )( ) ( ) ( ) ( )+ = − + −
−∞

∞

−∞

∞

where ( ) ( )= −tu tucos cos  and ( ) ( )− = −tx txsin sin . This leads to { }( )ξ =E tsin 0 
and then

 it E e E tt( ) cos .( ) { }( )φ = = ξξ

Regarding Question 2, we consider

 exp log(1 ) | ,..., .1 1E tS n t X Xn ni i{ }( ) ( )+ − σ −

for a fixed n. It is clear that

 exp log(1 ) | ,..., exp log(1 ) ( ),1 1 1E tS n t X X tS n t tn n ni i i i{ }( ) ( )( )+ − σ = + − ϕ− −

where ϕ t( ) is the characteristic function of X1. This implies

 exp log(1 ) | ,..., exp ( 1)log(1 ) .1 1 1E tS n t X X tS n tn n ni i i i{ }( ) ( )( )+ − σ = + − −− −

Then exp log(1 ) , ,...,1{ }( ) ( )+ − σi itS n t X Xn n  is a martingale and we can apply 
the optional stopping theorem.
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Example 9:

11.45 AM–1:10 PM

This exam has 8 questions, some of which have subparts. Each question 
indicates its point value. The total is 100 points.

Show all your work. Justify all answers.
Good luck!

Question 1 (12 points)

Assume a receiver operating characteristic (ROC) curve corresponds to 
values of a biomarker measured with respect to a disease population,  
say X , and a healthy population, say Y . Let X  and Y  be independent  
and log-normally distributed, such that ξ ξX Y~ exp( ), ~ exp( )1 2 , where 

~ ( , ), ~ ( , )1 1 1
2

2 2 2
2N Nμ σ μ σξ ξ  with known ,1

2
2
2σ σ  and unknown ,1 2μ μ . In 

order to estimate the area under the ROC curve (AUC), we observe iid data  
points …X Xn, ,1  and iid data points …Y Ym, ,1  corresponding to X  and Y ,  
respectively.

Propose an estimator of the corresponding AUC. Using the δ-method, 
evaluate the asymptotic variance of the proposed estimator.

Question 2 (15 points)

See Question 2, Section 13.1, Example 3.

Question 3 (21 points)

See Question 3, Section 13.2, Example 6.

Question 4 (10 points)

See Question 4, Section 13.1, Example 1.

Question 5 (8 points)

See Question 4.3, Section 13.1, Example 2.

Question 6 (9 points)

If it is possible, formulate a test with power one. Relevant proofs should be 
shown.
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Question 7 (10 points)

See Question 4, Section 13.2, Example 2.

Question 8 (15 points)

Assume iid random variables …X X,1 2  are from the Uniform[0,1] distribu-

tion. Define the random variable { }τ = ≥ >n X an ninf 1 : .

Is τ a stopping time with respect to the σ-algebra ( )ℑ = σ X Xn n, ...,1 , when 

a i ii 1 1/ 1 , 1
2( )( )= − + ≥ ?

Is τ a stopping time with respect to ,...,1X Xn nσ ( )ℑ = , when  1 1/ 1 , 1a i ii ( )( )= − + ≥ ?
Corresponding proofs should be shown.

13.3 Qualifying Exams

Example 1:

The PhD theory qualifying exam, Part I
8:30 AM–12:30 PM

This exam has 4 questions, some of which have subparts. Each question 
indicates its point value. The total is 100 points.

Show all your work. Justify all answers.
Good luck!

Question 1 (20 points) Characteristic functions

 1.1 Define the characteristic function φ t( ) of a random variable X. Show 
(and prove) that φ t( ) exists, for all probability distributions of X  and all 

real t. Assume X  has the density function σ σ( )= π −
−

( ) 2 exp( / (2 ))2 1/2 2 2f u u  . 

What is a form of φ t( )? Assume X  has the density function 

= − >f u u u( ) exp( ), 0. What is a form of φ t( )?

 1.2 Using characteristic functions, derive the analytical form of the dis-

tribution function of a χd
2-distributed random variable ξ, where d is 

the degree of freedom. (Hint: Use Gamma distributions.)

 1.3 See Question 1.2, Section 13.1, Example 2.
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Question 2 (30 points) Asymptotic results

 2.1 Let …X Xn, ,1  be iid observations. Suppose X1 has a density function 
f  that can be presented in a known parametric form depending on 
an unknown parameter θ. Define the maximum likelihood estima-
tor of θ. Formulate and prove the theorem regarding an asymptotic 
distribution of the maximum likelihood estimator. (Please do not 
forget the assumptions of the theorem.)

 2.2 Suppose we want to test for θ =H : 00  versus θ ≠H : 01  based on 
observations from Question 2.1 above.

2.2.1 Towards this end, define the maximum likelihood ratio statistic 
MLn and formulate the maximum likelihood ratio (MLR) test.

2.2.2 Using the theorem from Question 2.1, derive the asymptotic dis-
tribution function of the statistic MLn2 log , under H0.

2.2.3 Assume the sample size n is not large. Can you suggest a compu-
tational algorithm as an alternative to the asymptotic result from 
Question 2.2.2? If yes, provide the algorithm.

Question 3 (35 points) Testing

 3.1 Let …X Xn, ,1  be observations that have a joint density function f . f  
can be presented in a known parametric form depending on an 
unknown parameter θ.

3.1.1 Propose (and prove) the most powerful test for θ =H : 00  versus 
θ =H : 11 .

3.1.2 Propose (and prove) the integrated most powerful test for 
θ =H : 00  versus θ ≠H : 01  with respect to that we are interested in 

obtaining the maximum integrated power of the test when values 
of the alternative parameter belong to the uniform function 

1, 0,1

0, 0

0, 1.

( )
[ ]

π θ =

θ ∈

θ <
θ >

⎧

⎨
⎪
⎪

⎩
⎪
⎪

 (Hint: Use a Bayes factor type procedure.)

3.1.3 Consider the test statistics from Wuestions 2.2.1, 3.1.1 and 3.1.2, 
say ML, L, and BL, respectively. Are the ML, L, and BL test sta-
tistics a martingale, submartingale or supermartingale under 
H0? Are the log-transformed values, log(ML), log(L), and log(BL) 
a martingale, submartingale or supermartingale under H0? 
How about under H1? Can you draw conclusions regarding the 
test statistics?
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 3.2 Assume a measurement model with autoregressive errors in the 
form of

 , , 0, 1, , ,1 0X i ni i i i iμ β= +ε ε = ε + ξ ξ = =− …

where …ξ =i ni , 1, , , are independent identically distributed (iid) 

with the distribution function ∫( )π −−

−∞
u du

u

2 exp( / 2)
1/2 2 . Suppose we 

are interested in the maximum likelihood ratio test for : 10H μ = −  
and …ε =i ni , 1, , are independent versus : 01H μ =  and i ni , 1, ,…ε =  
are dependent. Then complete the following:
Write the relevant test in an analytical closed form.
 Provide a schematic algorithm to evaluate the power of the test 
based on a Monte Carlo study.

