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Frontispiece The first observation of shock waves generated by the passage of a bullet
through air by Mach and Salcher(1887). Behind the primary shock can be seen the following
rarefaction. Note also the turbulet wake leaving the rear of the bullet. Since the bullet was
blunt the shock is slightly detached, although this cannot be clearly seen. The two vertical
lines are for timing. The photograph was taken using a shadowgraph technique.
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Preface

Every physicist is familiar with the two revolutions in thought which took
place at the turn of the nineteenth and twentieth centuries. These revolutions
in modern physics in the guise of relativity and quantum physics form essen-
tial components of today’s undergraduate physics courses. Despite the fact
that it has played a critical role in the development of the modern world,
underlying the design of aircraft and industrial plants, the third contempo-
rary revolution in fluid dynamics is less familiar, yet it was also necessary to
eliminate paradoxes inherent in nineteenth-century physics. Fluid mechanics
has become a neglected subject in the modern physics curriculum. The reason
for this is twofold. Firstly, the subject is an area of ‘classical physics’, now
generally regarded by students as ‘old fashioned’, yet one area, namely turbu-
lence, remains one of the most intractable problems in physics at the forefront
of complexity. Secondly, much of the field was developed by engineers and
applied mathematicians. Until recently physicists have been less involved. In
recent years this has changed as environmental physics, and plasma physics,
have increasingly required a working knowledge of fluid dynamics. More gen-
erally, when physicists are expected to act as ‘troubleshooters’ in many fields
of applied physics, a basic knowledge of fluid mechanics is needed.

The dominant problem in nineteenth-century fluid mechanics was drag (the
resistance of the moving flow on a stationary body) in the flow of fluids with low
viscosity. Stokes (1851) had solved the problem of the drag force experienced
by a sphere in a flow dominated by viscosity. However, it was well known
that fluids of low viscosity also generated drag, which had been measured
and analysed notably by Froude in 1871, who measured the drag due to a
ship’s motion. The revolution in thought referred to above followed two seminal
papers. The first by Reynolds (1883) introduced turbulence, namely that fluid
motion could be disorganised and chaotic. The second was by Prandtl (1904),
in which he introduced not only the concept of the boundary layer, but also
flow separation (in only 10 pages!). These two papers opened the way to the
resolution of this central problem of nineteenth-century fluid mechanics: that
is, the drag force exerted by a moving fluid on a body immersed in it.

xvii



xviii Preface

The development of the theory of compressible flow also dates from the late
nineteenth-century, most importantly with the introduction of characteristics
by Riemann (1860). Waves of discontinuity (shock waves) were propounded by
Rankine (1870) and Hugoniot (1887) between 1870 and 1890, but were gen-
erally discounted on theoretical grounds despite observations, e.g. by Mach
and Salcher (1887) and Boys (1893), in back-lit photographs of the motion
of supersonic projectiles. It was not until the work of Rayleigh (1910), Taylor
(1910), and more fully Becker (1922), demonstrated a narrow ‘shock layer’ sup-
ported by dissipation in a thin zone between two regions of dissipationless flow,
that it became accepted that shock waves in compression existed, stabilised by
thermal conduction and viscosity.

Both the problems associated with the boundary layer and shock wave
stemmed from a lack of understanding of the role of viscosity in nearly inviscid
fluids. It was assumed that because the viscosity of most fluids was known to
be small, the flow could be accurately described by the ‘ideal fluid’ equations
in which the viscosity is equal to zero. In fact, even though the viscosity is
small, viscous forces are strong in regions of large velocity gradient, respec-
tively adjacent to the surface of a solid body and in the shock ‘discontinuity’.
The equations for an ideal fluid are therefore an ‘asymptote’ of those for a
real fluid in the limit when the viscosity tends to zero. The singularities in
the inviscid fluid equations, which are associated with the difference between
zero viscosity and infinitesimally small viscosity, consequently disappear in a
full treatment. More recently, new mathematical methods, based on the gen-
eralisation of the theory of functions through distributions, have allowed the
singularities in ideal flow to be formally treated directly (Lax, 1954).

One further development in physics at the turn of the nineteenth to the twen-
tieth century has played a major role in fluid mechanics. This was the evolution
of dimensional analysis by Rayleigh (1899) and later Buckingham (1914). This
led to the development of the methods of similarity and modelling, which are
widely used to analyse experimental measurements.

This book is intended to give a pedagogical summary of the physics of fluid
flow. Thus it builds on several classic texts, which cover specific aspects of the
field in more detail than is possible here. In appropriate places the reader is
referred to these for further study. The book includes both the applied math-
ematical development, which underlies much of the subject, and results from
the more empirical engineering approach. Although lacking the rigour of the
former, the latter are of equal importance to the working physicist. Unfortu-
nately limitations of space have also prevented the discussion of two topics,
which should have been included, were the book to be inclusive. These are,
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firstly, flows in a rotating environment, important in geophysics and meteorol-
ogy, and, secondly, computational fluid dynamics. A full discussion of modern
developments in turbulence was also not deemed appropriate, and a more
engineering type of approach has been adopted.

Experimental fluid mechanics is a very visual subject. Many beautiful illus-
trations of effects described in this book have been published. Rather than
extensive reproductions of these photographs, the reader is referred to relevant
pictures in van Dyke (1982) or the classic photographs of Prandtl and Tiet-
jens (1957). The ‘internet’ also provides an easily accessible source of much
illustrative material.

Ideal inviscid fluid flow provides the basis for solving many problems of
practical importance involving waves and instabilities, and underlying bound-
ary layer theory. Its mathematical tractability allows it to be used for many
of the methods of computational fluid dynamics. It is therefore important to
give some background to the analytic treatment of ideal fluid mechanics, which
occupies Chapters 1 and 2. Viscosity is introduced in Chapter 3, together with
a brief account of dimensional analysis. Waves and instabilities, which under-
lie many aspects of fluid dynamics, are discussed in Chapter 4. Turbulence
is introduced in Chapter 5 and is treated predominately phenomenologically,
with only a brief nod to modern analysis. Boundary layers in Chapter 6 cover
the basic Prandtl approach, treating only simple problems, and development
into separation and drag. Chapter 7 gives a brief account of the engineering
approach to heat transfer.

Compressible fluids and the characteristic problems associated with them fill
the remainder of the book. Chapter 8 gives a brief introduction to sound waves.
Rarefaction flow, treated by the method of characteristics, occupies Chapter 9.
Compression and shock waves are introduced in Chapter 10 studying both the
foundations of the theory of shock waves and their application. The behaviour
of fluid flow around aerofoils and wings occupies Chapters 11 and 12, the first
for subsonic and the second for transonic and supersonic flight. Detonation and
deflagration associated with flames and explosives are treated in Chapter 13.
The book is concluded with Chapter 14 describing the application of self-similar
methods applied to example problems in compressible flow.

It is expected that the book will be used by final year undergraduates and
postgraduates in physics and applied mathematics. A good working knowledge
of vector calculus and the functions of a complex variable is therefore assumed.
Dimensional analysis is an essential tool of the fluid dynamicist, and some
knowledge is expected. A brief introduction to Buckingham’s Π theorem is
given for those who have not previously met this approach.



xx Preface

The basic development of the subject forms the main text. Sections in small
type are intended for reference rather than parts of the main development of
the text. However, examples of applications are included either as case stud-
ies or as problems, whose solutions may be found at the end of book. Some
specific points of mathematical development or of historical interest appear as
appendices.



Chapter 1

Introduction

1.1 Fluids as a State of Matter

A standard dictionary definition of a fluid is

a substance whose particles can move about
with freedom–a liquid or gas.

Whilst this formulation encapsulates our general concept of a fluid, it is not
entirely satisfactory as a scientific basis for the understanding of such mate-
rials. More formally within the context of fluid mechanics the fluid is seen as
an isotropic, locally homogeneous, macroscopic material whose particles are
free to move within the constraints established by the dynamical laws of con-
tinuum physics. The requirement that the fluid be a continuum implies that
if a volume of fluid is successively subdivided into smaller elements, each ele-
ment will remain structurally similar to its parent, and that this process of
subdivision can be carried out down to infinitesimal volumes. Under these
conditions several useful macroscopic concepts may be defined:

Fluid particle a fictitious particle fixed within the fluid continuum and mov-
ing with the velocity of the flow, and representing an average over a large
number of microscopic particles.

Fluid point fixed in the fluid moving with the flow velocity. A fluid particle
is always situated at the same fluid point.

Infinitesimal volume within the continuum of the fluid, and large com-
pared with microscopic scales, but small compared with macroscopic
ones.

Introductory Fluid Mechanics for Physicists and Mathematicians, First Edition. Geoffrey J. Pert.
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In fact of course the fluid is not a continuum in the strict mathematical
sense used above. The fluid is made up of discrete microscopic particles,
namely molecules, which are distributed randomly with a distribution of
velocities characteristic of the fluid in thermal equilibrium, typically given by
the Maxwell–Boltzmann distribution in a gas. Fortunately, at the densities
at which most experiments are conducted, the intermolecule separation is
extremely small and very much less than the laboratory scale. It is therefore
possible to average over small volumes which contain a very large number of
particles, yet are very small on the laboratory scale, and allow us to recover the
continuum approximation. In this manner we obtain terms which characterise
the fluid as a bulk material. Typical of these average quantities are:

Density number or mass of particles per unit volume.

Temperature average energy of the random motion per particle in thermal
equilibrium.

Pressure average momentum flow associated with the random motion per
unit area.

Flow velocity mean velocity of the molecules averaging out the random
motion.

The role of collisions amongst the particles plays an important role in defin-
ing irreversibility through the loss of correlation between the particles. Particles
collide on average after a distance equal to the mean free path, and time
after the collision interval. Since fluid mechanics assumes the fluid particles
are in thermal equilibrium and randomly distributed, this condition requires
that spatial and temporal averages be taken to include a large number of
collisions, i.e. the laboratory-scale length is large compared with the mean
free path and time to the collision interval. In practice this is not normally a
restrictive condition. The effects of the collisions on fluid transport (momentum
and energy) are thereby averaged over the thermal distribution to yield bulk
properties of the material, namely viscosity and thermal conduction respec-
tively. Consequently (ideal) fluid motion without viscosity or thermal conduc-
tion is dissipationless, entropy generation being due to viscosity and thermal
conduction.

Within the continuum theory it is implicitly assumed that locally the fluid is
in thermal equilibrium, although the temperature may vary globally through
the flow. As a result the thermodynamics of bulk materials may be applied
locally in the flow to calculate the pressure from the density and temperature
(say) using the equation of state of the fluid. More generally the quantities and
relations of equilibrium thermodynamics may be applied in the flow.
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The flow of a basic fluid may be calculated using Newtonian mechanics,
classical thermodynamics and the values of viscosity and thermal conductivity.
From the above discussion, the conditions under which this theory may be
applied are:

Laboratory-scale lengths must be large compared with the
intermolecule separation and mean free path.
Characteristic laboratory times must be large compared with the
collision interval.
The fluid must locally be in thermal equilibrium.

The theory may be readily extended to relativistic mechanics and also to
include additional dissipative terms, e.g. due to radiation. However, under
normal laboratory conditions these are not required. Astrophysical systems
provide examples of flows where more general approaches may be required.

Provided the above conditions are met, it is relatively straightforward to
show that the fluid dynamical equations (to be obtained later) may be directly
derived from the governing kinetic theory of the molecules.

1.2 The Fundamental Equations for Flow
of a Dissipationless Fluid

The basic equations of fluid mechanics stem from simple concepts of conser-
vation applied to mass, momentum and energy. These are completed by the
thermodynamic equation of state of the material, in which the flow is to be
calculated. The equations are, of course, complemented by the boundary con-
ditions in an appropriate form, depending on the nature of the problem. In any
problem, we seek to find five variables: three velocity components (v) and two
thermodynamic state variables, e.g. density ρ and pressure p, as functions of
space r and time t. In many problems the actual number of variables required
is reduced, either by symmetry to a restricted number of spatial dimensions
or by a specified thermodynamic state, e.g. constant entropy or constant tem-
perature. The problem is often further simplified by the restriction to steady
flow, when there is no time variation.

Initially we will consider only dissipationless or ideal flow where the entropy
of a fluid particle remains constant, i.e. viscosity and thermal conduction
are neglected, deferring the treatment of flows in which viscosity plays a role
until later; many important systems are treatable within the inviscid limit.
We may quite generally identify two different conditions of flow involving
the entropy of the fluid: adiabatic flow when the specific entropy of a fluid
particle is constant in time; and isentropic flow where the specific entropy of
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each fluid particle has the same initial value. Many flows are both isentropic
and adiabatic, e.g. the ideal steady flow of a fluid, whose specific entropy on
entry is everywhere constant.

The basic equations may be formulated in two complementary ways:

• In the frame of the laboratory–the Eulerian frame. In this frame the co-
ordinates are fixed in space and time. The derivatives used are the usual
partial derivatives

∂

∂t

∣∣∣∣
r

and ∇∣∣
t

• In the frame of the moving particle–the Lagrangian frame. In this system
the spatial variation seen by the particle due to its motion is absorbed
into the time derivative

d
dt

=
∂

∂t
+ v · ∇ (1.1)

This system is often easier to set up, but becomes more complicated when
the dissipative terms, viscosity and thermal conduction, are important.

However, the two systems are entirely equivalent and each may be easily
derived from the other. They may also be used mixed if required. The actual
choice of which to use will depend on the nature of the problem.

1.3 Lagrangian Frame

The Lagrangian frame of reference considers the fluid from the point of view of
an observer on a fluid particle. Since many methods of calculation in compu-
tational fluid mechanics use the Lagrangian approach, we give a brief formal
introduction to these methods. A fluid particle may be conveniently identified
by a co-ordinate set, which is fixed on the particle, namely Λ = (λ, μ, ν), i.e. a
triad of numbers. For example, these may be the initial position of the particle
r0 = (x0, y0, z0). The position, velocity and thermodynamic state of the parti-
cle are therefore functions of time alone. Conceptually this leads to a simple
set of kinematic and dynamic relations governing the motion of the particle,
namely

dr
dt

= v and
dv
dt

=
F
m

(1.2)
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where F is the force acting on and m the mass of the fluid particle. The particle
has a finite size expressed by the increments in the Lagrangian co-ordinates
δΛi = (δλ, δμ, δν), and whose volume is given by the Jacobian

δV =
∂(x, y, z)
∂(λ, μ, ν)

δλ δμ δν (1.3)

which can be expressed as1

J =
∂(x, y, z)
∂(λ, μ, ν)

=
1

N !

{
εijk εlmm

∂xi

∂Λl

∂xj

∂Λm

∂xk

∂Λn

}

=
[

∂r
∂Λ1

∧ ∂r
∂Λ2

]
· ∂r
∂Λ3

(1.4)

where εijk is the perturbation symbol2

εijk =

⎧⎨
⎩

1 if (i �= j �= k) are in the sequence (1,2,3)
−1 if (i �= j �= k) are in the sequence (1,3,2)
0 otherwise

(1.5)

Spatial derivatives of quantities associated with the fluid particles, e.g. ther-
modynamic variables, are directly calculated in a Lagrangian framework. The
gradient of a scalar quantity f(λ, μ, ν), which is defined on the fluid particle,
is often required in the inertial Eulerian frame. Such terms are obtained by
the use of the total differential for the variable f and Cramer’s rule to solve

1We make extensive use of the index notation for vectors, where the vector is represented
by a general component in a Cartesian co-ordinate system

A ≡ (Ax, Ay, Az) ≡ Ai where i = 1, 2, 3

Sums over the indices are represented by Einstein’s repeated index summation notation. Thus
for example a scalar product is

A · B = Ai Bi ≡
N∑

i=1

Ai Bi

A repeated index indicates summation of that index over the full range of values N . The
summation rule also applies to the elements of matrices.

2The expansion of the determinant of an N × N matrix A = aij may be written as

det A = εijkai1 aj2 ak3 = εlmn a1l a2m a3n =
1

N !
εijk εlmnail ajm akn

the divisor N ! appearing because the first index l may be chosen in N different ways, the
second m in N − 1 ways, etc.
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the resulting set of simultaneous equations.3 Using the subscript notation and
Einstein’s repeated index summation rule gives

∇f
∣∣
i
≡ ∂f

∂xi
=

1
N ! J

{
εijk εlmn

∂f

∂Λl

∂xj

∂Λm

∂xk

∂Λn

}
(1.7)

where N = 3 is the dimensionality. The calculation of vector operators in Eule-
rian space, grad, div and curl, follows directly.

Taking the time derivative of the Jacobian, remembering that vi = dri/dt
and using equation (1.7) we obtain

dJ

dt
= J ∇ · v (1.8)

Since the mass δm of the particle is constant,

ρ J = δm/δλ δμ δν = ρ0 J0 (1.9)

where the initial density is ρ0 and the Jacobian J0. This is the Lagrangian
form for the conservation of mass. The specific volume of the particle is clearly
related to the Jacobian through

V =
1
ρ

=
J

J0
V0

and making use of equation (1.8) we obtain the more familiar form of the
Lagrangian mass conservation equation

dρ

dt
+ ρ∇ · v = 0

1.3.1 Conservation of Mass

This equation may be derived in a more direct manner by considering the
change in volume of a fluid particle ΔV with constant mass Δm = ρΔV and

3Cramer’s rule solves the non-singular set of simultaneous equations

aij xi = bj

by forming a set of determinants for the matrix elements D = det aij and those formed by
progressively replacing the ith column by the column ‘vector’ bj , namely

Di =

∣∣∣∣
ai′j when i′ �= i
bj i′ = i

∣∣∣∣

The solution is then
xi = Di/D (1.6)
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surface ΔS as it moves through the fluid. In a time δt the volume increases by

δ(ΔV ) =
�

ΔS
v · dS δt

=
�

ΔV
∇ · v dV δt

by Gauss’s theorem. As ΔV is small, the rate of dilation is

Θ̇ =
1

ΔV
lim
δt→0

{
δ(ΔV )

δt

}
= ∇ · v = −1

ρ

dρ

dt

since the mass of the particle is constant. Hence we obtain

dρ

dt
+ ρ∇ · v = 0 (1.10)

If the density of the fluid particle remains constant, i.e. the fluid is incom-
pressible,

∇ · v = 0 (1.11)

and the rate of dilation is zero, or alternatively the volume of a fluid element
is constant.

1.3.2 Conservation of Momentum–Euler’s Equation

We consider the change of momentum of the fluid particle as a result of the
forces applied to it. The total force is due to the pressure exerted inwards over
the surface of the particle

−
�

ΔS
pdS = −

�
ΔV

∇p dV ≈ −∇p ΔV

and gravity Δmg where g is the acceleration due to gravity. Hence using
Newton’s second law of motion we obtain Euler’s equation:

dv
dt

= −1
ρ
∇p + g (1.12)

The preceding equation for flow in an inertial frame must be modified to
include the Coriolis and centrifugal forces in a rotating frame

dv
dt

+ 2 Ω ∧ v + Ω ∧ (Ω ∧ r) = −1
ρ
∇p + g (1.13)

where Ω is the angular velocity of rotation.
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1.3.3 Conservation of Angular Momentum

Angular momentum is not frequently used in fluid mechanics. However, as in
mechanics, it must be conserved in the absence of external torques. We may
obtain the relationship governing its variation directly by taking the vector
product of the radius vector with Euler’s equation (1.12). Thus the angular
momentum per unit mass of a fluid particle is

d(r ∧ v)
dt

= r ∧ dv
dt

= −1
ρ

r ∧∇p r ∧ g (1.14)

1.3.4 Conservation of Energy

Since the fluid is dissipationless, the energy equation takes the particularly
simple form of the first law of thermodynamics for an adiabatic change:

dε

dt
=

p

ρ2

dρ

dt
= −p

ρ
∇ · v (1.15)

where ε is the specific internal energy (per unit mass).

1.3.5 Conservation of Entropy

If dissipation in the fluid is negligible, i.e. the flow of an ideal fluid, the entropy
of a fluid element is constant. Therefore

ds

dt
= 0 (1.16)

where s is the specific entropy (per unit mass).

1.4 Eulerian Frame

We turn now to the equations in Eulerian form.

1.4.1 Conservation of Mass–Equation of Continuity

Consider a fluid of density ρ moving with velocity v in a closed volume V
stationary in the Eulerian frame with bounding surface S. The mass of fluid
enclosed in V is

�
V ρ dV . Thus the rate of increase of mass in V is

�
V

∂ρ

∂t
dV
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This mass gain must be balanced by a mass flow rate into V through S.
Since the mass flow rate out through an element dS is ρv · dS, we obtain

�
V

∂ρ

∂t
dV = −

�
S

ρv · dS
= −

�
V
∇ · (ρv) dV (1.17)

Hence, since V is arbitrary, the integrands must be equal, i.e.

∂ρ

∂t
+ ∇ · (ρv) = 0 (1.18)

namely, the equation of continuity.
This equation has the characteristic form of a conservation equation, i.e.

∂

∂t
[Quantity per unit volume] + div[Flux of quantity]

= [Input per unit volume per unit time]
{ = 0 in this case}

where the flux is the quantity flowing per unit time through unit area normal
to the flow (see Appendix 10.A). In this case the flux j = ρv.

1.4.2 Conservation of Momentum

Momentum introduces a complication in that momentum itself is a vec-
tor. The momentum flux is a tensor. We therefore work in Cartesian
components using the general notation, i.e. ui for the ith component
(i = 1, 2, 3 [x, y, z]). We also use the Einstein summation convention for a
repeated index, namely ai bi =

∑3
i=1 aibi = a · b. The total momentum in V is

thus
�
V ρ vi dV , and the flow of momentum leaving through dS is ρ vi vj dSj .

The sources of momentum in V are the forces: the internal force due to the
hydrostatic pressure −pdSi (minus sign since pressure acts inwards) and the
external force due to gravity ρgi per unit volume.

The momentum balance equation for V is thus
�

V

∂(ρ vi)
∂t

dV = −
�

S
ρ vi vj dSj −

�
S

pdSi +
�

V
ρ gi dV

=
�

V
ρ gi − ∂

∂xj
[ρ vi vj + p δij ] dV (1.19)

where δij is the Kronecker delta.
Hence, as before, since V is arbitrary

∂(ρ vi)
∂t

+
∂(ρ vi vj + p δij)

∂xj
= ρ gi (1.20)
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This has the general form noted above since ∂aj/∂xj = ∇ · a. The momen-
tum flux Γij = ρ vi vj + p δij includes the internal force, in this case pressure
alone. By Newton’s second law of motion, this force corresponds to an impulse
which transfers momentum within the fluid body, but is conserved overall, as
one part of the fluid exerts an equal and opposite force (and therefore momen-
tum transfer) on another. The external force, gravity, corresponds to a source
term, which is not conserved.

1.4.3 Conservation of Angular Momentum

Angular momentum obeys a conservation law in the absence of external
torques. However, the form is a little more difficult to establish than for linear
momentum. As with linear momentum we expect that the angular momentum
flux will be a second-order tensor. We may obtain the relations directly by
considering the conservation of angular momentum in an arbitrary volume V
with surface S. The rate of change of the total angular momentum in V must
be balanced by the flow of angular momentum through the surface S due to
transport and to the torques exerted on the fluid at S by the pressure and
internally by any volume force. Thus

∂

∂t

�
V

ρ (r ∧ v) dV = −
�

S
[ρ r ∧ v] v · dS −

�
S

p r ∧ dS +
�

V
ρ r ∧ g dV

As before, noting that V is arbitrary and using Gauss’s theorem,4 we obtain

∂

∂t
[ρ r ∧ v] +

∂

∂xj
[ρ (r ∧ v)i vj ] + r ∧∇p = r ∧ (ρg) (1.21)

which may also be obtained by taking the vector product of r with equation
(1.20). This is clearly not in conservation law form due to the pressure term.
This can, however, be written as the divergence of a second-order tensor as
follows:

r ∧∇p = εijk xj
∂p

∂xk
= −εijk

∂

∂xj
(p xk)

where εijk is the perturbation symbol defined in equation (1.5).

4This result is obtained from the vector identities

∇ · (A ∧ B) = B · ∇ ∧ A = A · ∇ ∧ B and ∇∧ (φA) = φ∇∧ A − A ∧∇φ

Hence using Gauss’s theorem when a is an arbitrary constant vector

a ·
�

p r ∧ dS =
�

a ∧ (pr) · dS =
�
∇ · (a ∧ pr) dV = a ·

�
r ∧∇p dV

from which, since a is arbitrary, equation (1.21) follows.
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Hence the total angular momentum flux is

Ξij = ρvi

(
εjkl xk vl

) − (εijk p xk)

1.4.4 Conservation of Energy

The total energy per unit mass of the fluid includes both internal energy ε and
kinetic energy 1

2v2. The work done on the fluid is due to the pressure force on
the surface and to gravity. Thus

�
V

∂

∂t

[
ρ

(
ε +

1
2
v2

)]
dV = −

�
S

[
ρ

(
ε +

1
2
v2

)]
v · dS

−
�

S
pv · dS +

�
V

ρg · v dV +
�

V
WdV

where W is the energy deposited by external sources per unit volume per unit
time. Hence we obtain by the use of Gauss’s theorem and the arbitrary nature
of the volume V , as before,

∂

∂t

[
ρ

(
ε +

1
2
v2

)]
+ ∇ ·

[
ρ

(
h +

1
2
v2

)
v
]

= W + ρg · v (1.22)

where h = ε + p/ρ is the specific enthalpy (per unit mass). The energy flux is
thus (h + 1

2v2)v and includes in the enthalpy, h, a term for the work done by
one section of the fluid on another corresponding to the internal forces. The
work done by the external force is not conserved.

