
Sharan

US $ 49.99

Shelve in
Programming Languages /Java

User level:
Beginning–Intermediate

www.apress.com

SOURCE CODE ONLINE

RELATED

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Beginning Java 8
Language Features
Beginning Java 8 Language Features covers essential and advanced features of the
Java programming language such as the new lambda expressions (closures), inner
classes, threads, I/O, Collections, garbage collection, streams, and more. In this
second in his series of Java books, author Kishori Sharan provides over 60 diagrams
and 290 complete programs to help you visualize and better understand the topics
covered in this book.

The book starts with a series of chapters on the essential language features
provided by Java, including annotations, inner classes, reflection, and generics.
These topics are then complemented by details of how to use lambda expressions,
allowing you to build powerful and efficient Java programs. The chapter on threads
follows this up and discusses everything from the very basic concepts of a thread
to the most advanced topics such as synchronizers, the fork/join framework, and
atomic variables.

This book contains unmatched coverage of Java I/O, including NIO 2.0, the Path
API, the FileVisitor API, the watch service and asynchronous file I/O. With this
in-depth knowledge, your data- and file-management programs will be able to take
advantage of every feature of Java’s powerful I/O framework.

Finally, you’ll learn how to use the Stream API, a new, exciting addition to Java 8, to
perform aggregate operations on collections of data elements using functional-style
programming. You’ll examine the details of stream processing such as creating streams
from different data sources, learning the difference between sequential and parallel
streams, applying the filter-map-reduce pattern, and dealing with optional values.

9 781430 266587

54999
ISBN 978-1-4302-6658-7

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Author ��� xxi

About the Technical Reviewers ��� xxiii

Acknowledgments �� xxv

Foreword �� xxvii

Introduction ��� xxix

Chapter 1: Annotations ■ ��1

Chapter 2: Inner Classes ■ ���41

Chapter 3: Reflection ■ ���75

Chapter 4: Generics ■ ���103

Chapter 5: Lambda Expressions ■ ��123

Chapter 6: Threads ■ ��173

Chapter 7: Input/Output ■ ���281

Chapter 8: Working with Archive Files ■ ��359

Chapter 9: New Input/Output ■ ���389

Chapter 10: New Input/Output 2 ■ ��423

Chapter 11: Garbage Collection ■ ���485

Chapter 12: Collections ■ ���519

Chapter 13: Streams ■ ��597

Index ���659

xxix

Introduction

How This Book Came About
My first encounter with the Java programming language was during a one-week Java training session in 1997. I did
not get a chance to use Java in a project until 1999. I read two Java books and took a Java 2 Programmer certification
examination. I did very well on the test, scoring 95 percent. The three questions that I missed on the test made me
realize that the books I read did not adequately cover all of the details on all of the necessary Java topics. I made up
my mind to write a book on the Java programming language. So, I formulated a plan to cover most of the topics that
a Java developer needs understand to use the Java programming language effectively in a project, as well as to get a
certification. I initially planned to cover all essential topics in Java in 700 to 800 pages.

As I progressed, I realized that a book covering most of the Java topics in detail could not be written in 700 to 800
hundred pages. One chapter that covered data types, operators, and statements spanned 90 pages. I was then faced
with the question, “Should I shorten the content of the book or include all the details that I think a Java developer
needs?” I opted for including all the details in the book, rather than shortening the content to keep the number of
pages low. It has never been my intent to make lots of money from this book. I was never in a hurry to finish this book
because that rush could have compromised the quality and the coverage of its contents. In short, I wrote this book
to help the Java community understand and use the Java programming language effectively, without having to read
many books on the same subject. I wrote this book with the plan that it would be a comprehensive one-stop reference
for everyone who wants to learn and grasp the intricacies of the Java programming language.

One of my high school teachers used to tell us that if one wanted to understand a building, one must first
understand the bricks, steel, and mortar that make up the building. The same logic applies to most of the things that
we want to understand in our lives. It certainly applies to an understanding of the Java programming language. If you
want to master the Java programming language, you must start by understanding its basic building blocks. I have used
this approach throughout this book, endeavoring to build each topic by describing the basics first. In the book, you
will rarely find a topic described without first learning its background. Wherever possible, I have tried to correlate the
programming practices with activities in our daily life. Most books about the Java programming language either do not
include any pictures at all or have only a few. I believe in the adage, “A picture is worth a thousand words.” To a reader,
a picture makes a topic easier to understand and remember. I have included plenty of illustrations in this book to aid
readers in understanding and visualizing the contents. Developers who have little or no programming experience can
have difficulty putting things together to make a complete program. Keeping them in mind, the book contains over
290 complete Java programs that are ready to be compiled and run.

I spent countless hours doing research for writing this book. My main sources of research were the Java Language
Specification, white papers and articles on Java topics, and Java Specification Requests (JSRs). I also spent quite a bit
of time reading the Java source code to learn more about some of the Java topics. Sometimes it took a few months to
research a topic before I could write the first sentence on it. It was always fun to play with Java programs, sometimes
for hours, to add them to the book.

■ IntroduCtIon

xxx

Structure of the Book
This is the second book in the three-book Beginning Java series. This book contains 13 chapters. The chapters contain
language-level topics of Java such as annotations, generics, lambda expressions, threads, I/O, collections, streams, etc.
Chapters introduce Java topics in an increasing order of complexity. The new features of Java 8 are included wherever
they fit in the chapter. The lambda expressions and Streams API, which were added in Java 8, are covered in depth.

After finishing this book, take your Java knowledge to the next level by learning the Java APIs, extensions, and
libraries; all of this is covered in the last book in this series, Beginning Java 8 APIs, Extensions, and Libraries
(ISBN 978-1-4302-6661-7).

Audience
This book is designed to be useful for anyone who wants to learn the Java programming language. If you are a
beginner, with little or no programming background in Java, you are advised to read the companion book Beginning
Java 8 Fundamentals before reading this book. This book contains topics of various degrees of complexity. As a
beginner, if you find yourself overwhelmed while reading a section in a chapter, you can skip to the next section or the
next chapter, and revisit it later when you gain more experience.

If you are a Java developer with an intermediate or advanced level of experience, you can jump to a chapter or to
a section in a chapter directly. If a section uses an unfamiliar topic, you need to visit that topic before continuing the
current one.

If you are reading this book to get a certification in the Java programming language, you need to read almost all of
the chapters, paying attention to all of the detailed descriptions and rules. Most of the certification programs test your
fundamental knowledge of the language, not the advanced knowledge. You need to read only those topics that are
part of your certification test. Compiling and running over 290 complete Java programs will help you prepare for your
certification.

If you are a student who is attending a class in the Java programming language, you should read the chapters
of this book selectively. Some topics such as lambda expressions, collections, and streams are used extensively in
developing Java applications, whereas some topics such as threads and archive files are infrequently used. You need
to read only those chapters that are covered in your class syllabus. I am sure that you, as a Java student, do not need to
read the entire book page by page.

How to Use This Book
This book is the beginning, not the end, of gaining the knowledge of the Java programming language. If you are reading
this book, it means you are heading in the right direction to learn the Java programming language, which will enable
you to excel in your academic and professional career. However, there is always a higher goal for you to achieve and you
must constantly work hard to achieve it. The following quotations from some great thinkers may help you understand
the importance of working hard and constantly looking for knowledge with both your eyes and mind open.

The learning and knowledge that we have, is, at the most, but little compared with that of which
we are ignorant.

—Plato

True knowledge exists in knowing that you know nothing. And in knowing that you know nothing,
that makes you the smartest of all.

—Socrates

■ IntroduCtIon

xxxi

Readers are advised to use the API documentation for the Java programming language as much as possible while
using this book. The Java API documentation is where you will find a complete list of everything available in the Java
class library. You can download (or view) the Java API documentation from the official web site of Oracle Corporation
at www.oracle.com. While you read this book, you need to practice writing Java programs yourself. You can also
practice by tweaking the programs provided in the book. It does not help much in your learning process if you just
read this book and do not practice by writing your own programs. Remember that “practice makes perfect,” which is
also true in learning how to program in Java.

Source Code and Errata
Source code and errata for this book may be downloaded from www.apress.com/source-code.

Questions and Comments
Please direct all your questions and comments for the author to ksharan@jdojo.com.

www.oracle.com
http://www.apress.com/source-code
http://ksharan@jdojo.com

1

Chapter 1

Annotations

In this chapter, you will learn

What annotations are•	

How to declare annotations•	

How to use annotations•	

What meta-annotations are and how to use them•	

Commonly used annotations•	

How to access annotations at runtime•	

How to process annotations in source code•	

What Are Annotations?
Annotations were introduced in Java 5. Before I define annotations and discuss their importance in programming,
let’s discuss a simple example. Suppose you have an Employee class, which has a method called setSalary() that sets
the salary of an employee. The method accepts a parameter of the type double. The following snippet of code shows a
trivial implementation for the Employee class:

public class Employee {
 public void setSalary(double salary) {
 System.out.println("Employee.setSalary():" + salary);
 }
}

A Manager class inherits from the Employee class. You want to set the salary for managers differently. You decide
to override the setSalary() method in the Manager class. The code for the Manager class is as follows:

public class Manager extends Employee {
 // Override setSalary() in the Employee class
 public void setSalary(int salary) {
 System.out.println("Manager.setSalary():" + salary);
 }
}

Chapter 1 ■ annotations

2

Note that there is a mistake in the above code for the Manager class, when you attempt to override the setSalary()
method. (You’ll correct the mistake shortly.) You have used the int data type as the parameter type for the incorrectly
overridden method. It is time to set the salary for a manager. The following code is used to accomplish this:

Employee ken = new Manager();
int salary = 200;
ken.setSalary(salary);

Employee.setSalary():200.0

This snippet of code was expected to call the setSalary() method of the Manager class but the output does not

show the expected result.
What went wrong in your code? The intention of defining the setSalary() method in the Manager class was to

override the setSalary() method of the Employee class, not to overload it. You made a mistake. You used the type int
as the parameter type in the setSalary() method, instead of the type double, in the Manager class. You put comments
indicating your intention to override the method in the Manager class. However, comments do not stop you from
making logical mistakes. You might spend, as every programmer does, hours and hours debugging errors resulting
from this kind of logical mistake. Who can help you in such situations? Annotations might help you in a few situations
like this. Let’s rewrite your Manager class using an annotation. You do not need to know anything about annotations at
this point. All you are going to do is add one word to your program. The following code is the modified version of the
Manager class:

public class Manager extends Employee {
 @Override
 public void setSalary(int salary) {
 System.out.println("Manager.setSalary():" + salary);
 }
}

All you have added is a @Override annotation to the Manager class and removed the “dumb” comments. Trying to
compile the revised Manager class results in a compile-time error that points to the use of the @Override annotation
for the setSalary() method of the Manager class:

Manager.java:2: error: method does not override or implement a method from a supertype
 @Override
 ^
1 error

The use of the @Override annotation did the trick. The @Override annotation is used with a non-static method
to indicate the programmer’s intention to override the method in the superclass. At source code level, it serves the
purpose of documentation. When the compiler comes across the @Override annotation, it makes sure that the
method really overrides the method in the superclass. If the method annotated does not override a method in the
superclass, the compiler generates an error. In your case, the setSalary(int salary) method in the Manager class
does not override any method in the superclass Employee. This is the reason that you got the error. You may realize
that using an annotation is as simple as documenting the source code. However, they have compiler support. You can
use them to instruct the compiler to enforce some rules. Annotations provide benefits much more than you have seen
in this example.

Chapter 1 ■ annotations

3

Let’s go back to the compile-time error. You can fix the error by doing one of the following two things:

You can remove the •	 @Override annotation from the setSalary(int salary) method in the
Manager class. It will make the method an overloaded method, not a method that overrides its
superclass method.

You can change the method signature from •	 setSalary(int salary) to setSalary(double salary).

Since you want to override the setSalary() method in the Manager class, use the second option and modify the
Manager class as follows:

public class Manager extends Employee {
 @Override
 public void setSalary(double salary) {
 System.out.println("Manager.setSalary():" + salary);
 }
}

Now the following code will work as expected:

Employee ken = new Manager();
int salary = 200;
ken.setSalary(salary);

Manager.setSalary():200.0

Note that the @Override annotation in the setSalary() method of the Manager class saves you debugging time.

Suppose you change the method signature in the Employee class. If the changes in the Employee class make this
method no longer overridden in the Manager class, you will get the same error when you compile the Manager class
again. Are you starting to understand the power of annotations? With this background in mind, let’s start digging deep
into annotations.

According to the Merriam Webster dictionary, the meaning of annotation is

“A note added by way of comment or explanation”.

This is exactly what an annotation is in Java. It lets you associate (or annotate) metadata (or notes) to the program
elements in a Java program. The program elements may be a package, a class, an interface, a field of a class, a local
variable, a method, a parameter of a method, an enum, an annotation, a type parameter in a generic type/method
declaration, a type use, etc. In other words, you can annotate any declaration or type use in a Java program. An
annotation is used as a modifier in a declaration of a program element like any other modifiers (public, private,
final, static, etc.). Unlike a modifier, an annotation does not modify the meaning of the program elements. It acts
like a decoration or a note for the program element that it annotates.

An annotation differs from regular documentation in many ways. A regular documentation is only for humans
to read and it is “dumb.” It has no intelligence associated with it. If you misspell a word, or state something in
the documentation and do just the opposite in the code, you are on your own. It is very difficult and impractical
to read the elements of documentation programmatically at runtime. Java lets you generate Javadocs from your
documentation and that’s it for regular documentation. This does not mean that you do not need to document
your programs. You do need regular documentation. At the same time, you need a way to enforce your intent using
a documentation-like mechanism. Your documentation should be available to the compiler and the runtime. An
annotation serves this purpose. It is human readable, which serves as documentation. It is compiler readable, which
lets the compiler verify the intention of the programmer; for example, the compiler makes sure that the programmer

Chapter 1 ■ annotations

4

has really overridden the method if it comes across a @Override annotation for a method. Annotations are also
available at runtime so that a program can read and use it for any purpose it wants. For example, a tool can read
annotations and generate boilerplate code. If you have worked with Enterprise JavaBeans (EJB), you know the pain of
keeping all the interfaces and classes in sync and adding entries to XML configuration files. EJB 3.0 uses annotations
to generate the boilerplate code, which makes EJB development painless for programmers. Another example of an
annotation being used in a framework/tool is JUnit version 4.0. JUnit is a unit test framework for Java programs. It
uses annotations to mark methods that are test cases. Before that, you had to follow a naming convention for the test
case methods. Annotations have a variety of uses, which are documentation, verification, and enforcement by the
compiler, the runtime validation, code generation by frameworks/tools, etc.

To make an annotation available to the compiler and the runtime, an annotation has to follow rules. In fact, an
annotation is another type like a class and an interface. As you have to declare a class type or an interface type before
you can use it, you must also declare an annotation type.

An annotation does not change the semantics (or meaning) of the program element that it annotates. In that
sense, an annotation is like a comment, which does not affect the way the annotated program element works. For
example, the @Override annotation for the setSalary() method did not change the way the method works. You
(or a tool/framework) can change the behavior of a program based on an annotation. In such cases, you make use of
the annotation rather than the annotation doing anything on its own. The point is that an annotation by itself is
always passive.

Declaring an Annotation Type
Declaring an annotation type is similar to declaring an interface type, except for some restrictions. According to Java
specification, an annotation type declaration is a special kind of interface type declaration. You use the interface
keyword, which is preceded by the @ sign (at sign) to declare an annotation type. The following is the general syntax
for declaring an annotation type:

<modifiers> @ interface <annotation-type-name> {
 // Annotation type body goes here
}

The <modifiers> for an annotation declaration is the same as for an interface declaration. For example, you can
declare an annotation type as public or package level. The @ sign and the interface keyword may be separated by
whitespaces or they can be placed together. By convention, they are placed together as @interface. The interface
keyword is followed by an annotation type name. It should be a valid Java identifier. The annotation type body is
placed within braces.

Suppose you want to annotate your program elements with the version information, so you can prepare a
report about new program elements added in a specific release of your product. To use a custom annotation type (as
opposed to built-in annotation, such as @Override), you must declare it first. You want to include the major and the
minor versions of the release in the version information. Listing 1-1 has the complete code for your first annotation
declaration.

Listing 1-1. The Declaration of an Annotation Type Named Version

// Version.java
package com.jdojo.annotation;

public @interface Version {
 int major();
 int minor();
}

Chapter 1 ■ annotations

5

Compare the declaration of the Version annotation with the declaration of an interface. It differs from an
interface definition only in one aspect: it uses the @ sign before its name. You have declared two abstract methods in
the Version annotation type: major() and minor(). Abstract methods in an annotation type are known as its elements.
You can think about it in another way: an annotation can declare zero or more elements, and they are declared
as abstract methods. The abstract method names are the names of the elements of the annotation type. You have
declared two elements, major and minor, for the Version annotation type. The data types of both elements are int.

Note ■ although it is allowed to declare static and default methods in interface types, they are not allowed in
annotation types.

You need to compile the annotation type. When Version.java file is compiled, it will produce a Version.class file.
The simple name of your annotation type is Version and its fully qualified name is com.jdojo.annotation.Version.
Using the simple name of an annotation type follows the rules of any other types (e.g. classes, interfaces, etc.).
You will need to import an annotation type the same way you import any other types.

How do you use an annotation type? You might be thinking that you will declare a new class that will implement
the Version annotation type, and you will create an object of that class. You might be relieved to know that you do not
need to take any additional steps to use the Version annotation type. An annotation type is ready to be used as soon
as it is declared and compiled. To create an instance of an annotation type and use it to annotate a program element,
you need to use the following syntax:

@annotationType(name1=value1, name2=value2, names3=values3...)

The annotation type is preceded by an @ sign. It is followed by a list of comma-separated name=value pairs
enclosed in parentheses. The name in a name=value pair is the name of the element declared in the annotation type
and the value is the user supplied value for that element. The name=value pairs do not have to appear in the same
order as they are declared in the annotation type, although by convention name=value pairs are used in the same
order as the declaration of the elements in the annotation type.

Let’s use an annotation of the Version type, which has the major element value as 1 and the minor element value
as 0. The following is an instance of your Version annotation type:

@Version(major=1, minor=0)

You can rewrite the above annotation as @Version(minor=0, major=1) without changing its meaning. You can
also use the annotation type’s fully qualified name as

@com.jdojo.annotation.Version(major=0, minor=1)

You use as many instances of the Version annotation type in your program as you want. For example, you have
a VersionTest class, which was added to your application since release 1.0. You have added some methods and
instance variables in release 1.1. You can use your Version annotation to document additions to the VersionTest
class in different releases. You can annotate your class declaration as

@Version(major=1, minor=0)
public class VersionTest {
 // Code goes here
}

Chapter 1 ■ annotations

6

An annotation is added in the same way you add a modifier for a program element. You can mix the annotation
for a program element with its other modifiers. You can place annotations in the same line as other modifiers or
in a separate line. It is a personal choice whether you use a separate line to place the annotations or you mix them
with other modifiers. By convention, annotations for a program element are placed before all other modifiers. Let’s
follow this convention and place the annotation in a separate line by itself, as shown above. Both of the following
declarations are technically the same:

// Style #1
@Version(major=1, minor=0) public class VersionTest {
 // Code goes here
}

// Style #2
public @Version(major=1, minor=0) class VersionTest {
 // Code goes here
}

Listing 1-2 shows the sample code for the VersionTest class.

Listing 1-2. A VersionTest Class with Annotated Elements

// VersionTest.java
package com.jdojo.annotation;

// Annotation for class VersionTest
@Version(major = 1, minor = 0)
public class VersionTest {
 // Annotation for instance variable xyz
 @Version(major = 1, minor = 1)
 private int xyz = 110;

 // Annotation for constructor VersionTest()
 @Version(major = 1, minor = 0)
 public VersionTest() {
 }

 // Annotation for constructor VersionTest(int xyz)
 @Version(major = 1, minor = 1)
 public VersionTest(int xyz) {
 this.xyz = xyz;
 }

 // Annotation for the printData() method
 @Version(major = 1, minor = 0)
 public void printData() {
 }

 // Annotation for the setXyz() method
 @Version(major = 1, minor = 1)
 public void setXyz(int xyz) {

Chapter 1 ■ annotations

7

 // Annotation for local variable newValue
 @Version(major = 1, minor = 2)
 int newValue = xyz;

 this.xyz = xyz;
 }
}

In Listing 1-2, you use @Version annotation to annotate the class declaration, class field, constructors, and
methods. There is nothing extraordinary in the code for the VersionTest class. You just added the @Version
annotation to various elements of the class. The VersionTest class would work the same, even if you remove all
@Version annotations. It is to be emphasized that using annotations in your program does not change the behavior
of the program at all. The real benefit of annotations comes from reading it during compilation and runtime.

What do you do next with the Version annotation type? You have declared it as a type. You have used it in your
VersionTest class. Your next step is to read it at runtime. Let’s defer this step for now; I will cover it in detail in a later
section.

Restrictions on Annotation Types
An annotation type is a special type of interface with some restrictions. I will cover some of the restrictions in the
sections to follow.

Restriction #1
An annotation type cannot inherit from another annotation type. That is, you cannot use the extends clause in an
annotation type declaration. The following declaration will not compile because you have used the extends clause to
declare WrongVersion annotation type:

// Won't compile
public @interface WrongVersion extends BasicVersion {
 int extended();
}

Every annotation type implicitly inherits the java.lang.annotation.Annotation interface, which is declared as
follows:

package java.lang.annotation;

public interface Annotation {
 boolean equals(Object obj);
 int hashCode();
 String toString();
 Class<? extends Annotation> annotationType();
}

This implies that all of the four methods declared in the Annotation interface are available in all annotation
types. A word of caution needs to be mentioned here. You declare elements for an annotation type using abstract
method declarations. The methods declared in the Annotation interface do not declare elements in an annotation
type. Your Version annotation type has only two elements, major and minor, which are declared in the Version

Chapter 1 ■ annotations

8

type itself. You cannot use the annotation type Version as @Version(major=1, minor=2, toString="Hello").
The Version annotation type does not declare toString as an element. It inherits the toString() method from the
Annotation interface.

Restriction #2
Method declarations in an annotation type cannot specify any parameters. A method declares an element for the
annotation type. An element in an annotation type lets you associate a data value to an annotation’s instance.
A method declaration in an annotation is not called to perform any kind of processing. Think of an element as an
instance variable in a class having two methods, a setter and a getter, for that instance variable. For an annotation,
the Java runtime creates a proxy class that implements the annotation type (which is an interface). Each annotation
instance is an object of that proxy class. The method you declare in your annotation type becomes the getter method
for the value of that element you specify in the annotation. The Java runtime will take care of setting the specified
value for the annotation elements. Since the goal of declaring a method in an annotation type is to work with a data
element, you do not need to (and are not allowed to) specify any parameters in a method declaration. The following
declaration of an annotation type would not compile because it declares a concatenate() method, which accepts
two parameters:

// Won't compile
public @interface WrongVersion {
 // Cannot have parameters
 String concatenate(int major, int minor);
}

Restriction #3
Method declarations in an annotation type cannot have a throws clause. A method in an annotation type is defined
to represent a data element. Throwing an exception to represent a data value does not make sense. The following
declaration of an annotation type would not compile because the major() method has a throws clause:

// Won't compile
public @interface WrongVersion {
 int major() throws Exception; // Cannot have a throws clause
 int minor(); // OK
}

Restriction #4
The return type of a method declared in an annotation type must be one of the following types:

Any primitive type: •	 byte, short, int, long, float, double, boolean, and char

•	 java.lang.String

•	 java.lang.Class

An •	 enum type

An annotation type•	

An array of any of the above mentioned type, for example, •	 String[], int[], etc. The return
type cannot be a nested array. For example, you cannot have a return type of String[][] or
int[][].

Chapter 1 ■ annotations

9

The return type of Class needs a little explanation. Instead of the Class type, you can use a generic return type
that will return a user-defined class type. Suppose you have a Test class and you want to declare the return type of a
method in an annotation type of type Test. You can declare the annotation method as shown:

public @interface GoodOne {
 Class element1(); // Any Class type
 Class<Test> element2(); // Only Test class type
 Class<? extends Test> element3(); // Test or its subclass type
}

Restriction #5
An annotation type cannot declare a method, which would be equivalent to overriding a method in the Object class
or the Annotation interface.

Restriction #6
An annotation type cannot be generic.

Default Value of an Annotation Element
The syntax for an annotation type declaration lets you specify a default value for its elements. You are not required to
specify a value for an annotation element that has a default value specified in its declaration. The default value for an
element can be specified using the following general syntax:

<modifiers> @interface <annotation type name> {
 <data-type> <element-name>() default <default-value>;
}

The keyword default is used to specify the default value. The default value must be of the type compatible to the
data type for the element.

Suppose you have a product that is not frequently released, so it is less likely that it will have a minor version
other than zero. You can simplify your Version annotation type by specifying a default value for its minor element
as zero, as shown:

public @interface Version {
 int major();
 int minor() default 0; // Set zero as default value for minor
}

Once you set the default value for an element, you do not have to pass its value when you use an annotation of
this type. Java will use the default value for the missing value of the element.

@Version(major=1) // minor is zero, which is its default value
@Version(major=2) // minor is zero, which is its default value
@Version(major=2, minor=1) // minor is 1, which is the specified value

Chapter 1 ■ annotations

10

All default values must be compile-time constants. How do you specify the default value for an array type? You
need to use the array initializer syntax. The following snippet of code shows how to specify default values for an array
and other data types:

// Shows how to assign default values to elements of different types
public @interface DefaultTest {
 double d() default 12.89;
 int num() default 12;
 int[] x() default {1, 2};
 String s() default "Hello";
 String[] s2() default {"abc", "xyz"};
 Class c() default Exception.class;
 Class[] c2() default {Exception.class, java.io.IOException.class};
}

The default value for an element is not compiled with the annotation. It is read from the annotation type
definition when a program attempts to read the value of an element at runtime. For example, when you use
@Version(major=2), this annotation instance is compiled as is. It does not add minor element with its default value
as zero. In other words, this annotation is not modified to @Version(major=2, minor=0) at the time of compilation.
However, when you read the value of the minor element for this annotation at runtime, Java will detect that the value
for the minor element was not specified. It will consult the Version annotation type definition for its default value
and return the default value. The implication of this mechanism is that if you change the default value of an element,
the changed default value will be read whenever a program attempts to read it, even if the annotated program was
compiled before you changed the default value.

Annotation Type and Its Instances
I use the terms “annotation type” and “annotation” frequently. Annotation type is a type like an interface.
Theoretically, you can use annotation type wherever you can use an interface type. Practically, we limit its use only
to annotate program elements. You can declare a variable of an annotation type as shown:

Version v = null; // Here, Version is an annotation type

Like an interface, you can also implement an annotation type in a class. However, you are never supposed to do
that, as it will defeat the purpose of having an annotation type as a new construct. You should always implement an
interface in a class, not an annotation type. Technically, the code in Listing 1-3 for the DoNotUseIt class is valid. This is
just for the purpose of demonstration. Do not implement an annotation in a class even if it works.

Listing 1-3. A Class Implementing an Annotation Type

// DoNotUseIt.java
package com.jdojo.annotation;

import java.lang.annotation.Annotation;

public class DoNotUseIt implements Version {
 // Implemented method from the Version annotation type
 @Override
 public int major() {
 return 0;
 }

Chapter 1 ■ annotations

11

 // Implemented method from the Version annotation type
 @Override
 public int minor() {
 return 0;
 }

 // Implemented method from the Annotation annotation type,
 // which is the supertype of the Version annotation type
 @Override
 public Class<? extends Annotation> annotationType() {
 return null;
 }
}

The Java runtime implements the annotation type to a proxy class. It provides you with an object of a class that
implements your annotation type for each annotation you use in your program. You must distinguish between an
annotation type and instances (or objects) of that annotation type. In your example, Version is an annotation type.
Whenever you use it as @Version(major=2, minor=4), you are creating an instance of the Version annotation type.
An instance of an annotation type is simply referred to as an annotation. For example, we say that @Version(major=2,
minor=4) is an annotation or an instance of the Version annotation type. An annotation should be easy to use in a
program. The syntax @Version(...) is shorthand for creating a class, creating an object of that class, and setting the
values for its elements. I will cover how to get to the object of an annotation type at runtime later in this chapter.

Using Annotations
In this section, I will discuss the details of using different types of elements while declaring annotation types.
Remember that the supplied value for elements of an annotation must be a compile-time constant expression and
you cannot use null as the value for any type of element in an annotation.

Primitive Types
The data type of an element in an annotation type could be any of the primitive data types: byte, short, int, long,
float, double, boolean, and char. The Version annotation type declares two elements, major and minor, and both are
of int data type. The following code snippet declares an annotation type called PrimitiveAnnTest:

public @interface PrimitiveAnnTest {
 byte a();
 short b();
 int c();
 long d();
 float e();
 double f();
 boolean g();
 char h();
}

You can use an instance of the PrimitiveAnnTest type as

@PrimitiveAnnTest(a=1, b=2, c=3, d=4, e=12.34F, f=1.89, g=true, h='Y')

Chapter 1 ■ annotations

12

You can use a compile-time constant expression to specify the value for an element of an annotation.
The following two instances of the Version annotation are valid, and have the same values for their elements:

@Version(major=2+1, minor=(int)13.2)
@Version(major=3, minor=13)

String Types
You can use an element of the String type in an annotation type. Listing 1-4 contains the code for an annotation type
called Name. It has two elements, first and last, which are of the String type.

Listing 1-4. Name Annotation Type, Which Has Two Elements, first and last, of the String Type

package com.jdojo.annotation;

public @interface Name {
 String first();
 String last();
}

The following snippet of code shows how to use the Name annotation type in a program:

@Name(first="John", last="Jacobs")
public class NameTest {
 @Name(first="Wally", last="Inman")
 public void aMethod() {
 // More code goes here...
 }
}

It is valid to use the string concatenation operator (+) in the value expression for an element of a String type. The
following two annotations are equivalent:

@Name(first="Jo" + "hn", last="Ja" + "cobs")
@Name(first="John", last="Jacobs")

The following use of the @Name annotation is not valid because the expression new String("John") is not a
compile-time constant expression:

@Name(first=new String("John"), last="Jacobs")

Class Types
The benefits of using the Class type as an element in an annotation type are not obvious. Typically, it is used where
a tool/framework reads the annotations with elements of a class type and performs some specialized processing on
the element’s value or generates code. Let’s go through a simple example of using a class type element. Suppose you
are writing a test runner tool for running test cases for a Java program. Your annotation will be used in writing test
cases. If your test case must throw an exception when it is invoked by the test runner, you need to use an annotation to
indicate that. Let’s create a DefaultException class as shown in Listing 1-5.

Chapter 1 ■ annotations

13

Listing 1-5. A DefaultException Class That Is Inherited from the Throwable Exception Class

// DefaultException.java
package com.jdojo.annotation;

public class DefaultException extends java.lang.Throwable {
 public DefaultException() {
 }

 public DefaultException(String msg) {
 super(msg);
 }
}

Listing 1-6 shows the code for a TestCase annotation type.

Listing 1-6. A TestCase Annotation Type Whose Instances Are Used to Annotate Test Case Methods

// TestCase.java
package com.jdojo.annotation;

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD)
public @interface TestCase {
 Class<? extends Throwable> willThrow() default DefaultException.class;
}

The return type of the willThrow element is defined as the wild card of the Throwable class, so that the user will
specify only the Throwable class or its subclasses as the element’s value. You could have used the Class type as the
type of your willThrow element. However, that would have allowed the users of this annotation type to pass any class
type as its value. Note that you have used two annotations, @Retention and @Target, for the TestCase annotation
type. The @Retention annotation type specified that the @TestCase annotation would be available at runtime. It is
necessary to use the retention policy of RUNTIME for your TestCase annotation type because it is meant for the test
runner tool to read it at runtime. The @Target annotation states that the TestCase annotation can be used only to
annotate methods. I will cover the @Retention and @Target annotation types in detail in later sections when I discuss
meta-annotations. Listing 1-7 shows the use of your TestCase annotation type.

Listing 1-7. A Test Case That Uses the TestCase Annotations

// PolicyTestCases.java
package com.jdojo.annotation;

import java.io.IOException;

public class PolicyTestCases {
 // Must throw IOExceptionn
 @TestCase(willThrow=IOException.class)
 public static void testCase1(){

Chapter 1 ■ annotations

14

 // Code goes here
 }

 // We are not expecting any exception
 @TestCase()
 public static void testCase2(){
 // Code goes here
 }
}

The testCase1() method specifies, using the @TestCase annotation, that it will throw an IOException. The test
runner tool will make sure that when it invokes this method, the method does throw an IOException. Otherwise,
it will fail the test case. The testCase2() method does not specify that it will throw an exception. If it throws an
exception when the test is run, the tool should fail this test case.

Enum Type
An annotation can have elements of an enum type. Suppose you want to declare an annotation type called Review that
can describe the code review status of a program element. Let’s assume that it has a status element and it can have
one of the four values: PENDING, FAILED, PASSED, and PASSEDWITHCHANGES. You can declare an enum as an annotation
type member. Listing 1-8 shows the code for a Review annotation type.

Listing 1-8. An Annotation Type, Which Uses an enum Type Element

// Review.java
package com.jdojo.annotation;

public @interface Review {
 ReviewStatus status() default ReviewStatus.PENDING;
 String comments() default "";

 // ReviewStatus enum is a member of the Review annotation type
 public enum ReviewStatus {PENDING, FAILED, PASSED, PASSEDWITHCHANGES};
}

The Review annotation type declares a ReviewStatus enum type and the four review statuses are the elements of
the enum. It has two elements, status and comments. The type of status element is the enum type ReviewStatus. The
default value for the status element is ReviewStatus.PENDING. You have an empty string as the default value for the
comments element.

Here are some of the instances of the Review annotation type. You will need to import the
com.jdojo.annotation.Review.ReviewStatus enum in your program to use the simple name of the ReviewStatus
enum type.

// Have default for status and comments. Maybe code is new
@Review()

// Leave status as Pending, but add some comments
@Review(comments="Have scheduled code review on June 3 2014")

// Fail the review with comments
@Review(status=ReviewStatus.FAILED, comments="Need to handle errors")

Chapter 1 ■ annotations

15

// Pass the review without changes
@Review(status=ReviewStatus.PASSED)

Here is the sample code that annotates a Test class indicating that it passed the code review:

import com.jdojo.annotation.Review.ReviewStatus;
import com.jdojo.annotation.Review;

@Review(status=ReviewStatus.PASSED)
public class Test {
 // Code goes here
}

Annotation Type
An annotation type can be used anywhere a type can be used in a Java program. For example, you can use an
annotation type as the return type for a method. You can also use an annotation type as the type of an element inside
another annotation type’s declaration. Suppose you want to have a new annotation type called Description, which will
include the name of the author, version, and comments for a program element. You can reuse your Name and Version
annotation types as its name and version elements type. Listing 1-9 has code the for Description annotation type.

Listing 1-9. An Annotation Type Using Other Annotation Types as Data Type of Its Elements

// Description.java
package com.jdojo.annotation;

public @interface Description {
 Name name();
 Version version();
 String comments() default "";
}

To provide a value for an element of an annotation type, you need to use the syntax that is used to create an
annotation type instance. For example, @Version(major=1, minor=2) creates an instance of the Version annotation.
Note the nesting of an annotation inside another annotation in the following snippet of code:

@Description(name=@Name(first="John", last="Jacobs"),
 version=@Version(major=1, minor=2),
 comments="Just a test class")
public class Test {
 // Code goes here
}

Array Type Annotation Element
An annotation can have elements of an array type. The array type could be of one of the following types:

A primitive type•	

•	 java.lang.String type

•	 java.lang.Class type

An •	 enum type

An annotation type•	

Chapter 1 ■ annotations

16

You need to specify the value for an array element inside braces. Elements of the array are separated by a comma.
Suppose you want to annotate your program elements with a short description of a list of things that you need to work
on. Listing 1-10 creates a ToDo annotation type for this purpose.

Listing 1-10. ToDo Annotation Type with String[] as Its Sole Element

// ToDo.java
package com.jdojo.annotation;

public @interface ToDo {
 String[] items();
}

The following snippet of code shows how to use a @ToDo annotation:

@ToDo(items={"Add readFile method", "Add error handling"})
public class Test {
 // Code goes here
}

If you have only one element in the array, it is allowed to omit the braces. The following two annotation instances
of the ToDo annotation type are equivalent:

@ToDo(items={"Add error handling"})
@ToDo(items="Add error handling")

Tip ■ if you do not have valid values to pass to an element of an array type, you can use an empty array. For example,
@ToDo(items={}) is a valid annotation where the items element has been assigned an empty array.

No Null Value in an Annotation
You cannot use a null reference as a value for an element in an annotation. Note that it is allowed to use an empty
string for the String type element and empty array for an array type element. Using the following annotations will
result in compile-time errors:

@ToDo(items=null)
@Name(first=null, last="Jacobs")

Shorthand Annotation Syntax
The shorthand annotation syntax is little easier to use in a few circumstances. Suppose you have an annotation type
Enabled with an element having a default value, as shown:

public @interface Enabled {
 boolean status() default true;
}

Chapter 1 ■ annotations

17

If you want to annotate a program element with the Enabled annotation type using the default value for its
element, you can use the @Enabled() syntax. You do not need to specify the values for the status element because
it has a default value. You can use shorthand in this situation, which allows you to omit the parentheses. You can just
use @Enabled instead of using @Enabled(). The Enabled annotation can be used in either of the following two forms:

@Enabled
public class Test {
 // Code goes here
}

@Enabled()
public class Test {
 // Code goes here
}

An annotation type with only one element also has a shorthand syntax. You can use this shorthand as long as
you adhere to a naming rule for the sole element in the annotation type. The name of the element must be value. If
an annotation type has only one element that is named value, you can omit the name from name=value pair from
your annotation. The following snippet of code declares a Company annotation type, which has only one element
named value:

public @interface Company {
 String value(); // the element name is value
}

You can omit the name from name=value pair when you use the Company annotation, as shown below. If you want
to use the element name with the Company annotation, you can always do so as @Company(value="Abc Inc.").

@Company("Abc Inc.")
public class Test {
 // Code goes here
}

You can use this shorthand of omitting the name of the element from annotations, even if the element data type
is an array. Let’s consider the following annotation type called Reviewers:

public @interface Reviewers {
 String[] value(); // the element name is value
}

Since the Reviewers annotation type has only one element, which is named value, you can omit the element
name when you are using it.

// No need to specify name of the element
@Reviewers({"John Jacobs", "Wally Inman"})
public class Test {
 // Code goes here
}

Chapter 1 ■ annotations

18

You can also omit the braces if you specify only one element in the array for the value element of the Reviewers
annotation type.

@Reviewers("John Jacobs")
public class Test {
 // Code goes here
}

You just saw several examples using the name of the element as value. Here is the general rule of omitting
the name of the element in an annotation: if you supply only one value when using an annotation, the name of the
element is assumed value. This means that you are not required to have only one element in the annotation type,
which is named value, to omit its name in the annotations. If you have an annotation type, which has an element
named value (with or without a default value) and all other elements have default values, you can still omit the name
of the element in annotation instances of this type. Here are some examples to illustrate this rule:

public @interface A {
 String value();
 int id() default 10;
}

// Same as @A(value="Hello", id=10)
@A("Hello")
public class Test {
 // Code goes here
}

// Won't compile. Must use only one value to omit the element name
@A("Hello", id=16)
public class WontCompile {
 // Code goes here
}

// OK. Must use name=value pair when passing more than one value
@A(value="Hello", id=16)
public class Test {
 // Code goes here
}

Marker Annotation Types
A marker annotation type is an annotation type that does not declare any elements, not even one with a default value.
Typically, a marker annotation is used by the annotation processing tools, which generate boilerplate code based on
the marker annotation type.

public @interface Marker {
 // No element declarations
}

Chapter 1 ■ annotations

19

@Marker
public class Test {
 // Code goes here
}

Meta-Annotation Types
Meta-annotations types are annotation types, which are used to annotate other annotation types. The following
annotation types are meta-annotation types:

•	 Target

•	 Retention

•	 Inherited

•	 Documented

•	 Repeatable

•	 Native

Meta-annotation types are part of the Java class library. They are declared in the package java.lang.annotation.

The Target Annotation Type
The Target annotation type is used to annotate an annotation type to specify the context in which the annotation
type can be used. It has only one element named value. Its value element is an array of java.lang.annotation.
ElementType enum type. Table 1-1 lists all constants in the ElementType enum.

Table 1-1. List of Constants in the java.lang.annotation.ElementType enum

Constant Name Description

ANNOTATION_TYPE The annotation can be used to annotate another annotation type declaration. This makes the
annotation type a meta-annotation.

CONSTRUCTOR The annotation can be used to annotate constructors.

FIELD The annotation can be used to annotate fields and enum constants.

LOCAL_VARIABLE The annotation can be used to annotate local variables.

METHOD The annotation can be used to annotate methods.

PACKAGE The annotation can be used to annotate package declarations.

PARAMETER The annotation can be used to annotate parameters.

TYPE The annotation can be used to annotate class, interface (including annotation type), or enum
declarations.

TYPE_PARAMETER The annotation can be used to annotate type parameters in generic classes, interfaces,
methods, etc. It was added in Java 8.

TYPE_USE The annotation can be used to annotate all uses of types. It was added in Java 8. The
annotation can also be used where an annotation with ElementType.TYPE and
ElementType.TYPE_PARAMETER can be used. It can also be used before constructors in
which case it represents the objects created by the constructor.

Chapter 1 ■ annotations

20

The following declaration of the Version annotation type annotates the annotation type declaration with the
Target meta-annotation, which specifies that the Version annotation type can be used with program elements of
only three types: any type (class, interface, enum, and annotation types), a constructors, and methods.

// Version.java
package com.jdojo.annotation;

import java.lang.annotation.Target;
import java.lang.annotation.ElementType;

@Target({ElementType.TYPE, ElementType.CONSTRUCTOR, ElementType.METHOD})
public @interface Version {
 int major();
 int minor();
}

The Version annotation cannot be used on any program elements other than the three types specified in its
Target annotation. The following use of the Version annotation is incorrect because it is being used on an instance
variable (a field):

public class WontCompile {
 // A compile-time error. Version annotation cannot be used on a field.
 @Version(major = 1, minor = 1)
 int id = 110;
}

The following uses of the Version annotation are valid:

// OK. A class type declaration
@Version(major = 1, minor = 0)
public class VersionTest {
 // OK. A constructor declaration
 @Version(major = 1, minor = 0)
 public VersionTest() {
 // Code goes here
 }

 // OK. A method declaration
 @Version(major = 1, minor = 1)
 public void doSomething() {
 // Code goes here
 }
}

Prior to Java 8, annotation were allowed on formal parameters of methods and declarations of packages, classes,
methods, fields, and local variables. Java 8 added support for using annotations on any use of a type and on type
parameter declaration. The phrase “any use of a type” needs little explanation. A type is used in many contexts, for
example, after the extends clause as a supertype, in an object creation expression after the new operator, in a cast, in a
throws clause, etc. From Java 8, annotations may appear before the simple name of the types wherever a type is used.
Note that the simple name of the type may be just used as a name, not as a type, for example in an import statement.
Consider the declarations of the Fatal and NonZero annotation types in Listing 1-11 and Listing 1-12.

Chapter 1 ■ annotations

21

Listing 1-11. A Fatal Annotation Type That Can Be Used with Any Type Use

// Fatal.java
package com.jdojo.annotation;

import java.lang.annotation.ElementType;
import java.lang.annotation.Target;

@Target({ElementType.TYPE_USE})
public @interface Fatal {
}

Listing 1-12. A NonZero Annotation Type That Can Be Used with Any Type Use

// NonZero.java
package com.jdojo.annotation;

import java.lang.annotation.ElementType;
import java.lang.annotation.Target;

@Target({ElementType.TYPE_USE})
public @interface NonZero {
}

The Fatal and NonZero annotation types can be used wherever a type is used. Their uses in the following
contexts are valid:

public class Test {
 public void processData() throws @Fatal Exception {
 double value = getValue();
 int roundedValue = (@NonZero int) value;

 Test t = new @Fatal Test();
 // More code goes here
 }

 public double getValue() {
 double value = 189.98;
 // More code goes here
 return value;
 }
}

Tip ■ if you do not annotate an annotation type with the Target annotation type, the annotation type can be used as a
modifier for any declaration, except a type parameter declaration.

Chapter 1 ■ annotations

22

The Retention Annotation
You can use annotations for different purposes. You may want to use them solely for documentation purposes, to be
processed by the compiler, and/or to use them at runtime. An annotation can be retained at three levels.

Source code only•	

Class file only (the default)•	

Class file and the runtime•	

The Retention meta-annotation type is used to specify how an annotation instance of an annotation type should
be retained by Java. This is also known as the retention policy of an annotation type. If an annotation type has a
“source code only” retention policy, instances of its type are removed when compiled into a class file. If the retention
policy is “class file only,” annotation instances are retained in the class file, but they cannot be read at runtime. If the
retention policy is “class file and runtime” (simply known as runtime), the annotation instances are retained in the
class file and they are available for reading at runtime.

The Retention meta-annotation type declares one element, named value, which is of the java.lang.
annotation.RetentionPolicy enum type. The RetentionPolicy enum has three constants, SOURCE, CLASS, and
RUNTIME, which are used to specify the retention policy of source only, class only, and class-and-runtime, respectively.
The following code uses the Retention meta-annotation on the Version annotation type. It specifies that the Version
annotations should be available at runtime. Note the use of two meta-annotations on the Version annotation type:
Target and Retention.

// Version.java
package com.jdojo.annotation;

import java.lang.annotation.Target;
import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;

@Target({ElementType.TYPE, ElementType.CONSTRUCTOR,
 ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
public @interface Version {
 int major();
 int minor();
}

Tip ■ if you do not use the Retention meta-annotation on an annotation type, its retention policy defaults to class file
only. this implies that you will not be able to read those annotations at runtime. You will make this common mistake in
the beginning. You would try to read annotations and the runtime will not return any values. Make sure that your annotation
type has been annotated with the Retention meta-annotation with the retention policy of RetentionPolicy.RUNTIME
before you attempt to read them at runtime. an annotation on a local variable declaration is never available in the class
file or at runtime irrespective of the retention policy of the annotation type. the reason for this restriction is that the Java
runtime does not let you access the local variables using reflection at runtime, and unless you have access to the local
variables at runtime, you cannot read annotations for them.

Chapter 1 ■ annotations

23

The Inherited Annotation Type
The Inherited annotation type is a marker meta-annotation type. If an annotation type is annotated with an
Inherited meta-annotation, its instances are inherited by a subclass declaration. It has no effect if an annotation
type is used to annotate any program elements other than a class declaration. Let’s consider two annotation type
declarations: Ann2 and Ann3. Note that Ann2 is not annotated with an Inherited meta-annotation, whereas Ann3 is
annotated with an Inherited meta-annotation.

public @interface Ann2 {
 int id();
}

@Inherited
public @interface Ann3 {
 int id();
}

Let’s declare two classes, A and B, as follows. Note that class B inherits class A.

@Ann2(id=505)
@Ann3(id=707)
public class A {
 // Code for class A goes here
}

// Class B inherits Ann3(id=707) annotation from the class A
public class B extends A {
 // Code for class B goes here
}

In the above snippet of code, class B inherits the @Ann3(id=707) annotation from class A because the Ann3
annotation type has been annotated with an Inherited meta-annotation. Class B does not inherit the @Ann2(id=505)
annotation because the Ann2 annotation type is not annotated with an Inherited meta-annotation.

The Documented Annotation
The Documented annotation type is a marker meta-annotation type. If an annotation type is annotated with a
Documented annotation, the Javadoc tool will generate documentation for all of its instances. Listing 1-13 has the code
for the final version of the Version annotation type, which has been annotated with a Documented meta-annotation.

Listing 1-13. The Final Version of the Version Annotation Type

// Version.java
package com.jdojo.annotation;

import java.lang.annotation.Documented;
import java.lang.annotation.Target;
import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;

Chapter 1 ■ annotations

24

@Target({ElementType.TYPE, ElementType.CONSTRUCTOR, ElementType.METHOD,
 ElementType.PACKAGE, ElementType.LOCAL_VARIABLE, ElementType.TYPE_USE})
@Retention(RetentionPolicy.RUNTIME)
@Documented
public @interface Version {
 int major();
 int minor();
}

Suppose you annotate a Test class with your Version annotation type as follows:

package com.jdojo.annotation;

@Version(major=1, minor=0)
public class Test {
 // Code for Test class goes here
}

When you generate documentation for the Test class using the Javadoc tool, the Version annotation on the
Test class declaration is also generated as part of the documentation. If you remove the Documented annotation from
the Version annotation type declaration, the Test class documentation would not contain information about its
Version annotation.

The Repeatable Annotation
Prior to Java 8, it was not allowed to repeat an annotation in the same context. For example, the following repeated use
of the Version annotation would generate a compile-time error:

@Version(major=1, minor=1)
@Version(major=1, minor=2)
public class Test {
 // Code goes here
}

Java 8 added a Repeatable meta-annotation type. An annotation type declaration must be annotated with a
@Repeatable annotation if its repeated use is to be allowed. The Repeatable annotation type has only one element
named value whose type is a class type of another annotation type.

Creating a repeatable annotation type is a two-step process:

Declare an annotation type (say •	 T) and annotate it with the Repeatable meta-annotation.
Specify the value for the annotation as another annotation that is known as containing
annotation for the repeatable annotation type being declared.

Declare the containing annotation type with one element that is an array of the repeatable •	
annotation.

Listing 1-14 and Listing 1-15 contain declarations for ChangeLog and ChangeLogs annotation types. ChangeLog is
annotated with the @Repeatable(ChangeLogs.class) annotation, which means that it is a repeatable annotation type
and its containing annotation type is ChangeLogs.

Chapter 1 ■ annotations

25

Listing 1-14. A Repeatable Annotation Type That Uses the ChangeLogs as the Containing Annotation Type

// ChangeLog.java
package com.jdojo.annotation;

import java.lang.annotation.Repeatable;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;

@Retention(RetentionPolicy.RUNTIME)
@Repeatable(ChangeLogs.class)
public @interface ChangeLog {
 String date();
 String comments();
}

Listing 1-15. A Contaning Annotation Type for the ChangeLog Repeatable Annotation Type

// ChangeLogs.java
package com.jdojo.annotation;

import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;

@Retention(RetentionPolicy.RUNTIME)
public @interface ChangeLogs {
 ChangeLog[] value();
}

You can use the ChangeLog annotation to log change history for the Test class, as shown:

@ChangeLog(date="02/01/2014", comments="Declared the class")
@ChangeLog(date="02/21/2014", comments="Added the process() method")
public class Test {
 public static void process() {
 // Code goes here
 }
}

The Native Annotation
The Native annotation type is a meta-annotation that is used to annotate fields. It indicates that the annotated field
may be referenced from native code. It is a marker annotation. Typically, it is used by tools that generate some code
based on this annotation.

Chapter 1 ■ annotations

26

Commonly Used Standard Annotations
Java API defines many standard annotation types. This section discusses four of the most commonly used standard
annotations. They are defined in the java.lang package. They are

•	 Deprecated

•	 Override

•	 SuppressWarnings

•	 FunctionalInterface

The Deprecated Annotation Type
The deprecated annotation type is a marker annotation type. Developers are discouraged from using a program
element annotated with a Deprecated annotation because it is not safe to use the program element anymore or
a better alternative exists. If you use a deprecated program element in a non-deprecated code, the compiler will
generate a warning. Suppose you have a DeprecatedTest class as follows. Note the annotation of the class with a
@Deprecated annotation. Its getInstance() method uses the class type as its return type, which will not generate
a compiler warning because it is inside the deprecated class.

Listing 1-16. An Example of Deprecating a Class Named DeprecatedTest

// DeprecatedTest.java
package com.jdojo.annotation;

@Deprecated
public class DeprecatedTest {
 private DeprecatedTest() {
 }

 public static DeprecatedTest getInstance() {
 // Using the deprecated class inside its own body
 DeprecatedTest dt = new DeprecatedTest();
 return dt;
 }
}

Let’s attempt to use the DeprecatedTest class inside a new class called Test, as follows. When you compile the
Test class, it will generate a compiler note stating that the deprecated DeprecatedTest class should not be used.

package com.jdojo.annotation;

public class Test {
 public static void main(String[] args) {
 DeprecatedTest dt; // Generates a compile-time note
 }
}

Note Test.java uses or overrides a deprecated API.
Note Recompile with -Xlint:deprecation for details.

Chapter 1 ■ annotations

27

The Override Annotation Type
The override annotation type is a marker annotation type. It can only be used on methods. It indicates that a method
annotated with this annotation overrides a method declared in its supertype. In Java 5, it could be used only in class
methods. From Java 6, it can be used for methods of any types. This is very helpful for developers to avoid types that
lead to logical errors in the program. If you mean to override a method in a supertype, it is recommended to annotate
the overridden method with a @Override annotation. The compiler will make sure that the annotated method really
overrides a method in the supertype. If the annotated method does not override a method in the supertype, the
compiler will generate an error.

Consider two classes, A and B. Class B inherits from class A. The m1() method in the class B overrides the m1()
method in its superclass A. The annotation @Override on the m1() method in class B just makes a statement about this
intention. The compiler verifies this statement and finds it to be true in this case.

public class A {
 public void m1() {
 }
}

public class B extends A {
 @Override
 public void m1() {
 }
}

Let’s consider class C.

// Won't compile because m2() does not override any method
public class C extends A {
 @Override
 public void m2() {
 }
}

The method m2() in class C has a @Override annotation. However, there is no m2() method in its superclass A.
The method m2() is a new method declaration in class C. The compiler finds out that method m2() in class C does
not override any superclass method, even though its developer has indicated so. The compiler generates an error in
this case.

The SuppressWarnings Annotation Type
The SuppressWarnings is used to suppress named compiler warnings. It declares one element named value whose
data type is an array of String. Let’s consider the code for the SuppressWarningsTest class, which uses the raw type
for the ArrayList<T> in the test() method. The compiler generates an unchecked named warning when you use a
raw type.

// SuppressWarningsTest.java
package com.jdojo.annotation;

import java.util.ArrayList;

Chapter 1 ■ annotations

28

public class SuppressWarningsTest {
 public void test() {
 ArrayList list = new ArrayList();
 list.add("Hello"); // The compiler issues an unchecked warning
 }
}

Compile the SuppressWarningsTest class with an option to generate an unchecked warning using the command

javac -Xlint:unchecked SuppressWarningsTest.java

com\jdojo\annotation\SuppressWarningsTest.java:10: warning: [unchecked] unchecked call to add(E)
as a member of the raw type ArrayList
 list.add("Hello"); // The compiler issues an unchecked warning
 ^
 where E is a type-variable
 E extends Object declared in class ArrayList
1 warning

As a developer, sometimes you are aware of such compiler warnings and you want to suppress them when your

code is compiled. You can do so by using a @SuppressWarnings annotation on your program element by supplying
a list of the names of the warnings to be suppressed. For example, if you use it on a class declaration, all specified
warnings will be suppressed from all methods inside that class declaration. It is recommended that you use this
annotation on the innermost program element on which you want to suppress the warnings.

The following snippet of code uses a SuppressWarnings annotation on the test() method. It specifies two
named warnings: unchecked and deprecated. The test() method does not contain code that will generate a
deprecated warning. It was included here to show you that you could suppress multiple named warnings using a
SuppressWarnings annotation. If you recompile the SuppressWarningsTest class with the same options as shown
above, it will not generate any compiler warnings.

// SuppressWarningsTest.java
package com.jdojo.annotation;

import java.util.ArrayList;

public class SuppressWarningsTest {
 @SuppressWarnings({"unchecked", "deprecation"})
 public void test() {
 ArrayList list = new ArrayList();
 list.add("Hello"); // The compiler does not issue an unchecked warning
 }
}

The FunctionalInterface Annotation Type
An interface with one abstract method declaration is known as a functional interface. Previously, a functional
interface was known as SAM (Single Abstract Method) type. The compiler verifies all interfaces annotated with a
@FunctionalInterface that the interfaces really contain one and only one abstract method. A compile-time error is
generated if the interfaces annotated with this annotation are not functional interfaces. It is also a compile-time
error to use this annotation on classes, annotation types, and enums. The FunctionalInterface annotation type
is a marker interface.

Chapter 1 ■ annotations

29

The following declaration of the Runner interface uses a @FunctionalInterface annotation. The interface
declaration will compile fine.

@FunctionalInterface
public interface Runner {
 void run();
}

The following declaration of the Job interface uses a @FunctionalInterface annotation, which will generate
a compile-time error because the Job interface declares two abstract methods, and therefore it is not a functional
interface.

@FunctionalInterface
public interface Job {
 void run();
 void abort();
}

The following declaration of the Test class uses a @FunctionalInterface annotation, which will generate a
compile-time error because a @FunctionalInterface annotation can only be used on interfaces.

@FunctionalInterface
public class Test {
 public void test() {
 // Code goes here
 }
}

Tip ■ an interface with only one abstract method is always a functional interface whether it is annotated with a
@FunctionalInterface annotation or not. Use of the annotation instructs the compiler to verify the fact that the
interface is really a functional interface.

Annotating a Java Package
Annotating program elements such as classes and fields are intuitive, as you annotate them when they are declared.
How do you annotate a package? A package declaration appears as part of a top-level type declaration. Further, the
same package declaration occurs multiple times at different places. The question arises: how and where do you
annotate a package declaration?

You need to create a file, which should be named package-info.java, and place the annotated package declaration
in it. Listing 1-17 shows the contents of the package-info.java file. When you compile the package-info.java file,
a class file will be created.

Listing 1-17. Contents of a package-info.java File

// package-info.java
@Version(major=1, minor=0)
package com.jdojo.annotation;

Chapter 1 ■ annotations

30

You may need some import statement to import annotation types or you can use the fully qualified names of the
annotation types in the package-info.java file. Even though the import statement appears after the package declaration,
it should be okay to use the imported types. You can have contents like the following in a package-info.java file:

// package-info.java
@com.jdojo.myannotations.Author("John Jacobs")
@Reviewer("Wally Inman")
package com.jdojo.annotation;

import com.jdojo.myannotations.Reviewer;

Accessing Annotations at Runtime
Accessing annotation on a program element is easy. Annotations on a program element are Java objects. All you need
to know is how to get the reference of objects of an annotation type at runtime. Program elements that let you access
their annotations implement the java.lang.reflect.AnnotatedElement interface. There are several methods in the
AnnotatedElement interface that let you access annotations of a program element. The methods in this interface let
you retrieve all annotations on a program element, all declared annotations on a program element, and annotations
on a program element of a specified type. I will show some examples of using those methods shortly. The following
classes implement the AnnotatedElement interface:

•	 java.lang.Class

•	 java.lang.reflect.Executable

•	 java.lang.reflect.Constructor

•	 java.lang.reflect.Field

•	 java.lang.reflect.Method

•	 java.lang.reflect.Parameter

•	 java.lang.Package

•	 java.lang.reflect.AccessibleObject

Methods of the AnnotatedElement interface are used to access annotation on the above-listed types of objects.

Caution ■ it is very important to note that an annotation type must be annotated with the Retention meta-annotation
with the retention policy of runtime to access it at runtime. if a program element has multiple annotations, you would be
able to access only annotations, which have runtime as their retention policy.

Suppose you have a Test class and you want to print all its annotations. The following snippet of code will print
all annotations on the class declaration of the Test class:

// Get the class object reference
Class<Test> c = Test.class;

Chapter 1 ■ annotations

31

// Get all annotations on the class declaration
Annotation[] allAnns = c.getAnnotations();
System.out.println("Annotation count: " + allAnns.length);

// Print all annotations
for (Annotation ann : allAnns) {
 System.out.println(ann);
}

The toString() method of the Annotation interface returns the string representation of an annotation. Suppose
you want to print the Version annotation on the Test class. You can do so as follows. The following code shows that
you can use the major() and minor() methods. It also shows that you can declare a variable of an annotation type
(e.g. Version v), which can refer to an instance of that annotation type. The instances of an annotation type are
created by the Java runtime. You never create an instance of an annotation type using the new operator.

Class<Test> c = Test.class;

// Get the instance of the Version annotation of Test class
Version v = c.getAnnotation(Version.class);
if (v == null) {
 System.out.println("Version annotation is not present.");
}
else {
 int major = v.major();
 int minor = v.minor();
 System.out.println("Version: major=" + major + ", minor=" + minor);
}

You will use the Version and Deprecated annotation types to annotate your program elements, and access those
annotations at runtime. You will also annotate a package declaration and a method declaration. You will use the code
for the Version annotation type as listed in Listing 1-18. Note that it uses the @Retention(RetentionPolicy.RUNTIME)
annotation, which is needed to read its instances at runtime.

Listing 1-18. A Version Annotation Type

// Version.java
package com.jdojo.annotation;

import java.lang.annotation.Documented;
import java.lang.annotation.Target;
import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;

@Target({ElementType.TYPE, ElementType.CONSTRUCTOR, ElementType.METHOD, ElementType.PACKAGE})
@Retention(RetentionPolicy.RUNTIME)
@Documented
public @interface Version {
 int major();
 int minor();
}

Chapter 1 ■ annotations

32

Listing 1-19 shows the code that you need to save in a package-info.java file and compile it along with other
programs. It annotates the com.jdojo.annotation package. Listing 1-20 has the code for a class for demonstration
purpose that has some annotations. Listing 1-21 is the program that demonstrates how to access annotations at
runtime. Its output shows that you are able to read all annotations used in the AccessAnnotation class successfully.
The printAnnotations() method accesses the annotations. It accepts a parameter of the AnnotatedElement type and
prints all annotations of its parameter. If the annotation is of the Version annotation type, it prints the values for its
major and minor versions.

Listing 1-19. Contents of package-info.java File

// package-info.java
@Version(major=1, minor=0)
package com.jdojo.annotation;

Listing 1-20. AccessAnnotation Class Has Some Annotations, Which Will Be Accessed at Runtime

// AccessAnnotation.java
package com.jdojo.annotation;

@Version(major=1, minor=0)
public class AccessAnnotation {
 @Version(major=1, minor=1)
 public void testMethod1() {
 // Code goes here
 }

 @Version(major=1, minor=2)
 @Deprecated
 public void testMethod2() {
 // Code goes here
 }
}

Listing 1-21. Using the AccessAnnotationTest Class to Access Annotations

// AccessAnnotationTest.java
package com.jdojo.annotation;

import java.lang.annotation.Annotation;
import java.lang.reflect.AnnotatedElement;
import java.lang.reflect.Method;

public class AccessAnnotationTest {
 public static void main(String[] args) {
 // Read annotation of class declaration
 Class<AccessAnnotation> c = AccessAnnotation.class;
 System.out.println("Annotations for class:" + c.getName());
 printAnnotations(c);

 // Read annotation of package declaration
 Package p = c.getPackage();
 System.out.println("Annotations for package:" + p.getName());
 printAnnotations(p);

Chapter 1 ■ annotations

33

 // Read annotation of method declaration
 System.out.println("Method annotations:");
 Method[] m = c.getDeclaredMethods();
 for (int i = 0; i < m.length; i++) {
 System.out.println("Annotations for method:" + m[i].getName());
 printAnnotations(m[i]);
 }
 }

 public static void printAnnotations(AnnotatedElement programElement) {
 Annotation[] annList = programElement.getAnnotations();
 for (int i = 0; i < annList.length; i++) {
 System.out.println(annList[i]);
 if (annList[i] instanceof Version) {
 Version v = (Version)annList[i];
 int major = v.major();
 int minor = v.minor();
 System.out.println("Found Version annotation: " +
 "major =" + major + ", minor=" + minor);
 }
 }
 System.out.println();
 }
}

Annotations for class:com.jdojo.annotation.AccessAnnotation
@com.jdojo.annotation.Version(major=1, minor=0)
Found Version annotation: major =1, minor=0

Annotations for package:com.jdojo.annotation
@com.jdojo.annotation.Version(major=1, minor=0)
Found Version annotation: major =1, minor=0

Method annotations:
Annotations for method:testMethod1
@com.jdojo.annotation.Version(major=1, minor=1)
Found Version annotation: major =1, minor=1

Annotations for method:testMethod2
@com.jdojo.annotation.Version(major=1, minor=2)
Found Version annotation: major =1, minor=2
@java.lang.Deprecated()

Accessing instances of a repeatable annotation is a little different. Recall that a repeatable annotation has

a companion containing an annotation type. For example, you declared a ChangeLogs annotation type that is a
containing annotation type for the ChangeLog repeatable annotation type. You can access repeated annotations using
either the annotation type or the containing annotation type. Use the getAnnotationsByType() method passing it the
class reference of the repeatable annotation type to get the instances of the repeatable annotation in an array. Use the
getAnnotation() method passing it the class reference of the containing annotation type to get the instances of the
repeatable annotation as an instance of its containing annotation type.

Chapter 1 ■ annotations

34

Listing 1-22 contains the code for a RepeatableAnnTest class. The class declaration has been annotated with the
ChangeLog annotation twice. The main() method accesses the repeated annotations on the class declaration using the
above discussed both methods.

Listing 1-22. Accessing Instances of Repeatable Annotations at Runtime

// RepeatableAnnTest.java
package com.jdojo.annotation;

@ChangeLog(date = "02/01/2014", comments = "Declared the class")
@ChangeLog(date = "02/22/2014", comments = "Added the main() method")
public class RepeatableAnnTest {
 public static void main(String[] args) {
 Class<RepeatableAnnTest> mainClass = RepeatableAnnTest.class;
 Class<ChangeLog> annClass = ChangeLog.class;

 // Access annotations using the ChangeLog type
 System.out.println("Using the ChangeLog type...");
 ChangeLog[] annList = mainClass.getAnnotationsByType(ChangeLog.class);
 for (ChangeLog log : annList) {
 System.out.println("Date=" + log.date() +
 ", Comments=" + log.comments());
 }

 // Access annotations using the ChangeLogs containing annotation type
 System.out.println("\nUsing the ChangeLogs type...");
 Class<ChangeLogs> containingAnnClass = ChangeLogs.class;
 ChangeLogs logs = mainClass.getAnnotation(containingAnnClass);
 for (ChangeLog log : logs.value()) {
 System.out.println("Date=" + log.date() +
 ", Comments=" + log.comments());
 }
 }
}

Using the ChangeLog type...
Date=02/01/2014, Comments=Declared the class
Date=02/22/2014, Comments=Added the main() method

Using the ChangeLogs type...
Date=02/01/2014, Comments=Declared the class
Date=02/22/2014, Comments=Added the main() method

Evolving Annotation Types
An annotation type can evolve without breaking the existing code that uses it. If you add a new element to an
annotation type, you need supply its default value. All existing instances of the annotation will use the default value
for the new elements. If you add a new element to an existing annotation type without specifying a default value for
the element, the code that uses the annotation will break.

Chapter 1 ■ annotations

35

Annotation Processing at Source Code Level
This section is for experienced programmers. You may skip this section if you are learning Java for the first time.

This section discusses in detail how to develop annotation processors to process annotation at the source
code level when you compile Java programs. The University of Washington has developed a Checker Framework
that contains a lot of annotations to be used in programs. It also ships with many annotation processors. You can
download the Checker Framework from http://types.cs.washington.edu/checker-framework. It contains a
tutorial for using different types of processors and a tutorial on how to create your own processor.

Java lets you process annotations at runtime as well as at compile time. You have already seen how to process
annotations at runtime. Now, I will discuss, in brief, how to process annotations at compile time (or at source code level).

Why would you want to process annotations at compile time? Processing annotations at compile time opens up
a wide variety of possibilities that can help Java programmers in during development of applications. It also helps
developers of Java tools immensely. For example, boilerplate code and configuration files can be generated based on
annotations in the source code; custom annotation-based rules can be validated at compile time, etc.

Annotation processing at compile time is a two-step process. First, you need to write a custom annotation
processor. Second, you need to use the javac command line utility tool. You need to pass your custom annotation
processor to the javac compiler using the –processor option. You can pass multiple custom annotation processors to
javac, separating them by a comma. The following command compiles the Java source file, MySourceFile.java, and
passes two custom annotation processors, MyProcessor1 and MyProcessor2:

javac –processor MyProcessor1,MyProcessor2 MySourceFile.java

Using –proc option, the javac command-line utility lets you specify if you want to process annotation and/
or compile the source files. You can use –proc option as –proc:none or –proc:only. The –proc:none option does
not perform annotation processing. It only compiles source files. The –proc:only option performs only annotation
processing and skips the source files compilation. If the –proc:none and the –processor options are specified in the
same command, the –processor option is ignored. The following command processes annotations in the source file
MySourceFile.java using custom processors: MyProcessor1 and MyProcessor2. It does not compile the source code
in the MySourceFile.java file.

javac –proc:only –processor MyProcessor1,MyProcessor2 MySourceFile.java

To see the compile-time annotation processing in action, you must write an annotation processor using the
classes in the javax.annotation.processing package.

While writing a custom annotation processor, you often need to access the elements from the source code,
for example, the name of a class and its modifiers, the name of a method and its return type, etc. You will need to
use classes in the javax.lang.model package and its subpackages to work with the elements of the source code.
In your example, you will write an annotation processor for your @Version annotation. It will validate all @Version
annotations that are used in the source code to make sure the major and minor values for a Version are always zero or
greater than zero. For example, if @Version(major=-1, minor=0) is used in source code, your annotation processor
will print an error message because the major value for the version is negative.

An annotation processor is an object of a class, which implements the Processor interface. The
AbstractProcessor class is an abstract annotation processor, which provides a default implementation for
all methods of the Processor interface, except an implementation for the process() method. The default
implementation in the AbstractProcessor class is fine in most of the circumstances. To create your own processor,
you need to inherit your processor class from the AbstractProcessor class and provide an implementation for the
process() method. If the AbstractProcessor class does not suit your need, you can create your own processor class,
which implements the Processor interface. Let’s call your processor class VersionProcessor, which inherits the
AbstractProcessor class, as shown:

public class VersionProcessor extends AbstractProcessor {
 // Code goes here
}

http://types.cs.washington.edu/checker-framework

Chapter 1 ■ annotations

36

The annotation processor object is instantiated by the compiler using a no-args constructor. You must have a
no-args constructor for your processor class, so that the compiler can instantiate it. The default constructor for your
VersionProcessor class will meet this requirement.

The next step is to add two pieces of information to the processor class. The first one is about what kind of
annotations processing are supported by this processor. You can specify the supported annotation type using
@SupportedAnnotationTypes annotation at class level. The following snippet of code shows that the VersionProcessor
supports processing of com.jdojo.annotation.Version annotation type:

@SupportedAnnotationTypes({"com.jdojo.annotation.Version"})
public class VersionProcessor extends AbstractProcessor {
 // Code goes here
}

You can use an asterisk (*) by itself or as part of the annotation name of the supported annotation types. The
asterisk works as a wild card. For example, "com.jdojo.*" means any annotation types whose names start with
"com.jdojo.". An asterisk only ("*") means all annotation types. Note that when an asterisk is used as part of
the name, the name must be of the form PartialName.*. For example, "com*" and "com.*jdojo" are invalid uses
of an asterisk in the supported annotation types. You can pass multiple supported annotation types using the
SupportedAnnotationTypes annotation. The following snippet of code shows that the processor supports processing
for the com.jdojo.Ann1 annotation and any annotations whose name begins with com.jdojo.annotation:

@SupportedAnnotationTypes({"com.jdojo.Ann1", "com.jdojo.annotation.*"})

You need to specify the latest source code version that is supported by your processor using a
@SupportedSourceVersion annotation. The following snippet of code specifies the source code version 8 as the
supported source code version for the VersionProcessor class:

@SupportedAnnotationTypes({"com.jdojo.annotation.Version"})
@SupportedSourceVersion(SourceVersion.RELEASE_8)
public class VersionProcessor extends AbstractProcessor {
 // Code goes here
}

The next step is to provide the implementation for the process() method in the processor class. Annotation
processing is performed in rounds. An instance of the RoundEnvironment interface represents a round. The javac
compiler calls the process() method of your processor by passing all annotations that the processor declares to
support and a RoundEnvironment object. The return type of the process() method is boolean. If it returns true, the
annotations passed to it are considered to be claimed by the processor. The claimed annotations are not passed to
other processors. If it returns false, the annotations passed to it are considered as not claimed and other processor
will be asked to process them. The following snippet of code shows the skeleton of the process() method:

public boolean process(Set<? extends TypeElement> annotations, RoundEnvironment roundEnv) {
 // The processor code goes here
}

The code you write inside the process() method depends on your requirements. In your case, you want to look
at the major and minor values for each @Version annotation in the source code. If either of them is less than zero, you
want to print an error message. To process each Version annotation, you will iterate through all Version annotation
instances passed to the process() method as

for (TypeElement currentAnnotation : annotations) {
 // Code to validate each Version annotation goes here
}

Chapter 1 ■ annotations

37

You can get the fully qualified name of an annotation using the getQualifiedName() method of the TypeElement
interface.

Name qualifiedName = currentAnnotation.getQualifiedName();

// Check if it is a Version annotation
if (qualifiedName.contentEquals("com.jdojo.annotation.Version")) {
 // Get Version annotation values to validate
}

Once you are sure that you have a Version annotation, you need to get all its instances from the source code. To
get information from the source code, you need to use the RoundEnvironment object. The following snippet of code
will get all elements of the source code (e.g. classes, methods, constructors, etc.) that are annotated with a Version
annotation:

Set<? extends Element> annotatedElements = roundEnv.getElementsAnnotatedWith(currentAnnotation);

At this point, you need to iterate through all elements that are annotated with a Version annotation; get the
instance of the Version annotation present on them; and validate the values of the major and minor elements. You
can perform this logic as follows:

for (Element element : annotatedElements) {
 Version v = element.getAnnotation(Version.class);
 int major = v.major();
 int minor = v.minor();
 if (major < 0 || minor < 0) {
 // Print the error message here
 }
}

You can print the error message using the printMessage() method of the Messager object. The processingEnv
is an instance variable defined in the AbstractProcessor class that you can use inside your processor to get the
Messager object reference, as shown below. If you pass the source code element’s reference to the printMessage()
method, your message will be formatted to include the source code file name and the line number in the source code
for that element. The first argument to the printMessage() method indicates the type of the message. You can use
Kind.NOTE and Kind.WARNING as the first argument to print a note and warning, respectively.

String errorMsg = "Version cannot be negative. " +
 "major=" + major + " minor=" + minor;
Messager messager = this.processingEnv.getMessager();
messager.printMessage(Kind.ERROR, errorMsg, element);

Finally, you need to return true or false from the process() method. If a processor returns true, it means it
claimed all the annotations that were passed to it. Otherwise, those annotations are considered unclaimed and they
will be passed to other processors. Listing 1-23 has the complete code for the VersionProcessor class.

Chapter 1 ■ annotations

38

Listing 1-23. An Annotation Processor to Process Version Annotations

// VersionProcessor.java
package com.jdojo.annotation;

import java.util.Set;
import javax.annotation.processing.AbstractProcessor;
import javax.annotation.processing.Messager;
import javax.annotation.processing.RoundEnvironment;
import javax.annotation.processing.SupportedAnnotationTypes;
import javax.annotation.processing.SupportedSourceVersion;
import javax.lang.model.SourceVersion;
import javax.lang.model.element.Element;
import javax.lang.model.element.Name;
import javax.lang.model.element.TypeElement;
import javax.tools.Diagnostic.Kind;

@SupportedAnnotationTypes({"com.jdojo.annotation.Version"})
@SupportedSourceVersion(SourceVersion.RELEASE_8)
public class VersionProcessor extends AbstractProcessor {
 // A no-args constructor is required for an annotation processor
 public VersionProcessor() {
 }

 public boolean process(Set<? extends TypeElement> annotations,
 RoundEnvironment roundEnv) {

 // Process all annotations
 for (TypeElement currentAnnotation: annotations) {
 Name qualifiedName = currentAnnotation.getQualifiedName();

 // check if it is a Version annotation
 if (qualifiedName.contentEquals("com.jdojo.annotation.Version")) {
 // Look at all elements that have Version annotations
 Set<? extends Element> annotatedElements;
 annotatedElements = roundEnv.getElementsAnnotatedWith(
 currentAnnotation);
 for (Element element: annotatedElements) {
 Version v = element.getAnnotation(Version.class);
 int major = v.major();
 int minor = v.minor();
 if (major < 0 || minor < 0) {
 // Print the error message
 String errorMsg = "Version cannot" +
 " be negative." +
 " major=" + major +
 " minor=" + minor;

 Messager messager =
 this.processingEnv.getMessager();

Chapter 1 ■ annotations

39

 messager.printMessage(Kind.ERROR,
 errorMsg, element);
 }
 }
 }
 }

 return true;
 }
}

Now you have an annotation processor. It is time to see it in action. You need to have a source code that uses
invalid values for the major and minor elements in the Version annotation. The VersionProcessorTest class in
Listing 1-24 uses the Version annotation three times. It uses negative values for major and minor elements for the
class itself and for the method m2(). The processor should catch these two errors when you compile the source code
for the VersionProcessorTest class.

Listing 1-24. A Test Class to Test VersionProcessor

// VersionProcessorTest.java
package com.jdojo.annotation;

import java.lang.annotation.Annotation;

@Version(major = -1, minor = 2)
public class VersionProcessorTest {
 @Version(major = 1, minor = 1)
 public void m1() {
 }

 @Version(major = -2, minor = 1)
 public void m2() {
 }
}

To see the processor in action, you need to run the following command. Make sure the VersionProcessor class is
available in the CLASSPATH.

javac -processor com.jdojo.annotation.VersionProcessor VersionProcessorTest.java

The output of the above command is as follows. The output displays two errors with the source file name and the
line number at which errors were found in the source file.

VersionProcessorTest.java:5: error: Version cannot be negative. major=-1 minor=2
public class VersionProcessorTest {
 ^
VersionProcessorTest.java:11: error: Version cannot be negative. major=-2 minor=1
 public void m2() {
 ^
2 errors

Chapter 1 ■ annotations

40

Summary
Annotations are types in Java. They are used to associate information to the declarations of program elements or type
uses in a Java program. Using annotations does not change the semantics of the program.

Annotations can be available in the source code only, in the class files, or at runtime. Their availability is
controlled by the retention policy that is specified when the annotation types are declared.

There are two types of annotations: regular annotation or simply annotations, and meta-annotations.
Annotations are used to annotate program elements whereas meta-annotations are used to annotate other
annotations. When you declare an annotation, you can specify its targets that are the types of program elements that it
can annotate. Prior to Java 8, annotations were not allowed to be repeated on the same element. Java 8 lets you create
a repeatable annotation.

Java library contains many annotation types that you can use in your Java programs; Deprecated, Override,
SuppressWarnings, FunctionalInterface, etc. are a few of the commonly used annotation types. They have compiler
support, which means that the compiler generates errors if the program elements annotated with these annotations
do not adhere to specific rules.

Java lets you write annotation processors that can be plugged into the Java compiler to process annotations when
Java programs are compiled. You can write processors to enforce custom rules based on annotation.

41

Chapter 2

Inner Classes

In this chapter, you will learn

What inner classes are•	

How to declare inner classes•	

How to declare member, local, and anonymous inner classes•	

How to create objects of inner classes•	

What Is an Inner Class?
You have worked with classes that are members of a package. A class, which is a member of a package, is known as a
top-level class. For example, Listing 2-1 shows a top-level class named TopLevel.

Listing 2-1. An Example of a Top-Level Class

// TopLevel.java
package com.jdojo.innerclasses;

public class TopLevel {
 private int value = 101;

 public int getValue() {
 return value;
 }

 public void setValue (int value) {
 this.value = value;
 }
}

The TopLevel class is a member of the package com.jdojo.innerclasses. The class has three members:

One instance variable: •	 value

Two methods: •	 getValue() and setValue()

Chapter 2 ■ Inner Classes

42

A class can also be declared within another class. This type of class is called an inner class. If the class
declared within another class is explicitly or implicitly declared static, it is called a nested class, not an inner
class. The class that contains the inner class is called an enclosing class or an outer class. Consider the following
snippet of code:

package com.jdojo.innerclasses;

public class Outer {
 public class Inner {
 // Members of the Inner class go here
 }
 // Other members of the Outer class go here
}

The Outer class is a top-level class. It is a member of the com.jdojo.innerclasses package. The Inner class is
an inner class. It is a member of the Outer class. The Outer class is the enclosing (or outer) class for the Inner class.
An inner class can be the enclosing class for another inner class. There are no limits on the levels of nesting of inner
classes.

An instance of an inner class can only exist within an instance of its enclosing class. That is, you must have an
instance of the enclosing class before you can create an instance of an inner class. This is useful in enforcing the rule
that one object cannot exist without the other. For example, a computer must exist before a processor can exist; an
organization must exist before a president for that organization exists. In such cases, Processor and President can be
defined as inner classes whereas Computer and Organization are their enclosing classes, respectively. An inner class
has full access to all the members, including private members, of its enclosing class.

Java 1.0 did not support inner classes. They were added to Java 1.1 without any changes in the way the JVM used
to handle the class files. How was it possible to add a new construct like an inner class without affecting the JVM?
Inner classes have been implemented fully with the help of the compiler. The compiler generates a separate class file
for each inner class in the compilation unit. The class files for inner classes have the same format as the class files for
the top-level classes. Therefore, the JVM treats the class files for an inner and top-level classes the same. However, the
compiler has to do a lot of behind-the-scenes work to implement inner classes. I will discuss some of the work done
by the compiler to implement inner classes.

You may ask whether it is possible to achieve everything in Java that is facilitated by inner classes without using
them. To some extent, the answer is yes. You can implement most of the functionalities, if not all, provided by inner
classes without using the inner classes. The compiler generates additional code for an inner class. Instead of using
inner class constructs and letting the compiler generate the additional code for you, you can write the same code
yourself. This idea sounds easy. However, who wants to reinvent the wheel?

Advantages of Using Inner Classes
The following are some of the advantages of inner classes. Subsequent sections in this chapter explain all of the
advantages of inner classes with examples.

They let you define classes near other classes that will use them. For example, a computer •	
will use a processor, so it is better to define a Processor class as an inner class of the
Computer class.

They provide an additional namespace to manage class structures. For example, before •	
the introduction of inner classes, a class can only be a member of a package. With the
introduction of inner classes, top-level classes, which can contain inner classes, provide an
additional namespace.

Chapter 2 ■ Inner Classes

43

Some design patterns are easier to implement using inner classes. For example, the •	
adaptor pattern, enumeration pattern, and state pattern can be easily implemented using
inner classes.

Implementing a callback mechanism is elegant and convenient using inner classes. Lambda •	
expressions in Java 8 offer a better and more concise way of implementing callbacks in Java.
I will discuss lambda expressions in Chapter 5.

It helps implement closures in Java.•	

Programmers can have a flavor of multiple inheritance of classes using inner classes. An inner •	
class can inherit another class. Thus, the inner class has access to its enclosing class members
as well as members of its superclass. Note that accessing members of two or more classes is
one of the aims of multiple inheritance, which can be achieved using inner classes. However,
just having access to members of two classes is not multiple inheritance in a true sense.

Types of Inner Classes
You can define an inner class anywhere inside a class where you can write a Java statement. There are three types of
inner classes. The type of inner class depends on the location and the way it is declared.

Member inner class•	

Local inner class•	

Anonymous inner class•	

Member Inner Class
A member inner class is declared inside a class the same way a member field or a member method for the class is
declared. It can be declared as public, private, protected, or package-level. The instance of a member inner class
may exist only within the instance of its enclosing class. Let’s consider an example of a member inner class shown
in Listing 2-2.

Listing 2-2. Tire Is a Member Inner Class of the Car Class

// Car.java
package com.jdojo.innerclasses;

public class Car {
 // A member variable for the Car class
 private int year;

 // A member inner class named Tire
 public class Tire {
 // A member variable for the Tire class
 private double radius;

 // Constructor for the Tire class
 public Tire (double radius) {
 this.radius = radius;
 }

Chapter 2 ■ Inner Classes

44

 // A member method for the Tire class
 public double getRadius() {
 return radius;
 }
 } // Member inner class declaration ends here

 // A constructor for the Car class
 public Car(int year) {
 this.year = year;
 }

 // A member method for the Car class
 public int getYear() {
 return year;
 }
}

In Listing 2-2, Car is a top-level class and Tire is a member inner class of the Car class. The fully qualified name for
the Car class is com.jdojo.innerclasses.Car. The fully qualified name of the Tire class is com.jdojo.innerclasses.
Car.Tire. The Tire inner class has been declared public. That is, its name can be used outside the Car class. The
constructor for the Tire class is also declared public. This means you can create an object of the Tire class outside the
Car class. Since Tire is a member inner class of the Car class, you must have an object of the Car class before you can
create an object of the Tire class. The new operator is used differently to create an object of a member inner class. The
“Creating Objects of Inner Class” section in this chapter explains how to create objects of an inner member class.

Local Inner Class
A local inner class is declared inside a block. Its scope is limited to the block in which it is declared. Since its scope
is always limited to its enclosing block, its declaration cannot use any access modifiers such as public, private,
or protected. Typically, a local inner class is defined inside a method. However, it can also be defined inside static
initializers, non-static initializers, and constructors. Listing 2-3 shows an example of a local inner class.

Listing 2-3. An Example of a Local Inner Class

// TitleList.java
package com.jdojo.innerclasses;

import java.util.ArrayList;
import java.util.Iterator;

public class TitleList {
 private ArrayList<String> titleList = new ArrayList<>();

 public void addTitle (String title) {
 titleList.add(title);
 }

 public void removeTitle(String title) {
 titleList.remove(title);
 }

Chapter 2 ■ Inner Classes

45

 public Iterator<String> titleIterator() {
 // A local inner class - TitleIterator
 class TitleIterator implements Iterator<String> {
 int count = 0;

 @Override
 public boolean hasNext() {
 return (count < titleList.size());
 }

 @Override
 public String next() {
 return titleList.get(count++);
 }
 } // Local Inner Class TitleIterator ends here

 // Create an object of the local inner class and return the reference
 TitleIterator titleIterator = new TitleIterator();
 return titleIterator;
 }
}

A TitleList object can hold a list of book titles. The addTitle() method is used to add a title to the list. The
removeTitle() method is used to remove a title from the list. The titleIterator() method returns an Iterator for
the title list. The titleIterator() method defines a local inner class called TitleIterator, which implements the
Iterator interface. Note that the TitleIterator class uses the private instance variable titleList of its enclosing
class. At the end, the titleIterator() method creates an object of the TitleIterator class and returns the object’s
reference. Listing 2-4 shows how to use the titleIterator() method of the TitleList class.

Listing 2-4. Using a Local Inner Class

// TitleListTest.java
package com.jdojo.innerclasses;

import java.util.Iterator;

public class TitleListTest {
 public static void main(String[] args) {
 TitleList tl = new TitleList();

 // Add two titles
 tl.addTitle("Beginning Java 8");
 tl.addTitle("Scripting in Java");

 // Get the iterator
 Iterator iterator = tl.titleIterator();

 // Print all titles using the iterator
 while (iterator.hasNext()) {
 System.out.println(iterator.next());
 }
 }
}

Chapter 2 ■ Inner Classes

46

Beginning Java 8
Scripting in Java

The fact that the scope of a local inner class is limited to its enclosing block has some implications on how to
declare a local inner class. Consider the following class declaration:

package com.jdojo.innerclasses;

public class SomeTopLevelClass {
 // Some code for SomeTopLevelClass goes here

 public void someMethod() {
 class SomeLocalInnerClass {
 // Some code for SomeLocalInnerClass goes here
 }

 // SomeLocalInnerClass can only be used here
 }
}

SomeTopLevelClass is a top-level class. The someMethod() method of SomeTopLevelClass declares the
SomeLocalInnerClass local inner class. Note that the name of the local inner class, SomeLocalInnerClass, can only
be used inside the someMethod() method. This implies that objects of the SomeLocalInnerClass can only be created
and used inside the someMethod() method. This limits the use of a local inner class to only being used inside its
enclosing block—in your case the someMethod() method. At this point, it may seem that a local inner class is not
very useful. However, Listing 2-4 demonstrated that the code for the local inner class TitleIterator can be called
from another class, TitleListTest. This was possible because the local inner class TitleIterator implemented the
Iterator interface.

To use a local inner class outside its enclosing block, the local inner class must do one or both of the following:

Implement a public interface•	

Inherit from another public class and override some of its superclass methods•	

The name of the interface or another class must be available outside the enclosing block that defines the local
inner class. Listing 2-3 and Listing 2-4 illustrate the first case where a local inner class implements an interface.
Listing 2-5 and Listing 2-6 illustrate the second case, where a local inner class inherits from another public class.
Listing 2-7 provides a test class to test a local inner class. The example is trivial. However, it illustrates the concept
of how to use a local inner class by inheriting it from another class. Note that you may get a different output when
you run the program in Listing 2-7.

Listing 2-5. Declaring a Top-Level Class, Which Is Used as the Superclass for a Local Class

// RandomInteger.java
package com.jdojo.innerclasses;

import java.util.Random;

public class RandomInteger {
 protected Random rand = new Random();

Chapter 2 ■ Inner Classes

47

 public int getValue() {
 return rand.nextInt();
 }
}

Listing 2-6. A Local Inner Class That Inherits from Another Class

// RandomLocal.java
package com.jdojo.innerclasses;

public class RandomLocal {
 public RandomInteger getRandomInteger() {
 // Local inner class that inherits RandomInteger class
 class RandomIntegerLocal extends RandomInteger {
 @Override
 public int getValue() {
 // Get two random integers and return the average
 // ignoring the fraction part
 long n1 = rand.nextInt();
 long n2 = rand.nextInt();

 int value = (int) ((n1 + n2)/2);
 return value;
 }
 }

 return new RandomIntegerLocal();
 } // End of getRandomInteger() method
}

Listing 2-7. Testing a Local Inner Class

// LocalInnerTest.java
package com.jdojo.innerclasses;

public class LocalInnerTest {
 public static void main(String[] args) {
 // Generate random integers using the RandomInteger class
 RandomInteger rTop = new RandomInteger();
 System.out.println("Random integers using Top-level class:");
 System.out.println(rTop.getValue());
 System.out.println(rTop.getValue());
 System.out.println(rTop.getValue());

 // Generate random integers using the RandomIntegerLocal class
 RandomLocal local = new RandomLocal();
 RandomInteger rLocal = local.getRandomInteger();

Chapter 2 ■ Inner Classes

48

 System.out.println("\nRandom integers using local inner class:");
 System.out.println(rLocal.getValue());
 System.out.println(rLocal.getValue());
 System.out.println(rLocal.getValue());
 }
}

Random integers using Top-level class:
13145674
-152214550
2023137461

Random integers using local inner class:
984022582
-948114876
1226102834

The RandomInteger class contains a getValue() method. The only purpose of the RandomInteger class is to get a

random integer using its getValue() method. The RandomLocal class is another class, which has a getRandomInteger()
method, which declares a local inner class called RandomIntegerLocal, which inherits the RandomInteger class. The
RandomIntegerLocal class overrides its ancestor’s getValue() method. The overridden version of the getValue()
method generates two random integers. It returns the average of the two integers. The LocalInnerTest class illustrates
the use of the two classes. The name RandomIntegerLocal is not available outside the method in which it is declared
because it is a local inner class. Two things are worth noting.

The •	 getRandomInteger() method of the RandomLocal class declares that it returns an object
of the RandomInteger class, not the RandomIntegerLocal class. Inside the method it is allowed
to return an object of the RandomIntegerLocal class because the RandomIntegerLocal local
inner class inherits from the RandomInteger class.

In the •	 LocalInnerTest class, you declared the rLocal reference variable of the RandomInteger type.

// Generate random integers using RandomIntegerLocal class
RandomLocal local = new RandomLocal();
RandomInteger rLocal = local.getRandomInteger();

However, at runtime, rLocal will receive a reference of the RandomIntegerLocal class. Since
getValue() method is overridden in the local inner class, the rLocal object will generate
random integers differently.

Anonymous Inner Class
An anonymous inner class is the same as a local inner class with one difference: it does not have a name. Since it does
not have a name, it cannot have a constructor. Recall that a constructor name is the same as the class name.
You may wonder how you can create objects of an anonymous class if it does not have a constructor. An anonymous
class is a one-time class. You define an anonymous class and create its object at the same time. You cannot create
more than one object of an anonymous class. Since anonymous class declaration and its object creation are
interlaced, an anonymous class is always created using the new operator as part of an expression. The general syntax
for creating an anonymous class and its object is as follows:

new <interface-name or class-name> (<argument-list>) {
 // Anonymous class body goes here
}

Chapter 2 ■ Inner Classes

49

The new operator is used to create an instance of the anonymous class. It is followed by either an existing
interface name or an existing class name. Note that the interface name or class name is not the name for the newly
created anonymous class. Rather, it is an existing interface/class name. If an interface name is used, the anonymous
class implements the interface. If a class name is used, the anonymous class inherits from the class.

The <argument-list> is used only if the new operator is followed by a class name. It is left empty if the new
operator is followed by an interface name. If <argument-list> is present, it contains the actual parameter list for
a constructor of the existing class to be invoked. The anonymous class body is written as usual inside braces. The
above syntax can be broken into two for simplicity: the first syntax is used when the anonymous class implements an
interface and the second one is used when it inherits a class.

new Interface() {
 // Anonymous class body goes here
}

and

new Superclass(<argument-list-for-a-superclass-constructor>) {
 // Anonymous class body goes here
}

Anonymous classes are very powerful. However, its syntax is not easy to read and is somewhat unintuitive. The
anonymous class body should be short for better readability. Let’s start with a simple example of an anonymous class.
You will inherit your anonymous class from the Object class, as shown:

new Object() {
 // Anonymous class body goes here
}

This is the simplest anonymous class you can have in Java. It is created and it dies anonymously without making
any noise!

Now you want to print a message when an object of an anonymous class is created. An anonymous class does not
have a constructor. Where do you place the code to print the message? Recall that all instance initializers of a class are
invoked when an object of the class is created. Therefore, you can use an instance initializer to print the message in
your case. The following snippet of code shows your anonymous class with an instance initializer:

new Object() {
 // An instance initializer
 {
 System.out.println ("Hello from an anonymous class.");
 }
}

Listing 2-8 contains the complete code for a simple anonymous class, which prints a message on the standard
output.

Chapter 2 ■ Inner Classes

50

Listing 2-8. An Anonymous Class Example

// HelloAnonymous.java
package com.jdojo.innerclasses;

public class HelloAnonymous {
 public static void main(String[] args) {
 new Object() {
 // An instance initializer
 {
 System.out.println ("Hello from an anonymous class.");
 }
 }; // A semi-colon is necessary to end the statement
 }
}

Hello from an anonymous class.

Since an anonymous inner class is the same as a local class without a class name, you can also implement the

examples in Listing 2-3 and Listing 2-4 by replacing the local inner classes with anonymous inner classes. Listing 2-9
rewrites the code for the TitleList class to use an anonymous class. You will notice the difference in the syntax inside
the titleIterator() method shown in Listing 2-3 and Listing 2-9. When using an anonymous class, it is important
to indent the code properly for better readability. You can test the TitleListWithInnerClass by replacing TitleList
with TitleListWithInnerClass in Listing 2-4 and you will get the same output.

Listing 2-9. The TitleList Class Rewritten Using an Anonymous Class as TitleListWithInnerClass

// TitleListWithInnerClass.java
package com.jdojo.innerclasses;

import java.util.ArrayList;
import java.util.Iterator;

public class TitleListWithInnerClass {
 private ArrayList<String> titleList = new ArrayList<>();

 public void addTitle (String title) {
 titleList.add(title);
 }

 public void removeTitle(String title) {
 titleList.remove(title);
 }

 public Iterator<String> titleIterator() {
 // An anonymous class
 Iterator<String> iterator =
 new Iterator<String> () {
 int count = 0;

Chapter 2 ■ Inner Classes

51

 @Override
 public boolean hasNext() {
 return (count < titleList.size());
 }

 @Override
 public String next() {
 return titleList.get(count++);
 }
 }; // Anonymous inner class ends here

 return iterator;
 }
}

The titleIterator() method of TitleListWithInnerClass has two statements. The first statement creates
an object of an anonymous class and stores the object’s reference in the iterator variable. The second statement
returns the object reference stored in the iterator variable. In such cases, you can combine the two statements
into one statement. The getRandomInteger() method shown in Listing 2-5 can be rewritten using an anonymous
class as follows:

public RandomInteger getRandomInteger() {
 // Anonymous inner class that inherits the RandomInteger class
 return new RandomInteger() {
 public int getValue() {
 // Get two random integers and return
 // the average ignoring the fraction part
 long n1 = rand.nextInt();
 long n2 = rand.nextInt();

 int value = (int)((n1 + n2)/2);
 return value;
 }
 };
}

A static Member Class Is Not an Inner Class
A member class defined within the body of another class may be declared static. The following snippet of code
declares a top-level class A and a static member class B:

package com.jdojo.innerclasses;

public class A {
 // Static member class
 public static class B {
 // Body for class B goes here
 }
}

Chapter 2 ■ Inner Classes

52

A static member class is not an inner class. It is considered a top-level class. It is also called a nested top-level
class. Since it is a top-level class, you do not need an instance of its enclosing class to create its object. An instance of
class A and an instance of class B can exist independently because both are top-level classes. A static member class
can be declared public, protected, package-level, or private to restrict its accessibility outside its enclosing class.

What is the use of a static member class if it is nothing but another top-level class? There are two advantages of
using a static member class:

A static member class can access the static members of its enclosing class including the •	
private static members. In your example, if class A has any static members, those static
members can be accessed inside class B. However, class B cannot access any instance
members of class A because an instance of class B can exist without an instance of class A.

A package acts like a container for top-level classes by providing a namespace. Within a •	
namespace, all entities must have unique names. Top-level classes having static member
classes provide an additional layer of namespaces. A static member class is the direct member
of its enclosing top-level class, not a member of the package in which it is declared. In your
example, class A is a member of the package com.jdojo.innerclasses, whereas class B is a
member of class A. The fully qualified name of class A is com.jdojo.innerclasses.A. The fully
qualified name of class B is com.jdojo.innerclasses.A.B. This way, a top-level class can be
used to group together related classes defined as its static member classes.

An object of a static member class is created the same way as you create an object of a top-level class using the
new operator. To create an object of class B, you write

A.B bReference = new A.B();

Since the simple name of class B is in the scope inside class A, you can use its simple name to create its object
inside class A as

B bReference2 = new B(); // This statement appears inside class A code

You can also use the simple name B outside class A by importing the com.jdojo.innerclasses.A.B class.
However, using the simple name B outside class A is not intuitive. It gives an impression to the reader that class B is a
top-level class, not a nested top-level class. You should use A.B for class B outside class A for better readability.
Listing 2-10 declares two static member classes, Monitor and Keyboard, which have ComputerAccessory as their
enclosing class. Listing 2-11 shows how to create objects of these static member classes.

Listing 2-10. An Example of Declaring Static Member Classes

// ComputerAccessory.java
package com.jdojo.innerclasses;

public class ComputerAccessory {
 // Static member class - Monitor
 public static class Monitor {
 private int size;

 public Monitor(int size) {
 this.size = size;
 }

Chapter 2 ■ Inner Classes

53

 public String toString() {
 return "Monitor - Size:" + this.size + " inch";
 }
 }

 // Static member class - Keyboard
 public static class Keyboard {
 private int keys;

 public Keyboard(int keys) {
 this.keys = keys;
 }

 public String toString() {
 return "Keyboard - Keys:" + this.keys;
 }
 }
}

Listing 2-11. An Example of Using Static Member Classes

// ComputerAccessoryTest.java
package com.jdojo.innerclasses;

public class ComputerAccessoryTest {
 public static void main(String[] args) {
 // Create two monitors
 ComputerAccessory.Monitor m17 = new ComputerAccessory.Monitor(17);
 ComputerAccessory.Monitor m19 = new ComputerAccessory.Monitor(19);

 // Create two Keyboards
 ComputerAccessory.Keyboard k122 = new ComputerAccessory.Keyboard(122);
 ComputerAccessory.Keyboard k142 = new ComputerAccessory.Keyboard(142);

 System.out.println(m17);
 System.out.println(m19);
 System.out.println(k122);
 System.out.println(k142);
 }
}

Monitor - Size:17 inch
Monitor - Size:19 inch
Keyboard - Keys:122
Keyboard - Keys:142

Chapter 2 ■ Inner Classes

54

Creating Objects of Inner Classes
Creating objects of a local inner class, an anonymous class, and a static member class is straightforward. Objects
of a local inner class are created using the new operator inside the block, which declares the class. An object of an
anonymous class is created at the same time the class is declared. A static member class is another type of top-level
class. You create objects of a static member class the same way you create objects of a top-level class.

Note that to have an object of a member inner class, a local inner class, and an anonymous class, you must have
an object of the enclosing class. In the previous examples of local inner classes and anonymous inner classes, you had
placed these classes inside instance methods. You had an instance of the enclosing class on which you called those
instance methods. Therefore, instances of those local inner classes and anonymous inner classes had the instance of
their enclosing classes on which those methods were called. For example, in Listing 2-4, first you created an instance
of TitleList class and you stored its reference in t1 as shown:

TitleList tl = new TitleList();

To get the iterator of t1, you called the titleIterator() method:

Iterator iterator = tl.titleIterator();

The method call t1.titleIterator() creates an instance of the TitleIterator local inner class inside the
titleIterator() method as

TitleIterator titleIterator = new TitleIterator();

Here, titleIterator is an instance of the local inner class and it exists within t1, which is an instance of its
enclosing class. This relationship exists for all inner classes as depicted in Figure 2-1.

t1

titleIterator

An instance of the
enclosing class - TitleList

An instance of the local
inner class - TitleIterator

Figure 2-1. The relationship between an instance of an inner class and an instance of its enclosing class

Note ■ there are situations where an instance of the enclosing class is not required for the existence of an instance
of a local inner class or an anonymous inner class. this happens when local inner classes or anonymous inner classes
are defined inside a static-context, for example, inside a static method or a static initializer. I will discuss these cases
later in this chapter.

Chapter 2 ■ Inner Classes

55

An instance of a member inner class always exists within an instance of its enclosing class. The new operator is
used to create the instance of the member inner class with a slightly different syntax. The general syntax to create an
instance of a member inner class is as follows:

OuterClassReference.new MemberInnerClassConstructor()

Here, OuterClassReference is the reference of the enclosing class followed by a dot that is followed by the new
operator. The member inner class’s constructor call follows the new operator. Let’s revisit the first example of the
member inner class, which is

package com.jdojo.innerclasses;

public class Outer {
 public class Inner {
 }
}

To create an instance of the Inner member inner class, you must first create an instance of its enclosing class Outer.

Outer out = new Outer();

Now, you need to use the new operator on the out reference variable to create an object of the Inner class.

out.new Inner();

To store the reference of the instance of the Inner member inner class in a reference variable, you can write the
following statement:

Outer.Inner in = out.new Inner();

After the new operator, you always use the constructor name, which is the same as the simple class name for the
member inner class. Since the new operator is already qualified with the enclosing instance reference (as in out.new),
the Java compiler figures out the fully qualified name of the enclosing class name automatically. It is a compile-time
error to qualify the inner class constructor with its outer class name while creating an instance of an inner class. The
following statement will result in a compile-time error:

Outer.Inner in = out.new Outer.Inner(); // A compile-time error

Consider the following class declaration with inner classes nested at multiple levels:

package com.jdojo.innerclasses;

public class OuterA {
 public class InnerA {
 public class InnerAA {
 public class InnerAAA {
 }
 }
 }
}

Chapter 2 ■ Inner Classes

56

To create an instance of InnerAAA, you must have an instance of InnerAA. To create an instance of InnerAA, you
must have an instance of InnerA. To create an instance of InnerA, you must have an instance of OuterA. Therefore,
to create an instance of InnerAAA, you must start by creating an instance of OuterA. The important point is that to
create an instance of a member inner class, you must have an instance of its immediate enclosing class. The following
snippet of code illustrates how to create an instance of InnerAAA:

OuterA outa = new OuterA();
OuterA.InnerA ina = outa.new InnerA();
OuterA.InnerA.InnerAA inaa = ina.new InnerAA();
OuterA.InnerA.InnerAA.InnerAAA inaaa = inaa.new InnerAAA();

Listing 2-12 uses the member inner class called Car.Tire from Listing 2-2 to illustrate the steps needed to create
an instance of a member inner class.

Listing 2-12. Creating Objects of a Member Inner Class

// CarTest.java
package com.jdojo.innerclasses;

public class CarTest {
 public static void main(String[] args) {
 // Create an instance of Car with year as 2015
 Car c = new Car(2015);

 // Create a Tire for that car of 9.0 inch radius
 Car.Tire t = c.new Tire(9.0);

 System.out.println("Car's year:" + c.getYear());
 System.out.println("Car's tire radius:" + t.getRadius());
 }
}

Car's year:2015
Car's tire radius:9.0

Accessing Enclosing Class Members
An inner class has access to all instance members, instance fields, and instance methods of its enclosing class.
Listing 2-13 declares a class called Outer and a member inner class called Inner.

Listing 2-13. Accessing Instance Members of the Enclosing Class from an Inner Class

// Outer.java
package com.jdojo.innerclasses;

public class Outer {
 private int value = 1116;

Chapter 2 ■ Inner Classes

57

 // Inner class starts here
 public class Inner {
 public void printValue() {
 System.out.println("Inner: Value = " + value);
 }
 } // Inner class ends here

 // Instance method for the Outer class
 public void printValue() {
 System.out.println("Outer: Value = " + value);
 }

 // Another instance method for the Outer class
 public void setValue(int newValue) {
 this.value = newValue;
 }
}

The Outer class has a private instance variable called value, which is initialized to 1116. It also defines two
instance methods: printValue() and setValue(). The Inner class defines an instance method called printValue(),
which prints the value of the value instance variable of its enclosing class Outer.

Listing 2-14 creates an instance of the Inner class and invokes its printValue() method. The output shows that
the inner class instance can access the instance variable value of its enclosing instance out.

Listing 2-14. Testing an Inner Class That Accesses the Instance Members of its Enclosing Class

// OuterTest.java
package com.jdojo.innerclasses;

public class OuterTest {
 public static void main(String[] args) {
 Outer out = new Outer();
 Outer.Inner in = out.new Inner();

 // Print the value
 out.printValue();
 in.printValue();

 // Set a new value
 out.setValue(828);

 // Print the value
 out.printValue();
 in.printValue();
 }
}

Outer: Value = 1116
Inner: Value = 1116
Outer: Value = 828
Inner: Value = 828

Chapter 2 ■ Inner Classes

58

Let’s make things a little complex by adding an instance variable named value to the inner class. Call the classes
Outer2 and Inner2, as shown in Listing 2-15. Note that the instance variables for both Outer2 and Inner2 classes have
the same name as value.

Listing 2-15. A Member Inner Class Having the Same Instance Variable Name as Its Enclosing Class

// Outer2.java
package com.jdojo.innerclasses;

public class Outer2 {
 // Instance variable for Outer2 class
 private int value = 1116;

 // Inner2 class starts here
 public class Inner2 {
 // Instance variable for Inner2 class
 private int value = 1720;

 public void printValue() {
 System.out.println("Inner2: Value = " + value);
 }
 } // Inner2 class ends here

 // Instance method for Outer class
 public void printValue() {
 System.out.println("Outer2: Value = " + value);
 }

 // Another instance method for Outer2 class
 public void setValue(int newValue) {
 this.value = newValue;
 }
}

If you run the Outer2Test class shown in Listing 2-16, the output is different from the output when you ran the
OuterTest class in Listing 2-14.

Listing 2-16. Testing an Inner Class That Accesses the Instance Members of Its Enclosing Class

// Outer2Test.java
package com.jdojo.innerclasses;

public class Outer2Test {
 public static void main(String[] args) {
 Outer2 out = new Outer2();
 Outer2.Inner2 in = out.new Inner2();

 // Print the value
 out.printValue();
 in.printValue();

Chapter 2 ■ Inner Classes

59

 // Set a new value
 out.setValue(828);

 // Print the value
 out.printValue();
 in.printValue();
 }
}

Outer: Value = 1116
Inner: Value = 1720
Outer: Value = 828
Inner: Value = 1720

Note that the output has changed. When printing the value for the first time, the Outer2 class’s instance prints 1116,

whereas the Inner2 class’s instance prints 1720. After you set the new value using out.setValue(828), the Outer2 class’s
instance prints the new value of 828, whereas Inner2 class’s instance still prints 1720. Why does the output differ?

To fully understand the above output, you need to understand the concept of the current instance and the
keyword this. So far, you understand that the keyword this refers to the current instance of the class. For example,
inside the setValue() instance method of the Outer2 class, this.value refers to the value field of the current
instance of the Outer class.

You need to revise the meaning of the keyword this with respect to the instance of a class. The meaning of the
keyword this that it refers to the current instance is sufficient as long as you deal with only instances of top-level
classes. In dealing with only top-level classes, there is only one current instance in context when a piece of code is
executed. In such cases, you can use the keyword this to qualify the instance member names to refer to the instance
members of the class. You can also qualify the keyword this with the class name to refer to the instance of the class in
context. For example, inside the setValue() method of the Outer2 class, instead of writing this.value, you can also
write Outer2.this.value. If the name of a variable used inside a class in a non-static context is an instance variable
name, the use of the keyword this is implicit. That is, the use of the simple name of a variable inside a class in a
non-static context refers to the instance variable of that class unless that variable hides the name of an instance
variable with the same name in its superclass. The use of the keyword this alone and its use qualified with class name
is illustrated in Listing 2-17. The program in Listing 2-18 tests the uses of the keyword this concept.

Listing 2-17. Use of the Keyword this Qualified with the Class Name

// QualifiedThis.java
package com.jdojo.innerclasses;

public class QualifiedThis {
 // Instance variable - value
 private int value = 828;

 public void printValue() {
 // Print value using simple name of instance variable
 System.out.println("value=" + value);

 // Print value using keyword this
 System.out.println("this.value=" + this.value);

 // Print value using keyword this qualified with the class name
 System.out.println("QualifiedThis.this.value=" + QualifiedThis.this.value);
 }

Chapter 2 ■ Inner Classes

60

 public void printHiddenValue() {
 // Declare a local variable value, which hides the value instance variable
 int value = 131;

 // Print value using simple name, which refers to the local variable - 131
 System.out.println("value=" + value);

 // Print value using keyword this, which refers to the instance
 // variable value with value 828
 System.out.println("this.value=" + this.value);

 // Print value using keyword this qualified with the class name,
 // which refers to instance variable value as 828
 System.out.println("QualifiedThis.this.value=" + QualifiedThis.this.value);
 }
}

Listing 2-18. Testing the Use of the Keyword this Qualified with the Class Name

// QualifiedThisTest.java
package com.jdojo.innerclasses;

public class QualifiedThisTest {
 public static void main(String[] args) {
 QualifiedThis qt = new QualifiedThis();
 System.out.println("printValue():");
 qt.printValue();

 System.out.println("\nprintHiddenValue():");
 qt.printHiddenValue();
 }
}

printValue():
value=828
this.value=828
QualifiedThis.this.value=828

printHiddenValue():
value=131
this.value=828
QualifiedThis.this.value=828

You can refer to an instance variable in any of the following three ways, if its name is not hidden:

Using the simple name, such as •	 value

Using the simple name qualified with the keyword •	 this, such as this.value

Using the simple name qualified with the class name and the keyword •	 this, such as
QualifiedThis.this.value

Chapter 2 ■ Inner Classes

61

If the instance variable name is hidden, you must qualify its name with the keyword this or the class name as
well as the keyword this. The code inside an inner class always executes in the context of more than one current
instance. The number of current instances depends on the level of nesting of the inner class. Consider the following
class declaration:

public class TopLevelOuter {
 private int v1 = 100;

 // Here, only v1 is in scope

 public class InnerLevelOne {
 private int v2 = 200;

 // Here, only v1 and v2 are in scope

 public class InnerLevelTwo {
 private int v3 = 300;

 // Here, only v1, v2, and v3 are in scope

 public class InnerLevelThree {
 private int v4 = 400;

 // Here, all v1, v2, v3, and v4 are in scope

 }
 }
 }
}

When the code for the InnerLevelThree class is executed, there are four current instances: one for the
InnerLevelThree class and one for each of its three enclosing classes. When the code for the InnerLevelTwo class is
executed, there are three current instances: one for the InnerLevelTwo class and one for each of its two enclosing classes.
When the code for the TopLevelOuter class is executed, there is only one current instance because it is a top-level class.
When the code for an inner class is executed, all instance members, instance variables, and methods of all current
instances are in scope unless hidden by local variable declarations.

The above example has comments indicating which instance variables are in the scope in an inner class. When
an instance member is hidden inside an inner class, you can always refer to the hidden member by using the keyword
this qualified with the class name. Listing 2-19 is the modified version of Listing 2-15. It illustrates the use of the
class name with the keyword this to refer to the instance member of the enclosing class of an inner class. Listing 2-20
contains the code to test the ModifiedOuter2 class.

Listing 2-19. Using the Keyword this Qualified with the Class Name

// ModifiedOuter2.java
package com.jdojo.innerclasses;

public class ModifiedOuter2 {
 // Instance variable for ModifiedOuter2 class
 private int value = 1116;

Chapter 2 ■ Inner Classes

62

 // Inner class starts here
 public class Inner {
 // Instance variable for Inner class
 private int value = 1720;

 public void printValue() {
 System.out.println("\nInner - printValue()...");
 System.out.println("Inner: Value = " + value);
 System.out.println("Outer: Value = " + ModifiedOuter2.this.value);
 }
 } // Inner class ends here

 // Instance method for ModifiedOuter2 class
 public void printValue() {
 System.out.println("\nOuter - printValue()...");
 System.out.println("Outer: Value = " + value);
 }

 // Another instance method for the ModifiedOuter2 class
 public void setValue(int newValue) {
 System.out.println("\nSetting Outer's value to " + newValue);
 this.value = newValue;
 }
}

Listing 2-20. Testing the ModifiedOuter2 Class

// ModifiedOuter2Test.java
package com.jdojo.innerclasses;

public class ModifiedOuter2Test {
 public static void main(String[] args) {
 ModifiedOuter2 out = new ModifiedOuter2();
 ModifiedOuter2.Inner in = out.new Inner();

 // Print the value
 out.printValue();
 in.printValue();

 // Set a new value
 out.setValue(828);

 // Print the value
 out.printValue();
 in.printValue();
 }
}

Chapter 2 ■ Inner Classes

63

Outer - printValue()...
Outer: Value = 1116

Inner - printValue()...
Inner: Value = 1720
Outer: Value = 1116

Setting Outer's value to 828

Outer - printValue()...
Outer: Value = 828

Inner - printValue()...
Inner: Value = 1720
Outer: Value = 828

Note ■ Java restricts programmers from naming the inner class the same as its enclosing class. this is needed for
the inner classes to access the hidden members of their enclosing classes using the enclosing class name with the
keyword this.

Restrictions on Accessing Local Variables
A local inner class is declared inside a block—typically inside a method of a class. A local inner class can access the
instance variables of its enclosing class as well as the local variables, which are in scope. The instance of an inner
class exists within an instance of its enclosing class. Therefore, accessing the instance variables of the enclosing
class inside a local inner class is not a problem because they exist throughout the life cycle of the instance of the
local inner class. However, the local variables in a method exist only during the execution of that method. All local
variables become inaccessible when method execution is over. Java makes a copy of the local variables that are used
inside a local inner class and stores that copy along with the inner class object. However, to guarantee that the values
of the local variables can be reproduced when accessed inside the local inner class code after the method call is over,
Java puts a restriction that the local variables must be effectively final. An effectively final variable is a variable whose
value does not change after it is initialized. One way to have an effectively final variable is to declare the variable
final. Another way is not to change its value after it is initialized. Therefore, a local variable or an argument to a
method must be effectively final if it is used inside a local inner class. This restriction also applies to an anonymous
inner class declared inside a method.

Tip ■ prior to Java 8, a local variable must be declared final if it is accessed inside a local inner class or an
anonymous class. Java 8 changed this rule: the local variable need not be declared final, but it should be
effectively final.

Chapter 2 ■ Inner Classes

64

The program in Listing 2-21 demonstrates the rules for accessing local variables inside a local inner class. The
main() method declares two local variables called x and y. Both variables are effectively final. The variable x is never
changed after it is initialized and the variable y cannot be changed because it is declared as final.

Listing 2-21. Accessing Local Variables Inside localclasses

// AccessingLocalVariables.javapackage com.jdojo.innerclasses;

public class AccessingLocalVariables {
 public static void main(String... args) {
 int x = 100;
 final int y = 200;

 class LocalInner {
 void print() {
 // Accessing the local varibale x is fine as
 // it is effectively final.
 System.out.println("x = " + x);

 // The local variable y is effectively final as
 // it has been declared final.
 System.out.println("y = " + y);
 }
 }

 /* Uncommenting the following statement will make the variable x no longer
 an effectively final variable and the LocalIneer class wil not compile.
 */
 // x = 100;

 LocalInner li = new LocalInner();
 li.print();
 }
}

x = 100
y = 200

Inner Class and Inheritance
An inner class can inherit from another inner class, a top-level class, or its enclosing class. For example, in the
following snippet of code, inner class C inherits from inner class B; inner class D inherits from its enclosing top-level
class A, and inner class F inherits from inner class A.B:

public class A {
 public class B {
 }

 public class C extends B {
 }

Chapter 2 ■ Inner Classes

65

 public class D extends A {
 }
}

public class E extends A {
 public class F extends B {
 }
}

The situation becomes trickier when you want to inherit a top-level class from an inner class:

public class G extends A.B {
 // This code won’t compile
}

Before I discuss why the above code would not compile, recall that you must have an instance of the enclosing
class before you can create an instance of an inner class. In the above case, if you want to create an instance of class
G (using new G()), you must also create (indirectly though) an instance of A.B, because A.B is its ancestor class. Here,
A.B is an inner class. Therefore, in order to create an instance of the inner class A.B, you must have an instance of its
enclosing class A. Therefore, you must create an instance of class A before you can create an instance of class G. You
must also make the instance of class A available to class G so that it can be used as the enclosing instance when A.B
instance is created while creating an instance of its subclass G. The Java compiler enforces this rule. In this case, you
must declare a constructor for class G, which accepts an instance of class A and calls the ancestor’s constructor on that
instance. The above class declaration for class G must be changed to the following:

public class G extends A.B {
 public G(A a) {
 a.super(); // Must be the first statement
 }
}

In order to create an instance of class G, you should follow two steps:

// Create an instance of class A first
A a = new A();

// Pass class A’s instance to G’s constructor
G g = new G(a);

You can combine the above two statements into one statement:

G g = new G(new A());

Note that inside G’s constructor you have added one statement: a.super(). The compiler requires this to be the
first statement inside the constructor. At the time of compilation, the compiler modifies a.super() to super(a). Here,
super(a) means call the constructor of its ancestor, which is class B, passing the reference of class A. In other words,
with the above coding rule, the Java compiler ensures that the constructor of class B gets a reference to its enclosing
class A when the instance of class B is created.

Chapter 2 ■ Inner Classes

66

Let’s change the declaration of the class E in the above examples to the following:

// The following code won’t compile
public class E {
 public class F extends A.B {
 }
}

This code will not compile. In order to create an instance of the inner class F, you need an instance of A.B, which
in turn requires an instance of class A. In the earlier case, E was inherited from A. Therefore, it was guaranteed that an
instance of A exists when an instance of E is created. An instance of F can only be created when you have an instance
of its ancestor’s A.B’s enclosing class A. When E inherited from A, it was guaranteed, when an instance of F is created,
you always have an instance of class A. In order to make the above code work, you need to apply the same logic as you
did for class G. You need to declare a constructor for class F that takes an instance of class A as its parameter, like so:

// The following code will compile
public class E {
 public class F extends A.B {
 public F(A a) {
 a.super(); // Must be the first statement
 }
 }
}

No static Members in an Inner Class
The keyword static in Java makes a construct a top-level construct. Therefore, you cannot declare any static
members (fields, methods, or initializers) for an inner class. The following code will not compile because inner class B
declares a static field DAYS_IN_A_WEEK:

public class A {
 public class B {
 // Cannot have the following declaration
 public static int DAYS_IN_A_WEEK = 7; // A compile-time error
 }
}

However, it is allowed to have static fields in an inner class that are compile-time constants.

public class A {
 public class B {
 // Can have a compile-time static constant field
 public final static int DAYS_IN_A_WEEK = 7; // OK

 // Cannot have the following declaration, because it is not a compile-time
 // constant, even though it is final
 public final String str = new String("Hello");
 }
}

Chapter 2 ■ Inner Classes

67

Tip ■ a member interface and a member enum are implicitly static and therefore they cannot be declared inside an
inner class.

Generated Class Files for Inner Classes
Each inner class is compiled into a separate class file. The names of the generated class files follow a naming
convention. The class file name format for a member inner class and a static inner class is as follows:

<outer-class-name>$<member-or-static-inner-class-name>

The format for the class file name for a local inner class is as follows:

<outer-class-name>$<a-number><local-inner-class-name>

The format for the class file name for an anonymous class is as follows:

<outer-class-name>$<a-number>

<a-number> in a class file name is a number that is generated sequentially starting from 1 to avoid any name
conflicts. The following nine class files, one for the top-level and eight for inner classes, are generated when you
compile the source code in Listing 2-22:

InnerClassFile.class
InnerClassFile$MemberInnerClass.class
InnerClassFile$StaticInnerClass.class
InnerClassFile1LocalInnerClass.class
InnerClassFile1LocalInnerClass$LocalInnerClass2.class
InnerClassFile1AnotherLocalInnerClass.class
InnerClassFile$1.class
InnerClassFile2AnotherLocalInnerClass.class
InnerClassFile1TestLocalClass.class

Listing 2-22. An Example for Generating File Names for Inner Classes

// InnerClassFile.java
package com.jdojo.innerclasses;

public class InnerClassFile {
 public class MemberInnerClass {
 }

 public static class StaticInnerClass {
 }

 public void testMethod1() {
 // A local class
 class LocalInnerClass {
 // A local class
 class LocalInnerClass2 {
 }
 }

Chapter 2 ■ Inner Classes

68

 // A local class
 class AnotherLocalInnerClass {
 }

 // Anonymous Inner class
 new Object() {
 };
 }

 public void testMethod2() {
 // A local class. Its name is the same as a local class in testMethod1() method
 class AnotherLocalInnerClass {
 }

 // Another local class
 class TestLocalClass {
 }
 }
}

Inner Classes and the Compiler Magic
Inner classes are implemented with the help of the compiler. The compiler does all the magic behind the scenes for
the features provided by inner classes. It alters your code and adds new code to implement inner classes. Here is the
simplest example of an inner class:

public class Outer {
 public class Inner {
 }
}

When the Outer class is compiled, two class files are generated: Outer.class and Outer$Inner.class. If you
decompile these two class files, you get the following output. You can use any available decompilers for class files.
Some Java class file decompilers are available free on the Internet. You can also use the javap tool, which ships
with the JDK, to decompile class files. The javap utility is located on your machine in JAVA_HOME\bin folder, where
JAVA_HOME is the JDK installation folder.

// Decompiled code from Outer.class file
public class Outer {
 public Outer() {
 }
}

// Decompiled code from Outer$Inner.class file
public class Outer$Inner {
 final Outer this$0;
 public Outer$Inner(Outer outer) {
 this$0 = outer;
 super();
 }
}

Chapter 2 ■ Inner Classes

69

The following points may be observed in the above decompiled code:

As usual, the compiler provided a default constructor for the •	 Outer class because you did not
provide one in your source code.

The •	 Inner class definition is entirely taken out from the body of the Outer class. Therefore,
the Inner class becomes a class that stands by itself in its compiled form. Its class name
is changed to Outer$Inner according to the rules discussed earlier in this chapter. By just
looking at the definition of only the Outer$Inner class, no one can notice that Outer$Inner is
the code for an inner class.

In the •	 Inner class definition (the Outer$Inner class in the decompiled code), the compiler
added an instance variable named this$0, which is of its enclosing class type Outer (see the
declaration "final Outer this$0;" in the decompiled code).

Since you did not include any constructors for the •	 Inner class, you were expecting that the
compiler would add a default constructor. However, that is not the case. In the case of an inner
class, if you do not provide a constructor, the compiler includes a constructor, which has one
argument. The argument type is the same as its enclosing class. If you include a constructor for
an inner class, the compiler adds one argument to all the constructors you have included. The
argument is added in the beginning of the constructor’s arguments list. The argument type is the
same as the enclosing class type. Consider the following declaration of the Inner class:

public class Outer {
 public class Inner {
 public Inner(int a) {
 }
 }
}

Now the compiler will add an extra argument to its constructor, as shown:

public class Outer$Inner {
 final Outer this$0;
 public Outer$Inner(Outer outer, int i) {
 this$0 = outer;
 super();
 }
}

The constructor’s body for the Inner class is•	

this$0 = outer;
super();

The first statement assigns the constructor’s argument, which is the reference to its enclosed
class instance, to the instance variable. The second statement calls the default constructor of
the ancestor of the Inner class, which is the Object class in this case. Recall that if there is a
call to the ancestor’s constructor inside a constructor of a class, it must be the first statement
inside the constructor. However, it is the second statement for the synthesized inner class as
shown above. Can you think of a reason why the call to the ancestor’s constructor is placed as
the second statement as opposed to the first statement?

Chapter 2 ■ Inner Classes

70

Let’s add an instance variable to the outer class and access that instance variable inside the inner class. To keep
the example simple, you have added a new getValue() method to the Inner class in order to access the Outer class’s
instance variable called dummy. The modified code is as follows:

public class Outer {
 int dummy = 101;
 public class Inner {
 public int getValue() {
 // Access Outer’s class dummy field
 int x = dummy + 200;
 return x;
 }
 }
}

The decompiled code for Outer.class and Outer$Inner.class files are as follows:

// Decompiled code from Outer.class file
public class Outer {
 int dummy = 0;
 public Outer() {
 dummy = 101;
 }
}

// The decompiled code from Outer$Inner.class file
public class Outer$Inner {
 final Outer this$0;
 public Outer$Inner(Outer outer) {
 this$0 = outer;
 super();
 }

 public int getValue() {
 int x = this$0.dummy + 200;
 return x;
 }
}

Note the use of this$0.dummy to access the instance variable of the Outer class inside the getValue() method
of the Inner class. The dummy instance variable in the Outer class has a package-level access. Since an inner class is
always the part of the same package as its enclosing class, this method of referring to the instance variable of the Outer
class from outside works fine. However, if the instance variable dummy is declared private, the Outer$Inner class code
cannot refer to it directly as it did in the previous example. The compiler uses a different way to access the private
instance variable of the outer class from an inner class. The following is the modified code and the corresponding
decompiled code for the Outer and Inner classes:

// Modified Outer class code with dummy as private instance variable
public class Outer {
 private int dummy = 101; // Declare dummy as private

Chapter 2 ■ Inner Classes

71

 public class Inner {
 public int getValue() {
 int x = dummy + 200; // Access Outer’s dummy field
 return x;
 }
 }
}

// Decompiled code from Outer.class file
public class Outer {
 private int dummy = 0;
 public Outer() {
 dummy = 101;
 }

 // Method added by the compiler to access the dummy private field
 static int access$000(Outer outer) {
 return outer.dummy;
 }
}

// Decompiled code from Outer$Inner.class file
public class Outer$Inner {
 final Outer this$0;
 public Outer$Inner(Outer outer) {
 this$0 = outer;
 super();
 }

 public int getValue() {
 int x = Outer.access$000(this$0) + 200;
 return x;
 }
}

Note that the compiler has added a new static method to the Outer class, which is declared as

static int access$000(Outer outer)

The compiler adds a new method to the enclosing class for each of its private instance variables accessed
inside the inner class. The method, access$000(), is known as a synthetic method because it is synthesized by the
compiler. The compiler sets a flag for each synthetic method in order to prevent direct access to these methods
from the source code. Another difference for you to note is that inside the getValue() method of the Inner class
the compiler has used the synthetic method Outer.access$000(this$0) to access the Outer class’s dummy instance
variable.

The compiler does many things to implement inner classes. To learn more about the implementation details of
inner classes, you can write inner classes; compile the code to generate class files; and then, decompile the generated
class files to see the work done by the compiler.

Chapter 2 ■ Inner Classes

72

Closures and Callbacks
In functional programming, a higher order function is an anonymous function that can be treated as a data object.
That is, it can be stored in a variable and passed around from one context to another. It might be invoked in a context
that did not necessarily define it. Note that a higher order function is an anonymous function, so the invoking context
does not have to know its name. A closure is a higher order function packaged with its defining environment. A closure
carries with it the variables in scope when it was defined, and it can access those variables even when it is invoked in a
context other than the context in which it was defined.

In object-oriented programming, a function is called a method and it is always part of a class. An anonymous class
in Java allows a method to be packaged in an object that can be treated much as a higher order function. The object
can be stored in a variable and passed around from one method to another. The method defined in an anonymous
class can be invoked in a context other than the one in which was defined. However, one important difference between
a higher order function and a method defined in an anonymous class is that a higher order function is anonymous,
whereas a method in an anonymous class is named. The invoker of the anonymous class method must know the
method name. An anonymous class carries with it its environment. An anonymous class can use the local variables
and the parameters of a method inside which it is defined. However, Java places a restriction that local variables and
parameters to the method must be effectively final if they are accessed inside an anonymous class.

The callback mechanism can be implemented using anonymous classes and interfaces. In the simplest form, you
register an object, which implements an interface. A particular method is called (back) on the registered object later.
Let’s define an interface named Callable with one method of call(), as shown in Listing 2-23.

Listing 2-23. A Callable Interface to Implement a Callback Mechanism

// Callable.java
package com.jdojo.innerclasses;

public interface Callable {
 void call();
}

The CallbackTest class illustrates the implementation details of the callback mechanism. The generateCallable()
method is used to generate the object that implements the Callable interface. You also pass an integer to that method
in order to recognize the object that it creates. The register() method registers a Callable object and it stores
the object’s reference in an ArrayList so that these object’s call() method can be executed later. The callback()
method calls back all registered objects by invoking their call() methods. See Listing 2-24.

Listing 2-24. Implementing Callback Mechanism

// CallbackTest.java
package com.jdojo.innerclasses;

import java.util.ArrayList;

public class CallbackTest {
 // To hold all registered Callable objects
 private ArrayList<Callable> callableList = new ArrayList<>();

 public static void main(String[] args) {
 CallbackTest cbt = new CallbackTest();

Chapter 2 ■ Inner Classes

73

 // Create three Callable objects and register them
 Callable c1 = cbt.generateCallable(1);
 cbt.register(c1);

 Callable c2 = cbt.generateCallable(2);
 cbt.register(c2);

 Callable c3 = cbt.generateCallable(3);
 cbt.register(c3);

 // Callback all the registered Callable objects
 cbt.callback();
 }

 private void callback() {
 int count = this.callableList.size();

 // Callback all the registered Callable objects
 for(int i = 0; i < count ; i++) {
 Callable c = this.callableList.get(i);
 c.call();
 }
 }

 public void register(Callable c) {
 this.callableList.add(c);
 }

 public Callable generateCallable(int no) {
 // Note that this object is created here, but it's call() method is
 // used later. It is also capturing the method parameter no which
 // will be used in printing a message later.
 Callable c = new Callable() {
 public void call() {
 System.out.println("Called #" + no);
 }
 };

 return c;
 }
}

Called #1
Called #2
Called #3

Chapter 2 ■ Inner Classes

74

The callback mechanism described in this section is used extensively in Java when working with GUI applications
developed using Swing and JavaFX.

Note ■ Java 8 introduced lambda expressions that make working with callbacks more concise. I will discuss lambda
expressions in Chapter 5.

Defining Inner Classes in Static Contexts
You can also define an inner class in a static context such as inside a static method or a static initializer. There is no
current instance of the outer class present in a static context, and therefore such an inner class cannot access instance
fields of the outer class. However, all static field members are accessible to such an inner class.

public class Outer {
 static int k = 1001;
 int m = 9008;

 public static void staticMethod() {
 // Class Inner is defined in a static context
 class Inner {
 int j = k; // OK. Referencing static field k
 int n = m; // An error. Referencing non-static field m
 }
 }
}

Summary
Classes declared inside the body of another class are called inner classes. The class within which the inner class is
declared is known as the enclosing class. Inner classes have direct access to all members of their enclosing class.
Instances of inner classes exist only within an instance of the enclosing class, except when they are declared in a static
context, for example, inside a static method.

There are three types of inner classes: member inner class, local inner class, and anonymous inner class.
Inner classes are declared in non-static contexts. A member inner class is declared inside a class the same way a
member field or a member method for the class is declared. It can be declared as public, private, protected, or
package-level. A local inner class is declared inside a block. Its scope is limited to the block in which it is declared.
An anonymous inner class is the same as a local inner class with one difference: it does not have a name. An anonymous
class is a one-shot class; it is declared and an object of the class is created at the same time.

A class declared inside another class in a static member class is simply called a static nested class. A static nested
class has access to the static members of the enclosing class.

Inside an inner class, the keyword this refers to the current instance of the inner class. To refer to the current
instance of the enclosing class, you need to qualify the keyword this with the class name of the enclosing class.

You cannot declare a static member for inner classes. This implies that interfaces and enums cannot be declared
as members for inner classes.

75

Chapter 3

Reflection

In this chapter, you will learn

What reflection is•	

How to use reflection to get information about classes, constructors, methods, etc. at runtime•	

How to access fields of an object and a class using reflection•	

How to create objects of a class using reflection•	

How to invoke methods of a class using reflection•	

How to create arrays using reflection•	

What Is Reflection?
Reflection is the ability of a program to query and modify its state “as data” during the execution of the program.
The ability of a program to query or obtain information about itself is known as introspection. The ability of a program
to modify its execution state, modify its own interpretation or its meaning, or add new behaviors to the program as it is
executing is called intercession.

Reflection is further divided into two categories:

Structural reflection•	

Behavioral reflection•	

The ability of a program to query about the implementation of its data and code is called structural introspection,
whereas its ability to modify or create new data structure and code is called structural intercession.

The ability of a program to obtain information about its runtime environment is called behavioral introspection,
whereas its ability to modify the runtime environment is called behavioral intercession.

Providing the ability to a program to query or modify its state requires a mechanism for encoding the execution
state as data. In other words, the program should be able to represent its execution state as data elements (as objects
in objected-oriented languages such as Java) so that it can be queried and modified. The process of encoding the
execution state into data is called reification. A programming language is called reflective if it provides the programs
with reflection capability.

Reflection in Java
The support for reflection in Java is mostly limited to introspection. It supports intercession in a very limited form.
The introspection features provided by Java let you obtain class information about an object at runtime. They also let
you obtain information about the fields, methods, modifiers, and the superclass of a class at runtime.

Chapter 3 ■ refleCtion

76

The intercession features provided by Java lets you create an instance of a class whose name is not known until
runtime, invoke methods on such instances, and get/set its fields. However, Java does not allow you to change the
data structure at runtime. For example, you cannot add a new field or a method to an object at runtime. All fields
of an object are always determined at compile time. Examples of behavioral intercession are the ability to change
the method execution at runtime or add a new method to a class at runtime. Java does not provide any of these
intercession features. That is, you cannot change a class’s method code at runtime to change its execution behavior;
neither can you add a new method to a class at runtime.

Java provides reification by providing an object representation for a class and its methods, constructors, fields,
etc. at runtime. In most cases, Java does not support reification for generic types. Java 5 added support for generic
types. Please refer to Chapter 4 for more details on generic types. A program can work on the reified objects in order
to get information about the runtime execution. For example, you have been using the object of java.lang.Class
class to get the information about the class of an object. A Class object is the reification of the bytecode for the class
of an object. When you want to gather information about the class of an object, you do not have to worry about the
bytecode of the class from which the object was instantiated. Rather, Java provides the reification of the bytecode as an
object of the Class class.

The reflection facility in Java is provided through the reflection API. Most of the reflection API classes and
interfaces are in the java.lang.reflect package. The Class class which is central to the reflection in Java, is in the
java.lang package. Some of the frequently used classes in reflection are listed in Table 3-1.

Table 3-1. Commonly Used Classes in Reflection

Class Name Description

java.lang.Class An object of this class represents a single class loaded by a class loader in
the JVM.

java.lang.reflect.Field An object of this class represents a single field of a class or an interface.
The field represented by this object may be a static field or an instance field.

java.lang.reflect.Constructor An object of this class represents a single constructor of a class.

java.lang.reflect.Method An object of this class represents a method of a class or an interface.
The method represented by this object may be a class method or an instance
method.

java.lang.reflect.Modifier This class has static methods that are used to decode the access modifiers for
a class and its members.

java.lang.reflect.Array This class provides static methods that are used to create arrays at runtime.

Some of the things you can do using the reflection features in Java are as follows:

If you have an object reference, you can find out the class name of the object.•	

If you have a class name, you can know its full description, for example, its package name, its •	
access modifiers, etc.

If you have a class name, you can find out the methods defined in the class, their return type, •	
access modifiers, parameters type, parameter names, etc. The support for parameter names
was added in Java 8.

If you have a class name, you can find out all field descriptions of the class.•	

Chapter 3 ■ refleCtion

77

If you have a class name, you can find out all constructors defined in the class.•	

If you have a class name, you can create an object of the class using one of its constructors.•	

If you have an object reference, you can invoke its method knowing just the method’s name •	
and method’s parameter types.

You can get or set the state of an object at runtime.•	

You can create an array of a type dynamically at runtime and manipulate its elements.•	

The java.lang.Class Class
The java.lang.Class class is central to reflection in Java. The Class class is a generic class. It takes a type parameter,
which is the type of the class represented by the Class object. For example, Class<String> represents the class object
for the String class. Class<?> represents a class type whose class is unknown.

The Class class lets you discover everything about a class at runtime. An object of the Class class represents a
class in a program at runtime. When you create an object in your program, Java loads the class’s byte code and creates
an object of the Class class to represent the byte code. Java uses that Class object to create any object of that class.
No matter how many objects of a class you create in your program, Java creates only one Class object for each class
loaded by a class loader in a JVM. Each class is also loaded only once by a particular class loader. In a JVM, a class is
uniquely identified by its fully qualified name and its class loader. If two different class loaders load the same class, the
two loaded classes are considered two different classes and their objects are not compatible with each other.

You can get the reference to the Class object of a class in one of the followings ways:

Using class literal•	

Using the •	 getClass() method of the Object class

Using the •	 forName() method of the Class class

A class literal is the class name followed by a dot and the word “class.” For example, if you have a class Test, its
class literal is Test.class and you can write

Class<Test> testClass = Test.class;

Note that the class literal is always used with a class name, not with an object reference. The following statement
to get the class reference is invalid:

Test test = new Test();
Class<Test> testClass = test.class; // A compile-time error. Must use Test.class

You can also get the class object for primitive data types and the keyword void using class literals as boolean.
class, byte.class, char.class, short.class, int.class, long.class, float.class, double.class, and void.class.
Each wrapper class for these primitive data types has a static field named TYPE, which has the reference to the class
object of the primitive data type it represents. Therefore, int.class and Integer.TYPE refer to the same class object
and the expression int.class == Integer.TYPE evaluates to true. Table 3-2 shows the class literals for all primitive
data types and the void keyword.

Chapter 3 ■ refleCtion

78

The Object class has a getClass() method, which returns the reference to the Class object of the class of the
object. This method is available in every class in Java because every class in Java, explicitly or implicitly, inherits
Object class. The method is declared final, so no descendant class can override it. For example, if you have testRef
as a reference to an object of class Test, you can get the reference to the Class object of the Test class as follows:

Test testRef = new Test();
Class<Test> testClass = testRef.getClass();

The Class class has a forName() static method which returns a reference to a Class object. It is an overloaded
method The declarations of the two overloaded versions of this method are

•	 Class<?> forName(String className)

•	 Class<?> forName(String name, boolean initialize, ClassLoader loader)

The first version of the forName() method takes an argument, which is the fully qualified name of the class to
be loaded. It loads the class, initializes it, and returns the reference to its Class object. If the class is already loaded,
it simply returns the reference to the Class object of that class. The second version of this method gives you the
option to initialize or not to initialize the class when it is loaded, and which class loader should load the class. Both
methods throw a ClassNotFoundException if the class could not be loaded. To load a class named pkg1.Test, you
would write

Class testClass = Class.forName("pkg1.Test");

To get a Class object reference using the Class.forName() method, you do not have to know the name of the
class until runtime. The forName(String className) method initializes the class if it is not already initialized,
whereas the use of a class literal does not initialize the class. Prior to Java 5, a class was initialized when you used its
class literal. Java 5 does not initialize the class when you use its class literal. When a class is initialized, all its static
initializers are executed and all static fields are initialized. Listing 3-1 lists a Bulb class with only one static initializer,
which prints a message on the console. Listing 3-2 uses various methods to load and initialize the Bulb class.

Table 3-2. Class Literals for Primitive Data Types and the void Keyword

Data Type Primitive Class Literal Wrapper Class Static Field

boolean boolean.class Boolean.TYPE

byte byte.class Byte.TYPE

char char.class Character.TYPE

short short.class Short.TYPE

int int.class Integer.TYPE

long long.class Long.TYPE

float float.class Float.TYPE

double double.class Double.TYPE

void void.class Void.TYPE

Chapter 3 ■ refleCtion

79

Listing 3-1. A Bulb Class to Demonstrate Initialization of a Class

// Bulb.java
package com.jdojo.reflection;

public class Bulb {
 static {
 // This will execute when this class is loaded and initialized
 System.out.println("Loading class Bulb...");
 }
}

Listing 3-2. Testing Class Loading and Initialization

// BulbTest.java
package com.jdojo.reflection;

public class BulbTest {
 public static void main(String[] args) {
 /* Uncomment only one of the following statements at a time.
 Observe the output to see the difference in the way the Bulb class
 is loaded and initialized.
 */

 BulbTest.createObject();
 // BulbTest.forName();
 // BulbTest.forNameVersion2();
 // BulbTest.classLiteral();
 }

 public static void classLiteral() {
 // Will load the class, but won't initialize in Java 5 and later.
 // Prior version of Java will initialize the class too.
 Class<Bulb> c = Bulb.class;
 }

 public static void forNameVersion2() {
 try {
 String className = "com.jdojo.reflection.Bulb";
 boolean initialize = false;

 // Get the classloader for the current class
 ClassLoader cLoader = BulbTest.class.getClassLoader();

 // Will load, but not initialize the class, because we have
 // set the initialize variable to false
 Class c = Class.forName(className, initialize, cLoader);
 }
 catch (ClassNotFoundException e) {
 System.out.println(e.getMessage());
 }
 }

Chapter 3 ■ refleCtion

80

 public static void forName() {
 try {
 String className = "com.jdojo.reflection.Bulb";

 // Will load and initialize the class
 Class c = Class.forName(className);
 }
 catch (ClassNotFoundException e) {
 System.out.println(e.getMessage());
 }
 }

 public static void createObject() {
 // Will load and initialize the Bulb class
 new Bulb();
 }
}

Loading class Bulb...

Reflecting on a Class
This section will demonstrate the features of Java reflection that enable you to get the description of a class, such
as its package name, its access modifiers, etc. You will use a Person class as listed in Listing 3-3 to demonstrate the
reflection features. It is a simple class with two instance fields, two constructors, some methods, and it implements
two interfaces.

Listing 3-3. A Person Class Used to Demonstrate Reflection

// Person.java
package com.jdojo.reflection;

import java.io.Serializable;

public class Person implements Cloneable, Serializable {
 private int id = -1;
 private String name = "Unknown";

 public Person() {
 }

 public Person(int id, String name) {
 this.id = id;
 this.name = name;
 }

 public int getId() {
 return id;
 }

Chapter 3 ■ refleCtion

81

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public Object clone() {
 try {
 return super.clone();
 }
 catch (CloneNotSupportedException e) {
 throw new RuntimeException(e.getMessage());
 }
 }

 public String toString() {
 return "Person: id=" + this.id + ", name=" + this.name;
 }
}

Listing 3-4 illustrates how to get the description of a class. It lists the class access modifiers, its name, its
superclass name, and all interfaces implemented by it.

Listing 3-4. Reflecting on a Class

// ClassReflection.java
package com.jdojo.reflection;

import java.lang.reflect.Modifier;
import java.lang.reflect.TypeVariable;

public class ClassReflection {
 public static void main(String[] args) {
 // Print the class declaration for the Person class
 String classDesciption = getClassDescription(Person.class);
 System.out.println(classDesciption);
 }

 public static String getClassDescription(Class c) {
 StringBuilder classDesc = new StringBuilder();

 // Prepare the modifiers and construct keyword (class, enum, interface etc.)
 int modifierBits = 0;
 String keyword = "";

 // Add keyword @interface, interface or class
 if (c.isPrimitive()) {
 // We do not want to add anything
 }

Chapter 3 ■ refleCtion

82

 else if (c.isInterface()) {
 modifierBits = c.getModifiers() & Modifier.interfaceModifiers();

 // AN annotation is an interface
 if (c.isAnnotation()) {
 keyword = "@interface";
 }
 else {
 keyword = "interface";
 }
 }
 else if (c.isEnum()) {
 modifierBits = c.getModifiers() & Modifier.classModifiers();
 keyword = "enum";
 }
 else {
 modifierBits = c.getModifiers() & Modifier.classModifiers();
 keyword = "class";
 }

 // Convert modifiers to their string represenation
 String modifiers = Modifier.toString(modifierBits);

 // Append modifiers
 classDesc.append(modifiers);

 // Append the construct keyword
 classDesc.append(" " + keyword);

 // Append simple name
 String simpleName = c.getSimpleName();
 classDesc.append(" " + simpleName);

 // Append generic parameters
 String genericParms = getGenericTypeParams(c);
 classDesc.append(genericParms);

 // Append super class
 Class superClass = c.getSuperclass();
 if (superClass != null) {
 String superClassSimpleName = superClass.getSimpleName();
 classDesc.append(" extends " + superClassSimpleName);
 }

 // Append Interfaces
 String interfaces = ClassReflection.getClassInterfaces(c);
 if (interfaces != null) {
 classDesc.append(" implements " + interfaces);
 }

 return classDesc.toString();
 }

Chapter 3 ■ refleCtion

83

 public static String getClassInterfaces(Class c) {
 // Get a comma-separated list of interfaces implemented by the class
 Class[] interfaces = c.getInterfaces();
 String interfacesList = null;
 if (interfaces.length > 0) {
 String[] interfaceNames = new String[interfaces.length];
 for(int i = 0; i < interfaces.length; i++) {
 interfaceNames[i] = interfaces[i].getSimpleName();
 }
 interfacesList = String.join(", ", interfaceNames);
 }
 return interfacesList;
 }

 public static String getGenericTypeParams(Class c) {
 StringBuilder sb = new StringBuilder();
 TypeVariable<?>[] typeParms = c.getTypeParameters();

 if (typeParms.length > 0) {
 String[] paramNames = new String[typeParms.length];
 for(int i = 0; i < typeParms.length; i++) {
 paramNames[i] = typeParms[i].getTypeName();
 }

 sb.append('<');
 String parmsList = String.join(",", paramNames);
 sb.append(parmsList);
 sb.append('>');
 }
 return sb.toString();
 }
}

public class Person extends Object implements Cloneable, Serializable

To get the simple class name, use the getSimpleName() method of the Class class, like so:

String simpleName = c.getSimpleName();

The modifiers of a class are the keywords that appear before the keyword class in the class declaration. In the
following example, public and abstract are the modifiers for the MyClass class:

public abstract class MyClass {
 // Code goes here
}

The getModifiers() method of the Class class returns all modifiers for the class. Note that the getModifiers()
method returns an integer. To get the textual form of the modifiers, you need to call the toString(int modifiers)
static method of the java.lang.reflect.Modifier class passing the modifiers value in an integer form. Assuming c is
the reference of a Class object, you get the modifiers of the class as shown:

Chapter 3 ■ refleCtion

84

// You need to AND the returned value from the getModifiers() method with
// appropriate value returned from xxxModifiers() method of the Modifiers class
int mod = c.getModifiers() & Modifier.classModifiers();
String modifiers = Modifier.toString(mod);

It is straightforward to get the name of the superclass of a class. Use the getSuperclass() method of the Class
class to get the reference of the superclass. Note that every class in Java has a superclass except the Object class. If the
getSuperclass() method is invoked on the Object class, it returns null. Therefore, it is important that you check the
returned value of the getSuperclass() method for null reference before you try to use it to get its name. This check is
removed below for clarity. However, the code for the ClassReflection class has this check:

Class superClass = c.getSuperclass();
if (superClass != null) {
 String superClassName = superClass.getSimpleName();
}

Tip ■ the getSuperclass() method of the Class class returns null when it represents the Object class, a class for an
interface such as List.class, and a class for a primitive type such as int.class, void.class, etc.

To get the names of all interfaces implemented by a class, you use the getInterfaces() method of the Class
class. It returns an array of Class object. Each element in the array represents an interface implemented by the class.
To get the list of all interfaces, you need to loop through all the elements of this array. The ClassReflection class has
a getClassInterfaces() method that returns all interfaces implemented by a Class object separated by a comma.

// Get all interfaces implemented by c
Class[] interfaces = c.getInterfaces();

The getClassDescription() method of the ClassReflection class puts all parts of a class declaration into a
string and returns that string. The main() method of this class demonstrates how to use this class.

Note ■ Java 8 added a method called toGenericString() to the Class class that returns a string describing the
class. the string contains the modifiers and type parameters for the class. the call Person.class.toGenericString()
will return public class com.jdojo.reflection.Person.

Reflecting on Fields
A field of a class is represented by an object of the java.lang.reflect.Field class. The following four methods in the
Class class can be used to get information about the fields of a class:

•	 Field[] getFields()

•	 Field[] getDeclaredFields()

•	 Field getField(String name)

•	 Field getDeclaredField(String name)

Chapter 3 ■ refleCtion

85

The getFields() method returns all the accessible public fields of the class or interface. The accessible public
fields include public fields declared in the class or inherited from the superclass. The getDeclaredFields() method
returns all the fields that appear in the declaration of the class. It does not include inherited fields. The other two
methods, getField() and getDeclaredField(), are used to get the Field object if you know the name of the field.
Let’s consider the following declarations of classes A and B, and an interface IConstants:

interface IConstants {
 int DAYS_IN_WEEK = 7;
}

class A implements IConstants {
 private int aPrivate;
 public int aPublic;
 protected int aProtected;
}

class B extends A {
 private int bPrivate;
 public int bPublic;
 protected int bProtected;
}

If bClass is the reference of the Class object for class B, the expression bClass.getFields()will return the
following three fields that are accessible and public:

•	 public int B.bPublic

•	 public int A.aPublic

•	 public static final int IConstants.DAYS_IN_WEEK

However, bClass.getDeclaredFields() will return all three fields that are declared in class B.

•	 private int B.bPrivate

•	 public int B.bPublic

•	 protected int B.bProtected

To get all the fields of a class and its superclass, you must get the reference of the superclass using the
getSuperclass() method and use the combinations of these methods. Listing 3-5 illustrates how to get the
information about the fields of a class. Note that you do not get anything when you call the getFields() method on
the Class object of the Person class because there are no public fields that are accessible through the Person class.

Listing 3-5. Reflecting on Fields of a Class

// FieldReflection.java
package com.jdojo.reflection;

import java.lang.reflect.Field;
import java.lang.reflect.Modifier;
import java.util.ArrayList;

public class FieldReflection {
 public static void main(String[] args) {
 Class<Person> c = Person.class;

Chapter 3 ■ refleCtion

86

 // Print declared fields
 ArrayList<String> fieldsDesciption = getDeclaredFieldsList(c);

 System.out.println("Declared Fields for " + c.getName());
 for (String desc : fieldsDesciption) {
 System.out.println(desc);
 }

 // Get the accessible public fields
 fieldsDesciption = getFieldsList(c);

 System.out.println("\nAccessible Fields for " + c.getName());
 for (String desc : fieldsDesciption) {
 System.out.println(desc);
 }

 }

 public static ArrayList<String> getFieldsList(Class c) {
 Field[] fields = c.getFields();
 ArrayList<String> fieldsList = getFieldsDesciption(fields);
 return fieldsList;
 }

 public static ArrayList<String> getDeclaredFieldsList(Class c) {
 Field[] fields = c.getDeclaredFields();
 ArrayList<String> fieldsList = getFieldsDesciption(fields);
 return fieldsList;
 }

 public static ArrayList<String> getFieldsDesciption(Field[] fields) {
 ArrayList<String> fieldList = new ArrayList<>();

 for (Field f : fields) {
 // Get the modifiers for the field
 int mod = f.getModifiers() & Modifier.fieldModifiers();
 String modifiers = Modifier.toString(mod);

 // Get the simple name of the field type
 Class<?> type = f.getType();
 String typeName = type.getSimpleName();

 // Get the name of the field
 String fieldName = f.getName();

 fieldList.add(modifiers + " " + typeName + " " + fieldName);
 }

 return fieldList;
 }
}

Chapter 3 ■ refleCtion

87

Declared Fields for com.jdojo.reflection.Person
private int id
private String name

Accessible Fields for com.jdojo.reflection.Person

Tip ■ You cannot use this technique to describe the length field of an array object. each array type has a corresponding
class. When you try to get the fields of an array class using the getFields() method, you get an array of Field objects
of zero length. the array length is not part of the array’s class definition. rather, it is stored as part of the array object in
the object header. for more information on array’s length field, please refer to Chapter 11.

Reflecting on an Executable
An instance of the Method class represents a method. An instance of the Constructor class represents a constructor.
Structurally, methods and constructors have few things in common. Both use modifiers, parameters, and throws
clause. Java 8 refactored these classes to inherit them from a common abstract superclass, Executable. Methods to
retrieve information common to both have been added/moved to the Executable class.

A parameter in an Executable is represented by an object of the Parameter class, which was added in Java 8. The
getParameters() method in the Executable class returns all parameters of an Executable as an array of Parameter.
By default, the formal parameter names are not stored in the class files to keep the file size smaller. The getName()
method of the Parameter class returns synthesized parameter names like arg0, arg1, etc. unless the actual parameter
names are retained. If you want to retain the actual parameter names in class files, you need to compile the source
code using the -parameters option with the javac compiler.

The getExceptionTypes() method of the Executable class returns an array of Class objects, which describes the
exceptions thrown by the Executable. If no exceptions are listed in the throws clause, it returns an array of length zero.

The getModifiers() method of the Executable class returns the modifiers as an int.
The getTypeParameters() method of the Executable class returns an array of TypeVariable that represents the

type parameters for generic methods/constructors. The examples in this chapter will not include the generic type
variable declarations in method/constructors.

Listing 3-6 contains a utility class that consists of static methods to get information about an Executable such as
the list of modifiers, parameters, and exception. I will use the class when I discuss methods and constructors in the
subsequent sections.