 3.3 See Question 4, Section 13.1, Example 1.

Question 4 (15 points)

 4.1 Formulate and prove the optional stopping theorem for martingales 
(here provide formal definitions of objects that you use in this theo-
rem, e.g., the definition of a stopping time).

 4.2 Prove the Dub theorem (inequality) based on a nonnegative  
martingale.

 4.3 Prove the Ville and Wald inequality.

Example 2:

The PhD theory qualifying exam, Part I
8:30 AM–12:30 PM

This exam has 8 questions, some of which have subparts. Each question 
indicates its point value. The total is 100 points.

Show all your work. Justify all answers.
Good luck!

Question 1 (31 points)

 1.1 Let x, y denote real variables and i i1, 12 = − = − .
Show (prove) that = +ix x i xexp( ) cos( ) sin( ).

Compute ( )i i
 in the form of a real variable.

 1.2 Define the characteristic function φ t( ) of a random variable X. Prove 
that φ t( ) exists for all probability distributions and all real t.
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 1.3 Prove the following theorem (the inversion formula). Let y > x be real 

arguments of the distribution function ( ) { }= ≤F u X uPr , where ()F .  is 
a continuous function at the points x and y. Then

 F y F x
itx ity

it
t

t
dt∫ σ( ) ( )− =

π
− − − φ −

σ → −∞

∞
1

2
lim

exp( ) exp( )
( )exp(

2
) .

0

2 2

 1.4 See Question 1.2, Section 13.1, Example 2.

Question 2 (16 points)

Let …ε εd, ,1  be iid random variables from N(0,1). Assume we have data 
points …X Xn, ,1  that are iid observations and X1 has the density function f  

in a form of the density function of ∑ ( )ε
=

i
i

d
2

1
, where the integer parameter d 

is unknown and ≤d 10.

 2.1 Write the maximum likelihood ratio (MLR) statistic, MLn, and for-
mulate the MLR test for = θH EX:0 1 0 versus ≠ θH EX:1 1 0, where θ0 is 
known. (Hint: Use characteristic functions to derive the form of  f .)

 2.2 Propose, providing a proof, the integrated most powerful test for 
= θH EX:0 1 0versus ≠ θH EX:1 1 0 (here θ0 is known), provided that 

we are interested in obtaining the maximum integrated power of 
the test when values of the alternative parameter can have all pos-
sible values with no preference. (Hint: Use a Bayes factor type  
procedure.)

 2.3 Assume the sample size n is not large. How can we apply the tests 
from Questions 2.1 and 2.2, in practice, without analytical evalua-
tions of distribution functions of the test statistics? (i.e., assuming 
that you have a data set, how do you execute the tests?) Can you sug-
gest computational algorithms? If yes, write the relevant algorithms. 
(Justify all answers.)

Question 3 (8 points)

Assume we observe iid data points …X Xn, ,1  that follow a joint density 
function … θf x xn( , , ; )1 , where θ is an unknown parameter. Suppose we 
want to test for the hypothesis θ = θH :0 0 versus θ = θH :1 1, where θ θ,0 1 are 
known. In this case, propose (and give the relevant prove) the most power-

ful test. Examine theoretically asymptotic distributions of LR nnlog( )/  
(here LRn is the test statistic proposed by you) under H0 and H1, respectively. 

Show that →
→∞

LR n an
n

p

log( )/ , where the constant ≤a 0, under H0 and ≥a 0, 

under H1. (Hint: Use the central limit theorem, the proof of which should 
be present.)
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Question 4 (14 points)

 4.1 Formulate and prove the optional stopping theorem for martingales 
(here provide formal definitions of objects that you use, e.g., the def-
inition of a martingale).

 4.2 Prove the Wald theorem regarding the expectation of a random sum 
of iid random variables. Can you use the Wald theorem to calculate 

∑⎛
⎝
⎜

⎞

⎠
⎟

=

τ−

E Xi

i 1

1

, ∑⎛
⎝
⎜

⎞

⎠
⎟

=

τ+

E Xi

i 1

1

 and ∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

≤ ≤τ

E Xi

i1 /2

, where …X Xn, ,1  are iid with 

= −EX 11  and τ is a stopping time with τ =E 4.5? If yes, calculate the 
expectations.

 4.3 Formulate and prove the following inequalities:
Dub theorem (Inequality) based on nonnegative martingales.
The Ville and Wald inequality.

Question 5 (7 points)

See Question 4, Section 13.1, Example 1.

Question 6 (8 points)

Assume the measurement model with autoregressive errors in the form of

 , , 0, 1, , ,1 0X i ni i i i iμ β= + ε ε = ε + ξ ξ = =− …

where …ξ =i ni , 1, , , are independent identically distributed (iid) with the 

distribution function ∫( )π −−

−∞
u du

u

2 exp( / 2)
1/2 2 . We are interested in the 

maximum likelihood ratio test for 

: 10H μ = −  and …ε =i ni , 1, , are independent 

versus 

: 01H μ =  and …ε =i ni , 1, , are dependent.

Write the relevant test in an analytical closed form (here needed opera-
tions with joint densities and obtained forms of the relevant likelihoods 
should be explained).
Is the obtained test statistic, say L, a martingale/submartingale/supermar  
tingale, under H H/0 1?
Is log(L) a martingale/submartingale/supermartingale, under H0?
(The proofs should be shown.)
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Question 7 (8 points)

See Question 3.3, Section 13.2, Example 3.

Question 8 (7 points)

Let the stopping time have the form of ∑= ≥
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪=

N H n x Hi

i

n

( ) inf :
1

, where xi 
are iid random variables with >Ex 01 .

 8.1 Show that ∑ { }= ≥
=

∞

EN H P N H j
j

( ) ( )
1

. Is ∑∑= <
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪==

∞

EN H P x Hi

i

j

j

( )
11

? If 

not what do we need to correct this equation?

 8.2 Formulate (no proof is required) the central limit theorem related to 

the stopping time ∑= ≥
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪=

N H n X Hi

i

n

( ) inf :
1

, where > >X ii 0, 0, 

= > = σ < ∞EX a Var X0, ( )1 1
2 , and → ∞H . (Here the asymptotic dis-

tribution of N H( ) should be shown.)

Example 3:

The PhD theory qualifying exam, Part I
8:30AM–12:30PM

This exam has 5 questions, some of which have subparts. Each question 
indicates its point value. The total is 100 points.

Show all your work. Justify all answers.
Good luck!

Question 1 (19 points)

 1.1 Let x, y denote real variables and = −i 12 , where i denotes an imagi-

nary number. Compare i i(2 ) with −π + −πiexp( ) exp( ) (i.e., “=”, “<”, “>”). 
(Here the proof and needed definitions should be provided.)

 1.2 Obtain the characteristic function φ t( ) of a random variable X that 

has a normal distribution ( , )2N μ σ , where , var( ) 2EX Xμ σ= = . (Jus-
tify your answer.)

 1.3 See Question 1.3, Section 13.3, Example 2.
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Question 2 (32 points)

 2.1 Find, showing the proof, the asymptotic distribution of ∑ =
X ni

i

n
/

1

1/2 

as → ∞n , where the random variables …X Xn, ,1  are iid (independent 

identically distributed) with =EX 0,1  var( )1
2X σ= .