Since gravity is a conservative force, which is constant in time, we may
include the gravitational field in overall fluid energy (ε + 1

2v2 + U) per unit
mass where g = −∇U defines the gravitational potential. Using the equa-
tion of continuity (1.18) and the time invariance of the gravitational field, U ,
we obtain

∂

∂t

[
ρ

(
ε +

1
2
v2 + U

)]
+ ∇ ·

[
ρ

(
h +

1
2
v2 + U

)
v
]

= W (1.23)

1.4.5 Conservation of Entropy

In an ideal fluid, where entropy is conserved, entropy may also be written as
a conservation law. From equations (1.16) and (1.18) we obtain

∂

∂t
(ρ s) + ∇ · (ρ sv) = 0 (1.24)
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1.5 Hydrostatics

Consider the situation where the fluid is at rest. It follows from Euler’s equation
(1.12) (or directly) that the pressure force and gravity must balance, i.e.

∇p = ρg (1.25)

Since gravity only acts in the vertical direction (z, measured upwards) this
equation takes the simple form when the density is constant

p = −ρ g z + const

ρ g z is known as the hydrostatic head.
If the thermodynamic condition of the fluid is predetermined, the pressure

and density are related by the appropriate equation of state and are both
functions of the vertical height only. The fluid is therefore stratified. We may
identify two important cases.

1.5.1 Isothermal Fluid–Thermal and Mechanical Equilibrium

If the fluid is isothermal, i.e. the temperature T is constant everywhere, the
system is in thermal equilibrium. The equilibrium condition is written in terms
of the thermodynamic potential per unit mass Φ given by

dΦ = −sdT + V dp

where s is the specific entropy (per unit mass) and V = 1/ρ the specific volume.
Hence equation (1.25) integrates to

Φ + gz = const (1.26)

throughout the fluid.
This result is recognised as the standard result from thermodynamics for a

system in thermal equilibrium in an external field.

1.5.2 Adiabatic Fluid–Lapse Rate

If the fluid is isentropic, the specific entropy of the fluid is everywhere constant.
Since the enthalpy is

dh = T ds + V dp

equation (1.25) takes the form

h + gz = const (1.27)
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Alternatively, making use of the thermodynamic relations

∂T

∂p

∣∣∣
s

=
∂V

∂s

∣∣∣
p

=
∂T

∂s

∣∣∣
p

∂V

∂T

∣∣∣
p

=
α V T

cp
(1.28)

where α the coefficient of volume expansion and cp the heat content at constant
pressure (per unit mass),

α =
1
V

∂V

∂T

∣∣∣
p

and cp =
∂h

∂T

∣∣∣
p

= T
∂s

∂T

∣∣∣
p

(1.29)

The temperature varies as a function of the height alone

dT

dz
=

∂T

∂p

∣∣∣
s

dp

dz
=

α V T

Cp

dp

dz
= −α T

cp
g (1.30)

The rate at which the temperature decreases with height in the atmosphere,
namely Γ = −dT/dz, and the corresponding density and pressure changes, are
known as the adiabatic lapse rate. A very simple alternative derivation of this
result is useful. Starting from the second TdS equation of thermodynamics we
may write directly that

Tds = cpdT − T
∂V

∂T

∣∣∣
p
dp = 0 (1.31)

since ds = 0 for an adiabatic change. Hence using equation (1.25) we obtain
equation (1.30).

For a perfect gas obeying the ideal gas laws, α = 1/T and the lapse rate
takes the particularly simple form Γ = g/cp.

In atmospheric physics several distinct lapse rates are identified:

1. Dry adiabatic lapse rate is the rate of decrease of temperature with
height of dry (unsaturated) air under adiabatic conditions. Since air is
approximately a perfect gas the lapse rate is given by g/cp ≈ 9.8 K/km,
where in dry air cp = 1004 J/kg/K and g = 9.81 m/s2. The dry adiabatic
lapse rate is independent of the height.

2. The moist saturated adiabatic lapse rate is the rate at which the
air temperature decreases as it rises when maintained at its dew point
(i.e. saturated with water vapour). It is significantly smaller than the
dry lapse rate due to the latent heat released by the water vapour as it
condenses, forming a liquid cloud, and thereby raising the temperature.
Unlike the dry lapse rate the saturated value varies with height, typically
having a value of about 5 K/km.
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An approximate expression for the moist adiabatic lapse rate may be derived by
including the latent heat released as the air rises by modifying equation (1.31)
to include the condensation

T ds = cp dT − T
∂V

∂T

∣∣∣
p
dp + Ldr = 0 (1.32)

where r is the specific humidity or mixing ratio (mass ratio of water vapour to
dry air) and L = 2.453 × 106 J/kg the latent heat of vaporisation.

The variation in the mixing ratio as the temperature and pressure change may
be approximately calculated from the application of Dalton’s law of partial
pressures

r = ε
pv

(p − pv)
≈ ε

pv

p
(1.33)

where pv is the water vapour partial pressure and ε = Ra/Rv = 287/462 is
the ratio of the gas constants for air and water vapour respectively, which
can be expressed in terms of the ratio of molecular masses, ε = Mv/Ma =
18.015/28.964 = 0.622. The saturated water vapour pressure pv is given by the
Clausius–Clapeyron equation

dpv

dT
=

L

(Vv − VlT )
≈ Lpv

RvT 2
(1.34)

where the specific volume of the vapour Vv is much larger than that of the liquid
Vl, and the vapour behaves as an ideal gas. Hence we obtain

1
r

dr

dz
≈ 1

pv

dpv

dz
− 1

p

dp

dz

≈ L

RvT 2

dT

dz
+

1
p
ρg

= − L

RvT 2
Γ +

1
RaT

g (1.35)

Substituting for dp/dz and dr/dz we obtain an approximate expression for the
lapse rate of air saturated with water vapour

Γ =
g

cp

[
1 +

Lr

Ra T

]
[
1 +

L2 r ε

cp Ra T 2

] (1.36)

The mixing ratio r varies with temperature as the saturated vapour pressure
given by the integral of equation (1.34). Since the latent heat is almost constant

ln
(

pv

p0

)
=

L

Rv

(
1
T0

− 1
T

)
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where (p0, T0) is a suitably chosen initial (saturated) condition, e.g. at the triple
point of water where p0 = 611.73 Pa, T0 = 273.16K. This equation taken with
equation (1.33) may be used to calculate the dew point : that is, the temperature
to which a given parcel of air (with known specific humidity and pressure)
must be cooled before it starts to condense. However, tabular and graphical
representations are used to make this a much easier task in practice.

3. Environmental lapse rate is the measured rate of decrease of temper-
ature with height in the atmosphere.

1.5.3 Stability of an Equilibrium Configuration

Although the system may be in mechanical equilibrium, it may not be stable.
If the configuration is unstable, convection currents are set up within the fluid,
which tend to mix the fluid to establish a uniform temperature.

We may derive the condition for the equilibrium to be stable by considering
the effect of a small displacement of a fluid element ξ in the direction z. The
system is stable if its response is to restore the perturbation to its original posi-
tion. Thus let us suppose that the fluid element has a specific volume V (p, s) at
its equilibrium position z and let us suppose that the specific volume changes
adiabatically in response to a pressure change to p′ at (z + ξ) to V (p′, s).5 The
fluid will displace an equal volume of fluid whose pressure p′ and entropy s′

correspond to the equilibrium values at (z + ξ). If the displaced fluid element
is heavier than the one it displaces, it will tend to sink and the equilibrium
will be restored. Thus a necessary condition for stability is

V (p′, s′) − V (p′, s) ≈ ∂V

∂s

∣∣∣
p

ds

dz
ξ =

α T

ρ cp

ds

dz
ξ > 0 (1.37)

where we have made use of the thermodynamic relations as before,
equation (1.28).

Since the constants in the above inequality are all positive, the condition for
stability reduces to

ds

dz
> 0 (1.38)

that is, the entropy increases with height.
The limiting case of stability, that the entropy is constant with height, cor-

responds to the adiabatic lapse rate, equation (1.30). Applying these results
to the atmosphere, we can see that it is unstable if the temperature falls less

5We may imagine that the change takes place sufficiently slowly to be reversible with
viscosity and thermal conduction negligible.
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rapidly than the adiabatic lapse rate going to higher altitudes, i.e. if the envi-
ronmental lapse rate is greater than the adiabatic one

dT

dz
>

dT

dz

∣∣∣
lapse

= −α T

cp
g (1.39)

In practice convection tends to reduce temperature gradients to the adiabatic
lapse rate where the atmosphere is marginally stable. The adiabatic lapse rate
may therefore be used to give an approximation to the variation of temperature
and pressure with altitude.

The relationship of the adiabatic and the environmental lapse rates plays an
important role in determining the generation of upward thermals. If a parcel
of air is unsaturated and rises, being unstable it ascends, cooling at the dry
lapse rate, until the dew point is reached and water vapour starts to condense.
This is approximately the level of the cloud base. At this point the lapse rate is
decreased to the moist saturated vapour rate, causing the parcel to ascend more
rapidly and leading to the formation of rain. In an extreme case the rapidly
rising stream of air leads to the formation of a characteristic thunder cloud.

1.6 Streamlines

A streamline is a line whose tangent is everywhere parallel to the flow. In
Cartesian co-ordinates its equation is

dx

vx
=

dy

vy
=

dz

vz
(1.40)

In steady flow, but not in non-steady flow, the streamlines are the particle
paths (streaklines). The surface of a body immersed in a flow must be a stream-
line, since there is no flow through it. In streamlined flow around a body, the
neighbouring streamlines closely parallel the surface from entry to exit. This
is in contrast to the flow around a non-streamlined body, where the streamline
touching the surface may separate and leave the neighbourhood of the body.

A closely related concept is the tube of flow, namely a region of flow whose
walls are streamlines, and thus parallel to the flow. Consequently no flow can
take place through the wall of the tube. The total flux of any quantity through
any cross-section of a tube of flow is therefore constant.

1.7 Bernoulli’s Equation: Weak Form

Bernoulli’s equation is a direct consequence of the equations for a dissipation-
less fluid. It has a simple form, which makes it suitable for many applications,
particularly for order of magnitude estimates.
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In steady, dissipationless flow, the flow at any point on a streamline satisfies
the following simple relation:

h +
1
2
v2 + U = const (1.41)

If the fluid is incompressible, ρ = const, then the enthalpy h is replaced by
p/ρ. Under the above conditions this equation is known as the weak form
of Bernoulli’s equation. Other forms will be seen to occur under different
conditions.

The proof follows from Euler’s equation (1.12) as follows. In steady flow
∂/∂t ≡ 0, and thus

(v · ∇)v = −1
ρ
∇p −∇U

∇(1/2v2) − v ∧ (∇∧ v) = −∇(h + U) (1.42)

since the fluid is dissipationless, the entropy change ds = 0 and dh = (1/ρ) dp.
Hence integrating along the streamline and noting that v ∧ (∇∧ v) is perpen-
dicular to v, we obtain equation (1.41).

Alternatively, if we consider a narrow tube of flow surrounding a streamline
of cross-section δS, normal to the flow, then in steady flow the total mass flow
ρ v δS = const, the total energy flow

ρ v (h + 1/2v2 + U) δS = const

and we again obtain Bernoulli’s equation (1.41).
The two proofs are based on momentum and energy flow respectively–a

consequence of the fact that in ideal flow the equation of state has only
one independent thermodynamic variable, because, due to the dissipationless
nature of the flow, the entropy of a fluid particles is constant.

Bernoulli’s equation enables the definition of a useful quantity expressing
the total energy available in the flow, which is the value of the constant along
the streamline in equation (1.41):

1
2
v2
max = h +

1
2
v2 + U (1.43)

vmax being the limit speed, i.e. the velocity that the fluid would acquire if both
the pressure and gravitational potential were zero.

1.8 Polytropic Gases

A useful representation of many real gases is the polytropic gas, whose
equation of state is the ideal gas law, and whose adiabatic equation of state



18 Introductory Fluid Mechanics

is the familiar expression
p

ργ
= const (1.44)

where γ is the ratio of specific heats, or adiabatic index. A large number of
gases behave as polytropic gases with an appropriate value of the adiabatic
index γ. For these materials the specific internal energy and specific enthalpy
are given by

ε =
1

(γ − 1)
p

ρ
and h =

γ

(γ − 1)
p

ρ
(1.45)

For future reference the specific entropy (per unit mass) is given by

s = cV ln
(

p

ργ

)
+ s0 (1.46)

where cV is the specific heat per unit mass.
The limit speed in polytropic gases can be expressed in terms of the critical

velocity, when the flow velocity equals the local sound speed c =
√

∂p/∂ρ|s =√
γp/ρ. From Bernoulli’s equation (1.41) we obtain

v∗ = c∗ =

√
(γ − 1)
(γ + 1)

vmax (1.47)

Another set of quantities, which are often useful in calculations with poly-
tropic gases, is the stagnation sound speed, pressure and density. These are
specified by the condition that the flow velocity is zero. They are generally
defined by the stagnation sound speed

c0 =

√
(γ − 1)

2
vmax (1.48)

with p0 and ρ0 obtained through the equation of state in the form

c

c0
=

(
p

p0

)(γ−1)/2γ

=
(

ρ

ρ0

)(γ−1)/2

=
{

1 + (γ − 1)M0
2/2

1 + (γ − 1)M2/2

}1/2

(1.49)

where M = v/c is the Mach number.
The other class of material, which is important in dissipationless flows, is

incompressible, where the density of a fluid particle is constant, ρ = const.
Liquids are the obvious examples of this condition. However, as we shall see,
gases also behave in this way when their flow speed is much less than the sound
speed (subsonic flows). For incompressible flow the integral

1
ρ

�
dp =

� dp

ρ
=

p

ρ

is used in applications such as Bernoulli’s equation. We can therefore replace
h ⇒ p/ρ in these cases.
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1.8.1 Applications of Bernoulli’s Theorem

1.8.1.1 Vena Contracta

We consider the flow from a reservoir containing an incompressible fluid
through a small hole in one of the walls of area S2. The pressure in the fluid
in the reservoir far from the hole is approximately constant p1 and the flow
velocity v1 ≈ 0. Bernoulli’s equation for the flow speed through the hole v2

where the pressure is atmospheric, p2, is

1
2�

��
0

v2
1 +

p1

ρ
=

1
2
v2
2 +

p2

ρ
(1.50)

However, in steady flow, the momentum flux through the hole must balance
that in the reservoir. Thus the momentum balance in direction i is given by
�

S
(ρ vi vj + p δij) dSj =

�
(S−S2)

(ρ vi vj + p) dSj +
�

S2

(ρ vi v2x + p2) dSx = 0

where S is the surface area of the reservoir including the hole and x is the
direction of the normal to the area of the hole. We assume that the pressure
over the wall (excluding the hole) is approximately constant and equal to p1.
By symmetry we may assume that the components in the y and z directions
cancel. Similarly the integral over the inner surface contains area elements
which cancel except over the projection of the hole on to the internal surface.
Therefore �

S2

(ρ���
0

v1
2 + p) dS =

(
ρv2x

2 + p2

)
S2 (1.51)

where v2x
2 is the mean square velocity at the hole in the direction normal to its

area x. Comparing equation (1.50) with equation (1.51) we see that v2x
2 �≈ v2

2.
This is due to flow near the wall, where the velocity is non-parallel through the
hole. As a result, after leaving the hole the flow continues to converge, reaching
a minimum cross-section when all the streamlines are approximately parallel,
and the velocity is approximately v2

2 ≈ v2x
2. The minimum area–vena con-

tracta–is thus approximately Smin ≈ 1
2S2. In fact experiment gives a value of

Smin ≈ 0.624 S2. The difference is accounted for mainly by pressure variations
in the fluid near the hole.

If a tube is inserted into the fluid–Borda’s mouthpiece–so that the fluid
enters the exiting flow well away from the wall, the pressure and velocity in
the neighbourhood of the entry correspond to the uniform symmetric value, as
assumed above. As a result the area reduction is found to be very nearly the
predicted value 1

2 .
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1.8.1.2 Flow of gas along a pipe of varying cross-section

Gas obeying the polytropic equation of state moves steadily along a pipe of
decreasing cross-section from a reservoir at pressure p0 and density ρ0 to an
exit at pressure p1. We assume that the speed of flow across a cross–section
is constant–the hydraulic approximation. Since the flow is adiabatic we may
apply Bernoulli’s equation to the flow

h +
1
2

v2 =
γ

(γ − 1)
p

ρ
+

1
2

v2 =
γ

(γ − 1)
p0

ρ0

where the initial speed v0 is assumed to be very small, i.e. stagnation.
Introducing the sound speed and noting that the adiabatic equation of state

(1.44) is appropriate,

c =
√(

γ p

ρ

)
= c0

(
ρ

ρ0

)(γ−1)/2

Bernoulli’s equation can be rewritten as

1
2
v2 =

1
(γ − 1)

(c2
0 − c2)

The mass flux is therefore

j = ρv =
√ [

2
(γ − 1)

]
ρ0

(
c2

c2
0

)1/(γ−1) √ (
c2
0 − c2

)
Differentiating j with respect to c2 we find a turning point at

c2
0 − c2 = 1/2(γ − 1) c2. Since j → 0 as v → 0 and c → c0, this turning point

must be a maximum. At the maximum, the flow speed equals the sound speed
(sonic flow):

v = v∗ = c = c∗ =
√

2
γ + 1

c0 (1.52)

the critical speed.
Since the initial velocity v0 ≈ 0 the critical pressure and density at the sonic

point are

p∗ =
[

2
(γ + 1)

]γ/(γ−1)

p0 and ρ∗ =
[

2
(γ + 1)

]1/(γ+1)

ρ0 (1.53)

Figure 1.1 shows the characteristic parameters of the flow plotted as fractions
of those at the critical point, where the flow velocity equals the sound speed,
together with the local Mach number M = v/c.
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Figure 1.1: Characteristic parameters of the flow through a convergent/divergent nozzle.

Provided the external pressure pext exceeds the critical pressure p∗, the flow
in the pipe is determined by the conditions at the exit, p1 = pext.

The discharge (total mass flow) jS must remain constant, whilst the flux j
cannot increase beyond the critical value, even if the cross-section of the pipe
continues to decrease. Therefore the flux must adjust itself to be a maximum at
the minimum cross-section, i.e. at the exit p1 = p∗ when the external pressure
pext is less than p∗. The discharge is then

ρ∗v∗Smin

If the external pressure pext is less than the critical p∗, the flow is said to be
choked, and there must be an additional expansion external to the pipe. In
a uniformly converging pipe, the flow cannot become supersonic even if the
external pressure is very low. To achieve a supersonic flow it is necessary to
allow the flow to expand after the sonic point so that the increasing speed can
be accommodated by a decreasing flux. This is accomplished by terminating
the converging section by a throat of minimum cross-section followed by a
diverging section. Such a pipe is a de Laval nozzle, and may be used to produce
a supersonic jet of gas. The discharge in such a nozzle is determined by the
critical flux at the throat.

The nozzle with fixed walls is an example of a tube of flow, since in each
case the boundary condition of no flow through the wall must be upheld. The
flow parameters along such a tube must therefore be identical to those derived
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above. In particular, in the neighbourhood of the sonic point, where M = 1, the
flux is nearly constant even though the flow speed changes. The cross-section
of the tube of flow is therefore nearly constant in this locality. Hence, within
the ideal (dissipationless) flow approximation, the flow can neither expand nor
contract transversely in the transonic region where M ≈ 1 –behaviour which
Busemann called a streampipe. This result turns out to be important in the
design of aircraft at near sonic speeds (see Section 12.5.1).

Case study 1.I Munroe Effect–Shaped Charge Explosive

The collapse of lined cavities has long been known to produce a high-velocity jet
and a slower moving slug from the liner material. The jet can penetrate steel plate.
Originally used in mining it was developed as an anti-tank weapon during the Second
World War. The basic theory of the effect is relatively simple (Birkhoff et al., 1948).
A wedge-shaped block of explosive, lined with a thin metal layer (liner), is detonated
from the apex end. The detonation wave moving through the explosive causes an
inward implosion. The metal layer is fluidised by the intense pressure generated by
the detonation, and driven towards the axis with velocity v0. As a result the apex
moves along the axis as the detonation proceeds through the block, Figure 1.2(a). To
an observer moving with the apex it appears that material flows steadily down the
arms and leaves as a jet (forward) and slug (backward) along the axis, Figure 1.2(b).
Provided the detonation moves with constant velocity through the block u0, the flow
in this frame of reference is steady. Therefore we may apply Bernoulli’s theorem to
the collision of the two streams from each arm, and thus to the incoming and outgoing
flows. Following the impulsive pressure pulse immediately after the detonation, the
pressure falls rapidly and the fluid moves freely along the arms, so that the pressure
on both the fluid in the arms and that moving along the axis is approximately constant
on impact at the apex. Hence it follows from Bernoulli’s theorem that the flow speeds in
both axial flows, backwards (slug) and forward (jet), are equal to that of the incoming
flows v′ in the apex frame. The velocities of the slug and jet in the laboratory frame
are then obtained by transforming back from the apex frame.

CL
α
αDetonation

Explosive Liner

β
β

(a)

Vs Vj

V′

V′

(b)

Figure 1.2: The geometrical arrangement of the flow system for the shaped charge
detonation with a wedge: (a) shows the arrangement in the laboratory frame, and (b) that
seen by an observer moving with the apex.
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Figure 1.3: The geometrical arrangement of the flow system for the shaped charge
detonation with a wedge in the laboratory frame. OCD is the original position of the liner.
OAB is the axis, i.e. the path of the apex. AC = v′(t′ − t) is the position of the liner at
time t, apex position A. BC = v0(t

′ − t) is the path of the liner particles from t to t′, when
they reach the apex. Thus the apex moves from A to B in time t to t′ and AB = u(t′ − t).
In time t to t′ the detonation has moved from C to D and CD = u0(t

′ − t)/ cos(α), and the
liner lies along BD. The relevant angles are ∠OCA = ∠BDC = (β − α),
∠ACB = ∠BCD = ∠CBD = [π − (β − α)]/2 and ∠ABC = [π − (β + α)]/2, and the
dynamics described by �ABC and �ABD. (a) Detonation at C at time t. (b) Detonation
at D at time t′.

The analysis of the problem in the laboratory frame involves the geometry of the
flow. Let α be the half angle of the wedge, and β the angle of the flow the fluidised
liner makes with the centre line, Figure 1.3. We assume that in the laboratory frame,
the fluidised liner velocity bisects the initial and accelerated planes of the layer. In
Figure 1.3(a) we see the situation where the detonation has reached the point C at
time t. The line AC represents the line of the fluidised layer at this time, A being at
the apex at time t. AC also represents the line of the flow in the apex frame. The fluid
itself moves along the line BC bisecting the angle ∠ACD in the laboratory frame,
reaching the axis at time t′. Thus AB is the movement of the apex in time t′ − t,
namely u (t′ − t), and BC the flow of the fluid over the same time v0 (t′ − t). Since
∠ACB = [π − (β − α)]/2 and ∠BAC = β, the velocity of the apex

u = v0

cos[ 12 (β − α)]
sin β

Furthermore, since the velocity of the fluid along the arms in the apex frame v′ =
v0 − u, we see that it is given by the third side of the 
ABC, namely

v′ = v0

cos[ 12 (β + α)]
sin β

since ∠ABC = [π − (β + α)]/2. Alternatively AC is the line of flow in the apex frame
for fluid starting at t and arriving at the apex at t′, thus AC = v′ (t′ − t) and we
obtain the same result for v′.

It now remains to calculate the value of β from the speed of the detonation through
the block, u0. Referring to Figure 1.3(b), the detonation reaches point D at time t′.
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BCD is isosceles since ∠BCD = ∠CBD = [π − (β − α)]/2, so that

sin
[
1
2
(β − α)

]
=

v0 cos α

2u0
and β = α + 2 arcsin

(
v0 cos α

2u0

)

In the apex frame, the component of momentum along the axis after collision must
balance that before

msvs − mjvj = m0 v′ cos β (1.54)

where ms, mj and m0 = ms + mj are the masses of the slug, jet and liner respectively,
and the angle of the incoming flow to the axis is β. The laboratory velocities of the
slug and the jet respectively are given by the transformation of the velocities ∓v′ from
the apex frame back into the laboratory frame:

vs = u − v′ and vj = u + v′ (1.55)

Thus we obtain the velocity of the slug and the jet in the laboratory frame in terms
of the experimental parameters (u0, v0, α)

vs = v0

{
cos[ 12 (β − α)]

sin β
− cos[ 12 (β + α)]

sin β

}
= 2

sin(β/2) sin(α/2)
sin β

v0

vj = v0

{
cos[ 12 (β − α)]

sin β
+

cos[ 12 (β + α)]
sin β

}
= 2

cos(β/2) cos(α/2)
sin β

v0

(1.56)

respectively, and the masses are

ms = m0
(1 + cos β)

2
and mj = m0

(1 − cos β)
2

(1.57)



Chapter 2

Flow of Ideal Fluids

2.1 Introduction

In this chapter we examine the classical theory of inviscid (dissipationless) fluid
flow, most commonly for incompressible fluids, often called ideal flow. This
was developed in the second half of the nineteenth century, largely following
potential theory, by workers such as Helmholtz, Kirchoff, Kelvin and Rayleigh.
The application of harmonic functions, solutions of Laplace’s equation, derived
in the development of electromagnetic theory led to mathematical results of
great elegance, but sadly often of only limited applicability, for treating a
variety of flows, particularly in two dimensions.