Listing 3-6. A Utility Class to Get Information for an Executable

// ExecutableUtil.java
package com.jdojo.reflection;

import java.lang.reflect.Constructor;
import java.lang.reflect.Executable;
import java.lang.reflect.Method;
import java.lang.reflect.Modifier;
import java.lang.reflect.Parameter;
import java.util.ArrayList;

Chapter 3 ■ refleCtion

88

public class ExecutableUtil {
 public static ArrayList<String> getParameters(Executable exec) {
 Parameter[] parms = exec.getParameters();
 ArrayList<String> parmList = new ArrayList<>();
 for (int i = 0; i < parms.length; i++) {
 // Get modifiers, type, and name of teh parameter
 int mod = parms[i].getModifiers() & Modifier.parameterModifiers();
 String modifiers = Modifier.toString(mod);
 String parmType = parms[i].getType().getSimpleName();
 String parmName = parms[i].getName();
 String temp = modifiers + " " + parmType + " " + parmName;

 // Trim it as it may have leading spaces when modifiers are absent
 parmList.add(temp.trim());
 }
 return parmList;
 }

 public static ArrayList<String> getExceptionList(Executable exec) {
 ArrayList<String> exceptionList = new ArrayList<>();
 for (Class<?> c : exec.getExceptionTypes()) {
 exceptionList.add(c.getSimpleName());
 }
 return exceptionList;
 }

 public static String getThrowsClause(Executable exec) {
 ArrayList<String> exceptionList = getExceptionList(exec);
 String exceptions = ExecutableUtil.arrayListToString(exceptionList, ",");
 String throwsClause = "";
 if (exceptionList.size() > 0) {
 throwsClause = "throws " + exceptions;
 }

 return throwsClause;
 }

 public static String getModifiers(Executable exec) {
 // Get the modifiers for the class
 int mod = exec.getModifiers();
 if (exec instanceof Method) {
 mod = mod & Modifier.methodModifiers();
 }
 else if (exec instanceof Constructor) {
 mod = mod & Modifier.constructorModifiers();
 }
 return Modifier.toString(mod);
 }

Chapter 3 ■ refleCtion

89

 public static String arrayListToString(ArrayList<String> list, String saparator) {
 String[] tempArray = new String[list.size()];
 tempArray = list.toArray(tempArray);
 String str = String.join(saparator, tempArray);
 return str;
 }
}

Reflecting on Methods
The following four methods in the Class class can be used to get information about the methods of a class:

•	 Method[] getMethods()

•	 Method[] getDeclaredMethods()

•	 Method getMethod(String name, Class... parameterTypes)

•	 Method getDeclaredMethod(String name, Class... parameterTypes)

The getMethods() method returns all the accessible public methods of the class. The accessible public methods
include any public method declared in the class or inherited from the superclass. The getDeclaredMethods()
method returns all the methods declared only in the class. It does not return any methods that are inherited from the
superclass. The other two methods, getMethod() and getDeclaredMethod(), are used to get the Method object if you
know the name of the method and its parameter types.

The getReturnType() method of the Method class returns the Class object, which contains information about
the return type of the method.

Listing 3-7 illustrates how to get information about the methods of a class. You can uncomment the code in
the main() method to print all methods in the Person class—declared in the Person class and inherited from the
Object class.

Listing 3-7. Reflecting on Methods of a Class

// MethodReflection.java
package com.jdojo.reflection;

import java.lang.reflect.Method;
import java.util.ArrayList;

public class MethodReflection {
 public static void main(String[] args) {
 Class<Person> c = Person.class;

 // Get the declared methods
 ArrayList<String> methodsDesciption = getDeclaredMethodsList(c);
 System.out.println("Declared Methods for " + c.getName());
 for (String desc : methodsDesciption) {
 System.out.println(desc);
 }

Chapter 3 ■ refleCtion

90

 /* Uncomment the following code to print all methods in the Person class
 // Get the accessible public methods
 methodsDesciption = getMethodsList(c);
 System.out.println("\nMethods for " + c.getName());
 for (String desc : methodsDesciption) {
 System.out.println(desc);
 }
 */
 }

 public static ArrayList<String> getMethodsList(Class c) {
 Method[] methods = c.getMethods();
 ArrayList<String> methodsList = getMethodsDesciption(methods);
 return methodsList;
 }

 public static ArrayList<String> getDeclaredMethodsList(Class c) {
 Method[] methods = c.getDeclaredMethods();
 ArrayList<String> methodsList = getMethodsDesciption(methods);
 return methodsList;
 }

 public static ArrayList<String> getMethodsDesciption(Method[] methods) {
 ArrayList<String> methodList = new ArrayList<>();

 for (Method m : methods) {
 String modifiers = ExecutableUtil.getModifiers(m);

 // Get the method return type
 Class returnType = m.getReturnType();
 String returnTypeName = returnType.getSimpleName();

 // Get the name of the method
 String methodName = m.getName();

 // Get the parameters of the method
 ArrayList<String> paramsList = ExecutableUtil.getParameters(m);
 String params = ExecutableUtil.arrayListToString(paramsList, ",");

 // Get the Exceptions thrown by method
 String throwsClause = ExecutableUtil.getThrowsClause(m);

 methodList.add(modifiers + " " + returnTypeName + " " +
 methodName + "(" + params + ") " + throwsClause);
 }

 return methodList;
 }
}

Chapter 3 ■ refleCtion

91

Declared Methods for com.jdojo.reflection.Person
public String toString()
public Object clone()
public String getName()
public int getId()
public void setName(String arg0)

Reflecting on Constructors
Getting information about constructors of a class is similar to getting information about a method of a class.
The following four methods in the Class class can be used to get information about the constructors represented
by a Class object:

•	 Constructor[] getConstructors()

•	 Constructor[] getDeclaredConstructors()

•	 Constructor<T> getConstructor(Class... parameterTypes)

•	 Constructor<T> getDeclaredConstructor(Class... parameterTypes)

The getConstructors() method returns all public constructors. The getDeclaredConstructors() method
returns all declared constructors. The other two methods, the getConstructor() and getDeclaredConstructor(),
are used to get the Constructor object if you know the parameter types of the constructor. Listing 3-8 illustrates how
to get information for the constructors represented by a Class object.

Listing 3-8. Reflecting on Constructors of a Class

// ConstructorReflection.java
package com.jdojo.reflection;

import java.lang.reflect.Constructor;
import java.util.ArrayList;

public class ConstructorReflection {
 public static void main(String[] args) {
 Class<Person> c = Person.class;

 // Get the declared constructors
 System.out.println("Constructors for " + c.getName());
 Constructor[] constructors = c.getConstructors();
 ArrayList<String> constructDescList = getConstructorsDesciption(constructors);
 for (String desc : constructDescList) {
 System.out.println(desc);
 }
 }

 public static ArrayList<String> getConstructorsDesciption(Constructor[] constructors) {
 ArrayList<String> constructorList = new ArrayList<>();
 for (Constructor constructor : constructors) {
 String modifiers = ExecutableUtil.getModifiers(constructor);

Chapter 3 ■ refleCtion

92

 // Get the name of the constructor
 String constructorName = constructor.getName();

 // Get the parameters of the constructor
 ArrayList<String> paramsList =
 ExecutableUtil.getParameters(constructor);
 String params = ExecutableUtil.arrayListToString(paramsList, ",");

 // Get the Exceptions thrown by the constructor
 String throwsClause = ExecutableUtil.getThrowsClause(constructor);

 constructorList.add(modifiers + " " + constructorName
 + "(" + params + ") " + throwsClause);
 }
 return constructorList;
 }
}

Constructors for com.jdojo.reflection.Person
public com.jdojo.reflection.Person()
public com.jdojo.reflection.Person(int arg0,String arg1)

Creating Objects
Java lets you use reflection to create objects of a class. The class name needed not be known until runtime. You can
create the object by invoking one of the constructors of the class. You can also access the values of fields of objects, set
their values, and invoke their methods. The following sections explain these features in detail. There are two ways to
create objects:

Using the no-args constructor of the class•	

Using any constructor of the class•	

If you have the reference of a Class object, you can create an object of the class using the newInstance()
method on the Class class. This method takes no parameter. It is equivalent to using the new operator on the no-args
constructor of the class. If personClass is the reference to the class object of the Person class, you can create a Person
object as shown:

Person p = personClass.newInstance();

Note that the return type of the newInstance() method is the same as the type parameter T of the Class<T> class.
The above statement has the same effect as the following statement:

Person p = new Person();

Listing 3-9 illustrates how to use the newInstance() method of the Class object to create an object of the
Person class.

Chapter 3 ■ refleCtion

93

Listing 3-9. Creating an Object Using newInstance() Method of a Class Object

// NewInstanceTest.java
package com.jdojo.reflection;

public class NewInstanceTest {
 public static void main(String[] args) throws InstantiationException {
 Class<Person> personClass = Person.class;
 try {
 // Create new instance of Person class
 Person p = personClass.newInstance();
 System.out.println(p);
 }
 catch (InstantiationException | IllegalAccessException e) {
 System.out.println(e.getMessage());
 }
 }
}

Person: id=-1, name=Unknown

Note that there are two exceptions listed in the catch block in the main() method. The InstantiationException

is thrown if there was any problem in creating the object, for example, attempting to create an object of an abstract
class, an interface type, primitive types, or the void type. This exception may also be thrown if the class does not have
a no-args constructor. The IllegalAccessException may be thrown if the class itself is not accessible or the no-args
constructor is not accessible. For example, if there is a no-args constructor and it is declared private. In this case, this
exception will be thrown.

You can create an object using reflection by invoking a constructor of your choice. In this case, you must get the
reference to the constructor you want to invoke and invoke the newInstance() method on that constructor reference.
The Person class has a constructor with a signature Person(int id, String name). You can get the reference of this
constructor as shown:

Constructor<Person> cons = personClass.getConstructor(int.class, String.class);

After you get the reference to the desired constructor, you need to call the newInstance() method on that
constructor passing the arguments to the constructor to create an object.

Listing 3-10 illustrates how to use a constructor of your choice to create an object using reflection. The catch
block lists a generic exception to catch all exceptions for brevity. Note that the Constructor<T> class is a generic type.
Its type parameter is the class type that declares the constructor, for example, Constructor<Person> type represents a
constructor for the Person class.

Listing 3-10. Using a Specific Constructor to Create a New Object

// InvokeConstructorTest.java
package com.jdojo.reflection;

import java.lang.reflect.Constructor;
import java.lang.reflect.InvocationTargetException;

public class InvokeConstructorTest {
 public static void main(String[] args) {
 Class<Person> personClass = Person.class;

Chapter 3 ■ refleCtion

94

 try {
 // Get the constructor "Person(int, String)"
 Constructor<Person> cons =
 personClass.getConstructor(int.class, String.class);

 // Invoke the constructor with values for id and name
 Person chris = cons.newInstance(1994, "Chris");
 System.out.println(chris);
 }
 catch (NoSuchMethodException | SecurityException |
 InstantiationException | IllegalAccessException |
 IllegalArgumentException | InvocationTargetException e) {
 System.out.println(e.getMessage());
 }
 }
}

Person: id=1994, name=Chris

Invoking Methods
You can invoke methods of an object using reflection. You need to get the reference to the method that you want
to invoke. Suppose you want to invoke the setName() method of the Person class. You can get the reference to the
setName() method as

Class<Person> personClass = Person.class;
Method setName = personClass.getMethod("setName", String.class);

To invoke this method, call the invoke() method on the method’s reference. The first parameter of the invoke()
method is the object on which you want to invoke the method and the second parameter is a varargs arguments
parameter in which you pass all the argument values in the same order as declared in the method’s declaration. Since
the setName() method takes a String argument, you need to pass a String object as the second argument to the
invoke() method.

The same invoke() method is used to invoke static methods as well. In case of a static method, the first argument
is ignored; you may specify null for the first argument.

Listing 3-11 illustrates how to invoke a method using reflection.

Listing 3-11. Invoking a Method on an Object Reference Using Reflection

// InvokeMethodTest.java
package com.jdojo.reflection;

import java.lang.reflect.InvocationTargetException;
import java.lang.reflect.Method;

public class InvokeMethodTest {
 public static void main(String[] args) {
 Class<Person> personClass = Person.class;
 try {
 // Create an object of Person class
 Person p = personClass.newInstance();

Chapter 3 ■ refleCtion

95

 System.out.println(p);

 // Get the reference of teh setName() method
 Method setName = personClass.getMethod("setName", String.class);

 // Invoke the setName() method on p passing
 // a new value for name as "Ann"
 setName.invoke(p, "Ann");
 System.out.println(p);
 }
 catch (InstantiationException | IllegalAccessException |
 NoSuchMethodException | SecurityException |
 IllegalArgumentException | InvocationTargetException e) {
 System.out.println(e.getMessage());
 }
 }
}

Person: id=-1, name=Unknown
Person: id=-1, name=Ann

Accessing Fields
You can read or set the value of a field of an object using reflection. First, you need get the reference of the field you
want to work with. To read the field’s value, you need to call the getXxx() method on the field, where Xxx is the data
type of the field. For example, to read a boolean field value, you would call the getBoolean() method, and to read an
int field you would call the getInt() method. To set the value of a field, you call the corresponding setXxx() method.

Tip ■ Static and instance fields are accessed the same way.

Note that you can access fields only that have been declared as accessible such as public field. In the Person
class, all fields are declared private. Therefore, you cannot access any of these fields using normal Java programming
language rules. To access a field that is not normally accessible, for example, if it is declared private, please refer to
the “Bypassing Accessibility Check” section later in this chapter.

You will use the PublicPerson class listed in Listing 3-12 to learn the technique to access the fields. Listing 3-13
demonstrates how to get the reference of a field of an object and how to read and set its value.

Listing 3-12. A PublicPerson Class with a Public Name Field

// PublicPerson.java
package com.jdojo.reflection;

public class PublicPerson {
 private int id = -1;
 public String name = "Unknown";

Chapter 3 ■ refleCtion

96

 public PublicPerson() {
 }

 public String toString() {
 return "Person: id=" + this.id + ", name=" + this.name;
 }
}

Listing 3-13. Accessing Fields Using Reflection

// FieldAccessTest.java
package com.jdojo.reflection;

import java.lang.reflect.Field;

public class FieldAccessTest {
 public static void main(String[] args) {
 Class<PublicPerson> ppClass = PublicPerson.class;
 try {
 // Create an object of PublicPerson class
 PublicPerson p = ppClass.newInstance();

 // Get the reference of name field
 Field name = ppClass.getField("name");

 // Get the current value of name field
 String nameValue = (String) name.get(p);
 System.out.println("Current name is " + nameValue);

 // Set the value of name to Ann
 name.set(p, "Ann");

 // Get the new value of name field
 nameValue = (String) name.get(p);
 System.out.println("New name is " + nameValue);
 }
 catch (InstantiationException | IllegalAccessException |
 NoSuchFieldException | SecurityException |
 IllegalArgumentException e) {
 System.out.println(e.getMessage());
 }
 }
}

Current name is Unknown
New name is Ann

Chapter 3 ■ refleCtion

97

Bypassing Accessibility Check
You can access even non-accessible fields, methods, and constructors of a class using reflection if the security
manager permits you to do so. You need to get the reference of the desired field, method, and constructor using
the getDeclaredXxx() method of the Class object. Note that using the getXxx() method to get the reference of an
inaccessible field, method, or constructor will throw an exception. The Field, Method, and Constructor classes have
the AccessibleObject class as their ancestor. The AccessibleObject class has a setAccessible(boolean flag)
method. You need to call this method on a field, method, and constructor reference with a true argument to make
that field, method, and constructor accessible to your program.

Listing 3-14 illustrates how to get access to a private field of the Person class, read its value, and set its new value.
You can use the same technique to access inaccessible methods and constructors.

Listing 3-14. Accessing Normally Inaccessible Class Member Using Reflection

// AccessPrivateField.java
package com.jdojo.reflection;

import java.lang.reflect.Field;

public class AccessPrivateField {
 public static void main(String[] args) {
 Class<Person> personClass= Person.class;
 try {
 // Create an object of the Person class
 Person p = personClass.newInstance();

 // Get the reference to name field
 Field nameField = personClass.getDeclaredField("name");

 // Make the private name field accessible
 nameField.setAccessible(true);

 // Get the current value of name field
 String nameValue = (String) nameField.get(p);
 System.out.println("Current name is " + nameValue);

 // Set a new value for name
 nameField.set(p, "Sherry");

 // Read the new value of name
 nameValue = (String) nameField.get(p);
 System.out.println("New name is " + nameValue);
 }
 catch(InstantiationException | IllegalAccessException |
 NoSuchFieldException | SecurityException |
 IllegalArgumentException e) {
 System.out.println(e.getMessage());
 }
 }
}

Current name is Unknown
New name is Sherry

Chapter 3 ■ refleCtion

98

So far, everything looks fine. You might think that if you cannot access a private member of a class, you can
always use reflection to access them. However, this is not always true. Access to otherwise inaccessible members of
a class is handled through the Java security manager. By default, when you run your application on your computer,
the security manager is not installed for your application. The absence of the security manager for your application
lets you access all fields, methods, and constructors of a class using the setAccessible(true) method. However, if a
security manager is installed for your application, whether you can access an inaccessible class member depends on
the permission granted to your application to access such members. You can check if the security manager is installed
for your application or not by using the following piece of code:

SecurityManager securityMgr = System.getSecurityManager();
if (securityMgr == null) {
 System.out.println("Security manager is not installed");
}

You can install a default security manager by passing the –Djava.security.manager option on the command line
when you run the Java application. The security manager uses a Java security policy file to enforce the rules specified
in that policy file. The Java security policy file is specified using the –Djava.security.policy command line option. If
you want to run the com.jdojo.reflection.AccessPrivateField class with the Java security manager with the Java
policy file stored in the c:\myjava.policy file, you would use the following command:

java –Djava.security.manager –Djava.security.policy=c:\myjava.policy
com.jdojo.reflection.AccessPrivateField

If you want to allow your program to access an inaccessible field of a class using reflection, the contents of the
myjava.policy file would look as follows:

grant {
 // Grant permission to all programs to access inaccessible class members
 permission java.lang.reflect.ReflectPermission "suppressAccessChecks";
};

If you want to stop the Java program from accessing inaccessible members of a class using reflection, either you
remove or comment out the following line in your Java security policy file, and run your application using a security
manager with a Java security file:

permission java.lang.reflect.ReflectPermission "suppressAccessChecks";

If you run the program listed in Listing 3-14 without the above permission, the setAccessible(true) method
call will throw a security exception.

You can check if your program can access normally inaccessible class members. The check is performed using
the ReflectPermission class in the java.lang.reflect package. You can create an object of the class with the
name of the permission. The permission name to use is “suppressAccessChecks”. You can call the checkGuard()
method on this object. If this method returns true, it means your program has access to those normally inaccessible
class members. If this method throws a SecurityException, “it means you do not have permission to access the
normally inaccessible class members. The checkGuard() method takes an object as an argument. Currently, this
argument is ignored.

Listing 3-15 illustrates how to check if your program can access normally inaccessible class members using
reflection. You can run the ReflectPermissionTest class by installing the Java security manager and a Java security
policy file. The output of this program will be different depending on the reflect permission grant in your Java security
policy file. If you run this class without a Java security manager, the output will always indicate that the reflect
permission is granted to your program.

Chapter 3 ■ refleCtion

99

Listing 3-15. Checking for Reflect Permission in a Program

// ReflectPermissionTest.java
package com.jdojo.reflection;

import java.lang.reflect.ReflectPermission;

public class ReflectPermissionTest {
 public static void main(String[] args) {
 try {
 // Create a permission object
 ReflectPermission rp = new ReflectPermission("suppressAccessChecks");

 // check for permission
 rp.checkGuard(null);
 System.out.println("Reflect permission is granted");
 }
 catch (SecurityException e) {
 System.out.println("Reflect permission is not granted");
 }
 }
}

Reflecting on Arrays
Java provides special APIs to work with arrays. The Class class lets you find out if a Class reference represents an
array by using its isArray() method. You can also create an array, and read and modify its element’s values using
reflection. The java.lang.reflect.Array class is used to dynamically create an array and to manipulate its elements.
As stated before, you cannot reflect on the length field of an array using normal reflection procedure. However, the
Array class provides you the getLength() method to get the length value of an array. Note that all methods in the
Array class are static and most of them have the first argument as the array object’s reference on which they operate.

To create an array, use the newInstance() static method of the Array class. The method is overloaded and it has
two versions.

•	 Object newInstance(Class<?> componentType, int arrayLength)

•	 Object newInstance(Class<?> componentType, int... dimensions)

One version of the method creates an array of the specified component type and the array length. The
other version creates an array of the specified component type and dimensions. Note that the return type of the
newInstance() method is Object. You will need to use an appropriate cast to assign it to the actual array type.

If you want to create an array of int of length 5, you would write

int[] ids = (int[])Array.newInstance(int.class, 5);

The above statement is the same as

Object ids = new int[5];

If you want to create an array of int of dimension 5 X 8, you would write

int[][] matrix = (int[][])Array.newInstance(int.class, 5, 8);

Chapter 3 ■ refleCtion

100

Listing 3-16 illustrates how to create an array dynamically and manipulate its elements.

Listing 3-16. Reflecting on Arrays

// ArrayReflection.java
package com.jdojo.reflection;

import java.lang.reflect.Array;

public class ArrayReflection {
 public static void main(String[] args) {
 try {
 // Create the array of int of length 2
 Object arrayObject = Array.newInstance(int.class, 2);

 // Print the values in array element. Default values will be zero
 int n1 = Array.getInt(arrayObject, 0);
 int n2 = Array.getInt(arrayObject, 1);
 System.out.println("n1 = " + n1 + ", n2=" + n2);

 // Set the values
 Array.set(arrayObject, 0, 101);
 Array.set(arrayObject, 1, 102);

 // Print the values in array element again
 n1 = Array.getInt(arrayObject, 0);
 n2 = Array.getInt(arrayObject, 1);
 System.out.println("n1 = " + n1 + ", n2=" + n2);
 }
 catch (NegativeArraySizeException | IllegalArgumentException |
 ArrayIndexOutOfBoundsException e) {
 System.out.println(e.getMessage());
 }
 }
}

n1 = 0, n2=0
n1 = 101, n2=102

Java does not support a truly multi-dimensional array. Rather, it supports an array of arrays. The Class class

has a method called getComponentType(), which returns the Class object for an array’s element type. Listing 3-17
illustrates how to get the dimension of an array.

Listing 3-17. Getting the Dimension of an Array

// ArrayDimension.java
package com.jdojo.reflection;

public class ArrayDimension {
 public static void main(String[] args) {
 int[][][] intArray = new int[6][3][4];

Chapter 3 ■ refleCtion

101

 System.out.println("int[][][] dimension is " + getArrayDimension(intArray));
 }

 public static int getArrayDimension(Object array) {
 int dimension = 0;
 Class c = array.getClass();

 // Perform a check that the object is really an array
 if (!c.isArray()) {
 throw new IllegalArgumentException("Object is not an array");
 }

 while (c.isArray()) {
 dimension++;
 c = c.getComponentType();
 }
 return dimension;
 }
}

int[][][] dimension is 3

Expanding an Array
An array in Java is a fixed-length data structure. That is, once you create an array, its length is fixed. The statement
“An array in Java is a fixed length data structure” is always true. You can create an array of a bigger size and copy the
old array elements to the new one at runtime. The Java collection classes such as ArrayList apply this technique
to let you add elements to the collection without worrying about its length. You can use the combination of the
getComponentType() method of the Class class and the newInstance() method of the Array class to create a new
array of a type. When you have the new array created, you can use the arraycopy() static method of the System class
to copy the old array elements to the new array. Listing 3-18 illustrates how to create an array of a particular type using
reflection. All runtime checks have been left out of the code for clarity.

Listing 3-18. Expanding an Array Using Reflection

// ExpandingArray.java
package com.jdojo.reflection;

import java.lang.reflect.Array;
import java.util.Arrays;

public class ExpandingArray {
 public static void main(String[] args) {
 // Create an array of length 2
 int[] ids = {101, 102};

 System.out.println("Old array length: " + ids.length);
 System.out.println("Old array elements:" + Arrays.toString(ids));

 // Expand the array by 1
 ids = (int[]) expandBy(ids, 1);

Chapter 3 ■ refleCtion

102

 // Set the third element to 103
 ids[2] = 103; // This is newly added element
 System.out.println("New array length: " + ids.length);
 System.out.println("New array elements:" + Arrays.toString(ids));
 }

 public static Object expandBy(Object oldArray, int increment) {
 Object newArray = null;

 // Get the length of old array using reflection
 int oldLength = Array.getLength(oldArray);
 int newLength = oldLength + increment;

 // Get the class of the old array
 Class<?> c = oldArray.getClass();

 // Create a new array of the new length
 newArray = Array.newInstance(c.getComponentType(), newLength);

 // Copy the old array elements to new array
 System.arraycopy(oldArray, 0, newArray, 0, oldLength);

 return newArray;
 }
}

Old array length: 2
Old array elements:[101, 102]
New array length: 3
New array elements:[101, 102, 103]

Who Should Use Reflection?
If you have used any integrated development environment (IDE) to develop a GUI application using drag-and-drop
features, you have already used an application that uses reflection in one form or another. All GUI tools that let you set
the properties of a control, say a button, at design time uses reflection to get the list of the properties for that control.
Other tools such as class browsers and debuggers also use reflection. As an application programmer, you will not
use reflection much in your programs unless you are developing advanced applications that make use of dynamism
provided by the reflection API. It should be noted that using too much reflection slows down the performance of your
application.

Summary
Reflection is the ability of a program to query and modify its state “as data” during the execution of the program. Java
represents the byte code of a class as an object of the Class class to facilitate reflection. The class fields, constructors,
and methods can be accessed as an object of the Field, Constructor, and Method classes, respectively. Using a Field
object, you can access and change the value of the field. Using a Method object, you can invoke the method. Using a
Constructor object, you can invoke the constructor. Using the Array class, you can also create arrays of a specified
type and dimension using reflection and manipulate the elements of the arrays.

103

Chapter 4

Generics

In this chapter, you will learn

What generics are•	

How to define generic types, methods, and constructors•	

How to define bounds for type parameters•	

How to use wildcards as the actual type parameters•	

How the compiler infers the actual type parameters for generic type uses•	

Generics and their limitations in array creations•	

How the incorrect use of generics may lead to heap pollution•	

What Are Generics?
Generics let you write true polymorphic code, which is code that works with any type. Please refer to Chapter 1 in
the book Beginning Java Fundamentals (ISBN 978-1-4302-6652-5) for more details on polymorphism and writing
polymorphic code.

Let’s discuss a simple example before I define what generics are and what they do for us. Suppose you want to
create a new class whose sole job is to store a reference to any type, where “any type” means any reference type.
Let’s call this class ObjectWrapper, as shown in Listing 4-1.

Listing 4-1. A Wrapper Class to Store a Reference of Any Type

// ObjectWrapper.java
package com.jdojo.generics;

public class ObjectWrapper {
 private Object ref;

 public ObjectWrapper(Object ref) {
 this.ref = ref;
 }

 public Object get() {
 return ref;
 }

Chapter 4 ■ GeneriCs

104

 public void set(Object reference) {
 this.ref = ref;
 }
}

As a Java developer, you would agree that we write this kind of code when we do not know the type of the objects
that we have to deal with. The ObjectWrapper class can store a reference of any type in Java, such as String, Integer,
Person, etc. How do you use the ObjectWrapper class? The following is one of the ways to use your Wrapper class:

ObjectWrapper stringWrapper = new ObjectWrapper("Hello");
stringWrapper.set("another string");
String myString =(String)stringWrapper.get();

There’s one problem in the above code. Even though you knew that you stored (and wanted to) a String
in the stringWrapper object, you had to cast the return value of the get() method to a String type in (String)
stringWrapper.get(). Consider writing the following snippet of code:

ObjectWrapper stringWrapper = new ObjectWrapper("Hello");
stringWrapper.set(new Integer(101));
String myString =(String)stringWrapper.get();

The above snippet of code compiles fine. However, you get a runtime ClassCastException in the third statement
because you stored an Integer in the second statement and attempted to cast an Integer to String in the third
statement. First, it allowed you to store an Integer in stringWrapper. Second, it did not complain about the code in the
third statement because it had no knowledge of your intent that you only wanted to use a String with stringWrapper.

Java has made some progress with the way it helps developers write type-safe programs. Wouldn’t it be nice if
the ObjectWrapper class had some way of letting you tell it that you want to use it only for a specific type, say, String
this time and Integer the next? Your wish is fulfilled by generics in Java. It lets you specify a type parameter with
a type (class or interface). Such a type is called a generic type (more specifically generic class or generic interface).
The type parameter value could be specified when you declare a variable of the generic type and create an object of
your generic type. Let’s rewrite the ObjectWrapper class to use generics. Call the new class simply Wrapper.

If a type accepts a parameter, you need to specify the parameter name (a valid identifier) in angle brackets (< >)
after the name of the type. You will use T as the parameter name.

public class Wrapper<T> {
}

It is an unwritten convention that parameter names are one character, and to use T to indicate that the parameter
is a type, E to indicate that the parameter is an element, K to indicate that the parameter is a key, and V to indicate that
the parameter is a value. In the previous example, you could have used any name for the type parameter, like so:

public class Wrapper<Hello> {
}

public class Wrapper<MyType> {
}

If you want to use more than one parameter for a type, they must be separated by a comma. The following
declaration for MyClass takes four parameters named T, U, V, and W:

public class MyClass<T, U, V, W> {
}

Chapter 4 ■ GeneriCs

105

You will be using your type parameter named T inside the class code in instance variable declarations,
constructors, the get() method, and the set() method. Right now, T means any type for you, which will be known
when you use this class. Listing 4-2 has the complete code for the Wrapper class.

Listing 4-2. Using a Type Parameter to Define a Generic Class

// Wrapper.java
package com.jdojo.generics;

public class Wrapper<T> {
 private T ref;

 public Wrapper(T ref) {
 this.ref = ref;
 }

 public T get() {
 return ref;
 }

 public void set(T a) {
 this.ref = ref;
 }
}

Are you still confused about using T in Listing 4-2? Here, T means any class type or interface type. It could be
String, Object, com.jdojo.generics.Person, etc. If you replace T with Object everywhere in this program and
remove <T> from the class name, it is the same code that you had for the ObjectWrapper class.

How do you use the Wrapper class? Since its class name is not just Wrapper, rather it is Wrapper<T>, you may specify
(but do not have to) the value for T. To store a String reference in the Wrapper object, you would create it as follows:

Wrapper<String> greetingWrapper = new Wrapper<String>("Hello");

How do you use the set() and get() methods of the Wrapper class? Since you have specified the type of the
parameter for the class Wrapper<T> to be String, the set() and get() method will work only with String types.
This is because you have used T as an argument type in the set() method and T as the return type in the get()
method declarations. Imagine replacing T in the class definition with String and you should have no problem in
understanding the following code:

greetingWrapper.set("Hi"); // OK to pass a String
String greeting = greetingWrapper.get(); // No need to cast

This time, you did not have to cast the return value of the get() method. The compiler knows that
greetingWrapper has been declared of type String and its get() method returns a String. Let’s try to store an
Integer object in greetingWrapper.

// A compile-time error. You can use greetingWrapper only to store a String.
greetingWrapper.set(new Integer(101));

The statement will generate the following compile-time error:

error: incompatible types: Integer cannot be converted to String
 greetingWrapper.set(new Integer(101));

Chapter 4 ■ GeneriCs

106

You cannot pass an Integer to the set() method. The compiler will generate an error. If you want to use the
Wrapper class to store an Integer, your code will be as follows:

Wrapper<Integer> idWrapper = new Wrapper<Integer>(new Integer(101));
idWrapper.set(new Integer(897)); // OK to pass an Integer
Integer id = idWrapper.get();

// A compile-time error. You can use idWrapper only wth an Integer.
idWrapper.set("hello");

Assuming that a Person class exists that contains a constructor with two parameters, you store a Person object in
Wrapper as follows:

Wrapper<Person> personWrapper = new Wrapper<Person>(new Person(1, "Chris"));
personWrapper.set(new Person(2, "Laynie"));
Person laynie = personWrapper.get();

The parameter that is specified in the type declaration is called a formal type parameter; for example, T is a formal
type parameter in the Wrapper<T> class declaration. When you replace the formal type parameter with the actual type
(e.g. in Wrapper<String> you replace the formal type parameter T with String), it is called a parameterized type.
A reference type in Java, which accepts one or more type parameters, is called a generic type. A generic type is mostly
implemented in the compiler. The JVM has no knowledge of a generic type. All actual type parameters are erased
during compile time using a process known as erasure. Compile-time type-safety is the benefit that you get when you
use a parameterized generic type in your code without the need to use casts.

Supertype-Subtype Relationship
Now, let’s play a trick. The following code creates two parameterized instances of the Wrapper<T> class, one for the
String type and one for the Object type:

Wrapper<String> stringWrapper = new Wrapper<String>("Hello");
stringWrapper.set("a string");

Wrapper<Object> objectWrapper = new Wrapper<Object>(new Object());
objectWrapper.set(new Object()); // set another object

// Use a String object with objectWrapper
objectWrapper.set("a string"); // ok

It is fine to store a String object in objectWrapper. After all, if you intended to store an Object in objectWrapper,
a String is also an Object.

Is the following assignment allowed?

objectWrapper = stringWrapper;

No, the above assignment is not allowed. That is, Wrapper<String> is not assignment compatible to
Wrapper<Object>. To understand why this assignment is not allowed, let’s assume for a moment that it was allowed.
You would be able to write code like the following:

// Now objectWrapper points to stringWrapper
objectWrapper = stringWrapper;

Chapter 4 ■ GeneriCs

107

// We could store an Object in stringWrapper using objectWrapper
objectWrapper.set(new Object());

// The following statement will throw a runtime ClassCastException
String s = sgw.get();

Do you see the danger of allowing an assignment like objectWrapper = stringWrapper? The compiler cannot
make sure that stringWrapper will store only a reference of String type if this assignment was allowed.

Remember that a String is an Object because String is a subclass of Object. However, Wrapper<String> is not
a Wrapper<Object>. The normal supertype/subtype rules do not apply with parameterized types. Don’t worry about
memorizing this rule if you do not understand it. If you attempt to make an assignment like the one shown above, the
compiler will tell you that you can’t.

Raw Type
Implementation of generic types in Java is backward compatible. If an existing non-generic class is rewritten to take
advantage of generics, the existing code that uses the non-generic version of the class should keep working. The
code may use (though it is not recommended) a non-generic version of a generic class by just omitting references
to the generic type parameters. The non-generic version of a generic type is called a raw type. Using raw types is
discouraged. If you use raw types in your code, the compiler will generate unchecked warnings, as shown in the
following snippet of code:

Wrapper rawType = new Wrapper("Hello"); // An unchecked warning
Wrapper<String> genericType = new Wrapper<String>("Hello");
genericType = rawType; // An unchecked warning
rawType = genericType;

The compiler generates the following warnings when the above snippet of code is compiled:

warning: [unchecked] unchecked call to Wrapper(T) as a member of the raw type Wrapper
 Wrapper rawType = new Wrapper("Hello"); // An unchecked warning
 ^
 where T is a type-variable:
 T extends Object declared in class Wrapper

warning: [unchecked] unchecked conversion
 genericType = rawType; // An unchecked warning
 ^
 required: Wrapper<String>
 found: Wrapper
2 warnings

Chapter 4 ■ GeneriCs

108

Unbounded Wildcards
As usual, let’s start with an example. It will help you understand the need for as well as the use of wildcards in generic
types. Let’s build a utility class for the Wrapper class. Call it WrapperUtil. Add a utility method called printDetails()
to this class, which will take an object of the Wrapper<T> class. How should you define the argument of this method?
The following is the first attempt:

public class WrapperUtil {
 public static void printDetails(Wrapper<Object> wrapper){
 // More code goes here
 }
}

Since your printDetails() method is supposed to print details about a Wrapper of any type, Object as parameter
type seemed to be more suitable. Let’s use your new printDetails() method, as shown:

Wrapper<Object> objectWrapper = new Wrapper<Object>(new Object());
WrapperUtil.printDetails(objectWrapper); // OK

Wrapper<String> stringWrapper = new Wrapper<String>("Hello");
WrapperUtil.printDetails(stringWrapper); // A compile-time error

The compile-time error is as follows:

error: method printDetails in class WrapperUtil cannot be applied to given types;
 WrapperUtil.printDetails(stringWrapper); // A compile-time error
 ^
 required: Wrapper<Object>
 found: Wrapper<String>
 reason: argument mismatch; Wrapper<String> cannot be converted to Wrapper<Object>
1 error

You are able to call the printDetails() method with the Wrapper<Object> type, but not with the
Wrapper<String> type because they are not assignment compatible, which is contradictory to what your intuition
tells you. To understand it fully, you need to know about the wildcard type in generics. A wildcard type is denoted by a
question mark, as in <?>. For a generic type, a wildcard type is what an Object type is for a raw type. You can assign a
generic of known type to a generic of wildcard type. Here is the sample code:

// Wrapper of String type
Wrapper<String> stringWrapper = new Wrapper<String>("Hi");

// You can assign a Wrapper<String> to Wrapper<?> type
Wrapper<?> wildCardWrapper = stringWrapper;

The question mark in a wildcard generic type (e.g., <?>) denotes an unknown type. When you declare a
parameterized type using a wildcard (means unknown) as a parameter type, it means that it does not know about its type.

// wildCardWrapper has unknown type
Wrapper<?> wildCardWrapper;

// Better to name it as an unknownWrapper
Wrapper<?> unknownWrapper;

Chapter 4 ■ GeneriCs

109

Can you create a Wrapper<T> object of an unknown type? Let’s assume that John cooks something for you. He
packs the food in a packet and hands it over to you. You hand over the packet to Donna. Donna asks you what is inside
the packet. Your answer is that you do not know. Can John answer the same way you did? No. He must know what
he cooked because he was the person who cooked the food. Even if you did not know what was inside the packet,
you had no problem in carrying it and giving it to Donna. What would be your answer if Donna asked you to give her
vegetable from the packet? You would say that you do not know if a vegetable is inside the packet.

Here are the rules for using a wildcard (unknown) generic type. Since it does not know its type, you cannot use it
to create an object of its unknown type. The following code is illegal:

// Cannot use <?> with new operator. It is a compile-time error.
new Wrapper<?>("");

It generates the following error:

error: unexpected type
 new Wrapper<?>("");
 ^
 required: class or interface without bounds
 found: ?
1 error

As you were holding the packet of unknown food type (John knew the type of food when he cooked the food), a
wildcard generic type can refer to a known generic type object, as shown:

Wrapper<?> unknownWrapper = new Wrapper<String>("Hello");

There is a complicated list of rules as to what a wildcard generic type reference can do with the object. However,
there is a simple rule of thumb to remember. The purpose of using generics is to have compile-time type-safety in Java
programs. As long as the compiler is satisfied that the operation will not produce any surprising results at runtime, it
will allow the operation on the wildcard generic type reference.

Let’s apply the rule of thumb to your unknownWrapper reference variable. One thing that this unknownWrapper
variable is sure about is that it refers to an object of the Wrapper<T> class of a known type. However, it does not know
what that known type is. Can you use the following get() method?

String str = unknownWrapper.get(); // A compile-time error

The above statement will not compile. The compiler generates the following error:

error: incompatible types: CAP#1 cannot be converted to String
 String str = unknownWrapper.get(); // A compile -time error
 ^
 where CAP#1 is a fresh type-variable:
 CAP#1 extends Object from capture of ?
1 error

The compiler knows that the get() method of the Wrapper<T> class returns an object of type T. However, for
the unknownWrapper variable, type T is unknown. Therefore, the compiler cannot make sure that the method call,
unknownWrapper.get(), will return a String and its assignment to str variable is fine at runtime. All you have to do is
convince the compiler that the assignment will not throw a ClassCastException at runtime. Will the following line of
code compile?

Object obj = unknownWrapper.get(); // OK

Chapter 4 ■ GeneriCs

110

The above code will compile because the compiler is convinced that this statement will not throw a
ClassCastException at runtime. It knows that the get() method returns an object of a type, which is not known to
the unknownWrapper variable. No matter what type of object the get() method returns, it will always be assignment-
compatible with the Object type. After all, all reference types in Java are subtypes of the Object type.

Will the following snippet of code compile?

unknownWrapper.set("Hello"); // A compile-time error
unknownWrapper.set(new Integer()); // A compile-time error
unknownWrapper.set(new Object()); // A compile-time error
unknownWrapper.set(null); // OK

Were you surprised by the above snippet of code? You will find out that it is not as surprising as it seems. The
set(T a) method accepts the generic type argument. This type, T, is not known to unknownWrapper, and therefore
the compiler cannot make sure that the unknown type is a String type, an Integer type, or an Object type. This is
the reason that the first three calls to set() are rejected by the compiler. Why is the fourth call to the set() method
correct? A null is assignment-compatible to any reference type in Java. The compiler thought that no matter what
type T would be in the set(T a) method for the object to which unknownWrapper reference variable is pointing to, a
null can always be safe to use. The following is your printDetails() method code. If you pass a null Wrapper object
to this method, it will throw a NullPointerException.

public class WrapperUtil {
 public static void printDetails(Wrapper<?> wrapper) {
 // Can assign get() return value to Object
 Object value = wrapper.get();
 String className = null;

 if (value != null) {
 className = value.getClass().getName();
 }

 System.out.println("Class: " + className);
 System.out.println("Value: " + value);
 }
}

Tip ■ Using only a question mark as a parameter type (<?>) is known as an unbounded wildcard. it places no bounds
as to what type it can refer. You can also place an upper bound or a lower bound with a wildcard. i will discuss bounded
wildcards in the next two sections.

Upper-Bounded Wildcards
Suppose you want to add a method to your WrapperUtil class. The method should accept two numbers that are
wrapped in your Wrapper objects and it will return their sum. The wrapped objects may be an Integer, Long, Byte,
Short, Double, or Float. Your first attempt is to write the sum() method as shown:

public static double sum(Wrapper<?> n1, Wrapper<?> n2) {
 //Code goes here
}

Chapter 4 ■ GeneriCs

111

There are some obvious problems with the method signature. The parameters n1 and n2 could be of any
parameterized type of Wrapper<T> class. For example, the following call would be a valid call for the sum() method:

// Try adding an Integer and a String
sum(new Wrapper<Integer>(new Integer(125)), new Wrapper<String>("Hello"));

Computing the sum of an Integer and a String does not make sense. However, the code will compile and you
should be ready to get some runtime exceptions depending on the implementation of the sum() method. You must
restrict this kind of code from compiling. It should accept two Wrapper objects of type Number or its subclasses, not just
anything. Therefore, you do know the upper bound of the type of the actual parameter that the Wrapper object should
have. The upper bound is the Number type. If you pass any other type, which is a subclass of the Number type, it is fine.
However, anything that is not a Number type or its subclass type should be rejected at compile time. You express the
upper bound of a wildcard as

<? extends T>

Here, T is a type. <? extends T> means anything that is of type T or its subclass is acceptable. Using your upper
bound as Number, you can define your method as

public static double sum(Wrapper<? extends Number> n1, Wrapper<? extends Number> n2){
 Number num1 = n1.get();
 Number num2 = n2.get();
 double sum = num1.doubleValue() + num2.doubleValue();
 return sum;
}

The following snippet of code inside the method compiles fine:

Number num1 = n1.get();
Number num2 = n2.get();

No matter what you pass for n1 and n2, they will always be assignment-compatible with Number because the
compiler will make sure that the parameters passed to the sum() method follow the rules specified in its declaration of
<? extends Number>. The attempt to compute the sum of an Integer and a String will be rejected by the compiler.

Consider the following snippet of code:

Wrapper<Integer> intWrapper = new Wrapper<Integer>(new Integer(10));
Wrapper<? extends Number> numberWrapper = intWrapper; // Ok
numberWrapper.set(new Integer(1220)); // A compile-time error
numberWrapper.set(new Double(12.20)); // A compile-time error

Can you figure out the problem with this snippet of code? The type of numberWrapper is <? extends Number>,
which means it can refer to (or it is assignment-compatible with) anything that is a subtype of the Number class. Since
Integer is a subclass of Number, the assignment of intWrapper to numberWrapper is allowed. When you try to use the
set() method on numberWrapper, the compiler starts complaining because it cannot make sure at compile time that
numberWrapper is a type of Integer or Double, which are subtypes of a Number. Be careful with this kind of compiler
error when working with generics. On the surface, it might look obvious to you and you would think that code should
compile and run fine. Unless the compiler makes sure that the operation is type-safe, it will not allow you to proceed.
After all, compile-time and runtime type-safety is the primary goal of generics!

Chapter 4 ■ GeneriCs

112

Lower-Bounded Wildcards
Specifying a lower-bound wildcard is the opposite of specifying an upper-bound wildcard. The syntax for using a
lower-bound wildcard is <? super T>, which means “anything that is a supertype of T.” Let’s add another method to
the WrapperUtil class. You will call the new method copy() and it will copy the value from a source wrapper object to
a destination wrapper object. Here is the first attempt. The <T> is the formal type parameter for the copy() method. It
specifies that the source and dest parameters must be of the same type.

public class WrapperUtil {
 public static <T> void copy(Wrapper<T> source, Wrapper<T> dest) {
 T value = source.get();
 dest.set(value);
 }
}

Copying the content of a Wrapper<String> to a Wrapper<Object> using your copy() method will not work.

Wrapper<Object> objectWrapper = new Wrapper<Object>(new Object());
Wrapper<String> stringWrapper = new Wrapper<String>("Hello");
WrapperUtil.copy(stringWrapper, objectWrapper); // A compile-time error

The above code will generate a compile-time error because the copy() method requires the source and the dest
arguments be of the same type. However, for all practical purposes a String is always an Object. Here, you need to
use a lower-bounded wildcard, as shown:

public class WrapperUtil {
 // New definition of the copy() method
 public static <T> void copy(Wrapper<T> source, Wrapper<? super T> dest){
 T value = source.get();
 dest.set(value);
 }
}

Now you are saying that the dest argument of the copy() method could be either T, same as source, or any of its
supertype. You can use the copy() method to copy the contents of a Wrapper<String> to a Wrapper<Object> as shown
below. Since Object is the supertype of String, the new copy() method will work. However, you cannot use it to copy
from an Object type wrapper to a String type wrapper, as an Object is a String is not always true.

Wrapper<Object> objectWrapper = new Wrapper<Object>(new Object());
Wrapper<String> stringWrapper = new Wrapper<String>("Hello");
WrapperUtil.copy(stringWrapper, objectWrapper); // OK with the new copy() method

Listing 4-3 shows the complete code for the WrapperUtil class.

Listing 4-3. A WrapperUtil Utility Class That Works with Wrapper Objects

// WrapperUtil.java
package com.jdojo.generics;

public class WrapperUtil {
 public static void printDetails(Wrapper<?> gw) {
 // Can assign get() return value to Object

Chapter 4 ■ GeneriCs

113

 Object value = gw.get();
 String className = null;

 if (value != null) {
 className = value.getClass().getName();
 }

 System.out.println("Class: " + className);
 System.out.println("Value: " + value);
 }

 public static double sum(Wrapper<? extends Number> n1,
 Wrapper<? extends Number> n2) {
 Number num1 = n1.get();
 Number num2 = n2.get();
 double sum = num1.doubleValue() + num2.doubleValue();
 return sum;
 }

 public static <T> void copy(Wrapper<T> source, Wrapper<? super T> dest) {
 T value = source.get();
 dest.set(value);
 }
}

Generic Methods and Constructors
You can define type parameters in a method declaration. They are specified in angle brackets before the return type
of the method. The type that contains the generic method declaration does not have to be a generic type. You can
use the type parameter specified for the generic type inside the non-static method declaration. In your Wrapper class,
you have used the type parameter T in the get() and set() methods. You can also define new type parameters for
methods. The snippet of code shown below defines a new type parameter V for method m1(). The new type parameter
V forces the first and the second arguments of method m1() to be of the same type. The third argument must be of the
same type T, which is the type of the class instantiation.

public class Test<T> {
 public <V> void m1(Wrapper<V> a, Wrapper<V> b, T c) {
 // Do something
 }
}

How do you specify the generic type for a method when you want to call the method? Usually, you do not need to
specify the actual type parameter when you call the method. The compiler figures it out for you using the value you pass
to the method. However, if you ever need to pass the actual type parameter for the method’s formal type parameter, you
must specify it in angle brackets (< >) between the dot and the method name in the method call, as shown:

Test<String> t = new Test<String>();
Wrapper<Integer> iw1 = new Wrapper<Integer>(new Integer(201));
Wrapper<Integer> iw2 = new Wrapper<Integer>(new Integer(202));

Chapter 4 ■ GeneriCs

114

// Specify that Integer is the actual type for the type parameter for m1()
t.<Integer>m1(iw1, iw2, "hello");

// Let the compiler figure out the actual type parameter for the m1() call
// using types for iw1 and iw2
t.m1(iw1, iw2, "hello"); // OK

Listing 4-3 demonstrated how to declare a generic static method. You cannot refer to the type parameters of the
containing class inside the static method. A static method can refer only to its own declared type parameters. Below
is the copy of your copy() static method from the WrapperUtil class. It defines a type parameter T, which is used to
constrain the type of arguments source and dest.

public static <T> void copy(Wrapper<T> source, Wrapper<? super T> dest) {
 T value = source.get();
 dest.set(value);
}

The compiler will figure out the actual type parameter for a method whether the method is non-static or static.
However, if you want to specify the actual type parameter for a static method call, you can do so as follows:

WrapperUtil.<Integer>copy(iw1, iw2);

You can also define type parameters for constructors the same way as you do for a method. The following code
defines a type parameter U for the constructor of class Test. It places a constraint that the constructor’s type parameter
U must be the same or a subtype of the actual type of its class type parameter T.

public class Test<T> {
 public <U extends T> Test(U k) {
 // Do something
 }
}

The compiler will figure out the actual type parameter passed to the constructor with the value you pass. If you
want to specify the actual type parameter value for the constructor, you can specify it in angle brackets between the
new operator and the name of the constructor, as shown in the following snippet of code:

// Specify the actual type parameter for the constructor as Double
Test<Number> t1 = new <Double>Test<Number>(new Double(12.89));

// Let the compiler figure out that we are using Integer as
// the actual type parameter for the constructor
Test<Number> t2 = new Test<Number>(new Integer(123));

Type Inference in Generic Object Creation
Java 7 added limited support for type inference in an object-creation expression for generic types. Note that the type
inference support in the object-creation expression is limited to the situations where the type is obvious. Consider the
following statement:

List<String> list = new ArrayList<String>();

Chapter 4 ■ GeneriCs

115

With the declaration of list as List<String>, it is obvious that you want to create an ArrayList with type
parameter as <String>. However, you needed to specify the <String> type parameter with ArrayList in the above
statement before Java 7. In Java 7, you can specify empty angle brackets, <> (known as the diamond operator or simply
the diamond), as the type parameter for ArrayList in the above statement. You can rewrite the above statement in
Java 7 and later as shown:

List<String> list = new ArrayList<>(); // Works in Java 7 and later

Note that if you do not specify a type parameter for a generic type in an object-creation expression, the type is
the raw type and the compiler generates unchecked warnings. For example, the following statement will compile with
unchecked warnings:

// Using ArrayList as a raw type, not a generic type
List<String> list = new ArrayList(); // Generates an unchecked warning

The compiler warning will be as follows:

warning: [unchecked] unchecked conversion
 List<String> list = new ArrayList(); // Generates an unchecked warning
 ^
 required: List<String>
 found: ArrayList
1 warning

Sometimes it is not possible for the compiler to infer correctly the parameter type of a type in an object-creation
expression. In those cases, you need to specify the parameter type instead of using the diamond operator (<>).
Otherwise, the compiler will infer a wrong type, which will generate an error.

When the diamond operator is used in an object creation expression, the compiler uses a four-step process to
infer the parameter type for the parameterized type. Let’s consider a typical object-creation expression:

T1<T2> var = new T3<>(constructor-arguments);

 1. First, it tries to infer the type from the static type of the constructor-arguments. Note that

constructor-arguments may be empty, for example, new ArrayList<>().

 2. If it cannot infer the type from the static type of the constructor-arguments, it uses the
left-hand side of the assignment operator to infer the type. In the above statement, it will
infer T2 as the type if the constructor-arguments are empty. Note that an object-creation
expression may not be part of an assignment statement. In such cases, it will use the
third step.

 3. This rule applies to Java 8 and later. If you are using Java 7, skip to the next rule. If the
object-creation expression is used as an actual parameter for a method call, the compiler
tries to infer the type by looking at the type of the formal parameter for the method being
called.

 4. If all else fails and it cannot infer the type using the above steps, it infers Object as the
type.

Let’s discuss a few examples that involve all steps in the type inference process. Create the two lists, list1 of
List<String> type and list2 of List<Integer> type.

Chapter 4 ■ GeneriCs

116

import java.util.Arrays;
import java.util.List;

// Other code goes here

List<String> list1 = Arrays.asList("A", "B");
List<Integer> list2 = Arrays.asList(9, 19, 1969);

Consider the following statement that uses the diamond operator:

List<String> list3 = new ArrayList<>(list1); // Inferred type is String

The compiler used the constructor argument list1 to infer the type. The static type of list1 is List<String>,
so the type String was inferred by the compiler. The above statement compiles fine. The compiler did not use the
left-hand side of the assignment operator, List<String> list3, during the inference process. You may not trust this
argument. Consider the following statement to prove this:

List<String> list4 = new ArrayList<>(list2); // A compile-time error

Compiling the above statement generates the following error:

required: List<String>
found: ArrayList<Integer>
1 error

Do you believe it now? The constructor argument is list2 whose static type is List<Integer>. The compiler
inferred the type as Integer and replaced ArrayList<> by ArrayList<Integer>. The type of list4 is List<String>,
which is not assignment-compatible with the ArrayList<Integer>, which resulted in the compile-time error.

Consider the following statement:

List<String> list5 = new ArrayList<>(); // Inferred type is String

This time, there is no constructor argument. The compiler uses the second step to look at the left-hand side of the
assignment operator to infer the type. On the left-hand side, it finds List<String> and it correctly infers the type as
String. Consider a process() method that is declared as follows:

public static void process(List<String> list) {
 // Code goes here
}

The following statement makes a call to the process() method, which might generate a compile-time error:

// The inferred type is Object in Java 7, and String in Java 8 and later
process(new ArrayList<>());

The above statement generates the following compile-time error in Java 7. It will compile fine in Java 8 as Java
designers have been trying to make the compiler smarter a little bit at time!

required: List<String>
found: ArrayList<Object>
1 error

Chapter 4 ■ GeneriCs

117

In Java 7, the compiler attempts to infer the type in the object creation expression, new ArrayList<>(). The
expression does not have any constructor argument. It does not include a left-hand side expression. Therefore, the
compiler uses the fourth step in its inference process. It infers the type as Object. It replaces the call to the process()
method by the following call, which results in the argument type mismatch for the method call. Note that the compiler
does not look at the method’s signature (process() method in your case) to infer the type in the object-creation
expression.

process(new ArrayList<Object>());

In Java 8, the compiler looks at the type of the formal parameter of the process() method and it finds
List<String> and it infers the type as String.

Tip ■ Using the diamond operator saves some typing. Use it when the type inference is obvious. however, it is better,
for readability, to specify the type, instead of the diamond operator, in a complex object-creation expression. always
prefer readability over brevity.

No Generic Exception Classes
Exceptions are thrown at runtime. The compiler cannot ensure the type-safety of exceptions at runtime if you use a
generic exception class in a catch clause to catch an exception, because the erasure process erases the mention of
any type parameter during compilation. This is the reason that it is a compile-time error to attempt to define a generic
class, which is a direct or indirect subclass of java.lang.Throwable.

No Generic Anonymous Classes
An anonymous class is a one-time class. You need a class name to specify the actual type parameter. An anonymous
class does not have a name. Therefore, you cannot have a generic anonymous class. However, you can have generic
methods inside an anonymous class. Your anonymous class can inherit a generic class. An anonymous class can
implement a generic interface. Any class, except an exception type, enums, and anonymous inner classes, can have
type parameters.

Generics and Arrays
Let’s look at the following code for a class called GenericArrayTest:

public class GenericArrayTest<T> {
 private T[] elements;

 public GenericArrayTest(int howMany) {
 elements = new T[howMany]; // A compile-time error
 }
 // More code goes here
}

Chapter 4 ■ GeneriCs

118

The GenericArrayClass declares a type parameter T. In the constructor, it attempts to create an array of the
generic type. You cannot compile the above code. The compiler will complain about the following statement:

elements = new T[howMany]; // A compile-time error

Recall that all references to the generic type are erased from the code when a generic class or code using it
is compiled. An array needs to know its type when it is created, so that it can perform a check at runtime when
an element is stored in it to make sure that the element is assignment-compatible with its type. An array’s type
information will not be available at runtime if you use a type parameter to create it. This is the reason that the above
statement is not allowed.

You cannot create an array of generic type because the compiler cannot ensure the type-safety of the assignment
to the array element. You cannot write the following code:

Wrapper<String>[] gsArray = null;

// Cannot create an array of generic type
gsArray = new Wrapper<String>[10]; // A compile-time error

It is allowed to create an array of unbounded wildcard generic types, as shown:

Wrapper<?>[] anotherArray = new Wrapper<?>[10]; // Ok

Suppose you want to use an array of a generic type. You can do so by using the newInstance() method of the
java.lang.reflect.Array class as follows. You will have to deal with the unchecked warnings at compile time
because of the cast used in the array creation statement. The following snippet of code shows that you can still bypass
the compile-time type-safety check when you try to sneak in an Object into an array of Wrapper<String>. However,
this is the consequence you have to live with when using generics, which does not carry its type information at
runtime. Java generics are as skin deep as you can imagine.

Wrapper<String>[] a = (Wrapper<String>[])Array.newInstance(Wrapper.class, 10);

Object[] objArray = (Object[])a;
objArray[0] = new Object(); // Will throw a java.lang.ArrayStoreExceptionxception
a[0] = new Wrapper<String>("Hello"); // OK. Checked by compiler

Runtime Class Type of Generic Objects
What is the class type of the object for a parameterized type? Consider the program in Listing 4-4.

Listing 4-4. All Objects of a Parameterized Type Share the Same Class at Runtime

// GenericsRuntimeClassTest.java
package com.jdojo.generics;

public class GenericsRuntimeClassTest {
 public static void main(String[] args) {
 Wrapper<String> a = new Wrapper<String>("Hello");
 Wrapper<Integer> b = new Wrapper<Integer>(new Integer(123));
 Class aClass = a.getClass();
 Class bClass = b.getClass();
 System.out.println("Class for a: " + aClass.getName());

Chapter 4 ■ GeneriCs

119

 System.out.println("Class for b: " + bClass.getName());
 System.out.println("aClass == bClass: " + (aClass == bClass));
 }
}

Class for a: com.jdojo.generics.Wrapper
Class for b: com.jdojo.generics.Wrapper
aClass == bClass: true

The program creates objects of the Wrapper class by using String and Integer as type parameters. It prints the

class names for both objects and they are the same. The output shows that all parameterized objects of the same
generic type share the same class object at runtime. As mentioned earlier, the type information you supply to the
generic type is removed from the code during compilation. The compiler changes the Wrapper<String> a; statement
to Wrapper a;. For the JVM, its business as usual (before pre-generics)!

Heap Pollution
Representing a type at runtime is called reification. A type that can be represented at runtime is called a reifiable type.
A type that is not completely represented at runtime is called a non-reifiable type. Most generic types are non-reifiable
because generics are implemented using erasure, which removes the type’s parameters information at compile time.
For example, when you write Wrapper<String>, the compiler removes the type parameter <String> and the runtime
sees only Wrapper instead of Wrapper<String>.

Heap pollution is a situation that occurs when a variable of a parameterized type refers to an object not of the same
parameterized type. The compiler issues an unchecked warning if it detects possible heap pollution. If your program
compiles without any unchecked warnings, heap pollution will not occur. Consider the following snippet of code:

Wrapper nWrapper = new Wrapper<Integer>(101); // #1

// Unchecked warning at compile-time and heap pollution at runtime
Wrapper<String> sWrapper = nWrapper; // #2
String str = sWrapper.get(); // #3 - ClassCastException

The first statement (labeled #1) compiles fine. The second statement (labeled #2) generates an unchecked
warning because the compiler cannot determine if nWrapper is of the type Wrapper<String>. Since parameter type
information is erased at compile-time, the runtime has no way of detecting this type mismatch. The heap pollution in
the second statement makes it possible to get a ClassCastException in the third statement (labeled #3) at runtime. If
the second statement was not allowed, the third statement will not cause a ClassCastException.

Heap pollution may also occur because of an unchecked cast operation. Consider the following snippet of code:

Wrapper<? extends Number> nW = new Wrapper<Long>(1L); // #1

// Unchecked cast and unchecked warning occurs when the following
// statement #2 is compiled. Heap pollution occurs, when it is executed.
Wrapper<Short> sw = (Wrapper<Short>)nW; // #2
short s = sw.get(); //#3 ClassCastException

The statement labeled #2 uses an unchecked cast. The compiler issues an unchecked warning. At runtime, it
leads to heap pollution. As a result, the statement labeled #3 generates a runtime ClassCastException.

Chapter 4 ■ GeneriCs

120

Varargs Methods and Heap Pollution Warnings
Java 7 has improved warnings for a varargs method with a non-reifiable type parameter. Java implements the varargs
parameter of a varargs method by converting the varargs parameter into an array. If a varargs method uses a generic
type varargs parameter, Java cannot guarantee the type-safety. A non-reifiable generic type varargs parameter may
possibly lead to heap pollution.

Consider the following snippet of code that declares a process() method with a parameterized type parameter
nums. The comments in the method’s body indicate the heap pollution and other types of problems.

// A unchecked and varargs warnings in Java 7
public static void process(Wrapper<Long>…nums) {
 Object[] obj = nums; // Heap pollution
 obj[0] = new Wrapper<String>("Hello"); // Array corruption
 Long lv = nums[0].get(); // A ClassCastException
 // Other code goes here
}

When the process() method is compiled, the compiler removes the type information <Long> from its
parameterized type parameter and changes its signature to process(Wrapper[] nums). When you compile the above
declaration of the process() method, you will get the following unchecked warning:

warning: [unchecked] Possible heap pollution from parameterized vararg type Wrapper<Long>
 public static void process(Wrapper<Long>...nums) {
 ^
1 warning

Consider the following snippet of code that calls the process() method:

Wrapper<Long> v1 = new Wrapper<Long>(10L);
Wrapper<Long> v2 = new Wrapper<Long>(11L);
process(v1, v2); // An unchecked warning in Java 5, 6, 7

When the above snippet of code is compiled, it generates the following compiler unchecked warning:

warning: [unchecked] unchecked generic array creation for varargs parameter of type Wrapper<Long>[]
 process(v1, v2);
 ^
1 warning

Until Java 6, the compiler generated a warning at the location where the varargs method with a non-reifiable
generic varargs type parameter was called. The possible heap pollution problem may exist inside the method. Java 7
has improved the warning by generating a warning at the method declaration as well as at the location of the method
call. If you create such a method, it is your responsibility to ensure that heap pollution does not occur inside your
method’s body.

If you create a varargs method with a non-reifiable type parameter, you can suppress the unchecked warnings at
the location of the method’s declaration as well as the method’s call by using @java.lang.SafeVarargs annotation. By
using the @SafeVarargs annotation, you are asserting that your varargs method with non-reifiable type parameter is
safe to use. The following snippet of code uses @SafeVarargs annotation with the process() method:

@java.lang.SafeVarargs
public static void process(Wrapper<Long>...nums) {
 Object[] obj = nums; // Heap pollution

Chapter 4 ■ GeneriCs

121

 obj[0] = new Wrapper<String>("Hello"); // Array corruption
 Long lv = nums[0].get(); // A ClassCastException
 // Other code goes here
}

When you compile the above declaration of the process() method, you do not get an unchecked warning.
However, you get the following varargs warning because the compiler sees possible heap pollution when the varargs
parameter nums is assigned to the Object array obj:

warning: [varargs] Varargs method could cause heap pollution from non-reifiable varargs parameter
nums
 Object[] obj = nums; // Heap pollution
 ^
1 warning

You can suppress the unchecked and varargs warnings for a varargs method with a non-reifiable type parameter
by using @java.lang.SuppressWarnings annotation as follows:

@SuppressWarnings({"unchecked", "varargs"})
public static void process(Wrapper<Long>...nums) {
 // Code goes here
}

Note that when you use the @SuppressWarnings annotation with a varargs method, it suppresses warnings only at
the location of the method’s declaration, not at the locations where the method is called.

Summary
Generics are the Java language features that allow you to declare types (classes and interfaces) that use type
parameters. Type parameters are specified when the generic type is used. The type when used with the actual type
parameter is known a parameterized type. When a generic type is used without specifying its type parameters, it is
called a raw type. For example, if Wrapper<T> is a generic class, Wrapper<String> is a parameterized type with String
as the actual type parameter and Wrapper as the raw type. Type parameters can also be specified for constructors and
methods. Generics allow you to write true polymorphic code in Java—code using a type parameter that works for all
types.

By default, a type parameter is unbounded, meaning that you can specify any type for the type parameter. For
example, if a class is declared with a type parameter <T>, you can specify any type available in Java, such as <String>,
<Object>, <Person>, <Employee>, <Integer>, etc., as the actual type for T. Type parameters in a type declaration
can also be specified as having upper bounds or lower bounds. The declaration Wrapper<U extends Person> is an
example of specifying an upper bound for the type parameter U that specifies that U can be of a type that is Person or a
subtype of Person. The declaration Wrapper<? super Person> is an example of specifying a lower bound; it specifies
that the type parameter is the type Person type of a supertype of Person.

Java also lets you specify the wildcard, which is a question mark, as the actual type parameter. A wildcard as
the actual parameter means the actual type parameter is unknown; for example, Wrapper<?> means that the type
parameter T for the generic type Wrapper<T> is unknown.

The Java compiler attempts to infer the type of an expression using generics, depending on the context in which
the expression is used. If the compiler cannot infer the type, it generates a compile-time error and you will need to
specify the type explicitly.

Chapter 4 ■ GeneriCs

122

The supertype–subtype relationship does not exist with parameterized types. For example, Wrapper<Long> is not
a subtype of Wrapper<Number>.

The generic type parameters are erased by the compiler using a process called type erasure. Therefore,
the generic type parameters are not available at runtime. For example, the runtime type of Wrapper<Long> and
Wrapper<String> are the same, which is Wrapper.

123

Chapter 5

Lambda Expressions

In this chapter, you will learn

What lambda expressions are•	

Why we need lambda expressions•	

The syntax for defining lambda expressions•	

Target typing for lambda expressions•	

Commonly used built-in functional interfaces•	

Method and Constructor references•	

Lexical scoping of lambda expressions•	

What Is a Lambda Expression?
A lambda expression is an unnamed block of code (or an unnamed function) with a list of formal parameters and a
body. Sometimes a lambda expression is simply called a lambda. The body of a lambda expression can be a block
statement or an expression. An arrow (->) is used to separate the list of parameters and the body. The term “lambda”
in "lambda expression" has its origin in Lambda calculus that uses the Greek letter lambda (l) to denote a function
abstraction. The following are some examples of lambda expressions in Java:

// Takes an int parameter and returns the parameter value incremented by 1
(int x) -> x + 1

// Takes two int parameters and returns their sum
(int x, int y) -> x + y

// Takes two int parameters and returns the maximum of the two
(int x, int y) -> { int max = x > y ? x : y;
 return max;
 }

// Takes no parameters and returns void
() -> { }

Chapter 5 ■ Lambda expressions

124

// Takes no parameters and returns a string "OK"
() -> "OK"

// Takes a String parameter and prints it on the standard output
(String msg) -> { System.out.println(msg); }

// Takes a parameter and prints it on the standard output
msg -> System.out.println(msg)

// Takes a String parameter and returns its length
(String str) -> str.length()

At this point, you will not be able to understand the syntax of lambda expressions completely. I will cover the
syntax in detail shortly. For now, just get the feel of it, keeping in mind that the syntax for lambda expressions is
similar to the syntax for declaring methods.

Tip ■ a lambda expression is not a method, although its declaration looks similar to a method. as the name suggests,
a lambda expression is an expression that represents an instance of a functional interface.

Every expression in Java has a type; so does a lambda expression. The type of a lambda expression is a functional
interface type. When the abstract method of the functional interface is called, the body of the lambda expression is
executed.

Consider the lambda expression that takes a String parameter and returns its length:

(String str) -> str.length()

What is the type of this lambda expression? The answer is that we do not know. By looking at the lambda
expression, all you can say is that it takes a String parameter and returns an int, which is the length of the String.
Its type can be any functional interface type with an abstract method that takes a String as a parameter and returns
an int. The following is an example of such a functional interface:

@FunctionalInterface
interface StringToIntMapper {
 int map(String str);
}

The lambda expression represents an instance of the StringToIntMapper functional interface when it appears in
the assignment statement, like so:

StringToIntMapper mapper = (String str) -> str.length();

In this statement, the compiler finds that the right-hand side of the assignment operator is a lambda
expression. To infer its type, it looks at the left-hand side of the assignment operator that expects an instance of the
StringToIntMapper interface; it verifies that the lambda expression conforms to the declaration of the map() method

Chapter 5 ■ Lambda expressions

125

in the StringToIntMapper interface; finally, it infers that the type of the lambda expression is the StringToIntMapper
interface type. When you call the map() method on the mapper variable passing a String, the body of the lambda
expression is executed as shown in the following snippet of code:

StringToIntMapper mapper = (String str) -> str.length();
String name = "Kristy";
int mappedValue = mapper.map(name);
System.out.println("name=" + name + ", mapped value=" + mappedValue);

name=Kristy, mapped value=6

So far, you have not seen anything that you could not do in Java without using lambda expressions. The following

snippet of code uses an anonymous class to achieve the same result as the lambda expression used in the previous
example:

StringToIntMapper mapper = new StringToIntMapper() {
 @Override
 public int map(String str) {
 return str.length();
 }
};
String name = "Kristy";
int mappedValue = mapper.map(name);
System.out.println("name=" + name + ", mapped value=" + mappedValue);

name=Kristy, mapped value=6

At this point, a lambda expression may seem to be a concise way of writing an anonymous class, which is true as

far as the syntax goes. There are some subtle differences in semantics between the two. I will discuss the differences
between a lambda expressions and anonymous classes as I discuss more details later.

Tip ■ Java is a strongly-typed language, which means that the compiler must know the type of all expressions used
in a Java program. a lambda expression by itself does not have a type, and therefore, it cannot be used as a standalone
expression. the type of a lambda expression is always inferred by the compiler by the context in which it is used.

Why Do We Need Lambda Expressions?
Java has supported object-oriented programming since the beginning. In object-oriented programming, the program
logic is based on mutable objects. Methods of classes contain the logic. Methods are invoked on objects, which
typically modify their states. In object-oriented programming, the order of method invocation matters as each method
invocation may potentially modify the state of the object, thus producing side effects. Static analysis of the program
logic is difficult as the program state depends on the order in which the code will be executed. Programming with
mutating objects also poses a challenge in concurrent programming in which multiple parts of the program may
attempt to modify the state of the same object concurrently. As the processing power of computers has increased
in recent years, so has the amount of data to be processed. Nowadays, it is not uncommon to process data as big as
terabytes in size, requiring the need for parallel programming. Now it is common for computers to have a multi-core
processor that give users the opportunity to run software programs faster; at the same time, this poses a challenge to

Chapter 5 ■ Lambda expressions

126

programmers to write more parallel programs, taking advantage of all the available cores in the processor. Java has
supported concurrent programming since the beginning. It added support for parallel programming in Java 7 through
the fork/join framework, which was not easy to use.

Functional programming, which is based on Lambda calculus, existed long before object-oriented programming.
It is based on the concept of functions, a block of code that accepts values, known as parameters, and the block of
code is executed to compute a result. A function represents a functionality or operation. Functions do not modify data,
including its input, thus producing no side-effects; for this reason, the order of the execution of functions does not
matter in functional programming. In functional programming, a higher order function is an anonymous function that
can be treated as a data object. That is, it can be stored in a variable and passed around from one context to another.
It might be invoked in a context that did not necessarily define it. Note that a higher order function is an anonymous
function, so the invoking context does not have to know its name. A closure is a higher order function packaged with
its defining environment. A closure carries with it the variables in scope when it was defined, and it can access those
variables even when it is invoked in a context other than the context in which those variables were defined.

In recent years, functional programming has become popular because of its suitability in concurrent, parallel,
and event-driven programming. Modern programming languages such as C#, Groovy, Python, and Scala support
functional programming. Java did not want to be left behind, and hence, it introduced lambda expressions to support
functional programming, which can be mixed with its already popular object-oriented features to develop robust,
concurrent, parallel programs. Java adopted the syntax for lambda expressions that is very similar to the syntax used
in other programming languages such as C# and Scala.

In object-oriented programming, a function is called a method and it is always part of a class. If you wanted
to pass functionality around in Java, you needed to create an object, add a method to the object to represent the
functionality, and pass the object around. A lambda expression in Java is like a higher-order function in functional
programming, which is an unnamed block of code representing a functionality that can be passed around like data.
A lambda expression may capture the variables in its defining scope and it may access those variables later in a context
that did not define the captured variable. This features let you use lambda expressions to implement closures in Java.

Java 8 introduced lambda expressions that represent an instance of a functional interface. You were able to do
everything prior to Java 8 using anonymous classes what you can do with lambda expressions. Functional interfaces
are not a new addition in Java 8; they have existed since the beginning.

So why and where do we need lambda expressions? Anonymous classes use a bulky syntax. Lambda expressions
use a very concise syntax to achieve the same result. Lambda expressions are not a complete replacement for
anonymous classes. You will still need to use anonymous classes in a few situations. Just to appreciate the conciseness
of the lambda expressions, compare the following two statements from the previous section that create an instance of
the StringToIntMapper interface; one uses an anonymous class, taking six lines of code, and another uses a lambda
expression, taking just one line of code:

// Using an anonymous class
StringToIntMapper mapper = new StringToIntMapper() {
 @Override
 public int map(String str) {
 return str.length();
 }
};

// Using a lambda expression
StringToIntMapper mapper = (String str) -> str.length();

Syntax for Lambda Expressions
A lambda expression describes an anonymous function. The general syntax for using lambda expressions is very
similar to declaring a method. The general syntax is

(<LambdaParametersList>) -> { <LambdaBody> }

Chapter 5 ■ Lambda expressions

127

A lambda expression consists of a list of parameters and a body that are separated by an arrow (->). The list
of parameters is declared the same way as the list of parameters for methods. The list of parameters is enclosed in
parentheses, as is done for methods. The body of a lambda expression is a block of code enclosed in braces. Like
a method's body, the body of a lambda expression may declare local variables; use statements including break,
continue, and return; throw exceptions, etc. Unlike a method, a lambda expression does not have four parts.

A lambda expression does not have a name.•	

A lambda expression does not have a return type. It is inferred by the compiler from the •	
context of its use and from its body.

A lambda expression does not have a •	 throws clause. It is inferred from the context of its use
and its body.

A lambda expression cannot declare type parameters. That is, a lambda expression •	
cannot be generic.

Table 5-1 contains some examples of lambda expressions and equivalent methods. I have given a suitable
name to methods as you cannot have a method without a name in Java. The compiler infers the return type of
lambda expressions.

Table 5-1. Examples of Lambda Expressions and Equivalent Methods

Lambda Expression Equivalent Method

(int x, int y) -> {
 return x + y;
}

int sum(int x, int y) {
 return x + y;
}

(Object x) -> {
 return x;
}

Object identity(Object x) {
 return x;
}

(int x, int y) -> {
 if (x > y) {
 return x;
 }
 else {
 return y;
 }
}

int getMax(int x, int y) {
 if (x > y) {
 return x;
 }
 else {
 return y;
 }
}

(String msg) -> {
 System.out.println(msg);
}

void print(String msg) {
 System.out.println(msg);
}

() -> {
 System.out.println(LocalDate.now());
}

void printCurrentDate() {
 System.out.println(LocalDate.now());
}

() -> {
 // No code goes here
}

void doNothing() {
 // No code goes here
}

Chapter 5 ■ Lambda expressions

128

One of the goals of the lambda expression was to keep its syntax concise and let the compiler infer the details.
The following sections discuss the shorthand syntax for declaring lambda expressions.

Omitting Parameter Types
You can omit the declared type of the parameters. The compiler will infer the types of parameters from the context in
which the lambda expression is used.

// Types of parameters are declared
(int x, int y) -> { return x + y; }

// Types of parameters are omitted
(x, y) -> { return x + y; }

If you omit the types of parameters, you must omit it for all parameters or for none. You cannot omit for some and
not for others. The following lambda expression will not compile because it declares the type of one parameter and
omits for the other:

// A compile-time error
(int x, y) -> { return x + y; }

Tip ■ a lambda expression that does not declare the types of its parameters is known as an implicit lambda expression
or an implicitly-typed lambda expression. a lambda expression that declares the types of its parameters is known as an
explicit lambda expression or an explicitly-typed lambda expression.

Declaring a Single Parameter
Sometimes a lambda expression takes only one parameter. You can omit the parameter type for a single parameter
lambda expression as you can do for a lambda expression with multiple parameters. You can also omit the
parentheses if you omit the parameter type in a single parameter lambda expression. The following are three ways to
declare a lambda expression with a single parameter:

// Declares the parameter type
(String msg) -> { System.out.println(msg); }

// Omits the parameter type
(msg) -> { System.out.println(msg); }

// Omits the parameter type and parentheses
msg -> { System.out.println(msg); }

The parentheses can be omitted only if the single parameter also omits its type. The following lambda expression
will not compile:

// Omits parentheses, but not the parameter type, which is not allowed.
String msg -> { System.out.println(msg); }

Chapter 5 ■ Lambda expressions

129

Declaring No Parameters
If a lambda expression does not take any parameters, you need to use empty parentheses.

// Takes no parameters
() -> { System.out.println("Hello"); }

It is not allowed to omit the parentheses when the lambda expression takes no parameter. The following
declaration will not compile:

-> { System.out.println("Hello"); }

Parameters with Modifiers
You can use modifiers, such as final, in the parameter declaration for explicit lambda expressions. The following two
lambda expressions are valid:

(final int x, final int y) -> { return x + y; }

(int x, final int y) -> { return x + y; }

The following lambda expression will not compile because it uses the final modifier in parameter declarations,
but omits the parameter type:

(final x, final y) -> { return x + y; }

Declaring Body of Lambda Expressions
The body of a lambda expression can be a block statement or a single expression. A block statement is enclosed in
braces; a single expression is not enclosed in braces.

When a block statement is executed the same way as a method’s body. A return statement or the end of the body
returns the control to the caller of the lambda expression.

When an expression is used as the body, it is evaluated and returned to the caller. If the expression evaluates to
void, nothing is returned to the caller. The following two lambda expressions are the same; one uses a block statement
and the other an expression:

// Uses a block statement. Takes two int parameters and returns their sum.
(int x, int y) -> { return x + y; }

// Uses an expression. Takes a two int parameters and returns their sum.
(int x, int y) -> x + y

The following two lambda expressions are the same; one uses a block statement as the body and the other an
expression that evaluates to void:

// Uses a block statement
(String msg) -> { System.out.println(msg); }

// Uses an expression
(String msg) -> System.out.println(msg)

Chapter 5 ■ Lambda expressions

130

Target Typing
Every lambda expression has a type, which is a functional interface type. In other words, a lambda expression
represents an instance of a functional interface. Consider the following lambda expression:

(x, y) -> x + y

What is the type of this lambda expression? In other words, an instance of which functional interface does this
lambda expression represent? We do not know the type of this lambda expression at this point. All we can say about
this lambda expression with confidence is that it takes two parameters named x and y. We cannot tell its return type
as the expression x + y, depending on the type of x and y, may evaluate to a number (int, long, float, or double)
or a String. This is an implicit lambda expression, and therefore, the compiler will have to infer the types of two
parameters using the context in which the expression is used. This lambda expression may be of different functional
interface types depending on the context in which it is used.

There are two types of expressions in Java:

Standalone Expressions•	

Poly Expressions•	

A standalone expression is an expression whose type can be determined by the expression without knowing the
context of its use. The following are examples of standalone expressions:

// The type of expression is String
new String("Hello")

// The type of expression is String (a String literal is also an expression)
"Hello"

// The type of expression is ArrayList<String>
new ArrayList<String>()

A poly expression is an expression that has different types in different contexts. The compiler determines the
type of the expression. The contexts that allow the use of poly expressions are known as poly contexts. All lambda
expressions in Java are poly expressions. You must use it in a context to know its type. Poly expressions existed in Java
prior to Java 8 and lambda expressions. For example, the expression new ArrayList<>() is a poly expression. You
cannot tell its type unless you provide the context of its use. This expression is used in the following two contexts to
represent two different types:

// The type of new ArrayList<>() is ArrayList<Long>
ArrayList<Long> idList = new ArrayList<>();

ArrayList<String> nameList = new ArrayList<>();

The compiler infers the type of a lambda expression. The context in which a lambda expression is used expects
a type, which is called the target type. The process of inferring the type of a lambda expression from the context is
known as target typing. Consider the following pseudo code for an assignment statement where a variable of type T is
assigned a lambda expression:

T t = <LambdaExpression>;

Chapter 5 ■ Lambda expressions

131

The target type of the lambda expression in this context is T. The compiler uses the following rules to determine
whether the <LambdaExpression> is assignment compatible with its target type T:

•	 T must be a functional interface type.

The lambda expression has the same number and type of parameters as the abstract method •	
of T. For an implicit lambda expression, the compiler will infer the types of parameters from
the abstract method of T.

The type of the returned value from the body of the lambda expression is assignment •	
compatible to the return type of the abstract method of T.

If the body of the lambda expression throws any checked exceptions, those exceptions must •	
be compatible with the declared throws clause of the abstract method of T. It is a compile-time
error to throw checked exceptions from the body of a lambda expression, if its target type's
method does not contain a throws clause.

Let's look at few examples of target typing. Consider two functional interfaces, Adder and Joiner, as shown in
Listing 5-1 and Listing 5-2, respectively.

Listing 5-1. A Functional Interface Named Adder

// Adder.java
package com.jdojo.lambda;

@FunctionalInterface
public interface Adder {
 double add(double n1, double n2);
}

Listing 5-2. A Functional Interface Named Joiner

// Joiner.java
package com.jdojo.lambda;

@FunctionalInterface
public interface Joiner {
 String join(String s1, String s2);
}

The add() method of the Adder interface adds two numbers. The join() method of the Joiner interface
concatenates two strings. Both interfaces are used for trivial purposes; however, they will serve the purpose of
demonstrating the target typing for lambda expressions very well.

Consider the following assignment statement:

Adder adder = (x, y) -> x + y;

The type of the adder variable is Adder. The lambda expression is assigned to the variable adder, and therefore,
the target type of the lambda expression is Adder. The compiler verifies that Adder is a functional interface. The
lambda expression is an implicit lambda expression. The compiler finds that the Adder interface contains a double
add(double, double) abstract method. It infers the types for x and y parameters as double and double, respectively.
At this point, the compiler treats the statement as shown:

Adder adder = (double x, double y) -> x + y;

Chapter 5 ■ Lambda expressions

132

The compiler now verifies the compatibility of the returned value from the lambda expression and the return type
of the add() method. The return type of the add() method is double. The lambda expression returns x + y, which
would be of a double as the compiler already knows that the types of x and y are double. The lambda expression does
not throw any checked exceptions. Therefore, the compiler does not have to verify anything for that. At this point, the
compiler infers that the type of the lambda expression is the type Adder.

Apply the rules of target typing for the following assignment statement:

Joiner joiner = (x, y) -> x + y;

This time, the compiler infers the type for the lambda expression as Joiner. Do you see an example of a poly
expression where the same lambda expression (x, y) -> x + y is of the type Adder in one context and of the type
Joiner in another.

Listing 5-3 shows how to use these lambda expressions in a program. Note that it’s business as usual after you use
a lambda expression to create an instance of a functional interface. That is, after you create an instance of a functional
interface, you use the instance as you used before Java 8. The lambda expression does not change the way the instance
of a functional interface is used to invoke its method.

Listing 5-3. Examples of Using Lambda Expressions

// TargetTypeTest.java
package com.jdojo.lambda;

public class TargetTypeTest {
 public static void main(String[] args) {
 // Creates an Adder using a lambda expression
 Adder adder = (x, y) -> x + y;

 // Creates a Joiner using a lambda expression
 Joiner joiner = (x, y) -> x + y;

 // Adds two doubles
 double sum1 = adder.add(10.34, 89.11);

 // Adds two ints
 double sum2 = adder.add(10, 89);

 // Joins two strings
 String str = joiner.join("Hello", " lambda");

 System.out.println("sum1 = " + sum1);
 System.out.println("sum2 = " + sum2);
 System.out.println("str = " + str);
 }
}

sum1 = 99.45
sum2 = 99.0
str = Hello lambda

I will now discuss the target typing in the context of method calls. You can pass lambda expressions as arguments

to methods. Consider the code for class LambdaUtil shown in Listing 5-4.

Chapter 5 ■ Lambda expressions

133

Listing 5-4. A LambdaUtil Class That Uses Functional Interfaces as an Argument in Methods

// LambdaUtil.java
package com.jdojo.lambda;

public class LambdaUtil {
 public void testAdder(Adder adder) {
 double x = 190.90;
 double y = 8.50;
 double sum = adder.add(x, y);
 System.out.print("Using an Adder:");
 System.out.println(x + " + " + y + " = " + sum);
 }

 public void testJoiner(Joiner joiner) {
 String s1 = "Hello";
 String s2 = "World";
 String s3 = joiner.join(s1,s2);
 System.out.print("Using a Joiner:");
 System.out.println("\"" + s1 + "\" + \"" + s2 + "\" = \"" + s3 + "\"");;
 }
}

The LambdaUtil class contains two methods: testAdder() and testJoiner(). One method takes an Adder as an
argument and another Joiner as an argument. Both methods have simple implementations. Consider the following
snippet of code:

LambdaUtil util = new LambdaUtil();
util.testAdder((x, y) -> x + y);

The first statement creates an object of the LambdaUtil class. The second statement calls the testAdder()
method on the object, passing a lambda expression of (x, y) -> x + y. The compiler must infer the type of the
lambda expression. The target type of the lambda expression is the type Adder because the argument type of the
testAdder(Adder adder) is Adder. The rest of the target typing process is the same as you saw in the assignment
statement before. Finally, the compiler infers that the type of the lambda expression is Adder.

The program in Listing 5-5 creates an object of the LambdaUtil class and calls the testAdder()
and testJoiner() methods.

Listing 5-5. Using Lambda Expressions as Method Arguments

// LambdaUtilTest.java
package com.jdojo.lambda;

public class LambdaUtilTest {
 public static void main(String[] args) {
 LambdaUtil util = new LambdaUtil();

 // Call the testAdder() method
 util.testAdder((x, y) -> x + y);

 // Call the testJoiner() method
 util.testJoiner((x, y) -> x + y);

Chapter 5 ■ Lambda expressions

134

 // Call the testJoiner() method. The Joiner will
 // add a space between the two strings
 util.testJoiner((x, y) -> x + " " + y);

 // Call the testJoiner() method. The Joiner will
 // reverse the strings and join resulting strings in
 // reverse order adding a comma in between
 util.testJoiner((x, y) -> {
 StringBuilder sbx = new StringBuilder(x);
 StringBuilder sby = new StringBuilder(y);
 sby.reverse().append(",").append(sbx.reverse());
 return sby.toString();
 });
 }
}

Using an Adder:190.9 + 8.5 = 199.4
Using a Joiner:"Hello" + "World" = "HelloWorld"
Using a Joiner:"Hello" + "World" = "Hello World"
Using a Joiner:"Hello" + "World" = "dlroW,olleH"

Notice the output of the LambdaUtilTest class. The testJoiner() method was called three times, and every time

it printed a different result of joining the two strings “Hello” and “World”. This is possible because different lambda
expressions were passed to this method. At this point, you can say that you have parameterized the behavior of the
testJoiner() method. That is, how the testJoiner() method behaves depends on its parameter. Changing the
behavior of a method through its parameters is known as behavior parameterization. This is also known as passing
code as data because you pass code (logic, functionality, or behavior) encapsulated in lambda expressions to methods
as if it is data.

It is not always possible for the compiler to infer the type of a lambda expression. In some contexts, there
is no way the compiler can infer the type of a lambda expression; those contexts do not allow the use of lambda
expressions. Some contexts may allow using lambda expressions, but the use itself may be ambiguous to the compiler;
one such case is passing lambda expressions to overloaded methods.

Consider the code for the class LambdaUtil2 shown in Listing 5-6. The code for this class is the same as for the
LambdaUtil class in Listing 5-4, except that this class changed the names of the two methods to the same name of
test(), making it an overloaded method.

Listing 5-6. A LambdaUtil2 Class That Uses Functional Interfaces as an Argument in Methods

// LambdaUtil2.java
package com.jdojo.lambda;

public class LambdaUtil2 {
 public void test(Adder adder) {
 double x = 190.90;
 double y = 8.50;
 double sum = adder.add(x, y);
 System.out.print("Using an Adder:");
 System.out.println(x + " + " + y + " = " + sum);
 }

Chapter 5 ■ Lambda expressions

135

 public void test(Joiner joiner) {
 String s1 = "Hello";
 String s2 = "World";
 String s3 = joiner.join(s1,s2);
 System.out.print("Using a Joiner:");
 System.out.println("\"" + s1 + "\" + \"" + s2 + "\" = \"" + s3 + "\"");;
 }
}

Consider the following snippet of code:

LambdaUtil2 util = new LambdaUtil2();
util.test((x, y) -> x + y); // A compile-time error

The second statement results in the following compile-time error:

Reference to test is ambiguous. Both method test(Adder) in LambdaUtil2 and method test(Joiner) in
LambdaUtil2 match.

The call to the test() method fails because the lambda expression is implicit and it matches both versions of the
test() method. The compiler does not know which method to use: test(Adder adder) or test(Joiner joiner). In
such circumstances, you need to help the compiler by providing some more information. The following are the some
of the ways to help the compiler resolve the ambiguity:

If the lambda expression is implicit, make it explicit by specifying the type of the parameters.•	

Use a cast.•	

Do not use the lambda expression directly as the method argument. First, assign it to a •	
variable of the desired type, and then, pass the variable to the method.

Let's discuss all three methods to resolve the compile-time error. The following snippet of code changes the
lambda expression to an explicit lambda expression:

LambdaUtil2 util = new LambdaUtil2();
util.test((double x, double y) -> x + y); // OK. Will call test(Adder adder)

Specifying the type of parameters in the lambda expression resolved the issue. The compiler has two candidate
methods: test(Adder adder) and test(Joiner joiner). With the (double x, double y) parameter information, only
the test(Adder adder) method matches.

The following snippet of code uses a cast to cast the lambda expression to the type Adder:

LambdaUtil2 util = new LambdaUtil2();
util.test((Adder)(x, y) -> x + y); // OK. Will call test(Adder adder)

Using a cast tells the compiler that the type of the lambda expression is Adder, and therefore, helps it choose the
test(Adder adder) method.

Consider the following snippet of code that breaks down the method call into two statements:

LambdaUtil2 util = new LambdaUtil2();
Adder adder = (x, y) -> x + y;
util.test(adder); // OK. Will call test(Adder adder)

The lambda expression is assigned to a variable of type Adder and the variable is passed to the test() method.
Again, it helps the compiler choose the test(Adder adder) method based on the compile-time type of the adder
variable.

Chapter 5 ■ Lambda expressions

136

The program in Listing 5-7 is similar to the one shown in Listing 5-5, except that it uses the LambdaUtil2 class.
It uses explicit lambda expressions and a cast to resolve the ambiguous match for lambda expressions.

Listing 5-7. Resolving Ambiguity During Target Typing

// LambdaUtil2Test.java
package com.jdojo.lambda;

public class LambdaUtil2Test {
 public static void main(String[] args) {
 LambdaUtil2 util = new LambdaUtil2();

 // Calls the testAdder() method
 util.test((double x, double y) -> x + y);

 // Calls the testJoiner() method
 util.test((String x, String y) -> x + y);

 // Calls the testJoiner() method. The Joiner will
 // add a space between the two strings
 util.test((Joiner)(x, y) -> x + " " + y);

 // Calls the testJoiner() method. The Joiner will
 // reverse the strings and join resulting strings in
 // reverse order adding a comma in between
 util.test((Joiner)(x, y) -> {
 StringBuilder sbx = new StringBuilder(x);
 StringBuilder sby = new StringBuilder(y);
 sby.reverse().append(",").append(sbx.reverse());
 return sby.toString();
 });
 }
}

Using an Adder:190.9 + 8.5 = 199.4
Using a Joiner:"Hello" + "World" = "HelloWorld"
Using a Joiner:"Hello" + "World" = "Hello World"
Using a Joiner:"Hello" + "World" = "dlroW,olleH"

Lambda expressions can be used only in the following contexts:

•	 Assignment Context: A lambda expression may appear to the right-hand side of the assignment
operator in an assignment statement. For example,

ReferenceType variable1 = LambdaExpression;

•	 Method Invocation Context: A lambda expression may appear as an argument to a method or

constructor call. For example,

util.testJoiner(LambdaExpression);

Chapter 5 ■ Lambda expressions

137

•	 Return Context: A lambda expression may appear in a return statement inside a method, as its
target type is the declared return type of the method. For example,

return LambdaExpression;

•	 Cast Context: A lambda expression may be used if it is preceded by a cast. The type specified in

the cast is its target type. For example,

(Joiner) LambdaExpression;

Functional Interfaces
A functional interface is simply an interface that has exactly one abstract method. The following types of methods in
an interface do not count for defining a functional interface:

Default methods•	

Static methods•	

Public methods inherited from the •	 Object class

Note that an interface may have more than one abstract method, and can still be a functional interface if all but
one of them is a redeclaration of the methods in the Object class. Consider the declaration of the Comparator class
that is in the java.util package, as shown:

package java.util;

@FunctionalInterface
public interface Comparator<T> {
 // An abstract method declared in the interface
 int compare(T o1, T o2);

 // Re-declaration of the equals() method in the Object class
 boolean equals(Object obj);

 /* Many static and default methods that are not shown here. */
}

The Comparator interface contains two abstract methods: compare() and equals(). The equals() method in the
Comparator interface is a redeclaration of the equals() method of the Object class, and therefore it does not count
against the one abstract method requirement for it to be a functional interface. The Comparator interface contains
several default and static method that are not shown here.

A lambda expression is used to represent an unnamed function as used in functional programming. A functional
interface represents one type of functionality/operation in terms of its lone abstract method. This commonality is the
reason why the target type of a lambda expression is always a functional interface.

Using the @FunctionalInterface Annotation
The declaration of a functional interface may optionally be annotated with the annotation @FunctionalInterface,
which is in the java.lang package. So far, all functional interfaces declared in this chapter, such as Adder and Joiner,
have been annotated with @FunctionalInterface. The presence of this annotation tells the compiler to make sure

Chapter 5 ■ Lambda expressions

138

that the declared type is a functional interface. If the annotation @FunctionalInterface is used on a non-functional
interface or other types such as classes, a compile-time error occurs. If you do not use the annotation
@FunctionalInterface on an interface with one abstract method, the interface is still a functional interface and it can
be the target type for lambda expressions. Using this annotation gives you an additional assurance from the compiler.
The presence of the annotation also protects you from inadvertently changing a functional interface into a
non-functional interface, as the compiler will catch it.

The following declaration for an Operations interface will not compile, as the interface declaration uses the
@FunctionalInterface annotation and it is not a functional interface (defines two abstract methods):

@FunctionalInterface
public interface Operations {
 double add(double n1, double n2);
 double subtract(double n1, double n2);
}

To compile the Operations interface, either remove one of the two abstract methods or remove the
@FunctionalInterface annotation.

The following declaration for a Test class will not compile, as @FunctionalInterface cannot be used on a type
other than a functional interface:

@FunctionalInterface
public class Test {
 // Code goes here
}

Generic Functional Interface
It is allowed for a functional interface to have type parameters. That is, a functional interface can be generic.
An example of a generic functional parameter is the Comparator interface with one type parameter T.

@FunctionalInterface
public interface Comparator<T> {
 int compare(T o1, T o2);
}

A functional interface may have a generic abstract method. That is, the abstract method may declare type
parameters. The following is an example of a non-generic functional interface called Processor whose abstract
method process() is generic:

@FunctionalInterface
public interface Processor {
 <T> void process(T[] list);
}

A lambda expression cannot declare type parameters, and therefore, it cannot have a target type whose abstract
method is generic. For example, you cannot represent the Processor interface using a lambda expression. In such
cases, you need to use a method reference, which I discuss in the next section, or an anonymous class.

Let's have a short example of a generic functional interface and instantiating it using lambda expressions.
Listing 5-8 shows the code for a functional interface named Mapper.

Chapter 5 ■ Lambda expressions

139

Listing 5-8. A Mapper Functional Interface

// Mapper.java
package com.jdojo.lambda;

@FunctionalInterface
public interface Mapper<T> {
 // An abstract method
 int map(T source);

 // A generic static method
 public static <U> int[] mapToInt(U[] list, Mapper<? super U> mapper) {
 int[] mappedValues = new int[list.length];

 for (int i = 0; i < list.length; i++) {
 // Map the object to an int
 mappedValues[i] = mapper.map(list[i]);
 }

 return mappedValues;
 }
}

Mapper is a generic functional interface with a type parameter T. Its abstract method map() takes an object of type
T as a parameter and returns an int. The mapToInt() method is a generic static method that accepts an array of type U
and a Mapper of a type that is U itself or a supertype of U. The method returns an int array whose elements contain the
mapped value for the corresponding elements passed as an array.

The program in Listing 5-9 shows how to use lambda expressions to instantiate the Mapper<T> interface.
The program maps a String array and an Integer array to int arrays.

Listing 5-9. Using the Mapper Functional Interface

// MapperTest.java
package com.jdojo.lambda;

public class MapperTest {
 public static void main(String[] args) {
 // Map names using their length
 System.out.println("Mapping names to their lengths:");
 String[] names = {"David", "Li", "Doug"};
 int[] lengthMapping = Mapper.mapToInt(names, (String name) -> name.length());
 printMapping(names, lengthMapping);

 System.out.println("\nMapping integers to their squares:");
 Integer[] numbers = {7, 3, 67};
 int[] countMapping = Mapper.mapToInt(numbers, (Integer n) -> n * n);
 printMapping(numbers, countMapping);
 }

Chapter 5 ■ Lambda expressions

140

 public static void printMapping(Object[] from, int[] to) {
 for(int i = 0; i < from.length; i++) {
 System.out.println(from[i] + " mapped to " + to[i]);
 }
 }
}

Mapping names to their lengths:
David mapped to 5
Li mapped to 2
Doug mapped to 4

Mapping integers to their squares:
7 mapped to 49
3 mapped to 9
67 mapped to 4489

Intersection Type and Lambda Expressions
Java 8 introduced a new type called an intersection type that is an intersection (or subtype) of multiple types. An
intersection type may appear as the target type in a cast. An ampersand is used between two types, such as (Type1 &
Type2 & Type3), represents a new type that is an intersection of Type1, Type2, and Type3. Consider a marker interface
called Sensitive, shown in Listing 5-10.

Listing 5-10. A Marker Interface Named Sensitive

// Sensitive.java
package com.jdojo.lambda;

public interface Sensitive {
 // It ia a marker interface. So, no methods exist.
}

Suppose you have a lambda expression assigned to a variable of the Sensitive type.

Sensitive sen = (x, y) -> x + y; // A compile-time error

This statement does not compile. The target type of a lambda expression must be a functional interface;
Sensitive is not a functional interface. You should be able to make such assignment, as a marker interface does not
contain any methods. In such cases, you need to use a cast with an intersection type that creates a new synthetic type
that is a subtype of all types. The following statement will compile:

Sensitive sen = (Sensitive & Adder) (x, y) -> x + y; // OK

The intersection type Sensitive & Adder is still a functional interface, and therefore, the target type of the
lambda expression is a functional interface with one method from the Adder interface.

Chapter 5 ■ Lambda expressions

141

In Java, you can convert an object to a stream of bytes and restore the object back later. This is called serialization.
A class must implement the java.io.Serializable marker interface for its objects to be serialized. If you want a
lambda expression to be serialized, you will need to use a cast with an intersection type. The following statement
assigns a lambda expression to a variable of the Serializable interface:

Serializable ser = (Serializable & Adder) (x, y) -> x + y;

Tip ■ i will cover the Serializable interface and serialization of objects in Chapter 7.

Commonly Used Functional Interfaces
Java 8 has added many frequently used functional interfaces in the package java.util.function. They are
listed in Table 5-2.

Table 5-2. List of Functional Interfaces Declared in the Package java.util.function

Interface Name Method Description

Function<T,R> R apply(T t) Represents a function that takes an argument of type T
and returns a result of type R.

BiFunction<T,U,R> R apply(T t, U u) Represents a function that takes two arguments of types T
and U, and returns a result of type R.

Predicate<T> boolean test(T t) In mathematics, a predicate is a boolean-valued function
that takes an argument and returns true or false. The
function represents a condition that returns true or false
for the specified argument.

BiPredicate<T,U> boolean test(T t, U u) Represents a predicate with two arguments.

Consumer<T> void accept(T t) Represents an operation that takes an argument, operates
on it to produce some side effects, and returns no result.

BiConsumer<T,U> void accept(T t, U u) Represents an operation that takes two arguments,
operates on them to produce some side effects, and
returns no result.

Supplier<T> T get() Represents a supplier that returns a value.

UnaryOperator<T> T apply(T t) Inherits from Function<T,T>. Represents a function that
takes an argument and returns a result of the same type.

BinaryOperator<T> T apply(T t1, T t2) Inherits from BiFunction<T,T,T>. Represents a function
that takes two arguments of the same type and returns a
result of the same.

Table 5-2 shows only the generic versions of the functional interfaces. Several specialized versions of these
interfaces exist. They have been specialized for frequently used primitive data types; for example, IntConsumer is a
specialized version of Consumer<T>. Some interfaces in the table contain convenience default and static methods.
The table lists only the abstract method, not the default and static methods.

Chapter 5 ■ Lambda expressions

142

Using the Function<T,R> Interface
Six specializations of the Function<T, R> interface exist:

•	 IntFunction<R>

•	 LongFunction<R>

•	 DoubleFunction<R>

•	 ToIntFunction<T>

•	 ToLongFunction<T>

•	 ToDoubleFunction<T>

IntFunction<R>, LongFunction<R>, and DoubleFunction<R> take an int, a long, and a double as an argument,
respectively, and return a value of type R. ToIntFunction<T>, ToLongFunction<T>, and ToDoubleFunction<T> take an
argument of type T and return an int, a long, and a double, respectively. Similar specialized functions exist for other
types of generic functions listed in the table.

Tip ■ the Mapper<T> interface in Listing 5-8 represents the same function type as ToIntFunction<T> in the
java.util.function package. You created the Mapper<T> interface to learn how to create and use a generic functional
interface. From now on, please look at built-in functional interfaces before creating your own; use them if they meet
your needs.

The following snippet of code shows how to use the same lambda expression to represent a function that accepts
an int and returns its square, using four variants of the Function<T, R> function type:

// Takes an int and returns its square
Function<Integer, Integer> square1 = x -> x * x;
IntFunction<Integer> square2 = x -> x * x;
ToIntFunction<Integer> square3 = x -> x * x;
UnaryOperator<Integer> square4 = x -> x * x;

System.out.println(square1.apply(5));
System.out.println(square2.apply(5));
System.out.println(square3.applyAsInt(5));
System.out.println(square4.apply(5));

25
25
25
25

The Function interface contains the following default and static methods:

•	 default <V> Function<T,V> andThen(Function<? super R,? extends V> after)

•	 default <V> Function<V,R> compose(Function<? super V,? extends T> before)

•	 static <T> Function<T,T> identity()

Chapter 5 ■ Lambda expressions

143

The andThen() method returns a composed Function that applies this function to the argument, and then
applies the specified after function to the result. The compose() function returns a composed function that applies
the specified before function to the argument, and then applies this function to the result. The identify() method
returns a function that always returns its argument.

The following snippet of code demonstrates how to use default and static methods of the Function interface to
compose new functions:

// Create two functions
Function<Long, Long> square = x -> x * x;
Function<Long, Long> addOne = x -> x + 1;

// Compose functions from the two functions
Function<Long, Long> squareAddOne = square.andThen(addOne);
Function<Long, Long> addOneSquare = square.compose(addOne);

// Get an identity function
Function<Long, Long> identity = Function.<Long>identity();

// Test the functions
long num = 5L;
System.out.println("Number : " + num);
System.out.println("Square and then add one: " + squareAddOne.apply(num));
System.out.println("Add one and then square: " + addOneSquare.apply(num));
System.out.println("Identity: " + identity.apply(num));

Number: 5
Square and then add one: 26
Add one and then square: 36
Identity: 5

You are not limited to composing a function that consists of two functions that are executed in a specific order.

A function may be composed of as many functions as you want. You can chain lambda expressions to create a
composed function in one expression. Note that when you chain lambda expressions, you may need to provide
hints to the compiler to resolve the target type ambiguity that may arise. The following is an example of a composed
function by chaining three functions. A cast is provided to help the compiler. Without the cast, the compiler will not be
able to infer the target type.

// Square the input, add one to the result, and square the result
Function<Long, Long> chainedFunction = ((Function<Long, Long>)(x -> x * x))
 .andThen(x -> x + 1)
 .andThen(x -> x * x);
System.out.println(chainedFunction.apply(3L));

100

Chapter 5 ■ Lambda expressions

144

Using the Predicate<T> Interface
A predicate represents a condition that is either true or false for a given input. The Predicate interface contains the
following default and static methods that let you compose a predicate based on other predicates using logical NOT,
AND, and OR.

•	 default Predicate<T> negate()

•	 default Predicate<T> and(Predicate<? super T> other)

•	 default Predicate<T> or(Predicate<? super T> other)

•	 static <T> Predicate<T> isEqual(Object targetRef)

The negate() method returns a Predicate that is a logical negation of the original predicate. The and() method
returns a short-circuiting logical AND predicate of this predicate and the specified predicate. The or() method returns
a short-circuiting logical OR predicate of this predicate and the specified predicate. The isEqual() method returns
a predicate that tests if the specified targetRef is equal to the specified argument for the predicate according to
Objects.equals(Object o1, Object o2); if two inputs are null, this predicate evaluates to true. You can chain the
calls to these methods to create complex predicates. The following snippet of code shows some examples of creating
and using predicates:

// Create some predicates
Predicate<Integer> greaterThanTen = x -> x > 10;
Predicate<Integer> divisibleByThree = x -> x % 3 == 0;
Predicate<Integer> divisibleByFive = x -> x % 5 == 0;
Predicate<Integer> equalToTen = Predicate.isEqual(null);

// Create predicates using NOT, AND, and OR on other predciates
Predicate<Integer> lessThanOrEqualToTen = greaterThanTen.negate();
Predicate<Integer> divisibleByThreeAndFive = divisibleByThree.and(divisibleByFive);
Predicate<Integer> divisibleByThreeOrFive = divisibleByThree.or(divisibleByFive);

// Test the predicates
int num = 10;
System.out.println("Number: " + num);
System.out.println("greaterThanTen: " + greaterThanTen.test(num));
System.out.println("divisibleByThree: " + divisibleByThree.test(num));
System.out.println("divisibleByFive: " + divisibleByFive.test(num));
System.out.println("lessThanOrEqualToTen: " + lessThanOrEqualToTen.test(num));
System.out.println("divisibleByThreeAndFive: " + divisibleByThreeAndFive.test(num));
System.out.println("divisibleByThreeOrFive: " + divisibleByThreeOrFive.test(num));
System.out.println("equalsToTen: " + equalToTen.test(num));

Number: 10
greaterThanTen: false
divisibleByThree: false
divisibleByFive: true
lessThanOrEqualToTen: true
divisibleByThreeAndFive: false
divisibleByThreeOrFive: true
equalsToTen: false

Chapter 5 ■ Lambda expressions

145

Using Functional Interfaces
Functional interfaces are used in two contexts by two different types of users:

By the library designers for designing APIs•	

By library users for using the APIs•	

Functional interfaces are used to design APIs by library designers. They are used to declare a parameter's type
and return type in method declarations. They are used the same way non-functional interfaces are used. Functional
interfaces existed in Java since the beginning, and Java 8 has not changed the way they are used in designing the APIs.

In Java 8, library users use functional interfaces as target types for lambda expressions. That is, when a method
in the API takes a functional interface as an argument, the user of the API should use a lambda expression to pass the
argument. Using lambda expressions has the benefit of making the code concise and more readable.

In this section, I will show you how to design APIs using functional interfaces and how to use lambda expressions
to use the APIs. Functional interfaces have been used heavily in designing the Java library for Collection and Stream
APIs that I will cover in Chapter 13 and 14.

I will use one enum and two classes in subsequent examples. The Gender enum, shown in Listing 5-11, contains
two constants to represent the gender of a person. The Person class, shown in Listing 5-12, represents a person; it
contains, apart from other methods, a getPersons() method that returns a list of persons.

Listing 5-11. A Gender enum

// Gender.java
package com.jdojo.lambda;

public enum Gender {
 MALE, FEMALE
}

Listing 5-12. A Person Class

// Person.java
package com.jdojo.lambda;

import java.time.LocalDate;
import java.util.ArrayList;
import java.util.List;
import static com.jdojo.lambda.Gender.MALE;
import static com.jdojo.lambda.Gender.FEMALE;

public class Person {
 private String firstName;
 private String lastName;
 private LocalDate dob;
 private Gender gender;

 public Person(String firstName, String lastName, LocalDate dob, Gender gender) {
 this.firstName = firstName;
 this.lastName = lastName;
 this.dob = dob;
 this.gender = gender;
 }

Chapter 5 ■ Lambda expressions

146

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public LocalDate getDob() {
 return dob;
 }

 public void setDob(LocalDate dob) {
 this.dob = dob;
 }

 public Gender getGender() {
 return gender;
 }

 public void setGender(Gender gender) {
 this.gender = gender;
 }

 @Override
 public String toString() {
 return firstName + " " + lastName + ", " + gender + ", " + dob;
 }

 // A utility method
 public static List<Person> getPersons() {
 ArrayList<Person> list = new ArrayList<>();
 list.add(new Person("John", "Jacobs", LocalDate.of(1975, 1, 20), MALE));
 list.add(new Person("Wally", "Inman", LocalDate.of(1965, 9, 12), MALE));
 list.add(new Person("Donna", "Jacobs", LocalDate.of(1970, 9, 12), FEMALE));
 return list;
 }
}

The FunctionUtil class in Listing 5-13 is a utility class. Its methods apply a function on a List. List is an
interface that is implemented by the ArrayList class. The forEach() method applies an action on each item in the
list, typically producing side effects; the action is represented by a Consumer. The filter() method filters a list based
on a specified Predicate. The map() method maps each item in the list to a value using a Function. As a library
designer, you will design these methods using functional interfaces. Note that the FunctionUtil class contains no
mention of lambda expressions. You could have designed this class the same way even before Java 8.

Chapter 5 ■ Lambda expressions

147

Listing 5-13. A FunctionUtil Class

// FunctionUtil.java
package com.jdojo.lambda;

import java.util.ArrayList;
import java.util.List;
import java.util.function.Consumer;
import java.util.function.Function;
import java.util.function.Predicate;

public class FunctionUtil {
 // Applies an action on each item in a list
 public static <T> void forEach(List<T> list, Consumer<? super T> action) {
 for(T item : list) {
 action.accept(item);
 }
 }

 // Applies a filter to a list and returned the filtered list items
 public static <T> List<T> filter(List<T> list, Predicate<? super T> predicate) {
 List<T> filteredList = new ArrayList<>();
 for(T item : list) {
 if (predicate.test(item)) {
 filteredList.add(item);
 }
 }
 return filteredList;
 }

 // Maps each item in a list to a value
 public static <T, R> List<R> map(List<T> list, Function<? super T, R> mapper) {
 List<R> mappedList = new ArrayList<>();
 for(T item : list) {
 mappedList.add(mapper.apply(item));

 }
 return mappedList;
 }
}

You will now use the FunctionUtil class as a library user and use the functional interfaces as target types of
lambda expressions. Listing 5-14 shows how to use the FunctionUtil class.

Listing 5-14. Using Functional Interfaces as Target Types of Lambda Expressions as Library Users

// FunctionUtilTest.java
package com.jdojo.lambda;

import static com.jdojo.lambda.Gender.MALE;
import java.util.List;

Chapter 5 ■ Lambda expressions

148

public class FunctionUtilTest {
 public static void main(String[] args) {
 List<Person> list = Person.getPersons();

 // Use the forEach() method to print each person in the list
 System.out.println("Original list of persons:");
 FunctionUtil.forEach(list, p -> System.out.println(p));

 // Filter only males
 List<Person> maleList = FunctionUtil.filter(list, p -> p.getGender() == MALE);

 System.out.println("\nMales only:");
 FunctionUtil.forEach(maleList, p -> System.out.println(p));

 // Map each person to his/her year of birth
 List<Integer> dobYearList = FunctionUtil.map(list, p -> p.getDob().getYear());

 System.out.println("\nPersons mapped to year of their birth:");
 FunctionUtil.forEach(dobYearList, year -> System.out.println(year));

 // Apply an action to each person in the list
 // Add one year to each male's dob
 FunctionUtil.forEach(maleList, p -> p.setDob(p.getDob().plusYears(1)));

 System.out.println("\nMales only after ading 1 year to DOB:");
 FunctionUtil.forEach(maleList, p -> System.out.println(p));
 }
}

Original list of persons:
John Jacobs, MALE, 1975-01-20
Wally Inman, MALE, 1965-09-12
Donna Jacobs, FEMALE, 1970-09-12

Males only:
John Jacobs, MALE, 1975-01-20
Wally Inman, MALE, 1965-09-12

Persons mapped to year of their birth:
1975
1965
1970

Males only after ading 1 year to DOB:
John Jacobs, MALE, 1976-01-20
Wally Inman, MALE, 1966-09-12

The program gets a list of persons, applies a filter to the list to get a list of only males, maps persons to the year of

their birth, and adds one year to each male's date of birth. It performs each of these actions using lambda expressions.
Note the conciseness of the code; it uses only one line of code to perform each action. Most notable is the use of the

Chapter 5 ■ Lambda expressions

149

forEach() method. This method takes a Consumer function. Then each item is passed to this function. The function
can take any action on the item. You passed a Consumer that prints the item on the standard output as shown:

FunctionUtil.forEach(list, p -> System.out.println(p));

Typically, a Consumer applies an action on the item it receives to produce side effects. In this case, it simply prints
the item, without producing any side effects.

Method References
A lambda expression represents an anonymous function that is treated as an instance of a functional interface.
A method reference is shorthand to create a lambda expression using an existing method. Using method references
makes your lambda expressions more readable and concise; it also lets you use the existing methods. If a lambda
expression contains a body that is an expression using a method call, you can use a method reference in place of that
lambda expression.

Tip ■ a method reference is not a new type in Java. it is not a function pointer as used in some other programming
languages. it is simply shorthand for writing a lambda expression using an existing method. it can only be used where a
lambda expression can be used.

Let’s consider an example before I explain the syntax for method references. Consider the following snippet of code:

import java.util.function.ToIntFunction;
...
ToIntFunction<String> lengthFunction = str -> str.length();
String name = "Ellen";
int len = lengthFunction.applyAsInt(name);
System.out.println("Name = " + name + ", length = " + len);

Name = Ellen, length = 5

The code uses a lambda expression to define an anonymous function that takes a String as an argument and

returns its length. The body of the lambda expression consists of only one method call that is the length() method of
the String class. You can rewrite the above lambda expression using a method reference to the length() method of
the String class, as shown:

import java.util.function.ToIntFunction;
...
ToIntFunction<String> lengthFunction = String::length;
String name = "Ellen";
int len = lengthFunction.applyAsInt(name);
System.out.println("Name = " + name + ", length = " + len);

Name = Ellen, length = 5

Chapter 5 ■ Lambda expressions

150

The general syntax for a method reference is

<Qualifier>::<MethodName>

The <Qualifier> depends on the type of the method reference. Two consecutive colons act as a separator.
The <MethodName> is the name of the method. For example, in the method reference String::length, String is the
qualifier and length is the method name.

Tip ■ a method reference does not call the method when it is declared. the method is called later when the method
of its target type is called.

The syntax for method references allows specifying only the method name. You cannot specify the parameter
types and return type of the method. Recall that a method reference is shorthand for a lambda expression. The target
type, which is always a functional interface, determines the method's details. If the method is an overloaded method,
the compiler will choose the most specific method based on the context. See Table 5-3.

Table 5-3. Types of Method References

Syntax Description

TypeName::staticMethod A method reference to a static method of a class, an interface, or an enum

objectRef::instanceMethod A method reference to an instance method of the specified object

ClassName::instanceMethod A method reference to an instance method of an arbitrary object of the
specified class

TypeName.super::instanceMethod A method reference to an instance method of the supertype of a
particular object

ClassName::new A constructor reference to the constructor of the specified class

ArrayTypeName::new An array constructor reference to the constructor of the specified
array type

Using method references may be a little confusing in the beginning. The main point of confusion is the process
of mapping the number and type of arguments in the actual method to the method reference. To help understand the
syntax, I will use a method reference and its equivalent lambda expression in all examples.

Static Method References
A static method reference is used to use a static method of a type as a lambda expression. The type could be a class, an
interface, or an enum. Consider the following static method of the Integer class:

•	 static String toBinaryString(int i)

Chapter 5 ■ Lambda expressions

151

The toBinaryString() method represents a function that takes an int as an argument and returns a String.
You can use it in a lambda expression as shown:

// Using a lambda expression
Function<Integer, String> func1 = x -> Integer.toBinaryString(x);
System.out.println(func1.apply(17));

10001

The compiler infers the type of x as Integer and the return type of the lambda expression as String, by using the

target type Function<Integer, String>. You can rewrite this statement using a static method reference, as shown:

// Using a method reference
Function<Integer, String> func2 = Integer::toBinaryString;
System.out.println(func2.apply(17));

10001

The compiler finds a static method reference to the toBinaryString() method of the Integer class on the

right-hand side of the assignment operator. The toBinaryString() method takes an int as an argument and returns
a String. The target type of the method reference is a function that takes an Integer as an argument and returns a
String. The compiler verifies that after unboxing the Integer argument type of the target type to int, the method
reference and target type are assignment compatible.

Consider another static method sum() in the Integer class:

static int sum(int a, int b)

The method reference would be Integer::sum. Let’s use it in the same way you used the toBinaryString()
method in the above example.

Function<Integer, Integer> func2 = Integer::sum; // A compile-time error

The compiler generates the following error message when you compile this code:

Error: incompatible types: invalid method reference
 Function<Integer, Integer> func2 = Integer::sum;
method sum in class Integer cannot be applied to given types
required: int,int
found: Integer
reason: actual and formal argument lists differ in length

The error message is stating that the method reference Integer::sum is not assignment compatible with the
target type Function<Integer, Integer>. The sum(int, int) method takes two int arguments whereas the target
type takes only one Integer argument. The mismatch in the number of arguments caused the compile-time error.

Chapter 5 ■ Lambda expressions

152

To fix the error, the target type of the method reference Integer::sum should be a functional interface whose
abstract method takes two int arguments and returns an int. Using a BiFunction<Integer, Integer, Integer> as
the target type will work. The following snippet of code shows how to use a method reference Integer::sum as well as
the equivalent lambda expression:

// Uses a lambda expression
BiFunction<Integer, Integer, Integer> func1 = (x, y) -> Integer.sum(x, y);
System.out.println(func1.apply(17, 15));

// Uses a method reference
BiFunction<Integer, Integer, Integer> func2 = Integer::sum;
System.out.println(func2.apply(17, 15));

32
32

Let’s try using a method reference of the overloaded static method valueOf() of the Integer class. The method

has three versions:

•	 static Integer valueOf(int i)

•	 static Integer valueOf(String s)

•	 static Integer valueOf(String s, int radix)

The following snippet of code shows how different target types will use the three different versions of the
Integer.valueOf() static method. It is left as an exercise for readers to write the following snippet of code using
lambda expressions:

// Uses Integer.valueOf(int)
Function<Integer, Integer> func1 = Integer::valueOf;

// Uses Integer.valueOf(String)
Function<String, Integer> func2 = Integer::valueOf;

// Uses Integer.valueOf(String, int)
BiFunction<String, Integer, Integer> func3 = Integer::valueOf;

System.out.println(func1.apply(17));
System.out.println(func2.apply("17"));
System.out.println(func3.apply("10001", 2));

17
17
17

The following is the last example in this category. The Person class, shown in Listing 5-12, contains a

getPersons() static method that has a declaration as shown:

•	 static List<Person> getPersons()

Chapter 5 ■ Lambda expressions

153

The method takes no argument and returns a List<Person>. A Supplier<T> represents a function that
takes no argument and returns a result of type T. The following snippet of code uses the method reference
Person::getPersons as a Supplier<List<Person>>:

Supplier<List<Person>>supplier = Person::getPersons;
List<Person> personList = supplier.get();
FunctionUtil.forEach(personList, p -> System.out.println(p));

John Jacobs, MALE, 1975-01-20
Wally Inman, MALE, 1965-09-12
Donna Duncan, FEMALE, 1970-09-12

Instance Method References
An instance method is invoked on an object's reference. The object reference on which an instance method is invoked
is known as the receiver of the method invocation. The receiver of a method invocation can be an object reference or
an expression that evaluates to an object's reference. The following snippet of code shows the receiver of the length()
instance method of the String class:

String name = "Kannan";

// name is the receiver of the length() method
int len1 = name.length();

// "Hello" is the receiver of the length() method
int len2 = "Hello".length();

// (new String("Kannan")) is the receiver of the length() method
int len3 = (new String("Kannan")).length();

In a method reference for an instance method, you can specify the receiver of the method invocation explicitly or
you can provide it implicitly when the method is invoked. The former is called a bound receiver and the latter is called
an unbound receiver. The syntax for an instance method reference supports two variants:

•	 objectRef::instanceMethod

•	 ClassName::instanceMethod

Bound Receiver
For a bound receiver, use the objectRef.instanceMethod syntax. Consider the following snippet of code:

Supplier<Integer> supplier = () -> "Ellen".length();
System.out.println(supplier.get());

5

Chapter 5 ■ Lambda expressions

154

This statement uses a lambda expression that represents a function that takes no argument and returns an
int. The body of the expression uses a String object called "Ellen" to invoke the length() instance method of the
String class. You can rewrite this statement using an instance method reference with the "Ellen" object as the bound
receiver using a Supplier<Integer> as the target type as shown:

Supplier<Integer> supplier = "Ellen"::length;
System.out.println(supplier.get());

5

Consider the following snippet of code to represent a Consumer<String> that takes a String as an argument and

returns void:

Consumer<String> consumer = str -> System.out.println(str);
consumer.accept("Hello");

Hello

This lambda expression invokes the println() method on the System.out object. This can be rewritten using a

method reference with System.out as the bound receiver, as shown:

Consumer<String> consumer = System.out::println;
consumer.accept("Hello");

Hello

When the method reference System.out::println is used, the compiler looks at its target type, which is

Consumer<String> that represents a function type that takes a String as an argument and returns void. The compiler
finds a println(String) method in the PrintStream class of the System.out object and uses that method for the
method reference.

As the last example in this category, you will use the method reference System.out::println to print the list of
persons, as shown:

List<Person> list = Person.getPersons();
FunctionUtil.forEach(list, System.out::println);

John Jacobs, MALE, 1975-01-20
Wally Inman, MALE, 1965-09-12
Donna Jacobs, FEMALE, 1970-09-12

Unbound Receiver
For an unbound receiver, use the ClassName::instanceMethod syntax. Consider the following statement in which the
lambda expression takes a Person as an argument and returns a String:

Function<Person, String> fNameFunc = (Person p) -> p.getFirstName();

Chapter 5 ■ Lambda expressions

155

This statement can be rewritten using the instance method reference, as shown:

Function<Person, String> fNameFunc = Person::getFirstName;

In the beginning, this is confusing for two reasons:

The syntax is the same as the syntax for a method reference to a static method.•	

It raises a question: which object is the receiver of the instance method invocation?•	

The first confusion can be cleared by looking at the method name and checking whether it is a static or instance
method. If the method is an instance method, the method reference represents an instance method reference.

The second confusion can be cleared by keeping a rule in mind that the first argument to the function
represented by the target type is the receiver of the method invocation. Consider an instance method reference called
String::length that uses an unbound receiver. The receiver is supplied as the first argument to the apply() method,
as shown:

Function<String, Integer> strLengthFunc = String::length;

String name ="Ellen";

// name is the receiver of String::length
int len = strLengthFunc.apply(name);
System.out.println("name = " + name + ", length = " + len);

name = Ellen, length = 5

The instance method concat() of the String class has the following declaration:

String concat(String str)

The method reference String::concat represents an instance method reference for a target type whose function
takes two String arguments and returns a String. The first argument will be the receiver of the concat() method and
the second argument will be passed to the concat() method. The following snippet of code shows an example:

String greeting = "Hello";
String name = " Laynie";

// Uses a lambda expression
BiFunction<String, String, String> func1 = (s1, s2) -> s1.concat(s2);
System.out.println(func1.apply(greeting, name));

// Uses an instance method reference on an unbound receiver
BiFunction<String, String, String> func2 = String::concat;
System.out.println(func2.apply(greeting, name));

Hello Laynie
Hello Laynie

Chapter 5 ■ Lambda expressions

156

As the last example in this category, you will use the method reference Person::getFirstName that is an instance
method reference on an unbound receiver, as shown:

List<Person> personList = Person.getPersons();

// Maps each Person object to its first name
List<String> firstNameList = FunctionUtil.map(personList, Person::getFirstName);

// Prints the first name list
FunctionUtil.forEach(firstNameList, System.out::println);

John
Wally
Donna

Supertype Instance Method References
The keyword super is used as a qualifier to invoke the overridden method in a class or an interface. The keyword
is available only in an instance context. Use the following syntax to construct a method reference that refers to the
instance method in the supertype and the method that's invoked on the current instance:

TypeName.super::instanceMethod

Consider the Priced interface and the Item class in Listing 5-15 and Listing 5-16. The Priced interface contains a
default method that returns 1.0. The Item class implements the Priced interface. It overrides the toString() method
of the Object class and the getPrice() method of the Priced interface. I have added three constructors to the Item
class that display a message on the standard output. I will use them in examples in the next section.

Listing 5-15. A Priced Interface with a Default Method of getPrice()

// Priced.java
package com.jdojo.lambda;

public interface Priced {
 default double getPrice() {
 return 1.0;
 }
}

Listing 5-16. An Item Class That Implements the Priced Interface

// Item.java
package com.jdojo.lambda;

import java.util.function.Supplier;

public class Item implements Priced {
 private String name = "Unknown";
 private double price = 0.0;

Chapter 5 ■ Lambda expressions

157

 public Item() {
 System.out.println("Constructor Item() called.");
 }

 public Item(String name) {
 this.name = name;
 System.out.println("Constructor Item(String) called.");
 }

 public Item(String name, double price) {
 this.name = name;
 this.price = price;
 System.out.println("Constructor Item(String, double) called.");
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public void setPrice(double price) {
 this.price = price;
 }

 @Override
 public double getPrice() {
 return price;
 }

 @Override
 public String toString() {
 return "name = " + getName() + ", price = " + getPrice();
 }

 public void test() {
 // Uses the Item.toString() method
 Supplier<String> s1 = this::toString;

 // Uses Object.toString() method
 Supplier<String> s2 = Item.super::toString;

 // Uses Item.getPrice() method
 Supplier<Double> s3 = this::getPrice;

 // Uses Priced.getPrice() method
 Supplier<Double> s4 = Priced.super::getPrice;

Chapter 5 ■ Lambda expressions

158

 // Uses all method references and prints the results
 System.out.println("this::toString: " + s1.get());
 System.out.println("Item.super::toString: " + s2.get());
 System.out.println("this::getPrice: " + s3.get());
 System.out.println("Priced.super::getPrice: " + s4.get());
 }
}

The test() method in the Item class uses four method references with a bound receiver. The receiver is the Item
object on which the test() method is called.

The method reference •	 this::toString refers to the toString() method of the Item class.

The method reference •	 Item.super::toString refers to the toString() method of the Object
class, which is the superclass of the Item class.

The method reference •	 this::getPrice refers to the getPrice() method of the Item class.

The method reference •	 Priced.super::getPrice refers to the getPrice() method of the
Priced interface, which is the superinterface of the Item class.

The program in Listing 5-17 creates an object of the Item class and calls its test() method. The output shows the
method being used by the four method references.

Listing 5-17. Testing the Item Class

// ItemTest.java
package com.jdojo.lambda;

public class ItemTest {
 public static void main(String[] args) {
 Item apple = new Item("Apple", 0.75);
 apple.test();
 }
}

Constructor Item(String, double) called.
this::toString: name = Apple, price = 0.75
Item.super::toString: com.jdojo.lambda.Item@24d46ca6
this::getPrice: 0.75
Priced.super::getPrice: 1.0

Constructor References
Sometimes the body of a lambda expression may be just an object creation expression. Consider the following two
statements that use a String object creation expression as the body for lambda expressions:

Supplier<String> func1 = () -> new String();
Function<String,String> func2 = str -> new String(str);

Chapter 5 ■ Lambda expressions

159

You can rewrite these statements by replacing the lambda expressions with constructor references as shown:

Supplier<String> func1 = String::new;
Function<String,String> func2 = String::new;

The syntax for using a constructor is

ClassName::new

ArrayTypeName::new

The ClassName in ClassName::new is the name of the class that can be instantiated; it cannot be the name of an
abstract class. The keyword new refers to the constructor of the class. A class may have multiple constructors. The
syntax does not provide a way to refer to a specific constructor. The compiler selects a specific constructor based
on the context. It looks at the target type and the number of arguments in the abstract method of the target type.
The constructor whose number of arguments matches with the number of arguments in the abstract method of the
target type is chosen. Consider the following snippet of code that uses three constructors of the Item class, shown in
Listing 5-16, in lambda expressions:

Supplier<Item> func1 = () -> new Item();
Function<String,Item> func2 = name -> new Item(name);
BiFunction<String,Double, Item> func3 = (name, price) -> new Item(name, price);

System.out.println(func1.get());
System.out.println(func2.apply("Apple"));
System.out.println(func3.apply("Apple", 0.75));

Constructor Item() called.
name = Unknown, price = 0.0
Constructor Item(String) called.
name = Apple, price = 0.0
Constructor Item(String, double) called.
name = Apple, price = 0.75

The following snippet of code replaces the lambda expressions with a constructor reference Item::new.

The output shows the same constructors are used as before.

Supplier<Item> func1 = Item::new;
Function<String,Item> func2 = Item::new;
BiFunction<String,Double, Item> func3 = Item::new;

System.out.println(func1.get());
System.out.println(func2.apply("Apple"));
System.out.println(func3.apply("Apple", 0.75));

Constructor Item() called.
name = Unknown, price = 0.0
Constructor Item(String) called.
name = Apple, price = 0.0
Constructor Item(String, double) called.
name = Apple, price = 0.75

Chapter 5 ■ Lambda expressions

160

When the statement Supplier<Item> func1 = Item::new; is executed, the compiler finds that the target type
Supplier<String> does not accept any argument. Therefore, it uses the no-args constructor of the Item class.

When the statement Function<String,Item> func2 = Item::new; is executed, the compiler finds that the
target type Function<String,Item> takes a String argument. Therefore, it uses the constructor of the Item class that
takes a String argument.

When the statement BiFunction<String,Double,Item> func3 = Item::new; is executed, the compiler finds
that the target type BiFunction<String,Double,Item> takes two arguments: a String and a Double. Therefore, it uses
the constructor of the Item class that takes a String and a double argument.

The following statement generates a compile-time error, as the compiler does not find a constructor in the Item
class that accepts a Double argument:

Function<Double,Item> func4 = Item::new; // A compile-time error

Arrays in Java do not have constructors. There is a special syntax to use constructor references for arrays. Array
constructors are treated to have one argument of int type that is the size of the array. The following snippet of code
shows the lambda expression and its equivalent constructor reference for an int array:

// Uses a lambda expression
IntFunction<int[]> arrayCreator1 = size -> new int[size];
int[] empIds1 = arrayCreator1.apply(5); // Creates an int array of five elements

// Uses an array constructor reference
IntFunction<int[]> arrayCreator2 = int[]::new;
int[] empIds2 = arrayCreator2.apply(5); // Creates an int array of five elements

You can also use a Function<Integer,R> type to use an array constructor reference, where R is the array type.

// Uses an array constructor reference
Function<Integer,int[]> arrayCreator3 = int[]::new;
int[] empIds3 = arrayCreator3.apply(5); // Creates an int array of five elements

The syntax for the constructor reference for arrays supports creating an array of multiple dimensions. However,
you can specify the length for only the first dimension. The following statement creates a two-dimensional int array
with the first dimension having the length of 5:

// Uses an array constructor reference
IntFunction<int[][]> TwoDimArrayCreator = int[][]::new;
int[][] matrix = TwoDimArrayCreator.apply(5); // Creates an int[5][] array

You might be tempted to use a BiFunction<Integer,Integer,int[][]> to use a constructor reference for a
 two-dimensional array to supply the length for both dimensions. However, the syntax is not supported. Array
constructors are supposed to accept only one parameter that is the length of the first dimension. The following
statement generates a compile-time error:

BiFunction<Integer,Integer,int[][]> arrayCreator = int[][]::new;

Generic Method References
Typically, the compiler figures out the actual type for generic type parameters when a method reference refers to a
generic method. Consider the following generic method in the Arrays class in the java.util package:

•	 static <T> List<T> asList(T... a)

Chapter 5 ■ Lambda expressions

161

The asList() method takes a varargs argument of type T and returns a List<T>. You can use Arrays::asList
as the method reference for this method. The syntax for the method reference allows you to specify the actual type
parameter for the method just after the two consecutive colons. For example, if you are passing String objects to the
asList() method, its method reference can be written as Arrays::<String>asList.

Tip ■ the syntax for a method reference also supports specifying the actual type parameters for generic types.
the actual type parameters are specified just before the two consecutive colons. For example, the constructor reference
ArrayList<Long>::new specifies Long as the actual type parameter for the generic ArrayList<T> class.

The following snippet of code contains an example of specifying the actual type parameter for the generic
method Arrays.asList(). In the code, Arrays::asList will work the same as the compiler will infer String as the
type parameter for the asList() method by examining the target type.

import java.util.Arrays;
import java.util.List;
import java.util.function.Function;
...
Function<String[],List<String>>asList = Arrays::<String>asList;

String[] namesArray = {"Jim", "Ken", "Li"};
List<String> namesList = asList.apply(namesArray);
for(String name : namesList) {
 System.out.println(name);
}

Jim
Ken
Li

Lexical Scoping
A scope is the part of a Java program within which a name can be referred to without using a qualifier. Classes and
methods define their own scope. Scopes may be nested. For example, a method scope does not exist independently as
a method is always part of another construct, for example a class; an inner class appears inside the scope of another
class; a local or anonymous class appears inside the scope of a method.

Even though a lambda expression looks like a method declaration, it does not define a scope of its own. It
exists in its enclosing scope. This is known as lexical scoping for lambda expressions. For example, when a lambda
expression is used inside a method, the lambda expression exists in the scope of the method.

The meanings of the keywords this and super are the same inside the lambda expression and its enclosing
method. Note that this is different from the meanings of these keywords inside a local and anonymous inner class in
which the keyword this refers to the current instance of the local and anonymous inner class, not its enclosing class.

Listing 5-18 contains code for a functional interface named Printer that you will use to print messages in
examples in this section.

Chapter 5 ■ Lambda expressions

162

Listing 5-18. A Printer Functional Interface

// Printer.java
package com.jdojo.lambda;

@FunctionalInterface
public interface Printer {
 void print(String msg);
}

The program in Listing 5-19 creates two instances of the Printer interface: one using a lambda expression in the
getLambdaPrinter() method and one using an anonymous inner class in the getAnonymousPrinter() method. Both
instances use the keyword this inside the print() method. Both methods print the class name that the keyword this
refers to. The output shows that the keyword this has the same meaning inside the getLambdaPrinter() method and
the lambda expression.

Listing 5-19. Testing Scope of a Lambda Expression and an Anonymous Class

// ScopeTest.java
package com.jdojo.lambda;

public class ScopeTest {
 public static void main(String[] args) {
 ScopeTest test = new ScopeTest();
 Printer lambdaPrinter = test.getLambdaPrinter();
 lambdaPrinter.print("Lambda Expressions");

 Printer anonymousPrinter = test.getAnonymousPrinter();
 anonymousPrinter.print("Anonymous Class");
 }

 public Printer getLambdaPrinter() {
 System.out.println("getLambdaPrinter(): " + this.getClass());

 // Uses a lmabda expression
 Printer printer = msg -> {
 // Here, this refers to the current object of the
 // ScopeTest class
 System.out.println(msg + ": " + this.getClass());
 };

 return printer;
 }

 public Printer getAnonymousPrinter() {
 System.out.println("getAnonymousPrinter(): " + this.getClass());

 // Uses an anonymous class
 Printer printer = new Printer() {
 @Override
 public void print(String msg) {

Chapter 5 ■ Lambda expressions

163

 // Here, this refers to the current object of the
 // anonymous class
 System.out.println(msg + ": " + this.getClass());
 }
 };

 return printer;
 }
}

getLambdaPrinter(): class com.jdojo.lambda.ScopeTest
Lambda Expressions: class com.jdojo.lambda.ScopeTest
getAnonymousPrinter(): class com.jdojo.lambda.ScopeTest
Anonymous Class: class com.jdojo.lambda.ScopeTest$1

Lexical scoping of a lambda expression means that variables declared in the lambda expression, including its

parameters, exist in the enclosing scope. Simple names in a scope must be unique. It means that a lambda expression
cannot redefine variables with the same name that already exist in the enclosing scope.

The following code for a lambda expression inside a method generates a compile-time error as its parameter
name msg is already defined in the method's scope:

public class Test {
 public static void main(String[] args) {
 String msg = "Hello";

 // A compile-time error. The msg variable is already defined and
 // the lambda parameter is attempting to redefine it.
 Printer printer = msg -> System.out.println(msg);
 }
}

The following code generates a compile-time error for the same reason that the local variable name msg is in
scope inside the body of the lambda expression and the lambda expression is attempting to declare a local variable
with the same name msg:

public class Test {
 public static void main(String[] args) {
 String msg = "Hello";

 Printer printer = msg1 -> {
 String msg = "Hi"; // A compile-time error
 System.out.println(msg1);
 };
 }
}

Chapter 5 ■ Lambda expressions

164

Variable Capture
Like a local and anonymous inner class, a lambda expression can access effectively final local variables. A local
variable is effectively final in the following two cases:

It is declared •	 final.

It is not declared •	 final, but initialized only once.

In the following snippet of code, the msg variable is effectively final, as it has been declared final. The lambda
expression accesses the variable inside its body.

public Printer test() {
 final String msg = "Hello"; // msg is effectively final

 Printer printer = msg1 -> System.out.println(msg + " " + msg1);
 return printer;
}

In the following snippet of code, the msg variable is effectively final, as it is initialized once. The lambda
expression accesses the variables inside its body.

public Printer test() {
 String msg = "Hello"; // msg is effectively final

 Printer printer = msg1 -> System.out.println(msg + " " + msg1);
 return printer;
}

The following snippet of code is a slight variation of the above example. The msg variable is effectively final, as it
has been initialized only once.

public Printer test() {
 String msg;
 msg = "Hello"; // msg is effectively final

 Printer printer = msg1 -> System.out.println(msg + " " + msg1);
 return printer;
}

In the following snippet of code, the msg variable is not effectively final as it is assigned a value twice. The lambda
expression is accessing the msg variable that generates a compile-time error.

public Printer test() {
 // msg is not effectively final as it is changed later
 String msg = "Hello";

 // A compile-time error as a lambda expression can access only
 // effectively final local variables and the msg variable is not
 // effectively final as it is changed afterwards.

Chapter 5 ■ Lambda expressions

165

 Printer printer = msg1 -> System.out.println(msg + " " + msg1);

 msg = "Hi"; // msg is changed

 return printer;
}

The following snippet of code generates a compile-time error because the lambda expression accesses the msg
variable that is declared lexically after its use. In Java, forward referencing of variable names in method’s scope is not
allowed. Note that the msg variable is effectively final.

public Printer test() {
 // A compile-time error. The msg variable is not declared yet.
 Printer printer = msg1 -> System.out.println(msg + " " + msg1);

 String msg = "Hello"; // msg is effectively final

 return printer;
}

Can you guess why the following snippet of code generates a compile-time error?

public Printer test() {
 String msg = "Hello";

 Printer printer = msg1 -> {
 msg = "Hi " + msg1; // A compile-time error. Attempting to modify msg.
 System.out.println(msg);
 };

 return printer;
}

The lambda expression accesses the local variable msg. Any local variable accessed inside a lambda expression
must be effectively final. The lambda expression attempts to modify the msg variable inside its body that causes the
compile-time error.

Tip ■ a lambda expression can access instance and class variables of a class whether they are effectively final or not.
if instance and class variables are not final, they can be modified inside the body of the lambda expressions. a lambda
expression keeps a copy of the local variables used in its body. if the local variables are reference variables, a copy of the
references is kept, not a copy of the objects.

The program in Listing 5-20 demonstrates how to access the local and instance variables inside lambda
expressions.

Chapter 5 ■ Lambda expressions

166

Listing 5-20. Accessing Local and Instance Variables Inside Lambda Expressions

// VariableCapture.java
package com.jdojo.lambda;

public class VariableCapture {
 private int counter = 0;

 public static void main(String[] args) {
 VariableCapture vc1 = new VariableCapture();
 VariableCapture vc2 = new VariableCapture();

 // Create lambdas
 Printer p1 = vc1.createLambda(1);
 Printer p2 = vc2.createLambda(100);

 // Execute the lambda bodies
 p1.print("Lambda #1");
 p2.print("Lambda #2");
 p1.print("Lambda #1");
 p2.print("Lambda #2");
 p1.print("Lambda #1");
 p2.print("Lambda #2");
 }

 public Printer createLambda(int incrementBy) {
 Printer printer = msg -> {
 // Accesses instance and local variables
 counter += incrementBy;
 System.out.println(msg + ": counter = " + counter);
 };

 return printer;
 }
}

Lambda #1: counter = 1
Lambda #2: counter = 100
Lambda #1: counter = 2
Lambda #2: counter = 200
Lambda #1: counter = 3
Lambda #2: counter = 300

The createLambda() method uses a lambda expressions to create an instance of the Printer functional interface.

The lambda expression uses the method's parameter incrementBy. Inside the body, it increments the instance
variable counter and prints its value. The main() method creates two instances of the VariableCapture class and
calls the createLambda() method on those instances by passing 1 and 100 as incrementBy values. The print()
method of the Printer objects are called three times for both instances. The output shows that the lambda expression
captures the incrementBy value and it increments the counter instance variable every time it is called.

Chapter 5 ■ Lambda expressions

167

Jumps and Exits
Statements such as break, continue, return, and throw are allowed inside the body of a lambda expression. These
statements indicate jumps inside a method and exits from a method. Inside a lambda expression, they indicate jumps
inside the body of the lambda expression and exits from the body of the lambda expressions. They indicate local
jumps and exits in the lambda expressions. Non-local jumps and exits in lambda expressions are not allowed.

The program in Listing 5-21 demonstrates the valid use of the break and continue statements inside the body of
a lambda expressions.

Listing 5-21. Using Break and Continue Statements Inside the Body of a Lambda Expression

// LambdaJumps.java
package com.jdojo.lambda;

import java.util.function.Consumer;

public class LambdaJumps {
 public static void main(String[] args) {
 Consumer<int[]> printer = ids -> {
 int printedCount = 0;
 for (int id : ids) {
 if (id % 2 != 0) {
 continue;
 }

 System.out.println(id);
 printedCount++;

 // Break out of the loop after printing 3 ids
 if (printedCount == 3) {
 break;
 }
 }
 };

 // Print an array of 8 integers
 printer.accept(new int[]{1, 2, 3, 4, 5, 6, 7, 8});
 }
}

2
4
6

Chapter 5 ■ Lambda expressions

168

In the following snippet of code, the break statement is inside a for-loop statement and it is also inside the body
of a lambda statement. If this break statement is allowed, it will jump out of the body of the lambda expression. This is
the reason that the code generates a compile-time error.

public void test() {
 for(int i = 0; i < 5; i++) {
 Consumer<Integer> evenIdPrinter = id -> {
 if (id < 0) {
 // A compile-time error
 // Attempting to break out of the lambda body
 break;
 }
 };
 }
}

Recursive Lambda Expressions
Sometimes a function may invoke itself from its body. Such a function is called a recursive function. A lambda
expression represents a function. However, a lambda expression does not support recursive invocations. If you need a
recursive function, you need to use a method reference or an anonymous inner class.

The program in Listing 5-22 shows how to use a method reference when a recursive lambda expression is
needed. It defines a recursive method called factorial() that computes the factorial of an integer. In the main()
method, it uses the method reference RecursiveTest::factorial in place of a lambda expression.

Listing 5-22. Using a Method Reference When a Recursive Lambda Expressions Is Needed

// RecursiveTest.java
package com.jdojo.lambda;

import java.util.function.IntFunction;

public class RecursiveTest {
 public static void main(String[] args) {
 IntFunction<Long> factorialCalc = RecursiveTest::factorial;

 int n = 5;
 long fact = factorialCalc.apply(n);
 System.out.println("Factorial of " + n + " is " + fact);
 }

 public static long factorial(int n) {
 if (n < 0) {
 String msg = "Number must not be negative.";
 throw new IllegalArgumentException(msg);
 }

 if (n == 0) {
 return 1;
 }

Chapter 5 ■ Lambda expressions

169

 else {
 return n * factorial(n - 1);
 }
 }
}

factorial of 5 is 120

You can achieve the same results using an anonymous inner class as shown:

IntFunction<Long> factorialCalc = new IntFunction<Long>() {
 @Override
 public Long apply(int n) {
 if (n < 0) {
 String msg = "Number must not be negative.";
 throw new IllegalArgumentException(msg);
 }

 if (n == 0) {
 return 1L;
 }
 else {
 return n * this.apply(n - 1);
 }
 }
};

Comparing Objects
The Comparator interface is a functional interface with the following declaration:

package java.util;

@FunctionalInterface
public interface Comparator<T> {
 int compare(T o1, T o2);

 /* Other methods are not shown. */
}

The Comparator interface contains many default and static methods that can be used along with lambda
expressions to create its instances. It is worth exploring the API documentation for the interface. In this section, I will
discuss the following two methods of the Comparator interface:

•	 static <T,U extends Comparable<? super U>>Comparator<T>
comparing(Function<? super T,? extends U> keyExtractor)

•	 default <U extends Comparable<? super U>>Comparator<T>
thenComparing(Function<? super T,? extends U> keyExtractor)

Chapter 5 ■ Lambda expressions

170

The comparing() method takes a Function and returns a Comparator. The Function should return a Comparable
that is used to compare two objects. You can create a Comparator object to compare Person objects based on their first
name, as shown:

Comparator<Person> firstNameComp = Comparator.comparing(Person::getFirstName);

The thenComparing() method is a default method. It is used to specify a secondary comparison if two objects are
the same in sorting order based on the primary comparison. The following statement creates a Comparator<Person>
that sorts Person objects based on their last names, first names, and DOBs:

Comparator<Person> lastFirstDobComp =
 Comparator.comparing(Person::getLastName)
 .thenComparing(Person::getFirstName)
 .thenComparing(Person::getDob);

The program in Listing 5-23 shows how to use the method references to create a Comparator objects to sort
Person objects. It uses the sort() default method of the List interface to sort the list of persons. The sort() method
takes a Comparator as an argument. Thanks to lambda expressions and default methods in interfaces for making the
sorting task so easy!

Listing 5-23. Sorting a List of Person Objects

// ComparingObjects.java
package com.jdojo.lambda;

import java.util.Comparator;
import java.util.List;

public class ComparingObjects {
 public static void main(String[] args) {
 List<Person> persons = Person.getPersons();

 // Sort using the first name
 persons.sort(Comparator.comparing(Person::getFirstName));

 // Print the sorted list
 System.out.println("Sorted by the first name:");
 FunctionUtil.forEach(persons, System.out::println);

 // Sort using the last name, first name, and then DOB
 persons.sort(Comparator.comparing(Person::getLastName)
 .thenComparing(Person::getFirstName)
 .thenComparing(Person::getDob));

 // Print the sorted list
 System.out.println("\nSorted by the last name, first name, and dob:");
 FunctionUtil.forEach(persons, System.out::println);
 }
}

Chapter 5 ■ Lambda expressions

171

Sorted by the first name:
Donna Jacobs, FEMALE, 1970-09-12
John Jacobs, MALE, 1975-01-20
Wally Inman, MALE, 1965-09-12

Sorted by the last name, first name, and dob:
Wally Inman, MALE, 1965-09-12
Donna Jacobs, FEMALE, 1970-09-12
John Jacobs, MALE, 1975-01-20

Summary
A lambda expression is an unnamed block of code (or an unnamed function) with a list of formal parameters and a
body. A lambda expression provides a concise way, as compared with anonymous inner classes, to create an instance
of functional interfaces. Lambda expressions and default methods in interfaces have given new life to the Java
programming languages as far as expressiveness and fluency in Java programming goes. The Java collection library
has benefited the most from lambda expressions.

The syntax for defining lambda expressions is similar to declaring a method. A lambda expression may have a list
of formal parameters and a body. A lambda expression is evaluated to an instance of a functional interface. The body
of the lambda expression is not executed when the expression is evaluated. The body of the lambda expression is
executed when the method of the functional interface is invoked.

One of the design goals of lambda expressions was to keep it concise and readable. The lambda expression syntax
supports shorthand for common use cases. Method references are shorthand to specify lambda expressions that use
existing methods.

A poly expression is an expression whose type depends on the context of its use. A lambda expression is always a
poly expression. A lambda expression cannot be used by itself. Its type is inferred by the compiler from the context.
A lambda expression can be used in assignments, method invocations, returns, and casts.

When a lambda expression occurs inside a method, it is lexically scoped. That is, a lambda expression does not
define a scope of its own; rather, it occurs in a method's scope. A lambda expression may use the effectively final local
variables of a method. A lambda expression may use the statements such as break, continue, return, and throw. The
break and continue statements specify local jumps inside the body of the lambda expression. Attempting to jump
outside the body of the lambda expression generates a compile-time error. The return and throw statements exit the
body of the lambda expression.

173

Chapter 6

Threads

In this chapter, you will learn

What threads are•	

How to create threads in Java•	

How to execute your code in separate threads•	

What the Java Memory Model is•	

The life cycle of threads•	

How to use object monitors to synchronize access to a critical section by threads•	

How to interrupt, stop, suspend, and resume threads•	

Atomic variables, explicit locks, synchronizer, executor framework, fork/join framework, and •	
thread-local variables

What Is a Thread?
Threads are a vast topic. They deserve an entire book. This chapter does not discuss the concept of threads in detail.
Rather, it discusses how to work with threads using Java constructs. Before I define the term thread, it is necessary to
understand the meaning of some related terms, such as program, process, multitasking, sequential programming,
concurrent programming, etc.

A program is an algorithm expressed in a programming language. A process is a running instance of a program
with all system resources allocated by the operating system to that instance of the program. Typically, a process
consists of a unique identifier, a program counter, executable code, an address space, open handles to system
resources, a security context, and many other things. A program counter, also called an instruction pointer, is a value
maintained in the CPU register that keeps track of the instruction being executed by the CPU. It is automatically
incremented at the end of the execution of an instruction. You can also think of a process as a unit of activity (or a unit
of work, or a unit of execution, or a path of execution) within an operating system. The concept of process allows one
computer system to support multiple units of executions.

Multitasking is the ability of an operating system to execute multiple tasks (or processes) at once. On a single
CPU machine, multitasking is not possible in a true sense because one CPU can execute instructions for only one
process at a time. In such a case, the operating system achieves multitasking by dividing the single CPU time among
all running processes and switching between processes quickly enough to give an impression that all processes are
running simultaneously. The switching of the CPU among processes is called a context switch. In a context switch,
the running process is stopped, its state is saved, the state of the process that is going to get the CPU is restored, and
the new process is run. It is necessary to save the state of the running process before the CPU is allocated to another

Chapter 6 ■ threads

174

process, so when this process gets the CPU again, it can start its execution from the same point where it left. Typically,
a process state consists of a program counter, register values used by the process, and any other pieces of information
that are necessary to restore the process later. An operating system stores a process state in a data structure, which is
called a process control block or a switchframe. A context switch is rather an expensive task.

There are two types of multitaskin: cooperative and preemptive. In cooperative multitasking, the running process
decides when to release the CPU so that other processes can use it. In preemptive multitasking, the operating system
allocates a time slice to each process. Once a process has used up its time slice, it is preempted, and the operating
system assigns the CPU to another process. In cooperative multitasking, a process may monopolize the CPU for a long
time and other processes may not get a chance to run. In preemptive multitasking, the operating system makes sure
all processes get CPU time. UNIX, OS/2, and Windows (except Windows 3.x) use preemptive multitasking. Windows 3.x
used cooperative multitasking.

Multiprocessing is the ability of a computer to use more than one processor simultaneously. Parallel processing is
the ability of a system to simultaneously execute the same task on multiple processors. You may note that, for parallel
processing, the task must be split up into subtasks, so that the subtasks can be executed on multiple processors
simultaneously. Let’s consider a program that consists of six instructions:

Instruction-1
Instruction-2
Instruction-3
Instruction-4
Instruction-5
Instruction-6

To execute this program completely, the CPU has to execute all six instructions. Suppose the first three instructions
depend on each other. Assume that Instruction-2 uses the result of Instruction-1; Instruction-3 uses the result of
Instruction-2. Assume that the last three instructions also depend on each other the same way the first three depend
on each other. Suppose the first three and the last three instructions, as two groups, do not depend on each other. How
would you like to execute these six instructions to get the best result? One of the ways to execute them is sequentially
as they appear in the program. This gives you one sequence of execution in your program. Another way of executing
them is to have two sequences of executions. One sequence of execution will execute Instruction-1, Instruction-2,
and Instruction-3, and at the same time, another sequence of execution will execute Instruction-4, Instruction-5,
and Instruction-6. The phrases “unit of execution” and “sequence of execution” mean the same; I will use them
interchangeably. These two scenarios are depicted in Figure 6-1.

One unit of execution

Instruction-1
Instruction-2
Instruction-3
Instruction-4
Instruction-5
Instruction-6

Instruction-1 Instruction-4
Instruction-2 Instruction-5
Instruction-3 Instruction-6

Two units of executions

Figure 6-1. Dividing a program into multiple units of execution

Chapter 6 ■ threads

175

Note that a process is also a unit of execution. Therefore, the two sets of instructions can be run as two processes
to achieve concurrency in their execution. So far, we have assumed that the two sets of instructions are independent of
each other. Suppose this assumption still holds true. What if the two sets of instructions access a shared memory; or,
when both sets of instructions finish running, you need to combine the results from both to compute the final result?
Processes are generally not allowed to access another process’s address space. They must communicate using inter-process
communication facilities such as sockets, pipes, etc. The very nature of a process—that it runs independent of another
process—may pose problems when multiple processes need to communicate or share resources. All modern operating
systems let you solve this problem by allowing you to create multiple units of execution within a process, where all units
of execution can share address space and resources allocated to the process. Each unit of execution within a process is
called a thread.

Every process has at least one thread. A process can create multiple threads, if needed. The resources available
to the operating system and its implementation determine the maximum number of threads a process can create. All
threads within a process share all resources including the address space; they can also communicate with each other
easily because they operate within the same process and they share the same memory. Each thread within a process
operates independent of the other threads within the same process.

A thread maintains two things: a program counter and a stack. The program counter lets a thread keep track of
the instruction that is currently executed by it. It is necessary to maintain a separate program counter for each thread
because each thread within a process may be executing different instructions at the same time. Each thread maintains
its own stack to store the values of the local variables. A thread can also maintain its private memory, which cannot be
shared with other threads, even if they are in the same process. The private memory maintained by a thread is called
thread-local storage (TLS). Figure 6-2 depicts threads represented within a process.