 2.2 See Question 2, Section 13.1, Example 3.

 2.3 Consider the stopping time ∑= ≥
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪=

N H n X Hi

i

n

( ) inf :
1

, where 

…> >X Xn0, , 01  are iid, , ( )1 1
2EX a Var X σ= < ∞ = < ∞. Find, showing 

a proof, an asymptotic ( → ∞H ) distribution of N H( ).

 2.4 Assume we observe iid data points …X Xn, ,1  that are from a known 
joint density function … θf x xn( , , ; )1 , where θ is an unknown param-
eter. We want to test for the hypothesis θ = θH :0 0 versus θ = θH :1 1, 
where θ θ,0 1 are known. In this case, propose (and give the relevant 
proof) the most powerful test statistic, say, LRn. Prove the asymptotic 

consistency of the proposed test: LR n an
n

p

log( )/ ,→
→∞

 where the con-

stant ≤a 0, under H0 and ≥a 0, under H1, just using that 

log
( )

( )
( )1

0

0∫ ⎛
⎝⎜

⎞
⎠⎟

< ∞
−∞

∞ f u
f u

f u duH

H
H  and log

( )

( )
( )1

0

1∫ ⎛
⎝⎜

⎞
⎠⎟

< ∞
−∞

∞ f u
f u

f u duH

H
H  (but 

without the constraint log
( )

( )
( ) ,

1

1

0
∫ ⎛

⎝⎜
⎞
⎠⎟

< ∞
+ε

−∞

∞ f u
f u

f u duH

H
H j  = ε >j 0,1, 0), 

where fH0 and fH1 are the density functions of X1 under H0 and H1, 

respectively. (You should define the limit value a and show ≤a 0, 
under H0 and ≥a 0, underH1.)

Question 3 (21 points)

 3.1 See Question 4, Section 13.2, Example 2.

 3.2 Assume you save your money in a bank and each day, i, you obtain a ran-
dom benefit >ri 5.5 that is independent of … −r ri, ,1 1; you also can obtain 

money via a risky game having each day 
{ }
{ }

=
= =

− = − =

⎧
⎨
⎪

⎩⎪
Z

Z

Z
i

i

i

10, Pr 10 1/ 3

5, Pr 5 2 / 3
 

dollars, …=i 0,1,  (random variables Zi are iid and independent of 
…r ri, ,1 ). You decide to stop the game when you collect $100, that is, 

when ∑( )+ ≥
=

Z ri i

i

100
1

 the first time. When you stop, what will be 
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your total expected benefit from the game (i.e., ∑( )
=

E Zi

i 1

)? In general, 

formulate and prove the needed theorems to illustrate this result. 
Relevant formal definitions of objects that you use (e.g., of a stopping 
time) should be presented. When you apply a theorem the corre-
sponding conditions should be checked.

 3.3 See Question 4.3, Section 13.3, Example 2.

Question 4 (7 points)

See Question 4, Section 13.1, Example 1.

Question 5 (21 points)

 5.1 See Question 7.1, Section 13.2, Example 3.

 5.2 See Question 7.2, Section 13.2, Example 3.

 5.3 Assume we survey …X Xn, , , ...1  iid observations and ( )θX N~ ,11 . 
Can we test for θ ≤ 0 versus θ > 0 with power 1? If yes, propose the 
test and formal arguments (proofs).

Comments. Regarding Question 3.2, we note that, defining the random vari-

able ∑( )τ = ≥ + ≥
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪=

n Z ri i

i

n

inf 1 : 100
1

, since ( )+ >Z ri i 0, we have, for a fixed N,

 

N Z r Z r e

eE Z r

e E Z r

i i

i
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i i
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N

Pr Pr 100 Pr exp
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1
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100
( ) 0. Pr 1.

1 1

1

1

1 1

∑ ∑
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( ) ( )
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⎛
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⎫
⎬
⎪

⎭⎪

≤ − +
⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

= − +
⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ → τ < ∞ =

= =

−

=

→∞

Then τ is a stopping time.
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Example 4:

The PhD theory qualifying exam, Part I
8:30 AM–12:30 PM

This exam has 5 questions, some of which have subparts. Each question 
indicates its point value. The total is 100 points.

Show all your work. Justify all answers.
Good luck!

Question 1 (23 points)

 1.1 See Question 1.1, Section 13.3, Example 1.

 1.2 Assume independent random variables ξ1 and ξ2 are identically dis-
tributed with

 u

u

u u
u

Pr

1, 1

( ) , 0 1

0, 0.

1
0.5{ }ξ < =

>
≤ ≤

<

⎧

⎨
⎪⎪

⎩
⎪
⎪

Derive the characteristic function φ t( ) of η = ξ ξmax( , )1 2 .

 1.3 Using characteristic functions, derive the analytical form of the dis-

tribution function of a χd
2-distributed random variable ξ, where d is 

the degree of freedom. (Hint: Use Gamma distributions.)

 1.4 See Question 1.2, Section 13.1, Example 2.

 1.5 See Question 1, Section 13.2, Example 4.

Question 2 (23 points)

Assume we have data points …X Xn, ,1  that are iid observations and = θEX1 . 
We would like to test for the hypothesis θ = θH :0 0 versus θ = θH :1 1.

 2.1 Let X1 have a density function f  with a known form that depends on 
θ. When θ1 is assumed to be known, propose the most powerful test 
statistic (a relevant proof should be shown).

 Is the couple (the corresponding test statistic and the sigma algebra 

…{ }σ X Xn, ,1 ) a martingale, submartingale, or supermartingale, 
under H0/under H1? (Justify your answer.)

Show (prove) that asymptotic distributions of ×−n( ) log1/2  of the 
test statistic, under H0 and H1, respectively. (Should you use a theo-
rem, show a relevant proof of the theorem.)
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How can one use the asymptotic result obtained under H0 to per-
form the test in practice? If possible, suggest an alternative method 
to evaluate the H0-distribution of the test statistic.

 2.2 Write the maximum likelihood ratio MLRn and formulate the MLR 
test based on …X Xn, ,1 . Find the asymptotic ( → ∞n ) distribution 
function of the statistic MLRn2 log( ), under H0.
Is the couple (the corresponding test statistic and sigma algebra 

…{ }σ X Xn, ,1 ) a martingale, submartingale or supermartingale under 
H0? (Justify your answer.)
Illustrate how one can use this asymptotic result to perform the test 
in practice? Propose (if it is possible) an alternative to this use of the 
H0-asymptotic distribution of the test statistic.

 2.3 Assume ,f  the density function of …X Xn, ,1 , and θ1 are unknown. 
Formulate the empirical likelihood ratio test statistic ELRn. Find the 
asymptotic ( → ∞n ) distribution function of the statistic ELRn2 log( ), 

under H0, provided that < ∞E X1
3

. How can one use this asymptotic 
result to perform the corresponding test, in practice? Propose (if it is 
possible) an alternative to this use of the H0-asymptotic distribution 
of the test statistic.

