Beginning
Java 8 Fundamentals

Language Syntax, Arrays, Data Types, Objects,
and Regular Expressions

COVERS JAVA 8 FEATURES
SUCH AS COMPACT PROFILES,
AND THE NEW DATE AND TIME APIS

Kishori Sharan
Foreword by John Zukowski, Co-Founding Author of Apress & Java expert

Apresse

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

Apress*

Contents at a Glance

FOrEWOKocoismmmmmssssnnnnmssssnnsnmssssnnsssssssnnsnnssssnssnsssssnnssnsssnnnnsssssnnnsnnsssnnnsnnsssnnnsnnsssnnnnnnnssnns XXV
About the AUtROrcccvcsriessis s ——————————_—— Xxvii
About the Technical REVIEWETccusesssssssssssmsssmsssmsssssssssssssssssssssssssssssssssssnssssssssssnsnsnnnss XXix
ACKNOWIEAYMENTS ...cccuriiiinnnniissssnnnmmssssnnnmmssssnnnsessssnnnnesssssnnsessssnnnsnssssnnnnessssnnnnsssssnnnnssssnnns XXxi
INtroduction........ccvveiiismns s —————=—————————_; Xxxiii
Chapter 1: Programming CONCEPLScuvceemrrmsssnmnnmsssssnnnssssssnnssssssssnsssssssnnssssssssnssssssnnnsssssnnns 1
Chapter 2: Writing Java Programsccuusssssssssssmmmmmsssnsssssnss 31
Chapter 3: Data TYPeS...cucurmrrsssmmmsssnmssssnnssssnnssssansssssnsesssnsesssnsesssnsesssnsesssnsesssnnesssnnssssnnssssns 61
Chapter 4: OPeratorsccccvummimssssssnmmmmmmmsssssss s 99
Chapter 5: Statements.........cccoinneemmmmnnsemmmmsssmmsss s ——————— 139
Chapter 6: Classes and ObJeCtScuucrrrsmmrsssanmssssnsssssnsssssnsssssnsesssnsesssnsesssnnesssnnesssnness 165
Chapter 7: The Object and Objects ClasSescuuururrrmmmmmsnnmnsssmmsssssssssssssssssssssssssssnnssssnsnss 281
Chapter 8: Wrapper ClasSescccurumusssmmmmmsssssnmmsssssnsnsssssssnssssssssnsssssssnsssssssnnssnssssnnnnnssns 317
Chapter 9: Exception Handlingcccccummsmmmmssssmmssssmssssssssssssssssssssssnsssssssesssnsesssnsssssnnsnss 335
Chapter 10: ASSErtioNSccccuiiisssmnnmsisssssnmsssssssnsssssssssesssssssnssssssnsnesssssnnsessssnnnsesssnnnnanssns 379
L LT) Gl B H Y (1 387
Chapter 12: Dates and TiMeS.....uuccurrmmsnnsnmmsssssnmssssssssesssssssssssssssssessssssnssssssnnsssssssnnnssssns 411
Chapter 13: Formatting Dataccccusemmmsemmmmssmmmmssssmsssssmsssassssssssssssnsssssssssssnssssanssssnnnsnss 485
Chapter 14: Regular EXPreSSionsuueesumsssssssmsssssssnssssssssnssssssnsnssssssnsnssssssnsnsssssnnnnssssss 519
Chapter 15: ArTAYS iuuieceuumissessmmmissssnmmmssssssmmssssssnsessssssnsesssssssssssssssssessssssnssssssnsnsssssnnnnsssnn 543

CONTENTS AT A GLANCE

Chapter 16: INheritanCe.......cccirrrisemnmmissssnmmsssssnnsssssssssssssssssssssssnnsssssssnsssssssnnnsessssnnnnsssns 583
Chapter 17: INterfaces......cciuummsmsmmsnnmmmmmmmsssssssss s sssssss s s s sesssssnnnnnnnsnnnss 643
Chapter 18: ENUM TYPES .ucviemerrrssssnnnmmssssnsnmsssssnsnssssssnsnssssssnssssssssnsnssssssnsnsssssnnnssssssnnnnsssss 705
Appendix A: Character ENCOAINGS ...cceeurrrssssnnnsssssssssssssssnssssssssnssssssssssssssssssssssssssnnnsssssnnns 727
Appendix B: Documentation Commentsccccuueemmmmmsssssmmmmsssssnmmmssssnmmmssssnsessssssmsssns 739
Appendix C: Compact Profilescucccimmmsemmmmmmssssnmmmssssssmmssssssmmmsssssnsssssssnsssssssssssssnnns 759
L1 . 775

vi

Introduction

How This Book Came About

My first encounter with the Java programming language was during a one-week Java training session in 1997. I did
not get a chance to use Java in a project until 1999. I read two Java books and took a Java 2 Programmer certification
examination. I did very well on the test, scoring 95 percent. The three questions that I missed on the test made me
realize that the books that I had read did not adequately cover details of all the topics necessary about Java. I made up
my mind to write a book on the Java programming language. So, I formulated a plan to cover most of the topics that a
Java developer needs to use the Java programming language effectively in a project, as well as to get a certification.
Iinitially planned to cover all essential topics in Java in 700 to 800 pages.

As I progressed, I realized that a book covering most of the Java topics in detail could not be written in 700 to
800 hundred pages. One chapter alone that covered data types, operators, and statements spanned 90 pages. I was
then faced with the question, “Should I shorten the content of the book or include all the details that I think a Java
developer needs?” I opted for including all the details in the book, rather than shortening its content to keep the
number of pages low. It has never been my intent to make lots of money from this book. I was never in a hurry to
finish this book because that rush could have compromised the quality and the coverage of its contents. In short, I
wrote this book to help the Java community understand and use the Java programming language effectively, without
having to read many books on the same subject. I wrote this book with the plan that it would be a comprehensive one-
stop reference for everyone who wants to learn and grasp the intricacies of the Java programming language.

One of my high school teachers used to tell us that if one wanted to understand a building, one must first
understand the bricks, steel, and mortar that make up the building. The same logic applies to most of the things that
we want to understand in our lives. It certainly applies to an understanding of the Java programming language. If you
want to master the Java programming language, you must start by understanding its basic building blocks. I have used
this approach throughout this book, endeavoring to build each topic by describing the basics first. In the book, you
will rarely find a topic described without first learning its background. Wherever possible, I have tried to correlate
the programming practices with activities in our daily life. Most of the books about the Java programming language
available in the market either do not include any pictures at all or have only a few. I believe in the adage, “A picture is
worth a thousand words.” To a reader, a picture makes a topic easier to understand and remember. I have included
plenty of illustrations in the book to aid readers in understanding and visualizing the contents. Developers who have
little or no programming experience have difficulty in putting things together to make it a complete program. Keeping
them in mind, the book contains over 240 complete Java programs that are ready to be compiled and run.

I spent countless hours doing research for writing this book. My main source of research was the Java Language
Specification, white papers and articles on Java topics, and Java Specification Requests (JSRs). I also spent quite a bit
of time reading the Java source code to learn more about some of the Java topics. Sometimes, it took a few months
researching a topic before I could write the first sentence on the topic. Finally, it was always fun to play with Java
programs, sometimes for hours, to add them to the book.

xxxiii

INTRODUCTION

Structure of the Book

This book contains 18 chapters and three appendixes. The chapters contain fundamental topics of Java such as
syntax, data types, operators, classes, objects, etc. The chapters are arranged in an order that aids learning the
Java programming language faster. The first chapter, “Programming Concepts,” explains basic concepts related to
programming in general, without going into too much technical details; it introduces Java and its features. The second
chapter, “Writing Java Programs,” introduces the first program using Java; this chapter is especially written for those
learning Java for the first time. Subsequent chapters introduce Java topics in an increasing order of complexity. The
new features of Java 8 are included wherever they fit in the chapter. The new Date-Time API, which is one of the
biggest addition in Java 8, has been discussed in great detail in over 80 pages in Chapter 12.

After finishing this book, to take your Java knowledge to the next level, two companion books are available by the
author: Beginning Java 8 Language Features (ISBN 978-1-4302-6658-7) and Beginning Java 8 APIs, Extensions, and
Libraries (ISBN 978-1-4302-6661-7).

Audience

This book is designed to be useful for anyone who wants to learn the Java programming language. If you are a beginner,
with little or no programming background, you need to read from the first chapter to the last, in order. The book
contains topics of various degrees of complexity. As a beginner, if you find yourself overwhelmed while reading a section
in a chapter, you can skip to the next section or the next chapter, and revisit it later when you gain more experience.

If you are a Java developer with an intermediate or advanced level of experience, you can jump to a chapter or to
a section in a chapter directly. If a section uses an unfamiliar topic, you need to visit that topic before continuing the
current one.

If you are reading this book to get a certification in the Java programming language, you need to read almost all
of the chapters, paying attention to all the detailed descriptions and rules. Most of the certification programs test your
fundamental knowledge of the language, not the advanced knowledge. You need to read only those topics that are part of
your certification test. Compiling and running over 240 complete Java programs will help you prepare for your certification.

If you are a student who is attending a class in the Java programming language, you need to read the first six
chapters of this book thoroughly. These chapters cover the basics of the Java programming languages in detail. You
cannot do well in a Java class unless you first master the basics. After covering the basics, you need to read only those
chapters that are covered in your class syllabus. I am sure, you, as a Java student, do not need to read the entire book

page-by-page.

How to Use This Book

This book is the beginning, not the end, for you to gain the knowledge of the Java programming language. If you are
reading this book, it means you are heading in the right direction to learn the Java programming language that will
enable you to excel in your academic and professional career. However, there is always a higher goal for you to achieve
and you must constantly work harder to achieve it. The following quotations from some great thinkers may help you
understand the importance of working hard and constantly looking for knowledge with both your eyes and mind open.

The learning and knowledge that we have, is, at the most, but little compared with that of which
we are ignorant.

—Plato

True knowledge exists in knowing that you know nothing. And in knowing that you know nothing,
that makes you the smartest of all.

—Socrates

XXXiv

INTRODUCTION

Readers are advised to use the API documentation for the Java programming language, as much as possible,
while using this book. The Java API documentation is the place where you will find a complete list of documentation
for everything available in the Java class library. You can download (or view) the Java API documentation from the
official web site of Oracle Corporation at www.oracle.com. While you read this book, you need to practice writing Java
programs yourself. You can also practice by tweaking the programs provided in the book. It does not help much in
your learning process if you just read this book and do not practice by writing your own programs. Remember that
“practice makes perfect,” which is also true in learning how to program in Java.

Source Code and Errata

Source code and errata for this book may be downloaded from www.apress.com/source-code.

Questions and Comments

Please direct all your questions and comments for the author to ksharan@jdojo.com.

XXXV

www.oracle.com
www.apress.com/source-code
http://ksharan@jdojo.com

CHAPTER 1

Programming Concepts

In this chapter, you will learn
e The general concept of programming
e Different components of programming
e Major programming paradigms

e The object-oriented paradigm and how it is used in Java

What Is Programming?

The term “programming” is used in many contexts. We will discuss its meaning in the context of human-to-computer
interaction. In the simplest terms, programming is the way of writing a sequence of instructions to tell a computer

to perform a specific task. The sequence of instructions for a computer is known as a program. A set of well-defined
notations is used to write a program. The set of notations used to write a program is called a programming language. The
person who writes a program is called a programmer. A programmer uses a programming language to write a program.

How does a person tell a computer to perform a task? Can a person tell a computer to perform any task or does a
computer have a predefined set of tasks that it can perform? Before we look at human-to-computer communication,
let’s look at human-to-human communication. How does a human communicate with another human? You
would say that human-to-human communication is accomplished using a spoken language, for example, English,
German, Hindji, etc. However, spoken language is not the only means of communication between humans. We
also communicate using written languages or using gestures without uttering any words. Some people can even
communicate sitting miles away from each other without using any words or gestures; they can communicate at
thought level.

To have a successful communication, it is not enough just to use a medium of communication like a spoken or
written language. The main requirement for a successful communication between two parties is the ability of both
parties to understand what is communicated from the other party. For example, suppose there are two people. One
person knows how to speak English and the other one knows how to speak German. Can they communicate with
each other? The answer is no, because they cannot understand each other’s language. What happens if we add an
English-German translator between them? We would agree that they would be able to communicate with the help of a
translator even though they do not understand each other directly.

Computers understand instructions only in binary format, which is a sequence of 0s and 1s. The sequence of
0s and 1s, which all computers understand, is called machine language or machine code. A computer has a fixed
set of basic instructions that it understands. Each computer has its own set of instructions. For example, 0010 may
be an instruction to add two numbers on one computer and 0101 is an instruction to add two numbers on another
computer. Therefore, programs written in machine language are machine-dependent. Sometimes machine code is
referred to as native code as it is native to the machine for which it is written. Programs written in machine language
are very difficult, if not impossible, to write, read, understand, and modify. Suppose you want to write a program that

CHAPTER 1 PROGRAMMING CONCEPTS

adds two numbers, 15 and 12. The program to add two numbers in machine language will look similar to the one
shown below. You do not need to understand the sample code written in this section. It is only for the purpose of
discussion and illustration.

0010010010 10010100000100110
0001000100 01010010001001010

The above instructions are to add two numbers. How difficult will it be to write a program in machine language
to perform a complex task? Based on the above code, you may now realize that it is very difficult to write, read, and
understand a program written in a machine language. But aren’t computers supposed to make our jobs easier, not
more difficult? We needed to represent the instructions for computers in some notations that were easier to write,
read, and understand, so computer scientists came up with another language called an assembly language. An
assembly language provides different notations to write instructions. It is little easier to write, read, and understand
than its predecessor, machine language. An assembly language uses mnemonics to represent instructions as opposed
to the binary (0s and 1s) used in machine language. A program written in an assembly language to add two numbers
looks similar to the following:

1i $t1, 15
add $to, $ti1, 12

If you compare the two programs written in the two different languages to perform the same task, you can
see that assembly language is easier to write, read, and understand than machine code. There is one-to-one
correspondence between an instruction in machine language and assembly language for a given computer
architecture. Recall that a computer understands instructions only in machine language. The instructions that are
written in an assembly language must be translated into machine language before the computer can execute them.
A program that translates the instructions written in an assembly language into machine language is called an
assembler. Figure 1-1 shows the relationship between assembly code, an assembler, and machine code.

A program in
assembly language

A program in

Input Assembler Output machine language

Figure 1-1. The relationship between assembly code, assembler, and machine code

Machine language and assembly language are also known as low-level languages. They are called low-level
languages because a programmer must understand the low-level details of the computer to write a program using
those languages. For example, if you were writing programs in machine and assembly languages, you would need
to know what memory location you are writing to or reading from, which register to use to store a specific value, etc.
Soon programmers realized a need for a higher-level programming language that could hide the low-level details
of computers from them. The need gave rise to the development of high-level programming languages like COBOL,
Pascal, FORTRAN, C, C++, Java, C#, etc. The high-level programming languages use English-like words, mathematical
notation, and punctuation to write programs. A program written in a high-level programming language is also called
source code. They are closer to the written languages that humans are familiar with. The instructions to add two
numbers can be written in a high-level programming language, for example. Java looks similar to the following:

int x = 15 + 27;

CHAPTER 1 PROGRAMMING CONCEPTS

You may notice that the programs written in a high-level language are easier and more intuitive to write, read,
understand, and modify than the programs written in machine and assembly languages. You might have realized
that computers do not understand programs written in high-level languages, as they understand only sequences of
0Os and 1s. So there’s a need for a way to translate a program written in a high-level language to machine language.
The translation is accomplished by a compiler, an interpreter, or a combination of both. A compiler is a program that
translates programs written in a high-level programming language into machine language. Compiling a program is an
overloaded phrase. Typically, it means translating a program written in a high-level language into machine language.
Sometimes it is used to mean translating a program written in a high-level programming language into a lower-level
programming language, which is not necessarily the machine language. The code that is generated by a compiler is
called compiled code. The compiled program is executed by the computer.

Another way to execute a program written in high-level programming language is to use an interpreter. An
interpreter does not translate the whole program into machine language at once. Rather, it reads one instruction
written in a high-level programming language at a time, translates it into machine language, and executes it. You
can view an interpreter as a simulator. Sometimes a combination of a compiler and an interpreter may be used to
compile and run a program written in a high-level language. For example, a program written in Java is compiled into
an intermediate language called bytecode. An interpreter, specifically called a Java Virtual Machine (JVM) for the
Java platform, is used to interpret the bytecode and execute it. An interpreted program runs slower than a compiled
program. Most of the JVMs today use just-in-time compilers (JIT), which compile the entire Java program into
machine language as needed. Sometimes another kind of compiler, which is called an ahead-of-time (AOT) compiler,
is used to compile a program in an intermediate language (e.g. Java bytecode) to machine language. Figure 1-2 shows
the relationship between the source code, a compiler, and the machine code.

A program in

Source Code Input Compiler Output intermediate or
‘ machine language

Figure 1-2. The relationship between source code, a compiler, and machine code

Components of a Programming Language

A programming language is a system of notations that are used to write instructions for computers. It can be described
using three components:

e Syntax
e Semantics
e Pragmatics

The syntax part deals with forming valid programming constructs using available notations. The semantics part
deals with the meaning of the programming constructs. The pragmatics part deals with the use of the programming
language in practice.

Like a written language (e.g. English), a programming language has a vocabulary and grammar. The vocabulary
of a programming language consists of a set of words, symbols, and punctuation marks. The grammar of a
programming language defines rules on how to use the vocabulary of the language to form valid programming
constructs. You can think of a valid programming construct in a programming language like a sentence in a written
language. A sentence in a written language is formed using the vocabulary and grammar of the language. Similarly,
a programming construct is formed using the vocabulary and the grammar of the programming language. The
vocabulary and the rules to use that vocabulary to form valid programming constructs are known as the syntax of the
programming language.

CHAPTER 1 PROGRAMMING CONCEPTS

In a written language, you may form a grammatically correct sentence, which may not have any valid meaning.
For example, “The stone is laughing.” is a grammatically correct sentence. However, it does not make any sense. In a
written language, this kind of ambiguity is allowed. A programming language is meant to communicate instructions
to computers, which have no room for any ambiguity. We cannot communicate with computers using ambiguous
instructions. There is another component of a programming language, which is called semantics. The semantics of
a programming language explain the meaning of the syntactically valid programming constructs. The semantics of a
programming language answer the question, “What does this program do when it is run on a computer?” Note that a
syntactically valid programming construct may not also be semantically valid. A program must be syntactically and
semantically correct before it can be executed by a computer.

The pragmatics of a programming language describe its uses and its effects on the users. A program written in
a programming language may be syntactically and semantically correct. However, it may not be easily understood
by other programmers. This aspect is related to the pragmatics of the programming language. The pragmatics are
concerned with the practical aspect of a programming language. It answers questions about a programming language
like its ease of implementation, suitability for a particular application, efficiency, portability, support for programming
methodologies, etc.

Programming Paradigms

The online Merriam-Webster’s Learner’s dictionary defines the word “paradigm” as follows:

“A paradigm is a theory or a group of ideas about how something should be done, made,
or thought about.”

In the beginning, it is a little hard to understand the word “paradigm” in a programming context. Programming
is about providing a solution to a real-world problem using computational models supported by the programming
language. The solution is called a program. Before we provide a solution to a problem in the form of a program,
we always have a mental view of the problem and its solution. Before I discuss how to solve a real-world problem
using a computational model, let’s take an example of a real-world social problem, one that has nothing to do with
computers.

Suppose there is a place on Earth that has a shortage of food. People in that place do not have enough food to eat.
The problem is “shortage of food.” Let’s ask three people to provide a solution to this problem. The three people are a
politician, a philanthropist, and a monk. A politician will have a political view about the problem and its solution. He
may think about it as an opportunity to serve his countrymen by enacting some laws to provide food to the hungry
people. A philanthropist will offer some money/food to help those hungry people because he feels compassion for
all humans and so for those hungry people. A monk will try to solve this problem using his spiritual views. He may
preach to them to work and make livings for themselves; he may appeal to rich people to donate food to the hungry;
or he may teach them yoga to conquer their hunger! Did you see how three people have different views about the
same reality, which is “shortage of food"? The ways they look at the reality are their paradigms. You can think of a
paradigm as a mindset with which a reality is viewed in a particular context. It is usual to have multiple paradigms,
which let one view the same reality differently. For example, a person who is a philanthropist and politician will have
his ability to view the “shortage of food” problem and its solution differently, once with his political mindset and once
with his philanthropist mindset. Three people were given the same problem. All of them provided a solution to the
problem. However, their perceptions about the problem and its solution were not the same. We can define the term
paradigm as a set of concepts and ideas that constitutes a way of viewing a reality.

Why do we need to bother about a paradigm anyway? Does it matter if a person used his political,
philanthropical, or spiritual paradigm to arrive at the solution? Eventually we get a solution to our problem. Don’t we?

CHAPTER 1 PROGRAMMING CONCEPTS

It is not enough just to have a solution to a problem. The solution must be practical and effective. Since the
solution to a problem is always related to the way the problem and the solution are thought about, the paradigm
becomes paramount. You can see that the solution provided by the monk may kill the hungry people before they can
get any help. The philanthropist’s solution may be a good short-term solution. The politician’s solution seems to be a
long term solution and the best one. It is always important to use the right paradigm to solve a problem to arrive at a
practical and the most effective solution. Note that one paradigm cannot be the right paradigm to solve every kind of
problem. For example, if a person is seeking eternal happiness, he needs to consult a monk and not a politician or a
philanthropist.

Here is a definition of the term “programming paradigm” by Robert W. Floyd, who was a prominent computer
scientist. He gave this definition in his 1978 ACM Turing Award lecture titled “The Paradigms of Programming.”

“A programming paradigm is a way of conceptualizing what it means to perform computation,
and how tasks that are to be carried out on a computer should be structured and organized.”

You can observe that the word “paradigm” in a programming context has a similar meaning to that used in the
context of daily life. Programming is used to solve a real-world problem using computational models provided by a
computer. The programming paradigm is the way you think and conceptualize about the real-world problem and its
solution in the underlying computational models. The programming paradigm comes into the picture well before you
start writing a program using a programming language. It is in the analysis phase when you use a particular paradigm
to analyze a problem and its solution in a particular way. A programming language provides a means to implement a
particular programming paradigm suitably. A programming language may provide features that make it suitable for
programming using one programming paradigm and not the other.

A program has two components, data and algorithm. Data is used to represent pieces of information. An
algorithm is a set of steps that operates on data to arrive at a solution to a problem. Different programming paradigms
involve viewing the solution to a problem by combining data and algorithms in different ways. Many paradigms are
used in programming. The following are some commonly used programming paradigms:

e Imperative paradigm
e Procedural paradigm
e Declarative paradigm
e Functional paradigm
e Logic paradigm

e Object-oriented paradigm

Imperative Paradigm

The imperative paradigm is also known as an algorithmic paradigm. In the imperative paradigm, a program consists
of data and an algorithm (sequence of commands) that manipulates the data. The data at a particular point in time
defines the state of the program. The state of the program changes as the commands are executed in a specific
sequence. The data is stored in memory. Imperative programming languages provide variables to refer to the memory
locations, an assignment operation to change the value of a variable, and other constructs to control the flow of a
program. In imperative programming, you need to specify the steps to solve a problem. Suppose you have an integer,
say 15, and you want to add 10 to it. Your approach would be to add 1 to 15 ten times and you get the result, 25. You
can write a program using an imperative language to add 10 to 15 as follows. Note that you do not need to understand
the syntax of the following code; just try to get the feeling of it.

CHAPTER 1 PROGRAMMING CONCEPTS

int num = 15; // num holds 15 at this point
int counter = 0; // counter holds 0 at this point

while(counter < 10) {
num = num + 1; // Modifying data in num
counter = counter + 1; // Modifying data in counter

}

// num holds 25 at this point

The first two lines are variable declarations that represent the data part of the program. The while loop represents
the algorithm part of the program that operates on the data. The code inside the while loop is executed 10 times. The
loop increments the data stored in the num variable by 1 in its each iteration. When the loop ends, it has incremented
the value of num by 10. Note that data in imperative programming is transient and the algorithm is permanent.
FORTRAN, COBOL, and C are a few examples of programming languages that support the imperative paradigm.

Procedural Paradigm

The procedural paradigm is similar to the imperative paradigm with one difference: it combines multiple commands
in a unit called a procedure. A procedure is executed as a unit. Executing the commands contained in a procedure is
known as calling or invoking the procedure. A program in a procedural language consists of data and a sequence of
procedure calls that manipulate the data. The following piece of code is typical code for a procedure named addTen:

void addTen(int num) {
int counter = 0;
while(counter < 10) {
num = num + 1; // Modifying data in num
counter = counter + 1; // Modifying data in counter

}

// num has been incremented by 10

The addTen procedure uses a placeholder (also known as parameter) num, which is supplied at the time of
its execution. The code ignores the actual value of num. It simply adds 10 to the current value of num. Let’s use the
following piece of code to add 10 to 15. Note that the code for addTen procedure and the following code are not written
using any specific programming language. They are provided here only for the purpose of illustration.

int x = 15; // x holds 15 at this point
addTen(x); // Call addTen procedure that will increment x by 10
// x holds 25 at this point

You may observe that the code in imperative paradigm and procedural paradigm are similar in structure. Using
procedures results in modular code and increases reusability of algorithms. Some people ignore this difference and
treat the two paradigms, imperative and procedural, as the same. Note that even if they are different, a procedural
paradigm always involves the imperative paradigm. In the procedural paradigm, the unit of programming is not a
sequence of commands. Rather, you abstract a sequence of commands into a procedure and your program consists
of a sequence of procedures instead. A procedure has side effects. It modifies the data part of the program as it
executes its logic. C, C++, Java, and COBOL are a few examples of programming languages that support the procedural
paradigm.

CHAPTER 1 PROGRAMMING CONCEPTS

Declarative Paradigm

In the declarative paradigm, a program consists of the description of a problem and the computer finds the solution.
The program does not specify how to arrive at the solution to the problem. It is the computer’s job to arrive at a
solution when a problem is described to it. Contrast the declarative paradigm with the imperative paradigm. In the
imperative paradigm, we are concerned about the “how” part of the problem. In the declarative paradigm, we are
concerned about the “what” part of the problem. We are concerned about what the problem is, rather than

how to solve it. The functional paradigm and the logic paradigm, which are described next, are subtypes of the
declarative paradigm.

Writing a database query using a structured query language (SQL) falls under programming based on the
declarative paradigm where you specify what data you want and the database engine figures out how to retrieve the
data for you. Unlike the imperative paradigm, the data is permanent and the algorithm is transient in the declarative
paradigm. In the imperative paradigm, the data is modified as the algorithm is executed. In the declarative paradigm,
data is supplied to the algorithm as input and the input data remains unchanged as the algorithm is executed. The
algorithm produces new data rather than modifying the input data. In other words, in the declarative paradigm,
execution of an algorithm does not produce side effects.

Functional Paradigm

The functional paradigm is based on the concept of mathematical functions. You can think of a function as an
algorithm that computes a value from some given inputs. Unlike a procedure in procedural programming, a function
does not have a side effect. In functional programming, values are immutable. A new value is derived by applying a
function to the input value. The input value does not change. Functional programming languages do not use variables
and assignments, which are used for modifying data. In imperative programming, a repeated task is performed using
aloop construct, for example, a while loop. In functional programming, a repeated task is performed using recursion,
which is a way in which a function is defined in terms of itself. In other words, it does some work, then calls itself.

A function always produces the same output when it is applied on the same input. A function, say add, that can
be applied to an integer x to add an integer n to it may be defined as follows:

int add(x, n) {

if (n ==0) {
return x;

}

else {

return 1 + add(x, n-1); // Apply add function recursively

}

Note that the add function does not use any variable and does not modify any data. It uses recursion. You can call
the add function to add 10 to 15 as follows:

add(15, 10); // Results in 25

Haskell, Erlang, and Scala are a few examples of programming languages that support the functional paradigm.

Tip Java 8 added a new language construct called a lambda expression, which can be used to perform functional
programming in Java.

CHAPTER 1 PROGRAMMING CONCEPTS

Logic Paradigm

Unlike the imperative paradigm, the logic paradigm focuses on the “what” part of the problem rather than how to
solve it. All you need to specify is what needs to be solved. The program will figure out the algorithm to solve it. The
algorithm is of less importance to the programmer. The primary task of the programmer is to describe the problem as
closely as possible. In the logic paradigm, a program consists of a set of axioms and a goal statement. The set of axioms
is the collection of facts and inference rules that make up a theory. The goal statement is a theorem. The program uses
deductions to prove the theorem within the theory. Logic programming uses a mathematical concept called a relation
from set theory. A relation in set theory is defined as a subset of the Cartesian product of two or more sets. Suppose
there are two sets, Persons and Nationality, which are defined as follows:

Person = {John, Li, Ravi}
Nationality = {American, Chinese, Indian}

The Cartesian product of the two sets, denoted as Person x Nationality, would be another set, as shown:

Person x Nationality = {{John, American}, {John, Chinese},
{John, Indian}, {Li, American}, {Li, Chinese},
{Li, Indian}, {Ravi, American}, {Ravi, Chinese},
{Ravi, Indian}}

Every subset of Person x Nationality is another set that defines a mathematical relation. Each element of a
relation is called a tuple. Let PersonNationality be a relation defined as follows:

PersonNationality = {{John, American}, {Li, Chinese}, {Ravi, Indian}}

In logic programming, you can use the PersonNationality relation as the collection of facts that are known to be
true. You can state the goal statement (or the problem) like

PersonNationality(?, Chinese)

which means “give me all names of people who are Chinese.” The program will search through the
PersonNationality relation and extract the matching tuples, which will be the answer (or the solution) to your
problem. In this case, the answer will be Li.

Prolog is an example of a programming language that supports the logic paradigm.

Object-Oriented Paradigm

In the object-oriented (OO) paradigm, a program consists of interacting objects. An object encapsulates data and
algorithms. Data defines the state of an object. Algorithms define the behavior of an object. An object communicates

with other objects by sending messages to them. When an object receives a message, it responds by executing one of

its algorithms, which may modify its state. Contrast the object-oriented paradigm with the imperative and functional
paradigms. In the imperative and functional paradigms, data and algorithms are separated, whereas in the object-oriented
paradigm, data and algorithms are not separate; they are combined in one entity, which is called an object.

Classes are the basic units of programming in the object-oriented paradigm. Similar objects are grouped into
one definition called a class. A class’ definition is used to create an object. An object is also known as an instance of
the class. A class consists of instance variables and methods. The values of instance variables of an object define the
state of the object. Different objects of a class maintain their states separately. That is, each object of a class has its
own copy of the instance variables. The state of an object is kept private to that object. That is, the state of an object
cannot be accessed or modified directly from outside the object. Methods in a class define the behavior of its objects.
A method is like a procedure (or subroutine) in the procedural paradigm. Methods can access/modify the state of the
object. A message is sent to an object by invoking one of its methods.

8

CHAPTER 1 PROGRAMMING CONCEPTS

Suppose you want to represent real-world people in your program. You will create a Person class and its instances
will represent people in your program. The Person class can be defined as shown in Listing 1-1. This example uses the
syntax of the Java programming language. You do not need to understand the syntax used in the programs that you are
writing at this point; I will discuss the syntax to define classes and create objects in subsequent chapters.

Listing 1-1. The Definition of a Person Class Whose Instances Represent Real-World Persons in a Program

package com.jdojo.concepts;

public class Person {
private String name;
private String gender;

public Person(String initialName, String initialGender) {
name = initialName;
gender = initialGender;

}

public String getName() {
return name;
}

public void setName(String newName) {
name = newName;
}

public String getGender() {
return gender;
}

The Person class includes three things:
e Two instance variables: name and gender.
e One constructor: Person(String initialName, String initialGender)
o Three methods: getName(), setName(String newName), and getGender()

Instance variables store internal data for an object. The value of each instance variable represents the value of a
corresponding property of the object. Each instance of the Person class will have a copy of name and gender data. The
values of all properties of an object at a point in time (stored in instance variables) collectively define the state of the
object at that time. In the real world, a person possesses many properties, for example, name, gender, height, weight,
hair color, addresses, phone numbers, etc. However, when you model the real-world person using a class, you include
only those properties of the person that are relevant to the system being modeled. For this current demonstration, let’s
model only two properties, name and gender, of a real-world person as two instance variables in the Person class.

A class contains the definition (or blueprint) of objects. There needs to be a way to construct (to create or to
instantiate) objects of a class. An object also needs to have the initial values for its properties that will determine its
initial state at the time of its creation. A constructor of a class is used to create an object of that class. A class can have
many constructors to facilitate the creation of its objects with different initial states. The Person class provides one
constructor, which lets you create its object by specifying the initial values for name and gender. The following snippet
of code creates two objects of the Person class:

Person john = new Person("John Jacobs", "Male");
Person donna = new Person("Donna Duncan", "Female");

CHAPTER 1 PROGRAMMING CONCEPTS

The first object is called john with John Jacobs and Male as the initial values for its name and gender properties,
respectively. The second object is called donna with Donna Duncan and Female as the initial values for its name and
gender properties, respectively.

Methods of a class represent behaviors of its objects. For example, in the real world, a person has a name and his
ability to respond when he is asked for his name is one of his behaviors. Objects of the Person class have abilities to
respond to three different messages: getName, setName, and getGender. The ability of an object to respond to a message
is implemented using methods. You can send a message, say getName, to a Person object and it will respond by returning
its name. It is the same as asking “What is your name?” and having the person respond by telling you his name.

String johnName = john.getName(); // Send getName message to john
String donnaName = donna.getName(); // Send getName message to donna

The setName message to the Person object asks him to change his current name to a new name. The following
snippet of code changes the name of the donna object from Donna Duncan to Donna Jacobs:

donna.setName("Donna Jacobs");

If you send the getName message to donna object at this point, it will return Donna Jacobs and not Donna Duncan.

You may notice that your Person objects do not have the ability to respond to a message such as - setGender.
The gender of Person object is set when the object is created and it cannot be changed afterwards. However, you
can query the gender of a Person object by sending getGender message to it. What messages an object may (or may
not) respond to is decided at design-time based on the need of the system being modeled. In the case of the Person
objects, we decided that they would not have the ability to respond to the setGender message by not including a
setGender(String newGender) method in the Person class.

Figure 1-3 shows the state and interface of the Person object called john.

A Person object

State of a Person

getName — object
: | . _ &
Interface of a setName |- . :
Person object I
getGender

Figure 1-3. The state and the interface for a Person object

The object-oriented paradigm is a very powerful paradigm for modeling real-world phenomena in a computational
model. We are used to working with objects all around us in our daily life. The object-oriented paradigm is natural
and intuitive as it lets you think in terms of objects. However, it does not give you the ability to think in terms of objects
correctly. Sometimes the solution to a problem does not fall into the domain of an object-oriented paradigm. In such
cases, you need to use the paradigm that suits the problem domain the most. The object-oriented paradigm has a
learning curve. It is much more than just creating and using objects in your program. Abstraction, encapsulation,
polymorphism, and inheritance are some of the important features of the object-oriented paradigm. You must
understand and be able to use these features to take full advantage of the object-oriented paradigm. I will discuss these
features of the object-oriented paradigm in the sections to follow. In subsequent chapters, I will discuss these features
and how to implement them in a program in detail.

10

CHAPTER 1 PROGRAMMING CONCEPTS

To name a few, C++, Java and C# (pronounced as C sharp) are programming languages that support the
object-oriented paradigm. Note that a programming language itself is not object-oriented. It is the paradigm that is
object-oriented. A programming language may or may not have features to support the object-oriented paradigm.

What Is Java?

Java is a general purpose programming language. It has features to support programming based on the
object-oriented, procedural, and functional paradigms. You often read a phrase like “Java is an object-oriented
programming language.” What is meant is that the Java language has features that support the object-oriented paradigm.
A programming language is not object-oriented. It is the paradigm that is object-oriented, and a programming
language may have features that make it easy to implement the object-oriented paradigm. Sometimes programmers
have misconceptions that all programs written in Java are always object-oriented. Java also has features that support
the procedural and functional paradigms. You can write a program in Java that is a 100% procedural program without
an iota of object-orientedness in it.

The initial version of the Java platform was released by Sun Microsystems (part of Oracle Corporation since
January 2010) in 1995. Development of the Java programming language was started in 1991. Initially, the language was
called Oak and it was meant to be used in set-top boxes for televisions.

Soon after its release, Java became a very popular programming language. One of the most important features
for its popularity was its “write once, run anywhere” (WORA) feature. This feature lets you write a Java program
once and run it on any platform. For example, you can write and compile a Java program on UNIX and run it on
Microsoft Windows, Macintosh, or UNIX machine without any modifications to the source code. WORA is achieved
by compiling a Java program into an intermediate language called bytecode. The format of bytecode is platform-
independent. A virtual machine, called the Java Virtual Machine (JVM), is used to run the bytecode on each platform.
Note that JVM is a program implemented in software. It is not a physical machine and this is the reason it is called a
“virtual” machine. The job of a JVM is to transform the bytecode into executable code according to the platform it is
running on. This feature makes Java programs platform-independent. That is, the same Java program can be run on
multiple platforms without any modifications.

The following are a few characteristics behind Java’s popularity and acceptance in the software industry:

e Simplicity
e Wide variety of usage environments
e Robustness

Simplicity may be a subjective word in this context. C++ was the popular and powerful programming language
widely used in the software industry at the time Java was released. If you were a C++ programmer, Java would provide
simplicity for you in its learning and use over the C++ experience you had. Java retained most of the syntax of C/C++,
which was helpful for C/C++ programmers trying to learn this new language. Even better, it excluded some of the most
confusing and hard-to-use-correctly features (though powerful) of C++. For example, Java does not have pointers and
multiple inheritance, which are present in C++.

If you are learning Java as your first programming language, whether it is a simple language to learn may not be
true for you. This is the reason why I said that the simplicity of Java or any programming language is very subjective.
The Java language and its libraries (a set of packages containing Java classes) have been growing ever since its first
release. You will need to put in some serious effort in order to become a serious Java developer.

Java can be used to develop programs that can be used in different environments. You can write programs in
Java that can be used in a client-server environment. The most popular use of Java programs in its early days was
to develop applets. An applet is a Java program that is embedded in a web page, which uses the HyperText Markup
Language (HTML), and is displayed in a web browser such as Microsoft Internet Explorer, Google Chrome, etc. An
applet’s code is stored on a web server, downloaded to the client machine when the HTML page containing the
reference to the applet is loaded by the browser, and run on the client machine. Java includes features that make
it easy to develop distributed applications. A distributed application consists of programs running on different

11

CHAPTER 1 PROGRAMMING CONCEPTS

machines connected through a network. Java has features that make it easy to develop concurrent applications.
A concurrent application has multiple interacting threads of execution running in parallel. I will discuss these features
of the Java platform in detail in subsequent chapters in this book.

Robustness of a program refers to its ability to handle unexpected situations reasonably. The unexpected
situation in a program is also known as an error. Java provides robustness by providing many features for error
checking at different points during a program’s lifetime. The following are three different types of errors that may
occur in a Java program:

e Compile-time error
e Runtime error
e Logic error

Compile-time errors are also known as syntax errors. They are caused by incorrect use of the Java language
syntax. Compile-time errors are detected by the Java compiler. A program with a compile-time error does not compile
into bytecode until the errors are corrected. Missing a semicolon at the end of a statement, assigning a decimal value
such as 10.23 to a variable of integer type, etc. are examples of compile-time errors.

Runtime errors occur when a Java program is run. This kind of error is not detected by the compiler because
a compiler does not have all of the runtime information available to it. Java is a strongly typed languages and it has
arobust type checking at compile-time as well as runtime. Java provides a neat exception handling mechanism to
handle runtime errors. When a runtime error occurs in a Java program, the JVM throws an exception, which the
program may catch and deal with. For example, dividing an integer by zero (e.g. 17/0) generates a runtime error. Java
avoids critical runtime errors, such as memory overrun and memory leaks, by providing a built-in mechanism for
automatic memory allocation and deallocation. The feature of automatic memory deallocation is known as garbage
collection.

Logic errors are the most critical errors in a program, and they are hard to find. They are introduced by the
programmer by implementing the functional requirement incorrectly. This kind of error cannot be detected by a Java
compiler or Java runtime. They are detected by application testers or users when they compare the actual behavior of
a program with its expected behavior. Sometimes a few logic errors can sneak into the production environment and
they go unnoticed even after the application is decommissioned.

An error in a program is known as a bug. The process of finding and fixing bugs in a program is known as
debugging. All modern integrated development environments (IDEs) such as NetBeans, Eclipse, JDeveloper, JBuilder,
etc, provide programmers with a tool called a debugger, which lets them run the program step-by-step and inspect the
program’s state at every step to detect the bug. Debugging is a reality of programmer’s daily activities. If you want to
be a good programmer, you must learn and be good at using the debuggers that come with the development tools that
you use to develop your Java programs.

The Object-Oriented Paradigm and Java

The object-oriented paradigm supports four major principles: abstraction, encapsulation, inheritance, and
polymorphism. They are also known as four pillars of the object-oriented paradigm. Abstraction is the process of
exposing the essential details of an entity, while ignoring the irrelevant details, to reduce the complexity for the users.
Encapsulation is the process of bundling data and operations on the data together in an entity. Inheritance is used to
derive a new type from an existing type, thereby establishing a parent-child relationship. Polymorphism lets an entity
take on different meanings in different contexts. The four principles are discussed in detail in the sections to follow.

12

CHAPTER 1 PROGRAMMING CONCEPTS

Abstraction

A program provides solutions to a real-world problem. The size of the program may range from a few lines to a few
million lines. It may be written as a monolithic structure running from the first line to the millionth line in one place.
A monolithic program becomes harder to write, understand, and maintain if its size is over 25 to 50 lines. For easier
maintenance, a big monolithic program must be decomposed into smaller subprograms. The subprograms are then
assembled together to solve the original problem. Care must be taken when a program is being decomposed. All
subprograms must be simple and small enough to be understood by themselves, and when assembled together, they
must solve the original problem.

Let’s consider the following requirement for a device:

Design and develop a device that will let its user type text using all English letters, digits,
and symbols.

One way to design such a device is to provide a keyboard that has keys for all possible combinations of all letters,
digits, and symbols. This solution is not reasonable as the size of the device will be huge. You may realize that we are
talking about designing a keyboard. Look at your keyboard and see how it has been designed. It has broken down the
problem of typing text into typing a letter, a digit, or a symbol one at a time, which represents the smaller part of the
original problem. If you can type all letters, all digits, and all symbols one at a time, you can type text of any length.

Another decomposition of the original problem may include two keys: one to type a horizontal line and another
to type a vertical line, which a user can use to type in E, T, I, F, H, and L because these letters consist of only horizontal
and vertical lines. With this solution, a user can type six letters using the combination of just two keys. However, with
your experience using keyboards, you may realize that decomposing the keys so that a key can be used to type in only
part of a letter is not a reasonable solution, although it is a solution.

Why is providing two keys to type six letters not a reasonable solution? Aren’t we saving space and number of
keys on the keyboard? The use of the phrase “reasonable” is relative in this context. From a purist point of view, it may
be a reasonable solution. My reasoning behind calling it “not reasonable” is that it is not easily understood by users.

It exposes more details to the users than needed. A user would have to remember that the horizontal line is placed at
the top for T and at bottom for L. When a user gets a separate key for each letter, he does not have to deal with these
details. It is important that the subprograms that provide solutions to parts of the original problem must be simplified
to have the same level of detail to work together seamlessly. At the same time, a subprogram should not expose details
that are not necessary for someone to know in order to use it.

Finally, all keys are mounted on a keyboard and they can be replaced separately. If a key is broken, it can
be replaced without worrying about other keys. Similarly, when a program is decomposed into subprograms, a
modification in a subprogram should not affect other subprograms. Subprograms can also be further decomposed by
focusing on a different level of detail and ignoring other details. A good decomposition of a program aims at providing
the following characteristics:

e Simplicity
e Isolation
e Maintainability

Each subprogram should be simple enough to be understood by itself. Simplicity is achieved by focusing on the
relevant pieces of information and ignoring the irrelevant ones. What pieces of information are relevant and what are
irrelevant depends on the context.

Each subprogram should be isolated from other subprograms so that any changes in a subprogram should have
localized effects. A change in one subprogram should not affect any other subprograms. A subprogram defines an
interface to interact with other subprograms. The inner details about the subprogram are hidden from the outside
world. As long as the interface for a subprogram remains unchanged, the changes in its inner details should not affect
the other subprograms that interact with it.

Each subprogram should be small enough to be written, understood, and maintained easily.

13

CHAPTER 1 PROGRAMMING CONCEPTS

All of the above characteristics are achieved during decomposition of a problem (or program that solves a
problem) using a process called abstraction. What is abstraction? Abstraction is a way to perform decomposition of a
problem by focusing on relevant details and ignoring the irrelevant details about it in a particular context. Note that
no details about a problem are irrelevant. In other words, every detail about a problem is relevant. However, some
details may be relevant in one context and some in another. It is important to note that it is the “context” that decides
what details are relevant and what are irrelevant. For example, consider the problem of designing and developing a
keyboard. For a user’s perspective, a keyboard consists of keys that can be pressed and released to type text. Number,
type, size, and position of keys are the only details that are relevant to the users of a keyboard. However, keys are not
the only details about a keyboard. A keyboard has an electronic circuit and it is connected to a computer. A lot of
things occur inside the keyboard and the computer when a user presses a key. The internal workings of a keyboard are
relevant for keyboard designers and manufactures. However, they are irrelevant to the users of a keyboard. You can
say that different users have different views of the same thing in different contexts. What details about the thing are
relevant and what are irrelevant depends on the user and the context.

Abstraction is about considering details that are necessary to view the problem in the way that is appropriate in
a particular context and ignoring (hiding or suppressing or forgetting) the details that are unnecessary. Terms like
“hiding” and “suppressing” in the context of abstraction may be misleading. These terms may mean hiding some
details of a problem. Abstraction is concerned with which details of a thing should be considered and which should
not for a particular purpose. It does imply hiding of the details. How things are hidden is another concept called
information hiding, which is discussed in the following section.

The term “abstraction” is used to mean one of the two things: a process or an entity. As a process, it is a technique
to extract relevant details about a problem and ignore the irrelevant details. As an entity, it is a particular view of a
problem that considers some relevant details and ignores the irrelevant details.

Abstraction for Hiding Complexities

Let’s discuss the application of abstraction in real-world programming. Suppose you want to write a program that will
compute the sum of all integers between two integers. Suppose you want to compute the sum of all integers between
10 and 20. You can write the program as follows. Do not worry if you do not understand the syntax used in programs
in this section; just try to grasp the big picture of how abstraction is used to decompose a program.

int sum = 0;
int counter = 10;
while(counter <= 20) {
sum = sum + counter;
counter = counter + 1;

}
System.out.println(sum);

This snippet of code willadd 10 + 11 + 12 + ... + 20 and print 165.
Suppose you want to compute sum of all integers between 40 and 60. Here is the program to achieve just that:

int sum = 0;
int counter = 40;
while(counter <= 60) {
sum = sum + counter;
counter = counter + 1;

}
System.out.println(sum);

14

CHAPTER 1 PROGRAMMING CONCEPTS

This snippet of code will perform the sum of all integers between 40 and 60, and it will print 1050. Note the
similarities and differences between the two snippets of code. The logic is the same in both. However, the lower limit
and the upper limit of the range are different. If you can ignore the differences that exist between the two snippets of
code, you will be able to avoid the duplicating of logic in two places.

Let’s consider the following snippet of code:

int sum = 0;

int counter = lowerLimit;

while(counter <= upperLimit) {
sum = sum + counter;
counter = counter + 1;

}
System.out.println(sum);

This time, you did not use any actual values for the lower and upper limits of any range. Rather, you used
lowerLimit and upperLimit placeholders that are not known at the time the code is written. By using lowerLimit and
upperLimit placeholders in your code, you are hiding the identity of the lower and upper limits of the range. In other
words, you are ignoring their actual values when writing the above piece of code. You have applied the process of
abstraction in the above code by ignoring the actual values of the lower and upper limits of the range.

When the above piece of code is executed, the actual values must be substituted for lowerLimit and upperLimit
placeholders. This is achieved in a programming language by packaging the above snippet of code inside a module
(subroutine or subprogram) called a procedure. The placeholders are defined as formal parameters of that procedure.
Listing 1-2 has the code for such a procedure.

Listing 1-2. A Procedure Named getRangeSum to Compute the Sum of All Integers Between Two Integers

int getRangeSum(int lowerLimit, int upperLimit) {
int sum = 0;
int counter = lowerLimit;
while(counter <= upperLimit) {
sum = sum + counter;
counter = counter + 1;

}

return sum;

A procedure has a name, which is getRangeSum in this case. A procedure has a return type, which is specified
just before its name. The return type indicates the type of value that it will return to its caller. The return type is int
in this case, which indicates that the result of the computation will be an integer. A procedure has formal parameters
(possibly zero), which are specified within parentheses following its name. A formal parameter consists of data type
and a name. In this case, the formal parameters are named as lowerLimit and upperLimit, and both are of the data
type int. It has a body, which is placed within braces. The body of the procedure contains the logic.

When you want to execute the code for a procedure, you must pass the actual values for its formal parameters.
You can compute and print the sum of all integers between 10 and 20 as follows:

int s1 = getRangeSum(10, 20);
System.out.println(s1);

This snippet of code will print 165.

15

CHAPTER 1 PROGRAMMING CONCEPTS

To compute the sum all integers between 40 and 60, you can execute the following snippet of code:

int s2 = getRangeSum(40, 60);
System.out.println(s2);

This snippet of code will print 1050, which is exactly the same result you had achieved before.

The abstraction method that you used in defining the getRangeSum procedure is called abstraction by
parameterization. The formal parameters in a procedure are used to hide the identity of the actual data on which
the procedure’s body operates. The two parameters in the getRangeSum procedure hide the identity of the upper and
lower limits of the range of integers. Now you have seen the first concrete example of abstraction. Abstraction is a vast
topic. I will cover some more basics about abstraction in this section.

Suppose a programmer writes the code for the getRangeSum procedure as shown in Listing 1-2 and another
programmer wants to use it. The first programmer is the designer and writer of the procedure; the second one is the
user of the procedure. What pieces of information does the user of the getRangeSum procedure need to know in order
to use it?

Before you answer this question, let’s consider a real-world example of designing and using a DVD player
(Digital Versatile Disc player). A DVD player is designed and developed by electronic engineers. How do you use a
DVD player? Before you use a DVD player, you do not open it to study all the details about its parts that are based on
electronics engineering theories. When you buy it, it comes with a manual on how to use it. A DVD player is wrapped
in a box. The box hides the details of the player inside. At the same time, the box exposes some of the details about the
player in the form of an interface to the outside world. The interface for a DVD player consists of the following items:

¢ Input and output connection ports to connect to a power outlet, a TV set, etc.
e Apaneltoinserta DVD
e Asetof buttons to perform operations such as eject, play, pause, fast forward, etc.

The manual that comes with the DVD player describes the usage of the player’s interface meant for its users. A
DVD user need not worry about the details of how it works internally. The manual also describes some conditions to
operate it. For example, you must plug the power cord to a power outlet and switch on the power before you can use it.

A program is designed, developed, and used in the same way as a DVD player. The user of the program, shown
in Listing 1-1, need not worry about the internal logic that is used to implement the program. A user of the program
needs to know only its usage, which includes the interface to use it, and conditions that must be met before and after
using it. In other words, you need to provide a manual for the getRangeSum procedure that will describe its usage. The
user of the getRangeSum procedure will need to read its manual to use it. The “manual” for a program is known as its
specification. Sometimes it is also known as documentation or comments. It provides another method of abstraction,
which is called abstraction by specification. It describes (or exposes or focuses) the “what” part of the program and
hides (or ignores or suppresses) the “how” part of the program from its users.

Listing 1-3 shows the same getRangeSum procedure code with its specification.

Listing 1-3. The getRangeSum Procedure with its Specification for Javadoc Tool
/%%

Computes and returns the sum of all integers between two
integers specified by lowerlLimit and upperLimit parameters.

The lowerLimit parameter must be less than or equal to the
upperLimit parameter. If the sum of all integers between the
lowerLimit and the upperLimit exceeds the range of the int data
type then result is not defined.

¥ X ¥ X X ¥ ¥ ¥

16

CHAPTER 1 PROGRAMMING CONCEPTS

* @param lowerLimit The lower limit of the integer range

* @param upperLimit The upper 1limit of the integer range

* @return The sum of all integers between lowerLimit (inclusive)
* and upperLimit (inclusive)

public static int getRangeSum(int lowerLimit, int upperLimit) {
int sum = 0;
int counter = lowerLimit;
while(counter <= upperLimit) {
sum = sum + counter;
counter = counter + 1;

}

return sum;

It uses Javadoc standards to write a specification for a Java program that can be processed by the Javadoc tool
to generate HTML pages. In Java, the specification for a program element is placed between /** and */ immediately
before the element. The specification is meant for the users of the getRangeSum procedure. The Javadoc tool will
generate the specification for the getRangeSum procedure, as shown in Figure 1-4.

getRangeSum

public static int getRangeSum(int lowerLimit,
int upperLimit)

Computes and returns the sum of all integers between two integers specified by lowerLimit and upperLimit
parameters. The lowerLimit parameter must be less than or equal to the upperLimit parameter. Ifthe sum of all
integers between the lowerLimit and the upperLimit exceeds the range of the int data type then result is not
defined.

Parameters:
lowerLimit- The lower limit of the integer range
upperLimit- The upperlimit of the integer range
Returns:

The sum of all integers between lowerLimit (inclusive) and upperLimit (inclusive)

Figure 1-4. The specification for the getRangeSum procedure

The above specification provides the description (the “what” part) of the getRangeSum procedure. It also
specifies two conditions, known as pre-conditions, that must be true when the procedure is called. The first pre-
condition is that the lower limit must be less than or equal to the upper limit. The second pre-condition is that the
value for lower and upper limits must be small enough so that the sum of all integers between them fits in the size
of the int data type. It specifies another condition that is called post-condition, which is specified in the “Returns”
clause. The post-condition holds as long as pre-conditions hold. The pre-conditions and post-conditions are like a
contract (or an agreement) between the program and its user. It states that as long as the user of the program makes
sure that the pre-condition holds true, the program guarantees that the post-condition will hold true. Note that the
specification never tells the user about how the program fulfils (implementation details) the post-condition. It only
tells “what” it is going to do rather than “how” it is going to do it. The user of the getRangeSum program, who has the
specification, need not look at the body of the getRangeSum procedure to figure out the logic that it uses. In other

17

CHAPTER 1 PROGRAMMING CONCEPTS

words, you have hidden the details of implementation of getRangeSum procedure from its users by providing the
above specification to them. That is, users of the getRangeSum procedure can ignore its implementation details for the
purpose of using it. This is another concrete example of abstraction. The method of hiding implementation details of
a subprogram (the “how” part) and exposing its usage (the “what” part) by using specification is called abstraction by
specification.

Abstraction by parameterization and abstraction by specification let the users of a program view the program
as a black box, where they are concerned only about the effects that program produces rather than how the program
produces those effects. Figure 1-5 depicts the user’s view of the getRangeSum procedure. Note that a user does not
see (need not see) the body of the procedure that has the details. The details are relevant only for the writer of the
program, not its users.

Body of
Inputs to 10 —» Output from
getRangeSum | p 165
getRangeSum 20 e e getRangeSum

Figure 1-5. User's view of the getRangeSum procedure as a black box using abstraction

What advantages did you achieve by applying the abstraction to define the getRangeSum procedure? One of the
most important advantages is isolation. It is isolated from other programs. If you modify the logic inside its body,
other programs, including the ones that are using it, need not be modified at all. To print the sum of integers between
10 and 20, you use the following program:

int s1 = getRangeSum(10, 20);
System.out.println(s1);

The body of the procedure uses a while loop, which is executed as many times as the number of integers
between lower and upper limits. The while loop inside the getRangeSum procedure executes n times where n is equal
to (upperLimit - lowerLimit + 1).The number of instructions that needs to be executed depends on the input
values. There is a better way to compute the sum of all integers between two integers, lowerLimit and upperLimit,
using the following formula:

n = upperLimit - lowerLimit + 1;
sum = n * (2 * lowerlLimit + (n-1))/2;

If you use the above formula, the number of instructions that are executed to compute the sum of all integers
between two integers is always the same. You can rewrite the body of the getRangeSum procedure as shown in
Listing 1-4. The specification of getRangeSum procedure is not shown here.

Listing 1-4. Another Version of the getRangeSum Procedure with the Logic Changed Inside its Body

public int getRangeSum(int lowerLimit, int upperLimit) {
int n = upperLimit - lowerlLimit + 1;
int sum = n * (2 * lowerLimit + (n-1))/2;
return sum;

18

CHAPTER 1 PROGRAMMING CONCEPTS

Note that the body (implementation or the “how” part) of the getRangeSum procedure has changed between
Listing 1-2 and Listing 1-3. However, the users of the getRangeSum procedure are not affected by this change at all
because the details of the implementation of this procedure were kept hidden from its users by using abstraction. If
you want to compute the sum of all integers between 10 and 20 using the version of the getRangeSum procedure as
shown in Listing 1-3, your old code (shown below) is still valid.

int s1 = getRangeSum(10, 20);
System.out.println(s1);

You have just seen one of the greatest benefits of abstraction, in which the implementation details of a program
(in this case, a procedure) can be changed without warranting any changes in the code that uses the program. This
benefit also gives you a chance to rewrite your program logic to improve performance in the future without affecting
other parts of the application.

I will consider two types of abstraction in this section:

e Procedural abstraction

e Data abstraction

Procedural Abstraction

Procedural abstraction lets you define a procedure, for example, getRangeSum, that you can use as an action or a task.
So far, in this section, I have been discussing procedural abstraction. Abstraction by parameterization and abstraction
by specification are two methods to achieve procedural abstraction as well as data abstraction.

Object-oriented programming is based on data abstraction. However, I need to discuss data type briefly before I
discuss data abstraction. A data type (or simply a type) is defined in terms of three components:

e Asetofvalues (or data objects)
e Asetof operations that can be applied to all values in the set
e Adatarepresentation, which determines how the values are stored

Programming languages provide some predefined data types, which are known as built-in data types. They
also let programmers define their own data types, which are known as user-defined data types. A data type that
consists of an atomic and indivisible value, and that is defined without the help of any other data types, is known as a
primitive data type. For example, Java has built-in primitive data types such as int, float, boolean, char, etc. Three
components that define the int primitive data type in Java are as follows:

e Anint data type consists of a set of all integers between -2147483648 and 2147483647.

e Operations such as addition, subtraction, multiplication, division, comparison, and many
more are defined for the int data type.

e Avalue of int data type is represented in 32-bit memory in 2’s compliment form.

All three components of the int data type are predefined by Java language. You cannot extend or redefine the
definition of the int data type as a programmer. You can give a name to a value of the int data type as

int n1;
The above statement states that n1 is a name (technically called an identifier) that can be associated with one
value from the set of values that defines values for int data type. For example, you can associate integer 26 to the

name n1 using an assignment statement as

ni = 26;

19

CHAPTER 1 PROGRAMMING CONCEPTS

At this stage, you may be asking, “Where is the value 26, which is associated with the name n1, stored in
memory?” You know from the definition of int data type that n1 will take 32-bit memory. However, you do not know,
cannot know, and do not need to know where in the memory that 32-bit is allocated for n1. Do you see an example
of abstraction here? If you see an example of abstraction in this case, you are right. This is an example of abstraction,
which is built into the Java language. In this instance, the pieces of information about the data representation of the
data value for int data type are hidden from the users (programmers) of the data type. In other words, a programmer
ignores the memory location of n1 and focuses on its value and the operations that can be performed on it.

A programmer does not care if the memory for n1 is allocated in a register, RAM, or the hard disk.

Data Abstraction

Object-oriented programming languages such as Java let you create new data types using an abstraction mechanism
called data abstraction. The new data types are known as abstract data types (ADT). The data objects in ADT may
consist of a combination of primitive data types and other ADTs. An ADT defines a set of operations that can be
applied to all its data objects. The data representation is always hidden in ADT. For users of an ADT, it consists of
operations only. Its data elements may only be accessed and manipulated using its operations. The advantage of using
data abstraction is that its data representation can be changed without affecting any code that uses the ADT.

Tip Data abstraction lets programmers create a new data type called an abstract data type, where the storage
representation of the data objects is hidden from the users of the data type. In other words, ADT is defined solely in terms
of operations that can be applied to the data objects of its type without knowing the internal representation of the data.
The reason this kind of data type is called abstract is that users of ADT never see the representation of the data values.
Users view the data objects of an ADT in an abstract way by applying operations on them without knowing the details
about representation of the data objects. Note that an ADT does not mean absence of data representation. Data
representation is always present in an ADT. It only means hiding of the data representation from its users.

Java language has constructs, for example, class, interface, and enum, that let you define new ADTs. When you
use a class to define a new ADT, you need to be careful to hide the data representation, so your new data type is really
abstract. If the data representation in a Java class is not hidden, that class creates a new data type, but not an ADT. A
class in Java gives you features that you can use to expose the data representation or hide it. In Java, the set of values of
a class data type are called objects. Operations on the objects are called methods. Instance variables (also known as
fields) of objects are the data representation for the class type.

A class in Java also lets you provide an implementation of operations that operates on the data representation.
An interface in Java lets you create a pure ADT. An interface lets you provide only the specification for operations
that can be applied to the data objects of its type. No implementation for operations or data representation can be
mentioned in an interface. Listing 1-1 shows the definition of the Person class using Java language syntax. By defining
a class named Person, you have created a new ADT. Its internal data representation for name and gender uses String
data type (String is built-in ADT provided by Java class library). Note that the definition of the Person class uses the
private keyword in the name and gender declarations to hide it from the outside world. Users of the Person class
cannot access the name and gender data elements. It provides four operations: a constructor and three methods
(getName, setName, and getGender).

A constructor operation is used to initialize a newly constructed data object of Person type. The getName and
setName operations are used to access and modify the name data element, respectively. The getGender operation is
used to access the value of the gender data element.

20

CHAPTER 1 PROGRAMMING CONCEPTS

Users of the Person class must use only these four operations to work with data objects of Person type. Users of
the Person type are oblivious to the type of data storage being used to store name and gender data elements. I am using
three terms, “type,” “class,” and “interface,” interchangeably because they mean the same thing in the context of a data
type. It gives the developer of the Person type freedom to change the data representation for the name and gender data
elements without affecting any users of Person type. Suppose one of the users of Person type has the following snippet
of code:

Person john = new Person("John Jacobs", "Male");
String intialName = john.getName();
john.setName("Wally Jacobs");

String changedName = john.getName();

Note that this snippet of code has been written only in terms of the operations provided by the Person type.
It does not (and could not) refer to the name and gender instance variables directly. Let’s see how to change the data
representation of the Person type without affecting the above snippet of code. Listing 1-5 shows the code for a newer
version for the Person class.

Listing 1-5. Another Version of the Person Class That Uses a String Array of Two Elements to Store Name and
Gender Values as Opposed to Two String Variables

package com.jdojo.concepts;

public class Person {
private String[] data = new String[2];

public Person(String initialName, String initialGender) {
data[o0] = initialName;
data[1] = initialGender;

}

public String getName() {
return data[o];
}

public void setName(String newName) {
data[0] = newName;
}

public String getGender() {
return data[1];
}

Compare the code in Listing 1-1 and Listing 1-5. This time you have replaced the two instance variables
(name and gender), which were the data representation for the Person type in Listing 1-1, with a String array of
two elements. Since operations (or methods) in a class operate on the data representation, you had to change the
implementations for all four operations in the Person type. The client code in Listing 1-5 was written in terms of the
specifications of the four operations and not their implementation. Since you have not changed the specification of
any of the operations, you do not need to change the snippet of code that uses the Person class; it is still valid with the
newer definition of the Person type as shown in Listing 1-5. Some methods in the Person class use the abstraction
by parameterization and all of them use the abstraction by specification. I have not shown the specification for the
methods here, which would be Javadoc comments.

21

CHAPTER 1 PROGRAMMING CONCEPTS

You have seen two major benefits of data abstraction in this section.

e Itlets you extend the programming language by letting you define new data types. The new
data types you create depend on the application domain. For example, for a banking system,
Person, Currency, and Account may be good choices for new data types whereas for an auto
insurance application, Person, Vehicle, and Claim may be good choices. The operations
included in a new data type depend on the need of the application.

e The data type created using data abstraction may change the representation of the data
without affecting the client code using the data type.

Encapsulation and Information Hiding

The term encapsulation is used to mean two different things: a process or an entity. As a process, it is an act of
bundling one or more items into a container. The container could be physical or logical. As an entity, it is a container
that holds one or more items.

Programming languages support encapsulations in many ways. A procedure is an encapsulation of steps
to perform a task; an array is an encapsulation of several elements of the same type, etc. In object-oriented
programming, encapsulation is bundling of data and operations on the data into an entity called a class.

Java supports encapsulation in various ways.

e [Itlets you bundle data and methods that operate on the data in an entity called a class.

e Itlets you bundle one or more logically related classes in an entity called a package. A package
in Java is a logical collection of one or more related classes. A package creates a new naming
scope in which all classes must have unique names. Two classes may have the same name in
Java as long as they are bundled (or encapsulated) in two different packages.

e Itlets you bundle one or more related classes in an entity called a compilation unit. All classes
in a compilation unit can be compiled separately from other compilation units.

While discussing the concepts of object-oriented programming, the two terms, encapsulation and information
hiding, are often used interchangeably. However, they are different concepts in object-oriented programming, and
they should not be used interchangeably as such. Encapsulation is simply the bundling of items together into one
entity. Information hiding is the process of hiding implementation details that are likely to change. Encapsulation is
not concerned with whether the items that are bundled in an entity are hidden from other modules in the application
or not. What should be hidden (or ignored) and what should not be hidden is the concern of abstraction. Abstraction
is only concerned about which item should be hidden. Abstraction is not concerned about how the item should be
hidden. Information hiding is concerned with how an item is hidden. Encapsulation, abstraction, and information
hiding are three separate concepts. They are very closely related, though. One concept facilitates the workings of the
others. It is important to understand the subtle differences in roles they play in object-oriented programming.

It is possible to use encapsulation with or without hiding any information. For example, the Person class in
Listing 1-1 shows an example of encapsulation and information hiding. The data elements (name and gender)
and methods (getName(), setName(), and getGendex ()) are bundled together in a class called Person. This is
encapsulation. In other words, the Person class is an encapsulation of the data elements name and gender, plus the
methods getName(), setName(), and getGender (). The same Person class uses information hiding by hiding the data
elements from the outside world. Note that name and gender data elements use the Java keyword private, which
essentially hides them from the outside world. Listing 1-6 shows the code for a Person2 class.

22

CHAPTER 1 PROGRAMMING CONCEPTS

Listing 1-6. The Definition of the Person2 Class in Which Data Elements Are Not Hidden by Declaring Them Public

package com.jdojo.concepts;

public class Person2 {
public String name; // Not hidden from its users
public String gender; // Not hidden from its users

public Person2(String initialName, String initialGender) {
name = initialName;
gender = initialGender;

}

public String getName() {
return name;
}

public void setName(String newName) {
name = newName;
}

public String getGender() {
return gender;
}

The code in Listing 1-1 and Listing 1-6 is essentially the same except for two small differences. The Person2 class
uses the keyword public to declare the name and the gender data elements. The Person2 class uses encapsulation
the same way the Person class uses. However, data elements name and gender are not hidden. That is, the Person2
class does not use data hiding (Data hiding is an example of information hiding). If you look at the constructor and
methods of Person and Personz2 classes, their bodies use information hiding because the logic written inside their
bodies is hidden from their users.

Tip Encapsulation and information hiding are two distinct concepts of object-oriented programming. The existence of
one does not imply the existence of the other.

Inheritance

Inheritance is another important concept in object-oriented programming. It lets you use abstraction in a new way.
You have seen how a class represents an abstraction in previous sections. The Person class shown in Listing 1-1
represents an abstraction for a real-world person. The inheritance mechanism lets you define a new abstraction by
extending an existing abstraction. The existing abstraction is called a supertype, a superclass, a parent class, or a base
class. The new abstraction is called a subtype, a subclass, a child class, or a derived class. It is said that a subtype is
derived (or inherited) from a supertype; a supertype is a generalization of a subtype; and a subtype is a specialization
of a supertype. The inheritance can be used to define new abstractions at more than one level. A subtype can be
used as a supertype to define another subtype and so on. Inheritance gives rise to a family of types arranged in a
hierarchical form.

23

CHAPTER 1 PROGRAMMING CONCEPTS

Inheritance allows you to use varying degrees of abstraction at different levels of hierarchy. In Figure 1-6, the
Person class is at the top (highest level) of the inheritance hierarchy. Employee and Customer classes are at the second
level of inheritance hierarchy. As you move up the inheritance level, you focus on more important pieces information.
In other words, at a higher level of inheritance, you are concerned about the bigger picture; and at lower levels of
inheritance, you are concerned about more and more details. There is another way to look at inheritance hierarchy
from abstraction point of view. At the Person level in 5, you focus on the common characteristics of Employee and
Customer, and you ignore the difference between them. At Employee level, you focus on common characteristics of
Clerk, Programmer, and Cashier, and you ignore the differences between them.

AN A
Y
—

Figure 1-6. Inheritance hierarchy for the Person class

In inheritance hierarchy, a supertype and its subtype represent an “is-a” relationship. That is, an Employee is
a Person; a Programmer is an Employee, etc. Since the lower level of inheritance means more pieces of information,
a subtype always includes what its supertype has and maybe some more. This characteristic of inheritance leads
to another feature in object-oriented programming, which is known as the principle of substitutivity. It means that
a supertype can always be substituted with its subtype. For example, you have considered only name and gender
information for a person in your Person abstraction. If you inherit Employee from Person, Employee includes name
and gender information, which it inherits from Person. Employee may include some more pieces of information
such as employee id, hire date, salary, etc. If a Person is expected in a context, it implies that only name and gender
information are relevant in that context. You can always replace a Person in this context with an Employee, a Customer,
a Clerk, or a Programmer because being a subtype (direct or indirect) of the Person these abstractions guarantee that
they have the ability to deal with at least name and gender information.

At programming level, inheritance provides a code reuse mechanism. The code written in supertype may be
reused by its subtype. A subtype may extend the functionality of its supertype by adding more functionality or
by redefining existing functionalities of its supertype.

Tip Inheritance is also used as a technique to implement polymorphism, which is discussed in the next section.
Inheritance lets you write polymorphic code. The code is written in terms of the supertype and the same code works for
subtypes.

Inheritance is a vast topic. This book devotes a complete chapter to inheritance. I will discuss how Java allows us
to use inheritance mechanisms in Chapter 9.

24

CHAPTER 1 PROGRAMMING CONCEPTS

Polymorphism

The word “polymorphism” has its root in two Greek words: “poly” (means many) and “morphos” (means form).
In programming, polymorphism is the ability of an entity (e.g. variable, class, method, object, code, parameter,
etc.) to take on different meanings in different contexts. The entity that takes on different meanings is known as
a polymorphic entity. Various types of polymorphism exist. Each type of polymorphism has a name that usually
indicates how that type of polymorphism is achieved in practice. The proper use of polymorphism results in generic
and reusable code. The purpose of polymorphism is writing reusable and maintainable code by writing code in terms
of a generic type that works for many types (or ideally all types).

Polymorphism can be categorized in the following two categories:

e Adhoc polymorphism
¢ Universal polymorphism

If the types for which a piece of code works are finite and all those types must be known when the code is written,
itis known as ad hoc polymorphism. Ad hoc polymorphism is also known as apparent polymorphism because it
is not a polymorphism in a true sense. Some computer science purists do not consider ad hoc polymorphism as
polymorphism at all. Ad hoc polymorphism is divided into two types: overloading polymorphism and coercion
polymorphism.

If a piece of code is written in such a way that it works for infinite number of types (will also work for new types
not known at the time the code is written), it is called universal polymorphism. In universal polymorphism, the same
code works on many types, whereas in ad hoc polymorphism, different implementations of code are provided for
different types giving an apparent impression of polymorphism. Universal polymorphism is divided into two types:
inclusion polymorphism and parametric polymorphism.

Overloading Polymorphism

Overloading is an ad hoc polymorphism. Overloading results when a method (called a method in Java and a function
in other languages) or an operator has at least two definitions that work on different types. In such cases, the same
method or operator name is used for their different definitions. That is, the same name exhibits many behaviors and
hence the polymorphism. Such methods and operators are called overloaded methods and overloaded operators.
Java lets you define overloaded methods. Java has some overloaded operators. Java does not let you overload an
operator for an ADT. That is, you cannot provide a new definition for an operator in Java.

Listing 1-7 shows code for a class named MathUtil.

Listing 1-7. An Example of an Overloaded Method in Java
package com.jdojo.concepts;
public class MathUtil {

public static int max(int n1, int n2) {
/* Code to determine the maximum of two integers goes here */
}

public static double max(double ni, double n2) {
/* Code to determine the maximum of two floating-point numbers goes here */
}

public static int max(int[] num) {
/* Code to determine the maximum of an array of int goes here */
}

25

CHAPTER 1 PROGRAMMING CONCEPTS

The max() method of the MathUtil class is overloaded. It has three definitions and each of its definitions
performs the same task of computing maximum, but on different types. The first definition computes a maximum of
two numbers of int data type, the second one computes a maximum of two floating-point numbers of double data
type, and the third one computes a maximum of an array of numbers of int data type. The following snippet of code
makes use of all three definitions of the overloaded max() method:

int max1 = MathUtil.max(10, 23); // Uses max(int, int)
double max2 = MathUtil.max(10.34, 2.89); // Uses max(double, double)
int max3 = MathUtil.max(new int[]{1, 89, 8, 3}); // Uses max(int[])

Note that method overloading gives you only sharing of the method name. It does not result in the sharing of
definitions. In Listing 1-7, the method name max is shared by all three methods, but they all have their own definition
of computing maximum of different types. In method overloading, the definitions of methods do not have to be
related at all. They may perform entirely different things and share the same name.

The following code snippet shows an example of operator overloading in Java. The operator is +. In the following
three statements, it performs three different things:

int n1 = 10 + 20; // Adds two integers
double n2 = 10.20 + 2.18; // Adds two floating-point numbers
String str = "Hi " + "there"; // Concatenates two strings

In the first statement, the + operator performs addition on two integers, 10 and 20, and returns 30. In the second
statement, it performs addition on two floating-point numbers, 10.20 and 2.18, and returns 12.38. In the third
statement, it performs concatenation of two strings and returns "Hi there".

In overloading, the types of the actual method’s parameters (types of operands in case of operators) are used
to determine which definition of the code to use. Method overloading provides only the reuse of the method name.
You can remove method overloading by simply supplying a unique name to all versions of an overloaded method.
For example, you could rename the three versions of the max () method as max2Int(), max2Double(), and maxNInt().
Note that all versions of an overloaded method or operator do not have to perform related or similar tasks. In Java, the
only requirement to overload a method name is that all versions of the method must differ in number and/or type of
their formal parameters.

Coercion Polymorphism

Coercion is an ad hoc polymorphism. Coercion occurs when a type is implicitly converted (coerced) to another type
automatically even if it was not intended explicitly. Consider the following statements in Java:

int num = 707;
double d1 = (double)num; // Explicit conversion of int to double
double d2 = num; // Implicit conversion of int to double (coercion)

The variable num has been declared to be of int data type, and it has been assigned a value of 707. The second
statement uses cast, (double), to convert the int value stored in num to double, and assigns the converted value
to d1. This is the case of explicit conversion from int to double. In this case, the programmer makes his intention
explicit by using the cast. The third statement has exactly the same effect as the second one. However, it relies on
implicit conversion (called widening conversion in Java) provided by Java language that converts an int to double
automatically when needed. The third statement is an example of coercion. A programming language (including Java)
provides different coercions in different contexts: assignment (shown above), method parameters, etc.

26

CHAPTER 1 PROGRAMMING CONCEPTS

Consider the following snippet of code that shows a definition of a square () method, which accepts a parameter
of double data type:

double square(double num) {
return num * num;
}

The square() method can be called with actual parameter of double data type as

double d1 = 20.23;
double result = square(di);

The same square () method may also be called with actual parameter of int data type as

int k = 20;
double result = square(k);

You have just seen that the square() method works on double data type as well as int data type although you
have defined it only once in terms of a formal parameter of double data type. This is exactly what polymorphism
means. In this case, the square() method is called a polymorphic method with respect to double and int data type.
Thus the square () method is exhibiting polymorphic behavior even though the programmer who wrote the code
did not intend it. The square() method is polymorphic because of the implicit type conversion (coercion from int to
double) provided by Java language. Here is a more formal definition of a polymorphic method:

Suppose m is a method that declares a formal parameter of type T. If S is a type that can be implicitly
converted to T, the method m is said to be polymorphic with respect to S and T.

Inclusion Polymorphism

Inclusion is a universal polymorphism. It is also known as subtype (or subclass) polymorphism because it is achieved
using subtyping or subclassing. This is the most common type of polymorphism supported by object-oriented
programming languages. Java supports it. Inclusion polymorphism occurs when a piece of code that is written using

a type works for all its subtypes. This type of polymorphism is possible based on the subtyping rule that a value that
belongs to a subtype also belongs to the supertype. Suppose T is a type and S1, S2, S3. .. are subtypes of T. A value that
belongs to S1, 52, S3. .. also belongs to T. This subtyping rule makes us write code as follows:

Tt;
S1 s1;
S2 s2;

t =
t

s1; // A value of type s1 can be assigned to variable of type T
s2; // A value of type s2 can be assigned to variable of type T

27

CHAPTER 1 PROGRAMMING CONCEPTS

Java supports inclusion polymorphism using inheritance, which is a subclassing mechanism. You can define
a method in Java using a formal parameter of a type, for example, Person, and that method can be called on all its
subtypes, for example, Employee, Student, Customer, etc. Suppose you have a method processDetails() as follows:

void processDetails(Person p) {
/* Write code using the formal parameter p, which is of type Person. The same code will
work if an object of any of the subclass of Person is passed to this method.
*/

The processDetails() method declares a formal parameter of Person type. You can define any number of
classes that are subclasses of the Person class. The processDetails () method will work for all subclasses of the
Person class. Assume that Employee and Customer are subclasses of the Person class. You can write code like

Person p1 = create a Person object;

Employee el = create an Employee object;

Customer c1 = create a Customer object;

processDetails(p1); // Use Person type

processDetails(e1l); // Use Employee type, which is a subclass of Person
processDetails(c1); // Use Customer type, which is a subclass of Person

The effect of the subtyping rule is that the supertype includes (hence the name inclusion) all values that belong
to its subtypes. A piece of code is called universally polymorphic only if it works on an infinite number of types.
In the case of inclusion polymorphism, the number of types for which the code works is constrained but infinite.
The constraint is that all types must be the subtype of the type in whose term the code is written. If there is no
restriction on how many subtypes a type can have, the number of subtypes is infinite (at least in theory). Note that
inclusion polymorphism not only lets you write reusable code, it also lets you write extensible and flexible code. The
processDetails() method works on all subclasses of the Person class. It will keep working for all subclasses of the
Person class, which will be defined in future, without any modifications. Java uses other mechanisms, like method
overriding and dynamic dispatch (also called late binding), along with subclassing rules to make the inclusion
polymorphism more effective and useful.

Parametric Polymorphism

Parametric is a universal polymorphism. It is also called “true” polymorphism because it lets you write true generic
code that works for any types (related or unrelated). Sometimes it is also referred to as generics. In parametric
polymorphism, a piece of code is written in such a way that it works on any type. Contrast parametric polymorphism
with inclusion polymorphism. In inclusion polymorphism, code is written for one type and it works for all of its
subtypes. It means all types for which the code works in inclusion polymorphism are related by a supertype-subtype
relationship. However, in parametric polymorphism, the same code works for all types, which are not necessarily
related. Parametric polymorphism is achieved by using a type variable when writing the code, rather than using any
specific type. The type variable assumes a type for which the code needs to be executed. Java supports parametric
polymorphism since Java 5 through generics. Java supports polymorphic entity (e.g. parameterized classes) as well as
polymorphic method (parameterized methods) that use parametric polymorphism.

All collection classes as of Java 5 have been retrofitted to use generics (parametric polymorphism is achieved
in Java using generics). You can write code using generics as shown below. This code uses a List object as a list of
String type and a List object as a list of Integer type. Using generics, you can treat a List object as a list of any type
in Java. Note the use of <XXX> (angle brackets) in code to specify the type for which you want to instantiate the
List object.

28

CHAPTER 1 PROGRAMMING CONCEPTS

// Use List for String type

List<String> sList = new ArraylList<String>();
sList.add("string 1");

slList.add("string 2");

String s2 = slList.get(1);

// Use List for Integer type

List<Integer> ilist = new Arraylist<Integer>();
ilist.add(10);

ilist.add(20);

int i2 = ilist.get(1);

Summary

Writing the set of instructions for a computer to accomplish a task is known as programming. The set of instructions is
known as a program. Different types of programming languages exist. They differ in their closeness to the instructions
that the hardware can understand or the paradigm. A machine language lets you write programs using 0s and 1s,

and it is the lowest level programming language. A program written in machine language is known as machine code.
An assembly language lets you write programs using mnemonics. A program written using an assembly language is
known as assembly code. Later, higher-level programming languages were developed, using an English-like language.

Several types of programming paradigms are in practice. A programming paradigm is a thinking cap for viewing
and analyzing real-world problems in a particular way. Imperative, procedural, functional, and object-oriented are
some widely used paradigms in software development. Java is a programming language that supports procedural,
functional, and object-oriented programming paradigms.

Abstraction, encapsulation, inheritance, and polymorphism are the four pillars of object-oriented paradigms.
Abstraction is the process of hiding details of a program that are irrelevant to the users. Encapsulation is the process
of bundling multiple items into one entity. Inheritance is the process of arranging classes in a hierarchical manner to
build supertype/subtype relationships. Inheritance promotes reusability of code by allowing programmers to write
the code in terms of a supertype that also works for all of the subtypes. Polymorphism is the way of writing a piece of
code once that can operate on multiple types. Method overloading, method overriding, subtyping, and generics are
some of the ways to implement polymorphism.

29

CHAPTER 2

Writing Java Programs

In this chapter, you will learn

e How to write, compile, and run Java programs using command prompts and the NetBeans
integrated development environment (IDE)

e How to set the CLASSPATH for running Java programs

e Briefly about the Java Virtual Machine (JVM) and the Java Platform

What is a Java Program?

A Java program, which is written using the Java programming language, is a set of instructions to be executed by a
computer to perform a task. In this chapter, you will write a simple Java program that prints a message on the console,
for example, a command prompt on Windows. This chapter explains only the basics involved in writing a Java
program. A detailed explanation of all aspects of a Java program will be covered in subsequent chapters.

Writing a Java program involves three steps:

e Writing the source code
e Compiling the source code
e Running the compiled code

You can write Java programs using a text editor of your choice, such as Notepad on Windows, vi editor on UNIX,
etc. The source code is compiled into object code, also known as bytecode, using a Java compiler. The compiled code
(object code or bytecode) is run by a JVM. You can also use an IDE such as NetBeans to write Java programs. This
chapter shows how to write Java programs using both a text editor and the NetBeans IDE.

System Requirements

You need to have the following software installed on your computer:
e Java Development Kit 8
e NetBeans IDE 7.4 or later

It is not necessary to have NetBeans to use the programs in this book. However, the NetBeans IDE makes working
with Java programs easy. You can use any other IDE, for example, Eclipse, JDeveloper, Intelli] IDEA, etc. The source
code for this book contains a NetBeans project. If you use an IDE other than NetBeans, you will have to copy the
contents of the src directory, from the source code bundle for this book, to the source code directory created for the
project by your IDE.

31

CHAPTER 2 © WRITING JAVA PROGRAMS

Note Java SE 8 is not supported on Windows XP.

Writing the Source Code

This section will cover the details of writing the source code. I will demonstrate this by using Notepad on Windows.
You can use a text editor of your choice that is available on your system.

Note | will cover using the NetBeans IDE in the following section. | want to cover using a text editor because the
process reveals a lot about Java programs that you need to know.

When you finish writing the source code, you must save the file with the extension . java. You are going to name
your source code file Welcome. java. Note that any extension to the file other than . java is not acceptable. For example,
the names Welcome.txt and Welcome.doc are not valid source code file names.

Whenever you use a language to write something (in your case, Java source code), you need to follow the
grammar of that language, and use a specific syntax depending on the thing you are writing. Let’s take an example of
writing a letter to your friend. The letter will have several parts: a heading, a greeting, a body, closing statement, and
your signature. The parts of the letter should be placed in order. In a letter, it is not just important to put all five parts
together; rather, they should also be placed in a specific order. For example, the closing needs to follow the body, etc.
Some parts in a letter may be optional and others mandatory. For example, it is fine to exclude the return address in a
letter to your friend, whereas it is mandatory in a business letter.

In the beginning, you can think of writing a Java program as similar to writing a letter. Let’s start writing the Java
source code. Java source code consists of three parts

e Zero or one package declaration
e Zero, one, or more import declarations
e Zero, one, or more type declarations: class, interface, or enum declarations

All three parts are optional. The three parts, if present, must be specified in the above-mentioned order. Figure 2-1
shows the three parts of a Java programs.

package com.jdojo.intro; €— A package declaration

import java.util.*; — An import declaration

public class Welcome {
public static void main(String[] args) { .
System.out.printin(“Welcome to the Java world.”); <—— Atype declaration
}

Figure 2-1. Parts of a Java program

32

CHAPTER 2 © WRITING JAVA PROGRAMS

Package Declaration
The general syntax for a package declaration is
package <your-package-name>;

A package declaration starts with the keyword package followed with a user-supplied package name. One or
more whitespaces (spaces, tabs, new lines, carriage returns, tabs, and form-feeds) separate the keyword package
and the package name. A semicolon (;) ends the package declaration. For example, the following is the package
declaration for a package named com. jdojo.intro:

package com.jdojo.intro;

Figure 2-2 shows the parts of a package declaration.

A keyword A programmer-supplied package name

A semicolon is part of the Java

package com. jdojo. intro; D syntax to end a declaration

Figure 2-2. Parts of a package declaration in a Java program

The programmer supplies the package name. A package name may consist of one or more parts. In this example,
two parts are separated by a dot (.). This package name consists of three parts: com, jdojo, and intro. There is no
limit on the number of parts in a package name. However, if a package declaration appears in Java source code, it
must contain a package name, which must have at least one part. You can have maximum of one package declaration
in a Java source file (to be more specific, in a compilation unit). The following are some examples of valid package
declarations:

package intro;

package com.jdojo.intro.common;
package com.ksharan;

package com.jdojo.intro;

Why do we use a package declaration? A package is a logical repository for Java types (class, interface, and enum).
In other words, it provides a logical grouping for related Java types. A package can be stored in a host-specific file
system, a database, or a network location. In a file system, each part of a package name denotes a directory on the host
system. For example, the package name com. jdojo.intro indicates the existence of a directory named com, which
contains a subdirectory jdojo, which contains a subdirectory intro. The directory intro will contain the compiled
Java code. If you are working on Windows, you can think of a directory structure com\ jdojo\intro\<<Class File Name>>
whereas on UNIX-like operating systems (for example, Linux, Solaris, and Mac OS X), it will look like com/jdojo/
intro/<<Class File Name>>. A dot, which is used to separate parts in the package name, is treated as a
file-separator character on the host system. A back slash (\) is the file-separator character on Windows, and a forward
slash (/) on UNIX-like operating system.

The package name specifies only the partial directory structure in which the compiled Java program (class files)
must exist. It does not specify the full path of the class files. In this example, the package declaration com.jdojo.intro
does not specify where the com directory will be placed. It may be placed under C: \ directory or C: \myprograms directory
or under any other directory in the file system.

33

CHAPTER 2 © WRITING JAVA PROGRAMS

Knowing just the package name is not enough to locate a class file, because it specifies only a partial path to the
class file. The leading part of the class file path on the file system is obtained from an environment variable called
CLASSPATH. T will discuss CLASSPATH in detail shortly.

The package declaration is optional. What repository does your Java program belong to if you omit the package
declaration? A Java program (strictly speaking, a Java type), which does not have a package declaration, is said to
be part of an unnamed package (also called default package). I will discuss unnamed package in more detail in the
sections to follow.

Java source code is case sensitive. The keyword package has to be written as is—in all lowercase. The word
Package or packAge cannot replace the keyword package. The package name is also case sensitive. On some operating
systems, the names of files and directories are case sensitive. On those systems, the package names will be case
sensitive, as you have seen: the package name is treated as a directory name on the host system. The package names
com. jdojo.intro and Com.jdojo.intro may not be the same depending on the host system that you are working on.
It is recommended to use package names in all lowercase.

The package declaration is a simple and important part of Java source code. It is recommended that you always
use a package declaration in your source code. Typically, a package name starts with a reverse domain name of the
company, such as com.yahoo for Yahoo, com.google for Google etc. Using the reverse domain name of the company
as the leading part of the package name guarantees that a package name will not conflict with package names used
by other companies, provided they follow the same guidelines. If you do not own a domain name, make up one that is
likely to be unique. This is just a guideline. There is nothing in practice that guarantees a unique package name for all
Java programs written in the world.

Import Declarations

Import declarations in Java source code are optional. You may develop a Java application without using even a
single import declaration. Why is an import declaration needed at all? Using import declarations in your code makes
your life easier. It saves you some typing and makes your code cleaner and easier to read. In an import declaration,
you tell the Java compiler that you may use one or more classes from a particular package. Whenever a type (a class,
an interface, or an enum) is used in Java source code, it must be referred to by its fully qualified name. Using an
import declaration for a type lets you refer to a type using its simple name. I will discuss simple and fully qualified
names of a type shortly.

Unlike a package declaration, there is no restriction on the number of import declarations in the source code.
The following are two import declarations:

import com.jdojo.intro.Account;
import com.jdojo.util.*;

I'will discuss import declarations in detail in the chapter on classes and objects. In this section, I will discuss only
the meaning of all parts of an import declaration. An import declaration starts with the keyword import. The second
part in an import declaration consists of two parts:

e A package name from which you want to use the classes in the current source code

e Aclass name or an asterisk (*) to indicate that you may use one or more of the classes stored in
the package.

Finally, an import declaration ends with a semicolon. The above two import declarations state the following:
e We may use a class named Account by its simple name from com. jdojo.intro package.

e We may use any classes, interfaces, and enums by their simple names from the com. jdojo.util
package.

34

CHAPTER 2 © WRITING JAVA PROGRAMS

If you want to use a class named Person from com. jdojo.common package in the source code, you need to include
one of the following two import declarations in your source code:

import com.jdojo.common.Person;
or
import com.jdojo.common.*;
The following import declarations do not include classes in the package com or com. jdojo:

import com.jdojo.intro.Account;
import com.jdojo.intro.*;

You might think that an import declaration like
import com.*.*;

would let you use the simple names of all classes whose first part of package declaration is com. Java does not
support this type of wildcard use in an import declaration. You are allowed only to name one class in a package
(com.jdojo.intro.Account) or all classes in a package (com. jdojo.intro.*); any other syntax to import classes is
invalid.

The third part in a Java source code contains type declarations, which may contain zero or more declarations
for class, interface, and/or enum. According to the Java Language Specification, type declaration is also optional.
However, if you omit this part, your Java program does not do anything. To make your Java program meaningful, you
must include at least one class, interface, or enum declaration in your Java source code. I will defer the discussion of
interface and enum until later chapters in this book. Let’s discuss how to declare a class in a Java source code.

Class Declaration
In the simplest form, a class declaration looks like
class Welcome {

// Code for the class body goes here
b

Figure 2-3 shows parts of the above class declaration.

35

CHAPTER 2 © WRITING JAVA PROGRAMS

A keyword A programmer-supplied class name

// A class body opening brace

class Welcome {

/Il Code for the class body goes here

An optional semicolon Class body

A class body ending brace

Figure 2-3. Parts of a class declaration in a Java source code

A class is declared by using the keyword class, which is followed by the name of the class. In this example, the
name of the class is Welcome.