An operating system

Process Process Process

A thread within a process

Figure 6-2. Processes and threads

In all modern operating systems, threads are scheduled on the CPU for execution, not the processes. Therefore,
the CPU context switch occurs between the threads. The context switch between threads is less expensive compared
to the context switch between processes. Because of the ease of communication, sharing resources among threads
within a process, and a cheaper context switch, it is preferred to split a program into multiple threads, rather than
multiple processes. Sometimes a thread is also called a lightweight process. The program with six instructions as
discussed above can also be split into two threads within a process as depicted in Figure 6-3. On a multi-processor
machine, multiple threads of a process may be scheduled on different processors, thus providing true concurrent
executions of a program. A program that uses multiple threads is called a multi-threaded program.

Chapter 6 ■ threads

176

You can think of the relationship between a process and threads as

Process = address space + resources + threads

where threads are units of execution within the process; they maintain their own unique program counter and stack;
they share the process address space and resources; they are scheduled on a CPU independently and may execute on
different CPUs, if available.

Creating a Thread in Java
The Java API makes it easy to work with threads. It lets you represent a thread as an object. An object of the
java.lang.Thread class represents a thread. Creating and using a thread in Java is as simple as creating an object of
the Thread class and using that object in a program. Let’s start with the simplest example of creating a thread in Java.
There are at least two steps involved in working with a thread:

Creating an object of the •	 Thread class

Invoking the •	 start() method of the Thread class to start the thread

Creating an object of the Thread class is the same as creating an object of any other classes in Java. In its simplest
form, you can use the default constructor of the Thread class to create a Thread object.

// Creates a thread object
Thread simplestThread = new Thread();

Creating an object of the Thread class allocates memory for that object on the heap. It does not start or run
the thread.

After you have created an object of the Thread class, you must call its start() method to start the thread
represented by that object.

// Starts the thread
simplestThread.start();

The start() method returns after doing some housekeeping work. It puts the thread in the runnable state. In this
state, the thread is ready to receive the CPU time. Note that invoking the start() method of a Thread object does not
guarantee “when” this thread will start getting the CPU time. That is, it does not guarantee when the thread will start
running. It just schedules the thread to receive the CPU time.

Let’s write a simple Java program with the above two statements as shown in Listing 6-1. The program will not do
anything useful. However, it will get you started using threads.

A process with one thread

Instruction-1
Instruction-2
Instruction-3
Instruction-4
Instruction-5
Instruction-6 Thread 1

Instruction-1 Instruction-4
Instruction-2 Instruction-5
Instruction-3 Instruction-6

A process with two threads

Thread 1 Thread 2

Figure 6-3. Dividing the program logic to use two threads within a process

Chapter 6 ■ threads

177

Listing 6-1. The Simplest Thread in Java

// SimplestThread.java
package com.jdojo.threads;

public class SimplestThread {
 public static void main(String[] args) {
 // Creates a thread object
 Thread simplestThread = new Thread();

 // Starts the thread
 simplestThread.start();
 }
}

When you run the SimplestThread class, you do not see any output. The program will start and finish silently.
Even though you did not see any output, here are few things the JVM did when the two statements in the main()
method were executed:

When the second statement, •	 simplestThread.start(), is executed, the JVM scheduled this
thread for execution.

At some point in time, this thread got the CPU time and started executing. What code does a •	
thread in Java start executing when it gets the CPU time?

A thread in Java always starts its execution in a •	 run() method. You can define the run()
method to be executed by a thread when you create an object of the Thread class. In your
case, you created an object of the Thread class using its default constructor. When you use
the default constructor of the Thread class to create its object (as in new Thread()), the run()
method of the Thread class is called when the thread starts its execution. The following
sections in this chapter will explain how to define your own run() method for a thread.

The •	 run() method of the Thread class checks how the object of the Thread class was created.
If the thread object was created using the default constructor of the Thread class, it does not do
anything, and immediately returns. Therefore, in your program, when the thread got the CPU
time, it called the run() method of the Thread class, which did not execute any meaningful
code, and returned.

When the CPU finishes executing the •	 run() method, the thread is dead, which means the
thread will not get the CPU time again.

Figure 6-4 depicts how the simplest thread example works.

Chapter 6 ■ threads

178

There are two important points to add to the current discussion.

When a thread is dead, it does not mean the thread object is garbage collected. Note that •	
a thread is a unit of execution. “A thread is dead” means that the unit of execution that the
thread represented has finished its work. However, the thread object representing the unit of
execution still exists in memory. After the thread is dead, the object will be garbage collected
based on the same garbage collection rules that are used for any other Java objects. Some
restrictions exist that dictate the methods you can call on a dead thread. For example, you
cannot call its start() method again. That is, a thread object can be started only once.
However, you can still check if the thread is dead by calling the isAlive() method of the
thread object.

The thread does not get the CPU time to execute •	 run() method in one go. Rather, the
operating system decides the amount of time to allocate and when to allocate that time to
the thread.

Specifying Your Code for a Thread
There are three ways you can specify your code to be executed by a thread:

By inheriting your class from the •	 Thread class

By implementing the •	 Runnable interface in your class

By using the method reference to a method that takes no parameters and returns •	 void

Thread simplestThread = new Thread();

Created a thread and
scheduled it for execution

Gets CPU time

The run() method finishes

Starts executing the run() method
of the Thread class

Thread is dead

simplestThread.start();
simplestThread

object in memory

Figure 6-4. The simplest thread execution

Chapter 6 ■ threads

179

Tip ■ Inheriting your class from the Thread class may not be possible if your class already inherits from another
class. In that case, you will need to use the second method. You can use the third method from Java 8. Before Java 8,
it was common to use an anonymous class to define a thread object where the anonymous class would either inherit
from the Thread class or implement the Runnable interface.

Inheriting Your Class from the Thread Class
When you inherit your class from the Thread class, you should override the run() method and provide the code to be
executed by the thread.

public class MyThreadClass extends Thread {
 @Override
 public void run() {
 System.out.println("Hello Java thread!");
 }
 // More code goes here
}

The steps to create a thread object and start the thread are the same.

MyThreadClass myThread = new MyThreadClass();
myThread.start();

The thread will execute the run() method of the MyThreadClass class.

Implementing the Runnable Interface
You can create a class that implements the java.lang.Runnable interface. Runnable is a functional interface and it is
declared as follows:

@FunctionalInterface
public interface Runnable {
 void run();
}

From Java 8, you can use a lambda expression to create an instance of the Runnable interface.

Runnable aRunnableObject = () -> System.out.println("Hello Java thread!");

Create an object of the Thread class using the constructor that accepts a Runnable object.

Thread myThread = new Thread(aRunnableObject);

Start the thread by calling the start() method of the thread object.

myThread.start();

The thread will execute the code contained in the body of the lambda expressions.

Chapter 6 ■ threads

180

Using a Method Reference
From Java 8, you can use the method reference of a method of any class that takes no parameters and returns void
as the code to be executed by a thread. The following code declares a ThreadTest class that contains an execute()
method. The method contains the code to be executed in a thread.

public class ThreadTest {
 public static void execute() {
 System.out.println("Hello Java thread!");
 }
}

The following snippet of code uses the method reference of the execute() method of the ThreadTest class to
create a Runnable object:

Thread myThread = new Thread(ThreadTest::execute);
myThread.start();

The thread will execute the code contained in the execute() method of the ThreadTest class.

A Quick Example
Let’s look at a simple example to print integers from 1 to 500 in a new thread. Listing 6-2 lists the code for the
PrinterThread class that performs the job. When the class is run, it prints integers from 1 to 500 on the standard output.

Listing 6-2. Printing Integers from 1 to 500 in a New Thread

// PrinterThread.java
package com.jdojo.threads;

public class PrinterThread {
 public static void main(String[] args) {
 // Create a Thread object
 Thread t = new Thread(PrinterThread::print);

 // Start the thread
 t.start();
 }

 public static void print() {
 for (int i = 1; i <= 500; i++) {
 System.out.print(i + " ");
 }
 }
}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 ... 497 498 499 500

I used a method reference to create the thread object in the example. You can use any of the other ways discussed

earlier to create a thread object.

Chapter 6 ■ threads

181

Using Multiple Threads in a Program
Using multiple threads in a Java program is as simple as creating multiple Thread objects and starting them. Java does
not have any upper limit on the number of threads that can be used in a program. It is limited by the operating system
and the memory available to the program. Listing 6-3 uses two threads. Both threads print integers from 1 to 500.
The code prints a newline after each integer. However, the output shows a space after each integer to keep the output
short. Only partial output is shown.

Listing 6-3. Running Multiple Threads in a Program

// MultiPrinterThread.java
package com.jdojo.threads;

public class MultiPrinterThread {
 public static void main(String[] args) {
 // Create two Thread objects
 Thread t1 = new Thread(MultiPrinterThread::print);
 Thread t2 = new Thread(MultiPrinterThread::print);

 // Start both threads
 t1.start();
 t2.start();
 }

 public static void print() {
 for (int i = 1; i <= 500; i++) {
 System.out.println(i);
 }
 }
}

1 2 3 4 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 6 7 27 28 8 9 10 11 12 29 30 31 13 14 32 15 16 17 ... 496 497 498
499 500 424 425 ... 492 493 494 495 496 497 498 499 500

You will find some interesting things in the output. Every time you run this program, you may get a different

output. However, the nature of the output on your computer can be compared to the output shown above. Note that in
a very fast machine the output may print 1 to 500 and 1 to 500. However, let’s focus the discussion assuming that your
output is like the one shown.

The program created two threads. Each thread prints integers from 1 to 500. It starts the thread t1 first and the
thread t2 second. You might expect that the thread t1 will start first to print integers from 1 to 500, and then the thread
t2 will start to print integers from 1 to 500. However, it is obvious from the output that the program did not run the way
you might have expected.

The start() method of the Thread class returns immediately. That is, when you call the start() method of a
thread, the JVM takes note of your instruction to start the thread. However, it does not start the thread right away. It
has to do some housekeeping before it can really start a thread. When a thread starts, it is up to the operating system
to decide when and how much CPU time is given to that thread to execute its code. Therefore, as soon as the t1.start()
and t2.start() methods return, your program enters the indeterminate realm. That is, both threads will start running;
however, you do not know when they will start running and in what sequence they will run to execute their code. When
you start multiple threads, you do not even know which thread will start running first. Looking at the output, you can
observe that one of the threads started and it got enough CPU time to print integers from 1 to 5 before it was preempted.

Chapter 6 ■ threads

182

Another thread got CPU time to print from 1 to 26 before it was preempted. The second time, the first thread (the thread
that started printing integers first) got the CPU time and it printed only two integers, 6 and 7, and so on. You can see
that both threads got CPU time. However, the amount of CPU time and the sequence in which they got the CPU time are
unpredictable. Each time you run this program, you may get a different output. The only guarantee that you get from
this program is that all integers between 1 and 500 will be printed twice in some order.

Issues in Using Multiple Threads
Some issues are involved when you use multiple threads in a program. You need to consider these issues only if
multiple threads have to coordinate based on some conditions or some shared resources.

In the previous sections, the examples involving threads were trivial. They simply printed some integers on the
standard output. Let’s have a different kind of example that uses multiple threads, which access and modify the value
of a variable. Listing 6-4 has the code for a BalanceUpdate class. Note that all methods defined in the BalanceUpdate
class are static.

Listing 6-4. Multiple Threads Modifying the Same Variable

// BalanceUpdate.java
package com.jdojo.threads;

public class BalanceUpdate {
 // Initialize balance to 100
 private static int balance = 100;

 public static void main(String[] args) {
 startBalanceUpdateThread(); // Thread to update the balance value
 startBalanceMonitorThread(); // Thread to monitor the balance value
 }

 public static void updateBalance() {
 // Add 10 to balance and subtract 10 from balance
 balance = balance + 10;
 balance = balance - 10;
 }

 public static void monitorBalance() {
 int b = balance;
 if (b != 100) {
 System.out.println("Balance changed: " + b);
 System.exit(1); // Exit the program
 }
 }

 public static void startBalanceUpdateThread() {
 // Start a new thread that calls the updateBalance() method in an infinite loop
 Thread t = new Thread(() -> {
 while (true) {
 updateBalance();
 }
 });
 t.start();
 }

Chapter 6 ■ threads

183

 public static void startBalanceMonitorThread() {
 // Start a thread that monitors the balance value
 Thread t = new Thread(() -> {
 while (true) {
 monitorBalance();
 }
 });
 t.start();
 }
}

Balance changed: 110

A brief description of each component of this class is as follows:

•	 balance: It is a static variable of type int. It is initialized to 100.

•	 updateBalance(): It is a static method that adds 10 to the static variable balance and
subtracts 10 from it. Upon completion of this method, the value of the static variable balance
is expected to remain the same as 100.

•	 startBalanceUpdateThread(): It starts a new thread that keeps calling the updateBalance()
method in an infinite loop. That is, once you call this method, a thread keeps adding 10 to the
balance variable and subtracting 10 from it.

•	 startBalanceMonitorThread(): It starts a new thread that monitors the value of the balance
static variable. When the thread detects that the value of the balance variable is other than
100, it prints the current value and exits the program.

•	 main(): This method is used to run the program. It starts a thread that updates the balance
class variable in a loop using the updateBalance() method. It also starts another thread that
monitors the value of the balance class variable.

The program consists of two threads. One thread calls the updateBalance() method, which adds 10 to balance
and subtracts 10 from it. That is, after this method finishes executing, the value of the balance variable is expected to
remain unchanged. Another thread monitors the value of the balance variable. When it detects that the value of the
balance variable is anything other than 100, it prints the new value and exits the program.

Intuitively, the balance monitor thread should not print anything because the balance should always be 100 and
the program should never end because both threads are using infinite loops. However, that is not the case. If you run
this program, you will find, in a short time, the program prints the balance value other than 100 and exits.

Suppose on a particular machine the statement "balance = balance + 10;" is implemented as the following
machine instructions assuming register-1 as a CPU register:

register-1 = balance;
register-1 = register-1 + 10;
balance = register-1;

Similarly, assume that the statement "balance = balance - 10;" is implemented as the following machine
instructions assuming register-2 as another CPU register:

register-2 = balance;
register-2 = register-2 - 10;
balance = register-2;

Chapter 6 ■ threads

184

When the updateBalance() method is invoked, the CPU has to execute six instructions to add 10 to and subtract
10 from the balance variable. When the balance update thread is in the middle of executing any of the first three
instructions, the balance monitor thread will read the balance value as 100. When the balance update thread has
finished executing the third instruction, the balance monitor thread will read its value as 110. The value 110 for the
balance variable will be restored to 100 only when the balance update thread executes the sixth instruction. Note
that if the balance monitor thread reads the value of the balance variable any time after the execution of the third
instruction and before the execution of the sixth instruction by the balance update thread, it will read a value that is
not the same as the value that existed at the start of the updateBalance() method execution. Table 6-1 shows how the
value of the balance variable will be modified and read by the two threads.

Table 6-1. Instruction Executions for Multiple Threads

Statement (Suppose Balance
Value is 100 to Start With)

Instructions Being Executed by
the Balance Update Thread

The Value of Balance Read by
the Balance Monitor Thread

balance = balance + 10; register-1 = balance; 100

register-1 = register-1 + 10; 100

balance = register-1; Before execution: 100
After execution: 110

balance = balance - 10; register-2 = balance; 110

register-2 = register-2 - 10; 110

balance = register-2; Before execution: 110
After execution: 100

In your program, the monitor thread was able to read the value of the balance variable as 110 because you
allowed two threads to modify and read the value of the balance variable concurrently. If you allowed only one thread
at a time to work with (modify or read) the balance variable, the balance monitor thread would never read the value
of the balance variable other than 100.

The situation where multiple threads manipulate and access a shared data concurrently and the outcome
depends on the order in which the execution of threads take place is known as a race condition. A race condition in
a program may lead to unpredictable results. Listing 6-4 is an example of a race condition where the program output
depends on the sequence of execution of the two threads.

To avoid a race condition in a program, you need to make sure that only one of the racing threads works with the
shared data at a time. To solve this problem, you need to synchronize the access to the two methods updateBalance()
and monitorBalance() of the BalanceUpdate class. That is, only one thread should access one of these two methods
at a time. In other words, if one thread is executing the updateBalance() method, another thread that wants to
execute the monitorBalance() method must wait until the thread executing the updateBalance() method is
finished. Similarly, if one thread is executing the monitorBalance() method, another thread that wants to execute
the updateBalance() method must wait until the thread executing the monitorBalance() method is finished. This
will ensure that when a thread is in the process of updating the balance variable, no other threads will read the
inconsistent value of the balance variable and vice versa.

This kind of problem that needs synchronizing the access of multiple threads to a section of code in a Java
program can be solved using the synchronized keyword. To understand the use of the synchronized keyword, I need
to discuss the Java Memory Model in brief, and the lock and wait sets of an object.

Chapter 6 ■ threads

185

Java Memory Model (JMM)
All program variables (instance fields, static fields, and array elements) in a program are allocated memory on the
main memory of a computer. Each thread has a working memory (processor cache or registers). JMM describes how,
when and in what order program variables are stored to, and read from, the main memory. JMM is described in the
Java Language Specification in detail. You may visualize JMM as depicted in Figure 6-5.

Thread–1

Working
memory

Thread–2

Working
memory

Main memory

Object-1
Object-2
Object-3

Figure 6-5. Java Memory model

Figure 6-5 shows two threads sharing the main memory. Let’s assume that you have a Java program that is
running two threads, thread-1 and thread-2, and each thread is running on different processors. Suppose thread-1
reads the value of an instance variable of object-1 in its working memory, updates the value, and does not write the
updated value back to the main memory. Let’s run through some possible scenarios.

What happens if thread-2 tries to read the value of the same instance variable of object-1 from •	
the main memory? Would thread-2 read the old value from the main memory, or would it be
able to read the updated value from the working memory of thread-2?

Suppose thread-1 is in the middle of writing the updated value to the main memory, and •	
at the same time, thread-2 is trying to read the same value from the main memory. Would
thread-2 read the old value or some garbage value from the main memory because the value is
not written back to the main memory completely?

JMM answers all such questions. In essence, JMM describes three important aspects of the execution of
instructions in a Java program. They are as follows:

Atomicity•	

Visibility•	

Ordering•	

Atomicity
JMM describes actions that should be executed atomically. It describes atomicity rules about read and write actions
on instance variables, static variables, and array elements. It guarantees that read and write on an object’s field of
any type, except long and double, are always atomic. However, if a field of type long or double is declared volatile
(I will discuss the volatile keyword in detail later in this chapter), read and write on that field are also guaranteed
to be atomic.

Chapter 6 ■ threads

186

Visibility
JMM describes the conditions under which the effects produced by actions in one thread are visible to another thread.
Mainly, it describes, when a thread writes a value to a field, at what point that new value of that field can be visible
to another thread. I will discuss more about the visibility aspect of JMM when I discuss locks, synchronization, and
volatile variables later in this chapter. For completeness, the following are some of the visibility rules:

When a thread reads the value of a field for the first time, it will read either the initial value of •	
the field or some value that was written to that field by some other thread.

A write to a •	 volatile variable is always written to the main memory. A read on a volatile
variable is always read from the main memory. That is, a volatile variable is never cached
in the working memory of a thread. In effect, any write to a volatile variable is flushed to the
main memory, immediately making the new value visible to other threads.

When a thread terminates, the working memory of the thread is written to the main memory •	
immediately. That is, after a thread terminates, all variables values visible only to the
terminated thread are made visible to all threads.

When a thread enters a •	 synchronized block, that thread reloads the values of all variables in
its working memory. When a thread leaves a synchronized block, it writes all variables values
from its working memory to the main memory.

Ordering
JMM describes in what order actions are performed within a thread and among threads. It guarantees that all actions
performed within a thread are ordered. Actions in different threads are not guaranteed to be performed in any
order. You may achieve some ordering while working with multiple threads by using the synchronization technique
described later in this chapter.

Tip ■ each thread in a Java program uses two kinds of memory: working memory and main memory. a thread cannot
access the working memory of another thread. Main memory is shared among the threads. threads communicate with
each other using the main memory. every thread has its own stack, which is used to store local variables.

Object’s Monitor and Threads Synchronization
In a multi-threaded program, a section of code that may have undesirable effects on the outcome of the program if
executed by multiple threads concurrently is called a critical section. Often, the undesirable effects result from the
concurrent use of a resource by multiple threads in the critical section. It is necessary to control the access to a critical
section in a program so only one thread can execute the critical section at a time.

In a Java program, a critical section can be a block of statements or a method. Java has no built-in mechanism to
identify a critical section in a program. However, Java has many built-in constructs that allow programmers to declare
a critical section, and to control and coordinate access to it. It is the programmer’s responsibility to identify critical
sections in a program and control the access to that critical section by multiple threads. Controlling and coordinating
the access to a critical section by multiple threads is known as threads synchronization. Threads synchronization
is always a challenging task when writing a multi-threaded program. In Listing 6-4, the updateBalance() and
monitorBalance() methods are critical sections and you must synchronize the threads’ access to these two methods
to get a consistent output.

Chapter 6 ■ threads

187

Two kinds of threads synchronizations are built into the Java programming language:

Mutual exclusion synchronization•	

Conditional synchronization•	

In mutual exclusion synchronization, only one thread is allowed to have access to a section of code at a point
in time. Listing 6-4 is an example of a program where mutual exclusion synchronization is needed so that only one
thread can execute updateBalance() and monitorBalance() at a point in time. In this case, you can think of the
mutual exclusion as an exclusive access to the balance variable by a thread.

The conditional synchronization allows multiple threads to work together to achieve a result. For example,
consider a multi-threaded program to solve a producer/consumer problem. There are two threads in a program:
one thread produces data (the producer thread) and another thread consumes the data (the consumer thread).
The consumer thread must wait until the producer thread produces data and makes it available for consuming. The
producer thread must notify the consumer thread when it produces data so the consumer thread can consume it.
In other words, producer and consumer threads must coordinate/cooperate with each other to accomplish the task.
During conditional synchronization, mutual exclusion synchronization may also be needed. Suppose the producer
thread produces data one byte at a time and puts the data into a buffer whose capacity is also one byte. The consumer
thread consumes data from the same buffer. In this case, only one of the threads should have access to the buffer at
a time (a mutual exclusion). If the buffer is full, the producer thread must wait for the consumer thread to empty the
buffer; if the buffer is empty, the consumer thread must wait for the producer thread to produce a byte of data and put
it into the buffer (a conditional synchronization).

The mutual exclusion synchronization is achieved through a lock. A lock supports two operations: acquire and
release. A thread that wants exclusive access to a resource must acquire the lock associated with that resource. As
long as a thread possesses the lock to a resource, other threads cannot acquire the same lock. Once the thread that
possesses the lock is finished with the resource, it releases the lock so another thread can acquire it.

The conditional synchronization is achieved through condition variables and three operations: wait, signal,
and broadcast. Condition variables define the conditions on which threads are synchronized. The wait operation
makes a thread wait on a condition to become true so it can proceed. The signal operation wakes up one of the
threads that was waiting on the condition variables. The broadcast operation wakes up all threads that were waiting
on the condition variables. Note that the difference between the signal operation and broadcast operation is that the
former wakes up only one waiting thread, whereas the latter wakes up all waiting threads.

A monitor is a programming construct that has a lock, condition variables, and associated operations on them.
Threads synchronization in a Java program is achieved using monitors. Every object in a Java program has an
associated monitor.

A critical section in a Java program is defined with respect to an object’s monitor. A thread must acquire the
object’s monitor before it can start executing the piece of code declared as a critical section. The synchronized
keyword is used to declare a critical section. There are two ways to use the synchronized keyword:

To declare a method as a critical section•	

To declare a block of statements as a critical section•	

You can declare a method as a critical section by using the keyword synchronized before the method’s return
type, as shown:

public class CriticalSection {
 public synchronized void someMethod_1() {
 // Method code goes here
 }

 public static synchronized void someMethod_2() {
 // Method code goes here
 }
}

Chapter 6 ■ threads

188

Tip ■ You can declare both an instance method and a static method as synchronized. a constructor cannot be
declared as synchronized.

In the case of a synchronized instance method, the entire method is a critical section and it is associated with
the monitor of the object for which this method is executed. That is, a thread must acquire the object’s monitor lock
before executing the code inside a synchronized instance method of that object. For example,

// Create an object called cs_1
CriticalSection cs_1 = new CriticalSection();

// Execute the synchronized instance method. Before this method execution
// starts, the thread that is executing this statement must acquire the
// monitor lock of the cs_1 object
cs_1.someMethod_1();

In case of a synchronized static method, the entire method is a critical section and it is associated with the
class object that represents that class in memory. That is, a thread must acquire the class object’s monitor lock before
executing the code inside a synchronized static method of that class. For example,

// Execute the synchronized static method. Before this method execution starts,
// the thread that is executing this statement must acquire the monitor lock of
// the CriticalSection.class object
CriticalSection.someMethod_2();

The syntax for declaring a block of code as critical section is

synchronized(<objectReference>) {
 // one or more statements of the critical section
}

The <objectReference> is the reference of the object whose monitor lock will be used to synchronize the access
to the critical section. The above syntax is used to define part of a method body as a critical section. This way, a thread
needs to acquire the object’s monitor lock only, while executing a smaller part of the method code, which is declared
as a critical section. Other threads can still execute other parts of the body of the method concurrently. Additionally,
this method of declaring a critical section lets you declare a part or whole of a constructor as a critical section. Recall
that you cannot use the keyword synchronized in the declaration part of a constructor. However, you can use it inside
a constructor’s body to declare a block of code synchronized. The following snippet of code illustrates the use of the
keyword synchronized:

public class CriticalSection2 {
 public synchronized void someMethod_1() {
 // method code goes here
 // only one thread can execute here at a time
 }

Chapter 6 ■ threads

189

 public void someMethod_11() {
 synchronized(this) {
 // method code goes here
 // only one thread can execute here at a time
 }
 }

 public void someMethod_12() {
 // some statements go here
 // multiple threads can execute here at a time

 synchronized(this) {
 // some statements go here
 // only one thread can execute here at a time
 }

 // some statements go here
 // multiple threads can execute here at a time
 }

 public static synchronized void someMethod_2() {
 // method code goes here
 // only one thread can execute here at a time
 }

 public static void someMethod_21() {
 synchronized(CriticalSection2.class) {
 // method code goes here
 // only one thread can execute here at a time
 }
 }

 public static void someMethod_22() {
 // some statements go here: section_1
 // multiple threads can execute here at a time

 synchronized(CriticalSection2.class) {
 // some statements go here: section_2
 // only one thread can execute here at a time
 }

 // some statements go here: section_3
 // multiple threads can execute here at a time
 }
}

Chapter 6 ■ threads

190

The CriticalSection2 class has six methods: three instance methods and three class methods. The someMethod_1()
method is synchronized as the synchronized keyword is used in the method declaration. The someMethod_11() method
differs from the someMethod_1() method only in the way it uses the synchronized keyword. It puts the entire method
body inside the synchronized keyword as a block, which has the same effect as declaring the method synchronized.
The method someMethod_12() is different. It declares only part of the method’s body as a synchronized block. There can
be more than one thread that can execute someMethod_12() concurrently. However, only one of them can be executing
inside the synchronized block at one point in time. Other sets of methods, someMethod_2(), someMethod_21() and
someMethod_22(), are class methods, and they will behave the same way, except that class’s object monitor will be used to
achieve the synchronization.

The process of acquiring and releasing an object’s monitor lock is handled by the JVM. The only thing you need
to do is to declare a method (or a block) synchronized. Before entering a synchronized method or block, the thread
acquires the monitor lock of the object. On exiting the synchronized method or block, it releases the object’s monitor
lock. A thread that has acquired an object’s monitor lock can acquire it again as many times as it wants. However, it
must release the object’s monitor lock as many times as it had acquired it in order for another thread to acquire the
same object’s monitor lock. Let’s consider the following code for a MultiLocks class:

public class MultiLocks {
 public synchronized void method_1() {
 // some statements go here

 this.method_2();

 // some statements go here
 }

 public synchronized void method_2() {
 // some statements go here
 }

 public static synchronized void method_3() {
 // some statements go here

 MultiLocks.method_4();

 // some statements go here
 }

 public static synchronized void method_4() {
 // some statements go here
 }
}

The MultiLocks class has four methods and all of them are synchronized. Two of them are instance methods,
which are synchronized using the reference of the object on which the method call will be made. Two of them are
class methods, which are synchronized using the reference of the class object of the MultiLocks class. If a thread
wants to execute method_1() or method_2(), it must first acquire the monitor lock of the object on which the method
is called. You are calling method_2() from inside the method method_1(). Since a thread that is executing method_1()
must already have acquired the object’s monitor lock and a call to method_2() requires the acquisition of the same
lock, that thread will reacquire the same object’s monitor lock automatically when it executes method_2() from inside
method_1() without competing with other threads to acquire the object’s monitor lock. Therefore, when a thread

Chapter 6 ■ threads

191

executes method_2() from inside method_1(), it will have acquired the object’s monitor lock twice. When it exits
method_2(), it will release the lock once; when it exits method_1(), it will release the lock the second time; and then
the object’s monitor lock will be available for other threads for acquisition. The same argument applies to the call to
method_4() from inside method_3() except that, in this case, the MultiLocks class object’s monitor lock is involved in
the synchronization. Consider calling method_3() from method_1(), like so:

public class MultiLocks {
 public synchronized void method_1() {
 // some statements go here

 this.method_2();
 MultiLocks.method_3();

 // some statements go here
 }
 // rest of the code remains the same as shown before
}

Suppose you call method_1(), like so:

MultiLocks ml = new MultiLocks();
ml.method_1();

When ml.method_1() is executed, the executing thread must acquire the monitor lock of the object ml. However,
the executing thread must acquire the monitor lock of the MultiLocks.class object to execute the MultiLocks.
method_3() method. Note that ml and MultiLocks.class are two different objects. The thread that wants to execute
the MultiLocks.method_3() method from the method_1() method must possess both objects’ monitor locks at the
same time.

You can apply the same arguments to work with synchronized blocks. For example, you can have a snippet of
code like

synchronized (objectReference) {
 // trying to synchronize again on the same object is ok
 synchronized(objectReference) {
 // some statements go here
 }
}

It is time to take a deeper look into the workings of threads synchronization using an object’s monitor. Figure 6-6
depicts how multiple threads can use an object’s monitor.

Chapter 6 ■ threads

192

I will use a doctor-patients analogy while discussing threads synchronization. Suppose a doctor has a clinic to
treat patients. We know that it is very important to allow only one patient access to the doctor at a time. Otherwise,
the doctor may mix up one patient’s symptoms with another patient’s symptom; a patient with fever may get a
prescription for headache! Therefore, we will assume that only one patient can have access to the doctor at any
point in time. It is the same assumption that only one thread (patient) can have access to an object’s monitor
(doctor) at a time.

Any patient who wants an access to the doctor must sign in and wait in the waiting room. Similarly, each object
monitor has an entry set (waiting room for newcomers) and any thread that wants to acquire the object’s monitor lock
must enter the entry set first. If the patient signs in, he may get access to the doctor immediately, if the doctor is not
treating a patient and there were no patients waiting for his turn in the waiting room. Similarly, if the entry set of an
object’s monitor is empty and there is no other thread that possesses the object’s monitor lock, the thread entering the
entry set acquires the object’s monitor lock immediately. However, if there were patients waiting in the waiting room
or one being treated by the doctor, the patient who signs in is blocked and he must wait for the doctor to become
available again. Similarly, if a thread enters the entry set, and other threads are already blocked in the entry set, or
another thread already possesses the object’s monitor lock, the thread that just signed in is said to be blocked and
must wait in the entry set.

A thread entering the entry set is shown by the arrow labelled Enter. A thread itself is shown in the figure using a
circle. A circle with the text B shows a thread that is blocked in the entry set. A circle with the text R shows a thread that
has acquired the object’s monitor.

What happens to the threads that are blocked in the entry set? When do they get a chance to acquire the object’s
monitor? You can think about the patients blocked in the waiting room and getting their turn to be treated by the
doctor. Many factors decide which patient will be treated next. First, the patient being treated must free the doctor
before another patient can have access to the doctor. In Java, the thread that has the ownership of the object’s monitor

R

B

B

B

B

W

W

W

Entry set

Wait set Object’s monitor

Release and exit

Enter

Acquire

Acquire

Release and wait

B

R

W

A blocked thread

A running thread (owns the object’s monitor)

A waiting thread

Figure 6-6. Multiple threads using an object’s monitor

Chapter 6 ■ threads

193

must release the object’s monitor before any threads that are blocked in the entry set can have the ownership of the
object’s monitor. A patient may free the doctor for one of two reasons:

The patient is done with his treatment and he is ready to go home. This is a straightforward •	
case of a patient freeing the doctor after his treatment is over.

A patient is in the middle of his treatment. However, he must wait for some time in order for •	
the doctor to resume his treatment. Let’s assume that the clinic has a special waiting room
(separate from the one where patients who just signed in wait) for those patients who are in
the middle of their treatment. This case needs some explanation. Let’s say that the doctor is an
eye specialist and he has some patients in his clinic. The patient who is being treated needs an
eye examination for which his pupils must be dilated first. It takes about 30 minutes after the
patient receives eye drops for full pupil dilation, which is required for the examination. Should
the doctor be waiting for 30 minutes for the patient’s pupils to dilate? Should this patient release
the doctor for 30 minutes and let other patient have access to the doctor? You would agree that
if doctor’s time can be used to treat other patients while this patient’s pupils are being dilated, it
is fine for this patient to release the doctor. What should happen when once this patient’s pupils
are dilated, however, and the doctor is still busy treating another patient? The doctor cannot
leave any patient in the middle of treatment. Therefore, the patient who released the doctor and
waited for some condition to be true (here dilation process to complete) must wait until doctor
is free again. I will have more explanations on this issue later in this chapter and I will try to
correlate this situation with threads and the object’s monitor lock.

I must discuss another issue in the context of the doctor-patients example before I can compare this with
monitor-threads case. When the doctor is free and only one patient is waiting to get access to him, there is no
problem. The sole patient waiting for the doctor will get access to him immediately. However, what happens when the
doctor becomes available and there is more than one patient waiting to get access to him? Which one of the waiting
patients should get access to the doctor first? Should it be the patient who came first (First In, First Out or FIFO)?
Should it be the patient who came in last (Last In, First Out or LIFO)? Should it be the patient who needs the least
(or the most) amount of time for his treatment? Should it be the patient who is in the most serious condition?
The answer is that it depends on the policy followed by the clinic management.

Similar to a patient in the doctor-patients example, a thread can also release an object’s monitor lock for
two reasons:

At this time, the thread has completed the work for which it had acquired the object’s •	
monitor lock. The arrow “Release and exit” indicates this scenario in the diagram. When
a thread simply exits a synchronized method/block, it releases the object’s monitor lock it
had acquired.

The thread is in the middle of a task and it needs to wait for some condition to be true to •	
complete its remaining task. Let’s consider the producer/consumer problem. Suppose the
producer acquires the buffer object’s monitor lock and wants to write some data into the
buffer. However, it finds that the buffer is full and the consumer must consume the data and
make the buffer empty before it can write to it. In this case, the producer must release the
buffer object’s monitor lock and wait until the consumer acquires the lock and empties the
buffer. The same logic applies for the consumer when it acquires the buffer’s monitor lock
and finds that buffer is empty. At that time, the consumer must release the lock and wait until
the producer produces some data. This kind of temporarily releasing of the object’s monitor
lock and waiting for some condition to occur is shown in the diagram as the “Release and
wait” arrow. An object can have multiple threads that can be in “Release and wait” state at the
same time. All threads that have released the object’s monitor lock and are waiting for some
conditions to occur are put in a set called a wait set.

Chapter 6 ■ threads

194

How is a thread placed in the wait set? Note that a thread can be placed in the wait set of an object monitor only
if it once acquired the object’s monitor lock. Once a thread has acquired the object’s monitor lock, it must call the
wait() method of the object in order to place itself into the wait set. This means a thread must always call the wait()
method from inside a synchronized method or a block. The wait() method is defined in the java.lang.Object class
and it is declared final; that is, no other class in Java can override this method. You must consider the following two
rules before you call the wait() method of an object.

Rule #1

The call to the wait() method must be placed inside a synchronized method (static or non-static) or a
synchronized block.

Rule #2

The wait() method must be called on the object whose monitor the current thread has acquired. It throws a
java.lang.InterruptedException. The code that calls this method must handle this exception. The wait() method
throws an IllegalMonitorStateException when the current thread is not the owner of the object’s monitor. The
following snippet of code does not place the wait() method call inside a try-catch to keep the code simple and readable.
For example, inside a synchronized non-static method, the call to the wait() method may look like the following:

public class WaitMethodCall {
 // Object that is used to synchronize a block
 private Object objectRef = new Object();

 public synchronized void someMethod_1() {
 // The thread running here has already acquired the monitor lock on
 // the object represented by the reference this because it is a
 // synchronized and non-static method

 // other statements go here

 while (some condition is true) {
 // It is ok to call the wait() method on this, because the
 // current thread possesses monitor lock on this
 this.wait();
 }
 // other statements go here
 }

 public static synchronized void someMethod_2() {
 // The thread executing here has already acquired the monitor lock on
 // the class object represented by the WaitMethodCall.class reference
 // because it is a synchronized and static method

 while (some condition is true) {
 // It is ok to call the wait() method on WaitMethodCall.class
 // because the current thread possesses monitor lock on
 // WaitMethodCall.class object
 WaitMethodCall.class.wait();
 }
 // other statements go here
 }

Chapter 6 ■ threads

195

 public void someMethod_3() {
 // other statements go here

 synchronized(objectRef) {
 // Current thread possesses monitor lock of objectRef

 while (some condition is true) {
 // It is ok to call the wait() method on objectRef because
 // the current thread possesses monitor lock on objectRef
 objectRef.wait();
 }
 }
 // other statements go here
 }
}

Note that objectRef is an instance variable and it is of the type java.lang.Object. Its only use is to synchronize
threads’ access to a block inside the someMethod_3() method. Since it is declared an instance variable, all threads
calling someMethod_3() will use its monitor to execute the synchronized block. A common mistake made by
beginners is to declare objectRef as a local variable inside a method and use it to in a synchronized block. The
following snippet of code shows such a mistake:

public void wrongSynchronizationMethod {
 // This objectRef is created every time a thread calls this method
 Object objectRef = new Object();

 // It is a blunder to use objectRef for synchronization below
 synchronized(objectRef) {
 // In fact, this block works as if there is no synchronization, because every
 // thread creates a new objectRef and acquires its monitor lock immediately
 }
}

With the above snippet of code in mind, you must use an object reference that is common to all threads to
synchronize access to a block.

Let’s get back to the question of which patient will get access to the doctor when he becomes available again. Will
it be a patient from the waiting room who is waiting after signing in or a patient from another waiting room who was
waiting in the middle of his treatment? Before you answer this question, let’s make it clear that there is a difference
between the patients in the waiting room who are waiting after signing in and the patients waiting for some condition
(e.g. dilation to complete) to occur in another waiting room. After signing in, patients wait on the availability of the
doctor, whereas patients in the middle of their treatments wait on a particular condition to occur. For patients in
the second category, a particular condition must hold before they can seek access to the doctor, whereas patients in
the first category are ready to grab access to the doctor as soon as possible. Therefore, someone must notify a patient
in the second category that a particular condition has occurred and it is time for him to seek access to the doctor
again to continue his treatment. Let’s assume that this notification must come from a patient being currently treated
by the doctor. That is, the patient who currently has access to the doctor notifies the patients waiting in the middle of
their treatments to get ready to gain access to the doctor again. Note that it is just a notification that some condition
has occurred and it is delivered only to the patients waiting in the middle of their treatments. Whether the patient
in the middle of his treatment will get access to the doctor right after the current patient is done with the doctor is
not guaranteed. It only guarantees that the condition on which a patient was waiting holds at the time of notification
and the waiting patient may try to get access to the doctor to continue his treatment. Let’s correlate this example to
monitor-threads example.

Chapter 6 ■ threads

196

The threads in the entry set are blocked and they are ready to grab access to the monitor as soon as possible.
The threads in the wait set are waiting for some condition to occur. A thread that has ownership of the monitor must
notify the threads waiting in the wait set about the fulfillment of the conditions on which they are waiting. In Java, the
notification is made by calling the notify() and notifyAll()methods of the java.lang.Object class. Like the wait()
method, the notify()and notifyAll() methods are also declared final. Like the wait() method, these two methods
must be called by a thread using an object whose monitor has already been acquired by the thread. If a thread calls
these methods on an object before acquiring the object’s monitor, a java.lang.IllegalMonitorStateException is
thrown. The call to the notify() method wakes up one thread from the wait set, whereas the call to the notifyAll()
method wakes up all threads in the wait set. In case of the notify() method call, the thread that is woken up is chosen
arbitrarily. Note that when a thread calls the notify() or notifyAll() method, it still holds the lock on the object’s
monitor. Threads in the wait set are only woken up by the notify() or notifyAll() call. They do not acquire the
object’s monitor lock immediately. When the thread that called the notify() or notifyAll() method releases the
object’s monitor lock by “Release and exit” or “Release and wait,” the woken up threads in the wait set competes with
the threads in the entry set to acquire the object’s monitor again. Therefore, a call to the notify() and notifyAll()
serves only as a wake-up call for threads in the wait set and it does not guarantee access to the object’s monitor.

Tip ■ there is no way to wake up a specific thread in the wait set. the call to notify() chooses a thread
arbitrarily, whereas the call to notifyAll() wakes up all threads. Use notifyAll() when you are in doubt about
which method to use.

The following snippet of code shows a pseudo code for using the notifyAll() method along with the wait()
method. You may observe that the call to the wait() and notify() methods are made on the same object,
because if objectRef.wait() puts a thread in the wait set of the objectRef object, the objectRef.notify() or
objectRef.notifyAll() method will wake that thread from the wait set of the objectRef object.

public class WaitAndNotifyMethodCall {
 private Object objectRef = new Object();

 public synchronized void someMethod_1() {
 while (some condition is true) {
 this.wait();
 }

 if (some other condition is true) {
 // Notify all waiting threads
 this.notifyAll();
 }
 }

 public static synchronized void someMethod_2() {
 while (some condition is true) {
 WaitAndNotifyMethodCall.class.wait();
 }

 if (some other condition is true) {
 // Notify all waiting threads
 WaitAndNotifyMethodCall.class.notifyAll();
 }
 }

Chapter 6 ■ threads

197

 public void someMethod_3() {
 synchronized(objectRef) {
 while (some condition is true) {
 objectRef.wait();
 }

 if (some other condition is true) {
 // Notify all waiting threads
 objectRef.notifyAll();
 }
 }
 }
}

Once a thread is woken up in the wait set, it has to compete with the threads in the entry set to acquire the monitor
lock of the object. After a thread is woken up in the wait set and acquires the object’s monitor lock, it has choices: to do
some work and release the lock by invoking the wait() method (release and wait) again, or release the lock by exiting
the synchronized section (release and exit). One important point to remember about the call to the wait() method is
that, typically, a call to the wait() method is placed inside a loop. Here is the reason why it is necessary to do so. A thread
looks for a condition to hold. It waits by calling the wait() method and placing itself in the wait set if that condition does
not hold. The thread wakes up when it is notified by another thread, which calls the notify() or notifyAll() method.
When the thread that woke up acquires the lock, the condition that held at the time of notification may not still hold.
Therefore, it is necessary to check for the condition again, when the thread wakes up and acquires the lock, to make
sure the condition it was looking for is true, and it can continue its work. For example, consider the producer/consumer
problem. Suppose there is one producer and many consumers. Suppose a consumer calls the wait() method as

if (buffer is empty) {
 buffer.wait();
}

buffer.consume();

Suppose the buffer is empty and all consumers are waiting in the wait set. The producer produces some data and
it calls the buffer.notifyAll() method to wake up all consumer threads in the wait set. All consumer threads wake
up; however, only one will get a chance to acquire the monitor lock next. The first one acquires the lock and executes
the buffer.consume() method to empty the buffer. When the next consumer acquires the monitor lock, it will also
execute the buffer.consume() statement. However, the consumer that woke up and acquired the lock before this one
had already emptied the buffer. The logical mistake in the above snippet of code is that the call to the wait() method
is placed inside an if statement instead of inside a loop. That is, after a thread wakes up, it is not checking if the buffer
contains some data or not, before trying to consume the data. The corrected snippet of code is the following:

while (buffer is empty) {
 buffer.wait();
}

buffer.consume();

Chapter 6 ■ threads

198

I will answer one more question before you can see this big discussion about thread synchronization in action.
The question is, “Which thread gets a chance to acquire the object’s monitor lock when there are some blocked
threads in the entry set and some woken up threads in the wait set?” Note that the threads that are in the wait set do
not compete for the object’s monitor until they are woken up by the notify() or notifyAll() call. The answer to this
question is that it depends on the scheduler’s algorithm of the operating system.

Listing 6-5 has the code for the BalanceUpdateSynchronized class, which is a modified version of the
BalanceUpdate class listed in Listing 6-4. The only difference between the two classes is the use of the keyword
synchronized to declare the updateBalance() and monitorBalance() methods in the new class, so only one
thread can enter one of the methods at a time. When you run the new class, you will not see any output because the
monitorBalance() method will never see the value of the balance variable other than 100.

Listing 6-5. Synchronized Balance Update

// BalanceUpdateSynchronized.java
package com.jdojo.threads;

public class BalanceUpdateSynchronized {
 // Initialize balance to 100
 private static int balance = 100;

 public static void main(String[] args) {
 startBalanceUpdateThread(); // Thread to update the balance value
 startBalanceMonitorThread(); // Thread to monitor the balance value
 }

 public static synchronized void updateBalance() {
 // Add 10 to balance and subtract 10 from balance
 balance = balance + 10;
 balance = balance - 10;
 }

 public static synchronized void monitorBalance() {
 int b = balance;
 if (b != 100) {
 System.out.println("Balance changed: " + b);
 System.exit(1); // Exit the program
 }
 }

 public static void startBalanceUpdateThread() {
 // Start a new thread that calls the updateBalance() method in an infinite loop
 Thread t = new Thread(() -> {
 while (true) {
 updateBalance();
 }
 });
 t.start();
 }

Chapter 6 ■ threads

199

 public static void startBalanceMonitorThread() {
 // Start a thread that monitors the balance value
 Thread t = new Thread(() -> {
 while (true) {
 monitorBalance();
 }
 });
 t.start();
 }
}

I will show examples of using the wait() and notify() methods in the next section, which discusses the
producer/consumer problem.

The wait() method in the java.lang.Object class is overloaded and it has three versions:

•	 wait(): The thread waits in the object’s wait set until another thread calls the notify() or
notifyAll() method on the same object.

•	 wait(long timeinMillis): The thread waits in the object’s wait set until another thread
calls the notify() or notifyAll() method on the same object or the specified amount of
timeinMillis time has elapsed.

•	 wait(long timeinMillis, long timeinNanos): This version lets you specify time in
milliseconds and nanoseconds.

The Producer/Consumer Synchronization Problem
The producer/consumer is a typical thread synchronization problem that uses the wait() and notify() methods.
I will keep it simple. The problem statement goes like this:

There are four classes: Buffer, Producer, Consumer, and ProducerConsumerTest. An object of the Buffer
class will have an integer data element that will be produced by the producer and consumed by
the consumer. Therefore, in this example, a Buffer object can hold only one integer at a point in
time. Your goal is to synchronize the access to the buffer, so the Producer produces a new data
element only when the Buffer is empty and the Consumer consumes the buffer’s data only when it is
available. The ProducerConsumerTest class is used to test the program.

Listing 6-6, Listing 6-7, Listing 6-8, and Listing 6-9 contain the code for the four classes.

Listing 6-6. A Buffer Class for Producer/Consumer Synchronization

// Buffer.java
package com.jdojo.threads;

public class Buffer {
 private int data;
 private boolean empty;

 public Buffer() {
 this.empty = true;
 }

Chapter 6 ■ threads

200

 public synchronized void produce(int newData) {
 // Wait until the buffer is empty
 while(!this.empty) {
 try {
 this.wait();
 }
 catch(InterruptedException e) {
 e.printStackTrace();
 }
 }

 // Store the new data produced by the producer
 this.data = newData;

 // Set the empty flag to false, so the consumer may consume the data
 this.empty = false;

 // Notify the waiting consumer in the wait set
 this.notify();

 System.out.println("Produced:" + newData);
 }

 public synchronized int consume() {
 // Wait until the buffer gets some data
 while(this.empty) {
 try {
 this.wait();
 }
 catch(InterruptedException e) {
 e.printStackTrace();
 }
 }

 // Set the empty flag to true, so that the producer can store new data
 this.empty = true;

 // Notify the waiting producer in the wait set
 this.notify();

 System.out.println("Consumed:" + data);

 return data;
 }
}

Chapter 6 ■ threads

201

Listing 6-7. A Producer Class for Producer/Consumer Synchronization

// Producer.java
package com.jdojo.threads;

import java.util.Random;

public class Producer extends Thread {
 private Buffer buffer;

 public Producer(Buffer buffer) {
 this.buffer = buffer;
 }

 public void run() {
 Random rand = new Random();
 while(true) {
 // Generate a random integer and store it in the buffer
 int n = rand.nextInt();
 buffer.produce(n);
 }
 }
}

Listing 6-8. A Consumer Class for Producer/Consumer Synchronization

// Consumer.java
package com.jdojo.threads;

public class Consumer extends Thread {
 private Buffer buffer;

 public Consumer(Buffer buffer) {
 this.buffer = buffer;
 }

 public void run() {
 int data;
 while(true) {
 // Consume the data from the buffer. We are not using the consumed
 // data for any other puporse here
 data = buffer.consume();
 }
 }
}

Chapter 6 ■ threads

202

Listing 6-9. A ProducerConsumerTest Class to Test the Producer/Consumer Synchronization

// ProducerConsumerTest.java
package com.jdojo.threads;

public class ProducerConsumerTest {
 public static void main(String[] args) {
 // Create Buffer, Producer and Consumer objects
 Buffer buffer = new Buffer();
 Producer p = new Producer(buffer);
 Consumer c = new Consumer(buffer);

 // Start the producer and consumer threads
 p.start();
 c.start();
 }
}

Produced:1872733184
Consumed:1872733184
...

When you run the ProducerConsumerTest class, you may get a different output. However, your output will look

similar in the sense that two lines printed will be always of the following form, where XXX indicate an integer:

Produced:XXX
Consumed:XXX

In this example, the Buffer class needs some explanation. It has two instance variables:

private int data•	

private boolean empty•	

The producer uses the data instance variable to store the new data. The consumer uses it to read the data. The
empty instance variable is used as an indicator whether the buffer is empty or not. In the constructor, it is initialized to
true indicating that the new buffer is empty.

It has two synchronized methods: produce() and consume(). Both methods are declared synchronized because
the goal is to protect the Buffer object to be used by multiple threads concurrently. If the producer is producing new
data by calling the produce() method, the consumer must wait to consume the data until the producer is done and
vice versa. The producer thread calls the produce() method, passing the newly generated data to it. However, before
the new data is stored in the data instance variable, the producer makes sure that the buffer is empty. If the buffer
is not empty, it calls the this.wait() method to place itself in the wait set of the buffer object until the consumer
notifies it using the this.notify() method inside the consume() method.

Once the producer thread detects that the buffer is empty, it stores the new data in the data instance variable,
sets the empty flag to false, and calls this.notify() to wake up the consumer thread in the wait set to consume the
data. At the end, it also prints a message on the console that data has been produced.

The consume() method of the Buffer class is similar to its counterpart, the produce() method. The only
difference is that the consumer-thread calls it and it performs a logic just opposite to the produce() method. For
example, it checks if buffer is not empty and consumes the data.

Chapter 6 ■ threads

203

The Producer and Consumer classes inherit the Thread class. They override the run() method of the Thread class.
Both of them accept an object of the Buffer class in their constructors to use it in their run() method. The Producer
class generates a random integer in its run() method inside an infinite loop and keeps writing it to the buffer. The
Consumer class keeps consuming data from the buffer in an infinite loop.

The ProducerConsumerTest class creates all three objects (a buffer, a producer, and a consumer) and starts the
producer and consumer threads. Since both classes (Producer and Consumer) use infinite loops inside the run()
method, you will have to terminate the program forcibly, such as by pressing Ctrl + C, if you are running this
program from a Windows command prompt.

Which Thread Is Executing?
The Thread class has some useful static methods; one of them is the method currentThread(). It returns the
reference of the Thread object that calls this method. Consider the following statement:

Thread t = Thread.currentThread();

The statement will assign the reference of the thread object that executes the above statement to the variable t.
Note that a statement in Java can be executed by different threads at different points in time during the execution of
a program. Therefore, t may be assigned the reference of a different Thread object when the statement is executed at
different times in the same program. Listing 6-10 demonstrates the use of the currentThread() method.

Listing 6-10. Using the Thread.currentThread() Method

// CurrentThread.java
package com.jdojo.threads;

public class CurrentThread extends Thread {
 public CurrentThread(String name) {
 super(name);
 }

 @Override
 public void run() {
 Thread t = Thread.currentThread();
 String threadName = t.getName();
 System.out.println("Inside run() method: " + threadName);
 }

 public static void main(String[] args) {
 CurrentThread ct1 = new CurrentThread("First Thread");
 CurrentThread ct2 = new CurrentThread("Second Thread");
 ct1.start();
 ct2.start();

 // Let’s see which thread is executing the following statement
 Thread t = Thread.currentThread();
 String threadName = t.getName();
 System.out.println("Inside main() method: " + threadName);
 }
}

Chapter 6 ■ threads

204

(Your output may be in a different order.)
Inside main() method: main
Inside run() method: First Thread
Inside run() method: Second Thread

Two different threads call the Thread.currentThread() method inside the run() method of the CurrentThread

class. The method returns the reference of the thread executing the call. The program simply prints the name of the
thread that is executing. It is interesting to note that when you called the Thread.currentThread() method inside the
main() method, a thread named main executed the code. When you run a class, the JVM starts a thread named main,
which is responsible for executing the main() method.

Letting a Thread Sleep
The Thread class contains a static sleep() method, which makes a thread sleep for a specified duration. It accepts
a timeout as an argument. You can specify the timeout in milliseconds, or milliseconds and nanoseconds. The thread
that executes this method sleeps for the specified amount of time. A sleeping thread is not scheduled by the operating
system scheduler to receive the CPU time. If a thread has the ownership of an object’s monitor lock before it goes to
sleep, it continues to hold those monitor locks. The sleep() method throws a java.lang.InterruptedException and
your code should be ready to handle it. Listing 6-11 demonstrates the use of the Thread.sleep() method.

Listing 6-11. A Sleeping Thread

// LetMeSleep.java
package com.jdojo.threads;

public class LetMeSleep {
 public static void main(String[] args) {
 try {
 System.out.println("I am going to sleep for 5 seconds.");
 Thread.sleep(5000); // The "main" thread will sleep
 System.out.println("I woke up.");
 }
 catch(InterruptedException e) {
 System.out.println("Someone interrupted me in my sleep.");
 }
 System.out.println("I am done.");
 }
}

I am going to sleep for 5 seconds.
I woke up.
I am done.

Chapter 6 ■ threads

205

Tip ■ the TimeUnit enum in the java.util.concurrent package represents a measurement of time in various units
such as milliseconds, seconds, minutes, hours, days, etc. It has some convenience methods. One of them is the sleep()
method. the Thread.sleep() method accepts time in milliseconds. If you want a thread to sleep for five seconds, you
need to call this method as Thread.sleep(5000) by converting the seconds into milliseconds. You can use the sleep()
method of TimeUnit instead to avoid the time duration conversion, like so:

 TimeUnit.SECONDS.sleep(5); // Same as Thread.sleep(5000);

I will Join You in Heaven
I can rephrase this section heading as “I will wait until you die.” That’s right. A thread can wait for another thread to
die (or terminate). Suppose there are two threads, t1 and t2. If the thread t1 executes t2.join(), thread t1 starts
waiting until thread t2 is terminated. In other words, the call t2.join() blocks until t2 terminates. Using the join()
method in a program is useful if one of the threads cannot proceed until another thread has finished executing.

Listing 6-12 has an example where you want to print a message on the standard output when the program has
finished executing. The message to print is “We are done.”

Listing 6-12. An Incorrect Way of Waiting for a Thread to Terminate

// JoinWrong.java
package com.jdojo.threads;

public class JoinWrong {
 public static void main(String[] args) {
 Thread t1 = new Thread(JoinWrong::print);
 t1.start();
 System.out.println("We are done.");
 }

 public static void print() {
 for (int i = 1; i <= 5; i++) {
 try {
 System.out.println("Counter: " + i);
 Thread.sleep(1000);
 }
 catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }
}

We are done.
Counter: 1
Counter: 2
Counter: 3
Counter: 4
Counter: 5

Chapter 6 ■ threads

206

In the main() method, a thread is created and started. The thread prints integers from 1 to 5. It sleeps for one
second after printing an integer. In the end, the main() method prints a message. It seems that this program should
print the numbers from 1 to 5, followed by your last message. However, if you look at the output, it is in the reverse
order. What is wrong with this program?

The JVM starts a new thread called main that is responsible for executing the main() method of the class that you
run. In your case, the main() method of the JoinWrong class is executed by the main thread. This thread will execute
the following statements:

Thread t1 = new Thread(JoinWrong::print);
t1.start();
System.out.println("We are done.");

When the t1.start() method call returns, you have one more thread running in your program (thread t1) in
addition to the main thread. The t1 thread is responsible for printing the integers from 1 to 5, whereas the main thread
is responsible for printing the message “We are done.” Since there are two threads responsible for two different tasks, it
is not guaranteed which task will finish first. What is the solution? You must make your main thread wait on the thread
t1 to terminate. This can be achieved by calling the t1.join() method inside the main() method.

Listing 6-13 lists the correct version of Listing 6-12 by using the t1.join() method call, before printing the final
message. When the main thread executes the join() method call, it waits until the t1 thread is terminated. The join()
method of the Thread class throws a java.lang.InterruptedException, and your code should be ready to handle it.

Listing 6-13. A Correct Way of Waiting for a Thread to Terminate

// JoinRight.java
package com.jdojo.threads;

public class JoinRight {
 public static void main(String[] args) {
 Thread t1 = new Thread(JoinRight::print);
 t1.start();

 try {
 t1.join(); // "main" thread waits until t1 is terminated
 }
 catch (InterruptedException e) {
 e.printStackTrace();
 }

 System.out.println("We are done.");
 }

 public static void print() {
 for (int i = 1; i <= 5; i++) {
 try {
 System.out.println("Counter: " + i);
 Thread.sleep(1000);
 }
 catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }
}

Chapter 6 ■ threads

207

Counter: 1
Counter: 2
Counter: 3
Counter: 4
Counter: 5
We are done.

The join() method of the Thread class is overloaded. Its other two versions accept a timeout argument. If you

use the join() method with a timeout, the caller thread will wait until the thread on which it is called is terminated or
the timeout has elapsed. If you replace the t1.join() statement in the JoinRight class with t1.join(1000), you will
find that the output is not in the same order because the main thread will wait only for a second for the t1 thread to
terminate before it prints the final message.

Can a thread join multiple threads? The answer is yes. A thread can join multiple threads like so:

t1.join(); // Join t1
t2.join(); // Join t2
t3.join(); // Join t3

You should call the join() method of a thread after it has been started. If you call the join() method on a thread
that has not been started, it returns immediately. Similarly, if you invoke the join() method on a thread that is
already terminated, it returns immediately.

Can a thread join itself? The answer is yes and no. Technically, it is allowed for a thread to join itself. However,
a thread should not join itself in most circumstances. In such a case, a thread waits to terminate itself. In other words,
the thread waits forever.

// "Bad" call (not if you know what you are doing) to join. It waits forever
// until another thread interrupts it.
Thread.currentThread().join();

If you write the statement, make sure that your program interrupts the waiting thread using some other threads.
In such a case, the waiting thread will return from the join() method call by throwing an InterruptedException.

Be Considerate to Others and Yield
A thread may voluntarily give up the CPU by calling the static yield() method of the Thread class. The call to the
yield() method is a hint to the scheduler that it may pause the running thread and give the CPU to other threads.
A thread may want to call this method only if it executes in a long loop without waiting or blocking. If a thread
frequently waits or blocks, the yield() method call is not very useful because this thread does not monopolize the
CPU and other threads will get the CPU time when this thread is blocked or waiting. It is advisable not to depend on
the yield() method because it is just a hint to the scheduler. It is not guaranteed to give a consistent result across
different platforms. A thread that calls the yield() method continues to hold the monitor locks. Note that there is no
guarantee as to when the thread that yields will get the CPU time again. You may use it like so:

// The run() method of a thread class
public void run() {
 while(true) {
 // do some processing here...
 Thread.yield(); // Let’s yield to other threads
 }
}

Chapter 6 ■ threads

208

Life Cycle of a Thread
A thread is always in one of the following six states:

New•	

Runnable•	

Blocked•	

Waiting•	

Timed-waiting•	

Terminated•	

All these states of a thread are JVM states. They do not represent the states assigned to a thread by an
operating system.

When a thread is created and its start() method is not yet called, it is in the new state.

Thread t = new SomeThreadClass(); // t is in the new state

A thread that is ready to run or running is in the runnable state. In other words, a thread that is eligible for getting
the CPU time is in a runnable state.

Tip ■ the JVM combines two Os-level thread states: ready-to-run and running into a state called the runnable state.
a thread in the ready-to-run Os state means it is waiting for its turn to get the CpU time. a thread in the running Os state
means it is running on the CpU.

A thread is said to be in a blocked state if it was trying to enter (or re-enter) a synchronized method or block but
the monitor is being used by another thread. A thread in the entry set that is waiting to acquire a monitor lock is in the
blocked state. A thread in the wait set that is waiting to reacquire the monitor lock after it has been woken up is also in
a blocked state.

A thread may place itself in a waiting state by calling one of the methods listed in Table 6-2. A thread may
place itself in a timed-waiting state by calling one of the methods listed in Table 6-3. I will discuss the usage of the
parkNanos() and parkUntil() methods later in this chapter.

Table 6-2. Methods That Place a Thread in Waiting State

Method Description

wait() This is the wait() method of the Object class, which a thread may call if it wants to wait for a specific
condition to hold. Recall that a thread must own the monitor’s lock of an object to call the wait()
method on that object. Another thread must call the notify() or notifyAll() method on the same
object in order for the waiting thread to transition to the runnable state.

join() This is the join() method of the Thread class. A thread that calls this method wants to wait until the
thread on which this method is called terminates.

park() This is the park() method of the LockSupport class, which is in the java.util.concurrent.locks
package. A thread that calls this method may wait until a permit is available by calling the unpark()
method on a thread. I will cover the LockSupport class later in this chapter.

Chapter 6 ■ threads

209

A thread that has completed its execution is said to be in the terminated state. A thread is terminated when it
exits its run() method or its stop() method is called. A terminated thread cannot transition to any other state. You
can use the isAlive() method of a thread after it has been started to know if it is alive or terminated.

You can use the getState() method of the Thread class to get the state of a thread at any time. This method
returns one of the constants of the Thread.State enum type. Listing 6-14 and Listing 6-15 demonstrate the transition
of a thread from one state to another. The output of Listing 6-15 shows some of the states the thread transitions to
during its life cycle.

Listing 6-14. A ThreadState Class

// ThreadState.java
package com.jdojo.threads;

public class ThreadState extends Thread {
 private boolean keepRunning = true;
 private boolean wait = false;
 private Object syncObject = null;

 public ThreadState(Object syncObject) {
 this.syncObject = syncObject;
 }

 public void run() {
 while (keepRunning) {
 synchronized (syncObject) {
 if (wait) {
 try {
 syncObject.wait();
 }
 catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }
 }
 }

Table 6-3. Methods That Place a Thread in a Timed-Waiting State

Method Description

sleep() This method is in the Thread class.

wait (long millis)
wait(long millis, int nanos)

These methods are in the Object class.

join(long millis)
join(long millis, int nanos)

These methods are in the Thread class.

parkNanos (long nanos)
parkNanos (Object blocker, long nanos)

These methods are in the LockSupport class, which is in the
java.util.concurrent.locks package.

parkUntil (long deadline)
parkUntil (Object blocker, long nanos)

These methods are in the LockSupport class, which is in the
java.util.concurrent.locks package.

Chapter 6 ■ threads

210

 public void setKeepRunning(boolean keepRunning) {
 this.keepRunning = keepRunning;
 }

 public void setWait(boolean wait) {
 this.wait = wait;
 }
}

Listing 6-15. A ThreadStateTest Class to Demonstrate the States of a Thread

// ThreadStateTest.java
package com.jdojo.threads;

public class ThreadStateTest {
 public static void main(String[] args) {
 Object syncObject = new Object();
 ThreadState ts = new ThreadState(syncObject);
 System.out.println("Before start()-ts.isAlive():" + ts.isAlive());
 System.out.println("#1:" + ts.getState());

 // Start the thread
 ts.start();
 System.out.println("After start()-ts.isAlive():" + ts.isAlive());
 System.out.println("#2:" + ts.getState());
 ts.setWait(true);

 // Make the current thread sleep, so ts thread starts waiting
 sleepNow(100);

 synchronized (syncObject) {
 System.out.println("#3:" + ts.getState());
 ts.setWait(false);

 // Wake up the waiting thread
 syncObject.notifyAll();
 }

 // Make the current thread sleep, so ts thread wakes up
 sleepNow(2000);
 System.out.println("#4:" + ts.getState());
 ts.setKeepRunning(false);

 // Make the current thread sleep, so the ts thread will wake up
 sleepNow(2000);
 System.out.println("#5:" + ts.getState());
 System.out.println("At the end. ts.isAlive():" + ts.isAlive());
 }

Chapter 6 ■ threads

211

 public static void sleepNow(long millis) {
 try {
 Thread.currentThread().sleep(millis);
 }
 catch (InterruptedException e) {
 }
 }
}

Before start()-ts.isAlive():false
#1:NEW
After start()-ts.isAlive():true
#2:RUNNABLE
#3:WAITING
#4:RUNNABLE
#5:TERMINATED
At the end. ts.isAlive():false

Priority of a Thread
All threads have a priority. The priority is indicated by an integer between 1 and 10. A thread with the priority
of 1 is said to have the lowest priority. A thread with the priority of 10 is said to have the highest priority. There are
three constants defined in the Thread class to represent three different thread priorities as listed in Table 6-4.

Table 6-4. Thread's Priority Constants Defined in the Thread Class

Thread Priority Constants Integer Value

MIN_PRIORITY 1

NORM_PRIORITY 5

MAX_PRIORITY 10

The priority of a thread is a hint to the scheduler that indicates the importance (or the urgency) with which it
should schedule the thread. The higher priority of a thread indicates that the thread is of higher importance and the
scheduler should give priority in giving the CPU time to that thread. Note that the priority of a thread is just a hint to
the scheduler; it is up to the scheduler to respect that hint. It is not recommended to depend on the thread priority
for the correctness of a program. For example, if there are ten maximum priority threads and one minimum priority
thread, that does not mean that the scheduler will schedule the minimum priority thread after all ten maximum
priority threads have been scheduled and finished. This scheduling scheme will result in a thread starvation, where a
lower priority thread will have to wait indefinitely or for a long time to get CPU time.

The setPriority() method of the Thread class sets a new priority for the thread. The getPriority() method
returns the current priority for a thread. When a thread is created, its priority is set to the priority of the thread that
creates it.

Listing 6-16 demonstrates how to set and get the priority of a thread. It also demonstrates how a new thread gets
the priority of the thread that creates it. In the example, threads t1 and t2 get the priority of the main thread at the
time they are created.

Chapter 6 ■ threads

212

Listing 6-16. Setting and Getting a Thread’s Priority

// ThreadPriority.java
package com.jdojo.threads;

public class ThreadPriority {
 public static void main(String[] args) {
 // Get the reference of the current thread
 Thread t = Thread.currentThread();
 System.out.println("main Thread Priority:" + t.getPriority());

 // Thread t1 gets the same priority as the main thread at this point
 Thread t1 = new Thread();
 System.out.println("Thread(t1) Priority:" + t1.getPriority());

 t.setPriority(Thread.MAX_PRIORITY);
 System.out.println("main Thread Priority:" + t.getPriority());

 // Thread t2 gets the same priority as main thread at this point, which is
 // Thread.MAX_PRIORITY (10)
 Thread t2 = new Thread();
 System.out.println("Thread(t2) Priority:" + t2.getPriority());

 // Change thread t2 priority to minimum
 t2.setPriority(Thread.MIN_PRIORITY);
 System.out.println("Thread(t2) Priority:" + t2.getPriority());
 }
}

main Thread Priority:5
Thread(t1) Priority:5
main Thread Priority:10
Thread(t2) Priority:10
Thread(t2) Priority:1

Is It a Demon or a Daemon?
A thread can be a daemon thread or a user thread. The word “daemon” is pronounced the same as “demon.” However,
the word daemon in a thread’s context has nothing to do with a demon!

A daemon thread is a kind of a service provider thread, whereas a user thread (or non-daemon thread) is a thread
that uses the services of daemon threads. A service provider should not exist if there is no service consumer. The JVM
applies this logic. When it detects that all threads in an application are only daemon threads, it exits the application.
Note that if there are only daemon threads in an application, the JVM does not wait for those daemon threads to finish
before exiting the application.

You can make a thread a daemon thread by using the setDaemon() method by passing true as its argument.
You must call the setDaemon() method of a thread before you start the thread. Otherwise, an java.lang.
IllegalThreadStateException is thrown. You can use the isDaemon() method to check if a thread is a daemon
thread.

Chapter 6 ■ threads

213

Tip ■ the JVM starts a garbage collector thread to collect all unused object’s memory as a daemon thread.

When a thread is created, its daemon property is the same as the thread that creates it. In other words, a new
thread inherits the daemon property of its creator thread.

Listing 6-17 creates a thread and sets the thread as a daemon thread. The thread prints an integer and sleeps for
some time in an infinite loop. At the end of the main() method, the program prints a message to the standard output
stating that it is exiting the main() method. Since thread t is a daemon thread, the JVM will terminate the application
when the main() method is finished executing. You can see this in the output. The application prints only one integer
from the thread before it exits. You may get a different output when you run this program.

Listing 6-17. A Daemon Thread Example

// DaemonThread.java
package com.jdojo.threads;

public class DaemonThread {
 public static void main(String[] args) {
 Thread t = new Thread(DaemonThread::print);
 t.setDaemon(true);
 t.start();
 System.out.println("Exiting main method");
 }

 public static void print() {
 int counter = 1 ;
 while(true) {
 try {
 System.out.println("Counter:" + counter++);
 Thread.sleep(2000); // sleep for 2 seconds
 }
 catch(InterruptedException e) {
 e.printStackTrace();
 }
 }
 }
}

Exiting main method
Counter:1

Listing 6-18 is the same program as Listing 6-17, except that it sets the thread as a non-daemon thread. Since

this program has a non-daemon (or a user) thread, the JVM will keep running the application, even after the main()
method finishes. You will have to stop this application forcibly because the thread runs in an infinite loop.

Chapter 6 ■ threads

214

Listing 6-18. A Non-Daemon Thread Example

// NonDaemonThread.java
package com.jdojo.threads;

public class NonDaemonThread {
 public static void main(String[] args) {
 Thread t = new Thread(NonDaemonThread::print);

 // t is already a non-daemon thread because the "main" thread that runs
 // the main() method is a non-daemon thread. You can verify it by using
 // t.isDaemon() method. It will return false.
 // Still we will use the following statement to make it clear that we
 // want t to be a non-daemon thread.
 t.setDaemon(false);
 t.start();
 System.out.println("Exiting main method");
 }

 public static void print() {
 int counter = 1;
 while(true) {
 try {
 System.out.println("Counter:" + counter++);
 Thread.sleep(2000); // sleep for 2 seconds
 }
 catch(InterruptedException e) {
 e.printStackTrace();
 }
 }
 }
}

Exiting main method
Counter:1
Counter:2
...

Am I Interrupted?
You can interrupt a thread that is alive by using the interrupt() method. This method invocation on a thread is just
an indication to the thread that some other part of the program is trying to draw its attention. It is up to the thread how
it responds to the interruption. Java implements the interruption mechanism using an interrupted status flag for
every thread.

A thread could be in one of the two states when it is interrupted: running or blocked. If a thread is interrupted
when it is running, its interrupted status is set by the JVM. The running thread can check its interrupted status by
calling the Thread.interrupted() static method, which returns true if the current thread was interrupted. The
call to the Thread.interrupted() method clears the interrupted status of a thread. That is, if you call this method
again on the same thread and if the first call returned true, the subsequent calls will return false, unless the thread is
interrupted after the first call but before the subsequent calls.

Chapter 6 ■ threads

215

Listing 6-19 shows the code that interrupts the main thread and prints the interrupted status of the thread.
Note that the second call to the Thread.interrupted() method returns false, as indicated in the output #3:false.
This example also shows that a thread can interrupt itself. The main thread that is responsible for running the main()
method is interrupting itself in this example.

Listing 6-19. A Simple Example of Interrupting a Thread

// SimpleInterrupt.java
package com.jdojo.threads;

public class SimpleInterrupt {
 public static void main(String[] args) {
 System.out.println("#1:" + Thread.interrupted());

 // Now interrupt the main thread
 Thread.currentThread().interrupt();

 // Check if it has been interrupted
 System.out.println("#2:" + Thread.interrupted());

 // Check again if it has been interrupted
 System.out.println("#3:" + Thread.interrupted());
 }
}

#1:false
#2:true
#3:false

Let’s have another example of the same kind. This time, one thread will interrupt another thread. Listing 6-20

starts a thread that increments a counter until the thread is interrupted. At the end, the thread prints the value of the
counter. The main() method starts the thread; it sleeps for one second to let the counter thread do some work;
it interrupts the thread. Since the thread checks whether it has been interrupted or not before continuing in the
while-loop, it exits the loop once it is interrupted. You may a different output when you run this program.

Listing 6-20. A Thread Interrupting Another Thread

// SimpleInterruptAnotherThread.java
package com.jdojo.threads;

public class SimpleInterruptAnotherThread {
 public static void main(String[] args) {
 Thread t = new Thread(SimpleInterruptAnotherThread::run);
 t.start();

 // Let the main thread sleep for 1 second
 try {
 Thread.currentThread().sleep(1000);
 }
 catch (InterruptedException e) {
 e.printStackTrace();
 }

Chapter 6 ■ threads

216

 // Now interrupt the thread
 t.interrupt();
 }

 public static void run() {
 int counter = 0;

 while (!Thread.interrupted()) {
 counter++;
 }
 System.out.println("Counter:" + counter);
 }
}

Counter:1630140

The Thread class has a non-static isInterrupted() method that can be used to test if a thread has been

interrupted. When you call this method, unlike the interrupted() method, the interrupted status of the
thread is not cleared. Listing 6-21 demonstrates the difference between the two methods: interrupted() and
isInterrupted().

Listing 6-21. Difference Between the interrupted() and isInterrupted() Methods

// SimpleIsInterrupted.java
package com.jdojo.threads;

public class SimpleIsInterrupted {
 public static void main(String[] args) {
 // Check if the main thread is interrupted
 System.out.println("#1:" + Thread.interrupted());

 // Now interrupt the main thread
 Thread mainThread = Thread.currentThread();
 mainThread.interrupt();

 // Check if it has been interrupted
 System.out.println("#2:" + mainThread.isInterrupted());

 // Check if it has been interrupted
 System.out.println("#3:" + mainThread.isInterrupted());

 // Now check if it has been interrupted using the static method
 // which will clear the interrupted status
 System.out.println("#4:" + Thread.interrupted());

 // Now, isInterrupted() should return false, because previous
 // statement Thread.interrupted() has cleared the flag
 System.out.println("#5:" + mainThread.isInterrupted());
 }
}

Chapter 6 ■ threads

217

#1:false
#2:true
#3:true
#4:true
#5:false

You may interrupt a blocked thread. Recall that a thread may block itself by executing one of the sleep(),

wait(), and join() methods. If a thread blocked on these three methods is interrupted, an InterruptedException
is thrown and the interrupted status of the thread is cleared because the thread has already received an exception
to signal the interruption.

Listing 6-22 starts a thread that sleeps for one second and prints a message until it is interrupted. The main
thread sleeps for five seconds, so the sleeping thread gets a chance to sleep and print messages a few times.
When the main thread wakes up, it interrupts the sleeping thread. You may get a different output when you run
the program.

Listing 6-22. Interrupting a Blocked Thread

// BlockedInterrupted.java
package com.jdojo.threads;

public class BlockedInterrupted {
 public static void main(String[] args) {
 Thread t = new Thread(BlockedInterrupted::run);
 t.start();

 // main thread sleeps for 5 seconds
 try {
 Thread.sleep(5000);
 }
 catch (InterruptedException e) {
 e.printStackTrace();
 }

 // Interrupt the sleeping thread
 t.interrupt();
 }

 public static void run() {
 int counter = 1;
 while (true) {
 try {
 Thread.sleep(1000);
 System.out.println("Counter:" + counter++);
 }
 catch (InterruptedException e) {
 System.out.println("I got interrupted!");

Chapter 6 ■ threads

218

 // Terminate the thread by returning
 return;
 }
 }

 }
}

Counter:1
Counter:2
Counter:3
I got interrupted!

If a thread is blocked on an I/O, interrupting a thread does not really do anything if you are using the old I/O API.

However, if you are using the New I/O API, your thread will receive a ClosedByInterruptException, which is declared
in the java.nio.channels package. I will discuss I/O in detail in subsequent chapters.

Threads Work in a Group
A thread is always a member of a thread group. By default, the thread group of a thread is the group of its creator
thread. The JVM creates a thread group called main and a thread in this group called main, which is responsible for
running the main() method of the class at startup. A thread group in a Java program is represented by an object of
the java.lang.ThreadGroup class. The getThreadGroup() method of the Thread class returns the reference to the
ThreadGroup of a thread. Listing 6-23 demonstrates that, by default, a new thread is a member of the thread group of
its creator thread.

Listing 6-23. Determining the Default Thread Group of a Thread

// DefaultThreadGroup.java
package com.jdojo.threads;

public class DefaultThreadGroup {
 public static void main(String[] args) {
 // Get the current thread, which is called "main"
 Thread t1 = Thread.currentThread();

 // Get the thread group of the main thread
 ThreadGroup tg1 = t1.getThreadGroup();

 System.out.println("Current thread's name: " + t1.getName());
 System.out.println("Current thread's group name: " + tg1.getName());

 // Creates a new thread. Its thread group is the same that of the main thread.
 Thread t2 = new Thread("my new thread");

 ThreadGroup tg2 = t2.getThreadGroup();
 System.out.println("New thread's name: " + t2.getName());
 System.out.println("New thread's group name: " + tg2.getName());
 }
}

Chapter 6 ■ threads

219

Current thread's name: main
Current thread's group name: main
New thread's name: my new thread
New thread's group name: main

You can also create a thread group and place a new thread in that thread group. To place a new thread in your

thread group, you must use one of the constructors of the Thread class that accepts a ThreadGroup object as an
argument. The following snippet of code places a new thread in a particular thread group:

// Create a new ThreadGroup
ThreadGroup myGroup = new ThreadGroup("My Thread Group");

// Make the new thread a member of the myGroup thread group
Thread t = new Thread(myGroup, "myThreadName");

Thread groups are arranged in a tree-like structure. A thread group can contain another thread group. The
getParent() method of the ThreadGroup class returns the parent thread group of a thread group. The parent of
the top-level thread group is null.

The activeCount() method of the ThreadGroup class returns an estimate of the number of active threads in the
group. The enumerate() method of the ThreadGroup class can be used to get the threads in a thread group.

A thread group in a Java program can be used to implement a group-based policy that applies to all threads in a
thread group. For example, by calling the interrupt() method of a thread group, you can interrupt all threads in the
thread group.

Volatile Variables
I have discussed the use of the synchronized keyword in previous sections. Two things happen when a thread
executes a synchronized method/block.

The thread must obtain the monitor lock of the object on which the method/block is •	
synchronized.

The thread’s working copy of the shared variables is updated with the values of those variables •	
in the main memory just after the thread gets the lock. The values of the shared variables in
the main memory are updated with thread’s working copy value just before the thread releases
the lock. That is, at the start and at the end of a synchronized method/block, the values of the
shared variables in thread’s working memory and the main memory are synchronized.

What can you do to achieve only the second point without using a synchronized method/block? That is, how
can you keep the values of variables in a thread’s working memory in sync with their values in the main memory?
The answer is the keyword volatile. You can declare a variable volatile like so:

volatile boolean flag = true;

For every read request for a volatile variable, a thread reads the value from the main memory. For every write
request for a volatile variable, a thread writes the value to the main memory. In other words, a thread does not
cache the value of a volatile variable in its working memory. Note that using a volatile variable is useful only
in a multi-threaded environment for variables that are shared among threads. It is faster and cheaper than using a
synchronized block.

Chapter 6 ■ threads

220

You can declare only a class member variable (instance or static fields) as volatile. You cannot declare a local
variable as volatile because a local variable is always private to the thread, which is never shared with other threads.
You cannot declare a volatile variable final because the volatile keyword is used with a variable that changes.

You can use a volatile variable to stop a thread by using the variable’s value as a flag. If the flag is set, the thread
can keep running. If another thread clears the flag, the thread should stop. Since two threads share the flag, you need
to declare it volatile, so that on every read the thread will get its updated value from the main memory.

Listing 6-24 demonstrates the use of a volatile variable. If the keepRunning variable is not declared volatile,
the JVM is free to run the while-loop in the run() method forever, as the initial value of keepRunning is set to true
and a thread can cache this value in its working memory. Since the keepRunning variable is declared volatile, the
JVM will read its value from the main memory every time it is used. When another thread updates the keepRunning
variable’s value to false using the stopThread() method, the next iteration of the while-loop will read its updated
value and stop the loop. Your program may work the same way as in Listing 6-23 even if you do not declare the
keepRunning as volatile. However, according to the JVM specification, this behavior is not guaranteed. If the JVM
specification is implemented correctly, using a volatile variable in this way ensures the correct behavior for
your program.

Listing 6-24. Using a volatile Variable in a Multi-Threaded Program

// VolatileVariable.java
package com.jdojo.threads;

public class VolatileVariable extends Thread {
 private volatile boolean keepRunning = true;

 public void run() {
 System.out.println("Thread started...");

 // keepRunning is volatile. So, for every read, the thread reads its
 // latest value from the main memory
 while (keepRunning) {
 try {
 System.out.println("Going to sleep ...");
 Thread.sleep(1000);
 }
 catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 System.out.println("Thread stopped...");
 }

 public void stopThread() {
 this.keepRunning = false;
 }

 public static void main(String[] args) {
 // Create the thread
 VolatileVariable vv = new VolatileVariable();

 // Start the thread
 vv.start();

Chapter 6 ■ threads

221

 // Let the main thread sleep for 3 seconds
 try {
 Thread.sleep(3000);
 }
 catch (InterruptedException e) {
 e.printStackTrace();
 }

 // Stop the thread
 System.out.println("Going to set the stop flag to true...");
 vv.stopThread();
 }
}

Thread started...
Going to sleep...
Going to sleep...
Going to sleep...
Going to set the stop flag to true...
Thread stopped...

Tip ■ a volatile variable of long and double types is treated atomically for read and write purposes. recall that a
non-volatile variable of long and double types is treated non-atomically. that is, if two threads are writing two different
values, say v1 and v2 to a non-volatile long or double variable, respectively, your program may see a value for that
variable that is neither v1 nor v2. however, if that long or double variable is declared volatile, your program sees the
value v1 or v2 at a given point in time. You cannot make array elements as volatile.

Stopping, Suspending, and Resuming a Thread
The stop(), suspend(), and resume() methods in the Thread class let you stop a thread, suspend a thread, and
resume a suspended thread, respectively. These methods have been deprecated because their use is error-prone.

You can stop a thread by calling the stop() method. When the stop() method of a thread is called, the JVM
throws a java.lang.ThreadDeath error. Because of throwing this error, all monitors locked by the thread being
stopped are unlocked. Monitor locks are used to protect some important shared resources (typically Java objects). If
any of the shared resources protected by the monitors were in inconsistent states when the thread was stopped, other
threads may see that inconsistent state of those resources. This will result in an incorrect behavior of the program.
This is the reason that the stop() method is deprecated; you are advised not to use it in your program.

How can you stop a thread without using its stop() method? You can stop a thread by setting a flag that the
running thread will check regularly. If the flag is set, the thread should stop executing. This way of stopping a thread
was illustrated in Listing 6-24 in the previous section.

You can suspend a thread by calling its suspend() method. To resume a suspended thread, you need to call its
resume() method. However, the suspend() method has been deprecated because it is error-prone and it may cause a
deadlock. Let’s assume that the suspended thread holds the monitor lock of an object. The thread that will resume the
suspended thread is trying to obtain the monitor lock of the same object. This will result in a deadlock. The suspended

Chapter 6 ■ threads

222

thread will remain suspended because there is no one who will resume it, and the thread that will resume it will
remain blocked because the monitor lock it is trying to obtain is held by the suspended thread. This is the reason
that the suspend() method has been deprecated. The resume() method is also deprecated because it is called in
conjunction with the suspend() method. You can use a similar technique to simulate the suspend() and resume()
methods of the Thread class in your program as you did to simulate the stop() method.

Listing 6-25 demonstrates how to simulate the stop(), suspend(), and resume() methods of the Thread class in
your thread.

Listing 6-25. Stopping, Suspending, and Resuming a Thread

// StopSuspendResume.java
package com.jdojo.threads;

public class StopSuspendResume extends Thread {
 private volatile boolean keepRunning = true;
 private boolean suspended = false;

 public synchronized void stopThread() {
 this.keepRunning = false;

 // Notify the thread in case it is suspended when this method
 // is called, so it will wake up and stop.
 this.notify();
 }

 public synchronized void suspendThread() {
 this.suspended = true;
 }

 public synchronized void resumeThread() {
 this.suspended = false;
 this.notify();
 }

 public void run() {
 System.out.println("Thread started...");
 while (keepRunning) {
 try {
 System.out.println("Going to sleep...");
 Thread.sleep(1000);

 // Check for a suspended condition must be made inside a
 // synchronized block to call the wait() method
 synchronized (this) {
 while (suspended) {
 System.out.println("Suspended...");
 this.wait();
 System.out.println("Resumed...");
 }
 }
 }

Chapter 6 ■ threads

223

 catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 System.out.println("Thread stopped...");
 }

 public static void main(String[] args) {
 StopSuspendResume t = new StopSuspendResume();

 // Start the thread
 t.start();

 // Sleep for 2 seconds
 try {
 Thread.sleep(2000);
 }
 catch (InterruptedException e) {
 e.printStackTrace();
 }

 // Suspend the thread
 t.suspendThread();

 // Sleep for 2 seconds
 try {
 Thread.sleep(2000);
 }
 catch (InterruptedException e) {
 e.printStackTrace();
 }

 // Resume the thread
 t.resumeThread();

 try {
 Thread.sleep(2000);
 }
 catch (InterruptedException e) {
 e.printStackTrace();
 }

 // Stop the thread
 t.stopThread();
 }
}

Chapter 6 ■ threads

224

Thread started...
Going to sleep...
Going to sleep...
Going to sleep...
Suspended...
Resumed...
Going to sleep...
Going to sleep...
Going to sleep...
Thread stopped...

Note that you have two instance variables for the StopSuspendResume class. The suspended instance variable is

not declared volatile. It is not necessary to declare it volatile because it is always accessed inside a synchronized
method/block. The following code in the run() method is used to implement the suspend and resume features:

synchronized (this) {
 while (suspended) {
 System.out.println("Suspended...");
 this.wait();
 System.out.println("Resumed...");
 }
}

When the suspended instance variable is set to true, the thread calls the wait() method on itself to wait. Note
the use of the synchronized block. It uses this as the object to synchronize. This is the reason that you can call
this.wait() inside the synchronized block because you have obtained the lock on this object before entering the
synchronized block. Once the this.wait() method is called, the thread releases the lock on this object and keeps
waiting in the wait set until another thread calls the resumeThread() method to notify it. I also use the this.notify()
method call inside the stopThread() method because if the thread is suspended when the stopThread() method is
called, the thread will not stop; rather, it will remain suspended.

The thread in this example sleeps for only one second in its run() method. Suppose your thread sleeps for an
extended period. In such a case, calling the stopThread() method will not stop the thread immediately because the
thread will stop only when it wakes up and checks its keepRunning instance variable value in its next loop iteration.
In such cases, you can use the interrupt() method inside the stopThread() method to interrupt sleeping/waiting
threads, and when InterruptedException is thrown, you need to handle it appropriately.

If you use the technique used in Listing 6-25 to stop a thread, you may run into problems in some situations. The
while-loop inside the run() method depends on the keepRunning instance variable, which is set in the stopThread()
method. The example in this listing is simple. It is just meant to demonstrate the concept of how to stop, suspend,
and resume a thread. Suppose inside the run() method, your code waits for other resources like calling a method
someBlockingMethodCall() as shown:

while (keepRunning) {
 try {
 someBlockingMethodCall();
 }
 catch (InterruptedException e) {
 e.printStackTrace();
 }
}

Chapter 6 ■ threads

225

If you call the stopThread() method while this thread is blocked on the method call someBlockingMethodCall(),
this thread will not stop until it returns from the blocked method call or it is interrupted. To overcome this problem,
you need to change the strategy for how to stop a thread. It is a good idea to rely on the interruption technique of a
thread to stop it prematurely. The stopThread() method can be changed to

public void stopThread() {
 // interrupt this thread
 this.interrupt();
}

In addition, the while-loop inside the run() method should be modified to check if the thread is interrupted.
You need to modify the exception handling code to exit the loop if this thread is interrupted while it is blocked.
The following snippet of code illustrates this logic:

public void run() {
 while (Thread.currentThread().isInterrupted())) {
 try {
 // Do the processing
 }
 catch (InterruptedException e) {
 // Stop the thread by exiting the loop
 break;
 }
 }
}

Handling an Uncaught Exception in a Thread
You can handle an uncaught exception thrown in your thread. It is handled using an object of a class that implements
the java.lang.Thread.UncaughtExceptionHandler interface. The interface is defined as a nested static interface
in the Thread class. It has the following one method defined, where t is the thread object reference that throws the
exception and e is the uncaught exception thrown:

void uncaughtException(Thread t, Throwable e);

Listing 6-26 has the code for a class whose object can be used as an uncaught exception handler for a thread.

Listing 6-26. An Uncaught Exception Handler for a Thread

// CatchAllThreadExceptionHandler.java
package com.jdojo.threads;

public class CatchAllThreadExceptionHandler implements Thread.UncaughtExceptionHandler {
 public void uncaughtException(Thread t, Throwable e) {
 System.out.println("Caught Exception from Thread:" + t.getName());
 }
}

Chapter 6 ■ threads

226

The class simply prints a message and the thread name stating that an uncaught exception from a thread has
been handled. Typically, you may want to do some cleanup work or log the exception to a file or a database in the
uncaughtException() method of the handler. The thread class contains two methods to set an uncaught exception
handler for a thread: one is a static setDefaultUncaughtExceptionHandler() method and another is a non-static
setUncaughtExceptionHandler() method. Use the static method to set a default handler for all threads in your
application. Use the non-static method to set a handler for a particular thread. When a thread has an uncaught
exception, the following steps are taken:

If the thread sets an uncaught exception handler using the •	 setUncaughtExceptionHandler()
method, the uncaughtException() method of that handler is invoked.

If a thread does not have an uncaught exception handler set, its thread group’s •	
uncaughtException() method is called. If the thread group has a parent thread group, it
calls the uncaughtException() method of its parent. Otherwise, it checks if there is a default
uncaught exception handler set. If it finds a default uncaught exception handler, it calls the
uncaughtException() method on it. If it does not find a default uncaught exception handler,
a message is printed on the standard error stream. It does not do anything if it does not find a
default uncaught exception handler and a ThreadDeath exception is thrown.

Listing 6-27 demonstrates how to set a handler for uncaught exceptions in a thread. It creates an object of class
CatchAllThreadExceptionHandler and sets it as a handler for the uncaught exceptions for the main thread. The main
thread throws an unchecked exception in its last statement. The output shows that the handler handles the exception
thrown in the main() method.

Listing 6-27. Setting an Uncaught Exception Handler for a Thread

// UncaughtExceptionInThread.java
package com.jdojo.threads;

public class UncaughtExceptionInThread {
 public static void main(String[] args) {
 CatchAllThreadExceptionHandler handler = new CatchAllThreadExceptionHandler();

 // Set an uncaught exception handler for main thread
 Thread.currentThread().setUncaughtExceptionHandler(handler);

 // Throw an exception
 throw new RuntimeException();
 }
}

Caught Exception from Thread:main

New Thread Concurrency Packages
Although Java had support for multi-threading built into the language from the very beginning, it was not easy to
develop a multi-threaded Java program that used an advanced level of concurrency constructs. For example, the
synchronized keyword, used to lock an object’s monitor, has existed since the beginning. However, a thread that tries to
lock an object’s monitor simply blocks if the lock is not available. In this case, a programmer had no choice but to back
out. Wouldn’t it be nice to have a construct that is based on a “try and lock” philosophy rather than a “lock or block”
philosophy? In this strategy, if an object’s monitor lock is not available, the call to lock the monitor returns immediately.

Chapter 6 ■ threads

227

The package java.util.concurrent and its two subpackages, java.util.concurrent.atomic and
java.util.concurrent.locks, include very useful concurrency constructs. You use the constructs available in
these packages only when you are developing an advanced level multi-threaded program. I will not cover all new
concurrency constructs in this section because describing everything available in these packages could take more
than a hundred pages. I will briefly cover some of the most useful concurrency constructs available in these packages.
We can broadly categorize these concurrency features into four categories:

Atomic variables•	

Locks•	

Synchronizers•	

Concurrent collections (Please refer to Chapter 12 for concurrent collections)•	

Atomic Variables
Typically, when you need to share an updateable variable among threads, synchronization is used. Synchronization
among multiple threads used to be achieved using the synchronized keyword and it was based on an object’s monitor.
If a thread is not able to acquire an object’s monitor, that thread is suspended and it has to be resumed later. This way
of synchronization (suspending and resuming) uses a great deal of system resources. The problem is not in the locking
and unlocking mechanism of the monitor lock; rather it is in suspending and resuming the threads. If there is no
contention for acquiring a lock, using the keyword synchronized to synchronize threads does not hurt much.

An atomic variable uses a lock-free synchronization of a single variable. Note that if your program needs to
synchronize on more than one shared variable, you still need to use the old synchronization methods. By lock-free
synchronization, I mean that multiple threads can access a shared variable safely using no object monitor lock. JDK takes
advantage of a hardware instruction called “compare-and-swap" (CAS) to implement the lock-free synchronization for
one variable.

CAS is based on three operands: a memory location M, an expected old value O, and a new value N. If the memory
location M contains a value O, CAS updates it atomically to N; otherwise, it does not do anything. CAS always returns the
current value at the location M that existed before the CAS operation started. The pseudo code for CAS is as follows:

CAS(M, O, N) {
 currentValueAtM = get the value at Location M;

 if (currentValueAtM == O) {
 set value at M to N;
 }

 return currentValueAtM;
}

The CAS instruction is lock free. It is directly supported in most modern computers’ hardware. However, CAS is
not always guaranteed to succeed in a multi-threaded environment. CAS takes an optimistic approach by assuming
that there are no other threads updating the value at location M; if the location M contains value O, update it to N; if the
value at location M is not O, do not do anything. Therefore, if multiple threads attempt to update the value at location M
to different values simultaneously, only one thread will succeed and others will fail.

The synchronization using locks takes a pessimistic approach by assuming that other threads may be working
with location M and acquires a lock before it starts working at location M, so that other threads will not access location
M while one is working with it. In case CAS fails, the caller thread may try the action again or give up; the caller thread
using CAS never blocks. However, in case of synchronization using a lock, the caller thread may have to be suspended
and resumed if it could not acquire the lock. Using synchronization, you also run the risk of a deadlock, a livelock, and
other synchronization-related failures.

Chapter 6 ■ threads

228

Atomic variable classes are named like AtomicXxx, and can be used to execute multiple instructions on a single
variable atomically without using any lock. Here, Xxx is replaced with different words to indicate different classes that
are used for different purposes; for example, the AtomicInteger class is used to represent an int variable, which is
supposed to be manipulated atomically. Twelve classes in the Java class library support read-modify-write operations
on a single variable atomically. They are in the java.util.concurrent.atomic package. They can be categorized in
four categories, which will be discussed in the following sections.

Scalar Atomic Variable Classes
The AtomicInteger, AtomicLong, and AtomicBoolean classes support operations on primitive data types int, long,
and boolean, respectively.

If you need to work with other primitive data types, use the AtomicInteger class. You can use it directly to work
with byte and short data types. Use it to work with the float data type by using the Float.floatToIntBits() method
to convert a float value to the int data type and the AtomicInteger.floatValue() method to convert an int value to
the float data type back.

You can use the AtomicLong class to work with the double data type by using the Double.doubleToLongBits()
method to convert a double value to the long data type and the AtomicLong.doubleValue() method to convert the
long value to the double data type.

The AtomicReference class is used to work with a reference data type when a reference variable needs to be
updated atomically.

Atomic Arrays Classes
There are three classes called AtomicIntegerArray, AtomicLongArray, and AtomicReferenceArray that represent an
array of int, long, and reference types whose elements can be updated atomically.

Atomic Field Updater Classes
There are three classes called AtomicLongFieldUpdater, AtomicIntegerFieldUpdater, and
AtomicReferenceFieldUpdater that can be used to update a volatile field of a class atomically using reflection.
These classes have no constructors. To get a reference to an object of these classes, you need to use their factory
method called newUpdater().

Atomic Compound Variable Classes
CAS works by asking “Is the value at location M still O?” If the answer is yes, it updates the value at location M from O to
N. In a typical scenario, one thread may read the value from location M as O. By the time this thread tries to update the
value from O to N, another thread has changed the value at location M from O to P, and back from P to O. Therefore, the
call CAS(M, O, N) will succeed because the value at location M is still O, even though it was changed (O to P and back to
O) twice after the thread read the value O last time. In some cases, it is fine. The thread that wants to update the value at
location M does not care if the old value O that it read last time was updated before its own update as long as the value
at location M is O at the time it is updating the value to N. However, in some cases, it is not acceptable. If a thread reads
the value O from a location M, this thread wants to make sure that after it read the value, no other thread has updated
the value. In such cases, CAS needs to ask “Has the value at location M changed since I last read it as O?” To achieve this
functionality, you need to store a pair of values: the value you want to work with and its version number. Each update
will also update the version number. The AtomicMarkableReference and AtomicStampedReference classes fall into
this category of atomic compound variable class.

Let’s look at a simple example that uses an atomic class. If you want to write a class to generate a counter using
built-in Java synchronization, it will resemble the code in Listing 6-28.

Chapter 6 ■ threads

229

Listing 6-28. A Counter Class That Uses Synchronization

// SynchronizedCounter.java
package com.jdojo.threads;

public class SynchronizedCounter {
 private long value;

 public synchronized long next() {
 return ++value;
 }
}

You would rewrite the SynchronizedCounter class using the AtomicLong class as shown in Listing 6-29.

Listing 6-29. A Counter Class Using Atomic Variable

// AtomicCounter.java
package com.jdojo.threads;

import java.util.concurrent.atomic.AtomicLong;

public class AtomicCounter {
 private AtomicLong value = new AtomicLong(0L);

 public long next() {
 return value.incrementAndGet();
 }
}

Note that the AtomicCounter class does not use any explicit synchronization. It takes advantage of CAS
hardware instruction. The call to the incrementAndGet() method inside the next() method of the AtomicCounter
class is performed atomically for you. You can also use an object of the AtomicLong class as a thread-safe counter
object like so:

AtomicLong aCounter = new AtomicLong(0L);

Then you can use the aCounter.incrementAndGet() method to generate a new counter. The incrementAndGet()
method of the AtomicLong class increments its current value and returns the new value. You also have its counterpart
method called getAndIncrement(), which increments its value and returns its previous value.

The AtomicXxx variable classes have a compareAndSet() method. It is a variant of compare and swap (CAS).
The only difference is that the compareAndSet() method returns a boolean. It returns true if it succeeds; otherwise it
returns false. The following is the pseudo code representation of the compareAndSet() method:

compareAndSet(M, O, N) {
 // Call CAS (see CAS pseudo code) if CAS succeeded, return true;
 // otherwise, return false.
 return (CAS(M, O, N) == O)
}

Chapter 6 ■ threads

230

Explicit Locks
Explicit locking mechanism can be used to coordinate access to shared resources in a multi-threaded environment
without using the keyword synchronized. The Lock interface, which is declared in the java.util.concurrent.locks
package, defines the explicit locking operations. The ReentrantLock class, in the same package, is the concrete
implementation of the Lock interface. The Lock interface is declared as follows:

public interface Lock {
 void lock();
 Condition newCondition();
 void lockInterruptibly() throws InterruptedException;
 boolean tryLock();
 boolean tryLock(long time, TimeUnit unit) throws InterruptedException;
 void unlock();
}

The use of the lock() method to acquire a lock behaves the same as the use of the synchronized keyword. The
use of the synchronized keyword requires that a thread should acquire and release an object’s monitor lock in the
same block of code. When you use the synchronized keyword to acquire an object’s monitor lock, the lock is released
by the JVM when the program leaves the block in which the lock was acquired. This feature makes working with
intrinsic locks very simple and less error prone. However, in the case of the Lock interface, the restriction of acquiring
and releasing of the lock in the same block of code does not apply. This makes it a little flexible to use; however, it is
more error prone because the responsibility of acquiring as well as releasing the lock is on the programmer. It is not
difficult to acquire the lock and forget to release it, resulting in hard-to-find bugs. You must make sure that you release
the lock by calling the unlock() method of the Lock interface after you are done with the lock. You can use the lock()
and unlock() methods in their simplest form, shown in Listing 6-30. Note the use of a try-finally block to release
the lock in the updateResource() method. The use of a try-finally block is necessary in this case because no matter
how you finish returning from this method after you call myLock.lock(), you would like to release the lock. This can
be assured only if you place the call to the unlock() method inside the finally block.

Listing 6-30. Using an Explicit Lock in its Simplest Form

// SimpleExplicitLock.java
package com.jdojo.threads;

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

public class SimpleExplicitLock {
 // Instantiate the lock object
 private Lock myLock = new ReentrantLock();

 public void updateResource() {
 // Acquire the lock
 myLock.lock();

 try {
 // Logic for updating/reading the shared resource goes here
 }

Chapter 6 ■ threads

231

 finally {
 // Release the lock
 myLock.unlock();
 }
 }
}

You may wonder why you would use the code structure listed in Listing 6-30 when you could have used the
synchronized keyword to achieve the same effect, like so:

public void updateResource() {
 // Acquire the lock and the lock will be released automatically by the
 // JVM when your code exits the block
 synchronized (this) {
 // Logic for updating/reading the shared resource goes here
 }
}

You are correct in thinking that using the synchronized keyword would have been better in this case. It is much
simpler and less error prone to use the synchronized keyword in such situations. The power of using the new Lock
interface becomes evident when you come across situations where using the synchronized keyword is not possible
or very cumbersome. For example, if you want to acquire the lock in the updateResource() method and release it in
some other methods, you cannot use the synchronized keyword. If you need to acquire two locks to work with a shared
resource and if only one lock is available, you want to do something else rather than waiting for the other lock. If you
use the synchronized keyword or the lock() method of the Lock interface to acquire a lock, the call blocks if the lock
is not available immediately, which gives you no option to back off once you asked for the lock. Such blocked threads
cannot be interrupted either. The two methods of the Lock interface, tryLock() and lockInterruptibly(), give you
the ability to try to acquire a lock (rather than acquire a lock or block). The thread that has acquired the lock can be
interrupted if it is blocked. The syntax to acquire and release a lock using the Lock interface should use a try-finally
or a try-catch-finally block structure to avoid unintended bugs by placing the unlock() call in a finally block.

You will solve a classic synchronization problem known as the dining-philosophers problem using the explicit
lock constructs. The problem goes like this: five philosophers spend all of their time either thinking or eating. They
sit around a circular table with five chairs and five forks, as shown in Figure 6-7. There are only five forks and all five
philosophers need to pick the two nearest (one from his left and one from his right) forks to eat.

Figure 6-7. Five philosophers at a dining table

Chapter 6 ■ threads

232

Once a philosopher finishes eating, he puts down both forks and starts thinking. A philosopher cannot pick up
a fork if his neighbor is using it. What happens if each of the five philosophers picks up one fork from his right and
waits for his left fork to be released by his neighbor? This would be a deadlock situation and no philosopher would be
able to eat. This deadlock condition can be avoided easily by using the tryLock() method of the Lock interface. This
method returns immediately and it never blocks. If the lock is available, it gets the lock and returns true. If the lock
is not available, it returns false. The class in Listing 6-31 can be used to model the philosophers assuming that an
object of the ReentrantLock class represents a fork.

Listing 6-31. A Philosopher Class to Represent a Philosopher

// Philosopher.java
package com.jdojo.threads;

import java.util.concurrent.locks.Lock;

public class Philosopher {
 private Lock leftFork;
 private Lock rightFork;
 private String name; // Philosopher's name
 public Philosopher(Lock leftFork, Lock rightFork, String name) {
 this.leftFork = leftFork;
 this.rightFork = rightFork;
 this.name = name;
 }

 public void think() {
 System.out.println(name + " is thinking...");
 }

 public void eat() {
 // Try to get the left fork
 if (leftFork.tryLock()) {
 try {
 // try to get the right fork
 if (rightFork.tryLock()) {
 try {
 // Got both forks. Eat now
 System.out.println(name + " is eating...");
 }
 finally {
 // release the right fork
 rightFork.unlock();
 }
 }
 }
 finally {
 // release the left fork
 leftFork.unlock();
 }
 }
 }
}

Chapter 6 ■ threads

233

To create a philosopher, you would use code like:

Lock fork1 = new ReentrantLock();
Lock fork2 = new ReentrantLock();
...
Lock fork5 = new ReentrantLock();

Philosopher p1 = new Philosopher(fork1, fork2, "John");
Philosopher p2 = new Philosopher(fork2, fork3, "Wallace");
...
Philosopher p5 = new Philosopher(fork5, fork1, "Charles");

It is left for the reader as an exercise to complete the code and run all five philosophers in five different threads to
simulate the dining-philosophers problem. You can also think about how to use the synchronized keyword to solve
the same problem. Read the code in the eat() method carefully. It tries to get the left and right forks one at a time. If
you can get only one fork and not the other, you put down the one you got so others can have it. The code in the eat()
method has only the logic to get the forks. In a real program, if you cannot get both forks, you would like to wait for
some time and try again to pick up the forks. You will have to write that logic.

You can specify the fairness of a lock when you instantiate the ReentrantLock class. The fairness indicates the
way of allocating the lock to a thread when multiple threads are waiting to get the lock. In a fair lock, threads acquire
the lock in the order they request it. In a non-fair lock, jumping ahead by a thread is allowed. For example, in a
non-fair lock, if some threads are waiting for a lock and another thread, which requests the same lock later, gets the
lock before the waiting threads if the lock becomes available at the time this thread requested it. This may sound a
little strange because it is not fair to the waiting threads to leave them waiting and granting the lock to the thread that
requested it later. However, it has a performance gain. The overhead of suspending and resuming a thread is reduced
using non-fair locking. The tryLock() method of the ReentrantLock class always uses a non-fair lock. You can create
fair and non-fair locks as follows:

Lock nonFairLock1 = new ReentrantLock(); // A non-fair lock (Default is non-fair)
Lock nonFairLock2 = new ReentrantLock(false); // A non-fair lock
Lock fairLock2 = new ReentrantLock(true); // A fair lock

A ReentrantLock provides a mutually exclusive locking mechanism. That is, only one thread can own the
ReentrantLock at a time. If you have a data structure guarded by a ReentrantLock, a writer thread as well as a reader
thread must acquire the lock one at a time to modify or to read the data. This restriction of ReentrantLock, to be
owned by only one thread at a time, may downgrade the performance if your data structure is read frequently and
modified infrequently. In such situations, you may want multiple reader threads to have concurrent access to the
data structure. However, if the data structure is being modified, only one writer thread should have the access to the
data structure. The Read-Write lock allows you to implement this kind of locking mechanism using an instance of the
ReadWriteLock interface. It has two methods: one to get the reader lock and another to get the writer lock, as shown:

public interface ReadWriteLock {
 Lock readLock();
 Lock writeLock();
}

A ReentrantReadWriteLock class is an implementation of the ReadWriteLock Interface. Only one thread can hold
the write lock of ReentrantReadWriteLock, whereas multiple threads can hold its read lock. Listing 6-32 demonstrates
the usage of ReentrantReadWriteLock. Note that in the getValue() method, you use read lock so multiple threads
can read the data concurrently. The setValue() method uses a write lock so only one thread can modify the data at a
given time.

Chapter 6 ■ threads

234

Listing 6-32. Using a ReentrantReadWriteLock to Guard a Read-Mostly Data Structure

// ReadMostlyData.java
package com.jdojo.threads;

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantReadWriteLock;

public class ReadMostlyData {
 private int value;
 private ReentrantReadWriteLock rwLock = new ReentrantReadWriteLock();
 private Lock rLock = rwLock.readLock();
 private Lock wLock = rwLock.writeLock();

 public ReadMostlyData(int value) {
 this.value = value;
 }

 public int getValue() {
 // Use the read lock, so multiple threads may read concurrently
 rLock.lock();
 try {
 return this.value;
 }
 finally {
 rLock.unlock();
 }
 }

 public void setValue(int value) {
 // Use the write lock, so only one thread can write at a time
 wLock.lock();
 try {
 this.value = value;
 }
 finally {
 wLock.unlock();
 }
 }
}

Tip ■ the ReadWriteLock allows you have a read and a write version of the same lock. Multiple threads can
own a read lock as long as another thread does not own the write lock. however, only one thread can own the write lock
at a time.

Chapter 6 ■ threads

235

Synchronizers
I have discussed how to coordinate access to a critical section by multiple threads using a mutually exclusive
mechanism of intrinsic locks and explicit locks. Some classes known as synchronizers are used to coordinate the
control flow of a set of threads in a situation that needs other than mutually exclusive access to a critical section.
A synchronizer object is used with a set of threads. It maintains a state, and depending on its state, it lets a thread pass
through or forces it to wait. This section will discuss four types of synchronizers:

Semaphores•	

Barriers•	

Latches•	

Exchangers•	

Other classes can also act as a synchronizer such as a blocking queue.

Semaphores
A semaphore is used to control the number of threads that can access a resource. A synchronized block also controls
the access to a resource that is the critical section. So, how is a semaphore different from a synchronized block?
A synchronized block allows only one thread to access a resource (a critical section), whereas a semaphore allows N
threads (N can be any positive number) to access a resource.

If N is set to one, a semaphore can act as a synchronized block to allow a thread to have mutually exclusive
access to a resource. A semaphore maintains a number of virtual permits. To access a resource, a thread acquires a
permit and it releases the permit when it is done with the resource. If a permit is not available, the requesting thread is
blocked until a permit becomes available. You can think of a semaphore’s permit as a token.

Let’s discuss a daily life example of using a semaphore. Suppose there is a restaurant with three dining tables.
Only three people can eat in that restaurant at a time. When a person arrives at the restaurant, he must take a
token for a table. When he is done eating, he will return the token. Each token represents a dining table. If a person
arrives at the restaurant when all three tables are in use, he must wait until one is available. If a table is not available
immediately, you have a choice to wait until one becomes available or to go to another restaurant. Let’s simulate this
example using a semaphore. You will have a semaphore with three permits. Each permit will represent a dining table.
The Semaphore class in the java.util.concurrent package represents the semaphore synchronizer. You create a
semaphore using one of its constructors, like so:

final int MAX_PERMITS = 3;
Semaphore s = new Semaphores(MAX_PERMITS);

Another constructor for the Semaphore class takes fairness as the second argument as in

final int MAX_PERMITS = 3;
Semaphore s = new Semaphores(MAX_PERMITS, true); // A fair semaphore

The fairness of a semaphore has the same meaning as that for locks. If you create a fair semaphore, in the situation
of multiple threads asking for permits, the semaphore will guarantee first in, first out (FIFO). That is, the thread that
asked for the permit first will get the permit first.

To acquire a permit, use the acquire() method. It returns immediately if a permit is available. It blocks if a
permit is not available. The thread can be interrupted while it is waiting for the permit to become available. Other
methods of the Semaphore class let you acquire one or multiple permits in one go.

To release a permit, use the release() method.

Chapter 6 ■ threads

236

Listing 6-33 has the code for a Restaurant class. It takes the number of tables available in a restaurant and creates
a semaphore, which has the number of permits that is equal to the number of tables. A customer uses its getTable()
and returnTable() methods to get and return a table, respectively. Inside the getTable() method, you acquire a
permit. If a customer calls the getTable() method and no table is available, he must wait until one becomes available.
This class depends on a RestaurantCustomer class that is declared in Listing 6-34.

Listing 6-33. A Restaurant Class, Which Uses a Semaphore to Control Access to Tables

// Restaurant.java
package com.jdojo.threads;

import java.util.concurrent.Semaphore;

public class Restaurant {
 private Semaphore tables;

 public Restaurant(int tablesCount) {
 // Create a semaphore using number of tables we have
 this.tables = new Semaphore(tablesCount);
 }

 public void getTable(int customerID) {
 try {
 System.out.println("Customer #" + customerID + " is trying to get a table.");

 // Acquire a permit for a table
 tables.acquire();

 System.out.println("Customer #" + customerID + " got a table.");
 }
 catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

 public void returnTable(int customerID) {
 System.out.println("Customer #" + customerID + " returned a table.");
 tables.release();
 }

 public static void main(String[] args) {
 // Create a restaurant with two dining tables
 Restaurant restaurant = new Restaurant(2);

 // Create five customers
 for (int i = 1; i <= 5; i++) {
 RestaurantCustomer c = new RestaurantCustomer(restaurant, i);
 c.start();
 }
 }
}

Chapter 6 ■ threads

237

Customer #1 is trying to get a table.
Customer #1 got a table.
Customer #2 is trying to get a table.
Customer #1 will eat for 17 seconds.
Customer #2 got a table.
Customer #2 will eat for 19 seconds.
Customer #3 is trying to get a table.
...

Listing 6-34 contains the code for a RestaurantCustomer class whose object represents a customer in a

restaurant. The run() method of the customer thread gets a table from the restaurant, eats for a random amount of
time, and returns the table to the restaurant. When you run the Restaurant class, you may get similar but not the
same output. You may observe that you have created a restaurant with only two tables and five customers are trying to
eat. At any given time, only two customers are eating, as shown by the output.

Listing 6-34. A RestaurantCustomer Class to Represent a Customer in a Restaurant

// RestaurantCustomer.java
package com.jdojo.threads;

import java.util.Random;

class RestaurantCustomer extends Thread {
 private Restaurant r;
 private int customerID;
 private static final Random random = new Random();

 public RestaurantCustomer(Restaurant r, int customerID) {
 this.r = r;
 this.customerID = customerID;
 }

 public void run() {
 r.getTable(this.customerID); // Get a table
 try {
 // Eat for some time. Use number between 1 and 30 seconds
 int eatingTime = random.nextInt(30) + 1 ;
 System.out.println("Customer #" + this.customerID +
 " will eat for " + eatingTime +
 " seconds.");
 Thread.sleep(eatingTime * 1000);
 System.out.println("Customer #" + this.customerID +
 " is done eating.");
 }
 catch(InterruptedException e) {
 e.printStackTrace();
 }
 finally {
 r.returnTable(this.customerID);
 }
 }
}

Chapter 6 ■ threads

238

Tip a semaphore is not limited to the number of permits it was created with. each release() method adds one
permit to it. therefore, if you call the release() method more than the times you call its acquire() method, you end
up having more permits than the one you started with. a permit is not acquired on a per thread basis. One thread
can acquire a permit from a semaphore and another can return it. this leaves the burden of the correct usage of
acquiring and releasing a permit on programmers. a semaphore has other methods to acquire a permit, which will let
you back off instead of forcing you to wait if a permit is not immediately available, such as tryAcquire() and
acquireUninterruptibly() methods.

Barriers
A barrier is used to make a group of threads meet at a barrier point. A thread from a group arriving at the barrier
waits until all threads in that group arrive. Once the last thread from the group arrives at the barrier, all threads in the
group are released. You can use a barrier when you have a task that can be divided into subtasks; each subtask can be
performed in a separate thread and each thread must meet at a common point to combine their results. Figure 6-8
through Figure 6-11 depict how a barrier synchronizer lets a group of three threads meet at the barrier point and lets
them proceed.

B
A
R
R
I
E
R

Figure 6-8. Three threads arrive at a barrier

B
A
R
R
I
E
R

Figure 6-9. One thread waits for two other threads to arrive at the barrier

Chapter 6 ■ threads

239

The CyclicBarrier class in the java.util.concurrent package provides the implementation of the barrier
synchronizer. It is called a cyclic barrier because once all waiting threads at the barrier point are released, you
can reuse the barrier by calling its reset() method. It also allows you to associate a barrier action to it, which is a
Runnable task (an object of a class that implements the Runnable interface). The barrier action is executed just before
all threads are released. You can think of the barrier action as a “party time” when all threads meet at the barrier, but
before they are released.

Here are the steps you need to perform to use a barrier in a program:

Create an object of the •	 CyclicBarrier class with the number of threads in the group.

CyclicBarrier barrier = new CyclicBarrier(5); // 5 threads

If you want to execute a barrier action when all threads meet at the barrier, you can use
another constructor of the CyclicBarrier class.

// Assuming a BarrierAction class implements the Runnable //interface
Runnable barrierAction = new BarrierAction();
CyclicBarrier barrier = new CyclicBarrier(5, barrierAction);

When a thread is ready to wait at the barrier, the thread executes the •	 await() method of the
CyclicBarrier class. The await() method comes in two flavors. One lets you wait for all other
threads unconditionally and the other lets you specify a timeout.

The program in Listing 6-35 demonstrates how to use a cyclic barrier. You may get a different output when you
run the program. However, the sequence of events will be the same: all three threads will work for some time, wait at
the barrier for others to arrive, have a party time, and pass the barrier.

B
A
R
R
I
E
R

Figure 6-11. All three threads pass the barrier successfully

B
A
R
R
I
E
R

Figure 6-10. All three threads arrive at the barrier. Now they are released at once

Chapter 6 ■ threads

240

Listing 6-35. A Class That Demonstrates How to Use a CyclicBarrier in a Program

// MeetAtBarrier.java
package com.jdojo.threads;

import java.util.Random;
import java.util.concurrent.CyclicBarrier;
import java.util.concurrent.BrokenBarrierException;

public class MeetAtBarrier extends Thread {
 private CyclicBarrier barrier;
 private int ID;
 private static Random random = new Random();

 public MeetAtBarrier(int ID, CyclicBarrier barrier) {
 this.ID = ID;
 this.barrier = barrier;
 }

 public void run() {
 try {
 // Generate a random number between 1 and 30 to wait
 int workTime = random.nextInt(30) + 1;

 System.out.println("Thread #" + ID + " is going to work for " +
 workTime + " seconds");

 // Yes. Sleeping is working for this thread!!!
 Thread.sleep(workTime * 1000);

 System.out.println("Thread #" + ID + " is waiting at the barrier...");

 // Wait at barrier for other threads in group to arrive
 this.barrier.await();

 System.out.println("Thread #" + ID + " passed the barrier...");
 }
 catch (InterruptedException e) {
 e.printStackTrace();
 }
 catch (BrokenBarrierException e) {
 System.out.println("Barrier is broken...");
 }
 }

 public static void main(String[] args) {
 // Create a barrier for a group of three threads with a barrier action
 Runnable barrierAction
 = () -> System.out.println("We are all together. It's party time...");
 CyclicBarrier barrier = new CyclicBarrier(3, barrierAction);

Chapter 6 ■ threads

241

 for (int i = 1; i <= 3; i++) {
 MeetAtBarrier t = new MeetAtBarrier(i, barrier);
 t.start();
 }
 }
}

Thread #1 is going to work for 22 seconds
Thread #2 is going to work for 16 seconds
Thread #3 is going to work for 27 seconds
Thread #2 is waiting at the barrier...
Thread #1 is waiting at the barrier...
Thread #3 is waiting at the barrier...
We are all together. It's party time...
Thread #2 passed the barrier...
Thread #1 passed the barrier...
Thread #3 passed the barrier...

You might have noticed that inside the run() method of the MeetAtBarrier class, you are catching

BrokenBarrierException. If a thread times out or it is interrupted while waiting at the barrier point, the barrier is
considered broken. The thread that times out is released with a TimeoutException, whereas all waiting threads at the
barrier are released with a BrokenBarrierException.

Tip the await() method of the CyclicBarrier class returns the arrival index of the thread calling it. the last thread
to arrive at the barrier has an index of zero and the first has an index of the number of threads in the group minus one.
You can use this index to do any special processing in your program. For example, the last thread to arrive at the barrier
may log the time when a particular round of computation is finished by all participating threads.

Phasers
The Phaser class in the java.util.concurrent package provides an implementation for another synchronization
barrier called phaser. A Phaser provides functionality similar to the CyclicBarrier and CountDownLatch
synchronizers. However, it is more powerful and flexible. It provides the following features:

Like a •	 CyclicBarrier, a Phaser is also reusable.

Unlike a •	 CyclicBarrier, the number of parties to synchronize on a Phaser can change
dynamically. In a CyclicBarrier, the number of parties is fixed at the time the barrier is
created. However, in a Phaser, you can add or remove parties at any time.

A •	 Phaser has an associated phase number, which starts at zero. When all registered
parties arrive at a Phaser, the Phaser advances to the next phase and the phase number is
incremented by one. The maximum value of the phase number is Integer.MAX_VALUE. After
its maximum value, the phase number restarts at zero.

A •	 Phaser has a termination state. All synchronization methods called on a Phaser in a
termination state return immediately without waiting for an advance. The Phaser class
provides different ways to terminate a phaser.

Chapter 6 ■ threads

242

A •	 Phaser has three types of parties count: a registered parties count, an arrived parties count,
and an unarrived parties count. The registered parties count is the number of parties that are
registered for synchronization. The arrived parties count is the number of parties that have
arrived at the current phase of the phaser. The unarrived parties count is the number of parties
that have not yet arrived at the current phase of the phaser. When the last party arrives, the
phaser advances to the next phase. Note that all three types of party counts are dynamic.

Optionally, a •	 Phaser lets you execute a phaser action when all registered parties arrive at the
phaser. Recall that a CyclicBarrier lets you execute a barrier action, which is a Runnable
task. Unlike a CyclicBarrier, you specify a phaser action by writing code in the onAdvance()
method of your Phaser class. It means you need to use your own Phaser class by inheriting it
from the Phaser class and override the onAdvance() method to provide a Phaser action. I will
discuss an example of this kind shortly.

Figure 6-12 shows a phaser with three phases. It synchronizes on different number of parties in each phase.
An arrow in the figure represents a party.

P
H
A
S
E
R

P
H
A
S
E
R

P
H
A
S
E
R

Phase-0 Phase-1 Phase-2

Figure 6-12. A Phaser with three phases with a different number of parties in each phase

There are several steps to work with a Phaser. You can create a Phaser with no initially registered party using its
default constructor.

Phaser phaser = new Phaser(); // A phaser with no registered parties

Another constructor lets you register parties when the Phaser is created.

Phaser phaser = new Phaser(5); // A phaser with 5 registered parties

A Phaser may be arranged in a tree-like structure. Other constructors let you create a Phaser by specifying the
parent of the newly created Phaser.

Once you have created a Phaser, the next step is to register parties that are interested in synchronizing on the
phaser. You can register a party with a Phaser in the following ways:

By specifying the number of parties to register in the constructor of the •	 Phaser class when you
create a Phaser object

By using the •	 register() method of the Phaser class to register one party at a time

By using the •	 bulkRegister(int parties) method of the Phaser class to register the specified
number of parties in bulk

The registered parties of a Phaser may change at any time by registering new parties or deregistering the already
registered parties. You can deregister a registered party using the arriveAndDeregister() method of the Phaser class.
This method lets a party arrive at the Phaser and deregister without waiting for other parties to arrive. If a party is
deregistered, the number of parties is reduced by one in the next phase of the Phaser.

Chapter 6 ■ threads

243

Typically, a party in a Phaser means a thread. However, a Phaser does not associate the registration of a party
with a specific thread. It simply maintains a count that is increased by one when a party is registered and decreased by
one when a party is deregistered.

The most important part of a Phaser is the way multiple parties synchronize on it. A typical way to synchronize
on a Phaser is to let the registered number of parties arrive and wait at the Phaser for other registered parties to arrive.
Once the last registered party arrives at the Phaser, all parties advance to the next phase of the Phaser.

The arriveAndAwaitAdvance() method of the Phaser class lets a party arrive at the Phaser and waits for other
parties to arrive before it can proceed.

The arriveAndDeregister() method of the Phaser class lets a party arrive at the Phaser and deregister without
waiting for other parties to arrive. Upon deregistration, the number of parties required to advance to the future phase
reduces by one. Typically, the arriveAndDeregister() method is used by a controller party whose job is to control
the advance of other parties without participating in the advance itself. Typically, the controller party registers itself
with the Phaser and waits for some conditions to occur; when the required condition occurs, it arrives and deregisters
itself from the Phaser so parties can synchronize on the Phaser and advance.

Let’s walk through an example of using a Phaser to synchronize a group of tasks so they can all start at the same
time. An instance of the StartTogetherTask class, shown in Listing 6-36, represents a task in the example. This class
inherits from the Thread class. Its constructor accepts a task name and a Phaser instance. In its run() method, it prints
a message that it is initializing. It fakes its initialization by sleeping for a random period of 1 to 5 seconds. After that, it
prints a message that it is initialized. At this stage, it waits on a Phaser advance by calling the arriveAndAwaitAdvance()
method of the Phaser. This method will block until all registered parties arrive at the Phaser. When this method returns,
it prints a message that the task has started.

Listing 6-36. A StartTogetherTask Class to Represent Tasks That Start Together by Synchronizing on a Phaser

// StartTogetherTask.java
package com.jdojo.threads;

import java.util.Random;
import java.util.concurrent.Phaser;

public class StartTogetherTask extends Thread {
 private Phaser phaser;
 private String taskName;
 private static Random rand = new Random();

 public StartTogetherTask(String taskName, Phaser phaser) {
 this.taskName = taskName;
 this.phaser = phaser;
 }

 @Override
 public void run() {
 System.out.println(taskName + ":Initializing...");

 // Sleep for some time between 1 and 5 seconds
 int sleepTime = rand.nextInt(5) + 1;
 try {
 Thread.sleep(sleepTime * 1000);
 }
 catch (InterruptedException e) {
 e.printStackTrace();
 }

Chapter 6 ■ threads

244

 System.out.println(taskName + ":Initialized...");

 // Wait for all parties to arrive to start the task
 phaser.arriveAndAwaitAdvance();
 System.out.println(taskName + ":Started...");
 }
}

Listing 6-37 has the code to test three tasks of StartTogetherTask type.

Listing 6-37. Testing Some Objects of the StartTogetherTask Class with a Phaser

// StartTogetherTaskTest.java
package com.jdojo.threads;

import java.util.concurrent.Phaser;

public class StartTogetherTaskTest {
 public static void main(String[] args) {
 // Start with 1 registered party
 Phaser phaser = new Phaser(1);

 // Let’s start three tasks
 final int TASK_COUNT = 3;
 for(int i = 1; i <= TASK_COUNT; i++) {
 // Register a new party with the phaser for each task
 phaser.register();

 // Now create the task and start it
 String taskName = "Task #" + i;
 StartTogetherTask task = new StartTogetherTask(taskName, phaser);
 task.start();
 }

 // Now, deregister the self, so all tasks can advance
 phaser.arriveAndDeregister();
 }
}

Task #1:Initializing...
Task #2:Initializing...
Task #3:Initializing...
Task #2:Initialized...
Task #1:Initialized...
Task #3:Initialized...
Task #3:Started...
Task #1:Started...
Task #2:Started...

Chapter 6 ■ threads

245

First, the program creates a Phaser object by specifying 1 as the initially registered party.

// Start with 1 registered party
Phaser phaser = new Phaser(1);

You register a task with the Phaser one at a time. If a task (or a party) is registered and started before other tasks
are registered, the first task will advance the phaser because there will be one registered party and it will arrive at the
phaser by itself. This is the reason that you need to start with one registered party in the beginning. It acts like the
controller party for other tasks.

You create three tasks in a loop. Inside the loop, you register a party (that represents a task) with the Phaser,
create a task, and start it. Once you are done with setting up the tasks, you call the arriveAndDeregister() method of
the Phaser. This takes care of one extra party that you had registered when created the Phaser. This method makes a
party arrive at the Phaser and deregister without waiting for other registered parties to arrive. After this method call is
over, it is up to the three tasks to arrive at the Phaser and advance. Once all three tasks arrive at the Phaser, they will
all advance at the same time, thus making them start at the same time. You may get a different output. However, the
last three messages in the output will always be about starting the three tasks.

If you do not want to use an additional party to act as a controller, you need to register all tasks in advance to
make this program work correctly. You can rewrite the code in the main() method of the StartTogetherTaskTest
class as follows:

public static void main(String[] args) {
 // Start with 0 registered party
 Phaser phaser = new Phaser();

 // Let’s start three tasks
 final int TASK_COUNT = 3;

 // Initialize all tasksa in one go
 phaser.bulkRegister(TASK_COUNT);

 for(int i = 1; i <= TASK_COUNT; i++) {
 // Now create the task and start it
 String taskName = "Task #" + i;
 StartTogetherTask task = new StartTogetherTask(taskName, phaser);
 task.start();
 }
}

This time, you create a Phaser with no registered party. You register all the parties using the bulkRegister()
method in one go. Note that you do not register a party inside the loop anymore. The new code has the same effect as
the old one. It is just a different way to write the logic.

Like a CyclicBarrier, a Phaser lets you execute an action upon a phase advance using its onAdvance() method.
You will need to create your own Phaser class by inheriting it from the Phaser class and override the onAdvance()
method to write your custom Phaser action. On each phase advance, the onAdvance() method of the phaser is
invoked. The onAdvance() method in the Phaser class is declared as follows. The first argument is the phase number
and the second is the number of registered parties.

protected boolean onAdvance(int phase, int registeredParties)

Chapter 6 ■ threads

246

Besides defining a phase advance action, the onAdvance() method of the Phaser class also controls the termination
state of a Phaser. A Phaser is terminated if its onAdvance() method returns true. You can use the isTerminated()
method of the Phaser class to check if a phaser is terminated or not. You can also terminate a phaser using its
forceTermination() method.

Listing 6-38 demonstrates how to add a Phaser action. This is a trivial example. However, it demonstrates the concept
of adding and executing a Phaser action. It uses an anonymous class to create a custom Phaser class. The anonymous
class overrides the onAdvance() method to define a Phaser action. It simply prints a message in the onAdvance() method
as the Phaser action. It returns false, which means the phaser will not be terminated from the onAdvance() method.
Later, it registers the self as a party and triggers a phase advance using the arriveAndDeregister() method. On every
phase advance, the Phaser action that is defined by the onAdvance() method is executed.

Listing 6-38. Adding a Phaser Action to a Phaser

// PhaserActionTest.java
package com.jdojo.threads;

import java.util.concurrent.Phaser;

public class PhaserActionTest {
 public static void main(String[] args) {
 // Create a Phaser object using an anonymous class and override its
 // onAdvance() method to define a phaser action
 Phaser phaser = new Phaser() {
 protected boolean onAdvance(int phase, int parties) {
 System.out.println("Inside onAdvance(): phase = " +
 phase + ", Registered Parties = " + parties);

 // Do not terminate the phaser by returning false
 return false;
 }
 };

 // Register the self (the "main" thread) as a party
 phaser.register();

 // Phaser is not terminated here
 System.out.println("#1: isTerminated():" + phaser.isTerminated());

 // Since we have only one party registered, this arrival will advance
 // the phaser and registered parties reduces to zero
 phaser.arriveAndDeregister();

 // Trigger another phase advance
 phaser.register();
 phaser.arriveAndDeregister();

 // Phaser is still not terminated
 System.out.println("#2: isTerminated():" + phaser.isTerminated());

Chapter 6 ■ threads

247

 // Terminate the phaser
 phaser.forceTermination();

 // Phaser is terminated
 System.out.println("#3: isTerminated():" + phaser.isTerminated());
 }
}

#1: isTerminated():false
Inside onAdvance(): phase = 0, Registered Parties = 0
Inside onAdvance(): phase = 1, Registered Parties = 0
#2: isTerminated():false
#3: isTerminated():true

Let’s consider using a Phaser to solve a little complex task. This time, the Phaser works in multiple phases by

synchronizing multiple parties in each phase. Multiple tasks generate random integers in each phase and add them to
a List. After the Phaser is terminated, you compute the sum of all the randomly generated integers.

Listing 6-39 contains the code for a task. Let’s call this task AdderTask. In its run() method, it creates a random
integer between 1 and 10, adds the integer to a List, and waits for a Phaser to advance. It keeps adding an integer to
the list in each phase of the Phaser until the Phaser is terminated.

Listing 6-39. An AdderTask Class Whose Instances Can Be Used with a Phaser to Generate Some Integers

// AdderTask.java
package com.jdojo.threads;

import java.util.List;
import java.util.Random;
import java.util.concurrent.Phaser;

public class AdderTask extends Thread {
 private Phaser phaser;
 private String taskName;
 private List<Integer> list;
 private static Random rand = new Random();

 public AdderTask(String taskName, Phaser phaser, List<Integer> list) {
 this.taskName = taskName;
 this.phaser = phaser;
 this.list = list;
 }

 @Override
 public void run() {
 do {
 // Generate a random integer between 1 and 10
 int num = rand.nextInt(10) + 1;

 System.out.println(taskName + " added " + num);

Chapter 6 ■ threads

248

 // Add the integer to the list
 list.add(num);

 // Wait for all parties to arrive at the phaser
 phaser.arriveAndAwaitAdvance();
 }
 while (!phaser.isTerminated());
 }
}

Listing 6-40 creates a Phaser by inheriting an anonymous class from the Phaser class. In its onAdvance() method,
it terminates the phaser after the second advance, which is controlled by the PHASE_COUNT constant, or if the registered
parties reduces to zero. You use a synchronized List to gather the random integers generated by the adder tasks.
You plan to use three adder tasks, so you register four parties (one more than the number of tasks) with the phaser.
The additional party will be used to synchronize each phase. It waits for each phase advance until the Phaser is
terminated. At the end, sum of the random integers generated by all adder tasks is computed and displayed on the
standard output.

Listing 6-40. A Program to Use Multiple AdderTask Tasks with a Phaser

// AdderTaskTest.java
package com.jdojo.threads;

import java.util.List;
import java.util.ArrayList;
import java.util.Collections;
import java.util.concurrent.Phaser;

public class AdderTaskTest {
 public static void main(String[] args) {
 final int PHASE_COUNT = 2;
 Phaser phaser
 = new Phaser() {
 public boolean onAdvance(int phase, int parties) {
 // Print the phaser details
 System.out.println("Phase:" + phase
 + ", Parties:" + parties
 + ", Arrived:" + this.getArrivedParties());
 boolean terminatePhaser = false;

 // Terminate the phaser when we reach the PHASE_COUNT
 // or there is no registered party
 if (phase >=PHASE_COUNT - 1 || parties == 0) {
 terminatePhaser = true;
 }

 return terminatePhaser;
 }
 };

Chapter 6 ■ threads

249

 // Use a synchronized List
 List<Integer> list = Collections.synchronizedList(new ArrayList<Integer>());

 // Let’s start three tasks
 final int ADDER_COUNT = 3;

 // Register parties one more than the number of adder tasks.
 // The extra party will synchronize to compute the result of
 // all generated integers by all adder tasks
 phaser.bulkRegister(ADDER_COUNT + 1);

 for (int i = 1; i <= ADDER_COUNT; i++) {
 // Create the task and start it
 String taskName = "Task #" + i;
 AdderTask task = new AdderTask(taskName, phaser, list);
 task.start();
 }

 // Wait for the phaser to terminate, so we can compute the sum
 // of all generated integers by the adder tasks
 while (!phaser.isTerminated()) {
 phaser.arriveAndAwaitAdvance();
 }

 // Phaser is terminated now. Compute the sum
 int sum = 0;
 for (Integer num : list) {
 sum = sum + num;
 }

 System.out.println("Sum = " + sum);
 }
}

(You may get a different output.)
Task #1 added 1
Task #2 added 6
Task #3 added 8
Phase:0, Parties:4, Arrived:4
Task #3 added 9
Task #2 added 7
Task #1 added 8
Phase:1, Parties:4, Arrived:4
Sum = 39

Chapter 6 ■ threads

250

Latches
A latch works similar to a barrier in the sense that it also makes a group of threads wait until it reaches its terminal
state. Once a latch reaches its terminal state, it lets all threads pass through. Unlike a barrier, it is a one-time object.
Once it has reached its terminal state, it cannot be reset and reused. A latch can be used in situations where a number
of activities cannot proceed until a certain number of one-time activities have completed. For example, a service
should not start until all services that it depends on have started.

The CountDownLatch class in the java.util.concurrent package provides the implementation of a latch. It is
initialized to a count using its constructor. All threads that call the await() method of the latch object are blocked
until latch’s countDown() method is called as many times as its count is set. When the number of calls to the
countDown() method is the same as its count, it reaches its terminal state and all blocked threads are released. Once a
latch reaches its terminal state, its await() method returns immediately. You can think of the count that is set for the
latch as the same as the number of events that a group of thread will wait to occur. Each occurrence of an event will
call its countDown() method.

Listing 6-41 and Listing 6-42 contain classes that represent a helper service and a main service, respectively. The main
service depends on helper services to start. After all helper services have started, only then can the main service start.

Listing 6-41. A Class to Represent a Helper Service

// LatchHelperService.java
package com.jdojo.threads;

import java.util.concurrent.CountDownLatch;
import java.util.Random;

public class LatchHelperService extends Thread {
 private int ID;
 private CountDownLatch latch;
 private Random random = new Random();

 public LatchHelperService(int ID, CountDownLatch latch) {
 this.ID = ID;
 this.latch = latch;
 }

 public void run() {
 try {
 int startupTime = random.nextInt(30) + 1;

 System.out.println("Service #" + ID + " starting in "
 + startupTime + " seconds...");
 Thread.sleep(startupTime * 1000);
 System.out.println("Service #" + ID + " has started...");
 }
 catch (InterruptedException e) {
 e.printStackTrace();
 }
 finally {
 // Count down on the latch to indicate that it has started
 this.latch.countDown();
 }
 }
}

Chapter 6 ■ threads

251

Listing 6-42. A Class to Represent the Main Service That Depends on Helper Services to Start

// LatchMainService.java
package com.jdojo.threads;

import java.util.concurrent.CountDownLatch;

public class LatchMainService extends Thread {
 private CountDownLatch latch;

 public LatchMainService(CountDownLatch latch) {
 this.latch = latch;
 }

 public void run() {
 try {
 System.out.println("Main service is waiting for helper services to start...");
 latch.await();
 System.out.println("Main service has started...");
 }
 catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

Listing 6-43 lists a program to test the concept of helper and main services with a latch. You create a latch that
is initialized to two. The main service thread is started first and it calls latch’s await() method to wait for the helper
service to start. Once both helper threads call the countDown() method of the latch, the main service starts. The
output explains the sequence of events clearly.

Listing 6-43. A Class to Test the Concept of a Latch with Helper and Main Services

// LatchTest.java
package com.jdojo.threads;

import java.util.concurrent.CountDownLatch;

public class LatchTest {
 public static void main(String[] args) {
 // Create a countdown latch with 2 as its counter
 CountDownLatch latch = new CountDownLatch(2);

 // Create and start the main service
 LatchMainService ms = new LatchMainService(latch);
 ms.start();

Chapter 6 ■ threads

252

 // Create and start two helper services
 for (int i = 1; i <= 2; i++) {
 LatchHelperService lhs = new LatchHelperService(i, latch);
 lhs.start();
 }
 }
}

Main service is waiting for helper services to start...
Service #2 starting in 8 seconds...
Service #1 starting in 15 seconds...
Service #2 has started...
Service #1 has started...
Main service has started...

Exchangers
An exchanger is another form of a barrier. Like a barrier, an exchanger lets two threads wait for each other at a
synchronization point. When both threads arrive, they exchange an object and continue their activities. This is useful
in building a system where two independent parties need to exchange information from time to time. Figure 6-13
through Figure 6-15 depict how an exchanger works with two threads and lets them exchange an object.

E
X
C
H
A
N
G
E
R

Figure 6-13. Two threads perform their work independently

E
X
C
H
A
N
G
E
R

Figure 6-14. One thread arrives at the exchange point and waits for another thread to arrive

Chapter 6 ■ threads

253

The Exchanger class provides an implementation for an exchanger synchronizer. It has one constructor, which
takes no arguments. You can create an exchanger like so:

Exchanger exchanger = new Exchanger();

The exchanger created in the above statement will let two threads exchange any type of Java objects. However,
if you know the type of the object the threads will exchange, you can specify that using generics while creating the
exchanger like so:

Exchanger<ObjectType> exchanger = new Exchanger<ObjectType>();

The Exchanger class has only one method, exchange(). When a thread is ready to exchange an object with
another thread, it calls the exchange() method of the exchanger and waits for another thread to exchange the object.
A thread that is waiting to exchange an object may be interrupted. Another overloaded version of the exchange()
method accepts a timeout period. If the timeout period is specified, the thread calling this method will wait for
another thread to exchange an object until the timeout period is elapsed. The exchange() method takes the object to
pass on to another thread as an argument and it returns the object passed by another thread. You call the exchange()
method like so:

objectReceived = exchanger.exchange(objectedPassed);

Listing 6-44, Listing 6-45, and Listing 6-46 demonstrate the use of an exchanger in building a producer-consumer
system that exchanges a buffer, which is an ArrayList of Integer objects. To declare an array list of integer objects,
you have to declare it as

ArrayList<Integer> buffer = new ArrayList<Integer>();

In Listing 6-46, you have created an exchanger as

Exchanger<ArrayList<Integer>>exchanger = new Exchanger<ArrayList<Integer>>();

The type declaration Exchanger<ArrayList<Integer>>indicates that the exchanger will let two threads exchange
objects of type ArrayList<Integer>. You can also note that the type declarations in the ExchangerProducer and
ExchangerConsumer classes match the above declaration. The producer fills up the data and waits for some time to
give user an impression that it is really filling up data. It waits for the consumer to exchange the filled buffer with an
empty buffer from the consumer. The consumer does the opposite. It waits for the producer to exchange the buffer.
When it gets a full buffer from the producer, it empties the buffer and again waits for the producer to exchange its
empty buffer for a full one. Since the producer and consumer run in infinite loops, the program will not end. You will
have to end the program manually. You will get a similar output to that shown for Listing 6-46.

E
X
C
H
A
N
G
E
R

An object

An object

Figure 6-15. Two threads meet at exchange point and exchange objects

Chapter 6 ■ threads

254

Listing 6-44. A Producer Thread That Will Use an Exchanger to Exchange Data with a Consumer

// ExchangerProducer.java
package com.jdojo.threads;

import java.util.concurrent.Exchanger;
import java.util.ArrayList;
import java.util.Random;

public class ExchangerProducer extends Thread {
 private Exchanger<ArrayList<Integer>>exchanger;
 private ArrayList<Integer> buffer = new ArrayList<Integer>();
 private int bufferLimit;
 private Random random = new Random();
 private int currentValue = 0; // to produce values

 public ExchangerProducer(Exchanger<ArrayList<Integer>>exchanger,
 int bufferLimit) {
 this.exchanger = exchanger;
 this.bufferLimit = bufferLimit;
 }

 public void run() {
 // keep producing integers
 while (true) {
 try {
 System.out.println("Producer is filling the buffer with data...");

 // Wait for some time by sleeping
 int sleepTime = random.nextInt(20) + 1;
 Thread.sleep(sleepTime * 1000);

 // Fill the buffer
 this.fillBuffer();
 System.out.println("Producer has produced:" + buffer);

 // Let’s wait for the consumer to exchange data
 System.out.println("Producer is waiting to exchange the data...");
 buffer = exchanger.exchange(buffer);
 }
 catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }

 public void fillBuffer() {
 for (int i = 1; i <= bufferLimit; i++) {
 buffer.add(++currentValue);
 }
 }
}

Chapter 6 ■ threads

255

Listing 6-45. A Consumer Thread That Will Use an Exchanger to Exchange Data with a Producer

// ExchangerConsumer.java
package com.jdojo.threads;

import java.util.concurrent.Exchanger;
import java.util.ArrayList;
import java.util.Random;

public class ExchangerConsumer extends Thread {
 private Exchanger<ArrayList<Integer>>exchanger;
 private ArrayList<Integer> buffer = new ArrayList<Integer>();
 private Random random = new Random();

 public ExchangerConsumer(Exchanger<ArrayList<Integer>>exchanger) {
 this.exchanger = exchanger;
 }

 public void run() {
 // keep consuming the integers
 while (true) {
 try {
 // Let’s wait for the consumer to exchange data
 System.out.println("Consumer is waiting to exchange the data...");

 buffer = exchanger.exchange(buffer);
 System.out.println("Consumer has received:" + buffer);
 System.out.println("Consumer is emptying data from the buffer...");

 // Wait for some time by sleeping
 int sleepTime = random.nextInt(20) + 1;

 // Sleep for some time
 Thread.sleep(sleepTime * 1000);

 // Empty the buffer
 this.emptyBuffer();
 }
 catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }

 public void emptyBuffer() {
 buffer.clear();
 }
}

Chapter 6 ■ threads

256

Listing 6-46. A Class to Test a Producer/Consumer System with an Exchanger

// ExchangerProducerConsumerTest.java
package com.jdojo.threads;

import java.util.concurrent.Exchanger;
import java.util.ArrayList;

public class ExchangerProducerConsumerTest {
 public static void main(String[] args) {
 Exchanger<ArrayList<Integer>>exchanger = new Exchanger<>();

 // The producer will produce 5 integers at a time
 ExchangerProducer producer = new ExchangerProducer(exchanger, 5);
 ExchangerConsumer consumer = new ExchangerConsumer(exchanger);

 producer.start();
 consumer.start();
 }
}

Producer is filling the buffer with data...
Consumer is waiting to exchange the data...
Producer has produced:[1, 2, 3, 4, 5]
Producer is waiting to exchange the data...
...

The Executor Framework
A task is a logical unit of work, and typically a thread is used to represent and execute a task. Many aspects of task
execution should be considered before modeling it in a program. A few aspects of a task are as follows:

How it is created.•	

How it is submitted for execution.•	

How it is executed. Is it executed synchronously or asynchronously?•	

The time at which it is executed. Is it executed immediately upon submission or queued?•	

Which thread executes it? Is it executed in the thread that submits it or in another thread?•	

How do we get the result of a task when it is finished executing?•	

How do we know the error that occurs during its execution?•	

Does it depend on other tasks to finish its execution?•	

A task may be represented as a Runnable. If you want to manage tasks using threads, follow the steps described
below. You can create a class to represent a task.

Chapter 6 ■ threads

257

public class MyTask implements Runnable {
 public void run() {
 // Task processing logic goes here
 }
}

You create tasks as follows:

MyTask task1 = new MyTask();
MyTask task2 = new MyTask();
MyTask task3 = new MyTask();

To execute the tasks, you use threads as follows:

Thread t1 = new Thread(task1);
Thread t2 = new Thread(task2);
Thread t3 = new Thread(task3);
t1.start();
t2.start();
t3.start();

If you want to get the result of a task execution, you have to write additional code. You may notice that managing
tasks as described above is difficult, if not impossible. There is another aspect of tasks execution that is very important:
how many threads should be created to execute a group of tasks? One approach would be to create a thread per task.
Creating a thread per task has the following disadvantages:

Creating and destroying threads has overhead and it takes time, which in turn delays the start •	
of the execution of the tasks.

Each thread consumes resources. If the number of threads is more than the available CPUs, •	
other threads will be sitting idle and will be consuming resources.

Each platform has a limit of how many maximum threads it can support. If an application •	
exceeds that limit, it may even crash!

Another approach is to create one thread and let it handle the execution of all tasks. This is another extreme case,
which has the following disadvantages:

Having one thread executing all tasks makes it a sequential executor.•	

This policy is deadlock-prone if one task submits another task and it depends on the result of •	
the task it has submitted.

If you have long-running tasks, other tasks waiting for their execution seem to be unresponsive •	
because of the long time it will take to start the pending tasks.

The executor framework attempts to solve all of these aspects of a task execution. The framework provides a
way to separate task submission from task execution. You create a task and submit it to an executor. The executor
takes care of the execution details of the task. It provides configurable policies to control many aspects of the
task execution.

Chapter 6 ■ threads

258

The Executor interface in the java.util.concurrent package is the foundation for the executor framework. It is
an interface with only one method, as shown:

public interface Executor {
 void execute (Runnable command);
}

You can use the executor framework to execute the above-mentioned three tasks as follows:

// Get an executor instance.
// Method Executors.newCachedThreadPool() will be explainedshortly.
Executor executor = Executors.newCachedThreadPool();

// Submit three tasks to the executor
executor.execute(task1);
executor.execute(task2);
executor.execute(task3);

Note that when you used an executor, you did not create three threads to execute the three tasks. The executor
will decide that for you. You just called the execute() method of the executor to submit a task. The executor will
manage the threads that will execute the tasks and other details about the task execution.

The executor framework provides a class library to select the policies on the thread usage to execute the tasks.
You can choose to run all tasks in one thread, in a fixed number of threads, or in a variable number of threads. In fact,
you can choose a thread pool to execute your tasks, and the thread pool is configurable as to how many threads will be
in the pool and how those threads will be maintained. In any case, all threads in the pool are reused as they become
available. Using a thread pool to execute the submitted tasks has two important advantages:

The overhead of creating and destroying new threads is reduced. The executor reuses the •	
threads from the thread pool.

If a thread is available in the thread pool at the time of a task submission, the task may •	
start immediately. This eliminates the time delay between the thread creation and the
task execution.

It is important to mention another interface called ExecutorService at this point. It provides some advanced
features of an executor, which include managing the shutdown of the executor and checking the status of the
submitted tasks. It inherits the Executor interface. Some of the important methods of this interface are shutdown(),
shutdownNow(), submit(), and awaitTermination(). I will discuss them shortly.

It is important that you shut down the executor when it is no longer needed. The executor framework creates
non-daemon threads to execute the tasks. Generally, when a thread is done executing a task, it is not destroyed.
Rather it is kept in the thread pool for reuse in the future. (Whether a thread is destroyed or kept depends on the
thread pool configuration). A Java application will not exit if some non-daemon threads are still alive. Therefore, if you
forget to shut down the executor, your application may never exit.

How does an executor handle a task execution? To avoid a detailed and lengthy discussion, here is a simple
explanation. You specify the type of thread pool that the executor should use to manage the tasks at the time you
create the executor. All tasks that you submit to an executor are queued in a queue known as the work queue. As a
thread becomes available, it removes a task from the work queue and executes it. When a thread is done executing a
task, depending on your thread pool type, your executor either destroys the thread or puts it back into the pool so it

Chapter 6 ■ threads

259

can be reused to execute another task. You have a number of options to decide on what kind of thread pool to use for
an executor:

You can use one of the factory methods of the •	 Executors class to get an executor, which
has a preconfigured thread pool and lets you reconfigure it, if you desire so. You will use
this approach to get an executor in your examples. You can also use this class to get a
preconfigured executor that cannot be reconfigured. The commonly used methods of the
Executors class to get an executor service are as follows:

•	 newCachedThreadPool(): It returns an ExecutorService object. The thread pool reuses
the previously created threads if they are available. Otherwise, it creates a new thread to
execute a task. It destroys and removes idle threads from the pool. The thread pool has
characteristics of expanding and shrinking depending on the workload.

•	 newFixedThreadPool(int nThreads): It returns an ExecutorService object. The thread
pool maintains a fixed number of threads. At any time, the thread pool will have the
maximum nThread number of threads. If a task arrives in the work queue and all threads
are busy executing other tasks, the task has to wait for its execution until a thread
becomes available. If a thread is terminated because of an unexpected failure during a
task execution, it is replaced with a new thread.

•	 newSingleThreadExecutor(): It returns an ExecutorService object. The thread pool
maintains only one thread to execute all tasks. It guarantees that only one task will be
executed at a time. If the lone thread dies unexpectedly, it is replaced with a new one.

You can instantiate the •	 ThreadPoolExecutor class and configure the thread pool.

You can create your own executor from scratch.•	

Listing 6-47 and Listing 6-48 have the complete programs for an executor. An object of the RunnableTask class
represents a task in your program. You will have a task that will sleep for some time and print a message on the
standard output. The time to sleep will be determined randomly between 1 and 10 seconds. The task will repeat
three times in its run() method. You have used an executor with its thread pool with a fixed number of threads. Your
executor will have only three threads in its thread pool to execute only three tasks at a time. When the executor is
done with one of the first three tasks, it starts the fourth one. Note the exec.shutdown() method call to shut down the
executor after submitting all tasks. The shutdownNow() method call of executor attempts to stop the executing tasks by
interrupting it and discards the pending tasks. It returns the list of all pending tasks that were discarded.

Listing 6-47. A Runnable Task

// RunnableTask.java
package com.jdojo.threads;

import java.util.Random;

public class RunnableTask implements Runnable {
 private int taskId;
 private int loopCounter;
 private Random random = new Random();

 public RunnableTask(int taskId, int loopCounter) {
 this.taskId = taskId;
 this.loopCounter = loopCounter;
 }

Chapter 6 ■ threads

260

 public void run() {
 for(int i = 1; i <= loopCounter; i++) {
 try {
 int sleepTime = random.nextInt(10) + 1;
 System.out.println("Task #" + this.taskId +
 " - Iteration #" + i +
 " is going to sleep for " +
 sleepTime + " seconds.");

 Thread.sleep(sleepTime * 1000);
 }
 catch(Exception e) {
 System.out.println("Task #" + this.taskId +
 " has been interrupted.");
 break;
 }
 }
 }
}

Listing 6-48. A Class to Test an Executor to Run Some Runnable Tasks

// RunnableTaskTest.java
package com.jdojo.threads;

import java.util.concurrent.Executors;
import java.util.concurrent.ExecutorService;

public class RunnableTaskTest {
 public static void main(String[] args) {
 final int THREAD_COUNT = 3;
 final int LOOP_COUNT = 3;
 final int TASK_COUNT = 5;

 // Get an executor with three threads in its thread pool
 ExecutorService exec = Executors.newFixedThreadPool(THREAD_COUNT);

 // Create five tasks and submit them to the executor
 for(int i = 1; i <= TASK_COUNT; i++) {
 RunnableTask task = new RunnableTask(i, LOOP_COUNT);
 exec.submit(task);
 }

 // Let’s shutdown the executor
 exec.shutdown();
 }
}

Chapter 6 ■ threads

261

Task #1 - Iteration #1 is going to sleep for 9 seconds.
Task #2 - Iteration #1 is going to sleep for 2 seconds.
Task #3 - Iteration #1 is going to sleep for 7 seconds.
Task #2 - Iteration #2 is going to sleep for 5 seconds.
Task #2 - Iteration #3 is going to sleep for 7 seconds.
Task #3 - Iteration #2 is going to sleep for 2 seconds.
...