Question 3 (11 points)

Assume a measurement model with autoregressive error terms in the form 

 …μ β= + ε ε = ε + ξ ε = = =−, , 0, 0, 1, , ,1 0 0X X i ni i i i i

where …ξ =i ni , 1, ,  are independent identically distributed (iid) with a 
known density function εf u( ). Our data is based on observed …X Xn, ,1 .

 3.1 Obtain the likelihood function (the joint density function) 
…f X Xn( , , )1 , providing relevant formal arguments. The target likeli-

hood should be presented in terms based on εf . (Suggestion: Show 

that … �∏=f X X f Xn( , , ) ( )1 .)

 3.2 Let 1μ =  and suppose that we would like to test that …ε =i ni , 1, , , are 
independent identically distributed random variables. Propose an 
integrated most powerful test, showing the relevant proof, when our 
interest is for (0,1]β ∈  uniformly under the alternative hypothesis.
Is the couple, the corresponding test statistic and the sigma algebra 

, ,1X Xnσ { }… , a martingale, submartingale, or supermartingale under 
H0? (Justify your answer.)
Can you suggest a method for obtaining critical values of the test statistic?
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Question 4 (31 points)

 4.1 Formulate and prove the optional stopping theorem. Relevant for-
mal definitions of objects that you use (e.g., of martingales, a stop-
ping time) should be presented.

 4.2 Prove the Wald theorem regarding the expectation of a random sum 
of iid random variables.

 4.3 Suppose …> >X Xn0, , 01  are iid with =EX 11  and τ is a stopping 
time with τ =E 25. Can you use the Wald theorem to calculate

 ∑ ∑ ∑ ∑ ∑ ∑⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
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⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

=

τ+

=

τ

≤ + =

ν

=

ν +τ

=

ν −τ

E X E X E X E X E X E Xi

i

i

i

i

i i X X

i

i

i

i

i

i

, , , , , ,
1

1

1

/3

: 1 1 11 25

1 2 2

where n X nnmin : 21 { }= >v , n Xi

i

n

min : 100002

1

∑( )= >
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪=

v ? Justify your 
answers.

 4.4 See Question 4.3, Section 13.3, Example 2.

 4.5 See Question 2, Section 13.2, Example 3.

 4.6 See Question 4, Section 13.1, Example 1.

Question 5 (12 points)

 5.1 See Question 7.1, Section 13.2, Example 3.

 5.2 See Question 5.3, Section 13.3, Example 3.

Example 5:

The PhD theory qualifying exam, Part I
8:30 AM–12:30 PM

This exam has 5 questions, some of which have subparts. Each question 
indicates its point value. The total is 100 points.

Show all your work. Justify all answers.
Good luck!

Question 1 (8 points)

 1.1 Assume we observe …X X X, ,1 2 3  , which are independent identically 
distributed (iid) data points with μ=1EX  and an unknown variance. 
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To observe one X we should pay A dollars. We want to estimate μ 

using ∑=
=

X X NN i
i

N
/

1
. Propose a procedure to estimate μ mini-

mizing the risk function ( )
2

L n An E Xn μ( )= + −  with respect to n.

 1.2 Biomarker levels were measured from disease and healthy populations, 
providing iid observations = = = =X X X X0.39, 1.97, 1.03, 0.161 2 3 4  
that are assumed to be from a continuous distribution as well as iid 
observations = = = = − = −Y Y Y Y Y0.42, 0.29, 0.56, 0.68, 0.541 2 3 4 5  that 
are assumed to be from a continuous distribution, respectively. Define 
the receiver operating characteristic (ROC) curve and the area under 
the curve (AUC). Estimate nonparametrically the AUC. What can you 
conclude regarding the discriminating ability of the biomarker with 
respect to the disease?

Question 2 (28 points)

Define = −i 12 , where i is an imaginary number, i = −1.

 2.1 See Questions 1.1–1.3, Section 13.3, Example 2.

 2.2 Suppose the random variable η has a continuous density function and 
the characteristic function ( ) exp( / 2) exp( / 2) /( ), 12 2 2t it t t it i( )φ = − − − = − . 
We know that η = η + η1 2, where η N~ (0,1)1  and η2 has a continuous 
density function. Derive the density function of η2. Show how to 
formally calculate the density function using the inversion formula. 
(Suggestion: Use the Dirichlet integrals that are employed to prove 
the inversion formula.)

 2.3 Using characteristic functions, derive an analytical form of the dis-

tribution function of a χd
2-distributed random variable ξ, where d is 

the degree of freedom. (Hint: Use Gamma distributions.)

 2.4 See Question 1.2, Section 13.1, Example 2.

Question 3 (20 points)

 3.1 Assume we have two independent samples with data points 
…X Xn, ,1  and …Y Ym, ,1 , respectively. Let …X Xn, ,1  be iid random 

observations with density function θf xx X( | ) and let …Y Ym, ,1  denote 
iid random observations with density function θf xy Y( | ), where θX 

and θY  are unknown parameters. Define θn
Xˆ  and θm

Yˆ  to be the maxi-
mum likelihood estimators of θX and θY  based on …X Xn, ,1  and 
…Y Ym, ,1 , respectively. Given that θ = θX Y , derive the asymptotic dis-

tribution of + θ − θn m n
X

m
Y( ) (ˆ ˆ )0.5 , when → γm n/ , for a known fixed γ , 

as → ∞n . Show the relevant conditions and the proof. (Hint: Use 
that − = − + −a b a c c b( ) ( ).)
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 3.2 Assume we have data points …X Xn, ,1  that are iid observations and 
= θEX1 . Suppose we would like to test for the hypothesis θ = θH :0 0. 

Write the maximum likelihood ratio test statistic MLRn and formu-
late the MLR test based on …X Xn, ,1 . Find the asymptotic ( → ∞n ) 
distribution function of the statistic MLRn2 log( ), under H0.

Is the couple (the test statistic and sigma algebra …{ }σ X Xn, ,1 ) a martin-
gale, submartingale, or supermartingale, under H0? (Justify your answer.)
Illustrate how to apply this asymptotic result in practice.

 3.3 Suppose that we would like to test that iid observations …X Xn, ,1  are 
from the density function f x( )0  versus … θX X f xn, , ~ ( | )1 1 , where the 

parameter θ > 0 is unknown. Assume that ( )θ = θ − φ θf x f x x( | ) ( )exp ( )1 0 ,  
where φ is an unknown function. Write the most powerful test sta-
tistic and provide the corresponding proof.

Question 4 (28 points)

 4.1 Formulate and prove the optional stopping theorem. Relevant for-
mal definitions of objects that you use (e.g., martingales, a stopping 
time) should be presented.

 4.2 Prove the Wald theorem regarding the expectation of a random sum 
of iid random variables.

 4.3 Suppose …> >X Xn0, , 0,...1  are iid random variable with =EX 11  
and τ is a stopping time with τ =E 25. Can you use the Wald theorem 
to calculate

, , , , , ,

1

1

1

/3

: 1 1 11 25

1 2

E X E X E X E X E X E Xi

i

i

i

i

i i X X

i

i

i

i

i

i

∑ ∑ ∑ ∑ ∑ ∑
⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

=

τ+

=

τ

≤ + = =

+τ

=

−τv v v2

where min 1 : 2 ( 1)1

1

2n X n ni

i

n

∑= ≥ > +
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪=

v  and min : 100002

1

n Xi

i

n

∑= >
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪=

v  ? 