The body of the class is placed between an opening brace and a closing brace. The body may be empty. However,
you must include the two braces to mark the beginning and the end of the body. Optionally, a class declaration may
end with a semicolon. This book will not use the optional semicolon to end a class declaration. Before continuing the
discussion of a class declaration, let’s discuss the following line from the body of the class in our example:

// Code for the class body goes here

This line is called a comment. Comments are non-executable code. The Java compiler ignores them. They are
included in a program to document the program’s functionality and logic. There are three types of comments in a
Java program:

e Single-line comment
e Multi-line comment
. Documentation comment or Javadoc comment

The first type of comment is called a single-line comment. It starts with two forward slashes (//) followed by text.
For example,

// This is a single-line comment
package com.jdojo.intro; // This is also a single-line comment

This type of comment may start at any position in a line. The part of the line starting from two forward slashes
to the end of the line is considered the comment. As shown above, you can also mix Java source code, for example,
a package declaration and a comment in one line. Note that this type of comment cannot be inserted in the middle
of the Java code. The following package declaration is incorrect as the package name and the semicolon are also
considered as part of the comment:

package // An incorrect single-line comment com.jdojo.intro;

36

CHAPTER 2 © WRITING JAVA PROGRAMS

The following line is a single-line comment. It has a valid package declaration as the comment’s text. It will be
treated as a comment, not as a package declaration.

// package com.jdojo.intro;

The second type of comment is called a multi-line comment. A multi-line comment may span multiple lines.
It starts with a forward slash immediately followed by an asterisk (/*) and ends with an asterisk immediately followed
by a forward slash (*/). An example of a multi-line comment in a Java source code is as follows:

/*
This is a multi-line comment.
It can span more than one line.
*/

The above comment can also be written using two single-line comments, as follows:

// This is a multi-line comment.
// It can span more than one line

The style of comment that you use in the source code is your personal choice. A multi-line comment may be
inserted in the middle of Java code as shown below. The compiler ignores all text starting from /* to */.

package /* A correct comment */ com.jdojo.intro;

The third type of comment is called documentation (or Javadoc) comment, which is also a multi-line comment.
It is used to generate documentation for Java programs. This kind of comment begins with a forward slash that is
immediately followed by two asterisks (/**) and ends with an asterisk that is immediately followed by a forward slash
(*/). The following is a simple example of a documentation comment:

/**

This is a documentation comment. javadoc generates documentation from such comments.
*/

Note Writing documentation comment is a big topic. It is covered in Appendix B in detail.

The simplest class declaration in a Java program may look like
class Welcome { }

This time, I have placed the whole class declaration in one line. You can place the keyword class, the name of
the class Welcome, and the two braces in any position you want, except that you must include at least one whitespace
(space, newline, tab, etc.) between the keyword class and class name Welcome. Java allows you to write source code in
a freeform text format. All of the following three class declarations are the same:

e (lass Declaration #1

class
Welcome { }

37

CHAPTER 2 © WRITING JAVA PROGRAMS

e (lass Declaration #2

class

}

Welcome {

e (lass Declaration #3

class Welcome {

}

This book uses the following class declaration format: the opening brace is placed on the same line following the
class name, and the closing brace is placed on a separate line and it is aligned with the first character of the first line
of the class declaration, like so:

class Welcome {

}

The body of a class consists of four parts. All parts are optional, may appear in any order, and can be split into
multiple sections, not all together.

e Field Declarations

e [Initializers: Static initializers and instance initializers
e Constructors

e Method Declarations

Java language does not impose any order in which the four parts of the body of a class may appear. I will start
with method declarations and confine the discussion only to simple method declarations in this chapter. I will discuss
advanced aspects of method declarations and other parts of class body declarations in the chapter on classes and
objects.

Let’s discuss how to declare a method for a class. You might guess that the method declaration would begin
with a keyword method, as package and class declarations began with the keywords package and class, respectively.
However, a method declaration does not begin with a keyword method. In fact, method is not a keyword in Java
language. You begin a class declaration with the keyword class indicating that you are going to declare a class.
However, in case of a method declaration, the first thing you specify is the type of value that a method will return to
its caller. If a method does not return anything to its caller, you must mention that fact in the beginning of the method
declaration, so you use the keyword void to indicate that a method does not return anything. The name of the method
follows the return type of the method, and left and right parentheses follow the method name. Like a class, a method
has a body part, which is enclosed in braces. The simplest method declaration in Java looks like the following:

<<MethodReturnType>> <<MethodName>> (<<arguments>>) {
// Body of the method goes here
}
The following is an example of a method declaration:

void main() {
// Empty body of the main method
}

38

CHAPTER 2 © WRITING JAVA PROGRAMS

This method declaration contains four things:

The method does not return anything as indicated by the keyword void.
e The name of the method is main.

e The method requires no arguments.

e The method does not do anything as its body is empty.

The return value of a method is something that the method returns to its caller. The caller of the method may also
want to pass some values to the method. If a method requires its caller to pass some values to it, this fact must be indicated
in method’s declaration. The fact that you want to pass some value to a method is specified within the parentheses that
follow the method name. You need to specify two things about the values you want to pass to the method:

e The type of the value you want to pass. Suppose you want to pass an integer (say 10) to the
method. You need to indicate this by using a keyword int, which is used to indicate an integer
value like 10.

e The identifier, which will hold the value you pass to the method. Identifier is a user-defined
name. It is called a parameter name.

If you want the main method to accept one integer value from its caller, its declaration will change to the
following one:

void main(int num) {

}

Note that num is the identifier, which will hold the value passed to this method. Instead of hum, you may choose to
use another identifier, for example, num1, num2, num3, etc. The above declaration of the main method is read as

The method main accepts one parameter of the type int and it does not return any value to
its caller.

If you want to pass two integers to the main method, its declaration will change to the following:

void main(int numi, int num2) {

}

It is clear from the above declaration that you need to separate the parameters passed to a method by a comma
(,)- What will you do if you want to pass 50 integers to this method? You will end up with a method declaration like

void main(int numi, int num2, ..., int nums50) {

}

I have shown only three parameter declarations. However, when you write a Java program, you will have to type
all 50 parameter declarations. Let’s look for some alternate ways to passing 50 parameters to this method. There is
one similarity among all 50 parameters that they are all of the same type—integer. No values will contain fraction
like 20.11 or 45.09. This similarity among all parameters allows you to use a magical creature in the Java language
called an array. What is required to use array to pass 50 integer parameters to this method? When you write

int num

39

CHAPTER 2 © WRITING JAVA PROGRAMS

it means that numis an identifier of the type int and it can hold one integer value. If you place two magic brackets ([])
after int, asin

int[] num

it means that num is an array of int and it can hold as many integer values as you want. There is a limit to the number
of integers that num can hold. However, that limit is very high and I will discuss that limit when I discuss arrays in
detail. The values stored in num can be accessed using subscripts: num[0], num[1], num[2], etc. Note that in declaring
an array of the type int, you have not mentioned the fact that you want num to represent 50 integers. Your modified
declaration for main method, which can accept 50 integers, would be as follows:

void main(int[] num) {

}

How will you declare the main method, which will let you pass names of 50 persons? Since int can only be used
for passing integers, you must look for some other type that represents a text in Java language because the name of a
person will be text, not an integer. There is a type String (note the uppercase S in String) that represents a text in Java
language. Therefore, to pass 50 names to the method main, you can change its declaration as follows:

void main(String[] name) {

}

In this declaration, you need not necessarily change the parameter name from num to name. You changed it just to
make the meaning of the parameter clear and intuitive. Now let’s add some Java code in the body of the main method,
which will print a message on the console.

System.out.println("The message you want to print");

This is not the appropriate place to discuss what System, out, and println are all about. For now, just type in
System (note uppercase S in System), a dot, out, a dot, println followed by two parentheses that contain the message
you want to print within double quotes. You want to print a message “Welcome to the Java world” and your main
method declaration will be as follows:

void main(String[] name) {
System.out.println("Welcome to the Java world");
}

This is a valid method declaration that will print a message on the console. Your next step is to compile the source
code, which contains the Welcome class declaration, and run the compiled code. However, when you run a class, the
JVM looks for a method main in that class and the declaration of the method main must be as follows, though name
could be any identifier.

public static void main(String[] name) {

}

Apart from two keywords, public and static, you should be able to understand the above method declaration,
which states: “main is a method, which accepts an array of String as a parameter and returns nothing.”

40

CHAPTER 2 © WRITING JAVA PROGRAMS

For now, you can think of public and static just as two keywords, which must be present to declare the main
method. Note that the JVM also requires that the name of the method must be main. This is the reason that I chose
main as the name of the method from the very beginning. It is just a rule imposed by the JVM to run a class that the
class must have a method named main whose declaration must look similar to as shown above. The final version of
the source code is shown in Listing 2-1. Save the source code in a file named Welcome. java.

Listing 2-1. Source Code for the Welcome Class

// Welcome.java
package com.jdojo.intro;

class Welcome {
public static void main(String[] args) {
System.out.println("Welcome to the Java world.");
}

The Java compiler imposes restrictions on the file name of the source code. In this example, the name of the file
in which the source code for Welcome class is saved need not be Welcome.java. You could use another file name, for
example, MylWelcome. java, JWelcome. java, etc. If you declare a class as public, the source code for that class must be
saved in a file that has exactly the same name as the name of the class, plus the . java extension. You declare a class
public by using the public keyword before the class keyword in its declaration. The following snippet of code declares
the Welcome class public. For this purpose, it does not matter whether you declare the Welcome class public.

// Welcome class is public now
public class Welcome {

}

Every class in Java has two names
e Asimplename
e Afully qualified name.

The simple name of a class is the name that appears after the class keyword in the class declaration. In this
example, Welcome is the simple name of the class. The fully qualified name of a class is its package name followed by a
dot and its simple name. Thus, in this example, com.jdojo.intro.Welcome is the fully qualified name of the class.

The next question that might arise in your mind is “What is the fully qualified name of a class that does not have a
package declaration?” The answer is simple. In such a case, the simple name and the fully qualified name of the class
are the same. If you remove the package declaration from the source code, Welcome will be both names for your class.

You might notice that the name of the class (Welcome) and the name of the file you saved the source code in
(Welcome.java) match (excluding the file extension . java). This did not happen by chance. I did select the file name
Welcome.java on purpose. Is it required to name the source code file the same as the name of the class? Yes, but not
always. This raises another question. What should be the name of the source code file if you declare two classes in the
same source code? Suppose you declare two classes, Welcome and Bye, in your source code. What name should you
give to the source file: Welcome. java, Bye. java, or something else? In some cases, Java forces you to keep the name
of a class and the file name the same. In your example, you do not need to stick to any source code file-naming rules.
It is correct even if you name your source file as Bye. java or Test. java. However, let’s continue with this example,
assuming that the source code has been saved in the file Welcome. java.

41

CHAPTER 2 © WRITING JAVA PROGRAMS

Compiling the Source Code

Compiling is the process of translating the source code into a special binary format called bytecode. This is accomplished
using a program (usually called a compiler) javac, which comes with JDK from Oracle Corporation. The process of
compiling Java source code is shown in Figure 2-4.

Java source code javac Bytecode
(Welcome.java) (Java Compiler) (Welcome.class)

Figure 2-4. The process of compiling a Java source code into bytecode

You supply the source code (in your case, Welcome. java) as input to the Java compiler and it generates a new file
(or a set of files) with extension .class. The file with extension .class is called a class file. A class file is in a special
format called bytecode. Bytecode is a machine language for Java virtual machine (JVM). I will discuss the JVM and
bytecode later in this chapter.

Now, I will walk through the steps that are needed to compile the source code on Windows. For other platforms,
for example, UNIX and Mac OS X, you will need to use the file path syntax specific to those platforms.

It is assumed that you have installed JDK from Oracle Corporation on your machine. It is further assumed that
you have stored your source code in a directory such as

C:\javaprograms\com\jdojo\intro\Welcome.java

Open a command prompt and change the directory, so intro should be your current working directory.
The prompt should look as follows:

C:\javaprograms\com\jdojo\intro>
To compile the Welcome. java, execute the following command:
C:\javaprograms\com\jdojo\intro>javac Welcome.java

If you do not get any error message, it means your source code was compiled successfully and it generated a new
file named Welcome.class in intro directory. However, if you get any error, there could be one of the three reasons:

¢ Youhave not saved the Welcome. java file in the directory C:\javaprograms\com\jdojo\intro.
¢ You may not have installed the JDK on your machine.

e Ifyou have already installed the JDK, you have not added the JAVA_HOME\bin directory to the
PATH environment variable, where JAVA_HOME refers to the directory where you installed
the JDK on your machine. If you installed JDK 8 in the directory C:\java8, you need to add
C:\java8\bin to the PATH environment variable on your machine.

If the above discussion about setting PATH environment variable did not help, you can use the following
command. This command assumes that you have installed JDK in the directory C:\java8.

C:\javaprograms\com\jdojo\intro>C:\java8\bin\javac Welcome.java

42

CHAPTER 2 © WRITING JAVA PROGRAMS

If you do not want to change the current working directory to C:\javaprograms\com\jdojo\intro, you can
compile your source code using the full path for Welcome. java file as follows:

C:\>C:\java8\bin\javac C:\javaprograms\com\jdojo\intro\Welcome.java

It does not matter how you specify the path for the javac command and the Welcome. java file. If the command
prompt can find it, your Java source code will be compiled successfully. Below is another way to compile the
Welcome. java file. This time, I assume that the javac.exe command file is in PATH and the current directory is
C:\javaprograms.

C:\javaprograms>javac com\jdojo\intro\Welcome.java

At this point, it is assumed that you have compiled the source code in Welcome. java successfully, which has
generated a new file named Welcome.class in the C:\javaprograms\com\jdojo\intro directory.

You are now ready to run your first Java program. Before you run this program, let’s discuss one important point
about the file name that is generated by the compiler. The name of the bytecode file (the .class file) is Welcome.class.
Why did the compiler choose to name the class file Welcome.class? You have used the word “Welcome” at three places
when you wrote the source code and compiled it.

e First, you declared a class named Welcome.
e Second, you saved the source code in a file named Welcome. java.
e And third, you passed Welcome. java file name to the compiler as an input.

Which one of your three steps prompted the compiler to name the generated bytecode file as Welcome.class?
As a first guess, it appears to be the third step, which is passing Welcome. java as an input file name to the Java compiler.
However, the guess is wrong. It is the first step, which is declaring a class named Welcome in the source code
Welcome.java, which prompted the compiler to name the output bytecode file Welcome.class. You can declare
as many classes as you want in one Java source code. Suppose you declare two classes, Welcome and Bye, in the
Welcome. java file. What file name will the compiler choose to name the output class file? The compiler scans
the whole source code file. It creates one class file for each class declared in the source code. If the Welcome. java
file had three classes, Welcome, Thanks and Bye, the compiler would have generated three class files, Welcome.class,
Thanks.class, and Bye. class.

Running the Compiled Code

A Java program is run by a JVM. A JVM is invoked using a program called java, which is the java.exe file installed on
your machine along with the JDK. The java program accepts the fully qualified name of the Java class you want to run.
Recall that a class has two names: a simple name and a fully qualified name. The fully qualified name must be used

to run the class. You are going to run Welcome class whose fully qualified name is com. jdojo.intro.Welcome. Use the
following command at the command prompt to run the class:

C:\javaprograms>java com.jdojo.intro.Welcome

What happens when you use the above command? First, the JVM tries to locate the bytecode (here, Welcome.class
file) for the com. jdojo.intro.Welcome class on your machine. JVM replaces every dot in the fully qualified name of the
class with the file-separator character on the host system. A backslash is the file-separator character on Windows and a
forward slash on UNIX-like operating systems. This step converts the com. jdojo.intro.Welcome class name that was
passed to the JVM to com\jdojo\intro\Welcome. Note that on a UNIX-like operating system, the same class name will
be converted to com/jdojo/intro/Welcome.

43

CHAPTER 2 © WRITING JAVA PROGRAMS

Tip The JVM also allows you to use a forward slash in place of a dot in the fully qualified name of the class to run.
For example, you can also use the following command to run the Welcome class:

C:\javaprograms>java com/jdojo/intro/Welcome

When you use forward slashes in place of dots in the fully qualified name of the class to run, you must use only forward
slashes, irrespective of the operating system. For example, you cannot use backslashes on Windows and forward slashes
on UNIX.

The second step the JVM takes is to append the word “class” to the class name thus converted. The resulting
string out of the fully qualified name of the class becomes

com\jdojo\intro\Welcome.class

Now the JVM looks for the Welcome. class file, which must be under the intro directory, which in turn must
be under the jdojo directory, which in turn must be under the com directory. The JVM is not only looking for a
Welcome.class file. Rather, it is looking for a Welcome. class file in a directory structure like com\jdojo\intro.
You may realize that there could be many directory paths on your machine, which can lead the JVM to a
com\jdojo\intro\Welcome.class file. Suppose you have three Welcome.class files on your machine as follows:

C:\jpa\com\jdojo\intro\Welcome.class
C:\jp2\com\jdojo\intro\Welcome.class
C:\javaprograms\com\jdojo\intro\Welcome.class

How does the JVM know which one of the three Welcome.class files it has to run? Here comes the concept of
a mysterious (sometimes confusing and frustrating) creature called the CLASSPATH environment variable. The JVM
uses the CLASSPATH environment variable to locate a class file on your machine. Many questions about CLASSPATH
may have arisen in your mind. Who defines the CLASSPATH? Where is it stored? How is it used? I will discuss all these
questions and their answers one by one.

The user of the machine sets the CLASSPATH. It can be set permanently, temporarily, or at runtime. If it is set
permanently, the JVM will use it whenever it needs to locate a class file. It can be set temporarily for the duration of a
command prompt session. It can be set at runtime by using -cp or -classpath option at the command line.

On Windows, the value of the CLASSPATH environment variable is a semicolon separated list of directories,

Z1P files, and JAR files. A typical setting for the CLASSPATH looks as follows:

SET CLASSPATH=C:\;C:\jbook;C:\javaprograms

On Windows, you can set the CLASSPATH environment variable using Settings » Control Panel » System »
Advanced Tab » Environment Variables button. It displays the Environment Variables dialog box shown in Figure 2-5.
Under the System Variables group box, you should select CLASSPATH under the Variable column. If you do not find
CLASSPATH variable, it means that it has not been set previously. If the CLASSPATH variable has not been set previously,
click the New button. Otherwise, click the Edit button. Clicking the New or Edit button will display a dialog box as shown
in Figure 2-6 in which you can add/modify the value for the CLASSPATH.

44

CHAPTER 2 WRITING JAVA PROGRAMS

User variables for ksharan

Variable Value

TEMP %USERPROFILE%\AppData\Local\Temp
TMP %USERPROFILE%\AppData\Local\Temp

System variables

Variable Value

asl.log Destination=file

CLASSPATH .;C:\Program Files (x86)\Java\jre8\lib\...
ComSpec C:\Windows\system32\cmd.exe
FP_NO_HOST_C... NO

Figure 2-5. Environment Variables dialog box for setting CLASSPATH on Windows

Variable name: | CLASSPATH

Variable value: | C:\;C:\jbook;C:\javaprograms

oK

Figure 2-6. New/Edit System variable dialog box for setting CLASSPATH on Windows

45

CHAPTER 2 © WRITING JAVA PROGRAMS

Tip The value for CLASSPATH is a list of directories, JAR files, and ZIP files that are separated by a path-separator.
The path-separator is operating system dependent. On a Windows operating system, the separator is a semicolon.
On a UNIX-like operating systems, for example, Linux, Solaris, and Mac OS X, the separator is a colon (;). On Windows
operating system, a CLASSPATH entry looks like C:\;C:\jbook;C:\jp;c:\myapps.jar. On UNIX-like operating systems,
it looks like /usr/jp/classes:/usr/myapps. jar.

You can also set CLASSPATH by typing the following command on command prompt. However, such CLASSPATH
setting is valid only for the current command prompt session.

C:\>SET CLASSPATH=C:\;C:\jbook;C:\javaprograms
After you have set the CLASSPATH, you can use the following command to run the Welcome class:
C:\>java com.jdojo.intro.Welcome

As I have already discussed, the JVM will convert the class name to a class file, com\jdojo\intro\Welcome.class.
The JVM reads the CLASSPATH value, which it will use to locate the class file. It reads the first entry from the CLASSPATH
value, which is C:\, and concatenates the converted class name string to it. The JVM may use an extra backslash if
needed to create a valid file name. In your case, the resulting string will be

C:\com\jdojo\intro\Welcome.class

The JVM checks if a file with the above path exists on the machine. In this case, this check will fail, because you
do not have a C:\com\jdojo\intro\Welcome.class file on your machine. If the JVM fails to locate a class file using
an entry in the CLASSPATH, it repeats the class file search using next entry from the CLASSPATH. This process continues
until the JVM locates the class file or it has exhausted all entries in the CLASSPATH. In your case, the JVM will find the
class file in the third attempt. It will find the C:\javaprograms\com\jdojo\intro\Welcome.class file. This is not the
end of the story. Since you passed the class name com. jdojo.intro.Welcome to the JVM, the JVM makes sure that the
C:\javaprograms\com\jdojo\intro\Welcome.class was generated by a Java compiler for a class named Welcome,
whose package declaration was com.jdojo.intro. In your case, this criterion is fulfilled.

What does the JVM do next? Now, it looks for a method declaration in the Welcome class whose declaration must
look as follows:

public static void main (String[] args)

If the JVM does not find the main method declaration, or the main method is not declared static final, it prints an
error message and aborts the execution. This is the reason why you declared the main method in your Welcome class.
In your case, the JVM will find the correct declaration for the method main. It executes the body of the main method,
which prints the following message on the console:

Welcome to the Java world.

There is another way of setting the CLASSPATH. You can set the CLASSPATH when you run your Java class. You can

use -cp or -classpath option with the java command to set the CLASSPATH while running the class. For example, you

can run the Welcome class as follows. Note that the command is entered on the command line in one line, like.

C:\>java -cp C:\;C:\jbook;C:\javaprograms com.jdojo.intro.Welcome

46

CHAPTER 2 © WRITING JAVA PROGRAMS

or
C:\>java -classpath C:\;C:\jbook;C:\javaprograms com.jdojo.intro.Welcome

Can you run your Welcome class example without worrying about the CLASSPATH setting? The answer is yes and
no. Sometimes, CLASSPATH setting becomes a bit tricky. If you don’t set any value for CLASSPATH as in

SET CLASSPATH=

the JVM uses the current working directory as the one and the only entry for the CLASSPATH. The current working
directory is specified by a dot. Therefore, the following two CLASSPATH settings are the same for the JVM:

SET CLASSPATH=
and
SET CLASSPATH=.

If you set some value for the CLASSPATH, you have to add a dot separately to indicate that you also want to include
the current working directory in the CLASSPATH. Note that you lose the default CLASSPATH setting (which is the current
working directory) when you set it explicitly. Suppose you have set the CLASSPATH using the following command:

SET CLASSPATH=

Now, you want to run your Welcome class. The only thing you have to do is that you must change your working
directory to C: \javaprograms, so C:\javaprograms becomes your current working directory. Using this directory as
the default entry for CLASSPATH, the JVM will find your class correctly. The command prompt should look as follows:

C:\javaprograms>java com.jdojo.intro.Welcome

Finally, there are some words of caution for you when you work with the CLASSPATH and the package of a class to
locate the class file. The JVM uses CLASSPATH and fully qualified name of the class to locate the actual class file on the
machine. However, you cannot take some part from one and add it to another, even though the resulting path is the
same. Always keep in mind that it is not enough for the JVM just to locate the class file. It also verifies the bytecode in a
class file to make sure that it contains the class definition with proper package name. The following commands are not
the same. Note the use of the space in each of the commands to separate the CLASSPATH value and the fully qualified
name of the class.

C:\>java -cp C:\ javaprograms.com.jdojo.intro.Welcome
C:\>java -cp C:\javaprograms com.jdojo.intro.Welcome
C:\>java -cp C:\javaprograms\com jdojo.intro.Welcome
C:\>java -cp C:\javaprograms\com\jdojo intro.Welcome
C:\>java -cp C:\javaprograms\com\jdojo\intro Welcome

In the above examples, all the commands will look for the same class file C: \javaprograms\com\jdojo\intro\
Welcome.class. However, only the second command will run successfully, because the package declaration for the
Welcome class is com. jdojo.intro.

The path of the class file is determined by the JVM on Windows as shown in Figure 2-7. On other platforms, the
JVM uses the file-separator character specific to the platforms.

47

CHAPTER 2 © WRITING JAVA PROGRAMS

An entry in CLASSPATH Fully qualified name of the class The file extension
with a dot replaced by a backslash added by JUM

C:\javaprograms + com\dojo\intro\Welcome + .class

C:\javaprograms\com\jdojo\intro\Welcome.class

| The absolute path of the class file

Figure 2-7. The process of finding a class file when the class is run

Using NetBeans IDE

You can use the NetBeans IDE to write, compile, and run Java programs. In this section, you will walk through the
steps of working with NetBeans. First, you will learn how to create a new Java project, write a simple Java program,
compile, and run it. At the end, you will learn how to open the NetBeans project for this book and use the source code
for this book.

It is assumed that you have installed NetBeans 7.4 or later. You can download it from www.netbeans.org. The
NetBeans IDE comes in different bundles: Java SE, Java EE, C/C++, HTML5 & PHP, and “All” For running all examples
in this book, you need Java SE or “All” bundle.

Note At the time of this writing, NetBeans IDE 8.0 is in its beta release. By the time you read this chapter, the final
release version 8.0 should be available. In this section, | will use the NetBeans 8.0 beta version.

Creating a Java Project

When you start the NetBeans IDE, the startup page is displayed as shown in Figure 2-8. The startup page contains
useful links for developers, such as links for tutorials for Java, JavaFX, C++, etc. If you don’t want the startup page to
display every time you start the IDE, you need to uncheck the “Show on Startup” checkbox in the upper-right corner of
the startup page. You can close the startup page by clicking the X icon displayed in the Start Page tab.

48

http://www.netbeans.org/

CHAPTER 2 © WRITING JAVA PROGRAMS

=1olx|

File View Debug Profile Team Tools Window Help —QT Search (Ctrl+I)]
[IEEaN~] |

Statt Page xl «dri=lo

@NEIBEa"s “]E Learn & Discover letBeans Startup [

Learn & Discover

Take a Tour Demos & Tutorials Featured Demo
Try a Sample Project

Java SE Applications E CordovaMaps
haks biew Java and JavaFX GUI Applicatio.. &-@ SiteRoot
Cormmunity Corner Java EE & Java Web Applicatio.. T |i‘ :jss in

CIC++ Applications L

=l L imn

PHF and HTMLS Applications
Mobile and Embedded Applicati.

Getting Started with Cordova in b
All Online Documentation >>

ORACLE

Figure 2-8. The NetBeans IDE with the startup page

To create a new Java project, follow these steps.

1. Select the menu item New Project under the File menu. A New Project dialog is displayed,
as shown in Figure 2-9.

49

CHAPTER 2 WRITING JAVA PROGRAMS

‘ New Project

Steps Choose Project
1. Choose Project Q, Filter: ||
> £
Categories: Projects:
] Java él &» Java Application
0] JavaFx &» Java Class Library
D Java Web &5 lava Project with Existing Sources
[:I Java EE LI &% Java Free-Form Project
Description:
This feature is not yet enabled, Press Next to activabe it ;I
=

< Back I Next > I Finish Cancel | Help I

Figure 2-9. A New Project dialog

2. Inthe New Project dialog, select “Java” in the Categories list and “Java Application” in the
Projects list. Click the Next button. A New Java Application dialog, shown in Figure 2-10,

is displayed.

® New Java Application

Steps

Name and Location

x|

1. Choose Project
2. Name and Location

Project Mame: |TestApp

Project Location: IC:'l,testproject Browse... |

Projeck Folder: IC:\testproject'l,TestApp

[Use Dedicated Folder For Storing Libraries

Libraries Folder; I Browse, . |

Different users and projects can share the
same compilation libraries (see Help For
details).

[V Create Main Class Icnm.jdojo.intro.wdcoma

< Back | hext = || Finish I Cancel] Help

Figure 2-10. A New Java Application dialog

50

CHAPTER 2 © WRITING JAVA PROGRAMS

3. Inthe New Java Application dialog, enter TestApp as the project name. Enter or browse
for a location where you want to save the project files. Make sure the checkbox “Create
Main Class” is selected and a class name com. jdojo.intro.Welcome is entered next to
the checkbox. Click the Finish button when you are done. The new TestApp project with
aWelcome class will be opened in the IDE, as shown in Figure 2-11. You might see some
more comments for the Welcome class, which are added by NetBeans when it creates a new
class; I removed most of the comments before taking the screenshot.

Il
File Edit Yiew MNavigate Source Refactor Bun Debug Profile Team Tools Window Help "Q;v'S-:--ar-:'.i-:tr:«-ll . |
B B[@ et -] §® D5 @ | O |
Projects X | Files | Services | El | [&} Welcome.java x] ij_)_;:l_nj
S5-§ Testhop sorce Hetoy [[@ @G| QRSB P E Ry @
= _S?Lrteplacktagles 1 package com.jdojo.intro: alm
- BB c_om.]do]o.nrtro 2
'_ [@ w 3 public class Welcome {
@[Libraries 4 publlc static void M(Strumg[] arg‘s] {
R “x[:[T ; ! TOD(de application log here
Members _”<emD J E 7 3
= Q) Welcome 8
() main(stringl) arge) . LILI
BT TES ST S [SrmmS om -
(1 | NS

Figure 2-11. The NetBeans IDE with TestApp Java Project

Replace the TODO comments in the main() method of the Welcome class with the following statement. The IDE

should look similar to the one shown in Figure 2-12.

System.out.println("Welcome to the Java world.");

W TestApp - NetBeans IDE 8.0 Beta)

file Edit Yiew Mavigate Source Refactor Run Debug Profle Team Tools Window Help

17980 @ & D @ |k =1 % B b - B0 [

i

Projects X| Files | Serviees |) [[o Welcomejava x| | <l =lo
2§ Testhon A souce Hooy |[RE-S-QUBSBRAF S B/ AU O Y@
B ‘_SfchePT!l:kag.es 1 package com.jdojo.intro: -y
=2-E EOm.]dDIO.IntP’O 2
=) m"“’ LI 3 public class Welcame |
main - le 4 public static void main(String[] args) |
Renbers _||<emD _I i-[ﬂ : } System. out.println("Welcome to the Java world.'
El-&) Wekome 7 }
() main(Stringl] args) _I_l
= = | I
& DWEE|@”@§“ {) Welcome » () main
| INS

Figure 2-12. The Welcome class after adding a statement in the main() method

51

CHAPTER 2 WRITING JAVA PROGRAMS

NetBeans lets you run a project or a single Java class.

e Torun a project, you need to set a main class, which is the fully qualified name of a class with a
main() method, as you had for the Welcome class. In this case, enter com. jdojo.intro.Welcome
as the main class for the TestApp project. If you run the project, the com. jdojo.intro.Welcome
class will be run. To run a project, select the Run Project menu item from the Run menu or
press F6 when the project is active in the IDE. You can change the main class for a project using
project properties. I will discuss how to change project properties shortly.

e Torun afile, select a file and select the Run File menu item from the Run menu. Alternatively,
you can select a Java class in the IDE and press Shift + F6 to run it.

To run the Welcome class, press F6. The class will be compiled and run. The output will be displayed in the output
pane, as shown in Figure 2-13.

T

Fle Edit Yiew Mavigate Source Refactor Run Debug Profle Team Tools Window Help :0;'”5*'5';" (Ctrbe) ‘
“ﬁ ¥l B B B @ | |<default config> T DP-EB-G ':“:-'-".:_ [72257M" |
Projects X | Fles | Services |] ([Welcome.java x| < i=)of
- & Testapp soce Hstory [[@ [Bl RS D¢ L B0 E] il

E-3 JOUNCE P_ackfaq_es 1 package com.jdojo.intro;
= com.jdojo.intro 2
i @ Welcome. java 3 public class Welcome {
B-Lg Libraries 413 public static void main(String[] args) {
5
6
7

System.out.printin("Welcome to the Java world."™):

= H

IR

[Navigator x| f |
!Members L”g;eml—.___;l &
E [35 Welcome ﬂ
L @ main(Stringl] args) () Welcome
Output - TestApp (run) X [
Ll. ramn:

®O[18/O] & &

Welcome to the Java world.

§<|L|II1><

7:2

Figure 2-13. The Welcome class after adding a statement in the main() method

Adding Classes to the Project

To add a new class, follow these steps.

1. Select a Java project or a package in the IDE and right-click to access the menu options.
Figure 2-14 shows the menu options when the package com. jdojo.intro is selected.

52

CHAPTER 2 © WRITING JAVA PROGRAMS

Projects x| Files [Services =]

E- &% Testapp
-4 Source Packages

SR ==l o, jdojo.intro

1 Folder...

i welcome. j: IR
Cut Chrl+% [Java Package. ..
Copy Chrl4-C @ Java Interface...
Faste Chrl+¥ D JPanel Form...
Delete Delete Ifl JFrame Form...
Refactor » @] Entity Class. ..

|&] Entity Classes from Database. ..

Compile Package F9
armp A0 ® web Service Client...

Test Package Chrl4+-FE
History » Other...
Tools »

Figure 2-14. Accessing new option to add a new class

2. Select the New » New Class menu item from the right-clicked menu list. Selecting the
New Class menu option displays a New Java Class dialog, as shown in Figure 2-15.

x

Steps Name and Location

1. Choose File Type Class Name: |Bye
2. Name and Location

Project: |Testﬂ.|:|p

Location:

Package: I com.jdojo.intro LI

Created File: |C ‘\testproject\ TestappisrcicomtjdojolintrolBye. jau

< Back Mext = H Finish I Cancel Help

Figure 2-15. A New Java Class dialog

53

CHAPTER 2 © WRITING JAVA PROGRAMS

3. Enter the new class name in the Class Name field. If you accessed this dialog by selecting
a package in the IDE, the Package field is pre-filled with the selected package in the IDE.
If you accessed this dialog by selecting a project, this field is blank; you need to enter
the package name for the new class. You can enter the package name of your choice
irrespective of how you access this dialog.

4. Click the Finish button when you are done. The new class with an empty body will be
added to the IDE.

Customizing Project Properties

NetBeans lets you customize several properties for your Java project using the Project Properties dialog. You can
access the dialog by selecting the project and choosing the Properties menu item from the right-clicked menu.
The Project Properties dialog for the TestApp is shown in Figure 2-16.

® Project Properties - TestApp m

Categories:
S <0 ces Project Folder: |C:\testpraject|TestApp

@ Libraries ke 3
5o Buid Source Package Folders:

- @ Compiling Package Folder Label Add Folder... |
. @ Packagin Source Packages

» Depoyme __ Bemove |
~ @ Deployment

+ © Documenting
\ > Move Up
: Run | I_I |
t @ #pplication Test Package Folders:

P ” Wieb Start Package Folder Label Add Falder. .. |
i+ @ License Headers o T —
e O Formatting Remove |

Hinks
Rl >

Move Up

Source/Binary Format: |IDK 8 =] Includes/Excludes. .. |
Profile: IFul] JRE ZI
Encoding: IUTF-B LI

| oK I Cancel Help

Figure 2-16. The Project Properties dialog for the TestApp

54

CHAPTER 2 © WRITING JAVA PROGRAMS

On the left side of the dialog is the list of categories of properties. When you select a property category, the details
are displayed on the right side. The following are brief descriptions of each property category:

Sources: It is used set source code-related properties, for example, source folder, format,
profile, encoding, etc. under the Sources category. The Profile property is new in Java 8. It lets
you select a compact profile compact1, compact2, compact3, or full JRE. The default is full JRE.
When you select a compact profile, the IDE will restrict you from using the API outside of that
compact profile. The Includes/Excludes button lets you include and exclude fields from the
project. Use this button when you want to keep some files in the project, but do not want to
compile them, for example, the files may not be compiled as they are not complete.

Libraries: Among several properties, it lets you set two important properties: Java platform
and CLASSPATH. Clicking the Manage Platforms button opens the Java Platform Manager
dialog where you can select an existing platform or add a new platform. Use the Add Project,
Add Library, and Add JAR/Folder buttons to add projects, pre-defined set of JAR files, and
JAR/Folder to the CLASSPATH. This CLASSPATH is used to compile and run your Java project.
Note that the Java classes that you add to your project using the IDE are automatically added
to the CLASSPATH. The CLASSPATH is set for the project only for the NetBeans IDE.

Build: It lets you set properties for several subcategories. Under the Compiling subcategory, you
can set compiler-related options. You can choose to compile the source code when it is saved or
you can choose to compile the source code yourself using the menu options in the IDE. Under
the Packaging subcategory, you can set options for packaging your class files. The Deployment
subcategory lets you choose native packing options for your project. The Documenting
subcategory lets you set options for generating Java documentation for the project.

Run: This category lets you set properties that are used to run the project. You can set the Java
platform, JVM arguments. Using the category, you can set main class for your project.

Opening an Existing NetBeans Project

It is assumed that you have downloaded the source code for this book. The source code contains a NetBeans 8.0
project. To open the project, follow these steps.

1.

Choose the Open Project menu item under the File menu. An Open Project dialog is
displayed.

Navigate to the folder that contains the unzipped downloaded source code. The project
BeginningJavaFundamentals is displayed, as shown in Figure 2-17.

55

CHAPTER 2 WRITING JAVA PROGRAMS

‘ Look in: IwLacal Disk (C:) L] T 2

My recent 0., IS i :] Project Mame:
P - ,l‘—- Beginning Java 8 Fundamentals]Beqi‘ni‘sq]avaFundammtals
[#}-(== manuscripts

[#-(= Original Chapters I™ Open Required Projects:

-|== Resources

= SourceCode |
38 B cginning)avaFundamentals

: [~ uploaded
[~ staging
= TO-DO-LIST
|=trash

= checked_out
= downloads

. | == 1Info L]
‘J File name: ||ks'|,Java_B'l,Apress'l,Beginning Java & Fundamentals\SourceCodeBeginningJavaFundamentals Open Project
My Metwork ... =R kype: |Pr0je|:t Folder LI Cancel |

Figure 2-17. Opening the NetBeans Java project for the source code for this book

My Documents

ksharan o ...

-F-F

3. Select the project and click the Open Project button. The project is opened the project in
the IDE. Use the Project or Files tabs on the left to browse the source code for all chapters
in this book.

Behind the Scenes

This section will answer some general questions related to compiling and running Java programs. For example,
why do we compile Java source code to bytecode format before running it? What is Java platform? What is a JVM and
how does it work? The detailed discussion of these topics is beyond the scope of this book. Please refer to the JVM
specification for detailed discussion on any topic related to the JVM functionality. The JVM specification is available
online at http://docs.oracle.com/javase/specs.

Let’s look at a simple daily life example. Suppose there is a Frenchman who can understand and speak only
French and he has to communicate with three other persons: an American, a German, and a Russian, and these three

only know one language (English, German, and Russian, respectively). How will the Frenchman communicate to
the other three? There are many ways to solve this problem.

e The Frenchman may learn all three languages.
e The Frenchman may hire a translator who knows all four languages.

e The Frenchman may hire three translators who know French-English, French-German, and
French-Russian.

There are numerous other possible solutions to this problem. Let’s consider the similar problem in the context
of running a Java program. The Java source code is compiled into bytecode. The same bytecode needs to be run
without any modification to all operating systems. Designers of Java language chose the third option, which is to have
a translator for each operating system. The job of the translator is to translate the bytecode into machine code, which
is native to the operating system running the translated code. The translator is called a Java Virtual Machine (JVM).
You need to have a JVM for each operating system. Figure 2-18 is a pictorial view of how the JVM acts as a translator
between bytecode (class file) and different operating systems.

56

http://docs.oracle.com/javase/specs

CHAPTER 2 © WRITING JAVA PROGRAMS

Bytecode
JUM JUM JVM
on on on
Windows UNIX Mac

=]

Figure 2-18. A JVM as a translator between bytecode and an operating system

A Java program compiled into bytecode format has two advantages:

e You do not need to recompile your source code if you want to run it on another machine with
a different operating system. It is also called platform independence in Java. It is also known as
“write once, run anywhere” for Java code.

e Ifyou are running a Java program over a network, the program runs faster because of the
compact size of the bytecode format, which results in less loading time over the network.

In order to run a Java program over the network, the size of the Java code must be compact enough to be
transported over the network faster. The class file, which is generated by a Java compiler in bytecode format, is very
compact. This is one of the advantages of compiling the Java source code in bytecode format.

The second important advantage of using bytecode format is that it is architecture-neutral. By bytecode format
being architecture-neutral, it means if you compile the Java source code on a specific host system, say, Windows, the
generated class file does not have any mention or effects that it was generated on Windows. If you compile the same
Java source code on two different host systems, for example, Windows and UNIX, both class files will be the same.

The class file in bytecode format cannot be directly executed on a host system because it does not have any host
system-specific direct instructions. In other words, we can say that bytecode is not a machine language for any specific
host system. Now, the question is who understands the bytecode and who translates it into underlying host system
specific language? The JVM performs this job. The bytecode is the machine language for the JVM. If you compile Java
source code to generate a class file on Windows, you can run the same class file on UNIX if you have a Java platform
(JVM and Java API collectively are known as the Java platform) available on the machine running on UNIX. You do
not need to recompile your source code to generate a new class file for UNIX, because the JVM running on UNIX
can understand the bytecode you generated on Windows. This is how the concept of “write once, run anywhere” is
implemented for a Java program.

The Java platform, also called Java runtime system, consists of two things:

e The Java virtual machine (JVM)

e The Java Application Programming Interface (Java API)

57

CHAPTER 2 © WRITING JAVA PROGRAMS

The term “JVM” is used in three contexts:

e The JVM specification: It is the specification or standard of an abstract machine for which a
Java compiler can generate bytecode.

e The concrete realization of the JVM specification: If you want to run your Java program, you
need to have a real JVM, which is developed using the abstract specification for a JVM. To run
the Java program in previous section you used a command like

C:\javaprograms>java com.jdojo.intro.Welcome

Here, java is a program developed fully based on the abstract specification for the JVM.
Therefore, it is the concrete realization of the abstract JVM specification. The java program
(or JVM) has been implemented completely in software. However, a JVM can be
implemented in software or hardware, or a combination of both.

e Arunning JVM instance: You have a running JVM instance when you invoke the java program.

This book uses the term JVM for all three cases. Its actual meaning should be understood by the context of its use.

One of the jobs a JVM performs is to execute the bytecode and generate a machine-specific instruction set for the
host system. A JVM has a classloader and an execution engine. The classloader reads the content of a class file when
required and loads it into memory. The job of the execution engine is to execute the bytecode.

AJVM is also called a Java Interpreter. Often, the term “Java Interpreter” is misleading, particularly to those
programmers who have just started learning the Java language. By the term “Java Interpreter,” they conclude that
the execution engine of a JVM interprets the bytecodes one at a time, and so Java must be very slow. The name
“Java Interpreter” for a JVM has nothing to do with the technique the execution engine uses to execute the bytecode.
The actual technique, which the execution engine may opt to execute the bytecode, depends on the specific
implementation of the JVM. Some execution engines types are interpreter, just-in-time compiler, and adaptive
optimizer. In its simplest kind, which is interpreter, the execution engine interprets the bytecodes one at a time, and
therefore, it is slower. In its second kind, which is the just-in-time compiler, it compiles the whole code for a method
in the underlying host machine language for the first time that method is called. Then it reuses the compiled code the
next time the same method is called. This kind of execution engine is faster compared with the first kind, but requires
more memory to cache the compiled code. In adaptive optimizer technique, it does not compile and cache the whole
bytecode; rather it does so only for the most heavily used part of the bytecode.

What is an API (application programming interface)? An API is a specific set of methods made available by an
operating system or by an application to the programmers for its direct use. In the previous sections, you created the
Welcome class in the com.jdojo.intro package, which declared a method main, which accepts an array of String as
an argument and returns nothing (indicated by keyword void). If you expose all these pieces of information about
the created package, class and method, and make it available to other programmers for use, your method main in the
Welcome class is a typical, though trivial, example of an API. Generally, when we use the term “API” we mean a set of
methods that are available to the programmer for use. Now it is easy to understand what the Java API means. The Java
API is the set of all classes and other components that are available to programmers for use while writing Java source
code. In your Welcome class example, you have already used one Java API. You used it inside the body of the main
method to print the message on the console. The code, which used the Java AP], is

System.out.println("Welcome to the Java world");

You did not declare any method named println in your code. This method was made available to the JVM
at runtime through Java API, which is the part of Java Platform. Broadly speaking, Java API can be classified in two
categories: Core API and Extension API. Every JDK must support the Core API. Examples of Core Java APIs are Java
runtimes (e.g., Applets, AWT, I/0, etc.), JFC, JDBC, etc. Java Extension APIs are JavaMail, JNDI (Java naming and
Directory Interface), JavaHelp, etc. Java 8 includes JavaFX 8 API as an extension API. The process of compiling and
running a Java program is depicted in Figure 2-19.

58

CHAPTER 2 © WRITING JAVA PROGRAMS

Welcome.java

Y

Java
Compiler

|

Welcome.class

Java Platform

Java Virtual Machine Java API
Classloader

Execution Engine

Operating System

Figure 2-19. All components involved in compiling and running a Java program

Summary

Java programs are written in plain text format using a text editor or IDE. The Java source code is also known as a
compilation unit and it is stored in a file with a . java extension. Several integrated development environments (IDEs)
for Java, such as NetBeans, are freely available in the market. Using an IDE to develop Java applications reduces the
time and effort involved.

A Java program is compiled into a class file using a Java compiler. The class file contains bytecode. The Java
compiler that comes with the JDK is called javac. The compiled code is run by a JVM. The JDK installs a JVM that can
be run as a java command. Both javac and java commands are located in the JDK_HOME\bin directory, where
JAVA_HOME is the installation directory for the JDK.

59

CHAPTER 3

Data Types

In this chapter, you will learn:
e What data types are
e Whatidentifiers are and detailed rules to declare them
e The difference between primitive and reference data types
e How to declare variables of a data type
e How to assign a value to a variable
e Detailed descriptions of all primitive data types in Java
e Whatliterals of a data type are
e What casting is and when it is needed
e Binary representation of integers and floating-point numbers
¢ Different rounding modes for floating-point numbers

e HowJava implements IEEE floating-point standards

What Is a Data Type?

A data type (or simply a type) is defined in terms of three components:
e Asetofvalues (or data objects)
e Asetofoperations that can be applied to all values in the set
e Adatarepresentation, which determines how the values are stored

A programming language provides some predefined data types, which are known as built-in data types.

A programming language may also let programmers define their own data types, which are known as user-defined
data types.

A data type that consists of an atomic, indivisible value, and that is defined without the help of any other data
types, is known as a primitive data type. User-defined data types are defined in terms of primitive data types and
other user-defined data types. Typically, a programming language does not let the programmers extend or redefine
primitive data types.

61

CHAPTER 3 © DATATYPES

Java provides many built-in primitive data types, such as int, float, boolean, char, etc. For example, the three
components that define the int primitive data type in Java are as follows:

e An int data type consists of a set of all integers between -2,147,483,648 and 2,147,483,647.

e Operations such as addition, subtraction, multiplication, division, comparison, and many
more are defined for the int data type.

e Avalue of the int data type is represented in 32-bit memory in 2’s compliment form.

All three components of the int data type are predefined by the Java language. Developers cannot extend or
redefine the definition of the int data type in Java. You can give a name to a value of the int data type as

int employeeld;

This statement states that employeeld is a name (technically called an identifier) that can be associated with one
value from the set of values that defines values for the int data type. For example, you can associate integer 1969 to
the name employeeld using an assignment statement like

employeeld = 1969;

What Is an Identifier?

An identifier in Java is a sequence of characters of unlimited length. The sequence of characters includes all Java
letters and Java digits, the first of which must be a Java letter. Java uses the Unicode character set. A Java letter is a
letter from any language that is represented by Unicode character set. For example, A-Z, a-z, _ (underscore), and $
are considered Java letters from the ASCII character set range of Unicode. Java digits include 0-9 ASCII digits and any
Unicode character that denotes a digit in a language. Spaces are not allowed in an identifier.

In fact, an identifier is a technical term for a name. Therefore, an identifier is simply the name given to a class,
method, variable, etc. in a Java program. The name, Welcome, of our Java class is an example of an identifier. The
names of variables num1, num2, and str1 used in our examples are also identifiers. All characters used in an identifier
are important, as is their case. The names welcome, Welcome, and WELCOME are three different identifiers. There are
three important things to remember about identifiers in Java:

e There is no limit on the number of characters used in an identifier. An identifier can be as
small as one character long (for example, i, j, k) or as big as you want.

e Characters used in an identifier are drawn from the Unicode character set, not only from the
ASCII character set.

e Identifiers are case sensitive. For example, num and Num are two different identifiers.

Examples of valid identifiers are as follows:

numi // Can use a-z and 0-9 and start with a letter
kn // Only letters
_abc // Can start with an underscore

_ // Can have only one letter, which is an underscore
sum_of two numbers // Can have letters and underscores

Outer$Inner // Can have a-z, A-Z and $

$var // Can also start with $

62

CHAPTER 3 © DATATYPES

Examples of invalid identifiers are as follows:

2num // Cannot start with a number

my name // Cannot have a space

numil+num2 // Cannot have + sign

numi-num2 // Cannot have hyphen or minus sign

Java defines a list of words called keywords. Keywords are words that have predefined meanings in Java and they can

only be used in the contexts defined by the Java language. Keywords in Java cannot be used as identifiers. The complete
list of Java keywords is listed in Table 3-1.

Table 3-1. List of Keywords and Reserved Words in Java

abstract continue for new switch
assert default goto package synchronized
boolean do if private this

break double implements protected throw

byte else import public throws

case enum instanceof return transient
catch extends int short try

char final interface static void

class finally long strictfp volatile
const float native super while

The two keywords, const and goto, are not currently used in Java. They are reserved keywords and they cannot
be used as identifiers.

In addition to all the keywords, three words, true, false, and null, cannot be used as identifiers; true and false
are boolean literals (or boolean constants) and null is a reference literal.

Data Types in Java

Before we start discussing all data types available in Java, let’s take a simple example of adding two numbers. Suppose
your friend asks you to add two numbers. The procedure to add two numbers goes as follows.

1. Your friend tells you the first number. You listen to him and your brain records the number
at a particular location in your memory. Of course, you do not know where the number is
exactly stored in your brain’s memory.

2. Your friend tells you the second number, you listen to him, and again, your brain records it
at a particular location in your memory.

3. Now, your friend asks you to add the two numbers. Your brain comes into action again.
It recalls (or reads) the two numbers, adds them, and you tell your friend the sum of the
two numbers.

63

CHAPTER 3 © DATATYPES

Now, if your friend wants you to tell him the difference of the same two numbers, he does not need to tell you
those two numbers again. This is because these two numbers are stored in your memory, and your brain can recall
and use them again. However, whether your brain can perform addition of those two numbers depends on many
factors, for example, how big those two numbers are; whether your brain can memorize (or store) those big numbers;
whether your brain is trained to do addition, etc. The process of adding two numbers also depends on the type of
these two numbers. Your brain will use different logic to add them depending on whether two numbers are whole
numbers (e.g. 10 and 20), real numbers (e.g. 12.4 and 19.1), or the mix of whole and real numbers (e.g. 10 and 69.9).
The entire process takes place in your brain without you noticing it (maybe because you are so accustomed to doing
these additions). However, when you want to do any kind of manipulation on numbers or any other types of values
in a Java program, you need to specify the details about the values you want to manipulate and the procedure for
manipulating those values.

Let’s discuss the same example of adding two numbers in a Java program. The first thing you need to tell Java is
the type of the two numbers you want to add. Let’s assume that you want to add two integers, 50 and 70. When you
added two numbers by yourself, your brain gave each number a name (maybe as the first number and the second
number). You did not notice the naming of those numbers by your brain. However, in a Java program, you have to
explicitly give names (also known an identifier) to both numbers. Let's name the two numbers as num1 and numz,
respectively. The following two lines in a Java program indicate the fact that there are two integers, num1 and num2:

int numi;
int num2;

The int keyword is used to indicate that the name that follows represents an integer value, for example, 10, 15,
70, 1000, etc. When the above two lines of code are executed, Java allocates two memory locations and associates the
name numl with the first memory location and the name num2 with the second memory location. The memory states
after the execution have been depicted in Figure 3-1 as Memory State - I.

Memory State - I Memory State - 1T Memory State - 11
numl A numl 50 numl 50
num3 120
numa2 - num2 70 num2 70

Figure 3-1. Memory states in the process of adding two numbers

These memory locations are called variables. The names num1 and num2 are associated with these two memory
locations. Strictly speaking, num1 and num2 are two names associated with two memory locations. However, roughly
speaking, you say

e numl and num2 are two variables, or
e numland num2 are two variables of int data type, or

e numil and num2 are two int variables.

64

CHAPTER 3 © DATATYPES

Because you have declared num1 and num2 variables of int data type, you cannot store a real number, such as
10.51, at these memory locations. The following piece of code stores 50 in num1 and 70 in num2:

numi = 50;
num2 = 70;

The memory states after execution of the above two lines of code have been depicted in Figure 3-1 as Memory
State-II. Now, you want to add the two numbers. Before you add them, you must allocate another memory location,
which will hold the result. You name this memory location as num3 and the following piece of code performs these tasks:

int num3; // Allocates the memory location num3
num3 = numl + num2; // Computes sum and store the result in num3

The memory states after execution of the above two lines of code are depicted in Figure 3-1 as Memory State-III.
The two lines above can be combined into one:

int num3 = numl + num2;

A variable has three properties:
e A memory location to hold the value
e The type of the data stored at the memory location
¢ Aname (also called identifier) to refer to the memory location

The data type of the variable also determines the range of the values that the memory location can hold. Therefore,
the amount of memory allocated for a variable depends on its data type. For example, 32 bits of memory is allocated for
avariable of the int data type. In this example, each variable (num1, num2, and num3) uses 32 bits of memory.

Java supports two kinds of data types:

e Primitive data type
e Reference data type

A variable of the primitive data type holds a value whereas a variable of the reference data type holds the
reference to an object in memory. I will discuss one of the reference data types available in Java, String, in this
section. String is a class defined in the Java library and you can use it to manipulate text (sequence of characters).
You declare a reference variable str of String type as

String str;

Before you assign the reference of an object to a reference variable, you need to create an object. You create an
object using the new operator. You can create an object of the String class with a text “Hi” as follows:

// Creates a String object and assigns the reference of the object to str
str = new String("Hi");

What happens when this code is executed? First, memory is allocated and the name of the variable str is
associated with that memory location, as shown in Figure 3-2. This process is the same as declaring a primitive data
type variable. The second piece of code creates a String object in memory with text “Hi” and stores the reference
(or memory address) of the String object into the variable str. This fact is shown in the second half of Figure 3-2 by
using an arrow pointing from the variable str to the object in memory.

65

CHAPTER 3 © DATATYPES

A String object in memory
str = - . >
str Hi
Memory state after execution of Memory state after execution of
String str; str = new String("Hi");

Figure 3-2. Memory states using reference variables assignments

You can also assign the reference of an object stored in one reference variable to another reference variable.
In such cases, both reference variables refer to the same object in memory. This can be achieved as follows:

// Declares String reference variable stri and str2
String stri;
String str2;

// Assigns the reference of a String object "Hello" to stri
strl = new String("Hello");

// Assigns the reference stored in stri to str2
str2 = stri;

There is a reference constant (also known as reference literal) null, which can be assigned to any reference
variable. If null is assigned to a reference variable, it means that the reference variable is not referring to any object
in memory. The null reference literal can be assigned to str2.

str2 = null;

The memory states after execution of all of the above statements are depicted in Figure 3-3.

A String object in A String object in
memory memory
strl ®
strl o > Hello strl Hello
str2
str2 ® > str2 1
String strl; strl = new String("Hello"); str2 = null;
String str2; str2 = strl;

Figure 3-3. Memory states using null in the reference variables assignments

66

CHAPTER 3 © DATATYPES

A String object is created using the new operator. However, strings are used so often that there is a shortcut to
create a string object. All string literals, a sequence of characters enclosed in double quotes, are treated as String
objects. Therefore, instead of using the new operator to create a String object, you can use string literals like so:

// Assigns the reference of a String object with text "Hello" to stri
String stri = "Hello";

// Assigns the reference of a String object with text "Hello" to stri
String strl = new String ("Hello");

Tip There is a subtle difference between the above two statements, which assign a String object to str1 with the
same text "Hello". | will discuss the difference when | cover the String class in detail Chapter 11.

Primitive Data Types in Java

Java has eight primitive data types. They are byte, short, int, long, char, float, double, and boolean. They are divided
into two categories: boolean data type and numeric data type. The numeric data type can be further subdivided into
integral and floating-point types. All primitive data types and their categories are shown in Figure 3-4.

Primitive Data Type

boolean Numeric Type

Integral Type Floating-Point Type

byte short int long char float double

Figure 3-4. List of primitive data types in Java

Integral Data Types

An integral data type is a numeric data type whose values are integers. Java offers five integral data types: byte, short,
int, long, and char. All integral data types are described in detail in the sections to follow.

67

CHAPTER 3 © DATATYPES

The int Data Type

The int data type is a 32-bit signed Java primitive data type. A variable of the int data type takes 32 bits of memory.
Its valid range is -2,147,483,648 to 2,147,483,647 (-231to 23! - 1). All whole numbers in this range are known as integer
literals (or integer constants). For example, 10, -200, 0, 30, 19, etc. are integer literals of int. An integer literal can be
assigned to an int variable, say numi, like so:

int numl = 21;

Integer literals can also be expressed in
e Decimal number format
e Octal number format
¢ Hexadecimal number format
e Binary number format
When an integer literal starts with a zero and has at least two digits, it is considered to be in the octal number

format. The following line of code assigns a decimal value of 17 (021 in octal) to num1:

// 021 is in octal number format, not in decimal
int numi = 021;

The following two lines of code have the same effect of assigning a value of 17 to the variable num1:

// No leading zero - decimal number format
int num1 = 17;

// Leading zero - octal number format. 021 in octal is the same as 17 in decimal
int numi = 021;

Be careful when using int literals with a leading zero, because Java will treat these literals as in octal number format.
Note that an int literal in octal format must have at least two digits, and must start with a zero to be treated as an octal
number. The number 0 is treated as zero in decimal number format, and 00 is treated as zero in octal number format.

// Assigns zero to numi, 0 is in the decimal number format
int numi = 0;

// Assigns zero to numi, 00 is in the octal number format
int numil = 00;

Note that both 0 and 00 represent the same value, zero. Both have the same effect of assigning a value of zero to
the variable num1.

All int literals in the hexadecimal number format start with 0x or 0X, that is, zero immediately followed by an
uppercase or lowercase X, and they must contain at least one hexadecimal digit. Note that hexadecimal number
format uses 16 digits, 0-9 and A-F (or a-f). The case of the letters A to F does not matter. The following are the
examples of using int literals in hexadecimal format:

int numl = 0x123;
int num2 = Oxdecafe;
int num3 = 0x1A2B;

int num4 = 0X0123;

68

CHAPTER 3 © DATATYPES

An int literal can also be represented using the binary number format. All int literals in the binary number format
start with Ob or 0B, that is, zero immediately followed by an uppercase or lowercase B. The following are examples of
using int literals in the binary number format:

int numi = 0b10101;
int num2 = 0b00011;
int num3 = 0b10;

int num4 = 0b00000010;

The following assignments assign the same decimal number 51966 to an int variable numi in all four different
formats:

numl = 51966; // Decimal format
numl = 0145376; // Octal format, starts with a zero
numl = OXCAFE; // Hexadecimal format, starts with Ox

numl = 0b1100101011111110; // Binary format starts with ob

Java has a class named Integer (note the upper case I in Integer), which defines two constants to represent
maximum and minimum values for the int data type, Integer .MAX_VALUE and Integer .MIN_VALUE. For example,

int max = Integer.MAX_VALUE; // Assigns maximum int value to max
int min = Integer.MIN_VALUE; // Assigns minimum int value to min

The long Data Type

The long data type is a 64-bit signed Java primitive data type. It is used when the result of calculations on whole
numbers may exceed the range of the int data type. Its range is -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
(-2% to 2% - 1). All whole numbers in the range of long are called integer literals of long type.

51 is an integer literal. What is its data type: int or long? An integer literal of type long always ends with L
(or lowercase 1). This book uses L to mark the end of an integer literal of the long type, because | (lowercase L) is often
confused with 1 (digit one) in print. The following are examples of using a integer literal of long type:

long numi = oL;
long num2 = 401L;
long mum3 = -3556L;
long num4 = 89898L;
long nums = -105L;

Tip 25Lis an integer literal of long type whereas 25 is an integer literal of int type.

Integer literals of long type can also be expressed in octal, hexadecimal, and binary formats. For example,

long numi;

numl = 25L; // Decimal format
numl = 031L; // Octal format

numl = 0X19L; // Hexadecimal format

numi

0b11001L; // Binary format

69

CHAPTER 3 © DATATYPES

When a long literal is assigned to a variable of type long, the Java compiler checks the value being assigned and
makes sure that it is in the range of the long data type; otherwise it generates a compile time error. For example

// One more than maximum positive value for long. This will generate a compiler error
long numl = 9223372036854775808L;

Because the int data type has a lower range than long data type, the value stored in an int variable can always
be assigned to a long variable.

int numi = 10;
long num2 = 20; // OK to assign int literal 20 to a long variable num2
num2 = numi; // OK to assign an int to a long
The assignment from int to long is valid, because all values that can be stored in an int variable can also be
stored in a long variable. However, the reverse is not true. You cannot simply assign the value stored in a long variable

to an int variable. There is a possibility of value overflow. For example,

int numi = 10;
long num2 = 2147483655L;

If you assign the value of num2 to num1 as
numi = numz2;
the value stored in num2 cannot be stored in num1, because the data type of num1 is int and the value of num2 falls
outside the range that the int data type can handle. To guard against making such errors inadvertently, Java does not

allow you to write code like

// A compile-time error. long to int assignment is not allowed in Java
numl = num2;

Even if the value stored in a long variable is well within the range of the int data type, the assignment from long
to int is not allowed, as shown in the following example:

int num1 = 5;
long num2 = 25L;

// A compile-time error. Even if num2's value 25 which is within the range of int.
numl = num2;

If you want to assign the value of a long variable to an int variable, you have to explicitly mention this fact in your
code, so that Java makes sure you are aware that there may be data overflow. You do this using “cast” in Java, like so:

numl = (int)num2; // Now it is fine because of the "(int)" cast
By writing (int)num2, you are instructing Java to treat the value stored in num2 as an int. At runtime, Java will use

only the 32 least significant bits of num2, and assign the value stored in those 32 bits to num1. If num2 has a value that is
outside the range of the int data type, you would not get the same value in num1.

70

CHAPTER 3 © DATATYPES

Java has a class Long (note the upper case L in Long), which defines two constants to represent maximum and
minimum values of long data type, Long.MAX_VALUE and Long.MIN_VALUE.

long max = Long.MAX_ VALUE;
long min = Long.MIN_VALUE;

The byte Data Type

The byte data type is an 8-bit signed Java primitive integer data type. Its range is -128 to 127 (-27 to 27 - 1). This is the
smallest integer data type available in Java. Generally, byte variables are used when a program uses a large number
of variables whose values fall in the range -128 to 127 or when dealing with binary data in a file or over the network.
Unlike int and long literals, there are no byte literals. However, you can assign any int literal that falls in the range of
byte to a byte variable. For example,

byte b1
byte b2

125;
-11;

If you assign an int literal to a byte variable and the value is outside the range of the byte data type, Java
generates a compiler error. The following piece of code will produce a compiler error:

// An error. 150 is an int literal outside -128 to 127
byte b3 = 150;

Note that you can only assign an int literal between -128 and 127 to a byte variable. However, this does not imply
that you can also assign the value stored in an int variable, which is in the range of -128 to 127, to a byte variable. The
following piece of code will generate a compiler error, because it assigns the value of an int variable, numi, to a byte
variable, b1:

int numi = 15;

// OK. Assignment of int literal (-128 to 127) to byte.
byte b1 = 15;

// A compile-time error. Even though numi has a value of 15, which is in the range -128 and 127.
b1 = numi;

Java does not allow you to assign the value of a variable of a higher range data type to the variable of a lower range
data type because there is a possible loss of precision in making such an assignment. To make such an assignment
from int to byte, you must use a cast, as you did in the case of the long-to-int assignment. The assignment of num1 to
b1 can be rewritten as follows:

b1 = (byte)num1; // Ok

After this cast from int to byte, the Java compiler would not complain about the int-to-byte assignment. If
numi holds a value that cannot be correctly represented in the 8-bit byte variable b1, the higher order bits (9" to
3279) of numl are ignored and the value represented in the lower 8 bits is assigned b1. In such a case of int-to-byte
assignment, the value assigned to the destination byte variable may not be the same as the value of the source int
variable if the value of the source variable falls outside the range of byte data type.

71

CHAPTER 3 © DATATYPES

However, irrespective of the value in the source int variable, the destination byte variable will always have a
value between -128 and 127. Like int, since long is also a bigger data type than byte, you need to use explicit cast if
you want to assign the value of a long variable to a byte variable. For example,

byte b4 = 10;
long num3 = 19L;

b4 = (byte)num3; // OK because of cast
b4 = 19L; // Error. Cannot assign long literal to byte
b4 = (byte)19L; // OK because of cast

It is true that both 19 and 19L represent the same number. However, to the Java compiler, they are different.
19 is an int literal, that is, its data type is int, whereas 19L is a long literal, that is, its data type is long.

Java has a class Byte (note the upper case B in Byte), which defines two constants to represent maximum and
minimum values of the byte data type, Byte.MAX_VALUE and Byte.MIN_VALUE.

byte max = Byte.MAX_ VALUE;
byte min = Byte.MIN VALUE;

The short Data Type

The short data type is a 16-bit signed Java primitive integer data type. Its range is -32768 to 32767 (or -2'° to 2'° - 1).
Generally, short variables are used when a program uses a large number of variables whose values fall in the range
of the short data type or when dealing with data in a file, which can be easily handled using short data type. Unlike
int and long literals, there is no short literal. However, you can assign any int literal that falls in the range of short
(-32768 to 32767) to a short variable. For example,

short s1 = 12905; // ok
short s2 = -11890; // ok

The value of a byte variable can always be assigned to a short variable because the range of the byte data type
falls within the range of the short data type. All other rules for assignment of a value from an int or long variable to a
short variable are same as that for the byte variable. The following snippet of code illustrates the assignment of byte,
int, and long values to short variables:

short s1 = 15; // ok
byte b1 = 10; // ok

sl = b1; // ok

int numi = 10; // ok

s1 = numi; // A compile-time error

s1 = (short)numi; // ok because of cast from int to short

s1 = 35000; // A compile-time error of an int literal outside the short range

long num2 = 555L; // ok

sl = num2; // A compile-time error
s1 = (short)num2; // ok because of the cast from long to short
s1 = 555L; // A compile-time error

s = (short)s55L; // ok because of the cast from long to short

72

CHAPTER 3 © DATATYPES

Java has a class called Short (note the upper case S in Short), which defines two constants to represent maximum
and minimum values of short data type, Short.MAX_VALUE and Short.MIN_VALUE.

short max = Short.MAX VALUE;
short min = Short.MIN_VALUE;

The char Data Type

The char data type is a 16-bit unsigned Java primitive data type. It represents a Unicode character. Note that char is
an unsigned data type. Therefore, a char variable cannot have a negative value. The range of the char data type is 0 to
65535, which is the same as the range of the Unicode set. A character literal represents a value of the char data type.
A character literal in Java can be expressed in the following formats:

e Acharacter enclosed in single quotes
e Asacharacter escape sequence

e AsaUnicode escape sequence

e Asanoctal escape sequence

A character can be expressed by enclosing it in single quotes. The following snippet of code assigns values to char
variables using this form:

char c1 ;

A
char c2 = "L’
5
/

e W

char ¢3 ="'
char c4

)

Recall that a sequence of characters enclosed in double quotes is a String literal. A String literal cannot be
assigned to a char variable, even if the String literal consists of only one character. In fact, the assignment of a String
literal to a char variable is not allowed because of the rule that a value of a reference data type cannot be assigned to
a variable of a primitive data type. All String literals represent objects of String class in Java and hence they are of
reference data type, whereas character literals represent a value of the char primitive data type.

char c1 = 'A"; // 0K

String s1 = 'A'; // An error. Cannot assign a char 'A' to a String si

String s2 = "A"; // OK. "A" is a String assigned to a String variable

String s3 = "ABC"; // OK. "ABC" is a String literal

char c2 = "A"; // An error. Cannot assign a String "A" to char c2

char c4 = 'AB'; // An error. A character literal must contain only one character

A character literal can also be expressed as a character escape sequence. A character escape sequence starts with
a backslash immediately followed by a character, and both are enclosed in single quotes. There are eight predefined
character escape sequences as listed in Table 3-2.

73

CHAPTER 3 © DATATYPES

Table 3-2. List of Character Escape Sequences

Character Escape Sequence Description

"\n' Alinefeed

"\r' A carriage return
"\f' A form feed

"\b' A backspace

"\t' Atab

"\ A backslash

"\ A double quote
"\t A single quote

A character literal expressed in the form of a character escape sequence consists of two characters—a backslash
and a character following the backslash. However, they represent only one character. There are only eight character
escape sequences in Java. You cannot define your own character escape sequences.

char c1 = '\n'; // Assigns a linefeed to c1
char c2 = "\"'; // Assigns double quote to c2
char c3 = "\a'; // A compile-time error. Invalid character escape sequence

A character literal can also be expressed as a Unicode escape sequence in the form '\uxxxx ', Here, \u (a backslash
immediately followed by a lowercase u) denotes the start of the Unicode escape sequence, and xxxx represents exactly
four hexadecimal digits. The value represented by xxxx is the Unicode value for the character. The character 'A' has
the Unicode value of 65. The value 65 in decimal can be represented in hexadecimal as 41. So, the character 'A' can
be expressed in Unicode escape sequence as ' \u0041'. The following snippet of code assigns the same character ‘A’
to the char variables c1 and c2:

lAl.

char c1 ;
‘\uoo41'; // Same as c2 = 'A’

char c2

A character literal can also be expressed as an octal escape sequence in the form '\nnn'. Here, n is an octal digit
(0-7). The range for the octal escape sequence is '\000" to '\377". The octal number 377 is the same as the decimal
number 255. Therefore, using octal escape sequence, you can represent characters whose Unicode code range from 0
to 255 decimal integers.

A Unicode character set (code range 0 to 65535) can be represented as a Unicode escape sequence (' \uxxxx").
Why does Java have another octal escape sequence, which is a subset of Unicode escape sequence? The octal escape
sequences exist to represent characters for compatibility with other languages that use 8-bit unsigned chars to
represent a character. Unlike a Unicode escape sequence, where you are always required to use four hexadecimal
digits, in an octal escape sequence you can use one, two, or three octal digits. Therefore, an octal escape sequence
may take on a form '\n"', '\nn", or '\nnn', where n is one of the octal digits 0, 1, 2, 3, 4, 5, 6, and 7. Some examples of
an octal escape sequence are as follows:

char c1 = '\52";

char c2 = '\141';

char c3 = '\400'; // A compile-time error. Octal 400 is out of range
char c4 = '\42';

char ¢5 = '\10'; // Same as '\n’

74

CHAPTER 3 © DATATYPES

You can also assign an int literal to a char variable if int literal falls in the range 0-65535. When you assign an
int literal to a char variable, the char variable represents the character whose Unicode code is equal to the value
represented by that int literal. The Unicode code for the character 'a' (lowercase A) is 97. The decimal value 97 is
represented as 141 in octal and 61 in hexadecimal. You can represent the Unicode character 'a’ in three different
formsinJava: 'a’, '\141', and '\u0061'. You can also use int literal 97 to represent the Unicode character 'a’.

char c1 = 97; // Same as c¢1 = 'a'; c1 = '"\141'; or, c1 = '\u0061';

A byte variable takes 8 bits and a char variable takes 16 bits. Even if the byte data type has smaller range than
the char data type, you cannot assign a value stored in a byte variable to a char variable. The reason is that byte is a
signed data type whereas char is an unsigned data type. If the byte variable has a negative value, say -15, it cannot be
stored in a char variable without losing the precision. In such a case, you need to use an explicit cast. The following
snippet of code illustrates possible cases of assignments from char to other integral data type and vice versa:

byte b1 = 10;
short s1 = 15;
int numi = 150;
long num2 = 20L;
char c1 = 'A";

// byte and char

b1 = c1; // An error
b1 = (byte)c1; // Ok
cl = b1, // An error

cl = (char)b1; // Ok

// short and char

sl = cl; // An error
s1 = (short)ci; // Ok
cl = s1; // An error
cl = (char)s1; // Ok

// int and char

numl = ci1; // 0k

numl = (int)ci; // Ok. But, cast is not required. Use numi = c1
cl = numi,; // An error

cl = (char)numi; // Ok

cl = 255; // Ok. 255 is in the range of 0-65535

c1 = 70000; // An error. 70000 is out of range 0-65535

c1 = (char)70000; // Ok. But, will lose the original value

// long and char

num2 = cil; // 0k

num2 = (long)cil; // Ok. But, cast is not required. Use num2 = c1
cl = num2; // An error

c1 = (char)num2; // Ok

cl = 255L; // An error. 255L is a long literal

cl = (char)255L; // Ok. But use c1 = 255 instead

75

CHAPTER 3 © DATATYPES

The boolean Data Type

The boolean data type has only two valid values: true and false. These two values are called boolean literals. You can
use boolean literals as

boolean done; // Declares a boolean variable named done
done = true; // Assigns true to done

One important point to note is that a boolean variable cannot be cast to any other data type and vice versa. Java
does not specify the size of the boolean data type. Its size is left up to the JVM implementation. Typically, a value of a
boolean data type is stored internally in a byte.

Floating-Point Data Types

A number that contains a fractional part is known as a real number, for example, 3.25, 0.49, -9.19, etc. A computer
stores every number, real or integral, in binary format, which consists of only 0s and 1s. Therefore, it is necessary to
convert a real number to its binary representation before it can be stored. It must be converted back to a real number
after its binary representation is read. When a real number is converted to its binary representation, the computer
must also store the position of the decimal point within the number. There are two strategies to store a real number in
computer memory.

e Store only the binary representation of the number and assume that there are always a fixed
number of digits before and after the point. A point is called a decimal point in the decimal
representation of a number and a binary point in the binary representation. The type of
representation in which the position of the point is always fixed in a number is known as
fixed-point number format.

e Store the binary representation of the real number and the position of the point in the
real number. Since the number of digits before and after the point can vary in this kind of
representation of the real number, we say that the point can float. This kind of representation
is called a floating-point format.

Floating-point representations are slower and less accurate compared to fixed-point representations. However,
floating-point representations can handle a larger range of numbers with the same computer memory as compared to
that of fixed-point representations.

Java supports the floating-point number format. It is important to note that not all real numbers have exact
binary representations, and therefore they are represented as floating-point approximations. Java uses the IEEE 754
Floating-Point standard to store real numbers. IEEE is acronym for the Institute of Electrical and Electronic Engineers.
Java has two floating-point Numeric data types:

o float
e double

The float Data Type

The float data type uses 32 bits to store a floating-point number in the IEEE 754 standard format. A floating-point
number represented in 32 bits according to the IEEE 754 standard is also known as a single-precision floating-point
number. It can represent a real number as small as 1.4 x 10"* and as bigas 3.4 x 103 (approx.) in magnitude. The
range includes only the magnitude. It could be positive or negative. Here, 1.4 x 107% is the smallest positive number
greater than zero that can be stored in a float variable.

76

CHAPTER 3 © DATATYPES

All real numbers that end with f or F are called float literals. A float literal can be expressed in the following
two formats:

e Decimal number format
e Scientific notation

Examples of float literals in decimal number format are as follows:

float f1 = 8F;
float f2 = 8.F;
float f3 = 8.0F;
float f4 = 3.51F;
float f5 = 0.0F;
float f6 = 16.78f;

Real number 3. 25 is also written using exponential forms such as 32.5 x 10 o0r0.325 x 10 In Java, such real
numbers can be represented as float literals using scientific notation. In scientific notation, the number 32.5 x 10
is written as 32.5E-1. As a float literal, it can be written as 32.5E-1F or 32.5E-1f. All of the following float literals
denote the same real number 32.5:

3.25F
32.5E-1F
0.325E+1F
0.325E1F
0.0325E2F
0.0325e2F
3.25E0F

The float data type defines two zeros: +0.0F (or 0.0F) and -0.0F. However, for the comparison purposes, both +0.0F
and -0.0F are considered equal.

The float data type defines two infinities: positive infinity and negative infinity. For example, the result of the
dividing 2. 5F by 0.0F is a float positive infinity whereas the result of dividing 2. 5F by -0.0F is a float negative infinity.

Results of some of the operations on float are not defined. For example, dividing 0.0F by 0.0F is indeterminate.
Indeterminate results are represented by a special value of the float data type called NaN (Not-a-Number). Java has a
Float class (Note the upper case F in Float), which defines three constants that represent positive infinity, negative
infinity, and NaN of the float data type. Table 3-3 lists these three float constants and their meanings. The table also
lists two constants, which represent the maximum and minimum (greater than zero) float values that can be stored
in a float variable.

Table 3-3. float Constants Defined in the float Class

float Constants Meaning

Float.POSITIVE_INFINITY Positive infinity of type float
Float.NEGATIVE_INFINITY Negative infinity of type float
Float.NaN Not a Number of type float

Float.MAX VALUE The largest positive value that can be represented in a float variable. This is equal to
3.4x10% (approx.).

Float.MIN_VALUE The smallest positive value greater than zero that can be represented in a float
variable. This is equal to 1.4 x 10-*.

77

CHAPTER 3 © DATATYPES

The value of all integral types (int, long, byte, short, and char) can be assigned to a variable of the float data
type without using an explicit cast. The following are some examples of using the float data type:

int numi = 15000;

float salary = numi; // 0Ok. int variable to float
salary = 12455; // Ok. int literal to float
float bigNum = Float.MAX VALUE; // Assigns maximum float value
bigNum = 1226L; // 0k, a long literal to float
float justAChar = 'A’; // Ok. Assigns 65.0F to justAChar

// Ok. Assigns positive infinity to the fInf variable
float fInf = Float.POSITIVE_INFINITY;

// Ok. Assigns Not-a-Number to fNan variable
float fNan = Float.NaN;

// A compile-time error. Cannot assign a float literal to a float variable
// greater than the maximum value of float(3.4E38F approx)
float fTooBig = 3.5E38F;

// A compile-time error. Cannot assign a float literal to a float variable less
// than the minimum value (greater than zero) of float 1.4E-45F
float fTooSmall = 1.4E-46F;

A float value must be cast before it is assigned to a variable of any integral data type int, long, byte, short, or char.

int numi = 10;

float salary = 10.0F;

numl = salary; // An error. Cannot assign float to int
numl = (int)salary; // Ok

Most floating-point numbers are approximation of their corresponding real numbers. The assignment of int and
long to float may result in loss of precision. Consider the following piece of code:

int numl = 1029989998; // Stores an integer in numi
float num2 = numi; // Assigns the value stored in numl to num2
int num3 = (int)num2; // Assigns the value stored in num2 to num3

You expect that the value stored in num1 and num3 should be same. However, they are not the same because the
value stored in num1 cannot be stored exactly in a floating-point format in the float variable num2. Not all floating-point
numbers have an exact representation in binary format. This is the reason that num1 and num3 are not equal.

Please refer to the section “Binary Representation of Floating-Point Numbers” for more details.

The double Data Type

The double data type uses 64 bits to store a floating-point number in the IEEE 754 standard format. A floating-point
number represented in 64 bits according to IEEE 754 standard is also known as a double-precision floating-point
number. It can represent a number as small as 4.9 x 10> and as big as 1.7 x 10°® (approx.) in magnitude. The range
includes only magnitude. It could be positive or negative. Here, 4.9 x 10** is the smallest positive number greater than
zero that can be stored in a double variable.

78

CHAPTER 3 © DATATYPES

All real numbers are called double literals. A double literal may optionally end with d or D, for example, 19.27d.
However, the suffix d or D is optional in double literals. That is, both 19.27 and 19.27d represent the same double literal.
This book uses double literals without the suffix d or D. A double literal can be expressed in the following two formats:

e Decimal number format
e Scientific notation

Examples of double literals in decimal number format are as follows:

double d1 = 8D
double d2 = 8.;
double d3 = 8.0;
double d4 = 8.D;
double d5 = 78.9867;
double d6 = 45.0;

Tip 8isan int literal whereas 8D, 8., and 8.0 are double literals.

Like a float literal, you can also use scientific notation to express double literals.

double d1 = 32.5E-1;

double d2 = 0.325E+1;
double d3 = 0.325E1;

double d4 = 0.0325E2;
double d5 = 0.0325e2;
double d6 = 32.5E-1D;
double d7 = 0.325E+1d;
double d8 = 0.325E1d;
double d9 = 0.0325E2d;

Like the float data type, the double data type defines two zeros, two infinities, and a NaN. They are represented by
constants in the Double class. Table 3-4 lists these constants and their meanings. Table 3-4 also lists two constants, which
represent the maximum and minimum (greater than zero) double values that can be represented in a double variable.

Table 3-4. double Constants in the Double Class

double Constants Meaning

Double.POSITIVE INFINITY Positive infinity of type double
Double .NEGATIVE_INFINITY Negative infinity of type double
Double.NaN Not a Number of type double

Double.MAX VALUE The largest positive value that can be represented in a double variable. This is equal
to 1.7 x 10%% (approx.)

Double .MIN_VALUE The smallest positive value greater than zero that can be represented in a double
variable. This is equal to 4.9 x 1034,

79

CHAPTER 3 © DATATYPES

The value of all integral types (int, long, byte, short, char) and float can be assigned to a variable of the double
data type without using an explicit cast.

int numi1 = 15000;

double salary = numi; // Ok. int to double assignment
salary = 12455; // Ok. int literal to double
double bigNum = Double.MAX_VALUE; // Assigns the maximum double value
bigNum = 1226L; // 0k, long literal to double
double justAChar = 'A'; // Ok. Assigns 65.0 to justAChar

// Ok. Assigns positive infinity to dInf variable
double dInf = Double.POSITIVE_INFINITY;

// Ok. Assigns Not-a-Number to dNan variable
double dNan = Double.NaN;

// A compile-time error. Cannot assign a double literal to a double variable
// greater than the maximum value of double (1.7E308 approx)
double dTooBig = 1.8E308;

// A compile-time error. Cannot assign a double literal to a double variable
// less than the minimum value (greater than zero) of double 4.9E-324
double dTooSmall = 4.9E-325;

A double value must be cast to the integral type before it is assigned to a variable of any integral data type
(int, long, byte, short, or char).

int numi = 10;

double salary = 10.0;

numl = salary; // A compile-time error. Cannot assign double to int
numl = (int)salary; // Now Ok.

Underscores in Numeric Literals

Beginning with Java 7, you can use any number of underscores between two digits in numeric literals. For example,
an int literal 1969 can be writtenas 1_969, 19 69,196 _9,1___ 969, or any other forms using underscores between
two digits. The use of underscores is also allowed in octal, hexadecimal, and binary formats. Big numbers are harder
to read without any punctuation marks (e.g., a comma as a thousand-separator). Use of underscores in big numbers
makes them easier to read. The following examples show the valid uses of underscores in numeric literals:

int x1 = 1_969; // Underscore in deciaml format

int x2 = 1_ 969; // Multiple consecutive underscores
int x3 = 03_661; // Underscore in octal literal

int x4 = 0b0111_1011_0001; // Underscore in binary literal

int x5 = 0x7_B_1; // Underscores in hexadecimal literal
byte b1 = 1.2 7; // Underscores in decimal format

double d1 = 1 969.09_19; // Underscores in double literal

Underscores are allowed in numeric literals only between digits. This means that you cannot use underscores in
the beginning or end of a numeric literal. You cannot use underscores with prefixes such as 0x for hexadecimal format

80

CHAPTER 3 © DATATYPES

and ob for binary format, and suffixes such as L for long literal and F for float literal. The following examples show the
invalid uses of underscores in numeric literals:

int y1 = _1969; // An error. Underscore in the beginning
int y2 = 1969_; // An error. Underscore in the end

int y3 = 0x_7B1; // An error. Underscore after prefix Ox
int y4 = 0_x7B1; // An error. Underscore inside prefix Ox
long z1 = 1969 _L; // An error. Underscore with suffix L
double d1 = 1969 .0919; // An error. Underscore before decimal
double d1 = 1969._0919; // An error. Underscore after decimal

Tip You can write the int literal 1969 in octal format as 03661. The zero in the beginning of an int literal in the
octal format is considered a digit, not a prefix. It is allowed to use underscores after the first zero in an int literal in octal
format. You can write 03661 as 0_3661.

Java Compiler and Unicode Escape Sequence

Recall that any Unicode character in a Java program can be expressed in the form of a Unicode escape sequence.
For example, the character 'A' can be replaced by '\u0041'. The Java compiler first converts every occurrence
of a Unicode escape sequence to a Unicode character. A Unicode escape sequence starts with \u followed by four
hexadecimal digits. ' \\u0041' is not a Unicode escape sequence. To make uxxxx a valid part of a Unicode escape
sequence, it must be preceded by odd number of backslashes, because two contiguous backslashes (\\) represent one
backslash character. Therefore, "\\u0041" represents a 6-character string composed of '\"', 'u', '0', '0", '4", and
'1'. However, "\\\u0041" represents a two-character string ("\A").

Sometimes, inappropriate use of Unicode escape sequence in Java source code may result in a compile-time
error. Consider the following declaration of a char variable:

char ¢ = '\u0OOA';

The programmer intends to initialize the variable ¢ with a linefeed character whose Unicode escape sequence is
\u000A. When this piece of code is compiled, the Java compiler will convert \u0OOOA into an actual Unicode character
and this piece of code will be split into two lines as follows:

char ¢ =

; // After the actual linefeed is inserted

Since a character literal cannot continue in two lines, the above piece of code generates a compile-time error. The
correct way to initialize the variable c is to use the character escape sequence \n as shown:

char ¢ = "\n'; // Correct

In character and String literals, the linefeed and carriage return should always be written as \n and \r,
respectively, not as \u000A and \u000D. Even a line of comment may generate a compiler error if you do not use the
linefeed and carriage return characters correctly. Suppose you commented the above wrong declaration of the char

variable, as shown:

// char c¢ = '\uOOOA';

81

CHAPTER 3 © DATATYPES

Even if this line is a comment line, it will generate a compiler error. The comment will be split into two lines
before compilation, like so:

// char c =
5

The second line, which contains, ' ;, causes the compiler error. The multi-line comment syntax would not
generate a compiler error in such a case.

/* char c = "\uOOOA'; */

would be converted to
/* char c = '
Y

which is a valid multi-line comment.

A Short Break

I'have finished discussing all primitive data types available in Java. In the following section, I will discuss the general
concepts of binary numbers and their use in representing different types of values in Java. If you have a computer
science background, you may skip this section.

The program in Listing 3-1 shows how to declare variables of different data types using literals. It also prints the
values for some constants in the Double class. Java 8 has added the Double.BYTES constant that contains the number
of bytes used by a double variable.

Listing 3-1. Using Primitive Data Types

// NumTest.java
package com.jdojo.datatype;

public class NumTest {
public static void main(String[] args) {

int anInt = 100;
long along = 200L;
byte aByte = 65;
short aShort = -902;
char aChar = 'A’';
float aFloat = 10.98F;
double aDouble = 899.89;

// Print values of the variables
System.out.println("anInt = " + anInt);
System.out.println("along + along);
System.out.println("aByte = " + aByte);
System.out.println("aShort = " + aShort);
System.out.println("aChar = " + aChar);
System.out.println("aFloat = " + aFloat);
System.out.println("aDouble = " + aDouble);

82

CHAPTER 3 © DATATYPES

// Print some double constants

System.out.println("Max double = " + Double.MAX VALUE);

System.out.println("Min double = " + Double.MIN VALUE);
System.out.println("Positive infinity for double = " + Double.POSITIVE INFINITY);
System.out.println("Negative infinity for double = " + Double.NEGATIVE INFINITY);
System.out.println("Not-a-Number for double = " + Double.NaN);
System.out.println("Double takes " + Double.BYTES + " bytes");

}
}
anInt = 100
along = 200
aByte = 65
aShort = -902
aChar = A

aFloat = 10.98

aDouble = 899.89

Max double = 1.7976931348623157E308

Min double = 4.9E-324

Positive infinity for double = Infinity
Negative infinity for double = -Infinity
Not-a-Number for double = NaN

double takes 8 bytes

Binary Representation of Integers

Computers use the binary number system to work with data. All data in a binary system is stored using 1’s and 0’s.
Characters 1 and 0 are called bits (short for binary digit). They are the smallest units of information a computer can
work with. A group of 8 bits is called a byte or octet. Half a byte (i.e. a group of four bits) is called a nibble. A computer
uses data bus, a pathway, to send data from one part of the computer system to another. How much information can
be moved from one part to another at one time depends on the bit-width of the data bus. The bit-width of the data bus
on a particular computer is also known as word-size, and information contained in one word-size is simply referred to
as a word. Therefore, a word may refer to 16-bit or 32-bit or another bit-width depending on computer’s architecture.
The long and double data types in Java take 64 bits. On a computer with a word-size of 32 bits, these two data types are
not treated atomically. For example, to write a value in a variable of long data type two write actions are performed,
one for each 32-bit half.

A decimal number can be converted to binary format using the following steps:

e Divide the decimal number successively by 2

e After each division, record the remainder. This will be 1 or 0.

e Continue the above two steps until the result of the division is 0 (zero)

e The binary number is formed by writing digits in the remainder column from bottom to top.

For example, the binary representation of decimal number 13 can be computed as shown in Table 3-5.

83

CHAPTER 3 © DATATYPES

Table 3-5. Decimal-to-Binary Conversion

Number Divided by 2 Result Remainder

13 13/2 6 1
6 6/2 3 0
3 3/2 1 1
1 1/2 0 1

The binary representation of decimal number 13 is 1101. A byte variable in Java occupies one byte. The value 13
in a byte variable is stored as 00001101. Note that four zeros are added in front of the binary representation 1101
because a byte variable always occupies 8 bits irrespective of the value that it contains. The rightmost bit in a byte or
aword is known as the least significant bit (LSB) and the leftmost bit as the most significant bit (MSB). The MSB and
LSB for the binary representation of 13 are shown in Figure 3-5.

[ise]
N

00001101

Figure 3-5. MSB and LSB in a binary number

Each bit in a binary number is assigned a weight, which is a power of 2. A binary number can be converted to its
decimal equivalent by multiplying each bit in the binary number by its weight and adding them up. For example, 1101
in binary can be converted to its decimal equivalent as follows:

(1101), =1 x2°+0x2*+1x 22+ 1x 2
1+0+4+38

(13),

Java stores the negative integral numbers in 2’s complement form. Let’s discuss the complement of a number in a
given number system. Every number system has a base, also known radix. For example, 10 is the radix for the decimal
number system, 2 is for the binary number system, and 8 is for the octal number system. We will use the symbol R for
radix. Every number system defines two types of complements:

¢ Diminished radix complement (also known as (R-1)’s complement)
¢ Radix complement (also known as R’s complement)

Therefore, for the decimal number system, we have 9’s complement and 10’s complement; for the octal number
system, we have 7’s and 8’s complements, and for the binary number system, we have 1’s and 2’s complements.

Diminished Radix Complement

Let N be a number in a number system with radix R and n is the total number of digits in the number N. The diminished
radix complement or (R-1)’s complement of the number N is defined as (R"-1) - N.

In the decimal number system, the 9’s complement of a number is (10" -1) - N. Since 10" consists of 1 followed by
n zeros, (10"-1) consists of n 9s. Therefore, 9’s complement of a number can be computed simply by subtracting each
digit in the number from 9. For example, 9’s complement of 5678 is 4321 and 9’s complement of 894542 is 105457.

84

CHAPTER 3 © DATATYPES

In binary number system, the 1’s complement of a binary number is given by (2"-1) - N. Since 2" in binary
number system consists of 1 followed by n zeros, (2"-1) consists of n 1s. For example, 1’s complement of 10110
(here, nis 5) can be computed as (2°-1) - 10110, which is 11111 - 10110 (25-1) is 31, which is 11111 in binary.