As we shall see in Chapter 6 ideal (inviscid) flow is unusual in that it is
essentially an asymptotic solution of the fluid dynamical equations. This arises
since inviscid flow is normally not the limit solution of the full viscous equations
subject to the appropriate boundary conditions, as the viscosity tends to zero.
It can be clearly seen in the role of the boundary layer in Chapter 6, where
even the presence of an infinitesimal degree of viscosity is sufficient to generate
a very thin boundary layer and hence drag. This may give rise to separation,
but always enables the resolution of the essential non-uniqueness of inviscid
flow, which arises in the treatment of the flow around the surface of a solid
body as in Section 2.3.

Nonetheless inviscid solutions have many important practical
applications:

1. Flow around streamlined bodies, e.g. aerofoils. In this case the problem
of non-uniqueness is resolved by an additional empirical condition, which
frequently allows accurate representations of the flow found in practice.
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Much of the theory of aerodynamics in consequence has been constructed
around inviscid flow models.

2. Waves and instabilities. Both surface and internal waves in liquids are
well described by the inviscid equations as viscosity plays little role in
their behaviour, and there is no flow around an external body.

3. Geophysical and meteorological flows are often well described by the
inviscid equations, when the problem does not involve the flow at the
surface of a body. We shall not discuss these rather specialised flows.

4. Most compressible supersonic flows are effectively dissipation-
less (Chapter 8). Only shock waves involve significant dissipation
(Chapter 10).

In this chapter we identify the underlying concepts of ideal flow, and refer
to Lamb (1932) and Milne-Thomson (1968), where the flow of inviscid, ideal
fluids is treated in detail and extensive analytic solutions are given.

2.2 Kelvin’s Theorem

We define the circulation around a closed loop L as

Γ =
�

L
v · dl (2.1)

Kelvin’s theorem states that in the flow of a dissipationless fluid, the circulation
around a closed loop fixed in the fluid, i.e. always comprising the same fluid
particles, is constant:

dΓ
dt

= 0 (2.2)

We define a parameter on the loop fixed in the fluid λ, e.g. the distance
around the loop to a particular fluid particle at time t = 0. Then using Euler’s
equation (1.12) we may write

d
dt

�
L
v · dl =

�
L

dv
dt

· dl +
�

L
v · d

dλ

(
dl
dt

)
dλ

=
�

L
−
(

1
ρ
∇p + ∇U

)
· dl +

�
L
v · dv

dλ
dλ

since the loop is made up of fluid particles v = dl/dt. Furthermore, since
entropy is constant, or the flow incompressible, the pressure is a function of the
density alone and we may define some function H(ρ) such that ∇p/ρ = ∇H:

dΓ
dt

=
�

L
−(∇H + ∇U) · dl +

�
L

1
2

d
dλ

(v2) dλ = 0 (2.3)
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thereby establishing Kelvin’s theorem. The theorem is valid for incompressible
fluids provided the density is constant for all particles. If there is a discontinuity,
e.g. at a boundary between two dissimilar fluids, the theorem fails for loops
taken across the boundary, since for these loops

�
dp/ρ �= p/ρ everywhere.

The loop of fluid can be defined quite generally within the fluid. For example,
the loop may be taken around a solid body without invalidating the theorem,
provided the flow on the loop is everywhere inviscid, i.e. it does not touch the
surface. As the flow proceeds, the fluid loop must continue to enclose the body,
so that Kelvin’s theorem remains valid around the loop.

2.2.1 Vorticity and Helmholtz’s Theorems

We define the vorticity as
ζ = ∇∧ v (2.4)

Vorticity has several useful properties which were first enunciated by Helmholtz
in 1858. The vorticity is clearly related to the presence of rotational elements
in the flow. Indeed we shall see later that vorticity is related to the solid body
rotation of small fluid elements, the angular velocity being given as ω = 1

2ζ
(Section 3.2). It has the important property, which follows from Kelvin’s and
Stokes’ theorems, that �

S
ζ · dS =

�
L
v · dl = Γ (2.5)

where S is an area enclosed by the loop L. Clearly S is to some extent arbitrary,
being only bounded by L.

The generation of vorticity is easily calculated by taking the curl of Euler’s
equation (1.12)

∂ζ

∂t
−∇ ∧ (v ∧ ζ) = 0 (2.6)

Since
∇∧ (v ∧ ζ) = (ζ · ∇)v − (v · ∇)ζ − ζ(∇ · v) + v(∇ · ζ)

then, making use of the equation of continuity,(
∂

∂t
+ v · ∇

)
ζ

ρ
=
(

ζ

ρ
· ∇
)

v (2.7)

This equation represents the convection of vorticity. It implies that lines of
vorticity1 and particle paths are tied together.

1Lines and tubes of vorticity are defined in a similar manner to streamlines and tubes of
flow. Thus a line of vorticity is a line tangent to the vorticity. A tube of vorticity is a tube
whose walls are everywhere lines of vorticity.
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Consider a tube of vorticity. We define the strength of the tube as the cir-
culation around the tube Γ =

�
ζ · dS integrated across a cross-section. Since

∇ · ζ = 0, Gauss’s theorem shows that the strength of a tube of vorticity is
everywhere constant. Thus considering an infinitely narrow tube of vorticity,
it follows that lines of vorticity must be either continuous or terminate at the
boundaries of the flow.

The circulation around any loop initially on the wall of a vortex tube is zero,
since no vorticity passes through it. As the fluid moves, the circulation around
the loop fixed in the fluid remains zero by equation (2.5). Since this is true of
every such loop, each of which always comprises the same fluid particles, the
totality of such loops must continue to form the wall of the same vortex tube.
Therefore the tube always comprises the same fluid particles. In particular if
we consider an infinitesimal tube of vorticity enclosing a vortex line, it is clear
that the fluid particles in their motion are tied to a specific line of vorticity.

These results are encapsulated in Helmholtz’s theorems of vortex motion:2

i. The vorticity represents the solid body rotation of infinitely
small fluid elements.

ii. The intensity of a vortex tube is constant everywhere along the
tube. Consequently vortex lines are continuous, either closed
or terminating only at infinity.

iii. The vortex lines are tied to the fluid motion, i.e. a vortex line
always comprises the same fluid particles.

iv. The intensity of a vortex tube remains constant throughout
the motion.

The first and second theorems are statements of the identity div curl = 0,
and the definition of vorticity. They are therefore always valid even if viscosity
is present. Hence we obtain the important result that lines of vorticity either
form closed loops, or terminate at infinity or on the surface of solid bodies.
Consequently vorticity is generated in the flow at the surface of solid bodies. In
viscous flow, we shall find that lines of vorticity are diffused but not destroyed,
Section 3.6.1.

In dissipationless flow, lines of vorticity have the remarkable properties that
the vortex tube is continuous, that the circulation around it is constant in
space and time, and that it cannot be destroyed. Vorticity is persistent in

2Historical note Many authors only quote two or three of the theorems. In fact
Helmholtz (1858) gives all four. Helmholtz’s proof of the third theorem is based on equa-
tion (2.7), but is not rigorous (see Lamb, 1932). Kelvin in his paper (Thomson, 1869) gives
alternative derivations as above, based on his theorem of circulation. Kelvin’s proof of the
third theorem is more satisfactory.
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dissipationless fluids, and can only be diffused by viscosity. This remarkable
property, exemplified by the persistence of smoke rings, led to speculation in
the late nineteenth century that atoms were perhaps in some way composed
from vortex rings.

From Helmholtz’s third theorem a vortex tube must coincide with a stream
tube. A short length Δ� of a narrow stream tube of width ΔS, which moves
with the fluid, must satisfy the kinematic relation

d (Δ�)
d t

= (Δ� · ∇)v

The similarity of this equation with equation (2.7) suggests the relation
ζ ∼ ρ Δ�. Therefore if the length of the tube increases, its vorticity must
increase. Since the circulation is constant, the cross-sectional area ΔS must
decrease. The mass contained in the volume ρ ΔS Δ� of the tube therefore
remains constant, consistent with the equation of continuity.

2.2.1.1 Simple or rectilinear vortex

Consider a narrow tube of flow, within which there is non-zero vorticity,
of radius ε, directed along the line. The circulation around a line is clearly
Γ = πε2ζ. As the radius of the filament is reduced to zero, the circulation
remains constant, and the filament forms the core of a simple vortex. The
axis of the vortex may be defined as normal to the plane of the vortex in the
direction prescribed by the sense of the circulation and the ‘corkscrew rule’,
corresponding to the direction of the vorticity ζ through the element.

2.2.1.2 Vortex sheet

Consider an infinitesimal layer of flow across which the tangential component in
the velocity changes discontinuously from v− = v − 1

2 δv on one side to v+ =
v + 1

2 δv on the other, i.e. there is a discontinuity in the velocity tangential
to the surface of δv. The normal component of velocity is continuous across
the surface. The velocity of flow ‘in the sheet’ is clearly v = 1

2 (v− + v+). The
sheet may be envisaged as an assembly of infinitesimally narrow simple vortices
arranged within the surface. Such a tangential discontinuity is known as a
vortex sheet and plays an important role in the ideal flow theory of aerofoil
sections.

The surface vorticity (or strength) of the sheet per unit surface area is defined
in terms of the velocity difference across it to be

γ = n̂ ∧ δv = n̂ ∧ (v+ − v−) (2.8)
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where n̂ is the unit vector normal to the sheet in the direction from the lower
surface ©− to the upper one ©+ . The surface vorticity vector is clearly tan-
gential to the sheet and normal to the velocity difference. γ δw represents
the circulation around a loop of width δw embedded in the sheet. Thus as
noted earlier the sheet may also be visualised as a series of infinitely thin con-
tiguous vortices lying in the sheet with axes in the direction of the surface
vorticity vector.

The relationship of the strength of the vortex sheet to vorticity may be seen
by imagining the sheet to have a finite width ε. The total vorticity contained
in an element of surface δS of the sheet is therefore

�
δV

ζ dV =
�
δS

n̂ ∧ (v+ − v−) dS

= γ δS

where δV = ε δS is the element of volume, and we have made use of Gauss’s
theorem in the form3

�
V

(∇∧ A) dV = −
�
S

A ∧ dS

so that γ = ε ζ as ε → 0 and ζ → ∞ whilst γ remains constant.
Since

v2
2 − v1

2 = (v2 − v1) · (v2 + v1)

we have three alternatives if the speed is the same on both sides of the
vortex sheet:

1. (v+ − v−) = 0, the trivial solution with the velocities equal on both sides
of the sheet.

2. (v+ + v−) = 0, the velocity in the sheet is zero; the sheet is at rest.
3. (v+ − v−) ⊥ (v+ + v−), the surface vorticity is perpendicular to the flow

velocity in the sheet. This will be found to be the case associated with
the wake behind an aerofoil.

3This equation is obtained by considering the scalar product with an arbitrary constant
vector B and application of the identity

∇.(A ∧ B) = B · ∇ ∧ A − A · ∇ ∧ B

Therefore

B ·
�

S
A ∧ dS = −

�
S
A ∧ B · dS −

�
V
∇ · (A ∧ B) dV = −B ·

�
V

(∇∧ A) dV

Since B is arbitrary the integral follows.
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Vortex sheets are always unstable (see Section 4.4). An infinite vortex sheet
will develop by growing sinusoidal perturbations, limited only by a nonlinear
phase in which a series of isolated vortices form. A finite sheet tends to roll up
towards its ends to form a pair of separated rectilinear vortices.

2.3 Irrotational Flow

It follows from equation (2.5) that if the circulation on a streamline is initially
zero, it will remain so for all time, provided the streamline does not touch the
surface of a body–a condition known as irrotational flow. If this requirement
is violated the loop is broken as one part goes along one side of the surface and
the other part along the other. Kelvin’s theorem therefore no longer holds.
This streamline thus separates the region of zero vorticity from one where
the vorticity may be finite. As a consequence a tangential discontinuity may
form along the streamline, across which the tangential component of velocity
changes discontinuously, but the pressure and normal velocity component are
continuous. The discontinuity itself forms a ‘vortex sheet’ due to the velocity
difference, which is equivalent to an infinitely thin layer of vortices of appropri-
ate strength per unit area. In practice, viscosity will eliminate the discontinuity,
introducing vorticity and possibly turbulence into the neighbouring flow across
the boundary.

The spaces enclosed by the different segments of these streamlines may
contain vorticity. A consequence is that flow around a body may not be math-
ematically unique in a dissipationless (ideal) fluid, as the flow may separate
along the surface and the body streamline may leave the surface at an arbitrary
point. As we shall see in dissipational fluids this non-uniqueness is removed by
the inclusion of viscosity (see Chapter 6). In practice in calculations with ideal
flow, this problem is often resolved by additional knowledge of the expected
flow from experiment.

In general, due to viscosity, no flow which includes a body surface can be
irrotational everywhere. Nonetheless it does form a good approximation to
the flow around streamlined bodies, provided some additional experimental
guidance is available to ensure uniqueness. These flows form an important
class of flows, particularly in aerodynamics.

2.3.1 Crocco’s Equation

In the above discussion it has been implicitly assumed that the fluid is every-
where homogeneous. In practice this may not be correct throughout the flow
field. We therefore examine under what conditions the condition of irrotation-
ality may be maintained.
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In steady flow along a streamline Bernoulli’s equation (1.41) may be
written as

H = h +
1
2
v2 =

1
2
v2
max = const (2.9)

From Euler’s equation (1.12) we have

v ∧ ζ = ∇
(

1
2
v2

)
+

1
ρ
∇p

= ∇H − T∇s (2.10)

where s is the entropy per unit mass and T the temperature, and from the
first law of thermodynamics

dh = Tds +
1
ρ
dp

Hence we conclude that irrotational flow implies and requires that the fluid
be both homo-energetic (H constant everywhere) and homo-entropic (S con-
stant everywhere).

2.4 Irrotational Flow–Velocity Potential and the
Strong Form of Bernoulli’s Equation

If the flow is irrotational, such that ∇∧ v = 0, then the velocity may be
expressed in terms of a potential v = ∇φ, the velocity potential. Inserting this
result into Euler’s equation (1.12) we obtain

∂

∂t
∇φ + ∇

(
1
2
v2

)
= −∇(h + U)

and integrating over space

∂φ

∂t
+ h +

1
2
v2 + U = f(t)

where f(t) is an arbitrary function of time. Since the potential φ is only defined
in space, we include the function f(t) in φ to give the strong form of Bernoulli’s
equation:

∂φ

∂t
+ h +

1
2
v2 + U = 0 (2.11)

Comparison with the earlier form of Bernoulli’s equation (1.41) shows that
the inclusion of the additional term ∂φ/∂t yields a form which is time depen-
dent and valid throughout the flow, not just along a streamline, but is only
applicable in irrotational flow.
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Since
�

v · d� increases along a streamline, it follows from Stokes’ theorem
that, if the potential is single valued (acyclic flow),4 the streamlines must
start and finish on the surface of a body or at infinity. The velocity potential
increases continuously along the streamline; for if δ� is an interval along the
streamline

δφ = ∇φ · δ� > 0 (2.12)

since ∇φ = v is parallel to the streamline δ�, unless the flow velocity is zero
and the potential constant.

2.5 Incompressible Flow–Streamfunction

If the flow is incompressible, ∇ · v = 0, the velocity may be expressed as a vec-
tor potential v = ∇∧ ψ. In a general three-dimensional system, this quantity
may find little application as, being a vector, it does not reduce the dimension-
ality of the problem. However, if the system has a symmetry so that it may be
reduced to two dimensions in either Cartesian planar symmetry or cylindrical
axisymmetry, the vector has only a single term in the direction perpendicular
to the plane of the co-ordinates: in the z direction in a planar (x, y) system;
and in the azimuthal (φ) direction in the axisymmetric (z, �) system.5

2.5.1 Planar Systems

In this case we define the streamfunction ψ in Cartesian co-ordinates (x, y)

vx =
∂ψ

∂y
and vy = −∂ψ

∂x
(2.13)

The streamfunction has two important properties:

1. Along a streamline dx/vx = dy/vy

dψ =
∂ψ

∂x
dx +

∂ψ

∂y
dy = −vy dx + vx dy = 0 (2.14)

and the streamfunction is constant. This has the important consequence
that the surface of a body immersed in the flow must be a streamline.

4Since the circulation is
Γ =

�
C
∇φ. · d� = [φ]C

multiple values of the potential will occur if the circulation in any closed circuit along the
path taken C is non-zero. This may occur if the space is not simply connected, i.e. one in
which all circuits can be reduced to one another without crossing a boundary. We return to
this point later.

5Note the difference between the symbol � representing the distance from the axis and ρ
the density.



34 Introductory Fluid Mechanics

2. The total mass flow per unit width through a line segment between
the points ©1 and ©2 is given by the difference in the values of the
streamfunction at these points ψ1 and ψ2 respectively. The mass flow
per unit width is

J =
� 2

1
ρv · ds = ρ

� 2

1

{
∂ψ

∂x
dx +

∂ψ

∂y
dy

}
= ρ (ψ2 − ψ1) (2.15)

since the area element ds = îdy − ĵdx is normal to the line element
dl = îdx + ĵdy, î and ĵ being unit vectors in the directions x and y
respectively.

2.5.2 Axisymmetric Flow–Stokes Streamfunction

From the definition of velocity in terms of a vector potential in cylindrical
co-ordinates (z, �) we have

vz =
1
�

∂ψ

∂�
and v� = −1

�

∂ψ

∂z
(2.16)

The streamfunction is conventionally set to zero on the axis.
As in the planar case, the stream function has two important properties:

1. Along a streamline

1
�

dψ =
1
�

{
dψ

dz
dz +

dψ

d�
d�

}
= −v� dz + vz d� = 0 (2.17)

which is the equation of a streamline. Therefore the streamfunction is
constant on a streamline. The surface of a body immersed in the flow
must be a streamline.

2. Consider a surface bounded by the axis and the circle ©1 ; then the total
mass flux passing through the surface is

J =
1�
0

ρv · ds = 2π ρ

1�
0

� {(vz d� − v� dz)} = 2π (ψ1 − ψ0) (2.18)

since the area element is normal to the line element and

dsz = −2 π � d� and ds� = 2π � dz

It follows from the conservation of mass that the total flux is independent
of the surface chosen along a streamline and, furthermore, that if the
flow is continued along the streamline the total flux is constant through
successive rings.
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A uniform flow with velocity U parallel to the axis has streamfunction

ψ =
1
2
U�2 (2.19)

2.6 Irrotational Incompressible Flow

If the flow is both irrotational and incompressible

∇ · v = ∇2φ = 0 (2.20)

so that the velocity potential satisfies Laplace’s equation, independent of time.
The methods of potential theory, developed in the latter half of the nineteenth
century to solve problems in electromagnetism, thus become applicable to cal-
culating irrotational incompressible flows. These applications are particularly
important in view of the wide range of solutions to Laplace’s equation available
from classical potential theory. The equation also has some important prop-
erties such as uniqueness, which make it especially attractive for solving fluid
dynamical problems. As a result it has formed the basis for the classical theory
of aerodynamics, and still continues to fill an important role in the design of
aircraft (Chapter 11). When viscosity is non-zero, but weak, the irrotational
solution is often the asymptotic form of the solution far from the body, which
is matched to the boundary layer solution near the surface (Chapter 6) using
the method of matching asymptotics.

One of the most important properties of the solutions, known as harmonic
functions, is due to the linearity of the equation, namely the principle of super-
position. Thus if φ1 and φ2 are two different solutions of the equation, then
φ = φ1 + φ2 is also, but satisfying different boundary conditions to each of its
parents. Fluid mechanics makes extensive use of this principle.

In an acyclic region where the velocity potential is single valued and sat-
isfies Laplace’s equation, there can be neither a maximum nor a minimum
value. For if this were the case we should be able to construct a small spher-
ical surface S to surround the extremum over which the normal velocity vr

would be approximately constant and non-zero. This is forbidden by Gauss’s
theorem since �

V

∇2φdV =
�
S

v · ds =
�

r2 vr dΩ = 0

where the surface S has radius r.
In a similar manner it follows that v2 = (∇φ)2 cannot have a maximum, for

each component of velocity vi must individually satisfy Laplace’s equation, and
cannot therefore have either a maximum or minimum. Hence considering the
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squared velocity v2 = vx
2 + vy

2 + vz
2 we see that the flow speed v cannot have

a maximum. A minimum, namely a stagnation point, may, of course, occur.
From Green’s theorem and Laplace’s equation, it follows quite generally

that �
V

(∇φ)2 dV = −
�
S

φ∇φ · dS (2.21)

From these preceding results we may draw some important conclusions:

1. If the potential is constant on all boundary surfaces, the potential is con-
stant throughout the space, and the velocity is zero. This is established
in a number of ways since the potential must increase along all stream-
lines (2.12); or alternatively no maxima/minima of potential can occur;
or directly from equation (2.21).

2. If the normal gradient of the potential at every surface is zero, the poten-
tial is everywhere constant and no flow occurs. For, from (2.12), it follows
that no streamline can start or leave the boundary as required since the
flow is acyclic; or directly from (2.21) since the integrand on the left side
is always positive.

3. If the boundary consists partly of surfaces over which either a constant
potential (S) or zero normal velocity (Σ) is specified, the potential is
constant and no flow occurs. For no streamline can leave or enter Σ and
none can pass from one point to another on S.

Consider the solution φ, which is itself the difference between two solutions
φ1 and φ2 each of which satisfies the identical boundary conditions of the
problem, specified in one of the following forms:

1. Potential given at every point on the boundary–Dirichlet boundary con-
ditions.

2. Normal gradient of potential given on the boundary–Neumann boundary
conditions.

3. Potential specified on one part of the boundary and the normal compo-
nent of velocity on the other–Mixed boundary conditions.

So if either φ or dφ/dn is zero on the boundary, we establish that φ = 0 and
hence that φ1 = φ2 . Thus we obtain the well-known uniqueness theorem:

In an acyclic irrotational incompressible flow, the potential is
uniquely defined by Dirichlet, Neumann or mixed boundary values
applied to all the bounding surfaces.



Flow of Ideal Fluids 37

2.6.1 Simply and Multiply Connected Spaces

We define a reducible curve in space as a closed loop which may be continuously
reduced to a point without crossing any internal boundary.

In a simply connected space all closed loops are reducible. Three-dimensional
space containing only closed surfaces (i.e. bodies) is simply connected.

A multiply connected space contains closed loops, which are not reducible.
Examples of multiply connected spaces are toroids, e.g. anchor rings, and
infinitely long cylinders. Thus a two-dimensional space, which is essentially
that of infinitely long cylinders normal to the two-dimensional plane, is
multiply connected.

The order of multiplicity n identifies the number of independent irreducible
curves. Thus a two-dimensional space of n cylindrical bodies is an n-fold con-
nected space. We may reduce the connectivity by 1 from n to n − 1 by inserting
a barrier joining two unconnected bodies.

In a simply connected region the potential is single valued as any curve is
reducible and may therefore be bounded by a surface which lies outside any
boundary. Then from Stokes’ theorem

Γ =
�

v · d� =
�

ζ · dS = 0

In a multiply connected space, the circulation taken around a body cannot
be a priori guaranteed to be single valued as Stokes’ theorem cannot be applied.
Hence the potential may no longer be single valued, due to non-zero circulation,
Γ. Since �

C
∇φ · d� = [φ]C = Γ (2.22)

it follows that φ is undetermined to an additive term κΓ where κ is an integer
representing the number of rotations about the centre of circulation. Γ must
be set as an additional boundary condition. If the circulation is non-zero the
flow is cyclic.

We can easily show that cyclic flows are unique provided additional bound-
ary conditions, namely the values of the circulation around the n centres of
circulation, are set. Consider two solutions satisfying the boundary conditions
above and the equality of all circulations, then the flow φ1 − φ2 is acyclic, and
the preceding theorems above apply. Therefore φ1 − φ2 = const as before, and
the flows are identical.

We therefore generalise the uniqueness theorem to include multiply con-
nected spaces:

In a cyclic irrotational incompressible flow, the potential is uniquely
defined by Dirichlet, Neumann or mixed boundary values applied to
all the bounding surfaces, together with the values of the circulation
around all centres of circulation in space.
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2.7 Induced Velocity

The condition for incompressible flow is that ∇ · v = 0. This allows the velocity
to be expressed in terms of a vector potential v = ∇ψ.

If the flow is also irrotational, ∇∧ v = 0 and therefore

∇∧ (∇∧ ψ) = ∇(∇ · ψ) −∇2ψ = 0 (2.23)

However, ∇ · ψ is undefined and may without loss of generality be set to
zero, to yield Laplace’s equation for ψ.

Similarly if the velocity is expressed in terms of the velocity potential
v = ∇φ, we have

∇2φ = ∇2ψ = 0 (2.24)

In general the velocity field is specified by the two quantities, the scalar and
vector potentials, the latter being associated with vorticity. Indeed there is a
direct relationship between the vector potential and the vorticity. We assume
for the present that the flow is at rest at infinity, and that the space is simply
connected. Consider the integral

ψ =
1
4π

�
ζ(r′)

1
|r − r′|dV ′ (2.25)

We take the Laplacian derivative of this term

∇2ψ =
1
4π

�
ζ (r′)∇2

(
1

|r − r′|
)

dV ′ (2.26)

noting that

∇2

(
1

|r − r′|
)

= 0 r �= r′

and that there is a singularity at r = r′. We therefore exclude a small region in
this neighbourhood by an infinitesimal sphere of radius ε centred on r′. Using
Gauss’s theorem to transform the volume integral to one over the bounding
surface at ∞, whose contribution is zero, and the sphere of radius ε we obtain

∇2ψ = −ζ(r) (2.27)

Since
ζ = ∇∧ v = ∇∧ (∇∧ ψ) = ∇(∇ · ψ) −∇2ψ

and since ∇ · ψ may without error be set to zero, we see that equation
(2.25) yields the relation between the vector potential and the vorticity.
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Furthermore, since the velocity is the curl of the vector potential we have

v(r) = − 1
4π

�
ζ(r′) ∧∇

(
1

|r − r′|
)

dV ′

=
1
4π

�
ζ(r′) ∧∇′

(
1

|r − r′|
)

dV ′

=
1
4π

�
ζ(r′) ∧

(
(r − r′)
|r − r′|3

)
dV ′ (2.28)

This velocity component is known as the induced velocity. It is not, however,
a velocity induced by the vorticity but rather the velocity field which is consis-
tent with the prescribed vorticity field. The two fields are mutually consistent,
neither one nor the other being the origin or consequence of the other.