Justify your answers. (Suggestion: While analyzing 1v , you can use 

Chebyshev’s inequality and that →∞
+=

∑ = →∞
+

=lim
1

( 1)1
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( 1)
1.n
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n
n
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 4.4 Show the non-asymptotic inequality
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where …> >X Xn0, , 0,...1  are iid random variables with < ∞EX1  and

 ( ) min : .

1

∑= >
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪=

N t n X ti

i

n

 4.5 See Question 4.3, Section 13.3, Example 2.

 4.6 See Question 2, Section 13.2, Example 3.

 4.7 See Question 4, Section 13.1, Example 1.

Question 5 (16 points)

 5.1 See Question 7.1, Section 13.2, Example 3.

 5.2 See Question 5.3, Section 13.3, Example 3.

 5.3 See Question 7.2, Section 13.2, Example 3.

Comments. Regarding Question 2.2, we can use that = +exp( ) cos( ) sin( )itx tx i tx  
and the proof scheme related to the inversion theorem

 ∫( ) ( )− =
π

− − − φ − σ
σ→ −∞

∞1

2
lim

exp( ) exp( )
( )exp( )

0

2 2F y F x
itx ity

it
t t dt

in order to obtain the integrals ∫ ∫− −it x it it x itcos( (1 ))/( ), sin( (1 ))/( ). Regard-

ing Question 4.3, one can note that
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Example 6:

The PhD theory qualifying exam, Part I
8:30 AM–12:30 PM

This exam has 5 questions, some of which have subparts. Each question 
indicates its point value. The total is 100 points.

Show all your work. Justify all answers.

Good luck!

Question 1 (10 points)

 1.1 See Question 3, Section 13.2, Example 8.

 1.2 See Question 4,2, Section 13.1, Example 7.

Question 2 (29 points)

 2.1 Let X and Y be iid random variables with the characteristic func-

tion φ t( ). Show that ( )
2φ t  is a characteristic function of X–Y.

 2.2 Assume the random variables …X X X, ,1 2 3  are iid. The function φ t( ) 
is a characteristic function of X1. Define the characteristic function 
of …+ + + + νX X X X1 2 3 , where ν is an integer random variable 

independent of …X X X, ,1 2 3  with …{ }ν = = =k p kkPr , 1,2,

 2.3 See Questions 1.1–1.3, Section 13.3, Example 2.

 2.4 Suppose the random variable η has a continuous density function 
and the characteristic function ( ) exp( / 2) exp( / 2) /( ), 12 2 2f t it t t it i( )= − − − = − . 
We know that η = η + η1 2, where η N~ (0,1)1  and η2 has a continuous 
density function and η η,1 2 are independent random variables.
Derive the density function of η2.
Show how to formally calculate the density function of η2 using the 
inversion formula. (Suggestion: Use the Dirichlet integrals that are 
employed to prove the inversion formula.)

 2.5 Let …X Xn, ,1  be independent random variables with =EXi 0, 

…= σ < ∞ =EX i ni i , 1, ,2 2 . Use the method based on characteristic func-

tions to define the asymptotic distribution of /
1

2

1
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as → ∞n . What are the conditions on 2
iσ  and the moments of …X Xn, ,1  

you need, in order to show the result regarding the asymptotic distribu-
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1

2

1

0.5

Xi
i

n

i
i

n∑ ∑ σ
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

= =
?



355Examples of Exams

Question 3 (31 points)

 3.1 Suppose we observe iid data points …X Xn, ,1  that are from a known 
joint density function … θf x xn( , , ; )1 , where θ is an unknown 
parameter and we want to test the hypothesis θ = θH :0 0 versus 

θ = θH :1 1 , where θ θ,0 1 are known. Complete the following:

3.1.1 Derive (and give the relevant proof) the most powerful test statis-
tic, say, LRn for H0.

3.1.2 See Question 2.4, Section 13.3, Example 3.

 3.2 See Question 2, Section 13.1, Example 3.

 3.3 Let …X Xn, ,1  be observations that have joint density function f . f  
can be presented in a known parametric form depending on an 
unknown parameter θ.

3.3.1 Propose (and prove) the integrated most powerful test for θ =H : 00  
versus θ ≠H : 01  with respect to obtaining the maximum integrated 
power of the test when values of the alternative parameter satisfy 

the uniform distribution with the density ( )
[ ]

π θ =

θ ∈

θ <
θ >

⎧

⎨
⎪⎪

⎩
⎪
⎪

1, 0,1

0, 0

0, 1.

3.3.2 Write the maximum likelihood ratio MLRn and formulate the 
MLR test for θ =H : 00  versus θ ≠H : 01  based on …X Xn, ,1 . Find 
the asymptotic ( → ∞n ) distribution function of the statis-
tic MLRn2 log , under H0.
Illustrate how one can use this asymptotic result in practice.

3.3.3 Is the couple (MLRn and sigma algebra …{ }σ X Xn, ,1 ) a martin gale, 
submartingale, or supermartingale under H0? (Justify your answer.)

 3.4 Assume f , the density function of …X Xn, ,1 , is unknown, …X Xn, ,1  
are iid, and θ = EX1. Complete the following:

3.4.1 Formulate the empirical likelihood ratio test statistic ELRn.

3.4.2 Find the asymptotic ( → ∞n ) distribution function of the statistic 
( )ELRn2 log ( )ELRn2 log , under H0, provided that < ∞E X1

3
.

3.4.3 How does one use this asymptotic result to perform the corre-
sponding test, in practice?

 3.5 See Question 3.3, Section 13.3, Example 5.

Question 4 (25 points)

 4.1 Assume you save your money in a bank each day, i, and you obtain 
a random benefit >ri 5.5, where …r ri, , , ...1  are iid. You also can obtain 
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money via a risky game having each day 
{ }
{ }

=
= =

− = − =

⎧
⎨
⎪

⎩⎪
Z

Z

Z
i

i

i

10, Pr 10 1/ 3

5, Pr 5 2 / 3
 

dollars, …=i 0,1,  (random variables Zi are iid and independent of 
…r ri, ,1 ).

You decide to stop the game when you will collect $100, that is, when 

∑( )+ ≥
=

Z ri i

i

100
1

 the first time.

It is known that ( ) ( ) ( )− = − +⎡⎣ ⎤⎦
−

E sr s siexp 0.5 exp 10 / 3 2exp 5 / 3
1
 with 

=s 1/100.

4.1.1 When you stop, what will be your expected benefit from the risky 

game (i.e., ∑( )
=

E Zi

i 1

)? When you apply the needed theorem, cor-

responding conditions should be checked. (Here the equation 

{ }{ }ξ < = −ξ > −u uPr Pr exp( / ) exp( 1)  and Chebyshev’s inequality 
can be applied.)

4.1.2 Formulate and prove the needed theorems in general. Relevant 
formal definitions of objects that you use (e.g., of a stopping time) 
should be presented.