The 1’s complement of a binary number can be computed simply by subtracting each digit in the number from 1.
A binary number consists of 0s and 1s. When you subtract 1 from 1, you get 0, and when you subtract 0 from 1, you get
1. Therefore, 1’s complement of a binary number can be computed just by inverting the bits of the number, that is, by
changing 1 to 0 and 0 to 1. For example, 1’s complement of 10110 is 01001 and 1’s complement of 0110001 is 1001110.

In a number system, (R-1)’s complement of a number is computed by subtracting each digit of the number from
the maximum digit value of that number system. For example, the maximum digit value in an octal number system
is 7, and therefore, 7’s complement of an octal number is computed by subtracting each digit of that number from 7.
For a hexadecimal number system, the maximum digit value is 15 represented by F. For example, 7’s complement of
56072 octal number is 21705; 15’s complement of 6A910F hexadecimal number is 956 EF0.

Radix Complement

Let N be a number in a number system of radix R, and n is the total number of digits in the number N. The radix

complement or R’s complement of the number N is defined as R" - N. For N =0, the R’s complement is defined as zero.
It is evident from the definition of R’'s and (R-1)’s complements that R’'s complement of a number is computed

by adding 1 to (R-1)’s complement of that number. Therefore, 10’s complement of a decimal number is obtained by

adding 1 to its 9’s complement, and 2’s complement of a binary number is obtained by adding 1 to its 1’s complement.

Therefore, 2’s complement of 10110 is 01001 + 1, which is 01010. By carefully looking at the procedure to compute

2’s complement of a binary number, you can observe it can be computed just by looking at the binary number. The

simple procedure to compute 2’s complement of a binary number can be described as follows:

e Start from the right end of the binary number.
e Write down all digits unchanged up to the first 1 bit.
e Subsequently invert the bits to get the 2’s complement of the binary number.

For example, let’s compute 2’s complement of 10011000. Start from the right end and write down all digits unchanged
up to the first 1 bit. Since the fourth digit from right is 1, you will write first four digits unchanged, which is 1000. Now,
invert the bits starting from fifth bit from right, which will give 01101000. The procedure is illustrated in Figure 3-6.

Invert the bits Bits unchanged up to the first 1 bit

e
——

Number: 1 0 0 000
2's Complement: 0 1 1 000

[Ergy—

Figure 3-6. Computing 2's complement of a binary number

All negative integers (byte, short, int, and long) are stored as their 2’s complements in memory. Let’s consider
two byte variables in Java.

byte bPos
byte bNeg

13;
-13;

The bPos is stored in memory as 00001101. The 2’s complement of 00001101 is computed as 11110011. Therefore,
bNeg, which is -13, is stored as 11110011, as shown in Figure 3-7.

85

CHAPTER 3 © DATATYPES

bPos $0001101
Sign bit 0 denotes a positive number
bNeg 11110011

Sign bit 1 denotes a negative number

Figure 3-7. Storing the number 13 in 2’s complement forms

Binary Representation of Floating-Point Numbers

Any binary floating-point system can represent only a finite number of floating-point values in exact form. All other
values must be approximated by the closest representable value. The IEEE 754-1985 is the most widely accepted
floating-point standard in the computer industry, and it specifies the format and the method to represent binary
floating-point numbers. The goal of the IEEE standard, which is designed for engineering calculations, is to maximize
accuracy (to get as close as possible to the actual number). Precision refers to the number of digits that you can
represent. The IEEE standard attempts to balance the number of bits dedicated to the exponent with the number of
bits used for the fractional part of the number, to keep both accuracy and precision within acceptable limits. This
section describes IEEE 754-1985 standard for binary floating-point format in general and points out how Java supports
this standard.

A floating-point number has four parts:

e Sign

e Significand (also known as mantissa)
e Base (also known as radix)

e Exponent

The floating-point number 19.25 can be represented with all its four parts as
+19.25 x 10°

Here, the sign is + (positive), the significand is 19.25, the base is 10, and the exponent is 0.
The number 19.25 can also be represented in many other forms, as shown below. I will omit the positive sign of
the number, that is, +19.25 will be written as 19.25.

19.25 x 10°
1.925 x 10*
0.1925 x 10°
192.5 x 10"
1925 x 107

Therefore, a floating-point number can be represented an infinite number of ways. A floating-point number
represented in base 10 is said to be in normalized form if its significand satisfies the following rule:

0.1 <= significand < 1

86

CHAPTER 3 © DATATYPES

According to this rule, the representation 0.1925 x 10?is the normalized form of 19. 25. The floating-point
number 19.25 (base 10) can be written as 10011.01 in binary form (base 2). The floating-point number 19. 25 can be
rewritten in many different binary forms. Some of the alternate binary representations of decimal 19. 25 are as follows:

10011.01 x 2°
1001.101 x 2*
100.1101 x 22
1.001101 x 2*

100110.1 x 2
1001101 x 2%

Note that in binary form the base is 2. When the binary point is shifted to the left by one digit, the exponent is
incremented by one. When the binary point is shifted to the right by one digit, the exponent is decremented by one.
A floating-point number in a binary form is normalized if its significand satisfies the following condition:

1 <= significand < 2

If the significand of a binary floating-point number is of the form 1.bbbbbbb. . ., where b is a bit (0 or 1), the
binary floating-point number is said to be in normalized form. Therefore, 1.001101 x 2*is the normalized form of
binary floating-point number 10011.01. In other words, a normalized binary floating-point number starts with a bit 1,
immediately followed by a binary point.

The floating-point numbers, which are not normalized, are called denormalized floating-point numbers.

A denormalized floating-point number is also called denormal or subnormal. All floating-point numbers cannot be
represented in a normalized form. There could be two reasons for this.

e The number does not contain any bit as 1. An example of this is 0.0. Since 0.0 does not have
any bit set as 1, it cannot be represented in the normalized form.

e Computers use a fixed number of bits to store the sign, significand, and exponent of a binary
floating-point number. If the exponent of a binary floating-point number is the minimum
exponent allowed by the computer storage format and the significand is less than 1, such
a binary floating-point number cannot be normalized before storing it in computer. For
example, suppose that -126 is the minimum exponent value that can be stored in a given
storage format for a binary floating-point number. If the binary floating-point number is
0.01101 x 27*%, this number cannot be normalized. The normalized form of this number will
be 1.101 x 2128 However, the given storage format allows minimum exponent as -126 (I have
assumed number -126 for this example). Therefore, the exponent -128 (-128 < -126) cannot
be stored in the given storage format and that is why 0.01101 x 2-** cannot be stored in the
normalized form.

Why do we need to normalize a binary floating-point number before storing it in memory? The following are the
advantages of doing this:

¢ The normalized representation is unique.

e Because the binary point in a binary floating-point number can be placed anywhere in the
number, you must store the position of binary point along with the number. By normalizing
the number, you always place the binary point after the first 1 bit, and therefore, you need not
store the position of the binary point. This saves memory and time to store one extra piece of
information.

¢ Two normalized binary floating-point numbers can be compared easily by comparing their
signs, significands, and exponents.

87

CHAPTER 3 © DATATYPES

e Inanormalized form, the significand can use all its storage bits to store significant digits (bits).
For example, if you allocate only five bits to store the significand, for the number 0.0010110 x 2%
only 0.00101 part of the significand will be stored. However, if you normalize this number as
1.0110 x 2, the significand can be stored fully in five bits.

¢ Inanormalized form, the significand always starts with a 1 bit, which can be omitted while
storing the significand. When reading back, you can add the leading 1 bit. This omitted bit is
called the “hidden bit” and it provides one extra bit of precision.

The IEEE 754 -1985 standard defines the four floating-point formats as follows:
e 32-bit single-precision floating-point format
e 64-bit double-precision floating-point format
e Single-extended floating-point format
e Double-extended floating-point format

Java uses IEEE 32-bit single-precision floating-point format to store the values of float data type. It uses 64-bit
double-precision floating-point format to store the values of double data type.

I will discuss only IEEE 32-bit single-precision floating-point format. The difference between single-precision
floating-point format and other formats are the total number of bits used to store the binary floating-point numbers
and the distribution of number of bits among sign, exponent, and significand. The difference among different IEEE
formats will be shown at the end of the discussion.

32-bit Single-Precision Floating-Point Format

The 32-bit single-precision floating-point format uses 32 bits to store a binary floating-point number. A binary
floating-point number is of the following form:

Sign * Significand * 2Fonent
Since the base is always 2, this format does not store the value of the base. The 32 bits are distributed as follows:
e 1bitto store the sign
e 8bits to store the exponent

e 23 bits to store the significand

The layout for the single-precision floating-point format is shown in Table 3-6.
Table 3-6. IEEE Single-Precision Format Layout
1-bit Sign 8-bit Exponent 23-bit Significand
s eeeeeeee A

Sign
IEEE single-precision floating-point format uses 1 bit to store the sign of the number. A 0 sign bit indicates a positive
number and 1 sign bit indicates a negative number.

88

CHAPTER 3 © DATATYPES

Exponent

The exponent takes 8 bits. The exponent can be positive or negative. The range of the exponent value that can be
stored in 8-bit is -127 to 128. There must be a mechanism to represent the sign of the exponent. Note that the 1-bit
sign field in the layout shown in Table 3-7 stores the sign of the floating-point number, not the sign of the exponent.
To store the sign of the exponent, you can use the sign-magnitude method, where 1 bit is used to store the sign and
the remaining 7 bits store the magnitude of the exponent. You can also use 2’s complement method to store the
negative exponent as is used to store integers. However, IEEE does not use either of these two methods for storing the
exponent. IEEE uses the biased representation of the exponent to store the exponent value.

What is a bias and what is a biased exponent? A bias is a constant value, which is 127 for IEEE 32-bit single-precision
format. The bias value is added to the exponent before storing it in memory. This new exponent, after adding a bias, is
called a biased exponent. The biased exponent is computed as follows:

Biased Exponent = Exponent + Bias
For example, 19.25 can be written in normalized binary floating-point format as 1.001101 x 2* Here, the
exponent value is 4. However, the exponent value stored in memory will be a biased exponent, which will be

computed as follows:

Biased Exponent

Exponent + Bias
4 + 127 (Single-precision format)
131

For 1.001101 x 2% 131 will be stored as the exponent. When reading back the exponent of a binary floating-point
number, you must subtract the bias value for that format to get the actual exponent value.

Why does IEEE use biased exponent? The advantage of using a biased exponent is that positive floating-point
numbers can be treated as integers for comparison purposes.

Suppose E is the number of bits used to store the exponent value in a given floating-point format. The value of the
bias for that format can be computed as

Bias = 2(E-1 - 1

The exponent ranges from -127 to 128 for the single-precision format. Therefore, the biased exponent ranges
from 0 to 255. Two extreme exponent values (-127 and 128 for unbiased, and 0 and 255 for biased) are used to
represent special floating-point numbers, such as zero, infinities, NaNs and denormalized numbers. The exponent
range of -126 to 127 (biased 1 to 254) is used to represent normalized binary floating-point numbers.

Significand

IEEE single-precision floating-point format uses 23 bits to store the significand. The number of bits used to store the
significand is called the precision of that floating-point format. Therefore, you might have guessed that the precision
of floating-point numbers stored in the single-precision format is 23. However, this is not true. But first I need to
discuss the format in which the significand is stored before I conclude about the precision of this format.

The significand of a floating-point number is normalized before it is stored in memory. The normalized
significand is always of the form 1. fffffff{ffffffff{fffff. Here, an f denotes a bit 0 or 1 for the fractional part of
significand. Because the leading 1 bit is always present in the normalized form of significand, you need not store the
leading 1 bit. Therefore, while storing the normalized significand, you can use all 23 bits to store the fractional part of
the significand. In fact, not storing the leading 1 bit of a normalized significand gives you one extra bit of precision.
This way, you represent 24 digits (1 leading bit + 23 fraction bits) in just 23 bits. Thus, for normalized significand the
precision of a floating-point number in IEEE single-precision format is 24.

89

CHAPTER 3 © DATATYPES

Actual Significand: 1.FFFFFFFFFFFFFFFFFFFFFFF (24 digits)
Stored Significand: FFFFFFFFFFFFFFFFFFFFFFF (23 digits)

If you always represent the significand of a binary floating-point number in normalized form, there is a gap
around zero on the number line. The minimum number in magnitude that can be represented in IEEE
single-precision format can be computed as follows:

e Sign:Itcanbe 0 or 1, denoting a pocsitive or negative number. For this example, let’s
assume the sign bit as 0 to indicate a positive number.

e Exponent: The minimum exponent value is -126. Recall that the exponent values -127 and 128
are reserved to represent special floating-point numbers. The minimum biased exponent will
be -126 + 127 = 1. The binary representation of the biased exponent 1 in 8-bit is 00000001.

e Significand: The minimum value of significand in the normalized form will consist of the
leading 1 bit and all 23 fraction bits set to 0 as 1.00000000000000000000000.

If you combine the binary representation of a normalized floating-point number with the minimum possible values
for the exponent and significand, the actual number stored in the computer will look like the one shown in Table 3-7.

Table 3-7. Minimum Possible Normalized Number

Sign Exponent Significand

0 00000001 00000000000000000000000
1-bit 8-bit 23-bit

The value of the minimum floating-point number in decimal is 1.0 x 2-*%¢. Therefore, 1.0 x 2-1% is the first
representable normalized number after zero, leaving a gap around zero on the number line.

If you store only normalized floating-point numbers using IEEE single-precision format, all numbers less than
1.0 x 27%%in magnitude must be rounded to zero. This will cause a serious problem when dealing with tiny numbers
in a program. In order to store numbers smaller than 1.0 x 272 the numbers must be denormalized.

Special Floating-Point Numbers

This section describes special floating-point numbers and their representations in the IEEE single-precision format.

Signed Zeros

The IEEE floating-point format allows for two zeros, +0.0 (or 0.0) and -0.0. Zero is represented by the minimum exponent
value -127 for the single-precision format. The significand is 0.0 for zero. Since the sign bit can be 0 or 1, there are two
zeros: +0.0 and -0.0. The binary representations of zeros in the single-precision format are shown in Table 3-8.

Table 3-8. Binary Representations of Positive and Negative Zeros in the Single-Precision Format

Number Sign Exponent Significand
0.0 0 00000000 00000000000000000000000
-0.0 1 00000000 00000000000000000000000

90

CHAPTER 3 © DATATYPES

For comparison purposes, +0.0 and -0.0 are considered equal. Therefore, the expression 0.0 == -0.0 always
returns true.

Why does IEEE define two zeros if they are considered equal? The sign of zero is used to determine the result
of an arithmetic expression involving multiplication and division. The result of 3.0 * 0.0 is a positive zero (0.0),
whereas the result of 3.0 * (-0.0) is a negative zero (-0.0). For a floating-point number num with the values
tInfinity, the relation 1/(1/num) = num holds true only because of two signed zeros.

Signed Infinities

The IEEE floating-point format allows for two infinities: positive infinity and negative infinity. The sign bit represents
the sign of infinity. The maximum exponent value 128 (the biased exponent 255) for the single-precision format and
zero significand represents infinity. The maximum biased value 255 can be represented in 8-bit with all bits set to 1 as
11111111. The binary representations of infinities in single-precision format are shown in Table 3-9.

Table 3-9. Binary Representations of Positive and Negative Infinities in the Single-Precision Format

Number Sign Exponent Significand

+Infinity 0 11111111 00000000000000000000000
-Infinity 1 11111111 00000000000000000000000
NaN

NaN stands for “Not-a-Number.” NaN is the result of arithmetic operations that do not have meaningful results, such as
dividing zero by zero, the square root of a negative number, adding -Infinity to +Infinity, etc.

NaN is represented by maximum exponent value (128 for single-precision format) and non-zero significand. The
sign bit is not interpreted for NaN. What happens when NaN is one of the operands in an arithmetic expression? For
example, what is the result of NaN + 100? Should the execution of an arithmetic expression involving NaNs be stopped
or continued? There are two types of NaNs:

e QuietNaN
e Signaling NaN

A quiet NaN, when encountered as an operand in an arithmetic expression, quietly (i.e. without raising any trap
or exception) produces another quiet NaN as the result. In case of a quiet NaN, the expression NaN + 100 will result
in another quiet NaN. The most significant bit in the significand is set to 1 for a quiet NaN. Table 3-10 shows a binary
representation of a quiet NaN. In the table, s and b indicate a 0 or 1 bit.

Table 3-10. A Binary Representation of a Quiet NaN

Number Sign Exponent Significand

Quiet NaN s 11111111 1bbbbbbbbbbbbbbbbbbbbbb

When a signaling NaN is encountered as an operand in an arithmetic expression, an invalid operation exception
is signaled and a quiet NaN is delivered as the result. Signaling NaNs are generally used to initialize the uninitialized
variables in a program, so when variables are not initialized before they are used, errors can be signaled. The most
significant bit of the significand is set to 0 for a signaling NaN. Table 3-11 shows a binary representation of a signaling
NaN. In the table, s and b indicate a 0 or 1 bit.

91

CHAPTER 3 © DATATYPES

Table 3-11. A Binary Representation of a Quiet NaN

Number Sign Exponent Significand
Signaling NaN s 11111111 0bbbbbbbbbbbbbbbbbbbbbb

Tip IEEE defines 2% - 2 distinct NaNs for the single-precision format and 253 - 2 distinct NaNs for the double-precision
format. However, Java has only one NaN for the float data type and one NaN for the double data type. Java always uses
a quiet NaN.

Denormals

When the biased exponent is 0 and the significand is non-zero, it denotes a denormalized number. Table 3-12 shows
the bits pattern to represent denormalized numbers in the single-precision format.

Table 3-12. The Bits Pattern for a Denormalized Single-Precision Floating-Point Number

Sign Exponent Significand
] 000000000 iiinniiiiiiiiiig

In Table 3-12, s denotes a sign bit, which can be 0 for a positive number and 1 for a negative number. The exponent
bits are all zeros. At least one of the bits in the significand is denoted 1. The decimal value of the denormalized number
is computed as shown:

(-1)° * O FFFFFFEFFFFFFFFFFEFFFFF * 2126

Suppose you want to store a number 0.25 x 2-*?®in the single-precision format. If you write this number in
normalized form after converting 0.25 in binary, it willbe 1.0 x 2-*3°. However, the minimum exponent allowed
for single-precision format is -126. Therefore, this number cannot be stored in normalized form in single-precision
format. The exponent is kept as -126 and the binary point is shifted to the left, resulting in denormalized form as
0.0001 x 2°*%, The number is stored as shown in Table 3-13.

Table 3-13. Bits Pattern for a Denormalized Number 1.0 * 2%

Number Sign Exponent Significand

0.0001 x 2-1%6 0 00000000 00010000000000000000000

It seems that for the number 0.0001 x 2126, the biased exponent should be computed as -126 + 127 = 1 and the
exponent bits should be 00000001. However, this is not true. For denormalized numbers, the exponent is stored as all
0 bits; when reading it back, it is interpreted as -126. This is so because you need to distinguish between normalized
and denormalized numbers when reading back floating-point numbers, and for all denormalized numbers, there is
no leading 1-bit in their significands. The denormalized numbers fill the gap around zero on the number line, which
would have been there if you had stored only normalized numbers.

92

CHAPTER 3 © DATATYPES

Rounding Modes

Not all real numbers can be exactly represented in binary floating-point format in finite number of bits. Therefore,
real numbers that cannot be exactly represented in a binary floating-point format must be rounded. There are four
rounding modes:

¢ Round toward zero
¢ Round toward positive infinity
¢ Round toward negative infinity

e Round toward nearest

Rounding Toward Zero

This rounding mode is also called truncation or chop mode. In this rounding mode, the total number of bits (or
digits) that is retained from the original number is the same as the number of bits available to store the floating-
point number in the given format. The rest of bits are ignored. This rounding mode is called “rounding toward zero’
because it has the effect of making the rounded result closer to zero. Some examples of rounding towards zero are
shown in Table 3-14.

”

Table 3-14. Examples of Rounding Towards Zero

Original Number Available Number of Binary Points Rounded Number
1.1101 2 1.11

-0.1011 2 -0.10
0.1010 2 0.10
0.0011 2 0.00

Rounding Toward Positive Infinity

In this rounding mode, numbers are rounded to a value closer to the positive infinity. Some examples of rounding
towards positive infinity are shown in Table 3-15.

Table 3-15. Examples of Rounding Towards Positive Infinity

Original Number Available Number of Binary Points ~ Rounded Number
1.1101 2 10.00

-0.1011 2 -0.10
0.1010 2 0.11
0.0011 2 0.01

93

CHAPTER 3 © DATATYPES

Rounding Toward Negative Infinity

In this rounding mode, numbers are rounded to a value closer to the negative infinity. Some examples of rounding
towards negative infinity are shown in Table 3-16.

Table 3-16. Examples of Rounding Towards Negative Infinity

Original Number Available Number of Binary Points Rounded Number
1.1101 2 1.11

-0.1011 2 -0.11
0.1010 2 0.10
0.0011 2 0.00

Rounding Toward Nearest

In this rounding mode, the rounded result is the nearest representable floating-point number. In case of a tie, that is,
if there are two representable floating-point numbers that are equally near to the original number, the result is the
one that has its least significant bit as zero. In other words, in case of a tie, the rounded result is the even number.

The system, which implements IEEE floating-point standards, has this mode as the default rounding mode. The IEEE
standard states that the system should also allow users to select one of the other three rounding modes. Java uses this
mode as the default rounding mode for floating-point numbers. Java does not allow users (that is, programmers) to
select any other rounding modes. Some examples of rounding towards nearest are shown in Table 3-17.

Table 3-17. Examples of Rounding Towards Nearest

Original Number Available Number of Binary Points Rounded Number

1.1101 2 1.11
-0.1011 2 -0.11
0.1010 2 0.10
0.0011 2 0.01

IEEE Floating-Point Exceptions

The IEEE floating-point standard defines several exceptions that occur when the result of a floating-point operation
is unacceptable. Exceptions can be ignored, in which case some default action is taken, such as returning a special
value. When trapping is enabled for an exception, an error is signaled whenever that exception occurs. Floating-point
operations can lead to any of the following five types of floating point exceptions:

e Division by zero exception
e Invalid operation exception
e Overflow exception

e Underflow exception

e Inexact exception

94

CHAPTER 3 © DATATYPES

Division by Zero Exception

A division by zero exception occurs when a non-zero number is divided by a floating-point zero. If no trap handler is
installed, infinity of appropriate sign is delivered as the result.

Invalid Operation Exception

An invalid operation exception occurs when the operand is invalid for an operation being performed. If no trap
handler is installed, a quiet NaN is delivered as the result. The following are some of the operations that raise an invalid
exception:

e Square root of a negative number

e Division of zero by zero or of infinity by infinity
e Multiplication of zero and infinity

e Any operation on a signaling NaN

e Subtracting infinity from infinity

e When a quiet NaN is compared with the > or < relational operators

Overflow Exception

An overflow exception occurs when the result of a floating-point operation is too large in magnitude to fit in the
intended destination format. For example, when you multiply Float.MAX VALUE by 2 and try to store the result in a
float variable. If no trap handler is installed, the result to be delivered depends on the rounding mode and the sign of
the intermediate result.

e Ifthe rounding mode is rounding toward zero, the result of overflow is the largest finite
number that can be represented in that format. The sign of the result is same as the sign of the
intermediate result.

e Ifthe rounding mode is rounding toward positive infinity, the negative overflow results in
the most negative finite number for that format and the positive overflow results in the most
positive finite number for that format.

e Iftherounding mode is rounding toward negative infinity, the negative overflow results in negative
infinity and the positive overflow results in the most positive finite number for that format.

e Ifthe rounding mode is rounding toward nearest, the overflow results in infinity. The sign of
the result is same as the sign of the intermediate result.

However, if trap handler is installed, the result delivered to the trap handler in case of overflow is determined as
follows: the infinitely precise result is divided by 2t and rounded before delivering it to the trap handler. The value of
t is 192 for single-precision format, 1536 for double-precision format, and 3 x 2"* for extended format, where n is the
number of bits used to represent the exponent.

Underflow Exception

The underflow exception occurs when the result of an operation is too small to be represented as a normalized float in
its format. If trapping is enabled, the floating-point-underflow exception is signaled. Otherwise, the operation results in a
denormalized float or zero. Underflow can be abrupt or gradual. If the result of an operation is less than the minimum
value that can be represented in normalized form in the format, the result could be delivered as zero or a denormalized

95

CHAPTER 3 © DATATYPES

number. In case of an abrupt underflow, the result is zero. In case of a gradual underflow, the result is a denormalized
number. The IEEE default is gradual underflow (denormalized numbers). Java supports gradual underflow.

Inexact Exception

The inexact exception is signaled if the rounded result of an operation is not identical to the infinitely precise result.
Inexact exceptions are quite common. 1.0/3.0 is an inexact operation. Inexact exceptions also occur when the
operation overflows without an overflow trap.

Java and IEEE Floating-Point Standards

Java follows a subset of the IEEE-754 standard. The following are some of the differences between the IEEE floating-
point standard and their Java implementations:

e Java does not signal the IEEE exceptions.
e Java has no signaling NaN.

e Java uses the rounding toward nearest mode to round the inexact results. However, Java
rounds towards zero when converting a floating value to an integer. Java does not provide the
user-selectable rounding modes for floating-point computations: up, down, or towards zero.

e IEEE defines (2% - 2) NaNs for single-precision format and (25 - 2) NaNs for double-precision
format. However, Java defines only one NaN for each of these two formats.

Table 3-18 lists the parameters for different IEEE formats.

Table 3-18. Parameters for the IEEE Formats

Width in Exponent Precision Maximum Minimum Exponent Bias
Bits Width in bits Exponent Exponent
Single-precision 32 8 24 127 -126 127
Double-precision 64 11 53 1023 -1022 1023
Single-extended >= 43 >= 11 >= 32 >= 1023 <= -1022 Unspecified
Double-extended >= 79 >= 15 >= 64 >= 16383 <= -16382 Unspecified

Little-Endian and Big-Endian

These two terms are related to the direction of bytes in a word within CPU architecture. Computer memory is
referenced by addresses that are positive integers. It is “natural” to store numbers with the least significant byte coming
before the most significant byte in the computer memory. Sometimes computer designers prefer to use a reversed
order version of this representation. The “natural” order, where less significant byte comes before more significant byte
in memory, is called little-endian. Many vendors like IBM, CRAY, and Sun preferred the reverse order that, of course, is
called big-endian. For example, the 32-bit hex value 0x45679812 would be stored in memory as follows:

Address 00 01 02 03

Little-endian 12 98 67 45
Big-endian 45 67 98 12

96

CHAPTER 3 © DATATYPES

Difference in endian-ness can be a problem when transferring data between two machines. Table 3-19 lists some
vendors, their float type, and the endian-ness on their machines.

Table 3-19. Vendors, Float Types, and Endian-ness

Vendor Float Type Endian-ness
ALPHA DEC/IEEE Little-endian
IBM IBM Big-endian
MAC IEEE Big-endian
SUN IEEE Big-endian
VAX DEC Little-endian
PC IEEE Little-endian

Everything in Java binary format files is stored in big-endian order. This is sometimes called network order. This
means that if you use only Java, all files are done the same way on all platforms: Mac, PC, UNIX, etc. You can freely
exchange binary data electronically without any concerns about endian-ness. The problem comes when you must
exchange data files with some program not written in Java that uses little-endian order, most commonly a program
written in C. Some platforms use big-endian order internally (Mac, IBM 390); some uses little-endian order (Intel).
Java hides that internal endian-ness from you.

Summary

Every value in Java has a data type. Java supports two kinds of data types: primitive data types and reference data
types. Primitive data types represent atomic, indivisible values. Java has eight Numeric data types: byte, short, int,
long, float, double, char, and boolean. Literals of primitive data types are constants. Reference data types represent
references of objects in memory. Java is a statically typed programming language. That is, it checks the data types of all
values at compile time.

97

CHAPTER 4

Operators

In this chapter, you will learn:
e What operators are
e The different types of operators available in Java

e Operator precedence, which determines the order in which operators are evaluated when
multiple operators are used in the same expression

What Is an Operator?

An operator is a symbol that performs a specific kind of operation on one, two, or three operands, and produces a
result. The type of the operator and its operands determines the kind of operation performed on the operands and the
type of the result produced. Operators in Java can be categorized based on two criteria:

¢ The number of operands they operate on
e The type of operation they perform on the operands
There are three types of operators based on the number of operands. An operator is called a unary, binary, or
ternary operator based on the number of operands. If an operator takes one operand, it called a unary operator; if it
takes two operands, it called a binary operator; if it takes three operands, it called a ternary operator.
A unary operator can use postfix or prefix notation. In the postfix notation, the unary operator appears after
its operand.
operand operator // Postfix notation
For example,
num++; // num is an operand and ++ is a unary Java operator
In a prefix notation, the unary operator appears before its operand.
operator operand // Prefix notation

For example,

++num; // ++ is a Java unary operator and num is an operand

99

CHAPTER 4 © OPERATORS

A binary operator uses infix notation. The operator appears in between the two operands.
operandl operator operand2 // Infix notation

For example,
10 + 15; // 10 is operandl, + is a binary operator, and 15 is operand2

Like a binary operator, a ternary operator uses infix notation.
operandl operatorl operand2 operator2 operand3 // Infix notation

Here, operator1 and operator2 make a ternary operator.
For example,

/* isSunday is the first operand, ? is the first part of ternary operator, holiday is the second
operand, : is the second part of ternary operator, noHoliday is the third operand

*/

isSunday ? holiday : noHoliday;

An operator is called an arithmetic operator, a relational operator, a logical operator, or a bitwise operator,
depending on the kind of operation it performs on its operands. Java has a big list of operators. This chapter discusses
most of the Java operators. Some of the operators will be discussed in later chapters.

Assignment Operator (=)

An assignment operator (=) is used to assign a value to a variable. It is a binary operator. It takes two operands. The value
of the right-hand operand is assigned to the left-hand operand. The left-hand operand must be a variable. For example,

int num;
num = 25;

Here, num = 25 uses the assignment operator =. In this example, 25 is the right-hand operand. num is the left-hand
operand, which is a variable of type int.

Java ensures that the value of the right-hand operand of the assignment operator is assignment compatible to the
data type of the left-hand operand. Otherwise, a compile-time error occurs. In case of reference variables, you may
be able to compile the source code and get a runtime error if the object represented by the right-hand operand is not
assignment compatible to the reference variable as the left-hand operand. For example, the value of type byte, short,
and char are assignment compatible to int data type, and hence the following snippet of code is valid:

byte b = 5;

char c = 'a';

short s = -200;

int i = 10;

i = b; // Ok. byte b is assignment compatible to int i
i =c; // Ok. char c is assignment compatible to int i
i =s; // Ok. short s is assignment compatible to int i

100

CHAPTER 4 © OPERATORS

However, long to int and float to int assignments are not compatible and hence the following snippet of code
generates compile-time errors:

long big = 524L;

float f = 1.19F;

int i = 15;

i = big; // A compile-time error. long to int, assignment incompatible
i="; // A compile-time error. float to int, assignment incompatible

In such a case where the right-hand operand’s value is not assignment compatible with the left-hand variable’s
data type, the value of the right-hand operand must be cast to appropriate type. The above pieces of invalid code,
which use assignment operators, can be rewritten with cast as follows:

e
n

(int)big; // Ok
i= (int)f; // Ok

An expression is a series of variables, operators, and method calls, constructed according to the syntax of the
Java programming language that evaluates to a single value. For example, num = 25 is an expression. The expression,
which uses the assignment operator, also has a value. The value of the expression is equal to the value of the right-hand
operand. Consider the following piece of code, assuming that numis an int variable:

num = 25;
Here, num = 25 is called an expression and num = 25; is called a statement. The expression num = 25 does two things.

e Assigns the value 25 to the variable num.

e Produces a value 25, which is equal to the value of the right-hand operand of the assignment
operator.

The second effect (producing a value) of using the assignment operator in an expression may seem strange at this
point. You may wonder what happens to the value 25 produced by the expression num = 25. Do you ever use the value
returned by an expression? The answer is yes. You do use the value returned by an expression. Consider the following
expression, which uses chained assignment operators, assuming that num1, and num2 are int variables:

numl = num2 = 25;
What happens when the above piece of code is executed? First, the part of the expression num2 = 25 is executed.
As mentioned earlier, there will be two effects of this execution:
e Itwill assign a value of 25 to num2.

e Itwill produce a value of 25. In other words, you can say that after assigning the value 25 to
num2, the expression num2 = 25 is replaced by a value 25, which changes the main expression
numl = num2 = 25tonuml = 25.

Now, the expression numl = 25 is executed and the value 25 is assigned to num1 and the value produced, which
is 25, is ignored. This way, you can assign the same value to more than one variable in a single expression. There can
be any number of variables used in such a chained assignment expression. For example,

numl = num2 = num3 = num4 = nums numeé = 219,

101

CHAPTER 4 © OPERATORS

Suppose that there are two int variables, num1 and num2. The following assignment, num1 = num2, assigns the
value 200 stored in num2 to num1:

int numl = 100; // numl is 100

int num2 = 200; // num2 is 200

numl = num2; // numl is 200. num2 is 200

num2 = 500; // num2 is 500. numl is still 200

When you say numl = num2, the value stored in num2 is copied to num1, and both num1 and num2 maintain their
own copy of the same value 200. Later on, when num2 = 500 is executed, the value of only num2 changes to 500. But
the value of num1 remains the same: 200. Now, suppose there are two reference variable, ref1 and ref2, which refer to
two different objects of the same class. If you write

Object refi = new Object(); // An object
Object ref2 = new Object(); // An object
refl = ref2;

the effect of the expression ref1 = ref2 is that both reference variables, ref1 and ref2, now refer to the same object
in memory: the object that was being referred to by ref2. After this assignment, both reference variables, ref1 and
ref2, are equally capable of manipulating the object. The changes made to the object in memory by reference variable
ref1 will be observed by ref2 also and vice versa. The chapter on classes and objects discusses more about reference
variable assignments.

Declaration, Initialization, and Assignment

Before a variable of any type is used in a Java program, it must be declared and must have a value assigned to it.
Suppose you want to use an int variable named num1. First, you must declare it.

int numi; // Declaration of a variable numi
A value can be assigned to a variable after it is declared or at the time of declaration itself. When a value is
assigned to a variable after it has been declared, it is known as assignment. The following piece of code declares an

int variable num2 and assigns 50 to it:

int num2; // Declaration of a variable num2
num2 = 50; // Assignment

When a value is assigned to a variable at the time of declaration itself, it is known as initialization. The following
code declares an int variable num3 and initializes it to a value 100:

int num3 = 100; // Declaration of variable num3 and its initialization

You can declare more than one variable of the same type in one declaration by separating each variable name by
a comma.

// Declaration of three variables numi, num2 and num3 of type int
int numi, num2, num3;

102

CHAPTER 4 © OPERATORS

You can also declare more than one variable in one declaration, and initialize some or all.

// Declaration of variables numi, num2 and num3. Initialization of only numi and num3
int numi = 10, num2, num3 = 200;

// Declaration and initialization of variables numil, num2 and num3
int numi = 10, num2 = 20, num3 = 30;

Java will not let you use a variable unless it has been assigned a value either through the process of initialization
or assignment. Java implicitly initializes variables declared in a particular context. Variables declared in other contexts
must be initialized, or assigned a value, before they are used, if Java does not initialize them implicitly. I will discuss
the implicit initialization of a variable by Java in the chapter on classes and objects. It is a good programming practice
to initialize a variable at the time of its declaration.

Arithmetic Operators

Table 4-1 lists all arithmetic operators in Java. All operators listed in Table 4-1 can only be used with numeric type
operands. That is, both operands to arithmetic operators must be one of types byte, short, char, int, long, float,
and double. These operators cannot have operands of boolean primitive type and reference type. The following
sections describe arithmetic operators in detail.

Table 4-1. List of Arithmetic Operators in Java

Operators Description Type Usage Result
+ Addition Binary 2 +5 7
- Subtraction Binary 5-2 3
+ Unary plus Unary +5 Positive five. Same as 5
- Unary minus Unary -5 Negative of five
* Multiplication Binary 5%3 15
/ Division Binary 572 2
6/ 2 3
5.0 / 2.0 25
6.0 / 2.0 3.0
% Modulus Binary 5%3 2
++ Increment Unary num++ Evaluates to the value of num,

increments num by 1.

-- Decrement Unary num- - Evaluates to the value of num,
decrements num by 1.

+= Arithmetic Binary num += 5 Adds 5 to the value of num and
compound-assignment assigns the result to num. If num s 10,
the new value of num will be 15.

(continued)

103

CHAPTER 4 © OPERATORS

Table 4-1. (continued)

Operators Description Type Usage Result
-= Arithmetic Binary num -= 3 Subtracts 3 from the value of num
compound assignment and assigns the result to num. If num
is 10, the new value of numwill be 7.
*= Arithmetic Binary num *= 15 Multiplies 15 to the value of num and
compound assignment assigns the result to num. If num s 10,
the new value of num will be 150.
/= Arithmetic Binary num /=5 Divides the value of num by 5 and
compound assignment assigns the result to num. If numis 10,
the new value of num will be 2.
%= Arithmetic Binary num %= 5 Calculates the remainder of num

compound assignment

divided by 5 and assigns the result
to num. If num is 12, the new value of
num will be 2.

Addition Operator (+)

The addition operator (+) is used in the form

operandl + operand2

The addition arithmetic operator (+) is used to add two numeric values represented by the two operands, for
example, 5 + 3 results in 8. The operands may be any numeric literals, numeric variables, numeric expressions, or
method calls. Every expression involving the addition operator has a data type. The data type of the expression is
determined according to one of the four rules:

e Ifone of the operands is the data type double, the other operand is converted to the double

data type and the whole expression is of type double. Otherwise,

e Ifone of the operands is the data type float, the other operand is converted to the float data
type and the whole expression is of type float. Otherwise,

e Ifone of the operands is the data type long, the other operand is converted to the long data
type and the whole expression is of type long. Otherwise,

e Ifnone of the above three rules applies, all operands are converted to int, provided they are

not already of type int, and the whole expression is of type int.

These rules have some important implications. Let’s consider a byte variable b1, which is assigned a value of 5,

as shown in the following piece of code:

byte bi1;
b1 = 5;

104

CHAPTER 4 © OPERATORS

You get a compile-time error when you try to assign the same value 5 to a byte variable b1, as shown in the
following snippet of code:

byte bi1;
byte b2 = 2;
byte b3 = 3;

b1 = b2 + b3; // A compile-time error. Trying to assign 5 to bl

Why does the above snippet of code result in a compile-time error? Do the expressions bl = 5and b1l = b2 + b3
not have the same effect of assigning 5 to the variable b1? Yes, the effect would be the same. However, the rules that
govern the assignment operation are different in two cases. In the expression b1 = 5, the assignment is governed by
the rule that any int literal between -128 and 127 can be assigned to a byte variable. Because 5 is between -128 and
127, the assignment of b1 = 5 isvalid. The second assignment, b1 = b2 + b3, is governed by the fourth rule for the
determination of the data type of an arithmetic expression, which uses addition operator. Because both operands in
the expression b2 + b3 are of byte types, the operands b2 and b3 are first converted to the int data type, and then the
expression b2 + b3 becomes of the int type. Because the data type of b1 is byte, which is smaller than the int data
type of the expression b2 + b3, the assignmentb1 = b2 + b3 (thatis, int to byte) is not compatible, and that is the
reason it generates an error. In such a case, you need to cast the result of the right-hand expression to the data type of
the left-hand operand.

b1 = (byte)(b2 + b3); // Ok now
Beginners may try to write the above statement of code like so:
b1 = (byte) b2 + b3; // An error again

The two expressions (byte) (b2 + b3) and (byte)b2 + b3 are not the same. In the expression (byte) (b2 + b3),
first b2 and b3 are promoted to int data type, and then an addition is performed, which results in a value 5 of the int
data type. Then, the int value 5 is cast to byte and assigned to b1.

In the expression (byte)b2 + b3, first, b2 is cast to byte. Note that this cast is redundant since b2 is already of
type byte; both b2 and b3 are promoted to int data type; and the whole expression of (byte)b2 + b3 is of type int.
Since int to byte assignment is not permitted, the expression would not compile.

The error produced by the second expression, (byte) b2 + b3, raises an interesting question. Why did Java not
first compute b2 + b3 in (byte)b2 + b3 and then applied (byte) to the result? Because there were two operations to
be done, one being the cast to byte and another being the addition of b2 and b3, Java did the cast on b2 first and the
addition second. The decision to perform the cast first followed by the addition was not arbitrary. Each operator in
Java has a precedence order. The operator, which has higher precedence, is evaluated first before the operators having
lower precedence order. The cast operator has higher precedence than the addition operator. This is the reason
that (byte)b2 was evaluated first in (byte)b2 + b3. You can always override the precedence of operators using
parentheses; note how I overrode the precedence of the cast operator by using parentheses in expression
(byte) (b2 + b3).Let'’s consider another example.

byte b1;
b1 = 3 + 2; // Will this line of code compile?

Will the expression b1 = 3 + 2 compile? If you apply the fourth rule for determining the data type of this
expression, it should not compile because 3 and 2 are int literals. The expression 3 + 2 is of type int. Because int is
not assignment compatible to byte, the expressionbl = 3 + 2 should give an error. However, this assumption is wrong
and the expression b1 = 3 + 2 will compile fine. In this case, the assignment proceeds as follows: the operands 3 and 2
are constants, so their values are known at compile time. Therefore, the compiler computes the result of the expression
3 + 2 atthe time of compilation and replaces 3 + 2 by its result, 5. The expressionbl = 3 + 2isreplacedbybl = 5

105

CHAPTER 4 © OPERATORS

by the compiler. Now you can see why Java didn’t give any errors for this expression. Because the int literal 5 is in the
range of -128 to 127, b1 = 5is avalid assignment according to the rule of assignment of int literal to a byte variable.
However, if you try to write an expressionasbl = 127 + 10, certainly it would not compile because the result of 127 + 10
is 137 and is thus out of range for a byte data type.

Here are the final words on the data type conversion of the operands and the determination of the type of the
expression involving the addition operator.

var = operandl + operand2;

If operandl and operand2 are compile-time constants, the result of operandl + operand2 determines whether
the above assignment is valid. If the result of operand1l + operand2 is in the range for the data type of the variable var,
the above expression will compile. Otherwise, a compile-time error is generated. If either operand1 or operand2 is a
variable (that is, the value of either operand1l or operand2 cannot be ascertained at compile time), the data type of the
expression is determined according to one of the four rules discussed in the beginning of this section. The following
are examples of correct and incorrect use of the addition operator. The comments along with the code indicate
whether the user is correct.

byte b1 = 2;

byte b2 = 3;
short s1 = 100;
int i = 10;

int j = 12;

float f1 = 2.5F;
double d1 = 20.0;

b1 = 15 + 110; // Ok. 125 is in the range -128 and 127
// An error. i is promoted to int and i + 5 is of the data type int.
// int to byte assignment is not permitted

b1 =1+ 5;

b1 = (byte)(i + 5); // OK

// An error. s1 is promoted to int and s1 + 2 is of the data type int.
// int to byte assignment is not permitted
b1 = s1 + 2;

// An error. b2 is promoted to float and f1i + b2 is of the data type float.
// float to byte assignment is not permitted
b1 = f1 + b2;

// An error. fi1 is promoted to double and f1 + di1 is of the data type double
b1 = f1 + d1;

// Ok. i is promoted to float and i + f1 is of the data type float
f1 =1+ f1;

// An error. i is promoted to double and i + d1 is of data type double.
// double to float assignment is not permitted

f1 =1+ d1;

f1

(float)(i + d1); // OK

106

CHAPTER 4 © OPERATORS

// An error. 2.0 and 3.2 are of the type double. The result of 2.0 + 3.2 is 5.2,
// which is also of the type double. double to float assignment is not permitted.
f1 =2.0 + 3.2;

// Ok. 2.0F and 3.2F are of the type float. The result of 2.0F + 3.2F,
// which is 5.2F, is of the type float.
f1 = 2.0F + 3.2F;

// Ok. j is promoted to float and f1 + j is of the data type float.
// float to double assignment is permitted.
di1 = f1 + j;

Subtraction Operator (-)

The subtraction operator (-) is used in the form
operandl - operand2

The subtraction operator is used to compute the difference of two numbers, for example 5 - 3 resultsin 2.
All rules that I discussed about the numeric data conversion of the operands and the determination of the data type
of the expression involving the addition operator are also applicable for an expression involving subtraction operator.
The following are some examples of using the subtraction operator:

byte b1 = 5;

int i = 100;
float f1 = 2.5F;
double d1 = 15.45;

// Ok. 200 - 173 will be replaced by 27.
// b1 = 27 is ok, because 27 is in the range -128 and 127
b1 = 200 - 173;

// An error. i - 27 is of the type int. int to byte assignment is not allowed
b1 =1 - 27;

b1 = (byte)(i -27); // OK

Multiplication Operator (*)

The multiplication operator (*) is used in the form
operandl * operand2

The multiplication operator is used to compute the product of two numbers, for example, 7 * 3 results in 21.
All rules that I discussed about the numeric data conversion of the operands and the determination of the data type
of the expression involving the addition operator are also applicable for an expression involving the multiplication
operator. The following are some examples of using the multiplication operator:

byte b2 = 5;

int i2 = 10;
float f2 = 2.5F;
double d2 = 15.45;

107

CHAPTER 4 © OPERATORS

// Ok. 20 * 6 will be replaced by 120
// b2 = 120 is ok, because 120 is in the range -128 and 127
b2 = 20 * 6;

// An error. i2 * 12 is of the type int. int to byte assignment is not allowed.
b2 = i2 * 12;

b2 = (byte)(i2 * 12); // OK

// Ok. i2 * b2 is of the type int and int to float assignment is allowed
f2 = i2 * b2;

// Error. d2 * i2 is of type double and double to float assignment is not allowed
f2 = d2 * i2;

f2 = (float)(d2 * i2); // Ok

Division Operator (/)

The division operator (/) is used in the form
operandl / operand2

The division operator is used to compute the quotient of two numbers, for example5.0/2.0results in 2. 5. All the
rules I discussed about the numeric data conversion of the operands and the determination of the data type of the
expression involving the addition operator are also valid for an expression involving the division operator.

There are two types of division:

e Integer division
¢ Floating-point division

If both the operands of the division operator are integers, that is, byte, short, char, int, or long, the usual
division operation is carried out and the result is truncated towards zero to represent an integer. For example, if you
write an expression 5/2, the division yields 2.5; the fractional part 0.5 is ignored; and the result is 2. The following
examples illustrate the integer division:

int num;

num = 5/2; // Assigns 2 to num
num = 5/3; // Assigns 1 to num
num = 5/4; // Assigns 1 to num
num = 5/5; // Assigns 1 to num
num = 5/6; // Assigns O to num
num = 5/7; // Assigns 0 to num

In all of the above examples, the value assigned to the variable num is an integer. The result is an integer in all
cases not because the data type of variable num is int. The result is integer because both the operands of the division
operator are integers. Because the data types of both operands are int, the whole expression 5/3 is of type int.
Because the fractional portion (e.g. 0.5, 0.034) cannot be stored in an int data type, the fractional portion is ignored

108

CHAPTER 4 © OPERATORS

and the result is always an integer. If either or both of the operands of the division operator are float or double type,
floating-point division is performed and the result is not truncated. For example,

float f1;

// 15.0F and 4.0F are of float type. So, the expression 15.0F/4.0F is of the type float.
// The result 3.75F is assigned to f1.
f1 = 15.0F/4.0F;

// 15 is of type int and 4.0F is of type float. The expression 15/4.0F is of type float.
// The result 3.75F is assigned to f1.
f1 = 15/4.0F;

// An error. 15.0 is of the type double and 4.0F is of the type float.
// The expression 15.0/4.0F is of type double. The result 3.75 is of the
// type double and cannot be assigned to f1.

f1 = 15.0/4.0F;

f1

(float)(15.0/4.0F); // Ok. 3.75F is assigned to f1

// 15 and 4 are of the type int. The expression 15/4 is of type int.
// An integer division is performed. The result 3 is assigned to f1,
// because int to float assignment is allowed

f1 = 15/4;

What happens when you try to divide a number (integer or floating-point) by 0 (zero)? The result of dividing a
number by zero depends on the type of division. If an integer division is performed on the number, dividing by zero
results in a runtime error. If you write expression 3/0 in a Java program, it compiles fine, but it gives error when it is
executed at runtime. For example,

int 1 = 2;
int j = 5;
int k = 0;
i =j/k; // A runtime error. Divide by zero

i =0/0; // A runtime error. Divide by zero

If either operand of the division operator is a floating-point number, a floating-point division is performed and
the result of dividing the number by zero is not an error. If the dividend (in 7/2, 7 is the dividend and 2 is the divisor)
is a non-zero number in a floating-point divide-by-zero operation, the result is either positive infinity or a negative
infinity. If the dividend is a floating-point zero (e.g. 0.0 or 0,0F), the result is NaN. For example,

float f1 = 2.5F;
double d1 = 5.6;

f1 = 5.0F/0.0F; // Float.POSITIVE_INFINITY is assigned to f1
f1 = -5.0F/0.0F; // Float.NEGATIVE_INFINITY is assigned to f1
f1 = -5.0F/-0.0F; // Float.POSITIVE_INFINITY is assigned to f1
f1 = 5.0F/-0.0F; // Float.NEGATIVE_INFINITY is assigned to f1
d1 = 5.0/0.0; // Double.POSITIVE_INFINITY is assigned to di
d1 = -5.0/0.0; // Double.NEGATIVE_INFINITY is assigned to di
d1 = -5.0/-0.0; // Double.POSITIVE_INFINITY is assigned to di

d1 = 5.0/-0.0; // Double.NEGATIVE_INFINITY is assigned to di

109

CHAPTER 4 © OPERATORS

// 5.0F is of the type float and 0 is of the type int. 5.0F/0 is of type float.
// Float.POSITIVE_INFINITY is assigned to f1
f1 = 5.0F/0;

// A compile-time error. 5.0F is of the type float and 0.0 is of the type double
// 5.0F/0.0 is of the type double. double to float assignment is not allowed.

f1 = 5.0F/0.0;

f1 = (float)(5.0F/0.0); // f1 is assigned Float.POSITIVE_ INFINITY

f1 = 0.0F/0.0F; // Assigns Float.NaN to f1

d1 = 0.0/0.0; // Assigns Double.NaN to di

d1 = -0.0/0.0; // Assigns Double.NaN to d1

Modulus Operator (%)

The modulus operator (%) is used in the form
operandl % operand2

The modulus operator is also known as the remainder operator. The modulus operator performs a division
on the left-hand operand by its right-hand operand and returns the remainder of the division, for example, 7%5
evaluates to 2. All rules about the numeric data conversion of the operands and the determination of the data type
of the expression involving the addition operator are also applicable for expressions involving the modulus operator.
Because the use of the modulus operator involves a division operation, there are some special rules to determine the
result of a modulus operation.

If both operands of the modulus operator are integers, the following rules are applied to compute the result.

Rule #1

It is a runtime error if the right-hand operand is zero. For example,

int num;
num = 15 % 0; // A runtime error

Rule #2

If the right-hand operand is not zero, the sign of the result is the same as the sign of the left-hand operand.
For example,

int num;

num = 15 % 6; // Assigns 3 to num

num = -15 % 6; // Assigns -3 to num

num = 15 % -6; // Assigns 3 to num

num = -15 % -6; // Assigns -3 to num because left-hand operand is -15, which is negative
5%7; // Assigns 5 to num

=0%17; // Assigns 0 to num

> S

c <

s =
n

If either operand of the modulus operator is a floating-point number, the following rules are applied to compute
the result.

110

Rule #1

CHAPTER 4 © OPERATORS

The operation never results in an error even if the right-hand operand is a floating-point zero.

Rule #2

The result is NaN if either operand is NaN. For example,

float f1;
double di;
f1 = Float.NaN % 10.5F; // Assigns Float.NaN to f1
f1 = 20.0F % Float.NaN; // Assigns Float.NaN to f1
f1 = Float.NaN % Float.NaN; // Assigns Float.NaN to f1

//
//
f1

d1

A
do

compile-time error. The expression is of the type double.

uble to float assignment is not allowed
Float.NaN % Double.NaN;

Float.NaN % Double.NaN; // Assigns Double.NaN to di

Rule #3

If the right-hand operand is zero, the result is NaN. For example,

float f1;
f1 = 15.0F % 0.0F; // Assigns Float.NaN to f1

Rule #4

If the left-hand operand is infinity, the result is NaN. For example,

float f1;
f1 = Float.POSITIVE_INFINITY % 2.1F; // Assigns Float.NaN to f1

Rule #5

If none of the above rules apply, the modulus operator returns the remainder of the division of the left-hand
operand and the right-hand operand. The sign of the result is the same as the sign of the left-hand operand. For example,

float f1;

double di1;

f1 = 15.5F % 6.5F; // Assigns 2.5F to f1

d1l = 5.5 % 15.65; // Assigns 5.5 to d1

d1 = 0.0 % 3.78; // Assigns 0.0 to d1

d1 = 85.0 % Double.POSITIVE_INFINITY; // Assigns
d1 = -85.0 % Double.POSITIVE_INFINITY; // Assigns
d1 = 85.0 % Double.NEGATIVE_INFINITY; // Assigns
d1 = -85.0 % Double.NEGATIVE_INFINITY; // Assigns

85.0 to d1
-85.0 to d1
85.0 to d1
-85.0 to d1

111

CHAPTER 4 © OPERATORS
Unary Plus Operator (+)
The unary plus operator (+) is used in the form
+operand
The operand must be a primitive numeric type. If the operand is of the byte, short, or char type, the unary

plus operator promotes it to int type. Otherwise, there is no effect of using this operator. For example, if there is an
int variable num, which has a value of 5, +num still has the same value of 5. The following example illustrates its use:

byte b1 = 10;
byte b2 = +5;
b1 = b2; // Ok. byte to byte assignment

// A compile-time error. b2 is of the type byte. But, use of the unary plus operator on
// b2 promoted its type to int. Therefore, +b2 is of the type int.

// int (+b2) to byte (b1) assignment is not allowed.

b1 = +b2;

b1 = (byte) +b2; // Ok

Unary Minus Operator (-)
The unary minus operator (-) is used in the form
-operand
The unary minus operator arithmetically negates the value of its operand. The operand must be a primitive

numeric type. If the type of the operand is byte, short, or char, it promotes the operand to the int type. The following
example illustrates its use:

byte b1 = 10;
byte b2 = -5;
b1 = b2; // Ok. byte to byte assignment

// A compile-time error. b2 is of the type byte. But, use of unary minus operator (-) on
// b2 promoted its type to int. Therefore, -b2 is of type int.

// int (-b2) to byte (b1) assignment is not allowed.

b1 = -b2;

b1 = (byte) -b2; // Ok

112

CHAPTER 4 © OPERATORS

Compound Arithmetic Assignment Operators

Each of the five basic arithmetic operators (+, -, *, /, and %) has a corresponding compound arithmetic assignment

operator. These operators can be explained better with an example. Suppose you have two variables, num1 and num2.

int numi = 100;
byte num2 = 15;

If you want to add the value of num1 to num2, you would write code as

num2 = (byte)(num2 + numi);

You need to cast the result of num2 + numil to byte because the data type of the expression is int. The same effect

can be rewritten using the compound arithmetic operator (+=), as follows:
num2 += numl; // Adds the value of numi to num2

A compound arithmetic assignment operator is used in the following form:
operandl op= operand2

Here, op is one of the arithmetic operators (+, -, *, /, and %). operand1 and operand2 are of primitive numeric
data types, where operand1 must be a variable. The above expression is equivalent to the following expression:

operandl = (Type of operandl) (operandl op operand2)
For example,

int i = 100;
i += 5.5; // Assigns 105 to i

is equivalent to
i = (int)(i + 5.5); // Assigns 105 to i

There are two advantages of using the compound arithmetic assignment operators.

e The operand1 is evaluated only once. For example, in i += 5.5, the variable i is evaluated only
once, whereasini = (int) (i + 5.5), the variable iisevaluated twice.

e Theresultis automatically cast to the type of operand1 before assignment. The cast may
result in a narrowing conversion or an identity conversion. In the above example, the cast is
a narrowing conversion. The expression i + 5.5 is of the type double and the result of this
expression is cast to int. So, the result of double 105.5 is converted to int 105. If you write
an expression like 1 += 5, the equivalent expression willbe i = (int)(i + 5).Because the
type of the expression 1 + 5 is already int, the casting the result to int again is an identity
conversion.

113

CHAPTER 4 © OPERATORS

The compound assignment operator += can also be applied to String variables. In such cases, the operand1 must
be of type String and the operand2 may be of any type including boolean. For example,

String stri = "Hello";
strl = strl + 100; // Assigns "Hello100" to stri

can be rewritten as

strl += 100; // Assigns "Hello100" to stri

Tip Of the compound operators, only the += operator can be used with a String left-hand operand.

The following are examples of using the compound assignment operators. In the examples, each use of a
compound assignment operator is independent of the effects of its previous uses. In all cases, it has been assumed
that the values of the variables remain the same, as the values assigned to them at the time of their declarations.

int i = 110;
float f = 120.2F;
byte b = 5;

String str = "Hello";
boolean b1 = true;

i += 10; // Assigns 120 to i

// A compile-time error. boolean type cannot be used with +=
// unless left-hand operand (here i) is a String variable

i += b1;

i -=15; // Assigns 95 to i. Assuming i was 110

i *=2; // Assigns 220 to i. Assuming i was 110

i /=2; // Assigns 55 to i. Assuming i was 110

i /=0; // A runtime error . Division by zero error
f /= 0.0; // Assigns Float.POSITIVE_INFINITY to f

i %= 3; // Assigns 2 to i. Assuming i is 110

str += " How are you?"; // Assigns "Hello How are you?" to str

str += f; // Assigns "Hello120.2" to str. Assuming str was "Hello"
b += f; // Assigns 125 to b. Assuming b was 5, f was 120.2

str += bl; // Assigns "Hellotrue" to str. Assuming str was "Hello"

Increment (++) and Decrement (--) Operators

The increment operator (++) is used with a variable of numeric data type to increment its value by 1, whereas the
decrement operator (--) is used to decrement the value by 1. In this section, I will discuss only the increment operator.
The same discussion applies to the decrement operator with the only difference being it will decrement the value by 1
instead of increment it by 1.

114

CHAPTER 4 © OPERATORS

Suppose you declare an int variable called i.
int i = 100;
To increment the value of i by 1, you can use one of the four following expressions:

i=14+1; // Assigns 101 to i
i+=1; // Assigns 101 to i
i++; // Assigns 101 to i
++1;

The increment operator ++ can also be used in a more complex expression as
int i = 100;
int j = 50;
j = i++ + 15; // Assigns 115 to j and i becomes 101
The expression i++ + 15 is evaluated as follows:
e Thevalue of i is evaluated and the right-hand expression becomes 100 + 15.

e Thevalue of i in memory is incremented by 1. So, at this stage the value of the variable i in
memory is 101.

e The expression 100 + 15 is evaluated and the result 115 is assigned to j.
There are two kinds of increment operators:

e DPost-fix increment operator, for example, i++

e Pre-fixincrement operator, for example, ++i

When ++ appears after its operand, it is called a post-fix increment operator. When ++ appears before its operand,
itis called a pre-fix increment operator. The only difference in post-fix and pre-fix increment operators is the order in
which it uses the current value of its operand and the increment in its operand’s value. The post-fix increment uses
the current value of its operand first, and then increments the operand’s value, as you saw in the expression
j = i++ + 15.Because i++ uses a post-fix increment operator, first the current value of 1 is used to compute the value
of expression i++ + 15 (e.g. 100 + 15).The value assigned to j is 115. And then the value of 1 is incremented by 1.

The result would be different if the above expression is rewritten using a pre-fix increment operator.

int i = 100;
int j = 50;
j = ++i + 15; // 1 becomes 101 and assigns 116 to j

In this case, the expression ++i + 15 is evaluated as follows:

e Because ++1 uses a pre-fix increment operator, first the value of i is incremented in memory
by 1. Therefore, the value of i is 101.

e The current value of i, which is 101, is used in the expression and the expression becomes
101 + 15.

e Theexpression 101 + 15 is evaluated and the result 116 is assigned to j.

Note that after evaluation of both expressions i++ + 15and ++i + 15, the value of i is the same, which is 101.
However, the values assigned to j differ. If you are using the increment operator ++ in a simple expression as in i++ or
++1, you cannot observe any difference in using a post-fix or pre-fix operator.

115

CHAPTER 4 © OPERATORS
Here is a puzzle for Java beginners. The puzzle includes the use of the increment operator as follows:

int i = 15;
i = i++; // What will be the value of i after this assignment?

What will be the value of i after i = i++ is executed? If your guess is 16, you are wrong. Here is the explanation of
how the expression is evaluated.

e i++isevaluated. Because i++ uses a post-fix increment operator, the current value of i is used
in the expression. The current value of i is 15. The expression becomes i = 15.

e Thevalue of i is incremented by 1 in memory as the second effect of i++. At this point, the
value of i is 16 in memory.

e Theexpressioni = 15 is evaluated and the value 15 is assigned to i. The value of the variable
iin memory is 15 and that is the final value. In fact, variable i observed a value 16 in the
previous step, but this step overwrote that value with 15. Therefore, the final value of the
variable i after i = i++is executed will be 15, not 16.

In the above example, the order of operations is important. It is important to note that in case of i++ the value
of the variable i is incremented as soon as the current value of i is used in the expression. To make this point clearer,
consider the following example:

int i = 10;
i=d+ +1i; // Assigns 21 to i
i=10;

i = ++1 + i++; // Assigns 22 to i

There are also post-fix and pre-fix decrement operators (e.g. i--, --1). The following are examples of using
post-fix and pre-fix decrement operators:

int i = 15;

int j = 16;

i--;

--i;

i = 10;

i=1--; // Assigns 10 to i

i=10;

j = i-- + 10; // Assigns 20 to j and 9 to i
i=10;

j =--i+ 10; // Assigns 19 to j and 9 to i

There are two important points to remember about the use of increment and decrement operators.

e The operand of the increment and decrement operators must be a variable. For example, the
expression 5++ is incorrect because ++ is being used with a constant.

e The result of the expression using ++ or - - operator is a value, not a variable. For example,
i++ evaluates to a value, so you cannot use i++ as the left-hand of an assignment operator or
where a variable is required.

116

CHAPTER 4 © OPERATORS

String Concatenation Operator (+)

The + operator is overloaded. An operator is said to be overloaded if it is used to perform more than one function. So
far, you have seen its use as an arithmetic addition operator to add two numbers. It can also be used to concatenate
two strings. Two strings, such as "abc" and "xyz", can be concatenated using the + operator as "abc" + "xyz" to
produce new string "abcxyz". The following is another example of a string concatenation:

String str1 = "Hello,";
String str2 = " Alekhya";
String str3 = stri + str2; // Assigns "Hello, Alekhya" to str3

The string concatenation operator is also used to concatenate a primitive and a reference data type value to a
string. I will discuss only concatenation of string and primitive data types in this section. When either operand of the
+ operator is a string, it performs string concatenation. When both operands of + are numeric, it performs number
addition. Consider the following snippet of code:

int num = 26;
String str1 = "Alphabets";
String str2 = num + stri; // Assigns "26Alphabets” to str2

When the expression num + stri is executed, the + operator acts as a string concatenation operator because
its right-hand operand, str1, is a String. Before num and str1 are concatenated, num is replaced by its string
representation, which is "26". Now, the expression becomes "26" + stri, which results in "26Alphabets"”.
Table 4-2 lists the string representation of the values of the primitive data types.

Table 4-2. String Representations of the Values of Primitive Data Types

Data Type Value String Representation
int, short, 1678 "1678"
byte, long 0 non
char A "A"
"\uoo41'’ "A"
(Unicode escape sequence)
boolean true "true"
false "false"
float 2.5 "2.5"
0.0F "0.0"
-0.0F "-0.0"
Float.POSITIVE_INFINITY "Infinity"
Float.NEGATIVE INFINITY "-Infinity"
Float.NaN "NaN"

(continued)

117

CHAPTER 4 © OPERATORS

Table 4-2. (continued)

Data Type Value String Representation
double 89.12 "89.12"
0.0 "0.0"
-0.0 "-0.0"
Double.POSITIVE_INFINITY "Infinity"
Double.NEGATIVE INFINITY "-Infinity"
Double.NaN "NaN"

If a String variable contains the null reference, the concatenation operator uses a string "null". The following
examples illustrate the use of string representations of the values of primitive data types in string concatenation:

boolean b1 = true;
boolean b2 = false;
int num = 365;
double d = -0.0;
char c = 'A";
String stri;

String str2 = null;

str1
stri

b1 + " friends"; // Assigns "true friends" to stri
b2 + " identity"; // Assigns "false identity" to stri

// Assigns "null and void" to stri. Because str2 is null, it is replaced
// by a string "null" by the concatenation operator
strl = str2 + " and void";

strl = num + " days"; // Assigns "365 days" to stri
strl1 = d + " zero"; // Assigns "-0.0 zero" to stri

str1 = Double.NaN + " is absurd"; // Assigns "NaN is absurd" to stri

strl = ¢ + " is a letter"; // Assigns "A is a letter" to stri
strd = "This is " + b1; // Assigns "This is true" to stri

// Assigns "Beyond Infinity" to stri
strl = "Beyond " + Float.POSITIVE_INFINITY

It may be confusing to determine the result of an expression that uses more than one + operator and strings. What
will be the result of the expression 12 + 15 + " men"? Will the result be "1215 men" or "27 men"? The key to finding
the correct answer is to find which + is an arithmetic operator and which + is a string concatenation operator.

If both the operands are numeric, the + operator performs addition. If either operand is a string, the + operator
performs string concatenation. The execution of an expression proceeds from left to right unless overridden by using
parentheses. In the expression 12 + 15 + " men", the first + from the left performs addition on 12 and 15, which
results in 27. After that, the expression reduces to 27 + " men". Now, the + operator performs a string concatenation
because the right-hand operand, " men", is a string and it results in "27 men".

118

CHAPTER 4 © OPERATORS

Consider the following piece of code:

int num1 = 12;
int num2 = 15;
String stri =
String str2;

",
men";

You want to create a string of “1215 men” using the three variables (num1, num2, and str1) and the + operator. You
want to assign the result to str2. The following is a first attempt:

str2 = numl + num2 + stri;

This statement will assign "27 men" to str2.
Another solution is to place num?2 + strl in parentheses.

str2 = numi + (num2 + str1); // Assigns "1215 men" to str2

The expression in parentheses is evaluated first. The expression (num2 + str1) is evaluated first to reduce the
expression to numl + "15 men", which in turn will evaluate to "1215 men".
Another option is to place an empty string in the beginning of the expression.

str2 = "" + numl + num2 + stri; // Assigns "1215 men" to stri
In this case, ""
str1. Now "12" + num2 is evaluated, which results in “1215” Now the expression is reduced to “1215” +*
results in a string "1215 men".
You may also place an empty string between num1 and num2 in the expression to get the same result.

+ numl is evaluated first, and it results in "12", which reduces the expression to "12" + num2 +
" men", which

str2 = numi + + num2 + strl; // Assigns "1215 men" to str2

Sometimes the string concatenation is trickier than you think. Consider the following piece of code:

int num = 15;

boolean b = false;

String stri = “faces";

String str2 = b + num + str1; // A compile-time error

The last line in this snippet of code will generate a compile-time error. What is wrong with the statement? You
were expecting a string of “falsel5faces” to be assigned to str2, weren’t you? Let’s analyze the expression b + num +
stril. Is the first + operator from left an arithmetic operator or a string concatenation operator? For a + operator to be
a string concatenation operator, it is necessary that at least one of its operands is a string. Since neither b nor numis a
string, the first + operator from the leftinb + num + striis not a string concatenation operator. Is it an arithmetic
addition operator? Its operands are of type boolean (b) and int (num). You have learned that an arithmetic addition
operator (+) cannot have a boolean operand. The presence of a boolean operand in the expression b + num caused
the compile-time error. A boolean cannot be added to a number. However, the + operator works on a boolean as a
string concatenation operator if another operand is a string. To correct the above compile-time error, you can rewrite
the expression in a number of ways, as shown:

str2 = b + (num + stri); // Ok. Assigns "falsel5faces" to str2

str2 = "" + b + num + strl; // Ok. Assigns "falsel5faces" to str2
str2 =b + "" + num + str1; // Ok. Assigns "falsel5faces" to str2

119

CHAPTER 4 © OPERATORS

You use the println() and print() methods to print a message on the standard output, as follows:

System.out.println("Prints a new line at the end of text");
System.out.print("Does not print a new line at the end of text");

If you use the System.out.println() method to print text to the console, after printing the text, it also prints a
new line character at the end of the text. The only difference between using the print1n() and print() is that the
former prints a new line at the end of the text, whereas the latter does not. The print1ln() and print() methods are
overloaded. Until now, you have seen their use only with string arguments. You can pass any Java data type argument
to these two methods. The following snippet of code illustrates how to pass Java primitive types as arguments to
these methods:

int num = 156;

// Prints 156 on the console
System.out.println(num);

// Prints Value of num = 156 on the console

System.out.println("Value of num = " + num);

// Prints a new line character on the console
System.out.println();

Listing 4-1 contains a complete program to demonstrate the use of arithmetic operators and the string
concatenation operator.

Listing 4-1. An Example of Using Java Operators

// ArithOperator.java
package com.jdojo.operator;

class ArithOperator {
public static void main (String[] args) {
int num = 120;
double realNum = 25.5F;
double veryBigNum = 25.8 / 0.0;
double garbage = 0.0 / 0.0;
boolean test = true;

// Print the value of num
System.out.println ("num = " + num);

// Print the value of realNum
System.out.println ("realNum = " + realNum);

// Print the value of veryBigNum
System.out.println ("veryBigNum = " + veryBigNum);

// Print the value of garbage
System.out.println ("garbage = " + garbage);

120

CHAPTER 4 © OPERATORS

// Print the value of test
System.out.println ("test = " + test);

// Print the maximum value of int type
System.out.println ("Maximum int = " + Integer.MAX VALUE);

// Print the maximum value of double type
System.out.println ("Maximum double = " + Double.MAX VALUE);

// Print the sum of two numbers
System.out.println ("12.5 + 100 = " + (12.5 + 100));

// Print the difference of two numbers

System.out.println ("12.5 - 100 = " + (12.5 - 100));
// Print the multiplication of two numbers
System.out.println ("12.5 * 100 = " + (12.5 * 100));

// Print the result of division

System.out.println ("12.5 / 100 = " + (12.5 / 100));

// Print the result of modulus
System.out.println ("12.5 % 100

"+ (12.5 % 100));

// Print the result of string concatenation
System.out.println ("\"abc\" + \"xyz\" = " + "\"" + ("abc" + "xyz") + "\"");

num = 120

realNum = 25.5
veryBigNum = Infinity
garbage = NaN

test = true

Maximum int = 2147483647
Maximum double = 1.7976931348623157E308
12.5 + 100 = 112.5

12.5 - 100 -87.5

12.5 * 100 = 1250.0

12.5 / 100 = 0.125

12.5 % 100 = 12.5

"abc" + "xyz" = "abcxyz"

121

CHAPTER 4 © OPERATORS

Relational Operators

All relational operators are binary operators. That is, they take two operands. The result produced by a relational
operator is always a Boolean value true or false. Table 4-3 lists the relational operators available in Java.

Table 4-3. List of Relational Operators in Java

Operators Meaning Type Usage Result
== Equal to Binary 3 ==2 false
= Not equal to Binary 31=2 true
> Greater than Binary 3>2 true
>= Greater than or equal to Binary 3 5=2 true
< Less than Binary 3<2 false
<= Less than or equal to Binary 3«¢=2 false

Equality Operator (==)

The equality operator (==) is used in the form
operandl == operand2

The equality operator is used to test two operands for equality. It uses the following rules:

e Both operands must be either primitive type or reference type. Mixed operands types are not
allowed. Mixing the operands types results in a compile-time error.

e For primitive operands, it returns true if the both operands represent the same value;
otherwise, it returns false. If both operands must be either numeric or boolean. A mix of
numeric and boolean types is not allowed.

e Forreference operands, it returns true if the both operands refer to the same object in
memory; otherwise it returns false.

Suppose there is an int variable i.
int i = 10;

Now, i == 10 will test whether i is equal to 10 or not. Because 1 is equal to 10, the expression 1 == 10 will
evaluate to true.
Let’s consider another example.

int i;

int j;

int k;

boolean b;

i=73=k=15; // Assign 15 to i, j, and k
b=(i==7j==k); // A compile-time error

122

CHAPTER 4 © OPERATORS

In this example, you tried to test whether the three variables i, j and k have the same value, and the expression
(i == j == k) resulted in an error. Why did you get the error? The expression (1 == j == k) is evaluated as follows:

e First, i ==j is evaluated in expression i == j == k. Since both i and j have the same value, which
is 15, the expression i == j returns true.

e The first step reduced the expression i == j == k to true == k. This is an error because the
operands of == operator are of boolean and int types. You cannot mix boolean and numeric
types operands with the equality operator.

The following rules apply when the operands of the equality operator are floating-point types.
Rule #1

Both negative zero (-0.0) and positive zero (0.0) are considered equal. Recall that -0.0 and 0.0 are stored
differently in memory.

double d1 = 0.0;

double d2 = -0.0;

boolean b = (d1 == d2); // Assigns true to b
Rule #2

A positive infinity is equal to another positive infinity. A negative infinity is equal to another negative infinity.
However, a positive infinity is not equal to a negative infinity.

double d1 = Double.POSITIVE INFINITY;
double d2 = Double.NEGATIVE_INFINITY;
boolean bl = (d1 == d2); // Assigns false to b1
boolean b2 = (d1 == d1); // Assigns true to b2

Rule #3
If either operand is NaN, the equality test returns false.
double d1 = Double.NaN;

double d2 = 5.5;
boolean b = (d1 == d2); // Assigns false to b

Note that even if both the operands are NaN, the equality operator will return false.

d1 = Double.NaN;
d2 = Double.NaN;
b = (d1 == d2); // Assigns false to b

How do you test whether the value stored in a float or double variable is NaN? If you write the following piece of
code to test for the value of a double variable d1 being NaN, it will always return false:

double d1
boolean b

Double.NaN;
(d1 == Double.NaN); // Assigns false to b. Incorrect way

123

CHAPTER 4 © OPERATORS

Float and Double classes have an isNaN() method, which accepts a float and a double argument, respectively.
It returns true if the argument is NaN, Otherwise, it returns false. For example, to test if d1 is NaN, the above expression
can be rewritten as shown:

double d1 = Double.NaN;

// Assigns true to b. Correct way to test for a NaN value
b = Double.isNaN(d1);

You should not use == operator to test two strings for equality. For example,

String strl = new String("Hello");
String str2 = new String("Hello");
boolean b;

b = (str1 == str2); // Assigns false to b

The new operator always creates a new object in memory. Therefore, str1 and str2 refer to two different objects
in memory and this is the reason that str1 == str2 evaluates to false. It is true that both String objects in memory
have the same text. Whenever == operator is used with reference variables, it always compares the references of the
objects its operands are referring to. To compare the text represented by the two String variables str1 and str2, you
should use the equals () method of the String class, as shown:

// Assigns true to b because strl and str2 have the same text of "Hello"
b = stri.equals(str2);

// Assigns true to b because strl and str2 have the same text of "Hello"
b = str2.equals(str1);

I will discuss more about strings comparison in the chapter on Strings.

Inequality Operator (!=)

The inequality operator (!=) is used in the form
operandl != operand2

The inequality operator returns true if operand1 and operand2 are not equal. Otherwise, it returns false.
The rules for the data types of the operands of inequality (! =) operator are the same that of equality operator (==).

int i = 15;
int j = 10;
int k = 15;
boolean b;

b = (i !=3j); // Assigns true to b
(i '= k); // Assigns false to b
(true != true); // Assigns false to b
= (true != false); // Assigns true to b
(false != true); // Assigns true to b

[=aie e gie o
1]

If either operand is NaN (float or double), inequality operator returns true. If d1 is a floating-point variable
(double or float), d1 == direturns falseanddl != direturnstrue if and only if d1 is NaN.

124

CHAPTER 4 © OPERATORS

Greater Than Operator (>)

The greater than operator (>) is used in the form
operandl > operand2

The greater than operator returns true if the value of operand1 is greater than the value of operand2. Otherwise, it
returns false. The greater than operator can be used only with primitive numeric data types. If either of the operand
is NaN (float or double), it returns false.

int i = 10;
int j = 15;
double d1 = Double.NaN;
boolean b;

b = (i> j); // Assigns false to b
b= (j>1i); // Assigns true to b

// A compile-time error. > cannot be used with boolean operands
b = (true > false);

b = (d1 > Double.NaN); // Assigns false to b

"Hello";
"How is Java?";

String stri
String str2

// A compile-time error. > cannot be used with reference type operands stri and str2
b = (str1 > str2);

If you want to test if the number of characters in String stri is greater than that of str2, you should use the
length() method of the String class. The length() method of String class returns the number of characters in the
string. For example,

i = stri.length(); // Assigns 5 to i. "Hello" has 5 characters
b = (stri.length() > str2.length()); // Assigns false to b
b = (str2.length() > stri.length()); // Assigns true to b

Greater Than or Equal to Operator (>=)

The greater than or equal to operator (>=) is used in the form
operandl >= operand2
The greater than or equal to operator returns true if the value of operand1 is greater than or equal to the value of

operand2. Otherwise, it returns false. The greater than or equal to operator can be used only with primitive numeric
data types. If either of the operands is NaN (float or double), the greater than or equal to operator returns false.

int i = 10;
int j = 10;
boolean b;

b = (i»>=3j); // Assigns true to b
b = (j >=1); // Assigns true to b

125

CHAPTER 4 © OPERATORS
Less Than Operator (<)
The less than operator (<) is used in the form
operandl < operand2
The less than operator returns true if operand1 is less than operand2. Otherwise, it returns false. The operator

can be used only with primitive numeric data types. If either operand is NaN (f1loat or double), the less than operator
returns false.

int i = 10;
int j = 15;
double d1 = Double.NaN;
boolean b;

b = (i< j); // Assigns true to b
b= (j<1i); // Assigns false to b

// A compile-time error. < cannot be used with boolean operands
b = (true < false);

b = (d1 < Double.NaN); // Assigns false to b

Less Than or Equal to Operator (<=)
The less than or equal to operator (<=) is used in the form
operandl <= operand2
The less than or equal to operator returns true if the value of operand1 is less than or equal to the value of

operand2. Otherwise, it returns false. The operator can be used only with primitive numeric data types. If either of
the operand is NaN (float or double), the less than or equal to operator returns false.

int i = 10;
int j = 10;
int k = 15;
boolean b;
b= (i<=73j); // Assigns true to b
b= (j <=1); // Assigns true to b
b= (j<=k); // Assigns true to b
b = (k <= j); // Assigns false to b

Boolean Logical Operators

Table 4-4 lists Boolean logical operators available in Java. All Boolean logical operators can be used only with boolean
operand(s). Subsequent sections will explain the usage of these operators in detail.

126

Table 4-4. List of Boolean Logical Operators

CHAPTER 4

Operators Meaning Type Usage Result
! Logical NOT Unary ltrue false
&8 Short-circuit AND Binary true 8& true true
& Logical AND Binary true & true true
[Short-circuit OR Binary true || false true

| Logical OR Binary true | false true
A Logical XOR(Exclusive OR) Binary true " true false
&= AND assignment Binary test &= true

|= OR assignment Binary test |= true

A= XOR assignment Binary test "= true

Logical NOT Operator (!)

The logical NOT operator (!) is used in the form

loperand

The operator returns true if the operand is false, and false if the operand is true.

boolean b;
b = ltrue;
Ifalse;

b

int i = 10;
int j = 15;

// Assigns false to b
// Assigns true to b

boolean b1 = true;

b = lb1;

// Assigns false to b

b =1(i> j); // Assigns true to b, because i > j returns false

OPERATORS

Suppose you want to change the value of a boolean variable b to true if its current value is false, and to false if
its current value is true. This can be achieved as shown:

b = Ib; // Assigns true to b if it was false and false if it was true

Logical Short-Circuit AND Operator (&&)

The logical short-circuit AND operator (&&) is used in the form

operandl && operand2

The operator returns true if both operands are true. If either operand is false, it returns false. It is called a
short-circuit AND operator because if operand1 (the left-hand operand) evaluates to false, it returns false without

evaluating operand2 (the right-hand operand).

127

CHAPTER 4 © OPERATORS

int i = 10;
int j = 15;
boolean b = (i > 5 8% j > 10); // Assigns true to b

In this expression, 1 > 5 is evaluated first and it returns true. Because the left hand operand evaluated to true,
the right hand operand was also evaluated. The right-hand operand, j > 10, is evaluated, which also returns true.
Now, the expression is reduced to true 83 true.Because both operands are true, the final result is true.

Consider another example.

int i = 10;
int j = 15;
boolean b = (i > 20 && j > 10); // Assigns false to b

The expression i > 20 returns false. The expression reduces to false & j > 10. Because the left-hand
operand is false, the right-hand operand, j > 10, is not evaluated and &3 returns false. However, there is no way to
prove in the above example that the right-hand operand, whichis j > 10, was not evaluated.

Let’s consider another example to prove this point. I have already discussed the assignment operator (=). If num is
avariable of type int, num = 10 returns a value 10.

int num = 10;
boolean b = ((num = 50) > 5); // Assigns true to b

Note the use of parentheses in this example. In the expression ((num = 50) > 5), the expression, (num = 50),
is executed first. It assigns 50 to num and returns 50, reducing the expression to (50 > 5), which in turn returns true. If
you use the value of num after the expression num = 50 is executed, its value will be 50.

Keeping this point in mind, consider the following snippet of code:

int i = 10;

int j = 10;

boolean b = (i > 5 8& ((j = 20) > 15));
System.out.println("b = " + b);
System.out.println("i = " + i);
System.out.println("j = " + j);

This piece of code will print

true
10
j =20

Because the left-hand operand, whichisi > 5, evaluated to true, the right-hand of operand ((j = 20) > 15)
was evaluated and the variable j was assigned a value 20. If you change the above piece of code so the left-hand
operand evaluates to false, the right-hand operand would not be evaluated and the value of j will remain 10. The
changed piece of code is as follows:

int i = 10;
int j = 10;

// ((j = 20) > 5) is not evaluated because i > 25 returns false
boolean b = (i > 25 &% ((j = 20) > 15));

128

CHAPTER 4 © OPERATORS

System.out.println ("b = " + b);
System.out.println ("i = " + i);
System.out.println ("j = " + j); // Will print j = 10

The above piece of code will print

= false
i=10
j =10

Logical AND Operator (&)
The logical AND operator (&) is used in the form
operandl & operand2
The logical AND operator returns true if both operands are true. If either operand is false, it returns false. The

logical AND operator (&) works the same way as the logical short-circuit AND operator (&&), except for one difference.
The logical AND operator (&) evaluates its right-hand operand even if its left-hand operand evaluates to false.

int i = 10;
int j = 15;
boolean b;
b=(i>58&7j> 10); // Assigns true to b

b=(i>258& ((j=20)>15)); // ((j=120)>5)is evaluated even if i > 25 returns false
System.out.println ("b = " + b);

System.out.println ("i = " + i);

System.out.println ("j = " + j); // Will print j = 20

The above piece of code will print

= false
i=10
j =20

Logical Short-Circuit OR Operator (||)

The logical short-circuit OR operator (| |) is used in the form
operandl || operand2

The logical short-circuit OR operator returns true if either operand is true. If both operands are false, it returns
false. Itis called a short-circuit OR operator because if operand1 evaluates to true, it returns true without evaluating
operand2.
int i = 10;

int j = 15;
boolean b = (i > 5 || j > 10); // Assigns true to b

129

CHAPTER 4 © OPERATORS

In the above expression, i > 5 is evaluated first, and it returns true. Because the left-hand operand evaluated to
true, the right hand operand is not evaluated, and the expression (i > 5 || j > 10) returns true.
Consider another example.

int i = 10;
int j = 15;
boolean b = (i » 20 || j » 10); // Assigns true to b

The expression i > 20 returns false. The expression reduces to false || j > 10. Because the left-hand operand
to | | is false, the right-hand operand, j > 10, is evaluated, which returns true and the entire expression returns true.

Logical OR Operator (|)

The logical OR operator (|) is used in the form
operandl | operand2

The logical OR operator returns true if either operand is true. If both operands are false, it returns false. The
logical OR operator works the same way as the logical short-circuit OR operator, except for one difference. The logical
OR operator evaluates its right-hand operand even if its left-hand operand evaluates to true.

int i = 10;
int j = 15;
boolean b = (i > 5 | j > 10); // Assigns true to b

The expression i > 5 is evaluated first and it returns true. Even if the left-hand operand, i > 5, evaluates to
true, the right-hand operand, j > 15, is still evaluated, and the whole expression (i > 5 | j > 10) returns true.

Logical XOR Operator ()

The logical XOR operator (%) is used in the form
operandl " operand2

The logical XOR operator returns true if operand1 and operand2 are different. That is, it returns true if one of the
operands is true, but not both. If both operands are the same, it returns false.

int i = 10;
boolean b;

b = true * true; // Assigns false to b
b = true * false; // Assigns true to b
b = false " true; // Assigns true to b
b = false ~ false; // Assigns false to b
b=(i>5"1c<15); // Assigns false to b

130

CHAPTER 4 © OPERATORS

Compound Boolean Logical Assignment Operators

There are three compound Boolean logical assignment operators. Note that Java does not have any operators like 88=
and | | =. These operators are used in the form

operandl op= operand2
The operand1 must be a boolean variable and op may be 8, |, or *. The above form is equivalent to writing
operandl = operandl op operand2

Table 4-5 shows the compound logical assignment operators and their equivalents.

Table 4-5. Compound Logical Assignment Operators and Their Equivalents

Expression is equivalent to

operandl &= operand2 operandl = operandl & operand2
operandl |= operand2 operandl = operandl | operand2
operandl "= operand2 operandl = operandl " operand2

With the &= operator, if both operands evaluate to true, 8= returns true. Otherwise, it returns false.
boolean b = true;
b &= true; // Assigns true to b
b &= false; // Assigns false to b

With the ! = operator, if either operand evaluates to true, ! = returns true. Otherwise, it returns false.
boolean b = false;
b |= true; // Assigns true to b
b |= false; // Assigns false to b

With the *= operator, if both operands evaluate to different values, that is, one of the operands is true but not
both, *= returns true. Otherwise, it returns false.

boolean b = true;

b "= true; // Assigns false to b
b "= false; // Assigns true to b

Ternary Operator (? :)

Java has one conditional operator. It is called a ternary operator as it takes three operands. It is used in the form
boolean-expression ? true-expression : false-expression

The two symbols of "?" and " : " make the ternary operator. If the boolean-expression evaluates to true, it evaluates
the true-expression; otherwise, it evaluates false-expression.

131

CHAPTER 4 © OPERATORS

Suppose you have three integer variables: num1, num2, and minNum. You want to assign minNum the minimum of
num1 and num2. You can use ternary operator to accomplish this.

int numi = 50;
int num2 = 25;

// Assigns num2 to minNum, because num2 is less than numi
int minNum = (numl < num2 ? numi : num2);

Operator Precedence

Consider the following piece of code:

int result;
result = 10 + 8 / 2; // What will be the value assigned to result?

What will be the value assigned to the variable result after the last statement in this piece of code is executed?
Will it be 9 or 14? It depends on the operation that is done first. It will be 9 if the addition 10 + 8 is performed first.
It will be 14 if the division 8/2 is performed first. All expressions in Java are evaluated according to operator precedence
hierarchy, which establishes the rules that govern the order in which expressions are evaluated. Operators with higher
precedence are evaluated before the operators with lower precedence. If operators have the same precedence, the
expression is evaluated from left to right. Multiplication, division, and remainder operators have higher precedence
than addition and subtraction operators. Therefore, in the above expression, 8/2 is evaluated first, which reduces the
expression to 10 + 4, which in turn results in 14.

Consider another expression.

result = 10 * 5 / 2;

The expression, 10 * 5 / 2, uses two operators: a multiplication operator and a division operator. Both operators
have the same precedence. The expression is evaluated from left to right. First, the expression 10 * 5 is evaluated, and
then the expression 50 / 2 is evaluated. The whole expression evaluates to 25. If you wanted to perform division first,
you must use parentheses. Parentheses have the highest precedence, and therefore, the expression within parentheses
is evaluated first. You can rewrite the above piece of code using parentheses.

result = 10 * (5 / 2); // Assigns 20 to result. Why?
You can also use nested parentheses. In nested parentheses, the innermost parentheses’ expression is evaluated
first. Table 4-6 lists Java operators in their precedence order. Operators in the same level have the same precedence.

Table 4-6 lists some of the operators I have not discussed yet. I will discuss them later in this chapter or in other
chapters. In the table, a lower the value in the level column indicates a higher precedence.

132

Table 4-6. Java Operators and Their Precedence

CHAPTER 4 © OPERATORS

Level Operator Symbol Action Performed
1 ++ Pre-or-post increment
-- Pre-or-post decrement
+, - Unary plus, unary minus
~ Bitwise complement
! Logical Not
(type) Cast
2 VAR S Multiplication, division, modulus
3 +, - Addition, subtraction
+ String concatenation
4 << Left shift
>> Signed right shift
>»> Unsigned right shift
5 < Less than
<= Less than or equal
> Greater than
>= Greater than or equal
instanceof Type comparison
6 == Equal in value
1= Not equal to
7 & Bitwise AND
& Logical AND
8 A Bitwise XOR
n Logical XOR
9 | Bitwise OR
| Logical OR
10 && Logical short-circuit AND
11 [Logical short-circuit OR
12 ?2: Ternary
13 = Assignment
+=, -2, %=, /=, %=, <<=, 5=, 5505, 8=, | 5,0= Compound assignment

133

CHAPTER 4 © OPERATORS

Bitwise Operators

A bitwise operator manipulates individual bits of its operands. Bitwise operators are listed in Table 4-7.

Table 4-7. List of Bitwise Operators

Operators Meaning Type Usage Result
& Bitwise AND Binary 25 & 24 24

| Bitwise OR Binary 25 | 2 27

n Bitwise XOR Binary 25 "2 27

~ Bitwise complement (1’s complement) Unary ~25 -26

<< Left shift Binary 25 << 2 100
>> Signed right shift Binary 25 >> 2 6

>>> Unsigned right shift Binary 25 >>> 2 6

&=, I=, "=, <<=, >, >d>= Compound assignment Bitwise operators Binary

All bitwise operators work with only integers. The bitwise AND (&) operator operates on corresponding bits of its
two operands and returns 1 if both bits are 1, and 0 otherwise. Note that the bitwise AND (&) operates on each bit of
the respective operands, not on the operands as a whole. The following is the result of all bit combination using the
bitwise AND (&) operator:

181=1
180=0
0&1=0
0&0=0

Consider the following piece of code in Java:
int 1 = 13 & 3;

The value of 13 & 3 is computed as follows. The 32 bits have been shown in 8-bit chunks for clarity. In memory,
all 32 bits are contiguous.

13 00000000 00000000 00000000 00001101
3 00000000 00000000 00000000 00000011
13 & 3 - 00000000 00000000 00000000 00000001 (Equal to decimal 1)

Therefore, 13 & 3 is 1, which is assigned to i in the above piece of code.
The bitwise OR (|) operates on corresponding bits of its operands and returns 1 if either bit is 1, and 0 otherwise.
The following is the result of all bit combinations using bitwise OR (|) operator:

O O K k.

O r O Bk
I}

O r Kk kL

CHAPTER 4 © OPERATORS

The value of 13 | 3 can be computed as follows. The result of 13 | 3is 15.

13 00000000 00000000 00000000 00001101
3 00000000 00000000 00000000 00000011

13 | 3 00000000 00000000 00000000 00001111 (Equal to decimal 15)

The bitwise XOR (*) operates on corresponding bits of its operands and returns 1 if only one of the bits is 1.

Otherwise, it returns 0. The following is the result of all bit combinations using bitwise XOR (") operator:

1M1=
170 =
0"1-=
o"~o

O L L O

The value of 13 " 3 can be computed as follows. The result of 13 * 3 is 14.