Result-Bearing Tasks
How do you get the result of a task when it is complete? The task that can return a result upon its execution has to be
represented as an instance of the Callable<V> interface. The type parameter V is type of the result of the task. Note
that the run() method of the Runnable interface cannot return a value and it cannot throw any checked exception.
The Callable interface has a call() method. It can return a value of any type. It allows you to throw an exception. It is
declared as follows:

public interface Callable<V> {
 V call() throws Exception;
}

Let’s redo your RunnableTask class from Listing 6-47 as CallableTask, which is shown in Listing 6-49.

Listing 6-49. A Callable Task

// CallableTask.java
package com.jdojo.threads;

import java.util.Random;
import java.util.concurrent.Callable;

public class CallableTask implements Callable<Integer> {
 private int taskId;
 private int loopCounter;
 private Random random = new Random();

 public CallableTask(int taskId, int loopCounter) {
 this.taskId = taskId;
 this.loopCounter = loopCounter;
 }

 public Integer call() throws InterruptedException {
 int totalSleepTime = 0 ;
 for (int i = 1; i <= loopCounter; i++) {
 try {
 int sleepTime = random.nextInt(10) + 1;
 System.out.println("Task #" + this.taskId +
 " - Iteration #" + i +
 " is going to sleep for " +
 sleepTime + " seconds.");

Chapter 6 ■ threads

262

 Thread.sleep(sleepTime * 1000);
 totalSleepTime = totalSleepTime + sleepTime;
 }
 catch(InterruptedException e) {
 System.out.println("Task #" + this.taskId +
 " has been interupted.");
 throw e;
 }
 }
 return totalSleepTime;
 }
}

The call() method of the task returns the sum of all its sleeping periods. Listing 6-50 illustrates the use of the
Callable task.

Listing 6-50. A Class to Demonstrate How to Use a Callable Task with an Executor

// CallableTaskTest.java
package com.jdojo.threads;

import java.util.concurrent.Executors;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Future;
import java.util.concurrent.ExecutionException;

public class CallableTaskTest {
 public static void main(String[] args) {
 // Get an executor with three threads in its thread pool
 ExecutorService exec = Executors.newFixedThreadPool(3);

 // Create the callable task with loop counter as 3
 CallableTask task = new CallableTask(1, 3);

 // Submit the callable task to executor
 Future<Integer> submittedTask = exec.submit(task);

 try {
 Integer result = submittedTask.get();
 System.out.println("Task's total sleep time: " + result + " seconds");
 }
 catch (ExecutionException e) {
 System.out.println("Error in executing the task.");
 }
 catch (InterruptedException e) {
 System.out.println("Task execution has been interrupted.");
 }

 // Let’s shutdown the executor
 exec.shutdown();
 }
}

Chapter 6 ■ threads

263

(You may get a different output.)
Task #1 - Iteration #1 is going to sleep for 8 seconds.
Task #1 - Iteration #2 is going to sleep for 9 seconds.
Task #1 - Iteration #3 is going to sleep for 5 seconds.
Task's total sleep time: 22 seconds

I will explain the logic in the two listings step by step:

The •	 CallableTask class defines the call() method, which contains the logic for task
processing. It sums up all the sleep times for the task and returns it.

The •	 CallableTaskTest class uses an executor with three threads in its thread pool.

The •	 ExecutorService.submit() method returns a Future object. Future is an interface that
lets you track the progress of the task that you submit. It is declared as follows:

 public interface Future<V> {
boolean cancel(boolean mayInterruptIfRunning);
V get() throws InterruptedException, ExecutionException;
V get(long timeout, TimeUni t unit) throws InterruptedException,

ExecutionException, TimeoutException;
boolean isCancelled();
boolean isDone();

}

The get() method returns the result of the task execution, which is the same as the returned
value from the call() method of a Callable object. If the task has not yet finished executing,
the get() method blocks. You can use another version of the get() method to specify a
timeout period for waiting for the result of a task execution.

The cancel() method cancels a submitted task. Its call has no effect on a completed task.
It accepts a boolean argument to indicate if the executor should interrupt the task if the task
is still running. If you use cancel(true) to cancel a task, make sure the task responds to the
interruption properly.

The isDone() method tells you if the task has finished executing. It returns true if the task is
finished executing normally, it has been cancelled, or it had an exception during its execution.

In the CallableTaskTest class, you keep the returned Future object in the submittedTask
variable. The Future<Integer> declaration indicates that your task returns an Integer object
as its result.

Future<Integer> submittedTask = exec.submit(task);

Another important method call is the •	 get() method on submittedTask.

 Integer result = submittedTask.get();

I have placed the call to the get() method in a try-catch block because it may throw an
exception. If the task has not finished executing, the get() method will block. The program
prints the result of the task execution, which is the total time that the task spent sleeping
during its execution.

Finally, you shut down the executor using its •	 shutdown() method.

Chapter 6 ■ threads

264

Scheduling a Task
The executor framework lets you schedule a task that will run in future. You can run a task to execute after a given
delay or periodically. Scheduling a task is done using an object of the ScheduledExecutorService interface,
which you can get using one of the static factory methods of the Executors class. You can also use the concrete
implementation of this interface, which is the ScheduledThreadPoolExecutor class. To get an object of the
ScheduledExecutorService interface, use the following snippet of code:

// Get scheduled executor service with 3 threads
ScheduledExecutorService sexec = Executors.newScheduledThreadPool(3);

To schedule a task (say task1) after a certain delay (say 10 seconds), use

sexec.schedule(task1, 10, TimeUnit.SECONDS);

To schedule a task (say task2) after a certain delay (say 10 seconds), and repeat after a certain period
(say 25 seconds), use

sexec.scheduleAtFixedRate(task2, 10, 25, TimeUnit.SECONDS);

After a 10 second delay, task2 will execute for the first time. Subsequently, it will keep executing after
10 + 25 seconds, 10 + 2 * 25 seconds, 10 + 3 * 25 seconds, and so on.

You can also schedule a task with a set delay period between the end of an execution and the start of the next
execution. To schedule task3, for the first time after 40 seconds, and every 60 seconds after every execution finishes, use

sexec.scheduleWithFixedDelay(task3, 40, 60, TimeUnit.SECONDS);

The ScheduledExecutorService interface does not provide a method to schedule a task using an absolute
time. However, you can schedule a task to execute at an absolute time using the following technique. Suppose
scheduledDateTime is the date and time at which you want to execute the task.

import java.time.LocalDateTime;
import static java.time.temporal.ChronoUnit.SECONDS;
import java.util.concurrent.TimeUnit;
...
LocalDateTime scheduledDateTime = get the scheduled date and time for the task...

// Compute the delay from the time you schedule the task
long delay = SECONDS.between(LocalDateTime.now(), scheduledDateTime);

// Schedule the task
sexec.schedule(task, delay, TimeUnit.MILLISECONDS);

Tip ■ the submit() method of ExecutorService submits the task for immediate execution. You can submit a task
for immediate execution using ScheduledExecutorService.schedule() method by specifying an initial delay of zero.
a negative initial delay schedules a task for immediate execution.

Chapter 6 ■ threads

265

Listing 6-51 contains the code for a Runnable task. It simply prints the date and time when it is run. Listing 6-52
demonstrates how to schedule a task. The second task has been scheduled to run repeatedly. To let it run for a few
times, make the main thread sleep for 60 seconds before you shut down the executor. Shutting down an executor
discards any pending tasks. A good way to stop a scheduled task that repeats is to cancel it after a certain delay using
another scheduled task.

Listing 6-51. A Scheduled Task

// ScheduledTask.java
package com.jdojo.threads;

import java.time.LocalDateTime;

public class ScheduledTask implements Runnable {
 private int taskId;

 public ScheduledTask(int taskId) {
 this.taskId = taskId;
 }

 public void run() {
 LocalDateTime currentDateTime = LocalDateTime.now();
 System.out.println("Task #" + this.taskId + " ran at " + currentDateTime);
 }
}

Listing 6-52. A Class to Test Scheduled Task Executions Using the Executor Framework

// ScheduledTaskTest.java
package com.jdojo.threads;

import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.TimeUnit;

public class ScheduledTaskTest {
 public static void main(String[] args) {
 // Get an executor with 3 threads
 ScheduledExecutorService sexec = Executors.newScheduledThreadPool(3);

 // Task #1 and Task #2
 ScheduledTask task1 = new ScheduledTask(1);
 ScheduledTask task2 = new ScheduledTask(2);

 // Task #1 will run after 2 seconds
 sexec.schedule(task1, 2, TimeUnit.SECONDS);

 // Task #2 runs after 5 seconds delay and keep running every 10 seconds
 sexec.scheduleAtFixedRate(task2, 5, 10, TimeUnit.SECONDS);

Chapter 6 ■ threads

266

 // Let the current thread sleep for 60 seconds and shut down the executor that
 // will cancel the task #2 because it is scheduled to run after every 10 seconds
 try {
 TimeUnit.SECONDS.sleep(60);
 }
 catch(InterruptedException e) {
 e.printStackTrace();
 }

 // Shut down the executor
 sexec.shutdown();
 }
}

(You may get a different output.)
Task #1 ran at 2014-04-23T11:22:14.089
Task #2 ran at 2014-04-23T11:22:17.032
Task #2 ran at 2014-04-23T11:22:27.033
Task #2 ran at 2014-04-23T11:22:37.033
Task #2 ran at 2014-04-23T11:22:47.034
Task #2 ran at 2014-04-23T11:22:57.034
Task #2 ran at 2014-04-23T11:23:07.035

Handling Uncaught Exceptions in a Task Execution
What happens when an uncaught exception occurs during a task execution? The executor framework handles
occurrences of any uncaught exception during task execution nicely for you. If you execute a Runnable task using
the execute() method of the Executor object, any uncaught runtime exceptions will halt the task execution, and the
exception stack trace will be printed on the console, as shown in the output of Listing 6-53.

Listing 6-53. Printing the Runtime Stack Trace from the execute() Method of the Executor

// BadRunnableTask.java
package com.jdojo.threads;

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

public class BadRunnableTask {
 public static void main(String[] args) {
 Runnable badTask = () -> {
 throw new RuntimeException("Throwing exception from task execution...");
 };

 ExecutorService exec = Executors.newSingleThreadExecutor();
 exec.execute(badTask);
 exec.shutdown();
 }
}

Chapter 6 ■ threads

267

Exception in thread "pool-1-thread-1" java.lang.RuntimeException: Throwing exception from task
execution...
 at com.jdojo.threads.BadRunnableTask.lambda$main$0(BadRunnableTask.java:10)
 at com.jdojo.threads.BadRunnableTask$$Lambda$1/2536472.run(Unknown Source)
 at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
 at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
 at java.lang.Thread.run(Thread.java:745)

If you are submitting a task using the submit() method of the ExecutorService, the executor framework handles

the exception and indicates that to you when you use the get() method to get the result of the task execution. The
get() method on the Future object throws a ExecutionException, wrapping the actual exception as its cause.
Listing 6-54 illustrates this kind of example. You can use the get() method of the Future object even if you submit
a Runnable task. On successful execution of the task, the get() method will return a Void object. If an uncaught
exception is thrown during the task execution, it throws an ExecutionException.

Listing 6-54. Future’s get() Method Throws ExecutionException, Wrapping the Actual Exception Thrown in Task
Execution as Its Cause

// BadCallableTask.java
package com.jdojo.threads;

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Callable;
import java.util.concurrent.Future;
import java.util.concurrent.ExecutionException;

public class BadCallableTask {
 public static void main(String[] args) {
 Callable<Object> badTask = () -> {
 throw new RuntimeException("Throwing exception from task execution...");
 };

 // CReate an executor service
 ExecutorService exec = Executors.newSingleThreadExecutor();

 // Submit a task
 Future submittedTask = exec.submit(badTask);

 try {
 // The get method should throw ExecutionException
 Object result = submittedTask.get();
 }
 catch(ExecutionException e) {
 System.out.println("Execution exception has occurred: " +
 e.getMessage());
 System.out.println("Execution exception cause is: " +
 e.getCause().getMessage());
 }

Chapter 6 ■ threads

268

 catch(InterruptedException e) {
 e.printStackTrace();
 }

 exec.shutdown();
 }
}

Execution exception has occurred: java.lang.RuntimeException: Throwing exception from task execution...
Execution exception cause is: Throwing exception from task execution...

Executor’s Completion Service
In the previous sections, I discussed how to fetch the result of a task execution using a Future object. To fetch
the result of a submitted task, you must keep the reference of the Future object returned from the executor, as
demonstrated in Listing 6-50. However, if you have a number of tasks that you have submitted to an executor and
you want to know their results as they become available, you need to use the completion service of the executor. It
is represented by an instance of the CompletionService interface. It combines an executor and a blocking queue
to hold the completed tasks references. The ExecutorCompletionService class is a concrete implementation of the
CompletionService interface. Here are the steps to use it:

Create an executor object. •	

ExecutorService exec = Executors.newScheduledThreadPool(3);

Create an object of •	 ExecutorCompletionService class, passing the executor created in the
previous step to its constructor.

ExecutorCompletionService CompletionService = new
ExecutorCompletionService(exec);

The executor completion service uses a blocking queue internally to hold the completed task.
Using another constructor, you can use your own blocking queue to hold the completed tasks.

The •	 take() method of the completion service returns the reference of a completed task. It
blocks if no completed task is present. If you do not want to wait, in case there is no completed
task, you can use the poll() method, which returns null if there is no completed task in the
queue. Both methods remove the completed task from the queue if they find one.

Listing 6-55, Listing 6-56, and Listing 6-57 illustrate the use of the completion service. An instance of the TaskResult
class represents the result of a task. It was necessary to have a custom object like a TaskResult to represent the result
of a task because the completion service just tells you that a task is completed and you get its result. It does not tell you
which task is completed. To identify the task that was completed, you need to identify the task in the result of the task.
Your SleepingTask returns a TaskResult from its call() method by embedding the task id and the total sleeping time
for the task.

Listing 6-55. A Class to Represent the Result of a Task

// TaskResult.java
package com.jdojo.threads;

public class TaskResult {
 private int taskId;
 private int result;

Chapter 6 ■ threads

269

 public TaskResult(int taskId, int result) {
 this.taskId = taskId;
 this.result = result;
 }

 public int getTaskId() {
 return taskId;
 }

 public int getResult() {
 return result;
 }

 public String toString() {
 return "Task Name: Task #" + taskId + ", Task Result:" + result + " seconds";
 }
}

Listing 6-56. A Class Whose Object Represents a Callable Task. It Produces a TaskResult as Its Result.

// SleepingTask.java
package com.jdojo.threads;

import java.util.Random;
import java.util.concurrent.Callable;

public class SleepingTask implements Callable<TaskResult> {
 private int taskId;
 private int loopCounter;
 private Random random = new Random();

 public SleepingTask(int taskId, int loopCounter) {
 this.taskId = taskId;
 this.loopCounter = loopCounter;
 }

 public TaskResult call() throws InterruptedException {
 int totalSleepTime = 0 ;
 for (int i = 1; i <= loopCounter; i++) {
 try {
 int sleepTime = random.nextInt(10) + 1;
 System.out.println("Task #" + this.taskId + " - Iteration #" + i
 + " is going to sleep for " + sleepTime + " seconds.");
 Thread.sleep(sleepTime * 1000);
 totalSleepTime = totalSleepTime + sleepTime;
 }
 catch(InterruptedException e) {
 System.out.println("Task #" + this.taskId +
 " has been interupted.");

Chapter 6 ■ threads

270

 throw e;
 }
 }

 return new TaskResult(taskId, totalSleepTime);
 }
}

Listing 6-57. A Class to Test the Completion Service

// CompletionServiceTest.java
package com.jdojo.threads;

import java.util.concurrent.Future;
import java.util.concurrent.Executors;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorCompletionService;

public class CompletionServiceTest {
 public static void main(String[] args) {
 // Get an executor with three threads in its thread pool
 ExecutorService exec = Executors.newFixedThreadPool(3);

 // Completed task returns an object of the TaskResult class
 ExecutorCompletionService<TaskResult> completionService =
 new ExecutorCompletionService<>(exec);

 // Submit five tasks and each task will sleep three times for a random period
 // between 1 and 10 seconds
 for(int i = 1; i <= 5; i++) {
 SleepingTask task = new SleepingTask(i, 3);
 completionService.submit(task);
 }

 // Print the result of each task as they are completed
 for(int i = 1; i <= 5; i++) {
 try {
 Future<TaskResult> completedTask =
 completionService.take();
 TaskResult result= completedTask.get();
 System.out.println("Completed a task - " + result);
 }
 catch (ExecutionException ex) {
 System.out.println("Error in executing the task.");
 }
 catch (InterruptedException ex) {
 System.out.println("Task execution has been interrupted.");
 }
 }

Chapter 6 ■ threads

271

 // Let’s shut down the executor
 exec.shutdown();
 }
}

Task #1 - Iteration #1 is going to sleep for 4 seconds.
Task #2 - Iteration #1 is going to sleep for 6 seconds.
Task #3 - Iteration #1 is going to sleep for 9 seconds.
...
Completed a task - Task Name: Task #1, Task Result:20 seconds
...

The Fork/Join Framework
The fork/join framework is an implementation of the executor service whose focus is to solve those problems
efficiently, which may use the divide-and-conquer algorithm by taking advantage of the multiple processors or
multiple cores on a machine. The framework helps solve the problems that involve parallelism. Typically, the
fork/join framework is suitable in a situation where

A task can be divided in multiple subtasks that can be executed in parallel.•	

When subtasks are finished, the partial results can be combined to get the final result.•	

The fork/join framework creates a pool of threads to execute the subtasks. When a thread is waiting on a subtask
to finish, the framework uses that thread to execute other pending subtasks of other threads. The technique of an
idle thread executing other thread’s task is called work-stealing. The framework uses the work-stealing algorithm to
enhance the performance.

The following four classes in the java.util.concurrent package are central to learning the fork/join framework:

•	 ForkJoinPool

•	 ForkJoinTask

•	 RecursiveAction

•	 RecursiveTask

An instance of the ForkJoinPool class represents a thread pool. An instance of the ForkJoinTask class
represents a task. The ForkJoinTask class is an abstract class. It has two concrete subclasses: RecursiveAction and
RecursiveTask. Java 8 added an abstract subclass of the ForkJoinTask class that is called CountedCompleter. The
framework supports two types of tasks: a task that does not yield a result and a task that yields a result. An instance
of the RecursiveAction class represents a task that does not yield a result. An instance of the RecursiveTask class
represents a task that yields a result. A CountedCompleter task may or may not yield a result.

Both classes, RecursiveAction and RecursiveTask, provide an abstract compute() method. Your class whose
object represents a fork/join task should inherit from one of these classes and provide an implementation for the
compute() method. Typically, the logic inside the compute() method is written similar to the following:

if (Task is small) {
 Solve the task directly.
}

Chapter 6 ■ threads

272

else {
 Divide the task into subtsaks.
 Launch the subtasks asynchronously (the fork stage).
 Wait for the subtasks to finish (the join stage).
 Combine the results of all subtasks.
}

The following two methods of the ForkJoinTask class provide two important features during a task execution:

The •	 fork() method launches a new subtask from a task for an asynchronous execution.

The •	 join() method lets a task wait for another task to complete.

Steps in Using the Fork/Join Framework
Using the fork/join framework involves the following five steps.

Step 1: Declaring a Class to Represent a Task
Create a class inheriting from the RecursiveAction or RecursiveTask class. An instance of this class represents a task
that you want to execute. If the task yields a result, you need to inherit it from the RecursiveTask class. Otherwise, you
will inherit it from the RecursiveAction class. The RecursiveTask is a generic class. It takes a type parameter, which
is the type of the result of your task. A MyTask class that returns a Long result may be declared as follows:

public class MyTask extends RecursiveTask<Long> {
 // Code for your task goes here
}

Step 2: Implementing the compute() Method
The logic to execute your task goes inside the compute() method of your class. The return type of the compute()
method is the same as the type of the result that your task returns. The declaration for the compute() method of the
MyTask class look like the following:

public class MyTask extends RecursiveTask<Long> {
 public Long compute() {
 // Logic for the task goes here
 }
}

Step 3: Creating a Fork/Join Thread Pool
You can create a pool of worker threads to execute your task using the ForkJoinPool class. The default constructor
of this class creates a thread of pool, which has the same parallelism as the number of processors available on the
machine.

ForkJoinPool pool = new ForkJoinPool();

Other constructors let you specify the parallelism and other properties of the pool.

Chapter 6 ■ threads

273

Step 4: Creating the Fork/Join Task
You need to create an instance of your task.

MyTask task = MyTask();

Step 5: Submitting the Task to the Fork/Join Pool for Execution
You need to call the invoke() method of the ForkJoinPool class, passing your task as an argument. The invoke()
method will return the result of the task if your task returns a result. The following statement will execute your task:

long result = pool.invoke(task);

A Fork/Join Example
Let’s consider a simple example of using the fork/join framework. Your task will generate a few random integers and
compute their sum. Listing 6-58 has the complete code for your task.

Listing 6-58. A ForkJoinTask Class to Compute the Sum of a Few Random Integers

// RandomIntSum.java
package com.jdojo.threads;

import java.util.ArrayList;
import java.util.List;
import java.util.Random;
import java.util.concurrent.RecursiveTask;

public class RandomIntSum extends RecursiveTask<Long> {
 private static Random randGenerator = new Random();
 private int count;

 public RandomIntSum(int count) {
 this.count = count;
 }

 @Override
 protected Long compute() {
 long result = 0;

 if (this.count <= 0) {
 return 0L; // We do not have anything to do
 }

 if (this.count == 1) {
 // Compute the number directly and return the result
 return (long) this.getRandomInteger();
 }

Chapter 6 ■ threads

274

 // Multiple numbers. Divide them into many single tasks. Keep the references of
 // all tasks to call thier join() method later
 List<RecursiveTask<Long>>forks = new ArrayList<>();

 for(int i = 0; i < this.count; i++) {
 RandomIntSum subTask = new RandomIntSum(1);
 subTask.fork(); // Launch the subtask

 // Keep the subTask references to combine the results later
 forks.add(subTask);
 }

 // Now wait for all subtasks to finish and combine the result
 for(RecursiveTask<Long> subTask : forks) {
 result = result + subTask.join();
 }

 return result;
 }

 public int getRandomInteger() {
 // Generate the next randon integer between 1 and 100
 int n = randGenerator.nextInt(100) + 1;

 System.out.println("Generated a random integer: " + n);
 return n;
 }
}

The class is named RandomIntSum. It extends RecursiveTask<Long> because it yields a result of the type Long.
The result is the sum of all random integers. It declares a randGenerator instance variable that is used to generate a
random number. The count instance variable stores the number of random numbers that you want to use. The value
for the count instance variable is set in the constructor.

The getRandomInteger() method of the RandomIntSum class generates a random integer between 1 and 100,
prints the integer value on the standard output, and returns the random integer.

The compute() method contains the main logic to perform the task. If the number of random numbers to use is
one, it computes the result and returns it to the caller. If the number of random number is more than one, it launches
as many subtasks as the number of random numbers. Note that if you use ten random numbers, it will launch ten
subtasks because each random number can be computed independently. Finally, you need to combine the results
from all subtasks. Therefore, you need to keep the references of the subtask for later use. You used a List to store
the references of all subtasks. Note the use of the fork() method to launch a subtask. The following snippet of code
performs this logic:

List<RecursiveTask<Long>>forks = new ArrayList<>();
for(int i = 0; i < this.count; i++) {
 RandomIntSum subTask = new RandomIntSum(1);
 subTask.fork(); // Launch the subtask

 // Keep the subTask references to combine the results at the end
 forks.add(subTask);
}

Chapter 6 ■ threads

275

Once all subtasks are launched, you need to wait for all subtasks to finish and combine all random integers to get
the sum. The following snippet of code performs this logic. Note the use of the join() method, which will make the
current task wait for the subtask to finish.

for(RecursiveTask<Long> subTask : forks) {
 result = result + subTask.join();
}

Finally, the compute() method returns the result, which is the sum of all the random integers.
Listing 6-59 has the code to execute a task, which is an instance of the RandomIntSum class.

Listing 6-59. Using a Fork/Join Pool to Execute a Fork/Join Task

// ForkJoinTest.java
package com.jdojo.threads;

import java.util.concurrent.ForkJoinPool;

public class ForkJoinTest {
 public static void main(String[] args) {
 // Create a ForkJoinPool to run the task
 ForkJoinPool pool = new ForkJoinPool();

 // Create an instance of the task
 RandomIntSum task = new RandomIntSum(3);

 // Run the task
 long sum = pool.invoke(task);

 System.out.println("Sum is " + sum);
 }
}

(You may get a different output.)
Generated a random integer: 62
Generated a random integer: 46
Generated a random integer: 90
Sum is 198

This is a very simple example of using the fork/join framework. You are advised to explore the fork/join framework

classes to know more about the framework. Inside the compute() method of your task, you can have complex logic
to divide tasks into subtasks. Unlike in this example, you may not know in advance how many subtasks you need to
launch. You may launch a subtask that may launch another subtask and so on.

Chapter 6 ■ threads

276

Thread-Local Variables
A thread-local variable provides a way to maintain a separate value for a variable for each thread. The ThreadLocal
class in the java.lang package provides the implementation of a thread-local variable. It has four methods: get(),
set(), remove(), and initialValue(). The get() and set() methods are used to get and set the value for a
thread-local variable, respectively. You can remove the value by using the remove() method. The initialValue()
method is used to set the initial value of the variable, and it has a protected access. To use it, you need to subclass the
ThreadLocal class and override this method.

Let’s create a CallTracker class, shown in Listing 6-60, to keep track of the number of time times a thread calls
its call() method.

Listing 6-60. A Class That Uses a ThreadLocal Object to Track Calls to Its Method

// CallTracker.java
package com.jdojo.threads;

public class CallTracker {
 // threadLocal variable is used to store counters for all threads
 private static ThreadLocal<Integer> threadLocal = new ThreadLocal<Integer>();

 public static void call() {
 int counter = 0 ;
 Integer counterObject = threadLocal.get();

 if (counterObject == null) {
 counter = 1;
 }
 else {
 counter = counterObject.intValue();
 counter++;
 }

 // Set the new counter
 threadLocal.set(counter);

 // Print how many times this thread has called this method
 String threadName = Thread.currentThread().getName();
 System.out.println("Call counter for " + threadName + " = " + counter);
 }
}

The get() method of the ThreadLocal class works on a thread basis. It returns the value set by the set() method
by the same thread, which is executing the get() method. If a thread calls the get() method the very first time, it
returns null. The program sets the call counter for the caller thread to 1 if it is its first call. Otherwise, it increments the
call counter by 1. It sets the new counter back in the threadLocal object. At the end of the call, you print a message
about how many times the current thread has called this method.

Listing 6-61 uses the CallTracker class in three threads. Each thread calls this method a random number of
times between 1 and 5. You can observe in the output that the counter is maintained for each thread’s call separately.

Chapter 6 ■ threads

277

Listing 6-61. A Test Class for the CallTracker Class

// CallTrackerTest.java
package com.jdojo.threads;

import java.util.Random;

public class CallTrackerTest {
 public static void main(String[] args) {
 // Let’s start three threads to the CallTracker.call() method
 new Thread(CallTrackerTest::run).start();
 new Thread(CallTrackerTest::run).start();
 new Thread(CallTrackerTest::run).start();
 }

 public static void run() {
 Random random = new Random();

 // Generate a random value between 1 and 5
 int counter = random.nextInt(5) + 1;

 // Print the thread name and teh generated random number by the thread
 System.out.println(Thread.currentThread().getName() +
 " generated counter: " + counter);

 for (int i = 0; i < counter; i++) {
 CallTracker.call();
 }
 }
}

(You may get a different output.)
Thread-0 generated counter: 4
Thread-1 generated counter: 2
Thread-2 generated counter: 3
Call counter for Thread-0 = 1
Call counter for Thread-2 = 1
Call counter for Thread-1 = 1
Call counter for Thread-2 = 2
Call counter for Thread-0 = 2
Call counter for Thread-2 = 3
Call counter for Thread-1 = 2
Call counter for Thread-0 = 3
Call counter for Thread-0 = 4

Chapter 6 ■ threads

278

The initialValue() method sets the initial value of the thread-local variable for each thread. If you have set
the initial value, the call to the get() method, before you call the set() method, will return that initial value. It is a
protected method. You must override it in a subclass. You can set the initial value for the call counter to 1000 by using
an anonymous class as shown:

// Create an anonymous subclass ThreadLocal class and override its initialValue() method to
// return 1000 as the initial value
private static ThreadLocal<Integer> threadLocal = new ThreadLocal<Integer>() {
 @Override
 public Integer initialValue() {
 return 1000;
 }
 };

Subclassing the ThreadLocal class just to have an instance of ThreadLocal with an initial value was overkill.
Finally, the class designers realized it (in Java 8) and provided a factory method called withInitial() in the
ThreadLocal class that can specify an initial value. The method is declared as follows:

public static <S> ThreadLocal<S> withInitial(Supplier<? extends S> supplier)

The specified supplier provides the initial value for the ThreadLocal. The get() method of the supplier is used
to get the initial value. You can rewrite above logic and replace the anonymous class, like so:

// Create a ThreadLocal with an initial value of 1000
ThreadLocal<Integer> threadLocal = ThreadLocal.withInitial(() -> 1000);

Having a Supplier as the supplier for the initial value, you can generate the initial value lazily and based on
some logic. The following statement creates a ThreadLocal with initial value as the second part of the current time
when the initial value is retrieved:

// Return the second of the current time as the initial value
ThreadLocal<Integer> threadLocal = ThreadLocal.withInitial(() -> LocalTime.now().getSecond());

You can use the remove() method to reset the value of the thread-local variable for a thread. After the call to the
remove() method, the first call to the get() method works as if it was called the first time by returning the initial value.

The typical use of a thread-local variable is to store user id, transaction id, or transaction context for a thread.
The thread sets those values in the beginning, and any code during the execution of that thread can use those values.
Sometimes a thread may start child threads that may need to use the value set for a thread-local variable in the parent
thread. You can achieve this by using an object of the InheritableThreadLocal class, which is inherited from the
ThreadLocal class. The child thread inherits its initial value from the parent thread. However, the child thread can set
its own value using the set() method.

Setting Stack Size of a Thread
Each thread in a JVM is allocated its own stack. A thread uses its stack to store all local variables during its
execution. Local variables are used in constructors, methods, or blocks (static or non-static). The stack size of
each thread will limit the number of threads that you can have in a program. Local variables are allocated memory
on stack during their scope. Once they are out of scope, the memory used by them is reclaimed. It is essential
to optimize the stack size of a thread in your program if it uses too many threads. If the stack size is too big, you
can have a fewer number of threads in your program. The number of threads will be limited by the available

Chapter 6 ■ threads

279

memory to the JVM. If the stack size is too small to store all local variables used at a time, you may encounter a
StackOverflowError. To set the stack size for each thread, you can use a non-standard JVM option called –Xssn,
where n is the size of the thread stack. To set the stack size to 512 KB while running a Test class, you can use a
command, like so:

java –Xss512k com.jdojo.threads.Test

Summary
A thread is a unit of execution in a program. An instance of the Thread class represents a thread in Java programs.
The thread starts its execution in the run() method of the Thread class or its subclass. To execute your code in a
thread, you need to subclass the Thread class and override its run() method; you can also use an instance of the
Runnable interface as the target for a thread. Beginning from Java 8, you can use a method reference of any method
that takes no parameters and returns void as the target for a thread. A thread is scheduled by using the start()
method of the Thread class.

There are two types of threads: daemon and non-daemon. A non-daemon thread is also known as a user thread.
The JVM exits when only threads running are all daemon threads.

Each thread in Java has a priority that is an integer between 1 and 10, 1 being the lowest priority and 10 being the
highest priority. The priority of a thread is a hint, which can be ignored, to the operating system about its importance
for getting the CPU time.

In a multi-threaded program, a section of code that may have undesirable effects on the outcome of the program
if executed by multiple threads concurrently is called a critical section. You can mark a critical section in a Java
program using the keyword synchronized. Methods can also be declared as synchronized. Only one synchronized
instance method of an object can be executed at a time by any threads. Only one synchronized class method of a class
can be executed at a time by any threads.

A thread in a Java program goes through a set of states that determines its life cycle. A thread can be in any one of
these states: new, runnable, blocked, waiting, timed-waiting, terminated. States are represented by constants of the
Thread.State enum. Use the getState() method of the Thread class to get the current state of the thread.

A thread can be interrupted, stopped, suspended, and resume. A stopped thread or a thread that has finished
executing cannot be restarted.

Atomic variables, explicit locks, the synchronizer, the executor framework, and the fork/join framework are
provided as class libraries to the Java developers to assist in developing concurrent application. Atomic variables
provide variables that can be atomically updated without using explicit synchronization. Explicit locks have features
that let you acquire locks and back off if the locks are not available. The executor framework helps schedule tasks. The
fork/join framework is written on top of the executor framework to assist in working with tasks that can be divided in
subtasks and finally their results can be combined.

Thread-local variables are implemented through the ThreadLocal class. They store values based on threads.
They are suitable for values that are local to threads and that cannot be seen by other threads.

281

Chapter 7

Input/Output

In this chapter, you will learn

What input/output is in Java•	

How to work with a •	 File object that represents an abstract pathname for a file or a directory in
a file system

The decorator pattern•	

Byte-based and character-based input/output streams•	

Reading data from a file and writing data to a file•	

Reading and writing primitive type and reference type data to input/output streams•	

Object serialization and deserialization•	

How to develop custom input/output stream classes•	

The •	 Console and Scanner classes to interact with the console

The •	 StringTokenizer and StreamTokenizer classes to split text into tokens based on
delimiters

What Is Input/Output?
Input/output (I/O) deals with reading data from a source and writing data to a destination. Data is read from the
input source (or simply input) and written to the output destination (or simply output). For example, your keyboard
works as a standard input, letting you read data entered using the keyboard into your program. You have been using
the System.out.println() method to print text on the standard output from the very first Java program without your
knowledge that you have been performing I/O.

Typically, you read data stored in a file or you write data to a file using I/O. However, your input and output are
not limited to only files. You may read data from a String object and write it to another String object. In this case,
the input is a String object; the output is also a String object. You may read data from a file and write it to a String
object, which will use a file as an input and a String object as an output. Many combinations for input and output are
possible. Input and output do not have to be used together all the time. You may use only input in your program, such
as reading the contents of a file into a Java program. You may use only output in your program, such as writing the
result of a computation to a file.

The java.io and java.nio (nio stands for New I/O) packages contain Java classes that deal with I/O. The java.io
package has an overwhelming number of classes to perform I/O. It makes learning Java I/O a little complex. The
situation where the number of classes increases to an unmanageable extent is called a class explosion and the java.io
package is a good example of that. It is no wonder that there are some books in the market that deal only with Java

Chapter 7 ■ Input/Output

282

I/O. These books describe all Java I/O classes one by one. This chapter looks at Java I/O from a different perspective.
First, you will look at the design pattern that was used to design the Java I/O classes. Once you understand the design
pattern behind it, it is easy to understand how to use those classes to perform I/O in your program. After all, I/O is all
about reading and writing data and it should not be that hard to understand! Before you start looking at the design
pattern for the I/O classes, you will learn how to deal with a file in the next section.

Working with Files
How do you refer to a file in your computer? You refer to it by its pathname. A file’s pathname is a sequence of
characters by which you can identify it uniquely in a file system. A pathname consists of a file name and its unique
location in the file system. For example, on a Windows platform, C:\users\dummy.txt is the pathname for a file
named dummy.txt, which is located in the directory named users, which in turn is located in the root directory in the
C: drive. On a UNIX platform, /users/dummy is the pathname for a file named dummy, which is located in the directory
named users, which in turn is located in the root directory.

A pathname can be either absolute or relative. An absolute pathname points to the same location in a file system
irrespective of the current working directory. For example, on a Windows platform, C:\users\dummy.txt is an
absolute pathname.

A relative pathname is resolved with respect to the working directory. Suppose dummy.txt is your pathname. If
your working directory is C:\, this pathname points to C:\dummy.txt. If your working directory is C:\users, it points
to C:\users\dummy.txt. Note that if you specify a relative pathname for a file, it points to a different file depending on
the current working directory. A pathname that starts with a root is an absolute pathname. The forward slash (/) is the
root on the UNIX platform and a drive letter such as A: or C: defines the root for the Windows platform.

Tip ■ the pathname syntax is platform-dependent. programs using any platform-dependent syntax to represent
pathnames may not work correctly on other platforms. In this chapter, most of the time I use the term “file” to mean a file
or a directory.

Creating a File Object
An object of the File class is an abstract representation of a pathname of a file or a directory in a platform-
independent manner. You can create a File object from

A pathname•	

A parent pathname and a child pathname•	

A URI (uniform resource identifier)•	

Use one of the following constructors of the File class to create a file:

File(String pathname)•	

File(File parent, String child)•	

File(String parent, String child)•	

File(URI uri)•	

If you have a file pathname string of dummy.txt, you can create an abstract pathname (or a File object), like so:

Chapter 7 ■ Input/Output

283

File dummyFile = new File("dummy.txt");

Note that a file named dummy.txt does not have to exist to create a File object using this statement. The
dummyFile object represents an abstract pathname, which may or may not point to a real file in a file-system.

The File class has several methods to work with files and directories. Using a File object, you can create a new
file, delete an existing file, rename a file, change permissions on a file, and so on. You will see all these operations on a
file in action in subsequent sections.

Tip ■ the File class contains two methods, isFile() and isDirectory(). use these methods to know whether a
File object represents a file or a directory.

Knowing the Current Working Directory
The concept of the current working directory is related to operating systems, not the Java programming language or
Java I/O. When a process starts, it uses the current working directory to resolve the relative paths of files. When you
run a Java program, the JVM runs as a process, and therefore it has a current working directory. The value for the
current working directory for a JVM is set depending on how you run the java command.

You can get the current working directory for the JVM by reading the user.dir system property as follows:

String workingDir = System.getProperty("user.dir");

At this point, you may be tempted to use the System.setProperty() method to change the current working
directory for the JVM in a running Java program. The following snippet of code will not generate any errors; it will not
change the current working directory either:

System.setProperty("user.dir", "C:\\kishori");

After you try to set the current working directory in your Java program, the System.getProperty("user.dir")
will return the new value. However, to resolve the relative file paths, the JVM will continue to use the current working
directory that was set when the JVM was started, not the one changed using the System.setProperty() method.

Tip ■ Java designers found it too complex to allow changing the current working directory for the JVM in the middle of
a running Java program. For example, if it were allowed, the same relative pathname would resolve to different absolute
paths at different times in the same running JVM, giving rise to inconsistent behavior of the program.

You can also specify the current working directory for the JVM as the user.dir property value as a JVM option. To
specify C:\test as the user.dir system property value on Windows, you run your program like so:

java –Duser.dir=C:\test your-java-class

Chapter 7 ■ Input/Output

284

Checking for a File’s Existence
You can check if the abstract pathname of a File object exists using the exists() method of the File class, like so:

// Create a File object
File dummyFile = new File("dummy.txt");

// Check for the file's existence
boolean fileExists = dummyFile.exists();
if (fileExists) {
 System.out.println("The dummy.txt file exists.");
}
else {
 System.out.println("The dummy.txt file does not exist.");
}

I have used dummy.txt as the file name that is a relative path for this file. Where in the file system does the
exists() method look for this file for its existence? There could be no file with this name or there could be multiple
files with this name. When a relative file path is used, the JVM prepends the current working directory to the file path
and uses the resulting absolute path for all file-related actual operations. Note that the absolute path is constructed
in a platform-dependent way. For example, if the current working directory on Windows is C:\ksharan, the file name
will be resolved to C:\ksharan\dummy.txt; if the current working directory on UNIX is /users/ksharan, the file name
will be resolved to /users/ksharan/dummy.txt.

Which Path Do You Want to Go?
In addition to a relative path, a file has an absolute path and a canonical path. The absolute path identifies the file
uniquely on a file system. A canonical path is the simplest path that uniquely identifies the file on a file system. The
only difference between the two paths is that the canonical path is simplest in its form. For example, on Windows,
if you have pathname dummy.txt whose absolute pathname is C:\users\dummy.txt, the pathname C:\users\
sharan\..\dummy.txt also represents an absolute pathname for the same file. The two consecutive dots in the
pathname represent one level up in the file hierarchy. Among the two absolute paths, the second one is not the
simplest one. The canonical path for dummy.txt is the simplest absolute path C:\users\dummy.txt. You can use the
getAbsolutePath() and getCanonicalPath() methods to get the absolute and canonical paths represented by a File
object, respectively. Note that in a Java program you need to use double backslashes in a string literal to represent one
backward slash; for example, the path C:\users\\sharan needs to be written as "C:\\users\\sharan" as a string.

Listing 7-1 illustrates how to get the absolute and canonical paths of a file. You may get a different output when
you run the program; the output is shown running the program on Windows.

Listing 7-1. Getting the Absolute and Canonical Paths of a File

// FilePath.java
package com.jdojo.io;

import java.io.File;
import java.io.IOException;

public class FilePath {
 public static void main(String[] args) {
 String workingDir = System.getProperty("user.dir");
 System.out.println("Working Directory: " + workingDir);

Chapter 7 ■ Input/Output

285

 System.out.println("----------------------");
 printFilePath("dummy.txt");

 System.out.println("----------------------");
 printFilePath(".." + File.separator + "notes.txt");
 }

 public static void printFilePath(String pathname){
 File f = new File(pathname);
 System.out.println("File Name: " + f.getName());
 System.out.println("File exists: " + f.exists());
 System.out.println("Absolute Path: " + f.getAbsolutePath());

 try {
 System.out.println("Canonical Path: " + f.getCanonicalPath());
 }
 catch(IOException e){
 e.printStackTrace();
 }
 }
}

Working Directory: C:\book\javabook

File Name: dummy.txt
File exists: false
Absolute Path: C:\book\javabook\dummy.txt
Canonical Path: C:\book\javabook\dummy.txt

File Name: notes.txt
File exists: false
Absolute Path: C:\book\javabook\..\notes.txt
Canonical Path: C:\book\notes.txt

Different operating systems use a different character to separate two parts in a pathname. For example, Windows
uses a backslash (\) as a name separator in a pathname, whereas UNIX uses a forward slash (/). The File class
defines a constant named separatorChar, which is the system-dependent name separator character. You can use the
File.separatorChar constant to get the name separator as a character. The File.separator constant gives you the
name separator as a String. I used the name separator constant of the File class to build the following pathname:

printFilePath(".." + File.separator + "notes.txt");

Using the name separator in your program will make your Java code work on different platforms. The above
statement on Windows will be the same as the following statement because Windows uses a backslash (\) as a
name separator:

printFilePath("..\\notes.txt");

On UNIX, it will be the same as the following statement because UNIX uses a forward slash (/) as the file separator:

printFilePath("../notes.txt");

Chapter 7 ■ Input/Output

286

The benefit of using the File.separator constant in your code is that Java will use the appropriate file separator
character in your file pathname depending on the operating system your program is executed.

If the pathname used to construct the File object is not absolute, the getAbsolutePath() method uses the
working directory to get the absolute path.

You have to deal with two “devils” when you work with I/O in Java. If you do not specify the absolute pathname,
your absolute path will be decided by the Java runtime and the operating system. If you specify the absolute
pathname, your code may not run on different operating systems. One way to handle this situation is to use a
configuration file, where you can specify a different file pathname for different operating systems, and you pass the
configuration file path to your program at startup.

The canonical path of a file is system-dependent and the call to the getCanonicalPath() may throw an
IOException. You must place this method call inside a try-catch block or throw an IOException from the method in
which you invoke this method. Some of the I/O method calls throw an IOException in situations when the requested
I/O operation fails.

Creating, Deleting, and Renaming Files
You can create a new file using the createNewFile() method of the File class:

// Create a File object to represent the abstract pathname
File dummyFile = new File("dummy.txt");

// Create the file
boolean fileCreated = dummyFile.createNewFile();

The createNewFile() method creates a new, empty file if the file with the specified name does not already exist.
It returns true if the file is created successfully; otherwise, it returns false. The method throws an IOException if an I/O
error occurs.

You can also create a temporary file in the default temporary file directory or a directory of your choice. To create
a temporary file in the default temporary directory, use the createTempFile() static method of the File class,
which accepts a prefix (at least three characters in length) and a suffix to generate the temporary file name.

File tempFile = File.createTempFile("kkk", ".txt");

You can use the mkdir() or mkdirs() method to create a new directory. The mkdir() method creates a directory
only if the parent directories specified in the pathname already exists. For example, if you want to create a new
directory called home in the users directory in the C: drive on Windows, you construct the File object representing
this pathname like so:

File newDir = new File("C:\\users\\home");

Now the newDir.mkdir() method will create the home directory only if the C:\users directory already exists.
However, the newDir.mkdirs() method will create the users directory if it does not exist in the C: drive, and hence, it
will create the home directory under the C:\users directory.

Deleting a file is easy. You need to use the delete() method of the File class to delete a file/directory. A directory
must be empty before you can delete it. The method returns true if the file/directory is deleted; otherwise, it returns
false. You can also delay the deletion of a file until the JVM terminates by using the deleteOnExit() method. This is
useful if you create temporary files in your program that you want to delete when your program exits.

// To delete the dummy.txt file immediately
File dummyFile = new File("dummy.txt");
dummyFile.delete();

Chapter 7 ■ Input/Output

287

// To delete the dummy.txt file when the JVM terminates
File dummyFile = new File("dummy.txt");
dummyFile.deleteOnExit();

Tip ■ the call to the deleteOnExit() method is final. that is, once you call this method, there is no way for you to
change your mind and tell the JVM not to delete this file when it terminates. You can use the delete() method to delete
the file immediately even after you have requested the JVM to delete the same file on exit.

To rename a file, you can use the renameTo() method, which takes a File object to represent the new file:

// Rename old-dummy.txt to new_dummy.txt
File oldFile = new File("old_dummy.txt");
File newFile = new File("new_dummy.txt");

boolean fileRenamed = oldFile.renameTo(newFile);
if (fileRenamed) {
 System.out.println(oldFile + " renamed to " + newFile);
}
else {
 System.out.println("Renaming " + oldFile + " to " + newFile + " failed.");
}

The renameTo() method returns true if renaming of the file succeeds; otherwise, it returns false. You are
advised to check the return value of this method to make sure the renaming succeeded because the behavior of this
method is very system-dependent.

Tip ■ the File object is immutable. Once created, it always represents the same pathname, which is passed to its
constructor. When you rename a file, the old File object still represents the original pathname. an important thing to
remember is that a File object represents a pathname, not an actual file in a file system.

Listing 7-2 illustrates the use of some of the methods described above to create, delete, and rename a file. You
may get a different output; the output is shown when the program was run on Windows. When you run the program
the second time, you may get a different output because it may not be able to rename the file if it already existed from
the first run.

Listing 7-2. Creating, Deleting, and Renaming a File

// FileCreateDeleteRename.java
package com.jdojo.io;

import java.io.File;
import java.io.IOException;

public class FileCreateDeleteRename {
 public static void main(String[] args) {
 try {

Chapter 7 ■ Input/Output

288

 File newFile = new File("my_new_file.txt");
 System.out.println("Before creating the new file:");
 printFileDetails(newFile);

 // Create a new file
 boolean fileCreated = newFile.createNewFile();
 if (!fileCreated) {
 System.out.println(newFile + " could not be created.");
 }

 System.out.println("After creating the new file:");
 printFileDetails(newFile);

 // Delete the new file
 newFile.delete();

 System.out.println("After deleting the new file:");
 printFileDetails(newFile);

 // Let's recreate the file
 newFile.createNewFile();

 System.out.println("After recreating the new file:");
 printFileDetails(newFile);

 // Let's tell the JVM to delete this file on exit
 newFile.deleteOnExit();

 System.out.println("After using deleteOnExit() method:");
 printFileDetails(newFile);

 // Create a new file and rename it
 File firstFile = new File("my_first_file.txt");
 File secondFile = new File("my_second_file.txt");

 fileCreated = firstFile.createNewFile();
 if (fileCreated || firstFile.exists()) {
 System.out.println("Before renaming file:");
 printFileDetails(firstFile);
 printFileDetails(secondFile);

 boolean renamedFlag = firstFile.renameTo(secondFile);
 if (!renamedFlag) {
 System.out.println("Could not rename " + firstFile);
 }

 System.out.println("After renaming file:");
 printFileDetails(firstFile);
 printFileDetails(secondFile);
 }
 }

Chapter 7 ■ Input/Output

289

 catch(IOException e){
 e.printStackTrace();
 }
 }

 public static void printFileDetails(File f) {
 System.out.println("Absolute Path: " + f.getAbsoluteFile());
 System.out.println("File exists: " + f.exists());
 System.out.println("------------------------------");
 }
}

Before creating the new file:
Absolute Path: C:\javabook\my_new_file.txt
File exists: false

After creating the new file:
Absolute Path: C:\javabook\my_new_file.txt
File exists: true

After deleting the new file:
Absolute Path: C:\javabook\my_new_file.txt
File exists: false

After recreating the new file:
Absolute Path: C:\javabook\my_new_file.txt
File exists: true

After using deleteOnExit() method:
Absolute Path: C:\javabook\my_new_file.txt
File exists: true

Before renaming file:
Absolute Path: C:\javabook\my_first_file.txt
File exists: true

Absolute Path: C:\javabook\my_second_file.txt
File exists: false

After renaming file:
Absolute Path: C:\javabook\my_first_file.txt
File exists: false

Absolute Path: C:\javabook\my_second_file.txt
File exists: true

Chapter 7 ■ Input/Output

290

Working with File Attributes
The File class contains methods that let you get/set attributes of files and directories in a limited ways. You can set
a file as read-only, readable, writable, and executable using the setReadOnly(), setReadable(), setWritable(), and
setExecutable() methods, respectively. You can use the lastModified() and setLastModified() methods to get
and set the last modified date and time of a file. You can check if a file is hidden using the isHidden() method. Note
that the File class does not contain a setHidden() method as the definition of a hidden file is platform-dependent.

Tip ■ I will discuss working with file attributes using the new Input/Output 2 (nIO.2) apI in Chapter 10. nIO.2 has
extensive support for file attributes.

Copying a File
The File class does not provide a method to copy a file. To copy a file, you must create a new file, read the content
from the original file, and write it into the new file. I will discuss how to copy the contents of a file into another file later
in this chapter, after I discuss the input and output streams. The NIO 2.0 API, which was added in Java 7, provides a
direct way to copy a file contents and its attributes. Please refer to Chapter 10 for more details.

Knowing the Size of a File
You can get the size of a file in bytes using the length() method of the File class.

File myFile = new File("myfile.txt");
long fileLength = myFile.length();

If a File object represents a non-existent file, the length() method returns zero. If it is a directory name, the
return value is not specified. Note that the return type of the length() method is long, not int.

Listing All Files and Directories
You can get a list of the available root directories in a file system by using the listRoots() static method of the File
class. It returns an array of File objects.

// Get the list of all root directories
File[] roots = File.listRoots();

Root directories are different across platforms. On Windows, you have a root directory for each drive (e.g. C:\,
A:\, D:\, etc.). On UNIX, you have a single root directory represented by a forward slash.

Listing 7-3 illustrates how to get the root directories on a machine. The output is shown when this program was
run on Windows. You may get a different output when you run this program on your machine. The output will depend
on the operating system and the drives that are attached to your machine.

Chapter 7 ■ Input/Output

291

Listing 7-3. Listing All Available Root Directories on a Machine

// RootList.java
package com.jdojo.io;

import java.io.File;;

public class RootList {
 public static void main(String[] args) {
 File[] roots = File.listRoots();
 System.out.println("List of root directories:");
 for(File f : roots){
 System.out.println(f.getPath());
 }
 }
}

List of root directories:
C:\
D:\

You can list all files and directories in a directory by using the list() or listFiles() methods of the File class.
The only difference between them is that the list() method returns an array of String, whereas the listFiles()
method returns an array of File. You can also use a file filter with these methods to exclude some files and directories
from the returned results.

Listing 7-4 illustrates how to list the files and directories in a directory. Note that the list() and listFiles()
methods do not list the files and directories recursively. You need to write the logic to list files recursively. You need to
change the value of the dirPath variable in the main() method. You may get a different output. The output shown is
the output when the program was run on Windows.

Listing 7-4. Listing All Files and Directories in a Directory

// FileLists.java
package com.jdojo.io;

import java.io.File;

public class FileLists {
 public static void main(String[] args) {
 // Change the dirPath value to list files from your directory
 String dirPath = "C:\\";

 File dir = new File(dirPath);
 File[] list = dir.listFiles();

 for(File f : list){
 if (f.isFile()) {
 System.out.println(f.getPath() + " (File)");
 }
 else if(f.isDirectory()){
 System.out.println(f.getPath() + " (Directory)");
 }

Chapter 7 ■ Input/Output

292

 }
 }
}

C:\WINDOWS (Directory)
C:\MSDOS.SYS (File)
C:\CONFIG.SYS (File)
...

Suppose you wanted to exclude all files from the list with an extension .SYS. You can do this by using a file filter
that is represented by an instance of the functional interface FileFilter. It contains an accept() method that takes
the File being listed as an argument and returns true if the File should be listed. Returning false does not list the file.
The following snippet of code creates a file filter that will filter files with the extension .SYS. Note that the code uses
lambda expressions that were introduced in Java 8.

// Create a file filter to exclude any .SYS file
FileFilter filter = file -> {
 if (file.isFile()) {
 String fileName = file.getName().toLowerCase();
 if (fileName.endsWith(".sys")) {
 return false;
 }
 }
 return true;
};

Using lambda expressions makes it easy to build the file filters. The following snippet of code creates two file
filters—one filters only files and another only directories:

// Filters only files
FileFilter fileOnlyFilter = File::isFile;

// Filters only directories
FileFilter dirOnlyFilter = File::isDirectory;

Listing 7-5 illustrates how to use a file filter. The program is the same as in Listing 7-4 except that it uses a filter to
exclude all .SYS files from the list. You can compare the output of these two listings to see the effect of the filter.

Listing 7-5. Using FileFilter to Filter Files

// FilteredFileList.java
package com.jdojo.io;

import java.io.File;
import java.io.FileFilter;

public class FilteredFileList {
 public static void main(String[] args) {
 // Change the dirPath value to list files from your directory
 String dirPath = "C:\\";
 File dir = new File(dirPath);

Chapter 7 ■ Input/Output

293

 // Create a file filter to exclude any .SYS file
 FileFilter filter = file -> {
 if (file.isFile()) {
 String fileName = file.getName().toLowerCase();
 if (fileName.endsWith(".sys")) {
 return false;
 }
 }
 return true;
 };

 // Pass the filter object to listFiles() method
 // to exclude the .sys files
 File[] list = dir.listFiles(filter);

 for (File f : list) {
 if (f.isFile()) {
 System.out.println(f.getPath() + " (File)");
 }
 else if (f.isDirectory()) {
 System.out.println(f.getPath() + " (Directory)");
 }
 }
 }
}

C:\WINDOWS (Directory)
...

The Decorator Pattern
Suppose you need to design classes for a bar that sells alcoholic drinks. The available drinks are rum, vodka, and
whiskey. It also sells two drink flavorings: honey and spices. You have to design classes for a Java application so that
when a customer orders a drink, the application will let the user print a receipt with the drink name and its price.

What are the things that you need to maintain in the classes to compute the price of a drink and get its name? You
need to maintain the name and price of all ingredients of the drink separately. When you need to print the receipt, you
will concatenate the names of all ingredients and add up the prices for all ingredients. One way to design the classes
for this application would be to have a Drink class with two instance variables: name and price. There would be a class
for each kind of drink; the class would inherit from the Drink class. Some of the possible classes would be as follows:

•	 Drink

•	 Rum

•	 Vodka

•	 Whiskey

•	 RumWithHoney

Chapter 7 ■ Input/Output

294

•	 RumWithSpices

•	 VodkaWithHoney

•	 VodkaWithSpices

•	 WhiskeyWithHoney

•	 WhiskeyWithSpices

•	 WhiskeyWithHoneyAndSpices

Note that we have already listed eleven classes and the list is not complete yet. Consider ordering whiskey with
two servings of honey. You can see that the number of classes involved is huge. If you add some more drinks and
flavorings, the classes will increase tremendously. With this class design, you will have a problem maintaining the
code. If the price of honey changes, you will need to revisit every class that has honey in it and change its price. This
design will produce a class explosion. Fortunately, there is a design pattern to deal with such a problem. It is called the
decorator pattern. Typically, classes are organized as shown in Figure 7-1 to use the decorator pattern.

Figure 7-1. A generic class diagram based on the decorator pattern

The decorator pattern requires you to have a common abstract superclass from which you inherit your
concrete component classes and an abstract decorator class. Name the common superclass Component.
You can use an interface instead of an abstract class. Concrete components, shown as ConcreteComponentA
and ConcreteComponentB in the class diagram, are inherited from the Component class. The Decorator class
is the abstract decorator class, which is inherited from the Component class. Concrete decorators, shown as
ConcreteDecoratorA and ConcreteDecoratorB in the class diagram, are inherited from the Decorator class. The
Decorator class keeps a reference to its superclass Component. The reference of a concrete component is passed to a
concrete decorator as an argument in its constructor as follows:

ConcreteComponentA ca = new ConcreteComponentA();
ConcreteDecoratorA cd = new ConcreteDecoratorA(ca);

Chapter 7 ■ Input/Output

295

When a method is called on a concrete decorator, it takes some actions and calls the method on the component
it encloses. The decorator may decide to take its action before and/or after it calls the method on the component.
This way, a decorator extends the functionality of a component. This pattern is called a decorator pattern because the
decorator class adds functionality (or decorates) the component it encloses. It is also known as the wrapper pattern
for the same reason: it encloses (wraps) the component that it decorates.

The decorator has the same interface as the concrete components because both of them are inherited from the
common superclass, Component. Therefore, you can use a Decorator object wherever a Component object is expected.
Sometimes decorators add additional functionalities by adding new methods that are not present in the component,
as shown in the class diagram: newMethodB(), newMethodC() and newMethodD().

Let’s apply this discussion about the generic class diagram of the decorator pattern to model classes for your
drink application. The class diagram is shown in Figure 7-2.

Figure 7-2. The class diagram for the drink application based on the decorator pattern

In the drink application, Rum, Vodka, and Whiskey are the concrete components (main drinks). Honey and Spices
are the two decorators that are added to decorate (or to change the flavor) of the main drinks.

The Drink class, shown in Listing 7-6, serves as the abstract common ancestor class for the main drinks and
decorators. The name and price instance variables in the Drink class hold the name and price of a drink; the class also
contains the getters for these instance variables. These methods define the common interface for the main drinks as
well as flavors.

Chapter 7 ■ Input/Output

296

Listing 7-6. An Abstract Drink Class to Model the Abstract Component in the Decorator Pattern

// Drink.java
package com.jdojo.io;

public abstract class Drink {
 protected String name;
 protected double price;

 public String getName() {
 return name;
 }

 public double getPrice() {
 return price;
 }
}

Listing 7-7 contains the code for the Rum class that inherits from the Drink class. It sets the name and price in its
constructor. Listing 7-8 and Listing 7-9 list the Vodka and Whiskey classes, respectively. The three classes are similar.

Listing 7-7. A Rum Class

// Rum.java
package com.jdojo.io;

public class Rum extends Drink {
 public Rum() {
 this.name = "Rum";
 this.price = 0.9;
 }
}

Listing 7-8. A Vodka Class

// Vodka.java
package com.jdojo.io;

public class Vodka extends Drink {
 public Vodka() {
 this.name = "Vodka";
 this.price = 1.2;
 }
}

Listing 7-9. A Whiskey Class

// Whiskey.java
package com.jdojo.io;

public class Whiskey extends Drink {
 public Whiskey() {

Chapter 7 ■ Input/Output

297

 this.name = "Whisky";
 this.price = 1.5;
 }
}

The DrinkDecorator, shown in Listing 7-10, is the abstract decorator class that is inherited from the Drink class.
The concrete decorators Honey and Spices inherit from the DrinkDecorator class. It has an instance variable named
drink, which is of the type Drink. This instance variable represents the Drink object that a decorator will decorate.
It overrides the getName() and getPrice() methods for decorators. In its getName() method, it gets the name of the
drink it is decorating and appends its own name to it. This is what I mean by adding functionality to a component by
a decorator. The getPrice() method works the same way. It gets the price of the drink it decorates and adds its own
price to it.

Listing 7-10. An Abstract DrinkDecorator Class

// DrinkDecorator.java
package com.jdojo.io;

public abstract class DrinkDecorator extends Drink {
 protected Drink drink;

 @Override
 public String getName() {
 // Append its name after the name of the drink it is decorating
 return drink.getName() + ", " + this.name;
 }

 @Override
 public double getPrice() {
 // Add its price to the price of the drink it is decorating/
 return drink.getPrice() + this.price;
 }

 public Drink getDrink() {
 return drink;
 }
}

Listing 7-11 lists a concrete decorator, the Honey class, which inherits from the DrinkDecorator class. It accepts
a Drink object as an argument in its constructor. It requires that before you can create an object of the Honey class,
you must have a Drink object. In its constructor, it sets its name, price, and the drink it will work with. It will use the
getName() and getPrice() methods of its superclass DrinkDecorator class.

Listing 7-11. A Honey Class, a Concrete Decorator

// Honey.java
package com.jdojo.io;

public class Honey extends DrinkDecorator{
 public Honey(Drink drink) {
 this.drink = drink;
 this.name = "Honey";

Chapter 7 ■ Input/Output

298

 this.price = 0.25;
 }
}

Listing 7-12 lists another concrete decorator, the Spices class, which is implemented the same way as the
Honey class.

Listing 7-12. A Spices Class, a Concrete Decorator

// Spices.java
package com.jdojo.io;

public class Spices extends DrinkDecorator {
 public Spices(Drink drink) {
 this.drink = drink;
 this.name = "Spices";
 this.price = 0.10;
 }
}

It is the time to see the drink application in action. Let’s order whiskey with honey. How will you construct the
objects to order whiskey with honey? It’s simple. You always start with creating the concrete component. Concrete
decorators are added to the concrete component. Whiskey is your concrete component and honey is your concrete
decorator. You always work with the last component object you create in the series. Typically, the last component that
you create is one of the concrete decorators unless you are dealing with only a concrete component.

// Create a Whiskey object
Whiskey w = new Whiskey();

// Add Honey to the Whiskey. Pass the object w in Honey's constructor
Honey h = new Honey(w);

// At this moment onwards, we will work with the last component we have
// created, which is h (a honey object). To get the name of the drink,
// call the getName() method on the honey object
String drinkName = h.getName();

Note that the Honey class uses the getName() method, which is implemented in the DrinkDecorator class. It will
get the name of the drink, which is Whiskey in your case, and add its own name. The h.getName() method will return
“Whiskey, Honey”.

// Get the price
double drinkPrice = h.getPrice();

The h.getPrice() method will return 1.75. It will get the price of whiskey, which is 1.5 and add the price of
honey, which is 0.25.

You do not need a two-step process to create a whiskey with honey drink. You can use the following one
statement to create it:

Drink myDrink = new Honey(new Whiskey());

Chapter 7 ■ Input/Output

299

By using the above coding style, you get a feeling that Honey is really enclosing (or decorating) Whiskey. You
ordered a drink: whiskey with honey. Therefore, it is better to store the reference of the final drink to a Drink variable
(Drink myDrink) rather than a Honey variable (Honey h). However, if the Honey class implemented some additional
methods than those inherited from the Drink class and you intended to use one of those additional methods, you
need to use a variable of the Honey class to store the final reference.

// If our Honey class has additional methods, which are not defined in Drink
// class, store the reference in Honey type variable
Honey h = new Honey(new Whiskey());

How would you order a drink of whiskey with two servings of honey? It’s simple. Create a Whiskey object, enclose
it in a Honey object, and enclose the Honey object in another Honey object, like so:

// Create a drink of whiskey with double honey
Drink myDrink = new Honey(new Honey(new Whiskey()));

Similarly, you can create a drink of vodka with honey and spices, and get its name and price as follows:

// Create a drink of vodka with honey and spices
Drink myDrink = new Spices(new Honey(new Vodka()));
String drinkName = myDrink.getName();
double drinkPrice = myDrink.getPrice();

Sometimes reading the construction of objects based on the decorator pattern may be confusing because of
several levels of object wrapping in the constructor call. You need to read the object’s constructor starting from the
innermost level. The innermost level is always a concrete component and all subsequent levels will be concrete
decorators. In the previous example of vodka with honey and spices, the inner most level is the creation of vodka, new
Vodka(), which is wrapped in honey, new Honey(new Vodka()), which in turn is wrapped in spices, new Spices(new
Honey(new Vodka())). Figure 7-3 depicts how these three objects are arranged. Listing 7-13 demonstrates how to use
your drink application.

Spices
Honey

Vodka

The getName() and getPrice() methods are
called on the outermost component, which

forwards the request to the next level.

Figure 7-3. The arrangement of components in the decorator pattern

Listing 7-13. Testing the Drink Application

// DrinkTest.java
package com.jdojo.io;

public class DrinkTest {
 public static void main(String[] args) {
 // Have Whiskey only
 Drink d1 = new Whiskey();
 printReceipt(d1);

Chapter 7 ■ Input/Output

300

 // Have Whiskey with Honey
 Drink d2 = new Honey(new Whiskey());
 printReceipt(d2);

 // Have Vodka with Spices
 Drink d3 = new Spices(new Vodka());
 printReceipt(d3);

 // Have Rum with double Honey and Spices
 Drink d4 = new Spices(new Honey(new Honey(new Rum())));
 printReceipt(d4);
 }

 public static void printReceipt(Drink drink) {
 String name = drink.getName();
 double price = drink.getPrice();
 System.out.println(name + " - $" + price);
 }
}

Whisky - $1.5
Whisky, Honey - $1.75
Vodka, Spices - $1.3
Rum, Honey, Honey, Spices - $1.5

You need to consider the other aspects of the decorator pattern:

The •	 abstract Component class (the Drink class in the example) can be replaced by an
interface. Note that you have included two instance variables in the Drink class. If you want to
replace the Drink class with an interface, you must move these two instance variables down
the class hierarchy.

You may add any number of new methods in abstract decorators and concrete decorators to •	
extend the behavior of its component.

With the decorator pattern, you end up with lots of small classes, which may make your •	
application hard to learn. However, once you understand the class hierarchy, it is easy to
customize and use them.

The goal of the decorator pattern is achieved by having a common superclass for the concrete •	
components and concrete decorators. This makes it possible for a concrete decorator to
be treated as a component, which in turn allows for wrapping a decorator inside another
decorator. While constructing the class hierarchy, you can introduce more classes or remove
some. For example, you could have introduced a class named MainDrink between the Drink
class, and Rum, Vodka and Whiskey classes.

The concrete decorator need not be inherited from an •	 abstract decorator class. Sometimes
you may want to inherit a concrete decorator directly from the abstract Component class. For
example, the ObjectInputStream class is inherited from the InputStream class in the java.
io package, not from the FilterInputStream class. Please refer to Figure 7-5 for details. The
main requirement for a concrete decorator is that it should have the abstract component
as its immediate or non-immediate superclass and it should accept an abstract component
type argument in its constructor.

Chapter 7 ■ Input/Output

301

Input/Output Streams
The literal meaning of the word stream is “an unbroken flow of something.” In Java I/O, a stream means an unbroken
flow (or sequential flow) of data. The data in the stream could be bytes, characters, objects, etc.

A river is a stream of water where the water flows from a source to its destination in an unbroken sequence.
Similarly, in Java I/O, the data flows from a source known as a data source to a destination known as a data sink. The
data is read from a data source to a Java program. A Java program writes data to a data sink. The stream that connects
a data source and a Java program is called an input stream. The stream that connects a Java program and a data sink is
called an output stream. In a natural stream, such as a river, the source and the destination are connected through the
continuous flow of water. However, in Java I/O, a Java program comes between an input stream and an output stream.
Data flows from a data source through an input stream to a Java program. The data flows from the Java program
through an output stream to a data sink. In other words, a Java program reads data from the input stream and writes
data to the output stream. Figure 7-4 depicts the flow of data from an input stream to a Java program and from a Java
program to an output stream.

Data Source

Java
Program

Data Sink

An input stream

An output stream

A Java IO program reads data from the input stream
and/or writes data to the output stream.

Figure 7-4. Flow of data using an input/output stream in a Java program

To read data from a data source into a Java program, you need to perform the following steps:

Identify the data source. It may be a file, a string, an array, a network connection, etc.•	

Construct an input stream using the data source that you have identified.•	

Read the data from the input stream. Typically, you read the data in a loop until you have read •	
all the data from the input stream. The methods of an input stream return a special value to
indicate the end of the input stream.

Close the input stream. Note that constructing an input stream itself opens it for reading. •	
There is no explicit step to open an input stream. However, you must close the input stream
when you are done reading data from it. From Java 7, you can use a try-with-resources
block, which closes the input stream automatically.

Chapter 7 ■ Input/Output

302

To write data to a data sink from a Java program, you need to perform the following steps:

Identify the data sink. That is, identify the destination where data will be written. It may be a •	
file, a string, an array, a network connection, etc.

Construct an output stream using the data sink that you have identified.•	

Write the data to the output stream.•	

Close the output stream. Note that constructing an output stream itself opens it for writing. •	
There is no explicit step to open an output stream. However, you must close the output stream
when you are done writing data to it. From Java 7, you can use a try-with-resources block,
which closes the output stream automatically.

Input/output stream classes in Java are based on the decorator pattern. By now, you know that a class design
based on the decorator pattern results in several small classes. So is the case with Java I/O. There are many classes
involved in Java I/O. Learning each class at a time is no easy task. However, learning these classes can be made easy
by comparing them with the class arrangements in the decorator pattern. I will compare the Java I/O classes with the
decorator pattern later. In the next two sections, you will see input/output streams in action using simple programs,
which will read data from a file and write data to a file.

Reading from File Using an Input Stream
In this section, I will show you how to read data from a file. The data will be displayed on the standard output. You
have a file called luci1.txt, which contains the first stanza from the poem Lucy by William Wordsworth (1770-1850).
One stanza from the poem is as follows:

STRANGE fits of passion have I known:
And I will dare to tell,
But in the lover's ear alone,
What once to me befell.

You can create a luci1.txt file with the text and save it in your current working directory.
The following steps are needed to read from the file:

Identify the data source, which is the file path in this case.•	

Create an input stream using the file.•	

Read the data from the file using the input stream.•	

Close the input stream.•	

Identifying the Data Source
Your data source could be simply the file name as a string or a File object representing the pathname of the file. Let’s
assume that the luci1.txt file is in the current working directory.

// The data source
String srcFile = "luci1.txt";

Chapter 7 ■ Input/Output

303

Creating the Input Stream
To read from a file, you need to create an object of the FileInputStream class, which will represent the input stream.

// Create a file input stream
FileInputStream fin = new FileInputStream(srcFile);

When the data source for an input stream is a file, Java wants you to make sure that the file exists when you
construct the file input stream. The constructor of the FileInputStream class throws a FileNotFoundException if the
file does not exist. To handle this exception, you need to place your code in a try-catch block, like so:

try {
 // Create a file input stream
 FileInputStream fin = new FileInputStream(srcFile);
}
catch (FileNotFoundException e){
 // The error handling code goes here
}

Reading the Data
The FileInputStream class has an overloaded read() method to read data from the file. You can read one byte or
multiple bytes at a time using the different versions of this method. Be careful when using the read() method. Its
return type is int, though it returns a byte value. It returns -1 if the end of the file is reached, indicating that there
are no more bytes to read. You need to convert the returned int value to a byte to get the byte read from the file.
Typically, you read a byte at a time in a loop, like so:

int data;
byte byteData;

// Read the first byte
data = fin.read();
while (data != -1) {
 // Display the read data on the console. Note the cast
 // from int to byte - (byte)data
 byteData = (byte)data;

 // Cast the byte data to char to display the data
 System.out.print((char)byteData);

 // Try reading another byte
 data = fin.read();
}

You can rewrite the file-reading logic in a compact form, like so:

byte byteData;
while ((byteData = (byte)fin.read()) != -1){
 System.out.print((char)byteData);
}

Chapter 7 ■ Input/Output

304

We will use the compact form of reading the data from an input stream in subsequent examples. You need to
place the code for reading data from an input stream in a try-catch block because it may throw an IOException.

Closing the Input Steam
Finally, you need to close the input stream using its close() method.

// Close the input stream
fin.close();

The close() method may throw an IOException, and because of that, you need to enclose this call inside a
try-catch block.

try {
 // Close the input stream
 fin.close();
}
catch (IOException e) {
 e.printStackTrace();
}

Typically, you construct an input stream inside a try block and close it in a finally block to make sure it is
always closed after you are done with it.

All input/output streams are auto closeable. You can use a try-with-resources to create their instances, so they
will be closed automatically regardless of an exception being thrown or not, avoiding the need to call their close()
method explicitly. The following snippet of code shows using a try-with-resources to create a file input stream:

String srcFile = "luci1.txt";
try (FileInputStream fin = new FileInputStream(srcFile)) {
 // Use fin to read data from the file here
}
catch (FileNotFoundException e) {
 // Handle the exception here
}

A Utility Class
You will frequently need to perform things such as closing an input/output stream and printing a message on the
standard output when a file is not found, etc. Listing 7-14 contains the code for a FileUtil class that you will use in
the example programs.

Listing 7-14. A Utility Class Containing Convenience Methods to Work with I/O Classes

// FileUtil.java
package com.jdojo.io;

import java.io.Closeable;
import java.io.IOException;

public class FileUtil {
 // Prints the location details of a file

Chapter 7 ■ Input/Output

305

 public static void printFileNotFoundMsg(String fileName) {
 String workingDir = System.getProperty("user.dir");
 System.out.println("Could not find the file '" +
 fileName + "' in '" + workingDir + "' directory ");
 }

 // Closes a Closeable resource such as an input/output stream
 public static void close(Closeable resource) {
 if (resource != null) {
 try {
 resource.close();
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }
 }
}

Completing the Example
Listing 7-15 illustrates the steps involved in reading the file luci1.txt. If you receive an error message indicating that
the file does not exist, it will also print the directory where it is expecting the file. You may use an absolute path of the
source file instead of a relative path by replacing the statement

String srcFile = "luci1.txt";

with

// Absolute path like c:\smith\luci1.txt on Windows or /users/smith/luci1.txt
// on UNIX. Note that you must use "c:\\smith\\luci1.txt"
// (two backslashes to escape a backslash) when you construct a string that
// contains a backslash
String srcFile = "absolute path of luci1.txt file";

By simply using luci1.txt as the data source file path, the program expects that the file is present in your current
working directory when you run the program.

Listing 7-15. Reading a Byte at a Time from a File Input Stream

// SimpleFileReading.java
package com.jdojo.io;

import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;

public class SimpleFileReading {
 public static void main(String[] args) {
 String dataSourceFile = "luci1.txt";
 try (FileInputStream fin = new FileInputStream(dataSourceFile)) {

Chapter 7 ■ Input/Output

306

 byte byteData;
 while ((byteData = (byte) fin.read()) != -1) {
 System.out.print((char) byteData);
 }
 }
 catch (FileNotFoundException e) {
 FileUtil.printFileNotFoundMsg(dataSourceFile);
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }
}

STRANGE fits of passion have I known:
And I will dare to tell,
But in the lover's ear alone,
What once to me befell.

Writing Data to a File Using an Output Stream
In this section, I will show you how to write a stanza from the poem Lucy by William Wordsworth to a file named
luci2.txt. The stanza is as follows:

When she I loved look'd every day
Fresh as a rose in June,
I to her cottage bent my way,
Beneath an evening moon.

The following steps are needed to write to the file:

Identify the data sink, which is the file to which the data will be written.•	

Create an output stream using the file.•	

Write the data to the file using the output stream.•	

Flush the output stream.•	

Close the output stream.•	

Identifying the Data Sink
Your data sink could be simply the file path as a string or a File object representing the pathname of the file. Let’s
assume that the luci2.txt file is in the current working directory.

// The data sink
String destFile = "luci2.txt";

Chapter 7 ■ Input/Output

307

Creating the Output Stream
To write to a file, you need to create an object of the FileOutputStream class, which will represent the output stream.

// Create a file output stream
FileOutputStream fos = new FileOutputStream(destFile);

When the data sink for an output stream is a file, Java tries to create the file if the file does not exist. Java may
throw a FileNotFoundException if the file name that you have used is a directory name, or if it could not open the file
for any reason. You must be ready to handle this exception by placing your code in a try-catch block, as shown:

try {
 FileOutputStream fos = new FileOutputStream(srcFile);
}
catch (FileNotFoundException e){
 // Error handling code goes here
}

If your file contains data at the time of creating a FileOutputStream, the data will be erased. If you want to keep
the existing data and append the new data to the file, you need to use another constructor of the FileOutputStream
class, which accepts a boolean flag for appending the new data to the file.

// To append data to the file, pass true in the second argument
FileOutputStream fos = new FileOutputStream(destFile, true);

Writing the Data
Write data to the file using the output stream. The FileOutputStream class has an overloaded write() method to
write data to a file. You can write one byte or multiple bytes at a time using the different versions of this method.
You need to place the code for writing data to the output stream in a try-catch block because it may throw an
IOException if data cannot be written to the file.

Typically, you write binary data using a FileOutputStream. If you want to write a string such as “Hello” to the
output stream, you need to convert the string to bytes. The String class has a getBytes() method that returns an
array of bytes that represents the string. You write a string to the FileOutputStream as follows:

String text = "Hello";
byte[] textBytes = text.getBytes();
fos.write(textBytes);

You want to write four lines of text to luci2.txt. You need to insert a new line after every line for the first three
lines of text. A new line is different on different platforms. You can get a new line for the platform on which your
program is running by reading the line.separator system variable as follows:

// Get the newline for the platform
String lineSeparator = System.getProperty("line.separator");

Note that a line separator may not necessarily be one character. To write a line separator to a file output stream,
you need to convert it to a byte array and write that byte array to the file as follows:

fos.write(lineSeparator.getBytes());

Chapter 7 ■ Input/Output

308

Flushing the Output Stream
You need to flush the output stream using the flush() method.

// Flus the output stream
fos.flush();

Flushing an output stream indicates that if any written bytes were buffered, they may be written to the data sink.
For example, if the data sink is a file, you write bytes to a FileOutputStream, which is an abstraction of a file. The
output stream passes the bytes to the operating system, which is responsible for writing them to the file. For a file
output stream, if you call the flush() method, the output stream passes the bytes to the operating system for writing.
It is up to the operating system when it writes the bytes to the file, If an implementation of an output stream buffers
the written bytes, it flushes the bytes automatically when its buffer is full or when you close the output stream by
calling its close() method.

Closing the Output Steam
Closing an output stream is similar to closing an input stream. You need to close the output stream using its close()
method.

// Close the output stream
fos.close();

The close() method may throw an IOException. Use a try-with-resources to create an output stream if you
want tit to be closed automatically.

Completing the Example
Listing 7-16 illustrates the steps involved in writing to a file named luci2.txt. If the file does not exist in your current
directory, the program will create it. If it exists, it will be overwritten. The file path displayed in the output may be
different when you run the program.

Listing 7-16. Writing Bytes to a File Output Stream

// SimpleFileWriting.java
package com.jdojo.io;

import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;

public class SimpleFileWriting {
 public static void main(String[] args) {
 String destFile = "luci2.txt";

 // Get the line separator for the current platform
 String lineSeparator = System.getProperty("line.separator");

 String line1 = "When she I loved look'd every day";
 String line2 = "Fresh as a rose in June," ;

Chapter 7 ■ Input/Output

309

 String line3 = "I to her cottage bent my way,";
 String line4 = "Beneath an evening moon.";

 try (FileOutputStream fos = new FileOutputStream(destFile)){
 // Write all four lines to the output stream as bytes
 fos.write(line1.getBytes());
 fos.write(lineSeparator.getBytes());

 fos.write(line2.getBytes());
 fos.write(lineSeparator.getBytes());

 fos.write(line3.getBytes());
 fos.write(lineSeparator.getBytes());

 fos.write(line4.getBytes());

 // Flush the written bytes to the file
 fos.flush();

 // Display the output file path
 System.out.println("Text has been written to " +
 (new File(destFile)).getAbsolutePath());
 }
 catch (FileNotFoundException e1) {
 FileUtil.printFileNotFoundMsg(destFile);
 }
 catch (IOException e2) {
 e2.printStackTrace();
 }
 }
}

Text has been written to C:\book\javabook\luci2.txt

Input Stream Meets the Decorator Pattern
Figure 7-5 depicts the class diagram that includes some commonly used input stream classes. You can refer to the
API documentation of the java.io package for the complete list of the input stream classes. The comments in the
class diagram compare input stream classes with the classes in the decorator pattern. Notice that the class diagram
for the input streams is similar to the class diagram for your drink application, which was also based on the decorator
pattern. Table 7-1 compares the classes in the decorator pattern, the drink application, and the input streams.

Chapter 7 ■ Input/Output

310

The abstract base component is the InputStream class, which is similar to the Drink class. You have concrete
component classes of FileInputStream, ByteArrayInputStream, and PipedInputStream, which are similar to the
Rum, Vodka, and Whiskey classes. You have a FilterInputStream class, which is similar to the DrinkDecorator
class. Notice the decorator class in the input stream family does not use the word “Decorator” in its class name; it
is named as FilterInputStream instead. It is also not declared abstract as you had declared the DrinkDecorator
class. Not declaring it abstract seems to be an inconsistency in the class design. You have concrete decorator classes
of BufferedInputStream, DataInputStream, and PushbackInputStream, which are similar to the Honey and Spices
classes in the drink application. One noticeable difference is that the ObjectInputStream class is a concrete decorator
and it is inherited from the abstract component InputStream, not from the abstract decorator FilterInputStream.
Note that the requirement for a concrete decorator is that it should have the abstract component class in its
immediate or non-immediate superclass and it should have a constructor that accepts an abstract component as its
argument. The ObjectInputStream class fulfills these requirements.

Table 7-1. Comparing the Class Design in the Decorator Pattern, the Drink Application, and Input Streams

Decorator Pattern Drink Application Input Stream

Component Drink InputStream

ConcreteComponentA
ConcreteComponentB

Rum
Vodka
Whisky

FileInputStream
ByteArrayInputStream
PipedInputStream

Decorator DrinkDecorator FilterInputStream

ConcreteDecoratorA
ConcreteDecoratorB

Honey
Spices

BufferedInputStream
PushbackInputStream
DataInputStream
ObjectInputStream

Figure 7-5. Commonly used classes for input streams compared with the decorator pattern

Chapter 7 ■ Input/Output

311

Once you understand that the class design for input streams in Java I/O is based on the decorator pattern, it
should be easy to construct an input stream using these classes. The superclass InputStream contains the basic
methods to read data from an input stream, which are supported by all concrete component classes as well as all
concrete decorator classes. The basic operation on an input stream is to read data from it. Some important methods
defined in the InputStream class are listed in Table 7-2. Note that you have already used two of these methods, read()
and close(), in the SimpleFileReading class to read data from a file.

Table 7-2. Some Important Methods of the InputStream Class

Method Description

read() Reads one byte from the input stream and returns the read byte as an int. It
returns –1 when the end of the input stream is reached.

read(byte[] buffer) Reads maximum up to the length of the specified buffer. It returns the number of
bytes read in the buffer. It returns –1 if the end of the input stream is reached.

read(byte[] buffer,
int offset, int length)

Reads maximum up to the specified length bytes. The data is written in the
buffer starting from the offset index. It returns the number of bytes read or –1 if
the end of the input stream is reached.

Note: The read() method blocks until the input data is available for reading, the end of the input stream is reached,
or an exception is thrown.

close() Closes the input stream

available() Returns the estimated number of bytes that can be read from this input stream
without blocking.

Let’s briefly discuss the four input stream concrete decorators: BufferedInputStream, PushbackInputStream,
DataInputStream, and ObjectInputStream. I will discuss BufferedInputStream and PushbackInputStream in this
section. I will discuss DataInputStream in the “Reading and Writing Primitive Data Types” section. I will discuss
ObjectInputStream in the “Object” section.

BufferedInputStream
A BufferedInputStream adds functionality to an input stream by buffering the data. It maintains an internal
buffer to store bytes read from the underlying input stream. When bytes are read from an input stream, the
BufferedInputStream reads more bytes than requested and buffers them in its internally maintained buffer. When a
byte read is requested, it checks if the requested byte already exists in its buffer. If the requested byte exists in its buffer,
it returns the byte from its buffer. Otherwise, it reads some more bytes in its buffer and returns only the requested
bytes. It also adds support for the mark and reset operations on an input stream to let you reread bytes from an input
stream. The main benefit of using BufferedInputStream is faster speed because of buffering.

Listing 7-17 demonstrates how to use a BufferedInputStream to read contents of a file. The code in this
listing reads the text in the luci1.txt file. The only difference between SimpleFileReading in Listing 7-15 and
BufferedFileReading in Listing 7-17 is that the latter uses a decorator BufferedInputStream for a FileInputStream
and the former simply uses a FileInputStream. In SimpleFileReading, you construct the input stream as follows:

String srcFile = "luci1.txt";
FileInputStream fis = new FileInputStream(srcFile);

Chapter 7 ■ Input/Output

312

In BufferedFileReading, you construct the input stream as follows:

String srcFile = "luci1.txt";
BufferedInputStream bis = new BufferedInputStream(new FileInputStream(srcFile));

You may not find any noticeable speed gain using BufferedFileReading over SimpleFileReading in this
example because the file size is small. You are reading one byte at a time in both examples to keep the code simpler to
read. You should be using another version of the read() method of the input stream so you can read more bytes at a
time.

Listing 7-17. Reading from a File Using a BufferedInputStream for Faster Speed

// BufferedFileReading.java
package com.jdojo.io;

import java.io.BufferedInputStream;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;

public class BufferedFileReading {
 public static void main(String[] args) {
 String srcFile = "luci1.txt";

 try (BufferedInputStream bis =
 new BufferedInputStream(new FileInputStream(srcFile))) {
 // Read one byte at a time and display it
 byte byteData;
 while ((byteData = (byte) bis.read()) != -1) {
 System.out.print((char) byteData);
 }
 }
 catch (FileNotFoundException e1) {
 FileUtil.printFileNotFoundMsg(srcFile);
 }
 catch (IOException e2) {
 e2.printStackTrace();
 }
 }
}

STRANGE fits of passion have I known:
And I will dare to tell,
But in the lover's ear alone,
What once to me befell.

Chapter 7 ■ Input/Output

313

PushbackInputStream
A PushbackInputStream adds functionality to an input stream that lets you unread bytes (or push back the read bytes)
using its unread() method. There are three versions of the unread() method. One lets you push back one byte and
other two let you push back multiple bytes. If you call the read() method on the input stream after you have called
its unread() method, you will first read those bytes that you have pushed back. Once all unread bytes are read again,
you start reading fresh bytes from the input stream. For example, suppose your input stream contains a string of bytes,
HELLO. If you read two bytes, you would have read HE. If you call unread((byte)'E') to push back the last byte you
have read, the subsequent read will return E and the next reads will read LLO.

Listing 7-18 illustrates how to use the PushbackInputStream to unread bytes to the input stream and reread
them. This example reads the first stanza of the poem Lucy by William Wordsworth from the luci1.txt in the current
working directory. It reads each byte from the file twice as shown in the output. For example, STRANGE is read as
SSTTRRAANNGGEE. You may notice a blank line between two lines because each new line is read twice.

Listing 7-18. Using the PushbackInputStream Class

// PushbackFileReading.java
package com.jdojo.io;

import java.io.PushbackInputStream;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;

public class PushbackFileReading {
 public static void main(String[] args) {
 String srcFile = "luci1.txt";

 try (PushbackInputStream pis = new PushbackInputStream(
 new FileInputStream(srcFile))) {

 // Read one byte at a time and display it
 byte byteData;
 while ((byteData = (byte) pis.read()) != -1) {
 System.out.print((char) byteData);

 // Unread the last byte that we have just read
 pis.unread(byteData);

 // Reread the byte we unread (or pushed back)
 byteData = (byte) pis.read();
 System.out.print((char) byteData);
 }
 }
 catch (FileNotFoundException e1) {
 FileUtil.printFileNotFoundMsg(srcFile);
 }
 catch (IOException e2) {
 e2.printStackTrace();
 }
 }
}

Chapter 7 ■ Input/Output

314

SSTTRRAANNGGEE ffiittss ooff ppaassssiioonn hhaavvee II kknnoowwnn::
AAnndd II wwiillll ddaarree ttoo tteellll,,
BBuutt iinn tthhee lloovveerr''ss eeaarr aalloonnee,,
WWhhaatt oonnccee ttoo mmee bbeeffeellll..

Output Stream Meets the Decorator Pattern
Figure 7-6 depicts the class diagram that includes some commonly used output stream classes. You can refer to the
API documentation of the java.io package for the complete list of the output stream classes. The comments in the
class diagram compare the output stream classes with the classes required to implement the decorator pattern. Notice
that the class diagram for the output stream is similar to that of the input stream and the drink application.

Figure 7-6. Some commonly used classes for output streams compared with the decorator pattern

Most of the times, if you know the name of the input stream class, you can get the corresponding output stream
class by replacing the word “Input” in the class name with the word “Output.” For example, for the FileInputStream
class, you have a corresponding FileOutputStream class; for the BufferedInputStream class, you have a
corresponding BufferedOutputStream class, and so on. You may not find a corresponding output stream class for
every input stream class; for example, PushbackInputStream class has no corresponding output stream class. You may
find some new classes that are not in the input stream class hierarchy because they do not make sense while reading
data; for example, you have a new concrete decorator class PrintStream in the output stream class hierarchy. Table 7-3
compares the classes in the decorator pattern, your drink application, and the output streams.

Chapter 7 ■ Input/Output

315

There are three important methods defined in the abstract superclass OutputStream: write(), flush(), and
close(). The write() method is used to write bytes to an output stream. It has three versions that let you write one
byte or multiple bytes at a time. You used it to write data to a file in the SimpleFileWriting class in Listing 7-16. The
flush() method is used to flush any buffered bytes to the data sink. The close() method closes the output stream.

The technique to use concrete decorators with the concrete component classes for the output stream is the same
as for the input stream classes. For example, to use the BufferedOutputStream decorator for better speed to write to a
file, use the following statement:

BufferedOutputStream bos = new BufferedOutputStream(
 new FileOutputStream("your output file path")
);

To write data to a ByteArrayOutputStream, use

ByteArrayOutputStream baos = new ByteArrayOutputStream();
baos.write(buffer); // buffer is a byte array

ByteArrayOutputStream provides some important methods: reset(), size(), toString(), and writeTo().
The reset() method discards all bytes written to it; the size() method returns the number of bytes written to
the stream; the toString() method returns the string representation of the bytes in the stream; the writeTo()
method writes the bytes in the stream to another output stream. For example, if you have written some bytes to a
ByteArrayOutputStream called baos and want to write its content to a file represented by FileOutputStream named
fos, you would use the following statement:

// All bytes written to baos is written to fos
baos.writeTo(fos);

I will not discuss any more examples of writing to an output stream in this section. You can use
SimpleFileWriting class in Listing 7-16 as an example to use any other output stream. You can use any output
stream’s concrete decorators by using them as an enclosing object for a concrete component or another concrete
decorator. I will discuss DataOutputStream, ObjectOutputStream, and PrintStream classes with examples in
subsequent sections.

Table 7-3. Comparing Classes in the Decorator Pattern, the Drink Application, and the Output Streams

Decorator Pattern Drink Application Output Stream

Component Drink OutputStream

ConcreteComponentA
ConcreteComponentB

Rum
Vodka
Whisky

FileOutputStream
ByteArrayOutputStream
PipedOutputStream

Decorator DrinkDecorator FilterOutputStream

ConcreteDecoratorA
ConcreteDecoratorB

Honey
Spices

BufferedOutputStream
DataOutputStream
ObjectOutputStream

Chapter 7 ■ Input/Output

316

PrintStream
The PrintStream class is a concrete decorator for the output stream as shown in Figure 7-6. It adds the following
functionality to an output stream:

It contains methods that let you print any data type values, primitive or object, in a suitable •	
format for printing.

Its methods to write data to the output stream do not throw an •	 IOException. If a method call
throws an IOException, it sets an internal flag, rather than throwing the exception to the caller.
The flag can be checked using its checkError() method, which returns true if an IOException
occurs during the method execution.

It has an auto-flush capability. You can specify in its constructor that it should flush the •	
contents written to it automatically. If you set the auto-flush flag to true, it will flush its
contents when a byte array is written, one of its overloaded println() methods is used to
write data, a newline character is written, or a byte (‘\n’) is written.

Some of the important methods in PrintStream class are as follows:

•	 print(Xxx arg)

•	 println(Xxx arg)

•	 printf()

Here Xxx is any primitive data type (int, char, float, etc.), String, or Object.
The print(Xxx arg) method writes the specified arg value to the output stream in a printable format. For

example, you can use print(10) to write an integer to an output stream. Xxx also includes two reference types: String
and Object. If your argument is an object, the toString() method on that object is called, and the returned string is
written to the output stream. If the object type argument is null, a string “null” is written to the output stream. Note
that all input and output streams are byte based. When I mention that the print stream writes a “null” string to the
output stream, it means that the print stream converts the string “null” into bytes and writes those bytes to the output
stream. The character-to-byte conversion is done based on the platform’s default character encoding. You can also
provide the character encoding to use for such conversions in some of the constructors of the PrintStream class.

The println(XXX arg) method works like the print(XXX arg) method with one difference. It appends a line
separator string to the specified arg. That is, it writes an arg value and a line separator to the output stream. The
method println() with no argument is used to write a line separator to the output stream. The line separator is
platform dependent and it is determined by the system property line.separator.

The printf() method is used to write a formatted string to the output stream. For example, if you want to write a
string in the form "Today is: <<today's date>>" to a output stream, you can use its printf() method as follows:

// Assuming that date format is mm/dd/yyyy and ps is the PrintStream object reference
ps.printf("Today is: %1$tm/%1$td/%1$tY", new java.time.LocalDate.now());

Listing 7-19 illustrates how to use a PrintStream to write to a file. It writes another stanza from the poem Lucy
by William Wordsworth to a file named luci3.txt. The contents of the file after you run this program would be as
follows:

Upon the moon I fix'd my eye,
All over the wide lea;
With quickening pace my horse drew nigh
Those paths so dear to me.

Chapter 7 ■ Input/Output

317

Listing 7-19 is very similar in structure to Listing 7-16. It creates a PrintStream object using the data sink file
name. You can also create a PrintStream object using any other OutputStream object. You may notice that you do
not have to handle the IOException in the catch block because unlike another output stream, a PrintStream object
does not throw this exception. In addition, you use the println() and print() methods to write the four lines of text
without worrying about converting them to bytes. If you want to use auto-flush in this program, you need to create the
PrintStream object using another constructor as in

boolean autoFlush = true;
PrintStream ps = new PrintStream(new FileOutputStream(destFile), autoFlush);

Listing 7-19. Using the PrintStream Class to Write to a File

// FileWritingWithPrintStream.java
package com.jdojo.io;

import java.io.File;
import java.io.FileNotFoundException;
import java.io.PrintStream;

public class FileWritingWithPrintStream {
 public static void main(String[] args) {
 String destFile = "luci3.txt";

 try (PrintStream ps = new PrintStream(destFile)) {
 // Write data to the file. println() appends a new line
 // and print() does not apend a new line
 ps.println("Upon the moon I fix'd my eye,");
 ps.println("All over the wide lea;");
 ps.println("With quickening pace my horse drew nigh");
 ps.print("Those paths so dear to me.");

 // flush the print stream
 ps.flush();

 System.out.println("Text has been written to " +
 (new File(destFile).getAbsolutePath()));
 }
 catch (FileNotFoundException e1) {
 FileUtil.printFileNotFoundMsg(destFile);
 }
 }
}

Text has been written to C:\book\javabook\luci3.txt

Chapter 7 ■ Input/Output

318

Using Pipes
A pipe connects an input stream and an output stream. A piped I/O is based on the producer-consumer pattern,
where the producer produces data and the consumer consumes the data, without caring about each other. It works
similar to a physical pipe, where you inject something at one end and gather it at the other end. In a piped I/O,
you create two streams representing two ends of the pipe. A PipedOutputStream object represents one end and a
PipedInputStream object the other end. You connect the two ends using the connect() method on the either object.
You can also connect them by passing one object to the constructor when you create another object. You can imagine
the logical arrangement of a piped input stream and a piped output stream as depicted in Figure 7-7.

PipedOutputStream
(Write data to it)

Pipe
(The connection)

PipedInputStream
(Read data from it)

Figure 7-7. The logical arrangement of piped input and output streams

The following snippet of code shows two ways of creating and connecting the two ends of a pipe:

// Method #1: Create piped input and output streams and connect them
PipedInputStream pis = new PipedInputStream();
PipedOutputStream pos = new PipedOutputStream();
pis.connect(pos); /* Connect the two ends */

// Method #1: Create piped input and output streams and connect them
PipedInputStream pis = new PipedInputStream();
PipedOutputStream pos = new PipedOutputStream(pis);

You can produce and consume data after you connect the two ends of the pipe. You produce data by using
one of the write() methods of the PipedOutputStream object. Whatever you write to the piped output stream
automatically becomes available to the piped input stream object for reading. You use the read() method of
PipedInputStream to read data from the pipe. The piped input stream is blocked if data is not available when it
attempts to read from the pipe.

Have you wondered where the data is stored when you write it to a piped output stream? Similar to a physical
pipe, a piped stream has a buffer with a fixed capacity to store data between the time it is written to and read from
the pipe. You can set the pipe capacity when you create it. If a pipe’s buffer is full, an attempt to write on the pipe
will block.

// Create piped input and output streams with the buffer capacity of 2048 bytes
PipedOutputStream pos = new PipedOutputStream();
PipedInputStream pis = new PipedInputStream(pos, 2048);

Chapter 7 ■ Input/Output

319

Tip ■ typically, a pipe is used to transfer data from one thread to another. One thread will produce data and another
thread will consume the data. note that the synchronization between two threads is taken care of by the blocking read
and write.

Listing 7-20 demonstrates how to use a piped I/O. The main() method creates and connects a piped input and
a piped output stream. The piped output stream is passed to the produceData() method, producing numbers from 1
to 50. The thread sleeps for a half second after producing a number. The consumeData() method reads data from the
piped input stream. I used a quick and dirty way of handling the exceptions to keep the code smaller and readable.
Data is produced and read in two separate threads.

Listing 7-20. Using Piped Input and Output Streams

// PipedStreamTest.java
package com.jdojo.io;

import java.io.PipedInputStream;
import java.io.PipedOutputStream;

public class PipedStreamTest {
 public static void main(String[] args) throws Exception {
 // Create and connect piped input and output streams
 PipedInputStream pis = new PipedInputStream();
 PipedOutputStream pos = new PipedOutputStream();
 pos.connect(pis);

 // Creates and starts two threads, one to produce data (write data)
 // and one to consume data (read data)
 Runnable producer = () -> produceData(pos);
 Runnable consumer = () -> consumeData(pis);
 new Thread(producer).start();
 new Thread(consumer).start();
 }

 public static void produceData(PipedOutputStream pos) {
 try {
 for (int i = 1; i <= 50; i++) {
 pos.write((byte) i);
 pos.flush();
 System.out.println("Writing: " + i);
 Thread.sleep(500);
 }
 pos.close();
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }

Chapter 7 ■ Input/Output

320

 public static void consumeData(PipedInputStream pis) {
 try {
 int num = -1;
 while ((num = pis.read()) != -1) {
 System.out.println("Reading: " + num);
 }
 pis.close();
 }
 catch (Exception e) {
 e.printStackTrace();
 }

 }
}

Writing: 1
Reading: 1
...
Writing: 50
Reading: 50

Reading and Writing Primitive Data Types
An object of the DataInputStream class is used to read Java primitive data type values in a machine-independent way
from an input stream. An object of the DataOutputStream class is used to write Java primitive data type values in a
machine-independent way to an output stream.

The DataInputStream class contains readXxx() methods to read a value of data type Xxx, where Xxx is a Java
primitive data type such as int, char, etc. For example, to read an int value, it contains a readInt() method; to read a
char value, it has a readChar() method, etc. It also supports reading strings using the readUTF() method.

The DataOutputStream class contains a writeXxx(Xxx value) method corresponding to each the readXxx()
method of the DataInputStream class, where Xxx is a Java primitive data type. It supports writing a string to an output
stream using the writeUTF(String text) method. Note that these classes are concrete decorators, which provide
you a convenient way to read and write Java primitive data type values and strings using input and output streams,
respectively. You must have an underlying concrete component linked to a data source or a data sink to use these
classes. For example, to write Java primitive data type values to a file named primitives.dat, you construct an object
of DataOutputStream as follows:

DataOutputStream dos = new DataOutputStream(new FileOutputStream("primitives.dat"));

Listing 7-21 writes an int value, a double value, a boolean value, and a string to a file named primitives.dat.
The file path in the output may be different when you run this program. Listing 7-22 reads those values back. Note that
you must read the values using DataInputStream in the same order they were written using DataOutputStream. You
need to run the WritingPrimitives class before you run the ReadingPrimitives class.

Chapter 7 ■ Input/Output

321

Listing 7-21. Writing Java Primitive Values and Strings to a File

// WritingPrimitives.java
package com.jdojo.io;

import java.io.DataOutputStream;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;

public class WritingPrimitives {
 public static void main(String[] args) {
 String destFile = "primitives.dat";

 try (DataOutputStream dos = new DataOutputStream(
 new FileOutputStream(destFile))) {

 // Write some primitive values and a string
 dos.writeInt(765);
 dos.writeDouble(6789.50);
 dos.writeBoolean(true);
 dos.writeUTF("Java Input/Output is cool!");

 // Flush the written data to the file
 dos.flush();

 System.out.println("Data has been written to " +
 (new File(destFile)).getAbsolutePath());
 }
 catch (FileNotFoundException e) {
 FileUtil.printFileNotFoundMsg(destFile);
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }
}

Data has been written to C:\book\javabook\primitives.dat

Listing 7-22. Reading Primitive Values and Strings from a File

// ReadingPrimitives.java
package com.jdojo.io;

import java.io.IOException;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.DataInputStream;

Chapter 7 ■ Input/Output

322

public class ReadingPrimitives {
 public static void main(String[] args) {
 String srcFile = "primitives.dat";

 try (DataInputStream dis = new DataInputStream(
 new FileInputStream(srcFile))) {
 // Read the data in the same order they were written
 int intValue = dis.readInt();
 double doubleValue = dis.readDouble();
 boolean booleanValue = dis.readBoolean();
 String msg = dis.readUTF();

 System.out.println(intValue);
 System.out.println(doubleValue);
 System.out.println(booleanValue);
 System.out.println(msg);
 }
 catch (FileNotFoundException e) {
 FileUtil.printFileNotFoundMsg(srcFile);
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }
}

765
6789.5
true
Java Input/Output is cool!

Object Serialization
You create an object using the new operator. For example, if you have a Person class that accepts a person’s name,
gender, and height as arguments in its constructor, you can create a Person object as follows:

Person john = new Person("John", "Male", 6.7);

What would you do if you wanted to save the object john to a file and later restore it in memory without using the
new operator again? You have not learned how to do it yet. This is the subject of the discussion in this section.

The process of converting an object in memory to a sequence of bytes and storing the sequence of bytes in a
storage medium such as a file is called object serialization. You can store the sequence of bytes to permanent storage
such as a file or a database. You can also transmit the sequence of bytes over a network. The process of reading
the sequence of bytes produced by a serialization process and restoring the object back in memory is called object
deserialization. The serialization of an object is also known as deflating or marshalling the object. The deserialization
of an object is also known as inflating or unmarshalling the object. You can think of serialization as writing an object
from memory to a storage medium and deserialization as reading an object into memory from a storage medium.

Chapter 7 ■ Input/Output

323

An object of the ObjectOutputStream class is used to serialize an object. An object of the ObjectInputStream
class is used to deserialize an object. You can also use objects of these classes to serialize values of the primitive data
types such as int, double, boolean, etc.

The ObjectOutputStream and ObjectInputStream classes are the concrete decorator classes for output and
input streams, respectively. However, they are not inherited from their abstract decorator classes. They are inherited
from their respective abstract component classes. ObjectOutputStream is inherited from OutputStream and
ObjectInputStream is inherited from InputStream. This seems to be an inconsistency. However, this still fits into the
decorator pattern.

Your class must implement the Serializable or Externalizable interface to be serialized or deserialized. The
Serializable interface is a marker interface. If you want the objects of a Person class to be serialized, you need to
declare the Person class as follows:

public class Person implements Serializable {
 // Code for the Person class goes here
}

Java takes care of the details of reading/writing a Serializable object from/to a stream. You just need to pass the
object to write/read to/from a stream to one of the methods of the stream classes.

Implementing the Externalizable interface gives you more control in reading and writing objects from/to a
stream. It inherits the Serializable interface. It is declared as follows:

public interface Externalizable extends Serializable {
 void readExternal(ObjectInput in) throws IOException, ClassNotFoundException;
 void writeExternal(ObjectOutput out) throws IOException;
}

Java calls the readExternal() method when you read an object from a stream. It calls the writeExternal()
method when you write an object to a stream. You have to write the logic to read and write an object’s fields inside the
readExternal() and writeExternal() methods, respectively. Your class implementing the Externalizable interface
looks like the following:

public class Person implements Externalizable {
 public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException {
 // Write the logic to read the Person object fields from the stream
 }

 public void writeExternal(ObjectOutput out) throws IOException {
 // Write the logic to write Person object fields to the stream
 }
}

Serializing Objects
To serialize an object, you need to perform the following steps:

Have the references of the objects to be serialized.•	

Create an object output stream for the storage medium to which the objects will be written.•	

Write objects to the output stream.•	

Close the object output stream.•	

Chapter 7 ■ Input/Output

324

Create an object of the ObjectOutputStream class by using it as a decorator for another output stream that
represents the storage medium to save the object. For example, to save an object to a person.ser file, create an object
output stream as follows:

// Create an object output stream to write objects to a file
ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream("person.ser"));

To save an object to a ByteArrayOutputStream, you construct an object output stream as follows:

// Creates a byte array output stream to write data to
ByteArrayOutputStream baos = new ByteArrayOutputStream();

// Creates an object output stream to write objects to the byte array output stream
ObjectOutputStream oos = new ObjectOutputStream(baos);

Use the writeObject() method of the ObjectOutputStream class to serialize the object by passing the object
reference as an argument, like so:

// Serializes the john object
oos.writeObject(john);

Finally, use the close() method to close the object output stream when you are done writing all objects to it:

// Close the object output stream
oos.close();

Listing 7-23 defines a Person class that implements the Serializable interface. The Person class contains three
fields: name, gender, and height. It overrides the toString() method and returns the Person description using the
three fields. I have not added getters and setters for the fields in the Person class to keep the class short and simple.
Listing 7-24 demonstrates how to write Person objects to a person.ser file. The output displays the objects written to
the file and the absolute path of the file, which may be different on your machine.

Listing 7-23. A Person Class That Implements the Serializable Interface

// Person.java
package com.jdojo.io;

import java.io.Serializable;

public class Person implements Serializable {
 private String name = "Unknown";
 private String gender = "Unknown" ;
 private double height = Double.NaN;

 public Person(String name, String gender, double height) {
 this.name = name;
 this.gender = gender;
 this.height = height;
 }

Chapter 7 ■ Input/Output

325

 @Override
 public String toString() {
 return "Name: " + this.name + ", Gender: " + this.gender +
 ", Height: " + this.height;
 }
}

Listing 7-24. Serializing an Object

// PersonSerializationTest.java
package com.jdojo.io;

import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectOutputStream;

public class PersonSerializationTest {
 public static void main(String[] args) {
 // Create three Person objects
 Person john = new Person("John", "Male", 6.7);
 Person wally = new Person("Wally", "Male", 5.7);
 Person katrina = new Person("Katrina", "Female", 5.4);

 // The output file
 File fileObject = new File("person.ser");

 try (ObjectOutputStream oos =
 new ObjectOutputStream(new FileOutputStream(fileObject))) {

 // Write (or serialize) the objects to the object output stream
 oos.writeObject(john);
 oos.writeObject(wally);
 oos.writeObject(katrina);

 // Display the serialized objects on the standard output
 System.out.println(john);
 System.out.println(wally);
 System.out.println(katrina);

 // Print the output path
 System.out.println("Objects were written to " +
 fileObject.getAbsolutePath());
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }
}

Chapter 7 ■ Input/Output

326

Name: John, Gender: Male, Height: 6.7
Name: Wally, Gender: Male, Height: 5.7
Name: Katrina, Gender: Female, Height: 5.4
Objects were written to C:\book\javabook\person.ser

Deserializing Objects
It is time to read the objects back from the person.ser file. Reading a serialized object is just the opposite of
serializing it. To deserialize an object, you need to perform the following steps:

Create an object input stream for the storage medium from which objects will be read.•	

Read the objects.•	

Close the object input stream.•	

Create an object of the ObjectInputStream class by using it as a decorator for another input stream that
represents the storage medium where serialized objects are stored. For example, to read an object from a person.ser
file, create an object input stream as follows:

// Create an object input stream to read objects from a file
ObjectInputStream ois = new ObjectInputStream(new FileInputStream("person.ser"));

To read objects from a ByteArrayInputStream, create an object output stream as follows:

// Create an obejct input stream to read obejcts from a byte array input stream
ObjectInputStream ois = new ObjectInputStream(Byte-Array-Input-Stream-Reference);

Use the readObject() method of the ObjectInputStream class to deserialize the object, like so:

// Read an object from the stream
Object obj = oos.readObject();

Make sure to call the readObject() method to read objects in the same order you called the writeObject()
method to write objects. For example, if you wrote three pieces of information in the order object-1, a float, and
object-2, you must read them in the same order: object-1, a float, and object-2.

Finally, close the object input stream as follows:

// Close the object input stream
ois.close();

Listing 7-25 demonstrates how to read objects from the person.ser file. Make sure that the person.ser file exists
in your current directory. Otherwise, the program will print an error message with the expected location of this file.

Listing 7-25. Reading Objects from a File

// PersonDeserializationTest.java
package com.jdojo.io;

import java.io.File;
import java.io.FileInputStream;

Chapter 7 ■ Input/Output

327

import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.ObjectInputStream;

public class PersonDeserializationTest {
 public static void main(String[] args) {
 // The input file
 File fileObject = new File("person.ser");

 try (ObjectInputStream ois =
 new ObjectInputStream(new FileInputStream(fileObject))) {

 // Read (or deserialize) the three objects
 Person john = (Person)ois.readObject();
 Person wally = (Person)ois.readObject();
 Person katrina = (Person)ois.readObject();

 // Let's display the objects that are read
 System.out.println(john);
 System.out.println(wally);
 System.out.println(katrina);

 // Print the input path
 System.out.println("Objects were read from " +
 fileObject.getAbsolutePath());
 }
 catch(FileNotFoundException e) {
 FileUtil.printFileNotFoundMsg(fileObject.getPath());
 }
 catch(ClassNotFoundException | IOException e) {
 e.printStackTrace();
 }
 }
}

Name: John, Gender: Male, Height: 6.7
Name: Wally, Gender: Male, Height: 5.7
Name: Katrina, Gender: Female, Height: 5.4
Objects were read from C:\book\javabook\person.ser

Externalizable Object Serialization
In the previous sections, I showed you how to serialize and deserialize Serializable objects. In this section, I will
show you how to serialize and deserialize Externalizable objects. I have modified the Person class to implement the
Externalizable interface. The new class is called PersonExt and is shown in Listing 7-26.

Chapter 7 ■ Input/Output

328

Listing 7-26. A PersonExt Class That Implements the Externalizable Interface

// PersonExt.java
package com.jdojo.io;

import java.io.Externalizable;
import java.io.IOException;
import java.io.ObjectInput;
import java.io.ObjectOutput;

public class PersonExt implements Externalizable {
 private String name = "Unknown";
 private String gender = "Unknown" ;
 private double height = Double.NaN;

 // We must define a no-arg constructor for this class. It is
 // used to construct the object during deserialization process
 // before the readExternal() method of this class is called
 public PersonExt() {
 }

 public PersonExt(String name, String gender, double height) {
 this.name = name;
 this.gender = gender;
 this.height = height;
 }

 // Override the toString() method to return the person description
 public String toString() {
 return "Name: " + this.name + ", Gender: " + this.gender +
 ", Height: " + this.height ;
 }

 public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException {
 // Read name and gender in the same order they were written
 this.name = in.readUTF();
 this.gender = in.readUTF();
 }

 public void writeExternal(ObjectOutput out) throws IOException {
 // we write only the name and gender to the stream
 out.writeUTF(this.name);
 out.writeUTF(this.gender);
 }
}

Java will pass the reference of the object output stream and object input stream to the writeExternal() and
readExternal() methods of the PersonExt class, respectively.

In the writeExternal() method, you write the name and gender fields to the object output stream. Note that the
height field is not written to the object output stream. It means that you will not get the value of the height field back
when you read the object from the stream in the readExternal() method. The writeUTF() method is used to write
strings (name and gender) to the object output stream.

Chapter 7 ■ Input/Output

329

In the readExternal() method, you read the name and gender fields from the stream and set them in the name
and gender instance variables.

Listing 7-27 and Listing 7-28 contain the serialization and deserialization logic for PersonExt objects. The output
of Listing 7-28 demonstrates that the value of the height field is the default value (Double.NaN) after you deserialize a
PersonExt object.

Here are the steps to take to serialize and deserialize an object using Externalizable interface:

When you call the •	 writeObject() method to write an Externalizable object, Java writes the
identity of the object to the output stream, and calls the writeExternal() method of its class.
You write the data related to the object to the output stream in the writeExternal() method.
You have full control over what object-related data you write to the stream in this method. If
you want to store some sensitive data, you may want to encrypt it before you write it to the
stream and decrypt the data when you read it from the stream.

When you call the •	 readObject() method to read an Externalizable object, Java reads the
identity of the object from the stream. Note that for an Externalizable object, Java writes only
the object’s identity to the output stream, not any details about its class definition. It uses the
object class’s no-args constructor to create the object. This is the reason that you must provide
a no-args constructor for an Externalizable object. It calls the object’s readExternal()
method, so you can populate object’s fields values.

Listing 7-27. Serializing PersonExt Objects That Implement the Externalizable Interface

// PersonExtSerializationTest.java
package com.jdojo.io;

import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectOutputStream;

public class PersonExtSerializationTest {
 public static void main(String[] args) {
 // Create three Person objects
 PersonExt john = new PersonExt("John", "Male", 6.7);
 PersonExt wally = new PersonExt("Wally", "Male", 5.7);
 PersonExt katrina = new PersonExt("Katrina", "Female", 5.4);

 // The output file
 File fileObject = new File("personext.ser");

 try (ObjectOutputStream oos = new ObjectOutputStream (
 new FileOutputStream(fileObject))) {

 // Write (or serialize) the objects to the object output stream
 oos.writeObject(john);
 oos.writeObject(wally);
 oos.writeObject(katrina);

 // Display the serialized objects on the standard output
 System.out.println(john);
 System.out.println(wally);
 System.out.println(katrina);

Chapter 7 ■ Input/Output

330

 // Print the output path
 System.out.println("Objects were written to " +
 fileObject.getAbsolutePath());
 }
 catch(IOException e1) {
 e1.printStackTrace();
 }
 }
}

Name: John, Gender: Male, Height: 6.7
Name: Wally, Gender: Male, Height: 5.7
Name: Katrina, Gender: Female, Height: 5.4
Objects were written to C:\book\javabook\personext.ser

Listing 7-28. Deserializing PersonExt Objects That Implement the Externalizable Interface

// PersonExtDeserializationTest.java
package com.jdojo.io;

import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.ObjectInputStream;

public class PersonExtDeserializationTest {
 public static void main(String[] args) {
 // The input file
 File fileObject = new File("personext.ser");

 try (ObjectInputStream ois
 = new ObjectInputStream(new FileInputStream(fileObject))) {

 // Read (or deserialize) the three objects
 PersonExt john = (PersonExt) ois.readObject();
 PersonExt wally = (PersonExt) ois.readObject();
 PersonExt katrina = (PersonExt) ois.readObject();

 // Let's display the objects that are read
 System.out.println(john);
 System.out.println(wally);
 System.out.println(katrina);

 // Print the input path
 System.out.println("Objects were read from " +
 fileObject.getAbsolutePath());
 }
 catch (FileNotFoundException e) {

Chapter 7 ■ Input/Output

331

 FileUtil.printFileNotFoundMsg(fileObject.getPath());
 }
 catch (ClassNotFoundException | IOException e) {
 e.printStackTrace();
 }
 }
}

Name: John, Gender: Male, Height: NaN
Name: Wally, Gender: Male, Height: NaN
Name: Katrina, Gender: Female, Height: NaN
Objects were read from C:\book\javabook\personext.ser

For a Serializable object, the JVM serializes only instance variables that are not declared as transient. I will
discuss serializing transient variables in the next section. For an Externalizable object, you have full control over
what pieces of data are serialized.

Serialization of transient Fields
The keyword transient is used to declare a class’s field. As the literal meaning of the word “transient” implies, a
transient field of a Serializable object is not serialized. The following code for an Employee class declares the ssn
and salary fields as transient:

public class Employee implements Serializable {
 private String name;
 private String gender;
 private transient String ssn;
 private transient double salary;
}

The transient fields of a Serializable object are not serialized when you use the writeObject() method of the
ObjectOutputStream class.

Note that if your object is Externalizable, not Serializable, declaring a field transient has no effect because
you control what fields are serialized in the writeExternal() method. If you want transient fields of your class to be
serialized, you need to declare the class Externalizable and write the transient fields to the output stream in the
writeExternal() method of your class. I will not cover any examples of serializing transient fields because the logic
will be the same as shown in Listing 7-26, except that you will declare some instance variables as transient and write
them to the output stream in the writeExternal() method.

Advanced Object Serialization
The following sections discuss advanced serialization techniques. They are designed for experienced developers.
If you are a beginner or an intermediate level developer, you may skip the following sections; you should, however,
revisit them after you gain more experience with Java I/O.

Chapter 7 ■ Input/Output

332

Writing an Object More Than Once to a Stream
The JVM keeps track of object references it writes to the object output stream using the writeObject() method.
Suppose you have a PersonMutable object named john and you use an ObjectOutputStream object oos to write it to a
file as follows:

PersonMutable john = new PersonMutable("John", "Male", 6.7);
oos.writeObject(john);

At this time, Java makes a note that the object john has been written to the stream. You may want to change some
attributes of the john and write it to the stream again as follows:

john.setName("John Jacobs");
john.setHeight(5.9);
oos.writeObject(john);

At this time, Java does not write the john object to the stream. Rather, the JVM back references it to the john
object that you wrote the first time. That is, all changes made to the name and height fields are not written to the
stream separately. Both writes for the john object share the same object in the written stream. When you read the
objects back, both objects will have the same name, gender, and height.

An object is not written more than once to a stream to keep the size of the serialized objects smaller. Listing 7-29
shows this process. The MultipleSerialization class as shown in Listing 7-30, in its serialize() method, writes an
object, changes object’s attributes, and serializes the same object again. It reads the objects in its deserialize() method.
The output shows that Java did not write the changes made to the object when it wrote the object the second time.

Listing 7-29. A MutablePerson Class Whose Name and Height Can Be Changed

// MutablePerson.java
package com.jdojo.io;

import java.io.Serializable;

public class MutablePerson implements Serializable {
 private String name = "Unknown";
 private String gender = "Unknown" ;
 private double height = Double.NaN;

 public MutablePerson(String name, String gender, double height) {
 this.name = name;
 this.gender = gender;
 this.height = height;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getName() {
 return name;
 }

Chapter 7 ■ Input/Output

333

 public void setHeight(double height) {
 this.height = height;
 }

 public double getHeight() {
 return height;
 }

 public String toString() {
 return "Name: " + this.name + ", Gender: " + this.gender +
 ", Height: " + this.height ;
 }
}

Listing 7-30. Writing an Object Multiple Times to the Same Output Stream

// MultipleSerialization.java
package com.jdojo.io;

import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;

public class MultipleSerialization {
 public static void main(String[] args) {
 String fileName = "mutableperson.ser";

 // Write the same object twice to the stream
 serialize(fileName);

 System.out.println("--------------------------------------");

 // Read the two objects back
 deserialize(fileName);
 }

 public static void serialize(String fileName) {
 // Create a MutablePerson objects
 MutablePerson john = new MutablePerson("John", "Male", 6.7);

 File fileObject = new File(fileName);
 try (ObjectOutputStream oos =
 new ObjectOutputStream(new FileOutputStream(fileObject))) {

 // Let's display the objects we have serialized on the console
 System.out.println("Objects are written to " +
 fileObject.getAbsolutePath());

Chapter 7 ■ Input/Output

334

 // Write the john object first time to the stream
 oos.writeObject(john);
 System.out.println(john); // Display what we wrote

 // Change john object's name and height
 john.setName("John Jacobs");
 john.setHeight(6.9);

 // Write john object again with changed name and height
 oos.writeObject(john);
 System.out.println(john); // display what we wrote again

 }
 catch(IOException e1) {
 e1.printStackTrace();
 }
 }

 public static void deserialize(String fileName) {
 // personmutable.ser file must exist in the current directory
 File fileObject = new File(fileName);

 try (ObjectInputStream ois =
 new ObjectInputStream(new FileInputStream(fileObject))) {

 // Read the two objects that were written in the serialize() method
 MutablePerson john1 = (MutablePerson)ois.readObject();
 MutablePerson john2 = (MutablePerson)ois.readObject();

 // Display the objects
 System.out.println("Objects are read from " +
 fileObject.getAbsolutePath());
 System.out.println(john1);
 System.out.println(john2);
 }
 catch(IOException | ClassNotFoundException e) {
 e.printStackTrace();
 }
 }
}

Objects are written to C:\book\javabook\mutableperson.ser
Name: John, Gender: Male, Height: 6.7
Name: John Jacobs, Gender: Male, Height: 6.9

Objects are read from C:\book\javabook\mutableperson.ser
Name: John, Gender: Male, Height: 6.7
Name: John, Gender: Male, Height: 6.7

Chapter 7 ■ Input/Output

335

If you do not want Java to share an object reference, use the writeUnshared() method instead of the
writeObject() method of the ObjectOutputStream class to serialize an object. An object written using the
writeUnshared() method is not shared or back referenced by any subsequent call to the writeObject() method
or the writeUnshared() method on the same object. You should read the object that was written using the
writeUnshared() using the readUnshared() method of the ObjectInputStream class. If you replace the call to
writeObject() with writeUnshared() and the call to readObject() with readUnshared() in MutipleSerialization
class, you get the changed state of the object back when you read the object again.

You can control the serialization of a Serializable object in another way by defining a field named
serialPersistentFields, which is an array of ObjectStreamField objects. This field must be declared private,
static, and final. It declares that all the fields mentioned in this array are serializable. Note that this is just the
opposite of using the transient keyword with a field. When you use a transient keyword, you state that this field is
not serializable, whereas by declaring a serialPersistentFields array, you state that these fields are serializable.
The declaration of serialPersistentFields takes over the declaration of transient fields in a class. For example, if
you declare a field transient and include that field in the serialPersistentFields field, that field will be serialized.
The following snippet of code shows how to declare a serialPersistentFields field in a Person class:

class Person implements Serializable {
 private String name;
 private String gender;
 private double height;

 // Declare that only name and height fields are serializable
 private static final ObjectStreamField[] serialPersistentFields
 = {new ObjectStreamField("name", String.class),
 new ObjectStreamField("height", double.class)};
}

Class Evolution and Object Serialization
Your class may evolve (or change) over time. For example, you may remove an existing field or a method from a class.
You may add new fields or methods to a class. During an object serialization, Java uses a number that is unique for
the class of the object you serialize. This unique number is called the serial version unique ID (SUID). Java computes
this number by computing the hash code of the class definition. If you change the class definition such as by adding
new fields, the SUID for the class will change. When you serialize an object, Java also saves the class information to
the stream. When you deserialize the object, Java computes the SUID for the class of the object being deserialized by
reading the class definition from the stream. It compares the SUID computed from the stream with the SUID of the
class loaded into the JVM. If you change the definition of the class after you serialize an object of that class, the two
numbers will not match and you will get a java.io.InvalidClassException during the deserialization process. If
you never serialize the objects of your class or you never change your class definition after you serialize the objects
and before you deserialize them, you do not need to worry about the SUID of your class. What should you do to make
your objects deserialize properly, even if you change your class definition, after serializing objects of your class? You
should declare a private, static, and final instance variable in your class that must be of the long type and named
serialVersionUID.

public class MyClass {
 // Declare the SUID field. L in "801890L" denotes a long value
 private static final long serialVersionUID = 801890L;

 // More code goes here
}

Chapter 7 ■ Input/Output

336

The MyClass uses 801890 as the value for serialVersionUID. This number was chosen arbitrarily. It does not
matter what number you choose for this field. The JDK ships with a serialver tool that you can use to generate the
value for the serialVersionUID field of your class. You can use this tool at the command prompt as follows:

serialver -classpath <your-class-path> <your-class-name>

When you run this tool with your class name, it prints the declaration of the serialVersionUID field for your class
with the generated SUID for it. You just need to copy and paste that declaration into your class declaration.

Tip ■ Suppose you have a class that does not contain a serialVersionUID field and you have serialized its object. If
you change your class and try to deserialize the object, the Java runtime will print an error message with the expected
serialVersionUID. You need to add the serialVersionUID field in your class with the same value and try deserializing
the objects.

Stopping Serialization
How do you stop the serialization of objects of your class? Not implementing the Serializable interface in your class
seems to be an obvious answer. However, it is not a valid answer in all situations. For example, if you inherit your class
from an existing class that implements the Serializable interface, your class implements the Serializable interface
implicitly. This makes your class automatically serializable. To stop objects of your class from being serialized all the
time, you can add writeObject() and readObject() methods in your class. These methods should simply throw an
exception. Note that in Listing 7-31 you are implementing the Serializable interface and still it is not serializable
because you are throwing an exception in the readObject() and writeObject() methods.

Listing 7-31. Stopping a Class from Serializing

// NotSerializable.java
package com.jdojo.io;

import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serializable;

public class NotSerializable implements Serializable {
 private void readObject(ObjectInputStream ois)
 throws IOException, ClassNotFoundException {
 // Throw an exception
 throw new IOException("Not meant for serialization!!!");
 }

 private void writeObject(ObjectOutputStream os) throws IOException {
 // Throw an exception
 throw new IOException("Not meant for serialization!!!");
 }

 // Other code for the class goes here
}

Chapter 7 ■ Input/Output

337

Readers and Writers
Input and output streams are byte-based streams. In this section, I will discuss readers and writers, which are
character-based streams. A reader is used when you want to read character-based data from a data source. A writer is
used when you want to write character-based data to a data sink.

Figure 7-8 and Figure 7-9 show some classes, and the relationship between them, for the Reader and Writer stream
families. Recall that the input and output stream class names end with the words “InputStream” and “OutputStream,”
respectively. The Reader and Writer class names end with the words “Reader” and “Writer,” respectively.

Figure 7-8. Commonly used classes for Reader streams compared with the decorator pattern

Chapter 7 ■ Input/Output

338

Table 7-4 and Table 7-5 compare classes in byte-based and character-bases input/output streams.

Figure 7-9. Commonly used classes for Writer streams compared with the decorator pattern

Table 7-4. Comparing Classes in Byte-based and Character-based Input Streams

Byte-based Input Stream Class Character-based Input Stream Class

InputStream Reader

ByteArrayInputStream CharArrayReader

StringBufferInputStream StringReader

PipedInputStream PipedReader

FileInputStream FileReader

No corresponding class InputStreamReader

FilterInputStream FilterReader

BufferedInputStream BufferedReader

PushbackInputStream PushbackReader

DataInputStream No corresponding class

ObjectInputStream No corresponding class

Chapter 7 ■ Input/Output

339

Some of the classes in the byte-based input/output streams do not have the corresponding character-based
classes and vice versa. For example, reading and writing primitive data and objects are always byte-based; therefore,
you do not have any classes in the reader/writer class family corresponding to the data/object input/output streams.

I have discussed how to use the byte-based input/output classes in detail in the previous sections. You will find
the classes in the reader/writer and the input/output categories similar. They are also based on the decorator pattern.

In the reader class hierarchy, BufferedReader, which is a concrete decorator, is directly inherited from the Reader
class instead of the abstract decorator FilterReader class. In the writer class hierarchy, all concrete decorators have been
inherited from the Writer class instead of the FilterWriter. No concrete decorator inherits the FilterWriter class.

The two classes, InputStreamReader and OutputStreamWriter, in the reader/writer class family provide the
bridge between the byte-based and character-based streams. If you have an instance of InputStream and you
want to get a Reader from it, you can get that by using the InputStreamReader class. That is, you need to use the
InputStreamReader class if you have a stream that supplies bytes and you want to read characters by getting those
bytes decoded into characters for you. For example, if you have an InputStream object called iso, and you want to get
a Reader object instance, you can do so as follows:

// Create a Reader object from an InputStream object using the
// platform default encoding
Reader reader = new InputStreamReader(iso);

If you know the encoding used in the byte-based stream, you can specify it while creating a Reader object as follows:

// Create a Reader object from an InputStream using the "US-ASCII" encoding
Reader reader = new InputStreamReader(iso, "US-ASCII");

Similarly, you can create a Writer object to spit out characters from a bytes-based output stream as follows,
assuming that oso is an OutputStream object:

// Create a Writer object from OutputStream using the platform default encoding
Writer writer = new OutputStreamWriter(oso);

Table 7-5. Comparing Classes from Byte-based Output Streams and Character-based Output Streams

Byte-based Output Stream Class Character-based Output Stream Class

OutputStream Writer

ByteArrayOutputStream CharArrayWriter

No corresponding class StringWriter

PipedOutputStream PipedWriter

FileOutputStream FileWriter

No corresponding class OutputStreamWriter

FilterOutputStream FilterWriter

BufferedOutputStream BufferedWriter

DataOutputStream No corresponding class

ObjectOutputStream No corresponding class

PrintStream PrintWriter

Chapter 7 ■ Input/Output

340

// Create a Writer object from OutputStream using the "US-ASCII" encoding
Writer writer = new OutputStreamWriter(oso, "US-ASCII");

You do not have to write only a character at a time or a character array when using a writer. It has methods that let
you write a String and a CharSequence object.

Let’s write another stanza from the poem Lucy by William Wordsworth to a file and read it back into the program.
This time, you will use a BufferedWriter to write the text and a BufferedReader to read the text back. Here are the
four lines of text for the stanza:

And now we reach'd the orchard-plot;
And, as we climb'd the hill,
The sinking moon to Lucy's cot
Came near and nearer still.

The text is saved in a luci4.txt file in the current directory. Listing 7-32 illustrates how to use a Writer object
to write the text to this file. You may get a different output when you run the program because it prints the path of the
output file that depends on the current working directory.

Listing 7-32. Using a Writer Object to Write Text to a File

// FileWritingWithWriter.java
package com.jdojo.io;

import java.io.BufferedWriter;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileWriter;
import java.io.IOException;

public class FileWritingWithWriter {
 public static void main(String[] args) {
 // The output file
 String destFile = "luci4.txt";

 try (BufferedWriter bw = new BufferedWriter(new FileWriter(destFile))) {
 // Write the text to the writer
 bw.append("And now we reach'd the orchard-plot;");
 bw.newLine();
 bw.append("And, as we climb'd the hill,");
 bw.newLine();
 bw.append("The sinking moon to Lucy's cot");
 bw.newLine();
 bw.append("Came near and nearer still.");

 // Flush the written text
 bw.flush();

 System.out.println("Text was written to " +
 (new File(destFile)).getAbsolutePath());
 }
 catch (FileNotFoundException e1) {
 FileUtil.printFileNotFoundMsg(destFile);

Chapter 7 ■ Input/Output

341

 }
 catch (IOException e2) {
 e2.printStackTrace();
 }
 }
}

Text was written to C:\book\javabook\luci4.txt

If you compare the code in this listing to any other listings, which write data to a stream, you will not find any
basic differences. The differences lie only in using classes to construct the output stream. In this case, you used the
BufferedWriter and FileWriter classes to construct a Writer object. You used the append() method of the Writer
class to write the strings to the file. You can use the write() method or the append() method to write a string using a
Writer object. However, the append() method supports writing any CharSequence object to the stream whereas the
write() method supports writing only characters or a string. The BufferedWriter class provides a newLine() method
to write a platform specific new line to the output stream.

How would you read the text written to the file luci4.txt using a Reader object? It’s simple. Create a
BufferedReader object by wrapping a FileReader object and read one line of text at a time using its readLine()
method. The readLine() method considers a linefeed ('\n'), a carriage return ('\r'), and a carriage return
immediately followed by a linefeed as a line terminator. It returns the text of the line excluding the line terminator.
It returns null when the end of the stream is reached. The following is the snippet of code to read the text from the
luci4.txt file. You can write the full program as an exercise.

String srcFile = "luci4.txt";
BufferedReader br = new BufferedReader(new FileReader(srcFile));
String text = null;

while ((text = br.readLine()) != null) {
 System.out.println(text);
}

br.close();

Converting a byte-based stream to a character-based stream is straightforward. If you have an InputStream
object, you can get a Reader object by wrapping it inside an InputStreamReader object, like so:

InputStream is = create your InputStream object here;
Reader reader = new InputStreamReader(is);

If you want to construct a BufferedReader object from an InputStream object, you can do that as follows:

InputStream is = create your InputStream object here;
BufferedReader br = new BufferedReader(new InputStreamReader(is));

You can construct a Writer object from an OutputStream object as follows:

OutputStream os = create your OutputStream object here;
Writer writer = new OutputStreamWriter(os);

Chapter 7 ■ Input/Output

342

Custom Input/Output Streams
Can you have your own I/O classes? The answer is yes. How difficult is it to have your own I/O classes? It is not
that difficult if you understand the decorator pattern. Having your own I/O class is just a matter of adding a
concrete decorator class in the I/O class hierarchy. In this section, you will add a new reader class that is called
LowerCaseReader. It will read characters from a character-based stream and convert all characters to lowercase.

The LowerCaseReader class is a concrete decorator class in the Reader class family. It should inherit from the
FilterReader class. It needs to provide a constructor that will accept a Reader object.

public class LowerCaseReader extends FilterReader {
 public LowerCaseReader(Reader in) {
 // Code for the constructor goes here
 }
 // More code goes here
}

There are two versions of the read() method in the FilterReader class to read characters from a character-based
stream. You need to override just one version of the read() method as follows. All other versions of the read()
method delegate the reading job to this one.

public class LowerCaseReader extends FilterReader {
 public LowerCaseReader(Reader in) {
 // Code for the constructor goes here
 }

 @Override
 public int read(char[] cbuf, int off, int len) throws IOException {
 // Code goes here
 }
}

That is all it takes to have your own reader class. You can provide additional methods in your class, if needed.
For example, you may want to have a readLine() method that will read a line in lowercase. Alternatively, you
can also use the readLine() method of the BufferedReader class by wrapping an object of LowerCaseReader in a
BufferedReader object. Using the new class is the same as using any other reader class. You can wrap a concrete
reader component such as a FileReader or a concrete decorator such as a BufferedReader inside a LowerCaseReader
object. Alternatively, you can wrap a LowerCaseReader object inside any other concrete reader decorator such as a
BufferedReader.

Tip ■ the Reader class has four versions of the read() method. the read(), read(CharBuffer target), and
read(char[] cbuf) methods call the read(char[] cbuf, int off, int len) methods. therefore, you need to override
only the read(char[] cbuf, int off, int len) methods to implement your LowerCaseReader class.

Listing 7-33 has the complete code for the new LowerCaseReader class.

Chapter 7 ■ Input/Output

343

Listing 7-33. A Custom Java I/O Reader Class Named LowerCaseReader

// LowerCaseReader.java
package com.jdojo.io;

import java.io.Reader;
import java.io.FilterReader;
import java.io.IOException;

public class LowerCaseReader extends FilterReader{
 public LowerCaseReader(Reader in) {
 super(in);
 }

 @Override
 public int read(char[] cbuf, int off, int len) throws IOException {
 int count = super.read(cbuf, off, len);
 if (count != -1) {
 // Convert all read characters to lowercase
 int limit = off + count;
 for (int i = off; i < limit; i++) {
 cbuf[i] = Character.toLowerCase(cbuf[i]);
 }
 }
 return count;
 }
}

Listing 7-34 shows how to use your new class. It reads from the file luci4.txt. It reads the file twice: the first
time by using a LowerCaseReader object and the second time by wrapping a LowerCaseReader object inside a
BufferedReader object. Note that while reading the licu4.txt file the second time, you are taking advantage of the
readLine() method of the BufferedReader class. The test class throws an exception in the declaration of its main()
method to keep the code readable. The luci4.txt file should exist in your current working directory. Otherwise, you
will get an error when you run the test program.

Listing 7-34. Testing the Custom Reader Class, LowerCaseReader

// LowerCaseReaderTest.java
package com.jdojo.io;

import java.io.FileReader;
import java.io.BufferedReader;

public class LowerCaseReaderTest {
 public static void main(String[] args) throws Exception {
 String fileName = "luci4.txt";
 LowerCaseReader lcr = new LowerCaseReader(new FileReader(fileName));

 System.out.println("Reading luci4.txt using LowerCaseReader:");
 int c = -1;
 while ((c = lcr.read()) != -1) {
 System.out.print((char) c);

Chapter 7 ■ Input/Output

344

 }
 lcr.close();

 System.out.println("\n\nReading luci4.txt using " +
 "LowerCaseReader and BufferedReader:");

 BufferedReader br = new BufferedReader(
 new LowerCaseReader(new FileReader(fileName)));

 String str = null;
 while ((str = br.readLine()) != null) {
 System.out.println(str);
 }
 br.close();
 }
}

Reading luci4.txt using LowerCaseReader:
and now we reach'd the orchard-plot;
and, as we climb'd the hill,
the sinking moon to lucy's cot
came near and nearer still.

Reading luci4.txt using LowerCaseReader and BufferedReader:
and now we reach'd the orchard-plot;
and, as we climb'd the hill,
the sinking moon to lucy's cot
came near and nearer still.

Random Access Files
A FileInputStream lets you read data from a file whereas a FileOutputStream lets you write data to a file. A random
access file is a combination of both. Using a random access file, you can read from a file as well as write to the file.
Reading and writing using the file input and output streams are a sequential process. Using a random access file, you
can read or write at any position within the file (hence the name random access).

An object of the RandomAccessFile class facilitates the random file access. It lets you read/write bytes and all
primitive types values to a file. It also lets you work with strings using its readUTF() and writeUTF() methods. The
RandomAccessFile class is not in the class hierarchy of the InputStream and OutputStream classes.

A random access file can be created in four different access modes. In its constructor, you must specify the access
mode. The access mode value is a string. They are listed as follows:

•	 "r": The file is opened in a read-only mode. You will receive an IOException if you attempt to
write to the file.

•	 "rw": The file is opened in a read-write mode. The file is created if it does not exist.

•	 "rws": Same as the "rw" mode, except that any modifications to the file’s content and its
metadata are written to the storage device immediately.

•	 "rwd": Same as the "rw" mode, except that any modifications to the file’s content are written to
the storage device immediately.

Chapter 7 ■ Input/Output

345

You create an instance of the RandomAccessFile class by specifying the file name and the access mode as shown:

RandomAccessFile raf = new RandomAccessFile("randomtest.txt", "rw");

A random access file has a file pointer that is advanced when you read data from it or write data to it. The file
pointer is a kind of cursor where your next read or write will start. Its value indicates the distance of the cursor from
the beginning of the file in byes. You can get the value of file pointer by using its getFilePointer() method. When
you create an object of the RandomAccessFile class, the file pointer is set to zero, which indicates the beginning of the
file. You can set the file pointer at a specific location in the file using the seek() method.

The length() method of a RandomAccessFile returns the current length of the file. You can extend or truncate a
file by using its setLength() method. If you extend a file using this method, the contents of the extended portion of
the file are not defined.

Reading from and writing to a random access file is performed the same way you have been reading/writing
from/to any input and output streams. Listing 7-35 demonstrates the use of a random access file. When you run this
program, it writes two things to a file: the file read counter, which keeps track of how many times a file has been read
using this program, and a text message of “Hello World!”. The program increments the counter value in the file every
time it reads the file. The counter value keeps incrementing when you run this program repeatedly. You may get a
different output every time you run this program.

Listing 7-35. Reading and Writing Files Using a RandomAccessFile Object

// RandomAccessFileReadWrite.java
package com.jdojo.io;

import java.io.File;
import java.io.IOException;
import java.io.RandomAccessFile;

public class RandomAccessFileReadWrite {
 public static void main(String[] args) throws IOException {
 String fileName = "randomaccessfile.txt";
 File fileObject = new File(fileName);

 if (!fileObject.exists()) {
 initialWrite(fileName);
 }

 // Read the file twice
 readFile(fileName);
 readFile(fileName);
 }

 public static void readFile(String fileName) throws IOException{
 // Open the file in read-write mode
 RandomAccessFile raf = new RandomAccessFile(fileName, "rw");

 int counter = raf.readInt();
 String msg = raf.readUTF();

 System.out.println("File Read Counter: " + counter);
 System.out.println("File Text: " + msg);
 System.out.println("----------------------------");

Chapter 7 ■ Input/Output

346

 // Increment the file read counter by 1
 incrementReadCounter(raf);

 raf.close();
 }

 public static void incrementReadCounter(RandomAccessFile raf) throws IOException {
 // Read the current file pointer position so that we can restore it at the end
 long currentPosition = raf.getFilePointer();

 // Set the file pointer in the beginning
 raf.seek(0);

 // Read the counter and increment it by 1
 int counter = raf.readInt();
 counter++;

 // Set the file pointer to zero again to overwrite the value of the counter
 raf.seek(0);
 raf.writeInt(counter);

 // Restore the file pointer
 raf.seek(currentPosition);
 }

 public static void initialWrite(String fileName) throws IOException{
 // Open the file in read-write mode
 RandomAccessFile raf = new RandomAccessFile(fileName, "rw");

 // Write the file read counter as zero
 raf.writeInt(0);

 // Write a message
 raf.writeUTF("Hello world!");
 raf.close();
 }
}

File Read Counter: 0
File Text: Hello world!

File Read Counter: 1
File Text: Hello world!

Chapter 7 ■ Input/Output

347

Copying the Contents of a File
After you learn about input and output streams, it is simple to write code that copies the contents of a file to another
file. You need to use the byte-based input and output streams (InputStream and OutputStream objects) so that your
file copy program will work on all kinds of files. The main logic in copying a file is to keep reading from the input
stream until the end of file and keep writing to the output stream as data is read from the input stream. The following
snippet of code shows this file-copy logic:

// Copy the contents of a file
int count = -1;
byte[] buffer = new byte[1024];
while ((count = in.read(buffer)) != -1) {
 out.write(buffer, 0, count);
}

Tip ■ the file-copy logic copies only the file’s contents. You will have to write logic to copy file’s attributes. the nIO
2.0 apI, covered in Chapter 10, provides a copy() method in the java.nio.file.Files class to copy the contents and
attributes of a file to another file. please use the Files.copy() method to copy a file.

Standard Input/Output/Error Streams
A standard input device is a device defined and controlled by the operating system from where your Java program
may receive the input. Similarly, the standard output and error are other operating system-defined (and controlled)
devices where your program can send an output. Typically, a keyboard is a standard input device, and a console acts
as a standard output and a standard error device. Figure 7-10 depicts the interaction between the standard input,
output, and error devices, and a Java program.

Java Program
Standard Input

device
Standard Error

Device

Standard Output
Device

Figure 7-10. Interaction between a Java program and standard input, output, and error devices

What happens when you use the following statement to print a message?

System.out.println("This message goes to the standard output device!");

Typically, your message is printed on the console. In this case, the console is the standard output device and the
Java program lets you send some data to the standard output device using a high level println() method call. You
saw a similar kind of println() method call in the previous section when you used the PrintStream class that is a
concrete decorator class in the OutputStream class family. Java makes interacting with a standard output device on
a computer easier. It creates an object of the PrintStream class and gives you access to it through a public static
variable out in the System class. Look at the code for the System class; it declares three public static variables (one
for each device: standard input, output, and error) as follows:

Chapter 7 ■ Input/Output

348

public class System {
 public static PrintStream out; // the standard output
 public static InputStream in; // the standard input
 public static PrintStream err; // the standard error

 // More code for the System class goes here
}

The JVM initializes the three variables to appropriate values. You can use the System.out and System.err object
references wherever you can use an OutputStream object. You can use the System.in object wherever you can use an
InputStream object.

Java lets you use these three objects in the System class in one more way. If you do not want the three objects to
represent the standard input, output, and error devices, you can supply your own devices; Java will redirect the data
flow to/from these objects to your devices.

Suppose, whenever you call the System.out.println() method to print a message on the console, you want to
send all messages to a file instead. You can do so very easily. After all, System.out is just a PrintStream object and you
know how to create a PrintStream object using a FileOutputStream object (refer to Listing 7-19) to write to a file. The
System class provides three static setter methods, setOut(), setIn(), and setErr(), to replace these three standard
devices with your own devices. To redirect all standard output to a file, you need to call the setOut() method by
passing a PrintStream object that represents your file. If you want to redirect the output to a file named stdout.txt in
your current directory, you do so by executing the following piece of code:

// Redirect all standard ouputs to the stdout.txt file
PrintStream ps = new PrintStream(new FileOutputStream("stdout.txt"));
System.setOut(ps);

Listing 7-36 demonstrates how to redirect the standard output to a file. You may get a different output on the
console. You will see the following two messages in the stdout.txt file in your current working directory, after you
run this program:

Hello world!
Java I/O is cool!

You may get a different output when you run the program as it prints the path to the stdout.txt file using your
current working directory.

Listing 7-36. Redirecting Standard Outputs to a File

// CustomStdOut.java
package com.jdojo.io;

import java.io.PrintStream;
import java.io.FileOutputStream;
import java.io.File;

public class CustomStdOut {
 public static void main(String[] args) throws Exception{
 // Create a PrintStream for file stdout.txt
 File outFile = new File("stdout.txt");
 PrintStream ps = new PrintStream(new FileOutputStream(outFile));

 //Print a message on console
 System.out.println("Messages will be redirected to " +
 outFile.getAbsolutePath());

Chapter 7 ■ Input/Output

349

 // Set the standard out to the file
 System.setOut(ps);

 // The following messages will be sent to the stdout.txt file
 System.out.println("Hello world!");
 System.out.println("Java I/O is cool!");
 }
}

Messages will be redirected to C:\book\javabook\stdout.txt

Generally, you use System.out.println() calls to log debugging messages. Suppose you have been using this
statement all over your application and it is time to deploy your application to production. If you do not take out the
debugging code from your program, it will keep printing messages on the user’s console. You do not have time to go
through all your code to remove the debugging code. Can you think of an easy solution? There is a simple solution to
swallow all your debugging messages. You can redirect your debugging messages to a file as you did in Listing 7-36.
Another solution is to create your own concrete component class in the OutputStream class family. Let’s call the new
class DummyStandardOutput, as shown in Listing 7-37.

Listing 7-37. A Dummy Output Stream Class That Will Swallow All Written Data

// DummyStandardOutput.java
package com.jdojo.io;

import java.io.OutputStream;
import java.io.IOException;

public class DummyStandardOutput extends OutputStream {
 public void write(int b) throws IOException {
 // Do not do anything. Swallow whatever is written
 }
}

You need to inherit the DummyStandardOutput class from the OutputStream class. The only code you have to write is to
override the write(int b) method and do not do anything in this method. Then, create a PrintStream object by wrapping
an object of the new class and set it as the standard output using the System.setOut() method shown in Listing 7-38. If you
do not want to go for a new class, you can use an anonymous class to achieve the same result, as follows:

System.setOut(new PrintStream(new OutputStream() {
 public void write(int b) {
 // Do nothing
 }}));

Listing 7-38. Swallowing All Data Sent to the Standard Output

// SwallowOutput.java
package com.jdojo.io;

import java.io.PrintStream;

public class SwallowOutput {

Chapter 7 ■ Input/Output

350

 public static void main(String[] args) {
 PrintStream ps = new PrintStream(new DummyStandardOutput());

 // Set the dummy standard output
 System.setOut(ps);

 // The following messages are not going anywhere
 System.out.println("Hello world!");
 System.out.println("Is someone listening?");
 System.out.println("No. We are all taking a nap!!!");
 }
}

(No output will be printed.)

You can use the System.in object to read data from a standard input device (usually a keyboard). You can also
set the System.in object to read from any other InputStream object of your choice, such as a file. You can use the
read() method of the InputStream class to read bytes from this stream. System.in.read() reads a byte at a time from
the keyboard. Note that the read() method of the InputStream class blocks until data is available for reading. When
a user enters data and presses the Enter key, the entered data becomes available, and the read() method returns one
byte of data at a time. The last byte read will represent a new-line character. When you read a new-line character from
the input device, you should stop further reading or the read() call will block until the user enters more data and
presses the Enter key again. Listing 7-39 illustrates how to read data entered using the keyboard.

Listing 7-39. Reading from the Standard Input Device

// EchoStdin.java
package com.jdojo.io;

import java.io.IOException;

public class EchoStdin {
 public static void main(String[] args) throws IOException{
 // Prompt the user to type a message
 System.out.print("Please type a message and press enter: ");

 // Display whatever user types in
 int c = '\n';
 while ((c = System.in.read()) != '\n') {
 System.out.print((char) c);
 }
 }
}

Since System.in is an instance of InputStream, you can use any concrete decorator to read data from the
keyboard; for example, you can create a BufferedReader object and read data from the keyboard one line at a time
as string. Listing 7-40 illustrates how to use System.in object with a BufferedReader. Note that this is the kind of
situation when you will need to use the InputStreamReader class to get a character-based stream (BufferedReader)
from a byte-based stream (System.in). The program keeps prompting the user to enter some text until the user enters
Q or q to quit the program.

Chapter 7 ■ Input/Output

351

Listing 7-40. Using System.in with a BufferedReader

// EchoBufferedStdin.java
package com.jdojo.io;

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;

public class EchoBufferedStdin {
 public static void main(String[] args) throws IOException {
 // Get a BufferedReader from System.in object. Note the use of
 // InputStreamReader, the bridge class between the byte-based and
 // the character-based stream
 BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

 String text = "q";
 while (true) {
 // Prompt user to type some text
 System.out.print("Please type a message (Q/q to quit) " +
 "and press enter: ") ;

 // Read the text
 text = br.readLine();
 if (text.equalsIgnoreCase("q")) {
 System.out.println("You have decided to exit the program");
 break;
 }
 else {
 System.out.println("You typed: " + text);
 }
 }
 }
}

If you want your standard input to come from a file, you will have to create an input stream object to represent
that file and set that object using the System.setIn() method as in

FileInputStream fis = new FileInputStream("stdin.txt");
System.setIn(fis); // Now System.in.read() will read from stdin.txt file

The standard error device (generally the console) is used to display any error message. Its use in your program
is the same as a standard output device. Instead of System.out for a standard output device, Java provides another
PrintStream object called System.err. You use it as follows:

System.err.println("This is an error message.");

Chapter 7 ■ Input/Output

352

Console and Scanner Classes
Although Java gives you three objects to represent the standard input, output, and error devices, it is not easy to
use them for reading numbers from the standard input. The purpose of the Console class is to make the interaction
between a Java program and the console easier. I will discuss the Console class in this section. I will also discuss the
Scanner class used for parsing the text read from the console.

The Console class is a utility class in the java.io package that gives access to the system console, if any, associated
with the JVM. The console is not guaranteed to be accessible in a Java program on all machines. For example, if your
Java program is run as a service, no console will be associated to the JVM and you will not have access to it either. You
get the instance of the Console class by using the static console() method of the System class as follows:

Console console = System.console();
if (console != null) {
 console.printf("Console is available.")
}

The Console class has a printf() method that is used to display formatted string on the console. You also have
a printf() method in the PrintStream class to write the formatted data. Please refer to Chapter 13 in Beginning
Java Fundamentals (ISBN: 978-1-4302-6652-5) for more details on using the printf() method and how to use the
Formatter class to format text, numbers, and dates.

Listing 7-41 illustrates how to use the Console class. If the console is not available, it prints a message and the
program exits. If you run this program using an IDE such as NetBeans, the console may not be available. Try to run
this program using a command prompt. The program prompts the user to enter a user name and a password. If the
user enters password letmein, the program prints a message. Otherwise, it prints that the password is not valid. The
program uses the readLine() method to read a line of text from the console and the readPassword() method to read
the password. Note that when the user enters a password, it is not visible; the program receives it in a character array.

Listing 7-41. Using the Console Class to Enter User Name and Password

// ConsoleLogin.java
package com.jdojo.io;

import java.io.Console;

public class ConsoleLogin {
 public static void main(String[] args) {
 Console console = System.console();
 if (console != null) {
 console.printf("Console is available.%n");
 }
 else {
 System.out.println("Console is not available.%n");
 return; // A console is not available
 }

 String userName = console.readLine("User Name: ");
 char[] passChars = console.readPassword("Password: ");
 String passString = new String(passChars);
 if (passString.equals("letmein")) {
 console.printf("Hello %s", userName);

Chapter 7 ■ Input/Output

353

 }
 else {
 console.printf("Invalid password");
 }
 }
}

If you want to read numbers from the standard input, you have to read it as a string and parse it to a number.
The Scanner class in java.util package reads and parses a text, based on a pattern, into primitive types and strings.
The text source can be an InputStream, a file, a String object, or a Readable object. You can use a Scanner object to
read primitive type values from the standard input System.in. It has many methods named liked hasNextXxx() and
nextXxx(), where Xxx is a data type, such as int, double, etc. The hasNextXxx() method checks if the next token from
the source can be interpreted as a value of the Xxx type. The nextXxx() method returns a value of a particular data type.

Listing 7-42 illustrates how to use the Scanner class by building a trivial calculator to perform addition,
subtraction, multiplication, and division.

Listing 7-42. Using the Scanner Class to Read Inputs from the Standard Input

// Calculator.java
package com.jdojo.io;

import java.util.Scanner;

public class Calculator {
 public static void main(String[] args) {
 // Read three tokens from the console: operand-1 operation operand-2
 String msg = "You can evaluate an arithmetic expressing.\n" +
 "Expression must be in the form: a op b\n" +
 "a and b are two numbers and op is +, -, * or /." +
 "\nPlease enter an expression and press Enter: ";
 System.out.print(msg);

 // Build a scanner for the standard input
 Scanner scanner = new Scanner(System.in);
 double n1 = Double.NaN;
 double n2 = Double.NaN;
 String operation = null;

 try {
 n1 = scanner.nextDouble();
 operation = scanner.next();
 n2 = scanner.nextDouble();

 double result = calculate(n1, n2, operation);
 System.out.printf("%s %s %s = %.2f%n", n1,
 operation, n2, result);
 }
 catch (Exception e) {
 System.out.println("An invalid expression.");
 }
 }

Chapter 7 ■ Input/Output

354

 public static double calculate(double op1, double op2, String operation) {
 switch(operation) {
 case "+":
 return op1 + op2;
 case "-":
 return op1 - op2;
 case "*":
 return op1 * op2;
 case "/":
 return op1 / op2;
 }

 return Double.NaN;
 }
}

You can evaluate an arithmetic expressing.
Expression must be in the form: a op b
a and b are two numbers and op is +, -, * or /.
Please enter an expression and press Enter: 10 + 19
10.0 + 19.0 = 29.00

StringTokenizer and StreamTokenizer
Java has some utility classes that let you break a string into parts called tokens. A token in this context is a part of the
string. You define the sequence of characters that are considered tokens by defining delimiter characters. Suppose
you have a string “This is a test, which is simple”. If you define a space as a delimiter, this string has the following
seven tokens:

 1. This

 2. is

 3. a

 4. test,

 5. which

 6. is

 7. simple

If you define a comma as a delimiter, the same string has the following two tokens:

 1. This is a test

 2. which is simple

The StringTokenizer class is in the java.util package. The StreamTokenizer class is in the java.io package.
A StringTokenizer lets you break a string into tokens whereas a StreamTokenizer gives you access to the tokens in a
character-based stream.