 4.2 Prove the Wald lemma regarding the expectation of a random sum 
of iid random variables.

 4.3 See Question 4.3, Section 13.3, Example 2.

 4.4 See Question 2, Section 13.2, Example 3.

 4.5  See Question 4, Section 13.1, Example 1.

Question 5 (5 points)

Confidence sequences for the median. See Question 5, Section 13.2, Example 4.
Compare this result with the corresponding well-known non-uniform 

confidence interval estimation.

Comments. Regarding Question 4.1, we note that, defining the random vari-

able ∑( )τ = ≥ + ≥
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪=

n Z ri i

i

n

inf 1 : 100
1

, since ( )+ >Z ri i 0, we have, for a fixed N ,
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⎛
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Then τ is a stopping time.
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Example 7:

The PhD theory qualifying exam, Part I
8:30–12:30

This exam has 10 questions, some of which have subparts. Each question 
indicates its point value. The total is 100 points.

Show all your work. Justify all answers.
Good luck!

Question 1 (9 points)

Assume a statistician has observed data points …X Xn, ,1  and developed a test 
statistic Tn to test the hypothesis H0 versus =H1  not H0 based on …X Xn, ,1 . We 
do not survey …X Xn, ,1 , but we know the value of Tn and that Tn is distributed 
accordingly to the known density functions f u( )0  and f u( )1  under H0 and H1, 
respectively.

 1.1 Can you propose a transformation of Tn (i.e., say, a function ( )G Tn ) that 
will improve the power of the test, when any other transformations, 

e.g., ( )K Tn  based on a function ( )K u , could provide less powerful tests, 

compared with the test based on ( )G Tn ? If you can construct such 
function G, you should provide a corresponding proof.

 1.2 What is a form of Tn that satisfies ( ) =G T Tn n? The corresponding 
proof must be shown here.
(Hint: The concept of the most powerful testing can be applied here.)

Question 2 (5 points)

Assume that …X Xn, ,1  are independent and identically distributed (iid) ran-

dom variables and …( )= + +X N S X Xn n~ (0,1),1 1 . N , an integer random 

variable, defines a stopping time. Calculate a value of ( )+E itS t NNexp / 22 , 

where = −i 12  and t is a real number. Proofs of the theorems you use in this 
question are not required to be shown.

Question 3 (4 points)

See Question 3, Section 13.2, Example 8.

Question 4 (7 points)

See Question 4,2, Section 13.1, Example 7.
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Question 5 (14 points)

 5.1 Assume independent random variables ξ1 and ξ2 are identically 
Exp(1)-distributed. Derive the characteristic function φ t( ) of 
η = ξ ξmin( , )1 2 .

 5.2 See Question 1.2, Section 13.1, Example 2.

 5.3 See Question 1, Section 13.2, Example 4.

Question 6 (3 points)

Let the observations …X Xn, ,1  be distributed with parameters ( )θ σ, , where σ 
is unknown. We want to test parametrically for the parameter θ (θ = 0 under 
H0). Define the Type I error rate of the test. Justify your answer.

Question 7 (20 points)

See Question 2, Section 13.3, Example 4.

Question 8 (10 points)

See Question 3, Section 13.3, Example 4.

Question 9 (23 points)

 9.1 Formulate and prove the optional stopping theorem. Relevant for-
mal definitions of objects that you use (e.g., martingales, a stopping 
time) should be present.

 9.2  See Question 4.3, Section 13.3, Example 2.

 9.3  See Question 2, Section 13.2, Example 3.

 9.4 See Question 4, Section 13.1, Example 1.

Question 10 (5 points)

See Question 5.3, Section 13.3, Example 3.

Comments. Regarding Question 2, we consider exp /2 | ,...,2
1 1E itS t n X Xn n{ }( ) ( )+ σ − , 

for a fixed n. It is clear that exp /2 | ,..., exp /2 ( )2
1 1 1

2E itS t n X X itS t n tn n n{ }( ) ( )( )+ σ = + ϕ− − , 

where ϕ t( ) is the characteristic function of X1. This implies

 exp / 2 | ,..., exp i ( 1)/ 2 .2
1 1 1

2{ }( ) ( )( )+ σ = + −− −E itS t n X X tS t nn n n
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Then { }( ) ( )+ σitS t n X Xn nexp / 2 , ,...,2
1  is a martingale and we can apply the 

optional stopping theorem.

Example 8:

The PhD theory qualifying exam, Part I
8:30AM–12:30PM

This exam has 5 questions, some of which have subparts. Each question 
indicates its point value. The total is 100 points.

Show all your work. Justify all answers.
Good luck!

Question 1 (17 points)

 1.1 Assume we have a test statistic, T, that is distributed as N(1, σ = 42 ) and  

N(2, σ = 52 ) under the null and alternative hypothesis, respectively. 
Define the expected p-value of the test statistic. Obtain the simple 
formal notation of the corresponding expected p-value, approximat-
ing it numerically via the use of the standard normal distribution 
curve below:

 1.2 Suppose we observe values of the likelihood ratio test statistics 
=LR i mi , 1,..., . The ratio LRi was calculated corresponding to the 

hypotheses =H H i mi iversus , 1,...,0 1 . It is assumed that 
=LR i mi , 1,..., ,  are independent and, for all =i m1,..., , Hki is a compo-

nent of the hypothesis =H kk , 0,1. Let the density functions f uLRi ( ) 

of =LR i mi , 1,..., , satisfy = = =f u H f u H k i mLR
k

LR
ki

i i( | ) ( | ), 0,1, 1,..., . 

−1.0
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Derive a likelihood ratio test statistic based on the observations 
LR LRm, ...,1  to test for H0 versus H1, providing relevant proofs of 
used propositions.

 1.3 Biomarker levels were measured from disease and healthy popula-
tions, providing the independent and identically distributed (iid) 
observations = = = =X X X X0.39, 1.97, 1.03, 0.161 2 3 4  that are assu-
med to be from a continuous distribution FX  as well as iid observa-
tions = = = = − = −Y Y Y Y Y0.42, 0.29, 0.56, 0.68, 0.541 2 3 4 5  that are assu- 
med to be from a continuous distribution FY, respectively. Define the 
receiver operating characteristic (ROC) curve and an area under the 
curve (AUC). Estimate the AUC nonparametrically.
Estimate the AUC, assuming FX  and FY are normal distribution func-
tions (the graph in Question 1.1 can help you).
What can you conclude regarding the discriminating ability of the 
biomarker with respect to the disease?

 1.4 See Question 4,2, Section 13.1, Example 7.

Question 2 (29 points)

 2.1 See Question 2.1, Section 13.3, Example 6.

 2.2 Let X  and Y  be independent random variables. Assume −X Y and 
+X Y are identically distributed. Show the characteristic function of 

Y  is a real value function.