13 00000000 00000000 00000000 00001101
3 00000000 00000000 00000000 00000011

13 ~ 3 00000000 00000000 00000000 00001110 (Equal to decimal 14)

The bitwise NOT (~) operates on each bit of its operand. It inverts the bits, that is, 1 is changed to 0 and 0 is
changed to 1. It is also called a bitwise complement operator. It computes 1’s complement of its operand. The
following is the result of all bit combinations using bitwise NOT (~) operator:

“1 =0
~“0 =1

The value of ~13 can be computed as follows. The result of ~13 is -14.
13 00000000 00000000 00000000 00001101

~13 11111111 11111111 11111111 11110010 (Equal to decimal -14)

The bitwise left shift operator (<<) shifts all the bits to the left by the number of bits specified as its right-hand

operand. It inserts zeros at the lower-order bits. The effect of shifting 1 bit to left is same as multiplying the number by 2.

Therefore, 9 << 1 will produce 18, whereas 9 << 2 produces 36. The procedure to compute 13 << 4 can be depicted

as shown in Figure 4-1.

00000000 00000000 00000000 00001101
00000000 00000000 00000000 11010000
o

|

13
13 << 4 0000

All bits shifted four bits to left
Four bits ignored Four 0 bits added

Figure 4-1. Computing 13 <<4

135

CHAPTER 4 © OPERATORS

What is the result of 13 << 35? You might have guessed zero. However, this is not true. In fact, only 32 bits are
used to represent 13, because 13 is considered as int literal and int occupies 32 bits. You can shift all bits to the
left only by 31 bits in an int. If the left-hand operand of bitwise left shift operator (<<) is int, only five lower order
bits’ value of the right-hand operand is used as the number of bits to shift. For example, in 13 << 35, the right-hand
operand (35) can be represented in binary as follows:

00000000000000000000000000100011

The five lower order bits in 35 are 00011, which is equal to 3. Therefore, when you write 13 << 35, it is equivalent
to writing 13 << 3. For all positive right-hand operands of the bitwise left shift operator, you can take the modulus
of the right-hand operand with 32, which would be the final number of bits to shift. Therefore, 13 << 35 can be
considered as 13 << (35 % 32) which is the same as 13 << 3.Ifthe left-hand operand is long, the value of the first six
lower order bits of the right-hand operand is used as the number of bits to shift.

long val = 13;
long result;
result = val << 35;

Since val is a long variable, the six lower order bits of 35, which are 100011, will be used as the number to shift.
Figure 4-2 shows the steps used to compute 13 >> 4and -13 >> 4.

13 00000000 00000000 00000000 00001101
13 >> 4 00000000 00000000 00000000 00000000 1101
>
All bits shifted four bits to right T
Four 0 bits added Four bits ignored
-13 11111111 11111111 11111111 11110011
-13 >> 4 11111111 11111111 11111111 11111111 0011
>
All bits shifted four bits to right T
Four 1 bits added Four bits ignored

Figure 4-2. Computing 13>>4 and -13 >> 4

The bitwise signed right shift operator (>>) shifts all the bits to the right by the number specified as its right-hand
operand. If the most significant digit of the left-hand operand is 1 (for negative numbers), all higher order bits are
filled with 1s after the shift operation. If the most significant bit is 0 (for positive numbers), all higher order bits are
filled with 0s. Because the sign bit after right shift operation (>>) remains the same, it is called a signed right shift
operator. For example, 13 >> 4 results in zero, as depicted in Figure 4-2. Also note that in the case of -13 >> 4 all four
higher order bits are filled with 1s because in -13, the most significant digit is 1. The result of -13 >> 4is -1.

136

CHAPTER 4 © OPERATORS

The unsigned right shift operator (>>>) works the same as the signed right shift operator (>>), except for one
difference. It always fills the higher order bits with zero. The result of 13 >>> 4is zero whereas the result of -13 >>> 4
is 268435455, as shown below. There is no unsigned left shift operator.

13 00000000 00000000 00000000 00001101
13 >>> 4 00000000 00000000 00000000 00000000 1101

-13 111211111 11111111 112111111 11110011
-13 >>> 4 00001111 11121111 11111111 11111111 0011

A compound bitwise assignment operator is used in the following form:
operandl op= operand2

Here, op is one of the bitwise operators of 8, |, *, <<, >>, and >>>. operandi and operand? are of primitive integral
data type where operand1 must be a variable. The above expression is equivalent to the following expression:

operandl = (Type of operandi) (operandl op operand2)

Assuming that there are two int variables, i and j, Table 4-8 lists the equivalent expression for compound
bitwise assignment operators.

Table 4-8. List of Compound Bitwise Assignment Operators

Expression is equivalent to
i8&j i=1&7j
=3 i=1]7j
in= i=1in7j
i«=7j i=1i<«j
i>=]j i=1i>73
i>>=73j i=15>7]

Summary

An operator is a symbol that is used to perform some type of computation on its operands. Java contains a rich set of
operators. Operators are categorized as unary, binary, or ternary based on the number of operands they take. They are
categorized as arithmetic, relational, logical, etc. based on the operation they perform on their operands.

An operator is called overloaded if it can be used in multiple contexts to perform different types of computations.
Java contains a + operator that is overloaded. It is used as an arithmetic addition operator as well as a string
concatenation operator. Unlike C++, Java does not let developers overload operators in programs.

137

CHAPTER 5

Statements

In this chapter, you will learn:
e What statements are in Java

e About the different types of statements available in Java, for example, control flow statements,
loop statements, and so on.

What Is a Statement?

A statement specifies an action in a Java program, such as assigning the sum of x and y to z, printing a message to the
standard output, writing data to a file, etc.

Types of Statements

Statements in Java can be broadly classified into three categories:
e Declaration statement
e Expression statement

e Control flow statement

Declaration Statement

A declaration statement is used to declare a variable. You have already been using this type of statement. For example,
int num;

int num2 = 100;
String str;

139

CHAPTER 5 © STATEMENTS

Expression Statement

An expression with a semicolon at the end is called an expression statement. However, not all Java expressions can
be converted to expression statements by appending a semicolon to them. If i and j are two int variables, i + jis
an arithmetic expression. However, i + j; (i + j with a semicolon) is not a valid expression statement. Only the
following four kinds of expressions can be converted to expression statements by appending a semicolon to them:

e Increment and decrement expressions. For example,
num++;
++num;
num--;
--num;
e Assignment expressions. For example,
num = 100;
num *= 10;
e Object creation expressions. For example,
new String("This is a text");

Note that this statement creates a new object of the String class. However, the new object’s
reference is not stored in any reference variable. Therefore, this statement is not very useful. In
some cases, however, you can use such an object creation statement.

e Method invocation expressions

You invoke the method println() to print a message on console. When you use the
println() method without semicolon at the end, it is an expression. When you add a
semicolon at the end of the method call, it becomes a statement. For example,

System.out.println("This is a statement");

Control Flow Statement

By default, all statements in a Java program are executed in the order they appear in the program. However, you can
change the order of execution using control flow statements. Sometimes you may want to execute a statement or a set
of statements only if a particular condition is true. Sometimes you may want to execute a set of statements repeatedly
for a number of times or as long as a particular condition is true. All of these are possible in Java using control flow
statements; if and for statements are examples of control flow statements.

A Block Statement

A block statement is a sequence of zero or more statements enclosed in braces. A block statement is generally used
to group together several statements, so they can be used in a situation that requires you to use a single statement.
In some situations, you can use only one statement. If you want to use more than one statement in those situations,
you can create a block statement by placing all your statements inside braces, which would be treated as a single

140

CHAPTER 5 © STATEMENTS

statement. You can think of a block statement as a compound statement that is treated as one statement. The
following are examples of block statements:

{ 7/ Start of a block statement. Block statement starts with {
int numi = 20;

numl++;

} // End of the block statement. Block statement ends with }

{
}

// Another valid block statement with no statements inside

All the variables declared in a block statement can only be used within that block. In other words, you can say
that all variables declared in a block have local scope. Consider the following piece of code:

// Declare a variable numi
int numi;

{ // Start of a block statement
// Declares a variable num2, which is a local variable for this block
int num2;

// num2 is local to this block, so it can be used here
num2 = 200;

// We can use numl here because it is declared outside and before this block
numl = 100;
} // End of the block statement

// A compile-time error. num2 has been declared inside a block and
// so it cannot be used outside that block
num2 = 50;

You can also nest a block statement inside another block statement. All the variables declared in the enclosing
blocks (outer blocks) are available to the enclosed blocks (inner blocks). However, the variables declared in the
enclosed inner blocks are not available in enclosing outer blocks. For example,

// Start of the outer block
{

int numi = 10;

// Start of the inner block

{
// numl is available here because we are in an inner block
numl = 100;
int num2 = 200; // Declared inside the inner block
num2 = 678; // OK. num2 is local to inner block
}

// End of the inner block

141

CHAPTER 5 © STATEMENTS

// A compile-time error. num2 is local to the inner block.
// So, it cannot be used outside the inner block.
num2 = 200;

}
// End of the outer block

One important thing to remember about nested block statement is that you cannot define a variable with the
same name inside an inner block if a variable with the same name has already been defined in the outer block. This
is because the variables declared in the outer block can always be used inside the inner block and if you declare
a variable with the same name inside the inner block, there is no way for Java to differentiate between these two
variables inside the inner block. The following snippet of code is incorrect:

int numi = 10;

{
// A compile-time error. numl is already in scope. Cannot redeclare numi
float numi = 10.5F;
float num2 = 12.98F; // OK
{
// A compile-time error. num2 is already in scope. You can use
// num2 already define in the outer block, but cannot redeclare it.
float num2;
}
}

The if-else Statement

The format of an if-else statement is

if (condition)
statement1
else
statement2

The condition must be a Boolean expression. That is, it must evaluate to true or false. If the condition
evaluates to true, statement1 is executed. Otherwise, statement2 is executed. The else part is optional. You may
write a statement as

if (condition)
statement1

Suppose there are two int variables, num1 and num2. You want to add 10 to num2 if num1 is greater than 50.
Otherwise, you want to subtract 10 from num2. You can write this logic using an if-else statement.

if (numi > 50)

num2 = num2 + 10;
else

num2 = num2 - 10;

The execution of this if-else statement is shown in Figure 5-1.

142

CHAPTER 5 © STATEMENTS

true false

v

num?2 = num?2 + 10 num?2 = num?2 - 10

|

Figure 5-1. Execution of an if-else statement

Suppose you have three int variables, num1, num2, and num3. You want to add 10 to num2 and num3 if num1 is
greater than 50. Otherwise, you want to subtract 10 from num2 and num3. You may try the following snippet of code,
which is incorrect:

if (numi > 50)
num2 = num2 + 10;
num3 = num3 + 10;
else
num2 = num2 - 10;
num3 = num3 - 10;

The snippet of code will generate a compiler error. What is wrong with this code? You can place only one
statement between if and else in an if-else statement. This is the reason that the statement num3 = num3 + 10;
caused a compile-time error. In fact, you can always associate only one statement with the if partin an if-else
statement or in a simple if statement. This is also true for the else part. In the above piece of code, only num2 =
num2 - 10; is associated with the else part; the last statement, num3 = num3 - 10;, is not associated with the else
part. You want to execute two statements when num1 is greater than 50 or not. In this case, you need to bundle two
statements into one block statement, like so:

if (numi > 50) {
num2 = num2 + 10;
num3 = num3 + 10;

}
else {
num2 = num2 - 10;
num3 = num3 - 10;
}

143

CHAPTER 5 © STATEMENTS

The if-else statement can be nested, as shown:

if (numi > 50) {
if (num2 < 30) {
num3 = num3 + 130;

}
else {
num3 = num3 - 130;
}
}
else {
num3 = num3 = 200;
}

Sometimes it is confusing to determine which else goes with which if in nested if-else statements. Consider
the following piece of code:

int i = 10;
int j = 15;
if (i » 15)
if (j == 15)

System.out.println("Thanks");
else
System.out.println("Sorry");

What will be the output when this snippet of code is executed? Will it print “Thanks” or “Sorry” or nothing? If you
guessed that it would not print anything, you already understand if-else association.

You can apply a simple rule to figure out which else goes with which if in an if-else statement. Start with the
"else" and move up. If you do not find any other "else, " the first "if" you find goes with the "else" you started
with. If you find one "else" in moving up before you find any "if," the second "if" goes with the "else" you started
with, and so on. In the above piece of code, starting with "else" the first "1f" you find is "if (j == 15)" and so the
"else" goes with this "if." The above piece of code can be rewritten as follows:

int i = 10;
int j = 15;
if (i > 15) {
if (j == 15) {
System.out.println("Thanks");
}
else {
System.out.println("Sorry");
}
}

Because i is equal to 10, the expression i > 15 will return false and hence the control would not enter the if
statement at all. Therefore, there would not be any output.

Note that the condition expression in an if statement must be of the boolean type. Therefore, if you want to
compare two int variables, i and j, for equality, your if statement must look like the following:

if (i == j)
statement

144

CHAPTER 5 © STATEMENTS

You cannot write an if statement like this:

if (i = 5) /* A compile-time error */
statement

This if statement will not compile because 1 = 5 is an assignment expression and it evaluates to an int value
5. The condition expression must return a Boolean value: true or false. Therefore, an assignment expression cannot
be used as a condition expression in an if statement, except when you are assigning a Boolean value to a boolean
variable, like so:

boolean b;
if (b = true) /* Always returns true */
statement

Here, the assignment expression b = true always returns true after assigning true to b. In this case, the use of
the assignment expression in if statement is allowed because the data type of expression b = true is boolean.

You can use the ternary operator in place of simple if-else statement. Suppose, if a person is male, you want to
set the title to “Mr”” and if not, to “Ms.” You can accomplish this using an if-else statement and also using a ternary
operator, like so:

String title = "";
boolean isMale = true;

// Using an if-else statement
if (isMale)

title = "Mr.";
else

title

“MS. ||;

// Using a ternary operator
title = (isMale ? "Mr." : "Ms.");

You can see the difference in using the if-else statement and the ternary operator. The code is compact using
the ternary operator. However, you cannot use a ternary operator to replace all if-else statements. You can use the
ternary operator in place of the if-else statement only when the if and else parts in the if-else statement contain
only one statement and both statements return the same type of values. Because the ternary operator is an operator, it
can be used in expressions. Suppose you want to assign the minimum of i and j to k. You can do this in the following
declaration statement of the variable k:

int i = 10;
int j = 20;
int k = (i < j?1:3J); // Using a ternary operator in initialization

The same can be achieved using an if-else statement, as shown:

int i = 10;
int j = 20;
int k;
if (i < j)

k = 1;
else

k:j’

145

CHAPTER 5 © STATEMENTS

Another difference in using a ternary operator and an if-else statement is that you can use an expression, which
uses a ternary operator as an argument to a method. However, you cannot use an if-else statement as an argument
to a method. Suppose you have a calc() method that accepts an int as an argument. You have two integers, num1 and
num2. If you want to pass the minimum of the two integers to the calc() method, you would write the code as shown:

// Use of an if-else statement
if (numl < num2)

calc(numi);
else

calc(num2);

// Use of a ternary operator
calc(numi < num2 ? numl : num2)

Suppose you want to print the message "k is 15" if the value of an int variable k is equal to 15. Otherwise, you
want to print the message "k is not 15".You can print the message using a ternary operator writing one line of code
as follows:

System.out.println(k == 15 ? "k is 15" : "k is not 15");

The switch Statement

The general form of a switch statement is

switch (switch-expression) {
case label1:
statements

case label2:
statements

case label3:
statements

default:
statements

The switch-expression must evaluate to a type: byte, short, char, int, enum, or String. The enumtype
(shorthand for enumerated type) was introduced in Java 5. Please refer to the chapter on enums for details on how
to use an enum type in a switch statement. Java 7 added support for the String type in a switch statement. Please
refer to Chapter 11 for details on how to use strings in a switch statement. The label1, label2, etc. are compile-time
constant expressions whose values must be in the range of the type of the switch-expression. A switch statement
is evaluated as follows:

e The switch-expression is evaluated.

e Ifthe value of the switch-expression matches a case label, the execution starts from the
matched case label and executes all statements until the end of the switch statement.

e Ifthe value of the switch-expression does not match a case label, execution starts at the
statement following the optional default label and continues until the end of the switch
statement.

146

CHAPTER 5 © STATEMENTS

For example,

int i = 10;
switch (i) {
case 10: // Found the match
System.out.println("Ten"); // Execution starts here

case 20:
System.out.println("Twenty");
default:
System.out.println ("No-match");
}
Ten
Twenty
No-match

The value of i is 10. The execution starts at the first statement following case 10: and falls through case 20: and
default labels executing the statements under these labels. If you change the value of i to 50, there would not be any
match in case labels and the execution would start at the first statement after the default label, which will print
"No-match". The following example illustrates this logic:

int i = 50;
switch (i) {
case 10:
System.out.println("Ten");
case 20:
System.out.println("Twenty");
default:
System.out.println("No-match"); /* Execution starts here */

No-match

The default label may not be the last label to appear in a switch statement and is optional. For example,

int i = 50;
switch (i) {
case 10:
System.out.println("Ten");
default:
System.out.println("No-match"); // Execution starts here
case 20:
System.out.println("Twenty");

No-match
Twenty

147

CHAPTER 5 © STATEMENTS

Because the value of i is 50, which does not match any of the case labels, the execution starts at the first
statement after default label. The control falls through the subsequent label case 20: and executes the statement
following this case label, which prints "Twenty". Generally, you want to print "Ten" if the value of i is 10 and "Twenty"
if the value of i is 20. If the value of i is not 10 and 20, you want to print "No-match". This is possible using a break
statement inside switch statement. When a break statement is executed inside a switch statement, the control is
transferred outside the switch statement. For example,

int i = 10;
switch (i) {
case 10:

System.out.println("Ten");
break; // Transfers control outside the switch statement
case 20:
System.out.println("Twenty");
break; // Transfers control outside the switch statement
default:
System.out.println("No-match");
break; // Transfers control outside the switch statement. It is not necessary.

Ten

Note the use of the break statement in the above snippet of code. In fact, the execution of a break statement
inside a switch statement stops the execution of the switch statement and transfers control to the first statement, if
any, following the switch statement. In the above snippet of code, the use of a break statement inside the default
label is not necessary because the default label is the last label in the switch statement and the execution of the
switch statement will stop after that anyway. However, it is recommended to use a break statement even inside the
last label to avoid errors if additional labels are added later.

The value of the constant expressions used as the case labels must be in the range of the data type of
switch-expression. Keeping in mind that the range of the byte data type in Java is -128 to 127, the following code
would not compile because the second case label is 150, which is outside the range of the byte data type:

byte b = 10;
switch (b) {
case 5:
b++;
case 150: // A compile-time error. 150 is greater than 127
b--;
default:
b =0;
}

148

CHAPTER 5 © STATEMENTS

Two case labels in a switch statement cannot be the same. The following piece of code would not compile
because case label 10 is repeated:

int num = 10;
switch (num) {
case 10:
num++;
case 10: // A compile-time error. Duplicate case label 10
num--;
default:
num = 100;

Itis important to note that the labels for each case in a switch statement must be a compile-time constant. That
is, the value of the labels must be known at compile time. Otherwise, a compile-time error occurs. For example, the
following code would not compile:

int numi = 10;
int num2 = 10;
switch (num1) {
case 20:
System.out.println("numi is 20");
case num2: // A Compile-time error. num2 is a variable and cannot be used as a label
System.out.println("numi is 10");

You might say that you know the value of num2 is 10 when the switch statement will be executed. However, all
variables are evaluated at runtime. The values of variables are not known at compile time. Therefore, the case num2:
causes the compiler error. This is necessary because Java makes sure at compile time itself that all case labels are
within the range of the data type of the switch-expression. If they are not, the statements following those case labels
will never get executed at runtime.

Tip The default label is optional. There can be at most one default label in a switch statement.

A switch statement is a clearer way of writing an if-else statement when the condition-expression in an if-
else statement compares the value of the same variable for equality. For example, the following if-else and switch
statements accomplish the same thing:

// Using an if-else statement
if (i == 10)
System.out.println("i is 10");
else if (i == 20)
System.out.println("i is 20");
else
System.out.println("i is neither 10 nor 20");

149

CHAPTER 5 © STATEMENTS

// Using a switch statement
switch (i) {
case 10:
System.out.println(“i is 10");
break;
case 20:
System.out.println("i is 20");
break;
default:
System.out.println("i is neither 10 nor 20");

The for Statement

A for statement is an iteration statement (also called a for-loop statement), which is used to loop through a
statement for a number of times based on some conditions. The general form of a for-loop statement is

for (initialization; condition-expression; expression-list)
Statement

The initialization, condition-expression, and expression-list are separated by a semicolon. A for-loop statement
consists of four parts:
e Initialization
¢ Condition-expression
e Statement
e Expression-list

First, the initialization part is executed; then, the condition-expression is evaluated. If the condition-expression
evaluates to true, the statement associated with the for-loop statement is executed. After that, all expressions in
the expression-list are evaluated. The condition-expression is evaluated again, and if it evaluates to true, statement
associated with the for-loop statement is executed and then the expression-list, and so on. This loop of execution
is repeated until the condition-expression evaluates to false. The execution of a for-loop statement is depicted in
Figure 5-2.

150

CHAPTER 5 © STATEMENTS

|

Initialization

false
Condition-

expression

Statement

A 4
Expression-list

Figure 5-2. Execution of a for statement

For example, the following for-loop statement will print all integers between 1 and 10, inclusive:

for(int num = 1; num <= 10; num++)
System.out.println(num);

First, int num = 1is executed, which declares an int variable num and initializes it to 1. It is important to note that
variables declared in the initialization part of the for-loop statement can only be used within that for-loop statement.
Then, condition-expression (num <= 10) is evaluated, which is 1 <= 10. It evaluates to true for the first time. Now,
the statement associated with the for-loop statement is executed, which prints the current value of num. Finally, the
expression in the expression-list, num++, is evaluated, which increments the value of num by 1. At this point, the value
of num becomes 2. The condition-expression 2 <= 10 is evaluated, which returns true, and the current value of numis
printed. This process continues until the value of num becomes 10 and it is printed. After that, num++ sets the value of num
to 11, and the condition-expression 11 <= 10 returns false, which stops the execution of the for-loop statement.

All three parts (initialization, condition-expression, and expression-list) in a for-loop statement are optional.
Note that the fourth part, the statement, is not optional. Therefore, if you do not have a statement to execute in a
for-loop statement, you must use an empty block statement or a semicolon in place of a statement. A semicolon that
is treated as a statement is called an empty statement or a null statement. An infinite loop using a for-loop statement
can be written as follows:

for(; ;) { /* An infinite loop */

Or
for(; ;); /* An infinite loop. Note a semicolon as a statement */

A detailed discussion of each part of a for-loop statement follows.

151

CHAPTER 5 © STATEMENTS

Initialization

The initialization part of a for-loop statement can have a variable declaration statement, which may declare one
or more variables of the same type, or it can have a list of expression statements separated by a comma. Note that
the statements used in the initialization part do not end with a semicolon. The following snippet of code shows the
initialization partin a for-loop statement:

// Declares two variables i and j of the same type int
for(int i = 10, j = 20; ;);

// Declares one double variable salary
for(double salary = 3455.78F; ;);

// Attempts to declare two variables of different types
for(int i = 10, double d1 = 20.5; ;); /* An error */

// Uses an expression i++
int i = 100;
for(i++; ;); // OK

// Uses an expression to print a message on the console
for(System.out.println("Hello"); ;); // OK

// Uses two expressions: to print a message and to increment num
int num = 100;

for(System.out.println("Hello"), num++; ;);

You can declare a new variable in the initialization part of a for-loop statement. However, you cannot re-declare
avariable that is already in scope.

int i = 10;
for (int i = 0; ;); // An error. Cannot re-declare i

You can reinitialize the variable i in the for-loop statement, as shown:

int i = 10; // Initialize i to 10
i = 500; // Value of i changes here to 500

/* Other statements go here... */

for (i = 0; ;); // Reinitialize i to zero inside the for-loop loop

Condition-expression

The condition-expression must evaluate to a Boolean value of true or false. Otherwise, a compiler error occurs. The
condition-expression is optional. If it is omitted, a Boolean value of true is assumed as a condition-expression, which
results in an infinite loop unless a break statement is used to stop the loop. The following two for-loop statements
result in infinite loops and they are the same:

Infinite loop I

for(; ;); // Implicitly condition-expression is true

152

CHAPTER 5 © STATEMENTS

Infinite loop II
for(; true;); // Explicit true is used here

A break statement is used to stop the execution of a for-loop statement. When a break statement is executed,
the control is transferred to the next statement, if any, after the for-loop statement. You can rewrite the for-loop
statement to print all integers between 1 and 10 using a break statement.

for(int num = 1; ; num++) { // No condition-expression
System.out.println(num); // Print the number
if (num == 10) {
break; // Break out of loop when i is 10
}

This for-loop statement prints the same integers as the previous for-loop statement did. However, the latter is
not recommended because you are using a break statement instead of using the condition-expression to break out of
the loop. It is good programming practice to use a condition-expression to break out of a for loop.

Expression-list

The expression-list part is optional. It may contain one or more expressions separated by a comma. You can use only
expressions that can be converted to a statement by appending a semicolon at the end. Please refer to the discussion
on the expression statement in the beginning of this chapter for more details. You can rewrite the same example of
printing all integers between 1 and 10 as follows:

for(int num = 1; num <= 10; System.out.println(num), num++);

Note that this for-loop statement uses two expressions in the expression-list, which are separated by a comma.
A for-loop statement gives you more power to write compact code.
You can rewrite the above for-loop statement as follows to make it more compact and accomplish the same task:

for(int num = 1; num <= 10; System.out.println(num++));

Note that you combined the two expressions in the expression-list into one. You used num++ as the argument
to the println() method, so it prints the value of num first, and then increments its value by 1. Can you predict the
output of the above for-loop statement if you replace num++ by ++num?

You can also use nested for-loop statements, that is, for-loop statements inside another for-loop statement.
Suppose you want to print a 3x3 (read as three by three) matrix.

11 12 13
21 22 23
31 32 33

153

CHAPTER 5 © STATEMENTS

The code to print the 3x3 matrix can be written as

// Outer for-loop statement
for(int 1 = 1; 1 <= 3; i++) {
// Inner for-loop statement
for(int j = 1; j <= 3; j++) {
System.out.print(i +

+3);

// Prints a tab after each column value
System.out.print("\t");
}

System.out.println(); // Prints a new line

The above piece of code can be explained using the following steps.

1. The execution starts in the initialization part (int i = 1) of the outer for-loop statement
where 1i is initialized to 1.

2. The condition-expression for the outer for-loop statement (i <= 3) is evaluated for i
equal to 1, which is true.

3. The statement part of the outer for loop starts with an inner for-loop statement.
4. Now jisinitialized to 1.

5. The condition-expression for the inner for-loop statement (j <= 3) is evaluated for j
equal to 1, which is true.

6. The block statement associated with the inner for-loop statement is executed, which
prints 11 and a tab.

7. The expression-list of the inner for-loop statement (j++) is executed, which increments
the value of j to 2.

8. The condition expression for the inner for-loop statement (j <= 3) is evaluated for j
equal to 2, which is true.

9. The block statement associated with the inner for-loop statement is executed, which
prints 12 and a tab. At this stage the printed text is

11 12

10. The expression-list of the inner for-loop statement (j++) is executed, which increments
the value of j to 3.

11. The condition-expression for the inner for-loop statement (j <= 3) is evaluated for j
equal to 3, which is true.

12. The block statement associated with the inner for-loop statement is executed, which
prints 13 and a tab. At this stage the printed text is

11 12 13

13. The expression-list of the inner for-loop statement (j++) is executed, which increments
the value of j to 4.

154

14.

15.

16.

17.

CHAPTER 5 ' STATEMENTS
The condition expression for the inner for-loop statement (j <= 3) is evaluated for j
equal to 4, which is false. At this point, the inner for loop is finished.

The last statement of the block statement for outer for-loop statement, which is
System.out.println(), is executed, which prints a system-dependent line separator.

The expression-list of the outer for-loop statement (i++) is executed, which increment
the value if i to 2.

Now, the inner for-loop statement is started afresh with the value of i equal to 2. This
sequence of steps is also executed for i equal to 3. When i becomes 4, the outer for-loop
statement exits, and at this point, the printed matrix will be

11 12 13
21 22 23
31 32 33

Note that this snippet of code also prints a tab character at the end of every row and a new line after the last row,
which are not necessary. One important point to note is that the variable j is created every time the inner for-loop
statement is started and it is destroyed when the inner for-loop statement exits. Therefore, the variable j is created and
destroyed three times. You cannot use the variable j outside the inner for-loop statement because it has been declared
inside the inner for-loop statement and its scope is local to that inner for-loop statement. Listing 5-1 contains the
complete code for the discussion in this section. The program makes sure not to print extra tabs and new line characters.

Listing 5-1. Using a for Loop to Print a 3x3 Matrix

// PrintMatrix.java
package com.jdojo.statement;

public class PrintMatrix {
public static void main(String[] args) {

11
21
31

12
22
32

for(int i = 1; i <= 3; i++) {
for(int j = 1; j <= 3; j++) {
System.out.print(i +

+3);

// Print a tab, except for the last number in a row
if (5 <3){

System.out.print("\t");
}

}

// Print a new line, except after the last line
if (i <3){

System.out.println();
}

13
23
33

155

CHAPTER 5 © STATEMENTS

The for-each Statement

Java 5 introduced an enhanced for loop, which is called a for-each loop. It is used for iterating over elements of
arrays and collections. This section is included here to complete the list of statements that lets you loop through a
group values. Please refer to the chapters on arrays and collections for more detailed explanation of the for-each
loop. The general syntax for a for-each loop is as follows:

for(Type element : a_collection or an array) {
// This code will be executed once for each element in the collection/array.
// Each time this code is executed, the element variable holds the reference
// of the current element in the collection/array

The following snippet of code prints all elements of an int array numList:

int[] numList = {10, 20, 30, 40};
for(int num : numList) {

System.out.println(num);
}

10
20
30
40

The while Statement

Awhile statement is another iteration (or, loop) statement, which is used to execute a statement repeatedly as long
as a condition is true. A while statement is also known as a while-loop statement. The general form of a while-loop
statement is

while (condition-expression)
Statement

The condition-expression must be a boolean expression and the statement can be a simple statement or a
block statement. The condition-expression is evaluated first. If it returns true, the statement is executed. Again,
the condition-expression is evaluated. If it returns true, the statement is executed. This loop continues until the
condition-expression returns false. Unlike the for-loop statement, the condition-expression in a while-loop
statement is not optional. For example, to make a while statement infinite loop, you need to use the boolean literal
true as the condition-expression.

while (true)
System.out.println ("This is an infinite loop");

In general, a for-loop statement can be converted to a while-loop statement. However, not all for-loop

statements can be converted to a while-loop statement. The conversion between a for-loop and a while-loop
statement is shown below.

156

CHAPTER 5 © STATEMENTS

A for-loop statement:

for (initialization; condition-expression; expression-list)
Statement

Equivalent while-loop Statements:

Initialization

while (condition-expression) {
Statement
Expression-list

You can print all integers between 1 and 10 using a while-loop as shown:
int 1 = 1;

while (i <= 10) {
System.out.println(i);

i++;
}
The above code can also be rewritten as
int 1 = 0;

while (++i <= 10) {
System.out.println(i);
}

or

int i =1;

while (i <= 10) {
System.out.println(i++);

}

A break statement is used to exit the loop in a while-loop statement. You can rewrite the above example using
a break statement as follows. Note that the following piece of code is written only to illustrate the use of a break
statement in a while-loop; it is not a good example of using a break statement.

int 1 = 15
while (true) { // Cannot exit the loop from here
if (i <= 10) {
System.out.println(i);
it++;
}
else {
break; // Exit the loop
}
}

157

CHAPTER 5 © STATEMENTS

The do-while Statement

The do-while statement is another loop statement. It is similar to the while-loop statement with one difference.

The statement associated with a while loop statement may not be executed even once if the condition-expression
evaluates to false for the first time. However, the statement associated with a do-while statement is executed at least
once. The general form of a do-while statement is

do
Statement
while (condition-expression);

Note that the do-while statement ends with a semicolon. The condition-expression must be a boolean
expression. The statement can be a simple statement or a block statement. The statement is executed first. Then the
condition-expression is evaluated. If it evaluates to true, the statement is executed again. This loop continues until
the condition-expression evaluates to false. Like in a for loop and a while loop, a break statement may be used to
exit a do-while loop. A do-while loop can compute the sum of integers between 1 and 10 as shown:

int i = 1;

int sum = 0;

do {
sum = sum + i; // Better to use sum += i
i++;

}

while (i <= 10);

// Print the result
System.out.println("Sum = " + sum);

Sum = 55

The break Statement

A break statement is used to exit from a block. There are two forms of the break Statements:
e Unlabeled break statement
e Labeled break statement

An example of an unlabeled break statement is
break;
An example of a labeled break statement is

break label;

158

CHAPTER 5 © STATEMENTS

You have already seen the use of the unlabeled break statement inside switch, for-loop, while-loop, and
do-while statements. It transfers control out of a switch, for-loop, while-loop, and do-while statement in which it
appears. In case of nested statements of these four kinds, if an unlabeled break statement is used inside the inner
statement, it transfers control only out of the inner statement, not out of the outer statement. Suppose you want to
print the lower half of the 3x3 matrix as shown:

11 21 22
31 32 33

To print only the lower half of the 3x3 matrix, you can write the following snippet of code:

for(int 1 = 1; i <= 3; i++) {
for(int j = 1; j <= 3; j++) {
System.out.print (i +
if (1==73) {
break; // Exit the inner for loop
}

System.out.print("\t");

+3);

}
System.out.println();

The break statement has been used inside the inner for-loop statement. When the value of the outer loop
counter (i) becomes equal to the value of the inner loop counter (j), the break statement is executed, and the inner
loop exits. If you want to exit from the outer for-loop statement from inside the inner for-loop statement, you have to
use a labeled break statement. A label in Java is any valid Java identifier followed by a colon. The following are some
valid labels in Java:

label1:
alabel:
Outer:
Hello:
TamALabel:

Now use a labeled break statement in the above example and see the result.

outer: // Defines a label named outer
for(int 1 = 1; i <= 3; i++) {
for(int j = 1; j <= 3; j++) {
System.out.print(i + ""
if (1 ==7) {
break outer; // Exit the outer for loop
}

System.out.print("\t");

+3);

}
System.out.println();

} // The outer label ends here

159

CHAPTER 5 © STATEMENTS

The output of the above snippet of code will be 11. Why did it print only one element of the 3x3 matrix? This time
you have used a labeled break statement inside the inner for-loop statement. When i == j evaluates to true for
the first time, the labeled break statement is executed. It transfers control out of the block, which has been labeled
as outer. Note that the outer label appears just before the outer for-loop statement. Therefore, the block associated
with the label outer is the outer for-loop statement. A labeled statement can be used not only inside switch,
for-loop, while-loop, and do-while statements. Rather it can be used with any type of a block statement. The
following is a trivial example of a labeled break Statements:

blockLabel:
{
int i = 10;
if (1 ==5) {
break blockLabel; // Exits the block
}
if (i == 10) {
System.out.println("i is not five");
}
}

One important point to remember about a labeled break statement is that the label used with the break
statement must be the label for the block in which that labeled break statement is used. The following snippet of code
illustrates an incorrect use of a labeled break Statements:

lab1:
{
int i = 10;
if (i == 10)
break lab1; // Ok. labl can be used here
}
lab2:
{
int i = 10;
if (i == 10)
// A compile-time error. labl cannot be used here because this block is not
// associated with lab1 label. We can use only lab2 in this block
break labi;
}

The continue Statement

A continue statement can only be used inside the for-loop, while-loop, and do-while statements. There are two
forms of the continue Statements:

e Unlabeled continue statement

e Labeled continue statement

160

CHAPTER 5 © STATEMENTS

An example of an unlabeled continue statement is
continue;

An example of a labeled continue statement is
continue label;

When a continue statement is executed inside a for loop, the rest of the statements in the body of the loop are
skipped and the expressions in the expression-list are executed. You can print all odd integers between 1 and 10 using
a for-loop statement, as shown:
for (int i = 1; i < 10; i +=2) {

System.out.println(i);
}

In this for-loop statement, you increment the value of i by 2 in the expression-list. You can rewrite the above
for-loop statement using a continue statement, as shown in Figure 5-3.

for(int i = 1; i < 10; i++) {
if (1% 2==0) {
continue;
}

System.out.println(i);

}

Figure 5-3. Using a continue statement inside a for-loop statement

The expression i % 2 returns zero for the values of i that are multiple of 2, and the expressioni % 2 == Oreturns
true. In such cases, the continue statement is executed and the last statement, System.out.println(i), is skipped.
The increment statement i++ is executed after the continue statement is executed. The above snippet of code is
certainly not the best example of using a continue statement; however, it serves the purpose of illustrating its use.

When an unlabeled continue statement is executed inside a while loop or do-while loop, the rest of the statements
in the loop is skipped and the condition-expression is evaluated for the next iteration. For example, the snippet of code
in Figure 5-4 will print all odd integers between 1 and 10, using a continue statement inside a while loop.

int i = 1;

while (i < 10) {
if 1% 2==0){

it+;

continue;
}
System.out.println(i);
i++;

}

Figure 5-4. Using a continue statement inside a while-loop statement

161

CHAPTER 5 © STATEMENTS

The main difference in using a continue statement inside a for loop and a while loop is the place where the
control is transferred. Inside a for loop, control is transferred to the expression-list, and in a while loop, the control is
transferred to the condition-expression. This is why a for-loop statement cannot always be converted to a while-loop
statement without modifying some logic.

An unlabeled continue statement always continues the innermost for loop, while loop, and do-while loop. If
you are using nested loop statements, you need to use a labeled continue statement to continue in the outer loop. For
example, you can rewrite the snippet of code that prints lower half of the 3x3 matrix using a continue statement
as shown:

outer: // The label "outer" starts here
for(int 1 = 1; 1 <= 3; i++) {
for(int j = 1; j <= 3; j++) {
System.out.print(i +
System.out.print("\t");
if (i ==7) {
System.out.println(); // Print a new line
continue outer; // Continue the outer loop

+3);

}

} // The label "outer" ends here

An Empty Statement

An empty statement is a semicolon by itself. An empty statement does nothing. If an empty statement does not

do anything, why do we have it? Sometimes a statement is necessary as part of the syntax of a construct. However,
you may not need to do anything meaningful. In such cases, an empty statement is used. A for loop must have a
statement associated with it. However, to print all integers between 1 and 10 you can only use initialization,
condition-expression, and expression-list parts of a for-loop statement. In this case, you do not have a statement to
associate with the for-loop statement. Therefore, you use an empty statement in this case, as shown:

for(int i = 1; i <= 10; System.out.println(i++))
5 // This semicolon is an empty statement for the for loop

Sometimes an empty statement is used to avoid double negative logic in the code. Suppose noDataFound is a
boolean variable. You may write a snippet of code as shown:

if (noDataFound)

; // An empty statement
else {

}

// Do some processing
The above if-else statement can be written without using an empty statement, like so:

if (!noDataFound) {
// Do some processing
}

162

CHAPTER 5 © STATEMENTS

It is a personal choice, which of the above piece of code to use. Finally, note that if you type two or more
semicolons where only one was required, it would not cause any errors, because each extra semicolon is considered
as an empty statement. For example,

i++; // Ok. Here, semicolon is part of statement
i++;; // Still Ok. The second semicolon is considered as empty statement.

You cannot use an empty statement where a statement is not allowed. For example, when only one statement is
allowed, adding an extra empty statement will cause an error, as shown in the following snippet of code. It associates
two statements, i++; and an empty statement (;), to an if statement, where only one statement is allowed.

if (i == 10)

i++;; // A compile-time error. Cannot use two statements before an else statement
else

i--5

Summary

A statement in a Java program specifies an action. Statements in Java can be broadly classified in three categories:
declaration statements, expression statements, and control flow statements. A declaration statement is used to declare
variables. An expression statement is used to evaluate an expression. A control flow statement controls the order in
which other statements are executed. Control flow statements include if, if-else and looping statements. A looping
statement executes a block of statements repeatedly until some condition becomes false. Java provides four looping
statements: for loop, for-each loop, while loop, and do-while loop. A break statement is used to transfer control
outside of a block statement or a loop. A continue statement is used to ignore executing the remaining code for a loop
and continue with the next iteration. Java has an empty statement, too, which is simply a semicolon by itself.

163

CHAPTER 6

Classes and Objects

In this chapter, you will learn:
e Whatclasses are in Java
e Howto declare classes in Java
e How to declare class members such as fields and methods and their access levels
e How to create objects of a class
e How to declare import statements in a compilation unit
¢ The meaning of the pronouns this and super in a Java program

e Different parameter passing mechanisms in general, and then, the parameter passing
mechanisms in Java

e What constructors of a class are and how to use them
e Initializers of a class

e Declaring final variables, classes, and methods

e Howto declare and use varargs parameters

e What generic classes are and how to use them

What Is a Class?

Classes are the basic units of programming in the object-oriented paradigm. In the chapter on writing java programs,
you looked at some elementary aspects of a class in Java, for example, using the class keyword to declare a class,
declaring the main() method to run a class, etc. This chapter explains how to declare and use a class in detail.

Let’s start with a simple example of a class in the real world to build the technical concept of a class in Java. When
you look around, you see a number of objects, such as books, computers, keyboards, tables, chairs, humans, etc. Each
object that you see belongs to a class. Ask yourself a simple question, “Who am I?” Your obvious answer would be:
Iam a human. What do you mean by saying that you are a human being? You mean that a human class exists in the
world and you are one of the instances (“being”) of that class. You also understand that other humans (other instances
of the human class) also exist, who are similar but not the same to you. Both you and your friend, being instances of
the same human class, have the same properties, such as name, gender, height, weight, and behaviors, such as the
ability to think, talk, walk, etc. However, the properties and behaviors differ for you and your friend in value, quality,
or both. For example, you both have a name and the ability to talk. However, your name may be Richard and your
friend’s name may be Greg. You may talk slowly whereas your friend may talk fast. If you want to prepare a model for
you and your friend to examine your behaviors, there are two choices.

165

CHAPTER 6 © CLASSES AND OBJECTS

e You can list all properties and behaviors for you and your friend separately and examine them
separately as if there is no connection between you and your friend.

e You can list the properties and behaviors for you and your friend that are in common and
then examine them as properties and behavior for an entity without naming you and your
friend. This model assumes that all listed properties and behaviors will be present in an
entity (without naming it) though they may vary from entity to entity. You may want to list
all properties and behaviors for you and your friend as properties and behavior of a class,
say human, and treat you and your friend as two different instances of that human class.
Essentially, you have grouped together entities (e.g., you and your friend) with similar
properties and behaviors, and called that group a class. Then you will treat all objects (again,
you and your friend) as instances of that class.

The first approach treats each object as a separate entity. In the second approach, objects are classified based
on similarity of properties and behaviors where an object always belongs to a class; the class becomes the essential
part of programming. To determine any property or behavior of an object, you need to look up its class definition.
For example, you are an object of the human class. Can you fly? This question can be answered by going through a
series of steps. First, you need to answer the question “What class do you belong to?” The answer is that you belong
to the human class. Does the human class define a flying behavior? The answer is no. Because you are an instance of
the human class that does not define the flying behavior, you cannot fly. If you look carefully at the way you arrived
at the answer, you would find that the question is asked on an object (you), but the answer was provided by the class
(human) to which the object belongs.

Classes are essential, and they are basic parts of programs in object-oriented programming. They are used as
templates to create objects. Let’s discuss how to define a class. A class in Java may consist of five components:

e Fields

e Methods

e Constructors

e Staticinitializers

e Instance initializers

Fields and methods are also known as members of the class. Classes and interfaces can also be members of
a class. This chapter focuses only on fields and methods. I will discuss classes and interfaces as class members in
Chapter 2 of Beginning Java Language Features (ISBN: 978-1-4302-6658-7). A class can have zero or more
class members.
Constructors are used to create objects of a class. You must have at least one constructor for a class.
Initializers are used to initialize fields of a class. You can have zero or more initializers of static or instance types.
The rest of this chapter will discuss how to declare and use the different components of a class.

Declaring a Class

The general syntax for declaring a class in Java is

<<modifiers>> class <<class name>> {
// Body of the class goes here
}

166

CHAPTER 6 © CLASSES AND OBJECTS

Here, <<modifiers>> are keywords that associate special meanings to the class declaration. A class declaration
may have zero or more modifiers. The keyword class is used to declare a class. The <<class name>> is a user-defined
name of the class, which should be a valid identifier. Each class has a body, which is specified inside a pair of braces
({}). The body of a class contains its different components, for example, fields, methods, etc. The following snippet of
code defines a class named Human with an empty body. Note that here the Human class does not use any modifiers.

// Human.java
class Human {

// Empty body for now
}

Declaring Fields in a Class

Fields of a class represent properties (also called attributes) of objects of that class. Suppose every object of human
class has two properties: a name and a gender. The human class should include declarations of two fields: one to
represent name and one to represent gender.

The fields are declared inside the body of the class. The general syntax to declare a field in a class is

<<modifiers>> class <<class name>> {
// A field declaration
<«modifiers>> <<data type>> <<field name>> = <<initial value>>;

A field declaration can use zero or more modifiers. The data type of the field precedes its name. Optionally, you
can also initialize each field with a value. If you do not want to initialize a field, its declaration should end with a
semicolon after its name.

With the declaration of two fields, name and gender, the declaration of the Human class will look as shown:

// Human.java

class Human {
String name;
String gender;

Tip Itis a convention (not a rule or a requirement) in Java to start a class name with an uppercase letter and capitalize
the subsequent words, for example, Human, Table, ColorMonitor, etc. The name of fields and methods should start with a
lowercase letter and the subsequent words should be capitalized, for example, name, firstName, maxDebitAmount, etc.

The Human class declares two fields: name and gender. Both fields are of the String type. Every instance (or object)
of the Human class will have a copy of these two fields.

Sometimes a property belongs to the class itself, not to any particular instance of that class. For example, the
count of all humans is not a property of any specific human. Rather, it belongs to the human class itself. The existence
of the count of human is not tied to any specific instance of the human class, even though each instance of the human
class contributes to the value of the count property. Only one copy of the class property exists irrespective of the
number of instances that exists for the class. However, a separate copy of the instance property exists for each instance
of a class. For example, a separate copy of the name and the gender properties exist for each instance of the Human class.
You always specify name and gender of a human. However, even if there is no instance of the Human class, you can say
that the count of the Human class instances is zero.

167

CHAPTER 6 © CLASSES AND OBJECTS

Java lets you declare two types of fields for a class:
e (lassfields
e Instance fields

Class fields are also known as class variables. Instance fields are also known as instance variables. In the above
snippet of code, name and gender are two instance variables of the Human class. Java has a different way to declare class
variables. All class variables must be declared using the static keyword as a modifier. The declaration of the Human
class in Listing 6-1 adds a count class variable.

Listing 6-1. Declaration of a Human Class with One Class Variable and Two Instance Variables

// Human.java
package com.jdojo.cls;

class Human {
String name; // An instance variable
String gender; // An instance variable
static long count; // A class variable because of the static modifier

Tip Aclass variable is also known as a static variable. An instance variable is also known as a non-static variable.

Creating Instances of a Class

The following is the general syntax to create an instance of a class:
new <<Call to Class Constructor>>;

The new operator is followed by a call to the constructor of the class whose instance is being created. The new
operator creates an instance of a class by allocating the memory on heap. The following statement creates an instance
of the Human class:

new Human();

Here, Human () is a call to the constructor of the Human class. Did you add any constructor to your Human class? No.
You have not added any constructor to your Human class. You have added only three fields to it. How can you use a
constructor for a class that you have not added? When you do not add a constructor to a class, the Java compiler adds
one for you. The constructor that is added by the Java compiler is called a default constructor. The default constructor
accepts no arguments. The name of the constructor of a class is the same as the class name. I will discuss constructors
in detail later in this chapter.

What happens when an instance of a class is created? The new operator allocates memory for each instance field
of the class. Recall that class variables are not allocated memory when an instance of the class is created. Figure 6-1
depicts an instance of the Human class in memory.

168

CHAPTER 6 © CLASSES AND OBJECTS

name -
onder An instance of Human class
9 in memory

Figure 6-1. An instance of the Human class in memory created by the new Human() instance creation expression

The figure shows that memory is allocated for instance variables name and gender. You can create as many
instances of the Human class as you want. Each time you create an instance of the Human class, Java runtime allocates
memory for name and gender instance variables. How much memory is allocated for an instance of the Human class?
The simple answer is that you do not know exactly how much memory is used by an instance of a class. In fact, you
do not need to know how much memory is needed to create an instance of a class. The Java runtime takes care of
memory allocation as well as deallocation automatically for you.

Now, you want to move a step forward and want to assign values to name and gender instance variables for the
newly created instance of the Human class. Can you assign values to name and gender instance variables of the newly
created instance of the Human class? The answer is no. You cannot access name and gender instance variables, even
though they exist in memory. To access instance variables of an instance of a class, you must have its reference
(or handle). The expression new Human() creates a new instance of the Human class in memory. The newly created
instance is like a balloon filled with Helium gas left in the air. When you release a Helium-filled balloon in the air, you
lose control of the balloon. If you attach a string to the balloon before releasing it in the air, you can control the balloon
using the string. Similarly, if you want to have control (or access) to an instance of a class, you must store the reference
of that instance in a reference variable. You control a balloon with a string; you control a television with a remote
controller. The type of controlling device depends on the type of the object that you want to control. Similarly, you need
to use different types of reference variables to refer to (or to handle, or to work with) instances of different classes.

The name of a class defines a new reference type in Java. A variable of a specific reference type can store the
reference of an instance of the same reference type in memory. Suppose you want to declare a reference variable,
which will store a reference of an instance of the Human class. You will declare the variable as shown:

Human jack;
Here, Human is the class name, which is also a reference type, and jack is a variable of that type. In other words, jack
is a reference variable of Human type. The jack variable can be used to store a reference of an instance of the Human class.
The new operator allocates the memory for a new instance of a class and returns the reference (or the indirect
pointer) to that instance. You need to store the reference returned by the new operator in a reference variable.
jack = new Human();
Note that jack itself is a variable and it will be allocated memory separately. The memory location for the jack
variable will store the reference of the memory location of the newly created instance of the Human class. Figure 6-2

depicts the memory state when reference variable jack is declared and when an instance of the Human class is created
and its reference is assigned to the jack variable.

jack jack
® i
gender

Human jack; jack = new Human();

Figure 6-2. Memory states when a reference variable is declared and when a reference variable is assigned the reference
of an instance of a class

169

CHAPTER 6 © CLASSES AND OBJECTS

You can think of the jack variable as a remote controller for a Human instance in memory. You can refer to the
Human instance in memory using the jack variable. I will discuss how to use a reference variable in the next section.
You can also combine the above two statements into one.

Human jack = new Human();

The null Reference Type

Every class in Java defines a new reference type. Java has a special reference type called null type. It has no name.
Therefore, you cannot define a variable of the null reference type. The null reference type has only one value defined
by Java, which is the null literal. It is simply null. The null reference type is assignment compatible with any other
reference type. That is, you can assign a null value to a variable of any reference type. Practically, a null value stored
in a reference type variable means that the reference variable is referring to no object. You can think of storing a

null to a reference variable as a string with no balloon attached to it, where balloon is a valid object and string is a
reference variable. For example, you can write code like

// Assign null value to john
Human john = null; // john is not referring to any object
john = new Human(); // Now, john is referring to a valid Human object

You can use a null literal with comparison operators to check for equality and inequality.

if (john == null) {
// john is referring to null. Cannot use john for anything
}

if (john != null) {
// Do something with john
}

Note that null is a literal of null type. Java does not let you mix reference types and primitive types. You cannot
assign null to a primitive type variable. The following assignment statement will generate a compilation time error:

// A compile-time error. A reference type value, null, cannot be assigned to
// a primitive type variable num
int num = null;

Because null (or any reference type value) cannot be assigned to a primitive type variable, Java compiler does
not allow you to compare a primitive value to a null value. The following comparison will generate a compilation
time error. In other words, you can compare a reference type with reference types, and a primitive type with
primitive types.

int num = 0;
// A compile-time error. Cannot compare a primitive type to a reference type

if (num == null) {
}

170

CHAPTER 6 © CLASSES AND OBJECTS

Tip Java has a special reference type that is called null type. The null type does not have a name. The null type has a
literal value, which is represented by null. The null type is assignment compatible with all other reference types. You can
assign any reference type variable a null value. You can cast null value to any reference type. It is to be emphasized
that null is a literal value of “null reference type,” not a keyword.

Using Dot Notation to Access Fields of a Class

Dot notation is used to refer to instance variables. The general form of the dot notation syntax is
<<Reference Variable Name>>.<<Instance Variable Name>>

For example, you use jack.name to refer to the name instance variable of the instance to which the jack reference
variable is referring. If you want to assign a value to the name instance variable, you can use

jack.name = "Jack Parker";
The following statement assigns the value of the name instance variable to a String variable aName:
String aName = jack.name;

How do you refer to class variables? You have two ways to refer to a class variable using dot notation.

e You can refer to a class variable using the name of the class.
<<Class Name>>.<<Class Variable Name>>

For example, you can use Human. count to refer to the count class variable of the Human class.
To assign a new value, say 101, to the count class variable you can write

Human.count = 101;
To read the value of the count class variable into a variable called population, you can use

long population = Human.count;

e You can also use a reference variable to refer to the class variable of a class. For example, you
can use jack.count to refer to the count class variable of the Human class. You can use the
following statement to assign value, say 101, to the count class variable:

jack.count = 101;

The following statement reads the value of the count class variable into a variable called
population:

long population = jack.count;

Both of the above statements assume that jack is a reference variable of Human type and it
refers to a valid Human instance.

171

CHAPTER 6 © CLASSES AND OBJECTS

Tip You can use the class name or a reference variable of the class type to refer to a class variable. Since the class
variable belongs to the class and it is shared by all instances of the class, it is logical to refer to it using the class name.
However, you always use a reference variable of a class type to refer to the instance variables.

It is time to see the use of fields in the Human class. Listing 6-2 has a complete program that demonstrates how to
access class variables and instance variables of a class.

Listing 6-2. A Test Class to Demonstrate How to Access (Read/Write) Class Variables and Instance Variables
of a Class

// FieldAccessTest.java
package com.jdojo.cls;

class FieldAccessTest {
public static void main(String[] args) {
// Create an instance of Human class
Human jack = new Human();

// Increase count by one
Human.count++;

// Assign values to name and gender
jack.name = "Jack Parker";
jack.gender = "Male";

// Read and print the values of name, gender and count
String jackName = jack.name;

String jackGender = jack.gender;

long population = Human.count;
System.out.println("Name: "
System.out.println("Gender:
System.out.println("Population:

+ jackName);
" + jackGender);
" + population);

// Change the name
jack.name = "Jackie Parker";

// Read and print the changed name
String changedName = jack.name;
System.out.println("Changed Name:

+ changedName) ;

Name: Jack Parker

Gender: Male

Population: 1

Changed Name: Jackie Parker

172

CHAPTER 6 © CLASSES AND OBJECTS

The following statement needs some explanation:

// Increase count by one
Human.count++;

It uses the increment operator (++) on the count class variable. After the count class variable is incremented by 1,
you read and print its value. The output shows that after incrementing its value by 1, its value becomes 1. It means that
its value was zero before the Human. count++ statement was executed. However, you have never set its value to zero. Its
declaration was as follows:

static long count;

When the count class variable was declared as shown above, it was initialized to zero by default. All fields of a
class (class variables and instance variables) are initialized to a default value, if you do not assign an initial value to
them. I will discuss the initialization of fields of a class in detail in the next section.

Default Initialization of Fields

All fields of a class, static as well as non-static, are initialized to a default value. The default value of a field depends on
its data type.

e Anumeric field (byte, short, char, int, long, float, and double) is initialized to zero.
e Aboolean field is initialized to false.
e Areference type field is initialized to null.

According to the above rules, the fields of the Human class will be initialized as follows:

e The count class variable is initialized to zero because it is of numeric type. This is the reason,
Human.count++ evaluatedto 1 (0 + 1 = 1) as shown in the output of Listing 6-2.

e The name and gender instance variables are of String type. String is a reference type. They are
initialized to null. Recall that a copy of the name and gender fields exists for every object of the
Human class, and each copy of name and gender is initialized to null.

If you consider the above default initialization of the fields of the Human class, it behaves as if you have declared
the Human class as shown below. This declaration of the Human class and the one as shown in Listing 6-1 are the same.

class Human {
String name = null;
String gender = null;
static long count = 0;

Listing 6-3 demonstrates the default initialization of fields. The DefaultInit class includes only instance
variables. The class fields are initialized with the same default value as the instance fields. If you declare all fields of
the DefaultInit class as static, the output will be the same.

173

CHAPTER 6 © CLASSES AND OBJECTS

Listing 6-3. Default Initialization of Class Fields

// DefaultInit.java
package com.jdojo.cls;

class DefaultInit {
byte b;
short s;
int i;
long 1;
float f;
double d;
boolean bool;
String str;

public static void main(String[] args) {
// Create an object of DefaultInit class
DefaultInit obj = new DefaultInit();

// Print the default values for all instance variables
System.out.println("byte is initialized to " + obj.l);
System.out.println("short is initialized to " + obj.s);
System.out.println("int is initialized to " + obj.i);
System.out.println("long is initialized to " + obj.l);
System.out.println("float is initialized to " + obj.f);
System.out.println("double is initialized to " + obj.d);
System.out.println("boolean is initialized to " + obj.bool);
System.out.println("String is initialized to " + obj.str);

byte is initialized to 0

short is initialized to 0

int is initialized to 0

long is initialized to 0

float is initialized to 0.0
double is initialized to 0.0
boolean is initialized to false
String is initialized to null

Access Level Modifiers for a Class

In Listing 6-1, you created the Human class in the com. jdojo. cls package. You used the Human class in Listing 6-2 to
create its object in the FieldAccessTest class, which is in the same package as the Human class. You had no problem in
compiling and running the following statement in Listing 6-2:

Human jack = new Human();

174

CHAPTER 6 © CLASSES AND OBJECTS

Let’s create a class ClassAccessTest in the com. jdojo.common package. Note that the package for the
ClassAccessTest class is different from the package for the Human class. The code for the ClassAccessTest class is

// ClassAccessTest.java
package com.jdojo.common;

public class ClassAccessTest {
public static void main(String[] args) {
Human jack;
}

The code for the ClassAccessTest class is very simple. It does only one thing—declares a reference variable of
Human type in its main() method. Compile the ClassAccessTest class. Oops! You got a compilation time error.

"ClassAccessTest.java": cannot find symbol; symbol : class Human, location: class com.jdojo.common.
ClassAccessTest at line 6, column 5

If you read the error carefully, the compiler is complaining about the type Human in the following variable
declaration:

Human jack;

The compiler is stating that it could not find the definition of the term Human. What is wrong in the
ClassAccessTest class with the jack variable declaration? When you refer to a class by its simple name, the compiler
looks for that class declaration in the same package where the referring class is. In your case, the referring class
ClassAccessTest is in the com. jdojo.common package and it uses the simple name, Human, to refer to the Human class.
Therefore, the compiler looks for the Human class in the com. jdojo.common package. The compiler is looking for a com.
jdojo.common.Human class, which you do not have. This is the reason why you received the error.

By using the simple name Human in ClassAccessTest, you meant to refer to the Human class in the com. jdojo.cls
package, not in the com. jdojo.common package. If you had the Human class in the com. jdojo.common package, your code
for ClassAccessTest would have compiled. Let’s assume that you do not have a com. jdojo.common.Human class and
you want to fix the compilation time error. You can fix it by using the fully qualified name of the Human class, like so:

// ClassAccessTest.java
package com.jdojo.common;

public class ClassAccessTest {
public static void main(String[] args) {
com. jdojo.cls.Human jack;
}
}

Now compile the ClassAccessTest class. Oops! You got a compilation time error again. However, this time,
the error is different.

"ClassAccessTest.java": com.jdojo.cls.Human is not public in com.jdojo.cls; cannot be accessed from
outside package at line 6, column 24

175

CHAPTER 6 © CLASSES AND OBJECTS

This time, the compiler is not saying that it does not understand the Human type. It is saying that it knows what
com. jdojo.cls.Human type is; however, it is accessible only inside the com.jdojo.cls package in which it has been
declared. In other words, the Human type is not accessible inside the com. jdojo.common package. Here comes the
concept of the access level for a class.

When you declare a class, you can also specify whether the class can be accessed (or used, or referred to) from
any package in the application, or only from within the package in which it has been declared. For example, you can
specify in the declaration of the Human class whether it can be accessed only from within the com. jdojo.cls package
or from any package including the com. jdojo.common package. The general syntax specifying access-level for a class is

<<access level modifier>>class <<class name>> {
// Body of the class goes here
}

There are only two valid values for <<access level modifier>>in a class declaration: no value and public.

e No value:Itis the same as the absence of <access level modifier>>.Itis also known
as package-level access. If a class has package-level access, it can be accessed only within
the package in which it has been declared. The Human class in Listing 6-1 has package-
level access. This is the reason that you were able to use (or access) the Human class in the
FieldAccessTest class in Listing 6-2. Note that the Human class and the FieldAccessTest
class are in the same package and both have package-level access. Therefore, they can refer to
each other. The Human class is in the com. jdojo.cls package and it has package-level access.
Therefore, it cannot be accessed from any other package, for example, com. jdojo.common.
This is the reason that you received the compilation time error when you tried to compile the
ClassAccessTest class.

e public: A class with a public access level modifier can be accessed from any package in the
application. If you want the Human class to be accessible from any package (e.g. com. jdojo.
common), you need to declare it as public.

Let’s redefine the Human class as shown in Listing 6-4. This time, you have specified its access level as public,
so it is accessible from any package.

Listing 6-4. Redefined Human Class with the Public Access Level Modifier

// Human.java
package com.jdojo.cls;

public class Human {
String name; // Instance variable
String gender; // Instance variable
static long count; // Class variable

Recompile the Human class, and then compile the ClassAccessTest class. This time, the ClassAccessTest class
compiles without any errors.

Tip What does it mean when | state that a class is accessible from a package? A class defines a new reference type.
A reference type can be used to declare a variable. When a class is accessible in a package, the class name can be used
as a reference type, for example, to declare a variable, in the code that resides in that package.

176

CHAPTER 6 © CLASSES AND OBJECTS

Import Declarations

You learned two rules in the previous section:

e Youmust declare a class public to use it in a package other than the package in which it is
declared.

e You need to use the fully qualified name of a class to use it in a package other than the one in
which it is declared. A class can be referred to using its simple name in the package in which it
is declared.

There is no alternative to the first rule. That is, a class must be declared public if it needs to be accessible from
outside its package.

There is another way to deal with the second rule. You can refer to a class by its simple name outside its package
by using an import declaration. An import declaration is used to import a class into a compilation unit from outside
the package of the compilation unit. Technically speaking, an import declaration is used to import any type into
a compilation unit, not just a class. Import declarations appear just after the package declaration and before the
first type declaration. Figure 6-3 shows the place where import declarations appear. You can have multiple import
declarations in a compilation unit.

A compilation unit

package declaration

import declaration 1
import declaration 2

class declaration 1

class declaration 2

other type declarations

Figure 6-3. The structure of a compilation unit in Java

This section mentions importing only class types. However, the same rules apply for importing any other types,
for example, interface types, annotation types, or enum types. Because I have covered only class types up to this point,
I will not mention any other types in this discussion.

There are two types of import declarations:

e Single-type import declaration

¢ Import-on-demand declaration

177

CHAPTER 6 © CLASSES AND OBJECTS

Single-Type Import Declaration

A single-type import declaration is used to import a single type (e.g. a class) from a package. It is of the form
import <<fully qualified name of a type>>;

The following import declaration imports the Human class from the com. jdojo.cls package:
import com.jdojo.cls.Human;

A single-type import declaration imports only one type from a package. If you want to import more than one type
(e.g. three classes) from a package (or from different packages), you need to use a separate import declaration for each
type. The following import declarations import Class11 from pkgl package, Class21 and Class22 from pkg2 package,
and Class33 from pkg3 package:

import pkgi.Classii;
import pkg2.Class21;
import pkg2.Class22;
import pkg3.Class33;

Let’s revisit the com. jdojo.common.ClassAccessTest class, which had a compile-time error.

// ClassAccessTest.java
package com.jdojo.common;

public class ClassAccessTest {
public static void main(String[] args) {
Human jack;
}

You received a compiler error when you used the simple name of the Human class because the compiler could not
find a Human class in the com. jdojo.common package. You resolved this error by using the fully qualified name of the
Human class, like so:

// ClassAccessTest.java
package com.jdojo.common;

public class ClassAccessTest {

public static void main(String[] args) {
com.jdojo.cls.Human jack; // Uses full qualified name for the Human class
}

You have another way to resolve this error, which is by using a single-type-import declaration. You can import the
com. jdojo.cls.Human class to its simple name. The modified ClassAccessTest class declaration is as follows:

// ClassAccessTest.java - Modified version
package com.jdojo.common;

import com.jdojo.cls.Human; // Import the Human class

178

CHAPTER 6 © CLASSES AND OBJECTS

public class ClassAccessTest {
public static void main(String[] args) {
Human jack; // Use simple name of the Human class
}

The modified version of the ClassAccessTest class compiles fine. When the compiler comes across the simple
name of the Human class in the statement, like

Human jack;

it goes through all import declarations to resolve the simple name to a fully qualified name. When it tries to resolve the
simple name Human, it finds the import declaration, import com.jdojo.cls.Human, which imports the Human class. It
assumes that you intended to use the com. jdojo.cls.Human class when you used the simple name Human in the above

statement. The compiler replaces the above statement with the following statement:

com. jdojo.cls.Human jack;

Tip Import declarations let you use the simple name of a type in your code, thus making your code more readable.
When you compile your code, the compiler replaces the simple name of a type with its fully qualified name. It uses import
declarations for converting simple names of the types to their fully qualified names. It is to be emphasized that using
import declarations in your Java program does not affect the size of your compiled code or runtime performance. Using
import declarations is just a way to use the simple names of classes in your source code.

There are many subtle points to remember while using import declarations. I will discuss them shortly.

Import-on-Demand Declaration

Sometimes you may need to import multiple types from the same package. You need to use as many single-type-
import declarations as the number of types you need to import from the package. An import-on-demand declaration
is used to import multiple types from a package using one import declaration. The syntax for an import-on-demand
declaration is

import <<package name>>.*;

Here, the package name is followed by a dot and an asterisk (*). For example, the following import-on-demand
declaration imports all types (that includes all classes) from com. jdojo.cls package:

import com.jdojo.cls.*;

Sometimes the use of an asterisk in an import-on-demand declaration leads to wrong assumption about the
types that are imported. Suppose there are two classes, C1 and C2. They are in packages p1 and p1.p2, respectively.
That is, their fully qualified names are p1.C1 and p1.p2.C2. You may write an import-on-demand declaration as

import p1.%*;

thinking that it will import both classes, p1.C1 and p1.p2.C2. This assumption is wrong. The declaration

179

CHAPTER 6 * CLASSES AND OBJECTS
import p1.%*;

imports all types only from p1 package. It will not import the p1.p2.C2 class because the C2 class is not in the p1
package; rather it is in the p2 package, which is a sub-package of p1. The asterisk at the end of an import-on-demand
declaration means all types only from the specified package. The asterisk does not mean sub-packages and types
inside those sub-packages. Sometimes programmers attempt to use multiple asterisks in an import-on-demand
declaration thinking that it will import types from all sub-packages too.

import p1.*.*; // A compile-time error

The above import-on-demand declaration results in a compiler error because it uses multiple asterisks. It does
not follow the syntax for an import-on-demand declaration. In an import-on-demand declaration, the declaration
must end with a dot followed by one and only one asterisk.

If you want to import both classes C1 and C2, you need to use two import-on-demand declarations.

import pi1.*;
import pi1.p2.%*;

You can rewrite the code for the ClassAccessTest class using an import-on-demand declaration.

// ClassAccessTest.java - Modified version uses import-on-demand
package com.jdojo.common;

// Import all types from the com.jdojo.cls package incuding the Human class
import com.jdojo.cls.*;

public class ClassAccessTest {
public static void main(String[] args) {
Human jack; // Use simple name of the Human class
}

When the compiler tries to resolve the simple name Human in the above code, it will use an import-on-demand
declaration to see if a Human class exists in com. jdojo.cls package. In fact, the asterisk in the import declaration will
be replaced by Human and then the compiler checks if the com. jdojo.cls.Human class exists. Suppose you have two
classes in the com. jdojo.cls package named Human and Table. The following code will compile with one import-on-
demand declaration:

// ClassAccessTest.java - Modified version uses import-on-demand
package com.jdojo.common;

// Import all types from com.jdojo.cls package including Human and Table classes
import com.jdojo.cls.*;

public class ClassAccessTest {
public static void main(String[] args) {
Human jack; // Use simple name of the Human class
Table t1; // Use simple name of the Table class

180

CHAPTER 6 © CLASSES AND OBJECTS

The one import-on-demand declaration in the above code has the same effect as the following two single-
type-import declarations:

import com.jdojo.cls.Human; // Import Human class
import com.jdojo.cls.Table; // Import Table class

Which type of import declaration is better to use in your Java program: single-type import or import-on-demand?
It is simple to use the import-on-demand declaration. However, it is not readable. Let’s look at the following code,
which compiles fine. Assume that class A and B are not in the com. jdojo.cls package.

// ImportOnDemandTest.java
package com.jdojo.cls;

import p1.%*;
import p2.%*;

public class ImportOnDemandTest {
public static void main(String[] args) {
A a; // Declare a variable of class A type
B b; // Declare a variable of class B type

Can you tell, by looking at the above code, the fully qualified names of the classes A and B? Is class A in the
package p1 or p2? It is impossible to tell just by looking at the code the package to which classes A and B belong
because you have used import-on-demand declarations. Let’s rewrite the above code using two single-type-import
declarations.

// ImportOnDemandTest.java
package com.jdojo.cls;

import p1.A;
import p2.B;

public class ImportOnDemandTest {
public static void main(String[] args) {
A a; // Declare a variable of class A type
B b; // Declare a variable of class B type

By looking at the import declarations, you can now tell that class A is in the package p1 and class B is in the
package p2. A single-type import declaration makes it easy for readers to know which class is being imported from
which package. It also makes it easy to know the number and name of the classes used from other packages in your
program. This book uses single-type import declaration in all examples, except in examples where I discuss import-
on-demand declarations.

Even though you are advised to use single-type-import declaration in your programs, you need to know some
tricky uses and implications of using both single-type import and import-on-demand declarations in the same
program. Subsequent sections will discuss them in detail.

181

CHAPTER 6 © CLASSES AND OBJECTS

Import Declarations and Type Search Order

Import declarations are used to resolve simple names of types to their fully qualified names during compilation.
The compiler uses predefined rules to resolve the simple names. Suppose the following statement appears in a Java
program that uses a simple name A:

A var;
The Java compiler must resolve the simple name A to its fully qualified name during the compilation process.
It searches for a type referenced in a program in the following order:
e The current compilation unit
e Single-type import declarations
e Typesdeclared in the same package
¢ Import-on-demand declarations

The above list of type search is not complete. If a type has nested types, the nested type is searched before looking
in the current compilation unit. I will defer the discussion of nested types until inner classes are discussed in Chapter 2
of the book Beginning Java Language Features (ISBN: 978-1-4302-6658-7).

Let’s discuss the rules for a type search using some examples. Suppose you have a Java source file (a compilation
unit) B. java whose content is as follows. Note that the file B. java contains declarations for two classes A and B.

// B.java
package p1;

class B {
A var;
}

class A {
// Code goes here
}

Class B refers to class A with its simple name when it declares an instance variable var of type A. When the B. java
file is compiled, the compiler will look for a type with the simple name A in the current compilation unit (B. java file).
It will find a class declaration whose simple name is A in the current compilation unit. The simple name A will be
replaced with its fully qualified name p1.A. Note that both classes A and B are declared in the same compilation unit,
and therefore they are in the same package, p1. The class B definition will be changed as follows by the compiler:

package p1;

class B {
p1.A var; // A has been replaced by p1.A by the compiler
}

182

CHAPTER 6 © CLASSES AND OBJECTS

Suppose you want to use class A from package p2 in the previous example. That is, there is a class p2.A and you
want to declare the instance variable var of type p2.Ain class B instead of p1.A. Let’s try to solve it by importing class
p2.A using a single-type-import declaration, like so:

// B.java - Includes a new import declaration
package p1;

import p2.A;

class B {
A var; // We want to use p2.A when you use A
}
class A {
// Code goes here
}

When you compile the modified B. java file, you will get the following compilation error:
"B.java": p1.A is already defined in this compilation unit at line 2, column 1

What is wrong with the modified source code? When you remove the single-type-import declaration from it,
it compiles fine. It means it is the single-type import declaration that is causing the error. Before you resolve this
compiler error, you need to learn about a new rule about single-type import declarations. The rule is

It is a compile time error to import more than one type with the same simple name using multiple
single-type-import declarations.

Suppose you have two classes, p1.A and p2.A. Note that both classes have the same simple name A placed in
two different packages. According to the above rules, if you want to use the two classes, p1.A and p2.A, in the same
compilation unit, you cannot use two single-type-import declarations.

// Test.java
package pkg;

import p1.A;
import p2.A; // A compile-time error

class Test {
A vari; // Which A to use p1.A or p2.A?
A var2; // Which A to use p1.A or p2.A?

The reason behind this rule is that the compiler has no way to know which class (p1.A or p2.A) to use when you
use simple name A in the code. Java might have solved this issue by using the first imported class or last imported
class, which might have been error prone. Java decided to nip the problem in the bud by giving you a compiler error
when you import two classes with the same simple names, so you cannot make silly mistakes like this and end up
spending hours resolving them.

183

CHAPTER 6 © CLASSES AND OBJECTS

Let’s go back to the problem of importing the p2.A class in a compilation unit, which already declares a class A.
The following code produces a compile-time error:

// B.java - Includes a new import declaration
package p1;

import p2.A;

class B {
A vari; // We want to use p2.A when you use A
}
class A {
// Code goes here
}

You have used only one single-type import declaration, not two, in the above code. Why did you get an error?
When you declare more than one class in the same compilation unit, most likely they are closely related and they
would refer to each other. You need to think as if Java imports each of the classes declared in the same compilation
unit using a single-type import declaration. You can think of the above code being transformed by Java as shown:

// B.java - Includes a new import declaration
package p1;

import p1.A; // Think of it being added by Java
import p1.B; // Think of it being added by Java
import p2.A;

class B {
A var; // We want to use p2.A when you use A
}
class A {
// Code goes here
}

Can you now see the problem? The class A has been imported twice, once by Java and once by you, and this is
the reason for the error. How do you refer to p2.A in your code anyway? It is simple. Use the fully qualified name p2.A
whenever you want to use p2.A in your compilation unit.

// B.java - Uses fully qualified name p2.A in class B
package p1;

class B {
p2.A var; // Use fully qualified name of A
}

class A {
// Code goes here
}

184

CHAPTER 6 © CLASSES AND OBJECTS

Tip Itis a compile-time error to import a type using a single-type-import declaration into a compilation unit, if a type
with the same simple name exists in the same compilation unit.

Let’s resolve the compiler error with the code that needs to use classes from different packages with the same
simple name. The code is as follows:

// Test.java
package pkg;

import p1.A;
import p2.A; // A compile-time error

class Test {
A vari; // Which A to use p1.A or p2.A?
A var2; // Which A to use p1.A or p2.A?

You can resolve the error using one of the two following methods:

e Remove both import declarations and always use the fully qualified name of class A.

// Test.java
package pkg;

class Test {
p1.A vari; // Use p1.A
p2.A var2; // Use p2.A
}

e Use only one import declaration to import class A from one package, say p1, and use the fully
qualified name of class A from other package p2.

// Test.java
package pkg;

import pi1.A;
class Test {

A vari; // Refers to p1.A
p2.A var2; // Uses the fully qualified name p2.A

Tip If you want to use multiple classes in a compilation unit with the same simple name, but from different
packages, you can import a maximum of one class. For the rest of the classes, you must use the fully qualified name.
You have the option of using the fully qualified name for all classes.

185

CHAPTER 6 © CLASSES AND OBJECTS

Let’s discuss some of the rules about using import-on-demand declarations. The compiler uses the import-on-
demand declarations in resolving a simple name of a type after it has used all other means to resolve the simple name.
It is valid to import a class with the same simple name using a single-type import declaration as well as an import-on-
demand declaration. In such a case, the single-type import declaration is used. Suppose you have three Classes and
objects: p1.A, p2.A, and p2.B. Suppose you have a compilation unit as follows:

// C.java
package p3;

import p1.A;
import p2.%*;

class C {
A var; // Will always use p1.A (not p2.A)
}

In the above code, class A has been imported twice: once using simple type import declaration from package p1,
and once using import-on-demand declaration from package p2. The simple name A is resolved to p1.A because a
single-type import declaration always takes precedence over an import-on-demand declaration. Once the compiler
finds a class using a single-type import declaration, it stops the search there without looking for that class using any
import-on-demand declarations.

Let’s change the import declarations in the above code to use import-on-demand declarations, as follows:

// C.java
package p3;

import p1.%*;
import p2.%*;

class C {
A var; // An error. Which A to use p1.A or p2.A?
}

Compilation of class C generates an error.

"C.java": reference to A is ambiguous, both class p2.A in p2 and class p1.A in p1 match at line 8,
column 5

The error message is loud and clear. When the compiler finds a class using an import-on-demand declaration,
it continues searching for the class in all import-on-demand declarations. If it finds the class with the same simple
name using multiple import-on-demand declarations, it generates an error. You can resolve the above compiler error
in several ways:

e Use two single-type-import declarations.
e Use one single-type import and one import-on-demand declaration.

e Use fully qualified names for both classes.

186

CHAPTER 6 © CLASSES AND OBJECTS

Below is a list of some more rules about import declarations.

Duplicate single-type import and import-on-demand declarations are ignored. The following
code is valid:

// D.java
package p4;

import p1.A;
import p1.A; // Ignored. A duplicate import declaration.
import p2.%*;
import p2.*; // Ignored. A duplicate import declaration.

class D {
// Code goes here
}

It is legal, though not needed, to import classes from the same package using single-
type import declarations or import-on-demand declaration. The following code imports
class F from the same package p5. Note that all classes declared in the same package are
automatically imported by Java. In such a case, the import declaration is ignored.

// E.java
package p5;

import p5.F; // Will be ignored

class E {

// Code goes here
}
// F.java

package p5;
import p5.*; // Will be ignored

class F {
// Code goes here
}

Automatic Import Declarations

You have been using the String class and the System class by their simple names and you never cared to import them
in any of your programs. The fully qualified names of these classes are java.lang.String and java.lang.System. Java
always imports all types declared in the java.lang package automatically. Think of the following import-on-demand
declaration being added to your source code before compilation:

import java.lang.*;

This is the reason that you were able to use the simple names of String and System classes in your code without

importing them. You can use any types from the java.lang package by their simple names in your programs.

187

CHAPTER 6 © CLASSES AND OBJECTS

It is not an error to use an import declaration to import types from java.lang package. They will be simply
ignored by the compiler. The following code will compile without errors:

package p1;
import java.lang.*; // Will be ignored because it is automatically done for you

public class G {
String anythingGoes; // Refers to java.lang.String
}

You need to be careful when using the simple name of a type, which is the same as a type that is defined in the
java.lang package. Suppose you declare a p1.String class.

// String.java
package p1;

public class String {
// Code goes here
}

Suppose you have a Test class in the same package, p1.

// Test.java
package p1;

public class Test {
// Which String class will be used: p1.String or java.lang.String
String myStr;

Which String class is referred in the Test class: p1.String or java.lang.String? It will refer to p1.String,
not java.lang.String, because the package of the compilation unit (which is p1 in this case) is searched before any
import declarations to resolve the simple names of types. The compiler finds the String class in package p1. It will not
search java.lang package for the String class. If you want to use the java.lang.String class in the above code, you
must use its fully qualified name, as shown:

// Test.java
package p1;

public class Test {
java.lang.String s1; // Use java.lang.String
p1.String s2; // Use p1.String
String s3; // Will use p1.String

Static Import Declarations

A static import declaration does what its name suggests. It imports static members (static variables/methods) of a
type into a compilation unit. You learned about static variable (or class variable) in previous sections. I will discuss
static methods in the next section.

188

CHAPTER 6 © CLASSES AND OBJECTS

A static import declaration also comes in two flavors: single-static import and static-import-on-demand. A single-
static import declaration imports one static member from a type. A static-import-on-demand declaration imports all
static members of a type. The general syntax of static import declaration is as follows:

Single-static-import declaration:

import static <<package name>>.<<type name>>.<<static member name>>;

Static-import-on-demand declaration:

import static <<package name>>.<<type name>>.*;

You have been printing messages in the standard output using the System.out.println() method. Systemis a
classin java.lang package that has a static variable named out. When you use System.out, you are referring to that
static variable out of the System class. You can use a static import declaration to import the out static variable
from the System class as follows:

import static java.lang.System.out;

Your program now does not need to qualify the out variable with the System class name as System. out. Rather,
it can use the name out to mean System.out in your program. The compiler will use the static import declaration to
resolve the name out to System.out.

Listing 6-5 demonstrates how to use a static import declaration. It imports the out static variable of the System
class. Note that the main() method uses out.println() method, not System.out.println(). The compiler will
replace the out.println() call with the System.out.println() call

Listing 6-5. Using Static Import Declarations

// StaticImportTest.java
package com.jdojo.cls;

import static java.lang.System.out;
public class StaticImportTest {

public static void main(String[] args) {
out.println("Hello static import!");
}

Hello static import!

Tip Animport declaration imports a type name and it lets you use the type’s simple name in your program. What an
import declaration does with a type, a static import declaration does with a static member of a type. A static import
declaration lets you use the name of a static member (static variable/method) of a type without qualifying it with the
type name.

189

CHAPTER 6 © CLASSES AND OBJECTS

Let’s look at another example of using static import declarations. The Math class in the java.lang package has
many utility constants and static methods. For example, it has a class variable named PI, whose value is equal to 22/7
(the pi in mathematics). If you want to use any of the static variables or methods of the Math class, you will need to
qualify them with the class name Math. For example, you would refer to the PI static variable as Math.PI and the
sqrt() method asMath.sqrt(). You can import all static members of the Math class using the following static-import-
on-demand declaration:

import static java.lang.Math.*;

Now you can use the name of the static member without qualifying them with the class name Math. Listing 6-6
demonstrates using the Math class by importing its static members.

Listing 6-6. Using Static Imports to Import Multiple Static Members of a Type

// StaticImportTest2.java
package com.jdojo.cls;

import static java.lang.System.out;
import static java.lang.Math.*;

public class StaticImportTest2 {
public static void main(String[] args) {
double radius = 2.9;
double area = PI * radius * radius;

out.println("value of PI is: " + PI);
out.println("Radius of circle: " + radius);
out.println("Area of circle: " + area);
out.println("Square root of 2.0: " + sqrt(2.0));

Value of PI is: 3.141592653589793
Radius of circle: 2.9

Area of circle: 26.420794216690158
Square root of 2.0: 1.4142135623730951

The following are some important rules about static import declaration.

Static Import Rule #1

If two static members with the same simple name are imported, one using single-static import declaration
and other using static-import-on-demand declaration, the one imported using single-static import declaration
takes precedence. Suppose there are two classes, p1.C1 and p2.(2. Both classes have a static method called m1. The
following code will use p1.C1.m1() method because it is imported using the single-static import declaration:

// Test.java
package com.jdojo.cls;

import static p1.Ci.m1; // Imports C1.m1() method
import static p2.C2.*; // Imports C2.m1() method too

190

CHAPTER 6 © CLASSES AND OBJECTS

public class Test {
public static void main(String[] args) {
mi(); // Cl.m1() will be called
}

Static Import Rule #2

Using single-static-import declaration to import two static members with the same simple name is not allowed.
The following static import declarations generate an error because both of them import the static member with the
same simple name of m1:

import static p1.C1.m1;
import static p1.C2.m1; // An error

Static Import Rule #3

If a static member is imported using a single-static import declaration and there exists a static member in the
same class with the same name, the static member in the class is used. The following is the code for two classes, p1.A
and p2.Test:

// A.java
package p1;

public class A {

public static void test() {
System.out.println("p1.A.test()");
}

}

// Test.java
package p2;

import static pi1.A.test;
public class Test {

public static void main(String[] args) {
test(); // Will use p2.Test.test() method, not pi1.A.test() method
}

public static void test() {
System.out.println("p2.Test.test()");
}

p2.Test.test()

The Test class imports the static method test() from class p1.A using a single-static import declaration. The
Test class also defines a static method test(). When you use the simple name, test, to call the test() method in
the main() method, it refers to p2.Test.test() method, not the one imported by the static import.

191

CHAPTER 6 © CLASSES AND OBJECTS

There is a hidden danger in using static import declarations in such cases. Suppose you did not have a test()
static method in the p2.Test class. In the beginning, the test() method call will call p1.A.test() method. Later,
you add a test() method in the Test class. Now the test () method call will start calling p2.Test.test(), which will
introduce a hard-to-find bug in your program.

Tip It may seem that static imports help you use simple names of static members to make the program simpler to
write and read. Sometimes static imports may introduce subtle bugs in your program, which may be hard to debug. You
are advised not use static imports at all, or only in very rare circumstances.

Declaring Methods of a Class

A method in a class defines the behavior of the objects of that class or the behavior of the class itself. A method is a
named block of code. The method can be invoked to execute its code. The code that invokes the method is called
the caller of the method. Optionally, a method may accept input values from the caller and it may return a value to
the caller. The list of input values is known as parameters. A method may have zero parameters. If a method has zero
parameters, you say that method does not have any parameters or method does not take any parameters. A method is
always defined inside the body of a class. To keep the sample code simple, I will show a method as an isolated block of
code in this section. I will show a method inside a class body when I discuss a complete example.

The general syntax for a method declaration is of the form

<modifiers>> <<return type>> <<method name>> (<<parameters list>>) <<throws clause>> {
// Body of the method goes here
}

Here, <<modifiers>> is an optional list of modifiers; <<return type>> is the data type of the value returned
from the method; <<method name>> is the name of the method. The method name is followed by a pair of opening
and closing parentheses. Optionally, you can specify one or more parameters to the method within the parentheses.
Multiple parameters are separated by a comma. The closing parenthesis may optionally be followed by a throws
clause. Finally, you specify the code for the method inside opening and closing braces.

Note that four parts in a method declaration are mandatory: the return type, method name, a pair of opening
and closing parentheses, and a pair of opening and closing braces. Let’s discuss each part in a method declaration in
detail. I will discuss modifiers in various sections of this chapter and subsequent chapters in this book. I will discuss
the throws clause in the chapter on exception handling.

The following is an example of a method: it is named add; it takes two parameters of type int named n1 and n2,
and it returns their sum:

int add(int n1, int n2) {
int sum = n1 + n2;
return sum;

The return type of a method is the data type of the value that the method will return when it is invoked. It could
be a primitive data type (for example, int, double, boolean, etc.) or a reference type (for example, Human, String, etc.).
Sometimes, a method does not return a value to its caller. The keyword void is used as the return type if a method
does not return any value to the caller. In the above example, the add method returns the sum of two integers, which
will be an integer. This is the reason that its return type is specified as int.

192

CHAPTER 6 © CLASSES AND OBJECTS

The method name must be a valid Java identifier. Conventionally, a Java method starts with a lowercase and
subsequently a word cap is used. For example, getName, setName, getHumanCount, and createHuman are valid method
names. AbCDeFg is also a valid method name; it just doesn’t follow standard conventions.

A method may take input values from its caller. A parameter is used to take an input value from the caller.

A parameter consists of two parts: a data type and a variable name. In fact, a method parameter is a variable
declaration. The variables are used to hold the input values that are passed from the method’s caller. A comma is
used to separate two parameters of a method. In the above example, the add method declares two parameters, n1
and n2. Both parameters are of the int data type. When the add method is called, the caller must pass two int values.
The first value passed from the caller is stored in n1, and the second value passed from the caller is stored in n2. The
parameters n1 and n2 are also known as formal parameters.

A method is uniquely identified by its signature in a particular context. The signature of a method is the
combination of its name and its parameter’s number, types, and order. Modifiers, return types, and parameter names
are not part of the signature. Table 6-1 lists some examples of method declarations and their signatures. Most often,
you will have situations where you need to understand whether two methods have the same signature. It is very
important to understand that the type and order of the method’s parameters are part of its signature. For example,
double add(int ni1, double di1) and double add(double di, int n1) have different signatures because the order
of their parameters differs even though the number and types of parameters are the same.

Table 6-1. Examples of Method's Declarations and Their Signatures

Method Declaration Method Signature
int add(int n1, int n2) add(int, int)
int add(int n3, int n4) add(int, int)
public int add(int n1, int n2) add(int, int)
public int add(int n1, int n2) throws OutofRangeException add(int, int)
void process(int n) process(int)
double add(int ni, double d1) add(int, double)
double add(double di, int n1) add(double, int)

Tip The signature of a method uniquely identifies the method within a class. It is not allowed to have more than one
method in a class with the same signature.

Finally, the code for the method is specified in the method’s body, which is enclosed in braces. Executing the
code for a method is also called “calling a method” or “invoking a method.” A method is invoked using its name
with the values for its parameters, if any, within parentheses. To call your add method, you need to use the following
statement:

add(10, 12);

193

CHAPTER 6 © CLASSES AND OBJECTS

The above call to the add method passes 10 and 12 as the values for parameters n1 and n2, respectively. The two
values, 10 and 12, that are used to call the add method are called actual parameters. Java copies the actual parameters
to the formal parameters before it executes the code inside the body of the method. In the above call to the add
method, 10 will be copied in n1, and 12 will be copied in n2. You can refer to the formal parameter names as variables
having actual parameter values inside the method’s body. You can see n1 and n2 being treated as variables in the
following statement in the add method:

int sum = n1 + n2;

A return statement is used to return a value from a method. It starts with the return keyword. If a method
returns a value, the return keyword must be followed by an expression, which evaluates to the value being returned.
If the method does not return a value, its return type is specified as void. If the method’s return type is void, the
method does not have to include a return statement. If a method with a void return type wants to include a return
statement, the return keyword must not be followed by any expression; the return keyword is immediately followed
by a semicolon to mark the end of the statement. Here are the two flavors of the return statement:

// If a method returns a value, <<an expression>>must evaluate to a data type,
// which is assignment compatible with the specified return type of the method
return <<an expression>>;

or

// If method’s return type is void
return;

What does a return statement do? As its name suggests, it returns the control to the caller of the method. If it has
an expression, it evaluates the expression and returns the value of the expression to the caller. If a return statement
does not have an expression, it simply returns the control to its caller. A return statement is the last statement that is
executed in a method’s body. You can have multiple return statements in a method’s body. However, at most, only
one return statement may be executed for a method call.

The add method returns the sum of two of its parameters. How do you capture the returned value of a method?
A method call itself is an expression whose data type is the return type of the method and it evaluates to the returned
value from the method. For example, if you write a statement like

add(10, 12);

add(10, 12) is an expression and its data type is int. At runtime, it will be evaluated to an int value of 22,
which is the value returned from the add method. To capture the value of a method call, you can use the method call
expression anywhere you can use a value. For example, the following snippet of code assigns the value returned from
the add method to a variable call sum:

int sum = add(10, 12); // sum variable will be assigned 22

Now turn your attention to a method, which does not return a value. You specify void as the return type for such
amethod. Let’s consider the following method declaration for a method printPoem;

void printPoem() {
System.out.println("Strange fits of passion have I known:");
System.out.println("And I will dare to tell,");
System.out.println("But in the lover's ear alone,");
System.out.println("What once to me befell.");

194

CHAPTER 6 © CLASSES AND OBJECTS

The printPoem method specifies void as its return type, which means that it does not return a value to its caller.
It does not specify any parameters, which means it does not accept any input values from its caller. If you need to call
the printPoem method, you need to write the following statement:

printPoem();

Note When I refer to a method in any discussion in this book, | use the method name followed by a pair of opening
and closing parentheses. For example, | will refer to the add method as add() and printPoem method as printPoem().
Sometimes, | need to refer to the formal parameters of the method to make the meaning of the method clear. In those
cases, | may just use the data type of the formal parameters, for example, add(int, int), to refer to the add(int n1,
int n2) method. No matter what convention | use to refer to a method in the discussion, the context of its use will make
the meaning clear.