Biot–Savart law–the rectilinear vortex

Consider the induced velocity at r resulting from an element δ�′ along the axis
of a vortex filament of strength Γ specified by its circulation at r′:

v(r) =
1
4π

Γ δ�′ ∧
(

(r − r′)
|r − r′|3

)
(2.29)

The direction of the velocity is normal to both δ�′ and (r − r′). Thus if we
have a uniform straight element which subtends angles θ1 and θ2 to the per-
pendicular from r to the filament at the ends, the induced velocity is

v =
1

4πr
Γ (cos θ1 + cos θ2) �̂ ∧ r̂ (2.30)

where r is the perpendicular distance vector from the point of measurement to
the filament, and �̂ and r̂ are the unit vectors in the direction of the vortex axis
and radius respectively. The velocity vector is normal to the plane containing
the filament and the point of measurement, or alternatively the flow rotates in
circles about the filament, clearly in the same sense as the circulation, i.e. in
the sense defined by the ‘corkscrew rule’ and the axis.

The potential is multi-valued due to the circulation. Thus taking the zero
of the azimuthal angle from some appropriate plane and in the same sense
of rotation as the circulation, the potential measured from the zero of the
azimuthal angle ϕ is

φ(ϕ) − φ(0) =
1
4π

Γ (cos θ1 + cos θ2) ϕ (2.31)

In particular, if the filament is infinite v = Γ/2πr, a result which can easily
be deduced from Stokes’ theorem, and the potential jump for a single rotation
φ+ − φ− = Γ.
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Induced velocity from a vortex sheet

The induced velocity at a point r due to an element δS′ at r′ of a vortex sheet
is easily shown to be

v(r) =
1
4π

γ(r′) ∧
(

(r − r′)
|r − r′|3

)
δS′ (2.32)

where γ is the surface vorticity of the sheet, i.e. the circulation associated with
unit surface area of the sheet.

Relationship with magnetostatics

In incompressible flow the two vector equations

∇∧ v = ζ and ∇ · v = 0 (2.33)

may be recognised as the fundamental equations of magnetostatics, with the
velocity taking the place of the induction (v ≡ B) and the vorticity that of
the current density (ζ ≡ μ0 j). Thus we expect that there will be a direct
relationship between the velocity and vorticity equivalent to the Biot–Savart
law in magnetostatics, as in equation (2.28) above.

There is, however, a clear distinction with magnetostatics in that, as we
noted earlier, the induced velocity is not generated by the vorticity, in contrast
to magnetostatics where the current is directly the source of the magnetic field.

Induced velocity due to a vortex loop

Consider a loop S with constant circulation Γ centred at the origin r = 0. The
induced velocity at the point r is directly obtained from the Biot–Savart law
(2.29) by integration around the loop � bounding S

v(r) =
� 1

4π|r − r′|3 Γ d�′ ∧ (r − r′) (2.34)

where r′ are points on the loop.
It follows from Stokes’ theorem that

�
�

B ∧ d�
∣∣∣
i
=

�
S

∂Bj

∂xj
dSi −

�
S

∂Bi

∂xj
dSj

where S is the surface bounded by the loop �.
Making use of the results that ∇(1/|r − r′|) = −∇′(1/|r − r′|) and

∇2(1/r′) = 0 except at r = 0, where ∇ and ∇′ are the gradient operators with
respect to r and r′ respectively, we obtain
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v(r) = − Γ
4π

∇
� (r − r′)

|r − r′|3 · δS ′ = − Γ
4π

∇Ω (2.35)

where Ω is the solid angle subtended by the loop � at the point r. The potential
is therefore

φ = − Γ
4π

Ω (2.36)

and the velocity components are readily evaluated.
Applying this result to a small loop δS we obtain

vr =
Γ δS

2πr3
cos θ vθ =

Γ δS

4πr3
sin θ vφ = 0 (2.37)

where θ is the angle between the radius vector r and the normal to the loop.
The product Γ δS defines the strength of an infinitesimal loop.

The potential resulting from the velocity field is easily seen to have a dis-
continuity in the plane of the loop. Thus taking a circuit from below the plane
of the loop to above, around and not enclosing the loop

φ+ − φ− = − Γ
4π

(Ω+ − Ω−) = Γ (2.38)

since Ω± = ∓2π for points lying just above and just below the plane of the
loop respectively. This result is clearly in conformity with the fact that the
loop is a multiply connected space.

A finite loop L of circulation Γ enclosing a surface S may be imagined to be
tiled with a set of adjacent touching infinitesimal loops, such that every loop
is everywhere in contact with either a neighbour or the bounding loop, each
loop having circulation Γ. The contribution to the circulation at the line of
contact of two infinitesimal loops is zero as the two are equal in magnitude but
with reversed direction and therefore cancel out. Around the boundary each
small loop makes a contribution to the total circulation, which is therefore
Γ. The resulting field may then be obtained directly by integration over the
individual loops.

2.7.1 Streamlined Flow around a Body Treated as a Vortex
Sheet

Irrotational incompressible flow requires the solution of Laplace’s equation subject to
the boundary conditions on the surface of the body and the incoming flow at infinity.
The solution of this equation is uniquely determined by the boundary conditions alone.
Thus although the boundary conditions may be applied in different ways, the solution
remains the same. It may usefully be applied in the case of the flow over the surfaces of
a streamlined body by replacing the surface by a vortex sheet of varying strength. The
necessary boundary condition to be satisfied is that the flow is everywhere tangential
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to the surface. The velocity difference across the sheet parallel to the surface defines
the surface vorticity

γ = v2‖ − v1‖ and v2⊥ − v1⊥ = 0 (2.39)

where v2‖ and v1‖ are the velocity components parallel to the sheet, and v2⊥ and
v1⊥ the components along the normal to the sheet, respectively.

If the interior of the body is considered to be replaced by the same material as
that external to it, and if the incoming flow is at rest at infinity, we may apply the
equation for the induced velocity to the flow to account for the perturbation introduced
into the flow by the body. To satisfy this condition we may consider the body to be
moving into stationary fluid with speed U. The induced velocity expression will now
hold. The interior of the body is therefore fluid moving with the same velocity U, but
enclosed by a vortex sheet whose strength matches the above boundary condition.6

Since there are no sources of mass or vorticity inside the body sheet, it follows from
the uniqueness theorem that the flow velocity inside the body must be constant and
the internal surface an equipotential.

Transforming back to the rest frame of the body, we may add an additional velocity
−U to those calculated from the induced velocity equation to obtain the resultant
v′ − U, where v′ is the induced velocity. Thus we see that the induced velocity may
be treated simply as the incremental velocity obtained by replacing the surface of the
body by a vortex sheet of appropriate strength. The fluid inside the surface is at rest,
as follows from the appropriate boundary condition, since the normal velocity at the
surface is everywhere zero.

It is clear from the uniqueness theorem given earlier that if the normal gradient
(velocity) condition on the boundary and the velocity at infinity are specified then the
complete velocity field is uniquely determined. This result is independent of the way
in which those boundary conditions are established. Therefore the flow is the same
for both body and vortex sheet. Since the surface strength of the sheet is given by
the tangential velocity at the surface of the body, it is therefore uniquely determined,
when the sheet coincides with the surface of the body.

The determination of the surface vorticity in two-dimensional flow is straightfor-
ward (page 58). In three dimensions the satisfaction of a Helmholtz condition, namely
that vortex lines are continuous, makes the use of vortex sheets complex. Similar
alternative approaches, but using source and doublet sheets (Section 2.8.2), are more
straightforward and preferred.

2.8 Sources and Sinks

Consider the flow with a singularity at the origin, where mass flows outwards at
a rate ρ m per unit time, m the volume flow rate being known as the strength
of the source. Since the flow must be spherically symmetric it is obvious that

6An appropriate pressure distribution is applied over the surface to maintain this config-
uration: namely, that associated with the aerodynamic forces.
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the total volume flux through a sphere of radius r must be m so that the radial
velocity is

vr =
m

4πr2
(2.40)

Such a flow is known as a simple source. If m is negative, fluid is extracted
from the flow at a rate −m per unit time and we have a sink.

The potential of this flow is clearly

φ = − m

4πr
(2.41)

By considering the z component of the velocity vz = vr cos θ it is easily shown
that the Stokes streamfunction is

ψ = − m

4 π
cos θ (2.42)

where θ = arctan(�/z) is the angle that the radius vector makes with the axis.

Source sheets

As with vorticity it is often convenient to identify a continuous distribution of
sources along the surface of an infinitesimally thin sheet. Thus we suppose that
a source of strength σ δS is embedded in the infinitesimal element of area δS.
The velocity tangential to the sheet is clearly zero, but the normal component
vn = 1

2σ, as is easily seen by calculating the volume flow through a cylinder
with faces δS above and below the surface.

As with the vortex sheet we may represent the surface of a solid body by a
source sheet. The boundary condition to be applied is that the total velocity
normal to the sheet is zero. It is made up of the contribution from all elements
of the sheet given by the expression above, namely

vn =
�

σ(r′)
(r − r′)
|r − r′| · n̂ dS′ = 0 (2.43)

where n̂ is the unit normal at r. This condition determines the function σ(r′)
on the surface in a similar way to strength of the vortex sheet.

2.8.1 Doublet Sources

A important extension of these flows is provided by a combination of a source
and a sink of equal strength, so that the outflow from one is extracted by
the other. Thus letting the source/sink combination be separated by d, the
potential is

φ = − m

4π |r − 1
2d | +

m

4π|r + 1
2d|

(2.44)
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At large distances, relative to the separation r � d, the potential has the form

φ ≈ − md

4πr2
cos θ

where θ is the angle between r and d.
Taking the limit d → 0 in such a way that md remains finite, we obtain the

potential for a doublet located at the origin

φ = − M
4πr2

cos θ (2.45)

where M = md is the doublet strength, and the axis is taken along the line of
the doublet.

The velocity components are easily found:

vr =
M

2πr3
cos θ

vθ =
M

4πr3
sin θ

vφ = 0 (2.46)

We note that on the axis θ = 0 the flow is directed along that axis, and
on the normal to the axis θ = π/2 the flow is again parallel to the axis. The
streamlines thus form a series of loops in the azimuthal plane. Comparing the
velocity profile above with that for an infinitesimal vortex loop (2.37), we see
that the two are identical provided the strength of the doublet M is equal to
the strength of the vortex loop Γ δS. However, there is an important difference
between doublets and vortex loops. In the case of the doublet, the potential
passing from the negative to the positive source is equal to the negative of that
one passing around the dipole. The total potential difference for a closed path
passing through the origin is therefore zero, in contrast to that for a vortex
ring where it is equal to the circulation.

The Stokes streamfunction for a doublet aligned along the axis is easily found
from that of a pair of sources a very small distance d apart to be

ψ =
M

4 πr
sin2 θ (2.47)

since the angle of separation between the two radius vectors is

θ+ − θ− = δθ = d sin θ/r
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2.8.1.1 Doublet sheets

As with sources we may have doublet sheets, with doublet density (strength per
unit area) μ. The doublet strength of the element of the sheet δS is therefore
M = μ δS. The potential of a doublet sheet S, bounded by the line L, of uniform
strength μ at a point P where the sheet subtends a solid angle Ω can be derived
from equation (2.45)

φ = − 1
4π

�
μ

1
r2

cos θ dS = − 1
4π

�
μdΩ = −μΩ (2.48)

where r is the distance from the element dS to the point of measurement, θ
the angle between the normal to the surface and the line r, and dΩ the element
of solid angle subtended at P by dS. Clearly this result is independent of the
surface provided it is bounded by L and subtends the same solid angle at P .

A doublet sheet is equivalent to a vortex sheet where the sheet is made up
of infinitesimal vortex loops of circulation Γ = μ.

2.8.2 Flow Around a Body Treated as a Source Sheet

Consider an acyclic flow with zero velocity at infinity. We show that the flow around
a finite body can be considered as a set of sources and doublets distributed over the
internal boundaries.

If φ and ψ are two harmonic functions (solutions of Laplace’s equation), then it
follows from Green’s theorem7 that.

�
S

{φ∇ψ − ψ∇φ} · dS = 0 (2.49)

where S is the boundary of the flow.
Defining r to be the distance from the point of measurement P , which is internal

to the surface S, ψ = r−1 is a well-behaved harmonic function except at r = 0. We
may consider the solution excluding a small region surrounding P . Integrating over
the surface of this region S′,

�
S′

φ∇
(

1
r

)
dS = −φP

� 1
r2

r2dΩ = −4πφP

7Green’s theorem is a direct consequence of Gauss’s theorem applied to products of the
two scalar functions φ and ψ

�
V

{φ∇2ψ − ψ∇2φ}dV =
�
S

{φ∇ψ − ψ∇φ} · dS

where S is the bounding surface of the volume V .
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where φP is the value of φ at P . Integrating over the surfaces S and S′ when P lies
in the interior of the flow,

φP = −
�
S

1
r

∂φ

∂n
dS

︸ ︷︷ ︸
Source term

+
�
S

φ
∂

∂n

(
1
r

)
dS

︸ ︷︷ ︸
Doublet term

(2.50)

The contribution from the element dS through the first term scales as r−1, i.e. as
a source at the element, whose strength is proportional to its area (equation 2.41).
Similarly the second term has the form of the potential from a doublet element directed
normal to the element dS (equation 2.45). Hence the flow may be considered to be the
result of a set of sources of strength ∂φ/∂n per unit area8 and doublets of strength
φ per unit area, where n is the surface normal distributed over the boundary surface.
However, the distributions of sources and doublets are not unique, being just one of
an infinite set, as will be shown by the following equation (2.52). The distributions
of sources and doublets are arranged to satisfy the boundary conditions on the flow
on the surface and at infinity. The flow φ′, external to S, is arbitrary and usually
unphysical, often taking place in the fluid which is used to replace the interior of the
solid body.

If the point P is external to the surface S, i.e. does not lie in the volume of the
flow, it follows that the origin r = 0 is no longer a singularity for the integrand
and therefore that the integral over the infinitesimal surface surrounding P is no
longer required. The volume integration implied in Green’s theorem therefore yields a
zero value

0 = −
�
S

1
r

∂φ

∂n
dS +

�
S

φ
∂

∂n

(
1
r

)
dS (2.51)

Suppose the flow is divided by the surface S into two acyclic regions and let φ be
the potential in the region which contains P , and φ′ the potential in the region not
containing P ; then φ satisfies equation (2.50) and φ′ equation (2.51).9 Hence, adding
we obtain

φP = −
�
S

1
r

(
∂φ

∂n
+

∂φ′

∂n′

)
dS +

�
S

(φ − φ′)
∂

∂n

(
1
r

)
dS (2.52)

where n′ is the boundary normal in the region external to P . The function φ′ is
determined by the unknown values of φ′ and ∂φ′/∂n′ on the boundary.

The principal application of these results is to the calculation of the flow around
a solid surface, where we imagine the flow perturbation generated by the body to
be the result of a series of sources and dipoles. Their strengths are determined by
the requirement to satisfy the boundary conditions at the surface and at infinity. To
match this condition with the above results we imagine that the surface of the body is
replaced by a discontinuity with the fluid internal and external to the surface having

8Compare this relationship with electrostatics where the surface charge density is propor-
tional to the normal electric field intensity.

9Note that S may be a surface of discontinuity so that φ and φ′ are independent.
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independent properties. The potentials φ and φ′ determine the source and doublet
strengths, and match the boundary conditions.

At present the flow external to P is undetermined and the problem is consequently
not unique. However, some specific conditions are used to limit the nature of the
sources and dipoles, and in doing so make the problem unique:

1. Let φ′ = φ on the boundary. The tangential component of the velocity is con-
tinuous across the boundary, but the normal component discontinuous

φP = −
�
S

1
r

(
∂φ

∂n
+

∂φ′

∂n′

)
dS (2.53)

and we have a distribution of sources alone with density (∂φ/∂n + ∂φ′/∂n′).

2. Let ∂φ/∂n = −∂φ′/∂n′ on the boundary. The normal velocity is continuous
across the boundary, but the tangential component discontinuous

φP =
�
S

(φ − φ′)
∂

∂n

(
1
r

)
dS (2.54)

and we have a distribution of doublets of density (φ − φ′).

It can be shown that the representations in terms of sources alone or doublets alone
are each unique, whereas the representation in terms of both sources and doublets
together is indeterminate.

The relation of the above discussion to the preceding one concerning the representa-
tion of the body surface by a vortex sheet (Section 2.7.1) is fairly obvious. The surface
which separates one region of flow from another may be considered to be the surface of
the body, and also to include the wake. The unprimed system is therefore the external
flow around the body, and the primed one the internal flow imagined when the body
is replaced by fluid. The wake, being infinitely thin, must consist of doublets alone.
The set of sources considered in the earlier section, being vortex rings, is essentially
equivalent to doublets.

Thus far this calculation considers the body moving into stationary fluid with a
speed −U, as in Section 2.7.1. We may therefore add a potential φ∞ associated with
the change of frame to one where the fluid is moving and the body stationary, with
velocity U. The potential, calculated in the preceding equations, represents the per-
turbation, which is introduced by the body, to the incoming flow, φ∞. The position
variable r may be expressed in a more convenient form by introducing the position
of the point P , namely r, and the position of the surface element dS′, namely r′,
separately. Therefore we change r → r′ − r. The velocity potential thus becomes

φ(r) = φ∞(r) −
�
S′

σ(r′)
1

|r′ − r| dS′ +
�
S′

μ(r′)
∂

∂n′

(
1

|r′ − r|
)

dS′ (2.55)

where σ(r′) and μ(r′) are the source and doublet densities at the point r′ on the surface
respectively, and φ∞(r) the potential at P due to the flow at infinity. As noted earlier
the distribution of sources and doublets together with the external applied flow must
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be such that all the boundary conditions are satisfied. If either sources or doublets only
are considered the distribution is unique, but if both are included there is an infinite
set of possible solutions. The satisfaction of the boundary conditions is achieved in
the manner outlined in Section 2.7.1 and forms the basis of the calculation technique
known as the panel method, described later in section 11.9.

2.8.3 Irrotational Incompressible Flow Around a Sphere

The solution for the flow around a sphere may be obtained very simply by con-
sidering the Stokes streamfunction resulting from an incoming flow of velocity
U and a doublet of strength M

ψ =
1
2
U r2 sin2 θ +

M
4 π r

sin2 θ (2.56)

The streamline ψ = 0 is therefore found on the spherical surface r = R if
M = −2 π U R3. The solution represents an isolated internal flow inside the
sphere with fluid flowing from one side of the doublet to the other. Outside
the surface, the flow is entirely composed of the incoming fluid. The two are
separated by the surface of the sphere.

The velocity of the flow is

vr = U cos θ +
M

2πr3
cos θ

vθ = −U sin θ +
M

4πr3
sin θ

vφ = 0

(2.57)

As expected, the normal velocity is zero on the surface r = R, which is therefore
made up entirely of streamlines running along the lines of constant azimuthal
angle. The flow around the surface of a sphere is characterised by the normal
velocity being everywhere zero, so that no fluid flows into the interior. The
points at which the incoming and outgoing streamlines meet the surface are
stagnation points where the total velocity is zero. It is a general result that
when the flow is perpendicular to the surface there can be no normal component
of the velocity, and by symmetry the tangential component must be zero also.

It follows from the uniqueness theorem that the flow is determined by the
boundary conditions, not by the way in which they are satisfied. Thus the
above flow is the solution for the irrotational incompressible flow around a
sphere due to an incoming flow of velocity U .

The tangential, and therefore total, velocity on the surface of the sphere is
therefore

vθ = −3
2
U sin θ (2.58)
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The sign is negative since θ is measured from the exit point on the surface.
Hence from Bernoulli’s theorem, the pressure on the sphere is

p = p0 +
1
2
ρU2

(
1 − 9

4
sin2 θ

)
(2.59)

where p0 is the pressure in the incoming flow at infinity.
The pressure is a maximum on the axis where the flow joins (θ = π) and

leaves (θ = 0) the sphere and the flow velocity is zero, and has a minimum at
the top (θ = π/2) and bottom (θ = 3π/2). The excess pressure maximum is
simply the stagnation pressure 1

2ρU2 and the minimum −5
8ρU2.

If p0 < 5
8ρU2 the minimum pressure is calculated to be negative, which is

clearly unphysical. This results in cavitation where the flow breaks away from
the surface. We will defer further discussion of this effect until later in connec-
tion with the flow around a cylinder.

Case study 2.I Rankine Ovals

When the separation of the sources d is finite (Figure 2.1), the streamfunction
becomes

ψ =
1
2

U R2 sin2 θ +
m

4π
(cos θ+ − cos θ−) (2.60)

r+

θ+

r−

θ−

P

+m

θ

r

O−m

d

U

Figure 2.1: Combination of a sink and a source of equal strength m on the axis forming a
doublet with separation d. An incoming flow of uniform velocity has been added.

As for the sphere, the streamline ψ = 0 forms a closed surface, but now of an oval
form provided md < 0. By reversing the signs of the incoming velocity U and source
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strengths m it is easily seen that the oval is symmetric about the centre line θ = π/2,
and, by reversing the signs of the angles θ, about the axis θ = 0. The points on the
surface where θ = 0 and θ = π are therefore stagnation points. It is simple to see
from dimensional analysis that these surfaces possess geometrical similarity, the shape
depending on the value of the dimensionless parameter U d2/|m|. The surfaces are
known as Rankine ovals. If the shape parameter is small, U d2/|m| � 1, the ovals
collapse to a sphere.

The distance along the axis z0 of the stagnation points is easily found by requiring
the total velocity to be zero at z0. Calculating the velocity on axis from the values for
two sources at distances z0 − d and z0 + d and the incoming flow U , we find z0 as the
solution of the quartic equation[

z0
2 −
(

1
2
d

)2
]2

+
md

2πU
z0 = 0 (2.61)

and the width of the body �0 is given by the condition ψ = 0 at θ = π/2.

�0
2
√

(d/2)2 + �0
2 +

md

2πU
= 0 (2.62)

Figure 2.2 shows the variation of the length z0 and width �0 plotted as ratios
of the source/sink separation d with the scaling parameter Ud2/|m|. The fractional
dependence of z0/d and �0/d expresses the geometrically similar nature of the flows,
which depend solely on the parameter Ud2/|m| as predicted. It can be seen that for
small values of the scaling parameter the oval reduces to a sphere. For large values the
length is equal to the separation d and the width decreases as (πUd2/|m|)−1/2 d.
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Figure 2.2: Plots of the length and width of a Rankine oval expressed as ratios of the
source/sink separation d as functions of the dimensionless parameter Ud2/|m|. The radius
of the equivalent sphere R is also shown.

This approach using a uniform flow from infinity and pairs of balanced source/sink
combinations may be used to generate the flow around a range of closed bodies, a
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method known as distributed sources. In particular, if the flow consists of a uniform
incoming flow with a point source and a line sink with total mass flow, of zero, the
body has a blunt front tapering towards the rear typical of the form of an airship.

If the source and sink are not balanced so that there is a net inflow (or outflow) in the
system the ‘body’ streamline extends to infinity generating an open system, but with
the fluid from the external flow separated from that of the source/sink combination.

2.9 Two-Dimensional Flow

Two-dimensional flows play an important role in many physical situations.
They correspond to the flow around bodies of large aspect ratio, where the
length normal to the dominant plane of the flow is very large, and the velocity
in this normal direction is approximately zero. As we have already seen in con-
nection with Laplace’s equation, the system differs from the three-dimensional
case by being necessarily multiply connected.

2.9.1 Irrotational Incompressible Flow

The case of irrotational flow where ∇∧ v = 0 introduces a particularly impor-
tant class of incompressible flows in two dimensions where

∇∧ (∇∧ ψ) → ∇2ψ = 0 (2.63)

and both the velocity potential and the streamfunction satisfy Laplace’s equa-
tion. In fact the two are closely related, for

vx =
∂φ

∂x
=

∂ψ

∂y

vy =
∂φ

∂y
= −∂ψ

∂x

(2.64)

These equations will be recognised as the Cauchy–Riemann relations for the
real and imaginary parts of the complex function w = φ + ı ψ of the complex
number z = x + ıy. Thus we conclude that the solution of irrotational incom-
pressible flow in two dimensions is given by the real or imaginary parts of an
analytic function, the complex potential, which is subject to the appropriate
boundary conditions. The complex velocity is given by

v = vx − ı vy =
dw
dz

(2.65)

The integral around a contour C is
�

C

dw
dz

dz =
�

C
(vx dx + vy dy) + ı (vx dy − vy dx) = Γ + ıQ (2.66)
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where Γ is the circulation around C and ρ Q the mass outflow through C. The
integral may be readily performed using Cauchy’s theorem

Γ + ıQ = 2πı
∑
poles

residues of
dw
dz

(2.67)

where the sum is taken of the residues over all the poles inside C, which are
therefore the source and vortex singularities.