Chapter 7 ■ Input/Output

355

A StringTokenizer object lets you break a string into tokens based on your definition of delimiters. It returns
one token at a time. You also have the ability to change the delimiter anytime. You can create a StringTokenizer by
specifying the string and accepting the default delimiters, which are a space, a tab, a new line, a carriage return, and a
line-feed character (" \t\n\r\f") as follows:

// Create a string tokenizer
StringTokenizer st = new StringTokenizer("here is my string");

You can specify your own delimiters when you create a StringTokenizer as follows:

// Have a space, a comma and a semi-colon as delimiters
String delimiters = " ,;";
StringTokenizer st = new StringTokenizer("my text...", delimiters);

You can use the hasMoreTokens() method to check if you have more tokens and the nextToken() method to get
the next token from the string.

You can also use the split() method of the String class to split a string into tokens based on delimiters. The
split() method accepts a regular expression as a delimiter. Listing 7-43 illustrates how to use the StringTokenizer
and the split() method of the String class.

Listing 7-43. Breaking a String into Tokens Using a StringTokenizer and the String.split() Method

// StringTokens.java
package com.jdojo.io;

import java.util.StringTokenizer;

public class StringTokens {
 public static void main(String[] args) {
 String str = "This is a test, which is simple";
 String delimiters = " ,"; // a space and a comma
 StringTokenizer st = new StringTokenizer(str, delimiters);

 System.out.println("Tokens using a StringTokenizer:");
 String token = null;
 while(st.hasMoreTokens()) {
 token = st.nextToken();
 System.out.println(token);
 }

 // Split the same string using String.split() method
 System.out.println("\nTokens using the String.split() method:");
 String regex = "[,]+" ; /* a space or a comma */
 String[] s = str.split(regex);
 for(int i = 0 ; i < s.length; i++) {
 System.out.println(s[i]);
 }
 }
}

Chapter 7 ■ Input/Output

356

Tokens using a StringTokenizer:
This
is
a
test
which
is
simple

Tokens using the String.split() method:
This
is
a
test
which
is
simple

The StringTokenizer and the split() method of the String class return each token as a string. Sometimes you
may want to distinguish between tokens based on their types; your string may contain comments. You can have these
sophisticated features while breaking a character-based stream into tokens using the StreamTokenizer class.
Listing 7-44 illustrates how to use a StreamTokenizer class.

Listing 7-44. Reading Tokens from a Character-based Stream

// StreamTokenTest.java
package com.jdojo.io;

import java.io.StreamTokenizer;
import static java.io.StreamTokenizer.*;
import java.io.StringReader;
import java.io.IOException;

public class StreamTokenTest {
 public static void main(String[] args) throws Exception{
 String str = "This is a test, 200.89 which is simple 50";
 StringReader sr = new StringReader(str);
 StreamTokenizer st = new StreamTokenizer(sr);

 try {
 while (st.nextToken() != TT_EOF) {
 switch (st.ttype) {
 case TT_WORD: /* a word has been read */
 System.out.println("String value: " +
 st.sval);
 break;
 case TT_NUMBER: /* a number has been read */
 System.out.println("Number value: " +
 st.nval);
 break;
 }
 }

Chapter 7 ■ Input/Output

357

 }
 catch(IOException e) {
 e.printStackTrace();
 }
 }
}

String value: This
String value: is
String value: a
String value: test
Number value: 200.89
String value: which
String value: is
String value: simple
Number value: 50.0

The program uses a StringReader object as the data source. You can use a FileReader object or any other
Reader object as the data source. The syntax to get the tokens is not easy to use. The nextToken() method of
StreamTokenizer is called repeatedly. It populates three fields of the StreamTokenizer object: ttype, sval, and nval.
The ttype field indicates the token type that was read. The following are the four possible values for the ttype field:

TT_EOF: End of the stream has been reached.•	

TT_EOL: End of line has been reached.•	

TT_WORD: A word (a string) has been read as a token from the stream.•	

TT_NUMBER: A number has been read as a token from the stream.•	

If the ttype has TT_WORD, the string value is stored in its field sval. If it returns TT_NUBMER, its number value is
stored in nval field.

StreamTokenizer is a powerful class to break a stream into tokens. It creates tokens based on a predefined syntax.
You can reset the entire syntax by using its resetSyntax() method. You can specify your own set of characters that
can make up a word by using its wordChars() method. You can specify your custom whitespace characters using its
whitespaceChars() method.

Summary
Reading data from a data source and writing data to a data sink is called input/output. A stream represents a data
source or data sink for serial reading or writing. The Java I/O API contains several classes to support input and output
streams. Java I/O classes are in the java.io and java.nio packages. The input/output stream classes in Java are based
on the decorator pattern.

You refer to a file in your computer by its pathname. A file’s pathname is a sequence of characters by which
you can identify it uniquely in a file system. A pathname consists of a file name and its unique location in the file
system. An object of the File class is an abstract representation of a pathname of a file or a directory in a platform-
independent manner. The pathname represented by a File object may or may not exist in the file system. The File
class provides several methods to work with files and directories.

Java I/O supports two types of streams: byte-based streams and character-based streams. Byte-based streams
are inherited from the InputStream or OutputStream classes. Character-based stream classes are inherited from the
Reader or Writer classes.

Chapter 7 ■ Input/Output

358

The process of converting an object in memory to a sequence of bytes and storing the sequence of bytes in a
storage medium such as a file is called object serialization. The process of reading the sequence of bytes produced
by a serialization process and restoring the object back in memory is called object deserialization. Java supports
serialization and deserialization of object through the ObjectInputStream and ObjectOutputStream classes. An
object must implement the Serializable interface to be serialized.

The Java I/O API provides the Console and Scanner classes to interact with the console.
You can use the StringTokenizer and StreamTokenizer classes to split text into tokens based on delimiters.

The String class contains a convenience method split() to split a string into tokens based on a regular expression.

359

Chapter 8

Working with Archive Files

In this chapter, afasasfyasdasdou will learn

What archisadasdve files are•	

What data compression is and how to compress and decompress data•	

How to compute checksum for data using different algorithms•	

How to create files in ZIP, GZIP, and JAR file formats and read data from them•	

How to use the •	 jar command-line tool to work with JAR files

What Is an Archive File?
An archive file consists of one or more files. It also contains metadata that may include the directory structure of the
files, comments, error detection and recovery information, etc. An archive file may also be encrypted. Typically, but
not necessarily, an archive file is stored in a compressed format. An archive file is created using file archiver software.
For example, the WinZip, 7-zip, etc. utilities are used to create a file archive in a ZIP format on Microsoft Windows; the
tar utility is used to create archive files on UNIX-based operating systems. An archive file makes it easier to store and
transmit multiple files as one file. This chapter discusses in detail how to work with archive files using the Java I/O API
and the jar command line utility that is included in the JDK.

Data Compression
Data compression is a process of applying an encoding algorithm to the given data to represent it in a smaller size.
Suppose you have a string, 777778888. One way to encode it is 5748, which can be interpreted as “five sevens and
four eights.” By this encoding, you have reduced the length of the string from nine to five characters. The algorithm
you have applied to compress 777778888 as 5748 is called Run Length Encoding (RLE). The RLE encodes the data by
replacing the repeated sequence of data by the counter number and one copy of data. The RLE is easy to implement.
It is suitable only in situations where you have more repeated data.

The reverse of data compression is called data decompression. Here, you apply an algorithm to the compressed
data to get back the original data.

There are two types of data compression: lossless and lossy. In lossless data compression, you get your original
data back when you decompress the compressed data. For example, if you decompress 5748, you can get your original
data (777778888) back without losing any information. You can get the information back in this example because RLE
is a lossless data compression algorithm. Other lossless data compression algorithms are LZ77, LZ78, LZW, Huffman
coding, Dynamic Markov Compression (DMC), etc.

Chapter 8 ■ Working With arChive Files

360

In lossy data compression, you lose some of the data during the compression process and you will not be able to
recover the original data fully when you decompress the compressed data. Lossy data compression is acceptable in
some situations, such as viewing pictures, audios, and videos, where the audience will not see a noticeable difference
when they use the decompressed data. Compared to the lossless data compression, lossy data compression achieves
a higher compression ratio at the cost of the lower data quality. Examples of lossy data compression algorithms are
Discrete Cosine Transform (DCT), A-Law Compander, Mu-Law Compander, Vector Quantization, etc.

DEFLATE is a lossless data compression algorithm, which is used for compressing data in ZIP and GZIP file
formats. GZIP is an abbreviation for GNU ZIP. GNU is a recursive acronym for GNU’s Not Unix. The ZIP file format is
used for data compression and file archival. A file archival is the process of combining multiple files into one file for
convenience of storage. Typically, you compress multiple files and put them together in an archive file.

You may have worked with files with an extension of .zip. A ZIP file uses the ZIP file format. It combines multiple
files into one .zip file by, optionally, compressing them.

If you are a UNIX user, you must have worked with a .tar or .tar.gz file. Typically, on UNIX, you use a two-step
process to create a compressed archive file. First, you combine multiple files into a .tar archive file using the tar file
format (tar stands for Tape Archive), you compress that archive file using the GZIP file format to get a .tar.gz or
.tgz file. A .tar.gz or .tgz file is also called a tarball. A tarball is more compressed as compared to a zip file. A zip file
compresses multiple files separately and archives them. A tarball archives the multiple files first and then compresses
them. Because a tarball compresses the combined files together, it takes advantage of data repetition among all files
during compression, resulting in a better compression than a zip file.

ZLIB is a general-purpose lossless data compression library. It is free and not covered by any patents. Java
provides support for data compression using the ZLIB library. Deflater and Inflater are two classes in the
java.util.zip package that support general-purpose data compression/decompression functionality in Java using
the ZLIB library. Java provides classes to support ZIP and GZIP file formats. It also supports another file format called
the jar file format, which is a variation of the ZIP file format. I will discuss examples of the file formats supported by
Java in the next few sections.

Checksum
A checksum is a number that is computed by applying an algorithm on a stream of bytes. Typically, it is used when
data is transmitted across the network to check for errors during data transmission. The sender computes a checksum
for a packet of data and sends that checksum with the packet to the receiver. The receiver computes the checksum
for the packet of data it receives and compares it with the checksum it received from the sender. If the two match, the
receiver may assume that there were no errors during the data transmission. The sender and the receiver must agree
to compute the checksum for the data by applying the same algorithm. Otherwise, the checksum will not match.
Using a checksum is not a data security measure to authenticate the data. It is used as an error-detection method.
A hacker can alter some bits of the data and you may still get the same checksum as for the original data.

Let’s discuss an algorithm to compute a checksum. The algorithm is called Adler-32 after its inventor Mark
Adler. Its name has the number 32 in it because it computes a checksum by computing two 16-bit checksums and
concatenating them into a 32-bit integer. Let’s call the two 16-bit checksums A and B, and the final checksum C. A is
the sum of all bytes plus one in the data. B is the sum of individual values of A from each step. In the beginning, A is
set to 1 and B is set to 0. A and B are computed based on modulus 65521. That is, if the value of A or B exceeds 65521,
their values become their current values modulo 65521. The final checksum is computed as follows:

C = B * 65536 + A

The final checksum is computed by concatenating the 16-bit B and A values. You need to multiply the value of B
by 65536 and add the value of A to it to get the decimal value of that 32-bit final checksum number.

Let’s apply the Adler-32 checksum algorithm to compute a checksum for a string HELLO, as shown in Table 9-1.

Chapter 8 ■ Working With arChive Files

361

Java provides an Adler32 class in the java.util.zip package to compute the Adler-32 checksum for bytes of
data. You need to call the update() method of this class to pass bytes to it. Once you have passed all bytes to it, call its
getValue() method to get the checksum. CRC32 (Cyclic Redundancy Check 32-bit) is another algorithm to compute a
32-bit checksum. There is also another class named CRC32 in the same package, which lets you compute a checksum
using the CRC32 algorithm. Listing 9-1 illustrates how to use the Adler32 and CRC32 classes to compute checksums.

Listing 9-1. Computing Adler32 and CRC32 Checksums

// ChecksumTest.java
package com.jdojo.archives;

import java.util.zip.Adler32;
import java.util.zip.CRC32;

public class ChecksumTest {
 public static void main(String[] args) throws Exception {
 String str = "HELLO";
 byte[] data = str.getBytes("UTF-8");
 System.out.println("Adler32 and CRC32 checksums for " + str);

 // Compute Adler32 checksum
 Adler32 ad = new Adler32();
 ad.update(data);
 long adler32Checksum = ad.getValue();
 System.out.println("Adler32: " + adler32Checksum);

 // Compute CRC32 checksum
 CRC32 crc = new CRC32();
 crc.update(data);
 long crc32Checksum = crc.getValue();
 System.out.println("CRC32: " + crc32Checksum);
 }
}

Table 9-1. Computing the Adler-32 checksum for the String HELLO

Character ASCII Value (Base 10) A B

H 72 1 + 72 = 73 0 + 73 = 73

E 69 73 + 69 = 142 73 + 142 = 215

L 76 142 + 76 = 218 215 + 218 = 433

L 76 218 + 76 = 294 433 + 294 = 727

O 79 294 + 79 = 373 727 + 373 = 1100

C = B * 65536 + A
 = 1100 * 65536 + 373
 = 72089973

Chapter 8 ■ Working With arChive Files

362

Adler32 and CRC32 checksums for HELLO
Adler32: 72089973
CRC32: 3242484790

Adler32 is faster than CRC32. However, CRC32 gives a more robust checksum. Checksum is frequently used to

check for data corruption. CheckedInputStream and CheckedOutputStream are two concrete decorator classes in the
InputStream/OutputStream class family. They are in the java.util.zip package. They work with a Checksum object.
Note that Checksum is an interface, and the Adler32 and CRC32 classes implement the interface. CheckedInputStream
computes a checksum as you read data from a stream and CheckedOutputStream computes the checksum as you
write data to a stream. The ZipEntry class lets you compute the CRC32 checksum for an entry in a ZIP file using its
getCrc() method.

Compressing Byte Arrays
You can use the Deflater and Inflater classes in the java.util.zip package to compress and decompress data
in a byte array, respectively. These classes are the basic building blocks for compression and decompression in
Java. You may not use them directly very often. You have other high-level, easy-to-use classes in Java to deal with
data compression. Those classes are DeflaterInputStream, DeflaterOutputStream, GZIPInputStream, ZipFile,
GZIPOutputStream, ZipInputStream, and ZipOutputStream. I will discuss these classes in detail in subsequent sections.

Using the Deflater and Inflater classes is not straightforward. You need to use the following steps to compress
data in a byte array.

 1. Create a Deflater object.

 2. Set the input data to be compressed using the setInput() method.

 3. Call the finish() method indicating that you have supplied all input data.

 4. Call the deflate() method to compress the input data.

 5. Call the end() method to end the compression process.

You can create an object of the Deflater class using one of its constructors.

// Uses the no-args constructor
Deflater compressor = new Deflater();

Other constructors of the Deflater class let you specify the level of compression. You can specify the
compression level using one of the constants in the Deflater class. Those constant are BEST_COMPRESSION, BEST_
SPEED, DEFAULT_COMPRESSION, and NO_COMPRESSION. There is a trade-off in choosing between the best compression
and the best speed. The best speed means lower compression ratio and the best compression means slower
compression speed.

// Uses the best compression
Deflater compressor = new Deflater(Deflater.BEST_COMPRESSION);

By default, the compressed data using the Deflater object will be in the ZLIB format. If you want the compressed
data to be in GZIP or PKZIP format, you need to specify that by using the boolean flag as true in the constructor.

// Uses the best speed compression and GZIP format
Deflater compressor = new Deflater(Deflater.BEST_SPEED, true);

You can supply the input data to the Deflater object in a byte array.

Chapter 8 ■ Working With arChive Files

363

byte[] input = get a data filled byte array;
compressor.setInput(input);

You call the finish() method to indicate that you have supplied all the input data.

compressor.finish();

You call the deflate() method to compress the input data. It accepts a byte array as its argument. It fills the byte
array with the compressed data and returns the number of bytes in the byte array it has filled. After every call to the
deflate() method, you need to call the finished() method to check if the compression process is over. Typically,
you would place this check in a loop as follows:

// Try to read the compressed data 1024 bytes at a time
byte[] readBuffer = new byte[1024];
int readCount = 0;

while(!compressor.finished())
 readCount = compressor.deflate(readBuffer);

 /* At this point, the readBuffer array has the compressed data
 from index 0 to readCount - 1.
 */
}

You call the end() method to release any resources the Deflater object has held.

// Indicates that the compression process is over
compressor.end();

Follow the following steps to decompress data in a byte array. The steps are just the reverse of what you did to
compress a byte array.

 1. Create an Inflater object.

 2. Set the input data to be decompressed using the setInput() method.

 3. Call the inflate() method to decompress the input data.

 4. Call the end() method to end the decompression process.

You can create an object of the Inflater class using one of its constructors.

// Uses the no-args constructor
Inflater decompressor = new Inflater();

If the compressed data is in GZIP or PKZIP format, you use another constructor and pass true as its argument.

// Creates a decompressor to decompress data that is
// in GZIP or PKZIP format
Inflater decompressor = new Inflater(true);

Chapter 8 ■ Working With arChive Files

364

You set the input for the decompressor, which is the compressed data in a byte array.

byte[] input = get the compressed data in the byte array;
decompressor.setInput(input);

You call the inflate() method to decompress the input data. It accepts a byte array as its argument. It fills the
byte array with the decompressed data and returns the number of bytes in the byte array. After every call to this
method, you need to call the finished() method to check if the compression process is over. Typically, you use a
loop, as follows:

// Try to read the decompressed data 1024 bytes at a time
byte[] readBuffer = new byte[1024];
int readCount = 0;

while(!decompressor.finished()){
 readCount = decompressor.inflate(readBuffer);

 /* At this point, the readBuffer array has the decompressed
 data from index 0 to readCount - 1.
 */
}

You need to call the end() method to release any resources held by the Inflater object.

// Indicates that the decompression process is over
decompressor.end();

Listing 9-2 illustrates how to use the Deflater and Inflater classes. The compress() and decompress() methods
accept the inputs and return the compressed and decompressed data, respectively. In this example, I have tried to
compress a small string of Hello world!. It is 12 bytes in length. It became 20 bytes after I compressed it. The goal of
compression is to reduce, not to increase, the size of data. However, you cannot achieve reducing the data size just
because you have attempted to compress it. The output of the program in Listing 9-2 is one such example. When you
compress the data, the compressed format has to add some information to it to do some housekeeping. If the data
you are attempting to compress is very small in size, as was the case in my example, or if it is already compressed, the
compressed size of the data may increase because of additional information added by the compression process.

Listing 9-2. Compressing and Decompressing a byte Array Using Deflater and the Inflater classes

// DeflateInflateTest.java
package com.jdojo.archives;

import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.util.zip.DataFormatException;
import java.util.zip.Deflater;
import java.util.zip.Inflater;

public class DeflateInflateTest {
 public static void main(String[] args) throws Exception {
 String input = "Hello world!";
 byte[] uncompressedData = input.getBytes("UTF-8");

Chapter 8 ■ Working With arChive Files

365

 // Compress the data
 byte[] compressedData = compress(uncompressedData,
 Deflater.BEST_COMPRESSION, false);

 // Decompress the data
 byte[] decompressedData = decompress(compressedData, false);

 String output = new String(decompressedData, "UTF-8");

 // Display the statatistics
 System.out.println("Input String: " + input);
 System.out.println("Uncompressed data length: " + uncompressedData.length);
 System.out.println("Compressed data length: " + compressedData.length);
 System.out.println("Decompressed data length: " + decompressedData.length);
 System.out.println("Output String: " + output);
 }

 public static byte[] compress(byte[] input, int compressionLevel,
 boolean GZIPFormat) throws IOException {

 // Create a Deflater object to compress data
 Deflater compressor = new Deflater(compressionLevel, GZIPFormat);

 // Set the input for the compressor
 compressor.setInput(input);

 // Call the finish() method to indicate that we have
 // no more input for the compressor object
 compressor.finish();

 // Compress the data
 ByteArrayOutputStream bao = new ByteArrayOutputStream();
 byte[] readBuffer = new byte[1024];
 int readCount = 0 ;

 while(!compressor.finished()){
 readCount = compressor.deflate(readBuffer);
 if (readCount > 0) {
 // Write compressed data to the output stream
 bao.write(readBuffer, 0, readCount);
 }
 }

 // End the compressor
 compressor.end();

 // Return the written bytes from output stream
 return bao.toByteArray();
 }

Chapter 8 ■ Working With arChive Files

366

 public static byte[] decompress(byte[] input, boolean GZIPFormat)
 throws IOException, DataFormatException {
 // Create an Inflater object to compress the data
 Inflater decompressor = new Inflater(GZIPFormat);

 // Set the input for the decompressor
 decompressor.setInput(input);

 // Decompress data
 ByteArrayOutputStream bao = new ByteArrayOutputStream();
 byte[] readBuffer = new byte[1024];
 int readCount = 0 ;

 while(!decompressor.finished()){
 readCount = decompressor.inflate(readBuffer);
 if (readCount > 0) {
 // Write the data to the output stream
 bao.write(readBuffer, 0, readCount);
 }
 }

 // End the decompressor
 decompressor.end();

 // Return the written bytes from the output stream
 return bao.toByteArray();
 }
}

Input String: Hello world!
Uncompressed data length: 12
Compressed data length: 20
Decompressed data length: 12
Output String: Hello world!

You can use DeflaterInputStream and DeflaterOutputStream to compress data in the input and output

streams. There are also InflaterInputStream and InflaterOutputStream classes for decompressing data in the input
and output streams. The four classes are concrete decorators in the InputStream and OutputStream class families.
Please refer to Chapter 7 for more details on the decorator pattern and the concrete decorator classes.

Working with ZIP File Format
Java has direct support for the ZIP file format. Typically, you would be using the following four classes from the
java.util.zip package to work with the ZIP file format:

•	 ZipEntry

•	 ZipInputStream

•	 ZipOutputStream

•	 ZipFile

Chapter 8 ■ Working With arChive Files

367

A ZipEntry object represents an entry in an archive file in a ZIP file format. If you have archived 10 files in a file
called test.zip, each file in the archive is represented by a ZipEntry object in your program. A zip entry may be
compressed or uncompressed. When you read all files from a ZIP file, you read each of them as a ZipEntry object.
When you want to add a file to a ZIP file, you add a ZipEntry object to the ZIP file. The ZipEntry class has methods to
set and get information about an entry in a ZIP file.

ZipInputStream is a concrete decorator class in the InputStream class family; you use it to read data from a ZIP
file for each entry. ZipOutputStream is a concrete decorator class in the OutputStream class family; you use this class
to write data to a ZIP file for each entry. ZipFile is a utility class to read the entries from a ZIP file. You have the option
to use either the ZipInputStream class or the ZipFile class when you want to read entries from a ZIP file.

Here are the steps to create a ZIP file.

 1. Create a ZipOutputStream object.

 2. Create a ZipEntry object to represent an entry in the ZIP file.

 3. Add the ZipEntry to the ZipOutputStream.

 4. Write the contents of the entry to the ZipOutputStream.

 5. Close the ZipEntry.

 6. Repeat the previous four steps for each zip entry you want to add to the archive.

 7. Close the ZipOutputStream.

You can create an object of ZipOutputStream using the name of the ZIP file. You need to create a
FileOutputStream object and wrap it inside a ZipOutputStream object as follows:

// Create a zip output stream
ZipOutputStream zos = new ZipOutputStream(
 new FileOutputStream("ziptest.zip"));

You may use any other output stream concrete decorator to wrap your FileOutputStream object. For example,
you may want to use BufferedOutputStream for a better speed as follows:

ZipOutputStream zos = new ZipOutputStream(new BufferedOutputStream(
 new FileOutputStream("ziptest.zip")));

Optionally, you can set the compression level for the ZIP file entries. By default, the compression level is set to
DEFAULT_COMPRESSION. For example, the following statement sets the compression level to BEST_COMPRESSION:

// Set the compression level for zip entries
zos.setLevel(Deflater.BEST_COMPRESSION);

You create a ZipEntry object using the file path for each entry and add the entry to the ZipOutputStream object
using its putNextEntry() method, like so:

ZipEntry ze = new ZipEntry("test1.txt")
zos.putNextEntry(ze);

Optionally, you can set the storage method for the zip entry to indicate if the zip entry is stored compressed or
uncompressed. By default, a zip entry is stored in a compressed form.

Chapter 8 ■ Working With arChive Files

368

// To store the zip entry in a compressed form
ze.setMethod(ZipEntry.DEFLATED);

// To store the zip entry in an uncompressed form
ze.setMethod(ZipEntry.STORED);

Write the content of the entry you have added in the previous step to the ZipOutputStream object. Since a
ZipEntry object represents a file, you will need to read the file by creating a FileInputStream object.

// Create an input stream to read data for the entry file
BufferedInputStream bis = new BufferedInputStream(
 new FileInputStream("test1.txt"));
byte[] buffer = new byte[1024];
int count = -1;

// Write the data for the entry
while((count = bis.read(buffer)) != -1) {
 zos.write(buffer, 0, count);
}

bis.close();

Now, close the entry using the closeEntry() method of the ZipOutputStream.

// Close the zip entry
zos.closeEntry();

Repeat the previous steps for each entry that you want to add to the zip file.
Finally, you need to close the ZipOutputStream.

// Close the zip entry
zos.close()

Listing 9-3 demonstrates how to create a ZIP file. It adds two files called test1.txt and notes\test2.txt to the
testzip.zip file. The program expects these files in the current working directory. If the files do not exist, the program
prints an error message with the path of the expected files. When the program finishes successfully, a testzip.zip file
is created in the current directory that you can open using a ZIP file utility such as WinZip on Windows. The program
prints the path of the newly created ZIP file. You may get a different output when you run the program.

Listing 9-3. Creating a ZIP File

// ZipUtility.java
package com.jdojo.archives;

import java.util.zip.ZipOutputStream;
import java.util.zip.ZipEntry;
import java.io.FileOutputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.BufferedInputStream;
import java.io.FileInputStream;
import java.io.BufferedOutputStream;

Chapter 8 ■ Working With arChive Files

369

import java.io.File;
import java.util.zip.Deflater;

public class ZipUtility {
 public static void main(String[] args) {
 // we want to create a ziptest.zip file in the current
 // directory. We want to add two files to this zip file.
 // Both file paths are relative to the current directory.
 String zipFileName = "ziptest.zip";
 String[] entries = new String[2];
 entries[0] = "test1.txt";
 entries[1] = "notes" + File.separator + "test2.txt";
 zip(zipFileName, entries);
 }

 public static void zip(String zipFileName, String[] zipEntries) {
 // Get the current directory for later use
 String currentDirectory = System.getProperty("user.dir");

 try (ZipOutputStream zos =
 new ZipOutputStream(
 new BufferedOutputStream(
 new FileOutputStream(zipFileName)))) {

 // Set the compression level to best compression
 zos.setLevel(Deflater.BEST_COMPRESSION);

 // Add each entry to the ZIP file
 for (int i = 0; i < zipEntries.length; i++) {
 // Make sure the entry file exists
 File entryFile = new File(zipEntries[i]);
 if (!entryFile.exists()) {
 System.out.println("The entry file "
 + entryFile.getAbsolutePath()
 + " does not exist");
 System.out.println(
 "Aborted processing.");
 return;
 }

 // Create a ZipEntry object
 ZipEntry ze = new ZipEntry(zipEntries[i]);

 // Add zip entry object to the ZIP file
 zos.putNextEntry(ze);

 // Add the contents of the entry to the ZIP file
 addEntryContent(zos, zipEntries[i]);

 // We are done with the current entry
 zos.closeEntry();
 }

Chapter 8 ■ Working With arChive Files

370

 System.out.println("Output has been written to " +
 currentDirectory + File.separator + zipFileName);
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }

 public static void addEntryContent(ZipOutputStream zos,
 String entryFileName)
 throws IOException, FileNotFoundException {

 // Create an input stream to read data from the entry file
 BufferedInputStream bis = new BufferedInputStream(
 new FileInputStream(entryFileName));

 byte[] buffer = new byte[1024];
 int count = -1;
 while ((count = bis.read(buffer)) != -1) {
 zos.write(buffer, 0, count);
 }
 bis.close();
 }
}

Output has been written to C:\book\javabook\ziptest.zip

Reading contents from a ZIP file is just the opposite of writing contents to it. Here are the steps to read the

contents (or extract entries) of a ZIP file.

 1. Create a ZipInputStream object.

 2. Get a ZipEntry from the input stream calling the getNextEntry() method of the
ZipInputStream object.

 3. Read the data for the ZipEntry from the ZipInputStream object.

 4. Repeat the previous two steps to read another zip entry from the archive.

 5. Close the ZipInputStream.

You can create a ZipInputStream object using the ZIP file name as follows:

ZipInputStream zis = new ZipInputStream(
 new BufferedInputStream(
 new FileInputStream(zipFileName)));

The following snippet of code gets the next entry from the input stream:

ZipEntry entry = zis.getNextEntry();

Chapter 8 ■ Working With arChive Files

371

Now, you can read the data from the ZipInputStream object for the current zip entry. You can save the data
for the zip entry in a file or any other storage medium. You can check if the zip entry is a directory by using its
isDirectory() method of the ZipEntry class.

Listing 9-4 illustrates how to read contents of a ZIP file. The example does not check for some of the errors. It does
not check if a file already exists before overwriting it. It also assumes that all entries are files. The program expects
a ziptest.zip file in your current working directory. It extracts all files from the ZIP file and outputs the path of the
directory containing the extracted files. You may get a different output.

Listing 9-4. Reading Contents of a ZIP File

// UnzipUtility.java
package com.jdojo.archives;

import java.util.zip.ZipEntry;
import java.io.FileOutputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.BufferedInputStream;
import java.io.FileInputStream;
import java.io.BufferedOutputStream;
import java.io.File;
import java.util.zip.ZipInputStream;

public class UnzipUtility {
 public static void main(String[] args) {
 String zipFileName = "ziptest.zip";
 String unzipdirectory = "extracted";
 unzip(zipFileName, unzipdirectory);
 }

 public static void unzip(String zipFileName, String unzipdir) {
 try (ZipInputStream zis = new ZipInputStream(
 new BufferedInputStream(
 new FileInputStream(zipFileName)))) {

 // Read each entry from the ZIP file
 ZipEntry entry = null;
 while((entry = zis.getNextEntry()) != null) {
 // Extract teh entry's contents
 extractEntryContent(zis, entry, unzipdir);
 }

 System.out.println(
 "ZIP file's contents have been extracted to " +
 (new File(unzipdir)).getAbsolutePath());
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }

Chapter 8 ■ Working With arChive Files

372

 public static void extractEntryContent(ZipInputStream zis,
 ZipEntry entry,
 String unzipdir)
 throws IOException, FileNotFoundException {

 String entryFileName = entry.getName();
 String entryPath = unzipdir + File.separator + entryFileName;

 // Create the entry file by creating necessary directories
 createFile(entryPath);

 // Create an output stream to extract the content of the
 // zip entry and write to the new file
 BufferedOutputStream bos = new BufferedOutputStream(
 new FileOutputStream(entryPath));

 byte[] buffer = new byte[1024];
 int count = -1;
 while((count = zis.read(buffer)) != -1) {
 bos.write(buffer, 0, count);
 }

 bos.close();
 }

 public static void createFile(String filePath) throws IOException {
 File file = new File(filePath);
 File parent = file.getParentFile();

 // Create all parent directories if they do not exist
 if (!parent.exists()) {
 parent.mkdirs();
 }
 file.createNewFile();
 }
}

ZIP file's contents have been extracted to C:\books\javabook\extracted

It is easier to use the ZipFile class to read the contents of a ZIP file or list its entries. For example, ZipFile allows

random access to ZIP entries, whereas ZipInputStream allows sequential access. The entries() method of a ZipFile
object returns an enumeration of all zip entries in the file. Its getInputStream() method returns the input stream
to read the content of a ZipEntry object. The following snippet of code shows how to use the ZipFile class. You
can rewrite the code in Listing 9-4 using the ZipFile class instead of the ZipOutputStream class as an exercise. The
ZipFile class comes in handy when you just want to list the entries in a ZIP file.

import java.io.InputStream;
import java.util.Enumeration;
import java.util.zip.ZipEntry;
import java.util.zip.ZipFile;
...

Chapter 8 ■ Working With arChive Files

373

// Create a ZipFile object using the ZIP file name
ZipFile zf = new ZipFile("ziptest.zip");

// Get the enumeration for all zip entries and loop through them
Enumeration<? extends ZipEntry> e = zf.entries();
ZipEntry entry = null;

while (e.hasMoreElements()) {
 entry = e.nextElement();

 // Get the input stream for the current zip entry
 InputStream is = zf.getInputStream(entry);

 /* Read data for the entry using the is object */

 // Print the name of the entry
 System.out.println(entry.getName());
}

Java 8 added a new stream() method to the ZipFile class that returns a Stream of ZipEntry objects. I will cover
the Stream class in Chapter 13. Let’s rewrite the above code using the Stream class and a lambda expression. The
revised code uses the latest addition to the Java languages: the Stream class and the lambda expression.

import java.io.IOException;
import java.io.InputStream;
import java.util.stream.Stream;
import java.util.zip.ZipEntry;
import java.util.zip.ZipFile;
...

// Create a ZipFile object using the ZIP file name
ZipFile zf = new ZipFile("ziptest.zip");

// Get the Stream of all zip entries and apply some actions on each of them
Stream<? extends ZipEntry> entryStream = zf.stream();
entryStream.forEach(entry -> {
 try {
 // Get the input stream for the current zip entry
 InputStream is = zf.getInputStream(entry);

 /* Read data for the entry using the is object */
 }
 catch(IOException e) {
 e.printStackTrace();
 }

 // Print the name of the entry
 System.out.println(entry.getName());
});

Chapter 8 ■ Working With arChive Files

374

Working with GZIP File Format
The GZIPInputStream and GZIPOutputStream classes are used to work with the GZIP file format. They are concrete
decorator classes in the InputStream and OutputStream class families. Their usage is similar to any other concrete
decorator classes for I/O. You need to wrap your OutputStream object inside an object of GZIPOutputStream to apply GZIP
compression to your data. You need to wrap your InputStream object inside a GZIPInputStream object to apply GZIP
decompression. The following snippet of code illustrates how to use these classes to compress and decompress data:

// Create a GZIPOutputStream object to compress data in GZIP format
// and write it to gziptest.gz file.
GZIPOutputStream gos = new GZIPOutputStream(new FileOutputStream("gziptest.gz"));

// Write uncompressed data to GZIP output stream and it will be compressed and written to //
gziptest.gz file
gos.write(byteBuffer);

If you want buffered writing for better speed, you should wrap the GZIPOutputStream inside a
BufferedOutputStream and write the data to the BufferedOutputStream.

BufferedOutputStream bos = new BufferedOutputStream(new GZIPOutputStream(
 new FileOutputStream("gziptest.gz")));

How would you compress an object while serializing it? It is simple. Just wrap the GZIPOutputStream inside
an ObjectOutputStream object. When you write an object to your ObjectOutputStream, its serialized form will be
compressed using a GZIP format.

ObjectOutputStream oos = new ObjectOutputStream(new GZIPOutputStream(
 new FileOutputStream("gziptest.ser")));

Apply the reverse logic to read the compressed data in GZIP format for decompressing. The following snippet of
code shows how to construct an InputStream object to decompress data, which is in GZIP format:

// Decompress data in GZIP format from gziptest.gz file and read it
GZIPInputStream gis = new GZIPInputStream(new FileInputStream("gziptest.gz"));

/* Read uncompressed data from GZIP input stream, e.g., gis.read(byteBuffer);*/

// Construct a BufferedInputStream to read data, which is in GZIP format
BufferedInputStream bis = new BufferedInputStream (new GZIPInputStream(
 new FileInputStream(gziptest.gz")));

// Construct an ObjectInputStream to read compressed object
ObjectInputStream ois = new ObjectInputStream (new GZIPInputStream(
 new FileInputStream("gziptest.ser")));

Working with JAR File Format
JAR (Java Archive) is a file format based on the ZIP file format. It is used to bundle resources, class files, sound files,
images, etc. for a Java application or applet. It also provides data compression. Originally, it was developed to bundle
resources for an applet to reduce download time over an HTTP connection.

Chapter 8 ■ Working With arChive Files

375

You can think of a JAR file as a special kind of a ZIP file. A JAR file provides many features that are not available in
a ZIP file. You can digitally sign the contents of a JAR file to provide security. It provides a platform-independent file
format. You can use the JAR API to manipulate a JAR file in a Java program.

A JAR file can have an optional META-INF directory to contain files and directories containing information about
application configuration. Table 9-2 lists the entries in a META-INF directory.

Table 9-2. Contents of META-INF Directory of a JAR File

Name Type Purpose

MANIFEST.MF File It contains extension and package related data.

INDEX.LIST File It contains location information of packages. Class loaders use it to speed up
the class searching and loading process.

X.SF File X is the base file name. It stores the signature for the jar file.

X.DSA File X is the base file name. It stores the digital signature of the corresponding
signature file.

/services Directory This directory contains all service provider configuration files.

Table 9-3. Command-line Options for the jar Tool

Option Description

-c Create a new JAR file.

-u Update an existing JAR file.

-x Extract a named file or all files from a JAR file.

-t List the table of contents of a JAR file.

-f Specify the JAR file name.

-m Include the manifest information from the specified file.

The JDK ships a jar tool to create and manipulate JAR files. You can also create and manipulate a JAR file using
the Java API using classes in the java.util.jar package. Most of the classes in this package are similar to the classes
in the java.util.zip package. In fact, most of the classes in this package are inherited from the classes that deal
with the ZIP file format. For example, the JarEntry class inherits from the ZipEntry class; the JarInputStream class
inherits from the ZipInputStream class; the JarOutputStream class inherits from the ZipOutputStream class, etc. The
JAR API has some new classes to deal with a manifest file. The Manifest class represents a manifest file. I will discuss
how to use the JAR API later in this chapter. I will discuss the jar tool in this section.

To create a JAR file using the jar tool, many command-line options are available. There are four basic operations
that you perform using the jar tool.

Create a JAR file.•	

Update a JAR file.•	

Extract entries from a JAR file.•	

List the contents of a JAR file.•	

Table 9-3 lists the command-line options for the jar tool.

(continued)

Chapter 8 ■ Working With arChive Files

376

Creating a JAR File
Use the following command to create a test.jar JAR file with two class files called A.class and B.class:

jar cf test.jar A.class B.class

If you get an error such as “jar is not recognized as a command” when you run this command, you need to use
the full path of the jar command or add the directory containing the jar command in the PATH environment variable
on your machine. On Windows, if you install the JDK in the C:\java8 directory, the jar command is stored in the
C:\java8\bin directory.

In the above command, the option c indicates that you are creating a new JAR file and the option f indicates that
you are specifying a JAR file name, which is test.jar. At the end of the command, you can specify one or more file
names or directory names to include in the JAR file.

To view the contents of the test.jar file, you can execute the following command:

jar tf test.jar

The option t in this command indicates that you are interested in the table of contents of a JAR file. The option
f indicates that you are specifying the JAR file name, which is test.jar in this case. The above command will
generate the following output:

META-INF/
META-INF/MANIFEST.MF
A.class
B.class

Note that the jar command had automatically created two extra things for you: one directory called META-INF
and a file named MANIFEST.MF in the META-INF directory.

The following command will create a test.jar file by including everything in the current working directory. Note
the use of an asterisk as the wild-card character to denote everything in the current working directory.

jar cf test.jar *

Option Description

-M Do not create a manifest file.

-i Generate index information for the specified JAR file. It creates an INDEX.LIST file in JAR file under the
META-INF directory.

-0 Do not compress the entries in the JAR file. Only store them. The option value is zero, which means
zero compression.

-e Add the specified class name as the value for the Main-Class entry in the main section of the
manifest file.

-v Generate verbose output on the standard output

-C Change to the specified directory and include the following files in a JAR file. Note that the option is in
uppercase (C). The lowercase (c) is used to indicate the create JAR file option.

Table 9-3 (continued)

Chapter 8 ■ Working With arChive Files

377

The following command will create a JAR file with all class files in the book/archives directory and all images
from the book/images directory. Here, book is a subdirectory in the current working directory.

jar cf test.jar book/archives/*.class book/images

You can specify a manifest file using the command-line option while creating a JAR file. The manifest file you
specify will be a text file that contains all manifest entries for your JAR file. Note that your manifest file must have a
blank line at the end of the file. Otherwise, the last entry in the manifest file will not be processed. I will discuss the
contents of a manifest file in detail shortly.

The following command will use a manifest.txt file while creating test.jar file including all files and sub-
directories in the current directory. Note the use of the option m.

jar cfm test.jar manifest.txt *

The order of the options used in the above command matters. I have specified the option as cfm. That is, f occurs
before m and therefore, you must specify the JAR file name, test.jar, before the manifest file name manifest.txt.
You can rewrite the above command as follows:

jar cmf manifest.txt test.jar *

Updating a JAR File
Use the option u to update an existing JAR file entries or its manifest file. The following command will add a C.class
file to an existing test.jar file:

jar uf test.jar C.class

Suppose you have a test.jar file and you want to change the Main-Class entry in its manifest file to HelloWorld
class. You can do that by using the following command:

jar ufe test.jar HelloWorld

In this command, the option u indicates that you are updating a JAR file; the option f indicates that you are
specifying the JAR file name, which is test.jar, and the option e indicates that you are specifying the Main-Class
entry’s value as HelloWorld for the MANIFEST.MF file in test.jar file.

Indexing a JAR File
You can generate an index file for your JAR file. It is used to speed up class loading. You must use the option i with the
jar command in a separate command, after you have created a JAR file.

jar i test.jar

This command will add a META-INF/INDEX.LIST file to the test.jar file. You can verify it by listing the table of
contents of the test.jar file by using the following command:

jar tf test.jar

Chapter 8 ■ Working With arChive Files

378

The generated INDEX.LIST file contains location information for all packages in all JAR files listed in the Class-
Path attribute of the test.jar file. You can include an attribute called Class-Path in the manifest file of a JAR file. It is a
space-separated list of JAR files. The attribute value is used to search and load classes when you run the JAR file.

Extracting an Entry from a JAR File
You can extract all or some entries from a JAR file using the option x with the jar command. To extract all entries from
a test.jar file, you use

jar xf test.jar

The option x indicates that you want to extract the entries from the JAR file. The option f indicates that you are
specifying the file name, which is test.jar. The above command will extract all entries from test.jar file in the
current working directory. It will create the same directory structure as it exists in the test.jar file. For example,
if book/HelloWorld.class is an entry in the test.jar file, the above command will create a book directory in the
current working directory and extract the HelloWorld.class file into the book directory. Any existing file during the
extraction of an entry is overwritten. The JAR file, test.jar in this example, is unchanged by the above command.

To extract individual entries from a JAR file, you need to list them at the end of the command. The entries should
be separated by a space. The following command will extract A.class and book/HelloWorld.class entries from a
test.jar file:

jar xf test.jar A.class book/HelloWorld.class

To extract all class files from a book directory, you can use the following command:

jar xf test.jar book/*.class

Listing the Contents of a JAR File
Use the option t with the jar command to list the table of contents of a JAR file on the standard output.

jar tf test.jar

The Manifest File
A JAR file differs from a ZIP file in that it may optionally contain a manifest file named MANIFEST.MF in the META-INF
directory. The manifest file contains information about the JAR file and its entries. It can contain information about
the CLASSPATH setting for the JAR file. Its main entry class is a class with the main() method to start a stand-alone
application, version information about packages, etc.

A manifest file is divided into sections separated by a blank line. Each section contains name-value pairs. A new
line separates each name-value pair. A colon separates a name and its corresponding value. A manifest file must end
with a new line. The following is a sample of the content of a manifest file:

Manifest-Version: 1.0
Created-By: 1.8.0_20-ea-b05 (Oracle Corporation)
Main-Class: com.jdojo.intro.Welcome
Profile: compact1

Chapter 8 ■ Working With arChive Files

379

The above manifest file has one section with four attributes:

•	 Manifest-Version

•	 Created-By

•	 Main-Class

•	 Profile

There are two kinds of sections in a manifest file: the main section and the individual section. A blank line must
separate any two sections. Entries in the main section apply to the entire JAR file. Entries in the individual section
apply to a particular entry. An attribute in an individual section overrides the same attribute in the main section. An
individual entry starts with a “Name” attribute, whose value is the name of the entry in the JAR file and it is followed
by other attributes for that entry. For example, suppose you have a manifest file with the following contents:

Manifest-Version: 1.0
Created-By: 1.6.0 (Sun Microsystems Inc.)
Main-Class: com.jdojo.chapter2.Welcome
Sealed: true

Name: book/data/
Sealed: false

Name: images/logo.bmp
Content-Type: image/bmp

The manifest file contains three sections: one main section and two individual sections. Note that there is a blank
line between the two sections. The first individual section indicates that the package book/data is not sealed. This
individual section attribute of "Sealed: false" will override the main section’s attribute of "Sealed: true". Another
individual section is for an entry called images/logo.bmp. It states that the content type of the entry is an image of
bmp type.

The jar command can create a default manifest file and add it to the JAR file. The default manifest file contains
only two attributes: Manifest-Version and Created-By. You can use the option M to tell the jar tool to omit the
default manifest file. The following command will create a test.jar file without adding a default manifest file:

jar cMf test.jar book/*.class

The jar command gives you an option to customize the contents of the manifest file. You can use the option m to
specify your file that has the contents for the manifest file. The jar command will read the name-value pairs from the
specified manifest file and add them to the MANIFEST.MF file. Suppose you have a file named manifest.txt with one
attribute entry in it. Make sure to add a new line at the end of the file. The file’s contents are as follows:

Main-Class: com.jdojo.intro.Welcome

To add the Main-Class attribute value from manifest.txt file in a new test.jar file by including all class files in
the current working directory, you execute the following command:

jar cfm test.jar manifest.txt *.class

Chapter 8 ■ Working With arChive Files

380

Note that when you specify the option m, you must also specify the manifest file name. The order in which you
specify the new JAR file name and the manifest file name must match the order of options m and f. For example, you
can change the above command by specifying the f and m options in a different order as follows:

jar cmf manifest.txt test.jar *.class

This command will add a manifest file with the following contents to the test.jar file:

Manifest-Version: 1.0
Created-By: 1.8.0_20-ea (Oracle Corporation)
Main-Class: com.jdojo.intro.Welcome

If you do not specify the Manifest-Version and Created-By attribute in your manifest file, the tool adds them. It
defaults the Manifest-Version to 1.0. The Created-By is defaulted to the JDK version you use.

You have been running a Java program by using the java command and specifying the class name that has the
main() method as follows:

java com.jdojo.intro.Welcome

You can also run a jar file using the –jar option with the java command as follows:

java –jar test.jar

When you run the above command, the JVM will look for the value of the Main-Class attribute in the
MANIFEST.MF file in the test.jar file and attempt to run that class. If you have not included a Main-Class attribute in
the test.jar file, the above command will generate an error.

You can also add the Main-Class attribute value in the manifest file without creating your own manifest file. Use
the option e with the jar tool when you create/update a jar file. The following command will add com.jdojo.intro.
Welcome as the value of the Main-Class in the MANIFEST.MF file in the test.jar file:

jar cfe test.jar com.jdojo.intro.Welcome *.class

The following command will add com.jdojo.intro.Welcome as the value of the Main-Class in the MANIFEST.MF
file in an existing test.jar file by using the option u for update:

jar ufe test.jar com.jdojo.intro.Welcome

You can set the CLASSPATH for a JAR file in its manifest file. The attribute name is called Class-Path, which you
must specify in a custom manifest file. It is a space-separated list of jar files, zip files, and directories. The Class-Path
attribute in a manifest file looks like

Class-Path: chapter8.jar file:/c:/book/ http://www.jdojo.com/jutil.jar

The above entry has three items for the CLASSPATH: a JAR file chapter8.jar, a directory using the file protocol
file:/c:/book/, and another JAR file using a HTTP protocol http://www.jdojo.com/jutil.jar. Note that a
directory name must end with a forward slash. Suppose this Class-Path setting is included in the manifest file for the
test.jar file. When you run the test.jar file using the following java command, this CLASSPATH will be used to
search and load classes.

java –jar test.jar

http://www.jdojo.com/jutil.jar
http://www.jdojo.com/jutil.jar

Chapter 8 ■ Working With arChive Files

381

When you run a JAR file with the –jar option using the java command, any CLASSPATH setting outside the
manifest file of the JAR file (test.jar file in the above case) is ignored. Another use of the Class-Path attribute is to
generate an index of all packages using the option i of the jar tool. The following command will generate an index for
all packages in all JAR files listed in the Class-Path attribute of the manifest file in the test.jar file:

jar i test.jar

Sealing a Package in a JAR File
You can seal a package in a JAR file. Sealing a package in a JAR file means that all classes declared in that package
must be archived in the same JAR file. Typically, you seal a package to easily maintain versions of the package. If you
change anything in the package, you just recreate a JAR file. To seal a package in a JAR file, you need to include two
attributes: Name and Sealed. The value for the Name attribute is the name of the package and the Sealed attribute has
value as true. The following entries in a manifest file will seal a package named com.jdojo.archives. Note that the
package name must end with a forward slash (/).

Name: com/jdojo/archives/
Sealed: true

By default, all packages in a JAR file are not sealed. If you want to seal the JAR file itself, you can include a Sealed
attributed, as shown:

Sealed: true

Sealing the JAR file will seal all packages in that JAR file. However, you can override it by not sealing a package
individually. The following entries in a manifest file will seal all packages in the JAR file, except the book/chapter8/
package:

Sealed: true

Name: book/chapter8/
Sealed: false

Using the JAR API
Using JAR API is very similar to using the ZIP API, except that the JAR API includes classes for working with a manifest
file. An object of the Manifest class represents a manifest file. You create a Manifest object in your code as follows:

Manifest manifest = new Manifest();

There are two things you can do with a manifest file: read entries from it and write entries to it. There are separate
ways to deal with entries in the main and individual sections. To add an entry into a main section, get an instance of
the Attributes class using the getMainAttributes() method of the Manifest class and keep adding a name-value
pair to it using its put() method. The following snippet of code adds some attributes to the main section of a manifest
object. The known attribute names are defined as constants in the Attributes.Name class. For example, the constant
Attributes.Name.MANIFEST_VERSION represents the Manifest-Version attribute name.

// Create a Manifest object
Manifest manifest = new Manifest();

Chapter 8 ■ Working With arChive Files

382

/* Add main attributes
 1. Manifest Version
 2. Main-Class
 3. Sealed
*/
Attributes mainAttribs = manifest.getMainAttributes();
mainAttribs.put(Attributes.Name.MANIFEST_VERSION, "1.0");
mainAttribs.put(Attributes.Name.MAIN_CLASS, "com.jdojo.intro.Welcome");
mainAttribs.put(Attributes.Name.SEALED, "true");

Adding an individual entry to the manifest file is a little more complex than adding the main entry. Suppose you
want to add the following individual entry to a manifest file:

Name: "com/jdojo/archives/"
Sealed: false

You need to perform the following steps.

 1. Get the Map object that stores the individual entries for a manifest.

 2. Create an Attributes object.

 3. Add the name-value pair to the Attributes object. You can add as many name-value pairs
as you want.

 4. Add the Attributes object to the attribute Map using the name of the individual section as
the key.

The following snippet of code shows you how to add an individual entry to a Manifest object:

// Get the Attribute map for the Manifest
Map<String,Attributes> attribsMap = manifest.getEntries();

// Create an Attributes object
Attributes attribs = new Attributes();

// Create an Attributes.Name object for the "Sealed" attribute
Attributes.Name name = new Attributes.Name("Sealed");

// Add the "name: value" pair (Sealed: false) to the attributes objects
attribs.put(name, "false");

// Add the Sealed: false attibute to the attributes map
attribsMap.put("com/jdojo/archives/", attribs);

If you want to add a manifest file to a JAR file, you can specify it in one of the constructors of the JarOutputStream
class. For example, the following snippet of code creates a jar output stream to create a test.jar file with a Manifest
object:

// Create a Manifest object
Manifest manifest = new Manifest();

Chapter 8 ■ Working With arChive Files

383

// Create a JarOutputStream with a Manifest object
JarOutputStream jos = new JarOutputStream(new BufferedOutputStream(
 new FileOutputStream("test.jar")), manifest);

Listing 9-5 contains the code to create a JAR file that includes a manifest file. The code is similar to creating a ZIP
file. The main() method contains the file names used to create the JAR file. All files are expected to be in the current
working directory.

It creates a JAR file named •	 jartest.jar.

It adds an •	 images/logo.bmp and com/jdojo/archives/Test.class files to the jartest.jar
file.

If the input files do not exist in your current working directory, you will get an error message when you run the
program. If you want to add other files to the JAR file, please change the code in the main() method accordingly.

Listing 9-5. Creating a JAR File Using the JAR API

// JARUtility.java
package com.jdojo.archives;

import java.util.jar.Manifest;
import java.util.jar.Attributes;
import java.util.Map;
import java.util.jar.JarOutputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.BufferedInputStream;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.File;
import java.util.zip.Deflater;
import java.io.BufferedOutputStream;
import java.util.jar.JarEntry;

public class JARUtility {
 public static void main(String[] args) throws Exception {
 // Create a Manifest object
 Manifest manifest = getManifest();

 // Store jar entries in a String array
 String jarFileName = "jartest.jar";
 String[] entries = new String[2];
 entries[0] = "images/logo.bmp";
 entries[1] = "com/jdojo/archives/Test.class";

 createJAR(jarFileName, entries, manifest);
 }

 public static void createJAR(String jarFileName,
 String[] jarEntries,
 Manifest manifest) {

Chapter 8 ■ Working With arChive Files

384

 // Get the current directory for later use
 String currentDirectory = System.getProperty("user.dir");

 // Create the JAR file
 try (JarOutputStream jos = new JarOutputStream(
 new BufferedOutputStream(
 new FileOutputStream(jarFileName)
), manifest)) {

 // Set the compression level to best compression
 jos.setLevel(Deflater.BEST_COMPRESSION);

 // Add each entry to JAR file
 for (int i = 0; i < jarEntries.length; i++) {
 // Make sure the entry file exists
 File entryFile = new File(jarEntries[i]);
 if (!entryFile.exists()) {
 System.out.println("The entry file " +
 entryFile.getAbsolutePath() +
 " does not exist");
 System.out.println("Aborted processing.");
 return;
 }

 // Create a JarEntry object
 JarEntry je = new JarEntry(jarEntries[i]);

 // Add jar entry object to JAR file
 jos.putNextEntry(je);

 // Add the entry's contents to the JAR file
 addEntryContent(jos, jarEntries[i]);

 // Inform the JAR output stream that we are done
 // working with the current entry
 jos.closeEntry();
 }

 System.out.println("Output has been written to " +
 currentDirectory + File.separator + jarFileName);
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }

 public static void addEntryContent(JarOutputStream jos, String entryFileName)
 throws IOException, FileNotFoundException {

 // Create an input stream to read data from the entry file
 BufferedInputStream bis =
 new BufferedInputStream(new FileInputStream(entryFileName));

Chapter 8 ■ Working With arChive Files

385

 byte[] buffer = new byte[1024];
 int count = -1;
 while ((count = bis.read(buffer)) != -1) {
 jos.write(buffer, 0, count);
 }

 bis.close();
 }

 public static Manifest getManifest() {
 Manifest manifest = new Manifest();

 /* Add main attributes
 1. Manifest Version
 2. Main-Class
 3. Sealed
 */
 Attributes mainAttribs = manifest.getMainAttributes();
 mainAttribs.put(Attributes.Name.MANIFEST_VERSION, "1.0");
 mainAttribs.put(Attributes.Name.MAIN_CLASS, "com.jdojo.archives.Test");
 mainAttribs.put(Attributes.Name.SEALED, "true");

 /* Add two individual sections */
 /* Do not seal the com/jdojo/archives/ package. Note that you
 have sealed the whole JAR file and to exclude this package
 you we must add a Sealed: false attribute for this package
 separately.
 */
 Map<String, Attributes> attribsMap = manifest.getEntries();

 // Create an attribute "Sealed : false" and
 // add it for individual entry "Name: com/jdojo/archives/"
 Attributes a1 = getAttribute("Sealed", "false");
 attribsMap.put("com/jdojo/archives/", a1);

 // Create an attribute "Content-Type: image/bmp" and
 // add it for images/logo.bmp
 Attributes a2 = getAttribute("Content-Type", "image/bmp");
 attribsMap.put("images/logo.bmp", a2);

 return manifest;
 }

 public static Attributes getAttribute(String name, String value) {
 Attributes a = new Attributes();
 Attributes.Name attribName = new Attributes.Name(name);
 a.put(attribName, value);
 return a;
 }
}

Chapter 8 ■ Working With arChive Files

386

You can read the entries from a JAR file using similar code to that you used to read entries from a ZIP file. To read
the entries from a manifest file of a JAR file, you need to get the object of the Manifest class using the getManifest()
class of the JarInputStream as follows:

// Create a JAR input stream object
JarInputStream jis = new JarInputStream(new FileInputStream("jartest.jar"));

// Get the manifest file from the JAR file. Will return null if
// there is no manifest file in the JAR file.
Manifest manifest = jis.getManifest();

if (manifest != null) {
 // Get the attributes from main section
 Attributes mainAttributes = manifest.getMainAttributes();
 String mainClass = mainAttributes.getValue("Main-Class");

 // Get the attributes from individual section
 Map<String, Attributes> entries = manifest.getEntries();
}

This section does not include code examples on reading entries from a JAR file. Please refer to the code in the
UnzipUtility class, which has the code to read entries from a ZIP file. The code to read from a JAR file would be
similar, except you would be using JAR-related classes from the java.util.jar package instead of the ZIP-related
classes from the java.util.zip package.

Accessing Resources from a JAR File
How would you get access to the resources stored in a JAR file? For example, how would you get access to a file named
images/logo.bmp in a JAR file, so that you can display the bmp file as an image in your java application?

You can construct a URL object by using the reference of a resource in a JAR file. The JAR file URL syntax is
of the form

jar:<url>!/{entry}

The following URL refers to an images/logo.bmp JAR entry in a test.jar file on www.jdojo.com using the HTTP
protocol:

jar:http://www.jdojo.com/test.jar!/images/logo.bmp

The following URL refers to an images/logo.bmp JAR entry in a test.jar file on the local file system in the c:\
jarfiles\ directory using the file protocol:

jar:file:/c:/jarfiles/test.jar!/images/logo.bmp

If you want to read the images/logo.bmp file from a JAR file in the classpath, you can get an input stream object
using a class object as follows:

// Assuming that the Test class is in the CLASSPATH
Class cls = Test.class;
InputStream in = cls.getResourceAsStream("/images/logo.bmp")

http://www.jdojo.com/
http://www.jdojo.com/test.jar!/images/logo.bmp

Chapter 8 ■ Working With arChive Files

387

You can also get a URL object (URL class is in java.net package) for an entry in your JAR file, which is in your
classpath as follows:

URL url = cls.getResource("/images/logo.bmp");

Summary
An archive file consists of one or more files. Optionally, the files in an archive file may be compressed. It also contains
metadata that may include the directory structure of the files, comments, error detection and recovery information,
etc. An archive file may be encrypted as well.

A checksum is a number that is computed by applying an algorithm on a stream of bytes. Typically, it is used
when data is transmitted across the network to check for errors during data transmission. The sender and receiver
use the same algorithm to compute the checksum for the transmitted data. A mismatch signals an error in data
transmission. Java contains Adler32 and CRC32 classes to compute checksum for data using the Adler32 and
CRC32 algorithms, respectively. Java provides Deflater and Inflater classes to work with data compression and
decompression.

The JDK supports creating and manipulating archive files in ZIP, GZIP, and JAR formats through APIs and tools.
The APIs are in the java.util.zip and java.util.jar packages. In addition to the JAR API to work with JAR files, the
JDK provides a jar command-line tool that can be used create, read, and update JAR files.

389

Chapter 9

New Input/Output

In this chapter, you will learn

What the New Input/Ouput is•	

How to create different types of buffers•	

How to read data from buffers and write data to buffers•	

How to manipulate position, limit, and mark properties of a buffer•	

How to create different types of views of a buffer•	

How to encode/decode data in a buffer using different charsets•	

What channels are and how to use channels to read/write files’ contents•	

How to use memory-mapped files for faster I/O•	

How to use file locks•	

How to know the byte order of a machine and how to deal with byte order when using buffers•	

What Is NIO?
The stream-based I/O uses streams to transfer data between a data source/sink and a Java program. The Java program
reads from or writes to a stream a byte at a time. This approach to performing I/O operations is slow. The New Input/
Ouput (NIO) solves the slow speed problem in the older stream-based I/O.

In NIO, you deal with channels and buffers for I/O operations. A channel is like a stream. It represents a
connection between a data source/sink and a Java program for data transfer. There is one difference between a
channel and a stream. A stream can be used for one-way data transfer. That is, an input stream can only transfer data
from a data source to a Java program; an output stream can only transfer data from a Java program to a data sink.
However, a channel provides a two-way data transfer facility. You can use a channel to read data as well as to write
data. You can obtain a read-only channel, a write-only channel, or a read-write channel depending on your needs.

In stream-based I/O, the basic unit of data transfer is a byte. In channel-based NIO, the basic unit of data transfer
is a buffer. A buffer is a bounded data container. That is, a buffer has a fixed capacity that determines the upper limit
of the data it may contain. In stream-based I/O, you write data directly to the stream. In channel-based I/O, you write
data into a buffer; you pass that buffer to the channel, which writes the data to the data sink. Similarly, when you want
to read data from a data source, you pass a buffer to a channel. The channel reads data from the data source into a
buffer. You read data from the buffer. Figure 9-1 depicts the interaction between a channel, a buffer, a data source, a
data sink, and a Java program. It is evident that the most important parts in this interaction are reading from a buffer
and writing into a buffer. I will discuss buffers and channels in detail in subsequent sections.

Chapter 9 ■ New INput/Output

390

Buffers
A buffer is a fixed-length data container. There is a separate buffer type to hold data for each type of primitive value,
except for boolean type values. A buffer is an object in your program. You have a separate class to represent each type
of buffer. All buffer classes are inherited from an abstract Buffer class. Buffer classes that hold primitive values are as
follows:

•	 ByteBuffer

•	 ShortBuffer

•	 CharBuffer

•	 IntBuffer

•	 LongBuffer

•	 FloatBuffer

•	 DoubleBuffer

An object of an XxxBuffer class is used to hold data of the Xxx primitive data type. For example, a ByteBuffer
is used to hold byte values; a ShortBuffer is used to hold short values; a CharBuffer is used to hold characters,
and so on.

The following are the four important properties of a buffer, which you must understand to use buffers effectively:

Capacity•	

Position•	

Limit•	

Mark•	

The capacity of a buffer is the maximum number of elements that it can hold. The capacity of a buffer is fixed
when the buffer is created. You can think of the capacity of a buffer as the length of an array. Once you create an array,
its length is fixed. Similarly, once you create a buffer, its capacity is fixed. However, a buffer is not necessarily backed
by an array. You can check if a buffer is backed by an array by calling its hasArray() method that returns true if the
buffer is backed by an array. You can get access to the backing array of a buffer by using the array() method of the
buffer object. Once you get access to the backing array of a buffer, any changes made to that array will be reflected in
the buffer. A buffer has a capacity() method that returns its capacity.

Buffer

Buffer

Java Program

Channel writes data into a buffer Program reads data from a buffer

Channel reads data from a buffer Program writes data into a buffer

Channel
Data Sink

Data Source

Figure 9-1. Interaction between a channel, buffers, a Java program, a data source, and a data sink

Chapter 9 ■ New INput/Output

391

You can create a buffer of a particular kind in many ways. You can create a buffer by using the allocate() factory
method of a particular buffer class as follows:

// Create a byte buffer with the capacity as 8
ByteBuffer bb = ByteBuffer.allocate(8);

// Assigns 8 to the capacity variable
int capacity = bb.capacity();

// Create a character buffer with the capacity as 1024
CharBuffer cb = CharBuffer.allocate(1024);

A byte buffer gets special treatment in NIO. It has an extra method called allocateDirect() that creates a byte
buffer. This method creates a byte buffer for which the memory is allocated from the operating system memory, not from
the JVM heap. This avoids copying the contents to intermediate buffers during I/O operations. A direct buffer has an
additional creation cost. However, it is faster during an I/O operation. You should use a direct byte buffer when a buffer is
long-lived. You can use the isDirect() method of the ByteBuffer class to check if a buffer is direct or non-direct.

// Create a direct byte buffer of 512 bytes capacity
ByteBuffer bbd = ByteBuffer.allocateDirect(512);

Another way to create a buffer is to wrap an array using the buffer’s static wrap() method, like so:

// Have an array of bytes
byte[] byteArray = new byte[512];

// Create a byte buffer by wrapping the byteArray
ByteBuffer bb = ByteBuffer.wrap(byteArray);

You can use the same technique to create a buffer to store other primitive values. I will discuss other ways of
creating a buffer later in this section.

When you create a buffer, all elements of the buffer are initialized to a value of zero. Each element of a buffer has
an index. The first element has an index of 0 and the last element has an index of capacity – 1.

Position and limit are two properties of a buffer. When a buffer is created, its position is set to 0 and its limit is
equal to its capacity. Figure 9-2 shows the state of a buffer with a capacity of 8 just after its creation. All its elements
have a value of 0. Its position is set to zero. Its limit is set to 8, which is equal to its capacity. In the figure, P and L
denote the position and the limit of the buffer, respectively. Note that the figure shows the index at 8, which is out of
range for the buffer, to show the value of the limit.

Buffer Elements >> 0 0 0 0 0 0 0 0

Element’s Index >> 0 1 2 3 4 5 6 7 8

P L

Figure 9-2. A buffer of capacity 8 after its creation

You can get/set the position of a buffer using its overloaded position() method. The position() method returns
the current value of the position of a buffer. The position(int newPosition) method sets the position of the buffer to
the specified newPosition value and returns the reference of the buffer.

You can get/set the limit of a buffer using its overloaded limit() method. The limit() method returns the
current value of the limit of a buffer. The limit(int newLimit) method sets the limit of a buffer to the specified
newLimit value and returns the reference of the buffer.

Chapter 9 ■ New INput/Output

392

You can bookmark a position of a buffer by using the mark() method. When you call the mark() method, the
buffer stores the current value of its position as its mark value. You can set the position of a buffer to its previously
bookmarked value by using the reset() method. The buffer’s mark is not defined when it is created. You must
call the reset() method on a buffer only when its mark is defined. Otherwise, the reset() method throws an
InvalidMarkException.

The following invariant must hold during the lifetime of a buffer:

0 <= mark <= position <= limit <= capacity

Since the capacity of a buffer never changes and mark has limited use through the mark() and reset() methods,
I will limit the discussion only to the position and limit properties of a buffer. There are some indirect consequences of
changing the position and limit values. Since the mark cannot be greater than the position, the mark is discarded if the
position is set less than the current mark value. If you set the limit less than the position, the position is automatically
set equal to the limit value.

So far, you have read a great deal on buffers. It’s time to see a buffer in action. Listing 9-1 contains the code to
create a new buffer and display its four properties.

Listing 9-1. Mark, Position, Limit, and Capacity of a New Buffer

// BufferInfo.java
package com.jdojo.nio;

import java.nio.ByteBuffer;
import java.nio.InvalidMarkException;

public class BufferInfo {
 public static void main(String[] args) {
 // Create a byte buffer of capacity 8
 ByteBuffer bb = ByteBuffer.allocate(8);

 System.out.println("Capacity: " + bb.capacity());
 System.out.println("Limit: " + bb.limit());
 System.out.println("Position: " + bb.position());

 // The mark is not set for a new buffer. Calling the
 // reset() method throws a runtime exception if the mark is not set.
 // If the mark is set, the position is set to the mark value.
 try {
 bb.reset();
 System.out.println("Mark: " + bb.position());
 }
 catch (InvalidMarkException e) {
 System.out.println("Mark is not set");
 }
 }
}

Capacity: 8
Limit: 8
Position: 0
Mark is not set

Chapter 9 ■ New INput/Output

393

Reading from and Writing to a Buffer
There are two ways to read data from a buffer:

Using absolute position•	

Using relative position•	

In an absolute position read, you specify the index in the buffer from which you want to read the data. The
position of the buffer is unchanged after an absolute position read.

In a relative position read, you specify how many data elements you want to read. The current position of the
buffer determines which data elements will be read. In a relative position read, the read starts at the current position
of the buffer and it is incremented by one after reading each data element.

The get() method is used to read data from a buffer. The get() method is overloaded. It has four versions. Just
replace the data type byte with another data type for other primitive type buffers in the following methods:

•	 get(int index): It returns the data at the given index. For example, get(2) will return the
data at index 2 from the buffer. It is an absolute way of reading data from a buffer because
you provide the absolute position of the element from which you want to read the data. This
method does not change the current position of the buffer.

•	 get(): It returns the data from the current position in the buffer and increases the position
by 1. For example, if position is set at index 2, calling the get() method will return the value
at index 2 from the buffer and set the position to 3. It is a relative way of reading data from a
buffer because you read the data relative to the current position.

•	 get(byte[] destination, int offset, int length): It is used to read data from a buffer
in bulk. It reads length number of bytes from the current position of the buffer and puts
them in the specified destination array starting at the specified offset. If it cannot read the
length number of bytes from the buffer, it throws a BufferUnderflowException. If there is no
exception, it increases the current position by length. It is a relative read from a buffer.

•	 get(byte[] destination): It fills the specified destination array by reading data from
the current position of the buffer and incrementing the current position by one each
time it reads a data element. If there is not enough data to fill the array, it will throw a
BufferUnderflowException. It is a relative way of reading data from a buffer. This method call
is the same as calling get(byte[] destination, 0, destination.length).

Writing data to a buffer is the opposite of reading data from it. The put() method is used to write data to a buffer.
The put() method has five versions: one for absolute position write and four for relative position write. The absolute
version of the put() method does not affect the position of the buffer. The relative versions of the put() method write
the data and advance the position of the buffer by one for each written element. Different buffer classes have different
versions of the put() method; however, there are five versions that are common among all types of buffers. The
following are the five versions of the put() method for ByteBuffer. Just replace the data type byte with another data
type for other primitive type buffers in the following methods.

•	 put(int index, byte b): It writes the specified b data at the specified index. The call to this
method does not change the current position of the buffer.

•	 put(byte b): It is a relative put() method that writes the specified byte at the current position
of the buffer and increments the position by 1.

•	 put(byte[] source, int offset, int length): It reads the length number of bytes from
the source array starting at offset and writes them to the buffer starting at the current
position. It throws a BufferOverflowException if there is not enough room in the buffer to
write all bytes. The position of the buffer is incremented by length.

Chapter 9 ■ New INput/Output

394

•	 put(byte[] source): It is the same as calling put(byte[] source, 0, source.length).

•	 ByteBuffer put(ByteBuffer src) : It reads the remaining bytes from the specified byte
buffer src and writes them to the buffer. If the remaining space in the target buffer is less than
the remaining bytes in the source buffer, a runtime BufferOverflowException is thrown.

Let’s have some pictorial views of the state of a buffer and its properties after each read and write. Figure 9-3
through 9-6 depict how the position of a buffer with a capacity of 8 is advanced after each write in the buffer. After the
eighth write in the buffer, the position and the limit become equal. If you attempt to write a ninth time, you would get
a BufferOverflowException. Note that I have used a relative write using the put(byte b) method.

Buffer Elements >> 0 0 0 0 0 0 0 0

Element’s Index >> 0 1 2 3 4 5 6 7 8

P L

Figure 9-3. Buffer state with capacity 8 after creation. Buffer state - (position=0, limit=8)

Buffer Elements >> 50 52 53 54 55 56 57

Element’s Index >> 0 1 2 3 4 5 6 7 8

P
L

51

Figure 9-6. Buffer state after calling put((byte)52), put((byte)53), put((byte)54), put((byte)55), put((byte)56), and
put((byte)57). Buffer state - (position= 8, limit=8)

Buffer Elements >> 50 0 0 0 0 0 0 0

Element’s Index >> 0 1 2 3 4 5 6 7 8

P L

Figure 9-4. Buffer state after calling put((byte)50). Buffer state - (position= 1, limit=8)

Buffer Elements >> 50 0 0 0 0 0 0

Element’s Index >> 0 1 2 3 4 5 6 7 8

P L

51

Figure 9-5. Buffer state after calling put((byte)51). Buffer state – (position= 2, limit=8)

Let’s read the data that you have just written into the buffer whose state is shown in Figure 9-6. Note that the
position of the buffer is 8 and its limit is also 8. If you call the get() method (a relative read) to read data from this
buffer, you would get a BufferUnderflowException. You have just filled the buffer with data. However, when you
attempt to read the data, you get an exception because the get() method returns data from the current position of
the buffer, which is out of range in this case. The get() method will return data only if the position of the buffer is in
the range of 0 and 7. Let’s not lose hope, and try to read the data using an absolute position with the get(int index)
method. If you call get(0), get(1) ... get(7), you will be surprised to know that you can read all the data you had
written. Listing 9-2 demonstrates this.

Chapter 9 ■ New INput/Output

395

Listing 9-2. Writing to and Reading from a Buffer

// BufferReadWrite.java
package com.jdojo.nio;

import java.nio.ByteBuffer;

public class BufferReadWrite {
 public static void main(String[] args) {
 // Create a byte buffer with a capacity of 8
 ByteBuffer bb = ByteBuffer.allocate(8);

 // Print the buffer info
 System.out.println("After creation:");
 printBufferInfo(bb);

 // Populate buffer elements from 50 to 57
 for (int i = 50; i < 58; i++) {
 bb.put((byte) i);
 }

 // Print the buffer info
 System.out.println("After populating data:");
 printBufferInfo(bb);
 }

 public static void printBufferInfo(ByteBuffer bb) {
 int limit = bb.limit();
 System.out.println("Position = " + bb.position() +
 ", Limit = " + limit);

 // Use absolute reading without affecting the position
 System.out.print("Data: ");
 for (int i = 0; i < limit; i++) {
 System.out.print(bb.get(i) + " ");
 }
 System.out.println();
 }
}

After creation:
Position = 0, Limit = 8
Data: 0 0 0 0 0 0 0 0
After populating data:
Position = 8, Limit = 8
Data: 50 51 52 53 54 55 56 57

Now you understand that there is a big difference in using relative and absolute methods for reading from and
writing to a buffer. Both methods have a working range. The data must be read and written in the working range. The
working range for relative and absolute methods is different.

Chapter 9 ■ New INput/Output

396

The working range for a relative read/write is the indices between position and limit – 1 of the buffer, where
position is less than limit -1. That is, you can read/write data using the relative get() and put() methods if the
position of the buffer is less than its limit.

The working range for the absolute read/write is the index between zero and limit -1. So, how do you read all
the data from a buffer using a relative position read, after you have finished writing data into the buffer? One way to
accomplish this is to set the limit of the buffer equal to its position and set its position to 0. The following snippet of
code shows this technique:

// Create a byte buffer of capacity 8 and populate its elements
ByteBuffer bb = ByteBuffer.allocate(8);
for(int i = 50; i < 58; i++) {
 bb.put((byte)i);
}

// Set the limit the same as the position and set the position to 0
bb.limit(bb.position());
bb.position(0);

// Now bb is set to read all data using relative get() method
int limit = bb.limit();
for(int i = 0; i < limit; i++) {
 byte b = bb.get(); // Uses a relative read
 System.out.println(b);
}

The Buffer class has a method to accomplish just what you have coded in the above snippet of code. You can set
the limit of the buffer to its position and set the position to 0 by using its flip() method. Figure 9-7 shows the state
of a buffer, which has capacity of 8, after it has been created and after its two elements at index 0 and 1 have been
written. Figure 9-8 shows the state of the buffer after its flip() method is called. The flip() method discards the
mark of a buffer if it is defined.

Buffer Elements >> 50 0 0 0 0 0 0

Element’s Index >> 0 1 2 3 4 5 6 7 8

P L

51

Figure 9-7. Buffer’s state just after you have written two elements at indexes 0 and 1

Buffer Elements >> 50 0 0 0 0 0 0

Element’s Index >> 0 1 2 3 4 5 6 7 8

P L

51

Figure 9-8. Buffer’s state after writing two elements at indexes 0 and 1 and calling the flip() method

Chapter 9 ■ New INput/Output

397

In the previous snippet of code, you used a for-loop to read the data from the buffer. The index of the for-loop
runs from zero to limit –1. However, there is an easier way to read/write data from/to a buffer using relative read/
write method. The hasRemaining() method of a buffer returns true if you can use relative get() or put() method on
the buffer to read/write at least one element. You can also get the maximum number of elements you can read/write
using relative get() or put() methods by using its remaining() method. Listing 9-3 demonstrates the use of these
methods.

Listing 9-3. Using the flip() and hasRemaining() Methods of a Buffer Between Relative Reads and Writes

// BufferReadWriteRelativeOnly.java
package com.jdojo.nio;

import java.nio.ByteBuffer;

public class BufferReadWriteRelativeOnly {
 public static void main(String[] args) {
 // Create a byte buffer of capacity 8
 ByteBuffer bb = ByteBuffer.allocate(8);

 // Print the buffer info
 System.out.println("After creation:");
 printBufferInfo(bb);

 // Must call flip() to reset the position to zero because
 // the printBufferInfo() method uses relative get() method,
 // which increments the position
 bb.flip();

 // Populate buffer elements from 50 to 57
 int i = 50;
 while (bb.hasRemaining()) {
 bb.put((byte)i++);
 }

 // Call flip() again to reset the position to zero,
 // because the above put() call incremented the position
 bb.flip();

 // Print the buffer info
 System.out.println("After populating data:");
 printBufferInfo(bb);
 }

 public static void printBufferInfo(ByteBuffer bb) {
 int limit = bb.limit();
 System.out.println("Position = " + bb.position() +
 ", Limit = " + limit);

Chapter 9 ■ New INput/Output

398

 // We use absolute method of reading the data, so that we do
 // not affect the position of the buffer
 System.out.print("Data: ");
 while (bb.hasRemaining()) {
 System.out.print(bb.get() + " ");
 }
 System.out.println();
 }
}

After creation:
Position = 0, Limit = 8
Data: 0 0 0 0 0 0 0 0
After populating data:
Position = 0, Limit = 8
Data: 50 51 52 53 54 55 56 57

Apart from the flip() method, there are three more methods of a buffer that change its mark, position, and/or
limit. They are clear(), reset(), and rewind().

The clear() method of a buffer sets the position to zero, limit to its capacity, and discards its mark. That is, it
sets the buffer’s properties as if the buffer has just been created. Note that it does not change any data in the buffer.
Figure 9-9 and 9-10 show the mark, position, and limit of a buffer before and after calling the clear() method.
Typically, you call the clear() method on a buffer before you start filling it with fresh data.

Buffer Elements >> 50 52 53 54 0 0 0

Element’s Index >> 0 1 2 3 4 5 6 7 8

P L

51

Figure 9-10. Buffer’s state after calling its clear() method. The clear() method discarded the mark

Buffer Elements >> 50 52 53 54 0 0 0

Element’s Index >> 0 1 2 3 4 5 6 7 8

PM L

51

Figure 9-9. Buffer’s state before calling its clear() method

The reset() method sets the position of a buffer equal to its mark. If mark is not defined, it throws an
InvalidMarkException. It does not affect the limit and data of the buffer. Typically, it is called to revisit (for rereading
or rewriting) the buffer’s elements starting from the previously marked position and up to the current position. The
mark of the buffer remains unchanged by the reset() method. Figure 9-11 and 9-12 show the states of a buffer before
and after its reset() method is called.

Chapter 9 ■ New INput/Output

399

The rewind() method sets the position of the buffer to zero and discards its mark. It does not affect the limit.
Typically, you call this method between multiple read/write operations to use the same number of data elements in
the buffer multiple times. Figure 9-13 and 9-14 show the state of a buffer before and after calling its rewind() method.

Buffer Elements >> 50 52 53 54 0 0 0

Element’s Index >> 0 1 2 3 4 5 6 7 8

PM L

51

Figure 9-11. Buffer’s state before calling its reset() method

Buffer Elements >> 50 52 53 54 0 0 0

Element’s Index >> 0 1 2 3 4 5 6 7 8

P
M

L

51

Figure 9-12. Buffer’s state after calling its reset() method

Buffer Elements >> 50 52 53 54 0 0 0

Element’s Index >> 0 1 2 3 4 5 6 7 8

P L

51

Figure 9-13. Buffer’s state before calling its rewind() method

Buffer Elements >> 50 52 53 54 0 0 0

Element’s Index >> 0 1 2 3 4 5 6 7 8

P L

51

Figure 9-14. Buffer’s state after calling its rewind() method

Read-Only Buffers
A buffer can be read-only or read-write. You can only read the contents of a read-only buffer. Any attempt to change
the contents of a read-only buffer results in a ReadOnlyBufferException. Note that the properties of a read-only
buffer such as its position, limit, and mark can be changed during the read operations, but not its data.

You may want to get a read-only buffer from a read-write buffer, so you can pass it as an argument to a method to
make sure the method does not modify its contents. You can get a read-only buffer by calling the asReadOnlyBuffer()
method of the specific buffer class. You can check if a buffer is read-only by calling the isReadOnly() method as
follows:

// Create a buffer that is read-write by default
ByteBuffer bb = ByteBuffer.allocate(1024);
boolean readOnly = bb.isReadOnly(); // Assigns false to readOnly

Chapter 9 ■ New INput/Output

400

// Get a read-only buffer
ByteBuffer bbReadOnly = bb.asReadOnlyBuffer();
readOnly = bbReadOnly.isReadOnly(); // Assigns true to readOnly

The read-only buffer returned by the asReadOnlyBuffer() method is a different view of the same buffer. That is,
the new read-only buffer shares data with its original buffer. Any modifications to the contents of the original buffer
are reflected in the read-only buffer. A read-only buffer has the same value of position, mark, limit, and capacity as its
original buffer at the time of creation and it maintains them independently afterwards.

Different Views of a Buffer
You can obtain different views of a buffer. A view of a buffer shares data with the original buffer and maintains its own
position, mark, and limit. I discussed getting a read-only view of a buffer in the previous section that does not let its
contents be modified. You can also duplicate a buffer, in which case they share contents, but maintain mark, position,
and limit independently. Use the duplicate() method of a buffer to get a copy of the buffer as follows:

// Create a buffer
ByteBuffer bb = ByteBuffer.allocate(1024);

// Create a duplicate view of the buffer
ByteBuffer bbDuplicate = bb.duplicate();

You can also create a sliced view of a buffer. That is, you can create a view of a buffer that reflects only a portion of
the contents of the original buffer. You use the slice() method of a buffer to create its sliced view as follows:

// Create a buffer
ByteBuffer bb = ByteBuffer.allocate(8);

// Set the position and the limit before getting a slice
bb.position(3);
bb.limit(6);

// bbSlice buffer will share data of bb from index 3 to 5.
// bbSlice will have position set to 0 and its limit set to 3.
ByteBuffer bbSlice = bb.slice();

You can also get a view of a byte buffer for different primitive data types. For example, you can get a character
view, a float view, etc. of a byte buffer. The ByteBuffer class contains methods such as asCharBuffer(),
asLongBuffer(), asFloatBuffer(), etc. to obtain a view for primitive data types.

// Create a byte buffer
ByteBuffer bb = ByteBuffer.allocate(8);

// Create a char view of the byte buffer
CharBuffer cb = bb.asCharBuffer();

// Create a float view of the byte buffer
FloatBuffer fb = bb.asFloatBuffer();

Chapter 9 ■ New INput/Output

401

Character Set
A character is not always stored in one byte. The number of bytes used to store a character depends on the coded
character set and the character-encoding scheme. A coded-character set is a mapping between a set of abstract
characters and a set of integers. A character-encoding scheme is a mapping between a coded-character set and a set
of octet sequence. Please refer to Appendix A in Beginning Java Fundamentals (ISBN: 978-1-4302-6652-5) for more
details on character set and character encoding.

An instance of the java.nio.charset.Charset class represents a character set and a character-encoding scheme
in a Java program. Examples of some character set names are US-ASCII, ISO-8859-1, UTF-8, UTF-16BE, UTF-16LE,
and UTF-16.

The process of converting a character into a sequence of bytes based on an encoding scheme is called character
encoding. The process of converting a sequence of bytes into a character based on an encoding scheme is called
decoding.

In NIO, you have the ability to convert a Unicode character to a sequence of bytes and vice versa using an
encoding scheme. The java.nio.charset package provides classes to encode/decode a CharBuffer to a ByteBuffer
and vice versa. An object of the Charset class represents the encoding scheme. The CharsetEncoder class performs
the encoding. The CharsetDecoder class performs the decoding. You can get an object of the Charset class using its
forName() method by passing the name of the character set as its argument.

The String and InputStreamReader classes support character encoding and decoding. When you use
str.getBytes("UTF-8"), you are encoding the Unicode-characters stored in the string object str to a sequence of
bytes using the UTF-8 encoding-scheme. When you use the constructor of the String class String(byte[] bytes,
Charset charset) to create a String object, you are decoding the sequence of bytes in the bytes array from the
specified character set to the Unicode-character set. You are also decoding a sequence of bytes from an input stream
into Unicode-characters when you create an object of the InputStreamReader class using a character set.

For simple encoding and decoding tasks, you can use the encode() and decode() methods of the Charset class.
Let’s encode a sequence of characters in the string Hello stored in a character buffer and decode it using the UTF-8
encoding-scheme. The snippet of code to achieve this is as follows:

// Get a Charset object for UTF-8 encoding
Charset cs = Charset.forName("UTF-8");

// Character buffer to be encoded
CharBuffer cb = CharBuffer.wrap("Hello");

// Encode character buffer into a byte buffer
ByteBuffer encodedData = cs.encode(cb);

// Decode the byte buffer back to a character buffer
CharBuffer decodedData = cs.decode(encodedData);

The encode() and decode() methods of the Charset class are easy to use. However, they cannot be used in all
situations. They require you to know the inputs in advance. Sometimes you do not know the data to be encoded/
decoded in advance.

CharsetEncoder and CharsetDecoder classes provide much more power during the encoding and decoding
process. They accept a chunk of input to be encoded or decoded. The encode() and decode() methods of the Charset
class return the encoded and decoded buffers to you. However, CharsetEncoder and CharsetDecoder will let you
use your buffers for input and output data. The power comes with a little complexity! If you want more powerful
encoding/decoding, you will need to use the following five classes instead of just the Charset class:

•	 Charset

•	 CharsetEncoder

Chapter 9 ■ New INput/Output

402

•	 CharsetDecoder

•	 CoderResult

•	 CodingErrorAction

You will still need to use the Charset class to represent a character set. A CharsetEncoder object lets you encode
characters into a sequence of bytes using its encode() method. A sequence of bytes is decoded using the decode()
method of a CharsetDecoder object. The newEncoder() method of a Charset object returns an instance of the
CharsetEncoder class whereas its newDecoder() method returns an instance of the CharsetDecoder class.

// Get encoder and decoder objects from a Charset object
Charset cs = Charset.forName("UTF-8");
CharsetEncoder encoder = cs.newEncoder();
CharsetDecoder decoder = cs.newDecoder();

Two buffers, an input buffer and an output buffer, are needed for encoding and decoding. A character buffer
supplies the input characters to the encoding process and receives the decoded characters from the decoding process.
The encoding process writes the encoded result into a byte buffer and the decoding process reads its input from a byte
buffer. The following snippet of code illustrates the few steps in using an encoder and a decoder:

// Encode characters in inputChars buffer.
// outputBytes buffer will receive encoded bytes.
CharBuffer inputChars = get input characters to be encoded;
ByteBuffer outputBytes = get the output buffer for the encoded data;

boolean eoi = true; // Indicates the end of the input
CoderResult result = encoder.encode(inputChars, outputBytes, eoi);

// Decode bytes in inputBytes buffer.
// outputChars buffer will receive the decoded characters.
ByteBuffer inputBytes = get the input bytes to be decoded;
CharBuffer outputChars = get the output buffer for the decoded characters;

boolean eoi = true; // Indicates the end of the input
CoderResult result = encoder.decode(inputBytes, outputChars, eoi);

Consider a situation of encoding 16 characters stored in a character buffer using a 4-byte buffer. The encoding
process cannot encode all characters in one call to the encode() method. There must be a way to read all encoded
output repeatedly. You can apply the same argument for the decoding process. You can pass an input to the encoding/
decoding process and receive an output from them in chunks. The encoder’s encode() method and decoder’s
decode() method return an object of the CoderResult class, which contains the status of the encoding/decoding
process. There are two important results that this object can indicate: an Underflow or an Overflow.

•	 Underflow: It indicates that the process needs more input. You can test for this condition by
using the isUnderflow() method of the CoderResult object. You can also test this condition
by comparing the return value of the encode() or decode() method with CoderResult.UNDERFLOW
object as follows:

CoderResult result = encoder.encode(input, output, eoi);
if (result == CoderResult.UNDERFLOW) {
 // Supply some more input
}

Chapter 9 ■ New INput/Output

403

•	 Overflow: It indicates that the process has produced more output than the capacity of the
output buffer. You need to empty the output buffer and call the encode()/decode() method
again to get more output. You can test for this condition by using the isOverflow() method of
the CoderResult object. You can also test for this condition by comparing the return value of
the encode() or decode() method with CoderResult.OVERFLOW object as follows:

CoderResult result = encoder.encode(input, output, eoi);
if (result == CoderResult.OVERFLOW) {
 // Empty output buffer to make some room for more output
}

 Tip ■ apart from reporting buffer underflow and overflow, a CoderResult object is also capable of reporting a
malformed-input error and an unmappable-character error. You can also customize the default action of the encoding/
decoding engine for these error conditions by using their onMalformedInput() and onUnmappableCharacter()
 methods.

The last argument to the encode()/decode() method is a boolean value indicating the end of the input. You
should pass true for the end of the input argument when you pass the last chunk of data for encoding or decoding.

After passing the last chunk of data, you need to call the flush() method to flush the internal buffer of the
engine. It returns an object of CoderResult that can indicate underflow or overflow. If there is an overflow, you need
to empty the output buffer and call the flush() method again. You need to keep calling the flush() method until
its return value indicates an underflow. The flush() method call should be placed in a loop, so you get all of the
encoded/decoded data.

Listings 9-4 and 9-5 demonstrate how to use a character set encoder/decoder. The DataSourceSink class serves
as a data source and a data sink. I have created this class only for illustration purposes; you would not need a class like
this in a real-world application. It supplies a stanza from the poem Lucy by William Wordsworth in a character buffer.
The getCharData() method fills the character buffer. It returns -1 when there are no more characters to supply. You
use this method during the encoding process. The storeByteData() method is used to accumulate the encoded bytes
during encoding process. The getByteData() method is used during the decoding process to supply the encoded
bytes in chunks that you accumulate during the encoding process. The encode() and decode() methods of the
CharEncoderDecoder class have the encoding and decoding logic. This example displays the decoded characters on
the standard output.

Listing 9-4. A Data Source and Sink that Supplies Character Data, Stores and Supplies Byte Data

// DataSourceSink.java
package com.jdojo.nio;

import java.nio.ByteBuffer;
import java.nio.CharBuffer;

public class DataSourceSink {
 private CharBuffer cBuffer = null;
 private ByteBuffer bBuffer = null;

 public DataSourceSink() {
 String text = getText();
 cBuffer = CharBuffer.wrap(text);
 }

Chapter 9 ■ New INput/Output

404

 public int getByteData(ByteBuffer buffer) {
 if (!bBuffer.hasRemaining()) {
 return -1;
 }

 int count = 0;
 while (bBuffer.hasRemaining() && buffer.hasRemaining()) {
 buffer.put(bBuffer.get());
 count++;
 }
 return count;
 }

 public int getCharData(CharBuffer buffer) {
 if (!cBuffer.hasRemaining()) {
 return -1;
 }

 int count = 0;
 while (cBuffer.hasRemaining() && buffer.hasRemaining()) {
 buffer.put(cBuffer.get());
 count++;
 }

 return count;
 }

 public void storeByteData(ByteBuffer byteData) {
 if (this.bBuffer == null) {
 int total = byteData.remaining();
 this.bBuffer = ByteBuffer.allocate(total);
 while (byteData.hasRemaining()) {
 this.bBuffer.put(byteData.get());
 }
 this.bBuffer.flip();
 }
 else {
 this.bBuffer = this.appendContent(byteData);
 }
 }

 private ByteBuffer appendContent(ByteBuffer content) {
 // Create a new buffer to accommodate new data
 int count = bBuffer.limit() + content.remaining();
 ByteBuffer newBuffer = ByteBuffer.allocate(count);

 // Set the position of bBuffer that has some data
 bBuffer.clear();
 newBuffer.put(bBuffer);
 newBuffer.put(content);

Chapter 9 ■ New INput/Output

405

 bBuffer.clear();
 newBuffer.clear();
 return newBuffer;
 }

 public String getText() {
 String newLine = System.getProperty("line.separator");
 StringBuilder sb = new StringBuilder();
 sb.append("My horse moved on; hoof after hoof");
 sb.append(newLine);
 sb.append("He raised, and never stopped:");
 sb.append(newLine);
 sb.append("When down behind the cottage roof,");
 sb.append(newLine);
 sb.append("At once, the bright moon dropped.");

 return sb.toString();
 }
}

Listing 9-5. Charset Encoder and Decoder Using a DataSourceSink as a Data Supplier/Consumer for
Encoding/Decoding

// CharEncoderDecoder.java
package com.jdojo.nio;

import java.nio.ByteBuffer;
import java.nio.CharBuffer;
import java.nio.charset.Charset;
import java.nio.charset.CharsetDecoder;
import java.nio.charset.CharsetEncoder;
import java.nio.charset.CoderResult;

public class CharEncoderDecoder {
 public static void main(String[] args) throws Exception {
 DataSourceSink dss = new DataSourceSink();

 // Display the text we are going to encode
 System.out.println("Original Text:");
 System.out.println(dss.getText());
 System.out.println("--------------------");

 // Encode the text using UTF-8 encoding. We will store
 // encoded bytes in the dss object during the encoding process
 encode(dss, "UTF-8");

 // Decode bytes stored in the dss object using UTF-8 encoding
 System.out.println("Decoded Text:");
 decode(dss, "UTF-8");
 }

Chapter 9 ■ New INput/Output

406

 public static void encode(DataSourceSink ds, String charset) {
 CharsetEncoder encoder = Charset.forName(charset).newEncoder();

 CharBuffer input = CharBuffer.allocate(8);
 ByteBuffer output = ByteBuffer.allocate(8);

 // Initialize variables for loop
 boolean endOfInput = false;
 CoderResult result = CoderResult.UNDERFLOW;

 while (!endOfInput) {
 if (result == CoderResult.UNDERFLOW) {
 input.clear();
 endOfInput = (ds.getCharData(input) == -1);
 input.flip();
 }

 // Encode the input characters
 result = encoder.encode(input, output, endOfInput);

 // Drain output when
 // 1. It is an overflow. Or,
 // 2. It is an underflow and it is the end of the input

 if (result == CoderResult.OVERFLOW ||
 (endOfInput && result == CoderResult.UNDERFLOW)) {
 output.flip();
 ds.storeByteData(output);
 output.clear();
 }
 }

 // Flush the internal state of the encoder
 while (true) {
 output.clear();
 result = encoder.flush(output);
 output.flip();
 if (output.hasRemaining()) {
 ds.storeByteData(output);
 output.clear();
 }

 // Underflow means flush() method has flushed everything
 if (result == CoderResult.UNDERFLOW) {
 break;
 }
 }
 }

Chapter 9 ■ New INput/Output

407

 public static void decode(DataSourceSink dss, String charset) {
 CharsetDecoder decoder = Charset.forName(charset).newDecoder();
 ByteBuffer input = ByteBuffer.allocate(8);
 CharBuffer output = CharBuffer.allocate(8);

 boolean endOfInput = false;
 CoderResult result = CoderResult.UNDERFLOW;

 while (!endOfInput) {
 if (result == CoderResult.UNDERFLOW) {
 input.clear();
 endOfInput = (dss.getByteData(input) == -1);
 input.flip();
 }

 // Decode the input bytes
 result = decoder.decode(input, output, endOfInput);

 // Drain output when
 // 1. It is an overflow. Or,
 // 2. It is an underflow and it is the end of the input
 if (result == CoderResult.OVERFLOW ||
 (endOfInput && result == CoderResult.UNDERFLOW)) {

 output.flip();
 while (output.hasRemaining()) {
 System.out.print(output.get());
 }
 output.clear();
 }
 }

 // Flush the internal state of the decoder
 while (true) {
 output.clear();
 result = decoder.flush(output);
 output.flip();
 while (output.hasRemaining()) {
 System.out.print(output.get());
 }

 if (result == CoderResult.UNDERFLOW) {
 break;
 }
 }
 }
}

Chapter 9 ■ New INput/Output

408

Original Text:
My horse moved on; hoof after hoof
He raised, and never stopped:
When down behind the cottage roof,
At once, the bright moon dropped.

Decoded Text:
My horse moved on; hoof after hoof
He raised, and never stopped:
When down behind the cottage roof,
At once, the bright moon dropped.

You can get the list of all available character sets supported by the JVM using the static method
availableCharsets() of the Charset class, which returns a Map. The key of the Map is a character set name and the
value is the Charset object that represents the character set.

Tip ■ You can create your own character encoder/decoder by using the CharsetProvider class in
java.nio.charset.spi package. You need to explore the java.nio.charset and java.nio.charset.spi packages for
details on how to create and install your own character set. this book does not cover how to create and install a custom
character set.

Listing 9-6 demonstrates how to list all character sets supported by a JVM. A partial output is shown. When you
run the program, you may get a different output.

Listing 9-6. List of Available Character Sets Supported by Your JVM

// AvailableCharsets.java
package com.jdojo.nio;

import java.util.Map;
import java.nio.charset.Charset;
import java.util.Set;

public class AvailableCharsets {
 public static void main(String[] args) {
 Map<String, Charset> map = Charset.availableCharsets();
 Set<String> keys = map.keySet();
 System.out.println("Available Character Set Count: " + keys.size());

 for(String charsetName : keys) {
 System.out.println(charsetName);
 }
 }
}

Chapter 9 ■ New INput/Output

409

Available Character Set Count: 160
Big5
ISO-8859-1
US-ASCII
UTF-16
UTF-16BE
UTF-16LE
UTF-32
UTF-32BE
UTF-32LE
UTF-8
windows-1250
x-iso-8859-11
...

Channels
A channel is an open connection between a data source/data sink and a Java program to perform some I/O
operations. The Channel interface is in the java.nio.channels package. It is used as a base to implement channels
in Java. It declares only two methods: close() and isOpen(). When a channel is created, it is open and its isOpen()
method returns true. Once you are finished using a channel, you should call its close() method to close it. At that
point, isOpen() returns false. Figure 9-15 depicts the class diagram for the Channel interface.

Figure 9-15. A class diagram for the channel interface

Chapter 9 ■ New INput/Output

410

Your Java program interacts with a channel for an I/O operation using byte buffers. That is, even if you have many
different kinds of buffers, you will need to convert them to a byte buffer before you can pass them to a channel for
reading/writing data.

A ReadableByteChannel is used to read data from a data source into a byte buffer using its read() method.
A WritableByteChannel is used to write data from a byte buffer to a data sink using its write() method. A ByteChannel
is capable of both reading and writing byte data using its read() and write() methods, respectively.

A ScatteringByteChannel reads data from a data source into multiple byte buffers. It is useful to read data from a
known file format or a similar data source, where data is supplied in some fixed-length headers followed by a variable
length body. For example, suppose a file has a 256-byte fixed-length header and a variable length body. An object
of the ScatteringByteChannel class is used to read data from this kind of file using two byte buffers. The first byte
buffer will be of capacity 256. The second buffer will be of a size of your choice. When you pass these two buffers to
this channel, the fixed-length header of 256 bytes will be read in the first buffer. The second buffer will have the file
data and you may have to use the second buffer multiple times to read the rest of bytes from the file. The advantage of
using this channel is separating the fixed-length header data from other data.

A GatheringByteChannel performs just the opposite of what a ScatteringByteChannel performs. It writes data
from multiple byte buffers to a data sink. It is used to write data in a format that is grouped in some fixed-length
headers, followed by a variable length body.

An InterruptibleChannel channel can be closed asynchronously. If a thread is blocked on an I/O operation
on this channel, another thread can call its close() method to close it. The blocked thread will receive an
AsynchronousCloseException. If a thread is blocked on an I/O operation on this channel, another thread can
call the interrupt() method on the blocked thread. This channel is closed, and the blocked thread receives a
ClosedByInterruptException exception.

Typically, you do not deal with these channel interfaces directly in your Java program. You will be dealing with
concrete channel classes that implement one or more of these interfaces. Unlike streams, you do not create a channel
directly. You get it indirectly by calling a method. To obtain a channel for a data source and a data sink, you will need
to create an object of InputStream and OutputStream using old ways of working with I/O using classes in the java.io
package. The Channels class in the java.nio.channels package is a utility class that has many static methods to
convert streams into channels and vice versa. The Channels class also provides methods to convert readers/writers
to channels and vice versa. For example, if you have an input stream object named myInputStream, you can obtain a
ReadableByteChannel as follows:

// Get a ReadableByteChannel from an InputStream
ReadableByteChannel rbc = Channels.newChannel(myInputStream);

If you have a ReadableByteChannel named rbc, you can obtain the underlying InputStream object as follows:

// Get the InputStream of the ReadableByteChannel
InputStream myInputStream = Channels.newInputStream(rbc);

For NIO, the FileInputStream and FileOutputStream classes have been modified to work with channels. They
have a new method called getChannel() to return a FileChannel object. A FileChannel is used to read and write data
to a file. The FileChannel object obtained from a FileInputStream is opened in a read-only mode. A FileChannel
object obtained from a FileOutputStream object is opened in a write-only mode. If you obtain a FileChannel from a
RandomAccessFile, it is opened in a read-only, write-only, or read-write mode, depending on the way you create that
RandomAccessFile object. The following snippet of code obtains FileChannel objects for different kinds of file streams:

FileInputStream fis = new FileInputStream("luci1.txt");
FileChannel fcReadOnly = fis.getChannel(); // A read-only channel

FileOutputStream fos = new FileOutputStream("luci1.txt");
FileChannel fcWriteOnly = fos.getChannel(); // A write-only channel

Chapter 9 ■ New INput/Output

411

// Open file in a read-only mode
RandomAccessFile raf1 = new RandomAccessFile("luci1.txt", "r");
FileChannel rafReadOnly = raf1.getChannel(); // A read-only channel

// Open file in a read-write mode
RandomAccessFile raf2 = new RandomAccessFile("luci1.txt", "rw");
FileChannel rafReadWrite = raf2.getChannel(); // A read-write channel■

Tip ■ Starting from Java 7, you can obtain a FileChannel using the FileChannel.open() static method. this avoids
the need to create an input/output stream to create a FileChannel. the new open() method uses a Path object, which
is part of NIO 2. please refer to Chapter 9 on NIO 2 for more details on using a Path object.

Reading/Writing Files
I have covered the basic concepts of buffers and channels. A FileChannel object maintains a position variable as a
buffer does. The read() and write() methods for FileChannel come in two varieties: relative position read/write
and absolute position read/write. The meanings of relative and absolute position read/write are the same as in the
context of a buffer read/write. When you open a FileChannel, its position is set to 0, which is the beginning of the
file. When you read from a FileChannel using a relative read() method, its position is incremented by the number of
bytes read. An absolute position read from a FileChannel does not affect its position. You can get the current value of
the position of a FileChannel object using its position() method. You can set its position to a new position using its
position(int newPosition) method. You need to follow a few easy steps to read data from a file and to write data to
a file using NIO.

The steps to read data from a file using buffer and channel are as follows:

Create an object of •	 FileInputStream.

Get a •	 FileChannel object using the getChannel() method of FileInputStream.

Create a •	 ByteBuffer object to read data from the file.

Call the •	 read() method of the FileChannel object by passing the ByteBuffer object. Make
sure that before you pass the byte buffer, the buffer’s position and limit are set appropriately.
A simple rule of thumb is to always call the clear() method on the byte buffer before passing
it to a channel to read data into it. The read() method of a channel returns the number of
bytes read into the buffer.

Call the •	 flip() method of the buffer, so you can read data into your Java program from the
buffer. The previous step will change the position of the buffer because the channel reads
data into it. You may need to use a CharsetDecoder object to decode the byte buffer into a
character buffer if the bytes you have read represent characters.

Read data from the buffer into your Java program.•	

Repeat the process of reading data from the •	 FileChannel into the buffer by calling its read()
method until the read() method returns 0 or –1.

Close the channel using its •	 close() method.

Chapter 9 ■ New INput/Output

412

Tip ■ Like input/output streams, channels are also AutoCloseable. If you use a try-with-resources statement to
obtain a channel, the channel will be closed automatically, thus avoiding a need for you to call the close() method of the
channel explicitly.

Listing 9-7 puts all of the above steps together. It reads text from a file named luci1.txt. The file should be in
your current working directory. If the file does not exist, the program prints a message with the full path of where the
file is expected to exist. If you do not have this file, create it and enter the following text in the file, before you run the
program:

STRANGE fits of passion have I known:
And I will dare to tell,
But in the lover's ear alone,
What once to me befell.

You need to pay close attention to the call to the clear() and flip() methods on a buffer. When you call the
read() or write() method of a channel, it performs a relative position read/write on the buffer. Therefore, you must
call the flip() method of the buffer to read data from it after the channel writes data into the buffer.

Listing 9-7. Reading from a File Using a Buffer and a Channel

// FileChannelRead.java
package com.jdojo.nio;

import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.nio.ByteBuffer;
import java.nio.channels.FileChannel;

public class FileChannelRead {
 public static void main(String[] args) {
 // The input file to read from
 File inputFile = new File("luci1.txt");

 // Make sure the input file exists
 if (!inputFile.exists()) {
 System.out.println("The input file " +
 inputFile.getAbsolutePath() + " does not exist.");
 System.out.println("Aborted the file reading process.");
 return;
 }

 // Obtain channel for luci1.txt file to read from it
 try (FileChannel fileChannel
 = new FileInputStream(inputFile).getChannel()) {

 // Create a buffer
 ByteBuffer buffer = ByteBuffer.allocate(1024);

Chapter 9 ■ New INput/Output

413

 // Read all data from the channel
 while (fileChannel.read(buffer) > 0) {
 // Flip the buffer before we can read data from it
 buffer.flip();

 // Display the read data as characters on the console
 // Note that we are assuming that a byte represents a
 // character, which is not true all the time. In a
 // real world application, you should use
 // CharsetDecoder to decode the bytes into character
 // before you display/use them.
 while (buffer.hasRemaining()) {
 byte b = buffer.get();

 // Assuming a byte represents a character
 System.out.print((char) b);
 }

 // Clear the buffer before next read into it
 buffer.clear();
 }
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }
}

STRANGE fits of passion have I known:
And I will dare to tell,
But in the lover's ear alone,
What once to me befell.

The steps to write data to a file using a buffer and a channel are as follows:

Create an object of •	 FileOutputStream.

Get a •	 FileChannel object using the getChannel() method of FileOutputStream.

Create a •	 ByteBuffer object to write data to the file.

Fill the •	 ByteBuffer with data.

Call the •	 flip() method of the buffer to get it ready to be read by the channel.

Call the •	 write() method of the FileChannel object by passing the ByteBuffer object filled
with data .

Close the channel by calling its •	 close() method.

Listing 9-8 puts all the above steps together to write the following text to luci5.txt file:

In one of those sweet dreams I slept,
Kind Nature's gentlest boon!
And all the while my eyes I kept
On the descending moon.

Chapter 9 ■ New INput/Output

414

The code creates a string from the text inserting a platform-dependent new line character between two lines.
It converts the text into a byte array, creates a byte buffer by wrapping the byte array, and writes the buffer to the file
channel. Note that you do not need to use the flip() method on the buffer because, before passing it to the channel for
writing, your buffer object was just created with the text, and its position and limit were set appropriately by the wrap()
method. The program prints the path of the file in which the text was written that may be different on your machine.

Listing 9-8. Writing to a File Using a Buffer and a Channel

// FileChannelWrite.java
package com.jdojo.nio;

import java.io.File;
import java.nio.channels.FileChannel;
import java.io.IOException;
import java.nio.ByteBuffer;
import java.io.FileOutputStream;

public class FileChannelWrite {
 public static void main(String[] args) {
 // The output file to write to
 File outputFile = new File("luci5.txt");

 try (FileChannel fileChannel =
 new FileOutputStream(outputFile).getChannel()) {

 // Get the text as string
 String text = getText();

 // Convert text into byte array
 byte[] byteData = text.toString().getBytes("UTF-8");

 // Create a ByteBuffer using the byte array
 ByteBuffer buffer = ByteBuffer.wrap(byteData);

 // Write bytes to the file
 fileChannel.write(buffer);

 System.out.println("Data has been written to " +
 outputFile.getAbsolutePath());
 }
 catch (IOException e1) {
 e1.printStackTrace();
 }
 }

 public static String getText() {
 String lineSeparator = System.getProperty("line.separator");
 StringBuilder sb = new StringBuilder();
 sb.append("In one of those sweet dreams I slept,");
 sb.append(lineSeparator);
 sb.append("Kind Nature's gentlest boon!");
 sb.append(lineSeparator);

Chapter 9 ■ New INput/Output

415

 sb.append("And all the while my eyes I kept");
 sb.append(lineSeparator);
 sb.append("On the descending moon.");

 return sb.toString();
 }
}

Data has been written to C:\book\javabook\luci5.txt

A file has two kinds of data associated with it. One is its contents and the other is metadata such as creation time,

last-modified time, etc. When you write data to a file channel, the data may not be actually written to the storage
device (for example, the hard disk) immediately. To write the data to the storage device immediately, after a call to
the write() method on a file channel, you can call its force(boolean metaData) method. It guarantees that the file’s
contents and metadata are written to its storage device. If you call force(false), only the file’s metadata is written to
the storage device. If you call force(true), both the file’s content and its metadata are written to the storage device.
In fact, this is guaranteed only if the storage device is local. Otherwise, the JVM tries its best to write the data to the
storage device.

Tip ■ a file channel works only with byte buffers. In the examples in this section, I have assumed that a character is
represented in a byte, which is true only when you are using an encoding such as uS-aSCII or utF-8 for english alphabets.
please refer to the “Character Set” section on how to encode a character buffer into a byte buffer and how to decode a
byte buffer into a character buffer.

Memory-Mapped File I/O
There is another way to perform I/O on a file, which is by mapping a region of the file into physical memory and
treating it as a memory array. This is the fastest way available to perform file I/O in Java. Using a special kind of byte
buffer called MappedByteBuffer lets you perform memory-mapped file I/O.

For memory-mapped file I/O, start by obtaining a FileChannel object for the file, and use the map() method of
the FileChannel to get a MappedByteBuffer. Read or write directly to the mapped byte buffer instead of using the
read() or write() method of the FileChannel object. When you read from the mapped byte buffer, you read from the
file’s region you have mapped. When you write to the mapped byte buffer, you write to the mapped region of the file.
If you want to write the written data to the mapped byte buffer immediately to the storage device, you need to use the
force() method of the mapped byte buffer. There is no boolean argument to force() related to metadata.

Once you obtain the mapped byte buffer from a FileChannel, closing the channel has no effect on your buffer.
You can keep reading/writing the mapped byte buffer, even after the FileChannel is closed.

You can map a region of a file in a read-only, read-write, or private mode. In a read-only mode, you can only read
from the mapped byte buffer. In a read-write mode, you can read from as well as write to the mapped byte buffer. The
private mode needs a little explanation. This mode is also called a copy-on-write mode. When multiple programs map
the same region of a file, a separate copy of that region is not created for each program. Rather, all programs share
the same region of the file. However, when a program modifies the mapped region, a separate copy of that region is
created only for that program, which is its private copy. Any modification made to the private copy is not visible to
other programs.

Chapter 9 ■ New INput/Output

416

The following snippet of code maps the whole file luci5.txt in a read-only mode. It reads the file and displays
the contents on the standard output.

FileInputStream fis = new FileInputStream("luci5.txt");
FileChannel fc = fis.getChannel();

long startRegion = 0;
long endRegion = fc.size();
MappedByteBuffer mbb = fc.map(FileChannel.MapMode.READ_ONLY,
 startRegion, endRegion);
while(mbb.hasRemaining()) {
 System.out.print((char)mbb.get());
}

fc.close();

File Locking
NIO supports file locking to synchronize access to a file. You have the ability to lock a region of a file or the entire file.
The file locking mechanism is handled by the operating system and therefore its exact effect is platform-dependent.
On some operating systems, a file lock is advisory, whereas on some, it is mandatory. Since it is handled by the
operating system, its effect is visible to other programs as well as to Java programs running in other JVMs.

Tip ■ an advisory lock lets other users use the file on which you have acquired the lock, but prevents them from
acquiring a lock on the same file. a mandatory lock forces the user to acquire a lock on the file before the file can be used.

There are two kinds of file locking: exclusive and shared. Only one program can hold an exclusive lock on a region
of a file. Multiple programs can hold shared locks on the same region of a file. You cannot mix an exclusive lock and a
shared lock on the same region of a file. If a program has a shared lock on a region, another program must wait to get
an exclusive lock on that region and vice versa. Some operating systems do not support a shared file lock, and in that
case, the request for a shared file lock is converted to a request for an exclusive file lock.

An object of the FileLock class, which is in the java.nio.channels package, represents a file lock. You acquire
a lock on a file by using the lock() or tryLock() method of the FileChannel object. The lock() method blocks if the
lock on the requested region of the file is not available. The tryLock() method does not block; it returns immediately.
It returns an object of the FileLock class if the lock was acquired; otherwise, it returns null.

Both lock() and tryLock() methods have two versions: one without an argument and another with three
arguments. The version without an argument locks the entire file. The version with three arguments accepts the
starting position of the region to lock, the number of bytes to lock, and a boolean flag to indicate if the lock is shared.
The isShared() method of the FileLock object returns true if the lock is shared; otherwise, it returns false.

The following snippet of code shows different ways of obtaining locks on a file. The exception handling code is
omitted for readability.

// Create a random access file and obtain a channel for it
RandomAccessFile raf = new RandomAccessFile("test.txt", "rw");
FileChannel fileChannel = raf.getChannel();

// Get an exclusive lock on the file
FileLock lock = fileChannel.lock();

Chapter 9 ■ New INput/Output

417

// Get an exclusive lock on first 10 bytes
FileLock lock = fileChannel.lock(0, 10, false);

// Try to get an exclusive lock on the entire file
FileLock lock = fileChannel.tryLock();
if (lock == null) {
 // Could not get the lock
}
else {
 // Got the lock
}

// Try to lock 100 bytes starting from the 11th byte in a shared mode
FileLock lock = fileChannel.tryLock(11, 100, true);
if (lock == null) {
 // Could not get the lock
}
else {
 // Got the lock
}

The file region that you lock may not be contained in the range of the file size. Suppose you have a file with a size
of 100 bytes. When you request a lock on this file, you can specify that you want to lock a region of this file starting at
byte 11 and covering 5000 bytes. Note that this file contains only 100 bytes; you are locking 5000 bytes. In such a case,
if the file size grows beyond 100 bytes, your lock covers the additional region of the file. Suppose you locked 0 to
100 bytes of a 100-byte file. If this file grows to 150 bytes, your lock does not cover the last 50 bytes that was added
after you acquired the lock. The lock() and tryLock() methods of the FileChannel object, where you do not
specify any argument, lock a region from 0 to Long.MAX_VALUE of the file. The two method calls fc.lock() and
fc.lock(0, Long.MAX_VALUE, false) have the same effect.

When you are done with the file lock, you need to release it by using the release() method. A file lock is released
in three ways: by calling its release() method, by closing the file channel it is obtained from, and by shutting down
the JVM. It is good practice to use a try-catch-finally block to acquire and release a file lock as follows:

RandomAccessFile raf = new RandomAccessFile("test.txt", "rw");
FileChannel fileChannel = raf.getChannel();
FileLock lock = null;
try {
 lock = fileChannel.lock(0, 10, true);

 /* Work with the file here */
}
catch(IOException e) {
 // Handle the exception
}
finally {
 if (lock != null) {
 try {
 lock.release();
 }

Chapter 9 ■ New INput/Output

418

 catch(IOException e) {
 // Handle the exception
 }
 }
}

Copying Contents of a File
You can use buffers and channels to copy a file much faster. Copying the contents of a file to another file is just one
method call when you use a FileChannel. Get the FileChannel object for the source file and the destination file,
and call the transferTo() method on the source FileChannel object or call the transferFrom() method on the sink
FileChannel object. The following snippet of code shows how to copy file luci5.txt to luci5_copy.txt:

// Obtain the source and sink channels
FileChannel sourceChannel = new FileInputStream(sourceFile).getChannel();
FileChannel sinkChannel = new FileOutputStream(sinkFile).getChannel();

// Copy source file contents to the sink file
sourceChannel.transferTo(0, sourceChannel.size(), sinkChannel);

// Instead of using the transferTo() method on the source channel,
// you can also use the transferFrom() method on the sink channel
sinkChannel.transferFrom(sourceChannel, 0, sourceChannel.size());

Listing 9-9 contains the complete code. The program prints the path of the source and destination files when the
file copy succeeds.

Listing 9-9. Copying a File’s Contents Using a FileChannel

// FastestFileCopy.java
package com.jdojo.nio;

import java.io.IOException;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.nio.channels.FileChannel;

public class FastestFileCopy {
 public static void main(String[] args) {
 File sourceFile = new File("luci5.txt");
 File sinkFile = new File("luci5_copy.txt");
 try {
 copy(sourceFile, sinkFile, false);
 System.out.println(sourceFile.getAbsoluteFile() +
 " has been copied to " +
 sinkFile.getAbsolutePath());
 }
 catch (IOException e) {
 System.out.println(e.getMessage());
 }
 }

Chapter 9 ■ New INput/Output

419

 public static void copy(File sourceFile,
 File sinkFile, boolean overwrite) throws IOException {

 String msg = "";

 // Perform some error checks
 if (!sourceFile.exists()) {
 msg = "Source file " + sourceFile.getAbsolutePath() +
 " does not exist.";
 throw new IOException(msg);
 }

 if (sinkFile.exists() && !overwrite) {
 msg = "Destination file " +
 sinkFile.getAbsolutePath() +
 " already exists.";
 throw new IOException(msg);
 }

 // Obtain source and sink file channels in a
 // try-with-resources block, so they are closed automatically.
 try (FileChannel srcChannel =
 new FileInputStream(sourceFile).getChannel();
 FileChannel sinkChannel =
 new FileOutputStream(sinkFile).getChannel()) {

 // Copy source file contents to the sink file
 srcChannel.transferTo(0, srcChannel.size(), sinkChannel);
 }
 }
}

Knowing the Byte Order of a Machine
If you ever wanted to know the byte order (also called endian-ness) of your machine, you need to use the
nativeOrder() method of the ByteOrder class, shown in Listing 9-10. The byte order of a machine/buffer is discussed
in detail in the next section. The program prints the byte order of the machine on which it is run. You may get a
different output.

Listing 9-10. Knowing the Endia-ness (Byte Order) of Your Machine

// MachineByteOrder.java
package com.jdojo.nio;

import java.nio.ByteOrder;

public class MachineByteOrder {
 public static void main(String args[]) {
 ByteOrder b = ByteOrder.nativeOrder();

Chapter 9 ■ New INput/Output

420

 if (b.equals(ByteOrder.BIG_ENDIAN)) {
 System.out.println("Big endian");
 }
 else {
 System.out.println("Little endian");
 }
 }
}

Little endian

Byte Buffer and Its Byte Order
A byte order is the order in which bytes of a multi-byte value are stored. Suppose you have a short value 300 stored in a
variable as follows:

short s = 300;

A short value is stored in two bytes. The value 300 can be represented in 16-bits as 0000000100101100, where
the rightmost bit is the least significant bit and the leftmost bit is the most significant bit. You can split the 16-bit
into two bytes as 00000001 and 00101100. At the byte level, you can think of 00000001 as the most significant byte
and 00101100 as the least significant byte. If you consider two bytes separately for a short value, you may store them
as either 00000001 followed by 00101100 or 00101100 followed by 00000001. As long as you know the order of the
bytes in which they are stored, you would be able to compute the correct value 300 using either form of the 16-bits:
0000000100101100 or 0010110000000001.

A byte order is called big endian if the bytes of a multi-bytes value are stored from the most significant byte to the
least significant byte. If the bytes of a multi-byte value are stored from the least significant byte to the most significant
byte, it is known as little endian. To remember the two definitions easily, you can replace the word “big” with
“most significant,” “little” with “least significant,” and “endian” with “first”. That is, remember “big endian” as
“most significant first” and “little endian” as “least significant first.”

If you store a short value of 300 as 0000000100101100, you are using the big endian byte order. In the little endian
byte order, you would store 300 as 0010110000000001, which seems backwards for representing a 16-bit value.

When you deal with byte data in a byte buffer, you may be considering each byte as an independent byte. A byte
in a byte buffer may be part of a bigger value. When a byte value in a byte buffer is independent, the byte order is not a
consideration. When a byte in a byte buffer is part of a bigger value (e.g. two bytes of a short value 300), the byte order
becomes very important in reading. If you read two bytes from a byte buffer to compute a short value, you must know
how those two bytes are stored. Suppose you read two bytes as 0000000100101100. If it is in a big endian byte order, it
represents a value 300. If it is in a little endian byte order, it represents a value of 11265.

Java uses a big-endian byte order to store data. By default, a byte buffer uses a big endian byte order. An instance
of the java.nio.ByteOrder class represents a byte order. You will not need to instantiate this class because you
always use the value that represents a byte order; you don’t create a new byte order. In fact, this class has no public
constructor. You can use two constants, BIG_ENDIAN and LITTLE_ENDIAN, which are defined in the ByteOrder class to
represent these byte orders.

Tip ■ a byte order is meaningful only in a multi-byte value stored in a byte buffer. You may also need to deal with byte
orders when you are dealing with two different systems that use different byte orders.

Chapter 9 ■ New INput/Output

421

Listing 9-11 demonstrates how to get and set byte order for a byte buffer. You use the order() method of the
ByteBuffer class to get or set the byte order. The program stores a short value of 300 in two bytes of a byte buffer.
It displays the values stored in the first and the second bytes using both big endian and little endian byte orders.
The output shows the values of bytes in decimal as 1 and 44, whose binary equivalents are 00000001 and 00101100,
respectively.

Listing 9-11. Setting the Byte Order of a Byte Buffer

// ByteBufferOrder.java
package com.jdojo.nio;

import java.nio.ByteBuffer;
import java.nio.ByteOrder;

public class ByteBufferOrder {
 public static void main(String[] args) {
 ByteBuffer bb = ByteBuffer.allocate(2);
 System.out.println("Default Byte Order: " + bb.order());
 bb.putShort((short) 300);
 bb.flip();
 showByteOrder(bb);

 // Repopulate the buffer in little endian byte order
 bb.clear();
 bb.order(ByteOrder.LITTLE_ENDIAN);
 bb.putShort((short)300);
 bb.flip();
 showByteOrder(bb);
 }

 public static void showByteOrder(ByteBuffer bb) {
 System.out.println("Byte Order: " + bb.order());
 while (bb.hasRemaining()) {
 System.out.print(bb.get() + " ");
 }
 System.out.println();
 }
}

Default Byte Order: BIG_ENDIAN
Byte Order: BIG_ENDIAN
1 44
Byte Order: LITTLE_ENDIAN
44 1

Chapter 9 ■ New INput/Output

422

Summary
New Input/Ouput (NIO) provides faster I/O compared to the stream-based input/output. NIO uses buffers and
channels for I/O operations. A channel represents a connection between a data source/sink and a Java program for
data transfer. A buffer contains data to be written to a file or data that is read from a file. Buffers for holding different
types of primitive values are supported as instances of separate classes. You can use only a ByteBuffer for file I/O
operations. NIO also supports memory-mapped file I/O that is the fastest way to read/write files.

A buffer maintains several properties that are affected by reading its data or writing data to it. The position
property of a buffer is the index in the buffer that is the starting position to be read or written in the next read/write
operation. The limit property of a buffer is the index in the buffer that is the starting index indicating the invalid
read/write position. The buffer’s position may change as you read from the buffer or write to the buffer.

Buffer related classes contain methods to manipulate those properties directly as well. A buffer supports absolute
as well as relative read/write. In absolute read/write, the buffer’s position is unaffected. In a relative read/write, the
position property of the buffer is automatically advanced.

Byte buffers support different views. You can use a view of a buffer to access the data buffer’s data as different
primitive type values or to see only part of the buffer’s data.

A FileChannel along with buffers are used to read/write files. You can obtain a FileChannel from an
InputStream, an OutputStream, or using the factory method of the FileChannel class. You can also lock a file in
exclusive or shared mode using the lock() method of the FileChannel class.

The byte order is the order in which bytes of a multi-byte value are stored. A byte order is called big endian if
the bytes of a multi-bytes value are stored from the most significant byte to the least significant byte. If the bytes of a
multi-byte value are stored from the least significant byte to the most significant byte, it is known as little endian. You
need to deal with the byte order of a byte buffer if the buffer represents multi-byte data. The java.nio.ByteOrder
class represents the byte order. It contains two constants, BIG_ENDIAN and LITTLE_ENDIAN, to represent big-endian
and little-endian byte orders, respectively.

423

Chapter 10

New Input/Output 2

In this chapter, you will learn

What New Input/Output 2 is•	

How to work with a file system and file store•	

How to represent a platform-dependent abstract pathname using a •	 Path

How to perform different file operations on a •	 Path object

How to traverse a file tree•	

How to manage file attributes•	

How to watch a directory for changes•	

How to perform asynchronous file I/O operations•	

What Is New Input/Output 2?
Java 7 introduced New Input/Output 2 (NIO.2) API, which provides a new I/O API. It provides many features
that were lacking in the original File I/O API. The features provided in NIO.2 are essential for working with a file
system efficiently. It adds three packages to the Java class library: java.nio.file, java.nio.file.attribute, and
java.nio.file.spi. The following are some of the new features of NIO.2:

It lets you deal with all file systems in a uniform way. The file system support provided by •	
NIO.2 is extensible. You can use the default implementation for a file system or you can
choose to implement your own file system.

It supports basic file operations (copy, move, and delete) on all file systems. It supports an •	
atomic file move operation. It has improved exception handling support.

It has support for symbolic links. Whenever applicable, operations on a symbolic link are •	
redirected to the target file.

One of the most important additions to NIO.2 is the support for accessing the attributes of file •	
systems and files.

It lets you create a watch service to watch for any events on a directory such as adding a new •	
file or a subdirectory, deleting a file, etc. When such an event occurs on the directory, your
program receives a notification through the watch service.

Chapter 10 ■ New INput/Output 2

424

It added an API that lets you walk through a file tree. You can perform a file operation on a •	
node as you walk through the file tree.

It supports asynchronous I/O on network sockets and files.•	

It supports multicasting using a •	 DatagramChannel.

Working with a File System
An object of the FileSystem class represents a file system in a Java program. A FileSystem object is used to perform
two tasks:

It acts as an interface between a Java program and a file system.•	

It acts as a factory for creating many types of file system-related objects and services.•	

A FileSystem object is platform-dependent. You do not create an object of the FileSystem class directly.
To obtain the default FileSystem object for a platform, you need to use the getDefault() static method of the
FileSystems class as follows:

// Create the platform-specific default file system object
FileSystem fs = FileSystems.getDefault();

Typically, a file system consists of one or more file stores. A file store provides storage for files. The
getFileStores() method of the FileSystem class returns an Iterator for the FileStore objects.

A file system may be represented differently on different platforms. One platform may represent a file system in
a single hierarchy of files with one top-level root directory, whereas another may represent it in multiple hierarchies
of files with multiple top-level directories. The getRootDirectories() method of the FileSystem class returns an
iterator of Path objects, which represent paths to all top-level directories. I will discuss the Path class in detail in the
next section.

You can use the isReadOnly() method of the FileSystem object to test if it only allows read-only access to the
file stores. You will work with the FileSystem class in subsequent sections to create the file system-related objects
and services.

Listing 10-1 demonstrates how to use a FileSystem object. It uses the default file system for the platform. The
output shows the file system information when the program was run on Windows; you may get a different output
when you run the program.

Listing 10-1. Retrieving Information About a File System

// FileSystemTest.java
package com.jdojo.nio2;

import java.nio.file.FileStore;
import java.nio.file.FileSystem;
import java.nio.file.FileSystems;
import java.nio.file.Path;
import java.io.IOException;

public class FileSystemTest {
 public static void main(String[] args) {
 // Create the platform-specific default file system object
 FileSystem fs = FileSystems.getDefault();

Chapter 10 ■ New INput/Output 2

425

 System.out.println("Read-only file system: " + fs.isReadOnly());
 System.out.println("File name separator: " + fs.getSeparator());

 System.out.println("\nAvailable file-stores are");

 for(FileStore store : fs.getFileStores()) {
 printDetails(store);
 }

 System.out.println("\nAvailable root directories are");

 for(Path root : fs.getRootDirectories()) {
 System.out.println(root);
 }
 }

 public static void printDetails(FileStore store) {
 try {
 String desc = store.toString();
 String type = store.type();
 long totalSpace = store.getTotalSpace();
 long unallocatedSpace = store.getUnallocatedSpace();
 long availableSpace = store.getUsableSpace();
 System.out.println(desc + ", Total: " + totalSpace +
 ", Unallocated: " + unallocatedSpace +
 ", Available: " + availableSpace);
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }
}

Read-only file system: false
File name separator: \

Available file-stores are
Local Disk (C:), Total: 1000097181696, Unallocated: 924354596864, Available: 924354596864
DataE (F:), Total: 1759213608960, Unallocated: 365291376640, Available: 365291376640
DataE (H:), Total: 1759213608960, Unallocated: 365291376640, Available: 365291376640

Available root directories are
C:\
D:\
E:\
F:\
H:\

Chapter 10 ■ New INput/Output 2

426

Working with Paths
Typically, a file system stores objects (files, directories, symbolic links, etc.) in a hierarchical fashion. A file system uses
one or more root nodes that serve as the root of the hierarchy. An object in a file system has a path, which is typically
represented as a string, such as C:\home\test.txt on Windows, and /home/test.txt on UNIX-like operating
systems. A path string may contain multiple components separated by a special character called separator or
delimiter. For example, the path C:\home\test.txt consists of three components: C:\ as the root, home as a directory,
and test.txt as a file name. A backslash is a path separator on Windows. UNIX-like operating systems use a forward
slash (/) as the path separator. Note that path representation is platform-dependent.

A path can be absolute or relative. If a path starts with a root node, it is an absolute path. A relative path does not
start with a root node. No additional information is needed to locate an object referred in a file system by an absolute
path. Additional information is needed to locate an object referred in a file system by a relative path. For example, on
Windows, the path C:\home\test.txt is an absolute path because it starts with the root node C:\, whereas the path
luci1.txt is a relative path. To locate the luci1.txt file, you need more information, such as the path of the directory
in which it exists.

A Path object is a programmatic representation of a path of an object in a file system such as a file, a directory,
and a symbolic link. A file system path is platform-dependent, so is a Path object.

Path is an interface in the java.nio.file package. When you work with a Path object, it is most likely that you
will also need to work with its two companion classes: Paths and Files. A path does not have to exist in a file system
to create a Path object to represent it in a Java program.

Tip ■ as a developer, you will be using Path objects most of the time when working with NIO.2 apI. the path apI meets
most of the file I/O-related needs of a developer. It has been designed to work with the old java.io.File apI. You can
get a Path object from a File object using the method toPath()of the File class. You can get a File object from a Path
object using the toFile() method of a Path object.

You can perform two kinds of operations on a Path object:

Path-related operations•	

File I/O operations•	

The methods in the Path interface let you perform path-related operations on a Path object that may include
the following:

Accessing the components of a path such as the file name, root name, etc.•	

Comparing and testing paths. For example, checking if a path ends with •	 .txt, comparing if
two paths are identical, checking if a path is absolute or relative, etc.

Combining and resolving paths.•	

The Path interface does not include any methods to perform file I/O operations. You need to use the Files class
to perform the file I/O operations on a Path object. The Files class consists of all static methods. I will cover using
the Files class shortly.

Chapter 10 ■ New INput/Output 2

427

Creating a Path Object
A FileSystem object acts as a factory to create a Path object. You can use the getPath() method of the FileSystem
class to create a Path object. The following snippet of code creates a Path object for file path C:\poems\luci1.txt on
Windows:

Path p1 = FileSystems.getDefault().getPath("C:\\poems\\luci1.txt");

You can pass components of a path separately to the getPath() method when constructing a Path object. Java
will take care of using an appropriate platform-dependent file name separators. The following statement creates a
Path object to represent the C:\poems\luci1.txt path on Windows:

Path p2 = FileSystems.getDefault().getPath("C:", "poems", "luci1.txt");

The Path API includes a utility class called Paths whose sole job is to create a Path object from the components
of a path string or a URI. The Paths.get() static method creates a Path object. Internally, it delegates the call to the
default FileSystem object. The following snippet of code creates Path objects to represent the same path,
C:\poems\luci1.txt:

Path p3 = Paths.get("C:\\poems\\luci1.txt");
Path p4 = Paths.get("C:", "poems", "luci1.txt");

Tip ■ You can create a Path object from an empty path such as Paths.get(""). a Path object with an empty path
refers to the default directory of the file system. a default directory is the same as the current working directory.

Accessing Components of a Path
A path in a file system consists of one or more components. The methods of the Path interface let you access those
components.

The getNameCount() method returns the number of components in a Path object excluding the root. For
example, the path C:\poems\luci1.txt consists of three components: a root of C:, and two components named poems
and luci1.txt. In this case, the getNameCount() method will return 2. The getName(int index) method returns the
component name at the specified index. The component that is closest to the root has an index of 0. The component
that is farthest from the root has an index of count - 1. In the path C:\poems\luci1.txt, the poems component has
an index of 0 and the luci1.txt component has an index of 1.

The getParent() method returns the parent of a path. If a path does not have a parent, it returns null. The
parent of a path is the path itself without the farthest component from the root. For example, the parent of the path
C:\poems\luci.txt is C:\poems. The relative path test.txt has no parent.

The getRoot() method returns the root of the path. If a path does not have a root, it returns null. For example,
the path C:\poems\luci1.txt on Windows has C:\ as its root.

The getFileName() method returns the file name denoted by the path. If a path has no file name, it returns null.
The file name is the farthest component from the root. For example, in the path C:\poems\luci1.txt, luci1.txt is
the file name.

You can check if a path represents an absolute path by using the isAbsolute() method. Note that a path does not
have to exist in the file system to get information about its components. The Path API uses the information provided
in the path string to give you all these pieces of information.

Chapter 10 ■ New INput/Output 2

428

Listing 10-2 demonstrates how to access components of a Path object. One of the paths used in this example is a
Windows-based path. If you are not running the program on Windows, please change the path in the main() method
to represent a valid path on your platform. You may get a different output when you run the program.

Listing 10-2. Demonstrating How to Access Components of a Path

// PathComponentsTest.java
package com.jdojo.nio2;

import java.nio.file.Path;
import java.nio.file.Paths;

public class PathComponentsTest {
 public static void main(String[] args) {
 Path p1 = Paths.get("C:\\poems\\luci1.txt");
 printDetails(p1);

 System.out.println("----------------------");

 Path p2 = Paths.get("luci1.txt");
 printDetails(p2);
 }

 public static void printDetails(Path p) {
 System.out.println("Details for path: " + p);

 int count = p.getNameCount();
 System.out.println("Name count: " + count);

 for(int i = 0; i < count; i++) {
 Path name = p.getName(i);
 System.out.println("Name at index " + i + " is " + name);
 }

 Path parent = p.getParent();
 Path root = p.getRoot();
 Path fileName = p.getFileName();
 System.out.println("Parent: " + parent + ", Root: " + root +
 ", File Name: " + fileName);
 System.out.println("Absolute Path: " + p.isAbsolute());
 }
}

Details for path: C:\poems\luci1.txt
Name count: 2
Name at index 0 is poems
Name at index 1 is luci1.txt
Parent: C:\poems, Root: C:\, File Name: luci1.txt
Absolute Path: true

Chapter 10 ■ New INput/Output 2

429

Details for path: luci1.txt
Name count: 1
Name at index 0 is luci1.txt
Parent: null, Root: null, File Name: luci1.txt
Absolute Path: false

Comparing Paths
You can compare two Path objects for equality based on their textual representation. The equals() method tests for
the equality of two Path objects by comparing their string forms. Whether the equality test is case-sensitive depends
on the file system. For example, the path comparison for equality is case-insensitive on Windows. The following
snippet of code shows how to compare Windows paths:

Path p1 = Paths.get("C:\\poems\\luci1.txt");
Path p2 = Paths.get("C:\\POEMS\\LUCI1.TXT");
Path p3 = Paths.get("C:\\poems\\..\\poems\\luci1.txt");
boolean b1 = p1.equals(p2); // Returns true on Windows
boolean b2 = p1.equals(p3); // Returns false on Windows

In this snippet of code, p1.equals(p3) returns false, even though p1 and p3 refer to the same file; this is so
because the equals() method compares two paths textually without resolving the actual file references.

Tip ■ the Path.equals() method does not test a Path for existence in the file system.

The Path interface implements the java.lang.Comparable interface. You can use its compareTo() method to
compare it with another Path object textually. The compareTo() method returns an int value, which is 0, less than 0,
or greater than 0, when the two paths are equal, the path is less than the specified path, or the path is greater than the
specified path, respectively. It is useful in sorting multiple paths in the textual order. The file system is not accessed
when paths are compared using the compareTo() method. The ordering used by this method to compare two paths is
platform-dependent. The following snippet of code shows examples of using the compareTo() method on Windows:

Path p1 = Paths.get("C:\\poems\\luci1.txt");
Path p2 = Paths.get("C:\\POEMS\\Luci1.txt");
Path p3 = Paths.get("C:\\poems\\..\\poems\\luci1.txt");
int v1 = p1.compareTo(p2); // Assigns 0 to v1
int v2 = p1.compareTo(p3); // Assigns 30 to v2

You can use the endsWith() and startsWith() methods to test if a path ends with and starts with a given path,
respectively. It is important to note that endsWith() and startsWith() do not test if a path ends and starts with a text,
respectively. They test if a path ends and starts with components of another path, respectively. The following snippet
of code shows some examples of using these methods with paths on Windows:

Path p1 = Paths.get("C:\\poems\\luci1.txt");
Path p2 = Paths.get("luci1.txt");
Path p3 = Paths.get("poems\\luci1.txt");
Path p4 = Paths.get(".txt");

Chapter 10 ■ New INput/Output 2

430

// Using endsWith()
boolean b1 = p1.endsWith(p2); // Assigns true to b1
boolean b2 = p1.endsWith(p3); // Assigns true to b2
boolean b3 = p1.endsWith(p4); // Assigns false to b3

// Using startsWith()
Path p5 = Paths.get("C:\\");
Path p6 = Paths.get("C:\\poems");
Path p7 = Paths.get("C:\\poem");

boolean b4 = p1.startsWith(p5); // Assigns true to b4
boolean b5 = p1.startsWith(p6); // Assigns true to b5
boolean b6 = p1.startsWith(p7); // Assigns false to b6

The endsWith() method compares the components, not the text, of a path with the specified path. For example,
the path C:\poems\luci1.txt ends with luci1.txt, poems\luci1.txt, and C:\poems\luci1.txt. The same logic is
used by the startsWith() method, though in the reverse order.

You can use the isSameFile(Path p1, Path p2) method of the Files class to check if two paths refer to the
same file. If p1.equals(p2) returns true, this method returns true without verifying the existence of the paths in the
file system. Otherwise, it checks with the file system, if both paths locate the same file. The file system implementation
may require this method to access or open both files. The isSameFile()throws an IOException when an I/O error
occurs.

Listing 10-3 demonstrates how the isSameFile() method works. Let’s assume that the file denoted by the path
C:\poems\luci1.txt exists. Since paths p1 and p2 are not equal using the equals() method, the isSameFile()
method looks for these two paths in the file system for existence. It returns true, because p1 and p2 will resolve to the
same file in the file system. Assume that the file denoted by path C:\abc.txt does not exist. The isSameFile(p3, p4)
method call returns true because both paths are textually equal. The output depends on the existence and
non-existence of these files. The program may print the stack trace of an error if it does not find files at the same
location. Please change the file paths in the program to play with these methods. If you are running the program on
the platform other than Windows, you must change the file path to conform to the path syntax used on your platform.

Listing 10-3. Checking If Two Paths Will Locate the Same File

// SameFileTest.java
package com.jdojo.nio2;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

public class SameFileTest {
 public static void main(String[] args) {
 // Assume that C:\poems\luci1.txt file exists
 Path p1 = Paths.get("C:\\poems\\luci1.txt");
 Path p2 = Paths.get("C:\\poems\\..\\poems\\luci1.txt");

 // Assume that C:\abc.txt file does not exist
 Path p3 = Paths.get("C:\\abc.txt");
 Path p4 = Paths.get("C:\\abc.txt");

Chapter 10 ■ New INput/Output 2

431

 try {
 boolean isSame = Files.isSameFile(p1, p2);
 System.out.println("p1 and p2 are the same: " + isSame);

 isSame = Files.isSameFile(p3, p4);
 System.out.println("p3 and p4 are the same: " + isSame);
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }
}

p1 and p2 are the same: true
p3 and p4 are the same: true

Normalizing, Resolving, and Relativizing Paths
In a file system, it is common to use a dot and two dots to represent the current directory and the parent directory,
respectively. Sometimes it is also acceptable to specify more than one consecutive delimiter between a file name
and a directory name. The normalize() method of the Path interface returns a Path after removing these extra
characters. This method does not access the file system. Sometimes a normalized path may not locate the same file as
the original path if the original path contained a symbolic link. The following snippet of code shows some examples
of normalizing paths on Windows. Please change the paths to conform to your platform if you run this code on a
platform other than Windows.

Path p1 = Paths.get("C:\\poems\\..\\\\poems\\luci1.txt");
Path p1n = p1.normalize();
System.out.println(p1 + " normalized to " + p1n);

Path p2 = Paths.get("C:\\poems\\luci1.txt");
Path p2n = p2.normalize();
System.out.println(p2 + " normalized to " + p2n);

Path p3 = Paths.get("a\\..\\.\\test.txt");
Path p3n = p3.normalize();
System.out.println(p3 + " normalized to " + p3n);

C:\poems\..\poems\luci1.txt normalized to C:\poems\luci1.txt
C:\poems\luci1.txt normalized to C:\poems\luci1.txt
a\..\.\test.txt normalized to test.txt

You can combine two paths using the resolve(Path p) method of the Path interface. If the specified path is an

absolute path, it returns the specified path. It returns the path if the specified path is an empty path. In other cases,
it simply combines the two paths and returns the result, so the returned path ends with the specified path. The path
on which this method is invoked is assumed to be a directory. The following snippet of code has some examples of
resolving paths on Windows. Please change the paths to conform to your platform if you run this code on a platform
other than Windows.

Chapter 10 ■ New INput/Output 2

432

Path p1 = Paths.get("C:\\poems");
Path p2 = Paths.get("luci1.txt");
System.out.println(p1.resolve(p2));

Path p3 = Paths.get("C:\\test.txt");
System.out.println(p1.resolve(p3));

Path p4 = Paths.get("");
System.out.println(p1.resolve(p4));

Path p5 = Paths.get("poems\\Luci");
Path p6 = Paths.get("luci4.txt");
System.out.println(p5.resolve(p6));

C:\poems\luci1.txt
C:\test.txt
C:\poems
poems\Luci\luci4.txt

Relativizing is the process of getting a relative path for a given path against another path. The relativize(Path p)

method of the Path interface does this job. The relative path that is returned from this method, when resolved against
the same path against which the path was relativized, returns the same given path. A relative path cannot be obtained
if one of the paths has a root element. Whether a relative path can be obtained is platform-dependent if both paths
have root elements. The following snippet of code has some examples of getting relative paths. When there is no
common sub-path between the two paths, it is assumed that both paths locate sibling objects. For example, when
getting a relative path for Doug against Bobby, it is assumed that Doug and Bobby are siblings. The output is shown
when the program was run on Windows. On other platforms, you may get a slightly different output.

Path p1 = Paths.get("poems");
Path p2 = Paths.get("poems", "recent", "Luci");
System.out.println(p1.relativize(p2));
System.out.println(p2.relativize(p1));

Path p3 = Paths.get("Doug");
Path p4 = Paths.get("Bobby");
System.out.println(p3.relativize(p4));
System.out.println(p4.relativize(p3));

recent\Luci
..\..
..\Bobby
..\Doug

Symbolic Links
A symbolic link is a special type of file that contains a reference to another file or directory. A symbolic link is also
known as symlink or soft link. The file referenced by a symbolic link is known as the target file for the symbolic
link. Some operating systems that support symbolic links are UNIX-like operating systems (Linux, Mac OS X, etc.),
Windows Vista, Windows 7, etc.

Chapter 10 ■ New INput/Output 2

433

Operations on a symbolic link are transparent to the application. When an operation is performed on a symbolic
link, the operating system performs the operation on the target of the link. For example, performing a read/write
operation on a symbolic link performs a read/write on its target. However, the delete, move, and rename operations
are performed directly on the link, rather than on its target. Sometimes it is possible to have a circular reference in a
symbolic link, where the target of a symbolic link points back to the original link.

The NIO.2 API fully supports symbolic links. It has safeguards in place to detect a circular reference in a symbolic
link. You can work with symbolic links using the java.nio.file.Files class. You can use its isSymbolicLink(Path p)
method to check if the file denoted by the specified path is a symbolic link. The createSymbolicLink() method of the
Files class is used to create a symbolic link. Note that the createSymbolicLink() is an optional operation, which may
not be supported on all platforms.

Path existingFilePath = Paths.get("C:\\poems\\luci1.txt");
Path symLinkPath = Paths.get("C:\\luci1_link.txt");
try {
 Files.createSymbolicLink(symLinkPath, existingFilePath);
}
catch (IOException e) {
 e.printStackTrace();
}

The NIO.2 API follows the symbolic link by default. In some cases, you can specify whether you want to follow a
symbolic link or not. The option not to follow a symbolic link is indicated by using the enum constant LinkOption.
NOFOLLOW_LINKS. The LinkOption enum is declared in the java.nio.file package. Methods supporting this option
let you pass an argument of the LinkOption type.

Tip ■ the NIO.2 apI also supports regular links (also known as hard links). You can use the createLink(Path
newLink, Path existingPath) method of the Files class to create a hard link.

Different Forms of a Path
You can get different type of representations for a path. Suppose you create a Path object as follows:

// Create a Path object to represent a relative path
Path p1 = Paths.get("test.txt");

Here, p1 is a relative path. You can get the absolute path that is represented by p1 using its toAbsolutePath()
method as follows:

// Get the absolute path represented by p1
Path p1AbsPath = p1.toAbsolutePath();

Now the p1AbsPath is the absolute path for p1. For example, on Windows, p1AbsPath may look like C:\testapp\
test.txt. If a path is not an absolute path, the toAbsolutePath() method uses a platform-dependent default
directory to resolve the path to give you the absolute path. If the path is an absolute path, the toAbsolutePath()
method returns the same path.

Chapter 10 ■ New INput/Output 2

434

You can use the toRealPath() method to get the real path of an existing file. It returns a canonical path to an
existing file. If the path represents a symbolic link, it returns the real path of the target file. You can pass a link option
to this method indicating whether you do not want to follow the symbolic link to its target. If the file represented by
the path does not exist, the toRealPath() throws an IOException. The following snippet of code demonstrates how to
get the real path from a Path object:

import java.io.IOException;
import java.nio.file.LinkOption;
import java.nio.file.Path;
import java.nio.file.Paths;
...
try {
 Path p2 = Paths.get("test2.txt");

 // Follow link for p2, if it is a symbolic link
 Path p2RealPath = p2.toRealPath();

 System.out.println("p2RealPath:" + p2RealPath);
}
catch (IOException e) {
 e.printStackTrace();
}

try {
 Path p3 = Paths.get("test3.txt");

 // Do not follow link for p3, if it is a symbolic link
 Path p3RealPath = p3.toRealPath(LinkOption.NOFOLLOW_LINKS);

 System.out.println("p3RealPath:" + p3RealPath);
}
catch (IOException e) {
 e.printStackTrace();
}

You can use the toUri() method of a Path object to get its URI representation. A URI representation of a path is
highly platform-dependent. Typically, a URI form of a path can be used in a browser to open the file indicated by the
path. The following snippet of code shows how to get the URI form of a path. The output was generated on Windows.
You may get a different output.

Path p2 = Paths.get("test2.txt");
java.net.URI p2UriPath = p2.toUri();
System.out.println("Absolute Path: " + p2.toAbsolutePath());
System.out.println("URI Path: " + p2UriPath);

Absolute Path: C:\java_code\testapp\test2.txt
URI Path: file:///C:/java_code/testapp/test2.txt

Chapter 10 ■ New INput/Output 2

435

Performing File Operations on a Path
The java.nio.file.Files class consists of all static methods that let you perform most of the file operations on a
Path object.

Creating New Files
The Files class provides several methods to create regular files, directories, symbolic links, and temporary files/
directories. These methods throw an IOException when an I/O error occurs during the file creation; for example,
they throw an IOException if you attempt to create a file that already exists. Most of the methods accept a varargs
parameter of the FileAttribute type, which lets you specify the file attributes. I will discuss file attributes shortly.

You can use the createFile() method to create a new regular file. The new file, if created, is empty. The file
creation fails in case the file already exists, or the parent directory does not exist. Listing 10-4 shows how to create
a new file. It attempts to create a text.txt file in your default directory. The program prints the details of the file
creation status.

Listing 10-4. Creating a New File

// CreateFileTest.java
package com.jdojo.nio2;

import java.io.IOException;
import java.nio.file.FileAlreadyExistsException;
import java.nio.file.Files;
import java.nio.file.NoSuchFileException;
import java.nio.file.Path;
import java.nio.file.Paths;

public class CreateFileTest {
 public static void main(String[] args) {
 Path p1 = Paths.get("test.txt");
 try {
 Files.createFile(p1);
 System.out.format("File created: %s%n", p1.toRealPath());
 }
 catch (FileAlreadyExistsException e) {
 System.out.format("File %s already exists.%n",
 p1.normalize());
 }
 catch (NoSuchFileException e) {
 System.out.format("Directory %s does not exists.%n",
 p1.normalize().getParent());
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }
}

Chapter 10 ■ New INput/Output 2

436

The createDirectory() and createDirectories() methods are used to create a new directory. If the parent
directory of the new directory does not exist, the createDirectory() method fails. The createDirectories() method
creates a non-existent parent directory. You can use the createTempDirectory() and createTempFile() methods to
create a temporary directory and a temporary file respectively.

The following snippet of code shows how to create temporary files and directories. The output was generated
when the program was run on Windows 7. The name generation for a temporary directory/file is implementation
dependent. Attempts are made to use the supplied prefix and suffix for the temporary file/directory. You will need to
change the paths to conform to your platform and you may get a different output.

try {
 String dirPrefix = "KDir";
 Path tDir = Files.createTempDirectory(dirPrefix);
 System.out.println("Temp directory: " + tDir);
 String fPrefix = "KF_";
 String fSuffix = ".txt";
 Path tFile1 = Files.createTempFile(fPrefix, fSuffix);
 System.out.println("Temp file1: " + tFile1);

 Path p1 = Paths.get("C:\\temp");
 Path tFile2 = Files.createTempFile(p1, fPrefix, fSuffix);
 System.out.println("Temp file2: " + tFile2);
}
catch (IOException e) {
 e.printStackTrace();
}

Temp directory: C:\Users\ksharan\AppData\Local\Temp\KDir6632178761947534022
Temp file1: C:\Users\ksharan\AppData\Local\Temp\KF_6811753793376220963.txt
Temp file2: C:\temp\KF_4190593797467345768.txt

A temporary file/directory is not automatically deleted. You may want to use the deleteOnExit() method of the

java.io.File class to delete the file when the JVM exits.

Path tempFile = Files.createTempFile("myTempFile", ".txt");

// Delete the file when the JVM exits
tempFile.toFile().deleteOnExit();

Deleting Files
The Files class has two methods called delete(Path p) and deleteIfExists(Path p) to delete a file, a directory,
and a symbolic link.

The delete() method throws an exception if the deletion fails. For example, it throws a NoSuchFileException if
the file being deleted does not exist and throws a DirectoryNotEmptyException if the directory being deleted is not
empty.

The deleteIfExists() method does not throw a NoSuchFileException if the file being deleted does not exist. It
returns true if it deletes the file. Otherwise, it returns false. It throws a DirectoryNotEmptyException if the directory
being deleted is not empty.

Chapter 10 ■ New INput/Output 2

437

The following snippet of code shows how to delete a file and handle exceptions:

// Create a Path object on Windows
Path p = Paths.get("C:\\poems\\luci1.txt");

try {
 // Delete the file
 Files.delete(p);
 System.out.println(p + " deleted successfully.");
}
catch (NoSuchFileException e) {
 System.out.println(p + " does not exist.");
}
catch (DirectoryNotEmptyException e) {
 System.out.println("Directory " + p + " is not empty.");
}
catch (IOException e) {
 e.printStackTrace();
}

Checking for Existence of a File
The Files class provides two methods called exists(Path p, LinkOption... options) and notExists(Path p,
LinkOption... options) to check for the existence and non-existence of a file, respectively. Note that these two
methods are not the opposite of each other. If it is not possible to determine whether a file exists, both methods return
false. If you need to take an action when a file exists, use the exists() method in your logic. If you need to take an
action when a file does not exist, use the notExists() method.

Copying and Moving Files
The Files class provides a copy(Path source, Path target, CopyOption... options) method to copy contents
and attributes of the specified source path to the specified target path. If the specified source file is a symbolic link,
the target of the symbolic link is copied, not the symbolic link. If the specified source file is a directory, an empty
directory at the target location is created without copying the contents of the directory. This method is overloaded.
You can use the other two versions of this method to copy all bytes from an input stream to a file and all bytes in a file
to an output stream. If the specified source and target files are the same, the copy() method does not do anything.

You can specify one or more of the following copy options with the copy() method:

•	 StandardCopyOption.REPLACE_EXISTING

•	 StandardCopyOption.COPY_ATTRIBUTES

•	 LinkOption.NOFOLLOW_LINKS

If the target file already exists, the copy() method throws a FileAlreadyExistsException. You can specify the
REPLACE_EXISTING option to replace the existing target file. If the target file is a non-empty directory, specifying the
REPLACE_EXISTING option throws a DirectoryNotEmptyException. If the target file is a symbolic link and if it exists,
the symbolic link is replaced by specifying the REPLACE_EXISTING option, not the target of the symbolic link.

The COPY_ATTRIBUTES option copies the attributes of the source file to the target file. The file attributes that are
copied are highly platform- and file system-dependent. At least, the last-modified-time attribute of the source file is
copied to the target file, if supported by both file stores.