Since the printPoem() method does not return any value, you cannot use a call to this method as part of any
expression where a value is expected. For example, the following statement results in a compiler error:

int x = printPoem(); // A compile-time error

When a method’s return type is void, it is not necessary to use a return statement because you do not have a
value to return from the method. Recall that a return statement does two things: evaluates its expression, if any, and
returns the control to the caller by ending the execution in the method’s body. Even if you do not return a value from
a method, you can still use a return statement simply to end the execution of the method. Let’s add a parameter
to the printPoem method to allow the caller to pass the stanza number that it wants to print. The modified method
declaration is as follows:

void printPoem(int stanzaNumber) {
if (stanzaNumber < 1 || stanzaNumber > 2) {
System.out.println("Cannot print stanza #" + stanzaNumber);
return; // End the method call

}

if (stanzaNumber == 1) {
System.out.println("Strange fits of passion have I known:");
System.out.println("And I will dare to tell,");
System.out.println("But in the lover's ear alone,");
System.out.println("What once to me befell.");

}

else if (stanzaNumber == 2) {
System.out.println("When she I loved looked every day");
System.out.println("Fresh as a rose in June,");
System.out.println("I to her cottage bent my way,");
System.out.println("Beneath an evening-moon.");

195

CHAPTER 6 © CLASSES AND OBJECTS

The modified printPoem() method knows how to print stanza #1 and #2. If its caller passes a stanza number
outside this range, it prints a message and ends the method call. This is accomplished by using a return statement in
the first if statement. You could have written the above printPoem() method without writing any return statement
as follows:

void printPoem(int stanzaNumber) {
if (stanzaNumber == 1) {
/* Print stanza #1 */
}

else if (stanzaNumber == 2) {
/* Print stanza #2 */
}

else {

}

System.out.println("Cannot print stanza #" + stanzaNumber);

The compiler will force you to include a return statement in the body of a method that specifies a return type in
its declaration. However, if the compiler determines that a method has specified a return type, but it always ends its
execution abnormally, for example, by throwing an exception, you do not need to include a return statement in the
method’s body. For example, the following method declaration is valid. Do not worry about the throw and throws
keywords at this time; I will cover them in Chapter 9.

int aMethod() throws Exception {
throw new Exception("Do not call me...");
}

Local Variables

A variable declared inside a method, a constructor, or a block is called a local variable. I will discuss constructors
shortly. A local variable declared in a method exists only for the duration the method is being executed. Because a
local variable exists only for a temporary duration, it cannot be used outside the method, the constructor, or the block
in which it is declared. The formal parameters for a method are treated as local variables. They are initialized with the
actual parameter values when the method is invoked, and before the method’s body is executed. You need to observe
the following rules about the usage of local variables.

Rule #1

Local variables are not initialized by default. Note that this rule is the opposite of the rule for instance/class
variable’s initialization. When an instance/class variable is declared, it is initialized with a default value. Consider the
following partial definition of an add () method:

int add(int n1, int n2) {
int sum;

/* What is the value of sum? We do not know because it is not initialized yet */

/* More code goes here... */

196

CHAPTER 6 © CLASSES AND OBJECTS

Rule #2

This rule is an offshoot of the first rule. A local variable cannot be accessed in the program until it is assigned
avalue. The following snippet of code will generate a compiler error because it tries to print the value of the local
variable, sum, before it is assigned a value. Note that Java runtime has to read (or access) the value of the sum variable
before it prints the value.

int add(int n1, int n2) {
int sum;

// A compile-time error. Cannot read sum because it is not assigned a value yet.
System.out.println(sum);

The following snippet of code will compile fine because the local variable sum is initialized before it is read:

int add(int n1, int n2) {
int sum = 0 ;
System.out.println(sum); // Ok. Will print o

Rule #3:

A local variable can be declared anywhere in the body of a method. However, it must be declared before it is used.
The implication of this rule is that you do not need to declare all local variables at the start of the method body. Itis a
good practice to declare a variable closer to its use.

Rule #4

Alocal variable hides the name of an instance variable and a class variable with the same name. Let’s discuss this
rule in detail. Every variable, irrespective of its type, has a scope. Sometimes the scope of a variable is also known as its
visibility. The scope of a variable is the part of the program where the variable can be referred to with its simple name.
The scope of a local variable declared in a method is the part of the method body that follows the variable declaration.
The scope of a local variable declared in a block is the rest of the block that follows the variable declaration. The
scope of the formal parameters of a method is the entire body of the method. It means that the name of the formal
parameters of a method can be used throughout the body of that method. For example,

int sum(int n1, int n2) {
// n1 and n2 can be used here
}

The scope of an instance variable and a class variable is the entire body of the class. For example, the instance
variable n1 and the class variable n2 can be referred to with its simple name anywhere in the class NameHidingTest1,
as shown:

class NameHidingTest1 {
int n1 = 10; // An instance variable
static int n2 = 20; // A class variable

// m1 is a method
void m1() {

// n1 and n2 can be used here
}

int n3 = n1; // nl can be used here

197

CHAPTER 6 © CLASSES AND OBJECTS

What happens when two variables, say one instance variable and one local variable, are in scope in the same part
of a program? Let’s consider the following code for the NameHidingTest2 class:

class NameHidingTest2 {
int n1 = 10; // An instance variable

/// m1 is a method
void m1() {
int n1 = 20; // A local variable

/* Both, instance variable nl1 and local variable ni, are in scope here */

int n2 = n1; // What value is assigned to n2 - 10 or 20?

}

/* Only instance variable n1 is in scope here */

int n3 = n1; // n3 is assigned 10 from the instance variable ni

When the m1() method is executed in the above code, what value will be assigned to the variable n2? Note the
class declares an instance variable with the name n1, and the method m1() also declares a local variable with the
name n1. The scope of the instance variable n1 is the entire class body that includes the body of the m1() method. The
scope of the local variable n1 is the entire body of the m1() method. When the statement

int n2 = n1;

is executed inside the m1() method, two variables with the same name n1 are in scope: one has a value of 10 and one
has a value of 20. Which n1 does the above statement refer to: n1 the instance variable, or n1 as the local variable?
When a local variable has the same name as the name of a class field, an instance/class variable, the local variable
name hides the name of the class field. This is known as name hiding. In the above case, the local variable name n1
hides the name of the instance variable n1 inside the m1() method. The above statement will refer to the local variable
n1, not the instance variable n1. Therefore, n2 will be assigned a value of 20.

Tip Alocal variable with the same name as a class field hides the name of the class field. In other words, when a
local variable as well as a class field with the same name are in the scope, the local variable takes precedence.

The following code for the class NameHidingTest3 clarifies the scenario when a local variable comes into scope:

public class NameHidingTest3 {
int n1 = 10; // An instance variable n1

public void m1() {
/* Only the instance variable ni1 is in scope here */

int n2 = n1; // Assigns 10 to n2

198

CHAPTER 6 © CLASSES AND OBJECTS

/* Only the instance variable ni is in scope here. The local variable n2
is also in scope here, which you are ignoring for our discussion for now */

int n1 = 20; /* A local variable n1 */

/* Both, instance variable n1 and local variable n1 are in scope here.
We are ignoring n2 for now. */

int n3 = n1; // Assigns 20 to n3

The above code assigns the value of the n1 variable to n2 inside the m1() method. You have not declared the local
variable n1 at the time you assigned the value of n1 to n2. At this time, only the instance variable n1 is in scope. When
you assign n1 to n3, at that time both instance variable n1 and local variable n1 are in scope. The values assigned to
n2 and n3 depend on the name-hiding rule. When two variables with the same names are in scope, the local variable
is used.

Does it mean that you cannot declare an instance/class variable and a local variable with the same name and use
both at the same time? The answer is no. You can declare an instance/class variable and a local variable with the same
name. The only thing you need to know is how to refer to the instance/class variable if its name is hidden by a local
variable. You will learn about referring to the hidden instance/class variables in the next section.

Instance Method and Class Method

In the previous sections, I discussed two types of class fields: instance variables and class variables. A class can have
two types of methods: instance methods and class methods. Instance methods and class methods are also called
non-static methods and static methods, respectively.

An instance method is used to implement behavior for the instances (also called objects) of the class. An instance
method can only be invoked in the context of an instance of the class.

A class method is used to implement the behavior for the class itself. A class method always executes in the
context of a class.

The static modifier is used to define a class method. The absence of the static modifier in a method
declaration makes the method an instance method. The following are examples of declaring some static and
non-static methods:

// A static or class method
static void aClassMethod() {

// method's body goes here
}

// A non-static or instance method
void anInstanceMethod() {

// method's body goes here
}

Recall that a separate copy of an instance variable exist for each instance of a class, whereas only one copy of a
class variable exists, irrespective of the existence of the number of instances (possibly zero) of the class.

199

CHAPTER 6 © CLASSES AND OBJECTS

When a static method of a class is called, an instance of that class may not exist. Therefore, it is not allowed to
refer to instance variables from inside a static method. Class variables exist as soon as the class definition is loaded
into memory. The class definition is always loaded into memory before the first instance of a class is created. Note
that it is not necessary to create an instance of a class to load its definition into memory. JVM guarantees that all class
variables of a class exist before any instances of the class. Therefore, you can always refer to a class variable from
inside an instance method.

Tip A class method (or static method) can refer to only class variables (or static variables) of the class. An instance
method (non-static method) can refer to class variables as well as instance variables of the class.

Listing 6-7 demonstrate the types of class fields that are accessible inside a method.

Listing 6-7. Accessing Class Fields from Static and Non-static Methods

// MethodType.java
package com.jdojo.cls;

public class MethodType {
static int m = 100; // A static variable
int n = 200; // An instance variable

// Declare a static method
static void printM() {

/* We can refer to only static variable m in this method
because you are inside a static method */

System.out.println("printM() - m = " + m);
/* System.out.println("printM() - n = " + n); */ /* A compile-time error */

}

// Declare an instance method

void printMN() {
/* We can refer to both static and instance variables m and n in this method */
System.out.printIn("printMN() - m = " + m);
System.out.printIn("printMN() - n = " + n);

The MethodType class declares m as a static variable and n as a non-static variable. It declares printM() as a
static method and printMN() as an instance method. Inside the printM() method, you can refer to only static
variable m because a static method can refer to only static variables. If you uncomment the commented statement
inside the printM() method, the code will not compile because a static method will attempt to access a non-static
variable n. The printMN() method is a non-static method and it can access both static variable m and non-static
variable n. Next, you would like to invoke the printM() and printMN() methods of the MethodType class. The next
section discusses how to invoke a method.

200

CHAPTER 6 © CLASSES AND OBJECTS

Invoking a Method

Executing the code in the body of a method is called invoking (or calling) a method. Instance methods and class
methods are invoked differently. An instance method is invoked on an instance of the class using dot notation.

<<instance reference»>.<<instance method name>>(<<actual parameters>>)

Note that you must have a reference to an instance of a class before calling an instance method of that class. For
example, you can write the following snippet of code to invoke the printMN() instance method of the MethodType
class listed in Listing 6-7:

// Create an instance of MethodType class and
// store its reference in mt reference variable
MethodType mt = new MethodType();

// Invoke the printMN() instance method using the mt reference variable
mt.printMN();

To invoke a class method, you use dot notation with the class name. The following snippet of code invokes the
printM() class method of the MethodType class:

// Invoke the printM() class method
MethodType.printM();

Whatever belongs to a class also belongs to all instances of that class. You can also invoke a class method using a
reference of an instance of that class.

MethodType mt = new MethodType();
mt.printM(); // Call the class method using an instance mt

Which is a better way to invoke a class method: using the class name or using an instance reference? Both ways
do the same job. However, using the class name to invoke a class method is more intuitive than using an instance
reference. This book uses a class name to invoke a class method, except for the purpose of demonstrating that you can
also use an instance reference to invoke a class method. Listing 6-8 demonstrates how to invoke an instance method
and a class method of a class. Note that the output shows the same result when you invoke the class method printM()
using the class name or an instance reference.

Listing 6-8. Examples of Invoking Instance Methods and Class Methods of a Class

// MethodTypeTest.java
package com.jdojo.cls;

public class MethodTypeTest {
public static void main(String[] args) {
// Create an instance of the MethodTYpe class
MethodType mt = new MethodType();

System.out.println("Invoking instance method...");

// Invoke the instance method
mt.printMN();

System.out.println("Invoking class method on class name...");

201

CHAPTER 6 © CLASSES AND OBJECTS

// Invoke the class method using the class name
MethodType.printM();

System.out.println("Invoking class method on an instance...");

// Invoke the class method using the instance reference
mt.printM();

Invoking instance method...

printMN() - m = 100

printMN() - n = 200

Invoking class method on class name...
printM() - m = 100

Invoking class method on an instance...
printM() - m = 100

The Special main() Method

You learned about declaring a method in a class in the previous section. Let’s discuss the main() method that you
have been using to run your classes. The main() method declaration is as follows:

public static void main(String[] args) {
// Method body goes here
}

Two modifiers, public and static, are used in the declaration of the main() method. The public modifier makes
it accessible from anywhere in the application as long as the class in which it is declared is accessible. The static
modifier makes it a class method, so it can be invoked using a class name. Its return type is void, which means it does
not return a value to its caller. Its name is main and it accepts one parameter of type String array (String[]). Note
that you have been using args as the name of its parameter. However, you can use any parameter name you wish. For
example, you can declare the main method as public static void main(String[] myParameters), which is the
same as declaring the main method as shown above. Whatever parameter name you choose, you will need to use the
same name in the body of the method if you need to refer to the parameter passed to this method.

What is special about the declaration of amain() method in a class? You run a Java application by passing a class
name to the java command. For example, you would use the following command to run the MethodTypeTest class:

java com.jdojo.cls.MethodTypeTest

When the above command is executed, the JVM (the java command essentially starts a JVM) finds and loads
the MethodType class definition in memory. Then, it looks for a method declaration, which is declared as public and
static, returns void, and has a method argument as String array. If it finds the main() method declaration, the
JVM invokes the method. If it does not find the main() method, it does not know where to start the application and it
throws an error stating that no main() method was found.

202

CHAPTER 6 © CLASSES AND OBJECTS

Why do you need to declare the main() method as static? The main() method serves as the entry point for a
Java application. It is invoked by the JVM when you run a class. The JVM does not know how to create an instance of
a class. It needs a standard way to start a Java application. Specifying all details about the main() method and making
it static provides the JVM a standard way to start a Java application. By making the main() method static, the JVM
can invoke it using the class name, which is passed on the command line.

What will happen if you do not declare the main() method as static? If you do not declare the main() method as
static, it will be treated as an instance method. The code will compile fine. However, you will not be able to run the
class, which has its main() method declared as an instance method.

Can you have more than one main() method in a class? The answer is yes. You can have multiple methods in
a class, which can be named main as long as they do not have the same signature. The following declaration for the
MultipleMainMethod class, which declares three main() methods, is valid. The first main() method, which is declared
aspublic static void main(String[] args), may be used as the entry point to the Test class. The other two
main() methods have no special significance as far as the JVM is concerned.

// MultipleMainMethod. java
package com.jdojo.cls;

public class MultipleMainMethods {
public static void main(String[] args) {
/* May be used as the application entry point */
}

public static void main(String[] args, int a) {
/* Another main() method */
}

public int main() {
/* Another main() method */
return 0;

Is it required for each class in Java to have a main() method? The answer is no. It is required that you declare
apublic static void main(String[] args) method in a class if you want to run that class. If you have a Java
application, you will need to have amain() method in at least one class so you can start you application by running
that class. All other classes that are used in the application, but are not used to start the application, do not need to
have amain() method.

Can you invoke the main() method in your code? Or, can it be invoked only by the JVM? The main() method is
invoked by JVM when you run a class. Apart from that, you can treat the main() method as any other class method.
Programmers have a general (and wrong) impression that the main() method can only be invoked by a JVM.
However, that is not true. It is true that the main() method is generally (but not necessarily) invoked by a JVM to start
a Java application. However, it does not have to be invoked (at least theoretically) only by a JVM. Here is an example
that shows how the main() method can be invoked like any other class method. Listing 6-9 has the definition of a
MainTest1 class, which declares amain() method. Listing 6-10 has the definition of a MainTest2 class, which declares
amain() method.

203

CHAPTER 6 © CLASSES AND OBJECTS

Listing 6-9. A MainTest1 Class, Which Declares a main() Method

// MainTest1.java
package com.jdojo.cls;

public class MainTest1 {
public static void main(String[] args) {
System.out.println("Inside main() method of the MainTest1 class.");
}

Listing 6-10. A MainTest2 Class, Which Declares a main() Method, Which in Turn Calls the main() Method of the
MainTest1 Class

// MainTest2.java
package com.jdojo.cls;

public class MainTest2 {

public static void main(String[] args) {
MainTest1.main(args);
}

Inside main() method of the MainTest1 class.

The main() method of the MainTest2 class invokes the main() method of the MainTest1 class using the
following code:

MainTest1.main(null);

Note that the main() method of the MainTest1 class accepts a String array as a parameter and the above
statement passes null as the actual value for that parameter. I will discuss arrays in detail in the chapter on arrays. You
run the MainTest2 class as
java com.jdojo.cls.MainTest2

The JVM will invoke the main() method of the MainTest2 class, which in turn invokes the main() method of the
MainTest1 class. The output in Listing 6-10 confirms this. You can also let the JVM invoke the main() method of the

MainTest1 class by running the MainTest1 class as

java com.jdojo.cls.MainTest1

Tip The main() method in a class, which is declared as public static void main(String[] args), has a special
meaning only when the class is run by the JVM. It serves as an entry point for the Java application. Otherwise, the main()
method is treated the same as any other class methods.

204

CHAPTER 6 © CLASSES AND OBJECTS

What Is this?

Java has a keyword called this. It is a reference to the current instance of a class. It can be used only in the context of
an instance. It can never be used in the context of a class because it means the current instance, and no instance exists
in the context of a class.

The keyword this is used in many contexts. I will cover most of its uses in this chapter, not necessarily in this
section. However, you need to note that when it appears in Java code, it means the current instance of the class for
which the code is being executed.

Let’s consider the following snippet of code that declares a class ThisTest1:

public class ThisTest1 {
int varA = 555;
int varB = varA; // Assign value of varA to varB
int varC = this.varA; // Assign value of varA to varC

The ThisTest1 class declares three instance variables: varA, varB, and varC. The instance variable varA is
initialized to 555. The instance variable varB is initialized to the value of varA, which is 555. The instance variable
var(is initialized to the value of varA, which is 555. Note the difference in initialization expressions for varB and varC.
I used unqualified varA when I initialized varB. I used this.varA when I initialized varC. However, the effect is the
same. Both varB and varC are initialized with the value of varA. When I use this.varA, it means the value of varA for
the current instance, which is 555. In this simple example, it was not necessary to use the keyword this. In the above
case, the unqualified varA refers to the varA for the current instance. However, there are some cases where you must
use the keyword this. I will discuss such cases shortly.

Since the use of the keyword this is illegal in the context of a class, you cannot use it when you initialize a class
variable, like so:

// Would not compile
public class ThisTest2 {
static int varU = 555;
static int varV = varU;
static int varW = this.varU; // A compile-time error

When you compile the code for the class ThisTest2, you receive the following compiler error:

"ThisTest2.java": non-static variable this cannot be referenced from a static context at line 4,
column 21

The compiler error is loud and clear that you cannot use the keyword this in a static context. Note that static and
non-static words are synonymous with “class” and “instance” terms in Java. Static context is the same as class context
and non-static context is the same as instance context. The above code can be corrected by removing the qualifier
this from the initialization expression for varl, as follows:

public class CorrectThisTest2 {
static int varU = 555;
static int varV = varU;
static int varW = varU; // Ok

205

CHAPTER 6 © CLASSES AND OBJECTS

You can also qualify a class variable with a class name, as shown in the CorrectThisTest3 class:

public class CorrectThisTest3 {
static int varU = 555;
static int varV = varU;
static int varlW = CorrectThisTest3.varU;

Tip Most of the time you can use the simple name of instance and class variables within the class in which they are
declared. You need to qualify an instance variable with the keyword this and a class variable with the class name only
when the instance variable or the class variable is hidden by another variable with the same name.

Let’s consider the following snippet of code for the ThisTest3 class:

public class ThisTest3 {
int varU = 555;
static int varV = varU; // A compile-time error
static int varW = varU; // A compile-time error

When you compile the ThisTest3 class, you will receive the following error:

"ThisTest3.java": non-static variable varU cannot be referenced from a static context at line 3,
column 21
"ThisTest3.java": non-static variable varU cannot be referenced from a static context at line 4,
column 21

The compiler error is the same in kind, although differently phrased, compared to the compiler error that you
received for the ThisTest2 class. Last time, it complained about using the keyword this. This time, it complained
about using the instance variable varU. Both the keyword this and the varU exist in the context of an instance. They
do not exist in the context of a class. Whatever exists in the context of an instance cannot be used in the context of a
class. However, whatever exists in the context of a class can always be used in the context of an instance. The instance
variable declaration and initialization occurs in the context of an instance. In the ThisTest3 class, varU is an instance
variable and it exists only in the context of an instance. The varV and varW in ThisTest3 class are class variables and
they exist only in the context of a class. This is the reason that the compiler complained.

Let’s consider the code for the ThisTest4 class, shown in Listing 6-11. It declares an instance variable, num, and
an instance method, printNum(). In the printNum() instance method, it prints the value of the instance variable num.
In its main() method, it creates an instance of the ThisTest4 class and invokes the printNum() method on it. The
output of the ThisTest4 class shows the expected result.

Listing 6-11. An Example of Using the Simple Name of an Instance Variable in an Instance Method

// ThisTest4.java
package com.jdojo.cls;

public class ThisTest4 {
int num = 1982; // An instance variable

206

CHAPTER 6 © CLASSES AND OBJECTS

void printNum() {
System.out.println("Instance variable num:
}

+ num);

public static void main(String[] args) {
ThisTest4 tt4 = new ThisTest4();
tt4.printNum();

Instance variable num: 1982

Let’s modify the printNum() method of the ThisTest4 class so it accepts an int parameter. Let’s name the
parameter num. Listing 6-12 has the modified code for the printNum() method as part of the ThisTest5 class.

Listing 6-12. Variables Name Hiding

// ThisTest5.java
package com.jdojo.cls;

public class ThisTest5 {
int num = 1982; // An instance variable

void printNum(int num) {
System.out.println("Parameter num: " + num);
System.out.println("Instance variable num: " + num);

}

public static void main(String[] args) {
ThisTest5 tt5 = new ThisTest5();
tt5.printNum(1969);

Parameter num: 1969
Instance variable num: 1969

The output of the ThisTest5 class indicates that the printNum() method is using its parameter num when you use
the simple name num inside its body. This is an example of name hiding, where the local variable (method parameter
is considered a local variable) num hides the name of the instance variable num inside the printNum() method’s body.
In the printNum() method, the simple name num refers to its parameter num, not the instance variable num. In this case,
you must use the keyword this to qualify the num variable if you want to refer to the num instance variable inside the
printNum() method. Using this.numis the only way you can refer to the instance variable from inside the printNum()
method, as long you keep the parameter name as num. Another way is to rename the parameter to something other
than num, for example, numParam or newNum. Listing 6-13 shows how to use the keyword this to refer to the num
instance variable inside the printNum() method.

207

CHAPTER 6 © CLASSES AND OBJECTS

Listing 6-13. Using the this Keyword to Refer to an Instance Variable Whose Name Is Hidden by a Local Variable

// ThisTest6.java
package com.jdojo.cls;

public class ThisTest6 {
int num = 1982; // An instance variable

void printNum(int num) {
System.out.println("Parameter num: " + num);
System.out.println("Instance variable num: " + this.num);

}

public static void main(String[] args) {
ThisTest6 tt6 = new ThisTest6();
tt6.printNum(1969);

Parameter num: 1969
Instance variable num: 1982

The output of ThisTest6 shows the expected result. If you do not want to use the keyword this, you can rename
the parameter of the printNum() method, like so:

void printNum(int numParam) {
System.out.println("Parameter num: " + numParam);
System.out.println("Instance variable num: " + num);

Once you rename the parameter to something other than num, the num instance variable is no longer hidden
inside the body of the printNum() method, and therefore you can refer to it using its simple name.

You can use the keyword this to refer to the instance variable num inside the printNum() method even if it
is not hidden as shown below. However, using the keyword this in the following case is a matter of choice, not a
requirement.

void printNum(int numParam) {
System.out.println("Parameter num: " + numParam);
System.out.println("Instance variable num: " + this.num);

In the previous example, you saw that use of the keyword this is necessary to access instance variables when
the instance variable name is hidden. You can avoid using the keyword this in such circumstances by renaming the
variable that hides the instance variable name, or renaming the instance variable itself. Sometimes it is easier to keep
the variable names the same, as they represent the same thing. This book uses the convention of using the same name
for instance variables and local variables if they represent the same thing in the class. For example, the following code
is very common:

public class Student {
private int id; // An instance variable

208

CHAPTER 6 © CLASSES AND OBJECTS

public void setId(int id) {
this.id = id;
}

public int getId() {
return this.id;
{

The Student class declares an instance variable id. In its setId() method, it also names the parameter id, and
uses this.id to refer to the instance variable. It also uses this.id to refer to the instance variable id in its getId()
method. Note that there is no name hiding occurring in the getId() method and you could use the simple name id,
which means the instance variable id.

I'will discuss the use of the keyword this again in this chapter and subsequent chapters. Table 6-2 lists the parts of
a class, the context in which they occur, and the permitted use of the keyword this, the instance variable, and the class
variable. I have not yet covered all parts of a class that are listed in Table 6-2. I will cover them shortly in this chapter.

Table 6-2. The Context Type and Allowed Use of the Keyword this, an Instance Variable, and a Class Variable

Part of a Class Context Can use this Can use instance Can use class
keyword? variable? variable?

Instance variable initialization Instance Yes Yes Yes

Class variable initialization Class No No Yes

Instance initializer Instance Yes Yes Yes

Class initializer Class No No Yes

(Also called static initializer)

Constructor Instance Yes Yes Yes
Instance method Instance Yes Yes Yes
(Also called non-static method)

Class method Class No No Yes

(Also called static method)

The keyword this is a final (a constant is called final in Java because Java uses the final keyword to declare
a constant) reference to the current instance of the class in which it appears. Because it is final, you cannot change
its value. Because this is a keyword, you cannot declare a variable named this. The following code will generate a
compiler error:

public class ThisError {
void m1() {
// An error. Cannot name a variable this
int this = 10;

// An error. Cannot assign a value to this because it is a constant.
this = null;

209

CHAPTER 6 © CLASSES AND OBJECTS

You can also use the keyword this to qualify an instance method name, although it is never required. The
following snippet of code shows the m1() method invoking the m2 () method using the keyword this. Note that both
methods are instance methods and they could use the simple name to invoke each other.

public class ThisTestMethod {
void m1() {
// Invoke the m2() method
this.m2(); // same as "m2();"

}
void m2() {

// do something
}

Access Levels for Class Members

I have covered access levels for a class, which can be public or default (or package level). This section discusses access
levels for class members: fields and methods. The access level for a class member determines what area of the program
can access (use or refer to) it. One of the following four access level modifiers can be used for a class member:

e public

e private

e protected

e Default or package-level access

Three out of the four types of access levels for a class member are specified using one of the three keywords:
public, private, or protected. The fourth type is called the default access level (or package-level access), and it is
specified by using no access modifiers. That is, the absence of any of the three access level modifiers, public, private,
or protected, specifies package-level access.

If a class member is declared as public using the public keyword, it can be accessed from anywhere in Java code,
provided the class itself is accessible.

If a class member is declared as private using the private keyword, it can be accessed only within the body of the
declaring class, and nowhere else.

If a class member is declared as protected using the protected keyword, it can be accessed from the same
package or from descendants of the class, even if the descendants are in a different package. I will discuss the
protected access level in detail in the chapter on inheritance.

If you do not use any access level modifier for a class member, it has package-level access. A class member with a
package-level access can be accessed from the same package.

Access levels for a class member can be listed from the most restrictive to the least restrictive as private,
package-level, protected, and public. Table 6-3 summarizes the four access levels for a class member.

Table 6-3. List of Access Levels for Class Members

Access Level for Class Member Accessibility

private Only within the same class

package-level In the same package

protected Same package or descendant in any package
public Everywhere

210

CHAPTER 6 © CLASSES AND OBJECTS

The following is a sample class that declares many class members with different access levels:

// AccesslevelSample.java
package com.jdojo.cls;

// Class AccesslLevelSample has
public class AccesslLevelSample
private int numi; //
int num2; //
protected int num3; //
public int num4; //

public access level

{

private access level
package-level access
protected access level
public access level

public static int count = 1; // public access level

// m1() method has private access level

private void m1() {

// Code goes here

}

// m2() method has package-level access

void m2() {

// Code goes here

}

// m3() method has protected access level

protected void m3() {

// Code goes here

}

// ma() method has public access level

public void m4() {

// Code goes here

}

// doSomething() method has private access level
private static void doSometing() {
// Code goes here

}

Note that access levels can be specified for both instance and static members of a class. It is a convention to
specify the access level modifier as the first modifier in the declaration. If you declare a static field for a class that is
public, you should use the public modifier first, and then the static modifier, as a convention. For example, both of
the following declarations for an instance variable num, are valid:

// Declaration #1

public static int num; // Conventionally used

// Declaration #2

static public int num; // Technically correct, but Conventionally not used.

211

CHAPTER 6 © CLASSES AND OBJECTS

Let’s discuss some examples of using the access level modifiers for class members, and their effects. Consider the
code for the AccesslLevel class shown in Listing 6-14.

Listing 6-14. An AccessLevel Class with Class Members Having Different Access Levels

// Accesslevel.java
package com.jdojo.cls;

public class Accesslevel {
private int vi = 100;
int v2 = 200;
protected int v3 = 300;
public int v4 = 400;

private void mi() {
System.out.println("Inside m1():");

System.out.println("vi = " + vi + ", v2 = " + v2 +
",v3="+v3+ ", v4 ="+ v4);
}
void m2() {
System.out.println("Inside m2():");
System.out.println("vi = " + vi + ", v2 = " + v2 +
",v3="+v3+ ", v4 ="+ v4);
}
protected void m3() {
System.out.println("Inside m3():");
System.out.println("vi = " + vi + ", v2 = " + v2 +
",v3="+v3+ ", v4 ="+ v4);
}
public void m4() {
System.out.println("Inside m4():");
System.out.println("vi = " + vi + ", v2 = " + v2 +
yv3=" 4 V34", vh ="+ va);

The class has four instance variables called v1, v2, v3, and v4 and four instance methods called m1(), m2(), m3(),
and m4 (). Four different access level modifiers have been used for instance variables and instance methods. I have
chosen to use instance variables and methods in this example; the same access level rules apply to class variables and
class methods. The code for the AccessLevel class compiles without any errors. Note that no matter what the access
level for a class member is, it is always accessible inside the class in which it is declared. This can be verified by the
fact that you have accessed (read their values) all instance variables, which have different access levels, inside all
four methods.

Let’s consider the AccessLevelTest1 class shown in Listing 6-15.

212

CHAPTER 6 © CLASSES AND OBJECTS

Listing 6-15. A Test Class Loated in the Same Package as the AccessLevel Class

// AccesslevelTest1.java
package com.jdojo.cls;

public class AccesslLevelTest1 {

public

static void main(String[] args) {
Accesslevel al = new Accesslevel();

// int a = al.vi; /* A compile-time error */
int b = al.v2;
int ¢ = al.v3;
int d = al.v4;

System.out.println("b = " +b + ", c="+c+ ", d="+d);

//al.m1(); /* A compile-time error */
al.m2();
al.m3();
al.ma();

/* Modify the values of instance variables */
al.v2 = 20;
al.v3 = 30;
al.v4 = 40;

System.out.println("\nAfter modifying v2, v3 and v4");

al.m2();
al.m3();
al.ma();

b = 200, ¢ = 300, d = 400

Inside m2():
vl = 100, v2
Inside m3():
vl = 100, v2 =
Inside m4():
vl = 100, v2

After modifying v2, v3 and v4

Inside m2():
vl = 100, v2
Inside m3():
vl = 100, v2 =
Inside m4():
vl = 100, v2

200, v3 = 300, v4 = 400
200, v3 = 300, v4 = 400
200, v3 = 300, v4 = 400
20, v3 = 30, v4 = 40

20, v3 = 30, V4 = 40

40

20, v3 = 30, v4

213

CHAPTER 6 © CLASSES AND OBJECTS

The AccesslLevel and AccessLevelTest1 classes are in the same package. AccessLevelTest1 can access all
class members of the AccessLevel class, except the ones declared private. You cannot access the instance
variable v1 and the instance method m1() of the AccessLevel class from the AccessLevelTest1 class because their
access level is private. If you uncomment the two statements in the AccessLevelTest1 class, which attempts to
access the private instance variable v1 and the private instance method m1()of the AccessLevel class, you would
receive the following compiler error:

"AccesslevelTest1.java": vi has private access in com.jdojo.cls.AccesslLevel at line 7, column 16
"AccesslevelTest1.java": m1() has private access in com.jdojo.cls.Accesslevel at line 12, column 8

The AccesslevelTest1 class reads the values of the instance variables of the AccessLevel class, as well as
modifies them. You must note one thing: even though you cannot access the private instance variable v1 and the
private method m1() of the AccessLevel class from the AccessLevelTest1 class, you are able to print the value of the
private instance variable v1 as shown in the output.

An access level modifier for a class member specifies who can access them directly. If a class member is not
accessible directly, it might be accessible indirectly. In this example, the instance variable v1 and the instance method
m1() are not directly accessible from outside the AccessLevel class; however, they may be indirectly accessible from
outside. Indirect access to an inaccessible class member is usually given by providing another method, which is
accessible from outside.

Suppose you want the outside world to read and modify the value of the otherwise inaccessible private instance
variable v1. You need to add two public methods, getV1() and setV1(), to the AccessLevel class; these two methods
will read and modify the value of the v1 instance variable. Your modified AccessLevel class would look as follows:

public class AccessLevel {
private int vi;

/* Other code goes here */
public int getvi() {

return this.vi;
}

public void setVi(int vi) {
this.vl = vi;
}

Now, even if the private instance variable v1 is not directly accessible from outside, it is made indirectly
accessible through the public methods getV1() and setV1(). Let’s consider another test class as shown in
Listing 6-16.

Listing 6-16. A Test Class Located in a Different Package from the AccessLevel Class
// AccesslevelTest2.java
package com.jdojo.cls.p1;

import com.jdojo.cls.Accesslevel;

public class AccesslLevelTest2 {
public static void main(String[] args) {
AccesslLevel al = new AccesslLevel();

214

CHAPTER 6 © CLASSES AND OBJECTS
//int a = al.vi; /* A compile-time error */
//int b = al.v2; /* A compile-time error */
//int c = al.v3; /* A compile-time error */
int d = al.v4;

System.out.println("d = " + d);

//al.m1(); /* A compile-time error */
//al.m2(); /* A compile-time error */
//al.m3(); /* A compile-time error */
al.ma();

/* Modify the values of instance variables */
//al.v2 = 20; /* A compile-time error */
//al.v3 = 30; /* A compile-time error */
al.v4 = 40;

System.out.println("After modifying v4...");
//al.m2(); /* A compile-time error */
//al.m3(); /* A compile-time error */
al.ma();

d = 400

Inside m4():

vl = 100, v2 = 200, v3 = 300, V4 = 400
After modifying v4...

Inside m4():

vi = 100, v2 = 200, V3 40

300, v4

Note the AccessLevelTest2 class in the com. jdojo.cls.p1 package, which is different from the com.jdojo.cls
package in which the AccessLevel class exists. The code for the AccessLevelTest2 class is similar to the code for the
AccesslevelTest1 class, except for the fact that most of the statements have been commented. Note that you need to
use an import statement to import the AccessLevel class from the com. jdojo.cls package so you can use its simple
name inside the main() method. In the AccessLevelTest1 class, it was not necessary to import the AccessLevel
class because they are in the same package. The AccessLevelTest2 class can access only the public members of
the AccessLevel class because it is in a different package than the AccessLevel class. This is the reason that the
uncommented statements access only the public instance variable v4 and the public method m4(). Note that even if
only the v4 instance variable is accessible, you are able to print the values of v1, v2, and v3 as well, by accessing them
indirectly through the public method m4().

Let’s consider a trickier situation. See Listing 6-17.

Listing 6-17. A Class with Package-level Access Having a Public Instance Variable

// Accesslevel2.java
package com.jdojo.cls;

class Accesslevel2 {
public static int vi = 600;
}

215

CHAPTER 6 © CLASSES AND OBJECTS

Note that there is no access level modifier used for the AccessLevel2 class, which gives it a package-level access
by default. That is, the AccessLevel2 class is accessible only within the com. jdojo.cls package. The AccesslLeve2
class is simple. It declares only one member, which is the public static variable vi.

Let’s consider the class AccessLevelTest3 shown in Listing 6-18, which is in a different package than the class
Accesslevel2.

Listing 6-18. A Test Class That Attempts to Access a Public Member of a Class with a Package-level Access

// AccesslevelTest3.java
package com.jdojo.cls.p1;

import com.jdojo.cls.AccesslLevel2; // A compile-time error

public class AccesslevelTest3 {
public static void main(String[] args) {
int a = Accesslevel2.vi; // A compile-time error
}

The AccesssLeveTest3 class attempts to access the public static variable vi of the AccesslLevel2 class, which
generates a compiler error. Did I not say that a class member with public access level is accessible from anywhere?
Yes. I did say that. Here is the catch. Suppose you have some money in your pocket and you declare that your money
is public. Therefore, anyone can have your money. However, you hide yourself so that no one can have access
to you. How can anyone access your money unless you become accessible to him first? This is the case with the
Accesslevel2 class and its public static variable vi. Compare the AccessLevel2 class with yourself, and its public
static variable v1 with your money. The AccessLevel2 class has package-level access. Therefore, only the code
within its package (com.jdojo.cls) can access its name. Its static variable v1 has the access level of public, which
means any code can access it from any package. The static variable v1 belongs to the AccessLevel2 class. Unless the
AccessLevel2 class itself is accessible, its static variable v1 cannot be accessed, even though it has been declared
public. The import statement in Listing 6-18 will also generate a compiler error for the reason that the AccessLevel2
class is not accessible outside its package com. jdojo.cls.

Tip You must consider the access level of both the class and its member to determine whether a class member is
accessible. The access level of a class member may make it accessible to a part of a program. However, that part of a
program can access the class member only if the class itself, to which the member belongs, is also accessible.

Access Level—A Case Study

A class member can have one of the four access levels: private, protected, public, or package-level. Which access
level should be used with a class member? The answer depends on the member type and its purpose. Let’s discuss an
example of a bank account. Suppose you create a class Account to represent a bank account.

// Account.java
package com.jdojo.cls;

public class Account {
public double balance;
}

216

CHAPTER 6 © CLASSES AND OBJECTS

A bank account holds the balance in the account. The above definition of the Account class does just that. In the
real world, a bank account can hold many more pieces of information, for example, account number, account holder
name, address, etc. Let’s keep the Account class simple so you can focus on the discussion of access levels. It allows
its every instance to hold a numeric value in its balance instance variable. If you want to create an instance of the
Account class and manipulate its balance, it will look like this:

// Create an account object
Account ac = new Account();

// Change the balance to 1000.00
ac.balance = 1000.00;

// Change the balance to 550.29
ac.balance = 550.29;

This snippet of code can be executed anywhere in a Java application because both the Account class and its
balance instance variable are public. However, in the real world, no one would let his bank account be manipulated
like this. For example, a bank may require you to have a minimum balance of zero in your account. With the above
implementation, nothing stops you from executing the following statement, which reduces the balance in an account
to a negative number:

// Set a negative balance
ac.balance = -440.67;

In object-oriented programming, as a rule of thumb, the pieces of information that define the state of an object
should be declared private. All instance variables of a class constitute the state of objects of that class. Therefore,
they should be declared private. If code outside a class is needed to have access to a private instance variable, the
access should be given indirectly, by providing a method. The method should have an appropriate access level, which
will allow only intended client code to access it. Let’s declare the balance instance variable as private. The modified
code for the Account class is as follows:

// Account.java
package com.jdojo.cls;

public class Account {
private double balance;
}
With the modified Account class, you can create an object of the Account class anywhere in a Java application.

// Create an account object
Account ac = new Account();

However, you cannot access the balance instance variable of the Account object unless you write the code inside
the Account class itself. The following code is valid only if the code is written inside the Account class because the

private instance variable balance cannot be accessed from outside the Account class:

// Change the balance
ac.balance = 188.37;

217

CHAPTER 6 © CLASSES AND OBJECTS

The modified version of the Account class is not acceptable in this form because you can create an account, but
you cannot read or manipulate its balance. The Account class must provide some interface for the outside world to
access and manipulate its balance in a controlled way. For example, if you have money and want to share it with the
outside world, you do not show the money to everyone and ask him to take it directly. Rather, anyone who wants your
money needs to ask you (send you a message), and then you give him your money according to certain situations. In
other words, money is your private possession and you let other access it in a controlled way by making them ask you
for that money, instead of letting them just take money directly from your pocket. Similarly, you want others to view
the balance of an account, credit money to an account, and debit money from an account. However, all these actions
should happen through an Account object, rather than manipulating the balance of an account object directly.

Java lets you send a message to an object by using instance methods. An object can receive a message from the
outside world and it can respond differently to the same message depending on its internal state. For example, when
all your money is gone and someone asks you for money, you can respond by saying that you do not have any money.
However, you responded to the same message (give me money) differently (by giving the money) when you had money.

Let’s declare three public methods in the Account class that will serve as an interface to the outside world who
wants to access and manipulate the balance of an account.

e AgetBalance() method will return the balance of an account.
e Acredit() method will deposit a specified amount to an account.
e Adebit() method will withdraw a specified amount from an account.

e Bothcredit() and debit() methods will return 1 if the transaction is successful and -1 if the
transaction fails.

Listing 6-19 has the code for the modified Account class.

Listing 6-19. A Modified Version of the Account Class with a Private Instance Variable and Public Methods

// Account.java
package com.jdojo.cls;

public class Account {
private double balance;

public double getBalance() {
// Return the balance of this account
return this.balance;

}

public int credit(double amount) {
// Make sure credit amount is not negative, NaN or infinity
if (amount < 0.0 || Double.isNaN(amount) || Double.isInfinite(amount)) {
System.out.println("Invalid credit amount: " + amount);
return -1;

}

// Credit the amount
System.out.println("Crediting amount:
this.balance = this.balance + amount;
return 1;

+ amount);

218

CHAPTER 6 © CLASSES AND OBJECTS

public int debit(double amount) {
// Make sure the debit amount is not negative, NaN or infinity */
if (amount < 0.0 || Double.isNaN(amount) || Double.isInfinite(amount)) {
System.out.println("Invalid debit amount: " + amount);
return -1;

}

// Make sure a minimum balance of zero is maintained

if (this.balance < amount) {
System.out.println("Insufficient fund. Debit attempted:
return -1;

+ amount);

}

// Debit the amount
System.out.println("Debiting amount:
this.balance = this.balance - amount;
return 1;

+ amount);

The class has a private instance variable and public methods that let the outside world access and modify the
private instance variable. The public methods are acting like protective covers for the private instance variable.
They let the outside world read or modify the private instance variable in a controlled way. For example, you cannot
credit a negative amount, and a minimum of zero balance must be maintained.

Let’s test your modified Account class. The test code is shown in Listing 6-20. It creates an object of the Account
class and attempts various operations on it using its public methods. The results are shown in the output, which
indicates that this is an improved Account class that protects an account object from being manipulated incorrectly.
You can also note that making the instance variables private and allowing access to them through public methods
lets you enforce your business rules. If you expose the instance variables, you cannot enforce any business rules that
control its valid values because anyone can modify it without any restrictions.

Listing 6-20. A Test Class to Test the Account Class Behavior

// AccountTest.java
package com.jdojo.cls;

public class AccountTest {
public static void main(String[] args) {
Account ac = new Account();
double balance = ac.getBalance();

System.out.println("Balance = " + balance);

// Credit and debit some amount
ac.credit(234.78);
ac.debit(100.12);

balance = ac.getBalance();
System.out.println("Balance = " + balance);

// Attempt to credit and debit invalid amounts

ac.credit(-234.90);
ac.debit(Double.POSITIVE INFINITY);

219

CHAPTER 6 © CLASSES AND OBJECTS

balance = ac.getBalance();
System.out.println("Balance = " + balance);

// Attempt to debit more than the balance
ac.debit(2000.00);

balance = ac.getBalance();
System.out.println("Balance = " + balance);

Balance = 0.0

Crediting amount: 234.78

Debiting amount: 100.12

Balance = 134.66

Invalid credit amount: -234.9

Invalid debit amount: Infinity

Balance = 134.66

Insufficient fund. Debit attempted: 2000.0
Balance = 134.66

One important point to keep in mind when you design a class is its maintainability. Keeping all instance variables
private and allowing access to them through public methods makes your code ready for future changes. Suppose
you started with a zero minimum balance for an account. You have deployed the Account class in the production
environment and it is being used in many places in the application. Now, you want to implement a new business rule
that states that every account must have a minimum balance of 100. It is easy to make this change. Just change the
code for the debit() method and you are done. You do not need to make any changes to the client code that is calling
the debit() method of the Account class. Note that you need a little more work on the Account class to fully enforce
the rule of a minimum balance of 100. When an account is created, the balance is zero by default. To enforce this new
minimum balance rule at the time an account is created, you will need to know about constructors of a class. I will
discuss constructors later in this chapter.

Another option for the access level for the balance instance variable in the Account class is to give it a package-
level access. Recall that a package-level access is given to a class member by using no access modifier in its
declaration. If the balance instance variable has package-level access, it is a little better than giving it public access
because it is not accessible from everywhere. However, it can be accessed and manipulated directly by the code inside
the same package in which the Account class has been declared. We all understand that letting any code access the
balance instance variable directly from outside the Account class is not acceptable. Additionally, if you declare the
method of the Account class to have package-level access, it can be used only inside the same package in which the
Account class has been declared. You want objects of the Account class to be manipulated from anywhere in the
application using its methods. Therefore, you cannot declare the methods or the instance variable of the Account
class to have package-level access. When do you declare a class and/or a class member to have package-level access?
Typically, package-level access is used for a class and its members when the class has to serve as a helper class or
internal implementation for other classes in a package.

When do you use a private access level for class members? You have already seen the benefits of using the
private instance variables for the Account class. The private access level for instance variables provides data
hiding, where the internal state of the object is protected from outside access. An instance method for a class defines
a behavior for its objects. If a method is used only internally within a class, and no outside code has any business
knowing about it, the method should have a private access level. Let’s go back to your Account class. You have used
the same logic to validate the amount passed to the credit() and debit() methods. You can move the code that

220

CHAPTER 6 © CLASSES AND OBJECTS

validates the amount to a private method, isValidAmount (),which is used internally by the Account class. It checks
if an amount being used for credit or debit is not a negative number, not a NaN, and not infinity. These three criteria
for a number to be a valid number apply only to the Account class, and no other class needs to be using them. This is
the reason you need to declare this method private. Declaring it private has another advantage. In the future, you
may make a rule that you must credit or debit a minimum of 10 from any account. At that time, you could just change
the private isValidAmount() method and you are done. If you had made this method public, it would affect all

the client code, which was using it to validate an amount. You may not want to change the criteria for a valid amount
globally. To keep the effect of a change localized in a class, when the business rules change, you must implement a
method as private. You can implement this logic in your Account class as follows (only changed code is shown):

// Account.java
package com.jdojo.cls;

public class Account {
/* Other code goes here */

public int credit(double amount) {
// Make sure credit amount is valid
if (!this.isValidAmount(amount, "credit")) {
return -1;

}

/* Other code goes here */

}

public int debit(double amount) {
// Make sure debit amount is valid
if (!this.isValidAmount(amount, "debit")) {
return -1;
}
/* Other code goes here */

}

// Use a private method to validate credit/debit amount
private boolean isValidAmount(double amount, String operation) {
// Make sure amount is not negative, NaN or infinity
if (amount < 0.0 || Double.isNaN(amount) || Double.isInfinite(amount)) {
System.out.println("Invalid " + operation + " amount: " + amount);
return false;

}

return true;

Note that you might have implemented the credit() method (debit() method as well) in a simpler way using
the following logic:

if (amount »>= 0) {

this.balance = this.balance + amount;
return 1;

221

CHAPTER 6 © CLASSES AND OBJECTS

else {
/* print error here */
return -1;

You could use the simpler logic to implement the credit () method, which checks if the amount is valid, instead
of checking if the amount is invalid. I did not use this logic because I wanted to demonstrate in the same example how
to use a private method. Sometimes one writes more code to drive home a point in a discussion.

Now you are left with the protected access level modifier. When do you declare a class member protected? A
class member with the protected access level can be accessed in the same package and in the descendant class, even
if the descendant class is not in the same package. I will discuss how to create a descendant class and the use of the
protected access level in the chapter on inheritance.

Parameter Passing Mechanisms

This section discusses different ways of passing parameters to a method that are used in different programming
languages. I will not discuss anything that is specific to Java in this section. The syntax or symbols used in this section
may not be supported by Java. This section is important to programmers in understanding the memory states in
the process of a method call. If you are an experienced programmer, you may skip this section. The next section will
discuss the parameter passing mechanisms in Java.

The following are some of the mechanisms to pass parameters to a method:

e Passbyvalue

e Pass by constant value
e Pass byreference

e Pass by reference value
e Passbyresult

e Passbyresult value

e Passbyname

e Passbyneed

A variable has three components: a name, a memory address (or a location), and data. The name of a variable is
alogical name that is used in a program to refer to its memory address. Data is stored at the memory address that is
associated with the variable name. The data stored at the memory address is also known as the value of the variable.
Suppose you have an int variable id whose value is 785, which is stored at the memory address 131072. You may
declare and initialize the id variable as follows:

int id = 785;

You can visualize the relationship between the variable name, its memory address, and the data stored at the
memory address as depicted in Figure 6-4.

222

CHAPTER 6 © CLASSES AND OBJECTS

id > 131072 785

Variable name Memory address Value stored at the address

Figure 6-4. Relationship between a variable name, its memory address, and data

In Figure 6-4, you see that the actual data of the variable id is stored at the memory address. You can also store a
data at a memory address, which is not the actual value for the variable; rather it is the memory address of the location
where the actual value is stored. In this case, the value stored at the first memory address is a reference to the actual
data stored at some other memory address, and such a value is known as a reference or a pointer. If a variable stores
the reference to some data, it is called a reference variable.

Contrast the phrases “a variable” and “a reference variable.” A variable stores the actual data itself at its memory
location. A reference variable stores the reference (or memory address) of the actual data. Figure 6-5 depicts the
difference between a variable and a reference variable. Here, idRef is a reference variable and id is a variable. Both
variables are allocated memory separately. The actual value of 785 is stored at the memory location of id variable,
which is 131072. However, the memory location (262144) of idRef stores the address of the id variable (or address or
memory location, where 785 is stored). You can get to the value 785 in memory using either variable. The operation to
get the actual data that a reference variable refers to is called dereferencing.

id 131072
idRef 262144 131072

Figure 6-5. Difference between a variable and a reference variable

A method (also called function or procedure in some programming languages) can optionally accept parameters
from its caller. A method’s parameters allow data sharing between the caller context and the method context.
Many mechanisms are in practice to pass the parameters to a method. The following sections discuss some of the
commonly used parameter passing mechanisms.

Pass By Value

Pass by value is the simplest parameter passing mechanism to understand. However, it is not necessarily the most
efficient and the easiest to implement in all situations. When a method is called, the values of the actual parameters
are copied to the formal parameters. When the method execution starts, two copies of the value exist in memory:
one copy for the actual parameter and one copy for the formal parameter. Inside the method, the formal parameter
operates on its own copy of the value. Any changes made to the value of the formal parameter do not affect the value
of the actual parameter.

223

CHAPTER 6 * CLASSES AND OBJECTS

Figure 6-6 depicts the memory state when a method is called using the pass by value mechanism. It is to be
emphasized that once the formal parameter gets its value, which is a copy of the actual parameter, the two parameters
have nothing to do with each other. The formal parameter is discarded at the end of the method call. However, the
actual parameter persists in memory after the method call ends. How long the actual parameter persists in memory
depends on the context of the actual parameter.

Actual Parameter
Address

Actual Parameter
Name

Actual Parameter
Value

Actual parameter
value is copied to
---------- formal parameter
R location

Formal
Parameter
Address

Formal Parameter
Name

Actual Parameter
Value

Figure 6-6. Memory states for actual and formal parameters when a method is called

Let’s consider the following code for the increment () method, which accepts an int parameter and increments
itby 2:

// Assume that num is passed by value
void increment(int num) {

/* #2 */

num = num + 2;

/* #3 */

Suppose you call the increment () method with the following snippet of code:

int id = 57;
/* #1 %/
increment(id);
/* #4 */

Four points of executions in the code are labeled as #1, #2, #3, and #4. Table 6-4 describes the memory states for

the actual parameter and the formal parameter, before, after, and when the increment () method is invoked. Note that
the formal parameter num no longer exists in memory at #4.

224

CHAPTER 6 © CLASSES AND OBJECTS

Table 6-4. Description of Memory States for Actual and Formal Parameters When the increment() Method is Called
and the Parameter is Passed by Value

Point of Execution Memory State of Actual Parameterid ~ Memory State of Formal Parameter num

#1 The id variable exists in memory The num variable does not exist at this point.
and its value is 57.

#2 The id variable exists in memory The formal parameter, num, has been created in
and its value is 57. memory. The value of the actual parameter id has

been copied to the address associated with the num
variable. At this point, num holds the value of 57.

#3 The id variable exists in memory and At this point, num holds value of 59.
its value is 57.

#4 The id variable exists in memory and The formal parameter, num, does not exist in memory
its value is 57. at this point because the method call is over.

Alllocal variables, including formal parameters, are discarded when a method invocation is over. You can
observe that incrementing the value of the formal parameter inside the increment () method was practically useless
because it can never be communicated back to the caller environment. If you want to send back one value to the
caller environment, you can use a return statement in the method body to do that. The following is the code for the
smartIncrement() method, which returns the incremented value to the caller:

// Assume that num is passed by value
int smartIncrement(int num) {

num = num + 2;

return num;

You will need to use the following snippet of code to store the incremented value that is returned from the
method in the id variable:

int id = 57;
id = smartIncrement(id); // Store the returned value in id
/* At this point id has a value of 59 */

Note that pass by value lets you pass multiple values from the caller environment to the method using multiple
parameters. Howevey, it lets you send back only one value from the method. If you just consider the parameters in a
method call, pass by value is a one-way communication. It lets you pass information from the caller to the method
using parameters. However, it does not let you pass back information to the caller through the parameters. Sometimes
you may want to send multiple values from a method to the caller’s environment through the parameters. In those
cases, you need to consider different ways to pass parameters to the method. The pass by value mechanism is of no
help in such situations.

A method that is used to swap two values does not work when the parameters are passed by values. Consider the
following code for a classical swap () method:

// Assume that x and y are passed by value
void swap(int x, int y) {

int temp = x;

X =Y;

y = temp;

225

CHAPTER 6 © CLASSES AND OBJECTS

You can call the above swap () method using the following snippet of code:

int u = 75;
int v = 53;
swap(u, v);
/*At this point, u and v will be still 75 and 53, respectively */

By this time, you should be able to figure out why the values of u and v were not swapped when they were passed
to the swap () method. When the swap () method was called, the values of u and v were copied to the locations of the
x and y formal parameters, respectively. Inside the swap() method, the values of the formal parameters x and y were
swapped and the values of actual parameters u and v were not touched at all. When the method call was over, the
formal parameters x and y were discarded.

The advantages of using pass by value are as follows:

e Itiseasytoimplement.
e Ifthe data being copied is a simple value, it is faster.

e The actual parameters are protected from any side effects when they are passed to the
method.

The disadvantages of using pass by value are as follows:

e Ifthe actual parameter is a complex data, such as a large object, it may be difficult, if not
impossible, to copy the data to another memory location.

e Copying alarge amount of data takes memory space and time, which may slow down the
method call.

Pass By Constant Value

Pass by constant value is essentially the same mechanism as pass by value with one difference that the formal
parameters are treated as constants, and hence, they cannot be changed inside the method’s body. The values of
actual parameters are copied to the formal parameters as is done in pass by value. You can only read the value of
formal parameters inside the method’s body if they are passed by constant value.

Pass By Reference

It is important that you do not confuse the phrases “reference” and “pass by reference.” A “reference” is a piece of
information (typically a memory address) that is used to get to the actual data stored at some other location. “Pass by
reference” is a mechanism to pass information from a caller’s environment to a method using formal parameters.

In pass by reference, the memory address of the actual parameter is passed and the formal parameter is mapped
(or associated) with the memory address of the actual parameter. This technique is also known as aliasing, where
multiple variables are associated with the same memory location. The formal parameter name is an alias for the
actual parameter name. When a person has two names, no matter which of the two names you use, you refer to
the same person. Similarly, when a parameter is passed by reference, no matter which name you use in the code
(the actual parameter name or the formal parameter name), you are referring to the same memory location and
hence the same data.

In pass by reference, if the formal parameter is modified inside the method, the actual parameter sees the
modification instantaneously. Figure 6-7 depicts the memory state for actual and formal parameters when a
parameter to a method is passed by reference.

226

CHAPTER 6 © CLASSES AND OBJECTS

Actual Parameter

Name
Actual Parameter Actual Parameter
| Address Value
1
|
]
F\\\\
oSS~
Formal Parameter | TN B L LR TR R
-~ - \
Name T~ Formal parameter is associated '
S with the address of actual '
, parameter in the beginning of the !
X method call !

Figure 6-7. Memory states of actual and formal parameters when the parameters are passed by reference

Many books use the phrase “pass by reference.” However, they do not mean the one we are discussing in this
section. They really mean “pass by reference value,” which I will discuss in the next section. Note that in pass by
reference, you do not allocate separate memory for the formal parameter. Rather, you just associate the formal
parameter name to the same memory location of the actual parameter.

Let’s do your increment () method call exercise again. This time, you assume that the num parameter is passed by
reference.

// Assume that num is passed by reference
void increment(int num) {

/* #2 ¥/

num = num + 2;

/* #3 */

You will call the increment () method with the following snippet of code:

int id = 57;
/* #1 %/
increment(id);
/* #4 */

Table 6-5 describes the memory states for the actual parameter and formal parameter, before, after, and during
the increment () method’s invocation. Note that at #4, the formal parameter num no longer exists in memory and still
the actual parameter id has the value of 59 after the method call is over.

227

CHAPTER 6 © CLASSES AND OBJECTS

Table 6-5. Description of Memory States for Actual and Formal Parameters When the increment() Method Is Called
and the Parameter Is Passed by Reference

Point of Memory State of Actual Parameter id Memory State of Formal Parameter num
Execution

#1 The id variable exists in memory and its value is 57. The num variable does not exist at this point.
#2 The id variable exists in memory and its value is 57. The formal parameter’s name, num, has been

associated with the memory address of actual
parameter id. At this point, num refers to value of
57, which is exactly the same as what id refers to.

#3 The id variable exists in memory and its value is 59. At this point, num holds value of 59.
Inside the method, you used the formal parameter
named num to increment the value by 2. However,
id and num are two names for the same memory
location and therefore, the value of id is also 59.

#4 The id variable exists in memory and its value is 59. The formal parameter named num does not
exist in memory at this point because method
call is over.

Pass by reference allows you to have two-way communication between the caller environment and the called
method. You can pass multiple parameters by reference to a method and the method can modify all parameters. All
modifications to formal parameters are reflected back to the caller’s environment instantaneously. It lets you share
multiple pieces of data between the two environments.

The classical swap () method example works when its parameters are passed by reference. Consider the following
swap () method’s definition:

// Assume that x and y are passed by reference
void swap(int x, int y) {
int temp = x;

X =Y;
y = temp;
}
You can call the above swap () method using the following snippet of code:
int u = 75;
int v = 53;

swap(u, v);
/* At this point, u and v will be 53 and 75, respectively. */

Let’s consider the following snippet of code for a method name getNumber ():

// Assume that x and y are passed by reference
int getNumber(int x, int y) {

int x = 3;

int y = 5;

int sum = x + y;

return sum;

228

CHAPTER 6 © CLASSES AND OBJECTS

Suppose you call the getNumber () method as follows:

int w = 100;
int s = getNumber(w, w);
/* What is value of s at this point: 200, 8, 10 or something else? */

When the getNumber () method returns, what value will be stored in the variable s? Note that both parameters
to the getNumber () method are passed by reference and you pass the same variable, w, for both parameters in your
call. When the getNumber () method starts executing, the formal parameters x and y are aliases to the same actual
parameter w. When you use w, X, ory, you are referring to the same data in memory. Before adding x and y, and storing
the result in the sumlocal variable, the method sets the value of y to 5, which makes w, x, and y all have a value of 5.
When x and y are added inside the method, both x and y refer to the value 5. The getNumber () method returns 10.
Let’s consider another call to the getNumber () method as a part of an expression, as follows:

int a = 10;

int b = 19;

int ¢ = getNumber(a, b) + a;

/* What is value of c at this point? */

It is little trickier to guess the value of c in the above snippet of code. You will need to consider the side effect
of the getNumber () method call on the actual parameters. The getNumber () method will return 8, and it will also
modify the value of a and b to 3 and 5, respectively. A value of 11 (8 + 3) will be assigned to c. Consider the following
statement in which you have changed the order of the operands for the addition operator:

int a = 10;

int b = 19;

int d = a + getNumber(a, b);

/* What is value of d at this point? */

The value of d will be 18 (10 + 8). The local value of 10 will be used for a. You need to consider the side effects
on actual parameters by a method call if the parameters are passed by reference. You would have thought that
expressions getNumber(a, b) + aanda + getNumber(a, b) would give the same results. However, when the
parameters are passed by reference, the result may not be the same, as I have explained above.

The advantages of using pass by reference are as follows:

e Itis more efficient, compared to pass by value, as actual parameters values are not copied.

e Itlets you share more than one piece of values between the caller and the called method
environments.

The disadvantages of using pass by reference are as follows:

e Itis potentially dangerous if the modification made to the actual parameters inside the called
method is not taken into consideration by the caller.

e The program logic is not simple to follow because of the side effects on the actual parameters
through formal parameters.

229

CHAPTER 6 * CLASSES AND OBJECTS

Pass By Reference Value

The mechanism of passing parameters to a method using a pass by reference value is different from that of pass by
reference. However, both mechanisms have the same effects. In the pass by reference value, the reference of the actual
parameter is copied to the formal parameter. The formal parameter uses a dereferencing mechanism to access the
actual parameter’s value. The modification made by the formal parameters inside the method is immediately visible
to the actual parameters, as is the case in pass by reference. Figure 6-8 depicts the memory states for the actual and
formal parameters when the pass by reference value mechanism is used.

Actual Parameter Actual Parameter Actual Parameter

formal parameter’s location

Name Address Value
| A -,
LTI T~ ' ' | Formal parameter uses :
[~——_ ! ' ' ;
! Actual parameter’s gt =1 ozo-- , derTfererfmlntg t(l) access tthe !
' reference is copied to ' . R value of actual parameter !
1 N ,
: !

[[
1 1

1]

N . 1 1
1 |

1 1

1

Actual Parameter

Formal
Parameter
Address

Formal Parameter

Name Address

Figure 6-8. Memory states for actual and formal parameters when a method call is made using pass by reference value
mechanism

There is an important difference between pass by reference and pass by reference values. In a pass by reference
value, the reference of the actual parameter is copied to the formal parameter as part of the method call. However,
you can change the formal parameter to refer to a different location in memory inside the method, which will not
make the actual parameter refer to the new location in memory. Once you change the reference stored in the formal
parameter, any changes made to the value stored at the new location will not change the value of the actual parameter.

The discussions and examples referring to the side effects and memory states for pass by reference also apply
to the pass by reference value mechanism. Most of the programming languages simulate the pass by reference
mechanism using pass by reference value.

Pass by Constant Reference Value

Pass by constant reference value is essentially the same as pass by reference value with one difference. The formal
parameter is treated as a constant inside the method body. That is, the formal parameter holds the copy of the
reference held by the actual parameter throughout the execution of the method. The formal parameter cannot be
modified inside the method’s body to hold reference of data other than what the actual parameter is referencing.

230

CHAPTER 6 © CLASSES AND OBJECTS

Pass by Result

You can think of pass by result as the opposite of pass by value. In pass by value, the value of the actual parameter
is copied to the formal parameter. In pass by result, the value of the actual parameter is not copied to the formal
parameter. The formal parameter is considered an uninitialized local variable when the method execution starts.
During the method execution, the formal parameter is assigned a value. At the end of the method execution, the value
of the formal parameter is copied back to the actual parameter.

Figure 6-9 depicts the memory state for the actual and formal parameters when the pass by result mechanism of
parameter passing is used.

Actual Parameter Actual Parameter Actual Parameter
Name Address Value

Formal parameter
value is copied to
actual parameter

[—

Formal
Formal Parameter Formal

Name

Parameter Parameter
Address Value

Figure 6-9. Memory states for actual and formal parameters when the pass by result parameter passing mechanism
is used

Sometimes the formal parameters are also known as OUT parameters when the pass by result mechanism is used.
They are called OUT parameters because they are used to copy out a value from the method to the caller’s environment.
Likewise, formal parameters are sometimes known as IN parameters if they uses the pass by value mechanism
because they are used to copy in the value of the actual parameter.

Pass by Value Result

Also known as pass by copy-restore, this is a combination of pass by value and pass by result (hence the name “pass
by value result”). It is also known as the IN-OUT way of passing parameters. When a method is called, the value of

the actual parameter is copied to the formal parameter. During the execution of the method, the formal parameter
operates on its own local copy of data. When the method call is over, the value of the formal parameter is copied back
to the actual parameter. This is the reason that it is also called pass by copy-restore. It copies the value of the actual
parameter in the beginning of the method call and restores the value of formal parameter in the actual parameter at
the end of the method call. Figure 6-10 depicts the memory state of actual and formal parameters when the pass by
value result mechanism is used to pass parameters.

231

CHAPTER 6 * CLASSES AND OBJECTS

Actual Parameter Actual Parameter Actual Parameter ’ i
Name Address Actual parameter value is

copied to formal parameter
when method is called.
Formal parameter value is
copied back to actual
parameter when method

. | : returns. K
ormal
Formal Parameter Actual Parameter NN e emeeeo_ - -7
Name Parameter ctuavale:] : ete

Address

Figure 6-10. Memory states for actual and formal parameters when the pass by result parameter passing mechanism
is used

It achieves the effect of pass by reference in a different way. In pass by reference, any modification made to the
formal parameter is visible to the actual parameter immediately. In a pass by value result, any modification to the
formal parameter is visible to the actual parameter only when the method call returns. If the formal parameter, which
uses a pass by value result, is modified multiple times inside a method, only the final modified value will be seen by
the actual parameter.

A pass by value result is used to simulate a pass by reference in distributed applications. Suppose you make a
remote method call, which executes on a different machine. The reference (memory address) of the actual parameter,
which exists in one machine, will not make any sense in the machine on which the remote method is executed. In
such cases, the client application sends a copy of the actual parameter to the remote machine. The value copied to the
formal parameter is on the remote machine. The formal parameter operates on the copy. When the remote method
call returns, the value of the formal parameter on the remote machine is copied back to the actual parameter on the
client machine. This gives the client code the functionality of passing parameters by reference to remote methods that
run on another machine.

Pass By Name

Typically, the actual parameter expression is evaluated before its value/reference is passed to a method. In pass by
name, the actual parameter’s expressions are not evaluated when a method is called. The formal parameter’s name
inside the body of the method is substituted textually with the expressions of their corresponding actual parameters.
Actual parameters are evaluated each time they are encountered during the execution of the method and they are
evaluated in the caller’s context, not the method’s context. If there is a name conflict between the local variables in
the method and the actual parameter expression during substitution, the local variables are renamed to give every
variable a unique name.

Pass by name is implemented using thunks. A thunk is a piece of code that computes and returns the value of
an expression in a specific context. A thunk is generated for each actual parameter and its reference is passed to the
method. At each use of a formal parameter, a call to thunk is made, which evaluates the actual parameter in the
caller context.

The advantage of pass by name is that the actual parameters are never evaluated unless they are used in the
method. This is also known as lazy evaluation. Contrast it with the pass by value mechanism, where actual parameters
are always evaluated before they are copied to the formal parameter. This is called eager evaluation. The disadvantage
of pass by name is that the actual parameters are evaluated every time the corresponding formal parameters are used
inside the method’s body. It is also harder to follow the logic of a method if it uses the pass by name formal parameter,
which can also have side effects.

232

CHAPTER 6 © CLASSES AND OBJECTS

Consider the following declaration for a method squareDivide():

int squareDivide(int x, int y) {
int z = x * x/y *y;
return z;

Consider the following snippet of code that calls the squareDivide() method:
squareDivide((4+4), (2+2));

You can visualize the execution of the above call as if you have written the squareDivide () method as follows.
Note that the actual argument expressions of (2+2) and (4+4) are evaluated multiple times inside the method’s body.

int squareDivide() {
int z = (4+4)*(4+4)/(2+2)*(2+2);
return z;

Pass by Need

Pass by need is similar to pass by name with one difference. In pass by name, actual parameters are evaluated each
time they are used in the method. In pass by need, the actual parameters are evaluated only once upon their first use.
When a thunk for an actual parameter is called for the first time, it evaluates the actual parameter expression, caches
the value and returns it. When the same thunk is called again, it simply returns the cached value, rather than
re-evaluating the actual parameter expression again.

Parameter Passing Mechanisms in Java

Java supports two kinds of data types: primitive data type and reference data type. A primitive data type is a simple
data structure and it has only one value associated with it. A reference data type is a complex data structure and it
represents an object. A variable of a primitive data type stores the value directly at its memory address. Suppose you
have an int variable id. Further suppose it has been assigned a value of 754 and its memory address is 131072.

int id = 754;

Figure 6-11 shows the memory state of the id variable.

id > 131072 754

Variable name Memory address Value stored at the address

Figure 6-11. The memory state for an id variable when its value is 754

233

CHAPTER 6 * CLASSES AND OBJECTS

The value 754 is directly stored at the memory address 131072, which is associated with the id variable name.
What happens if you execute the following statement, which assigns a new value of 351 to the id variable?

id = 351;

When a new value 351 is assigned to the id variable, the old value of 754 is replaced with the new value at the
memory address as shown in Figure 6-12.

id —> 131072 351

Variable name Memory address Value stored at the address

Figure 6-12. The memory state for an id variable when a new value of 351 is assigned to it

Things are different when you work with objects and reference variables. Let’s consider the declaration of a Car
class as shown in Listing 6-21. It has three instance variables: model, year, and price, which have been given initial
values of "Unknown", 2000, and 0.0, respectively.

Listing 6-21. Car Class with Three Public Instance Variables

// Car.java
package com.jdojo.cls;

public class Car {
public String model = "Unknown";
public int year = 2000;
public double price = 0.0;

When you create an object of a reference type, the object is created on the heap and it is stored at a specific
memory address. Let’s create an object of the Car class as follows:

new Car();
Figure 6-13 shows the memory state when the above statement is executed to create a Car object. You probably
assumed that the memory address where the object is stored is 262144. Notice that when an object is created, memory

is allocated for all of its instance variables and they are initialized. In this case, model, year, and price of the new Car
object have been initialized properly, as shown in the figure.

234

CHAPTER 6 © CLASSES AND OBJECTS

model Unknown
262144 year 2000
price 0.0
Memory address Object stored at the address

Figure 6-13. Memory state when a Car object is created using the new Car() statement

At this point, there is no way to refer to the newly created Car object from a Java program even though it exists in
memory. The new operator (as used in new Car()) returns the memory address of the object it creates. In your case, it
will return 262144. Recall that the memory address of the data (the Car object, in your case) is also called as reference
of that data. From now onwards you will say that the new operator in Java returns a reference to the object it creates
instead of saying that it returns the memory address of the object. Both mean the same thing. However, Java uses the
term “reference,” which has a more generic meaning than “memory address.” In order to access the newly created Car
object, you must store its reference in a reference variable. Recall that a reference variable stores the reference to some
data, which is stored somewhere else. All variables that you declare of reference type are reference variables in Java.

A reference variable in Java can store a null reference, which means that it refers to nothing. Consider the following
snippet of code that performs different things on reference variables:

Car myCar = null; /* #1 */
myCar = new Car(); /* #2 */
Car xyCar = null; /* #3 */
xyCar = myCar; /* $4 */

When the statement labeled #1 is executed, memory is allocated for myCar reference variable, say at memory
address 8192. The null value is a special value, typically a memory address of zero, which is stored at the memory

address of the myCar variable. Figure 6-14 depicts the memory state for the myCar variable when it is assigned a
null reference.

myCar [—> 8192 n

Figure 6-14. Memory state for the myCar variable, when the “Car myCar = null” statement is executed

The execution of statement labeled #2 is a two-step process. First, it executes the new Car() part of the statement
to create a new Car object. Suppose the new Car object is allocated at memory address of 9216. The new Car()
expression returns the reference of the new object, which is 9216. In the second step, the reference of the new object is
stored in myCar reference variable. The memory state for the myCar reference variable and the new Car object after the
statement labeled #2 is executed is shown in Figure 6-15. Note that the memory address of the new Car object (9216)
and the value of the myCar reference variable match at this point. You do not need to worry about the numbers used
in this example for memory addresses; I just made up some numbers to drive home the point of how the memory
addresses are used internally. Java does not let you access the memory address of an object or a variable. Java lets you
access/modify the state of objects through reference variables.

235

CHAPTER 6 * CLASSES AND OBJECTS

model Unknown
myCar ——>| 8192 year 2000
price 0.0
The reference variable, myCar, stores reference of Car Car object

object

Figure 6-15. Memory states for the myCar reference variable and the new Car object when the myCar = new Car()
statement is executed

The statement labeled #3 is similar to the statement labeled #1. The memory state for the xyCar reference
variable is shown in Figure 6-16, assuming that 10240 is the memory address for the xyCar reference variable.

e 10240 @

Figure 6-16. Memory state of xyCar reference variable

It is interesting to note the memory state when the statement labeled #4 is executed. The statement reads
as follows:

xyCar = myCar; /* #4 */

Recall that a variable name has two things associated with it: a memory address and a value stored at that
memory address. The memory address (or location) is also known as its 1value whereas the value stored at its
memory address is also called rvalue. When a variable is used to the left of an assignment operator (xyCar in
statement labeled #4), it refers to its memory address. When a variable is used to the right of assignment operator
(myCar in statement labeled #4), it refers to its value (rvalue) stored at its memory address. The statement labeled #4
can be read as follows:

xyCar = myCar; /* #4 */
At lvalue of xyCar store rvalue of myCar; /* #4 - another way */
At memory address of xyCar store value of myCar /* #4 - another way */

Therefore, when you execute the statement xyCar = myCar, it reads the value of myCar, which is 9216, and stores
it at the memory address of xyCar. The reference variable myCar stores a reference to a Car object. An assignment like
xyCar = myCar does not copy the object to which myCar refers. Rather, it copies the value stored in myCar (a reference
to the Car object) to xyCar. When the assignment xyCar = myCar is complete, the reference variables of myCar and
xyCar have reference to the same Car object in memory. At this point, only one Car object exists in memory.

Figure 6-17 shows the memory state when statement labeled #4 is executed.

236

CHAPTER 6 © CLASSES AND OBJECTS

model Unknown
9216 year 2000
price 0.0
xyCar 10240 9216

Figure 6-17. Memory state showing myCar and xyCar referencing the same Car object in memory

At this time, you can use reference variables myCar or xyCar to access the Car object in memory. The following
snippet of code will access the same object in memory:

myCar.model = "Civic LX"; /* Use myCar to change model */
myCar.year 1999; /* Use myCar to change year */
xyCar.price = 16000.00; /* Use xyCar to change the price */

After executing the above three statements, model, year, and price will be changed for the Car object and the
memory state will look as shown in Figure 6-18.

mycar
model Civic LX
year 1999
price 16000.0
xyCar 10240 9216

Figure 6-18. Memory state showing myCar and xyCar referencing the same Car object in memory after myCar and
xyCar have been used to change the state of the Car object

At this point, two reference variables myCar and xyCar and one Car object exist in memory. Both reference
variables are referencing the same Car object. Let’s execute the following statement and label it as #5:
myCar = new Car(); /* #5 */

The above statement will create a new Car object in memory with initial values for its instance variables and
assign the reference of the new Car object to the myCar reference variable. The xyCar reference variable still references

the Car object it was referencing before. Suppose the new Car object has been allocated at memory address 5120. The
memory state for two reference variables myCar and xyCar and two Car objects is shown in Figure 6-19.

237

CHAPTER 6 * CLASSES AND OBJECTS

model Unknown
myCar —> 8192 year 2000
price 0.0
-
model Civic LX
year 1999
xyCar price 16000.0
J
Figure 6-19. Memory state of reference variables myCar and xyCar and two Car objects
Let’s make one more change and set the xyCar reference variable to null as shown:
xyCar = null; /* #6 */
Figure 6-20 shows the memory state after statement #6 is executed.
(
r N model Unknown
year 2000
myCar 8192 5120 > orice 00
N
-
model Civic LX
w | | year 1999
xCar [@ 9216 P price 16000.0
N7
- J

Figure 6-20. Memory state of reference variables myCar and xyCar and two Car objects after xyCar has been assigned
a null reference

Now the xyCar reference variable stores a null reference and it no longer refers to any Car object. The Car object
with Civic LX model is not being referenced by any reference variable. You cannot access this Car object at all in your
program because you do not have a reference to it. In Java terminology, the Car object with the Civic LX modelis
not reachable. When an object in memory is not reachable, it becomes eligible for garbage collection. Note that the
Car object with the Civic LX modelis not destroyed (or deallocated) immediately after xyCar is set to null. It stays in
memory until the garbage collector runs and makes sure that it is not reachable. Please refer to the chapter on garbage
collection for more details on how an object’s memory is deallocated.

I have covered enough background about variables types and how they work in Java. It is time to discuss the
parameter passing mechanism in Java. In brief, we can state

All parameters in Java are passed by value.

238

CHAPTER 6 © CLASSES AND OBJECTS

This brief statement causes a lot of confusion. Does it mean that when a parameter is a reference type, a copy of
the object the actual parameter refers to is made and assigned to the formal parameter? It is important to elaborate on
the phrase “All parameters in Java are passed by value” with examples. Even veteran Java programmers have problems
understanding the parameter passing mechanism in Java. To be more elaborate, Java supports the following four types
of parameter passing mechanisms:

e Passbyvalue

e Pass by constant value

e Pass byreference value

e Pass by constant reference value

Note that all four ways of passing parameters in Java includes the word “value.” This is the reason that many
books on Java summarize them as “Java passes all parameters by value.” Please refer to the previous section for more
details for the above-mentioned four types of parameter passing mechanisms.

The first two types, pass by value and pass by constant value, apply to parameters of primitive data types. The last
two types, pass by reference value and pass by constant reference value, apply to the parameters of reference type.

When a formal parameter is of a primitive data type, the value of the actual parameter is copied to the formal
parameter. Any changes made to the formal parameter’s value inside the method’s body will change only the copy
of the formal parameter and not the value of the actual parameter. Now you can tell that swap () method to swap
two primitive values will not work in Java. Listing 6-22 demonstrates that swap() method cannot be written in Java
because primitive type parameters are passed by value. The output shows that the x and y formal parameters of the
swap () method receive the values of a and b. The values of x and y are swapped inside the method, which does not
affect the values of actual parameters a and b at all.

Listing 6-22. An Incorrect Attempt to Write a swap() Method to Swap Values of Two Primitive Types in Java

// BadSwapTest.java
package com.jdojo.cls;

public class BadSwapTest {
public static void swap(int x, int y) {

System.out.println("#2: x =" + x + ", y =" +y);

int temp = x;

X =Y;

y = temp;

System.out.println("#3: x =" + x + ", y =" +y);
}

public static void main(String[] args) {
int a = 19;
int b = 37;

System.out.println("#1: a =" +a+ ", b =" + b);

// Call the swap() method to swap values of a and b
BadSwapTest.swap(a, b);

System.out.println("#4: a =" +a+ ", b =" + b);

239

CHAPTER 6 © CLASSES AND OBJECTS

#1: a =19, b = 37
#2: x =19, y = 37
#3: x =37,y =19
#4: a =19, b = 37

A primitive type parameter is passed by value. However, you can modify the value of the formal parameter
inside the method without affecting the actual parameter value. Java also lets you use pass by constant value. In this
case, the formal parameter cannot be modified inside the method. The formal parameter is initialized with the value
of the actual parameter by making a copy of the actual parameter and then it is a constant value, which can only
be read. You need to use the final keyword in the formal parameter declaration to indicate that you mean to pass
the parameter by constant value. Any attempt to change the value of a parameter, which uses pass by constant value,
results in a compiler error. Listing 6-23 demonstrates how to use the pass by constant value mechanism to pass the
parameter X to the test() method. Any attempt to change the value of the formal parameter x inside the test()
method will result in a compiler error. If you uncomment the "x = 10;" statement inside the test() method, you
would get the following compiler error:

Error(10): final parameter x may not be assigned

You have passed two parameters, x and y, to the test() method. The parameter y is passed by value, and hence it
can be changed inside the method. This can be confirmed by looking at the output.

Listing 6-23. An Example of Pass by Constant Value

// PassByConstantValueTest.java
package com.jdojo.cls;

public class PassByConstantValueTest {
// x uses pass by constant value and y uses pass by value
public static void test(final int x, int y) {

System.out.println("#2: x =" + x + ", y =" +y);

/* Uncommenting following statement will generate a compile-time error */
// x = 79; /* Cannot change x. It is passed by constant value */

y = 223; // Ok to change y

System.out.println("#3: x = "+ x + ", y = " +y);
}
public static void main(String[] args) {

int a = 19;

int b = 37;

System.out.println("#1: a =" +a+ ", b =" + b);
PassByConstantValueTest.test(a, b);
System.out.println("#4: a =" +a+ ", b =" + b);

240

CHAPTER 6 © CLASSES AND OBJECTS

#1: a =19, b = 37
#2: x =19, y = 37
#3: x =19, y = 223
#4: a =19, b = 37

Let’s discuss the parameter passing mechanism for reference type parameters. Java lets you use the pass by
reference value and pass by constant reference value mechanisms to pass reference type parameters to a method.
When a parameter is passed by reference value, the reference stored in the actual parameter is copied to the formal
parameter. When the method starts executing, both the actual parameter and the formal parameter refer to the same
object in memory. If the actual parameter has a null reference, the formal parameter will contain the null reference.
You can assign a reference to another object to the formal parameter inside the method’s body. In this case, the formal
parameter starts referencing the new object in memory and the actual parameter still references the object it was
referencing before the method call. Listing 6-24 demonstrates the pass by reference mechanism in Java. It creates a
Car object inside the main() method and stores the reference of the Car object in myCar reference variable.

// Create a Car object and assign its reference to myCar
Car myCar = new Car();

It modifies the model, year, and price of the newly created Car object using myCar reference variable.

// Change model, year and price of Car object using myCar
myCar.model = "Civic LX";

myCar.year 1999;

myCar.price = 16000.0;

The message labeled #1 in the output shows the state of the Car object. The myCar reference variable is passed to
the test() method using the following call:

PassByReferenceValueTest.test(myCar);

Since the type of the formal parameter xyCar in the test() method is Car, which is a reference type, Java
uses the pass by reference value mechanism to pass the value of the myCar actual parameter to the xyCar formal
parameter. When the test(myCar) method is called, Java copies the reference of the Car object stored in the myCar
reference variable to the xyCar reference variable. When the execution enters the test() method’s body, myCar and
xyCar reference the same object in memory. At this time, there is only one Car object in memory and not two. It is
very important to understand that the test(myCar) method call did not make a copy of the Car object referenced by
the myCar reference variable. Rather, it made a copy of the reference (memory address) of the Car object referenced
by the myCar reference variable, which is the actual parameter, and copied that reference to the xyCar reference
variable, which is the formal parameter. The fact that both myCar and xyCar reference the same object in memory
isindicated by the message labeled #2 in the output, which is printed using the xyCar formal parameter inside the
test() method.

Now you create a new Car object and assign its reference to the xyCar formal parameter inside the test()
method.

// Let's make xyCar refer to a new Car object
xyCar = new Car();

241

CHAPTER 6 © CLASSES AND OBJECTS

At this point, there are two Car objects in memory. The xyCar formal parameter references the new Car object
and not the one whose reference was passed to the method. Note that the actual parameter myCar still references the
Car object that you created in the main() method. The fact that the xyCar formal parameter references the new Car
object is indicated by the message labeled #3 in the output. When the test() method call returns, the main() method
prints details of the Car object being referenced by the myCar reference variable. See Listing 6-24.

Listing 6-24. An Example of a Pass by Reference Value

// PassByReferenceValueTest.java
package com.jdojo.cls;

public class PassByReferenceValueTest {
public static void main(String[] args) {
// Create a Car object and assign its reference to myCar
Car myCar = new Car();

// Change model, year and price of Car object using myCar
myCar.model = "Civic LX";

myCar.year = 1999;

myCar.price = 16000.0;

System.out.println("#1: model = " + myCar.model +

", year = + myCar.year +

", price = + myCar.price);
PassByReferenceValueTest.test(myCar);

System.out.println("#4: model = " + myCar.model +

", year = " + myCar.year +
", price = "+ myCar.price);
}
public static void test(Car xyCar) {
System.out.println("#2: model = " + xyCar.model +
", year = " + xyCar.year +
", price = "+ xyCar.price);
// Let’s make xyCar refer to a new Car object
xyCar = new Car();
System.out.println("#3: model = " + xyCar.model +
", year = " + xyCar.year +
", price = "+ xyCar.price);
}
}
#1: model = Civic LX, year = 1999, price = 16000.0
#2: model = Civic LX, year = 1999, price = 16000.0

#3: model = Unknown, year = 2000, price = 0.0
#4: model = Civic LX, year = 1999, price = 16000.0

242

CHAPTER 6 © CLASSES AND OBJECTS

Tip When a reference type parameter is passed to a method in Java, the formal parameter can access the object the
same way the actual parameter can access the object. The formal parameter can modify the object by directly changing
the values of the instance variables or by calling methods on the object. Any modification made on the object through
the formal parameter is immediately visible through the actual parameter because both hold the reference to the same
object in memory. The formal parameter itself can be modified to reference another object (or the null reference) inside
the method.

If you do not want the method to change the reference type formal parameter to reference a different object than
the one referenced by the actual parameter, you can use the pass by constant reference value mechanism to pass that
parameter. If you use the keyword final in the reference type formal parameter declaration, the parameter is passed by
constant reference value and the formal parameter cannot be modified inside the method. The following declaration
of the test () method declares the xyzCar formal parameter as final and it is passed by constant reference value. The
method attempts to change the xyzCar formal parameter by assigning a null reference to it and then by assigning a
reference to a new Car objects. Both of these assignment statements will generate a compiler error:

// xyzCar is passed by constant reference value because it is declared final
void test(final Car xyzCar) {

// Can read the object referenced by xyzCar

String model = xyzCar.model;

// Can modify object referenced by xyzCar
xyzCar.year = 2001;

/* Cannot modify xzyCar. That is, xyzCar must reference the object what the actual
parameter is referencing at the time this method is called. You cannot even set it to
null reference. */

xyzCar = null; // A compile-time error. Cannot modify xyzCar

xyzCar = new Car(); // A compile-time error. Cannot modify xyzCar

Let’s discuss one more example on parameter passing mechanism in Java. Consider the following code for the
changeString() method:

public static void changeString(String s2) {
/* #2 */
S2 = S2 +
/* #3 */

there";

Consider the following snippet of code that calls the changeString() method:

String s1 = "hi";
/* #1 %/
changeString(s1);
/* #4 */

243

CHAPTER 6 © CLASSES AND OBJECTS

What will be the content of s1 at #4? String is a reference type in Java. At #1, s1 is referencing a String object
whose content is "hi". When the changeString(s1) method is called, s1 is passed to s2 by reference value. At #2,
s1 and s2 are referencing the same String object in memory whose contentis "hi". Whens2 = s2 + " there"
statement is executed, two things happens. First, s2 + " there" expression is evaluated, which creates a new String
object in memory with content of "hi there" returns its reference. The reference returned by the s2 + " there"
expression is assigned to s2 formal parameter. At this time, there are two String objects in memory: one with the
content of "hi" and another with the content of "hi there". At #3, the actual parameter s1 is referencing the String
object with the content of "hi" and the formal parameter s2 is referencing the String object with content "hi there".
When the changeString() method call is over, the formal parameter s2 is discarded. Note that the String object with
content "hi there" still exists in memory after the changeString() method call is over. Only the formal parameter
is discarded when a method call is over and not the object to which the formal parameter was referencing. At #4,
the reference variable s1 still refers to the String object with content "hi". Listing 6-25 has the complete code that
attempts to modify a formal parameter of String type.

Listing 6-25. Another Example of Pass by Reference Value Parameter Passing in Java

// PassByReferenceValueTest2.java
package com.jdojo.cls;

public class PassByReferenceValueTest2 {
public static void changeString(String s2) {
System.out.println("#2: s2 = " + s2);
s2 = s2 + " there";
System.out.println("#3: s2 = " + s2);

}

public static void main(String[] args) {
String s1 = "hi";
System.out.println("#1: s1 = " + s1);
PassByReferenceValueTest2.changeString(s1);

System.out.println("#4: s1 = " + s1);
}
}
#1: s1 = hi
#2: s2 = hi
#3: s2 = hi there
#4: s1 = hi

Tip A String object is immutable, meaning that its content cannot be changed after it is created. If you need to
change the content of a String object, you must create a new String object with the new content.

244

CHAPTER 6 © CLASSES AND OBJECTS

Constructors

A constructor is a named block of code that is used to initialize an object of a class immediately after the object is
created. The structure of a constructor looks similar to a method. However, the similarity between the two stops right
there, in their looks. They are two different constructs and they are used for different purposes.

Declaring a Constructor

The general syntax for a constructor declaration is

<<Modifiers>> <<Constructor Name>>(<<parameters list>>) throws <<Exceptions list>> {
// Body of constructor goes here
}

The declaration of a constructor starts with modifiers. A constructor can have its access modifier as public,
private, protected, or package-level (no modifier). The constructor name is the same as the simple name of the
class. The constructor name is followed by a pair of opening and closing parentheses, which may include parameters.
Optionally, the closing parenthesis may be followed by the keyword throws, which in turn is followed by a comma-
separated list of exceptions. I will discuss the use of the keyword throws in chapter 9. The body of the constructor
where you place your code is enclosed in braces.

If you compare the syntax to declare a method with the syntax to declare a constructor, you will find that they are
almost the same. It is suggested to keep the method declaration in mind when learning about constructor declaration
because most of the things are similar.

The following code shows an example of declaring a constructor for a class Test. Figure 6-21 shows the anatomy
of the constructor.

Name of the class and name of
constructor must match

public class Test {

Access level
Meonstcor . >public Test() contincto g
// Code goes here / within braces
}

}

Figure 6-21. Anatomy of the constructor for the Test class

// Test.java
package com.jdojo.cls;

public class Test {

public Test() {
// Code goes here
}

245

CHAPTER 6 * CLASSES AND OBJECTS

Tip The name of a constructor must match the simple name, not the fully qualified name, of the class.

Unlike a method, a constructor does not have a return type. You cannot even specify void as a return type for a
constructor. Consider the following declaration of a class Test2:

public class Test2 {
// Below is a method, not a constructor.
public void Test2() {
// Code goes here
}

Does the class Test2 declare a constructor? The answer is no. The class Test2 does not declare a constructor.
Rather, what you may be looking at is a method declaration, which has the same name as the simple name of the class.
It is a method declaration because it specifies a return type of void. Note that a method name could also be the same
as the class name as shown above.

Just the name itself does not make a method or constructor. If the name of a construct is the same as the simple
name of the class, it could be a method or a constructor. If it specifies a return type, it is a method. If it does not specify
areturn type, it is a constructor.

When do you use a constructor? You use a constructor with the new operator to initialize an instance (or an
object) of a class just after the new instance is created. Sometimes the phrases “create” and “initialize” are used
interchangeably in the context of a constructor. However, you need to be clear about the difference in creating and
initializing an object. The new operator creates an object and a constructor initializes the object.