The lines of constant potential (equipotentials) and streamfunction (stream-
lines) are clearly orthogonal. Furthermore, if w is replaced by ı w , the potential
and the streamfunctions are interchanged since φ + ı ψ → ı φ − ψ.

2.10 Applications of Analytic Functions in Fluid
Mechanics

There are a number of important applications of the methods of complex func-
tions to problems in two-dimensional fluid mechanics. We examine a few of
those of particular relevance.

2.10.1 Flow from a Simple Source and a Simple Vortex

Consider the complex potential expressed in polar form

w = a log(z) or z = exp
(w

a

)
(2.68)

If a is real, the potential and the streamfunction are given by

φ = a ln(r)
ψ = a θ

and the equipotentials (lines of constant φ) are circles of radius exp(φ/a) and
the streamlines radii at angles ψ/a. The flow is therefore that from a source at
the origin r = 0 along a line normal to the two-dimensional plane. The mass
output is easily calculated to be 2πρa per unit length. This flow therefore
represents a simple source at the origin of strength 2πa per unit length, and is
the two-dimensional form of that considered earlier (Section 2.8).

If a is imaginary (−ıb), the equipotentials and streamlines are interchanged,
φ = b θ and ψ = −b ln r. Thus the streamlines are circles, the flow rotating anti-
clockwise around the origin with speed vθ = b/r. The anti-clockwise circulation
is therefore

Γ =
�

v · dl =
2π�
0

b dθ = 2πb (2.69)
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The flow w = −ı (Γ / 2 π) log z is therefore a simple or rectilinear vortex of cir-
culation Γ centered at the origin. The induced velocity is Γ/2πr, in agreement
with our earlier derivation for the rectilinear vortex (Section 2.8.1).

More generally if a is complex

dw
dz

=
a

z
(2.70)

has a pole of residue a at the origin. Therefore there is a source of strength
Q = 2π�(a) and a vortex of circulation Γ = −2π�(a). In this general case the
flow spirals outwards, the flow being most easily obtained as a summation of
the above two solutions:

φ =
Q

2π
ln r − Γ

2π
θ and ψ =

Q

2π
θ − Γ

2π
ln r (2.71)

where ρ Q is the mass outflow per unit length from the source. It is readily
seen that the streamlines obey the equation

ln r =
Γ
Q

θ − ψ (2.72)

which is the equation of a family of equiangular spirals with angle arctan(Γ/Q)
between the tangent and the radius vector.

In two-dimensional flow, the vortex sheet becomes an assembly of infinitely
small rectilinear vortices distributed continuously with a total circulation
γ(�) δ� in a length δ� along the sheet. The axis of each vortex is perpendicular
to the plane of the flow. The total circulation around the sheet is therefore

Γ =
�

γ d� (2.73)

and the induced velocity at a point r is

v(r) =
� γ(r′)

2π|r − r′| d�′ (2.74)

perpendicular to (r − r′), where r′ is the position vector of the element d�′, the
sense being anti-clockwise if γ > 0.

2.10.1.1 Free vortex

The simple vortex with complex potential given by w = −ı (Γ / 2 π) log z can-
not exist in a practical situation due to the singularity at the origin. In a real
environment vortices avoid this unphysical behaviour in one of two ways:
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Tied vortex The flow rotates about a solid body. This occurs in many
important situations of which probably the most important is the flow
around aerofoils, where the circulation leads to the generation of lift
(Chapter 11). The centre of the vortex lies within the solid and the
vortex is not able to move freely.

Free vortex The flow rotates about a central core of rotational flow. The
vortex may move freely under the influence of flow generated externally.
There are many examples such as tropical storms (hurricanes, typhoons,
cyclones), tornadoes, smoke rings, fluid draining through a hole, etc.

The simplest model of free vortex flow is the Rankine vortex, which gives a good
representation of many flows found in nature. There is a central core of radius R with
constant vorticity ζ surrounded by an irrotational flow outside. Clearly the system
is axisymmetric. The rotational core therefore has a velocity profile given by Stokes’
theorem 2πrvθ = πr2ζ. The velocity at the core/surround interface must be continuous
and therefore the circulation of the surrounding fluid is Γ = π ζ R2. The velocity profile
of the vortex is therefore

vθ =

⎧⎪⎨
⎪⎩

1
2

ζ r if r ≤ R

1
2

ζ
R2

r
otherwise

(2.75)

Within the core where vθ = ωr, there is rotation with a constant angular velocity
ω = 1

2ζ. The pressure distribution is determined by a balance between the pressure
gradient and the centrifugal acceleration. Outside the core the flow is irrotational and
the strong form of Bernoulli’s equation hold:

p =

⎧⎪⎨
⎪⎩

p0 +
1
8

ρ ζ2 r2 if r ≤ R

p∞ − 1
8
ρ ζ2 R4

r2
otherwise

(2.76)

where p0 is the pressure on axis and p∞ the pressure at infinity. At the boundary
r = R the pressures must be equal and therefore

p0 = p∞ − 1
4
ρ ζ2R2 (2.77)

A free vortex in a moving fluid moves with the fluid, the rotation being
superimposed on the normal flow velocity. A tornado consists of a vortex tube
of hot moist air in contact with and rising up from the earth to contact the
cloud base, where it forms a ‘funnel cloud’. The upward-rising air acquires
circulation and the lines of vorticity become extended, increasing the vorticity.
The uprising column becomes the core of a vortex, which moves differentially
between its base where the wind velocity is small and up to its top where the
wind velocity is high, as shown by ‘tipping’ of the funnel cloud. The core vortex
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tube comprising the tornado becomes extended following Helmholtz’s third
law, as the lines of vorticity are tied to the fluid motion. Since the vortex tube
must coincide with a stream tube, the area of the tube decreases as its length
increases in accordance with the requirement of mass conservation. As the area
decreases, the vorticity and therefore the velocity increase in accordance with
Helmholtz’s fourth theorem. The funnel cloud is formed within the vortex core
by condensation in the lowered pressure.

2.10.1.2 Two-dimensional doublets and vortex loops

As in three dimensions two equal and opposite sources (source and sink) form
a doublet, in this case a line doublet. The complex potential is easily shown to
be given by

w = − M
2πz

φ = −M
2π

cos θ

r
ψ =

M
2π

sin θ

r
(2.78)

where M is the doublet strength per unit length. As earlier (Section 2.8.1),
the doublet strength is a vector directed along the line from the negative sink
to the positive source. The angle θ is that between the radius vector and the
doublet strength. The velocity components are

vr =
M
2π

cos θ

r2
vθ =

M
2π

sin θ

r2
(2.79)

In this case also we may consider the case of a pair of vortices of opposing
circulations ±Γ = ±2πb separated by a small distance d, the pair forming the
two-dimensional arms of an infinitesimal vortex loop closed at infinity. The
vortex strength is therefore Γd.

If d is imaginary, so that the displacement is in the y direction, the loop
strength is (−ı b/2 π) (ı d) equivalent to a doublet of strength M = Γ d with
axis in the x direction. More generally it is clear that if d is considered to be
complex the doublet and vortex pair are identical with the axis of one normal
to that of the other. In general both flows may be treated simply as components
of one with the axis in an appropriate direction. This result is in accordance
with our earlier analysis for three-dimensional singularities.

2.10.2 Flow Around a Body Treated as a Sheet of Complex
Sources and Doublets

In section Section 2.8.2 we considered the representation of the acyclic flow
external to a three-dimensional body in terms of a distribution of sources and
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doublets, or vortex rings. In two dimensions the problem is complicated by
the cyclic nature of the flow, and the consequent need for the circulation to
be specified. Although the problem may be attacked by an extension of the
methodology used earlier, it is more convenient to make use of the methods of
complex variables and in particular the Cauchy integral theorem.

It is well known that the Cauchy integral theorem applies only to functions
that are analytic within the contour over which the integral is performed.
This requires that the function be single valued everywhere, in addition to the
conditions of continuity and the existence of the complex derivative. Since the
flow is cyclic, the complex potential is not single valued, increasing by Γ for a
rotation around the body, and we require a calculation of the flow variables,
e.g. potential, external to the body. The contour of integration must therefore
be chosen to contain the external point P within it, but not involve a complete
rotation around the body. Such a contour is shown in Figure 2.3 where the
integral is taken nearly round the body C1 lying on its surface, before being
taken along a path to infinity, C2, and completed by a loop at infinity, C3,
before returning by a path, C4, parallel to, but separated by an infinitesimal
distance from, C2. Thus the complete contour C = C1 + C2 + C3 + C4 and
contains the point P .

•P

C3

C1

C2 C4

Figure 2.3: Contour for integrating the flow at an external point P around a body
generating cyclic flow made up of a set of elements C1 to C4.

As in the three-dimensional case, we consider initially the case where the
flow at infinity is at rest. At this stage the body is considered to be moving
through the fluid with speed −U. We may then bring the body to rest by
adding a further external flow with potential φ∞ representing an incoming
flow with speed U.
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Consider the integral containing the integrand formed by the term z−1 dw/dz
containing the complex velocity over C, where z is taken with origin at the
point P , and which therefore is a pole with residue dw/dz|P . The component
integrals

�
C2

dw
dz

z−1dz = −
�
C4

dw
dz

z−1dz and
�
C3

dw
dz

z−1dz = 0

since (vx, vy)/r → 0 faster than 1/r at infinity. The integral around C is there-
fore determined by the residue at P which is described in a clockwise sense.
Therefore it follows from the Cauchy integral theorem that

�
C1

dw
dz

z−1dz =
�
C

dw
dz

z−1dz = −ı 2π
dw
dz

∣∣∣
P

This equation may be cast into a more familiar form by moving the origin
to a convenient location, so that if z is the position of the point P and z ′ that
of an element of the surface of the body,

dw
dz

∣∣∣
z

= ı
1
2π

�
C1

dw
dz

∣∣∣
z′

1
(z − z ′)

dz ′ (2.80)

and, by integration, the potential

w(z) = ı
1
2π

�
C1

dw
dz

∣∣∣
z′

ln(z − z ′) dz ′ (2.81)

These results generate the analytic continuation of the complex velocity from
the surface into the external flow. The equations represent the velocity and
potential distributions due to a set of sources and vortices distributed around
the body, with complex strength a = ı/(2π) dw/dz per unit length. Defining
the velocity components v‖ along the surface in an anti-clockwise sense and v⊥
along the outward normal to the surface, it is easily shown that

dw
dz

dz = (v‖ − ı v⊥) ds

where ds is an element of the path around the surface. The strength of the
source per unit length is v⊥ and the vortex strength per unit length v‖. If the
body surface is impermeable, the normal component of velocity is zero, v⊥ = 0,
and the surface is simply a vortex sheet. The circulation around the body is
easily seen to be the total contribution of the vortices, i.e. the imaginary part
of the source.
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A similar analysis can be performed for the function w/z to give an equiva-
lent result for the analytic continuation of the complex potential

w(z) = ı
1
2π

�
C1

w(z′)
∣∣∣
z′

1
(z − z ′)

dz ′ (2.82)

which represents the flow in terms of a distribution of complex doublets and
vortex pairs.

In general we may form the solution for the flow by a sum of these two
solutions, i.e. in terms of an arbitrary sum of complex sources and doublets.
The equivalence of these results to those obtained earlier in three dimensions in
Section 2.8.2 is immediately obvious. In the above analysis we followed a deriva-
tion based on the properties of complex functions. However, an alternative, but
entirely equivalent, formulation using Green’s theorem and the potential of a
simple line source is also possible following the methods of Sections 2.8.2.

As noted above, the flow at this stage w(z) is calculated in a frame in which
the fluid is at rest at infinity. We may transform to the frame in which the
body is at rest by adding the additional potential w∞ due to an incoming flow
of velocity U to obtain

w(z) = w∞(z) +
1
2π

�
C1

(
σ(z ′) − ı γ(z ′)

)
ln(z − z ′)dz ′ (2.83)

where σ(z) is the source density and γ(z) the surface vorticity. As noted earlier
for a solid surface, σ(z) is zero, although it will seen that for some purposes a
finite value may be appropriate. The flow described by equations (2.80), (2.81)
and (2.82) represents the perturbation induced in the flow by the body.

It is clear from the above result that we may consider the surface of the body
as a vortex sheet, as was done earlier. The distribution of the surface vorticity
may then be directly calculated as follows. The sheet is represented by a finite
distribution of N rectilinear vortices. The induced velocity due to each vortex
may be calculated at each vortex point in turn, to which must be added that
due to the external incoming flow φ∞. Since the normal component of the
velocity on the surface must be zero (v⊥ = 0), this condition gives rise to a set
of N simultaneous equations, balancing the induced velocity from the vortices
against that due to the incoming flow. However, the equations are singular,
and they are therefore not independent. This is a consequence of the fact that
the total mass flow through the surface is zero, and results from the sum of
the products of the normal component of the flow velocity with the length
of the element. One equation is therefore redundant and must be replaced
appropriately, in this case by the sum of the tangential velocities representing
the prescribed circulation. The singularity of the resulting algebraic equations
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is a consequence of the multi-connectivity in two-dimensional flow, which can
only be resolved by specifying the circulation around the body.

The direct application of complex function analysis to the properties of a
thin wing is given in the following case study.

Case study 2.II Application of Complex Function Analysis to
the Flow around a Thin Wing

In contrast to three dimensions, we cannot normally have a ‘free’ vortex sheet, i.e. not
bound to the surface of a body, in two dimensions. This is due to the fact that the
necessary tangential velocity discontinuity is not consistent with the requirements of
continuity of the normal velocity component and pressure across the sheet required by
Bernoulli’s equation. This condition will be relaxed if there is a contact discontinuity
of composition or entropy.

We consider the case of a wing inclined at an angle of attack α to an incoming flow
of velocity U along the x axis. The wing is thin if the thickness of the wing profile t is
much smaller than the chord c, the distance between the leading and trailing edges,
and both the angular deflection along the wing θ and the angle of attack α are small.
The wing then makes only a small perturbation to the incoming flow. The wing profile
may be considered to be made up of two components, one symmetric representing the
thickness of the wing along the x direction y± = ±g(x), where + refers to the upper
surface and − to the lower, and the other the shape of the mean line (camber) and
the angle of attack y = h(x) − α x. The full profile is therefore

y± = f±(x) = ±g(x) + h(x) − α x

Since the equations of fluid mechanics are additive for irrotational incompressible
flow, we may write the perturbation potential in terms of a symmetric component
φs associated with the thickness and a second anti-symmetric component φa with
the camber and the angle of attack. As the wing is thin, the normal component of
the perturbation velocity is approximately given by the y derivative of the relevant
potential, and the angle the surface makes with the incoming flow is approximately
given by dy/dx. Consequently the condition for zero net flux through the wing may
be written as

lim
y→0±

∂φs

∂y
= us

y(x, 0±) = ±U
dg

dx

lim
y→0±

∂φa

∂y
= ua

y(x, 0±) = U

[
dh

dx
− α

] (2.84)

so that φs is symmetric and φa anti-symmetric with respect to the x axis, α being the
angle of attack. The perturbation velocities exhibit corresponding symmetries

us
x(x,−y) = us

x(x, y) : us
y(x,−y) = −us

y(x, y)

ua
x(x,−y) = −ua

x(x, y) : ua
y(x,−y) = ua

y(x, y)
(2.85)
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Because φs and φa are both solutions of Laplace’s equations satisfying their respective
boundary conditions (2.84), we obtain the source and vorticity distributions from the
thickness and camber functions. Since the wing is thin we may treat it as a combination
of source and vorticity sheets, the strength of the sheets being given by the change in
the appropriate velocity discontinuities across the wing:

σs = lim
y→0+

∂φs

∂y
− lim

y→0−
∂φs

∂y
= 2uy0

γs = lim
y→0+

∂φs

∂x
− lim

y→0−
∂φs

∂x
= 0

σa = lim
y→0+

∂φa

∂y
− lim

y→0−
∂φa

∂y
= 0

γa = lim
y→0+

∂φs

∂x
− lim

y→0−
∂φa

∂x
= 2ux0

(2.86)

where ux0 = U(dh/dx − α) and uy0 = U dg/dx are the perturbation velocities at the
wing surface. Clearly the sources are associated with the symmetric perturbation due
to the thickness of the wing, and the vorticity with the anti-symmetric one due to the
camber and inclination of the mean line. It is the latter which gives rise to lift.

The velocity determined by the symmetric potential function φs is calculated by
the direct application of equation (2.80) taking the contour C1 to be forward along
the bottom surface and backward along the top of the wing

dw
dz

∣∣∣∣∣
s

=
1
2π

c�
0

(
us

y(x′, 0+) − us
y(x′, 0−)

)
(z − x′)

dx′ =
U

π

c�
0

1
(z − x′)

dg

dx
dx′ (2.87)

making use of the surface boundary condition (2.84). Hence we see that the symmetric
flow is determined independently from the anti-symmetric one and depends solely on
the thickness profile of the wing section.

The velocity may be also written in terms of the source distribution

dw
dz

∣∣∣
s

=
1
2π

c�
0

σ(x′)
(z − x′)

dx′ =
1
π

c�
0

uy0(x
′)

(z − x′)
dx′ (2.88)

Separating the real and imaginary parts,

us
x(x, y) =

1
π

c�
0

(x − x′) uy0(x
′)

(x − x′)2 + y2
dx′

us
y(x, y) =

1
π

c�
0

y uy0(x
′)

(x − x′)2 + y2
dx′

In the limit as the point of measurement tends to the surface, y → 0+, the second
integral receives contributions only from x′ near x, and the integral tends to the
expected result lim(y → 0+)us

y(x, y) → uy0. However, the integral for us
x at the aerofoil

is less simple. Divide the integral into three parts
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us
x(x, 0±) =

1
π

(x′−δ)�
0

(x − x′) uy0(x
′)

(x − x′)2 + y2
dx′ +

1
π

(x′+δ)�
(x′−δ)

(x − x′) uy0(x
′)

(x − x′)2 + y2
dx′

+
1
π

c�
(x′+δ)

(x − x′) uy0(x
′)

(x − x′)2 + y2
dx′

Consider the second integral: as δ → 0, uy0(x
′) ≈ uy0(x) and may be treated as con-

stant in the integral. The remaining integrand is odd in (x − x′) and the integral
therefore zero. The velocity us

y(x, 0±) is therefore given by the Cauchy principal
value10

us
x(x, 0±) = ux0(x) =

1
π

c
� c

0

uy0(x
′)

(x − x′)
dx′ =

1
π

c
� c

0

σs(x′)
(x − x′)

dx′ = U
dg

dx
(2.89)

The solution of this integral equation allows the source distribution σ(x) to be evalu-
ated knowing the symmetric component of the wing section profile g(x).

Turning now to the anti-symmetric components, which are determined by the vor-
ticity function,

dw
dz

∣∣∣∣∣
a

= − 1
2π ı

c�
0

γa(x′)
(z − x′)

dx (2.90)

whose imaginary part gives the normal velocity on axis. As above, the integral on axis
is singular and in a similar manner can be shown to be equal to the Cauchy principal
value:

us
y(x, 0±) = uy0(x) = − 1

2π
c
� c

0

γa(x′)
(x − x′)

dx′ = U

[
dh

dx
− α

]
(2.91)

This integral equation, known as Glauert’s equation, forms the basis of the the-
ory of thin wings. It allows the vorticity distribution γ(x) to be obtained knowing
the functional form of the asymmetric component of the profile h(x). The equation
may be integrated directly, but the more usual approach, through a Fourier series
approximation for the vorticity, will be outlined in Section 11.5.

We cannot approach the calculation of the velocity of the anti-symmetric com-
ponents using the Cauchy integral theorem as in equation (2.87) as simply as for
the symmetric ones since va

y is symmetric across the wing. To do so we need to
find a function with which we can multiply the normal component of the velocity
in order to generate an anti-symmetric function in y which may then be treated as us

y.
Such a term is ζ(z) =

√
z/(z − c). We take the positive root on the x axis for x > c,

ζ =
√

x/(x − c). For 0 < x < c, ζ(x, 0±) = ±ı
√

x/(x − c). For x < 0 on the x axis,

10The Cauchy principal value of an integral, whose integral contains a singularity at x′ = x,
is defined by

c
� c

0
∼ dx′ ≡ lim

δ→0

⎡

⎣
(x−δ�
0

+

c�
(x+δ)

⎤

⎦ ∼ dx′
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ζ(z) is real and negative, ζ = −√x/(x − c). Thus ζ has a branch cut from x = 0 to
x = c. Substituting the function ζ(z)ua

y for us
y in equation (2.87) we obtain

dw
dz

∣∣∣∣∣
a

=
1

2πı
ζ−1(z)

c�
0

(ζ(x′, 0+) − ζ(x′, 0−))
(z − x′)

ua
y(x, 0) dx′

=
U

πı

√
(z − c)

z

c�
0

1
(z − x′)

(
dh

dx
− α

)√
x′

c − x′ dx′ (2.92)

We may calculate the circulation about the wing by integrating the velocity around
a contour at large distances from the wing, |z| � c. The circulation is obtained from
the residue at the origin z = 0, since there is no source of vorticity in the flow external
to the wing:

dw
dz

≈ −ı
U

π z

c�
0

(
dh

dx
− α

)√
x′

c − x′ dx′

Γ = 2U
c�
0

(
dh

dx
− α

)√
x′

c − x′ dx′ (2.93)

The circulation is therefore determined solely by the camber (mean) line of the
wing and the angle of attack. For a flat plate, h(x) ≈ 0 and the circulation has the
value Γ = −π cα U . Our choice of the function ζ(z) ensures that the velocity at the
trailing edge x = c, equation (2.92), is finite. This condition (the Kutta condition),
necessary for a well behaved flow around the wing section, is discussed in Chapter 11.
The velocity at the leading edge (x = 0), however, tends to infinity. This is due to the
sharp edge at the leading edge, which is avoided in real wing sections.

2.10.3 Flow Around a Cylinder with Zero Circulation

Consider the complex potential established by the superposition of a uniform
flow with a doublet at the origin, as suggested by the solution for the flow
around a sphere:

w(z) = U

(
z +

R2

z

)
(2.94)

The real and imaginary parts are easily identified

φ + ı ψ =
{

Ux

[
1 +

R2

(x2 + y2)

]
+ ı Uy

[
1 − R2

(x2 + y2)

]}

Clearly ψ = 0 on the surface (x2 + y2) = R2, i.e. on the surface of a cylinder,
and on the x axis, y = 0, which is therefore a streamline. As x → ±∞, φ →
Ux and vx = ∂φ/∂x = U and vy = ∂φ/∂y = 0. Thus there is an incoming and
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outgoing flow of velocity U parallel to the x axis. The solution represents the
flow around a cylinder of radius R with incoming velocity U .

The velocity at any point on the surface identified by its polar co-ordinates
r, θ is easily calculated

vr =
∂φ

∂r
= U cos θ

(
1 − R2

r2

)

vθ =
1
r

∂φ

∂θ
= −U sin θ

(
1 +

R2

r2

) (2.95)

and vr = 0 if r = R, i.e. on the surface. The pressure on the surface may be
calculated from Bernoulli’s equation:

p = p0 +
1
2
ρ
(
U2 − v2

)
= p0 +

1
2
ρU2
[
1 − 4 sin2 θ

]
(2.96)

The pressure maxima at θ = 0 and π result from the flow being brought to
rest. At these points the streamline from the free stream joins the surface. By
symmetry the velocity at this point must be zero, a stagnation point where the
velocity is zero, as can be checked from equation (2.95). The pressure p = p0 +
1
2 ρ U2 is the result of the ambient pressure plus the kinetic pressure resulting
from the flow being brought to rest. The pressure minima at θ = π/2 and 3π/2
result from the acceleration of the fluid as the streamlines are displaced by the
surface, in accordance with the conservation of mass. If p0 < 3

2 ρ U2, equation
(2.96) shows that the pressure would be negative, which is clearly non-physical.
In fact a cavity will form before this would occur, around which the flow will
contour, a phenomenon known as cavitation. The cavity will in fact be filled
with vapour.

If we compare the values of the differential pressure minima on a sphere,
−5

8 ρ U2, with those on a cylinder, −3
2 ρ U2, we notice that the latter are much

larger in magnitude. This is due to the relieving effect associated with three-
dimensional space. It is a consequence of the fact that fluid has a much greater
space to move into in three dimensions than in two, with the result that the
maximum speed in the latter case is increased from 3

2U to 2U . This effect is
symptomatic of the difference between three- and two-dimensional flow.

Clearly p(θ) = p(π − θ) = p(π + θ) = p(−θ), and pressure is symmetrically
distributed over the surface. Since the only force on the cylinder is due to
pressure, the net force is therefore zero, i.e. contrary to experience there is
no drag force exerted in the direction of flow. This is a consequence of the
‘ideal fluid’ approximation, which does not allow dissipation, which would be
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generated by drag. More generally it is an example of d’Alembert’s paradox
which states that there is no drag in steady flow of an ideal fluid when the
body is immersed in the fluid.