Chapter 10 ■ New INput/Output 2

438

If the NOFOLLOW_LINKS option is used, the copy() method copies the symbolic link, not the target of the
symbolic link.

Listing 10-5 demonstrates the use of the copy() method to copy a file. It handles the possible exceptions if the
copy operation fails. You will need to change the paths for the source and target files before running the program.

Listing 10-5. Copying a File, a Directory, and a Symbolic Link Using the Files.copy() Method

// CopyTest.java
package com.jdojo.nio2;

import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.Files;
import java.io.IOException;
import java.nio.file.FileAlreadyExistsException;
import java.nio.file.DirectoryNotEmptyException;
import static java.nio.file.StandardCopyOption.REPLACE_EXISTING;
import static java.nio.file.StandardCopyOption.COPY_ATTRIBUTES;

public class CopyTest {
 public static void main(String[] args) {
 // Change the paths for teh source and target files
 // before you run the program
 Path source = Paths.get("C:\\poems\\luci1.txt");
 Path target = Paths.get("C:\\poems\\luci1_backup.txt");

 try {
 Path p = Files.copy(source, target,
 REPLACE_EXISTING, COPY_ATTRIBUTES);
 System.out.println(source + " has been copied to " + p);
 }
 catch (FileAlreadyExistsException e) {
 System.out.println(target+ " already exists.");
 }
 catch (DirectoryNotEmptyException e) {
 System.out.println(target + " is not empty.");
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }
}

The move(Path source, Path target, CopyOption... options) method of the Files class lets you move or
rename a file. The move operation fails if the specified target file already exists. You can specify the REPLACE_EXISTING
option to replace the existing target file. If the file to move is a symbolic link, it moves the symbolic link, not the target
of the symbolic link. The move() method can only be used to move an empty directory.
A DirectoryNotEmptyException is thrown if the directory is not empty.

Chapter 10 ■ New INput/Output 2

439

Apart from the REPLACE_EXISTING CopyOption, you can use the ATOMIC_MOVE as another CopyOption.
If the ATOMIC_MOVE option is used, it throws an AtomicMoveNotSupportedException if the file could not be moved
atomically. If ATOMIC_MOVE option is specified, all other options are ignored. The following snippet of code shows how
to move a file by handling possible exceptions:

import java.io.IOException;
import java.nio.file.AtomicMoveNotSupportedException;
import java.nio.file.DirectoryNotEmptyException;
import java.nio.file.FileAlreadyExistsException;
import java.nio.file.Files;
import java.nio.file.NoSuchFileException;
import java.nio.file.Path;
import java.nio.file.Paths;
import static java.nio.file.StandardCopyOption.ATOMIC_MOVE;
...
// Create source and target paths using the syntax supoprted by your platform
Path source = Paths.get("C:\\poems\\luci1.txt");
Path target = Paths.get("C:\\poems\\dir2\\luci1.txt");

try {
 // Try moving the source to target atomically
 Path p = Files.move(source, target, ATOMIC_MOVE);
 System.out.println(source + " has been moved to " + p);
}
catch (NoSuchFileException e) {
 System.out.println("Source/target does not exist.");
}
catch (FileAlreadyExistsException e) {
 System.out.println(target + " already exists. Move failed.");
}
catch (DirectoryNotEmptyException e) {
 System.out.println(target + " is not empty. Move failed.");
}
catch (AtomicMoveNotSupportedException e){
 System.out.println("Atomic move is not supported. MOve failed.");
}
catch (IOException e) {
 e.printStackTrace();
}

Commonly Used File Attributes
The Files class has many methods that let you access the commonly used attributes of a file. For example, you can
use the Files.isHidden(Path p) method to test if a file is hidden. The following methods in the Files class let you
access various types of commonly used attributes of a file. Please refer to the “Managing File Attributes” section for
managing advanced file attributes.

Chapter 10 ■ New INput/Output 2

440

•	 long size(Path)

•	 boolean isHidden(Path path)

•	 boolean isRegularFile(Path path, LinkOption... options)

•	 boolean isDirectory(Path path, LinkOption... options)

•	 boolean isSymbolicLink(Path path)

•	 FileTime getLastModifiedTime(Path path, LinkOption... options)

Probing the Content Type of a File
You can use the Files.probeContentType(Path path) method to probe the content type of a file. The method returns
the content type in the string form of the value of a Multipurpose Internet Mail Extension (MIME) content type. If the
content type of a file cannot be determined, it returns null.

Listing 10-6 shows how to probe the content type of a file. You may get a different output when you run this
program. The program uses the file path C:\poems\luci1.txt. Please change this path to the path of the file whose
content type you want to know.

Listing 10-6. Probing the Content Type of a File

// ProbeFileContent.java
package com.jdojo.nio2;

import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.io.IOException;

public class ProbeFileContent {
 public static void main(String[] args) {
 Path p = Paths.get("C:\\poems\\luci1.txt");

 try {
 String contentType = Files.probeContentType(p);
 System.out.format("Content type of %s is %s%n", p, contentType);
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }
}

Content type of C:\poems\luci1.txt is text/plain

Chapter 10 ■ New INput/Output 2

441

Reading the Contents of a File
The NIO.2 API supports reading the contents of a file in the following three ways:

As bytes or lines of text•	

Using •	 InputStream and BufferedReader using the java.io API

Using channel API using a •	 SeekableByteChannel object

The Files class contains the following methods to read the contents of a file as bytes and lines of text:

•	 static byte[] readAllBytes(Path path)

•	 static List<String> readAllLines(Path path)

•	 static List<String> readAllLines(Path path, Charset cs)

All three methods may throw an IOException. The readAllBytes()method reads all bytes from a file. The
readAllLines() method reads the entire contents of a file lines of text. The readAllLines() method uses a carriage
return, a line feed, and a carriage returned followed by a line feed as a line terminator. The lines that are returned do
not contain the line terminator. The version of this method that takes only the Path of the source file as an argument
assumes the contents of the file in the UTF-8 charset.

Tip ■ the readAllBytes() and readAllLines() method in the Files class are intended to read the contents of a
small file. Both methods take care of opening/closing the file before/after reading.

The Files class provides methods to obtain InputStream and BufferedReader objects from a Path object. The
newInputStream(Path path, OpenOption... options) method returns an InputStream object for the specified
path. The newBufferedReader(Path path) and newBufferedReader(Path path, Charset cs) method returns
a BufferedReader; the former assumes that the file’s contents are in the UTF-8 charset whereas the latter lets you
specify the charset. Please refer to Chapter 7 for more details on how to use InputStream and BufferedReader to read
the contents of a file.

The Files class provides methods to obtain a SeekableByteChannel object from a Path object using its
newByteChannel(Path path, OpenOption... options) method. A SeekableByteChannel object provides
random access to a file using the channel API. It can be used to read from and write to a file. You can cast a
SeekableByteChannel to a FileChannel to use advance features of the channel API such as locking a region of the
file and mapping a region of the file directly into memory. It maintains a current position where you can start reading
or writing. Please refer to Chapter 9 for more details on how to use channels to read data from a file. I will discuss an
example of using a SeekableByteChannel to read/write the contents of a file later in this chapter.

Many of the methods of the Files class that deal with reading from and writing to files accept an optional
argument of OpenOption type. This option lets you configure the file being opened. Table 10-1 lists the values
with their descriptions for the OpenOption type. OpenOption is an interface in the java.nio.file package. The
StandardOpenOption enum in the java.nio.file package implements the OpenOption interface. Therefore, each
enum constant in the StandardOpenOption represents a value of the OpenOption type.

Chapter 10 ■ New INput/Output 2

442

The following snippet of code obtains a SeekableByteChannel object for luci2.txt file in the default directory.
It opens the file for a READ and WRITE access. It uses the CREATE option, so the file is created if it does not exist.

import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.Files;
import java.nio.channels.SeekableByteChannel;
import static java.nio.file.StandardOpenOption.READ;
import static java.nio.file.StandardOpenOption.WRITE;
import static java.nio.file.StandardOpenOption.CREATE;
...
Path src = Paths.get("luci2.txt");
SeekableByteChannel sbc = Files.newByteChannel(src, READ, WRITE, CREATE);

Listing 10-7 demonstrates how to read and display the contents of a file luci1.txt in your default directory.
The program displays an error message if the file does not exist.

Listing 10-7. Using the Files.readAllLines() Method to Read Contents of a File

// ReadAllLines.java
package com.jdojo.nio2;

import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.List;

Table 10-1. List of OpenOption Type Values That are Enum Constants in the StandardOpenOption Enum

StandardOpenOption Constant Description

APPEND Appends the written data to the existing file, if the file is opened for writing.

CREATE Creates a new file, if it does not exist.

CREATE_NEW Creates a new file, if it does not exist. If the file already exists, it fails the
operation.

DELETE_ON_CLOSE Deletes the file when the stream is closed. It is useful when used with a
temporary file.

DSYNC Keeps the contents of the file synchronized with the underlying storage.

READ Opens a file with a read access.

SPARSE If it is used with the CREATE_NEW option, it is a hint to the file system that the new
file should be a sparse file. If a sparse file is not supported by a file system, this
option is ignored.

SYNC Keeps the content and the metadata of the file synchronized with the
underlying storage.

TRUNCATE_EXISTING Truncates the length of an existing file to zero if the file is opened for a write
access.

WRITE Opens a file for a write access.

Chapter 10 ■ New INput/Output 2

443

import java.nio.charset.Charset;
import java.io.IOException;
import java.nio.file.NoSuchFileException;

public class ReadAllLines {
 public static void main(String[] args) {
 Charset cs = Charset.forName("US-ASCII");
 Path source = Paths.get("luci1.txt");

 try {
 // Read all lines in one go
 List<String> lines = Files.readAllLines(source, cs);

 // Print each line
 for (String line : lines) {
 System.out.println(line);
 }
 }
 catch (NoSuchFileException e) {
 System.out.println(source.toAbsolutePath() + " does not exist.");
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }
}

Writing to a File
The NIO.2 API supports writing to a file in the following three ways:

Writing an array of bytes or a collection of lines of texts to a file in one shot.•	

Writing to a file using an •	 OutputStream and a BufferedWriter using the java.io API.

Writing to a file using the channel API using a •	 SeekableByteChannel object.

You can use the following write() methods of the Files class to write contents to a file in one shot:

•	 static Path write(Path path, byte[] bytes, OpenOption... options)

•	 static Path write(Path path, Iterable<? extends CharSequence> lines,
OpenOption... options)

•	 static Path write(Path path, Iterable<? extends CharSequence> lines, Charset cs,
OpenOption... options)

These methods are designed to write smaller contents to a file. You are advised to use other methods
(discussed below) to write bigger contents to a file.

The write() method opens the file, writes the passed in contents to the file, and closes it. If no open options are
present, it opens the file with CREATE, TRUNCATE_EXISTING, and WRITE options. If you are writing lines of text to a file,
it writes a platform-dependent line separator after every line of text. If charset is not specified when lines of text are
written, UTF-8 charset is assumed.

Chapter 10 ■ New INput/Output 2

444

Listing 10-8 demonstrates how to write lines of texts to a file using the write() method. The program writes a few
lines of text in a file named twinkle.txt in the default directory. It prints the path of the file. You may get a different
output when you run this program.

Listing 10-8. Writing Some Lines of Text to a File in One Shot Using the NIO.2 API

// WriteLinesTest.java
package com.jdojo.nio2;

import java.io.IOException;
import java.nio.charset.Charset;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.ArrayList;
import java.util.List;
import static java.nio.file.StandardOpenOption.WRITE;
import static java.nio.file.StandardOpenOption.CREATE;

public class WriteLinesTest {
 public static void main(String[] args) {
 // Prepare the lines of text to write in a List
 List<String> texts = new ArrayList<>();
 texts.add("Twinkle, twinkle, little star,");
 texts.add("How I wonder what you are.");
 texts.add("Up above the world so high,");
 texts.add("Like a diamond in the sky.");

 Path dest = Paths.get("twinkle.txt");
 Charset cs = Charset.forName("US-ASCII");
 try {
 Path p = Files.write(dest, texts, cs, WRITE, CREATE);
 System.out.println("Text was written to " +
 p.toAbsolutePath());
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }
}

Text was written to C:\book\javabook\twinkle.txt

The Files class contains newOutputStream(Path path, OpenOption... options) that returns an OutputStream

for the specified path. The class contains a newBufferedWriter(Path path, Charset cs, OpenOption... options)
method that returns a BufferedWriter for the specified path. You can use the java.io API to write contents to a file
using the OutputStream and BufferedWriter. Please refer to Chapter 7 for more details on how to use the java.io API.

You can use the newByteChannel(Path path, OpenOption... options) method to get a SeekableByteChannel
for the specified path. You can use the write(ByteBuffer src) method of the SeekableByteChannel to write data to a
file. Please refer to Chapter 9 for more details on how to use the channel API to write to a file. I will discuss an example
of using SeekableByteChannel in the next section.

Chapter 10 ■ New INput/Output 2

445

Random Access to a File
A SeekableByteChannel object provides random access to a file using the channel API. You can use it to read data
from and write data to a file. It is an interface declared in the java.nio.channels package. The FileChannel class
in the java.nio.channels package implements this interface. You can get a SeekableByteChannel object for a Path
using the newByteChannel() method of the Files class as follows:

Path src = Paths.get("twinkle2.txt");
SeekableByteChannel seekableChannel =
 Files.newByteChannel(src, READ, WRITE, CREATE, TRUNCATE_EXISTING);

A SeekableByteChannel is connected to an entity such as a file. It maintains a current position. When you
write to the channel, the data is written at the current position. If you read from it, the data is read from the current
position. You can get the current position using its position() method. To set its current position, you need to use its
position(long newPosition) method.

You can get the size of the entity of a SeekableByteChannel in bytes using its size() method. As the data is
truncated or written to the channel, the size is updated.

The truncate(long size) method of the SeekableByteChannel lets you truncate the size of the entity to the
specified size. If the specified size is less than the current size of the entity, it truncates the data to the specified size.
If the specified size is greater than or equal to the current size of the entity, this method does not modify the entity.

Use the read(ByteBuffer source) and write(ByteBuffer destination) methods to read data from the
channel and write data to the channel, respectively. Make sure to set the current position correctly, before you
perform the read and write operations on the channel.

Listing 10-9 shows how to read from and write to a file using a SeekableByteChannel. It creates a file named
twinkle2.txt in the default directory and writes a few lines of text to it. It resets the position to zero after writing the
data and reads the texts to print them on the standard output. At every step, it prints the size and the current position.

Listing 10-9. A Sample Program That Uses a SeekableByteChannel to Read Data from and Write Data to a File

// SeekableByteChannelTest.java
package com.jdojo.nio2;

import java.nio.ByteBuffer;
import java.nio.charset.Charset;
import java.io.IOException;
import java.nio.CharBuffer;
import java.nio.channels.SeekableByteChannel;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.Files;
import static java.nio.file.StandardOpenOption.READ;
import static java.nio.file.StandardOpenOption.WRITE;
import static java.nio.file.StandardOpenOption.CREATE;
import static java.nio.file.StandardOpenOption.TRUNCATE_EXISTING;

public class SeekableByteChannelTest {
 public static void main(String[] args) {
 Path src = Paths.get("twinkle2.txt");

Chapter 10 ■ New INput/Output 2

446

 // Get the file encoding for the system
 String encoding = System.getProperty("file.encoding");
 Charset cs = Charset.forName(encoding);

 try (SeekableByteChannel seekableChannel =
 Files.newByteChannel(src,
 READ, WRITE, CREATE, TRUNCATE_EXISTING)) {

 // Print the details
 printDetails(seekableChannel, "Before writing data");

 // First, write some data to the file
 writeData(seekableChannel, cs);

 // Print the details
 printDetails(seekableChannel, "After writing data");

 // Reset the position of the seekable channel to 0,
 // so we can read the data from the beginning
 seekableChannel.position(0);

 // Print the details
 printDetails(seekableChannel,
 "After resetting position to 0");

 // Read the data from the file
 readData(seekableChannel, cs);

 // Print the details
 printDetails(seekableChannel, "After reading data");
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }

 public static void writeData(SeekableByteChannel seekableChannel,
 Charset cs) throws IOException {
 // Get the platform-dependent line separator
 String separator = System.getProperty("line.separator");

 // Prepare the text to write to the file
 StringBuilder sb = new StringBuilder();
 sb.append("When the blazing sun is gone,");
 sb.append(separator);
 sb.append("When he nothing shines upon,");
 sb.append(separator);
 sb.append("Then you show your little light,");
 sb.append(separator);
 sb.append("Twinkle, twinkle, all the night");
 sb.append(separator);

Chapter 10 ■ New INput/Output 2

447

 // Wrap the text into a char buffer
 CharBuffer charBuffer = CharBuffer.wrap(sb);

 // Encode the char buffer data into a byte buffer
 ByteBuffer byteBuffer = cs.encode(charBuffer);

 // Write the data to the file
 seekableChannel.write(byteBuffer);
 }

 public static void readData(SeekableByteChannel seekableChannel,
 Charset cs) throws IOException {
 ByteBuffer byteBuffer = ByteBuffer.allocate(128);
 String encoding = System.getProperty("file.encoding");

 while (seekableChannel.read(byteBuffer) > 0) {
 byteBuffer.rewind();
 CharBuffer charBuffer = cs.decode(byteBuffer);
 System.out.print(charBuffer);
 byteBuffer.flip();
 }
 }

 public static void printDetails(SeekableByteChannel seekableChannel, String msg) {
 try {
 System.out.println(msg + ": Size = " +
 seekableChannel.size() +
 ", Position = " + seekableChannel.position());
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }
}

Before writing data: Size = 0, Position = 0
After writing data: Size = 128, Position = 128
After resetting position to 0: Size = 128, Position = 0
When the blazing sun is gone,
When he nothing shines upon,
Then you show your little light,
Twinkle, twinkle, all the night
After reading data: Size = 128, Position = 128

Traversing a File Tree
NIO.2 provides a FileVisitor API to recursively process all files and directories in a file tree. The FileVisitor API is useful
when you want to perform some actions on all or some files or directories in a file tree. For example, you cannot delete
a directory until it is empty. Before you delete a directory, you must delete all files and directories underneath it,
which can be achieved easily using the FileVisitor API.

Chapter 10 ■ New INput/Output 2

448

You need to use the following steps to traverse a file tree:

Create a file visitor class by implementing the •	 java.nio.file.FileVisitor interface.

To start visiting the file tree, use the •	 walkFileTree() method of the Files class by specifying
the start directory and a file visitor object of the class created in the previous step. One of
the methods of the FileVisitor interface is called when a file/directory is visited or a file/
directory visit fails.

Tip ■ the NIO.2 apI provides the SimpleFileVisitor class, which is a basic implementation of the FileVisitor
interface. the methods in the SimpleFileVisitor class do not do anything when a file/directory is visited. when a failure
occurs, it rethrows the original exception. You can inherit your file visitor class from the SimpleFileVisitor class and
override only the methods that fit your needs.

Table 10-2 lists the methods of the FileVisitor interface with their descriptions. All methods throw an
IOException and they all return an enum constant of FileVisitResult type. Table 10-3 lists the constants defined by
the FileVisitResult enum type with their descriptions.

Table 10-3. Enum Constants of FileVisitResult and Their Descriptions

Enum Constant Description

CONTINUE Continues processing

SKIP_SIBLINGS Continues processing without visiting the siblings of the file or directory. If it is returned from
the preVisitDirectory() method, the entries in the current directory is also skipped and the
postVisitDirectory() method is not called on that directory.

SKIP_SUBTREE Continues processing without visiting entries in the directory. It is meaningful only when
returned from the preVisitDirectory() method. Otherwise, its effect is the same as CONTINUE.

TERMINATE Terminates the file visiting process.

Table 10-2. Methods of the FileVisitor Interface

Method Description

FileVisitResult preVisitDirectory(T dir,
BasicFileAttributes attrs) throws IOException

This method is called once before visiting entries in a
directory.

FileVisitResult postVisitDirectory(T dir,
IOException exc) throws IOException

This method is called after entries in a directory (and all
of their descendants) have been visited. It is invoked even
if there are errors during the visit of entries in a directory.

If there was any exception thrown during the iteration of
a directory, the exception object is passed to this method
as the second argument. If the second argument to
this method is null, there was no exception during the
directory iteration.

FileVisitResult visitFile(T file,
BasicFileAttributes attrs) throws IOException

This method is called when a file in a directory is visited.

FileVisitResult visitFileFailed(T file,
IOException exc) throws IOException

This method is called when a file or directory could not
be visited for any reason.

Chapter 10 ■ New INput/Output 2

449

You do not need to write logic in all four methods of your file visitor class. For example, if you want to copy
a directory, you would like the code in the preVisitDirectory() method to create a new directory and the
visitFile() method to copy the file. If you want to delete a directory, you need to delete the entries first. In this case,
you will implement the visitFile() method to delete the files and the postVisitDirectory() method to delete the
directory afterwards.

Let’s implement a file visitor that will print the names of all files and subdirectories of a directory. It will also print
the size of the files in bytes.

Listing 10-10 contains the complete program. It prints the details of files and subdirectories of the default
directory. You may get a different output when you run this program.

Listing 10-10. A Program to the Print the Names of Subdirectories and Files of a Directory

// WalkFileTreeTest.java
package com.jdojo.nio2;

import java.io.IOException;
import java.nio.file.FileVisitor;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.SimpleFileVisitor;
import java.nio.file.attribute.BasicFileAttributes;
import java.nio.file.FileVisitResult;
import java.nio.file.Files;
import static java.nio.file.FileVisitResult.CONTINUE;

public class WalkFileTreeTest {
 public static void main(String[] args) {
 // Get the Path obejct for the default directory
 Path startDir = Paths.get("");

 // Get a file visitor object
 FileVisitor<Path> visitor = getFileVisitor();

 try {
 // Traverse the contents of the startDir
 Files.walkFileTree(startDir, visitor);
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }

 public static FileVisitor<Path> getFileVisitor() {
 // Declare a local class DirVisitor that
 // inherits fron the SimpleFileVisitor<Path> class
 class DirVisitor<Path> extends SimpleFileVisitor<Path> {
 @Override
 public FileVisitResult preVisitDirectory(Path dir,
 BasicFileAttributes attrs) {

Chapter 10 ■ New INput/Output 2

450

 System.out.format("%s [Directory]%n", dir);
 return CONTINUE;
 }

 @Override
 public FileVisitResult visitFile(Path file,
 BasicFileAttributes attrs) {

 System.out.format("%s [File, Size: %s bytes]%n",
 file, attrs.size());
 return CONTINUE;
 }
 }

 // Create an obejct of the DirVisitor
 FileVisitor<Path> visitor = new DirVisitor<>();

 return visitor;
 }
}

build [Directory]
build\built-jar.properties [File, Size: 84 bytes]
build\classes [Directory]
twinkle.txt [File, Size: 117 bytes]
twinkle2.txt [File, Size: 128 bytes]

The getFileVisitor() method creates a FileVisitor object by using the SimpleFileVisitor class to

inherit a file visitor class. In the preVisitDirectory() method, it prints the name of the directory and returns
FileVisitResult.CONTINUE to indicate that it wants to continue processing the entries in the directory. In the
visitFile() method, it prints the name and size of the file and continues the processing. The FileVisitor API traverses
a file tree in depth-first order. However, it does not guarantee the order of the visits of the subdirectories of a directory.
To traverse a file tree, you need to call the walkFileTree() method of the Files class. The walkFileTree() method
will automatically call the method of the visitor object as it walks through the file tree.

The FileVisitor API is very useful whenever you want to take some actions on all entries or some selective entries
in a file tree. Operations such as copying a directory tree, deleting a non-empty directory, finding a file, etc. can be
implemented easily using the FileVisitor API. Listing 10-11 demonstrates how to use the FileVisitor API to delete a
directory tree. You need to specify the path to the directory to be deleted before you run the program. Note that you
will not be able to get the contents of the deleted directory back. Therefore, be careful in experimenting with this
program and do not delete any useful directory accidently.

Listing 10-11. Using the FileVisitor API to Delete a Directory Tree

// DeleteDirectoryTest.java
package com.jdojo.nio2;

import java.io.IOException;
import java.nio.file.FileVisitResult;
import static java.nio.file.FileVisitResult.CONTINUE;
import static java.nio.file.FileVisitResult.TERMINATE;
import java.nio.file.FileVisitor;

Chapter 10 ■ New INput/Output 2

451

import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.SimpleFileVisitor;
import java.nio.file.attribute.BasicFileAttributes;

public class DeleteDirectoryTest {
 public static void main(String[] args) {
 /* WARNING!!!
 Replace YOUR_DIR_PATH_TO_DELETE in the following statement with
 the path of the directory whose contents you want to delete.
 You will not be able to get the contents of the directory back
 after you run this program.
 */
 Path dirToDelete = Paths.get("YOUR_DIR_PATH_TO_DELETE");
 FileVisitor<Path> visitor = getFileVisitor();

 try {
 Files.walkFileTree(dirToDelete, visitor);
 }
 catch (IOException e) {
 System.out.println(e.getMessage());
 }
 }

 public static FileVisitor<Path> getFileVisitor() {
 // A inner local class that is used as a file visitor to
 // delete a directory
 class DeleteDirVisitor extends SimpleFileVisitor<Path> {
 @Override
 public FileVisitResult postVisitDirectory(Path dir,
 IOException e) throws IOException {

 FileVisitResult result = CONTINUE;

 // Now, delete the directory at the end
 if (e != null) {
 System.out.format("Error deleting %s. %s%n",
 dir, e.getMessage());
 result = TERMINATE;
 }
 else {
 Files.delete(dir);
 System.out.format("Deleted directory %s%n",
 dir);
 }
 return result;
 }

Chapter 10 ■ New INput/Output 2

452

 @Override
 public FileVisitResult visitFile(Path file,
 BasicFileAttributes attrs) throws IOException {

 // Delete the file that we are visiting
 Files.delete(file);

 System.out.format("Deleted file %s%n", file);
 return CONTINUE;
 }
 }

 // Create an obejct of the DirVisitor
 FileVisitor<Path> visitor = new DeleteDirVisitor();

 return visitor;
 }
}

By default, the Files.walkFileTree() method does not follow symbolic links. If you want the FileVisitor API to
follow the symbolic links, you need to use another version of the walkFileTree() method that lets you specify the
FileVisitOption.FOLLOW_LINKS as an option. It also lets you specify the maximum depth, which is the maximum
number of levels of a directory to visit. Specifying the depth as 0 visits only the starting file. You can specify
Integer.MAX_VALUE as the depth to visit all levels. The following snippet of code shows how to use the walkFileTree()
method to follow a symbolic link:

import java.util.Set;
import java.util.EnumSet;
import java.nio.file.Path;
import java.nio.file.Files;
import java.io.IOException;
import java.nio.file.FileVisitor;
import java.nio.file.FileVisitOption;
import static java.nio.file.FileVisitOption.FOLLOW_LINKS;
...
Path startDir = get the path to the starting directory;
FileVisitor<Path> visitor = get a file visitor;

// Prepare the set of options
Set<FileVisitOption> options = EnumSet.of(FOLLOW_LINKS);

// Visit all levels
int depth = Integer.MAX_VALUE;

// Walk the file tree with all levels and following the symbolic links
Files.walkFileTree(startDir, options, depth, visitor);

Chapter 10 ■ New INput/Output 2

453

Matching Paths
The NIO.2 API lets you perform pattern matching on the string form of Path objects using the glob and regex patterns.
An instance of the PathMatcher interface is used to perform the match. The PathMatcher interface is a functional
interface. It contains a method matches(Path path) method that returns true if the specified path matches the
pattern.

It is a three-step process to match a pattern to a path:

Prepare a glob or regex pattern string.•	

Get a •	 PathMatcher object using the getPathMatcher() method of a FileSystem object.

Call the •	 matches() method with a Path object to check if the specified path matches the
pattern.

The pattern string consists of two parts, syntax and pattern, separated by a colon:

syntax:pattern

The value for syntax is either glob or regex. The pattern part follows the syntax that depends on the value of
the syntax part. I will list the syntax rules for the glob pattern briefly. For the regex pattern syntax rules, please refer to
Chapter 14 in the book Beginning Java Fundamentals (ISBN: 978-1-4302-6652-5).

The glob pattern uses the following syntax rules:

An asterisk (•	 *) matches zero or more characters without crossing directory boundaries.

Two consecutive asterisks (•	 **) match zero or more characters crossing directory boundaries.

A question mark (•	 ?) matches exactly one character.

A backslash (•	 \) is used to escape the special meaning of the following character. For example,
\\ matches a single backslash, and * matches an asterisk.

Characters placed inside brackets (•	 []) are called a bracket expression, which matches a
single character. For example, [aeiou] matches a, e, i, o, or u. A dash between two characters
specifies a range. For example, [a-z] matches all alphabets between a and z. The exclamation
mark (!) after the left bracket is treated as negation. For example, [!tyu] matches all
characters except t, y, and u.

You can use a group of subpatterns by specifying comma-separated subpatterns inside braces •	
({}). For example, {txt, java, doc} matches txt, java, and doc.

The matching of the root component of a path is implementation-dependent.•	

Listing 10-12 demonstrates how to use a PathMatcher object to match a path against a glob pattern. The program
uses a glob pattern to match a path on Windows. Please change the path syntax to conform to your platform before
you run the program.

Listing 10-12. Matching a Path Against a Glob/Regex Pattern

// PathMatching.java
package com.jdojo.nio2;

import java.nio.file.FileSystems;
import java.nio.file.Path;
import java.nio.file.PathMatcher;
import java.nio.file.Paths;

Chapter 10 ■ New INput/Output 2

454

public class PathMatching {
 public static void main(String[] args) {
 String globPattern = "glob:**txt";
 PathMatcher matcher =
 FileSystems.getDefault().getPathMatcher(globPattern);
 Path path = Paths.get("C:\\poems\\luci1.txt");
 boolean matched = matcher.matches(path);
 System.out.format("%s matches %s: %b%n",
 globPattern, path, matched);
 }
}

glob:**txt matches C:\poems\luci1.txt: true

Managing File Attributes
Through the File class, the java.io API provides support for accessing very basic file attributes such as the last
modified time of a file. NIO.2 has extensive support for managing (reading and writing) the file attributes across
platforms. The java.nio.attribute package contains the attribute-related classes. It bundles the file attributes in the
following six types of views.

 1. BasicFileAttributeView: This attribute view allows you to manage the basic file
attributes such as creation time, last access time, last modified time, size, file type (regular
file, directory, symbolic link, or other), and file key (a unique number for a file). It lets you
modify the creation time, the last accessed time, and the last modified time of a file. This
view is supported on all platforms.

 2. DosFileAttributeView: It extends the BasicFileAttributeView. As the name suggests,
it allows you to access the file attributes that are specific to DOS. It provides the support
to check if a file is a hidden file, a system file, an archive file, and a read-only file. It is
available only on the systems that support DOS such as Microsoft Windows.

 3. PosixFileAttributeView: POSIX stands for Portable Operating System Interface for
UNIX. It extends the BasicFileAttributeView and adds support for attributes that are
available on the systems that support POSIX standards such as UNIX. Apart from basic file
attributes, it lets you manage owner, group, and [related access] permissions.

 4. FileOwnerAttributeView: This attribute view lets you manage the owner of a file.

 5. AclFileAttributeView: ACL stands for Access Control List. It is a list of permissions
attached to a file. It lets you manage the ACL for a file.

 6. UserDefinedFileAttributeView: This view lets you manage a set of user-defined
attributes for a file in the form of name-value pairs. Sometimes the user-defined attributes
of a file are also known as extended attributes. The name of an attribute is a String. The
value of an attribute could be of any data type.

Some attribute views are available across platforms and some only on specific platforms. An implementation
may provide additional file attribute views.

Chapter 10 ■ New INput/Output 2

455

Checking for a File Attribute View Support
Not all file attribute views are supported on all platforms, except the basic view. You can use the
supportsFileAttributeView() method of the FileStore class to check whether a specific file attribute view is
supported by a file store. The method accepts the class reference of the type of the file attribute view you want to check
for support. If the specified file attribute view is supported, it returns true; otherwise, it returns false. The following
snippet of code shows how to check for file attribute support:

Path path = get a path reference to a file store;

// Get the file store reference for the path
FileStore fs = Files.getFileStore(path);

// Check if POSIX file attribute is supported by the file store
boolean supported = fs.supportsFileAttributeView(PosixFileAttributeView.class);
if (supported) {
 System.out.println("POSIX file attribute view is supported.");
}
else {
 System.out.println("POSIX file attribute view is not supported.");
}

Listing 10-13 demonstrates how to check if a file store supports a file attribute view. It checks for the file attribute
support for the C: drive on Windows. Please change the file store path in the main() method to check for the
supported file attribute views for the file store. You may get a different output when you run the program.

Listing 10-13. Checking for Supported File Attribute Views by a File Store

// SupportedFileAttribViews.java
package com.jdojo.nio2;

import java.io.IOException;
import java.nio.file.FileStore;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.attribute.AclFileAttributeView;
import java.nio.file.attribute.BasicFileAttributeView;
import java.nio.file.attribute.DosFileAttributeView;
import java.nio.file.attribute.FileAttributeView;
import java.nio.file.attribute.FileOwnerAttributeView;
import java.nio.file.attribute.PosixFileAttributeView;
import java.nio.file.attribute.UserDefinedFileAttributeView;

public class SupportedFileAttribViews {
 public static void main(String[] args) {
 // Use C: as the file store path on Windwos
 Path path = Paths.get("C:");

Chapter 10 ■ New INput/Output 2

456

 try {
 FileStore fs = Files.getFileStore(path);
 printDetails(fs, AclFileAttributeView.class);
 printDetails(fs, BasicFileAttributeView.class);
 printDetails(fs, DosFileAttributeView.class);
 printDetails(fs, FileOwnerAttributeView.class);
 printDetails(fs, PosixFileAttributeView.class);
 printDetails(fs, UserDefinedFileAttributeView.class);
 }
 catch (IOException ex) {
 ex.printStackTrace();
 }
 }

 public static void printDetails(FileStore fs,
 Class<? extends FileAttributeView> attribClass) {
 // Check if the file attribute view is supported
 boolean supported = fs.supportsFileAttributeView(attribClass);

 System.out.format("%s is supported: %s%n",
 attribClass.getSimpleName(), supported);
 }
}

AclFileAttributeView is supported: true
BasicFileAttributeView is supported: true
DosFileAttributeView is supported: true
FileOwnerAttributeView is supported: true
PosixFileAttributeView is supported: false
UserDefinedFileAttributeView is supported: true

Reading and Updating File Attributes
The NIO.2 API provides many ways to work with file attributes. Sometimes it may be confusing to decide the method
that you want to use to manage the attributes of a file.

You may need to work with only one attribute or many attributes of a file at a time. If you need to read or update
the value of only one attribute of a file, you need to look at the available methods in the Files class that let you read/
update that specific attribute. For example, if you want to check if a file is a directory, use the Files.isDirectory()
method. If you want to read the owner of a file, use the Files.getOwner() method. If you want to update the owner of
a file, use the Files.setOwner() method. The Files class has the following two static methods that let you read and
update a file attribute using the attribute name as a string:

•	 Object getAttribute(Path path, String attribute, LinkOption... options)

•	 Path setAttribute(Path path, String attribute, Object value, LinkOption...
options)

If you need to read or update multiple attributes of a file, you need to work with a specific file attribute view.
The type of attributes determines the file attribute view that you need to use. For most of the file attribute views,
you have to work with two interfaces named as XxxAttributes and XxxAttributeView. For example, for the basic

Chapter 10 ■ New INput/Output 2

457

file attributes, you have the BasicFileAttributes and BasicFileAtrributeView interfaces. The XxxAttributes
lets you read the attributes. The XxxAttributeView lets you read as well as update the attributes. If you only want to
read the attributes, use XxxAttributes. If you want to read and update attributes, use XxxAttributeView as well as
XxxAttributes.

The following two methods of the Files class let you read the file attributes in a bulk, which is much more
efficient than reading one attribute at a time.

•	 <A extends BasicFileAttributes> A readAttributes(Path path, Class<A> type,
LinkOption... options)

•	 Map<String,Object> readAttributes(Path path, String attributes, LinkOption...
options)

The last argument of both methods lets you specify how a symbolic link is handled. By default, if a file is a
symbolic link, the attributes of the target of the symbolic link are read. If you specify NOFOLLOW_LINKS as the option,
the attributes of the symbolic link are read, not the attributes of its target.

The first readAttributes() method returns all file attributes of a specified type in an XxxAttributes object.
For example, you would write the following snippet of code to read the basic file attributes:

// Create the Path object representing the path of the file
Path path = Paths.get("C:\\poems\\luci1.txt");

// Read the basic file attributes
BasicFileAttributes bfa =
 Files.readAttributes(path, BasicFileAttributes.class);

// Get the last modified time
FileTime lastModifiedTime = bfa.lastModifiedTime();

// Get the size of the file
long size = bfa.size();

The second readAttributes() method returns all or some of the attributes of a specific type. The list of attributes
to read is supplied in a string form. The string form of an attribute list uses the following syntax:

view-name:comma-separated-attributes

The view-name is the name of the attribute view that you want to read, such as basic, posix, acl, etc.
If view-name is omitted, it defaults to basic. If view-name is present, it is followed by a colon. You can read all
attributes of a specific view type by specifying an asterisk as the attributes list. For example, you can specify "basic:*"
or "*" to read all basic file attributes. To read the size and the last modified time of the basic view, you would use
"basic:size,lastModifiedTime" or "size,lastModifiedTime". To read the owner attribute of a file using an
ACL view, you would use a string "acl:owner". To read all posix attributes of a file, you would use "posix:*".
The following snippet of code prints the size and the last modified time of the file C:\poems\luci1.txt. Note that
the file path uses Windows syntax.

// Get a Path object
Path path = Paths.get("C:\\poems\\luci1.txt");

// Prepare the attribute list
String attribList = "basic:size,lastModifiedTime";

Chapter 10 ■ New INput/Output 2

458

// Raad the attributes
Map<String, Object> attribs = Files.readAttributes(path, attribList);

// Display the attributes on the standard output
System.out.format("Size:%s, Last Modified Time:%s %n",
 attribs.get("size"), attribs.get("lastModifiedTime"));

Listing 10-14 reads the basic file attributes of the file C:\poems\luci1.txt and prints some of them on
the standard output. You will need to change the file path in the main() method to work with another file on
your platform. You may get a different output when you run this program. If the specified file does not exist, a
NoSuchFileException is thrown and the program prints the stack trace of the exception.

Listing 10-14. Reading the Basic File Attributes of a File

// BasicFileAttributesTest.java
package com.jdojo.nio2;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.attribute.BasicFileAttributes;

public class BasicFileAttributesTest {
 public static void main(String[] args) {
 // Change the file path of an existing file
 Path path = Paths.get("C:\\poems\\luci1.txt");

 try {
 // Read basic file attributes
 BasicFileAttributes bfa =
 Files.readAttributes(path, BasicFileAttributes.class);

 // Print some of the basic file attributes
 System.out.format("Size:%s bytes %n", bfa.size());
 System.out.format("Creation Time:%s %n",
 bfa.creationTime());
 System.out.format("Last Access Time:%s %n",
 bfa.lastAccessTime());
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }
}

Size:119 bytes
Creation Time:2014-05-05T20:52:16.589994Z
Last Access Time:2014-05-05T20:52:16.589994Z

Chapter 10 ■ New INput/Output 2

459

You can also read file attributes using a specific view object. You can use the getFileAttributeView() method
of the Files class to get a specific attribute view. It returns null if the file attribute view is not available. The method
declaration is as follows:

•	 <V extends FileAttributeView> V getFileAttributeView(Path path, Class<V> type,
LinkOption... options)

Once you get a view object of a specific view type, you can read all attributes of that view type using the view
object’s readAttributes() method. Note that not all views provide readAttributes() method. For example, the
FileOwnerAttributeView provides only the getOwner() method to read the owner attribute of a file. If an attribute
view is updateable, the view object provides appropriate setter methods to update the attributes. The following
snippet of code reads all basic attributes for C:\poems\luci1.txt file using a basic view object:

// Get a Path object
Path path = Paths.get("C:\\poems\\luci1.txt");

// Get the basic view
BasicFileAttributeView bfv =
 Files.getFileAttributeView(path, BasicFileAttributeView.class);

// Read all basic attributes through the view
BasicFileAttributes bfa = bfv.readAttributes();

The basic view lets you update the last modified time, the last accessed time, and the creation time of a file. The
setTimes() method lets you update all three types of times. If you pass a null value for a time, it means you do not
want to update that time. The time you need to pass to the setTimes() method is of FileTime type.

Listing 10-15 demonstrates how to use the basic file attribute view to read and update basic file attributes.
Please change the file path in the main() method to the path of an existing file whose attributes you want to read.
The program uses a file path of C:\poems\luci1.txt on Windows that may not exist on your machine.

Listing 10-15. Using Basic File Attribute View to Read and Update Basic File Attributes

// BasicFileAttributeViewTest.java
package com.jdojo.nio2;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.attribute.BasicFileAttributeView;
import java.nio.file.attribute.BasicFileAttributes;
import java.nio.file.attribute.FileTime;
import java.time.Instant;

public class BasicFileAttributeViewTest {
 public static void main(String[] args) {
 // Change the path to point to your file
 Path path = Paths.get("C:\\poems\\luci1.txt");

 try {
 // Get the basic view
 BasicFileAttributeView bfv =
 Files.getFileAttributeView(path,
 BasicFileAttributeView.class);

Chapter 10 ■ New INput/Output 2

460

 // Read all basic attributes through the view
 BasicFileAttributes bfa = bfv.readAttributes();

 // Print some basic attributes
 System.out.format("Size:%s bytes %n", bfa.size());
 System.out .format("Creation Time:%s %n",

bfa.creationTime());
 System.out.format("Last Access Time:%s %n",
 bfa.lastAccessTime());

 // Update the create time to the current time
 FileTime newLastModifiedTime = null;
 FileTime newLastAccessTime = null;
 FileTime newCreateTime = FileTime.from(Instant.now());

 // A null for time means youdo not want to update that time
 bfv.setTimes(newLastModifiedTime,
 newLastAccessTime,
 newCreateTime);
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }
}

Managing the Owner of a File
There are three ways to manage the owner of a file:

Using •	 Files.getOwner()and Files.setOwner() methods.

Using •	 Files.getAttribute() and Files.setAttribute() methods using "owner" as the
attribute name.

Using the •	 FileOwnerAttributeView.

You need to work with UserPrincipal and GroupPrincipal interfaces to manage the owner of a file.
The owner of a file could be a user or a group. A UserPrincipal represents a user whereas a GroupPrincipal
represents a group. When you read the owner of a file, you get an instance of UserPrincipal. Use the getName()
method on the UserPrincipal object to get the name of the user. When you want to set the owner of a file, you
need to get an object of the UserPrincipal from a user name in a string form. To get a UserPrincipal from the
file system, you need to use an instance of the UserPrincipalLookupService class, which you can get using
the getUserPrincipalLookupService() method of the FileSystem class. The following snippet of code gets a
UserPrincipal object for a user whose user id is ksharan:

FileSystem fs = FileSystems.getDefault();
UserPrincipalLookupService upls = fs.getUserPrincipalLookupService();

// Throws a UserPrincipalNotFoundException exception if the user ksharan does not exist
UserPrincipal user = upls.lookupPrincipalByName("ksharan");
System.out.format("User principal name is %s%n", user.getName());

Chapter 10 ■ New INput/Output 2

461

You can use method chaining in the above snippet of code to avoid intermediate variables.

UserPrincipal user = FileSystems.getDefault()
 .getUserPrincipalLookupService()
 .lookupPrincipalByName("ksharan");
System.out.format("User principal name is %s%n", user.getName());

The user principal lookup service is an optional operation for a file system. You need to handle the
UnsupportedOperationException that is thrown when the file system does not support it.

To get a GroupPrincipal instance, use the lookupPrincipalByGroupName() method of the user principal lookup
service. Once you get a UserPrincipal or GroupPrincipal instance that represents the owner of the file, you can use
any of the three methods described in the beginning of this section to update the owner of a file.

Listing 10-16 demonstrates how to read and update the owner of a file using the FileOwnerAttributeView.
Please change the file path in the main() method to an existing file on your machine before you run the program.
The program uses brice as the new user for the file. Please change the new user id to a user that exists on your machine.
If the user does not exist on your machine, you may get a UserPrincipalNotFoundException exception. You may get a
different output when you run the program.

Listing 10-16. Changing the Owner of a File Using the FileOwnerAttributeView

// FileOwnerManagement.java
package com.jdojo.nio2;

import java.io.IOException;
import java.nio.file.FileSystem;
import java.nio.file.FileSystems;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.attribute.FileOwnerAttributeView;
import java.nio.file.attribute.UserPrincipal;
import java.nio.file.attribute.UserPrincipalLookupService;

public class FileOwnerManagement {
 public static void main(String[] args) throws IOException {
 try {
 // Change the file path to an existing file on your machine
 Path path = Paths.get("C:\\poems\\luci1.txt");

 FileOwnerAttributeView foav =
 Files.getFileAttributeView(
 path,FileOwnerAttributeView.class);

 UserPrincipal owner = foav.getOwner();
 System.out.format("Original owner of %s is %s%n",
 path, owner.getName());

 FileSystem fs = FileSystems.getDefault();
 UserPrincipalLookupService upls =
 fs.getUserPrincipalLookupService();

Chapter 10 ■ New INput/Output 2

462

 // Change the file owner to brice
 UserPrincipal newOwner =
 upls.lookupPrincipalByName("brice");
 foav.setOwner(newOwner);

 UserPrincipal changedOwner = foav.getOwner();
 System.out.format("New owner of %s is %s%n",
 path, changedOwner.getName());
 }
 catch (UnsupportedOperationException | IOException e) {
 e.printStackTrace();
 }
 }
}

Original owner of C:\poems\luci1.txt is CORPORATE\ksharan
New owner of C:\poems\luci1.txt is CORPORATE\brice

The following snippet of code uses the Files.setOwner() method to update the owner of a file identified with

the path C:\poems\luci1.txt on Windows:

UserPrincipal owner = get the owner;
Path path = Paths.get("C:\\poems\\luci1.txt");
Files.setOwner(path, owner);

Managing ACL File Permissions
In this section, I will cover managing the file permissions using AclFileAttributeView. Note that ACL type file
attributes are supported on Microsoft Windows. An ACL consists of an ordered list of access control entries. Each
entry consists of a UserPrincipal, the type of access, and the level of the access to an object. In NIO.2, an instance of
the AclEntry class represents an entry in an ACL. You can get and set a List of AclEntry for a file using the getAcl()
and setAcl() methods of the AclFileAttributeView. The following snippet of code gets the List of ACL entries for a
file called C:\poems\luci1.txt:

Path path = Paths.get("C:\\poems\\luci1.txt");
AclFileAttributeView view =
 Files.getFileAttributeView(path, AclFileAttributeView.class);
List<AclEntry> aclEntries = view.getAcl();

The AclEntry class has methods to read various properties of an ACL entry. Its principal() method returns the
UserPrincipal to identify the user or the group. Its permissions() method returns a Set of AclEntryPermission
objects to identify the permissions. Its type() method returns an enum constant of the type AclEntryType such as
ALARM, ALLOW, AUDIT, and DENY that indicates the type of the access. Its flags() method returns a Set of AclEntryFlag
enum constants, which contains the inheritance flags of the ACL entry.

Listing 10-17 demonstrates how to read ACL entries for file C:\poems\luci1.txt. If the file does not exist, a
NoSuchFileException is thrown. The program handles the exception and prints the stack trace of the exception. If you
run the program on a UNIX-like platform, it will print an error message that the ACL view is not supported. A partial
output is shown when the program was run on Windows. You may get a different output.

Chapter 10 ■ New INput/Output 2

463

Listing 10-17. Reading ACL Entries and Related Permissions

// AclReadEntryTest.java
package com.jdojo.nio2;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.List;
import java.util.Set;
import java.nio.file.attribute.AclEntry;
import java.nio.file.attribute.AclEntryPermission;
import java.nio.file.attribute.AclFileAttributeView;

public class AclReadEntryTest {
 public static void main(String[] args) {
 // Change the path to an existing file on Windows
 Path path = Paths.get("C:\\poems\\luci1.txt");

 AclFileAttributeView aclView =
 Files.getFileAttributeView(path, AclFileAttributeView.class);
 if (aclView == null) {
 System.out.format("ACL view is not supported.%n");
 return;
 }

 try {
 List<AclEntry> aclEntries = aclView.getAcl();
 for(AclEntry entry: aclEntries) {
 System.out.format("Principal: %s%n", entry.principal());
 System.out.format("Type: %s%n", entry.type());
 System.out.format("Permissions are:%n");

 Set<AclEntryPermission> permissions = entry.permissions();
 for(AclEntryPermission p : permissions) {
 System.out.format("%s %n", p);
 }

 System.out.format("------------------------%n");
 }
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }
}

Chapter 10 ■ New INput/Output 2

464

Principal: CORPORATE\ksharan (User)
Type: ALLOW
Permissions are:
WRITE_OWNER
DELETE_CHILD
EXECUTE
READ_DATA
...

Principal: NT AUTHORITY\SYSTEM (Well-known group)
Type: ALLOW
Permissions are:
WRITE_OWNER
...

Updating ACL entries for a file is more involved than reading them. You need to create an AclEntry object

using the AclEntry.Builder class. The newBuilder() method of the AclEntry class returns an empty
AclEntry.Builder object, which acts as a staging area for a new AclEntry object. You need to call various setter
methods such as setPrincipal(), setType(), setPermissions(), etc. on the builder object. When you are finished
with setting all properties, call the build() method on the builder object to create an AclEntry object. The following
snippet of code demonstrates these steps, assuming that bRiceUser is a UserPrincipal and permissions is a Set of
AclEntryPermission:

// Let's build an ACL entry
AclEntry.Builder builder = AclEntry.newBuilder();
builder.setPrincipal(bRiceUser);
builder.setType(AclEntryType.ALLOW);
builder.setPermissions(permissions);
AclEntry newEntry = builder.build();

Once you prepare a new AclEntry, you need to add it to the existing ACL entries for the file. The following
snippet of code adds the new ACL entry to the existing ones and sets them back using an ACL attribute view:

// Get the ACL entry for the path
List<AclEntry> aclEntries = aclView.getAcl();

// Add the ACL entry to the existing list
aclEntries.add(newEntry);

// Update the ACL entries for the file
aclView.setAcl(aclEntries);

Listing 10-18 demonstrates how to add a new ACL entry for a user named brice. It adds DATA_READ and DATA_
WRITE permissions for the user brice on the C:\poems\luci1.txt file. Make sure that the file C:\poems\luci1.txt
and a user with the user id brice exist on the machine. Please change the file and user id that exist on the machine to
set the ACL entries for another file and user id.

Chapter 10 ■ New INput/Output 2

465

Listing 10-18. Updating ACL Entries for a File

// AclUpdateEntryTest.java
package com.jdojo.nio2;

import java.io.IOException;
import java.nio.file.FileSystems;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.List;
import java.util.Set;
import java.nio.file.attribute.AclEntry;
import java.nio.file.attribute.AclEntryPermission;
import java.nio.file.attribute.AclEntryType;
import java.nio.file.attribute.AclFileAttributeView;
import java.nio.file.attribute.UserPrincipal;
import java.util.EnumSet;
import static java.nio.file.attribute.AclEntryPermission.READ_DATA;
import static java.nio.file.attribute.AclEntryPermission.WRITE_DATA;

public class AclUpdateEntryTest {
 public static void main(String[] args) {
 Path path = Paths.get("C:\\poems\\luci1.txt");

 AclFileAttributeView aclView =
 Files.getFileAttributeView(path, AclFileAttributeView.class);
 if (aclView == null) {
 System.out.format("ACL view is not supported.%n");
 return;
 }

 try {
 // Get UserPrincipal for brice
 UserPrincipal bRiceUser =
 FileSystems.getDefault()
 .getUserPrincipalLookupService()
 .lookupPrincipalByName("brice");

 // Prepare permissions set
 Set<AclEntryPermission> permissions = EnumSet.of(READ_DATA, WRITE_DATA);

 // Let us build an ACL entry
 AclEntry.Builder builder = AclEntry.newBuilder();
 builder.setPrincipal(bRiceUser);
 builder.setType(AclEntryType.ALLOW);
 builder.setPermissions(permissions);
 AclEntry newEntry = builder.build();

 // Get the ACL entry for the path
 List<AclEntry> aclEntries = aclView.getAcl();

Chapter 10 ■ New INput/Output 2

466

 // Add the ACL entry for brice to the existing list
 aclEntries.add(newEntry);

 // Update the ACL entries
 aclView.setAcl(aclEntries);

 System.out.println("ACL entry added for brice successfully");
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }
}

Managing POSIX File Permissions
In this section, I will cover managing file permissions using PosixFileAttributeView. Note that UNIX supports
POSIX standard file attributes. POSIX file permissions consist of nine components: three for the owner, three for
the group, and three for others. The three types of permissions are read, write, and execute. A typical POSIX file
permission in a string form looks like "rw-rw----", which has read and write permissions for the owner and the
group. The PosixFilePermission enum type defines nine constants, one for each permission component. The nine
constants are named as XXX_YYY, where XXX is OWNER, GROUP, and OTHERS, and YYY is READ, WRITE, and EXECUTE.

PosixFilePermissions is a utility class that has methods to convert the POSIX permissions of a file from one
form to another. Its toString() method converts a Set of PosixFilePermission enum constants into a string of the
rwxrwxrwx form. Its fromString() method converts the POSIX file permissions in a string of the rwxrwxrwx form to a
Set of PosixFilePermission enum constants. Its asFileAttribute() method converts a Set of PosixFilePermission
enum constants into a FileAttribute object, which you can use in the Files.createFile() method as an argument
when creating a new file.

Reading POSIX file permissions is easy. You need to use the readAttributes() method of the
PosixFileAttributeView class to get an instance of PosixFileAttributes. The permissions() method of
PosixFileAttributes returns all POSIX file permissions as a Set of PosixFilePermission enum constants. The
following snippet of code reads and prints POSIX file permissions in the rwxrwxrwx form for a file named luci in the
default directory:

// Get a Path object for lici file
Path path = Paths.get("luci");

// Get the POSIX attribute view for the file
PosixFileAttributeView posixView =
 Files.getFileAttributeView(path, PosixFileAttributeView.class);

// Here, make sure posixView is not null

// Read all POSIX attributes
PosixFileAttributes attribs; attribs = posixView.readAttributes();

// Read the file permissions
Set<PosixFilePermission> permissions = attribs.permissions();

// Convert the file permissions into the rwxrwxrwx string form
String rwxFormPermissions = PosixFilePermissions.toString(permissions);

Chapter 10 ■ New INput/Output 2

467

// Print the permissions
System.out.println(rwxFormPermissions);

Updating POSIX file permissions is also easy. You need to get all permissions in a Set of PosixFilePermission
enum constants. To update the POSIX file permissions, call the setPermissions() method of
PosixFileAttributeView, passing the Set of the PosixFilePermission enum constants as an argument. The
following snippet of code shows how to set the POSIX file permissions:

// Get the permission in a string form
String rwxFormPermissions = "rw-r-----";

// Convert the permission in the string form to a Set of PosixFilePermission
Set<PosixFilePermission> permissions = PosixFilePermissions.fromString(rwxFormPermissions);

// Update the permissions
posixView.setPermissions(permissions);

Alternatively, you can also create a Set of PosixFilePermission enum constants directly and set it as the file
permissions, like so:

Set<PosixFilePermission> permissions = EnumSet.of(OWNER_READ, OWNER_WRITE, GROUP_READ);
posixView.setPermissions(permissions);

Listing 10-19 demonstrates how to read and update POSIX file permissions for a file named luci on UNIX-like
platforms. If the file does not exist, the program outputs the stack trace of a NoSuchFileException. If you run the
program on a non-UNIX-like platform, it will print a message that POSIX attribute view is not supported. You may get
a different output when you run this program.

Listing 10-19. Reading and Writing POSIX File Permissions

// PosixPermissionsTest.java
package com.jdojo.nio2;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.EnumSet;
import java.util.Set;
import java.nio.file.attribute.PosixFileAttributeView;
import java.nio.file.attribute.PosixFileAttributes;
import java.nio.file.attribute.PosixFilePermission;
import java.nio.file.attribute.PosixFilePermissions;
import static java.nio.file.attribute.PosixFilePermission.OWNER_READ;
import static java.nio.file.attribute.PosixFilePermission.OWNER_WRITE;
import static java.nio.file.attribute.PosixFilePermission.GROUP_READ;

public class PosixPermissionsTest {
 public static void main(String[] args) {
 Path path = Paths.get("luci");
 PosixFileAttributeView posixView =
 Files.getFileAttributeView(path, PosixFileAttributeView.class);

Chapter 10 ■ New INput/Output 2

468

 if (posixView == null) {
 System.out.format("POSIX attribute view is not supported%n.");
 return;
 }

 readPermissions(posixView);
 updatePermissions(posixView);
 }

 public static void readPermissions(PosixFileAttributeView posixView) {
 try {
 PosixFileAttributes attribs; attribs = posixView.readAttributes();
 Set<PosixFilePermission> permissions = attribs.permissions();

 // Convert the set of posix file permissions into rwxrwxrwx form
 String rwxFormPermissions = PosixFilePermissions.toString(permissions);
 System.out.println(rwxFormPermissions);
 }
 catch (IOException ex) {
 ex.printStackTrace();
 }
 }

 public static void updatePermissions(PosixFileAttributeView posixView) {
 try {
 Set<PosixFilePermission> permissions =
 EnumSet.of(OWNER_READ, OWNER_WRITE, GROUP_READ);
 posixView.setPermissions(permissions);
 System.out.println("Permissions set successfully.");
 }
 catch (IOException ex) {
 ex.printStackTrace();
 }
 }
}

rw-r--r--
Permissions set successfully.

Watching a Directory for Modifications
NIO.2 supports a watch service to notify a Java program when an object in a file system is modified. Currently, you
can watch only directories for modifications. The watch service uses the native file event notification facility of the file
system. If a file system does not provide a file event notification facility, it may use other mechanisms such as polling.

The following classes and interfaces in the java.nio.file package are involved in the implementation of a
watch service:

The •	 Watchable interface

The •	 WatchService interface

The •	 WatchKey interface

Chapter 10 ■ New INput/Output 2

469

The •	 WatchEvent<T> interface

The •	 WatchEvent.Kind<T> interface

The •	 StandardWatchEventKinds class

A Watchable object represents a file-system object that can be watched for changes. A Watchable object can be
registered with a watch service. A Path object is a Watchable object. Therefore, you can register a Path object with a
watch service.

A WatchService represents a watch service that watches registered objects for changes. When an object is
registered with a WatchService, the WatchService returns a WatchKey that serves as a token for the registration. In
other words, a WatchKey identifies the registration of an object with a WatchService.

A WatchEvent represents an event (or a repeated event) on an object registered with a watch service. Its kind()
method returns the kind of event that occurs on the registered object. Its context() method returns a Path object
that represents the entry on which the event occurs. The Path object represents a relative path between the registered
directory with the watch service and the entry on which the event occurs. An event may be repeated before it is
notified. The count() method returns the number of times the event occurs for a specific notification. If it returns a
value greater than 1, it is a repeated event.

A WatchEvent.Kind<T> represents the kind of event that occurs on a registered object. The
StandardWatchEventKinds class defines constants to represent the kind of an event.

The StandardWatchEventKinds class defines the following four constants to identify the kind of an event. Each
constant is of the type WatchEvent.Kind type. It contains the following constants:

•	 ENTRY_CREATE

•	 ENTRY_DELETE

•	 ENTRY_MODIFY

•	 OVERFLOW

The names of the first three constants are self-explanatory. They represent events when an entry is created,
deleted, and modified in a registered directory.

The last event kind is OVERFLOW, which represents a special kind of event to indicate that event may have been lost
or discarded.

The following steps are needed to watch a directory for changes:

Create a watch service.•	

Register a directory with the watch service.•	

Retrieve a watch key from the watch service queue.•	

Process the events that occur on the registered directory.•	

Reset the watch key after processing the events.•	

Close the watch service.•	

Create a Watch Service
Create a watch service for the file system in which you want to watch a directory for changes as follows:

WatchService ws = FileSystems.getDefault().newWatchService();

Chapter 10 ■ New INput/Output 2

470

Register the Directory with the Watch Service
You need to create a Path object for the directory you want to watch and invoke its register() method to register
it with the watch service. At the time of registration, you need to specify the kinds of events for which you want to
register your directory. The register() method will return a WatchKey object as a registration token.

// Get a Path object for C:\kishori directory to watch
Path dirToWatch = Paths.get("C:\\kishori");

// Register the dirToWatch for create, modify and delete events
WatchKey token = dirToWatch.register(ws, ENTRY_CREATE, ENTRY_MODIFY, ENTRY_DELETE);

You can cancel the registration of a directory with the watch service using the cancel() method of the WatchKey.
When a directory is registered, its WatchKey is said to be in the ready state. You can register multiple directories with a
watch service. Note that the directory must exist at the time of registration.

Retrieve a WatchKey from the Watch Service Queue
When an event occurs on a registered directory, the WatchKey for that registered directory is said to be in the signaled
state and the WatchKey is queued to the watch service. Another event may occur on a registered directory when its
WatchKey is in the signaled state. If an event occurs on a directory while its WatchKey is in the signaled state, the event
is queued to the WatchKey, but the WatchKey itself is not re-queued to the watch service. A WatchKey in the signaled
state remains in this state until its reset() method is called to change its state to the ready state.

You can use the take() or poll() method of the WatchService object to retrieve and remove a signaled and
queued WatchKey. The take() method waits until a WatchKey is available. The poll() method lets you specify a
timeout for the wait. Typically, an infinite loop is used to retrieve a signaled WatchKey.

while(true) {
 // Retrieve and remove the next available WatchKey from the watch service
 WatchKey key = ws.take();
}

Process the Events
Once you retrieve and remove a WatchKey from the watch service queue, you can retrieve and remove all pending
events for that WatchKey. A WatchKey may have more than one pending events. The pollEvents() method of the
WatchKey retrieves and removes all its pending events. It returns a List of WatchEvent. Each element of the List
represents an event on the WatchKey. Typically, you will need to use the kind(), context(), and count() methods
of the WatchEvent object to know the details of the event. The following snippet of code shows the typical logic for
processing an event:

while(true) {
 // Retrieve and remove the next available WatchKey
 WatchKey key = ws.take();

 // Process all events of the WatchKey
 for(WatchEvent<?> event : key.pollEvents()) {
 // Process each event here
 }
}

Chapter 10 ■ New INput/Output 2

471

Reset the WatchKey after Processing Events
You must reset the WatchKey object by calling its reset() method, so it may receive event notifications and be queued
to the watch service again. The reset() method puts the WatchKey into the ready state. The reset() method returns
true if the WatchKey is still valid. Otherwise, it returns false. A WatchKey may become invalid if it is cancelled or its
watch service is closed.

// Reset the WatchKey
boolean isKeyValid = key.reset();
if (!isKeyValid) {
 System.out.println("No longer watching " + dirToWatch);
}

Close the Watch Service
When you are done with the watch service, close it by calling its close() method. You will need to handle the
java.io.IOException when you call its close() method.

// Close the watch service
ws.close();

Tip ■ the WatchService is AutoCloseable. If you create an object of the WatchService in a try-with-resources
block, it will be automatically closed when the program exits the block.

Listing 10-20 has a complete program that watches a C:\kishori directory for changes. You can replace the
directory path in the Watcher class with the directory path that you want to watch for changes. You will need to make
changes to the watched directory, such as creating a new file and changing an existing file, after you run the Watcher
class. The output will show the details of the events that occur on an entry in the watched directory. You may get a
different output.

Listing 10-20. Implementing a Watch Service to Monitor Changes in a Directory

// Watcher.java
package com.jdojo.nio2;

import java.nio.file.WatchEvent.Kind;
import java.io.IOException;
import java.nio.file.FileSystems;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.WatchService;
import java.nio.file.WatchEvent;
import java.nio.file.WatchKey;
import static java.nio.file.StandardWatchEventKinds.ENTRY_CREATE;
import static java.nio.file.StandardWatchEventKinds.ENTRY_MODIFY;
import static java.nio.file.StandardWatchEventKinds.ENTRY_DELETE;
import static java.nio.file.StandardWatchEventKinds.OVERFLOW;

Chapter 10 ■ New INput/Output 2

472

public class Watcher {
 public static void main(String[] args) {
 try (WatchService ws = FileSystems.getDefault().newWatchService()) {
 // Get a Path object for C:\kishori directory to watch
 Path dirToWatch = Paths.get("C:\\kishori");

 // Register the path with the watch service for create,
 // modifiy and delete events
 dirToWatch.register(ws, ENTRY_CREATE, ENTRY_MODIFY, ENTRY_DELETE);

 System.out.println("Watching " + dirToWatch + " for events.");

 // Keep watching for events on the dirToWatch
 while(true) {
 // Retrieve and remove the next available WatchKey
 WatchKey key = ws.take();

 for(WatchEvent<?> event : key.pollEvents()) {
 Kind<?> eventKind = event.kind();
 if (eventKind == OVERFLOW) {
 System.out.println("Event overflow occurred");
 continue;
 }

 // Get the context of the event, which is the directory
 // entry on which the event occurred.
 WatchEvent<Path> currEvent = (WatchEvent<Path>)event;
 Path dirEntry = currEvent.context();

 // Print the event details
 System.out.println(eventKind +
 " occurred on " + dirEntry);
 }

 // Reset the key
 boolean isKeyValid = key.reset();

 if (!isKeyValid) {
 System.out.println("No longer watching " + dirToWatch);
 break;
 }
 }
 }
 catch (IOException | InterruptedException e) {
 e.printStackTrace();
 }
 }
}

Chapter 10 ■ New INput/Output 2

473

Watching C:\kishori for events.
ENTRY_DELETE occurred on temp
ENTRY_CREATE occurred on hello.txt
ENTRY_MODIFY occurred on hello.txt

Asynchronous File I/O
NIO.2 supports asynchronous file I/O. In a synchronous file I/O, the thread that requests the I/O operation waits
until the I/O operation is complete. In an asynchronous file I/O, the Java application requests the system for an I/O
operation and the operation is performed by the system asynchronously. When the system is performing the file I/O
operation, the application continues doing other work. When the system finishes the file I/O, it notifies the application
about the completion of its request.

The asynchronous file I/O model is scalable as compared to the synchronous file I/O model. The requests for an
asynchronous file I/O and the completion notification to the application are performed by a pool of threads that are
specially created for this purpose. The asynchronous file I/O API has options to let you use the default thread pool
or a custom thread pool. It offers enhanced scalability by using a predefined dedicated pool of threads to handle all
asynchronous file I/O operations, instead of creating a new thread for each I/O operation.

An instance of the java.nio.channels.AsynchronousFileChannel class represents an asynchronous file channel that
is used to read, write, and perform other operations on a file asynchronously. Multiple I/O operations can be performed
simultaneously on an asynchronous file channel. An asynchronous file channel does not maintain a current position where
a read or a write operation starts. You need to provide the position for each read and write operation with each request.

The static open() method of the AsynchronousFileChannel class is used to get an instance of the
AsynchronousFileChannel class. The method is overloaded. One version uses the default thread pool to handle the
I/O operations and the completion notification. Another version lets you specify an ExecutorService to which the
asynchronous tasks will be submitted for handling the I/O operations and the completion notifications. The following
snippet of code gets an AsynchronousFileChannel on a file for writing. It creates the file if the file does not exist.

// Get a Path object
Path path = Paths.get("C:\\poems\\rainbow.txt");

// Get an asynchronous file channel for WRITE.
// Create the file, if it does not exist
AsynchronousFileChannel afc = AsynchronousFileChannel.open(path, WRITE, CREATE);

The AsynchronousFileChannel provides two ways to handle the result of an asynchronous file I/O operation.

Using a •	 java.util.concurrent.Future object.

Using a •	 java.nio.channels.CompletionHandler object.

Each method of the AsynchronousFileChannel class that supports asynchronous file I/O operation has two
versions. One version returns a Future object, which you can use to handle the result of the requested asynchronous
operation. The get() method of the Future object returns the number of bytes written to the file channel. The
following snippet of code uses the version of the write() method that returns a Future object:

// Get the data to write in a ByteBuffer
ByteBuffer dataBuffer = get a byte buffer filled with data;

// Perform the asynchronous write operation
long startPosition = 0;
Future<Integer> result = afc.write(dataBuffer, startPosition);

Chapter 10 ■ New INput/Output 2

474

Once you get a Future object, you can use a polling method or a blocked waiting method to handle the result
of the asynchronous file I/O. The following snippet of code shows the polling method, where it keeps calling the
isDone() method of the Future object to check if the I/O operation is finished:

while (!result.isDone()) {
 // Async file I/O is not done yet. Keep working on something else
}

// We are done with the async file I/O. Get the result
int writtenNumberOfBytes = result.get();

Tip ■ Note that the call to the Future.get() method blocks until the result is available. the call to the
Future.isDone() method is non-blocking.

Another version of the methods of the AsynchronousFileChannel class that supports asynchronous file I/O lets
you pass a CompletionHandler object whose methods are called when the requested asynchronous I/O operation
completes or fails. The CompletionHandler interface has two methods: completed() and failed(). The completed()
method is called when the requested I/O operation completes successfully. When the requested I/O operation
fails, the failed() method is called. The API lets you pass an object of any type to the completed() and failed()
methods. Such an object is called an attachment. You may want to pass an attachment such as the ByteBuffer or the
reference to the channel, etc. to these methods so you can perform additional actions such as reading the data from
the ByteBuffer inside these methods. Pass null as an attachment if you do not have anything useful to pass to these
methods as an attachment. Suppose you intend to use an object of the following Attachment class as an attachment to
you completion handler:

// Used as an attachment
public class Attachment {
 public Path path;
 public ByteBuffer buffer;
 public AsynchronousFileChannel asyncChannel;
}

Now you can declare your completion handler class as follows:

// A class to handle completion of an asynchronous I/O operation
public class MyHandler implements CompletionHandler<Integer, Attachment> {
 @Override
 public void completed(Integer result, Attachment attach) {
 // Handle completion of the I/O operation
 }

 @Override
 public void failed(Throwable e, Attachment attach) {
 // Handle failure of the I/O operation
 }
}

Chapter 10 ■ New INput/Output 2

475

You can use an object of the MyHandler class to handle the completion of an asynchronous file I/O operation.
The following snippet of code uses a MyHandler instance as a completion handler for an asynchronous write
operation. The completed() or failed() method of the MyHandler instance will be called depending on the result of
the I/O operation.

// Get a completion handler
MyHandler handler = new MyHandler();

// Get the data to write in a ByteBuffer
ByteBuffer dataBuffer = get a data buffer;

// Prepare the attachment
Attachment attach = new Attachment();
attach.asyncChannel = afc;
attach.buffer = dataBuffer;
attach.path = path;

// Perform the asynchronous write operation
afc.write(dataBuffer, 0, attach, handler);

Tip ■ the ByteBuffer that is used to read or write in an asynchronous file operation should not be used by the application
between the time it is used in an asynchronous file I/O request and the time the request is completed. Otherwise, it will
have an unpredictable result. You can close an AsynchronousFileChannel using its close() method. all pending
operations are completed with a java.nio.channels.AsynchronousCloseException when its close() method is called.

Listing 10-21 demonstrates how to use a CompletionHandler object to handle the results of an asynchronous
write to a file. After submitting the request for the asynchronous write on a file, the main thread sleeps for 5 seconds to
give the asynchronous operation time to finish. In a real-world application, after submitting an asynchronous file I/O
request, you would continue performing other tasks. The program writes some text to a rainbow.txt file in the default
directory. You may get a different output.

Listing 10-21. Using a CompletionHandler Object to Handle the Result of an Asynchronous File Write

// AsyncFileWrite.java
package com.jdojo.nio2;

import java.nio.ByteBuffer;
import java.io.IOException;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.channels.CompletionHandler;
import java.nio.channels.AsynchronousFileChannel;
import java.nio.charset.Charset;
import static java.nio.file.StandardOpenOption.WRITE;
import static java.nio.file.StandardOpenOption.CREATE;

Chapter 10 ■ New INput/Output 2

476

public class AsyncFileWrite {
 // Used as an attachment to the CompletionHandler
 private static class Attachment {
 public Path path;
 public ByteBuffer buffer;
 public AsynchronousFileChannel asyncChannel;
 }

 // An inner class to handle completion of the asynchronous write operation
 private static class WriteHandler
 implements CompletionHandler<Integer, Attachment> {
 @Override
 public void completed(Integer result, Attachment attach) {
 System.out.format("%s bytes written to %s%n",
 result, attach.path.toAbsolutePath());

 try {
 // Close the channel
 attach.asyncChannel.close();
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }

 @Override
 public void failed(Throwable e, Attachment attach) {
 System.out.format("Write operation on %s file failed." +
 " The error is: %s%n",
 attach.path, e.getMessage());
 try {
 // Close the channel
 attach.asyncChannel.close();
 }
 catch (IOException e1) {
 e1.printStackTrace();
 }
 }
 }

 public static void main(String[] args) {
 Path path = Paths.get("rainbow.txt");

 try {
 // Get an async channel
 AsynchronousFileChannel afc =
 AsynchronousFileChannel.open(path, WRITE, CREATE);

 // Get a completion handler
 WriteHandler handler = new WriteHandler();

Chapter 10 ■ New INput/Output 2

477

 // Get the data to write in a ByteBuffer
 ByteBuffer dataBuffer = getDataBuffer();

 // Prepare the attachment
 Attachment attach = new Attachment();
 attach.asyncChannel = afc;
 attach.buffer = dataBuffer;
 attach.path = path;

 // Perform the asynchronous write operation
 afc.write(dataBuffer, 0, attach, handler);

 try {
 // Let the thread sleep for five seconds,
 // to allow the asynchronous write is complete
 System.out.println("Sleeping for 5 seconds...");
 Thread.sleep(5000);
 }
 catch (InterruptedException e) {
 e.printStackTrace();
 }

 System.out.println("Done...");
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }

 public static ByteBuffer getDataBuffer() {
 String lineSeparator = System.getProperty("line.separator");

 StringBuilder sb = new StringBuilder();
 sb.append("My heart leaps up when I behold");
 sb.append(lineSeparator);
 sb.append("A Rainbow in the sky");
 sb.append(lineSeparator);
 sb.append(lineSeparator);
 sb.append("So was it when my life began;");
 sb.append(lineSeparator);
 sb.append("So is it now I am a man;");
 sb.append(lineSeparator);
 sb.append("So be it when I shall grow old,");
 sb.append(lineSeparator);
 sb.append("Or let me die!");
 sb.append(lineSeparator);
 sb.append(lineSeparator);
 sb.append("The Child is father of the man;");
 sb.append(lineSeparator);
 sb.append("And I could wish my days to be");

Chapter 10 ■ New INput/Output 2

478

 String str = sb.toString();
 Charset cs = Charset.forName("UTF-8");
 ByteBuffer bb = ByteBuffer.wrap(str.getBytes(cs));

 return bb;
 }
}

Sleeping for 5 seconds...
228 bytes written to C:\book\javabook\rainbow.txt
Done...

Listing 10-22 demonstrates how to use a Future object to handle the results of an asynchronous write to a file. It

uses a try-with-resources clause to open an AsynchronousFileChannel. It uses a polling method (Future.isDone()
method calls) to check if the I/O operation has completed. The program writes some text to a file named rainbow.txt
in the default directory. You may get a different output.

Listing 10-22. Using a Future Object to Handle the Result of an Asynchronous File Write

// AsyncFileWriteFuture.java
package com.jdojo.nio2;

import java.util.concurrent.ExecutionException;
import java.util.concurrent.Future;
import java.nio.ByteBuffer;
import java.io.IOException;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.channels.AsynchronousFileChannel;
import static java.nio.file.StandardOpenOption.WRITE;
import static java.nio.file.StandardOpenOption.CREATE;

public class AsyncFileWriteFuture {
 public static void main(String[] args) {
 Path path = Paths.get("rainbow.txt");

 try (AsynchronousFileChannel afc =
 AsynchronousFileChannel.open(path, WRITE, CREATE)) {

 // Get the data to write in a ByteBuffer
 ByteBuffer dataBuffer = AsyncFileWrite.getDataBuffer();

 // Perform the asynchronous write operation
 Future<Integer> result = afc.write(dataBuffer, 0);

 // Keep polling to see if I/O has finished
 while (!result.isDone()) {
 try {
 // Let the thread sleep for 2 seconds
 // before the next polling
 System.out.println("Sleeping for 2 seconds...");
 Thread.sleep(2000);
 }

Chapter 10 ■ New INput/Output 2

479

 catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

 // I/O is complete
 try {
 int writtenBytes = result.get();
 System.out.format("%s bytes written to %s%n",
 writtenBytes, path.toAbsolutePath());
 }
 catch (InterruptedException | ExecutionException e) {
 e.printStackTrace();
 }
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }
}

Sleeping for 2 seconds...
228 bytes written to C:\book\javabook\rainbow.txt

Listing 10-23 demonstrates how to use a CompletionHandler object to handle the results of an asynchronous

read from a file. The program reads and prints the contents a rainbow.txt file in the default directory. To read the
contents of a different file, change the path of the file in the main() method. You may get a different output.

Listing 10-23. Using a CompletionHandler to Handle the Result of an Asynchronous File Read

// AsyncFileRead.java
package com.jdojo.nio2;

import java.nio.ByteBuffer;
import java.io.IOException;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.channels.CompletionHandler;
import java.nio.channels.AsynchronousFileChannel;
import java.nio.charset.Charset;
import static java.nio.file.StandardOpenOption.READ;

public class AsyncFileRead {
 // Used as an attachment to the CompletionHandler
 private static class Attachment {
 public Path path;
 public ByteBuffer buffer;
 public AsynchronousFileChannel asyncChannel;
 }

Chapter 10 ■ New INput/Output 2

480

 // An inner class to handle completion of the asynchronous read operation
 private static class ReadHandler
 implements CompletionHandler<Integer, Attachment> {
 @Override
 public void completed(Integer result, Attachment attach) {
 System.out.format("%s bytes read from %s%n",
 result, attach.path);

 System.out.format("Read data is:%n");

 byte[] byteData = attach.buffer.array();
 Charset cs = Charset.forName("UTF-8");
 String data = new String(byteData, cs);
 System.out.println(data);

 try {
 // Close the channel
 attach.asyncChannel.close();
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }

 @Override
 public void failed(Throwable e, Attachment attach) {
 System.out.format("Read operation on %s file failed." +
 "The error is: %s%n",
 attach.path, e.getMessage());

 try {
 // Close the channel
 attach.asyncChannel.close();
 }
 catch (IOException e1) {
 e1.printStackTrace();
 }
 }
 }

 public static void main(String[] args) {
 Path path = Paths.get("rainbow.txt");
 try {
 // Get an async channel
 AsynchronousFileChannel afc =
 AsynchronousFileChannel.open(path, READ);

 // Get a completion handler
 ReadHandler handler = new ReadHandler();

Chapter 10 ■ New INput/Output 2

481

 // Get the data size in bytes to read
 int fileSize = (int)afc.size();
 ByteBuffer dataBuffer = ByteBuffer.allocate(fileSize);

 // Prepare the attachment
 Attachment attach = new Attachment();
 attach.asyncChannel = afc;
 attach.buffer = dataBuffer;
 attach.path = path;

 // Perform the asynchronous read operation
 afc.read(dataBuffer, 0, attach, handler);

 try {
 // Let the thread sleep for five seconds,
 // to allow the asynchronous read to complete
 System.out.println("Sleeping for 5 seconds...");
 Thread.sleep(5000);
 }
 catch (InterruptedException e) {
 e.printStackTrace();
 }

 System.out.println("Done...");
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }
}

Sleeping for 5 seconds...
228 bytes read from rainbow.txt
Read data is:
My heart leaps up when I behold
A Rainbow in the sky

So was it when my life began;
So is it now I am a man;
So be it when I shall grow old,
Or let me die!

The Child is father of the man;
And I could wish my days to be
Done...

Listing 10-24 demonstrates how to use a Future object to handle the results of an asynchronous read from a file.

It uses the wait method (a Future.get() method call) to wait for the asynchronous file I/O to complete. The program
reads the contents of a rainbow.txt file in the default directory. Change the path of this file if you want to read the
contents of a different file. You may get a different output.

Chapter 10 ■ New INput/Output 2

482

Listing 10-24. Using a Future Object to Handle the Result of an Asynchronous File Read

// AsyncFileReadFuture.java
package com.jdojo.nio2;

import java.util.concurrent.ExecutionException;
import java.util.concurrent.Future;
import java.nio.ByteBuffer;
import java.io.IOException;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.channels.AsynchronousFileChannel;
import java.nio.charset.Charset;
import static java.nio.file.StandardOpenOption.READ;

public class AsyncFileReadFuture {
 public static void main(String[] args) {
 Path path = Paths.get("rainbow.txt");

 try (AsynchronousFileChannel afc =
 AsynchronousFileChannel.open(path, READ)) {

 // Get a data buffer of the file size to read
 int fileSize = (int)afc.size();
 ByteBuffer dataBuffer = ByteBuffer.allocate(fileSize);

 // Perform the asynchronous read operation
 Future<Integer> result = afc.read(dataBuffer, 0);

 System.out.println("Waiting for reading to be finished...");
 try {
 // Let us wait until reading is finished
 int readBytes = result.get();

 System.out.format("%s bytes read from %s%n", readBytes, path);
 System.out.format("Read data is:%n");

 // Read the data from the buffer
 byte[] byteData = dataBuffer.array();
 Charset cs = Charset.forName("UTF-8");
 String data = new String(byteData, cs);

 System.out.println(data);
 }
 catch (InterruptedException | ExecutionException e) {
 e.printStackTrace();
 }
 }
 catch (IOException ex) {
 ex.printStackTrace();
 }
 }
}

Chapter 10 ■ New INput/Output 2

483

Waiting for reading to be finished...
228 bytes read from rainbow.txt
Read data is:
My heart leaps up when I behold
A Rainbow in the sky

So was it when my life began;
So is it now I am a man;
So be it when I shall grow old,
Or let me die!

The Child is father of the man;
And I could wish my days to be

Summary
The New Input/Output 2 (NIO.2) is a new I/O API that provides improved, comprehensive support for working with
platform-dependent file systems. An instance of the FileSystem class represents a platform-dependent file system.

An instance of the Path class represents an abstract pathname in the file system. It contains several methods to
manipulate a path. A Path is used with a utility class called Files to work with the contents and attributes of the file
that it represents. The Files class consists of all static convenience methods to work with files, such as for deleting,
copying, and moving files.

NIO.2 has extensive support for reading and modifying file attributes. Attribute support is provided through
different attribute views. Some views are supported on all platforms and some are platform specific. Some views are
optional.

NIO.2 provides a watch service to watch for changes in a directory's contents. The Java program registers a
directory with the watch service to get notified for specific events that occur in the directory, such as the creation of a
new file/directory, change in the contents of a file, deletion of a file, etc. The watch service notifies the Java program
when the event of interest occurs on the registered directories.

NIO.2 provides comprehensive support for asynchronous file I/O. An instance of the java.nio.channels.
AsynchronousFileChannel class represents an asynchronous file channel that is used to read, write, and perform
other operations on a file asynchronously. Multiple I/O operations can be performed simultaneously on an
asynchronous file channel.

485

Chapter 11

Garbage Collection

In this chapter, you will learn

What garbage collection is•	

How garbage collection is implemented in Java•	

How to pass a hint to the JVM to run the garbage collector•	

How to implement the finalizers•	

Different states of an object based on its reachability and finalization status•	

The difference between strong and weak references•	

How to use weak references to implement memory-sensitive cache•	

What Is Garbage Collection?
In a programming language, memory management is central to the development of a fast, efficient, and bug-free
application. Memory management involves two activities:

Memory allocation•	

Memory reclamation•	

When a program needs memory, memory is allocated from a memory pool. When the program is finished with
the memory, the memory is returned to the memory pool, so it can be reused by some other part of the program in
the future. The process of returning memory to the pool is known as memory reclamation or memory recycling. The
memory allocation and reclamation can be accomplished explicitly or implicitly.

In explicit memory allocation, the programmer decides how much memory is needed. The programmer requests
that amount of memory from the program runtime environment known as the memory allocator or simply the
allocator. The allocator allocates the requested memory and marks that memory as in-use, so it will not allocate the
same memory block again. Here, we assumed that our request for new memory block to allocator is always fulfilled.
This can happen only if we have an infinite amount of memory. However, that is not the case with any computer.
Some computers may have megabytes of memory and some may have gigabytes. However, there is always a limit to
the memory available on a computer. If we run a program that always allocates memory blocks from the memory pool
and never returns the memory back to the pool, we will soon run out of memory and the program will stop.

In explicit memory reclamation, the programmer decides when to return the memory to the memory pool.
The allocator is free to allocate the returned memory when it receives a new request for memory allocation. Explicit
memory reclamation often leads to subtle bugs in programs. It also complicates the inter-modules interface design.
Suppose there are two modules, m1 and m2, in an application. Module m1 allocates a block of memory and the
reference to that memory is r1. Module m1 makes a call to module m2, passing the reference r1. Module m2 stores the

Chapter 11 ■ GarbaGe ColleCtion

486

reference r1 for future use. Which module should be responsible for the reclamation of the memory referenced by r1?
There could be different scenarios depending on the program flow between the two modules. Suppose module m1
reclaims the memory immediately after a call to module m2. In such a case, you may come across two problems:

At some point in the program execution, module m2 tries to access the memory using the •	
reference r1. Because module m1 has already reclaimed the memory referenced by r1, the
same memory might have been reallocated by the allocator and may have entirely different
data stored at that memory location. In such a case, r1 is called a dangling reference because it
is referencing a memory location that has already been reclaimed. If you try to read data using
a dangling reference, the result would be unpredictable. You cannot have a dangling reference
in Java.

Module m1 may try to use reference r1 after it has reclaimed the memory referenced by r1. •	
This will also lead to the problem of using a dangling reference.

If module m2 reclaims the memory referenced by r1, you may end up with the same dangling reference problem
if any of the modules, m1 or m2, try to use reference r1. What happens if none of the modules reclaims the memory
and never uses the reference r1 again? The memory will never be returned to the memory pool and will never be
reused. This situation is known as a memory leak because the allocator has no knowledge of the memory block,
which is not returned to it, even though it is never used again by the program. If memory leaks happen regularly, the
program will eventually run out of memory and will cease to function. If your program runs for a short time with small
memory leaks, you may not even notice this bug for years or the entire life of your program!

In a programming language that allows explicit memory management, programmers spend a substantial
amount of effort in the memory management aspect of the program. In another kind of memory-related problem,
a programmer may allocate a big amount of memory statically, so that he can use it throughout the life cycle of the
program. The static memory allocation may not always succeed, since static memory has an upper limit. The hardest
part of the memory management decision is to decide when to reclaim the memory to avoid dangling references and
memory leaks.

In implicit memory allocation, a programmer indicates to the runtime system that he wants to allocate the
memory to store a particular type of data. The runtime system computes the memory needed to store the requested
type of data and allocates it to the running program. In implicit/automatic memory reclamation, a programmer does
not need to worry about memory reclamation. The runtime system will automatically reclaim all memory blocks,
which will never be used by the program again. The process of automatic reclamation of unused memory is known as
garbage collection. The program that performs garbage collection is known as a garbage collector or simply a collector.
The garbage collector may be implemented as part of the language runtime system or as an add-on library.

Memory Allocation in Java
In Java, programmers deal with objects. The memory required for an object is always allocated on the heap. The
memory is allocated implicitly using the new operator. Suppose you have a class called Employee. You create an object
of the Employee class.

Employee emp = new Employee();

Depending on the definition of the Employee class, the Java runtime computes how much memory is needed,
allocates the needed memory on heap, and stores the reference to that memory block in the emp reference variable.
Note that when you want to create an Employee object, you do not specify how much memory you need. The
new Employee()part of the above statement indicates to Java that you want to create an object of the Employee class.
Java queries the definition of the Employee class to compute the memory required to represent an Employee object.

Every Java object in memory has two areas: a header area and a data area. The header area stores bookkeeping
information to be used by the Java runtime, for example, the pointer to the object class, information about the garbage
collection status of the object, locking information about the object, length of an array if the object is an array, etc.

Chapter 11 ■ GarbaGe ColleCtion

487

The data area is used to store the values for all instance variables of the object. The header area layout is fixed for a
particular JVM implementation whereas the data area layout is dependent on the object type. The Java Hotspot virtual
machine uses two machine-words (in 32-bit architecture one word is 4 bytes) for the object header. If the object is
an array, it uses three machine-words for its header. One extra word in the header is used to store the array length.
However, most JVMs use three-machine words for an object header. Figure 11-1 depicts the object layout for the Java
Hotspot VM and the IBM VM.

size + flags

mptr

locknflags

Object Data

classptr

hash + age + lock

arraylength

Array Elements

classptr

hash + age + lock

Object Data

Java object layout in IBM VMJava object layout in Sun Hotspot VM
Java array object layout in Sun

Hotspot VM

Object header

Figure 11-1. The layout of an object in the Java Hotspot VM and the IBM VM

The Java Hotspot VM uses a variable length object header to save memory on the heap. Since most Java objects
are small, one machine-word savings per object for non-array objects is a significant heap space savings. The Java
Hotspot VM’s object header contains the following information:

•	 classptr: This is the first machine-word in the object layout. It contains a pointer to the
class information of the object. The class information includes the object’s method table, the
object’s size, and a pointer to a Class structure, which contains information about the class of
the object, etc.

•	 hash + age + lock: This is the second machine-word in the object header. It contains the
object’s hash code, age information, and lock fields. Age information is used in the process of
reclaiming the object’s memory by the generational garbage collector. The generation garbage
collector is a special type of garbage collector that uses the object’s age in its algorithm to
reclaim an object’s memory.

•	 arraylength: This is the third machine-word in the object header. It is included only if
the object is an array. It contains the length of the array. In this case, the object’s data area
contains the array elements.

Chapter 11 ■ GarbaGe ColleCtion

488

The IBM VM uses three machine-words for the object header. All header fields hold the following information:

•	 size + flags: This field is the first machine-word of the object header. This field contains
the size of the object and flags to indicate different states of the object. Because the size of the
object is limited and all objects start at 8 bytes boundary, some of the bits are used to store
flags indicating different states of the object.

•	 mptr: This field is the second machine-word in the object header. It can hold one of the two
pieces of information depending on if the object is an array or not.

It holds a pointer to the method block, if the object is not an array. The method block •	
has reference to class block, which can provide more information about the Java class to
which the object belongs.

If the object is an array, this field holds the length of the array.•	

•	 locknflags: This field is the third machine-word in the object header. It is used to hold
information about the object locking and some flags. A 1-bit flag is used to indicate whether
the object is an array. If this bit is set, mptr contains the length of the array. Another 1-bit flag
is used to indicate whether the object was hashed and moved. Note that objects are moved
during some kind of garbage collection. Since the hash code of an object is its address in the
memory and is supposed to be the same, the garbage collector that moves objects around
during garbage collection uses this flag to preserve the hash code, if it was computed and used
before the garbage collection.

Tip ■ in Java, all objects are created on heap. Java uses the new operator to allocate memory for an object on heap.
an array’s length is not a part of its class definition. it is defined at runtime. it is stored in the object header. You will not
find the length instance variable in the array’s class definition when you perform introspection on an array’s class.

Java does not provide any direct means to compute the size of an object. You should not write a Java program that
depends on the size of the objects anyway. The size of primitive types, for example, int, long, double, etc. is fixed for
all JVM implementations. The layout and size of an object depends on the JVM implementation. Therefore, any code
that depends on the size of objects may work on one platform and not on others.

Garbage Collection in Java
The garbage collector is part of the Java platform. It runs in the background in a low priority thread. It automatically
reclaims objects. However, before it reclaims objects, it makes sure that the running program in its current state will
never use them again. This way, it ensures that the program will not have any dangling references. An object that
cannot be used in the future by the running program is known as a dead object or garbage. An object that can be used
in the future by the running program is known as a live object.

There are many algorithms to determine whether an object is live or dead. One of the simplest, but not very
efficient, algorithms is based on reference counting, which stores the count of references that refer to an object. When
an object’s reference is assigned to a reference variable, the reference count is incremented by 1. When a reference
variable no longer refers to an object, the reference count is decremented by 1. When the reference count for an object

Chapter 11 ■ GarbaGe ColleCtion

489

is zero, it becomes garbage. This algorithm has a lot of overhead of updating the reference count of objects. Another
type of algorithm, which is called a tracing algorithm, is based on the concept of a root set. A root set includes

Reference variables in the Java stack for each thread•	

Static reference variables defined in loaded classes•	

Reference variables registered using the Java Native Interface (JNI)•	

A garbage collector, which is based on the tracing algorithm, starts traversing references starting from the root set.
Objects that can be reached (or accessed) from the reference variables in the root set are known as reachable objects.
A reachable object is considered live. A reachable object from the root set may refer to other objects. These objects are
also considered reachable. Therefore, all objects that can be reached directly or indirectly from the root set reference
variables are considered live. Other objects are considered dead and are thus eligible for garbage collection.

An object may manage resources other than memory on heap. These resources may include network
connections, file handles, memory managed explicitly by native code, etc. For example, an object may open a file
when it is created. File handles that can be opened simultaneously may have an upper limit depending on your
operating system. When the object is garbage collected, you may want to close those file handles. The garbage
collector gives the dying object a chance to perform the cleanup work. It does this by executing a predefined block of
code before the memory for the dying object is reclaimed. The process of performing the cleanup work, before the
object is reclaimed by the garbage collector, is known as finalization. The block of code that is invoked by the garbage
collector to perform finalization is known as the finalizer. In Java, you can define an instance method finalize()
in a class, which serves as a finalizer for the objects of that class. The Java garbage collector invokes the finalize()
method of an object before it reclaims the memory occupied by the object.

Invoking the Garbage Collector
Programmers have little control over the timing when the garbage collector is run. The JVM performs the garbage
collection whenever it runs low in memory. The JVM tries its best to free up memory of all unused objects before it
throws a java.lang.OutOfMemoryError error. The gc() method of the java.lang.Runtime class may be used to pass
a hint to the JVM that it may run the garbage collector. The call to the gc() method is just a hint to the JVM. The JVM is
free to ignore the call. The Java Language API Documentation describes the behavior of a call to the gc() as follows:

“Runs the garbage collector. Calling this method suggests that the Java virtual machine expend
effort toward recycling unused objects in order to make the memory they currently occupy available
for quick reuse. When control returns from the method call, the virtual machine has made its best
effort to recycle all discarded objects . . .”

Suggesting that the garbage collection should run can be invoked as shown:

// Get the Runtime instance
Runtime rt = Runtime.getRuntime();

// Invoke the garbage collector
rt.gc();

You can combine the above two statements into one statement, if you do not intend to use the Runtime instance,
like so:

// Get runtime instance and invoke the garbage collector
Runtime.getRuntime().gc();

Chapter 11 ■ GarbaGe ColleCtion

490

The System class contains a convenience method called gc(), which is equivalent to executing the
Runtime.getRuntime().gc() statement. You can also use the following statement to run the garbage collector:

// Invoke the garbage collector
System.gc();

The program in Listing 11-1 demonstrates the use of the System.gc() method. The program creates 2,000 objects
of the Object class in the createObjects() method. The references of the new objects are not stored. You cannot
refer to these objects again, and hence, they are garbage. When you invoke the System.gc() method, you suggest to
the JVM that it should try to reclaim the memory used by these objects. The memory freed by the garbage collector is
displayed in the output section. Note that you will more than likely get a different output when you run this program.

Listing 11-1. Invoking Garbage Collection

// InvokeGC.java
package com.jdojo.gc;

public class InvokeGC {
 public static void main(String[] args) {
 long m1, m2, m3;

 // Get a runtime instance
 Runtime rt = Runtime.getRuntime();

 for(int i = 0; i < 3; i++){
 // Get free memory
 m1 = rt.freeMemory();

 // Create some objects
 createObjects(2000);

 // Get free memory
 m2 = rt.freeMemory();

 // Invoke garbage collection
 System.gc();

 // Get free memory
 m3 = rt.freeMemory();

 System.out.println("m1=" + m1 + ", m2=" + m2 + ", m3=" +
 m3 + "\nMemory freed by gc()=" + (m3 - m2));

 System.out.println("-------------------------");
 }
 }

Chapter 11 ■ GarbaGe ColleCtion

491

 public static void createObjects(int count) {
 for(int i = 0; i < count; i++) {
 // Do not store the references of new objects, so they are
 // immediately eligible for garbage collection.
 new Object();
 }
 }
}

m1=130944496, m2=130920640, m3=131670824
Memory freed by gc()=750184

m1=131652360, m2=131636904, m3=131671208
Memory freed by gc()=34304

m1=131652696, m2=131638504, m3=131671208
Memory freed by gc()=32704

In general, it is not advisable to invoke the garbage collector programmatically. Invoking the garbage collector

has some overhead. It may slow down performance if it is invoked arbitrarily. The Java runtime takes care of
reclaiming unused object’s memory automatically. You may get an OutOfMemoryError in your program. This error
may be caused by many reasons. The Java runtime makes all efforts to free up memory, invoking the garbage collector
before throwing the OutOfMemoryError error. Therefore, simply invoking the garbage collector programmatically will
not make this error go away. To resolve this error, you can look at the following:

Review your program to make sure that you are not holding onto some object references that •	
you will never use again. Set these references to null after you are done with them. Setting
all references to an object to null makes the object eligible for the garbage collection. If you
are storing large objects in static variables, those objects will remain in memory until the
class itself is unloaded. Generally, the objects stored in static variables will take up memory
forever. Review your program and try to avoid storing large objects in static variables.

Review your code and make sure that you are not caching large amounts of data in objects. •	
You can use weak references to cache large amount of data in objects. Weak references have
an advantage over regular references (regular references are also known as strong references)
that the objects referenced by weak references are garbage collected before the Java runtime
throws an OutOfMemoryError. I will discuss weak references later in this chapter.

If none of the above solutions work for you, you may try to adjust the heap size.•	

Object Finalization
Finalization is an action that is automatically performed on an object before the memory used by the object is
reclaimed by the garbage collector. The block of code that contains the action to be performed is known as a finalizer.
The Object class has a finalize() method, which is declared as

protected void finalize() throws Throwable

Chapter 11 ■ GarbaGe ColleCtion

492

Because all Java classes inherit from the Object class, the finalize() method can be invoked on all Java objects.
Any class can override and implement its own version of the finalize() method. The finalize() method serves as
a finalizer for Java objects. That is, the garbage collector automatically invokes the finalize() method on an object
before reclaiming the object’s memory. Understanding the correct use of the finalize() method is key to writing a
good Java program, which manages resources other than the heap memory.

Let’s first start with a simple example that demonstrates the fact that the finalize() method is called before an
object is garbage collected. Listing 11-2 defines a method finalize() in the Finalizer class.

Listing 11-2. Using the finalize() Method

// Finalizer.java
package com.jdojo.gc;

public class Finalizer {
 // id is used to identify the object
 private int id;

 // Constructor which takes the id as argument
 public Finalizer(int id){
 this.id = id;
 }

 // This is the finalizer for the object. The JVM will call
 // this method, before the object is garbage collected
 public void finalize(){
 // Just print a message indicating which object is being garbage
 // collected. Print message when id is a multiple of 100
 // just to avoid a bigger output.
 if (id % 100 == 0) {
 System.out.println ("finalize() called for " + id) ;
 }
 }

 public static void main(String[] args) {
 // Create 500000 objects of the Finalizer class
 for(int i = 1; i <= 500000; i++){
 // Do not store reference to the new object
 new Finalizer(i);
 }

 // Invoke the garbage collector
 System.gc();
 }
}

finalize() called for 5300
finalize() called for 6900
finalize() called for 7100
more output (not shown here)...

Chapter 11 ■ GarbaGe ColleCtion

493

The finalize() method prints a message if the object being garbage collected has an id, which is a multiple of 100.
The main() method creates 500,000 objects of the Finalizer class and calls System.gc() to invoke the garbage
collector.

When the garbage collector determines that an object is unreachable, it marks that object for finalization and
places that object in a queue. If you want the Java runtime to finalize all objects that are pending finalization, you can
do so by calling the runFinalization() method of the Runtime class as shown:

Runtime rt = Runtime.getRuntime();
rt.runFinalization();

The System class has a runFinalization() convenience method, which is equivalent to calling the
runFinalization() method of the Runtime class. It can be called as shown:

System.runFinalization();

Invoking the runFinalization() method is only a hint to the Java runtime to invoke the finalize() method of
all objects pending finalization. Technically, you may call the finalize() method on an object in your code as many
times as you want. However, it is meant for the garbage collector to call an object’s finalize() method at most one
time during the lifetime of the object. The garbage collector’s one-time call to the finalize() method of an object is
not affected by the fact that the finalize() method of the object was called programmatically before.

Programmers should not override the finalize() method in a class trivially. A finalize() method with no code,
or which calls the finalize() method of the Object class, is an example of a trivially overridden finalize() method.
The method in the Object class does nothing. If your class is a direct subclass of the Object class and you do not have
any meaningful code in the finalize() method of your class, it is better not to include the finalize() method in
your class at all. Memory reclamation is faster and sooner for the objects, which do not have an implementation of the
finalize() method compared to those that have an implementation of the finalize() method.

Finally or Finalize?
The time when an object is finalized is not guaranteed. Finalizing all unreachable objects is also not guaranteed.
In short, there is no guarantee when the finalize() method of an unreachable object will be called or if it will be
called at all. So, what good is the finalize() method? The main purpose of a garbage collector in Java is to relieve
programmers from the burden of freeing the memory of unused objects to avoid the problem of memory leaks and
dangling references. Its secondary job is to run the finalization on the objects with no guarantee about the timing.
As a programmer, you should not depend much on the finalization process of garbage collection. You should code the
finalize() method with care. If you need to clean up resources for sure when you are done with them, you should
use a try-finally clause, such as

try {
 /* Get your resources and work with them */
}
finally { /* Release your resources */
}

You can acquire resources and use them in a try block and release them in the associated finally block.
A finally block is guaranteed to be executed after a try block is executed. This way, you can be sure that scarce
resources in your program are always freed once you are done with them. However, it may not always be feasible,
because of performance issues, to release resources immediately after you are done with them. For example, you
may not want to open a network connection every time you need it. You may open a network connection once, use it,
and close it when you no longer need it. Sometimes you may not know the exact point in a program from where you

Chapter 11 ■ GarbaGe ColleCtion

494

will not need that network connection. In such cases, you can code the finalize() method as a backup to free the
resources if they have not been freed yet. You can call the finalize() method programmatically when you know for
sure that the resources can be freed. The following FinalizeAsBackup class shows the skeleton of the code that uses
such a technique:

/* Template of a class that uses finalize() method as a backup to free resources */
public class FinalizeAsBackup {
 /* Other codes go here */
 SomeResource sr;
 public void aMethod() {
 sr = Obtain the resources here...;

 /* Do some processing . . . */

 /* Note the conditional freeing of resources */
 if (some condition is true) {
 /* Free resources here calling finalize() */
 this.finalize();
 }
 }

 public void finalize() {
 /* Free the resources if they have not been freed yet */
 if (resources not yet freed) {
 free resources now;
 }
 }
}

The aMethod() method of the class gets the resource and stores its reference in the sr instance variable.
Programmers call the finalize() method when they are sure they should free the resources. Otherwise, the garbage
collector will call the finalize() method and resources will be freed. Note that the FinalizeAsBackup class is a
template. It contains pseudocode to explain the technique. This class will not compile.

Tip ■ the moral of the story about using the finalize() method is to use it with care and use it only as a last resort
to free resources. You can use a try-finally block to free resources. the order in which objects are finalized is not
defined. For example, if object obj1 becomes eligible for garbage collection before object obj2, it is not guaranteed
that obj1 will be finalized before obj2. When an uncaught exception is thrown, the main program is halted. however,
an uncaught exception in a finalizer halts the finalization of only that object, not the entire application.

Object Resurrection
Someone is about to die. God asks him for his last wish. He says, “Give me my life back.” God grants his last wish and
he gets back his life. When he was about to die the second time God kept quiet and let him die without asking him
for his last wish. Otherwise, he would ask for his life repeatedly and he would never die. The same logic applies to an
object’s finalization in Java. The call to the finalize() method of an object is like the garbage collector asking the
object for its last wish. Generally, the object responds, “I want to clean up all my mess.” That is, an object responds
to its finalize() method call by performing some cleanup work. It may respond to its finalize() method call by

Chapter 11 ■ GarbaGe ColleCtion

495

resurrecting itself by placing its reference in a reachable reference variable. Once it is reachable through an already
reachable reference variable, it is back to life. The garbage collector marks an object using the object’s header bits as
finalized, after it calls the object’s finalize() method. If an already finalized object becomes unreachable the next
time during garbage collection, the garbage collector does not call the object’s finalize() method again.

The resurrection of an object is possible because the garbage collector does not reclaim an object’s memory just
after calling its finalize() method. After calling the finalize() method, it just marks the object as finalized. In the
next phase of the garbage collection, it determines again if the object is reachable. If the object is unreachable and
finalized, only then will it reclaim the object’s memory. If an object is reachable and finalized, it does not reclaim
object’s memory; this is a typical case of resurrection.

Resurrecting an object in its finalize() method is not a good programming practice. One simple reason is that
if you have coded the finalize() method, you expect it to be executed every time an object dies. If you resurrect the
object in its finalize() method, the garbage collector will not call its finalize() method again when it becomes
unreachable a second time. After resurrection, you might have obtained some resources that you expect to be
released in the finalize() method. This will leave subtle bugs in your program. It is also hard for other programmers
to understand your program flow if your program resurrects objects in their finalize() methods. Listing 11-3
demonstrates how an object can resurrect using its finalize() method.

Listing 11-3. Object Resurrection

// Resurrect.java
package com.jdojo.gc;

public class Resurrect {
 // Declare a static variable of the Resurrect type
 private static Resurrect res = null;

 // Declare an instance variable that stores the name of the object
 private String name = "";

 public Resurrect(String name) {
 this.name = name;
 }

 public static void main(String[] args) {
 // We will create objects of the Resurrect class and will not store
 // their references, so they are eligible for garbage collection immediately.
 for(int count = 1; count <= 1000; count++) {
 new Resurrect("Object #" + count);

 // For every 100 objects created invoke garbage collection
 if (count % 100 == 0) {
 System.gc();
 System.runFinalization();
 }
 }
 }

 public void sayHello() {
 System.out.println("Hello from " + name);
 }

Chapter 11 ■ GarbaGe ColleCtion

496

 public static void resurrectIt(Resurrect r) {
 // Set the reference r to static variable res, which makes it reachable
 // as long as res is reachable.
 res = r ;

 // Call a method to show that we really got the object back
 res.sayHello();
 }

 public void finalize() {
 System.out.println("Inside finalize(): " + name);

 // Resurrect this object
 Resurrect.resurrectIt(this);
 }
}

(Partial output is shown below)
...
Inside finalize(): Object #14
Hello from Object #14
...
Inside finalize(): Object #997
Hello from Object #997

The Resurrect class creates 1,000 objects in the main() method. It does not store references of those new objects,

so they become garbage as soon as they are created. After creating 100 new objects, it invokes the garbage collector
using the System.gc() method. It also calls the System.runFinalization() method, so the finalizers are run for
the garbage objects. When the garbage collector calls the finalize() method for an object, that object passes its
reference to the resurrectIt() method. This method stores the dying object’s reference in the static variable res,
which is reachable. The method resurrectIt() also calls the sayHello() method on the resurrected object to show
which object was resurrected. Note that once another object resurrects itself you are overwriting the static res
variable with the recently resurrected object reference. The previously resurrected object becomes garbage again. The
garbage collector will reclaim the memory for the previously resurrected object without calling its finalize() method
again. You may get different output when you run the program.

State of an Object
The state of a Java object is defined based on two criteria:

Finalization status•	

Reachability•	

Based on the finalization status, an object can be in one of the following three states:

Unfinalized•	

Finalizable•	

Finalized•	

Chapter 11 ■ GarbaGe ColleCtion

497

When an object is instantiated, it is in the unfinalized state. For example,

Employee john = new Employee();

The object referred to by the john reference variable is in an unfinalized state after the above statement is
executed. The finalizer of an unfinalized object had never been invoked automatically by the JVM. An object becomes
finalizable when the garbage collector determines that the finalize() method can be invoked on the object.
A finalized object has its finalize() method invoked automatically by the garbage collector.

Based on reachability, an object can be in one of three states:

Reachable•	

Finalizer-reachable•	

Unreachable•	

An object is reachable if it can be accessed through any chain of references from the root set. A finalizer-reachable
object can be reached through the finalizer of any finalizable object. A finalizer-reachable object may become
reachable if the finalizer from which it is reachable stores its reference in an object that is reachable. This is the
situation when an object resurrects. An object may resurrect itself in its finalize() method or through another
object’s finalize() method. An unreachable object cannot be reached by any means.

There are nine combinations of object states based on their finalization status and reachability status. One of the
nine combinations, finalizable and unreachable, is not possible. The finalize() method of a finalizable object may
be called in future. The finalize() method can still refer to the object using this keyword. Therefore, a finalizable
object cannot also be unreachable. An object can exist in one of the following eight states:

Unfinalized - Reachable•	

Unfinalized - Finalizer-reachable•	

Unfinalized - Unreachable•	

Finalizable - Reachable•	

Finalizable - Finalizer-reachable•	

Finalized - Reachable•	

Finalized - Finalizer-reachable•	

Finalized - Unreachable•	

Weak References
Java 2 introduced the concept of weak references in Java garbage collection by including a new package called
java.lang.ref. The concept of weak references in the context of garbage collection is not new to Java. It existed
before in other programming languages, but Java included it in Java 2. So far, the object references I have discussed are
strong references. That is, as long as the object reference is in scope, the object it refers to cannot be garbage collected.
For example, consider the following object creation and reference assignment statement:

Employee john = new Employee("John Jacobs");

Here, john is a reference to the object created by the expression new Employee("John Jacobs"). The memory
state that exists after executing the above statement is depicted in Figure 11-2.

Chapter 11 ■ GarbaGe ColleCtion

498

If at least one strong reference to an object exists, the garbage collector will not reclaim that object. In the
previous section, I discussed the object state based on its reachability. By stating that there is a strong reference to an
object, I mean that the object is reachable. With the introduction of weak references, now there are three more states
of an object based on its reachability:

Softly reachable•	

Weakly reachable•	

Phantom reachable•	

Therefore, when I called an object reachable in the last section, I will call it strongly reachable now onwards. This
change in terminology is because of the introduction of three new kinds of object reachability. Before I discuss the
three new kinds of object reachability, you need to know about the classes included in java.lang.ref package. There
are four classes of interest, as shown in Figure 11-3. I will not discuss the Reference class from the diagram.

Figure 11-3. A class diagram for some classes in the java.lang.ref package

X John Jacobs

john

A strong reference

Figure 11-2. An example of a strong reference

The Reference class is the superclass for the SoftReference, WeakReference, and PhantomReference classes.
The Reference class is an abstract class. Therefore, you cannot create an object of this class. The SoftReference,
WeakReference, and PhantomReference classes are used to create weak references. Note that by the phrase “weak
reference,” I mean a reference that is not a strong reference. By the phrase WeakReference, I mean the class
java.lang.ref.WeakReference. I will describe a weak reference later in this section. The ReferenceQueue class is
used to place the references of SoftReference, WeakReference, and PhantomReference objects in a queue. Let’s look
at different ways to create these three types of objects. The constructors for these three classes are shown in Table 11-1.

Chapter 11 ■ GarbaGe ColleCtion

499

You can create objects of SoftReference and WeakReference classes using an object of any class, or using an
object of any class and an object of the ReferenceQueue class. You must create an object of the PhantomReference
class using an object of any class and an object of the ReferenceQueue class. You can create an object of the
SoftReference class as shown:

Employee john = new Employee ("John Jacobs");
SoftReference sr = new SoftReference(john);

The memory state after executing the above two statements is depicted in Figure 11-4.

Table 11-1. Constructors for the SoftReference, WeakReference, and PhantomReference classes

Class Constructors

SoftReference SoftReference(Object referent)
SoftReference(Object referent, ReferenceQueue q)

WeakReference WeakReference(Object referent)
WeakReference(Object referent, ReferenceQueue q)

PhantomReference PhantomReference(Object referent, ReferenceQueue q)

X John Jacobs

john
A strong reference

X

sr
A SoftReference

object

A strong reference

A soft reference (or a weak-
reference in general)

Figure 11-4. An example of a soft reference

In Figure 11-4, there are two strong references and one weak reference. All three weak reference classes have two
instance variables: referent and queue. I will not discuss any other instance variables of these classes here. They are
used to hold the reference of the object and reference queue passed in to the constructors of these classes. A reference
to any object stored in the referent instance variable of any of these three classes is known as a weak reference in
general—and a soft reference, weak reference, or phantom reference in particular, depending on the class being used.
Therefore, the link from a soft reference object to the employee object shown in the figure is a weak reference. To be
specific, I will call it a soft reference because I used an object of the SoftReference class. Any reference that does not
involve the referent instance variable of any of these three classes is a strong reference in Java. Therefore, john and
sr are strong references.

Chapter 11 ■ GarbaGe ColleCtion

500

How are weak references different from strong references? The difference lies in how the garbage collector treats
them. Weak references do not prevent the objects from being collected by the garbage collector. That is, if there is a
weak reference to an object, the garbage collector can still reclaim the object. However, if there is at least one strong
reference to an object, the garbage collector will not reclaim the object. Before you start looking at details of how to
use these three reference classes in Java programs, let’s discuss the reachability of an object when these classes are
involved in a program.

•	 Strongly reachable: An object is strongly reachable if it can be reached from the root set
through at least one chain of references, which does not involve any weak reference.

•	 Softly reachable: An object is softly reachable if it is not strongly reachable and it can be
reached from the root set through at least one chain of references, which involves at least one
soft reference, but no weak and phantom references.

•	 Weakly reachable: An object is weakly reachable if it is not strongly and softly reachable and
it can be reached from the root set through at least one chain of references, which involves at
least a weak reference and no phantom references.

•	 Phantom reachable: An object is phantom reachable if it is not strongly, softly, and weakly
reachable and it can be reached from the root set through at least one chain of references,
which involves at least a phantom reference. A phantom reachable object is finalized, but not
reclaimed.

Among the three kinds of weak references, a soft reference is considered stronger than a weak reference and a
phantom reference. A weak reference is considered stronger than a phantom reference. Therefore, the rule to identify
the reachability of an object is that if an object is not strongly reachable, it is as reachable as the weakest reference in
the reference chain leading to that object. That is, if a chain of references to an object involves a phantom reference,
the object must be phantom reachable. If a chain of references to an object does not involve a phantom reference, but
it involves a weak reference, the object must be weakly reachable. If a chain of references to an object does not involve
a phantom reference and a weak reference, but it involves a soft reference, the object must be softly reachable.

How do you determine the reachability of an object when there is more than one chain of references to the
object? In such cases, you determine the object’s reachability using all possible chains of references and use the
strongest one. That is, if an object is softly reachable through one chain of references and phantom reachable through
another, the object is considered softly reachable. Figure 11-5 depicts the examples of how an object’s reachability
is determined. The elliptical shape at the end of every reference chain represents an object. The reachability of the
object has been indicated inside the elliptical shape. The rectangles denote references.

Chapter 11 ■ GarbaGe ColleCtion

501

Figure 11-5. Different kinds of an object’s reachability

Root
Set Soft Reference

Phantom
Reference

Weak
Reference

Phantom
reachable

Root
Set

Strong
Reference

Weak
Reference

Soft
Reference

Weakly
reachable

Root
Set

Strong
Reference

Weak
Reference

Strong
Reference

Weakly
reachable

Root
Set

Strong
Reference Soft Reference

Strong
Reference

Softly
reachable

Root
Set

Strong
Reference

Strong
Reference

Strongly
reachable

Root
Set

Strong
Reference

Strongly
reachable

Root
Set

Strong
Reference

Strong
Reference

Strong
reference

Weak
Reference

Soft Reference
Soft

Reference
Strongly
reachable

Root
Set

Weak
Reference

Soft Reference
Soft

Reference
Softly

reachable

Strong
Reference

Strong
Reference

Root
Set

Phantom
Reference

Soft Reference
Weak

Reference
Weakly

reachable

Strong
Reference

Weak
Reference

Chapter 11 ■ GarbaGe ColleCtion

502

Accessing and Clearing a Referent’s Reference
You will use objects of a trivial class to demonstrate the use of reference classes. This class, called BigObject, is shown in
Listing 11-4. It has a big array of long as an instance variable, so it uses a big chunk of memory. The id instance variable
is used to track the objects of this class. The finalize() method prints a message on the console using the object’s id.

Listing 11-4. A BigObject Class, Which Uses Big Memory

// BigObject.java
package com.jdojo.gc;

public class BigObject {
 // Declare a 32KB array. This choice is arbitrary. We just wanted to use a large
 // amount of memory when an object of this class is created.
 private long [] anArray = new long[4096];

 // Have an id to track the object
 private long id;

 public BigObject(long id) {
 this.id = id;
 }

 // Define finalize() to track the object's finalization
 public void finalize(){
 System.out.println("finalize() called for id:" + id);
 }

 public String toString() {
 return "BigObject: id = " + id;
 }
}

The object that you pass to the constructors of the WeakReference, SoftReference, and PhantomReference
classes is called a referent. In other words, the object referred to by the object of these three reference classes is called
a referent. To get the reference of the referent of a reference object, you need to call the get() method.

// Create a big object with id as 101
BigObject bigObj = new BigObject(101);

/* At this point, the big object with id 101 is strongly reachable */

// Create a soft reference object using bigObj as referent
SoftReference<BigObject> sr = new SoftReference<BigObject>(bigObj);

/* At this point, the big object with id 101 is still strongly reachable,
because bigObj is a strong reference referring to it. It also has a soft reference
referring to it.
*/

// Set bigObj to null to make the object softly reachable
bigObj = null;

Chapter 11 ■ GarbaGe ColleCtion

503

/* At this point, the big object with id 101 is softly reachable,
because it can be reached only through a soft reference sr.
*/

// Get the reference of referent of soft reference object
BigObject referent = sr.get();

/* At this point, the big object with id 101 again becomes strongly reachable
because referent is a strong reference. It also has a soft reference referring to it.
*/

Figure 11-6 depicts the memory states with all the references after you execute each statement in this snippet of code.

id:101X

bigObj

BigObject bigObj = new BigObject(101);

referent

BigObject bigObj = new BigObject(101);
SoftReference<BigObject> sr = new SoftReference<BigObject>(bigObj);
bigObj = null;
BigObject referent = sr.get();

id:101

X

bigObj

SoftReference
ObjectX

sr

X

id:101X

bigObj

SoftReference
ObjectX

sr

BigObject bigObj = new BigObject(101);
SoftReference<BigObject> sr = new SoftReference<BigObject>(bigObj);
bigObj = null;

BigObject bigObj = new BigObject(101);
SoftReference<BigObject> sr = new SoftReference<BigObject>(bigObj);

id:101X

bigObj

SoftReference
ObjectX

sr

Figure 11-6. Accessing the referent of a reference object

Chapter 11 ■ GarbaGe ColleCtion

504

The clear() method clears the link between the reference (weak, soft, or phantom) object and its referent. The
following piece of code illustrates its use:

// Create a soft reference object. Use a BigObject with id 976 as its referent.
SoftReference<BigObject> sr1 = new SoftReference<BigObject> (new BigObject(976));

/* At this point, the BigObject with id 976 is softly reachable, because it is reachable only
through a soft reference sr.
*/

// Clear the referent
sr1.clear();

/* At this point, the big object with id 976 is unreachable (to be exact, it is finalizer-
reachable), because we cleared the only one reference soft reference) we had to the object.
*/

The memory state with all references, after each statement in the above snippet of code is executed, is depicted in
Figure 11-7. After the referent’s reference is cleared using the clear() method, the get() method returns null. Note
that the get() method of a PhantomReference object always returns null.

id:976SoftReference
Object

X

sr1

SoftReference<BigObject> sr1 = new SoftReference<BigObject>(new BigObject(976));

id:976SoftReference
ObjectX

sr1

SoftReference<BigObject> sr1 = new SoftReference<BigObject>(new BigObject(976));
sr1.clear()

Figure 11-7. Clearing referent

Using the SoftReference Class
A softly reachable object is used to maintain memory-sensitive caches. That is, if you want to maintain a cache
of objects as long as the program is not running low in memory, you can use softly reachable objects. When the
program runs low in memory, the garbage collector clears the soft references to an object, making the object eligible
for reclamation. At that point, your program will lose some or all objects from the cache. Java does not guarantee
that soft references will not be cleared if the program is not running low in memory. However, it guarantees that all
soft references will be cleared before the JVM throws an OutOfMemoryError. There is also no guarantee of the order
in which soft references will be cleared. However, JVM implementations are encouraged to clear the least-recently
created/used soft reference first.

Chapter 11 ■ GarbaGe ColleCtion

505

It is very important to note that to take advantage of the garbage collector behavior with respect to soft references,
you must not keep a strong reference to the object. As long as you keep strong references to the object, the garbage
collector will not clear the soft references to it, even if the program is running low in memory. The garbage collector
clears the soft reference only if an object is softly reachable. Listing 11-5 shows the wrong use of soft references to
cache data.

Listing 11-5. An Incorrect Use of a Soft Reference

// WrongSoftRef.java
package com.jdojo.gc;

import java.lang.ref.SoftReference;
import java.util.ArrayList;

public class WrongSoftRef {
 public static void main(String[] args) {
 // Create a big object with an id 101 for caching
 BigObject bigObj = new BigObject(101);

 // Wrap soft reference inside a soft reference
 SoftReference<BigObject> sr = new SoftReference<BigObject>(bigObj);

 // Let us try to create many big objects storing their
 // references in an array list, just to use up big memory.
 ArrayList<BigObject> bigList = new ArrayList<BigObject>();
 long counter = 102;
 while (true) {
 bigList.add(new BigObject(counter++));
 }
 }
}

Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
 at com.jdojo.gc.BigObject.<init>(BigObject.java:7)
 at com.jdojo.gc.WrongSoftRef.main(WrongSoftRef.java:20)

The intention of the programmer was to cache a big object with an id of 101 using a soft reference. If the program

runs low in memory, the cached big object with id 101 may be reclaimed. The while-loop inside the program
is trying to create many big objects to make the program run low in memory. The programmer is expecting that
when the program is executed, it should reclaim memory used by the big object with id 101, before throwing an
OutOfMemoryError.

The output shows that the program did not reclaim the memory used by the big object with id 101. Why did the
garbage collector not behave the way it was expected to behave? There was a mistake in the code for the WrongSoftRef
class. In fact, the big object with id 101 is strongly reachable because the bigObj reference to it is a strong reference.
You must set the bigObj reference variable to null to make it softly reachable. Listing 11-6 shows the correct use of
soft references. It is clear from the output that finalize() method for the big object with id 101 was called and it
was reclaimed before JVM threw an OutOfMemoryError. You still got an OutOfMemoryError because you are creating
many new objects inside a while-loop and all of them are strongly reachable from the array list. This proves the
point that soft references are cleared and the referents are reclaimed by the garbage collector before JVM throws an
OutOfMemoryError.

Chapter 11 ■ GarbaGe ColleCtion

506

Listing 11-6. A Correct Use of a Soft Reference

// CorrectSoftRef.java
package com.jdojo.gc;

import java.lang.ref.SoftReference;
import java.util.ArrayList;

public class CorrectSoftRef {
 public static void main(String[] args) {
 // Create a big object with an id 101 for caching
 BigObject bigObj = new BigObject(101);

 // Wrap soft reference inside a soft reference
 SoftReference<BigObject> sr = new SoftReference<BigObject>(bigObj);

 // Set bigObj to null, so the big object will be
 // softly reachable and can be reclaimed, if necessary.
 bigObj = null;

 // Let us try to create many big objects storing their
 // references in an array list, just to use up big memory.
 ArrayList<BigObject> bigList = new ArrayList<BigObject>();
 long counter = 102;
 while (true) {
 bigList.add(new BigObject(counter++));
 }
 }
}

finalize() called for id:101
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
 at com.jdojo.gc.BigObject.<init>(BigObject.java:7)
 at com.jdojo.gc.CorrectSoftRef.main(CorrectSoftRef.java:24)

Listing 11-7 illustrates how to use soft references to implement memory-sensitive caches.

Listing 11-7. Creating a Cache Using Soft References

// BigObjectCache.java
package com.jdojo.gc;

import java.lang.ref.SoftReference;

public class BigObjectCache {
 private static SoftReference<BigObject>[] cache = new SoftReference[10];

 public static BigObject getObjectById(int id) {
 // Check for valid cache id
 if (id < 0 || id >=cache.length) {
 throw new IllegalArgumentException("Invalid id");
 }

Chapter 11 ■ GarbaGe ColleCtion

507

 BigObject obj = null;

 // Check if we have a cache for this id
 if (cache[id] == null) {
 // We have not cached the object yet. Cache and return it.
 obj = createCacheForId(id);
 return obj;
 }

 // Get the BigObject reference using a soft reference
 obj = cache[id].get();

 // Make sure the object has not yet been reclaimed
 if (obj == null) {
 // Garbage collector has reclaimed the object.
 // Cache it again and return the newly cached object.
 obj = createCacheForId(id);
 }

 return obj;
 }

 // Creates cache for a given id
 private static BigObject createCacheForId(int id) {
 BigObject obj = null;
 if (id >=0 && id < cache.length) {
 obj = new BigObject(id);
 cache[id] = new SoftReference<BigObject>(obj);
 }

 return obj;
 }
}

It can cache up to 10 objects of the BigObject class with ids from 0 to 9. To get the cached object for a given id,
you need to call the getObjectById() method. If that id has not yet been cached or it was reclaimed by the garbage
collector, the method caches the object. This example is very restrictive and its purpose is only to demonstrate the use
of the SoftReference class to maintain a memory-sensitive cache. You can cache only objects with ids from 0 to 9.
It can be modified to meet specific requirements. For example, you can use an ArrayList to cache the objects instead
of using an array. You can use the BigObjectCache class as shown:

// Get the object from cache
BigObject cachedObject = BigObjectCache.getObjectById(5);

/* Do some processing...*/

// You must set the cachedObject to null after you are done with it, so the cached object
// becomes softly reachable and may be reclaimed by the garbage collector.
cachedObject = null;

Chapter 11 ■ GarbaGe ColleCtion

508

If an object with an id of 5 is not already in the cache, it will be cached and the new object reference will be
assigned to cachedObject. If an object with an id of 5 is already in the cache, the reference of that object from the
cache will be returned and assigned to cachedObject.

Using the ReferenceQueue Class
An object of the ReferenceQueue class is used in conjunction with objects of the SoftReference, WeakReference, and
PhantomReference classes when the object needs to be notified upon its reachability change. An object of any of these
reference classes can be registered with a reference queue, as shown:

ReferenceQueue q = new ReferenceQueue();

SoftReference sr = new SoftReference(new BigObject(19), q);
WeakReference wr = new WeakReference(new BigObject(20), q);
PhantomReference pr = new PhantomReference(new BigObject(21), q);

It is optional to register the SoftReference and WeakReference objects with a reference queue. However, you
must register a PhantomReference object with a reference queue. When a SoftReference or WeakReference is cleared
by the garbage collector, the reference of the SoftReference or the WeakReference object is appended to the reference
queue. Note the references of the SoftReference and WeakReference are placed in the queue, not the reference of
their referent. For example, if the garbage collector clears the soft reference to a BigObject with id 19 in the above
snippet of code, sr will be placed in the reference queue. In case of a PhantomReference, when its referent becomes
phantom reachable, the garbage collector places the PhantomReference object in the reference queue. Unlike soft
and weak references, the garbage collector does not clear the phantom references as it places them in their reference
queue. The program must clear the phantom references by calling the clear() method.

There are two ways to determine if a reference object has been placed in its reference queue. You can call the
poll() or remove() method on a ReferenceQueue object, or you can call the isEnqueued() method on the soft,
weak, and phantom references. The poll() method removes a reference from the queue and returns it. If there is no
reference available in the queue, it returns null. The remove() method works the same as the poll() method, except
that if there is no reference available in the queue, it blocks until it becomes available. The isEnqueued() method for
soft, weak, and phantom references returns true if they are placed in queue. Otherwise, it returns false. Listing 11-8
demonstrates how to use the ReferenceQueue class.

Listing 11-8. Using the ReferenceQueue Class

// ReferenceQueueDemo.java
package com.jdojo.gc;

import java.lang.ref.ReferenceQueue;
import java.lang.ref.WeakReference;

public class ReferenceQueueDemo {
 public static void main(String[] args) {
 // Create a reference queue
 ReferenceQueue<BigObject> q = new ReferenceQueue<BigObject>();

 // Wrap a BigObject inside a soft reference.
 // Also register the soft reference with the reference queue
 BigObject bigObj = new BigObject(131);
 WeakReference<BigObject> wr = new WeakReference<BigObject>(bigObj, q);

Chapter 11 ■ GarbaGe ColleCtion

509

 // Clear the strong reference to the big object
 bigObj = null;

 // Check if weak reference has been queued
 System.out.println("Before calling gc():");
 printMessage(wr, q);

 // Invoke garbage collector. If it runs, it will clear the weak reference
 System.out.println("Invoking garbage collector...");
 System.gc();
 System.out.println("Garbage collector finished...");

 // Check if weak reference has been queued
 System.out.println("After calling gc():");
 printMessage(wr, q);
 }

 public static void printMessage(WeakReference<BigObject> wr,
 ReferenceQueue<BigObject> q) {
 System.out.println("wr.get()= " + wr.get());
 System.out.println("wr.isEnqueued()= " + wr.isEnqueued());
 WeakReference<BigObject> temp = (WeakReference<BigObject>)q.poll();
 if (temp == wr) {
 System.out.println("q.poll() returned wr");
 }
 else {
 System.out.println("q.poll()= " + temp);
 }
 }
}

Before calling gc():
wr.get()= BigObject: id = 131
wr.isEnqueued()= false
q.poll()= null
Invoking garbage collector...
Garbage collector finished...
After calling gc():
wr.get()= null
wr.isEnqueued()= false
q.poll()= null
finalize() called for id:131

Using the WeakReference Class
The only difference between a softly reachable and a weakly reachable object is that the garbage collector clears and
reclaims weakly reachable objects whenever it runs, whereas it uses some algorithm to decide whether it needs to
clear and reclaim a softly reachable object or not. In other words, the garbage collector may or may not reclaim a
softly reachable object, whereas it always reclaims a weakly reachable object.

Chapter 11 ■ GarbaGe ColleCtion

510

You may not see any important use of a weak reference because its referent is reclaimed when the garbage
collector is run. Generally, weak references are not used to maintain caches. They are used to associate extra data with
an object. Suppose you have a person’s details and his address. If you lose his details, you will not be interested in his
address. However, as long as the person’s details are accessible, you want to keep his address information. This kind
of information can be stored using weak references and a Hashtable. A Hashtable stores objects in key-value pairs.
While adding a key-value pair to a Hashtable, you need to wrap the key object in a WeakReference object. The key and
value are not garbage collected when the key is accessible or in use. When the key object is no longer in use, it will
be garbage collected because it was wrapped inside a WeakReference. At that point, you can remove that entry from
the Hashtable, so the value object will also be eligible for the garbage collection. The following is a sample snippet of
code using Hashtable and WeakReference objects:

// Create a Hashtable object
Hashtable ht = new Hashtable();

// Create a reference queue, so we can check when a key was garbage collected
Referencequeue q = new ReferenceQueue();

// Create key and value objects
key = your key object creation logic goes here
value = your value object creation logic goes here

// Create a weak reference object using the key object as the referent
WeakReference wKey = new WeakReference(key, q);

// Place the key-value pair in the Hashtable. Note that we place key wrapped
// in the weak reference. That is, we will use wKey as key
ht.put(wKey, value);

/* Use key and value objects in your program... */

// When done with the key object, set it to null, so it will not be strongly reachable.
key = null;

/* At this point, if garbage collector is run, weak reference to key object will be cleared and the
WeakReference, wr, will be placed in reference queue, q. */

// Your logic to remove the entry for garbage collected key object will be as follows
if (wr.isEnqueued()) {
 // This will make value object eligible for reclamation
 ht.remove(wr);
}

Note that using a WeakReference object to associate extra information with an object using a Hashtable involves
some complex code and logic. The java.util.WeakHashMap class provides this functionality without writing any
complex logic. You add the key-value pairs to a WeakHashMap without wrapping the key object inside a WeakReference.
The WeakHashMap class takes care of creating a reference queue and wrapping the key object in a WeakReference.
There is one important point to remember while using a WeakHashMap. The key object is reclaimed when it is not
strongly reachable. However, the value object is not reclaimed immediately. The value object is reclaimed after
the entry is removed from the map. The WeakHashMap removes the entry after the weak reference to the key has
been cleared and one of its methods put(), remove(), or clear() is called. Listing 11-9 demonstrates the use of a
WeakHashMap. The example uses objects of the BigObject class as keys as well as values. The messages in the output

Chapter 11 ■ GarbaGe ColleCtion

511

show when the key and value objects are reclaimed by the garbage collector. You may get different output when you
run this program.

Listing 11-9. Using a WeakHashMap

// WeakHashMapdemo.java
package com.jdojo.gc;

import java.util.WeakHashMap;

public class WeakHashMapDemo {
 public static void main(String[] args) {
 // Create a WeakHashMap
 WeakHashMap<BigObject, BigObject> wmap =
 new WeakHashMap<BigObject, BigObject>();

 // Add two key-value pairs to WeakHashMap
 BigObject key1 = new BigObject(10);
 BigObject value1 = new BigObject(110);
 BigObject key2 = new BigObject(20);
 BigObject value2 = new BigObject(210);

 wmap.put(key1, value1);
 wmap.put(key2, value2);

 // Printa message
 printMessage ("After adding two entries:", wmap);

 /* Invoke gc(). This gc() invocation will not reclaim any of
 the key objects, because we are still having their strong references.
 */
 System.out.println("Invoking gc() first time...");
 System.gc();

 // Print a message
 printMessage ("After first gc() call:", wmap);

 // Now remove strong references to keys and values
 key1 = null;
 key2 = null;
 value1 = null;
 value2 = null;

 /* Invoke gc(). This gc() invocation will reclaim two key objects
 with ids 10 and 20. However, the corresponding two value objects
 will still /be strongly referenced by WeakHashMap internally and hence
 will not be reclaimed at this point.
 */
 System.out.println("Invoking gc() second time...");
 System.gc();

Chapter 11 ■ GarbaGe ColleCtion

512

 // Print a message
 printMessage("After second gc() call:", wmap);

 /* Both keys have been reclaimed by now. Just to make value
 objects reclaimable, we will call clear() method on WeakHashMap.
 Usually, you will not call this method here in your program.
 */
 wmap.clear();

 // Invoke gc() so that value object will be reclaimed
 System.out.println("Invoking gc() third time...");
 System.gc();

 // Print message
 printMessage("After calling clear() method:", wmap);
 }

 public static void printMessage(String msgHeader, WeakHashMap wmap){
 System.out.println(msgHeader) ;

 // Print the size and content of map */
 System.out.println("Size=" + wmap.size());
 System.out.println("Content=" + wmap);
 System.out.println();
 }
}

After adding two entries:
Size=2
Content={BigObject: id = 10=BigObject: id = 110, BigObject: id = 20=BigObject: id = 210}

Invoking gc() first time...
After first gc() call:
Size=2
Content={BigObject: id = 10=BigObject: id = 110, BigObject: id = 20=BigObject: id = 210}

Invoking gc() second time...
After second gc() call:
finalize() called for id:20
finalize() called for id:10
Size=0
Content={}

Invoking gc() third time...
After calling clear() method:
finalize() called for id:210
finalize() called for id:110
Size=0
Content={}

Chapter 11 ■ GarbaGe ColleCtion

513

Using the PhantomReference Class
Phantom references work a little differently than soft and weak references. A PhantomReference object must be
created with a ReferenceQueue. When the garbage collector determines that there are only phantom references to
an object, it finalizes the object and adds the phantom references to their reference queues. Unlike soft and weak
references, it does not clear the phantom references to the object automatically. Programs must clear the phantom
reference to the object by calling the clear() method. A garbage collector will not reclaim the object until the
program clears the phantom references to that object. Therefore, a phantom reference acts as a strong reference
as long as reclaiming of objects is concerned. Why would you use a phantom reference instead of using a strong
reference? A phantom reference is used to do post-finalization and pre-mortem processing. At the end of post-
finalization processing, you must call the clear() method on the PhantomReference object, so its referent will be
reclaimed by the garbage collector. Unlike the get() method of the soft and weak references, the phantom reference’s
get() method always returns null. An object is phantom reachable when it has been finalized. If a phantom reference
returns the referent’s reference from its get() method, it would resurrect the referent. This is why phantom reference’s
get() method always returns null.

Listing 11-10 demonstrates the use of a phantom reference to do some post-finalization processing for an object.
Note that the post-finalization processing cannot involve the object itself because you cannot get to the object using
the get() method of the phantom reference. You may get a different output when you run this program.

Listing 11-10. Using PhantomReference Objects

// PhantomRef.java
package com.jdojo.gc;

import java.lang.ref.PhantomReference;
import java.lang.ref.ReferenceQueue;

public class PhantomRef {
 public static void main(String[] args){
 BigObject bigObject = new BigObject(1857);
 ReferenceQueue<BigObject> q = new ReferenceQueue<BigObject> ();
 PhantomReference<BigObject> pr = new PhantomReference<BigObject>(bigObject, q);

 /* You can use BigObject reference here */

 // Set BigObject to null, so garbage collector will find only the
 // phantom reference to it and finalize it.
 bigObject = null;

 // Invoke garbage collector
 printMessage(pr, "Invoking gc() first time:") ;
 System.gc();
 printMessage(pr, "After invoking gc() first time:");

 // Invoke garbage collector again
 printMessage(pr, "Invoking gc() second time:") ;
 System.gc();
 printMessage(pr, "After invoking gc() second time:");
 }

Chapter 11 ■ GarbaGe ColleCtion

514

 public static void printMessage(PhantomReference<BigObject> pr, String msg){
 System.out.println(msg);
 System.out.println("pr.isEnqueued = " + pr.isEnqueued());
 System.out.println("pr.get() = " + pr.get());

 // We will check if pr is queued. If it has been queued,
 // we will clear its referent's reference
 if (pr.isEnqueued()) {
 pr.clear();
 System.out.println("Cleared the referent's reference");
 }
 System.out.println("-----------------------");
 }
}

Invoking gc() first time:
pr.isEnqueued = false
pr.get() = null

After invoking gc() first time:
pr.isEnqueued = false
pr.get() = null

finalize() called for id:1857
Invoking gc() second time:
pr.isEnqueued = false
pr.get() = null

After invoking gc() second time:
pr.isEnqueued = true
pr.get() = null
Cleared the referent's reference

You can also use phantom references to coordinate the post-finalization processing of more than one object.

For example, suppose you have three objects called obj1, obj2, and obj3. All of them share a network connection.
When all three objects become unreachable, you would like to close the shared network connection. You can achieve
this by wrapping the three objects in a phantom reference object and using a reference queue. Your program can
wait on a separate thread for all three phantom reference objects to be queued. When the last phantom reference is
queued, you can close the shared network connection. Post-finalization coordination using a phantom reference is
demonstrated in Listing 11-11. Note that the startThread() method of the PhantomRefDemo class uses a thread object
and an anonymous class. The remove() method blocks until there is a phantom reference in the queue. You may get a
different output when you run this program.

Listing 11-11. Post-finalization Coordination Using Phantom References

// PhantomRefDemo.java
package com.jdojo.gc;

import java.lang.ref.PhantomReference;
import java.lang.ref.Reference;
import java.lang.ref.ReferenceQueue;

Chapter 11 ■ GarbaGe ColleCtion

515

public class PhantomRefDemo {
 public static void main(String[] args) {
 final ReferenceQueue<BigObject> q = new ReferenceQueue<BigObject>();
 BigObject bigObject1 = new BigObject (101);
 BigObject bigObject2 = new BigObject (102);
 BigObject bigObject3 = new BigObject (103);
 PhantomReference<BigObject> pr1 =
 new PhantomReference<BigObject>(bigObject1, q);
 PhantomReference<BigObject> pr2 =
 new PhantomReference<BigObject>(bigObject2, q);
 PhantomReference<BigObject> pr3 =
 new PhantomReference<BigObject>(bigObject3, q);

 /* This method will start a thread that will wait for the arrival of new
 phantom references in reference queue q
 */
 startThread(q);

 /* You can use bigObject1, bigObject2 and bigObject3 here */

 // Set the bigObject1, bigObject2 and bigObject3 to null,
 // so the objects they are referring to may become phantom reachable.
 bigObject1 = null;
 bigObject2 = null;
 bigObject3 = null;

 /* Let us invoke garbage collection in a loop. One garbage collection will
 just finalize the three big objects with ids 101, 102 and 103. They may
 not be placed in a reference queue. In another garbage collection run,
 they will become phantom reachable and they will be placed in a queue
 and the waiting thread will remove them from the queue and will clear
 their referent's reference. Note that we exit the application when all
 three objects are cleared inside run() method of thread. Therefore, the
 following infinite loop is ok for demonstration purpose. If System.gc()
 does not invoke the garbage collector on your machine, you should replace
 the following loop with a loop which would create many big objects keeping
 their references, so the garbage collector would run.
 */
 while (true) {
 System.gc();
 }
 }

 public static void startThread(final ReferenceQueue<BigObject> q) {
 /* Create a thread and wait for the reference object's arrival in the queue */
 Thread t = new Thread(new Runnable() {
 public void run() {
 Reference r = null;
 try {
 // Wait for first phantom reference to be queued
 r = q.remove();

Chapter 11 ■ GarbaGe ColleCtion

516

 // Clear the referent's reference
 r.clear();

 // Wait for second phantom reference to be queued
 r = q.remove();

 // Clear the referent's reference
 r.clear();

 // Wait for third phantom reference to be queued
 r = q.remove();

 // Clear the referent's reference
 r.clear();

 System.out.println("All three objects have been " +
 "queued and cleared.");

 /* Typically, you will release the network connection or
 any resources shared by three objects here.
 */

 // Exit the application
 System.exit(1);
 }
 catch (InterruptedException e) {
 System.out.println(e.getMessage());
 }
 }
 });

 // Start the thread, which will wait for three phantom
 // references to be queued
 t.start();
 }
}

finalize() called for id:103
finalize() called for id:102
finalize() called for id:101
All three objects have been queued and cleared.

Summary
The process of reclaiming the memory of dead objects is known as garbage collection. Garbage collection in Java is
automatic. The Java runtime runs garbage collection in a low priority background thread. The JVM does its best to
free up memory of dead objects before throwing an OutOfMemoryError. You can pass a hint, although not needed in
an application, to the JVM by calling Runtime.getRuntime().gc(). You can also use the convenience method
System.gc() to pass the hint to the JVM. The JVM is free to ignore the hint.

Chapter 11 ■ GarbaGe ColleCtion

517

The memory occupied by an unreachable object is reclaimed in two phases. The first phase, called finalization,
is an action automatically performed on an unreachable object before the memory used by the object is reclaimed by
the garbage collector. The block of code that contains the action to be performed is known as a finalizer. A finalizer
is implemented using the finalize() method of the object. In the finalize() method, the unreachable object may
resurrect itself by storing its reference in a reachable object. In the second phase, if the object is still unreachable, the
memory occupied by the object is reclaimed.

At times, you may want to use memory-sensitive objects, which are fine to be kept in memory if enough
memory is available. However, if the application runs low in memory, it would be fine to reclaim those objects.
Typically, objects cached for a better performance fall into this category of objects. Java provides SoftReference,
WeakReference, and PhantomReference classes in the java.lang.ref package to work with such memory-sensitive
objects.

519

Chapter 12

Collections

In this chapter, you will learn

What collections are in Java•	

What the Collections Framework is and its architecture•	

Different ways for traversing a collection•	

Different types of collections such as •	 List, Set, Queue, Map, etc.

Applying algorithms to collections•	

Obtaining different views of a collection•	

Creating empty and singleton collections•	

How hash-based collections work internally•	

What Is a Collection?
A collection is an object that contains a group of objects. A collection is also known as a container. Each object in a
collection is called an element of the collection.

The concept of collections in Java is no different from the concept of collections in our daily life. You see different
kinds of collections every day. Every collection contains a group of objects. What distinguishes one type of collection
from that of another type? One type of collection is distinguished from another type based on the way they manage
their elements. Let’s take a few examples of collections from our daily life.

Let’s start with a money jar. A money jar is an example of a collection. It contains a group of coins. Do you put a
coin in the money jar in a specific order? Do you retrieve the coins from the jar in a specific order? Can you put many
coins of the same kind in the jar? Can you remove all coins from the jar in one go or must you take them out one at a
time? Can you call your keyboard a collection? Isn’t it a collection of keys? Does a keyboard have duplicate keys?
No, you can’t have duplicate keys in a keyboard. However, you can have duplicate coins in your money jar.

Consider a queue of customers at a counter in a post office. Is the queue of customers not a collection of
customers? Definitely, it is. Does this queue follow any specific rule? Yes, it does follow a rule, which is first come, first
served. You can rephrase the rule of first come, first served as First In, First Out (FIFO).

Consider a stack of books at your desk. Is it not also a collection of books? Yes, it is. Assuming that you deal with
one book at a time, does it follow the rule that the book that was placed on the stack last will be removed first? All
right, this rule seems to be the opposite of the rule about the collection of customers in a queue at the counter in the
post office. This time, the stack of books is following the rule of Last In, First Out (LIFO).

I just mentioned quite a few examples of collections that follow different rules to manage their elements. What
would you do if you had to model these collections of objects into a Java program? First, you would categorize all
possible kinds of collections that you would deal with in your programs. Then, you would write some reusable generic

Chapter 12 ■ ColleCtions

520

interfaces and classes that you could use in a situation where you need to deal with collection of objects. The good
news is that you do not need to write generic code to manage collections. The designers of the Java language realized
the need for it and incorporated a framework in Java libraries, which is called the Collections Framework.

The Collections Framework consists of interfaces, implementation classes, and some utility classes that let you
handle most types of collections that you would encounter in a Java application. If you encounter a collection type for
which Java does not provide an implementation, you can always roll out your own implementation, which will work
seamlessly with the Collections Framework. The Collections Framework is simple, powerful, and an exciting topic to
learn. This chapter will explore the different types of collections available in the Collections Framework. Figure 12-1
shows five types of collections: a bag, a list, a queue, a stack, and a map.

John Donna
Adam Ken
Ellen Ken

0 1 2 3 4 5
Ken John Ken Adam Ellen Donna

Ken John Adam Ellen Donna

John (234) 334-9087
Donna (341) 234-9087
Adam (876) 214-8977
Ellen (675) 129-9810
Ken (675) 189-7865

John
Donna
Adam
Ellen
Ken

A bag

A list

A queue

A stack
A map

Figure 12-1. A pictorial view of different types of collections

One collection (the map) in the figure stands out: a collection of name-phone pairs. It maps a name to a phone
number. At this point, these pictures are not associated with any specific types of collection classes in Java. They are
just to help you visualize that Java collections are the same as collections in your daily life. Arrows in some collections
indicate the entry and exit of an element to and from the collection. You may observe that some collections enforce
that an element must be added in a certain way to the collection and it must exit (be removed) the collection in a
certain way. For example, in a queue, elements enter from one end and exit from the other end; in a stack, elements
enter and exit from the same end.

Need for a Collection Framework
The support for arrays of primitive and reference types is built into the Java language right from the beginning. Using
an array is also one of the most efficient ways to store and retrieve a group of object references and primitive values.
Why did we need the Collections Framework if we already had arrays in Java?

Using an array in Java has the following advantages:

It can be used to store and retrieve values using indexes, and it is fast.•	

It knows its type. It provides compile-time type checking such as you cannot store a •	 double
value in an int array, though if the array is of type Object, there is no compile-time type safety
as anything can be stored in the array.

Chapter 12 ■ ColleCtions

521

You can have arrays of objects as well as primitives.•	

You have the helper class •	 java.util.Arrays to help you work with arrays. For example,
it provides methods for searching through an array, sorting the array elements, etc.

Using an array in Java has the following disadvantages:

Arrays are fixed in size. You must specify the size at the time of creation. Once created, the •	
array size cannot be changed. That is, arrays cannot expand or shrink if you need them to.

If you store an element in an array at specific position and later you want to remove it, there is •	
no way to know that the element at that position was removed.

Compile-time type checking, though an advantage, also becomes a disadvantage. It cannot •	
store different kinds of values. For example, a reference array of a Car class will store only Car
type objects. A primitive array of double will only store values of double type.

You need to write a lot of code if you want to implement a specific type of collection using an •	
array. For example, suppose you want to have a collection that should not allow duplicate
values. Of course, you can develop a new class that uses an array to implement your collection.
However, it is a time-consuming task.

The Collections Framework provides all the features provided by arrays, and then some. It provides many other
features that are not provided by arrays. The Collections Framework team has already gone through the pain of
designing, developing, and testing the interfaces and classes that are needed to use different kinds of collections.
All you need to do is to learn those classes and interfaces, and use them in your Java programs.

You need to keep the following points in mind when you learn about collections:

Collections are designed to work only with objects. To work with collections of primitive •	
types, either you wrap and unwrap your primitive values in wrapper objects or you can take
advantage of the built-in autoboxing features in Java that will wrap and unwrap the primitive
values as needed.

All collection classes in Java are declared generic. That is, you can specify the type of elements •	
that your collection deals with as the type parameter.

Architecture of the Collection Framework
The Collections Framework consists of three main components:

Interfaces•	

Implementation Classes•	

Algorithm Classes•	

An interface represents a specific type of collection in the framework. There is one interface defined for every
type of collection in the framework; for example, the List interface represents a list, the Set interface represents
a set, the Map interface represents a map, etc. Using an interface to define a collection (rather than a class) has the
following advantages:

Your code, which is written using interfaces, is not tied to any specific implementation.•	

Classes that implement collections defined by interfaces may be changed without forcing you •	
to change your code that was written using interfaces.

You can have your own implementation for a collection interface to suit specific needs.•	

Chapter 12 ■ ColleCtions

522

The Collections Framework provides implementations of collection interfaces, which are called implementation
classes. You need to create objects of these classes that will represent a collection. It is advised to write code using
interfaces, rather than using their implementation classes. The following snippet of code shows how to use the
implementation class ArrayList to create a list and store the reference in a variable of the type List that is the
interface representing a list:

// Create an instance of the ArrayList class storing the reference
// in a variable of the List interface
List<String> names = new ArrayList<>();

// Work with the names variable here onwards

Sometimes you need to perform different actions on a collection, such as searching through a collection,
converting a collection of one type to another type, copying elements from one collection to another, sorting elements
of a collection in a specific order, etc. The algorithm classes let you apply these kinds of algorithms to your collections.

Typically, you do not need to develop interfaces or classes in any of the three categories. The Collections
Framework provides you with all the interfaces and classes you need. You can choose from a variety of collection
interfaces and their implementations. Figure 12-2 shows the interfaces that define collections. I will discuss each type
of collection in the subsequent sections.

Figure 12-2. A class diagram including most interfaces in the Collections Framework

The Collection Interface
The Collection interface is the root of the collection interface hierarchy. It defines a generic collection. The
Collections Framework does not provide an implementation for the Collection interface. This is the most generic
type of collection. You can use it as an argument type in methods, where you do not care about the collection type of
the argument, provided it isn’t a map. It declares methods that are inherited by other types of collection interfaces.
Non-map collection interfaces inherit from the Collection interface and add methods of their own to provide
functionalities that are specific to their types.

Methods of the Collection interface may be classified into the following categories:

Methods for basic operations•	

Methods for bulk (or group) operations•	

Methods for aggregate operations•	

Chapter 12 ■ ColleCtions

523

Methods for array operations•	

Methods for comparison operations•	

Methods in the Collection interface are further classified as optional and required. An implementation class
is not required to provide an implementation for the optional methods. If an implementation class chooses not to
provide an implementation for optional methods, those methods must throw an UnsupportedOperationException.

Methods for Basic Operations
Methods for basic operations let you perform basic operations on a collection such as getting its size (number of
elements), adding a new element to it, removing an element from it, checking if an object is an element of this
collection, checking if the collection is empty, etc. Some of the methods in this category are as follows:

•	 int size(): Returns the number of elements in the collection.

•	 boolean isEmpty(): Returns true if the collection is empty. Otherwise, it returns false. This
acts the same as checking size() for 0.

•	 boolean contains(Object o): Returns true if the collection contains the specified object.
Otherwise, it returns false.

•	 boolean add(E o): Adds an element to the collection. It returns true if the collection changed.
Otherwise, it returns false. If the implementation does not allow duplicate elements in a
collection, this method will return false when you call it with an element that is already in the
collection. If a collection is size constrained and there is no space, the method throws a
java.lang.IllegalStateException.

•	 boolean remove(Object o): Removes the specified object from the collection. Returns true if
the collection changed because of this call. Otherwise, it returns false.

•	 Iterator<E> iterator(): Returns an iterator that can be used to traverse elements in the
collection.

Methods for Bulk (or Group) Operations
Methods for bulk operations let you perform operations on a collection that involves a group of objects such as
removing all elements from it, checking if a collection contains all elements from another collection, adding
all elements of a collection to another collection, etc. Some of the methods in this category are as follows:

•	 boolean addAll(Collection<? extends E> c): Adds all elements of the specified collection
to this collection. Returns true if the collection changes because of this call. Otherwise,
it returns false.

•	 void clear(): Removes all elements of the collection.

•	 boolean containsAll(Collection<?> c): Returns true if all the elements in the specified
collection are also elements of the collection. Otherwise, it returns false.

•	 boolean removeAll(Collection<?> c): Removes all elements from the collection that are
elements of the specified collection. Returns true if the collection changed as a result of this
call. Otherwise, it returns false.

•	 boolean retainAll(Collection<?> c): Retains only those elements that are also elements
of the specified collection. That is, it will remove all elements from the collection that are not
elements of the specified collection. Returns true if the collection changes as a result of this
call. Otherwise, it returns false.

Chapter 12 ■ ColleCtions

524

Methods for Aggregate Operations
Java 8 added support for aggregate operations on collections through streams. A stream is a sequence of elements
that supports sequential and parallel aggregate operations such as computing the sum of all elements of a collection
whose elements are integers. Streams are a vast topic and I will discuss them in Chapter 13. A stream is an instance of
the Stream interface. The Stream interface is in the java.util.stream package. You can create a Stream object from a
collection using the following methods of the Collection interface:

•	 default Stream<E> stream(): Returns a sequential Stream with the collection as the source
of elements for the Stream.

•	 default Stream<E> parallelStream(): Returns a possibly parallel Stream with the collection
as the source of elements for the Stream.

Methods for Array Operations
Methods for array operations let you convert a collection into an array. The following are the methods in this category:

•	 Object[] toArray(): Returns the elements of the collections in an array.

•	 <T> T[] toArray(T[] a): Returns an array of the specified type T that contains all elements
of the collection. If the passed-in array length is equal to or greater than the size of the
collection, all elements are copied to the passed-in array and the same array is returned.
Any extra elements in the array are set to null. If the passed-in array’s length is less that the
size of the collection, it creates a new array of type T whose length is equal to the size of the
collection, copies all elements of the collection to the new array, and returns the new array.