The following statement uses a constructor of the Test class to initialize an object of the Test class:

Test t = new Test();

Figure 6-22 shows the anatomy of the above statement. The new operator is followed by the call to the constructor.
The new operator along with the constructor call, for example "new Test()", is called an instance (or object) creation
expression. An instance creation expression creates an object in memory, executes the code in the body of the
specified constructor, and finally, returns the reference of the new object.

Returns reference of the
4 newly created object

Testt = new Test() ;
T \
The new operator A call to constructor

Figure 6-22. Anatomy of a constructor call with the new operator

I have covered enough theories for declaring a constructor. It is time to see a constructor in action. Listing 6-26
has the code for a Cat class.

246

CHAPTER 6 © CLASSES AND OBJECTS

Listing 6-26. A Cat Class with a Constructor

// Cat.java
package com.jdojo.cls;

public class Cat {
public Cat() {
System.out.println("Meow...");
}

The Cat class declares a constructor. Inside the constructor’s body, it prints a message "Meow. . . " in the standard
output. Listing 6-27 has the code for a CatTest class, which creates two Cat objects in its main() method. Note
that you always use an object creation expression to create a new object of the Cat class. It is up to you to store the
reference of the new object in a reference variable. The first Cat object is created and its reference is not stored. The
second Cat object is created and its reference is stored in a reference variable c.

Listing 6-27. A Test Class That Creates Two of the Cat Objects

// CatTest.java
package com.jdojo.cls;

public class CatTest {
public static void main(String[] args) {
// Create a Cat object and ignore its reference
new Cat();

// Create another Cat object and store its reference in c
Cat c = new Cat();

}
}
Meow. ..
Meow. ..

Overloading a Constructor

A class can have more than one constructor. If a class has multiple constructors, they are called overloaded
constructors. Since the name of the constructor must be the same as the simple name of the class, there is a need

to differentiate one constructor from another. The rules for overloaded constructors are the same as for overloaded
methods. If a class has multiple constructors, all of them must differ from the others in the number, order, or type of
parameters. Listing 6-28 has the code for a Dog class, which declares two constructors. One constructor accepts no
parameters and another accepts a String parameter.

247

CHAPTER 6 © CLASSES AND OBJECTS

Listing 6-28. A Dog Class with Two Constructors, One with No Parameter and One with a String Parameter

// Dog.java
package com.jdojo.cls;

public class Dog {
// Constructor #1
public Dog() {
System.out.println("A dog is created.");
}

// Constructor #2
public Dog(String name) {

System.out.println("A dog named " + name +
}

is created.");

If a class declares multiple constructors, you can use any of them to create an object of that class. For example,
the following two statements create two objects of the Dog class:

Dog dogl
Dog dog2

new Dog();
new Dog("Cupid");

The first statement uses the constructor with no parameters and the second one uses the constructor with a
String parameter. If you use a constructor with parameters to create an object, the actual parameter’s order, type and
number must match the formal parameter’s order, type and number. Listing 6-29 has the complete code that creates
two Dog objects using different constructors.

Listing 6-29. Testing the Constructors of the Dog Class

// DogTest.java
package com.jdojo.cls;

public class DogTest {
public static void main(String[] args) {
Dog d1 = new Dog(); // Uses Constructor #1
Dog d2 = new Dog ("Canis"); // Uses Constructor #2

A dog is created.
A dog named Canis is created.

The output of running the DogTest class indicates that different constructors are called when two Dog objects are
created in the main() method.

248

CHAPTER 6 © CLASSES AND OBJECTS

Tip A constructor is called once per object creation expression. You can execute the code for one constructor only
once in the process of an object creation. If the code for a constructor is executed N times, it means N number of objects
of that class will be created and you must use N number of object creation expressions to do that. However, when an
object creation expression calls a constructor, the called constructor may call another constructor from its body. | will
cover this scenario where one constructor calls another later in this section.

Writing Code for a Constructor

So far, you have been writing trivial code in constructors. What kind of code should you write in a constructor? The
purpose of a constructor is to initialize the instance variables of the newly created object. Inside a constructor, you
should restrict yourself only to write code that initializes instance variables of the object. An object is not fully created
when a constructor is called. The object is still in the process of creation. If you write some processing logic in a
constructor assuming that a full blown object exists in memory, sometimes you may get unexpected results.

Let’s create another class to represent a dog object. You will call this class SmartDog, as shown in Listing 6-30.

Listing 6-30. A SmartDog Class That Declares Two Constructors to Initialize Instance Variables Differently

// SmartDog.java
package com.jdojo.cls;

public class SmartDog {
private String name;
private double price;

public SmartDog() {
// Initialize the name to "Unknown" and the price to 0.0
this.name = "Unknown";
this.price = 0.0;

System.out.println("Using SmartDog() constructor");

}

public SmartDog(String name, double price) {
// Initialize name and price instance variables
// with the name and price parameters
this.name = name;
this.price = price;

System.out.println("Using SmartDog(String, double) constructor");
}

public void bark() {
System.out.println(name +
}

is barking...");

public void setName(String name) {
this.name = name;
}

249

CHAPTER 6 © CLASSES AND OBJECTS

public String getName() {
return this.name;
}

public void setPrice(double price) {
this.price = price;
}

public double getPrice() {
return this.price;
}

public void printDetails(){
System.out.print("Name:
if (price » 0.0) {
System.out.println(", price:
}

else {

}

+ this.name);

+ this.price);

System.out.println(", price: Free");

The SmartDog class looks a little bigger. However, its logic is very simple. The following are the main points in the
SmartDog class that you need to understand:

e Itdeclares two instance variables called name and price. The name instance variable stores the
name of a smart dog. The price instance variable stores the price for which it can be sold.

e Itdeclares two constructors. The first constructor has no parameters. It initializes the name
and price instance variables to Unknown and 0.0, respectively. The second constructor accepts
two parameters named name and price. It initializes the name and price instance variables to
whatever values are passed for the two parameters. Note the use of the keyword this inside
the constructors. The keyword this refers to the object for which the constructor’s code is
executing. The use of the keyword this is not necessary in the first constructor. However, you
must use the keyword this to refer to instance variables in the second constructor because the
names of the formal parameters hide the name of the instance variables.

e The two constructors initialize instance variables (or state of the object) in their bodies. They
do not include any other processing logic.

e The instance method bark() prints a message on the standard output with the name of the
smart dog who is barking.

e The setName() and getName () methods are used to set and get the name of the smart dog. The
setPrice() and getPrice() methods are used to set and get the price of the smart dog.

e TheprintDetails() method prints the name and price of a smart dog. If the price for a smart
dog is not set to a positive value, it prints the price as "Free".

Listing 6-31 has the code for a SmartDogTest class that demonstrates how the two constructors initialize the
instance variables.

250

CHAPTER 6

Listing 6-31. A Test Class to Demonstrate the Use of the SmartDog Class

// SmartDogTest.java
package com.jdojo.cls;

public class SmartDogTest {

public static void main(String[] args) {

// Create two SmartDog objects
SmartDog sd1 = new SmartDog();
SmartDog sd2 = new SmartDog(“"Nova", 219.2);

// Print details about the two dogs
sdl.printDetails();
sd2.printDetails();

// Make them bark
sd1.bark();
sd2.bark();

// Change the name and price of Unknown dog
sd1.setName("Opal");
sd1l.setPrice(321.80);

// Print details again
sd1.printDetails();
sd2.printDetails();

// Make them bark one more time
sd1.bark();
sd2.bark();

Using SmartDog() constructor

Using SmartDog(String, double) constructor
Name: Unknown, price: Free

Name: Nova, price: 219.2

Unknown is barking...

Nova
Name

Name:

Opal
Nova

is barking...
: Opal, price: 321.8
Nova, price: 219.2
is barking...
is barking...

CLASSES AND OBJECTS

251

CHAPTER 6 © CLASSES AND OBJECTS

Calling a Constructor from another Constructor

A constructor may call another constructor of the same class. Let’s consider the following Test class. It declares two
constructors; one accepts no parameters and one accepts an int parameter.

public class Test {
Test() {

}

Test(int x) {

Suppose you want to call the constructor with an int parameter from the constructor with no parameter. Your
first attempt, which is wrong, would be as follows:

public class Test {
Test() {
// Call another constructor
Test(103); // A compile-time error

}

Test(int x) {

The above code does not compile. Java has a special way to call a constructor from another constructor. You
must use the keyword this, as if it is the name of the constructor, to call a constructor from another constructor.
The following code calls the constructor with an int parameter from the constructor with no parameter using the
statement, “this(103);". This is another use of the keyword this.

public class Test {
Test() {
// Call another constructor
this(103); // OK. Note the use of the keyword this.

}

Test(int x) {

There are two rules about calling a constructor from another constructor. The rules ensure that one constructor is
executed only once during the process of an object creation of a class.

e Ifa constructor calls another constructor, it must be the first executable statement in the
constructor’s body. This makes it easy for the compiler to check that a constructor has been
called and it has been called only once. For example, the following code will generate a
compiler error because a call to the constructor with int parameter this (k) is the second
statement inside the constructor’s body, not the first statement.

252

CHAPTER 6 © CLASSES AND OBJECTS

public class Test {
Test() {
int k = 10; // First statement
this(k); // Second statement. A compile-time error

}

Test(int x) {

}

An attempt to compile the code for the above Test class will generate the following error
message:

Error(4): call to this must be first statement in constructor

e A constructor cannot call itself because it will result in a recursive call. In the following code
for the Test class, both constructors attempt to call themselves:

public class Test {
Test() {
this();
}

Test(int x) {
this(10);
}

}

An attempt to compile the above code will result in the following error. One error message is
generated for each attempt to call the constructor itself.

Error(2): recursive constructor invocation
Error(6): recursive constructor invocation

Typically, you create overloaded constructors for a class when you have many ways to initialize an object of a
class. Let’s consider the SmartDog class shown in Listing 6-30. Two constructors give you two ways to initialize a new
SmartDog object. The first one initializes the name and the price with default values. The second constructor lets you
initialize name and price with the value supplied by the caller. Sometimes you may perform some logic to initialize the
object inside a constructor. Letting you call another constructor from a constructor allows you to write such logic only
once. You can make use of this feature for your SmartDog class, as shown:

// SmartDog.java
package com.jdojo.cls;

public class SmartDog {
private String name;
private double price;

public SmartDog() {

// Call another constructor with "Unknown" and 0.0 as parameters
this("Unknown", 0.0);

253

CHAPTER 6 © CLASSES AND OBJECTS

System.out.println("Using SmartDog() constructor");

}

public SmartDog(String name, double price) {
// Initialize name and price to specified name and price
this.name = name;
this.price = price;

System.out.println("Using SmartDog(String, double) constructor");
}

/* Rest of code remains the same */

Note that you changed the code only inside the constructor that accepts no parameters. Instead of setting the
default values for name and price in the first constructor, you called the second constructor with the default values as
parameters from the first one.

Using a return Statement Inside a Constructor

A constructor cannot have a return type in its declaration. It means a constructor cannot return any value. Recall that
a return statement is of two types: one with a return expression and one without a return expression. The return
statement without a return expression simply returns the control to the caller without returning any value. You
can use a return statement without a return expression inside a constructor body. When a return statement in a
constructor is executed, the control returns to the caller, ignoring the rest of the constructor’s code.

The following code shows an example of using a return statement in a constructor. If the parameter x is a
negative number, the constructor simply executes a return statement to end the call to the constructor. Otherwise,
it performs some logic.

public class Test {
public Test(int x) {
if (x <0) {
return;
}

/* Perform some logic here */

Access Level Modifier for a Constructor

Access level for a constructor determines the part of the program that can use that constructor in an object creation
expression to create an object of that class. You can specify one of the four access levels for a constructor: public,
private, protected, and package-level. The following code declares four constructors for the Test class. A comment
for each constructor explains its access level.

// Class Test has public access level

public class Test {
// Constructor #1 - Package-level access
Test() {

254

CHAPTER 6 © CLASSES AND OBJECTS

// Constructor #2 - public access level
public Test(int x) {
}

// Constructor #3 - private access level
private Test(int x, int y) {
}

// Constructor #4 - protected access level
protected Test(int x, int y, int z){

}

The effect of these access levels is the same as their effect for a method. A constructor with a public access level
can be used in any part of the program. A constructor with private access level can be used only inside the same class
in which it is declared. A constructor with protected access level can be used in any part of the program in the same
package in which its class is declared and inside any descendant class in any package. A constructor with package-
level access can be used inside the same package in which its class is declared.

You can specify public or package-level access level for a class. A class defines a new reference type, which you
can use to declare a reference variable. The access level of a class determines in which part of the program the name
of the class can be used. Usually, you use the name of a class in a cast or in a reference variable declaration as shown:

// Test class name is used to declare the reference variable t
Test t;

// Test class name is used to cast the reference variable xyz
Test t2 = (Test)xyz;

Let’s discuss the different combinations of access levels for a class and its constructor, and its effects in a
program. Consider the following code that declares a class T1 with public access level and it has a constructor, which
also has a public access level:

// Ti.java
package com.jdojo.cls.p1;

public class T1 {
public T1() {

}

Because the class T1 has a public access level, you can declare a reference variable of type T1 as shown below
anywhere in the program:

// Code inside any package
T1 t;

Because the constructor for the class T1 has a public access level, you can use it in an object creation expression
in any package.

// Code inside any package
new T1();

255

CHAPTER 6 © CLASSES AND OBJECTS

You can combine the above two statements into one in the code in any package.

// Code inside any package
T1 t = new T1();

Let’s consider the following code for the class T2, which has a public access level and has a constructor with a
private access level:

// T2.java
package com.jdojo.cls.p1;

public class T2 {
private T2() {

Because class T2 has a public access level, you can use its name to declare a reference variable in any package.
The constructor for class T2 has a private access level. The implication of having a private constructor is that you
cannot create an object of the T2 class outside the T2 class. Recall that a private method, field, or a constructor
cannot be used outside the class in which it is declared. Therefore, the following code will not compile unless it
appears inside the T2 class:

// Code outside the T2 class
new T2(); // A compile-time error

What is the use of the T2 class if you cannot create its object outside of the T2 class? Here are the possible
situations where you can declare a constructor private, and still create and use objects of the class:

e A constructor is used to create an object of a class. You may want to restrict the number of
objects for a class. The only way you can restrict the number of objects of a class is by having
the full control of its constructors. If you declare all constructors of a class to have the private
access level, you have full control over how the objects of that class will be created. Typically,
you include one or more public static methods in that class, which create and/or return
an object of that class. If you design a class so that only one object of the class may exist,
itis called a singleton pattern. The following code is a version of the T2 class that is based
on the singleton pattern. It declares a private staticreference variable called instance,
which holds the reference of the T2 class object. Note that the T2 class uses its own private
constructor to create an object. Its public static getInstance() method returns the lone
object of the class. More than one object of the T2 class cannot exist.

// T2.java
package com.jdojo.cls.p1;

public class T2 {
private static T2 instance = new T2();

private T2() {
}

256

CHAPTER 6 © CLASSES AND OBJECTS

public static T2 getInstance() {
return T2.instance;
}

/* Other code goes here */

}

You can use the T2.getInstance() method to get the reference of an object of the T2 class.
Internally, the T2 class does not create a new object every time you call the T2.getInstance()
method. Rather, it returns the same object reference for all calls to this method.

T2 t1 = T2.getInstance();
T2 t2 = T2.getInstance();

e Sometimes you want a class to have only static members. It may not make sense to create an
object of such a class. For example, the java.lang.Math class declares its constructor private.
The Math class contains static variables and static methods to perform numeric operations. It
does not make sense to create an object of the Math class.

¢ You can also declare all constructors of a class private to prevent inheritance. Inheritance
lets you define a class by extending the definition of another class. If you do not want anyone
else to extend your class, one way to achieve this is to declare all constructors of your class
private. Another way to prevent your class from being extended is to declare it final. I will
discuss inheritance in detail in the chapter on inheritance.

Let’s consider the class T3 whose constructor has protected access level as shown:

// T3.java
package com.jdojo.cls.p1;

public class T3 {
protected T3() {

A constructor with protected access level can be used anywhere in the same package or inside a descendant
class in any package. The class T3 is in the com. jdojo.cls.p1 package. You can write the following statement
anywhere in com. jdojo.cls.p1 package, which creates an object of the T3 class:

// Valid anywhere in the com.jdojo.cls.p1 package
new T3();

I'will cover inheritance in detail later. However, to complete the discussion of a protected constructor, you will
use inheritance in the example below. Things about inheritance will be clearer when I discuss it in the chapter on
inheritance. You inherit (or extend) a class using the keyword extends. The following code creates a T3Child class by
inheriting it from the T3 class:

// T3Child.java
package com.jdojo.cls.p2;

import com.jdojo.cls.p1.T3;

257

CHAPTER 6 © CLASSES AND OBJECTS

public class T3Child extends T3 {
public T3Child() {
super(); // Ok. Calls T3() constructor, which is declared protected.
}

The T3 class is called the parent class of the T3Child class. An object of a child class cannot be created until the
object of its parent class is created. Note the use of the super () statement inside T3Child() constructor’s body. The
statement supex () calls the protected constructor of the T3 class. I use the super keyword to call the parent class
constructor as you use keyword this to call another constructor of the same class. You cannot call the protected
constructor of T3 directly as

new T3() ;

outside the com.jdojo.cls.p1 package.
Consider a T4 class with a constructor having package-level access. Recall that using no access level modifier
gives package-level access.

// T4.java
package com.jdojo.cls.p1;

public class T4 {
// T4() has package-level access
Ta() {
}

You can use T4’s constructor to create its object anywhere in the com.jdojo.cls.p1 package. Sometimes you
need a class that works as a helper class for other classes in a package. Objects of these classes need to be created only
within the package. You can specify package-level access for constructors of such helper classes.

Default Constructor

The primary goal of declaring a class is to create an object of its type. You need a constructor to create an object

of a class. The necessity to have a constructor for a class is so obvious that the Java compiler adds a constructor to
your class if you do not declare one. The constructor that is added by the compiler is called the default constructor.
The default constructor does not have any parameters. Sometimes the default constructor is also called a no-args
constructor. The access level of the default constructor is the same as the access level of the class.

The classes that you have been working with are called top-level classes. You can also declare a class within
another class, which is called an inner class. A top-level class can have public or package-level access. However,
an inner class can have public, private, protected, or package-level access. The Java compiler adds a default
constructor for a top-level class as well as for a nested class. A default constructor for a top-level class can have either
public or package-level access depending on the access level of the class. However, a default constructor for an inner
class can have access level of public, private, protected or package-level depending on its class access level.

Table 6-6 shows some examples of classes and the compiler adding a default constructor to them. When the
compiler adds a default constructor, it also adds a statement super () to call the no-args constructor of the parent
class. Sometimes the call to the parent’s no-args constructor inside the default constructor may cause your class not to
compile. Please refer to the chapter on inheritance for a complete discussion on this topic.

258

CHAPTER 6 © CLASSES AND OBJECTS

Table 6-6. Examples of Classes for Which a Default Constructor Is Added by the Java Compiler

Source Code for Your Class Compiled Version of Your Class Comments

public class Test { public class Test { The compiler adds a default constructor with
} public Test() { public access level.
}
}
class Test { class Test { The compiler adds a default construct with
} Test() { package-level access.
}
}
public class Test { public class Test { The Test class already had a constructor. The
Test() { Test() { compiler does not add any constructor.
} }
public class Test { public class Test { The Test class already had a constructor. The
public Test(int x) { public Test(int x) { compiler does not add any constructor.
} }
} }
public class Test { public class Test { Test is a public top-level class and Inner is
private class Inner { public Test() { a private inner class. The compiler adds a
} } public default constructor for the Test class
} private class Inner { and a private default constructor for the
private Inner(){ Inner class.
}
}
}

Tip Itis good programming practice to add a constructor explicitly to all your classes rather than letting the compiler
add a default constructor for your classes. The story of constructors is not over yet. You will revisit constructors in the
chapter on inheritance.

A static Constructor

Constructors are used in the context of the creating a new object; hence, it is consider part of the object context, not
the class context. You cannot declare a constructor static. The keyword this, which is a reference to the current
object, is available inside the body of a constructor as it is available inside the body of an instance method.

259

CHAPTER 6 © CLASSES AND OBJECTS

Instance Initialization Block

You have seen that a constructor is used to initialize an instance of a class. An instance initialization block, also called
instance initializer, is also used to initialize objects of a class. Why does Java provide two constructs to perform the
same thing? Not all classes in Java can have a constructor. Are you surprised to learn that not all classes can have
constructors? I did not mention this fact during the discussion on constructors. Briefly, I mentioned inner classes,
which are different from top-level classes. I will discuss one more type of class in Chapter 2 of Beginning Java
Language Features (ISBN: 978-1-4302-6658-7) called an anonymous class. As the name suggests, an anonymous

class does not have a name. Recall that a constructor is a named block of code whose name is the same as the simple
name of the class. Because an anonymous class cannot have a name, it cannot have a constructor either. How will you
initialize an object of an anonymous class? You can use an instance initializer to initialize an object of an anonymous
class. The use of an instance initializer to initialize an object is not limited only to anonymous classes. Any type of
class can use it to initialize its object.

An instance initializer is simply a block of code inside the body of a class, but outside any methods or
constructors. Recall that a block of code is a sequence of legal Java statements enclosed within braces. An instance
initializer does not have a name. Its code is simply placed inside an opening brace and a closing brace. The following
snippet of code shows how to declare an instance initializer for the Test class. Note that an instance initializer is
executed in instance context and the keyword this is available inside the instance initializer.

public class Test {
private int num;

// An instance initializer
{

this.num = 101;

/* Other code for the instance initializer goes here */
/* Other code for Test class goes here */

You can have multiple instance initializers for a class. All of them are executed automatically in textual order
for every object you create. Code for all instance initializers are executed before any constructor. Listing 6-32
demonstrates the sequence in which the constructor and instance initializers are executed.

Listing 6-32. Example of Using an Instance Initializer

// Instancelnitializer.java
package com.jdojo.cls;

public class InstanceInitializer {

{

System.out.println("Inside instance initializer 1.");
}
{

System.out.println("Inside instance initializer 2.");
}

260

CHAPTER 6 © CLASSES AND OBJECTS

public InstanceInitializer() {
System.out.println("Inside no-args constructor.");
}

public static void main(String[] args) {
Instancelnitializer ii = new InstanceInitializer();
}

Inside instance initializer 1.
Inside instance initializer 2.
Inside no-args constructor.

Tip Aninstance initializer cannot have a return statement. It cannot throw checked exceptions unless all declared
constructors list those checked exceptions in their throws clause; an exception to this rule is made in the case of an
anonymous class because it does not have a constructor; an instance initializer of an anonymous class may throw
checked exceptions.

static Initialization Block

A static initialization block is also known as a static initializer. It is similar to an instance initialization block. It is
used to initialize a class. In other words, you can initialize class variables inside a static initializer block. An instance
initializer is executed once per object whereas a static initializer is executed only once for a class when the class
definition is loaded into JVM. To differentiate it from an instance initializer, you need to use the static keyword in
the beginning of its declaration. You can have multiple static initializers in a class. All static initializers are executed
in textual order in which they appear, and execute before any instance initializers. Listing 6-33 demonstrates when a
static initializer is executed.

Listing 6-33. An Example of Using a static Initializer in a Class

// StaticInitializer.java
package com.jdojo.cls;

public class StaticInitializer {
private static int num;

// An instance initializer

{
System.out.println("Inside instance initializer.");
}
// A static initializer. Note the use of the keyword static below.
static {
num = 1245;

System.out.println("Inside static initializer.");

261

CHAPTER 6 © CLASSES AND OBJECTS

// Constructor

public StaticInitializer() {
System.out.println("Inside constructor.");

}

public static void main(String[] args) {

System.out.println("Inside main() #1. num: " + num);
// Declare a reference variable of the class
StaticInitializer si;

System.out.println("Inside main() #2. num: " + num);
// Create an object

new StaticInitializer();

System.out.println("Inside main() #3. num: " + num);

// Create another object
new StaticInitializer();

Inside static initializer.
Inside main() #1. num: 1245
Inside main() #2. num: 1245
Inside instance initializer.
Inside constructor.

Inside main() #3. num: 1245
Inside instance initializer.
Inside constructor.

The output may be confusing at first. It shows that the static initializer has executed even before the first
message is displayed in the main() method. You get the output when you run the StaticInitializer class using the
following command:

java com.jdojo.cls.StaticInitializer

The java command must load the definition of the StaticInitializer class before it can execute its main()
method. When the definition of the StaticInitializer class is loaded into memory, at that time the class is
initialized and its static initializer is executed. This is the reason that you see the message from the static initializer
before you see the message from the main() method. Note that instance initializer is called twice because you create
two objects of the StaticInitializer class.

Tip A static initializer cannot throw checked exceptions and it cannot have a return statement.

262

CHAPTER 6 © CLASSES AND OBJECTS

The final Keyword

The final keyword is used in many contexts in a Java program. It takes on different meanings in different contexts.
However, as its name suggests, its primary meaning is the same in all contexts. Its primary meaning is

The construct with which the final keyword is associated does not allow modifying or replacing its
original value or definition.

If you remember the primary meaning of the final keyword, it will help you understand its specialized meaning
in a specific context. The final keyword can be used in the following three contexts:

e Avariable declaration
e Aclass declaration
e A method declaration

In this section, you will discuss the use of the final keyword only in the context of a variable declaration. The
chapter on inheritance discusses its use in the context of class and method declarations in detail. In this section, I will
briefly describe its meaning in all three contexts.

If a variable is declared final, it can be assigned a value only once. That is, the value of a final variable cannot
be modified once it has been set. If a class is declared final, it cannot be extended (or subclassed). If a method is
declared final, it cannot be redefined (overridden or hidden) in the subclasses of the class that contains the method.

Let’s discuss the use of the final keyword in a variable declaration. In this discussion, a variable declaration
means the declaration of a local variable, a formal parameter of a method/constructor, an instance variable, and a
class variable. To declare a variable as final, you need to use the final keyword in the variable’s declaration. The
following snippet of code declares four final variables: YES, NO, MSG, and act:

final int YES = 1;

final int NO = 2;

final String MSG = "Good-bye";
final Account act = new Account();

You can set the value of a final variable only once. Attempting to set the value of a final variable the second
time will generate a compilation time error.

final int x = 10;
int y = 101 + x; // Reading x is ok

// A compilation time error. Cannot change value of the final variable x once it is set
X = 17;
There are two ways to initialize a final variable:
e You can initialize it at the time of its declaration.
¢ You can defer its initialization until a later time.

Until what time you can defer the initialization of a final variable depends on the variable type. However, you
must initialize the final variable before it is read for the first time.

If you do not initialize a final variable at the time of its declaration, such a variable is known as a blank
final variable.

263

CHAPTER 6 © CLASSES AND OBJECTS

final int multiplier; // A blank final variable
/* Do something here... */

// Set the value of multiplier first time
multiplier = 3;

// Ok to read the multiplier variable
int value = 100 * multiplier;

Let’s go through examples of each type of variable and how to declare them final.

final Local Variables

You can declare a local variable final. If you declare a local variable as a blank final variable, you must initialize
it before using. You will receive a compilation time error if you try to change the value of the final local variable
the second time. The following snippet of code uses final and blank final local variables in the test () method.
Comments in the code explain what you can do with final variables in the code.

public static void test() {

int x = 4; // A variable
final int y = 10; // A final variable. Cannot change y here onward
final int z; // A blank final variable

// We can read x and y, and modify x
X=X+Y;

/* We cannot read z here because it is not initialized yet */

/* Initialize the blank final variable z */
z = 87,

/* Can read z now. Cannot change z here onwards */
X=X+Yy+1Z;

/* Perform other logic here... */

final Parameters

You can also declare a formal parameter final. A formal parameter is initialized automatically with the value of the
actual parameter when the method or the constructor is invoked. Therefore, you cannot change the value of a final
formal parameter inside the method’s or the constructor’s body. The following snippet of code shows the final
formal parameter x for the test2() method:

public void test2(final int x) {
/* Can read x, but cannot change it */

int y = x = 115

/* Perform other logic here... */

264

CHAPTER 6 © CLASSES AND OBJECTS

final Instance Variables

You can declare an instance variable final and blank final. An instance variable is a part of an object’s state.

A final instance variable specifies part of the object’s state that does not change after the object is created. A blank
final instance variable must be initialized when an object is created. The following rules apply for initializing a
blank final instance variable:

e Itmustbe initialized in one of the instance initializers or all constructors. The following rules
expand on this rule.

e Ifitisinitialized in an instance initializer, it should not be initialized again in any other
instance initializers or constructors.

e Ifitis notinitialized in any of the instance initializers, the compiler makes sure it is initialized
only once, when any of the constructors is invoked. This rule can be broken into two sub-rules.
As a rule of thumb, a blank final instance must be initialized in all constructors. If you follow
this rule, a blank final instance variable will be initialized multiple times if a constructor
calls another constructor. To avoid multiple initialization of a blank final instance variable, it
should not be initialized in a constructor if the first call in the constructor is a call to another
constructor, which initializes the blank final instance variable.

The above rules for initializing a blank final instance variable may seem complex. However, it is simple to
understand if you remember only one rule that a blank final instance variable must be initialized once and only
once when any of the constructors of the class is invoked. All of the above-described rules are to ensure that this rule
is followed.

Let’s consider different scenarios of initializing final and blank final instance variables. We do not have
anything to discuss about final instance variable as follows where x is a final instance variable for the Test class:

public class Test {
private final int x = 10;
}

The final instance variable x has been initialized at the time of its declaration and its value cannot be changed
afterwards.
The following code shows a Test2 class with a blank final instance variable y:

public class Test2 {

private final int y; // A blank final instance variable
}

Attempting to compile theTest2 class generates an error because the blank final instance variable y is never
initialized. Note that the compiler will add a default constructor for the Test2 class, but it will not initialize y inside the
constructor. The following code for the Test2 class will compile because it initializes y in an instance initializer:

public class Test2 {
private final int y;

{
}

y = 10; // Initialized in an instance initializer

265

CHAPTER 6 © CLASSES AND OBJECTS
The following code would not compile because it initializes y more than once inside two instance initializers:

public class Test2 {
private final int y;

{
}
{

y = 10; // Initialized y for the first time

= 10; // An error. Initializing y again

<
|

The above code may seem legal to you. However, it is not legal because two instance initializers are initializing
y, even though both of them sets y to the same value 10. The rule is about number of times a blank final instance
variable should be initialized, irrespective of the value being used for its initializations. Since all instance initializers
are executed when an object of the Test2 class is created, y will be initialized twice, which is not legal.

The following code for the class Test2 with two constructors would compile:

public class Test2 {
private final int y;
public Test() {
y = 10; // Initialize y
}

public Test(int z) {
} y = z; // Initialize y

The above code initializes the blank final instance variable y in both constructors. It may seem that y is being
initialized twice—once in each constructor. Note that y is an instance variable and one copy of y exists for each object
of the Test2 class. When an object of the Test2 class is created, it will use one of the two constructors, not both.
Therefore, for each object of the Test2 class, y is initialized only once.

Below is the modified code for the Test2 class, which presents a tricky situation. Both constructors initialize the
blank final instance variable y. The tricky part is that the no-args constructor calls another constructor.

public class Test2 {
private final int y;

public Test() {
this(20); // Call another constructor
y = 10; // Initialize y

}

public Test(int z) {
y = z; // Initialize y
}

266

CHAPTER 6 © CLASSES AND OBJECTS

The above code for the Test2 class would not compile. The compiler generates an error message, which reads
as variable y might already have been assigned. Let’s consider creating an object of the Test2 class as

Test2 t = new Test2(30);

There is no issue in creating an object of the Test2 class by invoking the one-arg constructor. The blank final
instance variable y is initialized only once. Let’s create an object of the Test2 class.

Test2 t2 = new Test2();

When the no-args constructor is used, it calls the one-arg constructor, which initializes y to 20. The no-args
constructor initializes y again to 10, which is the second time initialization for y. For this reason, the above code for
the Test2 class would not compile. You need to remove the initialization of y from no-args constructor and the code
would compile. The following is the modified code for the Test2 class that would compile:

public class Test2 {
private final int y;

public Test() {
this(20); // Another constructor will initialize y
}

public Test(int z) {
} y = z; // Initialize y

final Class Variables

You can declare a class variable final and blank final.You must initialize a blank final class variable in one of the
static initializers. If you have more than one static initializer for a class, you must initialize all the blank final class
variables only once in one of the static initializers.

The following code for the Test3 class shows how to deal with a final class variable. It is customary to use all
uppercase letters to name final class variables. It is also a way to define constants in Java programs. The Java class
library has numerous examples where it defines public static final variables to use them as constants.

public class Test3 {
public static final int YES = 1;
public static final int NO = 2;
public static final String MSG;

static {
MSG = "I am a blank final static variable";
}

267

CHAPTER 6 © CLASSES AND OBJECTS

final Reference Variables

Any type of variable (primitive and reference) can be declared final. The primary meaning of the final keyword is
the same in both cases. That is, the value stored in a final variable cannot be changed once it has been set. I will look
at the final reference variable in a little more detail in this section. A reference variable stores the reference of an
object. A final reference variable means that once it references an object (or null), it cannot be modified to reference
another object. Consider the following statement:

final Account act = new Account();

Here, act is a final reference variable of the Account type. It is initialized at the time of its declaration. At this
time, act is referencing an object in memory.

Now, you cannot make the act variable to reference another object in memory. The following statement
generates a compilation time error:

act = new Account(); // A compile-time error. Cannot change act

A common misconception arises in this case. Mistakenly, programmers believe that the Account object that is
referenced by the act reference variable cannot be changed. The declaration statement of the act reference variable
as final has two things.

e actisareference variable, which is final,
e Thereis an Account object in memory whose reference is stored in the act variable.

It is the act reference variable that cannot be changed, not the Account object it is referencing. If the Account
class allows you to change the state of its object, you can change the state using the act variable. The following are
valid statements, which modify the balance instance variable of the Account object:

act.deposit(2001.00); // Modifies state of the Account object
act.debit(2.00); // Modifies state of the Account object

If you do not want an object of a class to be modified after it is created, you need to include that logic in the class
design. The class should not let any of its instance variables be modified after the object is created. Such objects are
called immutable objects.

Compile-time vs. Runtime final Variables

You use final variables to define constants. This is the reason that final variables are also called constants.
If the value of a final variable can be computed by the compiler at compile-time, such a variable is a
compile-time constant. If the value of a final variable cannot be computed by the compiler, it is a runtime final
variable. The values of all blank final variables are not known until runtime. References are not computed until
runtime. Therefore, all blank final variables and final reference variables are runtime constants.

Java performs an optimization when you use compile-time constants in an expression. It replaces the use of the
compile-time constant with the actual value of the constant. Suppose you have a Constants class as shown below.
It declares aMULTIPLIER static final variable.

public class Constants {
public static final int MULTIPLIER = 12;
}

268

CHAPTER 6 © CLASSES AND OBJECTS
Consider the following statement:
int x = 100 * Constants.MULTIPLIER;

When you compile the above statement, the compiler will replace Constants.MULTIPLIER with its value 12 and
your statement is compiled as

int x = 100 * 12;

Now, 100 * 12 is also a compile-time constant expression. The compiler will replace it with its value 1200 and
your original statement will be compiled as

int x = 1200;

There is one downside of this compiler optimization. If you change the value of the MULTIPLIER final variable in
the Constants class, you must recompile all the classes that refer to the Constants .MULTIPLIER variable. Otherwise,
they will continue using the old value of the MULTIPLIER constant that existed when they were compiled last time.

What is a varargs Method?

The term “varargs” is shorthand for “variable-length arguments.” The varargs feature was introduced in Java 5. It lets
you declare a method or constructor that accepts a variable number of arguments (or parameters). I will use only the
term “method” in our discussion. However, the discussion also applies to constructors.

The number of arguments a method accepts is called its arity. A method that accepts variable-length arguments
is called a variable-arity method or varargs method. What does a varargs method look like? Let’s discuss how a non-
varargs method works before you look at a varargs method.

Consider the following code for a MathUtil class that declares a max () method. The method has two parameters.
It computes and returns the maximum of its two arguments.

public class MathUtil {
public static int max(int x, int y) {
int max = x;
if (y > max) {
max = y;
}

return max;

There is nothing extraordinary going on in the MathUtil class or in its max () method. Suppose you want to
compute the maximum of two integers, say 12 and 18; you would invoke the max () method as so:

int max = MathUtil.max(12, 18);

When the above statement is executed, 18 will be assigned to the variable max. Suppose you want to compute the
maximum of three integers. You might come up with the following logic:

int max = MathUtil.max(MathUtil.max(70, 9), 30);

269

CHAPTER 6 © CLASSES AND OBJECTS

The above logic works fine. It computes the maximum of two integers, and then computes the maximum of the
two and the third integer. Suppose you want to compute maximum of ten integers. You might repeat the above logic
and that will work, although the code may not be readable. You need a better way of doing this.

Let’s try overloading the max() method, so it accepts three integer arguments. Here is the newer version of the
MathUtil class, called MathUtil2:

public class Mathutil2 {
public static int max(int x, int y) {
int max = x;
if (y > max) {
max = y;
}

return max;

}

public static int max(int x, int y, int z) {
int max = x;
if (y > max) {
max = y;
}

if (z > max) {
max = z;
}

return max;

You can compute maximum of two and three integers as

MathUtil2.max(12, 18);
MathUtil2.max(10, 8, 18);

int max1
int max2

Adding a max () method with three int arguments did solve the problem temporarily. The real problem still
remains. You will have to add a max() method with all possible number of integer arguments. You would agree that no
programmer wants to write a max() method where he will have to keep adding a newer version.

Before Java 5, when the number of arguments of a method was not known at design time, you would declare the
method argument as an array of int, as shown below. I will discuss arrays in detail in chapter 15.

public class MathUtil3 {
public static int max(int[] num) {
/* Must check for zero element in num here */
int max = Integer.MIN_VALUE;
for(int i = 0; i < num.length; i++) {
if (num[i] > max) {
max = num[i];
}

}

return max;

270

CHAPTER 6 © CLASSES AND OBJECTS

You can write the following snippet of code that will compute the maximum of two and three integers using the
MathUtil3.max() method:

int[] numi = new int[] {10, 1};
int max1 = MathUtil3.max(numi);

int[] num2 = new int[] {10, 8, 18} ;
int max2 = MathUtil3.max(num2);

You can pass an arbitrary number of integers to the MathUti13.max () method. In a sense, you have a way to
pass an arbitrary number of arguments to a method. What bothers programmers is the way the method needs to be
called when its argument type is an array. You must create an array object and package the values of all its elements
when you need to call the method with an array argument. The issue here is not the code inside the max(int[] num)
method. Rather, it is the client code that calls this method.

Varargs comes to the rescue. Let’s declare a max() method, which can accept any number of integer arguments
including zero arguments. The beauty of a varargs method is in the simpler client code that calls the method. So, how
do you declare a varargs method? All you need to do is to add an ellipsis (or triple-dot like . . .) after the data type of
the method’s argument. The following snippet of code shows a max() method declaration with one variable-length
argument, num, which is of the int data type. Note the placement of ellipsis after the data type int.

public static int max(int... num) {
// Code goes here
}

Adding whitespaces before and after ellipsis is optional. All of the following varargs method declarations are
valid. They use different whitespaces before and after the ellipsis.

public static int max(int... num) // A space after

public static int max(int ... num) // A space before and after
public static int max(int...num) // No space before and after
public static int max(int ...

num) // A space before and a newline after

A varargs method can have more than one argument. The following snippet of code shows that aMethod ()
accepts three arguments, one of which is a variable-length argument:

public static int aMethod(String str, double di, int...num) {
// Code goes here
}

There are two restrictions for a varargs method:

e Avarargs method can have a maximum of one variable-length argument. The following
declaration for m1() method is invalid because it declares two variable-length arguments,
n1and n2:

// Invalid declaration

void m1(String str, int...n1, int...n2) {
// Code goes here
}

271

CHAPTER 6 © CLASSES AND OBJECTS

e The variable-length argument of a varargs method must be the last argument in the argument
list. The following declaration for m2 () method is invalid because the variable-length
argument n1 is not declared as the last argument:

// Invalid declaration

void m2(int...n1, String str) {
// Code goes here

}

You can fix the above declaration by moving argument n1 to the last, like so:

void m2(String str, int...n1) {
// Code goes here
}

Let’s rewrite the max () method to make it a varargs method, as shown:

public class MathUtilg {
public static int max(int...num) {
int max = Integer.MIN_VALUE;
for(int i = 0; i < num.length; i++) {
if (num[i] > max) {
max = num[i];
}

}

return max;

You almost always have a loop inside a varargs method that processes the list of arguments for the variable-length
argument. The length property gives you the number of values that were passed for the variable-length argument. For
example, num. length in the max() varargs method will give you the number of integers that were passed to the method.
To get the n'" value in the variable-length argument, you need to use varArgsName[n-1]. For example, num[0], num[1],
and num[n-1] will contain the first, second, and n* value passed in for the num variable-length argument. If you just
want to process all values passed in for a variable-length argument, you can use a simpler loop, a foreach loop, which
was introduced to Java 5. You can rewrite the code for max () method using foreach loop as follows:

public static int max2(int...num) {
int max = Integer.MIN_VALUE;
for(int currentNumber : num) {
if (currentNumber > max) {
max = currentNumber;
}

}

return max;

272

CHAPTER 6 © CLASSES AND OBJECTS

The body of the MathUtil4.max () method is exactly the same as if the num argument is declared as an int array.
You are right in thinking so. The Java compiler implements a variable-length argument of a method using an array.
The above declaration of the MathUtil4.max() method is changed by the compiler. The declaration part
max (int...num) is changed to max(int[] num) when you compile the code. What benefit do you get using a
variable-length argument? The benefit of using a variable-length argument in a method comes from the elegant way
of calling the method. You can call the MathUtil4.max () method as follows:

int max1 = MathUtil4.max(12, 8);
int max2 = MathUtil4.max(10, 1, 30);

You can use zero or more arguments for a variable-length argument in a method. The following code is a valid
call to the max() method:

int max = MathUtil4.max(); // Passing no argument is ok

What will be returned by calling the MathUtil4.max () method with no argument? If you look at the method’s
body, it will return Integer.MIN_VALUE, which is -2147483648. Practically, a call to the max() method without at
least two arguments is not a valid call. You must check for invalid number of arguments when a method is a varargs
method. You do not get a problem of invalid number of arguments for non-varargs methods because the compiler will
force you to use the exact number of arguments. The following declaration of the max () method will force its caller to
pass at least two integers:

// Argumenets n1 and n2 are mandatory

public static int max(int ni1, int n2, int... num) {
// Code goes here

}

The compiler will treat the first two arguments, n1 and n2, as mandatory and the third argument, num, as optional.
Now, you can pass two or more integers to the max () method. Listing 6-34 shows the final, complete code for the
max () method.

Listing 6-34. A Utility Class to Compute the Maximum of Some Specified Integers Using a Varargs Method

// MathUtils.java
package com.jdojo.cls;

public class MathUtils {
public static int max(int ni1, int n2, int... num) {
// Initialize max to teh maximu of ni1 and n2
int max = (n1 > n2 ? n1 : n2);

for(int i = 0; i < num.length; i++) {
if (num[i] > max) {

max = num[i];
}

}

return max;

273

CHAPTER 6 © CLASSES AND OBJECTS

public static void main(String[] args) {
System.out.println("max(7, 9) = " + MathUtils.max(7, 9));
System.out.println("max(70, 19, 30) = " + MathUtil5.max(70, 19, 30));
System.out.println("max(-7, -1, 3) = " + MathUtils.max(-70, -1, 3));

max(7, 9) = 9
max(70, 19, 30) = 70
max(-7, -1, 3) = 3

You can pass any number of integers when you call the MathUtil5.max() method. All of the following statements
are valid:

int max1 = MathUtils.max(12, 8); // will return 12
int max2 = MathUtils.max(10, 1, 30); // will return 30
int max3 = MathUtils.max(11, 3, 7, 37); // will return 37

If you call the MathUtil5.max () method with no arguments or one argument, the compiler will generate an error.

int max1 = MathUtils.max(); // A compile-time error
int max2 = MathUtils.max(10); // A compile-time error

Overloading a Varargs Method

The same overloading rules for methods also apply to a varargs method. You can overload a method with a variable-
length argument as long as the parameters for the methods differ in type, order, or number. For example, the following
is a valid example of an overloaded max() method:

public class MathUtilé {
public static int max(int x, int y) {
// Code goes here
}

public static int max(int...num) {
// Code goes here
}

Consider the following snippet of code, which calls the overloaded method MathUtil6.max () with two
arguments:

int max = MathUtilé.max(12, 13); // which max() will be called?
The MathUtil16 class has two max() methods. One method accepts two int parameters and another accepts a
variable-length int parameter. In the above case, Java will call the max(int x, int y).Java first attempts to find a

method declaration using an exact match for the number of parameters. If it does not find an exact match, it looks for
a match using variable-length parameters.

274

CHAPTER 6 © CLASSES AND OBJECTS

Tip If a varargs method is overloaded, Java uses the more specific version of the method instead of using a varargs
method. Java uses varargs method as the last resort to resolve a method call.

Sometimes a call to an overloaded varargs method may cause confusion to the Java compiler. The overloading of
the method itself may be valid. However, the call to it may cause an issue. Consider the following snippet of code for
the MathUtil7 class, which is a valid example of method overloading:

public class MathUtil7 {
public static int max(int...num) {
// Code goes here
}

public static int max(double...num) {
// Code goes here
}

Which version of the max() method will be called when the following statement is executed?
int max = MathUtil7.max(); // Which max() to call?

The above statement will generate a compilation time error stating that the call to MathUtil7.max() is
ambiguous. Java allows you to pass zero or more values for a variable-length argument. In the above statement,
both methods max(int...num) and max(double. . .num) qualify for the MathUtil7.max() call. The compiler cannot
decide which one to call. You may find many other instances where a call to an overloaded varargs method results in
an ambiguous method call and the compiler will generate an error. The error message will guide you to the
offending code.

Varargs Methods and the main() Method

Recall that if you want to run a class, you need to declare a main() method in it with a String array as its argument.
The signature for the main() method must be main(String[] args). A varargs method is implemented by Java
compiler using an array. If your method signature is m1(XXX. . .args), it is changed to m1(XXX[] args) by the
compiler. Now you can declare the main() method of your class using the older notation that uses a String array or
using a newer notation that uses a varargs. The following declaration of main() method for the Test class is valid. You
will be able to run the Test class using the java command.

public class Test {

public static void main(String...args) {
System.out.println("Hello from varargs main()...");
}

275

CHAPTER 6 © CLASSES AND OBJECTS

Generic Classes

Abstraction and polymorphism are at the heart of object-oriented programming. Defining a variable is an example

of abstraction where the variable hides the actual values. Defining a method hides the details of its implementation
logic, which is another form of abstraction. Defining parameters for a method is part of polymorphism that allows the
method to work on different types of value or objects.

Java 5 added a new feature called generics that allows for writing true polymorphic code in Java. Using generics,
you can write code without knowing the type of the objects you code operates on. It lets you create generic classes,
constructors, and methods.

A generic class is defined using formal type parameters. Formal type parameters are a list of comma-separated
variable names placed in angle-brackets (<>) after the class name in the class declaration. The following snippet of
code declares a class Wrapper that takes one formal type parameter:

public class Wrapper<T> {
// Code for the Wrapper class goes here
}

The parameter has been given a name T. What is T at this point? The answer is that you do not know. All you
know at this point is that T is a type variable, which could be any reference type in Java, such as String, Integer,
Double, etc. The formal type parameter value is specified when the Wrapper class will be used. The classes that take
formal type parameter are also known as parameterized classes.

You can declare a variable of the Wrappexr<T> class specifying the String type as the value for its formal type
parameter as shown below. Here, String is the actual type parameter.

Wrapper<String> stringWrapper;

Java lets you use a generic class without specifying the formal type parameters. This is allowed for backward
compatibility. You can also declare a variable of the Wrapper<T> class as shown:

Wrapper aRawWrapper;

When a generic class is used without specifying the actual type parameters, it is known as raw type. The above
declaration used the Wrapper<T> class as a raw type as it did not specify the value for T.

Tip The actual type parameter for a generic class, if specified, must be a reference type, for example, String, Human,
etc. Primitive types are not allowed as the actual type parameters for a generic class.

A class may take more than one formal type parameter. The following snippet of code declares a Mapper class that
takes two formal parameters, T and R:

public class Mapper<T, R> {
// Code for the Mapper class goes here
}
You can declare variable of the Mapper<T, R> class as follows:
Mapper<String, Integer> mapper;
Here, the actual type parameters are String and Integer.

276

CHAPTER 6 © CLASSES AND OBJECTS

It is customary, not a requirement, to give one-character names to the formal type parameters, for example,
T,R, U, V, etc. Typically, T stands for “Type,” R for “Return,” etc. One-character names make the code more readable.
However, nothing stops you from declaring a generic class as follows, which has four formal type parameters named
MyType, YourType, Hello, and WhoCares.

public class Fun<MyType, YourType, Hello, WhoCares> {
// Code for the Mapper class goes here
}

Java will compile the above code, but readers of your code will complain for sure!

The formal type parameters are available inside the class body to be used as types. Listing 6-35 declares a generic
class Wrapper<T>.
Listing 6-35. Declaring a Generic Class Wrapper<T>

// Wrapper.java
package com.jdojo.cls;

public class Wrapper<T> {
private T obj;

public Wrapper(T obj) {
this.obj = obj;
}

public T get() {
return obj;
}

public void set(T obj) {
this.obj = obj;
}

The Wrapper<T> class uses the formal type parameter to declare instance variable obj to declare a formal
parameter for its constructor and set() method, and as a return type for the get () method.

You can create an object of the generic type by specifying the actual type parameter for the constructor as follows:
Wrapper<String> wil = new Wrapper<String>("Hello");

Most of the time, the compiler can infer the actual type parameter for the constructor. In those cases, you
can omit the actual type parameter. In the following assignment statement, the compiler will infer the actual type
parameter for the constructor as String:
Wrapper<String> wil = new Wrapper<>("Hello");

Once you have declared a variable of the generic class, you can think of the formal type parameter as the
specified actual type parameter for all practical purposes. Now, you can think that, for wi, the get () method of the

Wrapper<T> class returns a String.

String si= wi.get();

277

CHAPTER 6 © CLASSES AND OBJECTS
The program in Listing 6-36 shows how to use the generic Wrapper<T> class.

Listing 6-36. Using a Generic Class in Your Code

// WrapperTest.java
package com.jdojo.cls;

public class WrapperTest {
public static void main(String[] args) {
Wrapper<String> wl = new Wrapper<>("Hello");
String s1 = wi.get();
System.out.println("s1=" + s1);

wl.set("Testing generics");
String s2 = wi.get();

System.out.println("s2=" + s2);
wl.set(null);
String s3 = wi.get();
System.out.println("s3=" + s3);
}

}

si=Hello

s2=Testing generics

s3=null

This is just the tip of the iceberg when it comes to what generics offer in Java. To understand generics completely,
you must cover other topics, such as inheritance, first. Generics are covered fully in the book Beginning Java 8
Language Features (ISBN: 978-1-4302-6658-7).

Summary

Classes are the basic building blocks in object-oriented programming. A class represents a reference type in Java.
Classes serve as templates to create objects of their types. A class consists of four parts: fields, initializers, constructors,
and methods. Fields represents the state of objects of the class. Initializers and constructors are used to initialize fields
of the class. The new operator is used to create objects of a class. Methods represent the behavior of the objects of

the class.

Fields and methods are known as members of the class. Constructors are not considers members of the class.
Fields, methods, and constructors of a class and the class itself have an access level. There are four types of access
levels: public, private, protected, and package-level. The presence of the keyword public, private, and protected in
defining them gives them public, private, and protected access level, respectively. Absence of any of these keywords
specifies the package-level access. A top-level class can have either public of package level access. Methods and
constructors can have any one of the four types of access levels.

Import statements in a compilation unit are used to import types from other packages. They allow using the
simple names of types of other packages. The compiler uses the import statements to resolve the simple names to
fully qualified names. Static import statements are used to import static member of types from other packages.

278

CHAPTER 6 © CLASSES AND OBJECTS

Different mechanisms to pass parameters to methods and constructors exist. Java uses pass by value and pass by
constant value mechanisms to pass parameters of primitive data types. Pass by reference value and pass by constant
reference value are used to pass parameters of reference types.

You can define a class and its members final. If something is final it means its definition or value, whatever
it represents, cannot be modified. final variables are used to define constants in Java. Compile-time constants are
constants whose values are known when the program is compiled. Runtime constants are constants whose values are
not known until the program is run.

Varargs parameters are used to define parameters for methods and constructors where they can take variable
number of parameters.

Java allows you to write true polymorphic code using generics in which code is written in terms of formal type
parameters.

279

CHAPTER 7

The Object and Objects Classes

In this chapter, you will learn
e About the hierarchical class structure in Java
e About the Object class being the superclass of classes
e How to use methods of the Object class with detailed examples
e How to reimplement methods of the Object class in your class
e How to check two objects for equality
e The difference between immutable and mutable objects

e How to use the utility methods of the Objects class to deal with null values gracefully

The Object Class

Java has an Object class in the java.lang package. All Java classes, those that are included in the Java class libraries
and those that you create, extend the Object class directly or indirectly. All Java classes are a subclass of the Object
class and the Object class is the superclass of all classes. Note that the Object class itself does not have a superclass.

Classes in Java are arranged in a tree-like hierarchical structure, where the Object class is at the root (or top).
I'will discuss class hierarchy in detail in the chapter on inheritance. I will discuss some details of the Object class in
this chapter.

There are two important rules about the Object class. I will not explain the reasons behind these rules here. The
reasons why you could do these things with the Object class will be clear after you read the chapter on inheritance.

Rule #1

A reference variable of the Object class can hold a reference of an object of any class. As any reference variable can
store a null reference, so can a reference variable of the Object type. Consider the following declaration of a reference
variable obj of the Object type:
Object obj;

You can assign a reference of any object in Java to obj. All of the following statements are valid:
// Can assign the null reference

obj = null;

281

CHAPTER 7 © THE OBJECT AND OBJECTS CLASSES

// Can assign a reference of an object of the Object class
obj = new Object();

// Can assign a reference of an object of the Account class
Account act = new Account();
obj = act;

// Can assign a reference of object of any class. Assume that the AnyClass class exists
obj = new AnyClass();

The opposite of the above rule is not true. You cannot assign a reference of an object of the Object class to a
reference variable of any other type. The following statement is not valid:

Account act = new Object(); // A compile-time error
Sometimes, you may store the reference of an object of a specific type, say Account type, in a reference variable of

the Object type, and later you would like to assign the same reference back to a reference variable of the Account type.
You can do so by using a cast as shown:

Object obj2 = new Account();
Account act = (Account)obj2; // Must use a cast

Sometimes you may not be sure that a reference variable of the Object class holds a reference to an object of a
specific type. In those situations, you need to use the instanceof operator to test. The left operand of the instanceof
operator is a reference variable and its right operand is a class name. If its left operand is a reference of its right
operand type, it returns true. Otherwise, it returns false. Please refer to the chapter on inheritance for more detailed
discussion on the instanceof operator.

Object obj;
Cat c;

/* Do something here and store a reference in obj... */
if (obj instanceof Cat) {

// If we get here, obj holds a reference of a Cat for sure
c = (Cat)obj;

You will need to make use of this rule when you have a method that takes an Object as a parameter. You can pass
areference of any object for the parameter of the Object class. Consider the following snippet of code that shows a
method declaration:

public void m1(Object obj) {

// Code goes here
}

You can call m1() in a number of different ways:
mi(null); // Pass null reference

mi(new Object()); // Pass a reference of an object of the Object class
mi(new AnyClass()); // Pass a reference of an object of the AnyClass class

282

CHAPTER 7 © THE OBJECT AND OBJECTS CLASSES

Rule #2

The Object class has nine methods, which are available to be used in all classes in Java. We can put the methods into
two categories.

Methods in the first category have been implemented in the Object class. You are supposed to use them as they
have been implemented. You cannot reimplement (the technical term for reimplement is override) these methods in
any class you create. Their implementation is final. Methods that fall into this category are getClass(), notify(),
notifyAll(), and wait().

Methods in the second category have a default implementation in the Object class. You can customize their
implementations by reimplementing them in your classes. Methods that fall into this category are toString(),
equals(), hashCode(), clone(), and finalize().

A Java programmer must understand the proper use of all of the methods in the Object class. I will discuss them
in detail, except the notify(), notifyAll(), and wait() methods. These methods are used in thread synchronization.
They will be discussed in a separate chapter on threads in the book Beginning Java Language Features
(ISBN: 978-1-4302-6658-7). Table 7-1 lists all methods in the Object class with a brief description. The “Yes” in the
“Implemented” column indicates that the Object class has implementation for the method, which can be used
without writing any code. The “No” in this column means that you need to implement the method before using it. The
“Yes” in the “Customizable” column indicates that you can reimplement the method to customize it. The “No” in this
column indicates that the Object class has implemented the method and its implementation is final.

Table 7-1. List of Methods in the Object Class with Their Brief Description

Method Implemented Customizable Description

public String toString() Yes Yes It returns a string representation of
an object. Typically, it is used for
debugging purpose.

public boolean equals(Object obj) Yes Yes It is used to compare two objects for
equality.

public int hashCode() Yes Yes It returns a hash code (an integer)
value of an object.

protected Object clone() throws No Yes It is used to make a copy of an object.

CloneNotSupportedException

protected void finalize() throws No Yes It is called by the garbage collector

Throwable before an object is destroyed.

public final Class getClass() Yes No It returns a reference to the Class
object of the object.

public final void notify() Yes No Notifies one thread in the wait queue
of the object.

public final void notifyAll() Yes No Notifies all threads in the wait queue of
the object.

public final void wait() Yes No Makes a thread wait in the wait queue

throws InterruptedException of the object with or without a timeout.

public final void wait(long timeout)
throws InterruptedException

public final void wait

(long timeout, int nanos)
throws InterruptedException

283

CHAPTER 7 © THE OBJECT AND OBJECTS CLASSES

To reimplement a method of the Object class, you need to declare the method the same way as it has been
declared in the Object class, and then write your own code in its body. There are more rules to reimplement a
method. I will cover all rules in Chapter 16 on inheritance. You can reimplement the toString() method of the
Object class in your class, say Test, as shown:

public class Test {
/* Reimplement the toString() method of the Object class */
public String toString() {
return "Here is a string";
}

I'will discuss six methods of the Object class in detail in the sections to follow.

What Is the Class of an Object?

Every object in Java belongs to a class. You define a class in source code, which is compiled into a binary format
(usually a class file with the .class extension). Before a class is used at runtime, its binary representation is loaded into
JVM. Loading the binary representation of a class into JVM is handled by an object called a class loader. Typically,
multiple class loaders are used in a Java application to load different types of classes. A class loader is an instance

of the class java.lang.ClassLoader. Java lets you create your own class loader by extending the ClassLoader class.
Typically, you do not need to create your own class loaders. The Java runtime will use its built-in class loaders to load
your classes.

A class loader reads the binary format of the class definition into JVM. The binary class format may be loaded
from any accessible location, for example, a local file system, a network, a database, etc. Then, it creates an object of
the java.lang.Class class, which represents the binary representation of the class in JVM. Note the uppercase C in
the class name java.lang.Class. The binary format of a class definition may be loaded multiple times in the JVM by
different class loaders. A class inside a JVM is identified by the combination of its fully qualified name and its class
loader. Typically, the binary definition of a class is loaded only once in a JVM.

Tip You can think of an object of the Class class as a runtime descriptor of the source code of a class. Your source
code for a class is represented by an object of the Class class at runtime.

The getClass() method of the Object class returns the reference of the Class object. Since the getClass()
method is declared and implemented in the Object class, you can use this method on a reference variable of any type.
The following snippet of code shows how to get the reference of the Class object for a Cat object:

Cat ¢ = new Cat();
Class catClass = c.getClass();

The Class class is generic and its formal type parameter is the name of the class that is represented by its object.
You can rewrite the above statement using generics, like so:

Class<Cat> catClass = c.getClass();

284

CHAPTER 7 © THE OBJECT AND OBJECTS CLASSES

By default, the class definition is loaded only once, and there is only one Class object per Java class. You are
not considering those cases where you have written code to load the same class more than once. If you use the
getClass() method on different objects of the same class, you will get the reference of the same Class object.
Consider the following snippet of code:

Cat c2 = new Cat();
Cat c3 = new Cat();

Class catClass2
Class catClass3

c2.getClass();
c3.getClass();

Here, c2 and c3 are two objects of the same Cat class. Therefore, c2.getClass() and c3.getClass() return
the reference of the same Class object, which represents the Cat class in the JVM. The expression catClass2 ==
catClass3 will evaluate to true.

The Class class has many useful methods. I discuss most of its methods in Chapter 3 of the book Beginning Java
Language Features. You can use its getName () method to get the fully qualified name of the class. You can use its
getSimpleName() to get the simple name of the class. For example,

String fullName = catClass.getName();
String simpleName = catClass.getSimpleName();

Tip Not all classes in an application are loaded into JVM when the application starts. A class is loaded and a cor-
responding Class object is created when the application uses the class for the first time.

Computing Hash Code of an Object

A hash code is an integer value that is computed for a piece of information using an algorithm. A hash code is
also known as a hash sum, a hash value, or simply a hash. The algorithm to compute an integer from a piece of
information is called a hash function.

The definition of a hash code involves three things:

e Anpiece of information
e Analgorithm
e Aninteger value

You have a piece of information. You apply an algorithm to it to produce an integer value. The integer value that
you get is the hash code for the piece of information you had. If you change the piece of information or the algorithm,
the computed the hash code may or may not change. Figure 7-1 depicts the process of computing the hash code.

- An integer
Algorithm (hash code)

Figure 7-1. Process of computing a hash code

A piece of
information

285

CHAPTER 7 © THE OBJECT AND OBJECTS CLASSES

Computing a hash code is a one-way process. Getting the original piece of information from a hash code is not an
easy task and it is not the goal of the hash code computation either.

The piece of information that could be used to generate a hash code could be an arbitrary sequence of bytes,
characters, numbers, or a combination of them. For example, you may want to compute the hash code for a string
“Hello”

What does a hash function look like? A hash function may be as simple as the following function, which returns
the integer zero for all input data:

int myHashFunction(your input data) {
return 0; // Always return zero
}

The above hash function fits the definition of a hash function although it is not a practically good one. Writing a
good hash function is not an easy task. You need to consider a number of things about the input data before you can
write a good hash function.

Why would you need a hash code? It is needed for efficient retrieval of data associated with it when the data is
stored in a hash based collection (or container). Before data is stored in a container, its hash code is computed, and
then it is stored at a location (also called a bucket), which is based on its hash code. When you want to retrieve the
data, its hash code is used to find its location in the container, making the retrieval of the information faster. It is worth
noting that an efficient retrieval of data using hash code is based on distribution of the hash code values over a range.
If the hash codes that are generated are not uniformly distributed, the retrieval of data may not be efficient. In the
worst case, the retrieval of data may be as bad as a linear search through all elements stored in the container. If you
use a hash function as shown above, all elements in the container will be stored in the same bucket, which will require
searching through all elements. Using a good hash function so that it gives you uniformly distributed hash codes is
critical in implementing an efficient hash based container for fast data retrieval.

What is the use of hash codes in Java? Java uses hash codes for the same reason described above—to efficiently
retrieve data from hash based collections. If the objects of your class are not used as keys in a hash based collection,
for example, in a Hashtable, HashMap, etc., you need not even worry about hash codes for your objects at all.

You can compute hash code for an object in Java. In case of an object, the pieces of information that will be used
to compute the hash code are the pieces of information that make up the state of the object. Java designers considered
the hash code for an object so important that they provided a default implementation to compute the hash code for
an object in the Object class.

The Object class has a hashCode () method that returns an int, which is the hash code of the object. The default
implementation of this method computes the hash code of an object by converting the memory address of the
object into an integer. Since the hashCode () method is defined in the Object class, it is available in all classes in Java.
However, you are free to override the implementation in your class. Here are the rules that you must follow when you
override the hashCode () method in your class. Suppose there are two object references, x and y.

e Ifx.equals(y) returns true, x.hashCode() must return an integer, which is equal to
y.hashCode(). That is, if two objects are equal using the equals () method, they must have the
same hash codes.

e Ifx.hashCode() is equal to y.hashCode(), it is not necessary that x.equals(y) returns true.
That is, if two objects have the same hash codes using the hashCode () method, they do not
have to be equal using the equals () method.

e Ifthe hashCode() method is called on the same object multiple times in the same execution
of a Java application, the method must return the same integer value. The hashCode() and
equals() methods are closely tied. If your class overrides any of these two methods, it must
override both for the objects of your class to work correctly in hash-based collections. Another
rule is that you should use only those instance variables to compute the hash code for an
object, which are also used in the equals() method to check for equality.

286

CHAPTER 7 © THE OBJECT AND OBJECTS CLASSES

If your class is mutable, you should not be using objects of your class as keys in hash-based collections. If the
object has been used as a key changes after their use, you will not be able to locate the object in the collection because
locating an object in a hash based collection is based on its hash code. In such cases, you will have stranded objects in
the collection.

How should you implement a hashCode () method for a class? Here are some guidelines to write the logic for the
hashCode () method for your class, which is reasonable for most of the purposes:

e Start with a prime number, say 37.
int hash = 37;

e Compute the hash code value for each instance variable of primitive data types separately
using the following logic. Note that you need to use only those instance variables in the hash

code computation, which are also part of the equals() method logic. Let’s store the result of
this step in an int variable code. Let’s assume that value is the name of the instance variable.

For byte, short, int, and char data types, use their integer value as

code = (int)value;

For long data type, use the XOR for two halves of 64-bit as

code = (int)(value * (value >>>32));

For float data type, convert its floating-point values to an equivalent integer value using
code = Float.floatToIntBits(value)

For double data type, convert its floating-point value to long using the doubleToLongBits()
method of the Double class and then convert the long value to an int value using the

procedure as described above for the long data type.

long longBits = Double.doubleToLongBits(value);
code = (int)(longBits ~ (longBits >>>32));

For boolean data type, use 1 for true and 0 for false.
code = (value ? 1 : 0)

e For areference instance variable, use 0 if it is null. Otherwise, call its hashCode() method to
get its hash code. Suppose ref is the name of the reference variable.

code = (ref == null ? 0: ref.hashCode());

Compute the hash code using the following formula. Using 59 in the formula is an arbitrary
decision. Any other prime number, say 47, will work fine.

hash = hash * 59 + code;

e Repeat the above three steps for all instance variables you want to include in your hashCode ()
computation.

e Finally, return the value contained in the hash variable from your hashCode () method.

287

CHAPTER 7 © THE OBJECT AND OBJECTS CLASSES

The above method is one of the many ways, not the only way, to compute hash code of an object in Java. Consult
a good textbook on computing hash codes if you need a stronger hash function. All primitive wrapper classes and
String class override the hashCode () method to provide reasonably good implementations of hash functions.

Tip Java 7 added a utility class java.lang.Objects. It contains a hash() method that computes the hash code for
any number of values of any type. From Java 7, you are advised to use the Objects.hash() method to compute the hash
code of an object. Please refer to “The Objects Class” section later in this chapter for more details.

Listing 7-1 contains the code for a Book class. It shows one of the possible implementations of the hashCode()
method.

Listing 7-1. A Book Class That Reimplements the hashCode() Method

// Book.java
package com.jdojo.object;

public class Book {
private String title;
private String author;
private int pageCount;
private boolean hardCover;
private double price;

/* Other code goes here */
/* Must implement the equals() method too. */

public int hashCode() {
int hash = 37;
int code = 0;

// Use title
code = (title == null ? 0 : title.hashCode());
hash = hash * 59 + code;

// Use author
code = (author == null ? 0 : author.hashCode());
hash = hash * 59 + code;

// Use pageCount
code = pageCount;
hash = hash * 59 + code;

// Use hardCover

code = (hardCover ? 1 : 0);
hash = hash * 59 + code;

288

CHAPTER 7 © THE OBJECT AND OBJECTS CLASSES

// Use price

long priceBits = Double.doubleTolLongBits(price);
code = (int)(priceBits * (priceBits >>>32));
hash = hash * 59 + code;

return hash;

The class has five instance variables: title, author, pageCount, hardcover, and price. The implementation uses
all five instance variables to compute the hash code for a Book object. You must also implement the equals() method
for the Book class, which must use all the five instance variables to check if two Book objects are equal. You need to
make sure that the equals () method and the hashCode() method use the same set of instance variables in their
logic. Suppose you add one more instance variable to the Book class. Let’s call it ISBN. Because ISBN identifies a book
uniquely, you might use only the ISBN instance variable to compute its hash code and to compare for equality with
another Book object. In this case, it will be sufficient to use only one instance variable to compute the hash code and
check for equality.

There are some misconceptions about the hash code of an object in Java. Developers think that the hash code
uniquely identifies an object and it must be a positive integer. However, they are not true. The hash code does not
identify an object uniquely. Two distinct objects may have the same hash codes. A hash code does not have to be
only a positive number. It could be any integer value, positive as or negative. There is also confusion about the usage
of hash codes. They are used solely for the purpose of efficient retrieval of data from a hash-based collection. If your
objects are not used as keys in hash based collections and you do not override the equals () method in your class,
you do not need to worry about reimplementing the hashCode () method in your class at all. Most likely, it will be
overriding the equals () method that will prompt you to override the hashCode () method for your class. If you do not
override and provide correct implementation of hashCode () and equals() methods in your class at the same time, the
objects of your class would not behave properly in hash-based collections. The Java compiler or the Java runtime will
never give you any warnings or errors about the incorrect implementations of these two methods in your class.

Comparing Objects for Equality

Every object in the universe is different from all other objects, and every object in a Java program is different from all
other objects. All objects have a unique identity. The memory address at which an object is allocated can be treated as
its identity, which will make it always unique. Two objects are the same if they have the same identity (or reference in
Java terminology). Consider the following snippet of code:

Object obj1;
Object obj2;

/* Do something... */
if (obj1 == obj2) {

/* obj1 and obj2 are the same object based on identity */
}

else {
/* obj1 and obj2 are different objects based on identity */
}

The above code uses identity comparison to test for equality of obj1 and obj2. It compares the references of two
objects to test whether they are equal.

289

CHAPTER 7 © THE OBJECT AND OBJECTS CLASSES

Sometimes you want to treat two objects as equal if they have the same state based on some or all of their
instance variables. If you want to compare two objects of your class for equality based on criteria other than their
references (identities), your class needs to reimplement the equals () method of the Object class. The default
implementation of the equals () method in the Object class compares the references of the object being passed as the
parameter and the object on which the method is called. If the two references are equal, it returns true. Otherwise,
it returns false. In other words, the equals () method in the Object class performs identity based comparison for
equality. The implementation of the method is as follows. Recall that the keyword this inside an instance method of a
class refers to the reference of the object on which the method is called.

public boolean equals(Object obj) {
return (this == obj);
}

Consider the following snippet of code. It compares some Point objects using the equality operator (==), which
always compares the references of its two operands. It also uses the equals() method of the Object class to compare
the same two references. The output shows that the result is the same. Note that your Point class does not contain an
equals() method. When you call the equals () method on a Point object, the equals () method’s implementation of
the Object class is used.

Point pt1 = new Point(10, 10);
Point pt2 = new Point(10, 10);
Point pt3 = new Point(12, 19);

Point pt4 = pt1;

System.out.println("pt1 == pt1: " + (pt1 == pt1));
System.out.println("pti.equals(pt1): " + ptil.equals(pti));

System.out.println("pt1 == pt2: " + (pt1 == pt2));
System.out.println("pti.equals(pt2): " + ptil.equals(pt2));

System.out.println("pt1 == pt3: " + (pt1 == pt3));
System.out.println("pti.equals(pt3): " + ptil.equals(pt3));

System.out.println("pt1 == pt4: " + (pt1 == pt4));
System.out.println("pti.equals(pt4): " + ptil.equals(pt4));

pt1 == pti: true
ptil.equals(pt1): true
pt1 == pt2: false
pti.equals(pt2): false
pt1 == pt3: false
pti.equals(pt3): false
ptl == pt4: true
ptil.equals(pt4): true

In practice, two points are considered the same if they have the same (x, y) coordinates. If you want to implement
this rule of equality for your Point class, you must reimplement the equals () method as shown in Listing 7-2.

290

CHAPTER 7 © THE OBJECT AND OBJECTS CLASSES

Listing 7-2. A SmartPoint Class That Reimplements equals() and hashCode() Methods

// SmartPoint.java
package com.jdojo.object;

public class SmartPoint {
private int x;
private int y;

public SmartPoint(int x, int y) {
this.x = x;
this.y = y;

}

/* Reimplement the equals() method */
public boolean equals(Object otherObject) {
// Are the same?
if (this == otherObject) {
return true;
}

// Is otherObject a null reference?
if (otherObject == null) {

return false;
}

// Do they belong to the same class?

if (this.getClass() != otherObject.getClass()) {
return false;

}

// Get the reference of otherObject in a SmartPoint variable
SmartPoint otherPoint = (SmartPoint)otherObject;

// Do they have the same x and y co-ordinates
boolean isSamePoint = (this.x == otherPoint.x && this.y == otherPoint.y);

return isSamePoint;

}

/* Reimplement hashCode() method of the Object class,
which is a requirement when you reimplement equals() method */
public int hashCode() {
return (this.x + this.y);
}

You call your new class SmartPoint. Java advises to reimplement hashCode () and equals() methods together
if any one of them is reimplemented in your class. The Java compiler would not complain if you reimplement the
equals() method and not the hashCode () method. However, you will get unpredictable results when you use the
objects of your class in hash-based collections.

291

CHAPTER 7 © THE OBJECT AND OBJECTS CLASSES

The only requirement for a hashCode () method is that if the m.equals (n) method returns true, m.hashCode()
must return the same value as n.hashCode(). Because your equals () method uses (x, y) coordinates to test for
equality, you return the sum of x and y coordinates from the hashCode () method, which fulfills the technical
requirement. Practically, you need to use a better hashing algorithm to compute the hash value.

You have written a few lines of codes in the equals() method of the SmartPoint class. Let’s go through the logic
one by one. First, you need to check if the object passed is the same as the object on which the method is called. If two
objects are the same, you consider them equal by retuning true. This is accomplished by the following code:

// Are they the same?

if (this == otherObject) {
return true;

}

If the parameter being passed is null, the two objects cannot be the same. Note that the object on which the
method is called can never be null because you cannot call a method on a null reference. Java runtime will throw
runtime exception when an attempt is made to call a method on a null reference. The following code makes sure that
you are comparing two non-null objects:

// Is otherObject a null reference?
if (otherObject == null) {

return false;
}

The parameter type of the method is Object. This means that any type of object reference can be passed. For
example, you can use apple.equals(orange), where apple and orange are references to an Apple object and an
Orange object, respectively. In your case, you want to compare only a SmartPoint object to another SmartPoint
object. To make sure that the objects being compared are of the same class, you need the following code. If someone
calls the method with a parameter that is not a SmartPoint object, it returns false.

// Do they have the same class?

if (this.getClass() != otherObject.getClass()) {
return false;

}

At this point, you are sure that someone is trying to compare two non-null SmartPoint objects that have different
identity (references). Now you would like to compare the (x, y) coordinates of two objects. To access the x and y
instance variables of the otherObject formal parameter, you must cast it to a SmartPoint object. The following
statement does it:

// Get the reference of otherObject in a SmartPoint variable
SmartPoint otherPoint = (SmartPoint)otherObject;

At this point, it is just the matter of comparing the values of x and y instance variables of the two SmartPoint
objects. If they are the same, you consider two objects equal by returning true. Otherwise, two objects are not equal
and you return false. This is accomplished by the following code:

// Do they have the same x and y co-ordinates

boolean isSamePoint = (this.x == otherPoint.x &3 this.y == otherPoint.y);
return isSamePoint;

292

CHAPTER 7 © THE OBJECT AND OBJECTS CLASSES

It is time to test your reimplementation of the equals () method in the SmartPoint class. Listing 7-3 is your test
class. You can observe in the output that you have two ways of comparing two SmartPoint objects for equality. The
equality operator (==) compares them based on identity and the equals() method compares them based on values
of the (x, y) coordinates. Note that if (x, y) coordinates are the same for two SmartPoint objects, the equals() method
returns true.

Listing 7-3. A Test Class to Demonstrate the Difference Between Identity and State Comparisons

// SmartPointTest.java
package com.jdojo.object;

public class SmartPointTest {
public static void main(String[] args) {
SmartPoint pti = new SmartPoint(10, 10);
SmartPoint pt2 = new SmartPoint(10, 10);
SmartPoint pt3 = new SmartPoint(12, 19);
SmartPoint pt4 = pt1;

System.out.println("pt1 == pt1: " + (pt1 == pt1));
System.out.println("pti.equals(pt1): " + pti.equals(pt1));

System.out.println("pt1 == pt2: " + (pt1 == pt2));
System.out.println("pti.equals(pt2): " + pti.equals(pt2));

System.out.println("pt1 == pt3: " + (pt1 == pt3));
System.out.println("pti.equals(pt3): " + pti.equals(pt3));

System.out.println("pt1 == pt4: " + (pt1 == pt4));
System.out.println("pti.equals(pt4): " + pti.equals(pt4));

pt1 == pti: true
pti.equals(pt1): true
pt1 == pt2: false
pti.equals(pt2): true
pt1 == pt3: false
pti.equals(pt3): false
pt1 == pt4: true
ptl.equals(pt4): true

There are some specifications for implementing the equals () method in your class, so your class will work
correctly when used with other areas (e.g. hash-based collections) of Java. It is the responsibility of the class designer
to enforce these specifications. If your class does not conform to these specifications, the Java compiler or Java
runtime will not generate any errors. Rather, objects of your class will behave incorrectly. For example, you will add
your object to a collection, but you may not be able to retrieve it. Here are specifications for the equals () method’s
implementation. Assume that X, y, and z are non-null references of three objects.

293

CHAPTER 7 © THE OBJECT AND OBJECTS CLASSES

o Reflexivity: It should be reflexive. The expression x.equals(x) should return true. That is, an
object must be equal to itself.

e Symmetry: It should be symmetric. If x.equals(y) returns true, y.equals(x) must return
true. Thatis, ifx is equal to y, y must be equal to x.

e Transitivity: It should be transitive. If x. equals (y) returns true and y.equals(z) returns
true, x.equals(z) must return true. That is, if x is equal to y and y is equal to z, x must be
equal to z.

e Consistency: It should be consistent. If x. equals (y) returns true, it should keep returning
true until the state of x or y is modified. If x.equals (y) returns false, it should keep returning
false until the state of x or y is modified.

e Comparison with null reference: An object of any class should not be equal to a null reference.
The expression x.equals(null) should always return false.

o Relationship with hashCode() method: 1f x.equals(y) returns true, x. hashCode () must return
the same value as y.hashCode(). That is, if two objects are equal according to the equals()
method, they must have the same hash code values returned from their hashCode () methods.
However, the opposite may not be true. If two objects have the same hash codes, that does not
imply that they must be equal according to the equals() method. That is, if x.hashCode() is
equal to y.hashCode(), that does not imply that x.equals(y) will return true.

Your SmartPoint class satisfies all six rules for equals() and hashCode () methods. It was fairly easy to implement
the equals() method for the SmartPoint class. It has two primitive type instance variables and you used both of them
in comparison for equality.

There are no rules as to how many of instance variables should be used to compare for equality of two objects
of a class. It all depends on the use of the class. For example, if you have an Account class, the account number itself
may be sufficient in your case to compare for the equality of two Account objects. However, make sure you use the
same instance variables in the equals () method to compare for equality and in the hashCode() method to compute
hash code value. If your class has reference instance variables, you may call their equals () methods from inside the
equals() method of your class. Listing 7-4 shows how to use a reference instance variable comparison inside the
equals() method.

Listing 7-4. Overriding the equals() and hsshCode() Methods in a Class

// SmartCat.java
package com.jdojo.object;

public class SmartCat {
private String name;

public SmartCat(String name) {
this.name = name;
}

/* Reimplement the equals() method */
public boolean equals(Object otherObject) {
// Are they the same?
if (this == otherObject) {
return true;
}

294

CHAPTER 7 © THE OBJECT AND OBJECTS CLASSES

// Is otherObject a null reference?
if (otherObject == null) {

return false;
}

// Do they belong to the same class?

if (this.getClass() != otherObject.getClass()) {
return false;

}

// Get the reference of otherObject is a SmartCat variable
SmartCat otherCat = (SmartCat)otherObject;

// Do they have the same names
boolean isSameName = (this.name == null? otherCat.name == null
:this.name.equals(otherCat.name));

return isSameName;

}

/* Reimplement the hashCode() method, which is a requirement
when you reimplement equals() method */
public int hashCode() {
return (this.name == null? 0 : this.name.hashCode());
}

The SmartCat class has a name instance variable, which is of the type String. The String class has its own version
of the equals() method implementation that compares two strings character by character. The equals() method
of the SmartCat class calls the equals () method on the name instance variables to check if two names are equal.
Similarly, it makes use of the hashCode () method’s implementation in the String class in its hashCode() method.

String Representation of an Object

An object is represented by its state, which is the combination of values of all its instance variables at a point in time.
Sometimes it is helpful, usually in debugging, to represent an object in a string form. What should be in the string that
represents an object? The string representation of an object should contain enough information about the state of
the object in a readable format. The toString() method of the Object class lets you write your own logic to represent
the object of your class in a string. The Object class provides a default implementation of the toString() method. It
returns a string in the following format:

<<fully qualified class name>>@<<hash code of object in hexadecimal>>
Consider the following snippet of code and its output. You may get a different output.

// Create two objects
Object obj = new Object();
IntHolder intHolder = new IntHolder(234);

// Get string representation of objects

String objStr = obj.toString();
String intHolderStr = intHolder.toString();

295

CHAPTER 7 © THE OBJECT AND OBJECTS CLASSES

// Print the string representations
System.out.println(objStr);
System.out.println(intHolderStr);

java.lang.0Object@360be0
com.jdojo.object.IntHolder@45a877

Note that your IntHolder class does not have a toString() method. Still, you were able to call the toString()
method using the intHolder reference variable because all methods in the Object class are available in all classes
automatically.

You may notice that the string representation that is returned from toString() method for IntHolder object is
not so useful. It does not give you any clues about the state of the IntHolder object. Let’s reimplement the toString()
method in your IntHolder class. You will call the new class SmartIntHolder. What should your toString() method
return? An object of SmartIntHolder represents an integer value. It would be fine just to return the stored integer
value as a string. You can convert an integer value, say 123, into a String object using the valueOf() static method
of the String class as

String str = String.valueOf(123); // str contains "123" as a string
Listing 7-5 has the complete code for your SmartIntHolder class.

Listing 7-5. Reimplementing toString() Method of the Object Class in the SmartIntHolder Class

// SmartIntHolder.java
package com.jdojo.object;

public class SmartIntHolder {
private int value;

public SmartIntHolder(int value) {
this.value = value;
}

public void setValue(int value) {
this.value = value;
}

public int getValue() {
return value;
}

/* Reimplement toString() method of the Object class */
public String toString() {

// Return the stored value as a string

String str = String.valueOf(this.value);

return str;

296

CHAPTER 7 © THE OBJECT AND OBJECTS CLASSES

The following snippet of code shows you how to use the toString() method of the SmartIntHolder class:

// Create an object of the SmartIntHolder class
SmartIntHolder intHolder = new SmartIntHolder(234);
String intHolderStr = intHolder.toString();
System.out.println(intHolderStr);

// Change the value in SmartIntHolder object
intHolder.setValue(8967);

intHolderStr = intHolder.toString();
System.out.println(intHolderStr);

234
8967

There is no special technical requirement for reimplementing the toString() method in your class. You need
to make sure it is declared public, its return type is String, and it does not take any parameters. The returned string
should be human readable text to give an idea about the state of the object at the time the method is called. It is
recommended to reimplement the toString() method of the Object class in every class you create.

Suppose you have a Point class to represent a 2D point as shown in Listing 7-6. A Point holds the xand y
coordinates of a point. An implementation of the toString() method in the Point class may return a string of the
form (x, y), where x and y are the coordinates of the point.

Listing 7-6. A Point Class Whose Object Represents a 2-D Point

// Point.java
package com.jdojo.object;

public class Point {
private int x;
private int y;

public Point(int x, int y) {
this.x = x;
this.y = y;

}

/* Reimplement toString() method of the Object class */
public String toString() {

String str = "("+x+ ", "+y+")";
return str;

The toString() method of a class is very important, and Java provides you with easy ways to use it. Java calls
the toString() method of an object automatically for you in situations when it needs a string representation of the
object. Two such situations that are worth mentioning:

e Astring concatenation expression involving a reference of an object

e Acallto System.out.print() and System.out.println() methods with an object reference
as a parameter

297

CHAPTER 7 © THE OBJECT AND OBJECTS CLASSES

When you concatenate a string and an object like
String str = "Hello" + new Point(10, 20);

Java calls the toString() method on the Point object and concatenate the returned value to the "Hello" string.
The above statement will assign a "Hello(10, 20)" string to the str variable. The above statement is the same as the
following one:

String str = "Hello" + new Point(10, 20).toString();

You use the string concatenation operator (+) to concatenate data of different types. First, Java gets the string
representations of all data before concatenating them. Calling the toString() method of an object automatically for
you in a concatenation expression helps you save some typing. If the object reference that is used in concatenation is a
null reference, Java uses a "null" string as the string representation.

The following snippet of code makes the call to the toString() method on object references clear. You may
observe that the result is the same when you use the object’s reference by itself or you call its toString() method in
a string concatenation expression. Similarly, when you use System.out.println(pt), Java automatically calls the
toString() method on the pt reference variable.

Point pt = new Point(10, 12);

String stri = "Test " + pt;
String str2 = "Test " + pt.toString();

// stri and str 2 will have the same content
System.out.println(pt);
System.out.println(pt.toString());
System.out.println(stri);
System.out.println(str2);

(10, 12)
(10, 12)
Test (10, 12)
Test (10, 12)

The following snippet of code shows the effect of using a null reference in a string concatenation expression
and in the System.out.println() method call. Note that you cannot use pt.toString() when ptis holding a null
reference. The call to any method on a null reference will generate a runtime exception.

// Set pt to null

Point pt = null;

String str3 = "Test " + pt;

System.out.println(pt);

System.out.println(str3);

//System.out.println(pt.toString()); /* Will generate a runtime exception */

null
Test null

298

CHAPTER 7 © THE OBJECT AND OBJECTS CLASSES

Cloning Objects

Java does not provide an automatic mechanism to clone (make a copy) an object. Recall that when you assign a
reference variable to another reference variable, only the reference of the object is copied, not the content of the
object. Cloning an object means copying the content of the object bit by bit. If you want objects of your class to be
cloned, you must reimplement the clone() method in your class. Once you reimplement the clone() method, you
should be able to clone objects of your class by calling the clone() method. The declaration of the clone() method in
the Object class is as follows:

protected Object clone() throws CloneNotSupportedException

You need to observe few things about the declaration of the clone() method.

e Itisdeclared protected. Therefore, you will not be able to call it from the client code. The
following code is not valid:

Object obj = new Object();
Object clone = obj.clone(); // Error. Cannot access protected clone() method

This means you need to declare the clone() method public in your class if you want the client
code to clone objects of your class.

e Itsreturn type is Object. It means you will need to cast the returned value of the clone()
method. Suppose MyClass is cloneable. Your cloning code will look as

MyClass mc = new MyClass();
MyClass clone = (MyClass)mc.clone(); // Need to use a cast

You do not need to know any internal details about an object to clone it. The clone() method in the Object class
has all the code that is needed to clone an object. All you need is to call it from the clone() method of your class. It
will make a bitwise copy of the original object and return the reference of the copy.

The clone() method in the Object class throws a CloneNotSupportedException . It means when you call the
clone() method of the Object class, you need to place the call in a try-catch block, or rethrow the exception. You will
learn more about the try-catch block in Chapter 9. You have the option not to throw a CloneNotSupportedException
from the clone() method of your class. The following snippet of code is placed inside the clone() method of your
class, which calls the clone() method of the Object class using the super keyword:

YourClass obj = null;

try {
// Call clone() method of the Object class using super.clone()
obj = (YourClass)super.clone();

catch (CloneNotSupportedException e) {
e. printStackTrace();

}

return obj;

299

CHAPTER 7 © THE OBJECT AND OBJECTS CLASSES

One important thing that you must do is add an "implements Cloneable" clause in your class declaration.
Cloneable is an interface declared in the java.lang package. You will learn about interface in Chapter 17. For now,
just add this clause in your class declaration. Otherwise, you will get a runtime error when you call the clone()
method on the objects of your class. Your class declaration must look like

public class MyClass implements Cloneable {
// Code for your class goes here
}

Listing 7-7 has the complete code for a DoubleHolder class. It overrides the clone() method of the Object class.
The comments in the clone() method explains what the code is doing. The clone() method of DoubleHolder class
does not have a throws clause as the clone () method of the Object class has. When you override a method, you have
an option to drop the throws clause that is declared in the superclass.

Listing 7-7. A DoubleHolder Class with Cloning Capability

// DoubleHolder.java
package com.jdojo.object;

public class DoubleHolder implements Cloneable {
private double value;

public DoubleHolder(double value) {
this.value = value;
}

public void setValue(double value) {
this.value = value;
}

public double getValue() {
return this.value;
}

public Object clone() {
DoubleHolder copy = null;
try {
// Call the clone() method of the Object class, which will do a
// bit-by-bit copy and return the reference of the clone
copy = (DoubleHolder) super.clone();

catch (CloneNotSupportedException e) {
// If anything goes wrong during cloning, print the error details
e.printStackTrace();

}

return copy;

Once your class implements the clone() method correctly, cloning an object of your class is as simple as calling
its clone() method. The following snippet of code shows how to clone an object of the DoubleHolder class. Note that
you must use cast to cast the returned reference from the dh.clone() method call to the DoubleHolder type.

300

CHAPTER 7 © THE OBJECT AND OBJECTS CLASSES

DoubleHolder dh = new DoubleHolder(100.00);
DoubleHolder dhClone = (DoubleHolder) dh.clone();

At this point, there are two separate objects of the DoubleHolder class. The dh variable references the original
object and dhClone variable references the cone of the original object. The original as well as the cloned object hold
the same value of 100.00. However, they have separate copies of the value. If you change the value in the original
object, for example, dh.setValue(200), the value in the cloned object remains unchanged. Listing 7-8 shows how
to use the clone() method to clone an object of the DoubleHolder class. The output proves that once you clone an
object, there are two separate objects in memory.

Listing 7-8. A Test Class to Demonstrate Object Cloning

// CloningTest.java
package com.jdojo.object;

public class CloningTest {
public static void main(String[] args) {
DoubleHolder dh = new DoubleHolder(100.00);

// Clone dh
DoubleHolder dhClone = (DoubleHolder)dh.clone();

// Print the values in original and clone
System.out.println("Original:" + dh.getValue());
System.out.println("Clone :" + dhClone.getValue());

// Change the value in original and clone
dh.setValue(200.00);
dhClone.setValue(400.00);

// Print the values in original and clone again
System.out.println("Original:" + dh.getValue());
System.out.println("Clone :" + dhClone.getValue());

Original:100.0
Clone :100.0
Original:200.0
Clone :400.0

From Java 5, you need not specify the return type of the clone() method in your class as the Object type. You
can specify your class as the return type in the clone() method declaration. This will not force the client code to
use a cast when it call the clone () method of your class. The following snippet of code shows the changed code for
the DoubleHolder class, which will compile only in Java 5 or later. It declares DoubleHolder as the return type of the
clone() method and uses a cast in the return statement.

301

CHAPTER 7 © THE OBJECT AND OBJECTS CLASSES

// DoubleHolder.java
package com.jdojo.object;

public class DoubleHolder implements Cloneable {
/* The same code goes here as before... */

public DoubleHolder clone() {
Object copy = null;
/* The same code goes here as before... */

return (DoubleHolder)copy;

With the above declaration for the clone() method, you can write code to clone an object as follows. Note that no
cast is needed anymore.