2.10.4 Flow Around a Cylinder with Circulation

As we have seen, the flow in two dimensions is only fully specified if we include
the circulation about the cylinder. Therefore we add a vortex flow to that
already considered

w(z) = U

(
z +

R2

z

)
− ı

Γ
2π

ln
( z

R

)
(2.97)

The potential and the streamfunction have the values

φ + ıψ =
{
Ux

[
1 +

R2

(x2 + y2)

]
− Γ

2π
θ

}
+ ı

{
Uy

[
1 − R2

(x2 + y2)

]
− Γ

2π
ln
( r

R

)}

The velocities are easily calculated

vr =
∂φ

∂r
= U cos θ

(
1 − R2

r2

)
and vθ =

1
r

∂φ

∂θ
= −U sin θ

(
1 +

R2

r2

)
+

Γ
2πr

(2.98)
The stagnation points occur on the surface of the cylinder r = R when the

azimuthal velocity is zero, i.e.

sin θ =
Γ

4πUR

which has solutions when Γ ≤ 4πR, and the stagnation points occur on the top
half of the cylinder for positive circulation Γ. In this condition the incoming
flow is sufficiently strong to overcome the effect of the circulation on the surface.

For the case Γ > 4πUR, it is clear from symmetry arguments that if a stag-
nation point occurs, it must lie on the line θ = π/2 away from the surface
where

v = vθ = −
(

1 +
R2

r2

)
U − Γ

2πr

Hence there are stagnation points when

r =
Γ

4πU
±
√(

Γ
4πU

)2

− R2

One stagnation point lies outside the cylinder and is clearly physical. The
second occurs inside the cylinder and is clearly non-physical. It is associated
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with the parent flows, from which the potential was constructed, namely a
doublet and a uniform flow, together with the circulation.

The total velocity on the surface is just the tangential component vθ so that
the pressure is obtained from Bernoulli’s equation

p = p0 +
1
2
ρU2

[
1 −
(

2 sin θ +
Γ

2πUR

)2
]

(2.99)

The condition for the development of cavitation is weakened on the
vacuum side of the cylinder at θ = π/2 by the presence of circulation to
p0 < 1

2ρU2
{

[(Γ/2πUR) + 2]2 − 1
}

.
The solution is quite arbitrary in that the circulation is arbitrary and any

value will give a realistic flow around the cylinder. This is in conformity with
our conclusions regarding uniqueness in two-dimensional flow.

The forces on the cylinder are easily calculated as they are due solely to the
pressure on the surface

F = −
�

p dS

= −
� (̂

i cos θ + ĵ sin θ
)

pR dθ

= −
2π�
0

[
p0 +

1
2
ρU2

(
1 − Γ2

4π2U2R2

)]
− 1

2
ρU2

[
4 sin2 θ − 2

Γ
πUR

sin θ

]

×
(̂
i cos θ + ĵ sin θ

)
R dθ

= 0 î − ρ U Γ ĵ (2.100)

The drag force, in the direction of the incoming flow, is therefore zero, as
predicted by d’Alembert’s paradox. There is also a lift force in the −y direction.
This is due to the pressure difference established between the upper surface
(+y) and the lower one (−y) due to the slowing and speeding up of the flow
on these surfaces respectively, which results from the circulation; the pressure
change is then accounted for by Bernoulli’s equation. The form of the lift

L = −ρ U Γ (2.101)

is an example of a more general result, to be derived later in Section 2.11,
namely the Kutta–Zhukovskii lift formula.

The lift from a rotating body is familiar behaviour due to this effect. This
behaviour, known as the Magnus effect, was first observed in the motion of
rotating cannon balls in the eighteenth century. Today we see it in the swerve
imparted to spinning tennis or golf balls. It is also considered of some impor-
tance in the flight of spinning missiles.
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2.10.5 The Flow Around a Corner

Consider the complex potential

w = Azn (2.102)

Using polar co-ordinates (r, θ)

φ + ı ψ = Arn [cos(nθ) + ı sin(nθ)]

Clearly ψ = 0 if θ = kπ/n, where k is integral. Thus if n > 1 the potential
represents the flow inside a corner of angle π/n, and if n < 1 then around the
outside. The velocities are

vr =
∂φ

∂r
= nArn−1 cos(nθ)

vθ =
1
r

∂φ

∂θ
= −nArn−1 sin(nθ)

(2.103)

If n > 1 the flow lies inside the corner, vr, vθ → 0, as r → 0, and the flow is
well behaved. However, if n < 1 the flow lies around the outside of the corner
vr, vθ → ∞, as r → 0. This is clearly non-physical, and indeed requires the
pressure p → −∞. The flow will, as a result, separate at the corner with the
flow below the line of separation becoming undefined. The introduction of a
weak viscosity leads to the formation of a boundary layer (Chapter 6) which
separates due to the large adverse velocity gradient at the corner (Section 6.7).
The separated flow forms a vortex which curls around the corner. In practice
the resultant flow is likely to be confused and turbulent11

2.11 Force on a Body in Steady Two-Dimensional
Incompressible Ideal Flow

As we have seen in Section 2.10.4, the flow around an asymmetric streamlined
body generates a lift force normal (y direction) to the incoming direction of
flow. This is a result of the pressure differential developed on the body by virtue
of Bernoulli’s equation as the flow over the (upper) more extended side of the
body is more accelerated than that over the (lower) less extended side. The
mass flux in the stream tubes being is increased on the upper side to accom-
modate the reduced cross-section. Consequently the pressure on the upper side
is reduced more than that on the lower one, and a net force is generated. The
body is immersed in the fluid, no separation of the flow over the surface must

11In compressible flow this condition is relaxed and flow around the outside of a corner can
occur without separation provided the angle is not too large (Section 9.4.2).
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occur, i.e. the body must be streamlined, or the flow is no longer well behaved
and the lift may be destroyed. Separation only occurs along the same line on
both the upper and lower surfaces (trailing edge).

We initially consider only the two-dimensional flow about a section, i.e. a
transverse element dz of a body of large span and uniform section. The flow is
continuous with separation only at the trailing edge. The forces on the body
may be easily calculated by considering the flow of momentum onto the surface.
The force is then the rate at which momentum is given to the surface, which
in turn is equal to minus the rate at which fluid gains momentum from the
surface. This is determined by the momentum flux at the surface:

Fi = −
�

S
(p δij + ρ vi vj) dSj

where v is the flow velocity and S is the surface of the body.12

In steady flow the divergence of the momentum flux tensor div Γ =
∂ Γi,j/∂ xj = 0 and it follows from Gauss’s theorem that the surface S may
be replaced by any enclosing the section (and excluding any additional
singularities). We therefore extend the surface of integration to one at
very large distances from the body. As the distance tends to infinity the
perturbation introduced by it tends to zero, and the flow reduces to that
of the incoming flow. Thus we write v = U + u, where U is the incoming
flow velocity and u the (small) perturbation velocity. Defining co-ordinate
directions x in the direction of the incoming flow, and y perpendicular to it
defined by an anti-clockwise rotation, and considering only two-dimensional
bodies, the area element dS can be written in terms of the line element dl per
unit width. Hence taking dS outwards and dl anti-clockwise13 (Figure 2.4),
dSx = dly dz = dy dz and dSy = −dlx dz = −dxdz.

12Since there is no mass flux through any element of the surface v · dS = vj dSj = 0,
the lift force may be simply expressed as an integral of the pressure over the surface
Fi = − �

S
p dSi.

13The sense of rotation is taken in accordance with the normal mathematical form, as used
for example in complex forms, through the small angle x → y. Thus on a normal plot positive
rotation is anti-clockwise. With the axes as defined, i.e. the x direction going from the leading
to the trailing edge, this does not conform with conventional aeronautical practice, where the
sense is clockwise. As a result the signs of terms associated with rotation, namely circulation or
vorticity (lift and moment), are opposite to those in many standard aeronautical engineering
texts. However, this convention allows the direct use of the Cauchy integral theorem for terms
such as circulation in terms of residues. To conform to aeronautical practice, we introduce a
sign change in the definition of coefficients of the lift and the pitching moment when necessary.
There should be no confusion provided the reader is aware which convention is being used.
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Figure 2.4: Sketch of the geometry of the flow around the body surface.

Since the surface of integration may be taken far from the wing, we may
neglect terms of second order in u. Bernoulli’s equation becomes

p + 1
2 ρ (Ui + ui)

2 = p0 + 1
2 ρ U2

∴ p ≈ p0 − ρ Ui ui = p0 − ρ U ux

Since the surface is closed,
�

ρu · dS = 0 and
�

p0 dS = 0. Evaluating the
forces to first order in u we obtain the following:

1. Drag force parallel to the incoming flow

Fx = −
�

(p + ρ U ux) dSx + U
�

ρ (ux dSx + uy dSy) ≈ −
�

p0 dSx = 0
(2.104)

This result validates d’Alembert’s paradox for ideal flow, but is only valid
if the flow is inviscid and steady state. The proof is easily extended to
three dimensions provided no discontinuity occurs.

2. Lift force normal to incoming flow

Fy = −
�

(pdSy + ρ U uy dSx) ≈ −
�

p0 dSy + ρ U
� (

ux dSy −
�

uy dSx

)
= −ρ U

�
(ux dlx + uy dly) dz = −ρ U

�
u · dl dz = −ρ U Γ dz

(2.105)

where

Γ =
�

u · dl (2.106)

is the circulation around the body, taken anti-clockwise. Since the flow is
assumed to be ideal, the circulation is independent of the contour around
the body which is used to evaluate it.
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This analysis is restricted to the case where the flow at large distances from
the body can be considered as a perturbation, i.e. the flow around the body
must be continuous. This excludes cases where a region of independent flow,
known as the wake, is separated by vortex sheets from the incoming flow. In
flow around a streamlined body, where the streamlines run smoothly around
the surface, such a discontinuity is forbidden in two dimensions by Bernoulli’s
theorem. This analysis is easily extended in three dimensions. However, in three
dimensions a vortex sheet with discontinuous tangential velocity is allowed
even for streamlined bodies. As we shall see (Section 11.8.4) this leads to a
drag force as the perturbation within the localised extended vortex sheet is
not necessarily small.

2.12 Conformal Transforms

Conformal transformations relate a one-to-one mapping from one two-
dimensional space to another. Thus to each point P ′ ≡ (ξ, η) in one space ζ
there is a corresponding point P ≡ (x, y) in the second z. The transformation
is therefore represented by a pair of functions x(ξ, η) and y(ξ, η). In terms
of the complex numbers ζ = ξ + ıη and z = x + ıy, this transformation is
represented by a complex function z = f(ζ). It is assumed for the purposes of
the mapping that within the space to be mapped z = f(ζ) is single valued,
contains no singularities and its inverse ζ = f−1(z) is similarly well behaved.

If the function f(ζ) is analytic, so that the derivative f ′(ζ) = dz/dζ is well
defined, the transformation is conformal. Consider two small elements dζ1 and
dζ2 in the space of ζ, which become dz1 and dz2 in that of z. Then since the
derivative is independent of direction,

dz1 =
dz

dζ
dζ1 and dz2 =

dz

dζ
dζ2 (2.107)

The angles between the elements dz1 and dz2, and the elements dζ1 and dζ2,
are given by the difference of their arguments. Therefore since

arg (dz2) − arg (dz1) = arg
(

dz2

dz1

)
= arg

(
dζ2

dζ1

)
= arg (dζ2) − arg (dζ1)

the angles between elements are unchanged by the transformation. Further-
more, if we consider the magnitude of the elements during the transformation

|dz1|
|dζ1| =

∣∣∣dz

dζ

∣∣∣ = |dz2|
|dζ2|

we notice that small lengths are transformed by a constant scale factor. Hence
we see the conformal nature of the mapping, in that infinitesimal areas are
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transformed so as to maintain geometrical similarity, the scale factor being
equal to the derivative of the transformation f ′(ζ). Small rectangular elements
are therefore transformed into small rectangular elements but of different size.
However, straight lines of finite length are not necessarily transformed into
straight lines. Thus the similarity of finite elements is not maintained.

Conformal transformations allow a great extension of known solutions of
flow, such as those identified earlier, by mapping from a simple space into one
more closely matching the flow to be studied, e.g. by transforming the flow
around a cylinder to that around an aerofoil section. Clearly if the complex
potential in z space w(z) is analytic, then so is w(f(ζ)) in ζ space and there-
fore it represents a solution to the corresponding fluid problem. The velocity
potential and the streamfunction also transform in the same way. Thus if the
streamfunction is constant on a surface S in z, it will also be constant on the
transformed surface S′ in ζ. Hence if a circle S in z can be transformed into
an aerofoil section S′ in ζ, we may obtain the flow around the wing by a direct
transformation from the solution in the space of the cylinder into the space of
the aerofoil.

The complex velocity is transformed by

v = vx − ı vy =
dw

dz
=

dw

dζ

dζ

dz
=
[
f ′(ζ)
]−1 (vξ − ı vη) (2.108)

Conformal transforms have many applications in solving two-dimensional
problems. For example, consider the transform z = ζn. Then the wedge space
contained by the lines θ = 0 and θ = π/n in z space is transformed to the
upper half plane in ζ. Therefore consider a flow parallel to the real axis in ζ,
namely w = Uζ = Uz1/n, and we obtain the flow around a corner discussed in
Section 2.10.5. Several different flows may be constructed in this manner, e.g.
the Helmholtz flows described in the following appendix. Further examples of
the approach are to be found in the flow around an ellipse, problems #8 and
#9. Further applications of the conformal transform approach will be found in
Appendix 11.B.

Appendix 2.A Drag in Ideal Flow

As we have seen, d’Alembert’s paradox ensures that there is no drag in ideal flow
provided the flow is both:

a. Continuous No cavitation or separation has taken place around the surface
of the body.

b. Steady The flow around the body introduces no oscillations into the flow.
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If either of these conditions is not upheld, a net drag force may be expected from a
purely irrotational flow. In real flows viscosity plays a subtle role in both the configu-
rations discussed in this appendix and indirectly leads to the drag.

2.A.1 Helmholtz’s Flow and Separation

Separation of the flow away from the surface of a body is characteristic of the flow
around a surface containing a discontinuity of gradient at a salient edge (the case n < 1
in Section 2.10.5). Figure 2.A.1 shows a sketch of the streamlines of the flow incident
normally on a flat plate. The flow breaks away at the edge, in principle forming a
cavity, but in reality a region of dead, often turbulent, slow-moving flow. Before the
advent of boundary layer theory, which resolved d’Alembert’s paradox of zero drag in
nearly inviscid flow, Kirchoff and Rayleigh (1876) independently calculated the drag in
ideal flow behind a two-dimensional flat plate subject to certain restrictive conditions.
It was assumed that the pressure at the tangential discontinuity between the incoming
and separated fluid is constant, and is determined by the conditions far downstream.
The pressure and thus the velocity are therefore equal to the incoming pressure, which
is lower than that on the front surface. This pressure differential leads to a drag force
in the direction of the incoming flow D ∼ ρS U2 on a plate of cross-section S. Flows
of this type with free boundary streamlines over which the pressure is constant are
known as Helmholtz flows and may be analytically calculated in two dimensions by
a conformal transformation method. Kirchoff found that a two-dimensional plate of
length � has a drag coefficient

CD =
D

1
2 ρ �U2

=
2π

π + 4
≈ 0.88 (2.A.1)

ψ = 0

ψ
 =

 0

ψ = 0

ψ = 0

Figure 2.A.1: Sketch of the flow around a plate mounted normal to the incoming flow.
The plate is shown by the thick vertical line. The streamline ψ = 0 is the free streamline
downstream of the plate separating the irrotational incoming flow from the rotational
in the cavity.

In fact experiment measures a drag coefficient of approximately 2. Kirchoff’s model
is unsatisfactory for a number of reasons. It is found experimentally that behind the
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plate is a region of suction rather than pressure as assumed in the model, hence
the increased drag coefficient. In Kirchoff’s calculation it is found that the cavity
expands parabolically far downstream, whereas in practice vortices form and cavities
close after a finite distance. The discontinuity surface is unstable and leads to non-
steady mixing and turbulence of the fluid behind the plate. This region of generally
turbulent flow is known as the wake. The type of drag which is associated with this
general structure of flow, leading to a large wake, is known as form drag. The general
scaling of the drag factor when separation occurs is discussed later in Section 6.8. A
full account of Helmholtz flows may be found in Lamb (1932) and Milne-Thomson
(1968). Batchelor (1967) gives a thorough discussion of the limitations of Kirchoff’s
and Rayleigh’s theory.

2.A.2 Lines of Vortices

2.A.2.1 Single infinite row of vortices

Consider an infinite row of identical vortices each of circulation Γ separated by a
distance a along the x axis. The vortices are therefore at the points (0, 0), (±a, 0),
(±2a, 0), . . ., (±na, 0), . . .. The complex potential is the sum of those due to the
individual vortices, namely for the (2n + 1) nearest the origin:

w = −ıΓ
n∑

m=−n

log(z ± ma) = −ıΓ log

{
n∏

m=−n

(z ± ma)

}

= −ıΓ log

{
πz
a

n∏
m=1

(
1 − z2

m2π2

)}
− ıΓ log

{
a

π

n∏
m=1

m2 a2

}
(2.A.2)

Since w is a potential, we may neglect the constant term, and make use of the infinite
product expansion of sinx (Hobson, 1911, §282), namely

sin x = x
∞∏

m=1

(
1 − x2

m2 π2

)
(2.A.3)

to obtain
w = −ıΓ log sin

πz
a

(2.A.4)

The complex velocity is

dw

dz
= vx − ı vy = −ı

Γ
2 a

cot
πz
a

(2.A.5)

and hence

vx = − Γ
2 a

{
sinh(2π y/a)

cosh(2 π y/a) − cos(2 π x/a)

}

vy =
Γ
2 a

{
sin(2π x/a)

cosh(2 π y/a) − cos(2 π x/a)

}
(2.A.6)

The individual vortices at (x = ±na, y = 0) have zero velocity, and the pattern as
a unit remains stationary. It is, however, unstable with respect to small departures
from exact periodicity (Lamb, 1932, §156).
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2.A.2.2 Two parallel symmetric rows of vortices

If a second row of vortices is introduced with the vortices aligned at a separation b,
the velocity potential is easily calculated by adding a second term to that obtained
above, equation (2.A.3). From equation (2.A.6) velocity of one row of vortices along
its line is therefore

V =
Γ
2 a

coth
π b

a
(2.A.7)

The mean velocity in the medial plane is Γ/a. This system is also unstable to small
perturbations in the position of the vortices.

2.A.2.3 Two parallel alternating rows of vortices

If a second row of vortices is introduced with the vortices aligned at the mid-points of
the other row and separation b (Figure 2.A.2), the velocity potential is easily calculated
by adding a second term to that obtained above, equation (2.A.3). From equation
(2.A.6) the velocity of one row of vortices along its line therefore

V =
Γ
2 a

tanh
π b

a
(2.A.8)

The mean velocity in the medial plane is also Γ/a.

a
b/2

b/2

Figure 2.A.2: Sketch of arrangement of the vortices in the Karman vortex street.

This system is unstable except for the particular condition, due to von Karman
(Lamb, 1932, §156; Milne-Thomson, 1968, §13.72), that

cosh2 k a = 2 k a = 0.8814 b/a = k = 0.281

It is found experimentally that for a range of Reynolds numbers (to be defined
later) vortices leave opposite edges of a cylindrical body placed in a flow. The vortices
leave regularly from alternate edges. At a distance behind the body a well-defined
vortex stream of definite period, known as the Karman vortex street, is formed. At
large distances from the body the vortices are damped by viscosity or turbulence. The
energy carried away from the body by these vortices appears as a drag force on the
body. If the body moves through stationary fluid with velocity U and the vortex street
has velocity V , the drag force per unit width is

D = ρΓ k (U − 2V ) + ρΓ2 / 2π a
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Inserting the values appropriate to the stable Karman vortex street, the corresponding
drag coefficient is (Prandtl and Tietjens, 1957, §83)

CD =

[
1.587
(

V

U

)
− 0.628

(
V

U

)2
]

a

d
(2.A.9)

where d is a linear dimension characteristic of the body. At one time Karman vortex
streets were thought to be major contributors to the drag from aircraft wings, but are
now known to play a negligible role.

Karman vortex streets are, however, an important feature in the design of tall
buildings. Vortex shedding as wind blows across large engineering structures can lead
to structural instability, in severe cases collapse, as for example in the well-known
example of three cooling towers at the Ferrybridge power station in 1965. The phe-
nomenon is now well understood and designs use a number of different measures to
avoid the effect. Vortex shedding gives rise to aeolian tones, the low-frequency sounds
that are heard when wind blows across a string. The vortex shedding frequency f from
cylinders is governed by the dimensionless Strouhal number in terms of the cylinder
diameter d and the flow velocity U , which has the approximate empirical value

S =
f d

U
≈ 0.2121

(
1 − 2.7

R
)

(2.A.10)

in the range of Reynolds number 400 � R � 104.



Chapter 3

Viscous Fluids

3.1 Basic Concept of Viscosity

Viscosity has long been understood as a friction force tending to destroy a
velocity gradient. The simple description of this effect, known as Newtonian
viscosity, considers the force between neighbouring laminar planes of fluid in
differential motion. The flow is assumed to be unidirectional and the velocity
gradient normal to the planes containing the flow. The force is proportional to
the area of the planes, and to the velocity gradient normal to the planes. Thus
the motion is a shear and the force a shearing stress:

Fx

A
= −μ

dvx

dy
(3.1)

where x is the direction of flow and y the direction of the gradient. The
force Fx is opposed to the direction of flow (− sign) and exerted over an
area A. The coefficient μ is known as the first or Newtonian coefficient of
viscosity.

This simple result is adequate for treating many simple problems, such as
Poiseuille flow through a pipe, but is clearly insufficient to treat complex prob-
lems involving more than unidirectional flow. The generally form for viscosity
was first given by Navier in 1827 based on a model of dubious validity. The
general accepted picture is due to Saint Venant in 1843 and Stokes (1845)
following the lines given in this chapter.
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3.2 Differential Motion of a Fluid Element

Consider a fluid particle at position r with velocity v(r) at time t. A neighbour-
ing particle at (r + δr) has velocity v(r + (δr · ∇)v). The velocity difference is

(δr · ∇)v =
[
δxj

∂

∂xj

]
vi

=
1
2
δxj

{
∂vi

∂xj
+

∂vj

∂xi

}
+

1
2
δxj

{
∂vi

∂xj
− ∂vj

∂xi

}
The term

δxj

{
∂vi

∂xj
− ∂vj

∂xi

}
= δr ∧ (∇∧ v)

is a solid body rotation of a fluid element with angular velocity given by the
vorticity z = ÑÙv. Further, we define the strain rate tensor

ėij =
1
2

{
∂vi

∂xj
+

∂vj

∂xi

}

Thus we obtain as the velocity of the particle at (r + δr)

v(r + δr) = v(r) + [δxj ėij ] +
1
2

δr ∧ (∇∧ v) (3.2)

These terms represent the motion of elements of the fluid as:

1. Uniform translation: namely, v(r).

2. Solid body rotation with angular velocity given by the vorticity
1
2 ζ = 1

2 ∇∧ v: namely, 1
2 δr ∧ (∇∧ v).

3. Local strain at a rate determined by the strain rate tensor ėij : namely,
δxj ėij .

3.3 Strain Rate

We may identify two different components of the strain rate:

1. The longitudinal or diagonal terms such as ėxx, which represent an exten-
sion in the same direction as the length, e.g. measured in direction x. The
sum of the longitudinal strain rates in the three directions, i.e. the trace
of the corresponding matrix, is

Θ̇ = ėii =
∂vi

∂xi
= ∇ · v (3.3)

This will be recognised as the rate of dilation Θ̇, which is the fractional
rate of change of volume in the fluid.
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2. The shear or off-diagonal terms such as ėxy, which represent the differen-
tial movement of a length in, for example, the x direction, with respect
to variations in the perpendicular direction, e.g. y; that is the angle of
shear of the face x over y. Clearly ėij = ėji so that the strain rate tensor
is symmetric.

The change of shape of a fluid element is determined by removing the volume
change from the strain to obtain the distortion tensor

Ḋij = ėij − 1
3
Θ̇ δij (3.4)

so that Ḋii = 0.
Clearly both the strain rate and the distortion tensors are symmetric.1

3.4 Stress

Stress is defined as the force per unit area exerted on an area. Thus two vector
directions are associated with the stress, one the direction of the force and
the other that of the area. It can be shown that stress is therefore a tensor of
rank 2, namely τij , where i is associated with the force and j with the area.
Thus the force exerted on area dSj in direction i is τij dSj .

Viscosity is an internal force due to the interaction between the particles in
the fluid. By Newton’s third law, the force on a fluid element is balanced by
an equal and opposite force on its neighbour. If the stress is constant, the force
on the particle is zero, as

�
S

τij dSj =
�

V

∂τij

∂xj
dV = 0

where S is the surface area of the particle and V its volume and using Gauss’s
theorem. Similarly the net torque should be zero, so that no spontaneous rota-
tion is possible

(Torque)i =
�

S
εijk xj τk� dS� =

�
V

εijk δj� τk� dV

= −
�

V
(τjk − τkj) dV

where ε is the permutation symbol (equation 1.5). Thus stress is also a sym-
metric tensor τij = τji.

1It is well known from elasticity theory that in an isotropic medium, the strain may be
quite generally expressed in terms of two independent quantities: for example, the shear and
the dilation. As a result the elastic constants of the medium may be expressed in terms of
the shear and bulk moduli.
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As with the strain rate we identify two different stresses, the longitudinal
(diagonal) stresses, where the force is parallel to the area vector, and the shear
(off-diagonal) stresses where the force is tangential to the area.