Methods for Comparison Operations
Methods for comparison operations let you compare two collections for equality. The following are the methods in
this category:

•	 boolean equals(Object o): Returns true if two collections are equal. Otherwise, returns
false. The specific collection type specifies the criteria for equality of two collections.

•	 int hashCode(): Returns the hash code for the collection. Suppose c1 and c2 are references of
two collections. If c1.equals(c2) returns true, c1.hashCode() == c2.hashCode() must also
return true.

A Quick Example
Before I discuss different types of collections, I will present a quick example of using a list that is a collection of
objects. A list is an ordered list of objects. An instance of the List<E> interface represents a list. The ArrayList<E>
class is an implementation of the List<E> interface. The program in Listing 12-1 creates a list to store names and
manipulates the list using different methods of the Collection interface.

The program uses the add() method to add some names to the list. It uses the remove() method to remove a
name from the list. The clear() method is used to remove all names from the list. At every stage, the program prints
the size of the list and the elements in the list.

Chapter 12 ■ ColleCtions

525

Tip ■ the toString() method of the list (and all types of collections) returns a comma-separated list of elements
enclosed in brackets. if a collection is empty, an empty pair of brackets ([]) is returned. the string is very useful for
debugging purposes, provided each element has a reasonable toString() implementation.

Listing 12-1. Using a List to Store Names

// NamesList.java
package com.jdojo.collections;

import java.util.ArrayList;
import java.util.List;

public class NamesList {
 public static void main(String[] args) {
 // Create a list of strings
 List<String> names = new ArrayList<>();

 // Print the list details
 System.out.printf("After creation: Size = %d, Elements = %s%n",
 names.size(), names);

 // Add some names to the list
 names.add("Ken");
 names.add("Lee");
 names.add("Joe");

 // Print the list details
 System.out.printf("After adding 3 elements: Size = %d, Elements = %s%n",
 names.size(), names);

 // Remove Lee from the list
 names.remove("Lee");

 // Print the list details
 System.out.printf("After removing 1 element: Size = %d, Elements = %s%n",
 names.size(), names);

 // Clear all elements
 names.clear();

 // Print the list details
 System.out.printf("After clearing all elements: Size = %d, Elements = %s%n",
 names.size(), names);

 }
}

Chapter 12 ■ ColleCtions

526

After creation: Size = 0, Elements = []
After adding 3 elements: Size = 3, Elements = [Ken, Lee, Joe]
After removing 1 element: Size = 2, Elements = [Ken, Joe]
After clearing all elements: Size = 0, Elements = []

Traversing Collections
Most often, you need to access all elements of a collection one at a time. Different types of collections store their
elements differently using different types of data structures. Some collections impose ordering on their elements and
some do not. The Collections Framework provides the following ways to traverse a collection:

Using an •	 Iterator

Using a for-each loop•	

Using the •	 forEach() method

Tip ■ some collections, such as lists, assign each element an index and they let you access their elements using indexes.
You can traverse those collections using a regular for-loop statement as well. You can also traverse collections by converting
them into streams and performing an aggregate operation on those streams. i will discuss streams in Chapter 13.

Using an Iterator
A collection provides an iterator to iterate over all its elements. Sometimes an iterator is also known as a generator or a
cursor. An iterator lets you perform the following three operations on a collection:

Check if there are elements that have not been yet accessed using this iterator.•	

Access the next element in the collection.•	

Remove the last accessed element of the collection.•	

Tip ■ the meaning of the term “next element” of a collection depends on the collection type. the iterator itself does
not impose any ordering in which it returns the elements from a collection. however, if the collection imposes ordering
on its elements, the iterator will maintain the same ordering. in general, the “next element” means any element in the
collection that has not been returned by this iterator yet.

An iterator in Java is an instance of the Iterator<E> interface. You can get an iterator for a collection using
the iterator() method the Collection interface. The following snippet of code creates a list of strings and gets an
iterator for the list:

// Create a list of strings
List<String> names = new ArrayList<>();

Chapter 12 ■ ColleCtions

527

// Get an iteratir for the list
Iterator<String> nameIterator = names.iterator();

The Iterator<E> interface contains the following methods:

•	 boolean hasNext()

•	 E next()

•	 default void remove()

•	 default void forEachRemaining(Consumer<? super E> action)

The hasNext() method returns true if there are more elements in the collection to iterate. Otherwise, it returns
false. Typically, you call this method before asking the iterator for the next element from the collection.

The next() method returns the next element from the collection. You should always call the hasNext() method
before calling the next() method. If you call the next() method and the iterator has no more elements to return, it
throws a NoSuchElementException.

Typically, the hasNext() and next() methods are used together in a loop. The following snippet of code prints all
elements of a list using an iterator:

List<String> names = // get a list;

// Get an iterator for the list
Iterator<String> nameIterator = names.iterator();

// Iterate over all elements in the list
while(nameIterator.hasNext()) {
 // Get the next element from the list
 String name = nameIterator.next();

 // Print the name
 System.out.println(name);
}

The remove() method removes the element of the collection that was returned last time by calling the next()
method of the iterator. The remove() method can be called only once per call to the next() method. If the remove()
method is called more than once per next() method call or before the first call to the next() method, it throws
an IllegalStateException. The support for the remove() method is optional. Calling the remove() method of an
iterator may throw an UnsupportedOperationException if the iterator does not support the remove operation.

The following snippet of code iterates over all elements of a list using an iterator and removes the element using
the remove() method of the iterator if the element is only two characters long:

List<String> names = get a list;

// Get an iterator for the list
Iterator<String> nameIterator = names.iterator();

// Iterate over all elements in the list
while(nameIterator.hasNext()) {
 String name = nameIterator.next();

Chapter 12 ■ ColleCtions

528

 // Remove the name if it is two characters
 if (name.length() == 2) {
 nameIterator.remove();
 }
}

The forEachRemaining() method is new to Java 8 and takes an action on each element of the collection that has
not been accessed by the iterator yet. The action is specified as a Consumer. You can use the following snippet of code
to print all elements of a list:

List<String> names = get a list;

// Get an iterator for the list
Iterator<String> nameIterator = names.iterator();

// Print the names in the list
nameIterator.forEachRemaining(System.out::println);

The code uses method reference System.out::println as a Consumer for the forEachRemaining() method.
Notice that using the forEachRemaining() method helps shorten the code by eliminating the need for a loop
using the hasNext() and next() methods. Please refer to Chapter 5 for more on using the Consumer interface and
method references.

Listing 12-2 contains a complete program that uses an iterator and the forEachRemaining() of the iterator to
print all elements of a list on the standard output. The program has combined the steps to obtain the iterator and call
its forEachRemaining() method call into one statement.

Listing 12-2. Using an Iterator to Iterate Over Elements of a List

// NameIterator.java
package com.jdojo.collections;

import java.util.ArrayList;
import java.util.List;

public class NameIterator {
 public static void main(String[] args) {
 // Create a list of strings
 List<String> names = new ArrayList<>();

 // Add some names to the list
 names.add("Ken");
 names.add("Lee");
 names.add("Joe");

 // Print all elements of the names list
 names.iterator()
 .forEachRemaining(System.out::println);
 }
}

Chapter 12 ■ ColleCtions

529

Ken
Lee
Joe

The Collections Framework supports fast-fail concurrent iterators. You can obtain multiple iterators for a
collection and all of them can be used to iterate over the same collection concurrently. If the collection is modified by
any means, except using the remove() method of the same iterator after the iterator is obtained, the attempt to access
the next element using the iterator will throw a ConcurrentModificationException. It means that you can have
multiple iterators for a collection; however, all iterators must be accessing (reading) elements of the collection. If any
of the iterators modify the collection using its remove() method, the iterator that modifies the collection will be fine
and all other iterators will fail. If the collection is modified outside of all iterators, all iterators will fail.

Tip ■ an Iterator is a one-time object. You cannot reset an iterator. it cannot be reused to iterate over the element of
the collection. if you need to iterate over the elements of the same collection again, you need to obtain a new Iterator
calling the iterator() method of the collection.

Using a for-each Loop
You can use the for-each loop to iterate over elements of a collection that hides the logic to set up an iterator for a
collection. The general syntax for the for-each loop is as follows:

Collection<T> yourCollection = // get a collection here;

for(T element : yourCollection) {
 /* The body of the for-each loop is executed once for each element in yourCollection.
 Each time the body code is executed, the element variable holds the reference of the
 current element in the collection
 */
}

Tip ■ You can use the for-each loop to iterate over any collection whose implementation class implements the
Iterable interface. the Collection interface inherits from the Iterable interface, and therefore, you can use the for-each
loop with all types of collections that implement the Collection interface. For example, the Map collection type does not
inherit from the Collection interface, and therefore, you cannot use the for-each loop to iterate over entries in a Map.

The for-each loop is simple and compact. Behind the scenes, it gets the iterator for your collection and calls the
hasNext() and next() methods for you. You can iterate over all elements of a list of string as follows:

List<String> names = // get a list;

// Print all elements of the names list using a for-each loop
for(String name : names) {
 System.out.println(name);
}

Chapter 12 ■ ColleCtions

530

Listing 12-3 contains the complete program that shows how to use the for-each loop to iterate over elements of a
list of strings. The program is simple and self-explanatory.

Listing 12-3. Using a for-each Loop to Iterate Over Elements of a List

// ForEachLoop.java
package com.jdojo.collections;

import java.util.ArrayList;
import java.util.List;

public class ForEachLoop {
 public static void main(String[] args) {
 // Create a list of strings
 List<String> names = new ArrayList<>();

 // Add some names to the list
 names.add("Ken");
 names.add("Lee");
 names.add("Joe");

 // Print all elements of the names list
 for(String name : names) {
 System.out.println(name);
 }
 }
}

Ken
Lee
Joe

The for-each loop is not a replacement for using an iterator. The compactness of the for-each loop wins over
using an iterator in most use cases. The for-each loop has several limitations, however.

You cannot use the for-each loop everywhere you can use an iterator. For example, you cannot use
the for-each loop to remove elements from the collection. The following snippet of code will throw a
ConcurrentModificationException exception:

List<String> names = get a list;
for(String name : names) {
 // Throws a ConcurrentModificationException
 names.remove(name);
}

Another limitation of the for-each loop is that you must traverse from the first element to the last element of the
collection. It provides no way to start from middle of the collection. The for-each loop provides no way to visit the
previously visited elements, which is allowed by the iterator of some collection types such as lists.

Chapter 12 ■ ColleCtions

531

Using the forEach() Method
The Iterable interface contains a new forEach(Consumer<? super T> action) method that you can use in all
collection types that inherit from the Collection interface. The method iterates over all elements and applies the action.
It works similar to the forEachRemaining(Consumer<? super E> action) method of the Iterator interface with a
difference that the Iterable.forEach() method iterates over all elements whereas the Iterator.forEachRemaining()
method iterates over the elements in the collections that have not yet been retrieved by the Iterator.

The forEach() method is available in all collection types that inherit from the Collection interface. Listing 12-4
shows how to use the forEach() method to print all elements of a list of strings. Notice that using the forEach()
method is the most compact way of iterating over elements of a collection.

Tip ■ the Iterator is the fundamental (and a little cumbersome) way of iterating over elements of a collection. it has
existed since the beginning. all other ways, such as the for-each loop, the forEach() method, and the forEachRemaining()
method, are syntactic sugar for the Iterator. internally, they all use an Iterator.

Listing 12-4. Using the forEach() Method of the Iterable Interface to Iterate Over Elements of a List

// ForEachMethod.java
package com.jdojo.collections;

import java.util.ArrayList;
import java.util.List;

public class ForEachMethod {
 public static void main(String[] args) {
 // Create a list of strings
 List<String> names = new ArrayList<>();

 // Add some names to the list
 names.add("Ken");
 names.add("Lee");
 names.add("Joe");

 // Print all elements of the names list
 names.forEach(System.out::println);
 }
}

Ken
Lee
Joe

Chapter 12 ■ ColleCtions

532

Using Different Types of Collections
In this section, I will discuss different types of collections and their variants, such as sets, lists, queues, maps, etc.

Working with Sets
A set is mathematical concept that represents a collection of unique objects. In mathematics, the ordering of elements
in a set is irrelevant. The Collections Framework offers three types of sets:

Mathematical set•	

Sorted set•	

Navigable set•	

The following sections cover all types of sets in detail.

Mathematical Set
The Set interface models a set in mathematics. In mathematics, a set is a collection of unique elements. That is, a set
cannot contain duplicate elements. Java allows at most one null element in a Set because one null element is still
distinguishable from all other non-null elements and thus, it is unique. Further, the ordering of the elements in a
mathematical set is not important. Java follows the same rule; it does not guarantee the ordering of the elements in a
Set. You can add elements to a Set in one order, and when you retrieve them, they may be supplied back in a different
order. The only guarantee is that when looping through all elements of a Set, you get each element in the Set once.

The Collections Framework provides the HashSet class as an implementation for the Set interface. Listing 12-5
demonstrates how to create a Set and add elements to it. Note that you can attempt to add duplicate elements to a
Set and they are ignored silently. Two elements in a Set are considered equal if comparing them using the equals()
method returns true.

Listing 12-5. Using the Set Interface with HashSet as Its Implementation Class

// SetTest.java
package com.jdojo.collections;

import java.util.HashSet;
import java.util.Set;

public class SetTest {
 public static void main(String[] args) {
 // Create a set
 Set<String> s1 = new HashSet<>();

 // Add a few elements
 s1.add("John");
 s1.add("Donna");
 s1.add("Ken");
 s1.add("Ken"); // Duplicate!!! No effect

 // Create another set by copying s1
 Set<String> s2 = new HashSet<>(s1);

Chapter 12 ■ ColleCtions

533

 // Add a few more elements
 s2.add("Ellen");
 s2.add("Sara");
 s2.add(null); // one null is fine
 s2.add(null); // Duplicate!!! No effect

 // Print the sets
 System.out.println("s1: " + s1);
 System.out.println("s1.size(): " + s1.size());

 System.out.println("s2: " + s2);
 System.out.println("s2.size(): " + s2.size());
 }
}

s1: [Donna, Ken, John]
s1.size(): 3
s2: [null, Ellen, Donna, Ken, John, Sara]
s2.size(): 6

The Collections Framework offers the LinkedHashSet class as another implementation class for the Set interface.
The class adds one feature over the HashSet implementation. The HashSet implementation does not guarantee the
ordering of elements during iteration. The LinkedHashSet implementation guarantees that the iterator of a Set will
return the elements in the same order the elements were inserted (insertion order).

I will discuss maintaining ordering of elements in a Set in the next section when I discuss SortedSet. The
LinkedHashSet class provides insertion ordering without incurring any overhead.

Listing 12-6 compares the use of HashSet and LinkedHashSet classes. The output shows that HashSet does not
maintain any ordering on the elements whereas the LinkedHashSet maintains the insertion order.

Listing 12-6. Comparing the HashSet and LinkedHashSet Implementations of the Set Interface

// LinkedHashSetTest.java
package com.jdojo.collections;

import java.util.Set;
import java.util.LinkedHashSet;
import java.util.HashSet;

public class LinkedHashSetTest {
 public static void main(String[] args) {
 Set<String> s1 = new LinkedHashSet<>();
 s1.add("John");
 s1.add("Adam");
 s1.add("Eve");
 s1.add("Donna");
 System.out.println("LinkedHashSet: " + s1);

 // Add the same elements to this set
 Set<String> s2 = new HashSet<>();
 s2.add("John");
 s2.add("Adam");

Chapter 12 ■ ColleCtions

534

 s2.add("Eve");
 s2.add("Donna");
 System.out.println("HashSet: " + s2);

 System.out.println("s1.equals(s2): " + s1.equals(s2));
 }
}

LinkedHashSet: [John, Adam, Eve, Donna]
HashSet: [Adam, Donna, Eve, John]
s1.equals(s2): true

Tip ■ a Set has a very useful application. You can use it when you are supplied with an unknown number of objects
and you have to keep only unique objects. You can create a Set and add all objects to it. it will keep only unique objects
and ignore the duplicate ones. at the end, you will have only unique objects in your Set.

You can perform union, intersection, and difference (or minus) operations on mathematical sets. You can perform
the same operations on sets in Java. For discussing these operations, I assume that you have two sets called s1 and
s2. The union of two sets (written as s1 U s2 in mathematics) contains elements from both sets with no duplicates.
The intersection of two sets (written as s1 Ç s2 in mathematics) contains elements that are common to both sets. The
difference of two sets, s1 and s2 (written as s1 – s2), is a set that contains all elements of s1 that are not in s2. Here is
how you perform these Set operations:

// Union of s1 and s2 will be stored in s1
s1.add(s2);

// Intersection of s1 and s2 will be stored in s1
s1.retainAll(s2);

// Difference of s1 and s2 will be stored in s1
s1.removeAll(s2);

Note that during the set operations such as union, intersection, and difference, the set on which you perform the
operation is modified. For example, s1 is modified if you perform s1.addAll(s2) to compute the union of s1 and s2.
If you want to compute the union of two sets and keep the original set unchanged, you must make a copy of the original
set before you perform the union operation, like so:

// Compute the union of two sets by keeping the original set unchanged
Set s1Unions2 = new HashSet(s1); // Make a copy of s1

// Now, s1Unions2 is the union of s1 and s2 and both s1 and s2 are unchanged
s1Unions2.addAll(s2);

In mathematics, you can test if a set s1 is a subset of another set s2. Set s1 is a subset of set s2 if set s2 contains
all elements that are also present in set s1. You can use the s2.containsAll(s1) method to test if s1 is a subset of s2.
This method will return true if s1 is a subset of s2. Otherwise, it will return false.

Chapter 12 ■ ColleCtions

535

Listing 12-7 demonstrates how to use the Set interface to perform mathematical set operations.

Listing 12-7. Performing Mathematical Set Operations Using the Set Interface

// SetOperations.java
package com.jdojo.collections;

import java.util.HashSet;
import java.util.Set;

public class SetOperations {
 public static void main(String[] args) {
 // Create a set
 Set<String> s1 = new HashSet<>();
 s1.add("John");
 s1.add("Donna");
 s1.add("Ken");

 // Create another set
 Set<String> s2 = new HashSet<>();
 s2.add("Ellen");
 s2.add("Sara");
 s2.add("Donna");

 //Print the elements of both sets
 System.out.println("s1: " + s1);
 System.out.println("s2: " + s2);

 // Perform set operations
 performUnion(s1, s2);
 performIntersection(s1, s2);
 performDifference(s1, s2);
 testForSubset(s1, s2);
 }

 public static void performUnion(Set<String> s1, Set<String> s2) {
 Set<String> s1Unions2 = new HashSet<>(s1);
 s1Unions2.addAll(s2);
 System.out.println("s1 union s2: " + s1Unions2);
 }

 public static void performIntersection(Set<String> s1, Set<String> s2) {
 Set<String> s1Intersections2 = new HashSet<>(s1);
 s1Intersections2.retainAll(s2);
 System.out.println("s1 intersection s2: " + s1Intersections2);
 }

 public static void performDifference(Set<String> s1, Set<String> s2) {
 Set<String> s1Differences2 = new HashSet<>(s1);
 s1Differences2.removeAll(s2);

Chapter 12 ■ ColleCtions

536

 Set<String> s2Differences1 = new HashSet<>(s2);
 s2Differences1.removeAll(s1);

 System.out.println("s1 difference s2: " + s1Differences2);
 System.out.println("s2 difference s1: " + s2Differences1);
 }

 public static void testForSubset(Set<String> s1, Set<String> s2) {
 System.out.println("s2 is subset s1: " + s1.containsAll(s2));
 System.out.println("s1 is subset s2: " + s2.containsAll(s1));
 }
}

s1: [Donna, Ken, John]
s2: [Ellen, Donna, Sara]
s1 union s2: [Ellen, Donna, Ken, John, Sara]
s1 intersection s2: [Donna]
s1 difference s2: [Ken, John]
s2 difference s1: [Ellen, Sara]
s2 is subset s1: false
s1 is subset s2: false

In this example, I kept the two original sets, s1 and s2, unmodified inside methods that performed some
operations on these two sets. However, they could have been modified inside any of these methods. It is not wise
to pass a collection to a method like the way I did in this example if you do not want the method to modify your
collection. The Collections Framework offers a way to get an unmodifiable view of a collection using the
java.util.Collections class. I will discuss this class and all other features that it offers later in this chapter.
The method Collections.unmodifiableSet(s1) will return the unmodifiable version of the s1 set. Any operation
that attempts to modify an unmodifiable collection results in an UnsupportedOperationException.

Sorted Set
A sorted set is a set that imposes ordering on its elements. An instance of the SortedSet interface represents a sorted set.

The elements in a SortedSet can be sorted in a natural order or using a Comparator. A SortedSet must know
how to sort its elements as they are added. The sorted set relies on two things to sort its elements:

If its elements implement the •	 Comparable interface, it will use the compareTo() method of
elements to sort them. This is called sorting in natural order.

You can supply a •	 Comparator object to use a custom sorting. The implementation class for
SortedSet is recommended to provide a constructor that will accept a Comparator object
to use a custom sorting. If a Comparator is specified, the Comparator is used for sorting
irrespective of the elements implementing the Comparable interface.

What would happen if the class of the elements of a SortedSet does not implement the Comparable interface and
you don’t supply a Comparator object? The answer is that, in such cases, you cannot add any elements to a SortedSet.
Attempting to add an element results in a ClassCastException.

The TreeSet class is one of the predefined implementation classes for the SortedSet interface in the Collections
Framework.

Chapter 12 ■ ColleCtions

537

The String class implements the Comparable interface. If you are storing only strings in a SortedSet, its elements
will be sorted using the natural order using the compareTo() method of the String class. Listing 12-8 demonstrates
the use of SortedSet, which uses the natural order to sort its elements.

Listing 12-8. Using a SortedSet That Uses Natural Ordering to Sort Its Elements

// SortedSetTest.java
package com.jdojo.collections;

import java.util.SortedSet;
import java.util.TreeSet;

public class SortedSetTest {
 public static void main(String[] args) {
 // Create a sorted set of some names
 SortedSet<String> sortedNames = new TreeSet<>();
 sortedNames.add("John");
 sortedNames.add("Adam");
 sortedNames.add("Eve");
 sortedNames.add("Donna");

 // Print the sorted set of names
 System.out.println(sortedNames);
 }
}

 [Adam, Donna, Eve, John]

Let’s discuss a real world example in which you want store a list of person objects in a SortedSet. Listing 12-9
contains the code for a Person class. It does not implement the Comparable interface. You will use the objects of the
Person class in a SortedSet to demonstrate custom sorting.

Listing 12-9. A Person Class

// Person.java
package com.jdojo.collections;

public class Person {
 private int id;
 private String name;

 public Person(int id, String name) {
 this.id = id;
 this.name = name;
 }

 public int getId() {
 return id;
 }

Chapter 12 ■ ColleCtions

538

 public void setId(int id) {
 this.id = id;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 @Override
 public boolean equals(Object o) {
 if (!(o instanceof Person)) {
 return false;
 }

 // id must be the same for two Persons to be equal
 Person p = (Person) o;
 if (this.id == p.getId()) {
 return true;
 }

 return false;
 }

 @Override
 public int hashCode() {
 // A trivial implementaiton
 return this.id;
 }

 @Override
 public String toString() {
 return "(" + id + ", " + name + ")";
 }
}

You cannot add an object of the Person class in a SortedSet unless you also supply a Comparator object.
The following code will throw a ClassCastException:

Set<Person> persons = new TreeSet<>();
persons.add(new Person(1, "John"));
persons.add(new Person(2, "Donna"));

The following snippet of code creates a SortedSet of persons using a Comparator that sorts the persons using
their names:

SortedSet<Person> personsSortedByName = new TreeSet<>(Comparator.comparing(Person::getName));

Chapter 12 ■ ColleCtions

539

The code uses a method reference to create a lambda expression for creating the Comparator object. Please refer
to Chapter 5 for more details on the lambda expressions and method references.

If you add two Person objects to the personsSortedByName sorted set with the same name, the second one will be
ignored because the supplied Comparator compares names of two Person objects for equality.

personsSortedByName.add(new Person(1, "John"));
personsSortedByName.add(new Person(2, "Donna"));
personsSortedByName.add(new Person(3, "Donna")); // A duplicate Person. Will be ignored

Listing 12-10 demonstrates how to use a Comparator object to apply custom sorting in a SortedSet. It uses two
custom sortings for Person objects, one by id and one by name. The output shows that one SortedSet is sorted by id
and another by name.

Listing 12-10. Using Custom Sorting in a SortedSet

// SortedSetComparatorTest.java
package com.jdojo.collections;

import java.util.Comparator;
import java.util.SortedSet;
import java.util.TreeSet;

public class SortedSetComparatorTest {
 public static void main(String[] args) {
 // Create a sorted set sorted by id
 SortedSet<Person> personsById =
 new TreeSet<>(Comparator.comparing(Person::getId));

 // Add soem persons to the set
 personsById.add(new Person(1, "John"));
 personsById.add(new Person(2, "Adam"));
 personsById.add(new Person(3, "Eve"));
 personsById.add(new Person(4, "Donna"));
 personsById.add(new Person(4, "Donna")); // A duplicate Person

 // Print the set
 System.out.println("Persons by Id:");
 personsById.forEach(System.out::println);

 // Create a sorted set sorted by name
 SortedSet<Person> personsByName =
 new TreeSet<>(Comparator.comparing(Person::getName));
 personsByName.add(new Person(1, "John"));
 personsByName.add(new Person(2, "Adam"));
 personsByName.add(new Person(3, "Eve"));
 personsByName.add(new Person(4, "Donna"));
 personsByName.add(new Person(4, "Kip")); // Not a duplicate person

 System.out.println("Persons by Name: ");
 personsByName.forEach(System.out::println);
 }
}

Chapter 12 ■ ColleCtions

540

Persons by Id:
(1, John)
(2, Adam)
(3, Eve)
(4, Donna)
Persons by Name:
(2, Adam)
(4, Donna)
(3, Eve)
(1, John)
(4, Kip)

Suppose you have a group of strings and you want to remove duplicates and sort them in ascending order of their
length. How difficult will it be to achieve this using your current knowledge of collections? The following snippet of
code shows how to do this:

// Sort the names based on their length
SortedSet<String> names = new TreeSet<>(Comparator.comparing(String::length));
names.add("Ken");
names.add("Lo");
names.add("Ellen");
names.add("Don"); // A duplicate that is ignored

// Print the sorted names
names.forEach(System.out::println);

Lo
Ken
Ellen

The SortedSet interface inherits all methods of the Set interface; it also adds some more methods to give you
access to its subsets. For example, if you want to get a subset of the SortedSet, you can use its subSet(E fromElement,
E toElement) method to get the elements between fromElement (inclusive) and toElement (exclusive). Listing 12-11
demonstrates how to use some of the methods of the SortedSet interface to get a subset of its elements.

Listing 12-11. Accessing Subsets of a SortedSet

// SortedSetSubset.java
package com.jdojo.collections;

import java.util.SortedSet;
import java.util.TreeSet;

public class SortedSetSubset {
 public static void main(String[] args) {
 // Create a sorted set of names
 SortedSet<String> names = new TreeSet<>();
 names.add("John");
 names.add("Adam");
 names.add("Eve");
 names.add("Donna");

Chapter 12 ■ ColleCtions

541

 // Print the sorted set
 System.out.println("Sorted Set: " + names);

 // Print the first and last elements in the sorted set
 System.out.println("First: " + names.first());
 System.out.println("Last: " + names.last());

 SortedSet ssBeforeDonna = names.headSet("Donna");
 System.out.println("Head Set Before Donna: " + ssBeforeDonna);

 SortedSet ssBetwenDonnaAndJohn = names.subSet("Donna", "John");
 System.out.println("Subset between Donna and John (exclusive): " +
 ssBetwenDonnaAndJohn);

 // Note the trick "John" + "\0" to include "John" in the subset
 SortedSet ssBetwenDonnaAndJohn2 = names.subSet("Donna", "John" + "\0");
 System.out.println("Subset between Donna and John (Inclusive): " +
 ssBetwenDonnaAndJohn2);

 SortedSet ssDonnaAndAfter = names.tailSet("Donna");
 System.out.println("Subset from Donna onwards: " + ssDonnaAndAfter);
 }
}

Sorted Set: [Adam, Donna, Eve, John]
First: Adam
Last: John
Head Set Before Donna: [Adam]
Subset between Donna and John (exclusive): [Donna, Eve]
Subset between Donna and John (Inclusive): [Donna, Eve, John]
Subset from Donna onwards: [Donna, Eve, John]

How is a null element stored in a SortedSet? If a SortedSet uses natural order (uses the Comparable interface’s
compareTo() method), adding a null element will throw a NullPointerException. If you use a Comparator object
to apply the ordering, it is up to you to allow a null element in the SortedSet. If you allow a null element in the
SortedSet, you can decide whether the null element will be placed in the beginning or at the end of the Set. The
following snippet of code creates a SortedSet using a Comparator that places the null element first:

// Sort the names based on their length, placing null first
SortedSet<String> names =
 new TreeSet<>(Comparator.nullsFirst(Comparator.comparing(String::length)));
names.add("Ken");
names.add("Lo");
names.add("Ellen");
names.add(null); // Adds a null

// Print the names
names.forEach(System.out::println);

Chapter 12 ■ ColleCtions

542

null
Lo
Ken
Ellen

Navigable Set
A navigable set is a specialized type sorted set that lets you work with its subsets in a variety of ways. An instance of the
NavigableSet represents a navigable set. The NavigableSet interface inherits from the SortedSet interface and defines
some additional methods to extend the functionality provided by the SortedSet. It extends SortedSet in four ways:

It lets you navigate the set in reverse order. The reverse order is the opposite order in •	
which your SortedSet would be sorted normally. Its descendingSet() method returns a
NavigableSet object, which is another view of the same NavigableSet in the reverse order.
If you modify the original NavigableSet or the one returned from the descendingSet()
method, the modifications will be reflected in both sets.

It adds another version of the three methods •	 headSet(), tailSet(), and subSet() in
SortedSet, which accept a boolean flag to include the element at the beginning or the end of
the subset boundary.

It provides four methods, lower(), floor(), higher(), and ceiling(), that are used to search for an element
based on search criteria. The lower() method returns the greatest element in the NavigableSet that is less than the
specified element. The floor() method is similar to the lower() method that returns the greatest element in the
NavigableSet that is less than or equal to the specified element. The higher() method returns the least element in
the NavigableSet that is greater than the specified element. The ceiling() method is similar to the higher() method
that returns the least element in the NavigableSet that is greater than or equal to a specified element.

It provides two methods, pollFirst() and pollLast(), that retrieve and remove the first and the last element of
the NavigableSet, respectively. If the NavigableSet is empty, they return null.

The TreeSet class is one of the implementation classes for the NavigableSet interface. Since a NavigableSet is
also a SortedSet and a SortedSet is also a Set, you can use an object of TreeSet as a set, a sorted set, and a navigable
set. If you do not need ordering of the elements in a set, you are better off using the HashSet implementation class
rather than the TreeSet implementation class.

Listing 12-12 demonstrates how to use navigable sets. It uses integers as the elements of the NavigableSet
because numbers seem to be more intuitive when you perform methods like higher() and lower(). The output
shows how a NavigableSet performs all its operations on its elements.

Listing 12-12. Using a NavigableSet to Get a Subset of a Set

// NavigableSetTest.java
package com.jdojo.collections;

import java.util.TreeSet;
import java.util.NavigableSet;

public class NavigableSetTest {
 public static void main(String[] args) {
 // Create a navigable set and add some integers
 NavigableSet<Integer> ns = new TreeSet<>();
 ns.add(1);
 ns.add(2);

Chapter 12 ■ ColleCtions

543

 ns.add(3);
 ns.add(4);
 ns.add(5);

 // Get a reverse view of the navigable set
 NavigableSet reverseNs = ns.descendingSet();

 // Print the normal and reverse views
 System.out.println("Normal View of the Set: " + ns);
 System.out.println("Reverse view of the set: " + reverseNs);

 // Get and print a subset of the navigable set
 System.out.println("\nGetting subset of the set");

 NavigableSet threeOrMore = ns.tailSet(3, true);
 System.out.println("3 or more: " + threeOrMore);

 // Search the navigable set
 System.out.println();
 System.out.println("Searching through the set");

 System.out.println("lower(3): " + ns.lower(3));
 System.out.println("floor(3): " + ns.floor(3));
 System.out.println("higher(3): " + ns.higher(3));
 System.out.println("ceiling(3): " + ns.ceiling(3));

 // Poll the navigable set
 System.out.println();
 System.out.println("Polling elements from the set");

 // Poll elements one by one and look at the set
 System.out.println("pollFirst(): " + ns.pollFirst());
 System.out.println("Navigable Set: " + ns);

 System.out.println("pollLast(): " + ns.pollLast());
 System.out.println("Navigable Set: " + ns);

 System.out.println("pollFirst(): " + ns.pollFirst());
 System.out.println("Navigable Set: " + ns);

 System.out.println("pollFirst(): " + ns.pollFirst());
 System.out.println("Navigable Set: " + ns);

 System.out.println("pollFirst(): " + ns.pollFirst());
 System.out.println("Navigable Set: " + ns);

 // Since the set is empty, polling will return null
 System.out.println("pollFirst(): " + ns.pollFirst());
 System.out.println("pollLast(): " + ns.pollLast());
 }
}

Chapter 12 ■ ColleCtions

544

Normal View of the Set: [1, 2, 3, 4, 5]
Reverse view of the set: [5, 4, 3, 2, 1]

Getting subset of the set
3 or more: [3, 4, 5]

Searching through the set
lower(3): 2
floor(3): 3
higher(3): 4
ceiling(3): 3

Polling elements from the set
pollFirst(): 1
Navigable Set: [2, 3, 4, 5]
pollLast(): 5
Navigable Set: [2, 3, 4]
pollFirst(): 2
Navigable Set: [3, 4]
pollFirst(): 3
Navigable Set: [4]
pollFirst(): 4
Navigable Set: []
pollFirst(): null
pollLast(): null

Working with Lists
A list is an ordered collection of objects. Sometimes a list is also known as a sequence. An instance of the List interface
represents a list in the Collections Framework. A list can have duplicate elements. You can also store multiple null
values in a list.

The List interface inherits the Collection interface. It adds methods to support access to elements of the List
using indexes. It also allows you to add an element to the end of the List or at any position identified by an integer
called the index. The index of an element in a List is zero-based. That is, the first element of the List has an index of
0, the second element has an index of 1, and so on. Figure 12-3 shows a List with four elements and their indexes.

Index >> 0 1 2 3
Element >> John Richard Donna Ken

Figure 12-3. A pictorial view of a List with four elements

Chapter 12 ■ ColleCtions

545

A List provides the following additional features over a generic collection:

It provides access to its elements using indexes. You can use its •	 add(int index, E element),
addAll(int index, Collection<? extends E> c), get(int index), remove(int index) and
set(int index, E element) methods to add, get, remove, and replace its elements using indexes.

You can search for the position of an element in the •	 List using indexOf(Object o) or
lastIndexOf(Object o) methods. The indexOf() method searches for the specified object in
the List from the beginning and it returns the index of the first occurrence of the object. The
lastIndexOf() method does the same starting from the end of the list. Both methods return
–1 if the List does not contain the specified object.

It provides a method called •	 subList(int fromIndex, int toIndex) that gives you a sublist of
the original list starting at index fromIndex (inclusive) to index toIndex (exclusive).

It provides a specialized iterator for its elements, which is an instance of the •	 ListIterator
interface. This iterator lets you iterate over its elements in both directions (forward
and backward) at the same time. You can get the ListIterator for a List using its
listIterator() method. Note that the Iterator returned from the iterator() method of the
Collection interface returns a forward-only iterator.

The following are two of many implementation classes for the List interface:

•	 ArrayList

•	 LinkedList

An ArrayList is backed up by an array. A LinkedList is backed up by a linked list. An ArrayList performs better
if you access (get and set) the elements of the list frequently. Accessing elements in an ArrayList is faster because the
index of an element becomes the index in the backing array, and accessing an element from an array is always fast.
Adding or removing elements from a list backed by an ArrayList performs slower, unless done from the end, because
an ArrayList has to perform an array copy internally to keep the elements in sequence. The LinkedList performs
better as compared to ArrayList for adding and removing elements from the middle of the list. However, it is slower
for accessing elements of the list, unless at the head of the list.

You can create and add some elements to a list as follows:

// Create a list of strings
List<String> nameList = new ArrayList<>();
nameList.add("John"); // Adds John at the index 0
nameList.add("Richard"); // Adds Richard at the index 1

The add(E element) method of the List interface appends the element to the end of the List. The
remove(Object o) method of List removes the first occurrence of the element from the beginning of the list.

You can also add elements to a List using positional indexes. Note that the index that you use to access any
element must be between 0 and size, where size is the size of the List. You can use add(int index, E element)
method to insert the specified element at the specified index. For example, nameList.add(1, "Sara") will insert
"Sara" at index 1, which is the second element in the List. When you use an index to add an element to a List, the
element at the specified index and elements to the right of the specified index are shifted to the right and their indexes
are incremented by 1. Suppose you have a List as shown in Figure 12-3 and you execute the following code:

// Add an element at index 1
nameList.add(1, "Sara");

Chapter 12 ■ ColleCtions

546

Tip ■ note that a List does not allow inserting an element at any arbitrary index by using the add(int index,
E element) method. if the List is empty, you can use only 0 as the index to add the first element to the list. if you have five
elements in a List, you must use indexes between 0 and 5 to add a new element to the List. the index from 0 to 4
will insert an element between existing elements. the index of 5 will append the element to the end of the List. this
implies that a List must grow sequentially. You cannot have a sparse List such as a List with first element and tenth
element, leaving second to ninth elements non-populated. this is the reason that a List is also known as a sequence.

Listing 12-13 demonstrates how to use a List. It shows how to add, remove, and iterate over its elements
using indexes.

Listing 12-13. Using a List with the ArrayList as Its Implementation

// ListTest.java
package com.jdojo.collections;

import java.util.List;
import java.util.ArrayList;

public class ListTest {
 public static void main(String[] args) {
 // Create a List and add few elements
 List<String> list = new ArrayList<>();
 list.add("John");
 list.add("Richard");
 list.add("Donna");
 list.add("Ken");

 System.out.println("List: " + list);

 int count = list.size();
 System.out.println("Size of List: " + count);

 // Print each element with its index
 for(int i = 0; i < count; i++) {
 String element = list.get(i);
 System.out.println("Index=" + i + ", Element=" + element);
 }

 List<String> subList = list.subList(1, 3);
 System.out.println("Sub List 1 to 3(excluded): " + subList);

Index >> 0 2 3 4
Element >> John Richard Donna Ken

1
Sara

Figure 12-4. The resulting List after a new element is added at index 1 in the List in Figure 12-3

Now the List will look as shown in Figure 12-4.

Chapter 12 ■ ColleCtions

547

 // Remove "Donna" from the list
 list.remove("Donna"); // Same as list.remove(2);
 System.out.println("List (after removing Donna): " + list);
 }
}

List: [John, Richard, Donna, Ken]
Size of List: 4
Index=0, Element=John
Index=1, Element=Richard
Index=2, Element=Donna
Index=3, Element=Ken
Sub List 1 to 3(excluded): [Richard, Donna]
List (after removing Donna): [John, Richard, Ken]

A List lets you iterate over its elements using a specialized iterator represented by an instance of the
ListIterator interface. The ListIterator interface inherits the Iterator interface; it adds a few more methods to
give you access to elements in the list from the current position in the backward direction. You can get a list iterator for
all elements of the list or a sublist, like so:

List<String> list = new ArrayList<>();

// Populate the list here...

// Get a full list iterator
ListIterator<String> fullIterator = list.listIterator();

// Get a list iterator, which will start at index 5 in the forward direction.
// You can iterate to an index that’s less than 5 if you choose to.
ListIterator<String> partialIterator = list.listIterator(5);

The hasPrevious() method of the ListIterator returns true if there is an element before the current position
in the list iterator. To get the previous element, you need to use its previous() method. You can observe that the
hasPrevious() and previous() methods do the same work but in the opposite direction of the hasNext() and
next() methods. You can also get to the index of the next and previous element from the current position using its
nextIndex() and previousIndex() methods. It also has methods to insert, replace, and remove an element at the
current location.

Listing 12-14 demonstrates how to use a ListIterator. It iterates over elements of a List, first in the forward
direction and then in the backward direction. You do not need to recreate the ListIterator again to iterate in the
backward direction.

Listing 12-14. Iterating Over the Elements in a List in Forward and Backward Directions

// ListIteratorTest.java
package com.jdojo.collections;

import java.util.ArrayList;
import java.util.List;
import java.util.ListIterator;

Chapter 12 ■ ColleCtions

548

public class ListIteratorTest {
 public static void main(String[] args) {
 List<String> list = new ArrayList<>();
 list.add("John");
 list.add("Richard");
 list.add("Donna");
 list.add("Ken");

 System.out.println("List: " + list);

 // Get the list iterator
 ListIterator<String> iterator = list.listIterator();

 System.out.println();
 System.out.println("List Iterator in forward direction:");
 while (iterator.hasNext()) {
 int index = iterator.nextIndex();
 String element = iterator.next();
 System.out.println("Index=" + index + ", Element=" + element);
 }

 System.out.println();
 System.out.println("List Iterator in backward direction:");

 // Reuse the iterator to iterate from the end to the beginning
 while (iterator.hasPrevious()) {
 int index = iterator.previousIndex();
 String element = iterator.previous();
 System.out.println("Index=" + index + ", Element=" + element);
 }
 }
}

List: [John, Richard, Donna, Ken]

List Iterator in forward direction:
Index=0, Element=John
Index=1, Element=Richard
Index=2, Element=Donna
Index=3, Element=Ken

List Iterator in backward direction:
Index=3, Element=Ken
Index=2, Element=Donna
Index=1, Element=Richard
Index=0, Element=John

Chapter 12 ■ ColleCtions

549

Tip ■ a ListIterator lets you look ahead or look back in a List. if you use its next() method followed by the
previous() method, the iterator goes back to the same position. the call to the next() method moves it one index
forward and the call to the previous() method moves it one index backward.

Working with Queues
A queue is a collection based on the notion of a real-world queue. A queue is a collection of objects on which some
kind of processing is applied one element at a time. A queue has two ends known as head and tail. In the simple
queue, objects are added to the tail and removed from the head; the object added first will be removed first. However,
queues can be categorized based on the way it allows insertion and removal of its elements. In this section, I will
discuss the following types of queues:

A •	 simple queue allows insertion at the tail and removal from the head.

A •	 priority queue associates a priority with every element of the queue and allows the element
with the highest priority to be removed next from the queue.

A •	 delay queue associates a delay with every element of the queue and allows for the removal of
the element only when its delay has elapsed.

A •	 doubly ended queue allows for insertion and removal of its elements from the head as well as
the tail.

A •	 blocking queue blocks the thread that adds elements to it when it is full and it blocks the
thread removing elements from it when it is empty.

A •	 transfer queue is a special type of blocking queue where a handoff of an object occurs
between two threads (a producer and a consumer).

A •	 blocking doubly ended queue is a combination of a doubly ended queue and a blocking
queue.

Simple Queues
Simple queues are represented by an instance of the Queue interface. Typically, you hold a group of objects in a queue
for some kind of processing that is applied to one element at a time. For example, the line of customers at a counter in
a post office is an example of a queue. You can classify a queue based on many criteria.

How many elements can a queue hold? Sometimes you have an unlimited (at least theoretically) number
of elements in a queue, and sometimes it has a predefined number of elements. When the length of a queue is
unlimited, it is called an unbounded queue. When the length of the queue is predefined, it is called a bounded queue.
The bound of a queue defines its behavior when an element is added to a full bounded queue. Attempting to add an
element to a full queue may throw an exception; it may fail silently; it may wait indefinitely (or for a predefined time
period) for the queue to have room to accommodate the new element, etc. The exact behavior depends on the type of
the queue.

Which element of the queue comes out next? A queue always has an entry point and an exit point for its
elements. The exit point is called the head of the queue and the entry point is called the tail. The head and the tail
may be the same. If the head and the tail of a queue are the same, it is called a Last In, First Out (LIFO) queue. A LIFO
queue is also known as a stack. The head and the tail of a queue may be different. If a queue follows a rule that the
element entering the queue first will leave the queue first (first come, first served rule), it is called a First In, First Out
(FIFO) queue. Have you ever had a chance to stand in a queue for a long time and as soon as your turn comes, another

Chapter 12 ■ ColleCtions

550

person, who showed up after you, is served before you, based on a priority? Java also has this kind of queue and it
is called a priority queue. In a priority queue, you define the priority using a Comparator object or implement the
Comparable interface in an element’s class, and the next element in the queue to come out will be decided based on
the priority of the elements in the queue.

Tip ■ typically, a null element does not make sense in a Queue. after all, the purpose of having a queue is to apply
some processing logic on its elements or use the elements to perform some logic. in either case, a null value does not
make sense. it is up to the implementation of the Queue interface to allow or disallow null values. the use of null
elements in a queue is not recommended. if you use null elements in a queue, you will not be able to distinguish
between the null value returned from its method to indicate a special situation and the null value of the element.

A queue lets you perform three basic operations:

Add an element to its tail•	

Remove an element from its head•	

Peek the element at its head•	

The Queue interface defines two methods for each of the three operations. One method throws an exception if the
operation is not possible; the other method returns a value (false or null) to indicate the failure. The method you use
to perform the specific operation depends on your requirements. The Queue interface adds six methods to provide the
functionality of a FIFO queue. They are listed in Table 12-1.

Table 12-1. Additional Methods Declared by the Queue Interface

Category Method Description

Adding an element to the queue boolean add(E e) Adds an element to the queue if it is possible.
Otherwise, it throws an exception.

boolean offer(E e) Adds an element to the queue without throwing an
exception if the element cannot not be added. It
returns false on failure and true on success. It is
the preferred way to add an element in a bounded
queue.

Removing an element from the
queue

E remove() Retrieves and removes the head of the queue.
It throws an exception if the queue is empty.

E poll() Performs the same job as the remove() method.
However, it returns null if the queue is empty
instead of throwing an exception.

Peeking at the head of the queue E element() Retrieves the head of the queue without removing it
from the queue. It throws an exception if the queue
is empty.

E peek() Performs the same job as the element() method.
However, it returns null if the queue is empty
instead of throwing an exception.

Chapter 12 ■ ColleCtions

551

The LinkedList and PriorityQueue are two implementation classes for the Queue interface. Note that the
LinkedList class is also the implementation class for the List interface. The LinkedList class is a multi-purpose
collection implementation class. I will mention its name a few more times in this chapter.

Listing 12-15 demonstrates how to use a LinkedList as a FIFO queue. In fact, it is the Queue interface that
represents a FIFO queue. An instance of the LinkedList class can be used as a FIFO queue or a LIFO queue.

Listing 12-15. Using a FIFO Queue Using LinkedList as the Implementation Class

// QueueTest.java
package com.jdojo.collections;

import java.util.Queue;
import java.util.LinkedList;
import java.util.NoSuchElementException;

public class QueueTest {
 public static void main(String[] args) {
 Queue<String> queue = new LinkedList<>();
 queue.add("John");

 // offer() will work the same as add()
 queue.offer("Richard");
 queue.offer("Donna");
 queue.offer("Ken");

 System.out.println("Queue: " + queue);

 // Let’s remove elements until the queuee is empty
 while (queue.peek() != null) {
 System.out.println("Head Element: " + queue.peek());
 queue.remove();
 System.out.println("Removed one element from Queue");
 System.out.println("Queue: " + queue);
 }

 // Now Queue is empty. Try calling the peek(),
 // element(), poll() and remove() methods
 System.out.println("queue.isEmpty(): " + queue.isEmpty());

 System.out.println("queue.peek(): " + queue.peek());
 System.out.println("queue.poll(): " + queue.poll());

 try {
 String str = queue.element();
 System.out.println("queue.element(): " + str);
 }
 catch (NoSuchElementException e) {
 System.out.println("queue.element(): Queue is empty.");
 }

Chapter 12 ■ ColleCtions

552

 try {
 String str = queue.remove();
 System.out.println("queue.remove(): " + str);
 }
 catch (NoSuchElementException e) {
 System.out.println("queue.remove(): Queue is empty.");
 }
 }
}

Queue: [John, Richard, Donna, Ken]
Head Element: John
Removed one element from Queue
Queue: [Richard, Donna, Ken]
Head Element: Richard
Removed one element from Queue
Queue: [Donna, Ken]
Head Element: Donna
Removed one element from Queue
Queue: [Ken]
Head Element: Ken
Removed one element from Queue
Queue: []
queue.isEmpty(): true
queue.peek(): null
queue.poll(): null
queue.element(): Queue is empty.
queue.remove(): Queue is empty.

How do you create a LIFO queue? An instance of the Stack class represents a LIFO queue. The Stack class was not
designed properly. It inherits the java.util.Vector class. You can roll out your own representation of a LIFO queue
using the LinkedList class easily. I will discuss the Deque collection interface in the next section and you will see how
to use it as a LIFO queue. You will also develop your own LIFO queue.

Priority Queues
A priory queue is a queue in which each element has an associated priority. The element with the highest priority is
removed next from the queue. Java provides PriorityQueue as an implementation class for an unbounded priority
queue. You can use natural order of the elements of the queue as its priority. In this case, the elements of the queue
must implement the Comparable interface. You can also supply a Comparator object, which will determine the priority
order of the elements. When you add a new element to a priority queue, it is positioned in the queue based on its
priority. How the priority is decided in the queue is up to you to implement.

Let’s develop a priority queue based on natural ordering of its elements. Let’s extend your Person class
to implement the Comparable interface. You will call your new class ComparablePerson. The priority of a
ComparablePerson will be decided on two criteria, id and name. If the id is higher, its priority is lower. If persons have
the same id, the name will be used to decide the priority based on the alphabetical order of the names. Listing 12-16
has the code for the ComparablePerson class.

Chapter 12 ■ ColleCtions

553

Listing 12-16. A ComparablePerson Class

// ComparablePerson.java
package com.jdojo.collections;

public class ComparablePerson extends Person implements Comparable {
 public ComparablePerson(int id, String name) {
 super(id, name);
 }

 @Override
 public int compareTo(Object o) {
 ComparablePerson cp = (ComparablePerson) o;
 int cpId = cp.getId();
 String cpName = cp.getName();

 if (this.getId() < cpId) {
 return -1;
 }

 if (this.getId() > cpId) {
 return 1;
 }

 if (this.getId() == cpId) {
 return this.getName().compareTo(cpName);
 }

 // Should not reach here
 return 0;
 }
}

Listing 12-17 demonstrates how to use a priority queue.

Listing 12-17. Using a Priority Queue

// PriorityQueueTest.java
package com.jdojo.collections;

import java.util.Queue;
import java.util.PriorityQueue;

public class PriorityQueueTest {
 public static void main(String[] args) {
 Queue<ComparablePerson> pq = new PriorityQueue<>();
 pq.add(new ComparablePerson(1, "John"));
 pq.add(new ComparablePerson(4, "Ken"));
 pq.add(new ComparablePerson(2, "Richard"));
 pq.add(new ComparablePerson(3, "Donna"));
 pq.add(new ComparablePerson(4, "Adam"));

 System.out.println("Priority queue: " + pq);

Chapter 12 ■ ColleCtions

554

 while (pq.peek() != null) {
 System.out.println("Head Element: " + pq.peek());
 pq.remove();
 System.out.println("Removed one element from Queue");
 System.out.println("Priority queue: " + pq);
 }
 }
}

Priority queue: [(1, John), (3, Donna), (2, Richard), (4, Ken), (4, Adam)]
Head Element: (1, John)
Removed one element from Queue
Priority queue: [(2, Richard), (3, Donna), (4, Adam), (4, Ken)]
Head Element: (2, Richard)
Removed one element from Queue
Priority queue: [(3, Donna), (4, Ken), (4, Adam)]
Head Element: (3, Donna)
Removed one element from Queue
Priority queue: [(4, Adam), (4, Ken)]
Head Element: (4, Adam)
Removed one element from Queue
Priority queue: [(4, Ken)]
Head Element: (4, Ken)
Removed one element from Queue
Priority queue: []

There is one important thing that you will notice in the output. When you print the queue, its elements are not
ordered the way you would expect. You would expect that the element returned by the next call to the peek() method
should be at head of the queue. Note that a queue is never used to iterate over its elements. Rather, it is used to
remove one element from it, process that element, and then remove another element. The PriorityQueue class does
not guarantee any ordering of the elements when you use an iterator. Its toString() method uses its iterator to give
you the string representation of its elements. This is the reason that when we print the priority queue, its elements are
not ordered according to their priority. However, when we use the peek() or remove() method, the correct element
is peeked at or removed, which is based on the element’s priority. In your case, id and name are used to order the
elements. Therefore, the element with the least id and name (alphabetical order) has the highest priority.

Using a Comparator object in a priority queue is easy. You must specify your Comparator object when you create
an object of the PriorityQueue class. Listing 12-18 demonstrates how to use a Comparator object to have a priority
queue for the list of ComparablePerson. It uses the alphabetical ordering of the name of a ComparablePerson as the
criterion to determine its priority. The person whose name comes first in the alphabetical order has higher priority.

Listing 12-18. Using a Comparator Object in a Priority Queue

// PriorityQueueComparatorTest.java
package com.jdojo.collections;

import java.util.Queue;
import java.util.PriorityQueue;
import java.util.Comparator;

public class PriorityQueueComparatorTest {
 public static void main(String[] args) {

Chapter 12 ■ ColleCtions

555

 int initialCapacity = 5;
 Comparator<ComparablePerson> nameComparator =
 Comparator.comparing(ComparablePerson::getName);

 Queue<ComparablePerson> pq =
 new PriorityQueue<>(initialCapacity, nameComparator);
 pq.add(new ComparablePerson(1, "John"));
 pq.add(new ComparablePerson(4, "Ken"));
 pq.add(new ComparablePerson(2, "Richard"));
 pq.add(new ComparablePerson(3, "Donna"));
 pq.add(new ComparablePerson(4, "Adam"));

 System.out.println("Priority queue: " + pq);

 while (pq.peek() != null) {
 System.out.println("Head Element: " + pq.peek());
 pq.remove();
 System.out.println("Removed one element from Queue");
 System.out.println("Priority queue: " + pq);
 }
 }
}

Priority queue: [(4, Adam), (3, Donna), (2, Richard), (4, Ken), (1, John)]
Head Element: (4, Adam)
Removed one element from Queue
Priority queue: [(3, Donna), (1, John), (2, Richard), (4, Ken)]
Head Element: (3, Donna)
Removed one element from Queue
Priority queue: [(1, John), (4, Ken), (2, Richard)]
Head Element: (1, John)
Removed one element from Queue
Priority queue: [(4, Ken), (2, Richard)]
Head Element: (4, Ken)
Removed one element from Queue
Priority queue: [(2, Richard)]
Head Element: (2, Richard)
Removed one element from Queue
Priority queue: []

Double Ended Queues
A doubly ended queue or deque is an extended version of a queue to allow insertion and removal of elements from
both ends (the head and the tail). An instance of Deque represents a doubly ended queue. The name Deque does not
mean opposite of Queue. Rather, it means “Double ended queue”. It is pronounced “deck,” not “de queue.”

The Deque interface extends the Queue interface. It declares additional methods to facilitate all the operations for a
queue at the head as well as at the tail. It can be used as a FIFO queue or a LIFO queue. You already know what a Queue
is and how to use it. A Deque is just another version of a queue that can be used to represent different kinds of queues,
not just a FIFO queue. All you have to do in this section is learn about the new methods that the Deque interface offers.

Chapter 12 ■ ColleCtions

556

Table 12-2 lists the new methods that are declared in the Deque interface to facilitate insertion, removal, and peeking at
either end (head or tail) of a Deque. In the method names, first means head and last means tail.

Table 12-3. Method Comparison of the Queue and Deque Interfaces

Method in Queue Equivalent Method in Deque

add(e) addLast(e)

offer(e) offerLast(e)

remove() removeFirst()

poll() pollFirst()

element() getFirst()

peek() peekFirst()

Table 12-2. New Methods in Deque Interface for Insertion, Removal, and Peek Operations at Both Ends

Category Method Description

Adding an element to the Deque void addFirst(E)
void addLast(E)

boolean offerFirst(E)
boolean offerLast(E)

The addXxx() methods add an element at the head
or tail, and they throw an exception if an element
cannot be added, such as in a full bounded Deque.

The offerXxx() methods work the same way as
the addXxx() methods. However, they do not throw
an exception on failure. Rather, they return false if
the specified element cannot be added to a Deque.

Removing an element from the
Deque

E removeFirst()
E removeLast()

E pollFirst()
E pollLast()

The removeXxx() methods retrieve and remove the
element from the head or tail of the Deque. They
throw an exception if the Deque is empty.

The pollXxx() methods perform the same job as
the removeXxx() methods. However, they return
null if the Deque is empty.

Peeking at an element at end of
the Deque

E getFirst()
E getLast()

E peekFirst()
E peekLast()

The getXxx() methods retrieve without removing
the element at the head or the tail of the Deque.
They throw an exception if the Deque is empty.

The peekXxx() methods perform the same job as
the getXxx()methods. However, they return null if
the Deque is empty instead of throwing an exception.

Since Deque inherits from Queue, a Deque can also act like a FIFO queue. Table 12-3 compares the methods in the
Queue interface and their equivalent methods in the Deque interface.

Since, in a FIFO queue, you always add an element at the tail (or Last), the add() method in the Queue interface
does the same thing as what the addLast() method does in the Deque interface.

You can also use a Deque as a stack (a LIFO queue) using familiar methods such as push(), pop(), and peek().
The push() method pushes (or adds) an element to the top of the stack that is the same as using the method
addFirst(). The pop() method pops (or removes) the element from the top of the stack that is the same as calling

Chapter 12 ■ ColleCtions

557

the removeFirst() method. The peek() method retrieves, but does not remove, the element at the top of the stack; if
the stack is empty, it returns null. Calling the peek() method is the same as calling the peekFirst() method. A stack
needs four methods to perform its operations: isEmpty(), push(), pop() and peek(). Table 12-4 lists the stack specific
methods in the Deque interface and their alternate versions.

Table 12-4. Deque Methods Named Specifically to be Used with Stacks

Stack Specific Methods in Deque Equivalent Alternate Methods in Deque

isEmpty() Inherited from the Collection interface

push(E e) addFirst(E e)

pop() removeFirst()

peek() peekFirst()

Looking at the methods that you have seen so far in the Deque interface, you can say that it is a huge interface.
A programmer can easily get confused if he does not learn this interface by breaking its methods down into separate
categories. The Deque interface has methods that fall into the following four categories:

Methods that let you insert, remove, and peek elements at the head and tail of the •	 Deque,
as listed in Table 12-2. All these methods are enough to use a Deque as any queue you want.
However, it offers some more methods with different names to accomplish the same thing.

Methods that let you use a •	 Deque as a FIFO queue (or simply as Queue). They are listed in
Table 12-3.

Methods that let you use familiar method names that are used with stacks. Note that these •	
methods are not performing anything new other than insertion, removal, and peeking. They
just have different names. They are listed in Table 12-4.

Some utility methods that help you work with a •	 Deque in specific situations. For example,
its descendingIterator() method returns an Iterator object that lets you iterate
over its elements in a reverse order (from tail to head). It also adds two methods called
removeFirstOccurrence(Object o) and removeLastOccurrence(Object o) that let you
remove the first occurrence (starting from the head and going towards the tail) and last
occurrence (starting from the tail and going towards the head) of an object in the Deque,
respectively. Now you can relax—there are no more new methods in the Deque to learn.

The ArrayDeque and LinkedList classes are two implementation classes for the Deque interface. The ArrayDeque
class is backed by an array whereas the LinkedList class is backed by a linked list. You should use the ArrayDeque
as a Deque implementation if you are using a Deque as a LIFO queue (or a stack). The LinkedList implementation
performs better if you use a Deque as a FIFO queue (or simply as a Queue).

Listing 12-19 demonstrates how to use a Deque as a FIFO queue. If you compare this program with the program
in Listing 12-15, in this program you have just used Deque-specific methods to perform the same thing as what you
accomplished with the methods of the Queue interface. Suppose a method accepts an argument of type Queue. If you
pass a Deque to that method, your Deque will be used as a FIFO queue inside that method.

Chapter 12 ■ ColleCtions

558

Listing 12-19. Using a Deque as a FIFO Queue

// DequeAsQueue.java
package com.jdojo.collections;

import java.util.Deque;
import java.util.LinkedList;
import java.util.NoSuchElementException;

public class DequeAsQueue {
 public static void main(String[] args) {
 // Create a Deque and add elements at its tail using
 // addLast() or offerLast() method
 Deque<String> deque = new LinkedList<>();
 deque.addLast("John");
 deque.offerLast("Richard");
 deque.offerLast("Donna");
 deque.offerLast("Ken");

 System.out.println("Deque: " + deque);

 // Let's remove elements from the Deque until it is empty
 while (deque.peekFirst() != null) {
 System.out.println("Head Element: " + deque.peekFirst());
 deque.removeFirst();
 System.out.println("Removed one element from Deque");
 System.out.println("Deque: " + deque);
 }

 // Now, the Deque is empty. Try to call its peekFirst(),
 // getFirst(), pollFirst() and removeFirst() methods
 System.out.println("deque.isEmpty(): " + deque.isEmpty());

 System.out.println("deque.peekFirst(): " + deque.peekFirst());
 System.out.println("deque.pollFirst(): " + deque.pollFirst());

 try {
 String str = deque.getFirst();
 System.out.println("deque.getFirst(): " + str);
 }
 catch (NoSuchElementException e) {
 System.out.println("deque.getFirst(): Deque is empty.");
 }

 try {
 String str = deque.removeFirst();
 System.out.println("deque.removeFirst(): " + str);
 }
 catch (NoSuchElementException e) {
 System.out.println("deque.removeFirst(): Deque is empty.");
 }
 }
}

Chapter 12 ■ ColleCtions

559

Deque: [John, Richard, Donna, Ken]
Head Element: John
Removed one element from Deque
Deque: [Richard, Donna, Ken]
Head Element: Richard
Removed one element from Deque
Deque: [Donna, Ken]
Head Element: Donna
Removed one element from Deque
Deque: [Ken]
Head Element: Ken
Removed one element from Deque
Deque: []
deque.isEmpty(): true
deque.peekFirst(): null
deque.pollFirst(): null
deque.getFirst(): Deque is empty.
deque.removeFirst(): Deque is empty.

Listing 12-20 demonstrates how to use a Deque as a stack (or LIFO queue).

Listing 12-20. Using a Deque as a Stack

// DequeAsStack.java
package com.jdojo.collections;

import java.util.ArrayDeque;
import java.util.Deque;

public class DequeAsStack {
 public static void main(String[] args) {
 // Create a Deque and use it as stack
 Deque<String> deque = new ArrayDeque<>();
 deque.push("John");
 deque.push("Richard");
 deque.push("Donna");
 deque.push("Ken");

 System.out.println("Stack: " + deque);

 // Let’s remove all elements from the Deque
 while (deque.peek() != null) {
 System.out.println("Element at top: " + deque.peek());
 System.out.println("Popped: " + deque.pop());
 System.out.println("Stack: " + deque);
 }

 System.out.println("Stack is empty: " + deque.isEmpty());
 }
}

Chapter 12 ■ ColleCtions

560

Stack: [Ken, Donna, Richard, John]
Element at top: Ken
Popped: Ken
Stack: [Donna, Richard, John]
Element at top: Donna
Popped: Donna
Stack: [Richard, John]
Element at top: Richard
Popped: Richard
Stack: [John]
Element at top: John
Popped: John
Stack: []
Stack is empty: true

Note that even if the Deque provides all the methods that you need to use it as a stack, it does not give a
programmer a collection type that can be truly used as a stack. If you need a stack in a method as its argument, you
will need to declare it as a Deque type as shown:

public class MyClass {
 public void myMethod(Deque stack){
 /* This method is free to use (or misuse) stack argument
 as a FIFO even though it needs only a LIFO queue
 */
 }
}

The myMethod() is passed a Deque when it needs a stack. If you trust myMethod(), it’s fine. Otherwise, it can access
elements of the Deque in any way the Deque interface allows. It is not limited to use only as a stack. The only way you
can stop the user of your Deque to use it only as a stack is to roll out your own interface and an implementation class.
The Stack class works as a stack. However, you are advised not to use the Stack class to work with a stack as it has the
same problem that you are trying to solve.

You can create an interface named LIFOQueue with four methods: isEmpty(), push(), pop(), and peek(). You
can create an implementation class named ArrayLIFOQueue, which implements the LIFOQueue interface. Your
ArrayLIFOQueue class will wrap an ArrayDeque object. All of its methods will be delegated to ArrayDeque. And that is
all. Note that by creating a new LIFOQueue interface and its implementation, you are diverting from the Collections
Framework. Your new interface and classes will be outside the Collections Framework. However, if you do need to
implement your own version of a data structure that can be used strictly as a stack, you can do so.

There is another way to create a stack from a Deque. You can convert a Deque to a LIFO Queue using the
asLifoQueue() static method of the Collections class. The method signature is as follows:

•	 public static <T> Queue<T> asLifoQueue(Deque<T> deque)

The following snippet of code creates a stack from a Deque:

Deque<String> deque = create a Deque ;
// Get a LIFO queue from Deque
Queue<String> stack = Collections.asLifoQueue(deque);

// Now, you can pass around stack reference, which can be used only as a LIFO queue

Chapter 12 ■ ColleCtions

561

Blocking Queues
You have seen the behavior of a Queue in two extreme cases:

When you want to add an element to it when it is full•	

When you want to remove an element from it when it is empty•	

A queue specifies two types of methods to deal with insertion, removal, and peeking in these two extreme cases:
one type of method throws an exception whereas the other type of method returns a special value.

A blocking queue extends the behavior of a queue in dealing with these extreme cases. It adds two more sets of
methods: one set of methods blocks indefinitely and another set of methods lets you specify a time period to block.

An instance of the BlockingQueue interface represents a blocking queue. The BlockingQueue interface inherits
from the Queue interface. Here are two additional features that the BlockingQueue interface offers:

It adds two methods called •	 put() and offer() to let you add an element to the blocking
queue at its tail. The put() method blocks indefinitely if the blocking queue is full until space
becomes available in the queue. The offer() method lets you specify the time period to wait
for space to become available in the blocking queue. It returns true if the specified element
was added successfully; it returns false if the specified time period elapsed before the space
became available for the new element.

It adds two methods called •	 take() and poll() to let you retrieve and remove the head from
the blocking queue. The take() method blocks indefinitely if the blocking queue is empty.
The poll() method lets you specify a time period to wait if the blocking queue is empty; it
returns null if the specified time elapses before an element became available.

If you use methods from the Queue interface with a BlockingQueue, they would behave as if you are using a Queue.
A BlockingQueue is designed to be thread-safe. Usually it is used in a producer/consumer-like situation where some
threads (called producers) add elements to it and some threads (called consumers) remove elements from it.

A blocking queue does not allow a null element. A blocking queue can be bounded or unbounded. It adds
another method called remainingCapacity() that returns the number of elements that can be added to the blocking
queue without blocking. You need to be careful in basing your decision on the return value of this method. There may
be other threads attempting to add elements to the blocking queue at the same time you call this method. In such
cases, when you attempt to add new elements based on the return value of this method, your elements may not be
added, even though you know that there is some space available. The real test whether an element can be added to a
blocking queue or not is to attempt to add one and check the return value of the put() or offer() method.

There is one more thing that is related to a blocking queue: fairness. Fairness is used to handle situations where
multiple threads are blocked to perform insertion or removal. If a blocking queue is fair, it will allow the longest
waiting thread to perform the operation when a condition arises that allows the operation to proceed. If the blocking
queue is not fair, the order in which the blocked threads are allowed to perform the operation is not specified. Specific
implementations determine fairness availability.

The BlockingQueue interface and all its implementation classes are in the java.util.concurrent package. The
following are the implementation classes for the BlockingQueue interface:

•	 ArrayBlockingQueue: It is a bounded implementation class for BlockingQueue. It is backed by
an array. It also lets you specify the fairness of the blocking queue in its constructor. By default,
it is not fair.

•	 LinkedBlockingQueue: It is another implementation class for BlockingQueue. It can be used
as a bounded or unbounded blocking queue. It does not allow specifying a fairness rule for the
blocking queue.

•	 PriorityBlockingQueue: It is an unbounded implementation class for BlockingQueue. It
works the same way as PriortyQueue for ordering the elements in the blocking queue. It adds
the blocking feature to PriorityQueue.

Chapter 12 ■ ColleCtions

562

•	 SynchronousQueue: It is a special type of implementation of BlockingQueue. It does not have
any capacity. The put operation waits for the take operation to take the element being put.
It facilitates a kind of handshake between two threads. One thread tries to put an element
to the blocking queue that must wait until there is a thread that tries to take the element. It
facilitates an exchange of an object between two threads. You can also specify the fairness rule
for the queue. For all practical purposes, this blocking queue is always empty. It seems to have
an element only when there are two threads: one trying to add an element and one trying to
remove an element. Its isEmpty() method always returns true.

•	 DelayQueue: It is another unbounded implementation class for BlockingQueue. It allows
an element to be taken out only if a specified delay has passed for that element. If there are
multiple elements in the blocking queue whose specified delay has passed, the element whose
delay passed earliest will be placed at the head of the blocking queue.

Let’s start with an example of a producer/consumer application. Listing 12-21 has the code for a producer. It
accepts a blocking queue and a producer name in its constructor. It generates a string and adds it to the blocking
queue after waiting for a random number of seconds between 1 and 5. If the blocking queue is full, it will wait until the
space is available in the queue.

Listing 12-21. The Producer Class for a Blocking Queue

// BQProducer.java
package com.jdojo.collections;

import java.util.concurrent.BlockingQueue;
import java.util.Random;

public class BQProducer extends Thread {
 private final BlockingQueue<String> queue;
 private final String name;
 private int nextNumber = 1;
 private final Random random = new Random();

 public BQProducer(BlockingQueue<String> queue, String name) {
 this.queue = queue;
 this.name = name;
 }

 @Override
 public void run() {
 while (true) {
 try {
 String str = name + "-" + nextNumber;
 System.out.println(name + " is trying to add: " +
 str + ". Remaining capacity: " +
 queue.remainingCapacity());
 this.queue.put(str);
 nextNumber++;
 System.out.println(name + " added: " + str);

 // Sleep between 1 and 5 seconds
 int sleepTime = (random.nextInt(5) + 1) * 1000;
 Thread.sleep(sleepTime);
 }

Chapter 12 ■ ColleCtions

563

 catch (InterruptedException e) {
 e.printStackTrace();
 break;
 }
 }
 }
}

Listing 12-22 has code for a consumer. It does the opposite of what a producer does. It removes elements from
the blocking queue. If the blocking queue is empty, it waits indefinitely for an element to become available. Both the
producer and consumer run in an infinite loop.

Listing 12-22. The Consumer Class for a Blocking Queue

// BQConsumer.java
package com.jdojo.collections;

import java.util.concurrent.BlockingQueue;
import java.util.Random;

public class BQConsumer extends Thread {
 private final BlockingQueue<String> queue;
 private final String name;
 private final Random random = new Random();

 public BQConsumer(BlockingQueue<String> queue, String name) {
 this.queue = queue;
 this.name = name;
 }

 @Override
 public void run() {
 while (true) {
 try {
 System.out.println(name +
 " is trying to take an element. " +
 "Remaining capacity: " +
 queue.remainingCapacity());

 String str = this.queue.take();
 System.out.println(name + " took: " + str);

 // Sleep between 1 and 5 seconds
 int sleepTime = (random.nextInt(5) + 1) * 1000;
 Thread.sleep(sleepTime);
 }
 catch (InterruptedException e) {
 e.printStackTrace();
 break;
 }
 }
 }
}

Chapter 12 ■ ColleCtions

564

Listing 12-23 creates a bounded and fair blocking queue. It creates one producer and two consumers. Each
producer/consumer is created in a separate thread. A partial output has been shown. You will have to stop the
application manually. You may experiment with adding more producers or consumers and adjusting their sleep
times. Note that the messages printed in the output may not appear in the order that makes sense; this is typical in a
multi-threaded program. A thread performs an action and it is preempted before it can print a message stating that it
did perform the action. Meanwhile, you will see messages from another thread.

Listing 12-23. A Class to Run the Producer/Consumer Program

// BQProducerConsumerTest.java
package com.jdojo.collections;

import java.util.concurrent.BlockingQueue;
import java.util.concurrent.ArrayBlockingQueue;

public class BQProducerConsumerTest {
 public static void main(String[] args) {
 int capacity = 5;
 boolean fair = true;
 BlockingQueue<String> queue = new ArrayBlockingQueue<>(capacity, fair);

 // Create one producer and two consumer and let them produce
 // and consume indefinitely
 new BQProducer(queue, "Producer1").start();
 new BQConsumer(queue, "Consumer1").start();
 new BQConsumer(queue, "Consumer2").start();
 }
}

Consumer1 is trying to take an element. Remaining capacity: 5
Consumer2 is trying to take an element. Remaining capacity: 5
Producer1 is trying to add: Producer1-1. Remaining capacity: 5
Producer1 added: Producer1-1
Consumer1 took: Producer1-1
Producer1 is trying to add: Producer1-2. Remaining capacity: 5
Producer1 added: Producer1-2
Consumer2 took: Producer1-2
Consumer1 is trying to take an element. Remaining capacity: 5
Consumer2 is trying to take an element. Remaining capacity: 5
...

I will not discuss an example of PriorityBlockingQueue. You can use the PriorityBlockingQueue
implementation class to create the blocking queue in Listing 12-23 and the same example will work. Note that a
PriorityBlockingQueue is an unbounded queue. You may also want to use a different type of element (other than
a string), which will emulate the priority of elements in a better way. Please refer to Listing 12-17 for an example of a
simple non-blocking priority queue.

Chapter 12 ■ ColleCtions

565

Delay Queues
Let’s see an example of a DelayQueue. A DelayQueue is one of the implementation classes for the BlockingQueue
interface. It lets you implement a queue whose elements must stay in a queue for a certain amount of time (known as
a delay). How does the DelayQueue know about the amount of time an element has to be kept in the queue? It makes
use of an interface called Delayed to know the time an element must stay in the queue. The interface is in the
java.util.concurrent package. Its declaration is as follows:

public interface Delayed extends Comparable<Delayed> {
 long getDelay(TimeUnit timeUnit);
}

It extends the Comparable interface whose compareTo() method accepts a Delayed object. The DelayQueue calls
the getDelay() method of each element to know how long that element must be kept in the queue before it can be
taken out. The DelayQueue will pass a TimeUnit to this method. Your job is to convert the delay time of an element
to the TimeUnit being passed and return the value. For example, if you want to keep an element in the queue for 10
seconds, your getDelay(TimeUnit timeUnit) method will be implemented as follows:

public class DelayClass implement Delayed {
 public long getDelay(TimeUnit timeUnit){
 long delay = timeUnit.convert(10, TimeUnit.SECONDS);
 return delay;
 }
}

The element stays in the DelayQueue as long as the delay returned from the getDelay() method is a positive
number. When the getDelay() method returns a zero or a negative number, it is time for the element to get out of the
queue. However, there must be someone to take the element out of the queue when it is ready to get out. Typically,
you would call the take() method to take an element out of the queue. There may be many elements that are ready
(whose delay time has expired) to come out of the queue. Which one of the expired elements will be placed as the
head of the queue? The queue determines this by calling the compareTo() method of the elements. This method
determines the priority of an expired element to be removed from the queue with respect to the other expired
elements. Typically, you would decide that the element that has expired latest would be the first one to be removed.
However, it is up to you to decide which expired element will be ready to be removed next. You may decide just the
opposite, such as the element that has expired earliest should be removed first.

Listing 12-24 has code for a DelayedJob class. It implements the Delayed interface. Its constructor takes a job
name and a scheduled time for the job as arguments. The scheduled time could be in the past, the present, or in the
future. It is specified as a number, which represents the milliseconds passed between the specified time and midnight,
January 1, 1970 UTC. Its getDelay() method returns the delay time for this job. Its compareTo() method uses the
getDelay() method, so that the earliest expired element will be removed first. Its toString() method simply prints its
job name and scheduled time.

Listing 12-24. A DelayedJob Class That Implements the Delayed Interface

// DelayedJob.java
package com.jdojo.collections;

import java.time.Instant;
import java.util.concurrent.Delayed;
import java.util.concurrent.TimeUnit;
import static java.util.concurrent.TimeUnit.MILLISECONDS;
import static java.time.temporal.ChronoUnit.MILLIS;

Chapter 12 ■ ColleCtions

566

public class DelayedJob implements Delayed {
 private final Instant scheduledTime;
 String jobName;

 public DelayedJob(String jobName, Instant scheduledTime) {
 this.scheduledTime = scheduledTime;
 this.jobName = jobName;
 }

 @Override
 public long getDelay(TimeUnit unit) {
 // Positive delay means it should stay in queue. Zero or negative delay
 // means that it ready to be removed from the queue.
 long delay = MILLIS.between(Instant.now(), scheduledTime);

 // Convert the delay in millis into the specified unit
 long returnValue = unit.convert(delay, MILLISECONDS);
 return returnValue;
 }

 @Override
 public int compareTo(Delayed job) {
 long currentJobDelay = this.getDelay(MILLISECONDS);
 long jobDelay = job.getDelay(MILLISECONDS);

 int diff = 0;
 if (currentJobDelay > jobDelay) {
 diff = 1;
 }
 else if (currentJobDelay < jobDelay) {
 diff = -1;
 }
 return diff;
 }

 @Override
 public String toString() {
 String str = "(" + this.jobName + ", " + "Scheduled Time: " +
 this.scheduledTime + ")";
 return str;
 }
}

The program in Listing 12-25 shows how to use the DelayedJob objects as elements in a DelayQueue. It adds
three jobs (“Print Data”, “Populate Data”, and “Balance Data”) to the queue that are scheduled to run 9m, 3m, and 6000
seconds after the current time on your computer, respectively. Note the sequence of adding these jobs in the queue. I
have not added the job to be run first as the first element. It is the job of the DelayQueue to arrange the elements in its
queue based on their delay time returned from their getDelay() method. When you run this program, there will be a
delay of about 3 seconds because no elements will be expired and the take() method on the queue will be blocked.
When elements start expiring, you will see them getting removed one by one by the take() method in the while-loop.
You may get a different output when you run the program.

Chapter 12 ■ ColleCtions

567

Listing 12-25. Using a DelayQueue with Instances of DelayedJob as Its Element

// DelayQueueTest.java
package com.jdojo.collections;

import java.time.Instant;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.DelayQueue;

public class DelayQueueTest {
 public static void main(String[] args) throws InterruptedException {
 BlockingQueue<DelayedJob> queue = new DelayQueue<>();
 Instant now = Instant.now();

 // Create three delayed job and add them to the queue
 // Jobs should run in a sequence as
 // 1. Populate Data (After 3 seeconds)
 // 2. Balance Data (After 6 seconds)
 // 3. Print Data (After 9 seconds)
 queue.put(new DelayedJob("Print Data", now.plusSeconds(9)));
 queue.put(new DelayedJob("Populate Data", now.plusSeconds(3)));
 queue.put(new DelayedJob("Balance Data", now.plusSeconds(6)));

 while (queue.size() > 0) {
 System.out.println("Waiting to take a job from the queue...");
 DelayedJob job = queue.take();
 System.out.println("Took Job: " + job);
 }

 System.out.println("Finished running all jobs.");
 }
}

Waiting to take a job from the queue...
Took Job: (Populate Data, Scheduled Time: 2014-05-09T02:35:44.721Z)
Waiting to take a job from the queue...
Took Job: (Balance Data, Scheduled Time: 2014-05-09T02:35:47.721Z)
Waiting to take a job from the queue...
Took Job: (Print Data, Scheduled Time: 2014-05-09T02:35:50.721Z)
Finished running all jobs.

Transfer Queues
The transfer queue extends the functionality of a blocking queue. An instance of the TransferQueue represents a
transfer queue. In a TransferQueue, a producer will wait to hand off an element to a consumer. This is a useful feature
in a message passing application, where a producer makes sure that its message has been consumed by a consumer.
A producer hands off an element to a consumer using the transfer(E element) method of the TransferQueue.
When a producer invokes this method, it waits until a consumer takes its element. If the TransferQueue has some
elements, all its elements must be consumed before the element added by the transfer() method is consumed. The
tryTransfer() method provides a non-blocking and a timeout version of the method, which lets a producer transfer
an element immediately if a consumer is already waiting or wait for a specified amount of time.

Chapter 12 ■ ColleCtions

568

The TransferQueue has two more methods to get more information about the waiting consumers. The
getWaitingConsumerCount() method returns the number of waiting consumers. The hasWaitingConsumer() method
returns true if there is a waiting consumer; otherwise, it returns false.

The LinkedTransferQueue is an implementation class for the TransferQueue interface. It provides an
unbounded TransferQueue. It is based on FIFO. That is, the element that enters the TransferQueue first is removed
from the queue first.

Listing 12-26 contains code for a TQProducer class whose instance represents a producer for a TransferQueue.
The producer sleeps for a random number of seconds between 1 and 5. It generates an integer. If the integer is even, it
puts it in the queue. If the integer is odd, it tries to hand it off to a consumer using the transfer() method. Note that
if the TransferQueue has some elements, the consumer will consume those elements first, before it consumes the
element that a producer is trying to hand off using the transfer() method.

Listing 12-26. A TQProducer Class That Represents a Producer for a TransferQueue

// TQProducer.java
package com.jdojo.collections;

import java.util.Random;
import java.util.concurrent.TransferQueue;
import java.util.concurrent.atomic.AtomicInteger;

public class TQProducer extends Thread {
 private final String name;
 private final TransferQueue<Integer> tQueue;
 private final AtomicInteger sequence;
 private Random rand = new Random();

 public TQProducer(String name, TransferQueue<Integer> tQueue, AtomicInteger sequence) {
 this.name = name;
 this.tQueue = tQueue;
 this.sequence = sequence;
 }

 @Override
 public void run() {
 while (true) {
 try {
 // Sleep for 1 tp 5 random number of seconds
 int sleepTime = rand.nextInt(5) + 1;
 Thread.sleep(sleepTime * 1000);

 // Generate a sequence number
 int nextNum = this.sequence.incrementAndGet();

 // An even number is enqueued. An odd number is handed off
 // to a consumer
 if (nextNum % 2 == 0) {
 System.out.format("%s: Enqueuing: %d%n", name, nextNum);
 tQueue.put(nextNum); // Enqueue
 }

Chapter 12 ■ ColleCtions

569

 else {
 System.out.format("%s: Handing off: %d%n",
 name, nextNum);
 System.out.format("%s: has a waiting consumer: %b%n",
 name, tQueue.hasWaitingConsumer());
 tQueue.transfer(nextNum); // A hand off
 }
 }
 catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }
}

Listing 12-27 contains the code for a consumer that consumes elements from a TransferQueue. It sleeps for 1 to
5 seconds randomly and consumes an element from the TransferQueue.

Listing 12-27. A TQConsumer Class That Represents a Consumer for a TransferQueue

// TQConsumer.java
package com.jdojo.collections;

import java.util.Random;
import java.util.concurrent.TransferQueue;

public class TQConsumer extends Thread {
 private final String name;
 private final TransferQueue<Integer> tQueue;
 private final Random rand = new Random();

 public TQConsumer(String name, TransferQueue<Integer> tQueue) {
 this.name = name;
 this.tQueue = tQueue;
 }

 @Override
 public void run() {
 while (true) {
 try {
 // Sleep for 1 tp 5 random number of seconds
 int sleepTime = rand.nextInt(5) + 1;
 Thread.sleep(sleepTime * 1000);

 int item = tQueue.take();
 System.out.format("%s removed: %d%n", name, item);
 }
 catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }
}

Chapter 12 ■ ColleCtions

570

Listing 12-28 contains the code to test a TransferQueue. You may get a different output when you
run the program.

Listing 12-28. A Class to Test a TransferQueue

// TQProducerConsumerTest.java
package com.jdojo.collections;

import java.util.concurrent.LinkedTransferQueue;
import java.util.concurrent.TransferQueue;
import java.util.concurrent.atomic.AtomicInteger;

public class TQProducerConsumerTest {
 public static void main(String[] args) {
 final TransferQueue<Integer> tQueue = new LinkedTransferQueue<>();
 final AtomicInteger sequence = new AtomicInteger();

 // Initialize transfer queue with five items
 for(int i = 0; i < 5; i++) {
 try {
 tQueue.put(sequence.incrementAndGet());
 }
 catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

 System.out.println("Initial queue: " + tQueue);

 // Create and start a producer and a consumer
 new TQProducer("Producer-1", tQueue, sequence).start();
 new TQConsumer("Consumer-1", tQueue).start();
 }
}

Initial queue: [1, 2, 3, 4, 5]
Producer-1: Enqueuing: 6
Consumer-1 removed: 1
Consumer-1 removed: 2
Producer-1: Handing off: 7
Producer-1: has a waiting consumer: false
Consumer-1 removed: 3
Consumer-1 removed: 4
Consumer-1 removed: 5
Consumer-1 removed: 6
Consumer-1 removed: 7
Producer-1: Enqueuing: 8
Consumer-1 removed: 8
...

Chapter 12 ■ ColleCtions

571

The program creates a TransferQueue and adds five elements to it. It creates and starts a producer and a
consumer. Its output needs a little explanation. You added five elements initially to make sure the consumer will have
some elements to consume from the TransferQueue when the producer tries to transfer an element. The producer
got the first go. It puts the integer 6 into the queue. The consumer removed the integer 1 from the queue. At this time,
the producer tried to hand off the integer 7 to the consumer, leaving five elements (2, 3, 4, 5, and 6) still queued in
the TransferQueue. The consumer must remove all these elements from the TransferQueue, before it will accept
the transfer request for the integer 7 from the producer. This is evident from the output. The consumer removes the
elements 2, 3, 4, 5, and 6, and then the element 7. Both the producer and the consumer run in infinite loops. You need
to stop the program manually.

Blocking Doubly Ended Queues
A blocking, doubly ended queue provides the functionality of a doubly ended queue and a blocking queue. An
instance of the BlockingDeque interface represents a blocking, doubly ended queue. It inherits from the Deque and
BlockingQueue interfaces. It adds eight more methods to add and remove elements from the head and the tail. These
methods block indefinitely or for a specified amount of time, as in the case of a BlockingQueue. The new methods are
putXxx(), offerXxx(), takeXxx(), and pollXxx(), where Xxx is First or Last. The method with the suffix First is
used to put or take an element from the head of the Deque, whereas the method with the suffix Last is used to put or
take an element from its tail. Please refer to the “Double Ended Queues” and “Blocking Queue” sections described
earlier in this chapter for more details on using these methods.

The LinkedBlockingDeque class is an implementation class for the BlockingDeque interface. It supports bounded
as well as unbounded blocking deque.

Working with Maps
A map represents a type of collection that is different from the collections that you have seen so far. It contains
key-value mappings. It is easy to visualize a map as a table with two columns. The first column of the table contains
keys; the second column contains the values associated with the keys. Table 12-5 shows person names as keys and
their phone numbers as values. You can think of this table representing a map that contains mapping between names
and phone numbers. Sometimes a map is also known as a dictionary. In a dictionary, you have a word and you look
up its meanings. Similarly, in a map, you have a key and you look up its value.

Table 12-5. A Table with Two Columns, Key and Value. Each Row Contains a Key-Value Pair.

Key Value

John (342)113-9878

Richard (245)890-9045

Donna (205)678-9823

Ken (205)678-9823

If you still have problem visualizing a map, you can think of it as a collection in which each element represents
a key-value pair as <key, value>. A <key, value> pair is also known as an entry in the map. The key and the value
must be reference types. You cannot use primitive types (int, double, etc.) for either keys or values in a map.

A map is represented by an instance of the Map<K,V> interface. The Map interface is not inherited from the
Collection interface. A Map does not allow any duplicate keys. Each key is mapped to exactly one value. In other words,
each key in a Map has exactly one value. Values do not have to be unique. That is, two keys may map to the same value.

Chapter 12 ■ ColleCtions

572

A Map allows for at most one null value as its key and multiple null values as its values. However, an
implementation class may restrict null as a value in a Map.

The methods in the Map interface may be classified in the following four categories depending on the operations
they perform:

Methods for basic operations•	

Methods for bulk operations•	

Methods for view operations•	

Methods for comparison operations•	

The methods in the basic operations category let you perform basic operations on a Map, for example, putting an
entry into a Map, getting the value for a specified key, getting the number of entries, removing an entry, checking if the
Map is empty, etc. Examples of methods in this category are as follows:

•	 int size()

•	 boolean isEmpty()

•	 boolean containsKey (Object key)

•	 boolean containsValue (Object value)

•	 V get(Object key)

•	 V getOrDefault(Object key, V defaultValue)

•	 V put(K key, V value)

•	 V putIfAbsent(K key, V value)

•	 V remove (Object key)

•	 boolean remove(Object key, Object value)

•	 boolean replace(K key, V oldValue, V newValue)

The methods in the bulk operations category let you perform bulk operations on a Map such as copying entries to
a Map from another Map and removing all entries from the Map. Examples of methods in this category are as follows:

•	 void clear()

•	 void putAll (Map<? extends K, ? extends V> t)

•	 void replaceAll(BiFunction<? super K,? super V,? extends V> function)

The view operations category contains three methods. Each returns a different view of a Map. You can view all
keys in a Map as a Set, all values as a Collection, and all <key, value> pairs as a Set. Note that all keys and all <key,
value> pairs are always unique in a Map and that is the reason why you get their Set views. Since a Map may contain
duplicate values, you get a Collection view of its values. Examples of methods in this category are as follows:

•	 Set<K> keySet()

•	 Collection<V> values()

•	 Set<Map. Entry<K, V>>entrySet()

Chapter 12 ■ ColleCtions

573

The comparison operations methods deal with comparing two Maps for equality. Examples of methods in this
category are as follows:

•	 boolean equals (Object o)

•	 int hashCode()

The HashMap, LinkedHashMap, and WeakHashMap are three of the available implementation classes
for the Map interface.

The HashMap allows one null value as a key and multiple null values as the values. The following snippet of code
demonstrates how to create and use a Map. A HashMap does not guarantee any specific iteration order of entries in the Map.

// Create a map using HashMap as the implementation class
Map<String, String> map = new HashMap<>();

// Put an entry to the map - "John" as the key and "(342)113-9878" as the value
map.put("John", "(342)113-9878");

The LinkedHashMap is another implementation class for the Map interface. It stores entries in the Map using a
doubly linked list. It defines the iteration ordering as the insertion order of the entries. If you want to iterate over
entries in a Map in its insertion order, you need to use LinkedHashMap instead of HashMap as the implementation class.

Listing 12-29 demonstrates how to use a Map. Note that the methods remove() and get() return the value of a
key. If the key does not exist in the Map, they return a null. You must use the containsKey() method to check if a key
exists in a Map or use the getOrDefault() method that lets you specify the default value in case the key does not exist
in the map. The toString() method returns a well-formatted string for all entries in the Map. It places all entries inside
braces ({}). Each entry is formatted in key=value format. A comma separates two entries. The toString() method of
the Map returns a string like {key1=value1, key2=value2, key3=value3 ...}.

Listing 12-29. Using a Map

// MapTest.java
package com.jdojo.collections;

import java.util.HashMap;
import java.util.Map;

public class MapTest {
 public static void main(String[] args) {
 // Create a map and add some key-value pairs
 Map<String,String> map = new HashMap<>();
 map.put("John", "(342)113-9878");
 map.put("Richard", "(245)890-9045");
 map.put("Donna", "(205)678-9823");
 map.put("Ken", "(205)678-9823");

 // Print the details
 printDetails(map);

 // Remove all entries from the map
 map.clear();

 System.out.printf("%nRemoved all entries from the map.%n%n");

Chapter 12 ■ ColleCtions

574

 // Print the details
 printDetails(map);
 }

 public static void printDetails(Map<String,String> map) {
 // Get the value for the "Donna" key
 String donnaPhone = map.get("Donna");

 // Print details
 System.out.println("Map: " + map);
 System.out.println("Map Size: " + map.size());
 System.out.println("Map is empty: " + map.isEmpty());
 System.out.println("Map contains Donna key: " + map.containsKey("Donna"));
 System.out.println("Donna Phone: " + donnaPhone);
 System.out.println("Donna key is removed: " + map.remove("Donna"));
 }
}

Map: {Donna=(205)678-9823, Ken=(205)678-9823, John=(342)113-9878, Richard=(245)890-9045}
Map Size: 4
Map is empty: false
Map contains Donna key: true
Donna Phone: (205)678-9823
Donna key is removed: (205)678-9823

Removed all entries from the map.

Map: {}
Map Size: 0
Map is empty: true
Map contains Donna key: false
Donna Phone: null
Donna key is removed: null

The WeakHashMap class is another implementation for the Map interface. As the name of the class implies,
it contains weak keys. When there is no reference to the key except in the map, keys are candidates for garbage
collection. If a key is garbage collected, its associated entry is removed from the Map. You use a WeakHashMap as
implementation class for a Map when you want to maintain a cache of key-value pairs and you do not mind if your
key-value pairs are removed from the Map by the garbage collector. The WeakHashMap implementation allows a null
key and multiple null values. Please refer to Chapter 11 for a complete example of using the WeakHashMap class.

Sometimes you want to iterate over keys, values, or entries of a Map. The keySet(), values() and entrySet()
methods of a map returns a Set of keys, a Collection of values, and a Set of entries, respectively. Iterating over
elements of a Set or a Collection is the same as described in the “Traversing Collections” section.

The following snippet of code shows how to print all keys of a map:

Map<String,String> map = new HashMap<>();
map.put("John", "(342)113-9878");
map.put("Richard", "(245)890-9045");
map.put("Donna", "(205)678-9823");
map.put("Ken", "(205)678-9823");

Chapter 12 ■ ColleCtions

575

// Get the set of keys
Set<String> keys = map.keySet();

// Print all keys using the forEach() method.
// You can use a for-each loop, an iterator, etc. to do the same.
keys.forEach(System.out::println);

Donna
Ken
John
Richard

Each key-value pair in a map is called an entry. An entry is represented by an instance of the Map.Entry<K,V>
interface. Map.Entry is an inner static interface of the Map interface. It has three commonly used methods called
getKey(), getValue(), and setValue(), which return the key of the entry, the value of the entry, and sets a new value
in the entry, respectively. A typical iteration over an entry set of a Map is written as follows:

Map<String, String> map = new HashMap<>();
map.put("John", "(342)113-9878");
map.put("Richard", "(245)890-9045");
map.put("Donna", "(205)678-9823");
map.put("Ken", "(205)678-9823");

// Get the entry Set
Set<Map.Entry<String,String>>entries = map.entrySet();

// Print all key-value pairs using the forEach() method of the Collection interace.
// You can use a for-each loop, an iterator, etc. to do the same.
entries.forEach((Map.Entry<String,String> entry) -> {
 String key = entry.getKey();
 String value = entry.getValue();
 System.out.println("key=" + key + ", value=" + value);
});

key=Donna, value=(205)678-9823
key=Ken, value=(205)678-9823
key=John, value=(342)113-9878
key=Richard, value=(245)890-9045

Java 8 added a forEach(BiConsumer<? super K,? super V> action) method to the Map interface that lets you
iterate over all entries in the map in a cleaner way. The method takes a BiConsumer instance whose first argument is
the key and second argument is the value for the current entry in the map. You can rewrite the above snippet of code
as follows:

Map<String, String> map = new HashMap<>();
map.put("John", "(342)113-9878");
map.put("Richard", "(245)890-9045");
map.put("Donna", "(205)678-9823");
map.put("Ken", "(205)678-9823");

Chapter 12 ■ ColleCtions

576

// Use the forEach() method of the Map interface
map.forEach((String key, String value) -> {
 System.out.println("key=" + key + ", value=" + value);
});

key=Donna, value=(205)678-9823
key=Ken, value=(205)678-9823
key=John, value=(342)113-9878
key=Richard, value=(245)890-9045

Listing 12-30 demonstrates how to get three different views of a Map and iterate over the elements in those views.

Listing 12-30. Using Keys, Values, and Entries Views of a Map

// MapViews.java
package com.jdojo.collections;

import java.util.HashMap;
import java.util.Map;
import java.util.Set;
import java.util.Collection;

public class MapViews {
 public static void main(String[] args) {
 Map<String, String> map = new HashMap<>();
 map.put("John", "(342)113-9878");
 map.put("Richard", "(245)890-9045");
 map.put("Donna", "(205)678-9823");
 map.put("Ken", "(205)678-9823");

 System.out.println("Map: " + map.toString());

 // Print keys, values, and entries in the map
 listKeys(map);
 listValues(map);
 listEntries(map);
 }

 public static void listKeys(Map<String,String> map) {
 System.out.println("Key Set:");
 Set<String> keys = map.keySet();
 keys.forEach(System.out::println);
 System.out.println();
 }

 public static void listValues(Map<String,String> map) {
 System.out.println("Values Collection:");
 Collection<String> values = map.values();
 values.forEach(System.out::println);
 System.out.println();
 }

Chapter 12 ■ ColleCtions

577

 public static void listEntries(Map<String,String> map) {
 System.out.println("Entry Set:");

 // Get the entry Set
 Set<Map.Entry<String, String>>entries = map.entrySet();
 entries.forEach((Map.Entry<String, String> entry) -> {
 String key = entry.getKey();
 String value = entry.getValue();
 System.out.println("key=" + key + ", value=" + value);
 });
 }
}

Map: {Donna=(205)678-9823, Ken=(205)678-9823, John=(342)113-9878, Richard=(245)890-9045}
Key Set:
Donna
Ken
John
Richard

Values Collection:
(205)678-9823
(205)678-9823
(342)113-9878
(245)890-9045

Entry Set:
key=Donna, value=(205)678-9823
key=Ken, value=(205)678-9823
key=John, value=(342)113-9878
key=Richard, value=(245)890-9045

Sorted Maps
A sorted map stores entries in a map in an ordered way. It sorts the map entries on keys based on either natural sort
order or a custom sort order. The natural sort order is defined by the Comparable interface of the keys. If the keys do
not implement the Comparable interface, you must use a Comparator object to sort the entries. If the keys implement
the Comparable interface and you use a Comparator object, the Comparator object will be used to sort the keys.

An instance of the SortedMap interface represented a sorted map. The SortedMap interface inherits from the Map
interface. A SortedMap is to a Map what a SortedSet is to a Set.

The SortedMap interface contains methods that let you take advantage of the sorted keys in the map. It has
methods that let you get the first and the last key or a submap based on a criteria, etc. Those methods are as follows:

•	 Comparator<? super K> comparator(): It returns the Comparator object used for custom
sorting of the keys in the SortedMap. If you have not used a Comparator object, it returns null
and natural ordering will be used based on the implementation of the Comparable interface
for the keys.

•	 K firstKey(): It returns the key of the first entry in the SortedMap. If the SortedMap is empty,
it throws a NoSuchElementException.

Chapter 12 ■ ColleCtions

578

•	 SortedMap<K, V> headMap(K toKey): It returns a view of the SortedMap whose entries will
have keys less than the specified toKey. If you add a new entry to the view, its key must be
less than the specified toKey. Otherwise, it will throw an exception. The view is backed by the
original SortedMap.

•	 K lastKey(): It returns the key of the last entry in the SortedMap. If the SortedMap is empty, it
throws a NoSuchElementException.

•	 SortedMap<K, V> subMap(K fromKey, K toKey): It returns a view of the SortedMap whose
entries will have keys ranging from the specified fromKey (inclusive) and toKey (exclusive).
The original SortedMap backs the partial view of the SortedMap. Any changes made to either
map will be reflected in both. You can put new entries in the sub map whose keys must fall in
the range fromKey (inclusive) and toKey (Exclusive).

•	 SortedMap<K, V> tailMap(K fromKey): It returns a view of the SortedMap whose entries will
have keys equal to or greater than the specified fromKey. If you add a new entry to the view,
its key must be equal to or greater than the specified fromKey. Otherwise, it will throw an
exception. The original SortedMap backs the tail view.

The TreeMap class is the implementation class for the SortedMap interface. For basic operations, you work with a
SortedMap the same way as you work with a Map. Listing 12-31 demonstrates how to use a SortedMap.

Listing 12-31. Using a SortedMap

// SortedMapTest.java
package com.jdojo.collections;

import java.util.SortedMap;
import java.util.TreeMap;

public class SortedMapTest {
 public static void main(String[] args) {
 SortedMap<String,String> sMap = new TreeMap<>();
 sMap.put("John", "(342)113-9878");
 sMap.put("Richard", "(245)890-9045");
 sMap.put("Donna","(205)678-9823");
 sMap.put("Ken", "(205)678-9823");

 System.out.println("Sorted Map: " + sMap);

 // Get a sub map from Donna (inclusive) to Ken(exclusive)
 SortedMap<String,String> subMap = sMap.subMap("Donna", "Ken");
 System.out.println("Sorted Submap from Donna to Ken(exclusive): " + subMap);

 // Get the first and last keys
 String firstKey = sMap.firstKey();
 String lastKey = sMap.lastKey();
 System.out.println("First Key: " + firstKey);
 System.out.println("Last key: " + lastKey);
 }
}

Chapter 12 ■ ColleCtions

579

Sorted Map: {Donna=(205)678-9823, John=(342)113-9878, Ken=(205)678-9823, Richard=(245)890-9045}
Sorted Submap from Donna to Ken(exclusive): {Donna=(205)678-9823, John=(342)113-9878}
First Key: Donna
Last key: Richard

If you want to use a Comparator object to sort the entries based keys in a SortedMap, you need use the constructor
of the TreeMap class that takes a Comparator as an argument. The following snippet of code shows how to sort entries
in a sorted map based on the length of their keys followed by the alphabetical order of the keys ignoring the case:

// Sort entries on key's length and then on keys ignoring case
Comparator<String> keyComparator =
 Comparator.comparing(String::length)
 .thenComparing(String::compareToIgnoreCase);
SortedMap<String, String> sMap = new TreeMap<>(keyComparator);
sMap.put("John", "(342)113-9878");
sMap.put("Richard", "(245)890-9045");
sMap.put("Donna", "(205)678-9823");
sMap.put("Ken", "(205)678-9823");
sMap.put("Zee", "(205)679-9823");

System.out.println("Sorted Map: " + sMap);

Sorted Map: {Ken=(205)678-9823, Zee=(205)679-9823, John=(342)113-9878, Donna=(205)678-9823,
Richard=(245)890-9045}

Please refer to the “Sorted Set” section for more details on using a Comparator object for sorting keys.
A Comparator object in a SortedMap works the same way for keys as it works for the elements in a SortedSet.

Navigable Maps
A navigable map is represented by an instance of the NavigableMap interface. It extends the SortedMap interface by
adding some useful features like getting the closest match for a key, getting a view of the map in reverse order, etc.
It also adds some methods that are similar to methods added by SortedMap, but they return an entry (a Map.Entry
object) rather than just the key.

The TreeMap class is the implementation class for the NavigableMap interface.
Please replace Xxx with Entry or Key in methods names of the NavigableMap interface mentioned in this

paragraph. The lowerXxx(K key) method returns the greatest entry or key that is lower than the specified key.
The floorXxx(K key) method returns the greatest entry or key that is equal to or lower than the specified key. The
higherXxx(K key) method returns the least entry or key that is higher than the specified key. The ceilingXxx(K key)
method returns the least entry of key that is equal to or higher than the specified key.

The NavigableMap contains two methods called firstEntry() and lastEntry() that return the first and the
last entries as Map.Entry objects; they return null if the map is empty. It contains methods to retrieve and remove
the first and the last entries from the map using pollFirstEntry() and pollLastEntry() methods. It adds other
versions of the headMap(), tailMap(), and subMap() methods declared in SortedMap, which accept a boolean flag
to indicate if you want to include the extreme values in the submap returned from these methods. Finally, it adds
descendingKeySet() and descendingMap() methods that give you a view of keys and the map itself in the reverse
order. Listing 12-32 shows how to use a NavigableMap.

Chapter 12 ■ ColleCtions

580

Listing 12-32. Using a NavigableMap

// NavigableMapTest.java
package com.jdojo.collections;

import java.util.TreeMap;
import java.util.NavigableMap;
import java.util.Map.Entry;

public class NavigableMapTest {
 public static void main(String[] args) {
 // Create a sorted map sorted on string keys alphabetically
 NavigableMap<String,String> nMap = new TreeMap<>();
 nMap.put("John", "(342)113-9878");
 nMap.put("Richard", "(245)890-9045");
 nMap.put("Donna", "(205)678-9823");
 nMap.put("Ken", "(205)678-9823");

 System.out.println("Navigable Map:" + nMap);

 // Get the closest lower and higher matches for Ken
 Entry<String,String> lowerKen = nMap.lowerEntry("Ken");
 Entry<String,String> floorKen = nMap.floorEntry("Ken");
 Entry<String,String> higherKen = nMap.higherEntry("Ken");
 Entry<String,String> ceilingKen = nMap.ceilingEntry("Ken");

 System.out.println("Lower Ken: " + lowerKen);
 System.out.println("Floor Ken: " + floorKen);
 System.out.println("Higher Ken: " + higherKen);
 System.out.println("Ceiling Ken: " + ceilingKen);

 // Get the reverse order view of the map
 NavigableMap<String,String> reverseMap = nMap.descendingMap();
 System.out.println("Navigable Map(Reverse Order):" + reverseMap);
 }
}

Navigable Map:{Donna=(205)678-9823, John=(342)113-9878, Ken=(205)678-9823, Richard=(245)890-9045}
Lower Ken: John=(342)113-9878
Floor Ken: Ken=(205)678-9823
Higher Ken: Richard=(245)890-9045
Ceiling Ken: Ken=(205)678-9823
Navigable Map(Reverse Order):{Richard=(245)890-9045, Ken=(205)678-9823, John=(342)113-9878,
Donna=(205)678-9823}

Chapter 12 ■ ColleCtions

581

Concurrent Maps
Sometimes you need to perform multiple operations on a map atomically when the map is used by multiple threads
concurrently. For example, you may want to put a new key-value pair in a map only if the key does not already exist in
the map. Your code may look as follows:

Map<String,String> map = ...;
String key = ...;
String value = ...;

// Need to lock the entire map
synchronized(map) {
 if (map.containsKey(key)) {
 // Key is already in the map
 }
 else {
 map.put(key, value); // Add the new key-value
 }
}

In this code, you had to lock the entire map just to put a new key-value pair if the key was absent in the map.
Locking the map was necessary because you needed to perform two things atomically: testing for a key existence and
putting the key-value if the test fails. When these two operations are being performed on the map by a thread, no other
thread can lock the map for any other operations. A ConcurrentMap enables you to perform concurrent operations,
like the one I discussed, without resorting to locking the map.

You can choose the level of concurrency when you create a concurrent map using its implementation class. The
level of concurrency is specified as the estimated number of threads that would perform the write operations on the
map. The map will try to adjust those many threads concurrently. A ConcurrentMap does not lock the entire map.
Even if it locks the entire map, other threads will still be able to perform read and write operations on it because it uses
fine-grained synchronization mechanism based on a compare-and-set primitive.

The ConcurrentHashMap class is an implementation class for the ConcurrentMap interface. Both of them are in the
java.util.concurrent package.

Listing 12-33 demonstrates the use of a ConcurrentMap. The example simply shows how to create and use some
of the methods of a ConcurrentMap. Typically, you should use a ConcurrentMap in a multi-threaded environment.
The program does not use multiple threads to access the map. It only demonstrates use of some of the methods of the
ConcurrentMap interface.

Listing 12-33. Using a ConcurrentMap

// ConcurrentMapTest.java
package com.jdojo.collections;

import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentMap;

public class ConcurrentMapTest {
 public static void main(String[] args) {
 ConcurrentMap<String,String> cMap = new ConcurrentHashMap<>();
 cMap.put("one", "one");

 System.out.println("Concurrent Map: " + cMap);

Chapter 12 ■ ColleCtions

582

 System.out.println(cMap.putIfAbsent("one", "nine"));
 System.out.println(cMap.putIfAbsent("two", "two"));
 System.out.println(cMap.remove("one", "two"));
 System.out.println(cMap.replace("one", "two"));

 System.out.println("Concurrent Map: " + cMap);
 }
}

Concurrent Map: {one=one}
one
null
false
one
Concurrent Map: {one=two, two=two}

Concurrent and Navigable Maps
A concurrent navigable map is the concurrent and navigable version of the map. An instance of the
ConcurrentNavigableMap interface represents a concurrent and navigable map. The interface inherits from the
ConcurrentMap and NavigableMap interfaces.

The ConcurrentSkipListMap is the implementation class for the ConcurrentNavigableMap interface.
I have discussed both the concurrent map and navigable map. Please refer to the examples of both kinds for

using the ConcurrentNavigableMap.

Applying Algorithms to Collections
The Collections Framework lets you apply many types of algorithms on all or a few elements of a collection. It lets you
search through a collection for a value; sort and shuffle elements of a collection; get a read-only view of a collection;
etc. The good news is that all of these features are provided in one class named Collections. Notice that we have a
similarly named interfaced called Collection, which is the ancestor of most of the collection interfaces defined in the
Collections Framework. The Collections class consists of all static methods. If you want to apply any algorithm to a
collection, you need to look at the list of methods in this class before you writing your own code.

Sorting a List
You can use one of the following two static methods in the Collections class to sort the elements of a List:

•	 <T extends Comparable<? super T>> void sort(List<T> list): It sorts the elements in
a List in the natural order defined by the Comparable interface that is implemented by the
elements in the List. Each element in the List must implement the Comparable interface and
they must be comparable to each other.

•	 <T> void sort(List<T> list, Comparator<? super T> c): It lets you pass a Comparator
object to define a custom ordering of the elements.

Chapter 12 ■ ColleCtions

583

Tip ■ Java 8 added a default method called sort(Comparator<? super E> c) in the List<E> interface that allows
you to sort a List without using the Collections class.

The following snippet of code demonstrates how to sort a List:

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
...
List<String> list = new ArrayList<>();
list.add("John");
list.add("Richard");
list.add("Donna");
list.add("Ken");

System.out.println("List: " + list);

// Uses Comparable implementation in String to sort the list in natural order
Collections.sort(list);
System.out.println("Sorted List: " + list);

List: [John, Richard, Donna, Ken]
Sorted List: [Donna, John, Ken, Richard]

The following snippet of code sorts the same list in ascending order of the length of their elements using the
sort() method in the List interface:

import java.util.ArrayList;
import java.util.Comparator;
import java.util.List;
...
List<String> list = new ArrayList<>();
list.add("John");
list.add("Richard");
list.add("Donna");
list.add("Ken");

System.out.println("List: " + list);

// Uses List.sort() method with a Comparator
list.sort(Comparator.comparing(String::length));

System.out.println("Sorted List: " + list);

List: [John, Richard, Donna, Ken]
Sorted List: [Ken, John, Donna, Richard]

Chapter 12 ■ ColleCtions

584

The sort() method uses a modified mergesort algorithm. It is a stable sort. That is, equal elements will stay at
their current positions after the sort operation. Internally, all elements are copied to an array, sorted in the array, and
copied back to the List. Sorting is guaranteed to give n*log(n) performance, where n is the number of elements in
the List.

Searching a List
You can use one of the following two static binarySearch() method in the Collections class to search for a key in
a List.

•	 <T> int binarySearch(List<? extends Comparable<? super T>>list, T key)

•	 <T> int binarySearch(List<? extends T> list, T key, Comparator<? super T> c)

A List must be sorted in ascending order using the natural order or the Comparator object before you use the
binarySearch() method on the List. If the List is not sorted, the result of the binarySearch() method is not defined.
If the key is found in the List, the method returns the index of the key in the List. Otherwise, it returns (-(insertion
index) –1), where the insertion index is the index in the List where this key would have been placed, if it were present.
This return value makes sure that you will get a negative value only if the key is not found in the List. If you get a
negative number as the retuned value from this method, you can use the absolute value of the return index as the basis
of the insertion point into the list-((return value) + 1). This method uses the binary search algorithm to perform
the search. If the List supports random access, the search runs in log(n) time. If the List does not support random
access, the search runs in n×log(n) time. The following snippet of code shows how to use this method:

List<String> list = new ArrayList<>();
list.add("John");
list.add("Richard");
list.add("Donna");
list.add("Ken");

// Must sort before performing the binary search
Collections.sort(list);
System.out.println("List: " + list);

// Find Donna
int index = Collections.binarySearch(list, "Donna");
System.out.println("Donna in List is at " + index);

// Find Ellen
index = Collections.binarySearch(list, "Ellen");
System.out.println("Ellen in List is at " + index);

List: [Donna, John, Ken, Richard]
Donna in List is at 0
Ellen in List is at -2

Since "Ellen" is not in the List, the binary search returned –2. It means that if you insert "Ellen" in the List, it
will be inserted at index 1, which is computed using the expression (-(-2+1)). Note that “Donna” has an index of 0 and
"John" has an index of 1. If “Ellen” is added to the list, its index will be the same as the current index for "John" and
"John" will be moved to the right at index 2.

Chapter 12 ■ ColleCtions

585

Shuffling, Reversing, Swapping, and Rotating a List
In this section, I will discuss applying different kinds of algorithms to a List such as shuffling , reversing, swapping,
and rotating its elements.

Shuffling gives you a random permutation of the elements in a List. The concept of shuffling elements of a List
is the same as shuffling a deck of cards. You shuffle the elements of a List by using the Collections.shuffle() static
method. You can supply a java.util.Random object or the shuffle() method can use a default randomizer. The two
versions of the shuffle() methods are as follows:

•	 void shuffle(List<?> list)

•	 void shuffle(List<?> list, Random rnd)

Reversing is the algorithm that puts the elements of a List in the reverse order. You can use the following
reverse() static method of the Collections class to accomplish this:

•	 void reverse(List<?> list)

Swapping lets you swap the position of two elements in a List. You can perform swapping using the swap() static
method of the Collections class, which is defined as follows:

•	 void swap(List<?> list, int i, int j)

Here i and j are indexes of two elements to be swapped and they must be between 0 and size – 1, where size is
the size of the List. Otherwise, it throws an IndexOutOfBoundsException.

Rotating involves moving all elements of a List forward or backward by a distance. Suppose you have a List as
[a, b, c, d]. You need to visualize that the List is a circular list and its first element is next to its last element. If you
rotate this List by a distance of 1, the resulting List becomes [d, a, b, c]. If you rotate the [a, b, c, d] list by
a distance of 2, the List becomes [c, d, a, b]. You can also rotate a List backwards by using a negative distance.
If you rotate the [a, b, c, d] list by a distance of -2, the List becomes [c, d, a, b]. You can also rotate only part
of a List using a sublist view. Suppose list is a reference variable of type List and it has [a, b, c, d] elements.
Consider executing the following statement:

Collections.rotate(list.subList(1, 4), 1);

The statement will change the list to [a, d, b, c]. Note that list.subList(1, 4) returns a view of [b, c, d]
elements and the above statement rotates only the three elements that are in the sublist.

The following snippet of code shows how to reorder elements of a List using these methods. You may get a
different output when you run the following code because shuffle() uses a random algorithm to shuffle the elements
of the List.

List<String> list = new ArrayList<>();
list.add("John");
list.add("Richard");
list.add("Donna");
list.add("Ken");

System.out.println("List: " + list);

// Shuffle
Collections.shuffle(list);
System.out.println("After Shuffling: " + list);

Chapter 12 ■ ColleCtions

586

// Reverse the list
Collections.reverse(list);
System.out.println("After Reversing: " + list);

// Swap elements at indexes 1 and 3
Collections.swap(list, 1, 3);
System.out.println("After Swapping (1 and 3): " + list);

// Rotate elements by 2
Collections.rotate(list, 2);
System.out.println("After Rotating by 2: " + list);

List: [John, Richard, Donna, Ken]
After Shuffling: [Ken, Donna, Richard, John]
After Reversing: [John, Richard, Donna, Ken]
After Swapping (1 and 3): [John, Ken, Donna, Richard]
After Rotating by 2: [Donna, Richard, John, Ken]

Creating Different Views of a Collection
You can get a LIFO Queue view of a Deque using the asLifoQueue() static method of the Collections class:

•	 <T> Queue<T> asLifoQueue(Deque<T> deque)

Some Map implementations have corresponding Set implementations too. For example, for HashMap, you have a
HashSet; for TreeMap, you have a TreeSet. If you want to use a Map’s implementation as a Set implementation, you
can use the newSetFromMap() static method of the Collections class:

•	 <E> Set<E> newSetFromMap(Map<E, Boolean> map)

Note that the idea is to use the implementation of the Map as a Set, not to share elements between a Map and a
Set. This is the reason that the Map must be empty when you use it in this method and you are not supposed to use
the Map directly at all. There is a WeakHashMap implementation class for the Map. However, there is no corresponding
WeakHashSet implementation class for the Set. Here is how you can get a weak hash set implementation:

Map map = new WeakHashMap(); // Do not populate and use the map
Set wSet = Collections.newSetFromMap(map); // You can use wSet

Use the weak hash set wSet as a Set and it acts as the WeakHashMap implementation. Since you are not
supposed to use the Map object, it is better to use the following statement to create the set using the WeakHashMap
implementation class:

// Do not keep the reference of the Map
Set wSet = Collections.newSetFromMap(new WeakHashMap());

When the JVM needs memory, the garbage collector can remove elements from wSet as it does from any
WeakHashMap. By using one line of code, you get a Set that has features of a WeakHashMap.

Chapter 12 ■ ColleCtions

587

Read-Only Views of Collections
You can get a read-only view (also called unmodifiable view) of a collection. This is useful when you want to pass
around your collection to other methods and you do not want the called method to modify your collection. In such
cases, you need to pass a read-only view of your collection to those methods.

The Collections class offers the following methods to get read-only views of different types of collections:

•	 <T> Collection<T> unmodifiableCollection(Collection<? extends T> c)

•	 <T> List<T> unmodifiableList(List<? extends T> list)

•	 <K,V> Map<K,V> unmodifiableMap(Map<? extends K,? extends V> m)

•	 <K,V> NavigableMap<K,V> unmodifiableNavigableMap(NavigableMap<K,? extends V> m)

•	 <T> Set<T> unmodifiableSet(Set<? extends T> s)

•	 <T> NavigableSet<T> unmodifiableNavigableSet(NavigableSet<T> s)

•	 static <T> SortedSet<T> unmodifiableSortedSet(SortedSet<T> s)

•	 <K,V> SortedMap<K,V> unmodifiableSortedMap(SortedMap<K,? extends V> m)

Using any of these methods is straightforward. You pass a collection of a specific type and you get a read-only
collection of the same type.

Synchronized View of a Collection
Most collections that are members of the Collections Framework discussed in this chapter are not thread-safe and
you should not use them in a multithreaded environment. Note that the collections whose names have the word
“concurrent” in them are designed to be thread-safe. You can get a synchronized view of a collection using one of the
following static methods of the Collections class. You have one method for each collection type to return the same
type of synchronized version of the collection. The methods are

•	 <T> Collection<T> synchronizedCollection(Collection<T> c)

•	 <T> List<T> synchronizedList(List<T> list)

•	 <K,V> Map<K,V> synchronizedMap(Map<K,V> m)

•	 <K,V> NavigableMap<K,V> synchronizedNavigableMap(NavigableMap<K,V> m)

•	 <T> NavigableSet<T> synchronizedNavigableSet(NavigableSet<T> s)

•	 <T> Set<T> synchronizedSet(Set<T> s)

•	 <T> SortedSet<T> synchronizedSortedSet(SortedSet<T> s)

•	 <K,V> SortedMap<K,V> synchronizedSortedMap (SortedMap<K,V> m)

You need to pay attention when working with a synchronized view of a collection. All reads and writes through
the synchronized view will be thread-safe, except when you are iterating over elements of the collection using an
iterator. You must synchronize the entire collection during the time you get the iterator and use it. The following
snippet of code illustrates this concept:

// Suppose you have a Set
Set s = ...; // unsynchronized set

Chapter 12 ■ ColleCtions

588

// Get a synchronized view of the Set, s
Set ss = Collections.synchronizedSet(s);

// We need to iterate over elements of ss.
// Must get a lock on ss first (not on s)
synchronized(ss) {
 Iterator iterator = ss.iterator();
 // use iterator while holding the lock
 while (iterator.hasNext()) {
 Object obj = iterator.next();

 // Do something with obj here
 }
}

You need to follow the same logic while iterating over the key, value, or entry views of a synchronized Map. That
is, you must get a lock on the synchronized view of the Map while iterating over any of its views.

Checked Collections
Generics provide compile-time type-safety for collections. If a compiler determines that collections may have
elements violating its type declaration, it issues an unchecked compile-time warning. If you ignore the warning, your
code may bypass the generics rules at runtime. Let’s consider the following snippet of code:

Set<String> s = new HashSet<>();
s.add("Hello");
a.add(new Integer(123)); // A compile-time error

You have declared the Set as a Set of String objects. You tried to add an Integer object to the Set. The compiler
made sure that you do not succeed in doing this.

Let’s bypass the compiler check this time by using the following snippet of code:

Set<String> s = new HashSet< >();
s.add("Hello");

Set anythingGoesSet = s;
anythingGoesSet.add(new Integer(123)); // No runtime exception

This time, the compiler will issue an unchecked warning for the anythingGoesSet.add(new Integer(123))
statement because it has no way to know that you are adding an incorrect type of object to the Set. The result of the
above snippet of code is that you declared a Set of String objects and you were able to add an Integer object to it.
You will get a runtime exception when you try to read the Integer object as a String object, and it will be too late to
find out which line of code did it!

The Collections class helps you create a checked collection in which you will get a ClassCastException when
a piece of code attempts to add an element that violates the rule. This makes debugging the code easier. When you
create a checked collection, you mention the class type of the element it must hold. Adding any other type of element
will throw a ClassCastException. You can use the following static methods of the Collections class to get a checked
collection of a specific type:

•	 <E> Collection<E> checkedCollection(Collection<E> c, Class<E> type)

•	 <E> List<E> checkedList(List<E> list, Class<E> type)

Chapter 12 ■ ColleCtions

589

•	 <K,V> Map<K,V> checkedMap(Map<K,V> m, Class<K> keyType, Class<V> valueType)

•	 <K,V> NavigableMap<K,V> checkedNavigableMap(NavigableMap<K,V> m, Class<K>
keyType, Class<V> valueType)

•	 <E> NavigableSet<E> checkedNavigableSet(NavigableSet<E> s, Class<E> type)

•	 <E> Queue<E> checkedQueue(Queue<E> queue, Class<E> type)

•	 <E> Set<E> checkedSet(Set<E> s, Class<E> type)

•	 <K,V> SortedMap<K,V> checkedSortedMap(SortedMap<K,V> m, Class<K> keyType,
Class<V> valueType)

•	 <E> SortedSet<E> checkedSortedSet(SortedSet<E> s, Class<E> type)

Here is the solution of the previous example that will throw a ClassCastException when an attempt is made to
add an Integer to the Set of String:

// Work with a checked Set of String type
Set<String> checkedSet = Collections.checkedSet(new HashSet<String>(), String.class);

Set anythingGoesSet = checkedSet;
anythingGoesSet.add(new Integer(123)); // Throws ClassCastException

Tip ■ Using a checked collection does not stop you from bypassing the compiler. rather, it helps you identify the
offending code easily and exactly at runtime.

Creating Empty Collections
Sometimes you need to call a method that accepts a collection. However, you do not have any elements for the
collection to pass. In such cases, you do not need to go through the hassle of creating a collection object. The
Collections class provides an immutable empty collection object of each type as a return value of its static methods.
It also provides methods that return an empty Iterator. The following is a list of such static methods in the
Collections class:

•	 <T> List<T> emptyList()

•	 <K,V> Map<K,V> emptyMap()

•	 <T> Set<T> emptySet()

•	 <T> Iterator<T> emptyIterator()

•	 <T> ListIterator<T> emptyListIterator()

Using these methods is straightforward. Suppose there is a method called m1(Map<String,String> map). If you
want to pass an empty map to this method, your call would be m1(Collections.emptyMap()).

Chapter 12 ■ ColleCtions

590

Creating Singleton Collections
Sometimes you want to create a collection that needs to have one and only one element in it. This kind of situation
arises when a method accepts a collection as its argument and you have only one object to pass to that method.
Instead of going through the hassle of creating a new collection and adding a lone element to it, you can use one of
the three static methods of the Collections class, which will create an immutable collection with the one specified
element. Those methods are as follows:

•	 <T> Set<T> singleton(T o)

•	 <T> List<T> singletonList(T o)

•	 <K,V> Map<K,V> singletonMap(K key, V value)

Depending on the collection type that you need, you need to pass one or two objects. For a Set and a List, you
need to pass one object, whereas for a Map you need to pass two objects (one for the key and one for the corresponding
value). The following snippet of code creates a singleton set:

Set<String> singletonSet = Collections.singleton("Lonely");

// Throws a runtime exception as a singleton set is immutable
singletonSet.add("Hello");

Understanding Hash-based Collections
You have used many implementation classes for collections that have the word “hash” in their names, such as
HashSet, LinkedHashSet, HashMap, etc. They are known as hash-based collections. They facilitate fast and efficient
storage and retrieval of objects. This section discusses the internal workings of hash-based collections in brief.

Let’s start with a daily life example. Assume that you have been given many pieces of paper. Each piece of paper
has a number written on it. Your task is to organize (or store) those pieces of paper so that you can tell us as quickly as
possible whether a specific number exists in the collection of pieces of paper that you were given. You may be given
more pieces of paper with a number on them in the future.

One way to organize all your numbers is to place them all in one bucket, as shown in Figure 12-5.

1 2 10 99 3
7 8 3 77 45

12 90

Figure 12-5. Placing all numbers in one bucket

When you are asked to verify the existence of number 89, you will have to look at all of the numbers in your bucket,
one at a time, and finally you will say that number 89 does not exist in the collection. In the worst-case scenario, you
will have to search the entire bucket to tell if a specific number exists in the bucket. In the best-case scenario, you
may find the number on the very first attempt. The average time that it takes you to verify the existence of a number
is proportional to the size of the collection. You may realize that organizing your number in one bucket is not very
efficient for retrieval. As the numbers increase, you will take more time to search through them for a specific number.

Chapter 12 ■ ColleCtions

591

Let’s try to find a more efficient way to organize the numbers. Let’s use more buckets, say 4, to store them. Any
number that is given to you will be stored in one of the four buckets. If you place a number in one of the four buckets
arbitrarily, it poses the same problem in searching. In the worst-case scenario, you will have to search all four buckets
for a number because you do not know which bucket contains a specific number. To avoid this inefficiency, let’s use
an algorithm to place a specific number into a bucket.

To keep the algorithm simple, you will compute the modulus of the number by the number of buckets (four in
your case) and place the number in the bucket that corresponds to the modulus value. If you compute a modulus
of a number using 4, the value will be 0, 1, 2, or 3. You will name your four buckets as bucket-0, bucket-1, bucket-2,
and bucket-3. Which bucket will hold the number 17? The result of 17 modulus 4 is 1. Therefore, the number 17 will
go to the bucket-1. Where will number 31 go? The result of 31 modulus 4 is 3. Therefore, the number 31 will go to the
bucket-3. Figure 12-6 shows an arrangement in which you have used four buckets to store some numbers based on
this algorithm.

72 0 12 84
32 8 24 16
4 60 68 8

80

29 5 41 17
93 9 49 13

1 25 97

2 14 98 26
50 6 30 42

18 94

7 51 27 3
99 15 43 31

55 11

Bucket-0 Bucket-1 Bucket-2 Bucket-3

Figure 12-6. Using four buckets to hold numbers

Let’s walk through the steps to store a number in one of your four buckets. Suppose you are handed the number
94. Which one of the four buckets will store the number 94? First, you evaluate the result of 94 modulus 4, which is 2.
Therefore, the number 94 will be stored in the bucket-2. You will follow this logic to decide the bucket for every
number that you need to store.

Now, let’s walk through the steps of verifying if a number exists in one of the buckets. Suppose you are asked to
verify if the number 67 exists in the collection. First, you compute the result of 67 modulus 4, which is 3. According
to the logic of storing a number, if the number 67 exists in the collection, it must exist in bucket-3. Once you know
the bucket number, you look at each number in the bucket (bucket-3 in this case) for that number. In this case (see
Figure 12-6), there are ten numbers in bucket-3 and none of them is 67. After looking at ten numbers in bucket-3,
you respond that the number 67 does not exist in the collection. Note that you looked at numbers in only one of the
buckets to tell whether the number 67 existed in the collection or not. You did not have to look at numbers in all four
buckets. By using an algorithm to store and retrieve a number from the collection, you have shortened the time it
takes to search for a number in the collection.

The story is not over yet. Let’s consider using four buckets to store numbers where all numbers are a multiple of
4 such as 4, 8, 12, 16, 20, 24, etc. The value of N modulus 4 for all N, which are multiple of 4 is 0. This means that all
such numbers will be stored in only one bucket, which is the bucket-0. Is this scenario better than storing all numbers
in only one bucket? The answer is no. Using multiple buckets helps in the search process only if the numbers that
are stored are uniformly distributed among all buckets. The best-case scenario is when all buckets have only one
number in them. In that case, you will be able to tell if a number exists in the collection by just looking at one number
in one of the buckets. The search performance may degrade as the size of the collection increases even if numbers
are distributed uniformly among the buckets. For example, suppose you have 100 numbers and they are uniformly
distributed among four buckets. In the worst-case scenario, you need to search through 25 numbers in a bucket.
Suppose the numbers increase to 10,000 and they are still uniformly distributed among the four buckets. Now, in the

Chapter 12 ■ ColleCtions

592

worst-case scenario, you need to search through 2,500 numbers. To keep your search process fast, you can increase
the number of buckets as the numbers in one bucket increases to a point where the time taken to search for a number
becomes a performance concern.

The hash-based collections in Java work similar to the collection of numbers that I discussed. Note that a Java
collection stores only objects. They do not allow storing of primitive type values. Two methods in the Object class are
central to the working of hash-based collections. Those methods are equals() and hashCode().

Hash-based collections maintain a number of buckets to store objects. When you add an object to a hash-based
collection, Java gets the hash code value of the object by calling object’s hashCode() method. Then, it applies an
algorithm to the hash code value to compute the bucket in which the object should be placed. When you want to
check if an object exists in a hash-based collection, Java applies the same logic to compute the bucket in which the
object might have been placed. It calls the hashCode() method of the object and applies some algorithm to compute
the bucket in which it might have been placed. Then, it uses the equals() method of the object to compare the object
with existing objects in the bucket to check if the object exists in that bucket.

The internal workings of the hash-based collections in Java sound easy. However, it is full of complications for
programmers if the hashCode() and equals() methods are not implemented correctly in the class whose objects are
stored in hash-based collections. Let’s consider the code for a BadKey class, shown in Listing 12-34.

Listing 12-34. A BadKey Class That Is Not a Good Candidate for Keys in Hash-based Collections

// BadKey.java
package com.jdojo.collections;

public class BadKey {
 private int id;

 public BadKey(int id) {
 this.id = id;
 }

 public int getId() {
 return this.id;
 }

 public void setId(int id) {
 this.id = id;
 }

 @Override
 public int hashCode() {
 // Return the value of id as its hash code value
 return id;
 }

 @Override
 public boolean equals(Object obj) {
 if (obj == this) {
 return true;
 }

Chapter 12 ■ ColleCtions

593

 if (obj instanceof BadKey) {
 BadKey bk = (BadKey) obj;
 if (bk.getId() == this.id) {
 return true;
 }
 }

 return false;
 }

 @Override
 public String toString() {
 return String.valueOf(this.id);
 }
}

The BadKey class stores an integer value. It is a mutable class. You can modify its state by calling the setId()
method and supplying a new value for its id. It overrides the equals() and hashCode() methods of the Object class.
The implementation of the hashCode() method is simple. It returns the value of the id instance variable as the hash
code value. The equals() method checks if the id instance variable’s value for two BadKey objects are the same or not.
If two BadKey objects have the same id, they are considered equal.

Consider the program in Listing 12-35 that uses BadKey objects in a Set. Can you spot a problem by looking at the
program and the output? Don’t worry if you do not see the problem. I will explain it.

Listing 12-35. Using BadKey Objects in a Set

// BadKeyTest.java
package com.jdojo.collections;

import java.util.HashSet;
import java.util.Set;

public class BadKeyTest {
 public static void main(String[] args) {
 Set<BadKey> s = new HashSet<>();
 BadKey bk1 = new BadKey(100);
 BadKey bk2 = new BadKey(200);

 // Add two objects bk1 and bk2 to the set
 s.add(bk1);
 s.add(bk2);

 System.out.println("Set contains:" + s);
 System.out.println("Set contains bk1: " + s.contains(bk1));

 // Set the id for bk1 to 300
 bk1.setId(300);
 System.out.println("Set contains:" + s);
 System.out.println("Set contains bk1: " + s.contains(bk1));
 }
}

Chapter 12 ■ ColleCtions

594

Set contains:[100, 200]
Set contains bk1: true
Set contains:[300, 200]
Set contains bk1: false

The program adds two BadKey objects called bk1 and bk2 to the Set. The first line in the output confirms that the
set contains the two objects. Then, the value for the id of bk1 object is changed from 100 to 300, which is confirmed
by the third line in the output. Since you have not removed the object bk1 from the set, the fourth line of the output is
unexpected. The fourth line of the output states that the object bk1 does not exist in the set, whereas the third line of
the output states that bk1 object is in the set.

What’s wrong? Is the object bk1 in the set or not? The answer is that the object bk1 is in the set until you remove
it. If you use a for-each loop or an iterator to access all objects in the set, you will be able to get to it. However, the
collection (the set in this case) will not be able to find the object bk1. The reason why the set is not able to find the
bk1 object is that the hash code value of the object bk1 changed after it was added to the set. Recall that HashSet is
a hash-based collection in Java. It uses the hash code of the object to locate the bucket in which the object will be
placed. When s.contains(bk1) is executed the second time, the hash code value of bk1 will be 300, which is the
returned value from its hashCode() method. When the object bk1 was placed in the set, its hash code was 200. Since
the hash code of the object bk1 has changed, the set will mistakenly identify a different bucket to locate it. Since the
set is looking for the object bk1 in a different bucket than the one in which it was placed, it does not find it. Where is
the problem? The problem lies in the hashCode() method of the BadKey class. The BadKey class is a mutable class and
the mutable state of this class (the id instance variable) has been used to compute its hash code, which is causing the
problem in locating the object in the set.

One way to fix this problem of apparently losing the BadKey objects in the set is to return a constant value from
its hashCode() method, say 99. The following is a valid implementation (not a good one, though) of the hashCode()
method of the BadKey class:

// BadKey.java
package com.jdojo.collections;

public class BadKey {

 // Other code goes here...

 public int hashCode() {
 // Return the same value 99 all the time
 return 99;
 }
}

The above code will fix the problem of losing the object bk1 in the example shown in Listing 12-36 because hash
code value for an object of the BadKey class never changes. However, it introduces another issue that is related to the
performance of the hash-based collection. If you store objects of the BadKey class in a hash-based collection, say a
set, all objects will hash to the same bucket because all objects of the BadKey class will have the same hash code value,
which is 99. You fixed one problem and introduced another!

The main issue with the BadKey class is its mutability. It has only one instance variable id that is mutable. You
should consider the following guidelines when you work with mutable objects with hash-based collection:

You should avoid using objects of a mutable class as elements in a •	 Set and as keys in a Map,
if possible. Consider using objects of immutable classes such String, Integer, or your own
immutable class as keys for a Map and elements for a Set.

Chapter 12 ■ ColleCtions

595

Implement the •	 equals() and hashCode() methods of your mutable class very carefully. You
must return the same value from the hashCode() method of the object of the mutable class.
Otherwise, you will lose track of the objects of your mutable class in hash-based collections.
If a mutable class has some part of its state that is immutable, use those immutable parts of
the class to compute its hash code value so that the hash code value does not change for an
object of the mutable class. As a last resort, which is not recommended, consider returning a
constant integer from the hashCode() method of your mutable class.

Make sure that the contracts for the equals() and hashCode() methods are fulfilled.

Summary
A collection is a group of objects. Java provides a Collections Framework containing several interfaces and classes
for working with a wide range of collection types such as lists, queues, sets, and maps. The Collections Framework
provides an interface to represent a specific type of collection. Each interface in the framework has at least one
implementation class. Collection-related interfaces and classes are in the java.util package. Collection classes to be
used in multi-threaded programs where synchronization is needed are in the java.util.concurrent package.

The Collections Framework contains a Collection interface that is the root for most of the collections. The Collection
interface contains most of the methods used with all types of collection (except for the Map-based collections). The interface
provides methods for adding elements, removing elements, knowing the size of the collection, etc. Specific subinterfaces of
the Collection interface provide additional methods to work with the specific type of collections.

The Collections Framework provides a uniform way for traversing elements of all types of collections using
iterators. An instance of the Iterator interface represents an iterator. All collections support traversing their
elements using the for-each loop and a forEach() method.

In mathematics, a set is a collection of unordered unique elements. An instance of the Set interface represents a
set in the Collections Framework. HashSet is the implementation class for the mathematical set.

An instance of the SortedSet represents an ordered unique set. TreeSet is the implementation class for the
SortedSet interface. Elements in a sorted set can be sorted in natural order or in a custom order using a Comparator.

A queue is a collection of objects that are used for processing objects one at a time. Objects enter the queue from
one end and exit the queue from another end. The Queue interface in the Collections Framework represents a queue.
The Collections Framework provides several implementation classes for the Queue interface to support different types
of queues, such as a simple queue, blocking queue, priority queue, delay queue, etc.

A list is an ordered collection of objects. An instance of the List interface represents a list in the Collections
Framework. ArrayList and LinkedList are two implementation classes for the List interface that are backed up
by an array and a linked list, respectively. Each element in the list has an index that starts from 0. The List interface
provides methods that let you access its elements sequentially or randomly using indexes of the elements. The
Collections Framework supports only a dense list; that is, there cannot be a gap between two elements in the list.

A map is another type of collection that stores key-value pairs. Keys in a map must be unique. An instance of the
Map interface represents a map in the Collections Framework. HashMap is the simple implementation class for the Map
interface. The Collections Framework also supports sorted, navigable, and concurrent maps. A sorted map stores all
key-value pairs sorted based on keys. An instance of the SortedMap interface represents a sorted map. TreeMap is the
implementation class for the SortedMap interface. An instance of the NavigableMap and ConcurrentMap represent a
navigable map and concurrent map, respectively.

The Collections Framework contains a utility class called Collections that contains only static methods.
Methods in this class let you apply different types of algorithms to a collection—for example, shuffling elements in
a collection, rotating its elements, sorting elements of a list, etc. The class also provides methods to obtain different
views of collections, such as read-only view, synchronized view, unmodifiable view, etc.

A hash-based collection uses buckets to store its elements. The number of buckets is determined based on the
number of elements in the collection and the required performance. When an element is added to the collection, the
element’s hash code is used to determine the bucket in which the element will be stored. A reverse process is used
when an element is searched in the collection. Hash-based collections provide faster element storage and retrieval.

597

Chapter 13

Streams

In this chapter, you will learn

What streams are•	

Differences between collections and streams•	

How to create streams from different types of data sources•	

How to represent an optional value using the •	 Optional class

Applying different types of operations on streams•	

Collecting data from streams using collectors•	

Grouping and partitioning a stream’s data•	

Finding and matching data in streams•	

How to work with parallel streams•	

What Is a Stream?
An aggregate operation computes a single value from a collection of values. The result of an aggregate operation may
be simply a primitive value, an object, or a void. Note that an object may represent a single entity such as a person or a
collection of values such as a list, a set, a map, etc.

A stream is a sequence of data elements supporting sequential and parallel aggregate operations. Computing the
sum of all elements in a stream of integers, mapping all names in list to their lengths, etc. are examples of aggregate
operations on streams.

Looking at the definition of streams, it seems that they are like collections. So, how do streams differ from
collections? Both are abstractions for a collection of data elements. Collections focus on storage of data elements
for efficient access whereas streams focus on aggregate computations on data elements from a data source that is
typically, but not necessarily, collections.

In this section, I will discuss the following features of streams, comparing them with collections when necessary:

Streams have no storage.•	

Streams can represent a sequence of infinite elements.•	

The design of streams is based on internal iteration.•	

Streams are designed to be processed in parallel with no additional work from the developers.•	

Streams are designed to support functional programming.•	

Chapter 13 ■ StreamS

598

Streams support lazy operations.•	

Streams can be ordered or unordered.•	

Streams cannot be reused.•	

The following sections will present brief snippets of code using streams. The code is meant to give you a feel for
the Streams API and to compare the Streams API with the Collections API. You do not need to understand the code
fully at this point. I will explain it later in detail.

Streams Have No Storage
A collection is an in-memory data structure that stores all its elements. All elements must exist in memory before they
are added to the collection. A stream has no storage; it does not store elements. A stream pulls elements from a data
source on-demand and passes them to a pipeline of operations for processing.

Infinite Streams
A collection cannot represent a group of infinite elements whereas a stream can. A collection stores all its elements in
memory, and therefore, it is not possible to have an infinite number of elements in a collection. Having a collection
of an infinite number of elements will require an infinite amount of memory and the storage process will continue
forever. A stream pulls its elements from a data source that can be a collection, a function that generates data, an I/O
channel, etc. Because a function can generate an infinite number of elements and a stream can pull data from it on
demand, it is possible to have a stream representing a sequence of infinite data elements.

Internal Iteration vs. External Iteration
Collections are based on external iteration. You obtain an iterator for a collection and process elements of the
collections in serial using the iterator. Suppose you have a list of integers from 1 to 5. You would compute the sum of
squares of all odd integers in the list as follows:

List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5);
int sum = 0;
for (int n : numbers) {
 if (n % 2 == 1) {
 int square = n * n;
 sum = sum + square;
 }
}

The code uses a for-each loop that performs an external iteration on the list of integers. Simply put, the client
code (the for-loop in this case) pulls the elements out of collection and applies the logic to get the result.

Consider the following code that uses a stream to compute the sum of all odd integers in the same list:

int sum = numbers.stream()
 .filter(n -> n % 2 == 1)
 .map(n -> n * n)
 .reduce(0, Integer::sum);

Did you notice the power and the simplicity of streams? You have replaced five statements with just one statement.
However, the code brevity is not the point that I want to make. The point is that you did not iterate over the elements
in the list when you used the stream. The stream did that for you internally. This is what I meant by internal iteration

Chapter 13 ■ StreamS

599

supported by streams. You specify to a stream what you want by passing an algorithm using lambda expressions to
the stream and the stream applies your algorithm to its data element by iterating over its elements internally and gives
you the result.

Using external iteration, typically, produces sequential code; that is, the code can be executed only by one thread.
For example, when you wrote the logic to compute the sum using a for-each loop, the loop must be executed only
by one thread. All modern computers come with a multicore processor. Wouldn’t it be nice to take advantage of the
multicore processor to execute the logic in parallel? The Java library provides a Fork/Join framework to divide a task
into subtasks recursively and execute the subtasks in parallel, taking advantage of a multicore processor. However, the
Fork/Join framework is not so simple to use, especially for beginners.

Streams come to your rescue! They are designed to process their elements in parallel without you even noticing
it! This does not mean that streams automatically decide for you when to process their elements in serial or parallel.
You just need to tell a stream that you want to use parallel processing and the stream will take care of the rest. Streams
take care of the details of using the Fork/Join framework internally. You can compute the sum of squares of odd
integers in the list in parallel, like so:

int sum = numbers.parallelStream()
 .filter(n -> n % 2 == 1)
 .map(n -> n * n)
 .reduce(0, Integer::sum);

All you had to do was replace the method called stream() with parallelStream()! The Streams API will use
multiple threads to filter the odd integers, compute their squares, and add them to compute partial sums. Finally, it
will join the partial sums to give you the result. In this example, you have only five elements in the list. Using multiple
threads to process them is overkill. You will not use parallel processing for such a trivial computation. I have presented
this example to drive home the point that parallelizing your computation using streams is free; you get it by just using
a different method name! The second point is that parallelizing the computation was made possible because of the
internal iteration provided by the stream.

Streams are designed to use internal iteration. They provide an iterator() method that returns an Iterator to
be used for external iteration of its elements. You will “never” need to iterate elements of a stream yourself using its
iterator. If you ever need it, here is how to use it:

// Get a list of integers from 1 to 5
List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5);
...
// Get an iterator from the stream
Iterator<Integer> iterator = numbers.stream().iterator();
while(iterator.hasNext()) {
 int n = iterator.next();
 ...
}

Imperative vs. Functional
Collections support imperative programming whereas streams support declarative programming. This is an offshoot
of collections supporting external iteration whereas streams support internal iteration. When you use collections,
you need to know “what” you want and “how” to get it; this is the feature of imperative programming. When you
use streams, you specify only “what” you want in terms of stream operations; the “how” part is taken care by the
Streams API. The Streams API supports the functional programming. Operations on a stream produce a result without
modifying the data source. Like in the functional programming, when you use streams, you specify “what” operations
you want to perform on its elements using the built-in methods provided by the Streams API, typically by passing a
lambda expressions to those methods, customizing the behavior of those operations.

Chapter 13 ■ StreamS

600

Stream Operations
A stream supports two types of operations:

Intermediate operations•	

Terminal operations•	

Intermediate operations are also known as lazy operations. Terminal operations are also known as eager
operations. Operations are known as lazy and eager based on the way they pull the data elements from the data
source. A lazy operation on a stream does not process the elements of the stream until another eager operation is
called on the stream.

Streams connect though a chain of operations forming a stream pipeline. A stream is inherently lazy until you
call a terminal operation on it. An intermediate operation on a stream produces another stream. When you call a
terminal operation on a stream, the elements are pulled from the data source and pass through the stream pipeline.
Each intermediate operation takes elements from an input stream and transforms the elements to produce an output
stream. The terminal operation takes inputs from a stream and produces the result.

Figure 3-1 shows a stream pipeline with a data source, three streams, and three operations. The filter and map
operations are intermediate operations and the reduce operation is a terminal operation.

Data
source

filter map reduce

Intermediate operations Terminal operation

Figure 13-1. A stream pipeline

In the figure, the first stream (on the left) pulls data from the data source and becomes the input source for the
filter operation. The filter operation produces another stream containing data for which the filter condition is true.
The stream produced by the filter operation becomes the input for the map operation. The map operation produces
another stream that contains the mapped data. The stream produced by the map operation becomes the input for
the reduce operation. The reduce operation is a terminal operation. It computes and returns the result, and then the
processing of stream is over.

Tip ■ I have used the phrase “a stream pulls/consumes elements from its data source” in the preceding discussion.
this does not mean that the stream removes the elements from the data source; it only reads them. Streams are
designed to support functional programming in which data elements are read and operations on the read data elements
produce new data elements. however, the data elements are not modified (or at least should not be modified).

Stream processing does not start until a terminal operation is called. If you just call intermediate operations
on a stream, nothing exciting happens, except that they create another stream objects in memory, without reading
data from the data source. This implies that you must use a terminal operation on a stream for it to process the
data to produce a result. This is also the reason that the terminal operation is called a result-bearing operation and
intermediate operations are also called non result-bearing operations.

Chapter 13 ■ StreamS

601

You have seen the following code that uses a pipeline of stream operations to compute the sum of odd integers
from 1 to 5:

List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5);
int sum = numbers.stream()
 .filter(n -> n % 2 == 1)
 .map(n -> n * n)
 .reduce(0, Integer::sum);

Figure 3-2 through Figure 3-5 show the states of the stream pipeline as operations are added. Notice that no data
flows through the stream until the reduce operation is called. The last figure shows the integers in the input stream for
an operation and the mapped (or transformed) integers produced by the operation. The reduce terminal operation
produces the result 35.

1, 2,
3, 4,

5

numbers.stream()

Figure 13-2. The stream pipeline after the stream object is created

1, 2,
3, 4,

5
filter

numbers.stream().filter(n -> n % 2 == 1)

Figure 13-3. The stream pipeline after the filter operation is called

1, 2,
3, 4,

5
filter map

numbers.stream().filter(n -> n % 2 == 1). map(n -> n * n)

Figure 13-4. The stream pipeline after the map operation is called

reduce5, 4, 3, 2, 1 filter
1, 2,
3, 4,

5
map

numbers.stream().filter(n -> n % 2 == 1).map(n -> n * n).reduce(0, Integer::sum)

5, 3, 1 25, 9, 1 35

Figure 13-5. The stream pipeline after the reduce operation is called

Ordered Streams
A stream can be ordered or unordered. An ordered stream preserves the order of its elements. The Streams API lets
you convert an ordered stream into an unordered stream. A stream can be ordered because it represents an ordered
data source such as a list or a sorted set. You can also convert an unordered stream into an ordered stream by applying
an intermediate operation such as sorting.

Chapter 13 ■ StreamS

602

A data source is said to have an encounter order if the order in which the elements are traversed by an iterator is
predictable and meaningful. For example, arrays and lists always have an encounter order that is from the element at
index 0 to the element at the last index. All ordered data sources have an encounter order for their elements. Streams
based on data sources having an encounter order also have an encounter order for their elements. Sometimes a
stream operation may impose an encounter order on an otherwise unordered stream. For example, a HashSet does
not have an encounter order for its elements. However, applying a sort operation on a stream based on a HashSet
imposes an encounter order so that elements are yielded in sorted order.

Streams Are Not Reusable
Unlike collections, streams are not reusable. They are one-shot objects. A stream cannot be reused after calling a
terminal operation on it. If you need to perform a computation on the same elements from the same data source
again, you must recreate the stream pipeline. A stream implementation may throw an IllegalStateException if it
detects that the stream is being reused.

Architecture of the Streams API
Figure 13-6 shows a class diagram for the stream-related interfaces. Stream-related interfaces and classes are in the
java.util.stream package.

Figure 13-6. A class diagram for stream-related interfaces in the Streams API

All stream interfaces inherit from the BaseStream interface, which inherits from the AutoCloseable interface
from the java.lang package. In practice, most streams use collections as their data source, and collections do not
need to be closed. When a stream is based on a closeable data source such as a file I/O channel, you may create the
instance of the stream using a try-with-resources statement to get it closed automatically. Methods common to all
types of streams are declared in the BaseStream interface.

•	 Iterator<T> iterator(): It returns an iterator for the stream. You will almost never need
to use this method in your code. This is a terminal operation. After calling this method, you
cannot call any other methods on the stream.

•	 S sequential(): It returns a sequential stream. If the stream is already sequential, it returns
itself. Use this method to convert a parallel stream into a sequential stream. This is an
intermediate operation.

•	 S parallel(): It returns a parallel stream. If the stream is already parallel, it returns itself.
Use this method to convert a parallel stream into a sequential stream. This is an intermediate
operation.

Chapter 13 ■ StreamS

603

•	 boolean isParallel(): It returns true if the stream is parallel, false otherwise. The result is
unpredictable when this method is called after invoking a terminal stream operation method.

•	 S unordered(): It returns an unordered version of the stream. If the stream is already
unordered, it returns itself. This is an intermediate operation.

The Stream<T> interface represents a stream of the element type T; for example, a Stream<Person> represents a
stream of Person objects. The interface contains methods representing intermediate and terminal operations such as
filter(), map(), reduce(), collect(), max(), min(), etc. When you work with streams, you will use these methods
most of the time. I will discuss each method in detail shortly.

Note that the Stream<T> interface takes a type parameter T, which means that you can use it only to work with
the elements of the reference type. If you have to work with a stream of primitive type such as int, long, etc., using
Stream<T> will involve an additional cost of boxing and unboxing the elements when primitive values are needed. For
example, adding all elements of a String<Integer> will require unboxing all Integer elements to int. The designers
of the Streams API realized this and they have provided three specialized stream interfaces called IntStream,
LongStream, and DoubleStream to work with primitives; these interfaces contain methods to deal with primitive
values. Note that you do not have stream interfaces representing other primitive types such as float, short, etc.
because the three stream types can be used to represent other primitive type streams.

A Quick Example
Let’s have a quick example of using streams. The code reads a list of integers and computes the sum of the squares of
all odd integers in the list.

The stream() method in the Collection interface returns a sequential stream where the Collection acts as the
data source. The following snippet of code creates a List<Integer> and obtains a Stream<Integer> from the list:

// Get a list of integers from 1 to 5
List<Integer> numbersList = Arrays.asList(1, 2, 3, 4, 5);

// Get the stream from the list
Stream<Integer> numbersStream = numbersList.stream();

The filter() method of the Stream<T> interface takes a Predicate<T> as argument and returns a Stream<T>
with elements of the original stream for which the specified Predicate returns true. The following statement obtains
a stream of only odd integers:

// Get a stream of odd integers
Stream<Integer> oddNumbersStream= numbersStream.filter(n -> n % 2 == 1);

Notice the use of the lambda expression as the argument for the filter() method. The lambda expression
returns true if the element in the stream is not divisible by 2.

The map() method of the Stream<T> interface takes a Function as argument. Each element in the stream is passed to
the Function and a new stream is generated containing the returned values from the Function. The following statement
takes all odd integers and maps them to their squares:

// Get a stream of the squares of odd integers
Stream<Integer> squaredNumbersStream = oddNumbersStream.map(n -> n * n);

Finally, you need to add the squares of all odd integers to get the result. The reduce(T identity,
BinaryOperator<T> accumulator) method of the Stream interface performs a reduction operation on the stream
to reduce the stream to a single value. It takes an initial value and an accumulator that is a BinaryOperator<T> as
arguments. The first time, the accumulator receives the initial value and the first element of the stream as arguments,
and returns a value. The second time, the accumulator receives the value returned from its previous call and the second

Chapter 13 ■ StreamS

604

element from the stream. This process continues until all elements of the stream have been passed to the accumulator.
The returned value from the last call of the accumulator is returned from the reduce() method. The following snippet of
code performs the summation of all integers in the stream:

// Sum all integers in the stream
int sum = squaredNumbersStream.reduce(0, (n1, n2) -> n1 + n2);

The Integer class contains a static sum() method to perform sum of two integers. You can rewrite the code using
a method reference, like so:

// Sum all integers in the stream
int sum = squaredNumbersStream.reduce(0, Integer::sum);

In this example, I have broken down each operation on the stream in a single statement. Note that you cannot
use the returned streams from intermediate operations, except to apply other operations on them. Typically, you
care about the result of the terminal operation, not the intermediate streams. Streams have been designed to support
method chaining to avoid temporary variables, which you used in this example. You can combine these statements
into one statement as follows:

// Sum all integers in the numbers list
int sum = numbers.stream()
 .filter(n -> n %2 ==1)
 .map(n -> n * n)
 .reduce(0, Integer::sum);

I will chain all method calls on streams to form only one statement in subsequent examples. Listing 13-1 contains
the complete program for this example. Note that you are working with only integers in this example. For better
performance, you could have used an IntStream in this example. I will show you how to use an IntStream later.

Listing 13-1. Computing the Sum of the Squares of All Odd Integers From 1 to 5

// SquaredIntsSum.java
package com.jdojo.streams;

import java.util.Arrays;
import java.util.List;

public class SquaredIntsSum {
 public static void main(String[] args) {
 // Get a list of integers from 1 to 5
 List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5);

 // Compute the sum of the squares of all odd integers in the list
 int sum = numbers.stream()
 .filter(n -> n % 2 == 1)
 .map(n -> n * n)
 .reduce(0, Integer::sum);

 System.out.println("Sum = " + sum);
 }
}

Sum = 35

Chapter 13 ■ StreamS

605

I will show many examples of performing aggregate operations on different types of streams. Most of the time,
it is will be easier to explain the stream operations using streams of numbers and strings. I will show some real world
examples of using streams by using a stream of Person objects. Listing 13-2 contains the declaration for the Person class.