DoubleHolder dh = new DoubleHolder(100.00);
DoubleHolder dhClone = dh.clone();// Clone dh. No cast is needed

An object may be composed of another object. In such cases, two objects exist in memory separately—a
contained object and a container object. The container object stores the reference of the contained object. When you
clone the container object, the reference of the contained object is cloned. After cloning is performed, there are
two copies of the container object; both of them have references to the same contained object. This is called a shallow
cloning because references are copied, not the objects. The clone() method of the Object class makes only
shallow cloning, unless you code it otherwise. Figure 7-2 shows the memory state of a compound object, where
an object contains a reference of another object. Figure 7-3 shows the memory state when the compound object is
cloned using a shallow cloning. You may notice that in shallow cloning the contained object is shared by the original
compound object and the cloned compound object.

Figure 7-2. A compound object. The container object stores a reference of another object (Contained object)

Original container object

Original contained object

Container @

I

Cloned container object
Figure 7-3. Memory state after the container object is cloned using a shallow cloning

302

CHAPTER 7 © THE OBJECT AND OBJECTS CLASSES

When the contained objects are copied rather than their references during cloning of a compound object, it is
called deep cloning. You must clone all the objects referenced by all reference variables of an object to get a deep
cloning. A compound object may have multiple levels of chaining of contained objects. For example, the container
object may have a reference of another contained object, which in turn has a reference of another contained object
and so on. Whether you will be able to perform a deep cloning of a compound object depends on many factors. If
you have a reference of a contained object, it may not support cloning and in that case, you have to be content with
shallow cloning. You may have a reference of a contained object, which itself is a compound object. However, the
contained object supports only shallow cloning, and in that case again, you will have to be content with shallow
cloning. Let’s look at examples of shallow and deep cloning.

If the reference instance variables of an object store references to immutable objects, you do not need to clone
them. That is, if the contained objects of a compound object are immutable, you do not need to clone the contained
objects. In this case, shallow copy of the immutable contained objects is fine. Recall that immutable objects cannot be
modified after they are created. An immutable object’s references can be shared by the multiple objects without any
side effects. This is one of the benefits of having immutable objects. If a compound object contains some references to
mutable objects and some to immutable objects, you must clone the referenced mutable objects to have a deep copy.

Listing 7-9 has code for a ShallowClone class.

Listing 7-9. A ShallowClone Class That Supports Shallow Cloning
// ShallowClone.java

package com.jdojo.object;

public class ShallowClone implements Cloneable {
private DoubleHolder holder = new DoubleHolder(0.0);

public ShallowClone(double value) {
this.holder.setValue(value);
}

public void setValue(double value) {
this.holder.setValue(value);
}

public double getValue() {
return this.holder.getValue();
}

public Object clone() {
ShallowClone copy = null;
try {
copy = (ShallowClone)super.clone();

catch (CloneNotSupportedException e) {
e.printStackTrace();
}

return copy;

303

CHAPTER 7 © THE OBJECT AND OBJECTS CLASSES

An object of the ShallowClone class is composed of an object of the DoubleHolder class. The code in the clone()
method of the ShallowClone class is the same as for the clone() method of the DoubleHolder class. The difference
lies in the type of instance variables that are used for the two classes. The DoubleHolder class has an instance variable
of primitive type double, whereas the ShallowClone class has an instance variable of the reference type DoubleHolder.
When the ShallowClone class calls the clone () method of the Object class (using super.clone()), it receives a
shallow copy of itself. That is, it shares the DoubleHolder object used in its instance variable with its clone.

Listing 7-10 has test cases to test an object of the ShallowClone class and its clone. The output shows that after
you make a clone, changing the value through the original object also changes the value in the cloned object. This is
so because the ShallowClone object stores the value in another object of the DoubleHolder class, which is shared by
both the cloned and the original objects.

Listing 7-10. A Test Class to Demonstrate the Shallow Copy Mechanism

// ShallowCloneTest. java
package com.jdojo.object;

public class ShallowCloneTest {
public static void main(String[] args) {
ShallowClone sc = new ShallowClone(100.00);
ShallowClone scClone = (ShallowClone)sc.clone();

// Print the value in original and clone
System.out.println("Original:" + sc.getValue());
System.out.println("Clone :" + scClone.getValue());

// Change the value in original and it will change the value
// for clone too because we have done shallow cloning
sc.setValue(200.00);

// Print the value in original and clone
System.out.println("Original:" + sc.getValue());
System.out.println("Clone :" + scClone.getValue());

Original:100.0
Clone :100.0
Original:200.0
Clone :200.0

In a deep cloning, you need to clone all objects referenced by all reference instance variables of an object. You
must perform a shallow cloning before you can perform a deep cloning. The shallow cloning is performed by calling
the clone() method of the Object class. Then you will need to write code to clone all reference instance variables.
Listing 7-11 has code for a DeepClone class, which performs a deep cloning.

304

CHAPTER 7 © THE OBJECT AND OBJECTS CLASSES

Listing 7-11. A DeepClone Class That Performs Deep Cloning

// DeepClone.java
package com.jdojo.object;

public class DeepClone implements Cloneable {
private DoubleHolder holder = new DoubleHolder(0.0);

public DeepClone(double value) {
this.holder.setValue(value);
}

public void setValue(double value) {
this.holder.setValue(value);

}

public double getValue() {
return this.holder.getValue();
}

public Object clone() {
DeepClone copy = null;

try {
copy = (DeepClone)super.clone();
// Need to clone the holder reference variable too
copy.holder = (DoubleHolder)this.holder.clone();

}

catch (CloneNotSupportedException e) {
e.printStackTrace();
}

return copy;

If you compare the code in the clone() method of the ShallowClone and DeepClone classes, you will find that for
deep cloning you had to write only one extra line of code.

// Need to clone the holder reference variable too
copy.holder = (DoubleHolder)this.holder.clone();

What will happen if the DoubleHolder class is not cleanable? In that case, you would not be able to write the
above statement to clone the holder instance variable. You could have cloned the holder instance variable as follows:

// Need to clone the holder reference variable too
copy.holder = new DoubleHolder(this.holder.getValue());

The goal is to clone the holder instance variable and it does not have to be done by calling its clone () method.

Listing 7-12 shows how your DeepClone class works. Compare its output with the output of the ShallowCloneTest
class to see the difference.

305

CHAPTER 7 © THE OBJECT AND OBJECTS CLASSES

Listing 7-12. A Test Class to Test Deep Cloning of Objects

// DeepCloneTest. java
package com.jdojo.object;

public class DeepCloneTest {
public static void main(String[] args) {
DeepClone sc = new DeepClone(100.00);
DeepClone scClone = (DeepClone)sc.clone();

// Print the value in original and clone
System.out.println("Original:" + sc.getValue());
System.out.println("Clone :" + scClone.getValue());

// Change the value in original and it will not change the value
// for clone because we have done deep cloning
sc.setValue(200.00);

// Print the value in original and clone
System.out.println("Original:" + sc.getValue());
System.out.println("Clone :" + scClone.getValue());

Original:100.0
Clone :100.0
Original:200.0
Clone :100.0

Tip Using the clone() method of the Object class is not the only way to make a clone of an object. You can use
other methods to clone an object. You may provide a copy constructor, which accepts an object of the same class and
creates a clone of that object. You may provide a factory method in your class, which may accept an object and returns
its clone. Another way to clone an object is to serialize it and then deserialized it. Serializing and deserializing objects is
covered in Chapter 7 in Beginning Java Language Features.

Finalizing an Object

Sometimes an object uses resources that need to be released when the object is destroyed. Java provides you with a
way to perform resource release or some other type of cleanup, when an object is about to be destroyed. In Java, you
create objects, but you cannot destroy objects. The JVM runs a low priority special task called garbage collector to
destroy all objects that are no longer referenced. The garbage collector gives you a chance to execute your cleanup
code before an object is destroyed.

The Object class has a finalize() method, which is declared as follows:

protected void finalize() throws Throwable { }

306

CHAPTER 7 © THE OBJECT AND OBJECTS CLASSES

The finalize() method in the Object class does not do anything. You need to override the method in your class.
The finalize() method of your class will be called by the garbage collector before an object of your class is destroyed.
Listing 7-13 has code for the Finalize class. It overrides the finalize() method of the Object class and prints a
message on the standard output. You can perform any cleanup logic in this method. The code in the finalize()
method is also called finalizer.

Listing 7-13. A Finalize Class That Overrides the finalize() Method of the Object Class

// Finalize.java
package com.jdojo.object;

public class Finalize {
private int x;

public Finalize(int x) {
this.x = x;
}

public void finalize() {
System.out.println("Finalizing " + this.x);

/* Perform any cleanup work here... */

The garbage collector calls the finalizer for each object only once. Running a finalizer for an object does not
necessarily mean that the object will be destroyed immediately after the finalizer finishes. A finalizer is run when the
garbage collector determines that no reference exists for the object. However, an object may pass its own reference
to some other part of the program when its finalizer is run. This is the reason that the garbage collector checks one
more time after it runs an object’s finalizer to make sure that no references exists for that object and then it destroys
(de-allocates memory) the object. The order in which finalizers are run and the time at which they are run are not
specified. It is not even guaranteed that a finalizer will run at all. This makes it undependable for a programmer to
write cleanup logic in the finalize() method. There are better ways to perform cleanup logic, for example, using
atry-finally block. It is suggested not to depend on the finalize() method in your Java program to clean up
resources uses by an object.

Listing 7-14 contains code to test the finalizers for your Finalize class. You may get a different output when you
run this program.

Listing 7-14. A Test Class to Test Finalizers

// FinalizeTest.java
package com.jdojo.object;

public class FinalizeTest {
public static void main(String[] args) {
// Create many objects, say 20000 objects.
for(int 1 = 0; i < 20000; i++) {
new Finalize(i);
}

307

CHAPTER 7 © THE OBJECT AND OBJECTS CLASSES

Finalizing 15247
Finalizing 15248
Finalizing 15246

The program creates 20,000 objects of the Finalize class without storing their references. It is important that
you do not store the references of the objects you create. As long as you hold the reference of an object, it will not be
destroyed and its finalizer will not be run. You can see from the output that only three objects got a chance to run their
finalizers before the program finished. You may get no output at all or a different output. If you do not get any output,
you can try by increasing the number of objects to create. The garbage collector will destroy objects when it feels it
is running low in memory. You may need to create more objects to trigger garbage collection, which in turn will run
finalizers of your objects.

Immutable Objects

An object whose state cannot be changed after it is created is called an immutable object. A class whose objects are
immutable is called an immutable class. If an object’s state can be changed (or mutated) after it has been created, it is
called a mutable object, and its class is called a mutable class.

Before I go into details of creating and using immutable objects, let’s define the word “immutability.” Instance
variables of an object define the state of an object. There are two views of an object’s state: internal and external. The
internal state of the object is defined by the actual values of its instance variables at a point in time. The external state
of the object is defined by the values that the users (or clients) of the object see at a point in time. When we state that
an object is immutable, we must be specific about which state of the object we mean to be immutable: internal state,
external state, or both.

Typically, when we use the phrase “an immutable object” in Java, we mean external immutability. In external
immutability, an object may change its internal state after its creation. However, the change in its internal state is
not visible to external users. The users do not see any changes in its state after its creation. In internal immutability,
the state of an object does not change after it is created. If an object is internally immutable, it is also externally
immutable. I will discuss examples of both.

Immutable objects have several advantages over mutable objects. An immutable object can be shared by
different areas of a program without worrying about its state changes. Testing an immutable class is easy. An
immutable object is inherently thread-safe. You do not have to synchronize access to your immutable object from
multiple threads since its state does not change. Please refer to the chapter on threads in the book Beginning Java
Language Features for more details on thread synchronization. An immutable object does not have to be copied and
passed to another area of the program in the same Java application because its state does not change. You can just
pass its reference and that serves as a copy. Its reference can be used to access its content. Avoiding copying is a big
performance advantage as it saves both time and space.

Let’s start with a mutable class whose object’s state can be modified after it is created. Listing 7-15 has code for an
IntHolder class.

Listing 7-15. An Example of a Mutable Class Whose Object’s State Can Be Changed After Creation

// IntHolder.java
package com.jdojo.object;

public class IntHolder {
private int value;

public IntHolder(int value) {
this.value = value;
}

308

CHAPTER 7 © THE OBJECT AND OBJECTS CLASSES

public void setValue(int value) {
this.value = value;
}

public int getValue() {
return value;
}

The value instance variable defines the state of an IntHolder object. You create an object of the IntHolder class
as shown:

IntHolder holder = new IntHolder(101);
int v = holder.getValue(); // will return 101

At this time, the value instance variable holds 101, which defines its state. You can get and set the instance
variable using the getter and setter.

// Change the value
holder.setValue(505);
int w = holder.getValue(); // will return 505

At this point, the value instance variable has changed from 101 to 505. That is, the state of the object has
changed. The change in state was facilitated by the setValue() method. Objects of the IntHolder class are examples
of mutable objects.

Let’s make the IntHolder class immutable. All you need to do is to remove the setValue() method from it to
make it an immutable class. Let’s call your immutable version of the IntHolder class as IntWrapper, as shown in
Listing 7-16.

Listing 7-16. An Example of an Immutable Class

// IntWrapper.java
package com.jdojo.object;

public class IntWrapper {
private final int value;

public IntWrapper(int value) {
this.value = value;
}

public int getValue() {
return value;
}

This is how you create an object of the IntWrapper class:

IntWrapper wrapper = new IntWrapper(101);

309

CHAPTER 7 © THE OBJECT AND OBJECTS CLASSES

At this point, the wrapper object holds 101 and there is no way to change it. Therefore, the IntWrapper class is an
immutable class and its objects are immutable objects. You might have noticed that two changes were made to the
IntHolder class to convert it to the IntWrapper class. The setValue() method was removed and the value instance
variable was made final. In this case, it was not necessary to make the value instance variable final. The use of the
final keyword makes your intention clear to the reader of the class and it protects the value instance variable from
being changed inadvertently. It is good practice (use it as a rule of thumb) to declare all instance variables that define the
immutable state of an object final so the Java compiler will enforce the immutability during compile time. The objects
of IntWrapper class are immutable internally as well as externally. There is no way to change its state once it is created.

Let’s create a variant of the IntWrapper class, which will be externally immutable but internally mutable. Let’s call
it IntWrapper2. It is listed in Listing 7-17.

Listing 7-17. An Example of an Externally Immutable and Internally Mutable Class

// IntWrapper2.java
package com.jdojo.object;

public class IntWrapper2 {
private final int value;
private int halfValue = Integer.MAX VALUE;

public IntWrapper2(int value) {
this.value = value;
}

public int getValue() {
return value;
}

public int getHalfValue() {
// Compute half value if it is not already computed
if (this.halfValue == Integer.MAX VALUE) {
// Cache the half value for future use
this.halfValue = this.value / 2;

}
return this.halfValue;

IntWrapper2 adds another instance variable called halfValue, which will hold the half value of the value that is
passed to the constructor. It is a trivial example. However, it serves the purpose to explain what you mean by externally
and internally immutable objects. Suppose (just for the sake of this discussion) that computing half of an integer is a
very costly process and you do not want to compute it in the constructor of the IntWrapper2 class, especially if nobody
every asks for it. The halfValue instance variable is initialized to the maximum integer value, which works as a flag
that it is not computed yet. You have added a getHalfValue() method, which checks if you have already computed
the half value. For the first time, it will compute the half value and cache it in halfValue instance variable. From the
second time onward, it will simply return the cached value.

The question is, “Is an IntWrapper2 object immutable?” The answer is yes and no. It is internally mutable.
However, it is externally immutable. Once it is created, its client will see the same return value from the getValue()
and getHalfValue() methods. However, its state (halfValue to be specific) changes once in its lifetime when the
getHalfValue() method is called for the first time. However, this change is not visible to the users of the object. This
method returns the same value on all subsequent calls. Objects like IntWrapper2 are called immutable objects. Recall
that typically an immutable object means externally immutable.

310

CHAPTER 7 © THE OBJECT AND OBJECTS CLASSES

The String class in the Java class library is an example of an immutable class. It uses the caching technique
discussed for the IntWrapper2 class. The String class computes hash code for its content when its hashCode ()
method is called for the first time and caches the value. Thus, a String object changes its state internally, but not
for its client. You will not come across the phrase “A String object in Java is externally immutable and internally
mutable.” Rather, you will come across the phrase “A String object in Java is immutable.” You should understand that
it means String objects are at least externally immutable.

Listing 7-18 shows a tricky situation where an attempt has been made to create an immutable class. The
IntHolderWrapper class has no method that can directly let you modify the value stored in its valueHolder instance
variable. It seems to be an immutable class.

Listing 7-18. An Unsuccessful Attempt to Create an Immutable Class
// IntHolderWrapper.java

package com.jdojo.object;

public class IntHolderWrapper {
private final IntHolder valueHolder;

public IntHolderWrapper(int value) {
this.valueHolder = new IntHolder(value);
}

public IntHolder getIntHolder() {
return this.valueHolder;
}

public int getValue() {
return this.valueHolder.getValue();
}

Listing 7-19 has a test class to test the immutability of the IntHolderWrapper class.

Listing 7-19. A Test Class to Test Immutability of the IntHolderWrapper Class

// BadImmutableTest.java
package com.jdojo.object;

public class BadImmutableTest {
public static void main(String[] args) {
IntHolderWrapper ihw = new IntHolderWrapper(101);

int value = ihw.getValue();
System.out.println("#1 value =

+ value);

IntHolder holder = ihw.getIntHolder();
holder.setValue(207);

value = ihw.getValue();
System.out.println("#2 value = " + value);

311

CHAPTER 7 © THE OBJECT AND OBJECTS CLASSES

101
207

#1 value
#2 value

The output shows that the IntHolderWrapper class is mutable. Two calls to its getValue() method return
different values. The culprit is its getIntHolder () method. It returns the instance variable valueHolder, which is a
reference variable. Note that the valueHolder instance variable represents an object of the IntHolder class, which
makes up the state of an IntHolderWrapper object. If the object that valueHolder reference variable references is
changed, the state of IntHolderWrapper is changed, too. Since the IntHolder object is mutable, you should not return
its reference to the client from the getIntHolder () method. The following two statements change the state of the
object from the client code:

IntHolder holder = ihw.getIntHolder(); /* Got hold of instance variable */
holder.setValue(207); /* Change the state by changing the instance variable's state */

Note that the designer of the IntHolderWrapper class missed the point when he returned the valueHolder
reference, that even though there is no direct way to change the state of the IntHolderWrapper class, it can be
changed indirectly.

How do you correct the problem? The solution is easy. In the getIntHolder () method, make a copy of the
valueHolder object and return the reference of the copy instead of the instance variable itself. This way, if the client
changes the value, it will be changed only in client’s copy, not in the copy held by IntHolderWrapper object.

Listing 7-20 has the correct immutable version of the IntHolderWrapper class, which you call IntHolderWrapper2.

Listing 7-20. A Modified, Immutable Version of the IntHolderWrapper Class

// IntHolderWrapper2.java
package com.jdojo.object;

public class IntHolderWrapper2 {
private final IntHolder valueHolder;

public IntHolderWrapper2(int value) {
this.valueHolder = new IntHolder(value);
}

public IntHolder getIntHolder() {
// Make a copy of valueHolder
int v = this.valueHolder.getValue();
IntHolder copy = new IntHolder(v);

// Return the copy instead of the original
return copy;

}

public int getValue() {
return this.valueHolder.getValue();
}

312

CHAPTER 7 © THE OBJECT AND OBJECTS CLASSES

Creating an immutable class is a little trickier than it seems. I have covered some of the cases in this section. Here
is another case where you need to be careful. Suppose you have designed an immutable class that has a reference type
instance variable. Suppose it accepts the initial value of its reference type instance variable in one of its constructors.
If the instance variable’s class is a mutable class, you must make a copy of the parameter passed to its constructor
and store the copy in the instance variable. The client code that passes the object’s reference in the constructor may
change the state of this object through the same reference later. Listing 7-21 shows how to implement the second
constructor for the IntHolderWrapper3 class correctly. It has the incorrect version of the implementation for the
second constructor commented.

Listing 7-21. Using a Copy Constructor to Correctly Implement an Immutable Class
// IntHolderWrapper3.java

package com.jdojo.object;

public class IntHolderWrapper3 {
private final IntHolder valueHolder;

public IntHolderWrapper3(int value) {
this.valueHolder = new IntHolder(value);
}

public IntHolderWrapper3(IntHolder holder) {
// Must make a copy of holder parameter
this.valueHolder = new IntHolder(holder.getValue());

/* Following implementation is incorrect. Client code will be able to change the
state of the object using holder reference later */
//this.valueHolder = holder; /* do not use it */

}

/* Rest of the code goes here... */

The Objects Class

Java 7 added a new utility class Objects in the java.util package for working with objects. It consists of all static
methods. Most of the methods of the Objects class deal with null values gracefully. Java 8 has added few more utility
methods to the class. The following is the list of methods in the class. Their descriptions follow the list.

e <T> int compare(T a, T b, Comparator<? super T> c)
e boolean deepEquals(Object a, Object b)

e boolean equals(Object a, Object b)

e int hash(Object... values)

e int hashCode(Object o)

e boolean isNull(Object obj)

e boolean nonNull(Object obj)

313

CHAPTER 7 © THE OBJECT AND OBJECTS CLASSES

e <T> T requireNonNull(T obj)

e <T> T requireNonNull(T obj, String message)

e <T> T requireNonNull(T obj, Supplier<String> messageSupplier)
e String toString(Object o)

e String toString(Object o, String nullDefault)

The compare() method is used to compare two objects for sorting purpose. It returns 0 if both arguments are
identical. Otherwise, it returns the value of c.compare(a, b).Itreturns 0 if both arguments are null.

The deepEquals() method is used to check if two objects are deeply equal. It returns true if both arguments are
deeply equal. Otherwise, it returns false. It returns true if both arguments are null.

The equals() method compares two objects for equality. It returns true if both arguments are equal. Otherwise,
it returns false. It returns true if both arguments are null.

The hash() method generates a hash code for all specified objects. It can be used to compute the hash code for
an object, which is based on the multiple instance fields. If a single object reference is passed to this method, the
returned hash code value is not equal to the hash code value returned from the object’s hashCode () method. If obj is
an object reference, obj.hashCode() is not equal to Objects.hash(obj).

The hashCode () method returns the hash code value of the specified object. If the argument is null, it returns 0.

The isNull() method returns true if the specified object is null. Otherwise, it returns false. You can also check
whether an object is null using the comparison operator ==, for example, obj == null returns true of obj is null.
The isNull() method is added in Java 8. It exists to be used as a method reference (Objects: :1sNull) in lambda
expressions. Lambda expressions are discussed in the book Beginning Java Language Features.

The nonNull() method performs the check opposite of what the isNull() method does. It is added in Java8 to be
used in lambda expression as a method reference (Objects: :nonNull).

The requireNonNull(T obj) method checks if the argument is not null. If the argument is null, it throws a
NullPointerException. This method is designed for validating parameters of methods and constructors. Notice the
formal type parameter <T> in the method’s declaration. It is a generic method. Any type of object is passed. Its return
type is the same as the type of the passed object. The method is overloaded. The second version of the method lets
you specify the message for the Nul1PointerException that is thrown when the argument is null. The third version
of the method takes a Supplier<String> as the second argument. This is added in Java 8. It defers the creation of
the message until the null check is performed. If the argument is null, the get () method of the Supplier<String> is
called to get the error message that is used in Nul1lPointerException. Use the third argument if you want to add the
timestamp in your error message.

The toString() method returns a “null” string if the argument is null. For a non-null argument, it returns the
value returned by calling the toString() method on the argument. The second version of the method lets you specify
the default retuned string when the argument is null.

Listing 7-22 demonstrates how to use some of the methods of the Objects class. The program uses a lambda
expression to create a Supplier<String> object. Lambda expressions are discussed in Chapter 5 in book Beginning
Java Language Features. You may get a different output when you run the program.

Listing 7-22. A Test Class to Demonstrate the Use of the Methods of the Objects Class

// ObjectsTest.java
package com.jdojo.object;

import java.time.Instant;
import java.util.Objects;
import java.util.function.Supplier;

314

CHAPTER 7 © THE OBJECT AND OBJECTS CLASSES

public class ObjectsTest {
public static void main(String[] args) {
// Compute hash code for two integers, a char, and a string
int hash = Objects.hash(10, 8900, '\u20b9', "Hello");
System.out.println("Hash Code is " + hash);

// Test for equality
boolean isEqual = Objects.equals(null, null);
System.out.println("null is equal to null: " + isEqual);

isEqual = Objects.equals(null, "XYZ");
System.out.println("null is equal to XYZ: " + isEqual);

// toString() method test
System.out.println("toString(null) is " + Objects.toString(null));
System.out.println("toString(null, \"XXX\") is " + Objects.toString(null, "XXX"));

// Testing requireNonNull(T obj, String message)
try {

printName("Doug Dyer");

printName(null);

catch (NullPointerException e) {
System.out.println(e.getMessage());

}
// requireNonNull(T obj, Supplier<String> messageSupplier)
try {
// Using a lambda expression to create a Supplier<String> object.
// The Supplier returns a timestamped message.
Supplier<String> messageSupplier = () -> "Name is required. Error generated
on " + Instant.now();
printNameWithSuplier("Babalu", messageSupplier);
printNameWithSuplier(null, messageSupplier);
}

catch (NullPointerException e) {
System.out.println(e.getMessage());
}

}
public static void printName(String name) {
// Test name for not null. Generate a NullPointerException if it is null.

Objects.requireNonNull(name, "Name is required.");

// Print the name if the above statement dod not throw an exception
System.out.println("Name is " + name);

315

CHAPTER 7 © THE OBJECT AND OBJECTS CLASSES

public static void printNameWithSuplier(String name, Supplier<String> messageSupplier) {
// Test name for not null. Generate a NullPointerException if it is null.
Objects.requireNonNull(name, messageSupplier);

// Print the name if the above statement dod not throw an exception
System.out.println("Name is " + name);

Hash Code is 79643668

null
null

is equal to null: true
is equal to XYZ: false

toString(null) is null
toString(null, "XXX") is XXX

Name
Name
Name
Name

is Doug Dyer

is required.

is Babalu

is required. Error generated on 2014-01-18T06:02:43.713Z

Summary

Classes in Java are arranged in a tree-like hierarchy. Classes in the tree have a superclass-subclass relationship. The
Object class is at the root of the class hierarchy. It is the superclass of all classes in Java. The Object class is in the

Jjava.

lang package. The Object class contains methods that are automatically available in all classes. Some methods

have been implemented and some not. Classes can also reimplement some methods in the Object class. A reference
variable of the Object class can store the reference of any reference type in Java.

Java 7 added a utility class Objects in the java.util package. The class contains convenience methods to

compute hash codes for objects. Most of the methods in this class exist to deal with null value gracefully. Java 8 has
added some additional methods to this class for the new lambda language feature.

316

CHAPTER 8

Wrapper Classes

In this chapter, you will learn:
e About the wrapper classes and how to use them
¢ How primitive values are automatically boxed into wrapper objects when needed

e How wrapper objects are automatically unboxed into primitive values when needed

Wrapper Classes

In previous chapters, you learned that primitive and reference types are not assignment compatible. You cannot even
compare a primitive value with an object reference. Some parts of the Java library work only with objects; for example,
collections in Java work only with objects. You cannot create a list of primitive values, such as 1, 3, 8, and 10. You will
need to wrap the primitive values into objects before you can store them in a list or set.

The assignment incompatibility between primitive values and reference values has existed in Java since its first
release. The Java library provided eight classes in the java.lang package to represent each of the eight primitive types.
These classes are called wrapper classes as they wrap a primitive value in an object. Table 8-1 lists the primitive types
and their corresponding wrapper classes. Notice the names of the wrapper classes. Following the Java convention for
naming classes, they start with an uppercase letter.

Table 8-1. List of Primitive Types and Their Corresponding Wrapper Classes

Primitive Type Wrapper Class
byte Byte

short Short

int Integer

long Long

float Float

double Double

char Character
boolean Boolean

317

CHAPTER 8 ' WRAPPER CLASSES

All wrapper classes are immutable. They provide two ways to create their objects:
e Using constructors
e Using the valueOf() factory methods

Each wrapper class, except Character, provides at least two constructors: one takes a value of the corresponding
primitive type and another takes a String. The Character class provides only one constructor that takes a char.
The following snippet of code creates objects of some wrapper classes:

// Creates an Integer object from an int
Integer intObj1 = new Integer(100);

// Creates an Integer object from a String
Integer intObj2 = new Integer("1969");

// Creates a Double object from a double
Double doubleObj1 = new Double(10.45);

// Creates a Double object from a String
Double doubleObj2 = new Double("234.60");

// Creates a Character object from a char
Character charObj1 = new Character('A');

// Creates a Boolean object from a boolean
Boolean booleanObj1 = new Boolean(true);

// Creates Boolean objects from Strings
Boolean booleanTrue = new Boolean("true");
Boolean booleanFalse = new Boolean("false");

Another way to create objects of wrapper classes is to use their valueOf () methods. The valueOf() methods are
static. The following snippet of code creates objects of some wrapper classes using their valueOf () methods:

Integer intObj1 = Integer.valueOf(100);
Integer intObj2 = Integer.valueOf("1969");
Double doubleObji = Double.valueOf(10.45);
Double doubleObj2 = Double.valueOf("234.60");
Character charObj1 = Character.valueOf('A");

Note Use of this method to create objects for integer numeric values (byte, short, int, and long) is preferred over
constructors as this method caches some objects for reuse. The wrapper classes for these primitive types cache wrapper
objects for primitive values between -128 and 127. For example, if you call Integer.value0Of(25) multiple times, the
reference of the same Integer object from the cache is returned. However, when you call new Integer(25) multiple
times, a new Integer object is created for each call.

318

CHAPTER 8 ' WRAPPER CLASSES
Listing 8-1 demonstrates the difference in using constructors and value0f () methods for the Integer wrapper class.

Listing 8-1. The Difference Between Using Constructors and valueOf() Method to Create Integer Objects

// CachedWrapperObjects.java
package com.jdojo.wrapper;

public class CachedWrapperObjects {
public static void main(String[] args) {
System.out.println("Using the constructor:");

// Create two Integer objects using constructors
Integer ivl = new Integer(25);
Integer iv2 = new Integer(25);
System.out.println("ivi = ivl =

+ivl + ", iv2 = "+ iv2);
// Compare ivl and iv2 references
System.out.println("ivi == iv2: " + (ivl == iv2));

// Let's see if they are equal in values
System.out.println("ivi.equals(iv2): " + ivi.equals(iv2));

System.out.println("\nUsing the valueOf() method:");

// Create two Integer objects using the valueOf()
Integer iv3 = Integer.valueOf(25);
Integer iv4 = Integer.valueOf(25);
System.out.println("iv3 = " + iv3 +

, iva = " + iv4);
// Compare iv3 and iv4 references
System.out.println("iv3 == iv4: " + (iv3 == iv4));
// Let's see if they are qual in values

System.out.println("iv3.equals(iv4): " + iv3.equals(iv4));

Using the constructor:
ivl = 25, iv2 = 25
ivl == iv2: false
ivi.equals(iv2): true

Using the valueOf() method:
iv3 = 25, iv4 = 25

iv3 == iv4: true
iv3.equals(iv4): true

Notice that iv1 and iv2 are references to two different objects, as ivl == iv2 returns false. However, iv3 and iv4
are references to the same object, as iv3 == iv4 returns true. Of course, all ivl, iv2, iv3, and iv4 represent the same
primitive value of 25 as indicated by the returned value from the equals() method. Typically, programs use smaller
integer literals. If you are wrapping bigger integers, the valueOf () method creates a new object every time it is called.

319

CHAPTER 8 ' WRAPPER CLASSES

Tip The new operator always creates a new object. If you do not need new objects of the primitive values, use the
valueOf() factory method of the wrapper class instead of using the constructors. The equals() methods in the wrapper
classes have been reimplemented to compare the wrapped primitive values in wrapper objects, not their references.

Numeric Wrapper Classes

Byte, Short, Integer, Long, Float, and Double classes are numeric wrapper classes. They are all inherited from the
Number class. The Number class is declared abstract. You cannot create an object of the Number class. However, you can
declare reference variables of the Number class. You can assign an object reference of any of the six numeric wrapper
classes to a reference of the Number class.

The Number class contains six methods. They are named xxxValue() where xxx is one of the six primitive data
types (byte, short, int, long, float, and double). The return type of the methods is the same as xxx. That is, the
byteValue() method returns a byte, the intValue() method returns an int, etc. The following snippet shows how to
retrieve different primate type values from a numeric wrapper object:

// Creates an Integer object
Integer intObj = Integer.valueOf(100);

// Gets byte from Integer
byte b = intObj.byteValue();

// Gets double from Integer

double dd = intObj.doubleValue();
System.out.println("intObj = " + intObj);
System.out.println("byte from intObj = " + b);
System.out.println("double from intObj = " + dd);

// Creates a Double object
Double doubleObj = Double.valueOf("329.78");

// Gets different types of primitive values from Double
double d = doubleObj.doubleValue();

float f = doubleObj.floatValue();

int i = doubleObj.intValue();

long 1 = doubleObj.longValue();

System.out.println("doubleObj = " + doubleObj);
System.out.println("double from doubleObj = " + d);
System.out.println("float from doubleObj = " + f);
System.out.println("int from doubleObj = " + i);
System.out.println("long from doubleObj = " + 1);

320

CHAPTER 8 = WRAPPER CLASSES

intObj = 100

byte from intObj = 100

double from intObj = 100.0
doubleObj = 329.78

double from doubleObj = 329.78
float from doubleObj = 329.78
int from doubleObj = 329

long from doubleObj = 329

Java 8 has added some methods like sum(), max(), and min() in some of the numeric wrapper classes such as
Integer, Long, Float, and Double. For example, Integer.sum(10, 20) simply returns the result of 10 + 20. At first,
you might think, "Did the wrapper class designers not have any useful things to do instead of adding these trivial
methods? Did we forget using the addition operator + to add two numbers, so we will use the Integer.sum(10, 20)?”
Your assumption is wrong. These methods have been added for a greater purpose. They are not intended to be used as
Integer.sum(10, 20).Their references are used in lambda expressions working with collections. I cover them in the
lambda expression discussion in the book Beginning Java Language Features (ISBN 978-1-4302-6658-7).

Your program may receive numbers as strings. You may want to obtain primitive values or wrapper objects
from those strings. Sometimes the integer values in a string may be encoded in different bases (also called radix), for
example, decimal, binary, hexadecimal, etc. Wrapper classes help in working with strings containing primitive values.

e Use the valueOf() methods to convert strings into wrapper objects.

e Use the parseXxx() methods to convert strings into primitive values.

The Byte, Short, Integer, Long, Float, and Double classes contain parseByte(), parseShort(), parseInt(),
parseLong(), parseFloat() and parseDouble() methods to parse strings into primitive values, respectively.

The following snippet of code converts a string containing an integer in binary format into an Integer object and
an int value:

String str = "01111111";
int radix = 2;

// Creates an Integer object from the string
Integer intObject = Integer.valueOf(str, radix);

// Extracts the int value from the string
int intValue = Integer.parselnt(str, 2);

System.out.println("str = " + str);
System.out.println("intObject = " + intObject);
System.out.println("intValue = " + intValue);

str = 01111111
intObject = 127
intValue = 127

All numeric wrapper classes contain several useful constants. Their MIN_VALUE and MAX_VALUE constants
represent the minimum and maximum values that can be represented by their corresponding primitive type. For
example, Byte.MIN_VALUE constant is -128 and Byte.MAX_VALUE constant is 127, which are the minimum and
maximum value that can be stored in a byte. They also have a SIZE constant that represents the size in bits that a
variable of the corresponding primitive type occupies. For example, Byte.SIZE is 8 and Integer.SIZE is 32.

321

CHAPTER 8 ' WRAPPER CLASSES

Typically, you receive strings from external sources, for example, a file. If strings cannot be converted to numbers,
wrapper classes will throw a NumberFormatException. It is common to place the string parsing logic inside a
try-catch block and handle the exceptions.

The following snippet of code attempts to parse two strings into double values. The first string contains a valid
double and the second one an invalid double. A NumberFormatException is thrown when the parseDouble() method
is called to parse the second string.

String stri = "123.89";

try {
double valuel = Double.parseDouble(strl);
System.out.println("valuel = " + valuel);

catch (NumberFormatException e) {
System.out.println("Error in parsing " + stri);

}
String str2 = "78H.90"; // An invalid double
try {
double value2 = Double.parseDouble(str2);
System.out.println("value2 = " + value2);
}

catch (NumberFormatException e) {
System.out.println("Error in parsing " + str2);
}

value1l = 123.89
Error in parsing 78H.90

Note The java.math package contains BigDecimal and BigInteger classes. They are used to hold big decimal
and integer numbers, which do not fit into the primitive types double and long. These classes are mutable and they are
typically not called wrapper classes. Use them if you perform computations on big numbers and you do not want to lose
intermediate values that exceed the standard primitive type range.

The Character Wrapper Class

An object of the Character class wraps a char value. The class contains several constants and methods that are useful
while working with characters. For example, it contains isLetter() and isDigit() methods to check if a character is
aletter and digit. The toUpperCase() and toLowerCase() methods convert a character to uppercase and lowercase.
It is worth exploring the API documentation for this class. The class provides a constructor and a factory valueOf()
method to create objects from a char. Use the factory method for better performance. The charValue() method
returns the char that the object wraps. The following snippet of code shows how to create Character objects and how
to use some of their methods:

// Using the constructor
Character c1 = new Character('A');

322

CHAPTER 8

// Using the factory method - preferred
Character c2 = Character.valueOf('2');
Character ¢3 = Character.valueOf('fi');

// Getting the wrapped char values
char cc1 = ci.charValue();
char cc2 = c2.charValue();
char cc3 = c3.charValue();

System.out.println("c1 + cl);
System.out.println("c2 = " + c2);
System.out.println("c3 = " + c3);

// Using some Character class methods on c1

System.out.println("isLowerCase c1 = " + Character.islLowerCase(ccl));
System.out.println("isDigit c1 = " + Character.isDigit(cc1));
System.out.println("isLetter c1 = " + Character.isletter(cc1));
System.out.println("Lowercase of c1 = " + Character.tolLowerCase(cc1));

// Using some Character class methods on c2

System.out.println("isLowerCase c2 = " + Character.islLowerCase(cc2));
System.out.println("isDigit c2 = " + Character.isDigit(cc2));
System.out.println("isLetter c2 = " + Character.isletter(cc2));

System.out.println("Lowercase of c2 + Character.tolLowerCase(cc2));

System.out.println("Uppercase of c3 = " + Character.toUpperCase(cc3));
c1=A
c2 =2
3 =

isLowerCase c1 = false
isDigit c1 = false
isletter c1 = true
Lowercase of c1 = a
isLowerCase c2 = false
isDigit c2 = true
isletter c2 = false
Lowercase of c2 =2

Uppercase of ¢3 =N

The Boolean Wrapper Class

WRAPPER CLASSES

An object of the Boolean class wraps a boolean. The Boolean.TRUE and Boolean.FALSE are two constants of the
Boolean type to represent boolean true and false values. You can create a Boolean object using the constructors

or the valueOf() factory method. When parsing a string, this class treats "true" (ignoring the case of all characters)

as the true and any other strings as the false. Use the valueOf () method of this class to create a Boolean object as
much as possible because it returns Boolean. TRUE or Boolean.FALSE constant instead of creating new objects. The
following snippet of code shows how to use the Boolean class. The variable name in each statement indicates the type

of boolean value (true or false) represented in the Boolean object.

323

CHAPTER 8 ' WRAPPER CLASSES

// Using constructors

Boolean b1iTrue = new Boolean(true);

Boolean b21True = new Boolean("true");

Boolean b31True = new Boolean("tRuE");

Boolean b4iFalse = new Boolean("false");

Boolean b51False = new Boolean("how is this"); // false

// Using the factory methods

Boolean b12True = Boolean.valueOf(true);

Boolean b22True = Boolean.valueOf("true");

Boolean b32True = Boolean.valueOf("tRuE");

Boolean b42False = Boolean.valueOf("false");

Boolean b52False = Boolean.valueOf("how is this"); // false

// Getting a boolean value from a Boolean object
boolean bbTrue = bi12True.booleanValue();

// Parsing strings to boolean values
boolean bTrue = Boolean.parseBoolean("true");
boolean bFalse = Boolean.parseBoolean("This string evaluates to false");

// Using constants
Boolean bcTrue = Boolean.TRUE;
Boolean bcFalse = Boolean.FALSE;

// Printing some Boolean objects
System.out.println("bcTrue = " + bcTrue);
System.out.println("bcFalse = " + bcFalse);

bcTrue = true
bcFalse = false

Unsigned Numeric Operations

Java does not support unsigned primitive integer data types. The byte, short, int, and long are signed data types. For
a signed data type, half of the range of values is used for storing positive number and half for negative numbers, as one
bit is used to store the sign of the value. For example, a byte takes 8 bits; its range is -128 to 127. If you were to store
only positive numbers in a byte, its range would have been 0 to 255.

Java 8 has not added any new unsigned integer data types. Rather, it has added some static methods in wrapper
classes that support operations treating the bits in the signed values as if they are unsigned integers.

The Byte class contains two static methods:

e int toUnsignedInt(byte x)
e long toUnsignedLong(byte x)

The methods convert the specified byte argument into an int and a long as if the byte stores an unsigned value.
If the specified byte argument is zero or a positive number, the converted int and long values will be the same as the
argument value. If the argument is a negative number, the converted number will be 28 + x. For example, for an input
of 10, the returned value will be 10, and for an input of -10, the returned value will be 28 + (-10), which is 246. Negative
numbers are stored in 2’s complement form. The value -10 will be stored as 11110110. The most significant bit 1

324

CHAPTER 8 = WRAPPER CLASSES

indicates that it is a negative number. The 2's complement of the first 7 bits (1110110) would be 001010, which is 10 in
decimal. If you consider the actual bits, 11110110, in a byte as an unsigned integer, its value is 246 (128 + 64 + 32 + 16 +
0 + 4 + 2 + 0). The following snippet of code shows how to get the value stored in a byte as an unsigned integer:

byte b = -10;
int x = Byte.toUnsignedInt(b);
System.out.println("Signed value in byte = " + b);

System.out.println("Unsigned value in byte = " + x);

Signed value in byte = -10
Unsigned value in byte = 246

The Short class contains the same two methods as the Byte class, except they take a short as an argument and
convert it to an int and a long.
The Integer class contains the following static methods to support unsigned operations and conversions:

e int compareUnsigned(int x, int y)

e int divideUnsigned(int dividend, int divisor)

e int parseUnsignedInt(String s)

e int parseUnsignedInt(String s, int radix)

e int remainderUnsigned(int dividend, int divisor)
e long toUnsignedLong(int x)

e String toUnsignedString(int i)

e String toUnsignedString(int i, int radix)

Notice that the Integer class does not contain addUnsigned(), subtractUnsigned(), and multiplyUnsigned()
methods as the three operation are bitwise identical on two signed and two unsigned operands. The following snippet
of code shows the division operation on two int variables as if their bits represent unsigned values:

// Two negative ints
int x = -10;
inty = -2;

// Performs signed division
System.out.println("Signed x = " + x);
System.out.println("Signed y = " + y);
System.out.println("Signed x/y = " + (x/y));

// Performs unsigned division by treating x and y holding unsigned values
long ux = Integer.toUnsignedLong(x);

long uy = Integer.toUnsignedLong(y);

int uQuotient = Integer.divideUnsigned(x, y);
System.out.println("Unsigned x = " + ux);

System.out.println("Unsigned y = " + uy);

System.out.println("Unsigned x/y = " + uQuotient);

325

CHAPTER 8 ' WRAPPER CLASSES

Signed x = -10

Signed y = -2

Signed x/y =5

Unsigned x = 4294967286
Unsigned y = 4294967294
Unsigned x/y = 0

The Long class contains methods to perform unsigned operations. The methods are similar to the ones in the
Integer class. Note that you cannot convert the value stored in a long to an unsigned value as you would need a
bigger storage than provided by the long data type to do so, but long is the biggest integer data type provided by Java.
This is the reason that the Byte and Short classes have toUsignedInt() and toUnSignedLong() methods, as int and
long are bigger than byte and short. In fact, to store the value of a signed data type X as an unsigned value in a signed
data type Y, the size of the data type Y needs to be at least twice as big as that of X. Following this storage requirement,
there is a toUnsignedLong() method in the Integer class, but no such method exist in the Long class.

Autoboxing and Unboxing

AutoBoxing and unboxing are features added in Java 5 to work with primitive data types and their corresponding
wrapper classes. They are implemented completely in the compiler. Before we define autoboxing/unboxing, let’s
discuss an example. The example is trivial, but it serves the purpose of demonstrating the pain you had to go through
before Java 5, when you were working with conversion between primitive types to their wrapper objects and vice-versa.

Suppose you have a method that accepts two int values, adds them, and returns an int value. You might say,
“What is the big deal about this method?” It should be as simple as the following:

// Only method code is shown
public static int add(int a, int b) {
return a + b;

}

The method can be used as
int a = 200;
int b = 300;

int result = add(a, b); // result will get a value of 500

And you are right that there is no big deal about this method at all. Let’s add a bit of a twist to the logic. Think
about the same method working with Integer objects instead of int values. Here is the code for the same method:

public static Integer add(Integer a, Integer b) {
int aValue = a.intValue();
int bvalue = b.intValue();
int resultValue = aValue + bValue;
Integer result = new Integer(resultValue);

return result;

326

CHAPTER 8 = WRAPPER CLASSES

Did you notice the complexity that is involved when you changed the same method to use Integer objects?
You had to perform three things to add two int values in the Integer objects.

Unwrap the methods arguments, a and b, from Integer objects to int values using their
intValue() method.

int aValue = a.intValue();
int bValue = b.intValue();

Perform an addition of two int values.
int resultValue = aValue + bValue;
Wrap the result into a new Integer object and return the result.

Integer result = Integer.valueOf(resultValue);
return result;

Listing 8-2 has the complete code to demonstrate the use of the add() method.

Listing 8-2. Adding Two int Values Using Integer Objects

// MathUtil.java

package com.jdojo.wrapper;

public class MathUtil {
public static Integer add(Integer a, Integer b) {

}

int aValue = a.intValue();

int bvalue = b.intValue();

int resultValue = aValue + bValue;

Integer result = Integer.valueOf(resultValue);
return result;

public static void main(String[] args) {

int ivalue = 200;
int jvalue = 300;
int kvalue; /* will hold result as int */

// Box iValue and jValue into Integer objects
Integer i = Integer.valueOf(iValue);
Integer j = Integer.valueOf(jValue);

// Store returned value of the add() method in an Integer object k
Integer k = MathUtil.add(i, j);

// Unbox Integer object's int value into kValue int variable
kvalue = k.intValue();

327

CHAPTER 8 ' WRAPPER CLASSES

// Display the result using int variables

System.out.println(ivValue + " + " + jvalue + " = " + kValue);

200 + 300 = 500

Note the amount of code needed just to add two int values. Wrapping/unwrapping an int value to an Integer
and vice versa is just a pain for Java developers. Java designers realized it (though too late) and they automated this
wrapping and unwrapping process for you.

The automatic wrapping from a primitive data type (byte, short, int, long, float, double, char and boolean)
to its corresponding wrapper object (Byte, Integer, Long, Float, Double, Character and Boolean) is called
autoboxingThe reverse, unwrapping from wrapper object to its corresponding primitive data type, is called unboxing.

With autoboxing/unboxing, the following code is valid:

Integer n = 200; // Boxing
int a = n; // Unboxing

The compiler will replace the above statement with the following:

Integer n = Integer.valueOf(200);
int a = n.intValue();

The code in the main() method of the MathUtil class listed in Listing 8-2 can be rewritten as follows. The boxing
and unboxing are done for you automatically.

int ivalue = 200;

int jvalue = 300;

int kValue = MathUtil.add(iValue, jValue);
System.out.println(iValue + " + " + jValue + " = " + kValue);

Tip Autoboxing/unboxing is performed when you compile the code. The JVM is completely unaware of the boxing
and unboxing performed by the compiler.

Beware of Null Values

Autoboxing/unboxing does save you from writing additional lines of codes. It also makes your code look neater.
However, it does come with some surprises. One of the surprises is getting a Nul1PointerException where you would
not expect it to happen. Primitive types cannot have a null value assigned to them, whereas reference types can have
anull value. The boxing and unboxing happens between primitive types and reference types. Look at the following
snippet of code:

Integer n = null; // n can be assigned a null value
int a = n; // will throw NullPointerException at run time

328

CHAPTER 8 = WRAPPER CLASSES

In this snippet of code, suppose you do not control the assignment of null to n. You might getanull Integer
object as a result of a method call, for example, int a = getSomeValue(), where getSomeValue() returns an Integer
object. ANullPointerException in such places may be a surprise for you. However, it will happen, because int a = n
is converted to int a = n.intValue() and nis null in this case. This surprise is the part of the advantage you get
from autoboxing/unboxing and you need to just be aware of it.

Overloaded Methods and Autoboxing/Unboxing

You have a few surprises when you call an overloaded method and want to rely on autoboxing/unboxing feature.
Suppose you have two methods in a class.

public void test(Integer iObject) {
System.out.println("Integer=" + iObject);
}

public void test(int iValue) {
System.out.println("int=" + iValue);
}

Suppose you make two calls to the test() method.

test(101);
test(new Integer(101));

Which of the following will be the output?

int=101
Integer=101

or

Integer=101
int=101

The rule for a method invocation that uses autoboxing/unboxing follows a two-step process.
1. Ifthe actual argument being passed is a primitive type (as in test(10)),

a. Tryto find a method with the primitive type argument. If there is no exact match, try
widening the primitive type to find a match.

b. Ifthe previous step fails, box the primitive type and try to find a match.
2. Ifthe actual argument being passed is a reference type (as in test(new Integer(101)),

a. Tryto find a method with the reference type argument. If there is match, call that
method. In this case, a match does not have to be exact. It should follow the subtype
and super type assignment rule.

b. Ifthe previous step fails, unbox the reference type to the corresponding primitive type
and try to find an exact match, or widen the primitive type and find a match.

329

CHAPTER 8 ' WRAPPER CLASSES

If you apply these rules to the above snippet of code, it will print

int=101
Integer=101

Suppose you have two test () methods.

public void test(Integer iObject) {
System.out.println("Integer=" + iObject);

}

public void test(long iValue) {
System.out.println("long=" + iValue);

}

What will be printed if you use the following code?

test(101);
test(new Integer(101));

It will print

long=101
Integer=101

The first call of test(101) will try to find an exact match for an int argument. It does not find a method
test(int), so it widens the int data type, finds a match test(long), and calls this method.
Suppose you have two test() methods.

public void test(Long 1lObject) {
System.out.println("Long=" + 1Object);

}

public void test(long lvalue) {
System.out.println("long=" + 1Value);

}

What will be printed if you execute the following code?

test(101);
test(new Integer(101));

It will print

long=101
long=101

330

CHAPTER 8 = WRAPPER CLASSES

Are you surprised by looking at the above output? Apply the rules that I have listed and you will find that the
above output followed those rules. The call to test(101) is clear because it widens 101 from int to long and executes
the test(long) method. To call test(new Integer(101)), itlooks for a method test(Integer) and it does not
find one. Note that a reference type is never widened. That is, an Integer is never widened to Long. Therefore, it
unboxes the Integer to int and looks for test(int) method, which it does not find. Now, it widens the int and finds
test(long) and executes it.

I have one more surprise. Consider the following two test() methods:

public void test(Long 1lObject) {
System.out.println("Long=" + 1lObject);
}

public void test(Object obj) {
System.out.println("Object=" + obj);
}

What will be printed when you execute the following code?

test(101);
test(new Integer(101));

This time, you will get the following output:

Object=101
Object=101

Does it make sense? Not really. Here is the explanation. When it calls test(101), it has to box int to an Integer,
because there is no match for test(int), even after widening the int value. So, test(101) becomes test(Integer.
value0f(101)). Now it does not find any test (Integer) either. Note that Integer is a reference type and it inherits
the Number class, which in turn inherits the Object class. Therefore, an Integer is always an Object, and Java
allows you to assign an object of subtype (Integer) to a variable of supertype (Object). This is the reason that
the test(Object) is called in this case. The second call, test(new Integer(101)), works the same way. It tries for
test(Integer) method. When it does not find it, the next match for it is test (Object) based on the subtype and
supertype assignment rule for reference types.

Comparison Operators and AutoBoxing/Unboxing

I will discuss comparison operations ==, >, >=, <, <=. Only == (logical equality operator) can be used with both
reference type and primitive types. The other operators must be used only with primitive types.

Let’s discuss the easy ones (>, >=, < and <=) first. If a numeric wrapper object is used with these comparison
operators, it must be unboxed and the corresponding primitive type used in the comparison. Consider the following
snippet of code:

Integer a = 100;

Integer b = 100;

System.out.println("a : " + a);
System.out.println("b : " + b);
System.out.println("a > b: " + (a > b));

331

CHAPTER 8 ' WRAPPER CLASSES

System.out.println("a >= b: " + (a >= b));
System.out.println("a < b: " + (a < b));
System.out.println("a <= b: " + (a <= b));

: 100
: 100
> b: false
>= b: true
< b: false
<= b: true

[SPI DI < R <V B = i V)

There is no surprise in the above output. If you mix the two types, reference and primitive, with these comparison
operators, you still get the same results. First, the reference type is unboxed and a comparison with the two primitive
types takes place. For example,

if (101 > new Integer(100)) {
// Do something
}

is converted to

if(101 <= (new Integer(100)).intValue()) {
// Do something
}

Now, let’s discuss the == operator and the autoboxing rules. If both operands are primitive types, they are
compared as primitive types using a value comparison. If both operands are reference types, their references are
compared. In these two cases, no autoboxing/unboxing takes place. When one operand is a reference type and
another is a primitive type, the reference type is unboxed to a primitive type and a value comparison takes place. Let’s
see examples of each type.

Consider the following snippet of code. It is an example of using both primitive type operands for the == operator.

int a = 100;
int b = 100;
int ¢ = 505;

System.out.println(a == b); // will print true
System.out.println(a == c); // will print false

Consider the following snippet of code:

Integer aa = new Integer(100);
Integer bb = new Integer(100);
Integer cc = new Integer(505);
System.out.println(aa == bb); // will print false
System.out.println(aa == cc); // will print false

In this snippet of code, no autoboxing/unboxing takes place. Here, aa == bband aa == cc compare the
references of aa, bb and cc, not their values. Every object created with the new operator has a unique reference.

332

CHAPTER 8 = WRAPPER CLASSES

Now, here’s a surprise: consider the following snippet of code. This time you are relying on autoboxing.

Integer aaa = 100; // Boxing - Integer.valueOf(100)
Integer bbb = 100; // Boxing - Integer.valueOf(100)
Integer ccc = 505; // Boxing - Integer.valueOf(505)
Integer ddd = 505; // Boxing - Integer.valueOf(505)
System.out.println(aaa == bbb); // will print true
System.out.println(aaa == ccc); // will print false
System.out.println(ccc == ddd); // will print false

You used aaa, bbb, ccc, and ddd as reference types. How is aaa == bbb true whereas ccc == ddd false?
All right. This time, there is no surprise coming from the autoboxing feature. Rather, it is coming from the Integer.
valueOf () method. For all values between -128 and 127, the Integer class caches Integer object references. The
cache is used when you call its valueOf () method. For example, if you call Integer.valueOf(100) twice, you get
the reference of the same Integer object from the cache that represents the int value of 100. However, if you call
Integer.valueOf(n), where n is outside the range -128 to 127, a new object is created for every call. This is the reason
that aaa and bbb have the same reference from the cache, whereas ccc and ddd have different references. Byte, Short,
Character and Long classes also cache object references for values in the range -128 to 127.

Collections and Autoboxing/Unboxing

Autoboxing/unboxing helps you work with collections. Collections work only with reference types. You cannot use
primitive types in collections. If you want to store primitive types in a collection, you must wrap the primitive value
before storing it, and unwrap it after retrieving it. Suppose you have a List and you want to store integers in it. This is
how you would do it:

List list = new Arraylist();
list.add(new Integer(101));
Integer a = (Integer)list.get(0);
int aValue = a.intValue();

You are back to square one. The add() and get () methods of the List interface work with Object type, and
you had to resort to wrapping and unwrapping the primitive types again. The autoboxing/unboxing may help you in
wrapping the primitive type to a reference type, and the above code may be rewritten as

List list = new Arraylist();

list.add(101); // Autoboxing will work here

Integer a = (Integer)list.get(0);

int aValue = a.intValue();

/*int aValue = list.get(0); */ // autounboxing won't compile

Because the return type of the get() method is Object, the last statement in this snippet of code would not
work. Note that unboxing happens from a primitive wrapper type (such as Integer) to its corresponding primitive
type (such as int). If you try to assign an Object reference type to an int primitive type, the autounboxing does not
happen. In fact, your code would not even compile, because Object to int conversion is not allowed.

Try the following code:

List<Integer> list = new ArraylList<>();

list.add(101); // autoboxing will work
int aValue = list.get(0); // autounboxing will work, too

333

CHAPTER 8 ' WRAPPER CLASSES

All collection classes are generic classes. They declare formal type parameters. Specifying the Integer type in angle
brackets (<Integer>), while creating the List object, tells the compiler that the List will hold object of only Integer
type. This gives the compiler freedom to wrap and unwrap your primitive int values while you work with the List
object. Please refer to the chapter on generics in the book Beginning Java Language Features (ISBN 978-1-4302-6658-7)
for more details.

Summary

For each primitive data type, Java provides a class to represent values of the primitive data type as objects. Java does
not support unsigned primitive numeric data types and unsigned numeric operations. Java 8 added limited support
for unsigned operations on primitive data types by adding some methods in the wrapper classes.

Java does not allow mixing of primitive type and reference type values in the same expression. It is inconvenient
to convert the primitive values to their wrapper objects and vice versa. Java 5 added support for automatically
converting the primitive values to wrapper objects and vice versa depending on the context. This feature is called
autoboxing/unboxing. For example, it allows assigning an integer 25 to a reference of the Integer object; the compiler
automatically boxes the integer 25 in a wrapper object using the expression Integer.value0f(25).

334

CHAPTER 9

Exception Handling

In this chapter, you will learn
e About error handling in Java using exceptions
e How to use try-catch blocks to handle exceptions
e How to use finally blocks to clean up resources
e The different between checked and unchecked exceptions
e How to create a new exception type and use it in your code
e How to use auto-closeable resources using a try-catch-resources block

e Howto access the stack frames of a thread

What Is an Exception?

An exception is a condition that may arise during the execution of a Java program when a normal path of execution is
not defined. For example, a Java program may encounter a numeric expression that attempts to divide an integer by
zero. Such a condition may occur during the execution of the following snippet of code:

int x = 10, y = 0, z;
z = x/y; // Divide-by-zero

The statement z = x/y attempts to divide x by y. Because y is zero, the result of x/y is not defined in Java. Note
that dividing a floating-point number by zero, for example 9.5/0.0, is defined and it is infinity. In generic terms, the
abnormal condition, such as dividing an integer by zero, can be phrased as follows:

An error occurs when a Java program attempts to divide an integer by zero.
The Java programming language describes the above error condition differently. In Java, it is said
An exception is thrown when a Java program attempts to divide an integer by zero.

Practically, both statements mean the same thing. They mean that an abnormal condition in a program has occurred.

What happens after the abnormal condition occurs in a program? You need to handle such an abnormal
condition in the program. One of the ways to handle it is to check for all possibilities that may lead to an abnormal
condition, before performing the action. You may rewrite the above code as follows:

335

CHAPTER 9 © EXCEPTION HANDLING

// Report the abnormal/error condition here

}

else {
// Perform division here
z = x/y;

}

You may observe that this snippet of code does two things: it handles the error condition and performs the
intended action. It mixes the code for performing error handling and the action. One line of code (z = x/y) has
bloated to at least five lines of code. This is a simple example. You may not fully realize the real problem when the
error handling code is mixed with the actual code performing actions.

To make this problem clear, let’s consider another example. Suppose you want to write Java code that will update
an employee’s salary. An employee’s records are stored in a database. The pseudocode might look as follows:

Connect to the database
Fetch the employee record
Update the employee salary
Commit the changes

The actual code would perform the above-mentioned four actions. Any of the four actions may result in an
error. For example, you may not be able to connect to the database because the database is down; you may not be
able to commit the changes because of some validations failed. You need to perform error checking after an action is
performed and before the subsequent action is started. The pseudocode with error checking may look as follows:

// Connect to the database
if (connected to the database successfully) {
// Fetch the employee record
if (employee record fetched) {
// Update the employee salary
if (update is successful) {
// Commit the changes
if (commit was successful) {
// Employee salary was saved successfully

}
else {
// An error. Save failed
}
}
else {
//An error. Salary could not be updated
}
}
else {
// An error. Employee record does not exist
}
}
else {
// An error. Could not connect to the database
}

336

CHAPTER 9 © EXCEPTION HANDLING

Notice that when you added error handling to your four lines of pseudocode, the code bloated to over twenty
lines. The worst thing about the above code is that the code that performs the action has been cluttered with error-
handling code. It has also introduced many nested if-else statements resulting in spaghetti code.

In the last two examples, you saw that the way of handling errors that uses if-else statements is not elegant
and maintainable. Java has a better way to handle errors: by separating the code that performs actions from the code
that handles errors. In Java, we use the phrase “exception” instead of “error” to indicate an abnormal condition in a
program; the phrase “exception handling” is used instead of the phrase “error handling”” In general, we say that an error
occurs and you handle it. In Java, we say that an exception is thrown and you catch it. This is the reason that exception
handlingis also called catching an exception. The code that handles the exception is known as an exception handler.
You could rewrite the above pseudocode using Java syntax (not full-fledged Java code, though) as follows:

try {
// Connect to the database
// Fetch employee record
// Update employee salary
// Commit the changes

}

catch(DbConnectionException e1){
// Handle DB Connection exception here
}

catch(EmpNotFoundException e2){
// Handle employee not found exception here

catch(UpdateFailedException e3){
// Handle update failed exception here
}

catch(CommitFailedException e4){
// Handle commit failed exception here
}

You do not need to understand the above pseudocode fully. I will discuss the details shortly. You need to observe
the structure of the code, which allows for separation of the code that performs actions from the code that handles
exceptions. The code that performs the actions is placed inside a try block and the code that handles the exception
is placed inside a catch block. You will observe that this code is much better in terms of elegance and maintainability
compared to the previous attempt in which you had to write many if-else statements to achieve the same.

Tip In Java, an exception is thrown and caught. Catching an exception is the same as handling the exception.
The code that performs the action may throw an exception and the code that handles the exception catches the thrown
exception. This style of exception handling allows you to separate the code that performs actions from the code that
handles the exceptions that may arise while performing the actions.

An Exception Is an Object

How does the exception handling part of the code know about the exception that occurs in another part of the code?
When an exception occurs, Java creates an object with all pieces of information about the exception (e.g., type of
exception, line number in the code where the exception occurred, etc.) and passes it to the appropriate exception
handling code. The term “exception” is used to mean one of two things—the exceptional condition and the Java object
to represent the exceptional condition. The meaning of the term will be clear from the context.

337

CHAPTER 9 © EXCEPTION HANDLING

When we talk about throwing an exception, we are talking about three things.
e Occurrence of an exceptional condition
e Creation of a Java object to represent the exceptional condition
e Throwing (or passing) the exception object to the exception handler

The throwing of an exception is the same as passing an object reference to a method. Here, you may imagine the
exception handler as a method that accepts a reference of an exception object. The exception handler catches the
exception object and takes appropriate action. You can think of catching an exception by the exception handler as a
method call without the return, where the exception object’s reference is the actual parameter to the method. Java
also lets you create your own object that represents an exception and then throw it.

Tip An exception in Java is an object that encapsulates the details of an error.

Using a try-catch Block

Before I discuss the try-catch block, let’s write a Java program that attempts to divide an integer by zero, as
shown in Listing 9-1.

Listing 9-1. AJava Program Attempting to Divide an Integer by Zero

// DivideByZero.java
package com.jdojo.exception;

public class DivideByZero {
public static void main(String[] args) {
int x = 10, y = 0, z;
z = x/y;
System.out.println("z =

+2);

Exception in thread "main" java.lang.ArithmeticException: / by zero
at com.jdojo.exception.DivideByZero.main(DivideByZero.java:7)

Is the output of Listing 9-1 what you were expecting? It indicates an exception has occurred when you ran the
DivideByZero class. The output contains four pieces of information:

e Itincludes the name of the thread in which the exception occurred. The name of the thread
is “main”. You can learn about threads and the name of a thread in detail in the chapter on
threads in the book Beginning Java Language Features (ISBN 978-1-4302-6658-7).

e Itincludes the type of the exception that has occurred. The type of an exception is indicated by
the name of the class of the exception object. In this case, java.lang.ArithmeticException
is the name of the class of the exception. The Java runtime creates an object of this class and
passes its reference to the exception handler.

e Itincludes a message that describes the exceptional condition in the code that caused the
error. In this case, the message is “/ by zero” (read “divide by zero”).

338

CHAPTER 9 © EXCEPTION HANDLING

e Itincludes the location where the exception occurred. The second line in the output indicates
that the exception has occurred inside the main() method of the com.jdojo.exception.
DivideByZero class. The source code is contained in the DivideByZero. java file. The line
number in the source code that caused the exception is 7.

You may notice that in just two lines of output the Java runtime has printed enough pieces of information to help
you track down the error in your code.

When z = x/y atline 7 is executed, the Java runtime detects the exceptional condition, which is an attempt
to divide an integer by zero. It creates a new object of the class ArithmeticException with all relevant pieces of
information about the exception, and then throws (or passes) this object to an exception handler. Who caught
(or handled) the exception in this case? You did not specify any exception handler in the code. In fact, you do not
even know how to specify an exception handler at this point. Because you did not specify an exception handler in this
case, the Java runtime handled the exception for you. Does the Java runtime handle all exceptions that are thrown in
a Java program? The answer is yes. The Java runtime handles all exceptions in a Java program. However, It handles an
exception only when you do not handle it yourself.

If an exception occurs and the Java runtime does not find a programmer-defined exception handler to handle it,
such an exception is called an uncaught exception. All uncaught exceptions are handled by the Java runtime. Because
an uncaught exception is always handled by the Java runtime, why should you even worry about providing any
exception handler in your program? This is an interesting point. Why do you need to worry about doing something
that would be done by the Java runtime for you? If you are too lazy to clean up your own mess (handling your own
error condition), there is bad news for you. You should not expect too much from the Java runtime. You may not
like the way the runtime handles exceptions for you. It catches the uncaught exception, prints the error stack on the
standard error, and halts your Java application. In other words, if you let the Java runtime handle all your exceptions,
your program stops executing at the point where the exception occurs. Is this what you want to do? The answer would
be no. Sometimes, after you handle the exception, you may want to proceed with executing the rest of your program
rather than halting the program. When you ran the DivideByZero class, the expression x/y in the statement z = x/y
resulted in an exception. Java did not finish executing the statement z=x/y. Sometimes this situation is phrased as
“The statement z=x/y finished abnormally.” The runtime handled the exception, but it stopped executing the whole
program. This is the reason that you do not see the output of the following statement in your program:

System.out.println("z = " + z);

Now you know that letting the runtime handle your exception is not always a good idea. If you want to handle
exceptions yourself, you need to place your code in a try block. A try block looks like the following:

try {

}

// Code for the try block goes here

A try block starts with the keyword try, followed by an opening brace and a closing brace. The code for the try
block is placed inside the opening and the closing braces.

A try block cannot be used just by itself. It must be followed by one or more catch blocks, or one finally block, or a
combination of both. To handle an exception that might be thrown by the code inside a try block, you need to use a catch
block. One catch block can be used to handle multiple types of exceptions. For now, I'll focus on handling only one type of
exception in a catch block; I'll cover how to handle multiple exceptions in a catch block in a separate section.

The syntax for a catch block is similar to the syntax for a method.

catch (ExceptionClassName parameterName) {
// Exception handling code goes here
}

339

CHAPTER 9 © EXCEPTION HANDLING

Note that a catch block’s declaration is exactly like a method declaration. It starts with the keyword catch, followed
by a pair of parentheses. Within the parentheses, you declare a parameter, as you do in a method. The parameter type
is the name of the exception class that it is supposed to catch. The parameterName is a user-given name. Parentheses
are followed by an opening brace and a closing brace. The exception handling code is placed within the braces.

When an exception is thrown, the reference of the exception object is copied to the parameterName. You can use the
parameterName to get information from the exception object. It behaves exactly like a formal parameter of a method.

You can associate one or more catch blocks to a try block. The general syntax for a try-catch block is as follows.
The following snippet of code shows a try block, which has three catch blocks associated with it. You can associate as
many catch blocks to a try block as you want.

try {

}

catch (ExceptionClassi e1){
// Handle exception of ExceptionClassi type
}

catch (ExceptionClass2 e2){
// Handle exception of ExceptionClass2 type
}

catch (ExceptionClass3 e3){
// Handle exception of ExceptionClass3 type
}

// Your code that may throw an exception goes here

Let’s use a try-catch block to handle the possible divide by zero exception in your code. Listing 9-2 has the
complete code.

Listing 9-2. Handling an Exception Using a try-catch Block

// DivideByZeroWithTryCatch.java
package com.jdojo.exception;

public class DivideByZeroWithTryCatch {
public static void main(String[] args) {
int x = 10, y = 0, z;
try {
z=x1/Yy;
System.out.println("z =

+2);

}

catch(ArithmeticException e) {
// Get the description of the exception
String msg = e.getMessage();

// Print a custom error message
System.out.println("An error has occurred. The error is:

+ msg);

}

System.out.println("At the end of the program.");

An exception has occurred. The error is: / by zero
At the end of the program.

340

CHAPTER 9 © EXCEPTION HANDLING

The output of Listing 9-2 is nicer than that of Listing 9-1. It tells you exactly what happened when the program
was executed. Notice that the program did not terminate when the exception occurred because you handled the
exception. The program executed the last statement that printed the “At the end of the program” message.

Transfer of Control

You need to understand very precisely the flow of control when an exception is thrown in a try block. First, the Java
runtime creates an object of the appropriate class to represent the exception that has occurred. The first catch block
following the try block is checked. If the exception object can be assigned to the parameter for the catch block, the
parameter of the catch block is assigned the reference of the exception object, and the control is transferred to the
body of the catch block. When the catch block finishes executing its body, the control is transferred to the point
following the try-catch block. It is very important to note that after executing the catch block the control is not
transferred back to the try block. Rather, it is transferred to the code that follows the try-catch block. If a try block
has many catch blocks associated with it, a maximum of one catch block is executed. Figure 9-1 shows the transfer of
control in a typical Java program when an exception occurs in a try block.

Some statements go here...
try {
try-statement-1;
try-statement-2;
try-statement-3;

}

catch(Exceptiont et) {
catch-statement-11;
catch-statement-12;

}

catch(Exception2 e2) {
catch-statement-21;
catch-statement-22;

}

catch(Exception3 e3) {
catch-statement-31;
catch-statement-32;

}

statement-1;

more statements go here...

Figure 9-1. Transfer of control when an exception occurs in a try block

You assume that when try-statement-2 is executed, it throws an exception of type Exception2. When the
exception is thrown, the control is transferred to the second catch block, and catch-statement-21 and
catch-statement-22 are executed. After catch-statement-22 is executed, control is transferred outside the try-
catch block, and statement-1 starts executing. It is very important to understand that try-statement-3 is never
executed when try-statement-2 throws an exception. Among three catch blocks, a maximum of one will be
executed when a statement inside the try block throws an exception.

Exception Class Hierarchy

The Java class library contains many exception classes. Figure 9-2 shows a few exception classes. Note that the Object
class does not belong to the family of exception classes. It is shown in the figure as an ancestor of the Throwable class
in the inheritance hierarchy.

341

CHAPTER 9 © EXCEPTION HANDLING

backtrace

Error
[D VirtualMachineErmor] |i:I RuntimeException | [D I0OException |
Vi
[D OutOfMemoryError | |[:I ArithmeticException I

Figure 9-2. A few classes in the exception class hierarchy

The exception class hierarchy starts at the java.lang.Throwable class. Recall that the Object class is the
superclass for all classes in Java. It is also the superclass of the Throwable class. This is the reason that the figure shows
the Object class at the top of the class hierarchy. It is to be emphasized that the Java exception class family starts at the
Throwable class, not at the Object class.

When an exception is thrown, it must be an object of the Throwable class, or any of its subclasses. The parameter
of the catch block must be of type Throwable, or one of its subclasses, such as Exception, ArithmeticException,
IOException, etc. The following catch blocks are not valid catch blocks because their parameters are not a Throwable
or a subclass of Throwable:

// A compile-time error. The Object class is not a throwable class.

catch(Object e1) {
}

// A compile-time error. The String class is not a throwable class.
catch(String e1) {

The following catch blocks are valid because they specify throwable types as a parameter, which are the
Throwable class or its subclasses:

// Throwable is a valid exception class
catch(Throwable t) {

}

342

CHAPTER 9 © EXCEPTION HANDLING

// Exception is a valid exception class because it is a subclass of Throwable
catch(Exception e) {

// TOException class is a valid exception class because it is a subclass of Throwable
catch(IOException t) {

}

// ArithmeticException is a valid exception class because it is a subclass of Throwable
catch(ArithmeticException t) {

}

You can also create your own exception classes by inheriting your classes from one of the exception classes.
Figure 9-2 shows only a few of the hundreds of exception classes that are available in the Java class library. I will discuss
how to inherit a class from another class in Chapter 16 on inheritance. I will present an example of a user-defined
exception class later in this chapter.

Arranging Multiple catch Blocks

A reference variable of the Object class can refer to any type of object. Assuming AnyClass is a class, the following is
avalid statement:

Object obj = new AnyClass();

The rule behind the above assignment is that the reference of an object of a class can be assigned to a reference
variable of its own type or its superclass. Because the Object class is the superclass (direct or indirect) of all classes in
Java, it is valid to assign a reference of any object to a reference variable of the Object class. This assignment rule is not
limited to just a reference variable of the Object class. It is applicable to any object. It is stated as

A reference variable of class T can refer to an object of class S if S is the same as T or S is a subclass of
T. The following statements are always valid in Java assuming S is a subclass of T:

T t1 =new T();

T t2 = new S();

You can see that the above rule implies that any object’s reference can be stored in a reference variable of the
Object type. I will elaborate on this rule in Chapter 7.

Let’s apply this assignment rule to the exception class hierarchy. Because the Throwable class is the superclass of
all exception classes, a reference variable of the Throwable class can refer to an object of any exception class. All of the
following statements are valid:

Throwable el = new Exception();
Throwable e2 = new IOException();
Throwable e3 = new RuntimeException();
Throwable e4 = new ArithmeticException();

343

CHAPTER 9 © EXCEPTION HANDLING

With this rule of assignment in mind, let’s consider the following try-catch block:

try {
statement1;
statement2; // Exception of class MyException is thrown here
statement3;

}

catch (Exceptioni e1) {
// Handle Exceptioni
}

catch(Exception2 e2) {
// Handle Exception2
}

When the above snippet of code is executed, statement2 throws an exception of the MyException type.
Suppose the runtime creates an object of MyException as follows:

new MyException();

Now the runtime selects the appropriate catch block, which can catch the exception object. It starts looking for
the appropriate catch clock sequentially starting from the first catch block that is associated with the try block. The
process to check if a catch block can handle an exception is very simple. Take the parameter type and parameter
name of the catch block and place them to the left of an assignment operator and place the exception object that is
thrown to the right. If the statement thus formed is a valid Java statement, that catch block will handle the exception.
Otherwise, the runtime will repeat this check with the next catch block.

To check if the first catch block can handle the MyException in the above snippet of code, Java will form the
following statement:

// Catch parameter declaration = thrown exception object reference
Exceptionl el = new MyException();

The above statement is a valid Java statement only if the MyException class is a subclass of the Exception1
class, or MyException and Exceptioni are the same class. If the above statement is valid, the runtime will assign
the reference of the MyException object to e1, and then execute the code inside the first catch block. If the above
statement is not a valid statement, the runtime will apply the same check for the second catch block by using the
following statement:

// Catch parameter declaration = thrown exception object reference
Exception2 e2 = new MyException();

If the above statement is valid, the MyException object is assigned to e2 and the body of the catch block is
executed. If the above statement is not valid, the runtime did not find a matching catch block for the exception
thrown in the try block, and then a different execution path is chosen, which I will discuss shortly.

Typically, you add a catch block after a try block for every type of exception that can be thrown from the try
block. Suppose there is a try block and it can throw three kinds of exceptions, which are represented by three classes,
Exceptioni, Exception2, and Exception3. Suppose Exceptioni is the superclass of Exception2, and Exception2 is
the superclass of Exception3. The class hierarchy for the three exception classes is shown in Figure 9-3.

344

CHAPTER 9 © EXCEPTION HANDLING

EE—

[E]

Exception1]

[D Exception2]

[D

Exception3]

Figure 9-3. The class hierarchy for Exceptionl, Exception2, and Exception3 exception classes

Consider the following try-catch block:
try {

}
catch (Exceptioni e1) {

// Handle Exceptioni
}

catch (Exception2 e2) {
// Handle Exception2
}

catch (Exception3 e3) {
// Handle Exception3
}

// Exceptioni, Exception2 or Exception 3 could be thrown here

If you try to apply the steps to find an appropriate catch block, the above snippet of code would always execute
the first catch block, irrespective of the type of exception thrown (Exceptioni, Exception2, or Exception3) from the
try block. This is because Exception1 is the direct/indirect superclass of Exception2 and Exception3. The above
snippet of code shows a logical mistake made by the developer. The Java compiler is designed to handle this kind
of logical mistake that you might make and it generates a compile-time error. You must apply the following rule for
arranging multiple catch blocks for a try block:

Multiple catch blocks for a try block must be arranged from the most specific exception type to the
most generic exception type. Otherwise, a compile-time error occurs. The first catch block should
handle the most specific exception type and the last the most generic exception type.

345

CHAPTER 9 © EXCEPTION HANDLING

The following snippet of code uses a valid sequence of multiple catch blocks. The ArithmeticException class
is a subclass of the RuntimeException class. If both of these exceptions are handled in catch blocks for the same try
block, the most specific type, which is ArithmeticException, must appear before the most generic type, which is
RuntimeException.

try {
// Do something, which might throw Exception

catch(ArithmeticException e1) {
// Handle ArithmeticException first
}

catch(RuntimeException e2) {
// Handle RuntimeException after ArithmeticException
}

Checked and Unchecked Exceptions

Before I start discussing checked and unchecked exceptions, let’s look at a Java program that reads a character from
the standard input. You have been using the System.out.println() method to print messages on the standard
output, which is typically the console. You can use the System.in.read() method to read a byte from the standard
input, which is typically the keyboard. It returns the value of the byte as an int between 0 and 255. It returns -1 if

the end of input is reached. The following is the code that reads a byte from the standard input and returns it as a
character. It assumes that the language you are using has all alphabets whose Unicode values are between 0 and 255.
The readChar () method has the main code. To read a character from the standard input, you will need to use the
ReadInput.readChar() method.

// ReadInput.java
package com.jdojo.exception;
public class ReadInput {
public static char readChar() {
char ¢ = '\u0000"';
int input = System.in.read();
if (input != -1) {
¢ = (char)input;
}

return c;

Try to compile the ReadInput class. Oops! The compiler could not compile ReadInput class. It generated the
following error message:

"ReadInput.java": unreported exception java.io.IOException; must be caught or declared to be thrown
at line 7, column 31

The compiler error is pointing to line 7 in the source code:

int input = System.in.read();

346

CHAPTER 9 © EXCEPTION HANDLING

There is something missing in this statement. The compiler error also tells you that there is an uncaught exception,
which must be caught or declared. You know about catching an exception using a try-catch block. However, you
probably do not understand how to declare an exception. You will learn about declaring an exception in the next section.

The System.in.read() method call may throw a java.io.IOException. The compiler error is telling you to place
this method call in a try-catch block, so you can handle the exception. If you do not catch this exception, you need
to include in the declaration of the readChar () method that it might throw a java.io.IOException. Youlearned in
the previous sections that the runtime handles all uncaught exceptions. So why can’t the Java runtime handle
java.io.IOException in this case? Here comes the concept of checked and unchecked exceptions. You need to learn
about checked and unchecked exception types to fully understand the compiler error.

Three kinds of exceptional conditions may occur in a Java program:

e Inthe first category are exceptions that have a higher potential to occur, and you can handle
them. For example, when you read from a file, it is more likely that an I/O error may occur. It
is better to handle these kinds of exceptions in your program. Classes in the exception class
hierarchy (refer to Figure 9-2), which are subclasses of the Exception class, including the
Exception class itself and excluding RuntimeException and all its subclasses, fall into this
category. If a method or constructor may throw an exception of this category, you must take an
appropriate action to handle that exception in your code that calls the method or constructor.
What is that “appropriate action” that you need to take to handle these kinds of exceptions?
You may take one of the following two actions:

¢ You can place the code that can throw the exception in a try-catch block. One of the
catch blocks must be capable of handling the type of exception that may be thrown.

e You can specify in the calling method/constructor declaration that it may throw an
exception. You accomplish this by using a throws clause in the method/constructor
declaration.

¢ Inthe second category are the exceptions that may occur during the course of the execution
of a Java program, and there is little you can do to handle it. For example, you will receive a
java.lang.OutOfMemeoryError exception when the runtime is out of memory. You cannot
do anything to recover from an out of memory error. It is better for you to let the application
crash, and then look at ways to manage the memory more efficiently in your program. Classes
in the exception class hierarchy (refer to Figure 9-2), which are subclasses of the Exrror class,
and the Error class itself, fall into this category of exception. If a piece of code may throw an
exception of this category, the compiler does not insist on taking an action on your part. If an
exception of this kind is thrown at runtime, the runtime will handle it for you by displaying a
detailed error message and halting the application.

e Inthe third category are exceptions that may occur at runtime, and you may be able to recover
from the exceptional condition if you handle them yourself. There are numerous exceptions
in this category. However, if you feel that it is more likely that an exception of this kind may be
thrown, you should handle it in your code. If you attempt to handle them by using try-catch
blocks, your code tends to get cluttered. Classes in the exception class hierarchy (refer to
Figure 9-2), which are subclasses of the RuntimeException class, and the RuntimeException
class itself, fall into this category of exception. If a piece of code may throw an exception of
this category, the compiler does not insist on taking an action on your part. If an exception of
this kind is thrown at runtime, the runtime will handle it for you by displaying a detailed error
message and halting the program.

Exceptions in the first category are known as checked exceptions. The Throwable class also falls under
checked exceptions. The Throwable class, the Exception class, and subclasses of the Exception class, excluding
the RuntimeException class and its subclasses, are called checked exceptions. They are called checked exceptions
because the compiler checks that they are handled in the code.

347

CHAPTER 9 © EXCEPTION HANDLING

All exceptions that are not checked exceptions are called unchecked exceptions. The Exror class, all subclasses
of the Exrror class, the RuntimeException class, and all its subclasses are unchecked exceptions. They are called
unchecked exceptions because the compiler does not check if they are handled in the code. However, you are free to
handle them. The program structure for handling a checked or an unchecked exception is the same. The difference
between them is in the way the compiler forces (or does not force) you to handle them in the code.

Let’s fix the compiler error for the ReadInput class. Now you know that java.io.IOException is a checked
exception and the compiler will force you to handle it. You will handle it by using a try-catch block. Listing 9-3 shows
the code for the ReadInput class. This time, you have handled the IOException in its readChar () method and the code
will compile fine.

Listing 9-3. A ReadInput Class Whose readChar() Method Reads One Character from the Standard Input

// ReadInput.java
package com.jdojo.exception;

import java.io.IOException;

public class ReadInput {
public static char readChar() {
char ¢ = '\u0000';
int input = 0;

try {
input = System.in.read();
if (input != -1) {
¢ = (char)input;
}
}

catch (IOException e) {
System.out.print("IOException occurred while reading input.");
}

return c;

How do you use the ReadInput class? You can use it the same way you use other classes in Java. You need to call
the ReadInput.readChar() static method if you want to capture the first character entered by the user. Listing 9-4
has code that shows how to use the ReadInput class. It prompts the user to enter some text. The first character of the
entered text is shown on the standard output.

Listing 9-4. A Program to Test the ReadInput Class

// ReadInputTest.java
package com.jdojo.exception;

public class ReadInputTest {
public static void main(String[] args) {
System.out.print("Enter some text and press Enter key: ");

char ¢ = ReadInput.readChar();
System.out.println("First character you entered is:

+C);

348

CHAPTER 9 © EXCEPTION HANDLING

Enter some text and press Enter key: Hello
First character you entered is: H

Checked Exception - Catch or Declare

If a piece of code may throw a checked exception, you must do one of the following:
e Handle the checked exception by placing the piece of code inside a try-catch block.
e Specifyin your method/constructor declaration that it throws the checked exception.

The call to the System. in.read() method in the readChar () method of the ReadInput class (see Listing 9-3)
throws a checked exception of the I0OException type. You applied the first option in this case and handled the
I0Exception by placing the call to the System.in.read() method in a try-catch block

Let’s assume that you are writing a method m1() for a class that has three statements. Suppose three statements
may throw checked exceptions of types Exceptioni, Exception2, and Exception3, respectively.

// Will not compile

public void m1() {
statement-1; // May throw Exceptioni
statement-2; // May throw Exception2
statement-3; // May throw Exception3

You cannot compile the code for the m1() method in the above form. You must either handle the exception using
a try-catch block or include in its declaration that it may throw the three checked exceptions. If you want to handle
the checked exceptions in the m1() method’s body, your code may look as follows:

public void m1() {

try {
statement-1; // May throw Exceptioni
statement-2; // May throw Exception2
statement-3; // May throw Exception3
}

catch(Exceptioni e1) {
// Handle Exceptioni here
}

catch(Exception2 e2) {
// Handle Exception2 here
}

catch(Exception3 e3) {
// Handle Exception3 here
}

The above code assumes that when one of the three exceptions is thrown, you do not want to execute the
remaining statements.

349

CHAPTER 9 © EXCEPTION HANDLING

If you want to use different logic, you might need more than one try-catch block. For example, if your logic
states that you must attempt to execute all three statements, even if the previous statement throws an exception, your
code would look as follows:

public void mi() {
try {

}

catch(Exceptioni e1) {
// Handle Exceptionl here
}

try {

}

catch(Exception2 e2) {
// Handle Exception2 here
}

try {

}
catch(Exception3 e3) {

// Handle Exception3 here
}

statement-1; // May throw Exceptioni

statement-2; // May throw Exception2

statement-3; // May throw Exception3

The second way to get rid of the compiler error is to specify in the m1() method’s declaration that it throws three
checked exceptions. This is accomplished by using a throws clause in the m1() method’s declaration. The general
syntax for a throws clause is

<«modifiers>> <<return type>> <<method name>>(<<params>>) throws <<List of Exceptions>> {
// Method body goes here
}

The keyword throws is used to specify a throws clause. The throws clause is placed after the closing parenthesis
of the method’s parameters list. The throws keyword is followed by a comma-separated list of exception types. Recall
that an exception type is nothing but the name of a Java class, which is in the exception class hierarchy. You can
specify a throws clause in the declaration of the m1() method as follows:

public void mi() throws Exceptioni, Exception2, Exception3 {
statement-1; // May throw Exceptioni
statement-2; // May throw Exception2
statement-3; // May throw Exception3

You can also mix the two options in the same method when a piece of code throws more than one checked
exception. You can handle some of them using a try-catch block, and declare some of them using a throws clause in
method’s declaration. The following code handles Exception2 using a try-catch block and uses a throws clause to
declare exceptions Exceptioni and Exception3:

350

CHAPTER 9 © EXCEPTION HANDLING

public void mi() throws Exceptioni, Exception3 {
statement-1; // May throw Exceptioni

try {
}

catch(Exception2 e){
// Handle Exception2 here
}

statement-3; // May throw Exception3

statement-2; // May throw Exception2

Let’s get back to the ReadInput class example. Listing 9-3 fixed the compiler error by adding a try-catch block.
Let’s now use the second option: include a throws clause in the readChar () method’s declaration. Listing 9-5 has
another version of the ReadInput class, which is called ReadInput2.

Listing 9-5. Using a throws Clause in a Method’s Declaration

// ReadInput2.java
package com.jdojo.exception;

import java.io.IOException;

public class ReadInput2 {
public static char readChar() throws IOException {
char ¢ = '\u0000"';
int input = 0;
input = System.in.read();
if (input != -1) {
¢ = (char)input;
}

return c;

The following code for the ReadInput2Test class tests the readChar () method of the ReadInput2 class:

// ReadInput2Test.java
package com.jdojo.exception;

public class ReadInput2Test {
public static void main(String[] args) {
System.out.print("Enter some text and then press Enter key: ");
char ¢ = ReadInput2.readChar();
System.out.print("The first character you entered is:

+0);

Now, compile the ReadInput2Test class. Oops! Compiling the ReadInput2Test class generates the following error:

Error(6,11): unreported exception: class java.io.IOException; must be caught or declared to be thrown

351

CHAPTER 9 © EXCEPTION HANDLING

The compiler error may not be very clear to you at this point. The readChar () method of the ReadInput2 class
declares that it may throw an I0Exception. The IOException is a checked exception. Therefore, the following piece of
code in the main() method of ReadInput2Test may throw a checked IOException:

char ¢ = ReadInput2.readChar();

Recall the rules about handling the checked exceptions, which I mentioned in the beginning of this section. If a
piece of code may throw a checked exception, you must use one of the two options: place that piece of code inside a
try-catch block to handle the exception, or specify the checked exception using a throws clause in the method’s or
constructor’s declaration. Now, you must apply one of the two options for the ReadInput2.readChar () method’s call
in the main() method. Listing 9-6 uses the first option and places the call to ReadInput2.readChar () method inside a
try-catch block. Note that you have placed three statements inside the try block, which is not necessary. You needed
to place inside the try block only the code that may throw the checked exception.

Listing 9-6. A Program to Test the ReadInput2.readChar() Method
// ReadInput2Test2.java
package com.jdojo.exception;

import java.io.IOException;

public class ReadInput2Test2 {
public static void main(String[] args) {
char ¢ = '\u0000"';

try {
System.out.print("Enter some text and then press Enter key:");
¢ = ReadInput2.readChar();
System.out.println("The first character you entered is: " + c);
}

catch(IOException e) {
System.out.println("Error occurred while reading input.");
}

You can also use the second option to fix the compiler error. Listing 9-7 has the code using the second option.

Listing 9-7. A Program to Test the ReadInput2.readChar() Method

// ReadInput2Test3.java
package com.jdojo.exception;

import java.io.IOException;

public class ReadInput2Test3 {
public static void main(String[] args) throws IOException {
char ¢ = '\u0000';
System.out.print("Enter some text and then press Enter key: ");
¢ = ReadInput2.readChar();
System.out.print("The first character you entered is:

+C);

352

CHAPTER 9 © EXCEPTION HANDLING

The program includes a throws clause with an I0Exception for the main() method. Can you run the
ReadInput2Test3 class as you have been running other classes using the java command? Yes. You can run the
ReadInput2Test3 class the same way you run other classes in Java. The requirement to run a class is that it should
include a main() method, which is declared as public static void main(String[] args).The requirement does
not specify anything about a throws clause. Amain() method, which is used to run a class as a starting point, may
or may not contain a throws clause.

Suppose you run the ReadInput2Test3 class and the call to the System.in.read() method in the readChar ()
method of the ReadInput2 class throws an IOException. How will the IOException be handled and what will
handle it? When an exception is thrown in a method body, the runtime checks if the code throwing the exception
isinside a try-catch block. If the exception throwing code is inside a try-catch block, the Java runtime looks for
the catch block that can handle the exception. If it does not find a catch block that can handle the exception, or
the method call is not inside a try-catch block, the exception is propagated up the method call stack. That is, the
exception is passed to the caller of the method. In your case, the exception is not handled in the readChar () method
of the ReadInput2 class. Its caller is the piece of code in the main() method of the ReadInput2Test2 class. In this
case, the same exception is thrown at the point where the ReadInput2.readChar () method call is made inside the
ReadInput2Test2.main() method. The runtime applies the same checks to handle the exception. If you run the
ReadInput2Test2 class and an I0Exception is thrown, the runtime finds that the call to ReadInput2.readChar()
is inside a try-catch block, which can handle the I0OException. Therefore, it will transfer the control to the catch
block, which handles the exception, and the program continues in the main() method of the ReadInput2Test2 class.
It is very important to understand that the control does not go back to the ReadInput2.readChar() method after it
throws an exception and the exception is handled inside the ReadInput2Test2.main() method.