3.5 Viscous Stress

As we have seen above, viscosity is a force depending linearly on the velocity
gradient, or more succinctly the strain rate. Fluids are isotropic, i.e. there is
no preferred direction in the fluid, in contrast to plasma where the magnetic
field may introduce anisotropy. The most general form of a linear relation-
ship between stress and strain rate involves two scalar constants, the first (or
Newtonian) coefficient μ and the second ζ:2

σij = 2μ

(
ėij − 1

3
Θ̇δij

)
+ ζ Θ̇ δij (3.5)

The term associated with the Newtonian viscosity μ is dependent on the distor-
tion rate rather than the strain rate, and that with second coefficient ζ depends
on the dilation only. The factor 2 ensures agreement with the elementary theory
of viscosity discussed earlier.

The second coefficient of viscosity is not often significant. It plays an impor-
tant role in the absorption of sound waves, and in the classical theory of shock
wave structure, but is otherwise negligible. Consequently the assumption is
often made to set ζ = 0, known as Stokes’ hypothesis. This is clearly valid for
incompressible flow, but also for monatomic gases where ζ is explicitly zero,
being due to rotational relaxation of the molecules.

The total stress exerted on the fluid includes the pressure. Thus

τij = σij − p δij (3.6)

the minus sign appearing as pressure acts inwards.
The force on an element can be obtained immediately

Force =
�

S
τij dSij =

�
V

∂τij

∂xj
dV (3.7)

i.e. a force ∂τij/∂xj per unit volume.

2There is an exact analogy with the stress/strain relations in the linear theory of elasticity,
where the first coefficient corresponds to the shear modulus and the second to the bulk. As
with the viscosity only two moduli are independent.
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3.5.1 Momentum Equation

Using this force we may easily revise the analysis of Sections 1.3.2 and 1.4.2.
Thus following through the previous analysis in the Lagrangian description,
Euler’s equation (1.12) becomes

dvi

dt
=

1
ρ

∂τij

∂xj
+ gi (3.8)

and the momentum conservation equation in Eulerian form (1.20) becomes

∂ (ρvi )
∂t

+
∂

∂xj
(ρ vivj − τi,j) = gi (3.9)

The momentum flux thus includes an additional term −σij , which is due to vis-
cous momentum transfer as viscosity is an internal force. The total momentum
flux is therefore ρ vi vj − τij .

3.5.2 Energy Equation

Similarly we may modify the energy equations to take into account the work
done by the viscous force. The total work done at the surface of the fluid
element by the stress in the fluid is

Work done/unit time =
�

S
vi τij dSj =

�
V

∂ (vi τij)
∂xj

dV

In the Lagrangian description, we do not include the kinetic energy since we
treat the internal energy separately. Thus we only need the work done by the
stress increasing the volume of the element

Work done/unit time =
1
ρ

∂ (τij vi)
∂xj

− vi
dvi

dt

=
1
ρ

τij
∂vi

∂xj

per unit mass.
There is a further dissipational mechanism of heat transfer which we have

not yet included, namely thermal conduction, which has flux −κ∇T where T is
the temperature. By including this term in the Lagrangian energy conservation
equation (1.15) the final form of the energy equation in Lagrangian form is

dε

dt
=

1
ρ

τij ėij +
1
ρ
∇ · (κ∇T ) + gi vi (3.10)
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However, in the Eulerian description we must include the total work done per
unit volume in the energy conservation equation in the Eulerian framework,
equation (1.23). Hence the equation of energy conservation including thermal
conduction takes the form

∂

∂t

[
ρ

(
ε +

1
2

v2 + U

)]
+

∂

∂xj

[
ρ vj

(
h +

1
2

v2 + U

)
− vi σij − κ

∂T

∂xj

]
= 0

(3.11)
We note that the viscous term appears as an energy flux vi σij as is expected
for an internal force.

3.5.3 Entropy Creation Rate

The first law of thermodynamics can be written as

T ds = dε + pdV = dε − p

ρ2
dρ

where s is the entropy. Hence we obtain the rate of increase of entropy per unit
mass from equation (3.10)

ρ
ds

dt
=

1
T

[σij ėij + ∇ · (κ∇T )] (3.12)

since gravity does not contribute to the entropy generation.

3.6 Incompressible Flow–Navier–Stokes Equation

If the fluid is incompressible ρ = const and the viscosity is also constant, μ =
const, the terms in the viscous stress depending on the dilation rate Θ̇ = ∇ ·
v = 0. The viscous stress term simplifies to

∂σij

∂xj
= μ

⎛
⎜⎝ ∂

∂xj�
�
���

0
∂vi

∂xi
+

∂

∂xj

∂vi

∂xj

⎞
⎟⎠

= μ∇2v

Hence we obtain from equation (3.8) the Navier–Stokes equation
(Stokes, 1845)

dv
dt

= −1
ρ
∇p +

μ

ρ
∇2v + g (3.13)

The term ν = μ/ρ is often used and is known as the kinematic viscosity (μ being
the dynamic viscosity). Due to the mathematical complexity of this equation,
very few analytic solutions exist. Fortunately it is possible to introduce two
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different limiting cases, which contain much of the essential physics associated
with viscosity. In a flow with characteristic velocity U and length �, the quantity
R = U �/ν, known as the Reynolds number, expresses the relative strength of
the viscosity and convective terms in the Navier–Stokes equation. In flows
with large Reynolds number, R � 1, viscosity is relatively weak, and the flow
is nearly ideal, except in a narrow region adjacent to the surface of a body.
This condition is known as boundary layer flow and is studied in Chapter 6. On
the other hand if the Reynolds number is small, R � 1, viscosity dominates,
a condition known as Stokes’ flow or ‘creeping’ flow, described in Section 3.7.

3.6.1 Vorticity Diffusion

Taking the curl of equation (3.13) we obtain

dζ

dt
= ν ∇2ζ (3.14)

which represents the dissipation of vorticity through an incompressible fluid.
Viscosity plays a remarkable twofold role in relation to vorticity, both cre-
ating it and subsequently destroying it. Considering an arbitrary Cartesian
component ζi, the equation reduces to the standard diffusion equation. The
vorticity component per unit volume is therefore a conserved quantity with
flux −ν ∇ζi. Vorticity is therefore not annihilated but distributed through the
fluid by viscosity, and in so doing gives rise to heating and entropy generation.
Thus viscosity causes ‘spreading’ of vorticity from its source through the fluid.
The vortex sheet associated with the wake behind a streamlined body thus
broadens at a rate dependent on the viscosity. Consequently the wake behind
an aerofoil, where viscosity is weak, remains narrow for a considerable distance
downstream.

3.6.2 Couette or Plane Poiseuille Flow

The steady slow flow of an incompressible fluid between two parallel plates
with no slip at the walls is easily calculated from the Navier–Stokes equation
in two dimensions

vx
∂vx

∂x
+ vy

∂vx

∂y
= −1

ρ

∂p

∂x
+

μ

ρ

[
∂2vx

∂x2
+

∂2vx

∂y2

]

vx
∂vy

∂x
+ vy

∂vy

∂y
= −1

ρ

∂p

∂y
+

μ

ρ

[
∂2vy

∂x2
+

∂2vy

∂y2

]
∂vx

∂x
+

∂vy

∂y
= 0

(3.15)
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Since the total mass flowing along the duct,
� h
−h ρ vx dy, must be constant, we

infer that the flow is independent of x. The velocity component vy is zero at
the walls −h < y < h. The solution in a steady flow is therefore

vx = − 1
2μ

dp

dx

(
h2 − y2

)
vy = 0 p = p(x)

dp

dx
= const

(3.16)
where the width of the duct is 2h and −h < y < h is measured from the
centre line.

3.7 Stokes’ or Creeping Flow

Consider the situation when the Reynolds number is small. In this case the vis-
cous terms dominate the convective ones in the Navier–Stokes equation (3.13).
Neglecting gravity, the steady state flow of incompressible fluid is therefore
given by

∇p = ν ∇2v and ∇ · v = 0 (3.17)

The problem is fully specified by including the boundary conditions at ∞ and
on the surface of the body.

These flows, which are laminar, move slowly around the body as the viscosity
tries to make the flow become stationary. They are therefore known as creeping
flows. They are also known as Stokes’ flows after Stokes, who found the first
solution to a problem of this type in 1851.

3.7.1 Stokes’ Flow around a Sphere

Consider a sphere of radius R with an incoming flow along the x direction with
speed U and pressure P . Assuming no slip at the surface of the sphere, the
boundary conditions are therefore

vx = vy = vz = 0 at r = R and
{

vx → U
p → P

}
as x → −∞

We try as a solution3

v = ∇φ + v′ (3.18)

Hence
∇p = μ∇2(∇φ) + μ∇2v′

3This solution is based on the fact that ∇2a = ∇(∇ · a) if and only if a = ∇φ, a result
which follows directly from ∇∧ (∇∧ a) = ∇(∇ · a) −∇2a.
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At this stage, our choice of v′ is undetermined; let ∇2v′ = 0. Then by
integration

p = P + μ∇2φ (3.19)

and from the equation of continuity

∇2φ + ∇ · v′ = 0 (3.20)

Now further assume that only one component of v′ is non-zero, namely v′x
satisfying ∇2v′x = 0 as above. Then the simplest solution is

v′x =
a

r
(3.21)

and hence
∇2φ + a

∂(1/r)
∂x

= 0

which has the solution
φ = −1

2
a

∂r

∂x
(3.22)

where a is an undetermined constant.
This solution for φ is a particular integral as we may add any solution of ∇2φ

as a complementary function to obtain the general solution, the appropriate
one being determined by the boundary conditions. In particular we require a
function such that v → U as r → ∞. Such a function is clearly Ux. Another
is {b ∂(1/r)/∂x}, where b is also an undetermined constant. We introduce
both in order to satisfy the boundary conditions on the sphere. Our solution
thus far satisfies the governing differential equations, but must also satisfy the
boundary conditions. The complete solution is

v = ∇
[
U x + b

∂(1/r)
∂x

− a

2
∂r

∂x

]
+

a

r
î (3.23)

At the surface of the sphere r = R we require v = 0, i.e. vx = vy = vz = 0.
But vy = vz = 0 if b = −aR3/6, and vx = 0 if b = U R3/4, hence a = −3

2 U R.
Thus we have found the solution which obeys the equation of continuity and
the Navier–Stokes equation, and which satisfies all the boundary conditions.
In component form:

vx = U

(
1 − 3

4
R

r
− 1

4
R3

r3

)
− 3

4
UR

r3

(
1 − R2

r2

)
x2

vy = −3
4

UR

r3

(
1 − R2

r2

)
x y

vz = −3
4

UR

r3

(
1 − R2

r2

)
x z

(3.24)
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and the pressure

p = P + μ∇2φ = P − 3
2

μ U R

r3
x (3.25)

To calculate the force on the sphere, we neglect the velocity term for the
momentum flux, being small, and note that by symmetry only the force in the
direction of the incoming flow, x, will be non-zero. The stress over the surface
of the sphere is

Fi = −
�

pdsi +
�

σi,j dsj Fx =
� (

P1 − p î
)
· ds

where we have defined P1 = σxx î + σxy ĵ + σxz k̂ such that P1 · dS is the vis-
cous force exerted in the x direction over a surface dS, and î, ĵ and k̂ are
the unit vectors in the directions x, y and z respectively. But we have already
shown that (3.17)

∇ ·
(
P1 − p î

)
=

[
μ∇2v −∇p

]
x

= 0

Hence by Gauss’s theorem we may calculate the integral over any surface
enclosing the sphere. We consider a sphere of very large radius, so that

vx = U +
a

2r

(
1 +

x2

r2

)
vy =

a

2
xy

r3
vz =

a

2
xz

r3

where a = −3
2 U R. The force in the y and z directions is zero by symmetry.

The relevant components of the strain rate tensor are

∂vx

∂x
=

a

2
x

r3

(
1 − 3x2

r2

)
∂vx

∂y
+

∂vy

∂x
= −3a

x2y

r5

∂vx

∂z
+

∂vz

∂x
= −3a

x2z

r5

Hence substituting for P1 we obtain

Fx =
{�

aμ

[(
1 − 3x2

r2

)
x

r3
î − 3

x2y

r5
ĵ − 3

x2z

r5
k̂
]
−

(
p0 +

aμx

r3

)
î
}
· dS

= −3aμ
� x2

r5
r · dS −

�
�
���

0�
p0 î · dS

= −3aμ
� π

0

� 2

0
π cos2 θ sin θ dθ dφ

= −4πaμ

= 6πμ UR (3.26)
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Thus the drag in this regime is proportional to the speed U of the fluid flow.
This remarkable result was first derived by Stokes (1851) in the middle of

the nineteenth century. It has subsequently been widely used to measure the
viscosity of strongly viscous fluids, but more importantly as a correction in
Millikan’s oil drop experiment to measure the charge on the electron.

Defining the drag coefficient as the dimensionless force,

CD =
Fx

1
2ρU2S

=
24
R (3.27)

where S = πR2 = (π/4)d2 is the cross-sectional area and the Reynolds number
R = ρUd/μ where d = R/2 is the diameter of the sphere.

3.7.1.1 Oseen’s correction

Although Stokes’ formula is well verified by experiment, there is a serious prob-
lem with the solution in the behaviour at large distances from the sphere. Far
from the sphere the velocity is not small and in consequence the inertial term
becomes important. In the neighbourhood of the sphere, the velocity is well
described by Stokes’ result and as a consequence the drag is accurately calcu-
lated. Oseen (1910) improved Stokes’ analysis by retaining an approximation
in the form of the additional term (U · ∇)v in the Navier–Stokes equation.
Thus the Navier–Stokes equation is reduced to

ρ(U · ∇)v + ∇p = μ∇2v (3.28)

As may expected from the above remarks, the solution leads to a marked
change in the pattern of the streamlines, but only a small correction to the
drag. The drag coefficient becomes

CD =
24
R

(
1 +

3
16

R
)

(3.29)

Stokes’ formula is in good agreement with experiment up to Reynolds num-
ber R ≈ 1. Oseen’s correction extends this up to R ≈ 5.

3.7.1.2 Proudman and Pearson’s solution

The complete solution valid at both small and large distances from the sphere
and the circular cylinder was finally achieved by Proudman and Pearson (1957)
using the method of matched asymptotic approximation (see Appendix 6.A).
The inner solution is based on an expansion, whose first term is Stokes’ formula.
The outer solution is based on the Oseen approach. Each solution individually
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can satisfy only one of the boundary conditions, either no slip at the surface of
the sphere (Stokes’ solution) or uniform flow at infinity (Oseen). Based on the
two expansions with the Reynolds number as the matching parameter, a solu-
tion satisfying both boundary conditions is constructed. The drag coefficient
taken to next order is

CD =
24
R

[
1 +

3
16

R +
9

160
R2 ln

(R
2

)]
(3.30)

3.7.1.3 Lamb’s solution for a cylinder

The problems in the solution arising from Stokes’ approximation for the sphere
are more severe when applied to a cylinder to the extent that no solution
is possible. This effect is known as Stokes’ paradox (Milne-Thomson, 1968).
Lamb (1932) applied Oseen’s method to flow around a cylinder (Lamb, 1932;
Batchelor, 1967). The resulting value of the drag coefficient is

CD =
8 π

R [1/2 − γ − ln(R/8)]
=

8 π

R (2.002 25 − lnR)
(3.31)

where γ = 0.577 215 66 is Euler’s constant.

3.8 Dimensionless Analysis and Similarity

Although a number of approximations can be made, analytic solutions of the
Navier–Stokes equation are limited. Dimensional analysis therefore becomes a
powerful and widely used tool in fluid mechanics. The technique is particularly
valuable when the results can be applied in conjunction with experiments to
derive empirical scaling relations of great value for practical application.

Physical quantities are measured in units in which the quantity is referred
to a standard value. Whereas the quantities are universal, units are arbitrarily
prescribed. In fact units are divided into two types:

• Primary units Certain quantities, normally length, mass, time, tem-
perature and charge, are measured in units which have a primary role
and must be set by prescribed standards, normally by international agree-
ment. These define a system of units such as the MKS system (metre,
kilogram, second, kelvin, coulomb).

• Derived units The remaining quantities are all measured in units
which have some relationship with the primary quantities, generally in
their definition, such as
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V elocity ∼ Length/T ime

Force ∼ Mass × Length/T ime2

V iscosity ∼ {Force/Area}/{V elocity/Length}
and are measured in units defined by the pre-set primary units.

The relationship of the derived units to the primary units defines the
dimensions of the quantity, e.g. [V ] = [L][T ]−1, [F ] = [M ][L][T ]−2 and
[μ] = [M ][L]−1[T ]−2. The dimensions clearly represent the changes in the
values of quantities as we change from one system of units to another.

The performance of a physical system is expressed in terms of the measured
quantities of the variables, which describe its behaviour. Since the fundamental
laws of physics cannot vary with a change of units, it must be concluded that
any fundamental relationship amongst the variables must be dimensionless, i.e.
remain true when the units of measurement are changed. This is expressed as
the law of dimensional homogeneity. A product of the variables whose value is
unchanged by a change of units has no dimension and is known as a dimension-
less product. The dimensionless functional relationships amongst the physical
quantities may be expressed in terms of a complete set of dimensionless prod-
ucts. The set is complete if any dimensionless product of the variables not
included in the set can be expressed as a product of those already included in
the set. The mathematical statement of the law of dimensional homogeneity
is provided by Buckingham’s Π theorem, which states that any fundamental
law can be expressed as a functional relationship amongst the complete set
of independent dimensionless products (Buckingham, 1914). The number of
dimensionless products in the complete set is itself determined by Bucking-
ham’s theorem. Thus if the set Πi forms a complete set of n dimensionless
products for the system, then there must exist a functional relationship

F (Π1, Π2, . . . , Πi, . . . , Πn) = 0 (3.32)

The complete set of dimensionless products must be formed from all the phys-
ical variables which determine the behaviour of the system. If a dimensionless
product is either very small or very large it implies that a corresponding
physical quantity is very small and does not normally play a role influencing
the relationships amongst the variables. The product may therefore normally
be omitted without introducing significant error. In many cases the set of
dimensionless products is easily established by inspection without recourse to
systematic methods. An outline of the proof of Buckingham’s Π theorem and
the formal method of finding the complete set of dimensionless products is
given in Appendix 3.A. For a more complete account the reader is referred to
Durand (1934), Langhaar (1980), Birkhoff (1955) and Barenblatt (1996).
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The dimensionless products introduce the concept of similarity, where the
magnitudes of quantities in two similar systems, a model and a prototype, are
related by numerical scaling factors. The scaling factors are established by the
requirement that all the dimensionless products in both the model and proto-
type must be equal, since they are representative of the same physical system.
This technique is very widely applied in fluid mechanics, where experiments on
the prototype may be difficult or impractical, and ones on a model relatively
straightforward. Typical examples are wind tunnel modelling used for car and
aircraft design, and ship tank testing. A range of examples of modelling in
applied fluid mechanical problems are to be found in Langhaar (1980) and
Sedov (1959).

3.8.1 Similarity and Modelling

Consider a prototype system and a geometrically similar model. We seek to
identify conditions under which experiments can be carried out on the model
which will replicate measurements made on the prototype in operation. To
achieve this requires a knowledge of how experiments on the model relate to
those on the prototype, i.e. the scale factors relating the model measurements
to the equivalent ones on the prototype. These scale factors are established by
identifying the functional relationships amongst the dependent and indepen-
dent variables of the overall problem.

To illustrate this method we consider the very simple case of a subsonic
wind tunnel. We consider a prototype and model, which are geometrically
similar, i.e. every point on the prototype is exactly reproduced on the model,
and with all lengths in the same proportion. The flows for both the prototype
in its environment and the model in the wind tunnel are described by the
Navier–Stokes and the continuity equations, whose characteristic parameters
are the density ρ and viscosity μ. The problem is defined by the incoming flow
velocity U , and the prototype/model by a single length L. We will assume
the problem is steady state, so that time does not enter as a variable. The
variables to be measured are quantities such as pressure, P , and velocity, V, as
functions of the spatial position, R. From these quantities we form a complete
set of dimensionless products

P =
P

ρ U2
V =

V
U

R =
R
L

R =
ρ U L

μ

where R is the Reynolds number of the flow, a quantity depending only on
the characteristics of the fluid and the flow. If the prototype and model sys-
tems both have the same Reynolds number, all the dimensionless parameters
depending only on the independent quantities in the problem are equal, and the
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systems are said to exhibit complete similarity. It follows from the law of dimen-
sional homogeneity that these quantities express the functional relationship
between the dependent, the independent and the characteristic parameters.
Thus we may write for the dependent variables

P = fP (R , R) V = fV (R , R) (3.33)

where fP and fV are arbitrary functions determined by experiment on the
model. These equations apply to both model and prototype. Hence by casting
the experimentally measured results in terms of the dimensionless parameters,
we may relate one set to the other, provided the systems exhibit complete
similarity.

This condition of complete similarity may be difficult to achieve. For exam-
ple, if the flow velocity U is near the sound speed c, compressibility effects
will become important. In this case the additional dimensionless parameter,
the Mach number M = U/c, becomes important. It may be possible to obtain
similarity of the Mach number by changing the sound speed, e.g. by a change of
gas or by heating. However, achieving the simultaneous equality of R and M
may not be possible, and an empirical compromise must then be found.

The Reynolds number R has an important physical significance expressing
the importance of viscosity in the flow. Thus

Fluid momentum transfer rate
Viscous momentum transfer rate

∼ ρ U L

μ
= R

In flows with energy transport an additional dimensionless parameter, the
Prandtl number, is obtained from

Viscous diffusivity
Thermal diffusivity

=
μ

ρ

/ κ

ρcp
=

ν

χ
= P

where ν = μρ is the kinematic viscosity determining the diffusion of a velocity
disturbance (e.g. vorticity (3.14)) in the fluid, and χ = κ/ρcp is the thermal
diffusivity expressing the diffusion of a heat perturbation through thermal
conduction. This fluid parameter therefore expresses the relative importance
of viscous transfer and thermal conduction.

3.8.2 Self-similarity

A useful approach in fluid mechanics is based on the concept of self-similarity,
which allows the dimensionality of a problem to be reduced; for example, a
problem in one spatial dimension and time may be reduced from a set of par-
tial differential equations in two independent variables to a single ordinary
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differential equation involving one self-similar parameter. When possible, this
reduction finds wide applicability, particularly for a number of time-dependent
problems in compressible flow, which we discuss later in Chapter 14. The sim-
plification occurs when it is possible to represent the functional form of the
solution in a similar form as time (for example) varies, but with scalings, which
are themselves dependent on ‘time’. This is only possible when there are only
a restricted number of dimensionless parameters.

As an example, consider the following two-dimensional problem of incom-
pressible boundary layer flow over an infinite plate to be treated in Chapter 6.
The Navier–Stokes equation can be expressed in terms of the parameters
x and y as independent variables, v and p/ρ as dependent variables, and
U, P/ρ and ν as constant parameters, where P and U are the pressure and
speed of the incoming flow. Note there is no length amongst the charac-
teristic parameters as the plate is infinite. A complete set of dimensionless
products is

v
U

p/ρ

P/ρ
η = y

√
U

ν x

Although the complete set of dimensionless products is not unique, it is
impossible to find one containing dimensionless products with either x or
y separately, i.e. in one independent variable only. Applying the law of
dimensional homogeneity, we have

p = P fp(η) v = U fv(η)

The problem is thus reduced from a two-dimensional one to a one-
dimensional one with η as the sole independent variable. The solution is
self-similar with the profiles of density, pressure, velocity, etc., as functions of
the variable η alone. Their spatial profiles are identical in form from point to
point, and vary in the spatial scale factor alone. A large number of problems
in fluid mechanics can be simplified to self-similar forms, which are often the
asymptotic limit of the complete solution.

Appendix 3.A Buckingham’s Π Theorem and the
Complete Set of Dimensionless Products

Let us suppose we have a problem for which we identify a set of dimensional con-
stants a1, . . . , am, a set of independent variables x1, . . . , xn and a dependent variable
y, making a total set of N = 1 + n + m variables z1, . . . , zN . The dimensions of the
term [zi] = [M ]αi,1 [L]αi,2 [T ]αi,3 form the dimensional matrix αi,j where the column i
refers to the dimensional power and the row j to the element.
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We may form a dimensionless product from these parameters and dimensions as

Π =
N∏

i=1

zi
ki (3.A.1)

Forming the dimensions of the product Π, we find that the powers ki are given by the
solutions of three simultaneous equations

αij ki = 0 (3.A.2)

with j = 1 to 3. These form a set of homogeneous equations, whose solutions are
governed by the fundamental law of algebra:

Disregarding the trivial solution ki = 0, a set of M homogeneous equations
in N unknowns possesses exactly (N − R) linearly independent solutions,
where R is the rank of the matrix. A set of (N − R) linearly independent
solutions is called a fundamental set of solutions.

The rank of the matrix identifies the number of independent equations, or rows in the
dimensional matrix. It is normally, but not always, equal to the number of rows M ,
which in this case is 3.

There is no unique solution. We therefore find any appropriate independent set by
assigning appropriate independent values to the powers k(R+1) to kN and solving for
k1 to kR. The usual method is to assign the last variable zN to be the dependent
one y, and the next the last to be independent in the inverse order of variation. The
most useful set of dimensionless variables is then found by setting initially kN = 1
and subsequently kN = 0. The complete set is found from R independent sets of the
variables ki.

The set of dimensionless products Πj for j = 1, R thus calculated is a complete
set. Any further dimensionless products of the variables can be expressed as prod-
ucts of the existing ones already in the set. This set must therefore represent the
complete functional relationship amongst the variables, as required by Buckingham’s
theorem. Alternative, more convenient forms of the set may obviously be found by
multiplication.