 2.3 See Question 2, Section 13.2, Example 8.

 2.4 What is ln , 12( ) = −i i ?

 2.5 See Question 1.3, Section 13.3, Example 2.

 2.6 Suppose the random variable η has a continuous density function 

and the characteristic function ( )φ = − − − = −( ) exp(
2

/ 2) exp(
2

/ 2) / ( ),
2

1.t t t t ti i i  

We know that η = η + η1 2, where η N~ (0,1)1  and η2 has a continuous 
density function. Derive the density function of η2. Show formally 
how to obtain (calculate) the density function, using the inversion 
formula. (Suggestion: Use the Dirichlet integrals that are employed 
to prove the inversion formula.)

 2.7 See Question 2.5, Section 13.3, Example 6.

Question 3 (23 points)

 3.1 We observe iid data points …X Xn, ,1  that are from a known joint 
density function … θf x xn( , , ; )1 , where θ is an unknown parameter. 
We want to test for the hypothesis θ = θH :0 0 versus θ = θH :1 1, where 
θ θ,0 1 are known.
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3.1.1 Propose (and give a relevant prove) the most powerful test 
statistic, say, LRn for H0 versus H1.

3.1.2 See Question 2.4, Section 13.3, Example 3.

 3.2. Let …X Xn, ,1  be observations that have a joint density function f  
that can be presented in a known parametric form, depending on an 
unknown parameter θ.

3.2.1 Propose (and prove) an integrated most powerful test for θ =H : 00  
versus θ ≠H : 01  with respect to obtaining the maximum inte-
grated power of the test when values of the alternative parameter 
satisfy the uniform distribution function with the density 

1, 0,1

0, 0

0, 1.

( )
[ ]

π θ =

θ ∈

θ <
θ >

⎧

⎨
⎪
⎪

⎩
⎪
⎪

3.2.2 Write the maximum likelihood ratio MLRn and formulate the 
MLR test for θ =H : 00  versu θ ≠H : 01  based on …X Xn, ,1 . Find the 
asymptotic ( → ∞n ) distribution function of the statistic 

( )MLRn2 log , under H0.

3.2.3 Is the couple (MLRn and sigma algebra …{ }σ X Xn, ,1 ) a martin-
gale, submartingale, or supermartingale, under H0? (Justify your 
answer.)

 3.3 Assume ,f  the density function of …X Xn, ,1 , is unknown, …X Xn, ,1  
are iid and θ = EX1.

3.3.1 Define the empirical likelihood ratio test statistic ELRn.

3.3.2 Find the asymptotic ( → ∞n ) distribution function of the statistic 
( )ELRn2 log , under H0, provided that < ∞E X1

3
.

 3.4 See Question 3.3, Section 13.3, Example 5.

Question 4 (26 points)

 4.1. Assume you save your money in a bank account each day, i, and you 
obtain a random benefit >ri 5.5, …r ri, , , ...1  are iid. You also can obtain 

money via a risky game having each day 
{ }
{ }

=
= =

− = − =

⎧
⎨
⎪

⎩⎪
Z

Z

Z
i

i

i

11, Pr 10 1/ 3

5, Pr 5 2 / 3
 

dollars, …=i 0,1,  (random variables Zi are iid and independent of 
…r ri, ,1 ).

You decide to stop the game when you will collect $100, that is, when 

at a first time n: ∑ ( )+ ≥
=

Z ri i
i

n
100

1
.
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It is known that, for all t > 0 and j > 0, Pr / ( 1)
1

Z r t t j ji i
i

j∑ ( )( )+ ≤
⎧
⎨
⎪
⎩⎪

⎫
⎬
⎪
⎭⎪

= +
=

, when 

( )+ ≤t j j/ ( 1) 1, and ∑{ }( )+ ≤ =
=

Z r ti i
i

j
Pr 1

1
, when ( )+ ≥t j j/ ( 1) 1.

4.1.1 What will be your expected benefit from the risky game stopped 

at a first time n: ∑ ( )+ ≥
=

Z ri i
i

n
100

1
, that is, ∑⎛

⎝
⎜

⎞

⎠
⎟

=

E Zi

i 1

? When you 

apply a needed theorem, corresponding conditions should be 

checked. (Suggestion: Use that ∑ ( )+ =
=

∞
j j

i
1/ ( 1) 1

1
.)

4.1.2 Formulate and prove needed theorems in general. Relevant for-
mal definitions of objects that you use (e.g., of a stopping time) 
should be presented.

 4.2 Prove the optional stopping theorem.

 4.3 Formulate and prove the Dub theorem (inequality) based on non-
negative martingales.

 4.4 See Question 3, Section 13.2, Example 4.

 4.5 See Question 4, Section 13.1, Example 1.

 4.6 See Question 4.3, Section 13.1, Example 2.

Question 5 (5 points)

See Question 5.3, Section 13.3, Example 3.

Comments. Several relevant comments can be found with respect to the 
examples shown in the sections above. Regarding Question 4.1, we note that, 

defining the random variable ∑( )τ = ≥ + ≥
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪=

n Z ri i

i

n

inf 1 : 100
1

, since ( )+ >Z ri i 0, 
we have, for a fixed N ,
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Then τ is a stopping time with ∑ ∑( ) ( )τ = + <
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14
Examples of Course Projects

In this chapter we outline examples of projects that can be proposed for 
individuals or groups of students relative to the course material contained in 
this textbook. In order to work on the projects, students will be encouraged 
to state correctly the corresponding problems, read the relevant literature 
and provide a research result. The minimal expectation is that a Monte Carlo 
study is performed in the context of the corresponding project. We believe 
that interesting solutions related to the proposed projects have the potential 
to be published in statistical journals. This can motivate students to try to 
develop methodological approaches regarding the course projects.

14.1  Change Point Problems in the Model of Logistic 

Regression Subject to Measurement Errors

Assume we observe independent data points { }= =(0,1), 1,...,Y i ni  that satisfy 
the model

 )()( ) )( () )( (= = + −α − β ν < + + −α − β ν ≥− −
Pr 1| 1 exp ) (1 exp0 0

1
1 1

1
Y X X I i X I ii i i i ,

where α0, α1, β0, β1 and ν are parameters. The issue examined in this study is 
a change point problem of hypothesis testing, where ν ∉: [1, ]0H n  versus 

≤ ν ≤: 11H n, ν > 0 is unknown. In this statement we consider scenarios when 
{ }=, 1,...,X i ni  are unobserved, whereas the change point detection schemes 
should be based on { }= + ε =, , 1,...,Y Z X i ni i i i , where ε ε, ...,1 n denote the mea-
surement error terms.

14.2  Bayesian Inference for Best Combinations Based on 

Values of Multiple Biomarkers

In Section 7.5, we considered the best combinations of multiple biomarkers in 
the context of the ROC analysis. The proposed method extends the Su and 
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Liu (1993) concept to cases when prior information related to the parameters 
of biomarker distributions is assumed to be specified.

14.3  Empirical Bayesian Inference for Best Combinations 

Based on Values of Multiple Biomarkers

In the case of multivariate normally distributed data, Stein (1956) proved that 
when the dimension of the observed vectors is greater than or equal to three, 
the maximum likelihood estimators (MLEs) are inadmissible estimators of 
the corresponding parameters. James and Stein (1961) provided another esti-
mator that yields a frequentist risk (MSE) smaller than that of the MLEs. 
Efron and Morris (1972) showed that the James–Stein estimator belongs to a 
class of posterior empirical Bayes (PEB) point estimators in the Gaussian/
Gaussian model (Carlin and Louis, 2011). Su and Liu (1993) proposed the 
MLEs of best combinations based on multivariate normally distributed val-
ues of biomarkers. In this project, we evaluate an improvement of Su and 
Liu’s estimation scheme, using the PEB concept instead of the MLE.