Listing 13-2. A Person Class

// Person.java
package com.jdojo.streams;

import java.time.LocalDate;
import java.time.Month;
import java.util.Arrays;
import java.util.List;

public class Person {
 // An enum to represent the gender of a person
 public static enum Gender {MALE, FEMALE}

 private long id;
 private String name;
 private Gender gender;
 private LocalDate dob;
 private double income;

 public Person(long id, String name, Gender gender,
 LocalDate dob, double income) {
 this.id = id;
 this.name = name;
 this.gender = gender;
 this.dob = dob;
 this.income = income;
 }

 public long getId() {
 return id;
 }

 public void setId(long id) {
 this.id = id;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

Chapter 13 ■ StreamS

606

 public Gender getGender() {
 return gender;
 }

 public boolean isMale() {
 return this.gender == Gender.MALE;
 }

 public boolean isFemale() {
 return this.gender == Gender.FEMALE;
 }

 public void setGender(Gender gender) {
 this.gender = gender;
 }

 public LocalDate getDob() {
 return dob;
 }

 public void setDob(LocalDate dob) {
 this.dob = dob;
 }

 public double getIncome() {
 return income;
 }

 public void setIncome(double income) {
 this.income = income;
 }

 public static List<Person> persons() {
 Person ken = new Person(1, "Ken", Gender.MALE,
 LocalDate.of(1970, Month.MAY, 4), 6000.0);
 Person jeff = new Person(2, "Jeff", Gender.MALE,
 LocalDate.of(1970, Month.JULY, 15), 7100.0);
 Person donna = new Person(3, "Donna", Gender.FEMALE,
 LocalDate.of(1962, Month.JULY, 29), 8700.0);
 Person chris = new Person(4, "Chris", Gender.MALE,
 LocalDate.of(1993, Month.DECEMBER, 16), 1800.0);
 Person laynie = new Person(5, "Laynie", Gender.FEMALE,
 LocalDate.of(2012, Month.DECEMBER, 13), 0.0);
 Person lee = new Person(6, "Li", Gender.MALE,
 LocalDate.of(2001, Month.MAY, 9), 2400.0);

 // Create a list of persons
 List<Person> persons = Arrays.asList(ken, jeff, donna, chris, laynie, lee);

 return persons;
 }

Chapter 13 ■ StreamS

607

 @Override
 public String toString() {
 String str = String.format("(%s, %s, %s, %s, %.2f)",
 id, name, gender, dob, income);
 return str;
 }
}

The Person class contains a static Gender enum to represent the gender of a person. The class declares five
instance variables (id, name, gender, dob, and income), getters, and setters. The isMale() and isFemale() methods
have been declared to be used as method references in lambda expressions. You will use a list of people frequently,
and the class contains a static method persons() to get a list of people.

Creating Streams
There are many ways to create streams. Many existing classes in the Java libraries have received new methods that
return a stream. Based on the data source, stream creation can be categorized as follows:

Streams from values•	

Empty streams•	

Streams from functions•	

Streams from arrays•	

Streams from collections•	

Streams from files•	

Streams from other sources•	

Streams from Values
The Stream interface contains the following two static of() methods to create a sequential Stream from a single value
and multiple values:

•	 <T> Stream<T> of(T t)

•	 <T> Stream<T> of(T...values)

The following snippet of code creates two streams:

// Creates a stream with one string elements
Stream<String> stream = Stream.of("Hello");

// Creates a stream with four strings
Stream<String> stream = Stream.of("Ken", "Jeff", "Chris", "Ellen");

Chapter 13 ■ StreamS

608

You created a List<Integer> and called its stream() method to get a stream object in Listing 13-1. You can
rewrite that example using the Stream.of() method as follows:

import java.util.stream.Stream;
...
// Compute the sum of the squares of all odd integers in the list
int sum = Stream.of(1, 2, 3, 4, 5)
 .filter(n -> n % 2 == 1)
 .map(n -> n * n)
 .reduce(0, Integer::sum);

System.out.println("Sum = " + sum);

Sum = 35

Note that the second version of the of() method takes a varargs argument and you can use it to create a stream
from an array of objects as well. The following snippet of code creates a stream from a String array.

String[] names = {"Ken", "Jeff", "Chris", "Ellen"};

// Creates a stream of four strings in the names array
Stream<String> stream = Stream.of(names);

Tip ■ the Stream.of() method creates a stream whose elements are of reference type. If you want to create a
stream of primitive values from an array of primitive type, you need to use the Arrays.stream() method that will be
explained shorty.

The following snippet of code creates a stream of strings from a String array returned from the split() method
of the String class:

String str = "Ken,Jeff,Chris,Ellen";

// The stream will contain fur elements: "Ken", "Jeff", "Chris", and "Ellen"
Stream<String> stream = Stream.of(str.split(","));

The Stream interface also supports creating a stream using the builder pattern using the Stream.Builder<T>
interface whose instance represents a stream builder. The builder() static method of the Stream interface returns a
stream builder.

// Gets a stream builder
Stream.Builder<String> builder = Stream.builder();

The Stream.Builder<T> interface contains the following methods:

•	 void accept(T t)

•	 Stream.Builder<T> add(T t)

•	 Stream<T> build()

Chapter 13 ■ StreamS

609

The accept() and add() methods add elements to the stream being built. You might wonder about the existence of
two methods in the builder to add elements. The Stream.Builder<T> interface inherits from the Consumer<T> interface,
and therefore it inherits the accept() method from the Consumer<T> interface. You can pass a builder’s instance to a
method that accepts a consumer and the method can add elements to the builder using the accept method.

The add() method returns the reference to the builder that makes it suitable for adding multiple elements using
method chaining. Once you are done adding elements, call the build() method to create the stream. You cannot
add elements to the stream after you call the build() method; doing so results in an IllegalStateException runtime
exception. The following snippet of code uses the builder pattern to create a stream of four strings:

Stream<String> stream = Stream.<String>builder()
 .add("Ken")
 .add("Jeff")
 .add("Chris")
 .add("Ellen")
 .build();

Note that the code specifies the type parameter as String when it obtains the builder Stream.<String>builder().
The compiler fails to infer the type parameter if you do not specify it. If you obtain the builder separately, the compiler
will infer the type as String, as shown:

// Obtain a builder
Stream.Builder<String> builder = Stream.builder();

// Add elements and build the stream
Stream<String> stream = builder.add("Ken")
 .add("Jeff")
 .add("Chris")
 .add("Ellen")
 .build();

The IntStream interfaces contain two static methods:

•	 IntStream range(int start, int end)

•	 IntStream rangeClosed(int start, int end).

They produce an IntStream that contains ordered integers between the specified start and end. The specified
end is exclusive in the range() method whereas it is inclusive in the rangeClosed() method. The following snippet of
code uses both methods to create an IntStream having integers 1, 2, 3, 4, and 5 as their elements:

// Create an IntStream containing 1, 2, 3, 4, and 5
IntStream oneToFive = IntStream.range(1, 6);

// Create an IntStream containing 1, 2, 3, 4, and 5
IntStream oneToFive = IntStream.rangeClosed(1, 5);

Like the IntStream interface, the LongStream class also contains range() 0and rangeClosed() methods that
takes arguments of type long and return a LongStream.

Chapter 13 ■ StreamS

610

Empty Streams
An empty stream is a stream with no elements. The Stream interface contains an empty() static method to create an
empty sequential stream.

// Creates an empty stream of strings
Stream<String> stream = Stream.empty();

The IntStream, LongStream, and DoubleStream interfaces also contain an empty() static method to create an
empty stream of primitive types.

// Creates an empty stream of integers
IntStream numbers = IntStream.empty();

Streams from Functions
An infinite stream is a stream with a data source capable of generating infinite number of elements. Note that I am
saying that the data source should be “capable of generating” infinite number of elements, rather the data source
should have or contain an infinite number of elements. It is impossible to generate and store an infinite number of
elements of any kind because of memory and time constraints. However, it is possible to have a function that can
generate infinite number of values on demand.

The Stream interface contains the following two static methods to generate an infinite stream:

•	 <T> Stream<T> iterate(T seed, UnaryOperator<T> f)

•	 <T> Stream<T> generate(Supplier<T> s)

The iterator() method creates a sequential ordered stream whereas the generate() method creates a
sequential unordered stream. The following sections will show you how to use these methods.

The stream interfaces for primitive values IntStream, LongStream, and DoubleStream also contain iterate()
and generate() static methods that take parameters specific to their primitive types. For example, these methods are
defined as follows in the IntStream interface:

•	 IntStream iterate(int seed, IntUnaryOperator f)

•	 IntStream generate(IntSupplier s)

Using the Stream.iterate() Method
The iterator() method takes two arguments: a seed and a function. The first argument is a seed that is the first
element of the stream. The second element is generated by applying the function to the first element. The third
element is generated by applying the function on the second element and so on. Its elements are seed, f(seed),
f(f(seed)), f(f(f(seed))), and so on. The following statement creates an infinite stream of natural numbers and an
infinite stream of all odd natural numbers:

// Creates a stream of natural numbers
Stream<Long> naturalNumbers = Stream.iterate(1L, n -> n + 1);

// Creates a stream of odd natural numbers
Stream<Long> oddNaturalNumbers = Stream.iterate(1L, n -> n + 2);

What do you do with an infinite stream? You understand that it is not possible to consume all elements of an
infinite stream. This is simply because the stream processing will take forever to complete. Typically, you convert the
infinite stream into a fixed-size stream by applying a limit operation that truncates the input stream to be no longer

Chapter 13 ■ StreamS

611

than a specified size. The limit operation is an intermediate operation that produces another stream. You apply the
limit operation using the limit(long maxSize) method of the Stream interface. The following snippet of code creates
a stream of the first 10 natural numbers:

// Creates a stream of the first 10 natural numbers
Stream<Long> tenNaturalNumbers = Stream.iterate(1L, n -> n + 1)
 .limit(10);

You can apply a forEach operation on a stream using the forEach(Consumer<? super T> action) method of the
Stream interface. The method returns void. It is a terminal operation. The following snippet of code prints the first
five odd natural numbers on the standard output:

Stream.iterate(1L, n -> n + 2)
 .limit(5)
 .forEach(System.out::println);

1
3
5
7
9

Let’s take a realistic example of creating an infinite stream of prime numbers. Listing 13-3 contains a utility class
called PrimeUtil. The class contains two utility methods. The next() instance method returns the next prime number
after the last found prime number. The next(long after) static method returns the prime number after the specified
number. The isPrime() static method checks if a number is a prime number.

Listing 13-3. A Utility Class to Work with Prime Numbers

// PrimeUtil.java
package com.jdojo.streams;

public class PrimeUtil {
 // Used for a stateful PrimeUtil
 private long lastPrime = 0L;

 // Computes the prime number after the last generated prime
 public long next() {
 lastPrime = next(lastPrime);
 return lastPrime;
 }

 // Computes the prime number after the specified number
 public static long next(long after) {
 long counter = after;

 // Keep looping until you find the next prime number
 while (!isPrime(++counter));

 return counter;
 }

Chapter 13 ■ StreamS

612

 // Checks if the specified nubmer is a prime number
 public static boolean isPrime(long number) {
 // <= 1 is not a prime number
 if (number <= 1) {
 return false;
 }

 // 2 is a prime number
 if (number == 2) {
 return true;
 }

 // Even numbers > 2 are not prime numbers
 if (number % 2 == 0) {
 return false;
 }

 long maxDivisor = (long) Math.sqrt(number);
 for (int counter = 3; counter <= maxDivisor; counter += 2) {
 if (number % counter == 0) {
 return false;
 }
 }

 return true;
 }
}

The following snippet of code creates an infinite stream of prime numbers and prints the first five prime numbers
on the standard output:

Stream.iterate(2L, PrimeUtil::next)
 .limit(5)
 .forEach(System.out::println);

2
3
5
7
11

There is another way to get the first five prime numbers. You can generate an infinite stream of natural numbers,
apply a filter operation to pick only the prime numbers, and limit the filtered stream to five. The following snippet of
code shows this logic using the isPrime() method of the PrimeUtil class:

// Print the first 5 prime numbers
Stream.iterate(2L, n -> n + 1)
 .filter(PrimeUtil::isPrime)
 .limit(5)
 .forEach(System.out::println);

Chapter 13 ■ StreamS

613

2
3
5
7
11

Sometimes you may want to discard some elements of a stream. This is accomplished using the skip operation.
The skip(long n) method of the Stream interface discards (or skips) the first n elements of the stream. This is an
intermediate operation. The following snippet of code uses this operation to print five prime numbers, skipping the
first 100 prime numbers:

Stream.iterate(2L, PrimeUtil::next)
 .skip(100)
 .limit(5)
 .forEach(System.out::println);

547
557
563
569
571

Using everything you have learned about streams, can you write a stream pipeline to print five prime numbers
that are greater than 3000? This is left as an exercise for the readers.

Using the generate() Method
The generate(Supplier<T> s) method uses the specified Supplier to generate an infinite sequential unordered
stream. The following snippet of code prints five random numbers greater than or equal to 0.0 and less than 1.0 using
the random() static method of the Math class. You may get a different output.

Stream.generate(Math::random)
 .limit(5)
 .forEach(System.out::println);

0.05958352209327644
0.8122226657626394
0.5073323815997652
0.9327951597282766
0.4314430923877808

Chapter 13 ■ StreamS

614

If you want to use the generate() method to generate an infinite stream in which the next element is generated
based on the value of the previous element, you will need to use a Supplier that stores the last generated element.
Note that a PrimeUtil object can act as a Supplier whose next() instance method remembers the last generated
prime number. The following snippet of code prints five prime numbers after skipping the first 100:

Stream.generate(new PrimeUtil()::next)
 .skip(100)
 .limit(5)
 .forEach(System.out::println);

547
557
563
569
571

Java 8 has added many methods to the Random class in the java.util package to work with streams. Methods
like ints(), longs(), and doubles() return infinite IntStream, LongStream, and DoubleStream, respectively, which
contain random numbers of the int, long, and double types. The following snippet of code prints five random int
values from an IntStream returned from the ints() method of the Random class:

// Print five random integers
new Random().ints()
 .limit(5)
 .forEach(System.out::println);

-1147567659
285663603
-412283607
412487893
-22795557

You may get a different output every time you run the code. You can use the nextInt() method of the Random
class as the Supplier in the generate() method to achieve the same.

// Print five random integers
Stream.generate(new Random()::nextInt)
 .limit(5)
 .forEach(System.out::println);

If you want to work with only primitive values, you can use the generate() method of the primitive type stream
interfaces. For example, the following snippet of code prints five random integers using the generate() static method
of the IntStream interface:

IntStream.generate(new Random()::nextInt)
 .limit(5)
 .forEach(System.out::println);

Chapter 13 ■ StreamS

615

How would you generate an infinite stream of a repeating value? For example, how would you generate an
infinite stream of zeroes? The following snippet of code shows you how to do this:

IntStream zeroes = IntStream.generate(() -> 0);

Streams from Arrays
The Arrays class in the java.util package contains an overloaded stream() static method to create sequential
streams from arrays. You can use it to create an IntStream from an int array, a LongStream from a long array, a
DoubleStream from a double array, and a Stream<T> from an array of the reference type T. The following snippet of
code creates an IntStream and a Stream<String> from an int array and a String array:

// Creates a stream from an int array with elements 1, 2, and 3
IntStream numbers = Arrays.stream(new int[]{1, 2, 3});

// Creates a stream from a String array with elements "Ken", and "Jeff"
Stream<String> names = Arrays.stream(new String[] {"Ken", "Jeff"});

Tip ■ You can create a stream from a reference type array using two methods: Arrays.stream(T[] t) and
Stream.of(T...t) method. providing two methods in the library to accomplish the same thing is intentional.

Streams from Collections
The Collection interface contains the stream() and parallelStream() methods that create sequential and parallel
streams from a Collection, respectively. The following snippet of code creates streams from a set of strings:

import java.util.HashSet;
import java.util.Set;
import java.util.stream.Stream;
...
// Create and populate a set of strings
Set<String> names = new HashSet<>();
names.add("Ken");
names.add("jeff");

// Create a sequential stream from the set
Stream<String> sequentialStream = names.stream();

// Create a parallel stream from the set
Stream<String> parallelStream = names.parallelStream();

Streams from Files
Java 8 has added many methods to the classes in the java.io and java.nio.file packages to support I/O operations
using streams. For example,

You can read text from a file as a stream of strings in which each element represents one line of •	
text from the file.

You can obtain a stream of •	 JarEntry from a JarFile.

Chapter 13 ■ StreamS

616

You can obtain the list of entries in a directory as a stream of Path.

You can obtain a stream of •	 Path that is a result of a file search in a specified directory.

You can obtain a stream of •	 Path that contains the file tree of a specified directory.

I will show some examples of using streams with file I/O in this section. Please refer to the API documentation
for the java.nio.file.Files, java.io.BufferedReader, and java.util.jar.JarFile classes for more details on the
stream related methods.

The BufferedReader and Files classes contain a lines() method that reads a file lazily and returns the
contents as a stream of strings. Each element in the stream represents one line of text from the file. The file needs to
be closed when you are done with the stream. Calling the close() method on the stream will close the underlying
file. Alternatively, you can create the stream in a try-with-resources statement so the underlying file is closed
automatically.

The program in Listing 13-4 shows how to read contents of a file using a stream. It also walks the entire file tree
for the current working directory and prints the entries in the directory. The program assumes that you have the
luci1.txt file, which is supplied with the source code, in the current working directory. If the file does not exist, an
error message with the absolute path of the expected file is printed. You may get a different output when you run
the program.

Listing 13-4. Performing File I/O Using Streams

// IOStream.java
package com.jdojo.streams;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.stream.Stream;

public class IOStream {
 public static void main(String[] args) {
 // Read the contents of teh file luci1.txt
 readFileContents("luci1.txt");

 // Print the file tree for the current working directory
 listFileTree();
 }

 public static void readFileContents(String filePath) {
 Path path = Paths.get(filePath);
 if (!Files.exists(path)) {
 System.out.println("The file " +
 path.toAbsolutePath() + " does not exist.");
 return;
 }

 try(Stream<String> lines = Files.lines(path)) {
 // Read and print all lines
 lines.forEach(System.out::println);
 }

Chapter 13 ■ StreamS

617

 catch (IOException e) {
 e.printStackTrace();
 }
 }

 public static void listFileTree() {
 Path dir = Paths.get("");
 System.out.printf("%nThe file tree for %s%n", dir.toAbsolutePath());

 try(Stream<Path> fileTree = Files.walk(dir)) {
 fileTree.forEach(System.out::println);
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }
}

STRANGE fits of passion have I known:
And I will dare to tell,
But in the lover's ear alone,
What once to me befell.

The file tree for C:\book\javabook
build
build\built-jar.properties
...

Streams from Other Sources
Java 8 has added methods in many other classes to return the contents they represent in a stream. Two such methods
that you may use frequently are explained next.

The chars() method in the CharSequence interface returns an IntStream whose elements are int values
representing the characters of the CharSequence. You can use the chars() method on a String, a StringBuilder,
and a StringBuffer to obtain a stream of characters of their contents as these classes implement the CharSequence
interface.

The •	 splitAsStream(CharSequence input) method of the java.util.regex.Pattern class
returns a stream of String whose elements match the pattern.

Let’s look at an example in both categories. The following snippet of code creates a stream of characters from
a string, filters out all digits and whitespaces, and prints the remaining characters:

String str = "5 apples and 25 oranges";
str.chars()
 .filter(n -> !Character.isDigit((char)n) && !Character.isWhitespace((char)n))
 .forEach(n -> System.out.print((char)n));

applesandoranges

Chapter 13 ■ StreamS

618

The following snippet of code obtains a stream of strings by splitting a string using a regular expression (“ , ”).
The matched strings are printed on the standard output.

String str = "Ken,Jeff,Lee";
Pattern.compile(",")
 .splitAsStream(str)
 .forEach(System.out::println);

Ken
Jeff
Lee

Representing an Optional Value
In Java, null is used to represent “nothing” or an “empty” result. Most often, a method returns null if it does not have
a result to return. This has been a source of frequent NullPointerException in Java programs. Consider printing the
year of birth of a person, like so:

Person ken = new Person(1, "Ken", Person.Gender.MALE, null, 6000.0);
int year = ken.getDob().getYear(); // Throws a NullPointerException
System.out.println("Ken was born in the year " + year);

The code throws a NullPointerException at runtime. The problem is in the return value of the ken.getDob()
method that returns null. Calling the getYear() method on a null reference results in the NullPointerException.
So, what is the solution? In fact, there is no real solution to this. Java 8 has introduced an Optional<T> class in the
java.util package to deal with NullPointerException gracefully. Methods that may return nothing should return an
Optional instead of null.

An Optional is a wrapper for a non-null value that may or may not contain a non-null value. Its isPresent()
method returns true if it contains a non-null value, false otherwise. Its get() method returns the non-null value if
it contains a non-null value, and throws a NoSuchElementException otherwise. This implies that when a method
returns an Optional, you must, as a practice, check if it contains a non-null value before asking it for the value. If
you use the get() method before making sure it contains a non-null value, you may get a NoSuchElementException
instead of getting a NullPointerException. This is why I said in the previous paragraph that there is no real solution
to the NullPointerException. However, returning an Optional is certainly a better way to deal with nulls as
developers will get used to using the Optional objects in the way they are designed to be used.

How do you create an Optional<T> object? The Optional<T> class provides three static factory methods to create
its objects.

•	 <T> Optional<T> empty(): Returns an empty Optional. That is, the Optional<T> returned
from this method does not contain a non-null value.

•	 <T> Optional<T> of(T value): Returns an Optional containing the specified value as the
non-null value. If the specified value is null, it throws a NullPointerException.

•	 <T> Optional<T> ofNullable(T value): Returns an Optional containing the specified value
if the value is non-null. If the specified value is null, it returns an empty Optional.

The following snippet of code shows how to create Optional objects:

// Create an empty Optional
Optional<String> empty = Optional.empty();

Chapter 13 ■ StreamS

619

// Create an Optional for the string "Hello"
Optional<String> str = Optional.of("Hello");

// Create an Optional with a String that may be null
String nullableString = ""; // get a string that may be null...
Optional<String> str2 = Optional.of(nullableString);

The following snippet of code prints the value in an Optional if it contains a non-null value:

// Create an Optional for the string "Hello"
Optional<String> str = Optional.of("Hello");

// Print the value in Optional
if (str.isPresent()) {
 String value = str.get();
 System.out.println("Optional contains " + value);
}
else {
 System.out.println("Optional is empty.");
}

Optional contains Hello

You can use the ifPresent(Consumer<? super T> action) method of the Optional class to take an action on
the value contained in the Optional. If the Optional is empty, this method does not do anything. You can rewrite the
previous code to print the value in an Optional as follows:

// Create an Optional for the string "Hello"
Optional<String> str = Optional.of("Hello");

// Print the value in the Optional, if present
str.ifPresent(value -> System.out.println("Optional contains " + value));

Optional contains Hello

Note that if the Optional were empty, the code would not print anything.
The following are four methods to get the value of an Optional:

•	 T get(): Returns the value contained in the Optional. If the Optional is empty, it throws a
NoSuchElementException.

•	 T orElse(T defaultValue): Returns the value contained in the Optional. If the Optional is
empty, it returns the specified defaultValue.

•	 T orElseGet(Supplier<? extends T> defaultSupplier): Returns the value contained
in the Optional. If the Optional is empty, it returns the value returned from the specified
defaultSupplier.

•	 <X extends Throwable> T orElseThrow(Supplier<? extends X> exceptionSupplier)
throws X extends Throwable: Returns the value contained in the Optional. If the Optional
is empty, it throws the exception returned from the specified exceptionSupplier.

Chapter 13 ■ StreamS

620

The Optional<T> class describes a non-null reference type value or its absence. The java.util package contains
three more classes named OptionalInt, OptionalLong, and OptionalDouble to deal with optional primitive values.
They contain similarly named methods that apply to primitive data types, except for getting their values. They do not
contain a get() method. To return their values, the OptionalInt class contains a getAsInt(), the OptionalLong class
contains a getAsLong(), and the OptionalDouble class contains a getAsDouble() method. Like the get() method of
the Optional class, the getters for primitive optional classes also throw a NoSuchElementException when they are
empty. Unlike the Optional class, they do not contain an ofNullable() factory method because primitive values
cannot be null. The following snippet of code shows how to use the OptionalInt class:

// Create an empty OptionalInt
OptionalInt empty = OptionalInt.empty();

// Use an OptionaInt to store 287
OptionalInt number = OptionalInt.of(287);

if(number.isPresent()){
 int value = number.getAsInt();
 System.out.println("Number is " + value);
}
else {
 System.out.println("Number is absent.");
}

Number is 287

Several methods in the Streams API return an instance of the Optional, OptionalInt, OptionalLong, and
OptionalDouble when they do not have anything to return. For example, all types of streams let you compute the
maximum element in the stream. If the stream is empty, there is no maximum element. Note that in a stream pipeline,
you may start with a non-empty stream and end up with an empty stream because of filtering or other operations
such as limit, skip, etc. For this reason, the max() method in all stream classes returns an optional object. The program
in Listing 13-5 shows how to get the maximum integer from IntStream.

Listing 13-5. Working with Optional Values

// OptionalTest.java
package com.jdojo.streams;

import java.util.Comparator;
import java.util.Optional;
import java.util.OptionalInt;
import java.util.stream.IntStream;
import java.util.stream.Stream;

public class OptionalTest {
 public static void main(String[] args) {
 // Get the maximum of odd integers from the stream
 OptionalInt maxOdd = IntStream.of(10, 20, 30)
 .filter(n -> n % 2 == 1)
 .max();

Chapter 13 ■ StreamS

621

 if (maxOdd.isPresent()) {
 int value = maxOdd.getAsInt();
 System.out.println("Maximum odd integer is " + value);
 }
 else {
 System.out.println("Stream is empty.");
 }

 // Get the maximum of odd integers from the stream
 OptionalInt numbers = IntStream.of(1, 10, 37, 20, 31)
 .filter(n -> n % 2 == 1)
 .max();
 if (numbers.isPresent()) {
 int value = numbers.getAsInt();
 System.out.println("Maximum odd integer is " + value);
 }
 else {
 System.out.println("Stream is empty.");
 }

 // Get the longest name
 Optional<String> name = Stream.of("Ken", "Ellen", "Li")
 .max(Comparator.comparingInt(String::length));
 if (name.isPresent()) {
 String longestName = name.get();
 System.out.println("Longest name is " + longestName);
 }
 else {
 System.out.println("Stream is empty.");
 }
 }
}

Stream is empty.
Maximum odd integer is 37
Longest name is Ellen

Applying Operations on Streams
Table 13-1 lists some of the commonly used stream operations, their types, and descriptions. You have seen some of
these operations in previous sections. Subsequent sections cover them in detail.

Chapter 13 ■ StreamS

622

Debugging a Stream Pipeline
You apply a sequence of operations on a stream. Each operation transforms the elements of the input stream either
producing another stream or a result. Sometimes you may need to look at the elements of the streams as they pass
through the pipeline. You can do so by using the peek(Consumer<? super T> action) method of the Stream<T>
interface that is meant only for debugging purposes. It produces a stream after applying an action on each input
element. The IntStream, LongStream, and DoubleStream also contain a peek() method that takes a IntConsumer,
a LongConsumer, and a DoubleConsumer as an argument. Typically, you use a lambda expression with the peek()
method to log messages describing elements being processed.

Table 13-1. List of Commonly Used Stream Operations Supported by the Streams API

Operation Type Description

Distinct Intermediate Returns a stream consisting of the distinct elements of this stream. Elements e1
and e2 are considered equal if e1.equals(e2) returns true.

filter Intermediate Returns a stream consisting of the elements of this stream that match the
specified predicate.

flatMap Intermediate Returns a stream consisting of the results of applying the specified function
to the elements of this stream. The function produces a stream for each input
element and the output streams are flattened. Performs one-to-many mapping.

limit Intermediate Returns a stream consisting of the elements of this stream, truncated to be no
longer than the specified size.

map Intermediate Returns a stream consisting of the results of applying the specified function to
the elements of this stream. Performs one-to-one mapping.

peek Intermediate Returns a stream whose elements consist of this stream. It applies the specified
action as it consumes elements of this stream. It is mainly used for debugging
purposes.

skip Intermediate Discards the first n elements of the stream and returns the remaining stream.
If this stream contains fewer than n elements, an empty stream is returned.

sorted Intermediate Returns a stream consisting of the elements of this stream, sorted according to
natural order or the specified Comparator. For an ordered stream, the sort is
stable.

allMatch Terminal Returns true if all elements in the stream match the specified predicate, false
otherwise. Returns true if the stream is empty.

anyMatch Terminal Returns true if any element in the stream matches the specified predicate, false
otherwise. Returns false if the stream is empty.

findAny Terminal Returns any element from the stream. An empty Optional object is for an empty
stream.

findFirst Terminal Returns the first element of the stream. For an ordered stream, it returns the first
element in the encounter order; for an unordered stream, it returns any element.

noneMatch Terminal Returns true if no elements in the stream match the specified predicate, false
otherwise. Returns true if the stream is empty.

forEach Terminal Applies an action for each element in the stream.

reduce Terminal Applies a reduction operation to computes a single value from the stream.

Chapter 13 ■ StreamS

623

The following snippet of code uses the peek() method at three places to print the elements passing through the
stream pipeline:

int sum = Stream.of(1, 2, 3, 4, 5)
 .peek(e -> System.out.println("Taking integer: " + e))
 .filter(n -> n % 2 == 1)
 .peek(e -> System.out.println("Filtered integer: " + e))
 .map(n -> n * n)
 .peek(e -> System.out.println("Mapped integer: " + e))
 .reduce(0, Integer::sum);

System.out.println("Sum = " + sum);

Taking integer: 1
Filtered integer: 1
Mapped integer: 1
Taking integer: 2
Taking integer: 3
Filtered integer: 3
Mapped integer: 9
Taking integer: 4
Taking integer: 5
Filtered integer: 5
Mapped integer: 25
Sum = 35

Notice that the output shows the even numbers being taken from the data source, but not passing the filter
operation.

Applying the ForEach Operation
The forEach operation takes an action for each element of the stream. The action may be simply printing each element
of the stream on the standard output or increasing the income of every person in a stream by 10%. The Stream<T>
interface contains two methods to perform the forEach operation:

•	 void forEach(Consumer<? super T> action)

•	 void forEachOrdered(Consumer<? super T> action)

IntStream, LongStream, and DoubleStream also contain the same methods, except that their parameter type
is the specialized consumer types for primitives; for example, the parameter type for the forEach() method in the
IntStream is IntConsumer.

Why do you have two methods to perform the forEach operation? Sometimes the order in which the action is
applied for the elements in a stream is important, and sometimes it is not. The forEach() method does not guarantee
the order in which the action for each element in the stream is applied. The forEachOrdered() method performs the
action in the encounter order of elements defined by the stream. Use the forEachOrdered() method for a parallel
stream only when necessary because it may slow down processing.

Chapter 13 ■ StreamS

624

The following snippet of code prints the details of females in the person list:

Person.persons()
 .stream()
 .filter(Person::isFemale)
 .forEach(System.out::println);

(3, Donna, FEMALE, 1962-07-29, 8700.00)
(5, Laynie, FEMALE, 2012-12-13, 0.00)

The program in Listing 13-6 shows how to use the forEach() method to increase the income of all females by 10%.
The output shows that only Donna got an increase because another female named Laynie had 0.0 income before.

Listing 13-6. Applying the ForEach Operation on a List of Persons

// ForEachTest.java
package com.jdojo.streams;

import java.util.List;

public class ForEachTest {
 public static void main(String[] args) {
 // Get the list of persons
 List<Person> persons = Person.persons();

 // Print the list
 System.out.println("Before increasing the income: " + persons);

 // Increase the income of females by 10%
 persons.stream()
 .filter(Person::isFemale)
 .forEach(p -> p.setIncome(p.getIncome() * 1.10));

 // Print the list again
 System.out.println("After increasing the income: " + persons);
 }
}

Before increasing the income: [(1, Ken, MALE, 1970-05-04, 6000.00), (2, Jeff, MALE, 1970-07-15,
7100.00), (3, Donna, FEMALE, 1962-07-29, 8700.00), (4, Chris, MALE, 1993-12-16, 1800.00),
(5, Laynie, FEMALE, 2012-12-13, 0.00), (6, Li, MALE, 2001-05-09, 2400.00)]
After increasing the income: [(1, Ken, MALE, 1970-05-04, 6000.00), (2, Jeff, MALE, 1970-07-15,
7100.00), (3, Donna, FEMALE, 1962-07-29, 9570.00), (4, Chris, MALE, 1993-12-16, 1800.00),
(5, Laynie, FEMALE, 2012-12-13, 0.00), (6, Li, MALE, 2001-05-09, 2400.00)]

Applying the Map Operation
A map operation (also known as mapping) applies a function to each element of the input stream to produce another
stream (also called an output stream or a mapped stream). The number of elements in the input and output streams is
the same. The operation does not modify the elements of the input stream (at least it is not supposed to).

Chapter 13 ■ StreamS

625

Figure 13-7 depicts the application of the map operation on a stream. It shows element e1 from the input stream
being mapped to element et1 in the mapped stream, element e2 mapped to et2, etc.

e1

e2

e3

en

et1

et2

et3

etn

map(e)

Input stream Output stream

Figure 13-7. A pictorial view of the map operation

Mapping a stream to another stream is not limited to any specific type of elements. You can map a stream of T to
a stream of type S, where T and S may be the same or different types. For example, you can map a stream of Person
to a stream of int where each Person element in the input stream maps to the Person’s id in the mapped stream.

You can apply the map operation on a stream using one of the following methods of the Stream<T> interface:

•	 <R> Stream<R> map(Function<? super T,? extends R> mapper)

•	 DoubleStream mapToDouble(ToDoubleFunction<? super T> mapper)

•	 IntStream mapToInt(ToIntFunction<? super T> mapper)

•	 LongStream mapToLong(ToLongFunction<? super T> mapper)

The map operation takes a function as an argument. Each element from the input stream is passed to the
function. The returned value from the function is the mapped element in the mapped stream. Use the map() method
to perform the mapping to reference type elements. If the mapped stream is of a primitive type, use other methods;
for example, use the mapToInt() method to map a stream of a reference type to a stream of int. The IntStream,
LongStream, and DoubleStream interfaces contain similar methods to facilitate mapping of one type of stream to
another. The methods supporting the map operation on an IntStream are as follows:

•	 IntStream map(IntUnaryOperator mapper)

•	 DoubleStream mapToDouble(IntToDoubleFunction mapper)

•	 LongStream mapToLong(IntToLongFunction mapper)

•	 <U> Stream<U> mapToObj(IntFunction<? extends U> mapper)

The following snippet of code creates an IntStream whose elements are integers from 1 to 5, maps the elements
of the stream to their squares, and prints the mapped stream on the standard output. Note that the map() method
used in the code is the map() method of the IntStream interface.

IntStream.rangeClosed(1, 5)
 .map(n -> n * n)
 .forEach(System.out::println);

Chapter 13 ■ StreamS

626

1
4
9
16
25

The following snippet of code maps the elements of a stream of people to their names and prints the mapped
stream. Note that the map() method used in the code is the map() method of the Stream interface.

Person.persons()
 .stream()
 .map(Person::getName)
 .forEach(System.out::println);

Ken
Jeff
Donna
Chris
Laynie
Li

Flattening Streams
In the previous section, you saw the map operation that facilitates a one-to-one mapping. Each element of the input
stream is mapped to an element in the output stream. The Streams API also supports one-to-many mapping through
the flatMap operation that works as follows:

It takes an input stream and produces an output stream using a mapping function.•	

The mapping function takes an element from the input stream and maps the element to a •	
stream. The type of input element and the elements in the mapped stream may be different.
This step produces a stream of streams. Suppose the input stream is a Stream<T> and the
mapped stream is Stream<Stream<R>> where T and R may be the same or different.

Finally, it flattens the output stream (that is, a stream of streams) to produce a stream. That is, the
Stream<Stream<R>> is flattened to Stream<R>.

It takes some time to understand the flat map operation. Suppose that you have a stream of three numbers: 1, 2,
and 3. You want to produce a stream that contains the numbers and the square of the numbers. You want the output
stream to contain 1, 1, 2, 4, 3, and 9. The following is the first, incorrect attempt to achieve this:

Stream.of(1, 2, 3)
 .map(n -> Stream.of(n, n * n))
 .forEach(System.out::println);

java.util.stream.ReferencePipeline$Head@372f7a8d
java.util.stream.ReferencePipeline$Head@2f92e0f4
java.util.stream.ReferencePipeline$Head@28a418fc

Chapter 13 ■ StreamS

627

Are you surprised by the output? You do see numbers in the output. The input stream to the map() method
contains three integers: 1, 2, and 3. The map() method produces one element for each element in the input stream.
In this case, the map() method produces a Stream<Integer> for each integer in the input stream. It produces three
Stream<Integer>s. The first stream contains 1 and 1; the second one contains 2 and 4; the third one contains 3 and 9.
The forEach() method receives the Stream<Integer> object as its argument and prints the string returned from its
toString() method. You can call the forEach() on a stream, so let’s nest its call to print the elements of the stream of
streams, like so:

Stream.of(1, 2, 3)
 .map(n -> Stream.of(n, n * n))
 .forEach(e -> e.forEach(System.out::println));

1
1
2
4
3
9

You were able to print the numbers and their squares. But you have not achieved the goal of getting those
numbers in a Stream<Integer>. They are still in the Stream<Stream<Integer>>. The solution is to use the flatMap()
method instead of the map() method. The following snippet of code does this:

Stream.of(1, 2, 3)
 .flatMap(n -> Stream.of(n, n * n))
 .forEach(System.out::println);

1
1
2
4
3
9

Figure 13-8 shows the pictorial view of how the flatMap() method works in this example. If you still have doubts
about the workings of the flatMap operation, you can think of its name in the reverse order. Read it as mapFlat, which
means “map the elements of the input stream to streams, and then flatten the mapped streams.”

9, 3, 4, 2, 1, 13, 2, 11, 2, 3

9, 3

4, 2

1, 1
forEach

flatMap

3

2

1

Figure 13-8. Flattening a stream using the flatMap() method

Chapter 13 ■ StreamS

628

Let’s take another example of the flat map operation. Suppose you have a stream of strings. How will you count
the number of the Es in the strings? The following snippet of code shows you how to do it:

long count = Stream.of("Ken", "Jeff", "Ellen")
 .map(name -> name.chars())
 .flatMap(intStream -> intStream.mapToObj(n -> (char)n))
 .filter(ch -> ch == 'e' || ch == 'E')
 .count();

System.out.println("Es count: " + count);

Es count: 4

The code maps the strings to IntStream. Note that the chars() method of the String class returns an IntStream,
not a Stream<Character>. The output of the map() method is Stream<IntStream>. The flatMap() method maps the
Stream<IntStream> to Stream<Stream<Character>> and finally, flattens it to produce a Stream<Character>. So, the
output of the flatMap() method is Stream<Character>. The filter() method filters out any characters that are not
an E or e. Finally, the count() method returns the number of elements in the stream. The main logic is to convert the
Stream<String> to a Stream<Character>. You can achieve the same using the following code as well:

long count = Stream.of("Ken", "Jeff", "Ellen")
 .flatMap(name -> IntStream.range(0, name.length())
 .mapToObj(name::charAt))
 .filter(ch -> ch == 'e' || ch == 'E')
 .count();

The IntStream.range() method creates an IntStream that contains the indexes of all characters in the input
string. The mapToObj() method converts the IntStream into a Stream<Character> whose elements are the characters
in the input string.

Applying the Filter Operation
The filter operation is applied on an input stream to produce another stream, which is known as the filtered stream.
The filtered stream contains all elements of the input stream for which a predicate evaluates to true. A predicate is
a function that accepts an element of the stream and returns a boolean value. Unlike a mapped stream, the filtered
stream is of the same type as the input stream.

The filter operation produces a subset of the input stream. If the predicate evaluates to false for all elements
of the input stream, the filtered stream is an empty stream. Figure 13-9 shows a pictorial view of applying a filter
operation to a stream. The figure shows that two elements (e1 and en) from the input stream made it to the filtered
stream and the other two elements (e2 and e3) were filtered out.

Chapter 13 ■ StreamS

629

You can apply a filter operation to a stream using the filter() method of the Stream, IntStream, LongStream,
and DoubleStream interfaces. The method accepts an instance of the Predicate interface.

Tip ■ In a map operation, the new stream contains the same number of elements with different values from the
input stream. In a filter operation, the new stream contains a different number of elements with the same values from
the input stream.

The following snippet of code uses a stream of people and filters in only females. It maps the females to their
names and prints them on the standard output.

Person.persons()
 .stream()
 .filter(Person::isFemale)
 .map(Person::getName)
 .forEach(System.out::println);

Donna
Laynie

The following snippet of code applies two filter operations to print the names of all males having income more
than 5000.0:

Person.persons()
 .stream()
 .filter(Person::isMale)
 .filter(p -> p.getIncome() > 5000.0)
 .map(Person::getName)
 .forEach(System.out::println);

Ken
Jeff

X

X

e1

e2

e3

en

e1

en

filter(e)

Input stream Filtered stream

Figure 13-9. A pictorial view of the filter operation

Chapter 13 ■ StreamS

630

You could have accomplished the same using the following statement that uses only one filter operation that
includes both predicates for filtering into one predicate:

Person.persons()
 .stream()
 .filter(p -> p.isMale() && p.getIncome() > 5000.0)
 .map(Person::getName)
 .forEach(System.out::println);

Ken
Jeff

Applying the Reduce Operation
The reduce operation combines all elements of a stream to produce a single value by applying a combining function
repeatedly. It is also called reduction operation or a fold. Computing the sum, maximum, average, count, etc. of
elements of a stream of integers are examples of the reduce operation. Collecting elements of a stream in a List, Set,
or Map is also an example of the reduce operation.

The reduce operation takes two parameters called a seed (also called an initial value) and an accumulator. The
accumulator is a function. If the stream is empty, the seed is the result. Otherwise, the seed represents a partial result.
The partial result and an element are passed to the accumulator, which returns another partial result. This repeats
until all elements are passed to the accumulator. The last value returned from the accumulator is the result of the
reduce operation. Figure 13-10 shows a pictorial view of the reduce operation.

e1

e2

e3

en

reduce(seed, op)

Input stream

result

seed

Figure 13-10. A pictorial view of applying the reduce operation

The stream-related interfaces contain two methods called reduce() and collect() to perform generic reduce
operations. Methods such as sum(), max(), min(), count(), etc. are also available to perform specialized reduce
operations. Note that the specialized methods are not available for all types of streams. For example, having a sum()
method in the Stream<T> interface does not make sense because adding reference type elements, such as adding
two people, is meaningless. So, you will find methods like sum() only in IntStream, LongStream, and DoubleStream
interfaces. Counting the number of elements in a stream makes sense for all types of streams. So, the count() method
is available for all types of streams. I will discuss the reduce() method in this section. I will discuss the collect()
method in several subsequent sections.

Chapter 13 ■ StreamS

631

Let’s consider the following snippet of code that performs the reduce operation in the imperative programming
style. The code computes the sum of all integers in a list.

// Create the list of integers
List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5);

// Declare an accumulator called sum and initialize (or seed) it to zero
int sum = 0;

// Accumulate the partial results in sum
for(int num : numbers) {
 // Accumulate the partial result in sum
 sum = sum + num;
}

// Print the result
System.out.println(sum);

15

The code declares a variable named sum and initializes the variable to 0. If there is no element in the list, the
initial value of sum becomes the result. The for-each loop traverses the list and keeps storing the partial results in
the sum variable, using it as an accumulator. When the for-each loop finishes, the sum variable contains the result. As
pointed out in the beginning of this chapter, such a for-loop has no room for parallelization; the entire logic must be
executed in a single thread.

Consider another example that computes the sum of incomes of persons in a list:

// Declare an accumulator called sum and initialize it to zero
double sum = 0.0;

for(Person person : Person.persons()) {
 // Map the Person to his income double
 double income = person.getIncome();

 // Accumulate the partial result in sum
 sum = sum + income;
}

System.out.println(sum);

This time, you had to perform an additional step to map the Person to his income before you could accumulate
the partial results in the sum variable.

The Stream<T> interface contains a reduce() method to perform the reduce operation. The method has three
overloaded versions:

•	 T reduce(T identity, BinaryOperator<T> accumulator)

•	 <U> U reduce(U identity, BiFunction<U,? super T,U> accumulator,
BinaryOperator<U> combiner)

•	 Optional<T> reduce(BinaryOperator<T> accumulator)

Chapter 13 ■ StreamS

632

The first version of the reduce() method takes an identity and an accumulator as arguments and reduces the
stream to a single value of the same type. You can rewrite the example of computing the sum of integers in a list
as follows:

List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5);
int sum = numbers.stream()
 .reduce(0, Integer::sum);
System.out.println(sum);

15

Let’s attempt to do the same with the second example that computes the sum of the incomes.

double sum = Person.persons()
 .stream()
 .reduce(0.0, Double::sum);

The code generates the following compile-time error. Only the relevant part of the error message is shown.

error: no suitable method found for reduce(double,Double::sum)
 .reduce(0.0, Double::sum);
 ^
 method Stream.reduce(Person,BinaryOperator<Person>) is not applicable
 (argument mismatch; double cannot be converted to Person) ...

The stream() method in Person.persons().stream() returns a Stream<Person>, and therefore, the reduce()
method is supposed to perform a reduction on Person object. However, the first argument to the method is 0.0,
which implies that the method is attempting to operate on the type Double, not the type Person. This mismatch in the
expected argument type Person and the actual argument type Double resulted in the error.

You wanted to compute the sum of the incomes of all people. You need to map the stream of people to a stream
of their incomes using the map operation as follows:

double sum = Person.persons()
 .stream()
 .map(Person::getIncome)
 .reduce(0.0, Double::sum);
System.out.println(sum);

26000.0

Performing a map-reduce operation is typical in functional programming. The second version of the reduce
method, shown again for easy reference, lets you perform a map operation, followed by a reduce operation.

•	 <U> U reduce(U identity, BiFunction<U,? super T,U> accumulator,
BinaryOperator<U> combiner)

Chapter 13 ■ StreamS

633

Note that the second argument, which is the accumulator, takes an argument whose type may be different from
the type of the stream. This is used for the map operation as well as for the accumulating the partial results. The third
argument is used for combining the partial results when the reduce operation is performed in parallel, which I will
elaborate upon shortly. The following snippet of code prints the sum of the incomes of all people:

double sum = Person.persons()
 .stream()
 .reduce(0.0, (partialSum, person) -> partialSum + person.getIncome(), Double::sum);
System.out.println(sum);

26000.0

If you examine the code, the second argument to the reduce() method is sufficient to produce the desired result
in this case. So, what is the purpose of the third argument, Double::sum, which is the combiner? In fact, the combiner
was not used in the reduce() operation at all, even if you specified it. You can verify that the combiner was not used
using the following code, which prints a message from the combiner:

double sum = Person.persons()
 .stream()
 .reduce(0.0, (partialSum, person) -> partialSum + person.getIncome(),
 (a, b) -> {
 System.out.println("Combiner called: a = " + a + "b = " + b);
 return a + b;
 });

System.out.println(sum);

26000.0

The output proves that the combiner was not called. Why do you need to provide the combiner when it is not
used? It is used when the reduce operation is performed in parallel. In that case, each thread will accumulate the
partial results using the accumulator. At the end, the combiner is used to combine the partial results from all threads
to get the result. The following snippet of code shows how the sequential reduce operation works. The code prints a
message at several steps along with the current thread name that is performing the operation.

double sum = Person.persons()
 .stream()
 .reduce(0.0,
 (Double partialSum, Person p) -> {
 double accumulated = partialSum + p.getIncome();
 System.out.println(Thread.currentThread().getName() +
 " - Accumulator: partialSum = " +
 partialSum + ", person = " + p +
 ", accumulated = " + accumulated);
 return accumulated;
 },

Chapter 13 ■ StreamS

634

 (a, b) -> {
 double combined = a + b;
 System.out.println(Thread.currentThread().getName() +
 " - Combiner: a = " + a + ", b = " + b +
 ", combined = " + combined);
 return combined;
 });

System.out.println(sum);

main - Accumulator: partialSum = 0.0, person = (1, Ken, MALE, 1970-05-04, 6000.00),
accumulated = 6000.0
main - Accumulator: partialSum = 6000.0, person = (2, Jeff, MALE, 1970-07-15, 7100.00),
accumulated = 13100.0
main - Accumulator: partialSum = 13100.0, person = (3, Donna, FEMALE, 1962-07-29, 8700.00),
accumulated = 21800.0
main - Accumulator: partialSum = 21800.0, person = (4, Chris, MALE, 1993-12-16, 1800.00),
accumulated = 23600.0
main - Accumulator: partialSum = 23600.0, person = (5, Laynie, FEMALE, 2012-12-13, 0.00),
accumulated = 23600.0
main - Accumulator: partialSum = 23600.0, person = (6, Li, MALE, 2001-05-09, 2400.00),
accumulated = 26000.0
26000.0

The output shows that the accumulator was sufficient to produce the result and the combiner was never called.
Notice that there was only one thread named main that processed all people in the stream.

Let’s turn the stream into a parallel stream keeping all the debugging messages. The following code uses a
parallel stream to get the sum of the incomes of all people. You may get a different output containing a different
message, but the sum value would be the same as 26000.0.

double sum = Person.persons()
 .parallelStream()
 .reduce(0.0,
 (Double partialSum, Person p) -> {
 double accumulated = partialSum + p.getIncome();
 System.out.println(Thread.currentThread().getName() +
 " - Accumulator: partialSum = " +
 partialSum + ", person = " + p +
 ", accumulated = " + accumulated);
 return accumulated;
 },
 (a, b) -> {
 double combined = a + b;
 System.out.println(Thread.currentThread().getName() +
 " - Combiner: a = " + a + ", b = " + b +
 ", combined = " + combined);
 return combined;
 });

Chapter 13 ■ StreamS

635

System.out.println(sum);

ForkJoinPool.commonPool-worker-4 - Accumulator: partialSum = 0.0, person = (5, Laynie, FEMALE,
2012-12-13, 0.00), accumulated = 0.0
ForkJoinPool.commonPool-worker-2 - Accumulator: partialSum = 0.0, person = (6, Li, MALE,
2001-05-09, 2400.00), accumulated = 2400.0
ForkJoinPool.commonPool-worker-1 - Accumulator: partialSum = 0.0, person = (2, Jeff, MALE,
1970-07-15, 7100.00), accumulated = 7100.0
ForkJoinPool.commonPool-worker-2 - Combiner: a = 0.0, b = 2400.0, combined = 2400.0
ForkJoinPool.commonPool-worker-5 - Accumulator: partialSum = 0.0, person = (3, Donna, FEMALE,
1962-07-29, 8700.00), accumulated = 8700.0
main - Accumulator: partialSum = 0.0, person = (4, Chris, MALE, 1993-12-16, 1800.00),
accumulated = 1800.0
ForkJoinPool.commonPool-worker-3 - Accumulator: partialSum = 0.0, person = (1, Ken, MALE,
1970-05-04, 6000.00), accumulated = 6000.0
main - Combiner: a = 1800.0, b = 2400.0, combined = 4200.0
ForkJoinPool.commonPool-worker-5 - Combiner: a = 7100.0, b = 8700.0, combined = 15800.0
ForkJoinPool.commonPool-worker-5 - Combiner: a = 6000.0, b = 15800.0, combined = 21800.0
ForkJoinPool.commonPool-worker-5 - Combiner: a = 21800.0, b = 4200.0, combined = 26000.0
26000.0

The output shows that six threads (five fork/join worker threads and one main thread) performed the parallel
reduce operation. They all performed partial reduction using the accumulator to obtain partial results. Finally, the
partial results were combined using the combiner to get the result.

Sometimes you cannot specify a default value for a reduce operation. Suppose you want to get maximum integer
value from a stream of integers. If the stream is empty, you cannot default the maximum value to 0. In such a case, the
result is not defined. The third version of the reduce(BinaryOperator<T> accumulator) method is used to perform
such a reduction operation. The method returns an Optional<T> that wraps the result or the absence of a result. If
the stream contains only one element, that element is the result. If the stream contains more than one element, the
first two elements are passed to the accumulator, and subsequently, the partial result and the remaining elements are
passed to the accumulator. The following snippet of code computes the maximum of integers in a stream:

Optional<Integer> max = Stream.of(1, 2, 3, 4, 5)
 .reduce(Integer::max);
if (max.isPresent()) {
 System.out.println("max = " + max.get());
}
else {
 System.out.println("max is not defined.");
}

max = 5

The following snippet of code tries to get the maximum of integers in an empty stream:

Optional<Integer> max = Stream.<Integer>empty()
 .reduce(Integer::max);
if (max.isPresent()) {
 System.out.println("max = " + max.get());
}

Chapter 13 ■ StreamS

636

else {
 System.out.println("max is not defined.");
}

max is not defined.

The following snippet of code prints the details of the highest earner in the person’s list:

Optional<Person> person = Person.persons()
 .stream()
 .reduce((p1, p2) -> p1.getIncome() > p2.getIncome()?p1:p2);
if (person.isPresent()) {
 System.out.println("Highest earner: " + person.get());
}
else {
 System.out.println("Could not get the highest earner.");
}

Highest earner: (3, Donna, FEMALE, 1962-07-29, 8700.00)

To compute the sum, max, min, average, etc. of a numeric stream, you do not need to use the reduce()
method. You can map the non-numeric stream into one of the three numeric stream types (IntStream, LongStream,
or DoubleStream) and use the specialized methods for these purposes. The following snippet of code prints the
sum of the incomes of all people. Note the use of the mapToDouble() method that converts a Stream<Person> to a
DoubleStream. The sum() method is called on the DoubleStream.

double totalIncome = Person.persons()
 .stream()
 .mapToDouble(Person::getIncome)
 .sum();
System.out.println("Total Income: " + totalIncome);

Total Income : 26000.0

To get the minimum and maximum values of a stream, use the min() and max() methods of the specific stream.
These methods in the Stream<T> interface take a Comparator as argument and return an Optional<T>. They do not
take any arguments in IntStream, LongStream, and DoubleStream interfaces and return OptionalInt, OptionalLong,
and OptionalDouble, respectively. The following snippet of code prints the details of the highest earner in a list of
people:

Optional<Person> person = Person.persons()
 .stream()
 .max(Comparator.comparingDouble(Person::getIncome));

if (person.isPresent()) {
 System.out.println("Highest earner: " + person.get());
}

Chapter 13 ■ StreamS

637

else {
 System.out.println("Could not get the highest earner.");
}

Highest earner: (3, Donna, FEMALE, 1962-07-29, 8700.00)

The following snippet of code prints the income of the highest income in the person list using the max() method
of the DoubleStream:

OptionalDouble income = Person.persons()
 .stream()
 .mapToDouble(Person::getIncome)
 .max();
if (income.isPresent()) {
 System.out.println("Highest income: " + income.getAsDouble());
}
else {
 System.out.println("Could not get the highest income.");
}

Highest income: 8700.0

How will you get the highest earner among males and the highest among females in one stream pipeline? So far, you
have learned how to compute a single value using the reduce operation. In this case, you will need to group the people
into two groups, males and females, and then compute the person with the highest income in each group. I will show
you how to perform grouping and collect multiple values when I discuss the collect() method in the next section.

Streams support a count operation through the count() method that simply returns the number of elements in
the stream as a long. The following snippet of code prints the number of elements in the stream of people:

long personCount = Person.persons()
 .stream()
 .count();
System.out.println("Person count: " + personCount);

Person count: 6

The count operation is a specialized reduce operation. Were you thinking of using the map() and reduce()
methods to count the number of elements in a stream? The easier way is to map each element in the stream to 1 and
compute the sum. This approach does not use the reduce() method. Here is how you do this:

long personCount = Person.persons()
 .stream()
 .mapToLong(p -> 1L)
 .sum();

Chapter 13 ■ StreamS

638

The following snippet of code uses the map() and reduce() methods to implement the count operation:

long personCount = Person.persons()
 .stream()
 .map(p -> 1L)
 .reduce(0L, Long::sum);

The following snippet of code uses only the reduce() method to implement the count operation:

long personCount = Person.persons()
 .stream()
 .reduce(0L, (partialCount, person) -> partialCount + 1L, Long::sum);

Tip ■ this section showed you many ways to perform the same reduction operation on a stream. Some ways may
perform better than others depending on the stream type and the parallelization used. Use primitive type streams
whenever possible to avoid the overhead of unboxing; use parallel streams whenever possible to take advantage of the
multicores available on the machine.

Collecting Data Using Collectors
So far, you have been applying reduction on a stream to produce a single value (a primitive value or a reference
value) or void. For example, you used the reduce() method of the Stream<Integer> interface to compute a long
value that is the sum of its elements. There are several cases in which you want to collect the results of executing a
stream pipeline into a collection such as a List, a Set, a Map, etc. Sometimes you may want to apply complex logic to
summarize the stream’s data. For example, you may want to group people by their gender and compute the highest
earner in every gender group. This is possible using the collect() method of the Stream<T> interface. The collect()
method is overloaded with two versions:

•	 <R> R collect(Supplier<R> supplier, BiConsumer<R,? super T> accumulator,
BiConsumer<R,R> combiner)

•	 <R,A> R collect(Collector<? super T,A,R> collector)

The method uses a mutable reduction operation. It uses a mutable container such as a mutable Collection to
compute the results from the input stream. The first version of the collect() method takes three arguments:

A •	 supplier that supplies a mutable container to store (or collect) the results.

An •	 accumulator that accumulates the results into the mutable container.

A •	 combiner that combines the partial results when the reduction operation takes
place in parallel.

Tip ■ the container to collect the data using the collect() method need not be a Collection. It can be any mutable
object that can accumulate results, such as a StringBuilder.

Chapter 13 ■ StreamS

639

Suppose you have a steam of people and you want to collect the names of all of the people in an
ArrayList<String>. Here are the steps to accomplish this.

First, you need to have a supplier that will return an ArrayList<String> to store the names. You can use either of
the following statements to create the supplier:

// Using a lambda expression
Supplier<ArrayList<String>> supplier = () -> new ArrayList<>();

// Using a constructor reference
Supplier<ArrayList<String>> supplier = ArrayList::new;

Second, you need to create an accumulator that receives two arguments. The first argument is the container
returned from the supplier, which is the ArrayList<String> in this case. The second argument is the element of the
stream. Your accumulator should simply add the names to the list. You can use either of the following statements to
create an accumulator:

// Using a lambda expression
BiConsumer<ArrayList<String>, String> accumulator = (list, name) -> list.add(name);

// Using a constructor reference
BiConsumer<ArrayList<String>, String> accumulator = ArrayList::add;

Finally, you need a combiner that will combine the results of two ArrayList<String>s into one ArrayList<String>.
Note that the combiner is used only when you collect the results using a parallel stream. In a sequential stream, the
accumulator is sufficient to collect all results. Your combiner will be simple; it will add all the elements of the second list
to the first list using the addAll() method. You can use either of the following statements to create a combiner:

// Using a lambda expression
BiConsumer<ArrayList<String>, ArrayList<String>> combiner =
 (list1, list2) -> list1.addAll(list2);

// Using a constructor reference
BiConsumer<ArrayList<String>, ArrayList<String>> combiner = ArrayList::addAll;

Now you are ready to use the collect() method to collect the names of all people in a list using the following
snippet of code:

List<String> names = Person.persons()
 .stream()
 .map(Person::getName)
 .collect(ArrayList::new, ArrayList::add, ArrayList::addAll);
System.out.println(names);

[Ken, Jeff, Donna, Chris, Laynie, Li]

You can use a similar approach to collect data in a Set and a Map. It seems to be a lot of plumbing just to collect
data in a simple collection like a list. Another version of the collect() method provides a simpler solution. It takes an
instance of the Collector interface as an argument and collects the data for you. The Collector interface is the
java.util.stream package and it is declared as follows. Only abstract methods are shown.

Chapter 13 ■ StreamS

640

public interface Collector<T,A,R> {
 Supplier<A> supplier();
 BiConsumer<A,T> accumulator();
 BinaryOperator<A> combiner();
 Function<A,R> finisher();
 Set<Collector.Characteristics> characteristics();
}

The Collector interface takes three type parameters called T, A, and R, where T is the type of input elements, A is
the type of the accumulator, and R is the type of the result. The first three methods look familiar; you just used them in
the previous example. The finisher is used to transform the intermediate type A to result type R. The characteristics of
a Collector describe the properties that are represented by the constants of the Collector.Characteristics enum.

The designers of the Streams API realized that rolling out your own collector is too much work. They provided a
utility class called Collectors that provides out-of-box implementations for commonly used collectors. Three of the
most commonly used methods of the Collectors class are toList(), toSet(), and toCollection(). The toList()
method returns a Collector that collects the data in a List; the toSet() method returns a Collector that collects
data in a Set; the toCollecton() takes a Supplier that returns a Collection to be used to collect data. The following
snippet of code collects all names of people in a List<String>:

List<String> names = Person.persons()
 .stream()
 .map(Person::getName)
 .collect(Collectors.toList());
System.out.println(names);

[Ken, Jeff, Donna, Chris, Laynie, Li]

Notice that this time you achieved the same result in a much cleaner way.
The following snippet of code collects all names in a Set<String>. Note that a Set keeps only unique elements.

Set<String> uniqueNames = Person.persons()
 .stream()
 .map(Person::getName)
 .collect(Collectors.toSet());
System.out.println(uniqueNames);

[Donna, Ken, Chris, Jeff, Laynie, Li]

The output is not in a particular order because a Set does not impose any ordering on its elements. You can
collect names in a sorted set using the toCollection() method as follows:

SortedSet<String> uniqueSortedNames= Person.persons()
 .stream()
 .map(Person::getName)
 .collect(Collectors.toCollection(TreeSet::new));
System.out.println(uniqueSortedNames);

[Chris, Donna, Jeff, Ken, Laynie, Li]

Chapter 13 ■ StreamS

641

Recall that the toCollection() method takes a Supplier as an argument that is used to collect the data. In this
case, you have used the constructor reference TreeSet::new as the Supplier. This has an effect of using a TreeSet,
which is a sorted set, to collect the data.

You can also sort the list of names using the sorted operation. The sorted() method of the Stream interface
produces another stream containing the same elements on a sorted order. The following snippet of code shows how
to collect sorted names in a list:

List<String> sortedName = Person.persons()
 .stream()
 .map(Person::getName)
 .sorted()
 .collect(Collectors.toList());
System.out.println(sortedName);

[Chris, Donna, Jeff, Ken, Laynie, Li]

Note that the code applies the sorting before it collects the names. The collector notices that it is collecting an
ordered stream (sorted names) and preserves the ordering during the collection process.

You will find many static methods in the Collectors class that return a Collector meant to be used as a nested
collector. One of these methods is the counting() method that returns the number of input elements. Here is an
example of counting the number of people in the streams:

long count = Person.persons()
 .stream()
 .collect(Collectors.counting());
System.out.println("Person count: " + count);

Person count: 6

You may argue that you could have achieved the same result using the count() method of the Stream interface
as follows:

long count = Person.persons()
 .stream()
 .count();
System.out.println("Persons count: " + count);

Persons count: 6

When do you use the Collectors.counting() method instead of the Stream.count() method to count the number
of elements in a stream? As mentioned before, collectors can be nested. You will see examples of nested collectors
shortly. These methods in the Collectors class are meant to be used as nested collectors, not in this case just to count
the number of elements in the stream. Another difference between the two is their type: the Stream.count() method
represents an operation on a stream whereas the Collectors.counting() method returns a Collector. Listing 13-7
shows the complete program to collect sorted names in a list.

Chapter 13 ■ StreamS

642

Listing 13-7. Collecting Results into a Collection

// CollectTest.java
package com.jdojo.streams;

import java.util.List;
import java.util.stream.Collectors;

public class CollectTest {
 public static void main(String[] args) {
 List<String> sortedNames = Person.persons()
 .stream()
 .map(Person::getName)
 .sorted()
 .collect(Collectors.toList());
 System.out.println(sortedNames);
 }
}

[Chris, Donna, Jeff, Ken, Laynie, Li]

Collecting Summary Statistics
In a data-centric application, you need to compute the summary statistics on a group of numeric data. For example,
you may want to know the maximum, minimum, sum, average, and count of the incomes of all people. The java.util
package contains three classes to collect statistics:

•	 DoubleSummaryStatistics

•	 LongSummaryStatistics

•	 IntSummaryStatistics

These classes do not necessarily need to be used with streams. You can use them to compute the summary
statistics on any group of numeric data. Using these classes is simple: create an object of the class, keep adding
numeric data using the accept() method, and finally, call the getter methods such as getCount(), getSum(),
getMin(), getAverage(), and getMax() to get the statistics for the group of data. Listing 13-8 shows how to compute
the statistics on a number of double values.

Listing 13-8. Computing Summary Statistics on a Group of Numeric Data

// SummaryStats.java
package com.jdojo.streams;

import java.util.DoubleSummaryStatistics;

public class SummaryStats {
 public static void main(String[] args) {
 DoubleSummaryStatistics stats = new DoubleSummaryStatistics();
 stats.accept(100.0);
 stats.accept(500.0);
 stats.accept(400.0);

Chapter 13 ■ StreamS

643

 // Get stats
 long count = stats.getCount();
 double sum = stats.getSum();
 double min = stats.getMin();
 double avg = stats.getAverage();
 double max = stats.getMax();

 System.out.printf("count=%d, sum=%.2f, min=%.2f, average=%.2f, max=%.2f%n",
 count, sum, min, max, avg);

 }
}

count=3, sum=1000.00, min=100.00, average=500.00, max=333.33

The summary statistics classes were designed to be used with streams. They contain a combine() method that
combines two summary statistics. Can you guess its use? Recall that you need to specify a combiner when you collect
data from a stream and this method can act as a combiner for two summary statistics. The following snippet of code
computes the summary statistics for incomes of all people:

DoubleSummaryStatistics incomeStats =
 Person.persons()
 .stream()
 .map(Person::getIncome)
 .collect(DoubleSummaryStatistics::new,
 DoubleSummaryStatistics::accept,
 DoubleSummaryStatistics::combine);

System.out.println(incomeStats);

DoubleSummaryStatistics{count=6, sum=26000.000000, min=0.000000, average=4333.333333, max=8700.000000}

The Collectors class contains methods to obtain a collector to compute the summary statistics of the specific
type of numeric data. The methods are named summarizingDouble(), summarizingLong(), and summarizingInt().
They take a function to be applied on the elements of the stream and return a DoubleSummaryStatistics, a
LongSummaryStatistics, and an IntSummaryStatistics, respectively. You can rewrite the code for the previous
example as follows:

DoubleSummaryStatistics incomeStats =
 Person.persons()
 .stream()
 .collect(Collectors.summarizingDouble(Person::getIncome));

System.out.println(incomeStats);

DoubleSummaryStatistics{count=6, sum=26000.000000, min=0.000000, average=4333.333333, max=8700.000000}

The Collectors class contains methods such as counting(), summingXxx(), averagingXxx(), minBy(), and
maxBy() that return a collector to perform a specific type of summary computation on a group of numeric data what
you get in one shot using the summarizingXxx() method. Here, Xxx can be Double, Long, and Int.

Chapter 13 ■ StreamS

644

Collecting Data in Maps
You can collect data from a stream into a Map. The toMap() method of the Collectors class returns a collector to
collect data in a Map. The method is overloaded and it has three versions:

•	 toMap(Function<? super T,? extends K> keyMapper, Function<? super T,? extends U>
valueMapper)

•	 toMap(Function<? super T,? extends K> keyMapper, Function<? super T,? extends U>
valueMapper, BinaryOperator<U> mergeFunction)

•	 toMap(Function<? super T,? extends K> keyMapper, Function<? super T,? extends U>
valueMapper, BinaryOperator<U> mergeFunction, Supplier<M> mapSupplier)

The first version takes two arguments. Both arguments are a Function. The first argument maps the stream
elements to keys in the map. The second argument maps stream elements to values in the map. If duplicate
keys are found, an IllegalStateException is thrown. The following snippet of code collects a person’s data in a
Map<long,String> whose keys are the person’s ids and values are person’s names:

Map<Long,String> idToNameMap = Person.persons()
 .stream()
 .collect(Collectors.toMap(Person::getId, Person::getName));
System.out.println(idToNameMap);

{1=Ken, 2=Jeff, 3=Donna, 4=Chris, 5=Laynie, 6=Li}

Suppose you want collect a person’s name based on gender. Here is the first, incorrect attempt:

Map<Person.Gender,String> genderToNamesMap = Person.persons()
 .stream()
 .collect(Collectors.toMap(Person::getGender, Person::getName));

The code throws the following runtime exception. Only a partial output is shown.

Exception in thread "main" java.lang.IllegalStateException: Duplicate key Ken ...

The runtime is complaining about the duplicate keys because Person::getGender will return the gender of the
person as the key and you have many males and females.

The solution is to use the second version of the toMap() method to obtain the collection. It lets you specify a
merge function as a third argument. The merged function is passed the old and new values for the duplicate key.
The function is supposed to merge the two values and return a new value that will be used for the key. In your case,
you can concatenate the names of all males and females. The following snippet of code accomplishes this:

Map<Person.Gender,String> genderToNamesMap = Person.persons()
 .stream()
 .collect(Collectors.toMap(Person::getGender, Person::getName,
 (oldValue, newValue) -> String.join(", ", oldValue, newValue)));
System.out.println(genderToNamesMap);

{FEMALE=Donna, Laynie, MALE=Ken, Jeff, Chris, Li}

Chapter 13 ■ StreamS

645

The first two versions of the toMap() method create the Map object for you. The third version lets you pass a
Supplier to provide a Map object yourself. I will not cover an example of using this version of the toMap() method.

Armed with two examples of collecting the data in maps, can you think of the logic for collecting data in a map
that summarizes the number of people by gender? Here is how you accomplish this:

Map<Person.Gender, Long> countByGender = Person.persons()
 .stream()
 .collect(Collectors.toMap(Person::getGender, p -> 1L,
 (oldCount, newCount) -> oldCount++));

System.out.println(countByGender);

{MALE=4, FEMALE=2}

The key mapper function remains the same. The value mapper function is p -> 1L, which means when a person
belonging to a gender is encountered the first time, its value is set to 1. In case of a duplicate key, the merge function is
called that simply increments the old value by 1.

The last example in this category that collects the highest earner by gender in a Map is shown in Listing 13-9.

Listing 13-9. Collecting the Highest Earner by Gender in a Map

// CollectIntoMapTest.java
package com.jdojo.streams;

import java.util.Map;
import java.util.function.Function;
import java.util.stream.Collectors;

public class CollectIntoMapTest {
 public static void main(String[] args) {
 Map<Person.Gender, Person> highestEarnerByGender =
 Person.persons()
 .stream()
 .collect(Collectors.toMap(Person::getGender, Function.identity(),
 (oldPerson, newPerson) ->
 newPerson.getIncome() > oldPerson.getIncome()?newPerson:oldPerson));

 System.out.println(highestEarnerByGender);
 }
}

{FEMALE=(3, Donna, FEMALE, 1962-07-29, 8700.00), MALE=(2, Jeff, MALE, 1970-07-15, 7100.00)}

The program stores the Person object as the value in the map. Note the use of Function.identity() as the
function to map values. This method returns an identity function that simply returns the value that was passed to it.
You could have used a lambda expression of person -> person in its place. The merge function compares the income
of the person already stored as the value for a key. If the new person has more income than the existing one, it returns
the new person.

Collecting data into a map is a very powerful way of summarizing data. You will see maps again when I discuss
grouping and partitioning of data shortly.

Chapter 13 ■ StreamS

646

Tip ■ the toMap() method returns a non-concurrent map that has performance overhead when streams are
p rocessed in parallel. It has a companion method called toConcurrentMap() that returns a concurrent collector that
should be used when streams are processed in parallel.

Joining Strings Using Collectors
The joining() method of the Collectors class returns a collector that concatenates the elements of a stream of
CharSequence and returns the result as a String. The concatenation occurs in the encounter order. The joining()
method is overloaded and it has three versions:

•	 joining()

•	 joining(CharSequence delimiter)

•	 joining(CharSequence delimiter, CharSequence prefix, CharSequence suffix)

The version with no arguments simply concatenates all elements. The second version uses a delimiter to be used
between two elements. The third version uses a delimiter, a prefix and a suffix. The prefix is added to the beginning of
the result and the suffix is added to end of the result. Listing 13-10 shows how to use the joining() method.

Listing 13-10. Joining a Stream of CharSequence Using a Collector

// CollectJoiningTest.java
package com.jdojo.streams;

import java.util.List;
import java.util.stream.Collectors;

public class CollectJoiningTest {
 public static void main(String[] args) {
 List<Person> persons = Person.persons();
 String names = persons.stream()
 .map(Person::getName)
 .collect(Collectors.joining());

 String delimitedNames = persons.stream()
 .map(Person::getName)
 .collect(Collectors.joining(", "));

 String prefixedNames = persons.stream()
 .map(Person::getName)
 .collect(Collectors.joining(", ", "Hello ", ". Goodbye."));

 System.out.println("Joined names: " + names);
 System.out.println("Joined, delimited names: " + delimitedNames);
 System.out.println(prefixedNames);
 }
}

Chapter 13 ■ StreamS

647

Joined names: KenJeffDonnaChrisLaynieLi
Joined, delimited names: Ken, Jeff, Donna, Chris, Laynie, Li
Hello Ken, Jeff, Donna, Chris, Laynie, Li. Goodbye.

Grouping Data
Grouping data for reporting purposes is common. For example, you may want to know the average income by gender,
the youngest person by gender, etc. In previous sections, you used the toMap() method of the Collectors class to
get collectors that can be used to group data in maps. The groupingBy() method of the Collectors class returns a
collector that groups the data before collecting them in a Map. If you have worked with SQL statements, it is similar to
using a “group by” clause. The groupingBy() method is overloaded and it has three versions:

•	 groupingBy(Function<? super T,? extends K> classifier)

•	 groupingBy(Function<? super T,? extends K> classifier, Collector<? super T,A,D>
downstream)

•	 groupingBy(Function<? super T,? extends K> classifier, Supplier<M> mapFactory,
Collector<? super T,A,D> downstream)

I will discuss the first and second versions. The third version is the same as the second one, except that it lets you
specify a Supplier that is used as the factory to get the Map object. In the first two versions, the collector takes care of
creating the Map object for you.

Tip ■ the groupingBy() method returns a non-concurrent map that has performance overhead when the stream is
processed in parallel. It has a companion method called groupingByConcurrent() that returns a concurrent collector
that should be used in parallel stream processing for a better performance.

In the most generic version, the groupingBy() method takes two parameters:

A •	 classifier that is a function to generate the keys in the map.

A •	 collector that performs a reduction operation on the values associated with each key.

The first version of the groupingBy() method returns a collector that collects data into a Map<K, List<T>>, where K is
the return type of the classifier function and T is the type of elements in the input stream. Note that the value of a grouped
key in the map is a list of elements from the stream. The following snippet of code collects the list of people by gender:

Map<Person.Gender, List<Person>> personsByGender =
 Person.persons()
 .stream()
 .collect(Collectors.groupingBy(Person::getGender));

System.out.println(personsByGender);

{FEMALE=[(3, Donna, FEMALE, 1962-07-29, 8700.00), (5, Laynie, FEMALE, 2012-12-13, 0.00)],
MALE=[(1, Ken, MALE, 1970-05-04, 6000.00), (2, Jeff, MALE, 1970-07-15, 7100.00), (4, Chris, MALE,
1993-12-16, 1800.00), (6, Li, MALE, 2001-05-09, 2400.00)]}

Chapter 13 ■ StreamS

648

Suppose you want to get a list of names, grouping them by gender. You need to use the second version of the
groupingBy() method that lets you perform a reduction operation on the values of each key. Notice that the type of
the second argument is Collector. The Collectors class contains many methods that return a Collector that you
will be using as the second argument.

Let’s try a simple case where you want to group people by gender and count the number of people in each group.
The counting() method of the Collectors class returns a Collector to count the number of elements in a stream.
The following snippet of code accomplishes this:

Map<Person.Gender, Long> countByGender =
 Person.persons()
 .stream()
 .collect(Collectors.groupingBy(Person::getGender, Collectors.counting()));

System.out.println(countByGender);

{MALE=4, FEMALE=2}

Let’s get back to the example of listing a person’s name by gender. You need to use the mapping() method of the
Collectors class to get a collector that will map the list of people in the value of a key to their names and join them.
The signature of the mapping() method is

•	 mapping(Function<? super T,? extends U> mapper, Collector<?
super U,A,R> downstream)

Notice the type of the second argument of the mapping() method. It is another Collector. This is where dealing
with grouping data gets complex. You need to nest collectors inside collectors. To simplify the grouping process, you
break down the things you want to perform on the data. You have already grouped people by their gender. The value
of the each key in the map was a List<Person>. Now you want to reduce the List<Person> to a String that contains
a comma-separated list of all people in the list. You need to think about this operation separately to avoid confusion.
You can accomplish this reduction as follows:

Use a function to map each person to his/her name. This function could be as simple as a •	
method reference like Person::getName. Think of the output of this step as a stream of person
names in a group.

What do you want to do with the stream of names generated in the first step? You may want to •	
collect them in a String, a List, a Set, or some other data structure. In this case, you want to
join the names of people, so you will use the collector returned from the joining() method of
the Collectors class.

The following snippet of code shows how to group the names of person by gender:

Map<Person.Gender, String> namesByGender =
 Person.persons()
 .stream()
 .collect(Collectors.groupingBy(Person::getGender,
 Collectors.mapping(Person::getName, Collectors.joining(", "))));

System.out.println(namesByGender);

{MALE=Ken, Jeff, Chris, Li, FEMALE=Donna, Laynie}

Chapter 13 ■ StreamS

649

The code collects the names for a group in a comma-separated String. Can you think of a way to collect the
names in a List? It is easy to accomplish this. Use the collector returned by the toList() method of the Collectors
class, like so:

Map<Person.Gender, List<String>> namesByGender =
 Person.persons()
 .stream()
 .collect(Collectors.groupingBy(Person::getGender,
 Collectors.mapping(Person::getName, Collectors.toList())));

System.out.println(namesByGender);

{FEMALE=[Donna, Laynie], MALE=[Ken, Jeff, Chris, Li]}

Groups can be nested. Let’s create a report that groups people by gender. Within each gender group, it creates
another group based on the month of their births and lists the names of the people born in this group. This is a very
simple computation to perform. You already know how to group people by gender. All you need to do is perform
another grouping on the values of the keys that is simply another collector obtained using the groupingBy() method
again. In this case, the value for a key in the map representing the top level grouping (by gender) is a Map. Listing 13-11
contains the complete code to accomplish this. The arguments to the collect() method are cluttered. You may use
static imports to import the static methods from the Collectors class to reduce the cluttering a bit. The program
assumes that every person has a date of birth.

Listing 13-11. Using Nested Groupings

// NestedGroupings.java
package com.jdojo.streams;

import java.time.Month;
import java.util.Map;
import java.util.stream.Collectors;

public class NestedGroupings {
 public static void main(String[] args) {
 Map<Person.Gender, Map<Month, String>> personsByGenderAndDobMonth
 = Person.persons()
 .stream()
 .collect(Collectors.groupingBy(Person::getGender,
 Collectors.groupingBy(p -> p.getDob().getMonth(),
 Collectors.mapping(Person::getName,
 Collectors.joining(", ")))));

 System.out.println(personsByGenderAndDobMonth);
 }
}

{FEMALE={DECEMBER=Laynie, JULY=Donna}, MALE={DECEMBER=Chris, JULY=Jeff, MAY=Ken, Li}}

Chapter 13 ■ StreamS

650

Notice that the output has two top level groups based on gender: Male and Female. With each gender group,
there are nested groups based on the month of the person’s birth. For each month group, you have a list of those born
in that month. For example, Ken and LI were born in the month of May and they are males, so they are listed in the
output together.

As the final example in this section, let’s summarize the income of people grouped by gender. The program in
Listing 13-12 computes the summary statistics of income by gender. I have used static imports to use the method
names from the Collectors class to keep the code a bit cleaner. Looking at the output, you can tell the average
income of females is 25 dollars more than that of males. You can keep nesting groups inside another group. There is
no limit on levels of nesting for groups.

Listing 13-12. Summary Statistics of Income Grouped by Gender

// IncomeStatsByGender.java
package com.jdojo.streams;

import java.util.DoubleSummaryStatistics;
import java.util.Map;
import static java.util.stream.Collectors.groupingBy;
import static java.util.stream.Collectors.summarizingDouble;

public class IncomeStatsByGender {
 public static void main(String[] args) {
 Map<Person.Gender, DoubleSummaryStatistics> incomeStatsByGender =
 Person.persons()
 .stream()
 .collect(groupingBy(Person::getGender,
 summarizingDouble(Person::getIncome)));

 System.out.println(incomeStatsByGender);
 }
}

{MALE=DoubleSummaryStatistics{count=4, sum=17300.000000, min=1800.000000, average=4325.000000,
max=7100.000000}, FEMALE=DoubleSummaryStatistics{count=2, sum=8700.000000, min=0.000000,
average=4350.000000, max=8700.000000}}

Partitioning Data
Partitioning data is a special case of grouping data. Grouping data is based on the keys returned from a function. There
are as many groups as the number of distinct keys returned from the function. Partitioning groups data into two groups:
for one group a condition is true; for the other, the same condition is false. The partitioning condition is specified using
a Predicate. By now, you might have guessed the name of the method in the Collectors class that returns a collector
to perform the partitioning. The method is partitioningBy(). It is overloaded and it has two versions:

•	 partitioningBy(Predicate<? super T> predicate)

•	 partitioningBy(Predicate<? super T> predicate, Collector<?
super T,A,D> downstream)

Chapter 13 ■ StreamS

651

Like the groupingBy() method, the partitioningBy() method also collects data in a Map whose keys are always
of the type Boolean. Note that the Map returned from the collector always contains two entries: one with the key value
as true and another with the key value as false.

The first version of the partitionedBy() method returns a collector that performs the partitioning based on
the specified predicate. The values for a key are stored in a List. If the predicate evaluates to true for an element, the
element is added to the list for the key with true value; otherwise, the value is added to the list of values for the key
with false value. The following snippet of code partitions people based on whether the person is a male or not:

Map<Boolean, List<Person>> partionedByMaleGender =
 Person.persons()
 .stream()
 .collect(Collectors.partitioningBy(Person::isMale));

System.out.println(partionedByMaleGender);

{false=[(3, Donna, FEMALE, 1962-07-29, 8700.00), (5, Laynie, FEMALE, 2012-12-13, 0.00)],
true=[(1, Ken, MALE, 1970-05-04, 6000.00), (2, Jeff, MALE, 1970-07-15, 7100.00), (4, Chris, MALE,
1993-12-16, 1800.00), (6, Li, MALE, 2001-05-09, 2400.00)]}

The second version of the method lets you specify another collector that can perform a reduction operation
on the values for each key. You have seen several examples of this kind in the previous section when you grouped
data using the groupingBy() method. The following snippet of code partitions people into male and non-male, and
collects their names in a comma-separated string:

Map<Boolean,String> partionedByMaleGender =
 Person.persons()
 .stream()
 .collect(Collectors.partitioningBy(Person::isMale,
 Collectors.mapping(Person::getName, Collectors.joining(", "))));

System.out.println(partionedByMaleGender);

{false=Donna, Laynie, true=Ken, Jeff, Chris, Li}

Adapting the Collector Results
So far, you have seen collectors doing great work on their own: you specify what you want and the collector does
all the work for you. There is one more type of collector that collects the data, and before returning the result to the
caller, lets you modify the result in any way you want. That is, you can adapt the result of the collector to a different
type. Such a collector is returned by using the collectingAndThen() method of the Collectors class. The method
signature is

•	 collectingAndThen(Collector<T,A,R> downstream, Function<R,RR> finisher)

The first argument is a collector that collects the data. The second argument is a finisher that is a function.
The finisher is passed a result. The finisher is free to modify the result, including its type. The return type of such a
collector is the return type of the finisher.

Chapter 13 ■ StreamS

652

One of the common uses for the finisher is to return an unmodifiable view of the collected data. Here is an
example that returns an unmodifiable list of person names:

List<String> names = Person.persons()
 .stream()
 .map(Person::getName)
 .collect(Collectors.collectingAndThen(Collectors.toList(),
 result -> Collections.unmodifiableList(result)));

System.out.println(names);

[Ken, Jeff, Donna, Chris, Laynie, Li]

The collector collects the names in a mutable list and the finisher wraps the mutable list in an unmodifiable list.
Let’s take another example of using the finisher. Suppose you want to print a calendar that contains the names of

people by the month of their birth. You have already collected the list of names grouped by months of their birth. You
may not have any person having a birthday in a specific month. However, you want to print the month’s name anyway
and just add “None” instead of any names. Here is the first attempt:

Map<Month,String> dobCalendar = Person.persons()
 .stream()
 .collect(groupingBy(p -> p.getDob().getMonth(),
 mapping(Person::getName, joining(", "))));

dobCalendar.entrySet().forEach(System.out::println);

MAY=Ken, Li
DECEMBER=Chris, Laynie
JULY=Jeff, Donna

This calendar has three issues:

It is not sorted by month.•	

It does not include all months.•	

It is modifiable. The returned •	 Map from the collect() method is modifiable.

You can fix all three issues by using the collector returned from the collectingAndThen() method and specifying
a finisher. The finisher will add the missing months in the map, convert the map to a sorted map, and finally, wrap
the map in an unmodifiable map. The collect() method returns the map returned from the finisher. Listing 13-13
contains the complete code.

Listing 13-13. Adapting the Collector Result

// DobCalendar.java
package com.jdojo.streams;

import java.time.Month;
import java.util.Collections;
import java.util.Map;
import java.util.TreeMap;

Chapter 13 ■ StreamS

653

import static java.util.stream.Collectors.collectingAndThen;
import static java.util.stream.Collectors.groupingBy;
import static java.util.stream.Collectors.joining;
import static java.util.stream.Collectors.mapping;

public class DobCalendar {
 public static void main(String[] args) {
 Map<Month, String> dobCalendar = Person.persons()
 .stream().collect(collectingAndThen(
 groupingBy(p -> p.getDob().getMonth(),
 mapping(Person::getName, joining(", "))),
 result -> {
 // Add missing months
 for (Month m : Month.values()) {

 result.putIfAbsent(m, "None");
 }

 // Return a sorted, unmodifiable map
 return Collections.unmodifiableMap(new TreeMap<>(result));
 }));

 dobCalendar.entrySet().forEach(System.out::println);
 }
}

JANUARY=None
FEBRUARY=None
MARCH=None
APRIL=None
MAY=Ken, Li
JUNE=None
JULY=Jeff, Donna
AUGUST=None
SEPTEMBER=None
OCTOBER=None
NOVEMBER=None
DECEMBER=Chris, Laynie

Finding and Matching in Streams
The Streams API supports different types of find and match operations on stream elements. For example, you can
check if any elements in the stream match a predicate, if all elements match a predicate etc. The following methods in
the Stream interface are used to perform find and match operations:

•	 boolean allMatch(Predicate<? super T> predicate)

•	 boolean anyMatch(Predicate<? super T> predicate)

•	 boolean noneMatch(Predicate<? super T> predicate)

Chapter 13 ■ StreamS

654

•	 Optional<T> findAny()

•	 Optional<T> findFirst()

The primitive type streams such as IntStream, LongStream, and DoubleStream also contain the same methods
that work with a predicate and an optional one for primitive types. For example, the allMatch() method in the
IntStream takes an IntPredicate as an argument and the findAny() method returns an OptionalInt.

All find and match operations are terminal operations. They are also short-circuiting operations. A short-circuiting
operation may not have to process the entire stream to return the result. For example, the allMatch() method checks
if the specified predicate is true for all elements in the stream. It is sufficient for this method to return false if the
predicate evaluates to false for one element. Once the predicate evaluates to false for one element, it stops further
processing (short-circuits) of elements and returns the result as false. The same argument goes for all other methods.
Note that the return type of the findAny() and findFirst() methods is Optional<T> because these methods may not
have a result if the stream is empty.

The program in Listing 13-14 shows how to perform find and match operations on streams. The program uses
sequential stream because the stream size is very small. Consider using a parallel stream if the match has to be performed
on large streams. In that case, any thread can find a match or not find a match to end the matching operations.

Listing 13-14. Performing Find and Match Operations on Streams

// FindAndMatch.java
package com.jdojo.streams;

import java.util.List;
import java.util.Optional;

public class FindAndMatch {
public static void main(String[] args) {
 // Get the list of persons
 List<Person> persons = Person.persons();

 // Check if all persons are males
 boolean allMales = persons.stream()
 .allMatch(Person::isMale);
 System.out.println("All males: " + allMales);

 // Check if any person was born in 1970
 boolean anyoneBornIn1970 =
 persons.stream()
 .anyMatch(p -> p.getDob().getYear() == 1970);
 System.out.println("Anyone born in 1970: " + anyoneBornIn1970);

 // Check if any person was born in 1955
 boolean anyoneBornIn1955 =
 persons.stream()
 .anyMatch(p -> p.getDob().getYear() == 1955);
 System.out.println("Anyone born in 1955: " +
 anyoneBornIn1955);

 // Find any male
 Optional<Person> anyMale = persons.stream()
 .filter(Person::isMale)
 .findAny();

Chapter 13 ■ StreamS

655

 if (anyMale.isPresent()) {
 System.out.println("Any male: " + anyMale.get());
 }
 else {
 System.out.println("No male found.");
 }

 // Find the first male
 Optional<Person> firstMale = persons.stream()
 .filter(Person::isMale)
 .findFirst();
 if (firstMale.isPresent()) {
 System.out.println("First male: " + anyMale.get());
 }
 else {
 System.out.println("No male found.");
 }
 }
}

All males: false
Anyone born in 1970: true
Anyone born in 1955: false
Any male: (1, Ken, MALE, 1970-05-04, 6000.00)
First male: (1, Ken, MALE, 1970-05-04, 6000.00)

Parallel Streams
Streams can be sequential or parallel. Operations on a sequential stream are processed in serial using one thread.
Operations on a parallel stream are processed in parallel using multiple threads. You do not need to take additional
steps to process streams because they are sequential or parallel. All you need to do is call the appropriate method that
produces sequential or parallel stream. Everything else is taken care of by the Streams API. This is why I stated in the
beginning of this chapter that you get parallelism in stream processing “almost” for free.

Most of the methods in the Streams API produce sequential streams by default. To produce a parallel stream
from a collection such as a List or a Set, you need to call the parallelStream() method of the Collection interface.
Use the parallel() method on a stream to convert a sequential stream into a parallel stream. Conversely, use the
sequential() method on a stream to convert a parallel stream into a sequential stream.

The following snippet of code shows serial processing of the stream pipeline because the stream is sequential:

String names = Person.persons() // The data source
 .stream() // Produces a sequential stream
 .filter(Person::isMale) // Processed in serial
 .map(Person::getName) // Processed in serial
 .collect(Collectors.joining(", ")); // Processed in serial

Chapter 13 ■ StreamS

656

The following snippet of code shows parallel processing of the stream pipeline because the stream is parallel:

String names = Person.persons() // The data source
 .parallelStream() // Produces a parallel stream
 .filter(Person::isMale) // Processed in parallel
 .map(Person::getName) // Processed in parallel
 .collect(Collectors.joining(", ")); // Processed in parallel

The following snippet of code shows processing of the stream pipeline in mixed mode because the operations in
the pipeline produce serial and parallel streams:

String names = Person.persons() // The data source
 .stream() // Produces a sequential stream
 .filter(Person::isMale) // Processed in serial
 .parallel() // Produces a parallel stream
 .map(Person::getName) // Processed in parallel
 .collect(Collectors.joining(", ")); // Processed in parallel

The operations following a serial stream are performed serially and the operations following a parallel stream are
performed in parallel. You get parallelism when processing streams for free. So when do you use parallelism in stream
processing? Do you get the benefits of parallelism whenever you use it? The answer is no. There are some conditions
that must be met before you should use parallel streams. Sometimes using parallel streams may give you worse
performance.

The Streams API uses the Fork/Join framework to process parallel streams. The Fork/Join framework uses
multiple threads. It divides the stream elements into chunks, each thread processes a chunk of elements to produce
partial result, and finally, the partial results are combined to give you the result. Starting up multiple threads, dividing
the data into chunks, and combining partial results takes up CPU time. This overhead is justified by the overall time
to finish the task. For example, a stream of six people is going to take longer to process in parallel than in serial. The
overhead of setting up the threads and coordinating them for such small work is not worth it.

You have seen the use of an Iterator for traversing elements of collections. The Streams API uses a Spliterator
(a splittable iterator) to traverse elements of streams. Spliterator is a generalization of Iterator. An iterator
provides sequential access to data elements. A Spliterator provides sequential access and decomposition of data
elements. When you create a Spliterator, it knows the chunk of data it will process. You can split a Spliterator into
two: each will get its own chunk of data to process. The Spliterator is an interface in the java.util package. It is
used heavily for splitting stream elements into chunks to be processed by multiple threads. As the user of the Streams
API, you will never have to work directly with a Spliterator. The data source of the streams provides a Spliterator.
Parallel processing of a stream is faster if the Spliterator can know the size of the streams. Streams can be based on
a data source that may have a fixed size or an unknown size. Splitting the stream elements into chunks is not possible
if the size of the stream cannot be determined. In such cases, even though you can use a parallel stream, you may not
get the benefits of parallelism.

Another consideration in parallel processing is the ordering of elements. If elements are ordered, threads need to
keep the ordering at the end of the processing. If ordering is not important for you, you can convert an ordered stream
into an unordered stream using the unordered() method.

Spliterators divide the data elements into chunks. It is important that the data source for the stream does not
change during stream processing; otherwise the result is not defined. For example, if your stream uses a list/set as the
data source, do not add or remove elements from the list/set when stream is being processed.

Stream processing is based on functional programming that does not modify data elements during processing. It
creates new data elements rather than modifying them. The same rule holds for stream processing, particularly when
it is processed in parallel. The operations in a stream pipeline are specified as lambda expressions that should not
modify the mutable states of the elements being processed.

Chapter 13 ■ StreamS

657

Let’s take an example of counting the prime numbers in a big range of natural numbers, say from 2 to 214748364.
The number 214748364 is Integer.MAX_VALUE/10. The following snippet of code performs the counting in serial:

// Process the stream in serial
long count = IntStream.rangeClosed(2, Integer.MAX_VALUE/10)
 .filter(PrimeUtil::isPrime)
 .count();

The code took 758 seconds to finish. Let’s try converting the stream to a parallel stream as follows:

// Process the stream in parallel
long count = IntStream.rangeClosed(2, Integer.MAX_VALUE/10)
 .parallel()
 .filter(PrimeUtil::isPrime)
 .count();

This time, the code took only 181 seconds, which is roughly only 24% of the time it took when it was processed
in serial. This is a significant gain. Both pieces of code were run on a machine with a processor that had eight cores.
The code may take different amount of time to complete on your machine.

Summary
A stream is a sequence of data elements supporting sequential and parallel aggregate operations. Collections in Java
focus on data storage and access to the data whereas streams focus on computations on data. Streams do not have
storage. They get the data from a data source, which is most often a collection. However, a stream can get its data from
other sources such as file I/O channel, a function, etc. A stream can also be based on a data source that is capable of
generating infinite data elements.

Streams are connected through operations forming a pipeline. Streams support two types of operations:
intermediate and terminal operations. An intermediate operation on a stream produces another stream that can serve
as an input stream for another intermediate operation. A terminal operation produces a result in the form of a single
value. A stream cannot be reused after a terminal operation is invoked on it.

Some operations on streams are called short-circuiting operations. A short-circuiting operation does not
necessarily have to process all data in the stream. For example, findAny is a short-circuiting operation that finds any
element in the stream for which the specified predicate is true. Once an element is found, the operation discards the
remaining elements in the stream.

Streams are inherently lazy. They process data on demand. Data is not processed when intermediate operations
are invoked on a stream. Invocation of a terminal operation processes the stream data.

A stream pipeline can be executed in serial or in parallel. By default, streams are serial. You can convert a serial
stream into a parallel stream by calling the stream’s parallel() method. You can convert a parallel stream into a
serial stream by calling the stream’s sequential() method.

The Streams API supports most of the operations supported in the functional programming such as filter,
map, forEach, reduce, allMatch, anyMatch, findAny, findFirst, etc. Streams contain a peek() method for debugging
purposes that let you take an action on every element passing through stream. The Streams API provides collectors
that are used to collect data in collections such as a map, a list, a set, etc. The Collectors class is a utility class that
provides several implementations of collectors. Mapping, grouping, and partitioning of a stream’s data can be easily
performed using the collect() method of streams and using a collector provided.

Parallel streams take advantage of multicore processors. They use the Fork/Join framework to process the
stream’s element in parallel.

A���������
Absolute path, 284
add() method, 131–132
Adler-32, 360
Advanced object serialization

class evolution, 335
stopping serialization, 336
writing object multiple times, 332

Aggregate operation methods, 524
allocateDirect() method, 391
allocate() method, 391
Annotation element

array type, 15–16
default value, 9–10

Annotations
AccessAnnotationTest class, 32–33
AnnotatedElement interface, 30
element (see Annotations element)
Employee class, 1
getAnnotationsByType() method, 33
Manager class, 1
null reference, 16
@Override annotation, 3
processing

AbstractProcessor class, 35
getQualifiedName() method, 37
printMessage() method, 37
process() method, 36
–processor options, 35
process version annotations, 38
–proc:none option, 35
–proc option, 35
SupportedAnnotationTypes annotation, 36
Test VersionProcessor, 39

setSalary() method, 2
shorthand annotation syntax, 16
standard annotations (see Standard

annotations types)

Test class, 30
toString() method, 31
types, 15

declaration, 4
DefaultException class, 13
enum type, 14–15
interface, 10
marker annotation, 18
meta-annotation (see Meta-annotation types)
Primitive types, 11
restrictions, 7
String type, 12
TestCase annotation, 13

version annotation type, 31–32
Anonymous inner class, 48
Archive file

byte array compression
DeflateInflateTest class, 364
deflate() method, 363
Deflater class, 362
end() method, 363
finish() method, 363
Inflater classes, 362

byte array decompression
DeflateInflateTest class, 365
end() method, 364
finished() method, 364
Inflater class, 363

checksum
Adler-32, 360
CRC32, 361
definition, 360

data compression
lossless, 359
lossy, 359
RLE, 359
.tar archive, 360
.tar.gz, 360
ZLIB library, 360

Index

659

definition, 359
GZIP file

BufferedOutputStream, 374
GZIPInputStream class, 374
GZIPOutputStream class, 374
InputStream, 374
ObjectOutputStream, 374

JAR file (see JAR file)
ZIP file, 366

BufferedOutputStream, 367
class, 372
closeEntry() method, 368
creation, 367–368
FileInputStream creation, 368
putNextEntry() method, 367
reading contents, 370
ZipOutputStream, 367

ArrayList, 545–546
array() method, 390
Array operation methods, 524
asList() method, 161
asReadOnlyBuffer() method, 399–400

B���������
Basic operation methods, 523
Blocking doubly ended queues, 549, 571
Blocking queues

ArrayBlockingQueue, 561
Consumer class, 563
definition, 549
DelayQueue, 562
fairness, 561
features, 561
LinkedBlockingQueue, 561
PriorityBlockingQueue, 561
producer class, 562
producer/consumer

program, 564
remainingCapacity() method, 561
SynchronousQueue, 562

BufferedInputStream class, 311
Buffers

clear() method, 398
flip() method, 396–397
hasRemaining() method, 397
primitive values, 390
properties, 390
reading data from, 393, 395
read-only buffer, 399
relative vs. absolute methods, 395
reset() method, 399
rewind() method, 399
state, 394

views, 400
writing data to, 393, 395

Bulk/group operation methods, 523

C���������
CallableTask class, 263
CallableTaskTest class, 263
Callback mechanism, 72
cancel() method, 263
Canonical path, 284
capacity() method, 390
Character set

CharsetDecoder class, 401
CharsetEncoder class, 401
CoderResult class, 402
data source and sink, 403
decoding, 401
encoding, 401
flush() method, 403
getByteData () method, 403
input characters, 402
isOverflow() method, 403
isUnderflow() method, 402
storeByteData () method, 403

Checked collections, 588
checkGuard() method, 98
Checksum, 387
Class explosion, 281
Class-Path attribute, 380
Collection interface

advantages, 521
aggregate operation methods, 524
array operation methods, 524
basic operation methods, 523
bulk/group operation methods, 523
categories, 522
class diagram, 522
comparison operation method, 524
definition, 522
implementation classes, 522
List interface, 521

Collections
checked collections, 588
Collections Framework (see Collections Framework)
definition, 519
element, 519
empty collections, 589
hash-based collections, 590
list (see List)
maps (see Maps)
mathematical set, 532
navigable set, 542
queue (see Queues)
read-only view, 587

■ index

660

Archive file (cont.)

reversing a list, 585
rotating a list, 585
searching a list, 584
shuffling a list, 585
singleton collections, 590
sorted set, 536
sorting a list, 582
swapping a list, 585
synchronized view, 587
WeakHashMap implementation, 586

Collections Framework
array in Java, 520
collection of name-phone

pairs, 520
components, 521
pictorial view, 520

Collectors
accumulator, 638
argument, 651
ArrayList<String>, 639
calendar example, 652
collectingAndThen() method, 651–652
collect() method, 638–639
combiner, 638
counting() method, 641
grouping data, 647
java.util.stream package, 639
joining() method, 646
parameters, 640
partitioning data, 650
sorted() method, 641
Stream.count() method, 641
summary statistics collection, 642
supplier, 638
toCollection() method, 640
toList() method, 640
toMap() method, 644
toSet() method, 640

Compare-and-swap (CAS), 227
compareTo() method, 429
comparing() method, 170
Comparison operation method, 524
Compress() and decompress() methods, 364
Constructor references

array constructors, 160
BiFunction<String,Double,

Item> type, 160
ClassName, 159
compile-time error, 160
Item class, 159
String object, 158

Container. See Collections
CRC32 class, 361
Cyclic Redundancy Check, 361

D���������
Data compression, 359
Decorator pattern

abstract Component class, 300
abstract superclass, 294

Drink class, 296
DrinkDecorator class, 297
Rum class, 296
Vodka class, 296
Whiskey class, 296

class diagram, 294–295
components arrangement, 299
concrete decorator

Honey class, 297–298
Spices class, 298

input stream
abstract base component, 310
BufferedInputStream class, 311
class design, 310
methods, 311
PushbackInputStream class, 313

output stream
BufferedOutputStream class, 315
ByteArrayOutputStream class, 315
class diagram, 314
vs. Drink Application, 315
methods, 315
PrintStream class, 316

testing drink application, 299
wrapper pattern, 295

DEFALTE algorithm, 360
Deflater class, 362
Delay queues, 549, 565
Deprecated annotation type, 26
Dictionary. See Maps
Documented annotation type, 23–24
Double ended queues

asLifoQueue() static method, 560
categories, 557
definition, 549
FIFO queue, 556, 558
insertion, removal, and peek operations, 556
LIFO queue, 556, 559–560
myMethod(), 560
vs. queue interfaces, 556
stacks, 557

E���������
EJB 3.0, 4
Empty collections, 589
Empty stream, 610
endsWith() method, 429–430

■ index

661

Enterprise JavaBeans (EJB), 4
equals() method, 429
Exclusive file locking, 416
ExecutorService.submit() method, 263

F���������
File attributes

AclFileAttributeView, 454
ACL file permissions, 462
BasicFileAttributeView, 454
DosFileAttributeView, 454
file attribute view support, 455
FileOwnerAttributeView, 454, 461
Files.setOwner() method, 462
getUserPrincipalLookupService() method, 460
lookupPrincipalByGroupName() method, 461
PosixFileAttributeView, 454
POSIX file permissions, 466
reading and updating

basic file attributes, 458–459
Files.getOwner() method, 456
Files.isDirectory() method, 456
Files.setOwner() method, 456
getFileAttributeView() method, 459
readAttributes() method, 457, 459
setTimes() method, 459
static methods, 456
view-name, 457
XxxAttributes, 457
XxxAttributeView, 457

UserDefinedFileAttributeView, 454
File contents reading

Files.readAllLines() method, 442
newBufferedReader(Path path, Charset cs)

method, 441
newBufferedReader(Path path) method, 441
newByteChannel(Path path, OpenOption… options)

method, 441
newInputStream(Path path, OpenOption… options)

method, 441
OpenOption type, 441
readAllBytes() method, 441
readAllLines() method, 441
SeekableByteChannel object, 441–442
static byte[] readAllBytes(Path path) method, 441
static List<String> readAllLines(Path path, Charset cs)

method, 441
static List<String> readAllLines(Path path) method, 441

Files.probeContentType(Path path) method, 440
First In, First Out (FIFO), 519
Flattening streams, 626
forEach() method, 146
Formal type parameter, 106
forName() static method, 78
FunctionUtil class, 147

G���������
Garbage collection

accessing referent, 503
BigObject class, 502
clearing referent, 504
clear() method, 504
dead object, 488
finalization, 489
finalization process, 493
FinalizeAsBackup class, 494
finalize() method, 491
invoking, 490
java.lang.Runtime class, 489
Java object, 496
memory management

memory allocation, 486
memory allocator, 485
memory reclamation, 485

object resurrection, 494
OutOfMemoryError, 491
PhantomReference

Objects, 513–514
post-finalization coordination, 514
reachable objects, 489
ReferenceQueue class, 508
SoftReference class, 504
System.gc() method, 490
tracing algorithm, 489
WeakReference class, 509–512
weak references

constructors, 499
memory state, 499
object’s reachability, 500
PhantomReference, 499
referent instance, 499
SoftReference, 499
strong reference, 498–500

Generics
anonymous classes, 117
arrays class, 117
definition, 103
exception classes, 117
heap pollution, 119
lower bound wildcards

copy() method, 112
<? super T>, 112
WrapperUtil class, 112

methods and constructors, 113
object creation

ArrayList, 115
compiler warnings, 115
new ArrayList<>(), 117
parameter type, 115
process() method, 116
type inference process, 115

■ index

662

printDeails() method
compile-time error, 108
nullpointerexception, 110
unknownWrapper variable, 109
Wrapper<Object> type, 108
Wrapper<String> type, 108

raw type, 107
RuntimeClassTest, 118
upper bound wildcards

<? extends Number>, 111
<? extends T>, 111
sum() method, 111

varargs method
compiler unchecked warning, 120
@java.lang.SuppressWarnings annotation, 121
process() method, 120
@SafeVarargs annotation, 120

wildcards
unbounded, 108
unknown type, 108
unknownWrapper.get(), 109

wildcard type, 108
Wrapper class, 103

compile-time error statement, 105
formal type parameter, 106
get() method, 105
<T> parameter name, 104
MyClass, 104
parameter type, 105
printDetails() method, 108
set() method, 106
(String)stringWrapper.get() method, 104
super/subtype rules, 106
ways, 104

WrapperUtil method, 108
Generic type, 106
getClassDescription() method, 84
getClassInterfaces() method, 84
getClass() method, 78
getComponentType() method, 100–101
getConstructors() method, 91
getDeclaredConstructor() method, 91
getDeclaredField() method, 85
getDeclaredMethods() method, 89
getDefault() static method, 424
getExceptionTypes() method, 87
getFields() method, 85
getFileName() method, 427
getFileStores() method, 424
getInterfaces() method, 84
getLambdaPrinter() method, 162–163
getLength() method, 99
get() method, 263, 393
getMethods() method, 89
getModifiers() method, 83, 87
getNameCount() method, 427

getName() method, 87
getParameters() method, 87
getParent() method, 427
getPath() method, 427
getReturnType() method, 89
getRootDirectories() method, 424
getRoot() method, 427
getSimpleName() method, 83
getSuperclass() method, 84–85
getTypeParameters() method, 87
GZIP file format, 360, 374

H���������
hasArray() method, 390
Hash-based collections, 590
Heap pollution, 119

I���������
IBM VM, 488
Infinite streams, 598
Inflater class, 362
Inherited annotation type, 23
Inner classes

accessing instance members, 56
accessing local variables restrictions, 63–64
advantages, 42
anonymous class, 72
callback mechanism, 72
class declaration, 61
compiler magic

decompile class files, 68
decompiled code, 69
instance variable, 70
synthetic method, 71

creating objects
class declaration, 55
instance, 54–55
instance of InnerAAA, 56
member inner class, 56
titleIterator() method, 54
TitleList class, 54

enclosing class, 42
generated class files, 67–68
inheritance, 64
ModifiedOuter2 class, 61–62
no static members, 66
outer class, 42
qualified keyword, 59–60
same instance variable name, 58
setValue() instance method, 59
static context, 74
static member class, 52
testing, 57–58
top-level class, 41

■ index

663

types
anonymous inner class, 48
local inner class (see Local inner class)
member inner class, 43

Input/output (I/O)
advanced object serialization (see Advanced object

serialization)
class explosion, 281
Console class, 352
decorator pattern (see Decorator pattern)
files

absolute and canonical path, 284
attributes, 290
checking existence, 284
content copy, 347
copying, 290
creating, 286–287
current working directory, 283
deleting, 286–287
directories, 290
object creation, 282
pathname, 282
renaming, 287
size, 290

object serialization (see Object serialization)
pipes (see Piped I/O)
primitive data types, 320
readers and writers

append() method, 341
BufferedReader class, 339–340
BufferedReader object, 341
BufferedWriter class, 340
byte-based vs. character-based input/output

streams, 338
character-based streams, 337
classes, 337–338
FilterReader class, 339
InputStreamReader class, 339
OutputStream object, 341
OutputStreamWriter class, 339
readLine() method, 341
writer object, 340

Scanner class, 353
streams (see Input/output streams)
StreamTokenizer class, 356
String object, 281
StringTokenizer class, 354
transient fields serialization, 331

Input/output streams
flow of data, 301
input stream

closing, 304
creating, 303
data source, 302

decorator pattern (see Decorator pattern)
luci1.txt file, 302
reading a byte, 305
reading data, 303
Utility class, 304

LowerCaseReader class, 342
output stream

closing, 308
creating, 307
data sink, 306
decorator pattern(see Decorator pattern)
flushing, 308
writing bytes, 308
writing data, 307

random access files, 344
reading data, 301
standard error streams

BufferedReader, 351
DummyStandardOutput class, 349
Java program interaction, 347
output redirection, 348
PrintStream class, 347
public static variable, 347
reading from input device, 350
swallowing sent data, 349

writing data, 302
Instance method references

bound receiver, 153
getPrice() method, 156
Item class, 156, 158
length() method, 153
test() method, 158
unbound receiver, 154

Integrated development environment (IDE), 102
isAbsolute() method, 427
isArray() method, 99
isDirect() method, 391
isDone() method, 263
isReadOnly() method, 399, 424
isSameFile() method, 430

J, K���������
JAR API, 381
JAR file

accessing resources, 386
book/archives, 377
creation, 376
extracting an entry, 378
indexing, 377
jar tool command line options, 375
listing contents, 378
manifest attributes, 379–381
manifest file, 378
META-INF directory, 375

■ index

664

Inner classes (cont.)

sealed attribute, 381
sealing package, 381
test.jar file, 376
updation, 377
using JAR API, 381

attributes object, 382
creation, 383
main() method, 383
manifest object, 381–382

JAR file format, 374
Java Archive, 374
Java Hotspot VM, 487
java.lang.Comparable interface, 429
Java Memory model

atomicity, 185
ordering, 186
visibility, 186

L���������
Lambda expression

anonymous class, 125
break and continue statements, 167
Comparator interface, 169
definition, 123
equivalent methods, 127–128
for-loop statement, 168
function abstraction, 123–124
functional interface

compare() and equals() methods, 137
design APIs, 145
forEach() method, 149
@FunctionalInterface annotation, 137
function<T, R> interface, 142
FunctionUtil class, 146
Gender enum, 145
generic abstract method, 138
intersection type, 140
java.util package, 137
library users, 147
Mapper<T> interface, 139–140
package java.util.function, 141
Person class, 145–146
predicate<T> Interface, 144

functional programming, 126
lexical scoping

compile-time error, 163
getLambdaPrinter() method, 162–163
local/anonymous class, 161
printer functional interface, 162

local variables, 127
method references

constructor references (see Constructor
references)

definition, 149

generic method, 160
instance method (see Instance method

references)
length() method, 149
static method (see Static method references)
types, 150

object-oriented programming, 126
parameters

block statement, 129
modifiers, 129
no parameter declaration, 129
single parameter declaration, 128
types, 128

recursive function, 168
string parameter, 124
StringToIntMapper interface, 124–126
target type

add() method, 131
assignment context, 136
assignment statement, 130, 132
cast context, 137
functional interface, 132
join() method, 131
LambdaUtil2 class, 134–136
LambdaUtil class, 133
method invocation context, 136
parameters, 130
poly expression, 130
return context, 137
standalone expression, 130

variable capture
compile-time error, 165
createLambda() method, 166
final declaration, 164
local and instance variables, 165–166
msg variable, 164
print() method, 166

LambdaUtil class
functional interfaces, 133
testAdder() method, 133–134
testJoiner() method, 134

Last In, First Out (LIFO), 519
limit() method, 391
LinkedList, 545
List, 524

add(E element) method, 545
ArrayList, 545–546
definition, 544
features, 545
forward and backward direction iterations, 547
index, 544
LinkedList, 545
ListIterator interface, 547
pictorial view, 544
positional indexes, 545

■ index

665

ListIterator interface, 547
Local inner class

addTitle() method, 45
class declaration, 46
RandomInteger class, 48
removeTitle() method, 45
someMethod() method, 46
testing, 47

Lossless data compression algorithms, 359
Lossy data compression algorithms, 360
Lower-bounded wildcards, 112

M���������
Main-Class attribute, 379
Manifest file, 378
map() method, 124
Maps

basic operations, 572
bulk operations, 572
comparison operations, 573
concurrent maps, 581
concurrent navigable map, 582
entry, 575
HashMap, 573
keys, values, and entries views, 576
key-value mappings, 571
LinkedHashMap, 573
Map<K,V> interface, 571
navigable maps, 579
sorted maps, 577
usage, 573
view operations, 572
WeakHashMap, 574

mapToInt() method, 139
Marker annotation types, 18
mark() method, 392
Mathematical set

definition, 532
difference/minus operations, 534
HashSet class, 532
intersection operation, 534
LinkedHashSet class, 533
Set interface, 535
union operation, 534

Member inner class, 43
Memory allocation, 485
Memory leak, 486
Memory-mapped file I/O, 415
Memory reclamation, 485
Meta-annotation types

Documented annotation type, 23–24
Inherited annotation type, 23
Native annotation type, 25
Repeatable annotation type, 24–25

Retention annotation type, 22
Target annotation type, 19

Multiprocessing, 174
Multitasking, 173
MutipleSerialization class, 335

N���������
Native annotation type, 25
Navigable set, 542
New input/output (NIO)

buffers
clear() method, 398
flip() method, 396–397
hasRemaining() method, 397
primitive values, 390
properties, 390
reading data, 393, 395
read-only buffer, 399
relative vs. absolute methods, 395
reset() method, 399
rewind() method, 399
state, 394
views, 400
writing data, 393, 395

byte order
big endian, 420
machine, 419
order() method, 421
setting, 421

channel
close() method, 409
FileInputStream and FileOutputStream

classes, 410
GatheringByteChannel() method, 410
getChannel() method, 410
InterruptibleChannel, 410
isOpen() method, 409
ReadableByteChannel() method, 410
ScatteringByteChannel() method, 410
WritableByteChannel() method, 410

channel-based NIO, 389
character set

CharsetDecoder class, 401
CharsetEncoder class, 401
CoderResult class, 402
data source and sink, 403
decoding, 401
encoding, 401
flush() method, 403
getByteData () method, 403
input characters, 402
isOverflow() method, 403
isUnderflow() method, 402
storeByteData () method, 403

■ index

666

definition, 389
file channel

copying contents, 418
reading data, 411
writing data, 413

file locking, 416
lock() method, 416
release() method, 417
try-catch-finally, 417
tryLock() method, 416

memory-mapped file I/O, 415
stream-based I/O, 389

New input/output 2 (NIO.2)
asynchronous file I/O

AsynchronousFileChannel class, 473
completed()/failed() method, 475
completion handler class, 474
CompletionHandler interface, 474
CompletionHandler object, Asynchronous file

write, 475
default/custom thread pool, 473
Future.get() method, 474
Future object, asynchronous file write, 478
java.nio.channels.AsynchronousFileChannel

class, 473
static open() method, 473

features, 423
file attributes (see File attributes)
file system, 424
file tree traversing

directory tree deletion, 450
enum constants, 448
FileVisitor API, 447
FileVisitor interface, 448
getFileVisitor() method, 450
matches(Path path) method, 453
postVisitDirectory() method, 449
preVisitDirectory() method, 449–450
SimpleFileVisitor class, 448
subdirectories and directory files printing, 449
traversing steps, 448
visitFile() method, 449–450
walkFileTree() method, 450, 452

java.nio.file.attribute, 423
java.nio.file.spi, 423
path

absolute path, 426
C:\ component, 426
comparing paths, 429
components accessing, 428
copy() method, 437
deleteIfExists() method, 436
delete() method, 436
exists() method, 437
file attributes, 439
file contents reading (see File contents reading)

Files.probeContentType(Path path) method, 440
getFileName() method, 427
getNameCount() method, 427
getParent() method, 427
getRoot() method, 427
home component, 426
isAbsolute() method, 427
java.nio.file package, 426
move() method, 438
new files creation, 435
normalize() method, 431
notExists() method, 437
Path object, 426–427
relative path, 426
relativize(Path p) method, 432
resolve(Path p) method, 431
SeekableByteChannel, 445
separator/delimiter, 426
test.txt component, 426
toAbsolutePath() method, 433
toRealPath() method, 434
toUri() method, 434
windows-based path, 428
write() methods, 443

symbolic link, 432
watch service

close() method, 471
context() method, 469
count() method, 469
creation, 469
java.nio.file package, 468
kind() method, 469
pollEvents() method, 470
poll() method, 470
register() method, 470
reset() method, 471
StandardWatchEventKinds

class, 469
take() method, 470
Watchable object, 469
WatchEvent, 469–470
WatchService, 469

newInstance() method, 92
normalize() method, 431

O���������
Object serialization. See also Advanced object

serialization
deflating/marshalling, 322
deserialization procedure, 326
Externalizable interface, 323, 327
ObjectOutputStream class, 323
Serializable interface, 323
serialization procedure, 323
storing sequence of bytes, 322

■ index

667

ObjectWrapper class, 103
Ordered streams, 601
Override annotation type, 27

P���������
Parallel streams, 655
Paths.get() static method, 427
Phantom reachable, 500
Piped I/O

creating and connecting ways, 318
logical arrangement, 318
producer-consumer pattern, 318
usage procedure, 319

poly expression, 130
position() method, 391
Primitive data types

DataInputStream class, 320
DataOutputStream class, 320
ReadingPrimitives class, 321
WritingPrimitives class, 320

PrintStream class, 316
Priority queues, 549, 552
Process control block, 174
Program counter, 173
PushbackInputStream class, 313
put() method, 393

Q���������
Queues

blocking doubly ended queues, 549, 571
blocking queues, 549, 561
definition, 549
delay queues, 549, 565
double ended queues, 549, 555
head and tail, 549
priority queues, 549, 552
simple queues, 549
transfer queues, 549, 567

R���������
Random access files, 344
Read-only buffers, 399
Recursive function, 168
Reflection

accessibility check
AccessibleObject class, 97
checkGuard() method, 98
Djava.security.manager, 98
inaccessible class member, 97
Java security manager, 98
myjava.policy file, 98
ReflectPermissionTest class, 98
SecurityException, 98

setAccessible(boolean flag) method, 97
setAccessible(true) method, 98

accessing fields, 95
arrays, 76

arraycopy() static method, 101
array dimension, 100
ArrayList, 101
ExpandingArray, 101
getComponentType() method, 100–101
getLength() method, 99
isArray() method, 99
newInstance() static method, 99

behavioral intercession, 75–76
behavioral introspection, 75
class access modifiers, 81
definition, 75
Executable class

constructors, 76, 91
getExceptionTypes() method, 87
getName() method, 87
getParameters() method, 87
getTypeParameters() method, 87
methods, 76, 89
utility class, 87

features, 76
getClassDescription() method, 84
getClassInterfaces() method, 84
getDeclaredField() method, 85
getFields() method, 85
getInterfaces() method, 84
getModifiers() method, 83, 87
getSimpleName() method, 83
getSuperclass() method, 84–85
GUI tools, 102
intercession, 75–76
interface IConstants, 85
introspection, 75
invoke methods, 94
java.lang.Class class, 76

Bulb class, 78
byte code, 77
class literal, 77
class loader, 77
forName() static method, 78
getClass() method, 78

MyClass class, 83
objects creation

constructor, 93
IllegalAccessException, 93
InstantiationException, 93
newInstance() method, 92
no-args constructor, 92

person class, 80, 85
reification, 75–76
structural intercession, 75
structural introspection, 75

■ index

668

Reification, 119
relativize(Path p) method, 432
Repeatable annotation type, 24–25
reset() method, 392
resolve(Path p) method, 431
Retention annotation type, 22
Root directories

and files list, 291
file filter, 292
on machine, 291

Run Length Encoding (RLE), 359

S���������
Sequence. See List
serialPersistentFields field, 335
Serial version unique ID (SUID), 335
setAccessible(true) method, 98
setName() method, 94
Shared file locking, 416
Shorthand annotation syntax, 16
Simple queues, 549
Singleton collections, 590
Softly reachable, 500
Soft reference, 505
Sorted set

Comparator, 536, 538
custom sorting, 539
definition, 536
natural ordering, 537
null element, 541
Person class, 537
subsets, 540
TreeSet class, 536

Standalone expression, 130
Standard annotations types

deprecated annotation type, 26
FunctionalInterface annotation type, 28
override annotation type, 27
SuppressWarnings annotation type, 27

startsWith() method, 429–430
Static context, 74
Static member class, 52
Static method references

error message, 151
Integer class, 150, 152
Integer.valueOf(), 152
Person class, 152
toBinaryString() method, 151

static wrap() method, 391
Streams

API architecture, 602
collectors (see Collectors)
creation

Arrays class, 615
chars() method, 617

collection interface, 615
empty stream, 610
file I/O, 616
from values, 607
generate() method, 613
iterator() method, 610

definition, 597
filter() method, 603
filter operation, 628
finding and matching, 653
flattening streams, 626
forEach operation, 623
IllegalStateException, 602
imperative vs. functional programming, 599
infinite streams, 598
intermediate/lazy operations, 600–601
internal vs. external iteration, 598
IntStream, 604
map() method, 603
map operation, 624
operations, 622
optional value

get() method, 618
ifPresent(Consumer<? super T> action) method, 619
isPresent() method, 618
methods, 618–619
NoSuchElementException, 618
NullPointerException, 618
OptionalDouble class, 620
OptionalInt class, 620
OptionalLong class, 620
program, 620

ordered streams, 601
parallel streams, 655
Person class, 605
reduce() method, 604
reduce operation

accumulator, 630, 633
collect() method, 630
compile-time error, 632
count() method, 637
default value, 635
definition, 630
DoubleStream, 636–637
imperative programming style, 631
map-reduce operation, 632
mapToDouble() method, 636
maximum integer value, 635
parallel stream, 634
pictorial view, 630
reduce(BinaryOperator<T> accumulator)

method, 635
reduce() method, 630–631, 633
seed, 630
stream() method, 632
sum variable, 631

■ index

669

store elements, 598
stream() method, 603
stream pipeline debugging, 622
sum() method, 604
terminal/eager operations, 600–601

StreamTokenizer class, 356
StringTokenizer class, 354
Strongly reachable, 500
SuppressWarnings annotation type, 27
Synchronizers

barrier, 238
exchanger, 252
latches, 250
phasers, 241
semaphores, 235

T���������
Tape Archive, 360
Tarball, 360
Target annotation type, 19
testAdder() method, 133
testJoiner() method, 134
test() method, 158
thenComparing() method, 170
Thread

concurrency features
atomic variables, 227
explicit locks, 230

daemon thread, 212
definition, 175
execution, 203
executor framework

executor’s completion service, 268
newCachedThreadPool(), 259
newFixedThreadPool(int nThreads), 259
newSingleThreadExecutor(), 259
result-bearing tasks, 261
scheduling task, 264
uncaught exceptions, 266

fork/join framework, 271
group, 218
interruption, 214
in Java, 176
Java Memory model

atomicity, 185
ordering, 186
visibility, 186

join() method, 206
main() method, 206
method reference, 180
multiple threads, 181
object’s monitor and synchronization

CriticalSection2 class, 190
ml.method_1(), 191

MultiLocks class, 190
mutual exclusion synchronization, 187
notify() or notifyAll() method, 196
synchronized instance method, 188
synchronized static method, 188

object’s monitor and synchronization conditional
synchronization, 187

priority, 211
producer/consumer, 199
program counter and stack, 175
Runnable interface, 179
sleep method, 204
static yield() method, 207
stop, suspend, and resume method, 221
synchronizers (see Synchronizers)
Thread class, 179
thread-local variables, 276
ThreadState class, 209
timed-waiting state, 209
uncaught exception, 225
volatile variables, 219

Thread-local storage (TLS), 175
toAbsolutePath() method, 433
toBinaryString() method, 151
toRealPath() method, 434
toUri() method, 434
Transfer queues, 549, 567
Traversing collections

for-each Loop, 529
forEach() method, 531
iterator, 526

U���������
Unbounded wildcards, 108
Upper-bounded wildcards, 110

V���������
Varargs methods, 120

W, X, Y���������
WeakHashMap, 511
Weakly reachable, 500
Wildcards

lower-bounded, 112
unbounded, 108
upper-bounded, 110

Z���������
ZipEntry class, 367
ZIP file format, 360, 366
ZipInputStream class, 367

■ index

670

Streams (cont.)

Beginning Java 8
Language Features

Lambda Expressions, Inner Classes, Threads,
I/O, Collections, and Streams

Kishori Sharan

Beginning Java 8 Language Features: Lambda Expressions, Inner Classes, Threads, I/O, Collections,
and Streams

Copyright © 2014 by Kishori Sharan

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-6658-7

ISBN-13 (electronic): 978-1-4302-6659-4

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Heinz Weinheimer
Lead Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewers: Jeff Friesen, John Zukowski
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, James T. DeWolf,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editors: Anamika Panchoo
Copy Editor: Mary Behr
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

To My parents, Ram Vinod Singh and Pratibha Devi

vii

Contents

About the Author ��� xxi

About the Technical Reviewers ��� xxiii

Acknowledgments �� xxv

Foreword �� xxvii

Introduction ��� xxix

Chapter 1: Annotations ■ ��1

What Are Annotations? ��1

Declaring an Annotation Type ��4

Restrictions on Annotation Types ��7

Restriction #1 �� 7

Restriction #2 �� 8

Restriction #3 �� 8

Restriction #4 �� 8

Restriction #5 �� 9

Restriction #6 �� 9

Default Value of an Annotation Element ��9

Annotation Type and Its Instances ���10

Using Annotations ���11

Primitive Types �� 11

String Types ��� 12

Class Types �� 12

■ Contents

viii

Enum Type ��� 14

Annotation Type ��� 15

Array Type Annotation Element �� 15

No Null Value in an Annotation ��16

Shorthand Annotation Syntax ��16

Marker Annotation Types ���18

Meta-Annotation Types ��19

The Target Annotation Type �� 19

The Retention Annotation �� 22

The Inherited Annotation Type ��� 23

The Documented Annotation ��� 23

The Repeatable Annotation �� 24

The Native Annotation�� 25

Commonly Used Standard Annotations ���26

The Deprecated Annotation Type ��� 26

The Override Annotation Type �� 27

The SuppressWarnings Annotation Type�� 27

The FunctionalInterface Annotation Type ��� 28

Annotating a Java Package ���29

Accessing Annotations at Runtime ��30

Evolving Annotation Types ���34

Annotation Processing at Source Code Level ��35

Summary ���40

Chapter 2: Inner Classes ■ ���41

What Is an Inner Class? ���41

Advantages of Using Inner Classes ���42

Types of Inner Classes ���43

Member Inner Class��� 43

Local Inner Class ��� 44

Anonymous Inner Class ��� 48

■ Contents

ix

A static Member Class Is Not an Inner Class ���51

Creating Objects of Inner Classes ���54

Accessing Enclosing Class Members ��56

Restrictions on Accessing Local Variables ��63

Inner Class and Inheritance ���64

No static Members in an Inner Class ��66

Generated Class Files for Inner Classes ��67

Inner Classes and the Compiler Magic ��68

Closures and Callbacks ���72

Defining Inner Classes in Static Contexts ��74

Summary ���74

Chapter 3: Reflection ■ ���75

What Is Reflection? ���75

Reflection in Java ��75

The java�lang�Class Class ��77

Reflecting on a Class ���80

Reflecting on Fields ���84

Reflecting on an Executable ��87

Reflecting on Methods ��� 89

Reflecting on Constructors �� 91

Creating Objects ��92

Invoking Methods ��94

Accessing Fields ���95

Bypassing Accessibility Check ��97

Reflecting on Arrays ��99

Expanding an Array ���101

Who Should Use Reflection? ���102

Summary ���102

■ Contents

x

Chapter 4: Generics ■ ���103

What Are Generics? ���103

Supertype-Subtype Relationship ���106

Raw Type ���107

Unbounded Wildcards ���108

Upper-Bounded Wildcards ���110

Lower-Bounded Wildcards ��112

Generic Methods and Constructors ���113

Type Inference in Generic Object Creation ��114

No Generic Exception Classes ���117

No Generic Anonymous Classes ��117

Generics and Arrays ��117

Runtime Class Type of Generic Objects ���118

Heap Pollution ���119

Varargs Methods and Heap Pollution Warnings ��120

Summary ���121

Chapter 5: Lambda Expressions ■ ��123

What Is a Lambda Expression? ���123

Why Do We Need Lambda Expressions? ���125

Syntax for Lambda Expressions ��126

Omitting Parameter Types ��� 128

Declaring a Single Parameter �� 128

Declaring No Parameters ��� 129

Parameters with Modifiers �� 129

Declaring Body of Lambda Expressions �� 129

Target Typing ���130

Functional Interfaces ���137

Using the @FunctionalInterface Annotation �� 137

Generic Functional Interface ��� 138

■ Contents

xi

Intersection Type and Lambda Expressions ��� 140

Commonly Used Functional Interfaces �� 141

Using the Function<T,R> Interface �� 142

Using the Predicate<T> Interface ��� 144

Using Functional Interfaces ��� 145

Method References ���149

Static Method References ��� 150

Instance Method References ��� 153

Supertype Instance Method References �� 156

Constructor References ��� 158

Generic Method References �� 160

Lexical Scoping ���161

Variable Capture ��164

Jumps and Exits ��167

Recursive Lambda Expressions���168

Comparing Objects ��169

Summary ���171

Chapter 6: Threads ■ ��173

What Is a Thread? ��173

Creating a Thread in Java ��176

Specifying Your Code for a Thread ���178

Inheriting Your Class from the Thread Class �� 179

Implementing the Runnable Interface ��� 179

Using a Method Reference �� 180

A Quick Example �� 180

Using Multiple Threads in a Program ��181

Issues in Using Multiple Threads ���182

■ Contents

xii

Java Memory Model (JMM) ���185

Atomicity �� 185

Visibility ��� 186

Ordering ��� 186

Object’s Monitor and Threads Synchronization ���186

The Producer/Consumer Synchronization Problem ���199

Which Thread Is Executing? ��203

Letting a Thread Sleep ��204

I will Join You in Heaven ��205

Be Considerate to Others and Yield ���207

Life Cycle of a Thread ��208

Priority of a Thread ��211

Is It a Demon or a Daemon? ��212

Am I Interrupted? ��214

Threads Work in a Group ��218

Volatile Variables ���219

Stopping, Suspending, and Resuming a Thread ���221

Handling an Uncaught Exception in a Thread ��225

New Thread Concurrency Packages ��226

Atomic Variables ��227

Scalar Atomic Variable Classes ��� 228

Atomic Arrays Classes ��� 228

Atomic Field Updater Classes �� 228

Atomic Compound Variable Classes �� 228

Explicit Locks ��230

Synchronizers ��235

Semaphores��� 235

Barriers �� 238

■ Contents

xiii

Phasers �� 241

Latches �� 250

Exchangers �� 252

The Executor Framework ��256

Result-Bearing Tasks ��� 261

Scheduling a Task �� 264

Handling Uncaught Exceptions in a Task Execution �� 266

Executor’s Completion Service �� 268

The Fork/Join Framework ���271

Steps in Using the Fork/Join Framework �� 272

A Fork/Join Example �� 273

Thread-Local Variables ��276

Setting Stack Size of a Thread ��278

Summary ���279

Chapter 7: Input/Output ■ ���281

What Is Input/Output? ���281

Working with Files ���282

Creating a File Object �� 282

Knowing the Current Working Directory �� 283

Checking for a File’s Existence �� 284

Which Path Do You Want to Go? ��� 284

Creating, Deleting, and Renaming Files ��� 286

Working with File Attributes �� 290

Copying a File �� 290

Knowing the Size of a File ��� 290

Listing All Files and Directories ��� 290

The Decorator Pattern ���293

Input/Output Streams ��301

Reading from File Using an Input Stream �� 302

Writing Data to a File Using an Output Stream �� 306

■ Contents

xiv

Input Stream Meets the Decorator Pattern ���309

BufferedInputStream ��� 311

PushbackInputStream ��� 313

Output Stream Meets the Decorator Pattern ���314

PrintStream�� 316

Using Pipes ��318

Reading and Writing Primitive Data Types ���320

Object Serialization ���322

Serializing Objects ��� 323

Deserializing Objects ��� 326

Externalizable Object Serialization �� 327

Serialization of transient Fields ���331

Advanced Object Serialization ���331

Writing an Object More Than Once to a Stream �� 332

Class Evolution and Object Serialization ��� 335

Stopping Serialization �� 336

Readers and Writers ��337

Custom Input/Output Streams ���342

Random Access Files ��344

Copying the Contents of a File���347

Standard Input/Output/Error Streams ���347

Console and Scanner Classes ���352

StringTokenizer and StreamTokenizer ���354

Summary ���357

Chapter 8: Working with Archive Files ■ ��359

What Is an Archive File? ��359

Data Compression ���359

Checksum��360

Compressing Byte Arrays ��362

■ Contents

xv

Working with ZIP File Format ��366

Working with GZIP File Format ��374

Working with JAR File Format ���374

Creating a JAR File �� 376

Updating a JAR File ��� 377

Indexing a JAR File �� 377

Extracting an Entry from a JAR File ��� 378

Listing the Contents of a JAR File �� 378

The Manifest File ��� 378

Sealing a Package in a JAR File �� 381

Using the JAR API ��381

Accessing Resources from a JAR File ���386

Summary ���387

Chapter 9: New Input/Output ■ ���389

What Is NIO? ��389

Buffers ���390

Reading from and Writing to a Buffer ��393

Read-Only Buffers ���399

Different Views of a Buffer ��400

Character Set ��401

Channels��409

Reading/Writing Files ���411

Memory-Mapped File I/O ���415

File Locking ���416

Copying Contents of a File ��418

Knowing the Byte Order of a Machine ���419

Byte Buffer and Its Byte Order ���420

Summary ���422

■ Contents

xvi

Chapter 10: New Input/Output 2 ■ ��423

What Is New Input/Output 2? ��423

Working with a File System ���424

Working with Paths ���426

Creating a Path Object ��� 427

Accessing Components of a Path �� 427

Comparing Paths ��� 429

Normalizing, Resolving, and Relativizing Paths ��� 431

Symbolic Links ��432

Different Forms of a Path ��433

Performing File Operations on a Path ���435

Creating New Files �� 435

Deleting Files ��� 436

Checking for Existence of a File �� 437

Copying and Moving Files �� 437

Commonly Used File Attributes �� 439

Probing the Content Type of a File ��� 440

Reading the Contents of a File ��� 441

Writing to a File ��� 443

Random Access to a File ��� 445

Traversing a File Tree ��447

Matching Paths ���453

Managing File Attributes ���454

Checking for a File Attribute View Support �� 455

Reading and Updating File Attributes �� 456

Managing the Owner of a File ��� 460

Managing ACL File Permissions �� 462

Managing POSIX File Permissions ��� 466

■ Contents

xvii

Watching a Directory for Modifications ���468

Create a Watch Service ��� 469

Register the Directory with the Watch Service �� 470

Retrieve a WatchKey from the Watch Service Queue �� 470

Process the Events �� 470

Reset the WatchKey after Processing Events �� 471

Close the Watch Service �� 471

Asynchronous File I/O ��473

Summary ���483

Chapter 11: Garbage Collection ■ ���485

What Is Garbage Collection? ���485

Memory Allocation in Java ��486

Garbage Collection in Java ��488

Invoking the Garbage Collector ���489

Object Finalization ���491

Finally or Finalize? ��493

Object Resurrection ���494

State of an Object ��496

Weak References ��497

Accessing and Clearing a Referent’s Reference ���502

Using the SoftReference Class ��504

Using the ReferenceQueue Class ��508

Using the WeakReference Class ��509

Using the PhantomReference Class ��513

Summary ���516

Chapter 12: Collections ■ ���519

What Is a Collection? ���519

Need for a Collection Framework ��520

Architecture of the Collection Framework ���521

■ Contents

xviii

The Collection Interface ��522

Methods for Basic Operations ��� 523

Methods for Bulk (or Group) Operations �� 523

Methods for Aggregate Operations �� 524

Methods for Array Operations �� 524

Methods for Comparison Operations ��� 524

A Quick Example ���524

Traversing Collections ���526

Using an Iterator �� 526

Using a for-each Loop �� 529

Using the forEach() Method ��� 531

Using Different Types of Collections ��532

Working with Sets ��� 532

Working with Lists ��� 544

Working with Queues��� 549

Working with Maps �� 571

Applying Algorithms to Collections ��582

Sorting a List ��� 582

Searching a List ��� 584

Shuffling, Reversing, Swapping, and Rotating a List ��� 585

Creating Different Views of a Collection ��586

Read-Only Views of Collections ��� 587

Synchronized View of a Collection ��� 587

Checked Collections �� 588

Creating Empty Collections ���589

Creating Singleton Collections ��590

Understanding Hash-based Collections ��590

Summary ���595

■ Contents

xix

Chapter 13: Streams ■ ��597

What Is a Stream? ���597

Streams Have No Storage �� 598

Infinite Streams ��� 598

Internal Iteration vs� External Iteration �� 598

Imperative vs� Functional �� 599

Stream Operations ��� 600

Ordered Streams ��� 601

Streams Are Not Reusable ��� 602

Architecture of the Streams API �� 602

A Quick Example ��603

Creating Streams���607

Streams from Values ��� 607

Empty Streams �� 610

Streams from Functions �� 610

Streams from Arrays �� 615

Streams from Collections �� 615

Streams from Files �� 615

Streams from Other Sources ��� 617

Representing an Optional Value ��618

Applying Operations on Streams ���621

Debugging a Stream Pipeline �� 622

Applying the ForEach Operation �� 623

Applying the Map Operation �� 624

Flattening Streams �� 626

Applying the Filter Operation ��� 628

Applying the Reduce Operation ��� 630

Collecting Data Using Collectors ���638

Collecting Summary Statistics ��642

■ Contents

xx

Collecting Data in Maps ��644

Joining Strings Using Collectors ���646

Grouping Data ���647

Partitioning Data ��650

Adapting the Collector Results ��651

Finding and Matching in Streams ���653

Parallel Streams ��655

Summary ���657

Index ���659

xxi

About the Author

Kishori Sharan is a senior software consultant at Doozer, Inc. He holds a Master of Science in Computer Information
Systems from Troy State University in Montgomery, Alabama. He is a Sun Certified Java Programmer and Sybase
Certified PowerBuilder Developer Professional. He specializes in developing enterprise application using Java SE,
Java EE, PowerBuilder, and Oracle database. He has been working in the software industry for over 16 years. He has
helped several clients to migrate legacy applications to the Web. He loves writing technical books in his free time.
He maintains his web site at www.jdojo.com where he posts blogs on Java and JavaFX.

www.jdojo.com

xxiii

About the Technical Reviewers

Jeff Friesen is a freelance tutor, author, and software developer with an emphasis
on Java, Android, and HTML5. In addition to writing several books for Apress and
serving as a technical reviewer for other Apress books, Jeff has written numerous
articles on Java and other technologies for JavaWorld (www.javaworld.com),
informIT (www.informit.com), java.net, SitePoint (www.sitepoint.com), and
others. Jeff can be contacted via his website at tutortutor.ca.

John Zukowski is currently a software engineer with TripAdvisor, the world’s largest travel site (www.tripadvisor.com).
He has been playing with Java technologies for 20 years now and is the author of 10 Java-related books. His books
cover Java 6, Java Swing, Java Collections, and JBuilder from Apress, Java AWT from O’Reilly, and introductory Java
from Sybex. He lives outside Boston, Massachusetts and has a Master’s degree in Software Engineering from The Johns
Hopkins University. You can follow him on Twitter at http://twitter.com/javajohnz.

www.javaworld.com
www.informit.com
www.sitepoint.com
www.tripadvisor.com
http://twitter.com/javajohnz

xxv

Acknowledgments

My heartfelt thanks are due to my father-in-law, Mr. Jim Baker, for displaying extraordinary patience in reading the
initial draft of the book. I am very grateful to him for spending so much of his valuable time teaching me quite a bit of
English grammar that helped me produce better material.

I would like to thank my friend Richard Castillo for his hard work in reading my initial draft of the book and
weeding out several mistakes. Richard was instrumental in running all examples and pointing out errors.

My wife, Ellen, was always patient when I spent long hours at my computer desk working on this book. She would
happily bring me snacks, fruit, and a glass of water every 30 minutes or so to sustain me during that period. I want
to thank her for all of her support in writing this book. She also deserves my sincere thanks for letting me sometimes
seclude myself on weekends so I could focus on this book.

I would like to thank my family members and friends for their encouragement and support for writing this book:
my elder brothers, Janki Sharan and Dr. Sita Sharan; my sister and brother-in-law, Ratna and Abhay; my nephews
Babalu, Dabalu, Gaurav, Saurav, and Chitranjan; my friends Shivashankar Ravindranath, Kannan Somasekar, Mahbub
Choudhury, Biju Nair, Srinivas Kakkera, Anil Kumar Singh, Chris Coley, Willie Baptiste, Rahul Jain, Larry Brewster,
Greg Langham, Ram Atmakuri, LaTondra Okeke, Rahul Nagpal, Ravi Datla, Prakash Chandra, and many more friends
not mentioned here.

My sincere thanks are due to the wonderful team at Apress for their support during the publication of this
book. Thanks to Anamika Panchoo, the Senior Coordinating Editor, for providing excellent support and for being
exceptionally patient with me when I asked her so many questions in the beginning, Thanks to Matthew Moodie, Jeff
Friesen, and John Zukowski for their technical insights and feedback during the editing process. My special thanks
to Kevin Shea, the coordinating editor who filled in for Anamika for a few months and brought in Jeff as an additional
technical reviewer to expedite the technical reviews. Last but not least, my sincere thanks to Steve Anglin, the Lead
Editor at Apress, for taking the initiative for the publication of this book.

xxvii

Foreword

The evolving Java language has much to offer, and its wealth of features can overwhelm even advanced Java
developers. Oracle’s recent Java 8 release has increased this wealth by offering exciting new features such as lambdas
and the Streams API.

Perhaps you already know the basics of this language (e.g., types, operators, statements, and a few assorted APIs)
and want to learn more about Java without becoming too overwhelmed. If so, I heartily recommend that you check
out this book by author Kishori Sharan.

Kishori provides a solid introduction to annotations, inner classes, reflection, generics, lambdas, threads, I/O,
archive files, New I/O, New I/O 2, garbage collection, the Collections Framework, and the Streams API. You’ll discover
many aspects of the Java language that may be new to you (e.g., intersection types and how the compiler implements
inner classes), and you will definitely want to augment your basic Java knowledge with these more advanced
language/API topics to increase your desirability as a Java developer. Beginning Java 8 Language Features is one book
that definitely deserves a place on your bookshelf.

—Jeff Friesen
June, 2014

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Foreword
	Introduction
	Chapter 1: Annotations
	What Are Annotations?
	Declaring an Annotation Type
	Restrictions on Annotation Types
	Restriction #1
	Restriction #2
	Restriction #3
	Restriction #4
	Restriction #5
	Restriction #6

	Default Value of an Annotation Element
	Annotation Type and Its Instances
	Using Annotations
	Primitive Types
	String Types
	Class Types
	Enum Type
	Annotation Type
	Array Type Annotation Element

	No Null Value in an Annotation
	Shorthand Annotation Syntax
	Marker Annotation Types
	Meta-Annotation Types
	The Target Annotation Type
	The Retention Annotation
	The Inherited Annotation Type
	The Documented Annotation
	The Repeatable Annotation
	The Native Annotation

	Commonly Used Standard Annotations
	The Deprecated Annotation Type
	The Override Annotation Type
	The SuppressWarnings Annotation Type
	The FunctionalInterface Annotation Type

	Annotating a Java Package
	Accessing Annotations at Runtime
	Evolving Annotation Types
	Annotation Processing at Source Code Level
	Summary

	Chapter 2: Inner Classes
	What Is an Inner Class?
	Advantages of Using Inner Classes
	Types of Inner Classes
	Member Inner Class
	Local Inner Class
	Anonymous Inner Class

	A static Member Class Is Not an Inner Class
	Creating Objects of Inner Classes
	Accessing Enclosing Class Members
	Restrictions on Accessing Local Variables
	Inner Class and Inheritance
	No static Members in an Inner Class
	Generated Class Files for Inner Classes
	Inner Classes and the Compiler Magic
	Closures and Callbacks
	Defining Inner Classes in Static Contexts
	Summary

	Chapter 3: Reflection
	What Is Reflection?
	Reflection in Java
	The java.lang.Class Class
	Reflecting on a Class
	Reflecting on Fields
	Reflecting on an Executable
	Reflecting on Methods
	Reflecting on Constructors

	Creating Objects
	Invoking Methods
	Accessing Fields
	Bypassing Accessibility Check
	Reflecting on Arrays
	Expanding an Array
	Who Should Use Reflection?
	Summary

	Chapter 4: Generics
	What Are Generics?
	Supertype-Subtype Relationship
	Raw Type
	Unbounded Wildcards
	Upper-Bounded Wildcards
	Lower-Bounded Wildcards
	Generic Methods and Constructors
	Type Inference in Generic Object Creation
	No Generic Exception Classes
	No Generic Anonymous Classes
	Generics and Arrays
	Runtime Class Type of Generic Objects
	Heap Pollution
	Varargs Methods and Heap Pollution Warnings
	Summary

	Chapter 5: Lambda Expressions
	What Is a Lambda Expression?
	Why Do We Need Lambda Expressions?
	Syntax for Lambda Expressions
	Omitting Parameter Types
	Declaring a Single Parameter
	Declaring No Parameters
	Parameters with Modifiers
	Declaring Body of Lambda Expressions

	Target Typing
	Functional Interfaces
	Using the @FunctionalInterface Annotation
	Generic Functional Interface
	Intersection Type and Lambda Expressions
	Commonly Used Functional Interfaces
	Using the Function<T,R> Interface
	Using the Predicate<T> Interface
	Using Functional Interfaces

	Method References
	Static Method References
	Instance Method References
	Bound Receiver
	Unbound Receiver

	Supertype Instance Method References
	Constructor References
	Generic Method References

	Lexical Scoping
	Variable Capture
	Jumps and Exits
	Recursive Lambda Expressions
	Comparing Objects
	Summary

	Chapter 6: Threads
	What Is a Thread?
	Creating a Thread in Java
	Specifying Your Code for a Thread
	Inheriting Your Class from the Thread Class
	Implementing the Runnable Interface
	Using a Method Reference
	A Quick Example

	Using Multiple Threads in a Program
	Issues in Using Multiple Threads
	Java Memory Model (JMM)
	Atomicity
	Visibility
	Ordering

	Object’s Monitor and Threads Synchronization
	The Producer/Consumer Synchronization Problem
	Which Thread Is Executing?
	Letting a Thread Sleep
	I will Join You in Heaven
	Be Considerate to Others and Yield
	Life Cycle of a Thread
	Priority of a Thread
	Is It a Demon or a Daemon?
	Am I Interrupted?
	Threads Work in a Group
	Volatile Variables
	Stopping, Suspending, and Resuming a Thread
	Handling an Uncaught Exception in a Thread
	New Thread Concurrency Packages
	Atomic Variables
	Scalar Atomic Variable Classes
	Atomic Arrays Classes
	Atomic Field Updater Classes
	Atomic Compound Variable Classes

	Explicit Locks
	Synchronizers
	Semaphores
	Barriers
	Phasers
	Latches
	Exchangers

	The Executor Framework
	Result-Bearing Tasks
	Scheduling a Task
	Handling Uncaught Exceptions in a Task Execution
	Executor’s Completion Service

	The Fork/Join Framework
	Steps in Using the Fork/Join Framework
	Step 1: Declaring a Class to Represent a Task
	Step 2: Implementing the compute() Method
	Step 3: Creating a Fork/Join Thread Pool
	Step 4: Creating the Fork/Join Task
	Step 5: Submitting the Task to the Fork/Join Pool for Execution

	A Fork/Join Example

	Thread-Local Variables
	Setting Stack Size of a Thread
	Summary

	Chapter 7: Input/Output
	What Is Input/Output?
	Working with Files
	Creating a File Object
	Knowing the Current Working Directory
	Checking for a File’s Existence
	Which Path Do You Want to Go?
	Creating, Deleting, and Renaming Files
	Working with File Attributes
	Copying a File
	Knowing the Size of a File
	Listing All Files and Directories

	The Decorator Pattern
	Input/Output Streams
	Reading from File Using an Input Stream
	Identifying the Data Source
	Creating the Input Stream
	Reading the Data
	Closing the Input Steam
	A Utility Class
	Completing the Example

	Writing Data to a File Using an Output Stream
	Identifying the Data Sink
	Creating the Output Stream
	Writing the Data
	Flushing the Output Stream
	Closing the Output Steam
	Completing the Example

	Input Stream Meets the Decorator Pattern
	BufferedInputStream
	PushbackInputStream

	Output Stream Meets the Decorator Pattern
	PrintStream

	Using Pipes
	Reading and Writing Primitive Data Types
	Object Serialization
	Serializing Objects
	Deserializing Objects
	Externalizable Object Serialization

	Serialization of transient Fields
	Advanced Object Serialization
	Writing an Object More Than Once to a Stream
	Class Evolution and Object Serialization
	Stopping Serialization

	Readers and Writers
	Custom Input/Output Streams
	Random Access Files
	Copying the Contents of a File
	Standard Input/Output/Error Streams
	Console and Scanner Classes
	StringTokenizer and StreamTokenizer
	Summary

	Chapter 8: Working with Archive Files
	What Is an Archive File ?
	Data Compression
	Checksum
	Compressing Byte Arrays
	Working with ZIP File Format
	Working with GZIP File Format
	Working with JAR File Format
	Creating a JAR File
	Updating a JAR File
	Indexing a JAR File
	Extracting an Entry from a JAR File
	Listing the Contents of a JAR File
	The Manifest File
	Sealing a Package in a JAR File

	Using the JAR API
	Accessing Resources from a JAR File
	Summary

	Chapter 9: New Input/Output
	What Is NIO?
	Buffers
	Reading from and Writing to a Buffer
	Read-Only Buffers
	Different Views of a Buffer
	Character Set
	Channels
	Reading/Writing Files
	Memory-Mapped File I/O
	File Locking
	Copying Contents of a File
	Knowing the Byte Order of a Machine
	Byte Buffer and Its Byte Order
	Summary

	Chapter 10: New Input/Output 2
	What Is New Input/Output 2?
	Working with a File System
	Working with Paths
	Creating a Path Object
	Accessing Components of a Path
	Comparing Paths
	Normalizing, Resolving, and Relativizing Paths

	Symbolic Links
	Different Forms of a Path
	Performing File Operations on a Path
	Creating New Files
	Deleting Files
	Checking for Existence of a File
	Copying and Moving Files
	Commonly Used File Attributes
	Probing the Content Type of a File
	Reading the Contents of a File
	Writing to a File
	Random Access to a File

	Traversing a File Tree
	Matching Paths
	Managing File Attributes
	Checking for a File Attribute View Support
	Reading and Updating File Attributes
	Managing the Owner of a File
	Managing ACL File Permissions
	Managing POSIX File Permissions

	Watching a Directory for Modifications
	Create a Watch Service
	Register the Directory with the Watch Service
	Retrieve a WatchKey from the Watch Service Queue
	Process the Events
	Reset the WatchKey after Processing Events
	Close the Watch Service

	Asynchronous File I/O
	Summary

	Chapter 11: Garbage Collection
	What Is Garbage Collection?
	Memory Allocation in Java
	Garbage Collection in Java
	Invoking the Garbage Collector
	Object Finalization
	Finally or Finalize?
	Object Resurrection
	State of an Object
	Weak References
	Accessing and Clearing a Referent’s Reference
	Using the SoftReference Class
	Using the ReferenceQueue Class
	Using the WeakReference Class
	Using the PhantomReference Class
	Summary

	Chapter 12: Collections
	What Is a Collection?
	Need for a Collection Framework
	Architecture of the Collection Framework
	The Collection Interface
	Methods for Basic Operations
	Methods for Bulk (or Group) Operations
	Methods for Aggregate Operations
	Methods for Array Operations
	Methods for Comparison Operations

	A Quick Example
	Traversing Collections
	Using an Iterator
	Using a for-each Loop
	Using the forEach() Method

	Using Different Types of Collections
	Working with Sets
	Mathematical Set
	Sorted Set
	Navigable Set

	Working with Lists
	Working with Queues
	Simple Queues
	Priority Queues
	Double Ended Queues
	Blocking Queues
	Delay Queues
	Transfer Queues
	Blocking Doubly Ended Queues

	Working with Maps
	Sorted Maps
	Navigable Maps
	Concurrent Maps
	Concurrent and Navigable Maps

	Applying Algorithms to Collections
	Sorting a List
	Searching a List
	Shuffling, Reversing, Swapping, and Rotating a List

	Creating Different Views of a Collection
	Read-Only Views of Collections
	Synchronized View of a Collection
	Checked Collections

	Creating Empty Collections
	Creating Singleton Collections
	Understanding Hash-based Collections
	Summary

	Chapter 13: Streams
	What Is a Stream?
	Streams Have No Storage
	Infinite Streams
	Internal Iteration vs. External Iteration
	Imperative vs. Functional
	Stream Operations
	Ordered Streams
	Streams Are Not Reusable
	Architecture of the Streams API

	A Quick Example
	Creating Streams
	Streams from Values
	Empty Streams
	Streams from Functions
	Using the Stream.iterate( ) Method
	Using the generate( ) Method

	Streams from Arrays
	Streams from Collections
	Streams from Files
	Streams from Other Sources

	Representing an Optional Value
	Applying Operations on Streams
	Debugging a Stream Pipeline
	Applying the ForEach Operation
	Applying the Map Operation
	Flattening Streams
	Applying the Filter Operation
	Applying the Reduce Operation

	Collecting Data Using Collectors
	Collecting Summary Statistics
	Collecting Data in Maps
	Joining Strings Using Collectors
	Grouping Data
	Partitioning Data
	Adapting the Collector Results
	Finding and Matching in Streams
	Parallel Streams
	Summary

	Index