When you run the ReadInput2Test3 class, the call to the ReadInput2.readChar () method is not inside a
try-catch block. In this case, the Java runtime will have to propagate the exception up the method call stack. The
main() method is the beginning of the method call stack for a Java application. This is the method where all Java
applications start. If the main() method throws an exception, the runtime handles it. Recall that if the runtime
handles an exception for you, it prints the call stack details on the standard error and exits the application.

Recall that a catch block with an exception type can handle an exception of the same type, or any of its
subclass type. For example, a catch block with Throwable exception type is capable of handling all types of
exceptions in Java, because the Throwable class is the superclass of all exception classes. This concept is also
applicable to the throws clause. If a method throws a checked exception of Exception1 type, you can mention
Exceptioni type in its throws clause or any of the superclasses of Exceptioni. The reasoning behind this rule is
that if the caller of the method handles an exception that is the superclass of Exceptioni, the same handler can also
handle Exceptioni.

Tip The Java compiler forces you to handle a checked exception either by using a try-catch block or by using a
throws clause in the method or constructor declaration. If a method throws an exception, it should be handled somewhere
in the call stack. That is, if a method throws an exception, its caller can handle it, or its caller’s caller can handle, and so
on. If an exception is not handled by any callers in the call stack, it is known as an uncaught exception (or an unhandled
exception). An uncaught exception is finally handled by the Java runtime, which prints the exception stack trace on the
standard error and exits the Java application. A different behavior may be specified for uncaught exceptions in a thread.
Please refer to the chapter on threads in the book Beginning Java Language Features (ISBN 978-1-4302-6658-7) for
more details on how to specify an exception handler for a thread.

353

CHAPTER 9 © EXCEPTION HANDLING

The compiler is very particular about checked exceptions being handled by programmers. If the code in a try
block cannot throw a checked exception and its associated catch blocks catch checked exceptions, the compiler
will generate an error. Consider the following code, which uses a try-catch block. The catch block specifies an
IOException, which is a checked exception. However, the corresponding try block does not throw an I0Exception.

// CatchNonExistentException.java
package com.jdojo.exception;

import java.io.IOException;

// Will not compile
public class CatchNonExistentException {
public static void main(String[] args) {
int x =10, y =0, z = 0;
try {

}
catch(IOException e) {

// Handle exception
}

z=x1/Yy;

When you compile the code for the CatchNonExistentException class, you would get the following compiler error:
Error(12): exception java.io.IOException is never thrown in body of corresponding try statement

The error message is self-explanatory. It states that IOException is never thrown in the try block. Therefore, the
catch block must not catch it.

One way to fix the above compiler error is to remove the try-catch block altogether. The following is another
interesting way (but not a good way) to mention a generic catch block:

// CatchNonExistentException2.java
package com.jdojo.exception;

// Will compile fine
public class CatchNonExistentException2 {
public static void main(String[] args) {
int x =10, y =0, z = 0;
try {

}
catch(Exception e) {

// Handle the exception
}

z=x1/Yy;

354

CHAPTER 9 © EXCEPTION HANDLING

Exception is also a checked exception type in Java as is IOException. If a catch block should not catch a checked
exception unless it is thrown in the corresponding try block, how does the code for CatchNonExistentException2
compile fine? Should it not generate the same compiler error? At first thought, you are right. It should fail compilation
for the same reason the CatchNonExistentException class failed. There are two checked exceptions classes that are
exceptions to this rule. Those two exception classes are Exception and Throwable. The Exception class is the superclass
of IOException and other exceptions, which are checked exceptions. It is also the superclass of RuntimeException
and all subclasses of RuntimeException, which are unchecked exceptions. Recall the rule that a superclass exception
type can also handle a subclass exception type. Therefore, you can use the Exception class to handle checked
exceptions as well as unchecked exceptions. The rule of checking for catch blocks for un-thrown exceptions applies
only to checked exceptions. Exception and Throwable classes in a catch block can handle checked as well as
unchecked exceptions because they are superclasses of both types. This is the reason that the compiler will let you
use these two checked exception types in a catch block, even though the associated try block does not throw any
checked exceptions.

Tip All rules about the compiler check for exceptions being handled or thrown are applicable only to checked
exceptions. Java does not force you to handle the unchecked exceptions in your code. However, you are free to handle
them as you feel appropriate to do so.

Checked Exceptions and Initializers

You cannot throw a checked exception from a static initializer. If a piece of code in a static initializer throws a
checked exception, it must be handled using a try-catch block inside the initializer itself. The static initializer is
called only once for a class, and the programmer does not have a specific point in code to catch it. This is the reason
that a static initializer must handle all possible checked exceptions that it may throw.

public class Test {
static {
// Must use try-catch blocks to handle all checked exceptions
}

The rule is different for instance initializers. An instance initializer is called as part of a constructor call for the
class. It may throw checked exceptions. However, all those checked exceptions must be included in the throws clause
of all constructors for that class. This way, the compiler can make sure all checked exceptions are taken care of by
programmers when any of the constructors are called. The following code for the Test class assumes that the instance
initializer throws a checked exception of a CException type. The compiler will force you to add a throws clause with
CException to all constructors of Test.

public class Test {
// Instance initializer

{

}

// All constructors must specify that they throw CException
// because the instance initializer throws CException
public Test() throws CException {

// Code goes here
}

// Throws a checked exception of type CException

355

CHAPTER 9 © EXCEPTION HANDLING

public Test(int x) throws CException {
// Code goes here
}

// Rest of the code goes here

You must handle the CException when you create an object of the Test class using any of its constructors as

Test t = null;
try {

}

catch (CException e) {
// Handle exception here
}

t = new Test();

If you do not handle the CException using a try-catch block, you must use a throws clause to specify that the
method or constructor that uses the constructor of the Test class may throw CException.

If an instance initializer throws a checked exception, you must declare a constructor for your class. The compiler
will add a default constructor to your class if you do not add one. However, the compiler will not add a throws clause
to the default constructor, which will break the above rule. The following code will not compile:

public class Test123 {

// May throw CException, which is a checked exception.

When the Test123 class is compiled, the compiler adds a default constructor, and the class Test123 will look
as follows:

public class Test123 {
{

}

public Test123() {
// An empty body. The compiler did not add a throws clause.
}

// May throw CException, which is a checked exception.

Note that the default constructor, which was added by the compiler, does not contain a throws clause to include
CException, which is thrown by the instance initializer. This is the reason that the Test123 class will not compile. To
make the Test123 class compile, you must add at least one constructor explicitly and use a throws clause to specify
that it may throw CException.

356

CHAPTER 9 © EXCEPTION HANDLING

Throwing an Exception

A Java exception is not something that is always thrown by the runtime. You can also throw an exception in your code
using a throw statement. The syntax for a throw statement is

throw <<A throwable object reference>>;

Here, throw is a keyword, which is followed by a reference to a throwable object. A throwable object is an instance
of a class, which is a subclass of the Throwable class, or the Throwable class itself. The following is an example of a
throw statement, which throws an I0Exception:

// Create an object of IOException
IOException el = new IOException("File not found");

// Throw the IOException
throw ei1;

Recall that the new operator returns the reference of the new object. You can also create a throwable object and
throw it in one statement.

// Throw an IOException
throw new IOException("File not found");

The same rules for handling exceptions apply when you throw an exception in your code. If you throw a checked
exception, you must handle it by placing the code in a try-catch block, or by using a throws clause in the method or
constructor declaration that contains the throw statement. These rules do not apply if you throw an unchecked exception.

Creating an Exception Class

You can also create your own exception classes. They must extend (or inherit from) an existing exception class. I will
cover how to extend a class in detail in Chapter 16 on inheritance. This section will discuss the necessary syntax to
extend a class. The keyword extends is used to extend a class.

<<Class Modifiers>>class <<Class Name>>extends <<Superclass Name»> {
// Body for <<Class Name>>goes here
}

Here, <<Class Name>>isyour exception class name and <<Superclass Name>>is an existing exception class
name, which is extended by your class.

Suppose you want to create a MyException class, which extends the java.lang.Exception class. The syntax
would be as follows:

public class MyException extends Exception {
// Body for MyException class goes here
}

How does the body of an exception class look? An exception class is like any other classes in Java. Typically, you
do not add any methods to your exception class. Many useful methods that can be used to query an exception object’s
state are declared in the Throwable class and you can use them without re-declaring them. Typically, you include four
constructors to your exception class. All constructors will call the corresponding constructor of its superclass using
the super keyword. Listing 9-8 shows the code for a MyException class with four constructors.

357

CHAPTER 9 © EXCEPTION HANDLING

Listing 9-8. A MyException Class That Extends the Exception Class

// MyException.java
package com.jdojo.exception;

public class MyException extends Exception {
public MyException() {
super () ;
}

public MyException(String message) {
super (message);
}

public MyException(String message, Throwable cause) {
super(message, cause);

}

public MyException(Throwable cause) {
super(cause);

}

The first constructor creates an exception with null as its detailed message. The second constructor creates an
exception with a detailed message. The third and fourth constructors let you create an exception by wrapping another
exception with/without a detailed message.

You can throw an exception of type MyException.

throw new MyException("Your message goes here");

You can use the MyException class in a throws clause in a method/constructor declaration or as a parameter type
in a catch block.

import com.jdojo.exception.MyException;

public void mi() throws MyException {
// Code for m1() body goes here

}

try {

}
catch(MyException e) {

// Code for the catch block goes here
}

// Code for the try block goes here

Table 9-1 shows some of the commonly used methods of the Throwable class. Note that the Throwable
class is the superclass of all exception classes in Java. All of the methods shown in this table are available in all
exception classes.

358

CHAPTER 9 © EXCEPTION HANDLING

Table 9-1. A Partial List of Methods of the Throwable Class

Method Description

Throwable getCause() This method was added in Java 1.4. It returns the cause of the
exception. If the cause of the exception is not set, it returns null.

String getMessage() It returns the detailed message of the exception.

StackTraceElement[] getStackTrace() This method was added in Java 1.4. It returns an array of stack trace

elements. Each element in the array represents one stack frame. The
first element of the array represents the top of the stack and the last
element of the array represents the bottom of the stack. The top of
the stack is the method/constructor where the exception object is
created. The object of StackTraceElement class holds information
such as class name, method name, file name, line number, etc.

Throwable initCause(Throwable cause) It was added in Java 1.4. There are two ways to set an exception as
the cause of an exception. One way is to use the constructor, which
accepts the cause as a parameter. Another way is to use this method.

void printStackTrace() It prints the stack trace on the standard error stream. The output
prints the description of the exception object itself as the first line
and then the description of each stack frame. Printing stack trace for
an exception is very useful for the debugging purpose.

void printStackTrace(PrintStream s) It prints the stack trace to the specified PrintStream object.
void printStackTrace(PrintWriter s) It prints the stack trace to the specified PrintWriter object.
String toString() It returns a short description of the exception object. The

description of an exception object contains the name of the
exception class and the detail message.

Listing 9-9 demonstrates the use of the printStackTrace() method for an exception class. The main()
method calls the m1() method, which in turn calls the m2 () method. The stack frame for this call starts with the
main() method, which will be at the bottom of the stack. The top of the stack contains the m2() method. The output
shows that the printStackTrace() method prints the stack information from top to bottom. Each stack frame
contains the name of the class, the method name, the source file name, and the line number. The first line of the
printStackTrace() method prints the class name of the exception object with a detailed message.

Listing 9-9. Printing the Stack Trace of an Exception

// StackTraceTest.java
package com.jdojo.exception;

public class StackTraceTest {
public static void main(String[] args) {
try {

}
catch(MyException e) {

e.printStackTrace(); // Print the stack trace
}

mi();

359

CHAPTER 9 © EXCEPTION HANDLING

public static void m1() throws MyException {
m2();
}

public static void m2() throws MyException {
throw new MyException("Some error has occurred.");
}

com.jdojo.exception.MyException: Some error has occurred.
at com.jdojo.exception.StackTraceTest.m2(StackTraceTest.java:20)
at com.jdojo.exception.StackTraceTest.m1(StackTraceTest.java:16)
at com.jdojo.exception.StackTraceTest.main(StackTraceTest.java:7)

Listing 9-9 demonstrates how to print the stack trace of an exception on the standard error. Sometimes you may
need to save the stack trace in a file or in a database. You may need to get the stack trace information as a string in
avariable. Another version of the printStackTrace() method lets you do this. Listing 9-10 shows how to use the
printStackTrace(PrintWriter s) method to print the stack trace of an exception object to a String object. The
program is the same as Listing 9-9 with one difference. It stores the stack trace in a string and then prints that string
on the standard output. The method getStackTrace() writes the stack trace to a string and returns that string. Please
refer to the chapter on input/output in the book Beginning Java Language Features (ISBN 978-1-4302-6658-7) for
more details on how to use the Stringhriter and PrintWriter classes.

Listing 9-10. Writing Stack Trace of an Exception to a String

// StackTraceAsStringTest.java
package com.jdojo.exception;

import java.io.StringWriter;
import java.io.PrintWriter;

public class StackTraceAsStringTest {
public static void main(String[] args) {
try {

}
catch(MyException e) {

String str = getStackTrace(e);

mi();

// Print the stack trace to the standard output
System.out.println(str);

}

public static void m1() throws MyException {
m2();
}

360

CHAPTER 9 © EXCEPTION HANDLING

public static void m2() throws MyException {
throw new MyException("Some error has occurred.");
}

public static String getStackTrace(Throwable e) {
StringWriter strWriter = new StringWriter();
PrintWriter printWriter = new PrintWriter(strWriter);
e.printStackTrace(printWriter);

// Get the stack trace as a string
String str = strWriter.toString();

return str;

com.jdojo.exception.MyException: Some error has occurred.
at com.jdojo.exception.StackTraceAsStringTest.m2(StackTraceAsStringTest.java:25)
at com.jdojo.exception.StackTraceAsStringTest.m1(StackTraceAsStringTest.java:21)
at com.jdojo.exception.StackTraceAsStringTest.main(StackTraceAsStringTest.java:10)

The finally Block

You have seen how to associate one or more catch blocks to a try block. A try block can also have zero or one finally
block. A finally block is never used by itself. It is always used with a try block. The syntax for using a finally block is

finally {
// Code for finally block goes here
}

A finally block starts with the keyword finally, which is followed by an opening brace and a closing brace.
The code for a finally block is placed inside the braces.

There are two possible combinations of try, catch, and finally blocks: try-catch-finally or try-finally.
A try block may be followed by zero or more catch blocks. A try block can have a maximum of one finally block.
A try block must have either a catch block, a finally block, or both. The syntax for a try-catch-finally block is

try {

}

catch(Exceptioni e1) {
// Code for catch block goes here

// Code for try block goes here

}
finally {

// Code for finally block goes here
}

The syntax for a try-finally block is

361

CHAPTER 9 © EXCEPTION HANDLING

try {
// Code for try block goes here
}
finally {
// Code for finally block goes here
}

When you use a try-catch-finally block, your intention is to execute the following logic:

Try executing the code in the try. If the code in the try block throws any exception, execute the
matching catch block. Finally, execute the code in the finally block no matter how the code in the
try and catch blocks finish executing.

When you use a try-finally block, your intention is to execute the following logic:

Try executing the code in the try block. When the code in the try block finishes, execute the code in
the finally block.

Tip A finally block is guaranteed to be executed no matter what happens in the associated try and/or catch
block. There are two exceptions to this rule: the finally block may not be executed if the thread that is executing the
try or catch block dies, or a Java application may exit, for example, by calling System.exit() method, while executing
the try or catch block.

Why do you need to use a finally block? Sometimes you want to execute two sets of statements, say set-1
and set-2. The condition is that set-2 should be executed no matter how the statements in set-1 finish executing.
For example, statements in set-1 may throw an exception or may finish normally. You may be able to write the
logic, which will execute set-2 after set-1 is executed, without using a finally block. However, the code may not
look clean. You may end up repeating the same code multiple places and writing spaghetti if-else statements. For
example, set-1 may use constructs, which make the control jump from one point of the program to another. It may
use constructs like break, continue, return, throw, etc. If set-1 has many points of exit, you will need to repeat the
call to set-2 before exiting at many places. It is difficult and ugly to write logic that will execute set-1 and set-2. The
finally block makes it easy to write this logic. All you need to do is to place set-1 code in a try block and the set-2
code in a finally block. Optionally, you can also use catch blocks to handle exceptions that may be thrown from
set-1. You can write Java code to execute set-1 and set-2 as follows:

try {

}
catch(MyException e1) {
// Handle any exceptions here that may be thrown by set-1

// Execute all statements in set-1

}
finally {

// Execute statements in set-2
}

If you structure your code to execute set-1 and set-2 as shown above, you get cleaner code with guaranteed
execution of set-2 after set-1 is executed.

362

CHAPTER 9 © EXCEPTION HANDLING

Typically, you use a finally block to write cleanup code. For example, you may obtain some resources in your
program that must be released when you are done with them. A try-finally block lets you implement this logic. Your
code structure would look as follows:

try {
// Obtain and use some resources here
}
finally {
// Release the resources that were obtained in the try block
}

You write try-finally blocks frequently when you write programs that perform database transactions and file
input/output. You obtain and use a database connection in the try block and release the connection in the finally
block. When you work with a database-related program, you must release the database connection, which you
obtained in the beginning, no matter what happens to the transaction. It is similar to executing statements in set-1
and set-2 as described above. Listing 9-11 demonstrates the use of a finally block in four different situations.

Listing 9-11. Using a finally Block
// FinallyTest.java

package com.jdojo.exception;

public class FinallyTest {
public static void main(String[] args) {
int x =10, y = 0, z;

try {
System.out.println("Before dividing x by y.");
z=x1/Y;
System.out.println("After dividing x by y.");
}

catch (ArithmeticException e) {
System.out.println("Inside catch block - 1.");

}
finally {
System.out.println("Inside finally block - 1.");
}
System.out.println("-----==--mmmmmmm oo ");
try {
System.out.println("Before setting z to 2449.");
Z = 2449;
System.out.println("After setting z to 2449.");
}

catch (Exception e) {
System.out.println("Inside catch block - 2.");

}
finally {

System.out.println("Inside finally block - 2.");
}

363

CHAPTER 9 © EXCEPTION HANDLING

System.out.println("-----===-mmmmmmm oo ");
try {
System.out.println("Inside try block - 3.");
}
finally {
System.out.println("Inside finally block - 3.");
}
System.out.println("----------cmmmemmieoeo "Y;
try {
System.out.println("Before executing System.exit().");
System.exit(0);
System.out.println("After executing System.exit().");
}
finally {
// This finally block will not be executed
// because application exits in try block
System.out.println("Inside finally block - 4.");
}

Before dividing x by y.
Inside catch block - 1.
Inside finally block - 1.
Before setting z to 2449.
After setting z to 2449.
Inside finally block - 2.
Inside try block - 3.
Inside finally block - 3.

Before executing System.exit().

The first try-catch-finally block attempts to perform a divide-by-zero operation on an integer. The expression
x/y throws an ArithmeticException and control is transferred to the catch block. The finally block is executed after
the catch block finishes. Note that the second message in the try block is not printed because once an exception is
thrown, the control jumps to the nearest matching catch block and the control never goes back to the try block again.

The second try-catch-finally block is an example where the try block finishes normally (without throwing an
exception). After the try block finishes, the finally block is executed.

The third try-finally block is simple. The try block finishes normally, and then the finally block is executed.

The fourth try-finally block demonstrates an exceptional case when a finally block is not executed. The
try block exits the application by executing the System.exit() method. The application stops executing when the
System.exit() method is called without executing the associated finally block.

364

CHAPTER 9 © EXCEPTION HANDLING

Rethrowing an Exception

An exception that is caught can be rethrown. You may want to rethrow an exception for different reasons. One of the
reasons could be to take an action after catching it, but before propagating it up the call stack. For example, you may
want to log the details about the exception and then rethrow it to the client. Another reason is to hide the exception
type/location from the client. You are not hiding the exceptional condition itself from the client. Rather, you are hiding
the type of the exceptional condition. You may want to hide the actual exception type from clients for two reasons:

e The client may not be ready to handle the exception that is thrown, or
e The exception that is thrown does not make sense to the client.

Rethrowing an exception is as simple as using a throw statement. The following code snippet catches the
exception, prints its stack trace, and rethrows the same exception. When the same exception object is rethrown, it
preserves the details of the original exception.

try {

}
catch(MyException e) {
e.printStackTrace(); // Print the stack trace

// Code that might throw MyException

// Rethrow the same exception
throw e;

When an exception is thrown from a catch block, another catch block in the same group is not searched to
handle that exception. If you want to handle the exception thrown from a catch block, you need to enclose the code
that throws the exception inside another try-catch block. Another way to handle it is to enclose the whole try-catch
block inside another try-catch block. The following snippet of code shows the two ways of arranging nested try-catch
to handle Exception1 and Exception2. The actual arrangement of nested try-catch depends on the situation at
hand. If you do not enclose the code that may throw an exception inside a try block or the try block does not have
a matching associated catch block that can catch the exception, the runtime will propagate the exception up the call
stack provided the method is defined with a throws clause.

// #1 - Arranging nested try-catch
try {

}
catch(Exceptioni e1) {
// Handle Exceptionl here

// May throw Exceptioni

try {

}

catch(Exception2 e2) {
// Handle Exception2 here
}

// May throw Exception2

365

CHAPTER 9 © EXCEPTION HANDLING

/* #2 - Arranging nested try-catch */

try {
try {
// May throw Exceptioni
}
catch(Exception1 e1) {
// Handle Exceptioni here
// May throw Exception2
}
}

catch(Exception2 e2) {
// Handle Exception2 here
}

The following snippet of code shows how to catch an exception of one type and rethrow an exception of
another type:

try {

}
catch(MyException e) {
e.printStackTrace(); // Print the stack trace

// Code that might throw a MyException

// Rethrow another type of exception
throw new RuntimeException(e.getMessage());

The catch block catches the MyException, prints its stack trace, and rethrows a RuntimeException. In the
process, it loses the details of the original exception that was thrown. When the RuntimeException is created, it
packages the information of stack frames from the point where it was created. The client gets the information about
the rethrown RuntimeException from the point it was created, not about the original MyException. In the above code,
you have hidden both the type and the location of the original exception from the client.

You can also rethrow another type of exception and use the original exception as the cause of the rethrown
exception. It is as if the new exception is a wrapper for the original exception. You can set the cause of an exception
using one of the constructors of the new exception type that accepts a cause as a parameter. You can also use the
initCause() method to set the cause of the exception. The following snippet of code rethrows a RuntimeException
setting MyException as its cause:

try {

}
catch(MyException e) {
e.printStackTrace(); // Print the stack trace

// Code that might throw a MyException

// Rethrow a new exception using original exception as its cause
throw new RuntimeException(e.getMessage(), €);

You also have the option just to hide the location of the exception from the client when you rethrow an exception.
The fillInStackTrace() method of the Throwable class fills in the stack trace information to an exception object
from the point where this method is called. You need to call this method on the exception you catch and want

366

CHAPTER 9 © EXCEPTION HANDLING

to rethrow to hide the location of the original exception. The following snippet of code shows how to rethrow an
exception by hiding the location of the original exception:

try {

}

catch(MyException e) {
// Re-package the stack frames in the exception object
e.fillInStackTrace();

// Code that might throw MyException

// Rethrow the same exception
throw e;

Listing 9-12 demonstrates how to rethrow an exception by hiding the location of the original exception. The
MyException is thrown inside the m2() method. The m1() method catches the exception, refills the stack trace, and
rethrows it. The main() method receives the exception as if the exception was thrown inside m1(), not inside m2().

Listing 9-12. Rethrowing an Exception to Hide the Location of the Original Exception

// RethrowTest.java
package com.jdojo.exception;

public class RethrowTest {
public static void main(String[] args) {
try {

}
catch(MyException e) {

// Print the stack trace
e.printStackTrace();

mi();

}
}
public static void m1() throws MyException {
try {
m2();
}
catch(MyException e) {
e.fillInStackTrace();
throw e;
}
}

public static void m2() throws MyException {
throw new MyException("An error has occurred.");
}

com.jdojo.exception.MyException: An error has occurred.
at com.jdojo.exception.RethrowTest.m1(RethrowTest.java:20)
at com.jdojo.exception.RethrowTest.main(RethrowTest.java:7)

367

CHAPTER 9 © EXCEPTION HANDLING

Analysis of Rethrown Exceptions

Java 7 improved the mechanism of rethrowing exceptions. Consider the following snippet of code for a method
declaration:

public void test() throws Exception {
try {

}
catch (Exception e) {

// Rethrow the caught exception
throw e;

// May throw Exceptioni, or Exception2

The try block may throw Exceptioni or Exception2. The catch block specifies Exception as its parameter
and it rethrows the exception it catches. Prior to Java 7, the compiler sees the catch block throwing an exception of
Exception type and it insisted that, in the throws clause, the test() method must specify that it threw an exception of
the Exception type or the supertype of the Exception type.

Because the try block can throw exceptions of only Exception1 and Exception2 types, the catch block will
rethrow an exception that is always of these two types. Java 7 performs this analysis when an exception is rethrown.
It lets you specify the throws clause of the test() method accordingly. In Java 7, you can specify more specific
exception types, Exception1 and Exception2, in the test() method’s throws clause, as follows:

public void test() throws Exceptioni, Exception2 {
try {

}

catch (Exception e) {
// Rethrow the caught exception
throw e;

// May throw Exceptioni, Exception2 or Exception3

Throwing too Many Exceptions

There is no limit on the number of exception types that a method/constructor can list in its throws clause. However,
itis better to keep the number low. The client that uses a method has to deal with all the exceptions that the method
may throw in one way or another. It is also important to keep in mind that a method should not throw a new type of
exception once it has been designed, implemented, and released to public. If a method starts throwing a new type

of exception after its public release, all client code that call this method must change. It indicates poor design if a
method throws too many exceptions or a new exception is added after its public release. You can avoid these issues
with your method by catching all lower-level exceptions inside your method and rethrowing a higher-level exception.
The exception that you throw may contain the lower-level exception as its cause. Consider the following snippet of
code for a method m1() that throws three exceptions (Exceptioni, Exception2, and Exception3):

public void mi() throws Exceptioni, Exception2, Exception3 {
// Code for m1() method goes here
}

368

CHAPTER 9 © EXCEPTION HANDLING

You can redesign the m1() method to throw only one exception, say MyException, as follows:

public void mi() throws MyException {
try {

}
catch(Exception1 e1){

throw new MyException("Msg1", e1);
}

catch(Exception2 e2){
throw new MyException("Msg2", e1);
}

catch(Exception3 e3){
throw new MyException("Msg3", e1);
}

// Code for m1() method goes here

The redesigned method throws only one exception, which is of type MyException. The detailed message for
the exception is specific to the lower-level exception that is thrown and caught inside the method. The lower-level
exception is also propagated to the client as the cause of the higher-level exception. If the m1() method needs to throw
a new exception in the future, you can still fit the new exception in the old design. You need to add a catch block to
catch the new exception and rethrow MyException. This design keeps the throws clause of the m1() method stable.
It also allows for more exception types to be included in its body in future.

Tip Do not throw a generic exception from your method, such as Throwable, Exception, Exror, RuntimeException,
etc. Do not specify a generic exception type in a catch block. The purpose of exception throwing or handling is to know
exactly the error condition that occurred and take appropriate action. It helps you to understand the cause of an error by
giving specific error messages to users. Generating a specific error message is possible only when you handle exceptions
using specific exception types.

Accessing the Stack of a Thread

The stack is an area of memory that is used to store temporary data. It uses last-in, first-out (LIFO) style to add and
remove data. A stack resembles a stack in everyday life, such as a stack of books. The bottom of the stack has the
first book that was placed on it. The top of the stack has the last book that was placed on it. When a book has to be
removed from the stack, the last book that was placed on the stack will be removed first. This is the reason a stack is
also called last-in, first-out memory. Figure 9-4 shows the arrangement of a stack.

Top of stack
Push Pop
l Book-3 T
Book-2
Book-1

Figure 9-4. Memory arrangement in a stack

369

CHAPTER 9 © EXCEPTION HANDLING

The figure shows three books placed on a stack. Book-1 was placed first, Book-2 second, and Book-3 third.
Book-3, which is added last onto the stack, represents the top of the stack. Book-1, which is added first onto the stack,
represents the bottom of the stack. Adding an element to a stack is called a push operation and removing an element
from a stack is called a pop operation. Initially, a stack is empty and the first operation is the push operation. When a
stack is being discarded, it must perform an equal number of push and pop operations so it is empty again.

Each thread in Java is allocated a stack to store its temporary data. A thread stores the state of a method
invocation onto its stack. The state of a Java method comprises the parameters’ values, local variables, any
intermediate computed values, and the method’s return value, if any. A Java stack consists of stack frames. Each frame
stores the state of one method invocation. A new frame is pushed onto a thread’s stack for a method invocation. The
frame is popped from a thread’s stack when the method completes.

Suppose a thread starts at the m1() method. The m1() method calls the m2() method, which in turn calls the m3()
method. Figure 9-5 shows the frames on the stack of a thread when methods m1(), m2(), and m3() are called. Note that
the figures shows the frames when the method m3 () is called from the method m2 (), which in turn is called from
the method m1().

Top of stack
Top of stack
Top of stack
Top of stack Frame of m3()
Frame for m2() Frame of m2()
Frame for m1() Frame of m1() Frame of m1()
Initial state m1() invoked m2() invoked m3() invoked
Top of stack
Top of stack
Top of stack
Frame for m2()
Frame for m1() Frame for m1()
m3() finished m2() finished m1() finished

Figure 9-5. State of the stack of a thread when methods m1(), m2(), and m3() are called

You can get some pieces of information about the stack of a thread at a specific point in time. Note that the state
of a thread’s stack is always changing as the program executes. Therefore, you get a snapshot of the stack of a thread as
it existed at the time you requested it. An object of the java.lang.StackTraceElement class represents a stack frame.
You can query four pieces of information about a stack frame: class name, file name, method name, and line number.
To get the stack information, you need to call the getStackTrace() method of a Throwable object. It returns an array
of StackTraceElement objects. The first element of the array represents the top stack frame. The last element of the
array represents the bottom stack frame. When you create an object of the Throwable class (or any exception class in
Java), it captures the stack of the thread that is executing.

370

CHAPTER 9 © EXCEPTION HANDLING

Listing 9-13 demonstrates how to get to the stack frames of a thread. A Throwable object captures the stack of
the thread at the point it is created. If you have a Throwable object and want to capture the snapshot of the stack of a
thread at a different point where the Throwable object was created, you can call the fillInStackTrace() method of
the Throwable class. It captures the current state of stack for the current thread at the point you call this method.

Listing 9-13. A Sample Program That Prints the Details of the Stack Frames of a Thread

// StackFrameTest.java
package com.jdojo.exception;

public class StackFrameTest {
public static void main(String[] args) {

mi();
}

public static void m1i() {
m2();
}

public static void m2() {
m3();
}

public static void m3() {
// Create a Throwable object that will hold the stack state
// at this point for the thread that executes the following statement
Throwable t = new Throwable();

// Get the stack trace elements
StackTraceElement[] frames = t.getStackTrace();

// Print details about the stack frames
printStackDetails(frames);

}

public static void printStackDetails(StackTraceElement[] frames) {
System.out.println("Frame count: " + frames.length);

for (int i = 0; i < frames.length; i++) {
// Get frame details
int frameIndex = i; // i = 0 means top frame
String fileName = frames[i].getFileName();
String className = frames[i].getClassName();
String methodName = frames[i].getMethodName();
int lineNumber = frames[i].getLineNumber();

// Print frame details

System.out.println("Frame Index: " + frameIndex);
System.out.println("File Name: " + fileName);
System.out.println("Class Name: " + className);
System.out.println("Method Name: " + methodName);

371

CHAPTER 9 © EXCEPTION HANDLING

+ lineNumber);

System.out.println("Line Number:
System.out.println("-------------mmmmmme o

Frame count: 4

Frame Index: O

File Name: StackFrameTest.java

Class Name: com.jdojo.exception.StackFrameTest
Method Name: m3

Line Number: 21

Frame Index: 1

File Name: StackFrameTest.java

Class Name: com.jdojo.exception.StackFrameTest
Method Name: m2

Line Number: 14

Frame Index: 2

File Name: StackFrameTest.java

Class Name: com.jdojo.exception.StackFrameTest
Method Name: m1

Line Number: 10

Frame Index: 3

File Name: StackFrameTest.java

Class Name: com.jdojo.exception.StackFrameTest
Method Name: main

Line Number: 6

Now that you have access to the stack frames of a thread, you may want to know what you can do with
this information. The information about a thread’s stack lets you know the location in the program where the
code is executing. Typically, you log this information for debugging purposes. If you compare the output of the
printStackTrace() method with the output of Listing 9-13, you would observe that they are similar, except that they

print the same information in different formats.

The try-with-resources Block

Java 7 added a new construct called try-with-resources. Before Java 7, when you worked with a resource, such
as a file, a SQL statement, etc., you had to use a finally block and write a few lines of boilerplate code to close the
resource. Prior to Java 7, the typical code, to work with a resource, would look as follows:

AnyResource aRes;

try {
aRes = create the resource...;
// Work with the resource here

372

CHAPTER 9 © EXCEPTION HANDLING

finally {
// Let us try to close the resource
try {
if (aRes != null) {
aRes.close(); // Close the resource
}
}

catch(Exception e) {
e.printStackTrace();
}

With the new try-with-resources construct in Java 7, the above code can be written as

try (AnyResource aRes = create the resource...) {
// Work with the resource here. The resource will be closed automatically.
}

Wow! You were able to write the same logic in just three lines of code using a try-with-resource construct
in Java 7, when it used to take sixteen lines of code. The try-with-resources construct automatically closes the
resources when the program exits the construct. A try-with-resource construct may have one or more catch blocks
and/or a finally block.

On the surface, the try-with-resources construct is as simple as it seems in the above example. However, it
comes with some subtleties that I need to discuss in detail.

You can specify multiple resources in a try-with-resources block. Two resources must be separated by a
semicolon. The last resource must not be followed by a semicolon. The following snippet of code shows some usage of
try-with-resources to use one and multiple resources:

try (AnyResource aResl = getResource1()) {
// Use aResl here
}

try (AnyResource aResl = getResourcei();
AnyResource aRes2 = getResource2()) {
// Use aRes1 and aRes2 here

The resources that you specify in a try-with-resources are implicitly final. You can declare the resources
final, even though it is redundant to do so.

try (final AnyResource aResl = getResource1()) {
// Use aResl here
}

Aresource that you specify in a try-with-resources must be of the type java.lang.AutoCloseable. Java 7
added the AutoCloseable interface, which has a close() method. When the program exits the try-with-resources
block, the close() method of all the resources is called automatically. In the case of multiple resources, the close()
method is called in the reverse order in which the resources are specified.

Consider a MyResource class as shown in Listing 9-14. It implements the AutoCloseable interface and provides
implementation for the close() method. If the exceptionOnClose instance variable is set to true, its close() method
throws a RuntimeException. Its use() method throws a RuntimeException if the level is zero or less. Let’s use the
MyResource class to demonstrate various rules in using the try-with-resources block.

373

CHAPTER 9 © EXCEPTION HANDLING

Listing 9-14. An AutoCloseable Resource Class

// MyResource.java
package com.jdojo.exception;

public class MyResource implements AutoCloseable {
private int level;
private boolean exceptionOnClose;

public MyResource(int level, boolean exceptionOnClose) {
this.level = level;
this.exceptionOnClose = exceptionOnClose;
System.out.println("Creating MyResource. Level =

+ level);

}

public void use() {
if (level <= 0) {
throw new RuntimeException("Low in level.");

}
System.out.println("Using MyResource level " + this.level);
level--;

}

@0verride

public void close() {
if (exceptionOnClose) {
throw new RuntimeException("Error in closing");
}

System.out.println("Closing MyResource...");

Listing 9-15 shows a simple case of using a MyResource object in a try-with-resources block. The output
demonstrates that the try-with-resources block automatically calls the close () method of the MyResource object.

Listing 9-15. A Simple Use of MyResource Object in a try-with-resources Block

// SimpleTryWithResource.java
package com.jdojo.exception;

public class SimpleTryWithResource {
public static void main(String[] args) {
// Create and use a resource of MyResource type.
// Its close() method will be called automatically */
try (MyResource mr = new MyResource(2, false)) {
mr.use();
mr.use();

374

CHAPTER 9 © EXCEPTION HANDLING

Creating MyResource. Level = 2
Using MyResource level 2
Using MyResource level 1
Closing MyResource...

When a resource is being closed automatically, an exception may be thrown. Ifa try-with-resources block
completes without throwing an exception and the call to the close() method throws the exception, the runtime
reports the exception thrown from the close() method. If a try-with-resources block throws an exception and the
call to the close() method also throws an exception, the runtime suppresses the exception thrown from the close()
method and reports the exception thrown from the try-with-resources block. The following snippet of code
demonstrates this rule:

// Create a resource of MyResource type with two levels, which can throw exception on closing
// and use it thrice so that its use() method throws an exception
try (MyResource mr = new MyResource (2, true)) {
mr.use();
mr.use();
mr.use(); // Will throw a RuntimeException
}
catch(Exception e) {
System.out.println(e.getMessage());
}

Creating MyResource. Level = 2
Using MyResource level 2

Using MyResource level 1

Low in level.

The third call to the use() method throws an exception. In the above snippet of code, the automatic close()
method call will throw a RuntimeException because you pass true as the second argument when you create the
resource. The output shows that the catch block received the RuntimeException that was thrown from the use()
method, not from the close() method.

You can retrieve the suppressed exceptions by using the getSuppressed() method of the Throwable class. The
method was added in Java 7. It returns an array of Throwable objects. Each object in the array represents a suppressed
exception. The following snippet of code demonstrates the use of the getSuppressed() method to retrieve the
suppressed exceptions:

try (MyResource mr = new MyResource (2, true)) {
mr.use();
mr.use();
mr.use(); // Throws an exception

}

catch(Exception e) {
System.out.println(e.getMessage());

// Display messages of supressed exceptions

System.out.println("Suppressed exception messages are...");

for(Throwable t : e.getSuppressed()) {
System.out.println(t.getMessage());

}

375

CHAPTER 9 © EXCEPTION HANDLING

Creating MyResource. Level = 2
Using MyResource level 2

Using MyResource level 1

Low in level.

Suppressed exception messages are...
Error in closing

A Multi-Catch Block

Java 7 added support for a multi-catch block to handle multiple types of exceptions in a catch block. Suppose you want
to catch three exceptions: Exceptioni, Exception2, and Exception3. Prior to Java 7, your code would look as follows:

try {

}

catch (Exception1 e1){
// Handle Exceptioni
}

catch (Exception2 e2){
// Handle Exception2
}

catch (Exception3 e3){
// Handle Exception3
}

// Code that may throw Exceptioni, Exception2, or Exception3

Prior to Java 7, each exception must be handled in a separate catch block. This sometimes resulted in code
duplication when multiple exceptions were handled in the same way. Sometimes, instead of using a separate catch
block to catch multiple exceptions, a programmer would use one catch block and specify the parameter of a more
generic exception type.

try {

}
catch (Throwable t){

// Handle any exception
}

// Code that may throw Exceptioni, Exception2 or Exception3

Java 7 addresses both issues:

e The deficiency in Java language that did not let a programmer handle multiple exceptions in
one catch block

e Thelaziness of programmers of using a generic exception type to handle multiple exceptions
in a catch block

376

CHAPTER 9 © EXCEPTION HANDLING

Java 7 added support for catching multiple exceptions using a multi-catch block. You can specify multiple
exceptions types in a multi-catch block. Multiple exceptions are separated by a vertical bar (|). In Java 7, the above
code can be written as follows:

try {

}

catch (Exceptioni | Exception2 | Exception3 e) {
// Handle Exceptioni, Exception2, and Exception3
}

// May throw Exceptioni, Exception2, or Exception3

In a multi-catch block, it is not allowed to have alternative exceptions that are related by subclassing. For
example, the following multi-catch block is not allowed, because Exception1 and Exception2 are subclasses of
Throwable:

try {

}

catch (Exception1l | Exception2 | Throwable e) {
// Handle Exceptions here
}

// May throw Exceptioni, Exception2, or Exception3

The above snippet of code will generate the following compiler error:

error: Alternatives in a multi-catch statement
cannot be related by subclassing
catch (Exceptionl | Exception2 | Throwable e) {
A

Alternative Exceptioni is a subclass of alternative Throwable
1 error

Summary

An exception is the occurrence of an abnormal condition in a Java program where a normal path of execution is not
defined. Java lets you separate the code that performs the actions from the code that handles exceptions that may
occur when the actions are performed.

Use a try-catch block to place your action-performing code in the try block and exception-handling code in the
catch block. A try block may also have a finally block, which is typically used to clean up resources used in the try
block. You can have a combination of try-catch, try-catch-finally, or try-finally blocks. Java 7 added supported
for a try-with-resources block that comes in handy to close resources automatically.

There are two types of exceptions: checked exceptions and unchecked exceptions. The compiler makes sure that
all checked exceptions are handled in the program or the program declares them in a throws clause. Handling or
declaring unchecked exceptions is optional.

377

CHAPTER 10

Assertions

In this chapter, you will learn:
¢ What an assertion is in Java
e How to use assertions in Java programs
e How to enable and disable assertions

e How to check the status of an assertion

What Is an Assertion?

The literal meaning of assertion is to state something in a strong, confident, and forceful way. When you assert
“something,” you believe that “something” to be true. Note that asserting “something” does not make that
“something” always true. It simply means that chances are very high (or you are confident) that “something” is true.
Sometimes you may be wrong and that “something” may be false, even if you assert it to be true.

The meaning of an assertion in Java is similar to its literal meaning. It is a statement in a Java program. It lets
programmers assert a condition to be true at a specific point in the program. Consider the following snippet of code,
which has two statements with one comment in between:

int x = 10 + 15;
/* We assert that value of x is 25 at this point */
int z = x + 12;

The first statement uses two hard-coded integer values, 10 and 15, and assigns their sum to the variable x. You
can assert that the value of variable x is 25 after the first statement is executed. Note the use of comments to make the
assertion in the above case. What is the probability that the value of x will be other than 25 in the above code? You may
think that the probability of x having a value other than 25 is zero. It means your assertion will be true all the time. So,
what was the point in adding a comment, which asserts that the value of x is 25, when it is obvious by just looking at
the code? In programming, what seems obvious at one time may not be obvious at other times.

Consider the following snippet of code assuming that a getPrice() method exists:

int quantity = 15;

double unitPrice = getPrice();

/* We assert that unitPrice is greater than 0.0 at this point */
double totalPrice = quantity * unitPrice;

379

CHAPTER 10 © ASSERTIONS

In this code, you have made an assertion that the value of the variable unitPrice will be greater than 0.0 after
the second statement is executed. What is the probability that the value of unitPrice will be greater than 0.0 after
the second statement is executed? It is difficult to answer this question by just looking at the code. However, you
assume, for the above code to work correctly, that your assertion “the value of unitPrice is greater than 0.0” must be
true. Otherwise, your code will indicate a serious bug in the getPrice() method. It may be obvious for a customer
that the price for an item will be always greater than zero. However, it is not so obvious to a programmer, because he
has to depend on the correct implementation of the getPrice() method. If the getPrice() method has a bug, the
programmer’s assertion will be false. If the programmer’s assertion is false, he needs to know about the failure of his
assertion, and he needs to take action to fix the bug. If his assertion was false, he would not want to proceed with
the price computations. He would want to halt the price computation as soon as his assertion fails. You have used
a comment to state your assertion. A comment is not executable code. Even if the value of unitPrice is not greater
than zero, your comment is not going to report this error condition or halt the program. You need to use the assertion
facility in such cases to receive a detailed error message and halt the program.

You can make an assertion in Java using an assert statement. The syntax for an assert statement comes in
two forms:

// Form #1
assert booleanAssertionExpression;

// Form #2
assert booleanAssertionExpression : errorMessageExpression;

An assert statement starts with the assert keyword, which is followed by a boolean assertion expression that is
the condition that a programmer believes to be true. If the assertion expression evaluates to true, no action is taken.
If the assertion expression evaluates to false, the runtime throws a java.lang.AsssertionError.

The second form of the assert statement syntax allows you to specify a custom error message expression
when the assertion error is thrown. The assertion condition and the custom message are separated by a colon. The
errorMessageExpression does not have to be a string. It could an expression that may evaluate to any data type,
except the void data type. The runtime will convert the result of the error message expression to string. You can
rewrite the code shown previously to take advantage of the assert statement, like so:

int x = 10 + 15;
assert x == 25; // Uses the first form of the assert statement
int z = x + 12;

Here you replaced the comment with an assert statement. All you need to specify is the condition you assert
(or believe) to be true. You used the first form of the assert statement. You did not use any custom message when
your assertion fails. When the assertion fails, the Java runtime provides you with all details such as line number,
source code, file name, etc. about the error.

In most cases, the first form of the assert statement is sufficient. If you think some values from the program at
the time of error may help you diagnose the problem better, you should use the second form of the assert statement.
Suppose you want to print the value of x when the assertion fails. You could use the following snippet of code:

int x = 10 + 15;

assert x == 25: "x = " + x; // Uses the second form of the assert statement
int z = x + 12;

If you want just the value of x and nothing else, you can use the following snippet of code:
int x = 10 + 15;
assert x == 25: x; // Uses the second form of the assert statement

int z = x + 12;

380

CHAPTER 10 * ASSERTIONS

Note that the errorMessageExpression in the second form of assert statement could be of any data type
excluding void. The above snippet of code provides x as the value of errorMessageExpression, which evaluates to an
int. The runtime will use the string representation of the value of x when it throws an AssertionError.

At this point, you may be tempted to test the assert statement. Let’s discuss some more details before you
compile and run Java classes with the assert statement. However, you will use Java code with an assert statement, as
shown in Listing 10-1.

Listing 10-1. A Simple Test Class to Test the Assert Statement

// AssertTest.java
package com.jdojo.assertion;

public class AssertTest {
public static void main(String[] args) {

int x = 10 + 15;
assert x == 100:"x =

+ Xx; // should throw an AssertionError

The code for the AssertTest class is simple. It assigns a value of 25 to the variable x and asserts that the value of x
should be 100. When you run the AssertTest class, you expect that it would always throw an AssertionError.

Testing Assertions

It is time to see assert statement in action. Try to run the AssertTest class using the following command:
java com.jdojo.assertion.AssertTest

This command finishes without any output. Did you not expect an error message on the standard output? Is your
assertion X == 100 not false? The value of x is 25, not 100. You need to perform one more step before you can see the
assert statement in action.

Try the following command to run the AssertTest class:

java -ea com.jdojo.assertion.AssertTest
This command generates the following output:

Exception in thread "main" java.lang.AssertionError: x = 25
at com.jdojo.assertion.AssertTest.main(AssertTest.java:7)

An AssertionError was generated with "x = 25" as the error message when you ran the AssertTest class.

This is what happens when an assertion fails in your code. The Java runtime throws an AssertionError. Because you
used the second form of the assert statement in your code, the error message also contains your custom assertion
message, which prints the value of x. Note that the assertion error, by default, contains the line number and the
source code file name where the assertion fails. The above error message states that the assertion failed at line 7 in the
AssertFile.java source file.

So what is the magic behind using the -ea switch with the java command? By default, assert statements are not
executed by the Java runtime. In other words, the assertion is disabled by default. You must enable the assertion when
you run your class, so your assert statements are executed. The -ea switch enables the assertion at runtime. This is
the reason that you received the expected error message when you used the -ea switch to run the AssertTest class.

I will discuss enabling/disabling assertion in detail in the next section.

381

CHAPTER 10 © ASSERTIONS

Enabling/Disabling Assertions

The goal in using assertions is to detect logic errors in programs. Typically, assertions should be enabled in
development and test environments. Assertions help programmers find the location and type of problems in code
quickly. Once an application is tested, it is very unlikely that the assertions will fail. Java designers kept in mind
the performance penalty that you may incur by using assertions in production environment. This is the reason
that assertions are disabled at runtime by default. Although it is not desirable to enable assertions in a production
environment, you have options to do so.

Java provides command-line options (or switches) to enable assertions at runtime at various levels. For example,
you have options to enable assertions in all user-defined classes, all system classes, all classes in a package and its
subpackages, just for one class, etc. Table 10-1 lists all switches that you can use on the command line to enable/
disable assertions at runtime.

Table 10-1. Command-Line Switches to Enable/Disable Assertions at Runtime

Command-Line Switch Description
-enableassertions Used to enable assertions at runtime for system classes as well as user-defined
or classes. You can pass an argument to this switch to control the level at which
ea assertions are enabled.
-disableassertions Used to disable assertions at runtime for system classes as well as user-defined
or classes. You can pass an argument to this switch to control the level at which
da assertions are disabled.
-enablesystemassertions Used to enable assertions in all system classes. You cannot pass any arguments to
or this switch.
-esa
-disablesystemassertions Used to disable assertions in all system classes. You cannot pass any arguments to
or this switch.
-dsa

Two switches, -ea and -da, let you control the enabling and disabling of assertions at various levels. You can pass
an argument to these switches to control the level at which assertions should be enabled or disabled. Note that you
cannot pass any arguments to -esa and -dsa switches. They enable and disable assertions in all system classes. If
you pass an argument to the —ea or -da switch, the switch and the argument must be separated by a colon, as shown
below. Table 10-2 lists the possible arguments that can be used with these switches.

-ea:argument
-da:argument

382

CHAPTER 10 * ASSERTIONS

Table 10-2. List of Arguments That Can Be Passed to -ea and -da Switches

Argument for —ea and —da switches Description

(no argument) Enables or disables assertions in all user-defined classes. Note that to
enable/disable assertions in all system classes you need to use -esa
and -dsa switches with no argument, respectively.

packageName. .. Note the three dots after the packageName. It enables/disables assertions in
the specified packageName and any of its subpackages. It can also be used
to enable/disable assertions in system packages.

This argument value is three dots. It enables/disables assertions in the
unnamed package in the current working directory.

className Enables/disables assertions in the specified className. It can also be used
to enable/disable assertions in system classes.

The following are examples of using assertion switches with different arguments. All examples assume that you
are enabling assertions when you are running the com. jdojo.assertion.AssertTest class. The examples show
you only how to enable assertions. By default, all assertions are disabled.

/* Enable assertions in all system classes */
java -esa com.jdojo.assertion.AssertTest

/* Enable assertions in all user-defined classes */
java -ea com.jdojo.assertion.AssertTest

/* Enable assertions in com.jdojo package and its sub-packages */
java -ea:com.jdojo.. com.jdojo.assertion.AssertTest

/* Enable assertions in the unnamed package in the current directory */
java -ea:.. com.jdojo.assertion.AssertTest

/* Enable assertions in com.jdojo.assertion.AssertTest class */
java -ea:com.jdojo.assertion.AssertTest com.jdojo.assertion.AssertTest

You can use multiple -ea or -da switches in one command to achieve finer granularity in enabling/disabling
assertions. All switches are processed from left to right in the order they are specified.

/* Enable assertions in p1 package and all its sub-packages and disable assertion for pi.p2.MyClass
*/
java -ea:pl... -da:pl.p2.MyClass com.jdojo.assertion.AssertTest

Tip Assertions for a class are enabled or disabled when a class is loaded. The assertion status for a class cannot be
changed after it is set. There is one exception to this rule. If an assert statement is executed before a class has been
initialized, the Java runtime executes it as if assertions are enabled. This situation arises when two classes refer to each
other in their static initializers by calling the constructors or the methods of another class.

383

CHAPTER 10 © ASSERTIONS

Using Assertions

Confusion may arise as to when to use assertions in a program. An assertion is implemented in Java by adding a new
class, java.lang.AssertionError, into the existing exception class hierarchy. Sometimes programmers mistake an
assertion as another exception. This may be true when you just look at the class hierarchy and you may say that it is
just another class in the existing exception class hierarchy. However, the similarity between exceptions and assertions
stops right there in the class hierarchy. The main difference lies in the reason behind their usage. An exception is used
to handle a user’s error and business rules implementation. If it is possible to recover from exceptional conditions,
you want to recover from them and proceed with the application. An assertion is used to detect programming errors
made by programmers. You do not want to recover from a programming error and proceed with the application.
Assertions are used to verify that what a programmer assumes about his program at a specific point in his code is true.
You should never use an assertion to handle a user’s error or to validate data, because assertions are not meant to be
enabled in the production environment.

Assertions should not be used to validate data arguments for public methods. The following snippet of code is
for a credit() method of the BankAccount class, which uses assertion to validate the amount being credited:

// An incorrect implementation

public void credit(double amount) {
assert amount > 0.0 : "Invalid credit amount:
// Other code goes here

+ amount;

The code for the credit() method depends on enabling an assertion to validate the amount of credit to an
account. Most likely, the assertion will be disabled in the production environment, which will allow a credit of even a
negative number. Such validations for a public method’s arguments should be performed using exceptions, as shown:

// A correct implementation
public void credit(double amount) {
if (amount <= 0.0) {
throw new IllegalArgumentException("Invalid credit amount:" + amount);
}

// Other code goes here

You can use assertions to validate a method’s arguments for a non-public method. A non-public method
cannot be called by clients directly. If a method’s parameters for a non-public method are incorrect, it indicates the
programmer’s errors and use of assertions is appropriate.

You should not use an assertion that has side effects, such as an assertion that modifies the state of an object.
Consider the following snippet of code in a method assuming that reComputeState() alters the state of the object of
the class:

assert reComputeState();
When this assert statement is executed, it will alter the state of the object. The subsequent interaction with the

object depends on its altered state. If the assertions are disabled, this code will not execute and the object will not
behave properly.

384

CHAPTER 10 * ASSERTIONS

You can use assertions to implement class invariants. Class invariants are conditions that always hold true about
the values that determine the state of an object of a class. Class invariants may not be true for brief moments when an
object is transitioning from one state to another. Suppose you have a BankAccount class with four instance variables:
name, dob, startDate, and balance. The following class invariants must be true for a BankAccount object:

e The name on the account must not be null.

e The dob on the account must not be null and must not be a date in future.
e The startDate on the account must not be null.

e The startDate on the account must not be before dob.

e Thebalance on the account must be greater than zero.

You can pack all these conditions checks in one method, say validAccount () method.

private boolean validAccount() {
boolean valid = false;

// Check for class invariants here. Return true if it is true. Otherwise, return false.
return valid;

You can use the following assertion in methods and constructors to make sure that the class invariants are
enforced. You assume that the toString() method of the BankAccount class returns enough pieces of information to
help programmers debug the error.

assert validAccount(); this.tostring();

You can use the above assert statement in the beginning of every method and before you return from the
method. You do not need to check for class invariants inside a method if it does not modify the object’s state. You
should use it only at the end in a constructor because class invariants will not hold when the constructor starts
executing.

Checking for Assertion Status

How do you know in your program if assertions are enabled? It is easy to check for the assertion status using an
assert statement. Consider the following snippet of code:

boolean enabled = false;
assert enabled = true;
/* Check the value of enabled here */

This code uses the first form of the assert statement. Note that it uses the assignment operator (=), not the
equality comparison operator (==) in the expression enabled = true. The expression will assign true to the enabled
variable and it will evaluate to true. Note that the enabled variable has been initialized to false. If assertion is
enabled, the enabled variable will have a value of true after the assert statement is executed. If assertion is disabled,
the variable enabled will have a value of false. Therefore, checking for the value of the enabled variable after the
assert statement will give you a clue whether assertions are enabled for your class. Listing 10-2 shows the complete
code for checking if assertions are enabled for the AssertionStatusTest class. Note that assertion can be enabled or
disabled on a class basis, too. If assertions are enabled for a specific class, it does not guarantee that it is also enabled
for all other classes.

385

CHAPTER 10 © ASSERTIONS

Listing 10-2. A Program to Check Whether Assertion is Enabled

// AssertionStatusTest.java
package com.jdojo.assertion;

public class AssertionStatusTest {
public static void main(String[] args) {
boolean enabled = false;
assert enabled = true;
if (enabled) {
System.out.println("Assertion is enabled.");
}

else {
System.out.println("Assertion is disabled.");
}

Summary

Assertions are a feature of the Java language that let you assert in your program for some conditions to hold. The
keyword assert is used to write an assert statement. Assertions are used for detecting logical errors in a program
and they are typically enabled in development and testing environments. Assertions can be enabled and disabled for
packages and classes. They should not be used to validate user’s inputs or business rules. Assertions do not replace
exceptions. Rather they complement each other.

386

CHAPTER 11

Strings

In this chapter, you will learn:
e Whata String object is
e How to create String objects
e Howto use String literals
e How to manipulate Strings
e Howto use Strings in a switch statement

e Howto use StringBuilder and StringBuffer objects to work with mutable strings

What is a String?

A sequence of zero or more characters is known as a string. In Java programs, a string is represented by an object of the
java.lang.String class. The String class is immutable. That is, the contents of a String object cannot be modified
after it has been created. The String class has two companion classes, java.lang.StringBuilder and java.lang.
StringBuffer. The StringBuilder class was introduced in Java 5. The companion classes are mutable. You should use
them when the contents of your string can be modified.

String Literals

A string literal consists of a sequence of zero or more characters enclosed in double quotes. All string literals are
objects of the String class. Examples of string literals are

// An Empty string
"Hello" // A string literal consisting of 5 characters
"Just a string literal" // A string literal consisting of 21 characters

Multiple string literals can be used to compose a single string literal.

// Composed of two string literals "Hello" and "Hi". It represents one string literal "HelloHi"
"Hello" + "Hi"

387

CHAPTER 11 STRINGS

A string literal cannot be broken into two lines.

"He
110" // Cannot continue "He in this line. A compiler error

If you want to break "Hello" in two lines, you must break it using the string concatenation operator (+), as shown:

“He" +
||110||

or

"He"
+ "1lo"

Another example of a multi-line string literal is shown below. The entire text represents a string literal.

"This is a big string literal" +
" and it will continue in several lines." +

It is also valid to insert multiple new lines as we did here. " +

"Adding more than one line in between two string literals " +

"is a feature of Java Language syntax, " +
" not of string literal."

Escape Sequence Characters in String Literals

A string literal is composed of characters. It is valid to use all escape sequence characters to form a string literal. For
example, to include a line feed and a carriage return characters in a string literal you will use \n and \r, as shown:

"\n" // A string literal with a line feed

"\1r" // A string literal with a carriage return

"\n\r" // A string literal with a line feed and a carriage return
"First line.\nSecond line." // An embedded line feed
"Tab\tSeparated\twords" // Embedded tab escape characters

"Double quote \" is here" // An embedded double quote in string literal

Unicode Escapes in String Literals

A character can also be represented as a Unicode escape in the form \uxxxx, where an x is a hexadecimal digit

(0-9 or A-F). In a string literal, the character 'A", the first uppercase English letter, can also be written as '\uoo41', for
example, Apple and \u0041pple are treated the same in Java. Line feed and carriage return escape characters can also
be represented in Unicode escape character as "\uOOOA"' and "\u000D', respectively. You cannot use Unicode escapes
to embed a line feed and a carriage return characters in string literals. In other words, you cannot replace '\n' with
"\u0o00A' and '\r' with '\u000D" in a string literal. Why? The reason is that Unicode escapes are processed in the
very beginning of the compilation process resulting in the conversion of "\u000A"' and "\u000D" into a real line feed,

388

CHAPTER 11 © STRINGS

and a carriage return, respectively. This violates the rule that a string literal cannot be continued in two lines. For
example, in the early stages of compilation "Hel\u000Alo" is translated into the following, which is an invalid string
literal and generates a compiler error:

"Hel
lo"

Tip Itis a compile-time error to use Unicode escapes \u0ooA and \uoooD in a string literal to represent a line feed
and a carriage return, respectively. You must use the escape sequences of \n and \r instead.

What is a CharSequence?

A CharSequence is an interface in the java.lang package. I discuss interfaces in Beginning Java Language Features
(ISBN 978-1-4302-6658-7). For now, you can think of a CharSequence as an object that represents a readable
sequence of characters. String, StringBuffer, and StringBuilder, to name a few, are instances of CharSequence.
They provide read-only methods to read some properties and the content of the sequence of characters represented
by them. In the API documentation for the String class, you will see arguments of many methods declared as
CharSequence. You can always pass a String, a StringBuilder, or a StringBuffer where a CharSequence is required.

Creating String Objects

The String class contains many constructors that can be used to create a String object. The default constructor lets
you create a String object with an empty string as its content. For example, the following statement creates an empty
String object and assigns its reference to the emptyStr variable:

String emptyStr = new String();

The String class contains a constructor, which takes another String object as an argument.

String strl = new String();
String str2 = new String(stri); // Passing a String as an argument

Now stril represents the same sequence of characters as str2. At this point, both str1 and str2 represent an
empty string. You can also pass a string literal to this constructor.

String str3 = new String("");
String str4 = new String("Have fun!");

After these two statements are executed, str3 will refer to a String object, which has an empty string (a sequence
of zero characters) as its content, and str4 will refer to a String object, which has "Have fun!" as its content.

389

CHAPTER 11 STRINGS

Length of a String

The String class contains a length() method that returns the number of characters in the String object. Note that
the length() method returns the number of characters in the string, not the number of bytes used by the string. The
return type of the method length() is int. Listing 11-1 demonstrates how to compute the length of a string. The length
of an empty string is zero.

Listing 11-1. Knowing the Length of a String

// Stringlength.java
package com.jdojo.string;

public class Stringlength {
public static void main (String[] args) {
// Create two string objects
String strl = new String() ;
String str2 = new String("Hello") ;

// Get the length of str1 and str2
int len1 = stri.length();
int len2 = str2.length();

// Display the length of str1l and str2
System.out.println("Length of \"" + str1 + "\" = " + lenl);
System.out.println("Length of \"" + str2 + "\" = " + len2);

Length of "" =0
Length of "Hello" =5

String Literals Are String Objects

All string literals are objects of the String class. The compiler replaces all string literals with a reference to a String
object. Consider the following statement:

String stri = "Hello";

When this statement is compiled, the compiler encounters the string literal "Hello", and it creates a String
object with "Hello" as its content. For all practical purposes, a string literal is the same as a String object. Wherever
you can use the reference of a String object, you can also use a String literal. All methods of the String class can be
used with String literals directly. For example, to compute the length of String literals, you can write

int len1
int len2

"".length(); // len1 is equal to 0
"Hello".length(); // len2 is equal to 5

390

String Objects Are Immutable

String objects are immutable. That is, you cannot modify the content of a String object. This leads to an advantage

that strings can be shared without worrying about them getting modified. For example, if you need two objects of

CHAPTER 11

STRINGS

the String class with the identical content (the same sequence of characters), you can create one String object and
you can use its reference at both places. Sometimes the immutability of strings in Java is misunderstood, typically by
beginners. Consider the following piece of code:

String str;
str
str

new String("Just a string");
new String("Another string");

Here, str is a reference variable that can refer to any String object. In other words, str can be changed and it is
mutable. However, the String object, which str refers to, is always immutable. This scenario is depicted in Figure 11-1

and Figure 11-2.

This is a reference variable and
can be changed.

N/

str

Now, str is referring to a
String object in memory.

L

str

® O

This is a String object, which is
immutable. You cannot change its
content.

| String str; |

str = new String("Just a string");

Figure 11-1. A String reference variable and a String object

Now, str is referring to another
string object in memory

Another string

This is the string object, which is
immutable. You cannot change
its content

str= new String("Another string");

Figure 11-2. Assigning a different String object reference to a String variable

391

CHAPTER 11 STRINGS

If you do not want str to refer to any other String object after it has been initialized, you can declare it final,
like so:

final String str = new String("str cannot refer to other object");
str = new String("Let us try"); // A compile-time error. str is final

Tip Itis the String object in memory that is immutable, not the reference variable of the String type. If you
want a reference variable to refer to the same String object in memory all the time, you must declare the reference
variable final.

Comparing Two Strings

You may want to compare the sequence of characters represented by two String objects. The String class overrides
the equals() method of the Object class and provides its own implementation, which compares two strings for
equality based on their contents. For example, you can compare two strings for equality, as shown:

String strl = new String("Hello");
String str2 = new String("Hi");
String str3 = new String("Hello");

boolean b1, b2;

bl = stri.equals(str2); // false will be assigned to b1
b2 = stri.equals(str3); // true will be assigned to b2

You can also compare string literals with string literals or string objects, as shown:

bl = stri.equals("Hello"); // true will be assigned to b1
b2 = "Hello".equals(stri); // true will be assigned to b2

b1 = "Hello".equals("Hi"); // false will be assigned to b1
Recall that the == operator always compares the references of two objects in memory. For example, str1l == str2
and strl == str3 will return false, because str1, str2 and str3 are references of three different String objects in

memory. Note that the new operator always returns a new object reference.
If you want to compare two strings based on the Unicode values of their characters, you can use the compareTo()
method. Its signature is

public int compareTo(String anotherString)

It returns an integer, which can be 0 (zero), a positive integer, or a negative integer. It compares the Unicode
values of the corresponding characters of two strings. If any two characters differ in their Unicode values, the method
returns the difference between the Unicode values of those two characters. For example, "a" . compareTo("b") will
return -1. The Unicode value is 97 for a and 98 for b. It returns the difference 97 - 98, which is -1. The following are

examples of string comparisons:
"abc".compareTo("abc") will return 0

"abc".compareTo("xyz") will return -23 (value of 'a' - 'x')
"xyz".compareTo("abc") will return 23 (value of 'x' - 'a')

392

CHAPTER 11 © STRINGS

It is very important to note that the compareTo() method compares two strings based on the Unicode values of
their characters. The comparison may not be the same as the dictionary order comparison. This is fine for English
and some other languages in which the Unicode values for characters are in the same order as the dictionary order
of characters. This method should not be used to compare two strings in languages where the dictionary order of
characters may not be the same as their Unicode values. To perform language-based string comparisons, you should
use the compare() method of the java.text.Collator class instead. Please refer the “Locale-Insensitive String
Comparison” section in this chapter to learn how to use java.text.Collator class.

The program shown in Listing 11-2 demonstrates the string comparisons.

Listing 11-2. Comparing Strings

// StringComparison.java
package com.jdojo.string;

public class StringComparison {
public static void main(String[] args) {
String apple = new String("Apple") ;
String orange = new String("Orange") ;

System.out.println(apple.equals(orange));
System.out.println(apple.equals(apple));
System.out.println(apple == apple);
System.out.println(apple == orange);
System.out.println(apple.compareTo(apple));
System.out.println(apple.compareTo(orange));

false
true
true
false

-14

String Pool

Java maintains a pool of all string literals in order to minimize the memory usage and for better performance. It
creates a String object in the string pool for every string literal it finds in a program. When it encounters a string
literal, it looks for a string object in the string pool with the identical content. If it does not find a match in the string
pool, it creates a new String object with that content and adds it to the string pool. Finally, it replaces the string literal
with the reference of the newly created String object in pool. If it finds a match in the string pool, it replaces the string
literal with the reference of the String object found in the pool.

Let’s discuss this scenario with an example.

String strl = new String("Hello");

393

CHAPTER 11 STRINGS

When Java encounters the string literal "Hello" in the program, it tries to find a match in the string pool. If there
is no String object with the content "Hello" in the string pool, a new String object with "Hello" content is created
and added to the string pool. The string literal "Hello" will be replaced by the reference of that new String object in
the string pool. Because you are using the new operator, Java will create another string object on the heap. Therefore,
two String objects will be created in this case. Consider the following code:

String strl = new String("Hello");
String str2 = new String("Hello");

How many String objects will be created by this code? Suppose when the first statement is executed, "Hello"
was not in the string pool. Therefore, the first statement will create two String objects. When the second statement
is executed, the string literal "Hello" will be found in the string pool. This time, "Hello" will be replaced by the
reference of the already existing object in the pool. However, Java will create a new String object because you are
using the new operator in the second statement. The above two statements will create three String objects assuming
that "Hello" was not there in the string pool. If "Hello" was already in the string pool when these statements started
executing, only two String objects will be created.

Consider the following statements:

String strl = new String("Hello");
String str2 = new String("Hello");
String str3 = "Hello";
String str4 = "Hello";

What will be the value returned by str1 == str2? It will be false because the new operator always creates a new
object in memory and returns the reference of that new object.

What will be the value returned by str2 == str3? It will be false again. This needs a little explanation. Note that
the new operator always creates a new object. Therefore, str2 has a reference to a new object in memory. Because
"Hello" has already been encountered while executing the first statement, it exists in the string pool and str3 refers
to the String object with content "Hello" in the string pool. Therefore, str2 and str3 refer to two different objects
and str2 == str3returns false.

What will be the value returned by str3 == str4? It will be true. Note that "Hello" has already been added to
the string pool when the first statement was executed. The third statement will assign a reference of a String object
from the string pool to str3. The fourth statement will assign the same object reference from the string pool to
str4. In other words, both str3 and str4 are referring to the same String object in the string pool. The == operator
compares the two references; therefore, str3 == str4returns true.

Consider another example.

String s1 = "Have" + "Fun";
String s2 = "HaveFun";
Will s1 == s2return true? Yes, it will return true. When a String object is created in a compile-time constant

expression, it is also added to the string pool. Since "Have" + "Fun" is a compile-time constant expression, the
resulting string, "HaveFun", will be added to the string pool. Therefore, s1 and s2 will refer to the same object in the
string pool.

All compile-time constant string literals are added to the string pool. Consider the following examples to clarify
this rule:

final String constStr = "Constant"; // constStr is a constant
String varStr = "Variable"; // varStr is not a constant

// "Constant is pooled" will be added to the string pool
String s1 = constStr + " is pooled";

394

CHAPTER 11 © STRINGS

// Concatenated string will not be added to the string pool
String s2 = varStr + " is not pooled";

After executing the above snippet of code, "Constant is pooled" == siwill return true, whereas
"Variable is not pooled" == s2 will return false.

Tip All string literals and string literals resulting from compile-time constant expressions are added to the string pool.

You can add a String object to the string pool using its intern() method. The intern() method returns the
reference of the object from string pool if it finds a match. Otherwise, it adds a new String object to the string pool
and returns the reference of the new object. For example, in the previous snippet of code, s2 refers to a String object,
which has the content "Variable is not pooled". You can add this String object to the string pool by writing

// Will add the content of s2 to the string pool and return the reference
// of the string object from the pool
s2 = s2.intern();

Now "Variable is not pooled" == s2 will return true because you have already called the intern() method
on s2 and its content has been pooled.

Tip The String class maintains a pool of strings internally. All string literals are added to the pool automatically. You
can add your own strings to the pool by invoking the intern() method on the String objects. You cannot access the pool
directly. There is no way to remove string objects from the pool, except exiting and restarting the app.

String Operations

This section describes some of the frequently used operations on String objects.

Getting the Character at an Index

You can use the charAt() method to get a character at a particular index from a String object. The index starts at zero
as depicted in Table 11-1.

Table 11-1. Index of a Character in a String Object

Index -> 0 1 2 3
Character -> H E L L 0

395

CHAPTER 11 STRINGS

Note that the index of the first character H is 0 (zero), the second character E is 1, and so on. The index of the last
character O is 4, which is equal to the length of the string "Hello" minus 1.
The following snippet of code will print the index value and the character at each index in a string of "HELLO":

String str = "HELLO";

// Get the length of string
int len = str.length();

// Loop through all characters and print their indexes
for (int i = 0; i < len; i++) {
System.out.println(str.charAt(i) + " has index

+ 1);

H has index
E has index
L has index
L has index
0 has index

Hw NN R O

Testing Strings for Equality

If you want to compare two strings for equality ignoring their cases, you can use the equalsIgnoreCase() method.
If you want to perform a case-sensitive comparison for equality, you need to use the equals() method instead as
previously described.

String stri = "Hello";
String str2 = "HELLO";

if (stri.equalsIgnoreCase(str2)) {
System.out.println ("Ignoring case strl and str2 are equal");
}

else {

}

if (stri.equals(str2)) {
System.out.println("strl and str2 are equal");
}

else {

}

System.out.println("Ignoring case stri and str2 are not equal");

System.out.println("str1 and str2 are not equal");

Ignoring case strl and str2 are equal
strl and str2 are not equal

396

CHAPTER 11 © STRINGS

Testing a String to be Empty

Sometimes you need to test whether a String object is empty. The length of an empty string is zero. There are three
ways to check for an empty string:

e Usethe isEmpty() method.
e Use the equals() method.
¢ Getthelength of the String and check ifit is zero.

The following snippet of code shows how to use the three methods:

String stri = "Hello";

String str2 = "";

// Using the isEmpty() method
boolean emptyl = stri.isEmpty(); // Assigns false to empty1
boolean empty2 = str2.isEmpty(); // Assigns true to emptyl

// Using the equals() method

boolean empty3 = "".equals(str1); // Assigns false to empty3

boolean empty4 = "".equals(str2); // Assigns true to empty4

// Comparing length of the string with 0
boolean empty5 = stri.length() == 0; // Assigns false to emptys
boolean empty6 = str2.length() == 0; // Assigns true to empty6

Which of the above methods is the best? The first method may seem more readable as the method name suggests
what is intended. However, the second method is preferred as it handles the comparison with null gracefully. The
first and third methods throw a NullPointerException if the string is null. The second method returns false when
the string is null, for example, "".equals(null) returns false.

Changing the Case

To convert the content of a string to lower and upper case, you can use the toLowerCase() and the toUpperCase()
methods, respectively. For example, "Hello" . toUpperCase() will return the string "HELLO", whereas
"Hello".toLowerCase() will return the string "hello".

Recall that String objects are immutable. When you use the toLowerCase() or toUpperCase() method on a
String object, the content of the original object is not modified. Rather, Java creates a new String object with the
identical content as the original String object with the cases of the original characters changed. The following snippet
of code creates three String objects:

String stri = new String("Hello"); // stri contains "Hello"
String str2 = stri.toUpperCase(); // str2 contains "HELLO"
String str3 = stri.tolLowerCase(); // str3 contains "hello"

397

CHAPTER 11 STRINGS

Searching for a String

You can get the index of a character or a string within another string using the index0f () and lastIndex0f()
methods. For example,

String str = new String("Apple");

int index;
index = str.indexOf('p'); // index will have a value of
index = str.index0f("pl"); // index will have a value of
index = str.lastIndexOf('p'); // index will have a value of
a
a

N NN

index = str.lastIndexOf("pl"); // index will have a value of
index = str.index0f("k"); // index will have a value of -1

The index0f () method starts searching for the character or the string from the start of the string and returns the
index of the first match. The lastIndex0f() method matches the character or the string from the end and returns
the index of the first match. If the character or string is not found in the string, these methods return -1.

Representing Values as Strings

The String class has an overloaded valueOf() static method. It can be used to get the string representation of the
values of any primitive data type or any object. For example,

String s1 = String.valueOf('C'); // s1 has "C"
String s2 = String.valueOf("10"); // s2 has "10"

String s3 = String.valueOf(true); // s3 has "true"
String s4 = String.valueOf(1969); // s4 has "1969"
Getting a Substring

You can use the substring() method to get a sub-part of a string. This method is overloaded. One version takes the
start index as the parameter and returns a substring beginning at the start index to the end of string. Another version
takes the start index and the end index as parameters. It returns the substring beginning at the start index and one less
than the end index. For example,

String s1 = "Hello".substring(1); // s1 has "ello"
String s2 = "Hello".substring(1, 4); // s2 has "ell"

Trimming a String

You can use the trim() method to remove all leading and trailing whitespaces and control characters from a string.
In fact, the trim() method removes all leading and trailing characters from the string, which have Unicode value less
than \u0020 (decimal 32). For example,

e " hello ".trim() will return "hello"
e "hello ".trim() will return "hello"

e "\n A\r \t hello\n\n\n\r\r" will return "hello"

398

CHAPTER 11 © STRINGS

Note that the trim() method removes only leading and trailing whitespaces. It does not remove any whitespace
or control characters if they appear in the middle of the string. For example,

e " he\nllo ".trim() will return "he\nllo" because \n is inside the string.

e "h ello".trim() will return "h ello" because the space is inside the string.

Replacing Part of a String

The replace() method takes an old character and a new character as arguments. It returns a new String object by
replacing all occurrences of the old character by the new character. For example,

String oldStr = new String("tooth");

// o in oldStr will be replaced by e. newStr will contain "teeth"
String newStr = oldStr.replace('o', 'e');

Matching Start and End of a String

The startsWith() checks if the string starts with the specified argument, whereas endsWith() checks if the string
ends with the specified string argument. Both methods return a boolean value.

String str = "This is a Java program”;

// Test str, if it starts with "This"

if (str.startsWith("This")){
System.out.println("String starts with This");

}

else {

}

System.out.println("String does not start with This");

// Test str, if it ends with "program”

if (str.endsWith("program")) {
System.out.println("String ends with program");

}

else {

}

System.out.println("String does not end with program");

String starts with This
String ends with program

399

CHAPTER 11 STRINGS

Splitting and Joining Strings

It is often useful to split a string around a specified delimiter and join multiple strings into one string using a specified
delimiter.
Use the split() method to split a string into multiple strings. Splitting is performed using a delimiter.
The split() method returns an array of String. You will learn about arrays in Chapter 15. However, you will use
itin this section just to complete the operations of strings.

Note The split() method takes a regular expression that defines a pattern as a delimiter. | will discuss regular
expressions in Chapter 14.

String str = "AL,FL,NY,CA,GA";

// Split str using a comma as the delimiter

String[] parts = str.split(",");

// Print the the string and its parts
System.out.println(str);

for(String part : parts) {
System.out.println(part);
}

AL, FL,NY,CA,GA
AL
FL
NY
CA
GA

Java 8 adds a static join() method to the String class that joins multiple strings into one string. It is
overloaded.

e String join(CharSequence delimiter, CharSequence... elements)

e String join(CharSequence delimiter, Iterable<? extends CharSequence> elements)

The first version takes a delimiter and a sequence of strings to be joined. The second version takes a delimiter
and an Iterable, for example, a List or Set. The following snippet of code uses the first version to join some strings:

// Join some strings using a comma as the delimiter
String str = String.join(",", "AL", "FL", "NY", "CA", "GA");
System.out.println(str);

AL, FL,NY,CA,GA

400

CHAPTER 11 © STRINGS

Strings in a switch Statement

I discussed the switch statement in Chapter 5. Java 7 added support for strings in a switch statement. The
switch-expression uses a String type. If the switch-expression is null, a NullPointerException is thrown. The case
labels must be String literals. You cannot use String variables in the case labels. The following is an example of using
a Stringin a switch statement, which will print "Turn on" on the standard output:

String status = "on";

switch(status) {

case "on":
System.out.println("Turn on"); // Will execute this
break;
case "off":
System.out.println("Turn off");
break;
default:

System.out.println("Unknown command");
break;

The switch statement for strings compares the switch-expression with case labels as if the equals() method
of the String class has been invoked. In the above example, status.equals("on") will be invoked to test if the first
case block should be executed. Note that the equals () method of the String class performs a case-sensitive string
comparison. It means that the switch statement that uses strings is case-sensitive.

The following switch statement will print "Unknown command" on the standard output, because the
switch-expression "ON" in uppercase will not match the first case label "on" in lowercase.

String status = "ON";
switch(status) {

case "on":
System.out.println("Turn on");
break;

case "off":
System.out.println("Turn off");
break;

default:

System.out.println("Unknown command"); // Will execute this
break;

As good programming practice, you need to do the following two things before executing a switch statement
with strings:

e Checkif the switch-expression for the switch statement is null. If it is null, do not execute
the switch statement.

e Ifyou want to perform a case-insensitive comparison in a switch statement, you need to
convert the switch-expression to lowercase or uppercase and use lowercase or uppercase in
the case labels accordingly.

You can rewrite the above switch statement example as shown in Listing 11-3, which takes care of the above
two suggestions.

401

CHAPTER 11 STRINGS

Listing 11-3. Using Strings in a switch Statement

// StringInSwitch.java
package com.jdojo.string;

public class StringInSwitch {
public static void main(String[] args) {

operate("on");
operate("off");
operate("ON");
operate("Nothing");
operate("OFF");
operate(null);

}

public static void operate(String status) {
// Check for null
if (status == null) {
System.out.println("status cannot be null.");
return;

}

// Convert to lowercase
status = status.tolLowerCase();

switch (status) {

case "on":
System.out.println("Turn on");
break;
case "off":
System.out.println("Turn off");
break;
default:
System.out.println("Unknown command");
break;
}
}
}
Turn on
Turn off
Turn on
Unknown command
Turn off

status cannot be null.

402

CHAPTER 11 © STRINGS

Testing a String for Palindrome

If you are an experienced programmer, you may skip this section. This is meant to serve as a simple exercise for beginners.

A palindrome is a word, a verse, a sentence, or a number that reads the same in forward and backward directions.
For example, “Able was I ere I saw Elba” and 1991 are examples of palindromes. Let’s write a method that will accept a
string as an argument and test if that string is a palindrome. The method will return true if the string is a palindrome.
Otherwise, it will return false. You will use some methods of the String class that you learned in the previous
sections. The following is the description of the steps to be performed inside the method

Assume that the number of characters in the input string is n. You need to compare the character at indexes 0 and
(n-1), 1 and (n -2), 2 and (n - 3), and so on. Note that if you continue the comparison, in the end, you will compare
the character at the index (n-1) with the character at index 0, which you have already compared in the beginning.

You need to compare the characters only halfway through. If all comparisons for equality returns true, the string is a
palindrome.

The number of characters in a string may be odd or even. Comparing characters only halfway works in both
cases. The middle of a string varies depending on whether the length of the string is odd or even. For example, the
middle of the string "FIRST" is the character R. What is the middle character in the string "SECOND"? You can say
there is no middle character in it as its length is even. For this purpose, it is interesting to note that if the number of
characters in the string is odd, you do not need to compare the middle character with any other character.

You need to continue the character comparison up to the half of the string length if the number of characters
in the string is even, and up to half of the string length minus one if the number of characters is odd. You can get the
numbers of comparisons to be done in both the cases by dividing the length of the string by 2. Note that the length of a
string is an integer and if you divide an integer by 2, the integer division will discard the fraction part, if any, which will
take care of cases with an odd number of characters. Listing 11-4 has the complete code.

Listing 11-4. Testing a String for a Palindrome

// Palindrome.java
package com.jdojo.string;

public class Palindrome {
public static void main(String[] args) {
String str1 = "hello";
boolean b1 = Palindrome.isPalindrome(str1);
System.out.println(strl + " is a palindrome: " + bl);

String str2 = "noon";
boolean b2 = Palindrome.isPalindrome(str2);
System.out.println(str2 + " is a palindrome: " + b2);

}

public static boolean isPalindrome(String inputString) {
// Check for null argument.
if (inputString == null) {
throw new IllegalArgumentException("String cannot be null.");
}

// Get the length of string
int len = inputString.length();

// In case of an empty string and one character strings,
// we do not need to do any comparisions.

// They are always palindromes.

403

CHAPTER 11 STRINGS

if (len <= 1) {
return true;
}

// Convert the string into uppercase,
// so we can make the comparisons case insensitive
String newStr = inputString.toUpperCase();

// Initialize the result variable to true
boolean result = true;

// Get the number of comparisons to be done
int counter = len / 2;

// Do the comparison
for (int i = 0; i < counter; i++) {
if (newStr.charAt(i)!= newStr.charAt(len - 1 - i)) {
// It is not a palindrome
result = false;

// Exit the loop
break;

}

return result;

hello is a palindrome: false
noon is a palindrome: true

StringBuilder and StringBuffer

StringBuilder and StringBuffer are companion classes for the String class. Unlike a String, they represent a
mutable sequence of characters. That is, you can change the content of StringBuilder and StringBuffer without
creating a new object. You might wonder why two classes exist to represent the same thing—a mutable sequence of
characters. The StringBuffer class has been part of the Java library since the beginning whereas the StringBuilder
class was added in Java 5. The difference between the two lies in thread safety. StringBuffer is thread-safe and
StringBuilder is not thread-safe. Most of the time, you do not need thread safety and using StringBuffer in those
cases has a performance penalty. This is the reason that StringBuilder was added later. Both classes have the same
methods, except that all methods in StringBuffer are synchronized. I will discuss only StringBuilder in this section.
Using StringBuffer in your code would be just a matter of changing the class name.

Tip Use StringBuilder when no thread safety is needed, for example, manipulating a sequence of characters in a
local variable in a method or constructor. Otherwise, use StringBuffer. Thread safety and synchronization are described
in Chapter 8 in Beginning Java Language Features (ISBN 978-1-4302-6658-7).

404

CHAPTER 11 © STRINGS

You can use objects of the StringBuilder class, instead of the String class, in situations where content of a string
changes frequently. Recall that because of the immutability of the String class, string manipulations using a String
object result in many new String objects, which in turn degrade the performance. A StringBuilder object can be
thought of as a modifiable string. It has many methods to modify its contents.

The StringBuilder class contains four constructors:

e StringBuilder()

e StringBuilder(CharSequence seq)
e StringBuilder(int capacity)

e StringBuilder(String str)

The no-args constructor creates an empty StringBuilder with a default capacity of 16.

The second constructor takes a CharSequence object as an argument. It creates a StringBuilder object, whose
content is the same as the specified CharSequence.

The third constructor takes an int as argument; it creates an empty StringBuilder object whose initial capacity
is the same as the specified argument. The capacity of a StringBuilder is the number of characters it can hold
without allocating more space. The capacity gets adjusted automatically when additional space is needed.

The fourth constructor takes a String and creates a StringBuilder that has the same content as the specified
String. The following are some examples of creating StringBuilder objects:

// Create an empty StringBuilder with a default initial capacity of 16 characters
StringBuilder sbl = new StringBuilder();

// Create a StringBuilder from of a string
StringBuilder sb2 = new StringBuilder("Here is the content");

// Create an empty StringBuilder with 200 characters as the initial capacity
StringBuilder sb3 = new StringBuilder(200);

The append() method lets you add text to the end of the StringBuilder. It is overloaded. It takes many types
of arguments. Please refer to the API documentation for the class for the complete list of all overloaded append ()
methods. It has other methods, for example, insert() and delete(), that let you modify its content, too.

The StringBuilder class has two properties: length and capacity. At a given point in time, their values may
not be the same. Its length refers to the length of its content whereas its capacity refers to the maximum number of
characters it can hold without going for new memory to be allocated. Its length can be, at most, equal to its capacity.
The length() and capacity() methods return its length and capacity, respectively. For example,

StringBuilder sb = new StringBuilder(200); // Capacity:200, length:0

sb.append("Hello"); // Capacity:200, length:5
int len = sb.length(); // len is assigned 5
int capacity = sb.capacity(); // capacity is assigned 200

Capacity of a StringBuilder is controlled by the runtime, whereas its length is controlled by the content you
place in it. The runtime adjusts the capacity as its content is modified.
You can get the content of a StringBuilder as a String by using its toString() method.

// Create a String object
String s1 = new String("Hello");

// Create a StringBuilder from of the String object s1
StringBuilder sb = new StringBuilder(si);

405

CHAPTER 11 STRINGS

// Append " Java" to the StringBuilder's content
sb.append(" Java"); // Now, sb contains "Hello Java"

// Get a String from the StringBuilder
String s2 = sb.toString(); // s2 contains "Hello Java"

Unlike String, StringBuilder has a setLength() method, which takes its new length as an argument. If the new
length is greater than the old length, the extra positions are filled with null characters (a null character is \u0000).
If the new length is less than the old length, its content is truncated to fit in the new length.

// Length is 5
StringBuilder sb = new StringBuilder(“"Hello");

// Now the length is 7 with last two characters as null character '\u0000'
sb.setLength(7);

// Now the length is 2 and the content is "He"
sb.setLength(2);

The StringBuilder class has a reverse() method, which replaces its contents with the same sequence
of characters, but in reverse order.
Listing 11-5 illustrates the use of some of the methods of the StringBuilder class.

Listing 11-5. Using a StringBuilder Object

// StringBuilderTest.java
package com.jdojo.string;

public class StringBuilderTest {
public static void main(String[] args) {
// Create an empty StringNuffer
StringBuilder sb = new StringBuilder();
printDetails(sb);

// Append "blessings"
sb.append("blessings");
printDetails(sb);

// Insert "Good " in the beginning
sb.insert(o, "Good ");
printDetails(sb);

// Delete the first o
sb.deleteCharAt(1);
printDetails(sb);

// Append " be with you"
sb.append(" be with you");
printDetails(sb);

// Set the length to 3

sb.setlength(3);
printDetails(sb);

406

}

// Reverse the content
sb.reverse();
printDetails(sb);

public static void printDetails(StringBuilder sb) {

Content: ""
Length: 0
Capacity: 16

System.out.println("Content: \"" + sb + "\"");
System.out.println("Length: " + sb.length());
System.out.println("Capacity: " + sb.capacity());

// Print an empty line to separate results
System.out.println();

Content: "blessings"

Length: 9
Capacity: 16

Content: "Good blessings"

Length: 14
Capacity: 16

Content: "God blessings"

Length: 13
Capacity: 16

Content: "God blessings be with you"

Length: 25
Capacity: 34

Content: "God"
Length: 3
Capacity: 34

Content: "doG"
Length: 3
Capacity: 34

CHAPTER 11

STRINGS

407

CHAPTER 11 STRINGS

String Concatenation Operator (+)

You will often use the + operator to concatenate a strings, and a primitive type value or an object to another string.
For example,

String str = "X" + "Y" + 12.56;

If concatenation were performed by creating intermediate string objects, the concatenation operation would
create a big overhead. To optimize the string concatenation operation, the compiler replaces the string concatenation
by a statement, which uses a StringBuilder. Because a StringBuilder object is modifiable, only one StringBuilder
object needs to be created. The compiler replaces the above statement with the following one:

String str = new StringBuilder().append("X").append("Y").append(12.56).toString();

Note the use of the toString() method at the end of this statement. It is used to convert the final content of a
StringBuilder to a String. Itis also important to note that such cascaded method calls are possible because the
append() method of StringBuilder returns a reference to itself.

Language-Sensitive String Comparison

The String class compares strings based on the Unicode values of their characters. Sometimes you may want to
compare strings based on the dictionary order instead.

Use the compare() method of the java.text.Collator class to perform language-sensitive (dictionary order)
string comparisons. The method takes two strings to be compared as arguments. It returns 0 if two strings are the
same, 1 if the first string comes after the second, and -1 if the first string comes before the second. Listing 11-6
illustrates the use of the Collator class.

Listing 11-6. Language-Sensitive String Comparisons

// CollatorStringComparison.java
package com.jdojo.string;

import java.text.Collator;
import java.util.locale;

public class CollatorStringComparison {
public static void main(String[] args) {
// Create a Locale object for US
Locale USLocale = new Locale("en", "US");

// Get collator instance for US

Collator ¢ = Collator.getInstance(USLocale);
String str1 = "cat";

String str2 = "Dog";

int diff = c.compare(stri, str2);

System.out.print("Comparing using Collator class: ");
print(diff, stri, str2);

408

CHAPTER 11 © STRINGS

System.out.print("Comparing using String class: ");
diff = stri.compareTo(str2);
print(diff, stri, str2);

}

public static void print(int diff, String stri, String str2) {
if (diff > 0) {
System.out.println(str1 +

comes after " + str2);

}
else if (diff < 0) {
System.out.println(strl + " comes before " + str2);
}
else {
System.out.println(strl + " and " + str2 + " are the same.");
}

Comparing using Collator class: cat comes before Dog
Comparing using String class: cat comes after Dog

The program also shows the comparison of the same two strings using the String class. Note that the word "cat"
comes before the word "Dog" in the dictionary order. The Collator class uses their dictionary orders to compare
them. However, the String class compares the Unicode value of the first character of "cat", which is 99, and the
first character of "Dog", which is 68. Based on these two values, the String class determines that "Dog" comes before
"cat". The output confirms the two different ways of comparing strings.

Summary

In this chapter, you learned about String, StringBuilder, and StringBuffer classes. A String represents an
immutable sequence of characters whereas a StringBuilder and StringBuffer represent a mutable sequence of
characters. StringBuilder and StringBuffer work the same way, except the latter is thread-safe and the former is not.

The String class provides several methods to operate on its content. Whenever you obtain a part of the content
from a String, a new String object is created. The String class compares two strings based on the Unicode values of
their characters. Use java.text.Collator class to compare strings in dictionary order. From Java 7 and on, you can
use strings in a swit