14.4  Best Combinations Based on Log Normally Distributed 

Values of Multiple Biomarkers

Oftentimes measurements related to biological processes follow a log-normal 
distribution (see for details Limpert, et al., 2001; Vexler et al., 2016a, pp. 13–14). 
In this context, we assume, without the loss of generality, that two biomark-
ers are measured presenting log-normally distributed values of ( , )1 2X X  and 
( , )1 2Y Y  corresponding to the case and control populations. In general, 1X  and 

2X  can be dependent, and 1Y  can be dependent on 2Y . In order to apply the 
ROC curve analysis, one can use the following approaches: (1) the Su and Liu 
(1993) method, obtaining the best linear combination based on normally dis-
tributed (log( ), log( ))1 2X X  and (log( ), log( ))1 2Y Y  variables; (2) we can construct 
the best combination of the biomarker values using the distribution of 
( , )1 2X X  and ( , )1 2Y Y  (e.g., Pepe and Thompson, 2000); (3) the best linear com-
bination based on log-normally distributed ( , )1 2X X  and ( , )1 2Y Y  variables; 
(4) a technique that approximates the distribution function of a sum of 
log-normally distributed random variables via a log-normal distribution. 
The research question in this project is to compare these techniques, making 
suggestions when to employ method (1), (2), (3), or (4) with respect to differ-
ent values of the data distribution parameters, taking into account relative 
complexities of the methods.
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14.5  Empirical Likelihood Ratio Tests for Parameters of  

Linear Regressions

Consider, for example, the following relatively simple scenario. Observe inde-
pendent data points ( , ),....,( , )1 1Y X Y Xn n  that satisfy the linear regression 

model )( = β =| , 1,..., ,E Y X X i ni i i  where β is a parameter. Assume we are inter-
ested in the empirical likelihood ratio test of β = β:0 0H  versus β ≠ β:1 0H . 
Following the empirical likelihood methodology (Chapter 10), under the null 
hypothesis, the empirical likelihood can be presented as

 ∏ ∑ ∑ ( )= − β =
⎛

⎝
⎜

⎞

⎠
⎟

< <
= = =

max : 1, 0
0 ,..., 1

1 1 1

0
1

p p p Y X
p p

i

i

n

i

i

n

i

i

n

i i
n

,

when the empirical version of ( )( ) ( )− β = − β⎡⎣ ⎤⎦ = =| 0, 1,..., ,E Y X E E Y X X i ni i i i i  
is taken into account. However, we also have

 ( ) ( ) ( )( ) ( ) ( )− β = − β⎡⎣ ⎤⎦ = − β⎡⎣ ⎤⎦ = =| | 0, 1,...,E X Y X E E X Y X X E X E Y X X i ni i i i i i i i i i i .

Then, one can propose the −0H  empirical likelihood in the form

 ∏ ∑ ∑ ∑( ) ( )= − β = − β =
⎛

⎝
⎜

⎞

⎠
⎟

< <
= = = =
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i i i
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.

Moreover, it is clear that )( )( − β = = =0, 1,..., , 0,1,2,3...E X Y X i n ki
k

i i  Therefore, 
in general, we can define that the −0H  empirical likelihood is

 

∏ ∑ ∑

∑ ∑

( )

( ) ( )

β = = − β =
⎛

⎝
⎜

− β = − β =
⎞

⎠
⎟

< <
= = =

= =

( ) max : 1, 0,

0,..., 0

0
0 ,..., 1

1 1 1

0

1

0

1

0

1

L p p p Y X

p X Y X p X Y X

k
p p

i

i

n

i

i

n

i

i

n

i i

i

i

n

i i i i

i

n

i
k

i i

n

.

In this case, the nonparametric version of Wilks’ theorem regarding the 

empirical likelihood ratio test statistic β− / ( )0n Ln
k  can provide the result that 

β−2 log( / ( ))0n Ln
k  has an asymptotic chi-square distribution with + 1k  degrees 

of freedom under the null hypothesis. It can be anticipated that, for a fixed 
sample size n, relatively small values of k provide a “good” Type I error rate 
control via Wilks’ theorem, since k defines the number of constraints to be in 
effect when the empirical likelihood is derived. However, relatively large 
values of k will increase the power of the test. The question to be evaluated 
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in this study is the following: What are the optimal values of k that, depend-
ing on n, lead to an appropriate Type I error rate control and maximize the 
power of the empirical likelihood ratio test? Theoretically, this issue corre-
sponds to higher order approximations to the Type I error rate and the power 
of the test.

14.6 Penalized Empirical Likelihood Estimation

The penalized parametric likelihood methodology is well addressed in the 
modern statistical literature. In parallel with the penalized parametric likeli-
hood techniques, this research proposes and examines their nonparametric 
counterparts, using the material of Chapters 5, 10, Section 10.5, and methods 
shown in Qin and Lawless (1994).

14.7 An Improvement of the AUC-Based Interference

In Section 7.3.1, it is shown that, for the diseased population X N μ σ~ ( , )1 1
2  

and for the non-diseased population Y N μ σ~ ( , )2 2
2 , a closed form of the AUC 

is = Φ μ − μ
σ + σ

⎛

⎝
⎜

⎞

⎠
⎟

1 2

1
2

2
2

A . Then, in the case with μ = μ1 2 , the AUC cannot assist in 

detecting differences between the distributions of X  and Y  when σ ≠ σ1
2

2
2. 

Towards this end, we propose considering the AUC based on the random 

variables ( , )2Z X X  and ( , )2Z Y Y , where 2X , 2Y  are chi-square distributed and 

the function Z is chosen to maximize the AUC, { }>Pr ( , ) ( , )2 2Z X X Z Y Y  (see 
Section 7.5 in this context). As a first stage in this statement of the problem, 

we can consider = +( , )Z u v u av, where ( )= + λ > + λλarg max Pr 2 2a X X Y Y .

14.8  Composite Estimation of the Mean based on  

Log-Normally Distributed Observations

Let iid data points ,...,1X Xn be observed. Assume that 1X  is distributed as the 

random variable ξe , where ξ μ σ~ ( , )2N  with unknown parameters μ σ, 2. The 

problem is to estimate θ = 1EX . Since θ = μ + σexp( / 2)2 , the maximum 

likelihood estimation can provide the estimator θ = μ + σˆ exp( ˆ ˆ /2)2  of θ, where 
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μ σˆ , ˆ 2 are the maximum likelihood estimators of μ σ, 2. However, it can be 

anticipated that the simple estimator X ni

i

n

∑θ =
=

/
1

 of θ = 1EX  can outperform 

θ̂ for relatively small values of n. The research issue in this project is related 
to how to combine θ̂ and θ to optimize the confidence interval estimation of 
θ, depending on n.
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