Chapter 4

Waves and Instabilities
in Fluids

4.1 Introduction

Waves are a very general feature of fluids. Several types of waves, principally
associated with surfaces, occur in incompressible fluids. Isotropic fluids cannot
support shear motions, which allow waves to develop, consequently transverse
waves are forbidden in isotropic fluids.1 Longitudinal waves involve density
changes and are therefore forbidden in incompressible fluids.2 However, the
presence of an interface between two dissimilar fluids allows vorticity to be gen-
erated across the surface layer, which can support a wave propagating along
the interface. The interface between two different fluids forms a tangential
discontinuity across which only the normal component of the velocity is con-
tinuous. Although a consequence of the local anisotropy at the surface, the
disturbance penetrates deep into the fluid and cannot be simply categorised as
either transverse or longitudinal, but embodies elements of both types.

Waves of this type are typically found at surfaces or interfaces, but sim-
ilar waves may also be generated when the discontinuity is broadened into
stratification of density or temperature.

Not all waves are stable in that once generated they propagate with their
amplitude remaining nearly constant, gradually decreasing due to damping.

1Transverse waves are allowed in a plasma with an imposed magnetic field, where the
magnetic field destroys the isotropy and allows shear to be transmitted.

2Compressible fluids allow density variations and support longitudinal (sound) waves,
discussed in Chapter 8.
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In contrast in some cases, the wave amplitude grows exponentially as the dis-
turbance feeds on itself converting either potential (from gravity) or kinetic
energy (from the background flow) into the wave. Such motions are unstable
and play a critical role in many fluid problems. The growth of the wave in these
cases is limited by nonlinear effects and ultimately by turbulence (Chapter 5).
Surprisingly viscosity acts as a source of instability in shearing flow. We there-
fore investigate in this chapter the development of instability in both inviscid
and viscid flow.

The wave is characterised by a mode usually defined by its wavenumber, k.
The frequency, ω, is a function of the wavenumber, determined by the disper-
sion relation. This relationship is specified by the properties of the fluid and
those of the physical environment in which it is found. The frequency is in gen-
eral a complex quantity, the real part, �(ω), giving the oscillatory frequency
of the wave, and the imaginary part, �(ω), the growth or decay rate of the
amplitude. If the imaginary part is positive, �(ω) > 0, the wave grows expo-
nentially and is linearly unstable. As we shall see, many physical situations give
rise to unstable waves, and may ultimately lead to turbulence. Most waves of
these types propagate in the plane of the discontinuity as surface waves. In
this chapter we examine a number of the more important waves within the
incompressible and inviscid approximations. The flows are usually irrotational
since we assume that the flow originates in an irrotational fluid. In fact it is
found that the introduction of rotation into the flow does not greatly change
the resulting dispersion relations. As we shall show in later sections, viscosity
and compressibility introduce important new wave systems.

4.2 Small-Amplitude Surface Waves

We consider the behaviour in the neighbourhood of a horizontal contact dis-
continuity between two dissimilar fluids of different densities in a gravitational
field. As a consequence of the gravitational field the fluid will give rise to waves
on the surface if the lighter fluid is on top of the heavier, or instability if the
heavier is on top.

Let the interface be the surface z = 0 and let z be vertically upwards. We
suppose each fluid may be described by an irrotational incompressible flow, so
that Laplace’s equation is valid everywhere except across the interface, where
Kelvin’s theorem does not hold:

∇2φ = 0 (4.1)

Consider a small-amplitude sinusoidal wave on the surface varying in the
x direction with wavenumber k and frequency ω. The surface displacement
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therefore has the form
η = η0 exp[ı (kx − ωt)] (4.2)

The vertical velocity at the surface is

vz =
dη

dt
≈ ∂η

∂t
(4.3)

and the potential
φ(0, t) = φ0 exp[ı (kx − ωt)] (4.4)

The flow must have the pressure and normal velocity continuous across the
surface. The solution of Laplace’s equation matched to the conditions at the
interface is

φ±(z, t) = φ±1 exp{ı(kx − ωt) ∓ kz} + φ±2 exp{ı(kx − ωt) ± kz} z ≷ 0
(4.5)

the two sets of solutions φ1,2 relating the boundary conditions for large |z| and
± referring to the upper and lower fluid respectively.

Bernoulli’s equation provides the connection with gravity

∂φ

∂t
+

1
2
v2 +

p

ρ
+ gz = const (4.6)

Since the amplitude of the wave is assumed small, the second-order term may
be neglected. In the absence of surface tension, the pressure at the interface is
the same for each fluid. However, if there is a surface tension σ at the interface
there is a force in the z direction normal to the surface, which must be matched
by a change of pressure across the surface

− σ

R
≈ −σ

∂2η

∂x2
= σk2η (4.7)

where R ≈ (∂2η/∂x2)−1 is the radius of curvature of the surface. The pressure
balance across the surface may be written as

p+ − p− = −σk2η ≈
[
−ρ+

(
∂φ+

∂t
+ gη

)]
−

[
−ρ−

(
∂φ−
∂t

+ gη

)]
(4.8)

and since the normal flow velocity on each side of the interface is the same

dη

dt
=

∂φ−(0, t)
∂z

=
∂φ+(0, t)

∂z
(4.9)

Due to the neglect of the second-order term in Bernoulli’s equation, equa-
tions (4.8) and (4.9) are both linear, and it is easy to see that the principle of
superposition may be applied to linear surface waves. Thus two waves generate
motions which are independent of one another, the resultant being the simple
sum of the two.
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4.2.1 Surface Waves at a Free Boundary of a Finite Medium

Consider the case when the upper fluid has zero density ρ+ = φ+ = p+ = 0,
and the lower has a depth z = −h. At the bottom, the z component of the
velocity is zero, therefore

φ1 exp(kh) = φ2 exp(−kh) = 1
2
C (4.10)

and the potential is

φ = C cosh{k(z + h)} exp{ı (kx − ωt)} (4.11)

The dispersion relation is obtained from equations (4.8) and (4.9) by adjusting
the effective value of gravity to include the surface tension g′ = g + k2σ/ρ

ω2 = g′k tanh(kh) =
(

gk +
σk3

ρ

)
tanh(kh) (4.12)

which gives the phase velocity

vp =
ω

k
=

√
g′

k
tanh(kh) =

√(
g

k
+

σk

ρ

)
tanh(kh) (4.13)

The waves have a minimum phase velocity when k =
√

ρ g/σ of value

vpmin = 4

√
4gσ

ρ
(4.14)

4.2.1.1 Capillary waves

It is convenient to separate the short- and long-wavelength motions at the
wavelength

λ∗ = 2π

√
σ

ρg
(4.15)

where the minimum phase velocity occurs. For water and air this corresponds
to a wavelength of 1.7 cm, i.e. ripples. Waves with these short wavelengths are
dominated by surface tension, and are known as capillary waves. Gravity plays
little or no part in their behaviour, the restoring force being provided by the
tension associated with the surface alone, equation (4.7).
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4.2.1.2 Gravity waves

At longer wavelengths the restoring force is due to gravity, capillarity playing
little part. Consequently waves of longer wavelength λ > λ∗ are known as grav-
ity waves and are more commonly found in nature. We shall therefore restrict
our attention to gravity waves henceforward.

The group velocity representing the rate at which energy is transported by
the wave is

vg =
dω

dk
=

1
2
vp

(
1 +

2kh

sinh(2kh)

)
(4.16)

The displacement of the surface is

η = η0 exp{ı (kx − ωt)} (4.17)

where the amplitude of the surface displacement is

η0 = ı
ωC

g
cosh(kh) = ı

kC

ω
sinh(kh) (4.18)

If we consider a fluid particle at the point (x, z) and neglect the second-order
variation due to the displacement (X,Z), we have that

vx =
dX

dt
=

∂φ

∂x
vz =

dZ

dt
=

∂φ

∂z

and hence the particle displacement

X = ı η0
cosh k(z + h)

sinh(kh)
exp{ı (kx − ωt)}

Z = η0
sinh k(z + h)

sinh(kh)
exp{ı (kx − ωt)}

(4.19)

At the base of the fluid z = −h, the vertical motion is brought to rest.
However, near the surface the particle follows an elliptic path, moving for-
wards at the crest of the wave and backwards in the trough. This behaviour is
characteristic of the waves on the surface of the sea.

When the water is deep or the wavelength very short kh � 1, tanh(kh) ≈ 1,
the formulae reduce to those for an infinite medium and the phase velocity
vp =

√
g/k. In this case the fluid particle path at the surface is nearly circu-

lar. On the other hand if the water is shallow or the wavelength long kh � 1,
tanh(kh) ≈ kh, the phase velocity vp ≈ √

gh, independent of wavelength. This
change in behaviour between deep and shallow water waves, which takes place
when the wavelength and depth are comparable, is due to the limited pene-
tration of the wave. In deep water, the disturbance of the fluid penetrates as
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∼ exp(kz). Therefore the disturbance decreases by about 1/535 in a distance
of a wavelength, namely 2π/k.

These waves are the familiar waves seen on the surface of the sea and lakes.
A number of familiar observations follow:

The forward motion at the crest of the wave and the backward flow at the
trough are familiar to swimmers.

Following a heavy storm the first waves reaching the shore have longer wave-
lengths than those following later–a consequence of the slower phase and
group velocities of short wavelengths in deep water.

The phase velocity in deep water vp ≈ √
g/k. However, as the water shallows

(kh � 1) approaching the beach, vp ≈ √
gh and the wave slows. The wave

will break when the particle velocity equals the phase velocity, and the
crest of the wave overtakes the phase of the wave.

Another example of deep water gravity waves is provided by tsunami. These
are long-wavelength waves produced by a basal disturbance, usually the seabed,
or by a large underwater explosion. The cause of the most powerful tsunamis is
usually a movement of the earth’s tectonic plates, leading to uplift followed by
a rapid subsidence as the plate slips. The wavelength of the resultant wave is
very long, typically as much as 200 km, but the amplitude small, generally less
than 1 m. Due to the large wavelength the energy stored in the wave is, however,
very large, and the group velocity of the wave also large 1/2

√
g/k ≈ 800 km/h.

These characteristics make the tsunami difficult to detect in the open sea.
Near to land the sea shallows and the group velocity decreases. The wave
therefore ‘piles up’ on itself, forming a series of large amplitude devastating
waves striking the land. Successive waves often increase in strength and may
follow after significant intervals. The first intimation of a tsunami on shore is
a trough called drawback which is easily understood in terms of the rotational
motion of the water in the wave, discussed above.

4.2.1.3 Transmission of energy

We may calculate the energy transmitted by the wave by considering the work
done per unit width by the pressure on fluid in the direction of the wave

∂W

∂t
=

0�
−h

p
∂X

∂t
dz =

h�
0

ρ ω η0 vp

sinh(kh)
cosh(kz′) � k η0 vp

sinh(kh)
cosh kz′ dz′

× sin2(kx − ωt)

=
ρ ω k η0

2 vp
2

sinh2(kh)
� 1
2

(
h +

sinh(2kh)
2kh

)
sin2(kx − ωt)
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The averaged rate at which work is done over a cycle is therefore

ρ ω k η0
2 vp

2

4 sinh2(kh)
sinh(2kh)

2k

(
1 +

2kh

sinh(2kh)

)
=

ρ ω η0
2 vp

2
coth(kh) vg =

1
2

ρ g η0
2 vg

(4.20)
The average energy in a column of unit area is the sum of the kinetic and

potential energy terms

Ekin = 1
2π

2π�
0

dt

0�
−h

dz
1
2
ρ

[(
dX

dt

)2

+
(

dZ

dt

)2
]

= 1
4 ρ g η0

2

Epot = 1
2π

2π�
0

dt

η�
−h

dz ρ g Z = 1
4 ρ g η0

2

(4.21)

The rate of energy flow is therefore equal to the mean energy in a column of
unit surface area of the wave multiplied by the group velocity, as might have
been expected.

The momentum flow through unit width is easily calculated from the xx
component of the momentum flux tensor. Since only the xx term does not
average to zero,

1
2π

2π�
0

dt sin2 (kx − ωt)

⎧⎨
⎩

0�
−h

ρvx
2dz

⎫⎬
⎭ =

1
2

ρ g η0
2 (4.22)

Case study 4.I The Wake of a Ship–Wave Drag

A ship travelling through water experiences significant wave drag as a result of the
surface gravity waves generated by its displacement as it moves through the water.
A very simple model can be developed for a ship travelling in a narrow channel, e.g.
a canal. It is assumed that the wave is generated at the bow and is normal to the
ship’s path. The waves are specified by the phase, which is determined by the ship’s
bow wave. If the waves generated successively do not interfere destructively, the phase
velocity vp = vs, the speed of the ship. The rate at which work is done by the ship
is R vs where R is the resistance to the motion, i.e. the drag. If we consider a fixed
plane perpendicular to the path of the ship, the length of the wave train increases by
a length vp per unit time ahead of the plane. The energy increase ahead of the plane,
equation (4.21), is therefore vp � 1

2 ρ g η0
2, from which must be subtracted the energy

of the wave groups following the ship crossing the fixed plane, the group velocity vg

being always less than that of the phase vp

1
2
ρ g η0

2 vp =
1
2
ρ g η0

2 vg + R vs

and therefore

R =
1
2

vp − vg

vp
ρ g η0

2 =
1
4
ρ g η0

2

(
1 − 2kh

sinh(2kh)

)
(4.23)
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If the water is shallow the phase velocity cannot exceed
√

gh. Therefore if the speed
of the ship exceeds this value, the wave drag vanishes, a fact attested by experiment
and familiar to nineteenth-century canal boatmen.

In problem #20 it is argued by dimensional methods that the wave drag generated
by a boat, expressed as a drag coefficient, is a function of the Froude number (equa-
tion S.58). A typical plot of the drag coefficient versus the Froude number shows a
number of maxima and minima. These are due to interference between the waves pro-
duced at the stern (a trough) and at the bow (a crest). When the two waves interfere
constructively, there is a maximum in the drag, the length of the boat matches an odd
number of half wavelengths of the gravity wave.

4.I.i Two-dimensional wake, Kelvin wedge

The simple calculation of the wake following a ship above is unsatisfactory as it
assumes that waves propagate longitudinally only in the direction parallel to the ship’s
motion and takes no account of their transverse propagation. In fact the waves will
spread laterally, spreading as a series of linear wavefronts away from the source at the
ship’s bows or stern. At the bow the wave has a crest and at the stern a trough. The
waves are generated with a range of wavelengths, which each satisfy the dispersion
relation appropriate to their direction of motion. Consider waves propagating with
their wavefronts along a line at an angle θ to the ship’s motion. They are generated
at (for example) the bow, and the phase velocity must be equal to the component of
the ship’s velocity normal to the wavefront, vp = vs sin θ (Figure 4.1). Assuming the
waves are deep water waves h → ∞, the wavenumber is given by dispersion relation

k =
g

vs
2 sin2 θ

(4.24)

The group velocity of gravity waves is less than the phase velocity, vg < vp. Hence
waves cannot propagate ahead of the ship.

v p
δt

vsδt

φ

P

O

r

θ

Figure 4.1: Sketch of the wave propagation of one mode of phase velocity vp generated at
the ship O moving with speed vs at an angle θ. Phase is measured at P at an angle φ to the
ship’s path.
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At an arbitrary point on the surface behind the ship, there will be a number of
different waves with different phases interacting simultaneously. As a result the dis-
turbance will be cancelled out by destructive interference. However, at certain points
groups of waves will interfere constructively and a disturbance of observable amplitude
results. At these points the phase of a wave group is stationary. This will occur for a
band of waves centred on wavenumber k0 at inclination θ0.

Consider a point P relative to the current position of the ship at O (Figure 4.1).
The distance OP is r and the angle OP makes with the direction of the ship’s motion
φ. The phase of the wave kθ at P is

χθ = −kθ r sin(θ − φ) (4.25)

Making use of equation (4.24), the derivative of the phase is

dχθ

dkθ
= −r sin (θ − φ) +

1
2

r tan θ cos (θ − φ) (4.26)

The stationary phase therefore occurs when

tan (θ − φ) =
1
2

tan θ

and therefore
tan φ =

tan θ(
2 + tan2 θ

) (4.27)

It is easily shown that φ has a maximum value

φmax = arctan
(

1
2
√

2

)
= arcsin

(
1
3

)
when θ = arctan

√
2 (4.28)

Consequently all the wave crests lie within a wedge of half angle arcsin(1/3) = 19.5◦,
known as the Kelvin wedge. There are two branches to the profile, one from wavefront
angles 0 to arctan(

√
2) = 54.7◦, the other from 54.7◦ to 90◦. At the maximum of the

angle φ, i.e. at the corner of the wedge, the second derivative of the phase d2χ/dk2

is also zero. Consequently a broad range of frequencies contributes to the group with
stationary phase, and the resultant amplitude of the crest is high.

To be observable the wave must be a crest, i.e. χ ≈ 2nπ, where n is an arbitrary
integer. Thus there are a series of waves which form the wake behind the ship, each cor-
responding to different values of n. The above equation together with equations (4.24)
and (4.25) determine the profile of the wave, as follows. Given φ, equation (4.27)
determines the corresponding angle of the wavefront θ. Equation (4.24) yields the
wavenumber kθ, and finally (4.25) the spatial distance OP . Thus we obtain the polar
co-ordinates r, φ. There is a useful scaling relation for the waves in that the profiles
are similar, r ∝ nvs

2/g. A single plot may therefore be used to construct the com-
plete family. The quadratic scaling of wake dimensions with speed was used during
the Second World War to measure a ship’s speed from aerial photographs.

The profile of the wake is now easily constructed using co-ordinates taken from an
origin at the ship along x and perpendicular y to the ship’s path. Figure 4.2 shows
the typical form. The wake is clearly confined to the Kelvin wedge. The actual wake
from a ship is generally more complex as wave structures from other parts of the ship
interfere with that from the bows.
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Figure 4.2: Plot of a wake pattern lying within the Kelvin wedge (dashed). The waves
correspond to phase shifts with n = 1 to 4. The plots are constructed with a scale factor
vs

2/g.

4.3 Surface Waves in Infinite fluids

If the fluid is infinite in both directions, φ±2 = 0 since the potential tends
to zero at ∞. Then substituting the solution at the surface, we obtain from
equations (4.8) and (4.9)

σ k2 η0 = ρ+ (−ı ωφ+1 + g η0) −ρ− (−ı ωφ−1 + g η0)
−kφ+1 = kφ−1 = −ı ωη0

Hence we obtain the dispersion relation

ω2 =

[
(ρ− − ρ+) g + σk2

]
(ρ− + ρ+)

k (4.29)

This allows two classes of solutions.

4.3.1 Surface Wave at a Contact Discontinuity

Light fluid above the heavy one, ρ+ < ρ−: Consequently ω is real. There is
therefore a propagating wave along the surface with phase velocity

vp =
ω

k
=

√
(ρ− − ρ+)
(ρ− + ρ+)

� g

k
(4.30)
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4.3.2 Rayleigh–Taylor Instability

Heavy fluid above the light one, ρ+ > ρ−: Consequently ω is imaginary, and the
interface is therefore unstable. A small-amplitude perturbation of the surface
grows exponentially, with a small-amplitude growth rate

γ = �(ω) =

√
(ρ+ − ρ−)
(ρ+ + ρ−)

� gk (4.31)

This growth rate is only maintained for a short time until the instability enters
its nonlinear phase, when the growth is approximately proportional to the
freefall displacement 1

2gt2. In this phase a thin spike of heavy fluid penetrates
into the light one, its length increasing approximately as a fraction of 1

2gt2. The
light fluid forms a bubble which rises through the heavy fluid supported by its
buoyancy. As the velocity shear across the contact discontinuity increases, it
also becomes unstable to the Kelvin–Helmholtz instability discussed in the
next section. As a result vortices develop on the spike, eventually forming a
‘mushroom cap’.

During the linear phase, an initial surface perturbation η0 increases as

η = η0 cosh (γ t) with surface velocity v =
dη

dt
= γ η0 sinh (γ t)

(4.32)
It follows from Einstein’s equivalence principle that gravity and acceleration

are equivalent. If gravity is replaced by an equivalent acceleration across the
light–heavy fluid boundary, the growth rate for an accelerated interface is given
by equation (4.31) with g replaced by the acceleration a.

This instability is very familiar in everyday life. If a tumbler is filled with
water and carefully inverted maintaining a plane surface with the heavy water
uppermost, the atmospheric pressure on the under surface is sufficient to hold
the water in place, but as we know, from experience, the water rapidly falls
out. This is due to the rapid growth of the Rayleigh–Taylor instability over
the surface. In the language of mechanics, the system is established in a state
of unstable equilibrium, in that the potential energy is reduced if the water
and air are interchanged. Another way of looking at the problem is that it is
a consequence of the buoyancy of the air in the water. Consequently a small
bubble initially forms at the surface, rising into the water and displacing it
downwards. The displaced water causes an increase in surface pressure forcing
more air into the bubble re-reinforcing the motion. Thus the disturbance grows
unstably. The Rayleigh–Taylor instability is found in many situations in both
terrestrial and stellar environments. Typical examples are found in salt domes
and weather inversions, and in the Crab nebula. The instability may also be a
limiting factor in the collapse of laser compression targets for inertial fusion.
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4.4 Surface Waves with Velocity Shear Across a
Contact Discontinuity

We consider the case where the upper and lower fluids have velocities V±
respectively parallel to the surface of discontinuity. The x direction is taken
parallel to the velocity difference V+ − V−, with components U±. Transform-
ing to the frame in which the common transverse velocity is zero, we may write
the total potentials including the perturbation φ′ as

φ± = U±x + φ′
± (4.33)

where x is the direction of the flows U±, and y also lies in the surface. The
perturbation takes the form of a wave with wavenumber k = kx̂i + ky ĵ.

The displacement of the surface must reflect the motion along the surface.
Therefore we must have

∂η

∂t
+ U+

∂η

∂x
=

∂φ+

∂z

∂η

∂t
+ U−

∂η

∂x
=

∂φ−
∂z

(4.34)

The approximation to Bernoulli’s equation for the pressure must also be
adjusted for the applied velocity

p

ρ
= −∂φ′

∂t
− 1

2

{(
U +

∂φ′

∂x

)2

+
(

∂φ′

∂y

)2

+
(

∂φ′

∂z

)2
}

− gz + . . . ≈ −∂φ′

∂t
− U

∂φ′

∂x
− gz + . . .

Neglecting terms of second order in Bernoulli’s equation across the interface
and including the surface tension,

p− − p+ = −σ
∂2η

∂x2
= −ρ+

(
∂φ′

+

∂t
+ U

∂φ′
+

∂x
+ gz

)
− ρ−

(
∂φ′−
∂t

+ U
∂φ′−
∂x

+ gz

)
(4.35)

Considering a travelling wave along the surface as before and noting that
only the solutions φ′

1 are appropriate since the fluids are infinite, we obtain

− ı (ω − kxU+) η0 = −kφ′
+1

− ı (ω − kxU−) η0 = kφ′−1

ρ+

[−ı (ω − kxU+) φ′
+1

+ g η0

] − ρ−
[−ı (ω − kxU−) φ′−1

+ g η0

]
= −σk2η0

(4.36)

The dispersion relation is obtained since the equations must be consistent

ρ+ (ω − kxU+)2 + ρ− (ω − kxU−)2 = g k (ρ+ − ρ−) − σk2 (4.37)
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Solving for the phase velocity ω/k,

ω

k
=

kx

k

(ρ−U− + ρ+U+)
(ρ− + ρ+)

±
{[

σ k2 + g (ρ− − ρ+)
]

[k (ρ− + ρ+)]

−kx
2

k2

ρ− ρ+

(ρ− + ρ+)2
(U− − U+)2

}1/2

(4.38)

Neglecting the surface tension, the solutions represent stable oscillations
when ω is real, i.e. (ρ−2 − ρ+

2) g k/kx
2 > ρ− ρ+ (U− − U+)2. Otherwise ω is

complex and the wave is unstable with one solution growing and the other
decaying. When the heavy fluid is below the light one, gravity provides a
stabilising influence, which is stronger for shorter wavelengths. The instability
is known as the Kelvin–Helmholtz instability. We note that if the velocities
of the two fluids are equal U+ = U− the flow reduces to the Rayleigh–Taylor
instability propagating with the joint flow speed.

When surface tension at the interface is taken into account the system is
stabilised for some short wavelengths. With this correction, the results agree
well in predicting the onset of wave formation with wind over a surface.

If gravity is negligible, the flow is a vortex sheet with a tangential
discontinuity; in this situation the waves are absolutely unstable at all
wavelengths. Since k ≥ kx the strongest instability growth occurs for waves
travelling parallel to the velocity difference, which therefore dominate for
large times. If the shear layer has a finite width, so that the density and
velocity spatial variations are continuous, the instability still occurs provided
the wavelength is much larger than the width of the shear layer, so that the
latter approximates a discontinuity. The appropriate condition, modified for
finite width, for instability must still be satisfied. Unstable short-wavelength
modes are limited to approximately the width of the shear layer, have the
largest growth rate and initially dominate. The effect of surface tension is
reflected in the old mariner’s method of last resort: that is, oil discharged
onto the surface of the sea to reduce the waves.

As with the Rayleigh–Taylor instability, the Kelvin–Helmholtz instability
has a simple physical mechanism and is easy to understand. A small upwards
perturbation of the surface gives rise to a distortion in the flow of the fluid
passing over it. In consequence the velocity of the upper fluid is increased and
its pressure on the surface lowered locally. Concomitantly the disturbance in
the lower fluid decreases its velocity and increases the pressure. The conse-
quence is a flow of the lower fluid into the bulge increasing its size, and thus
the disturbance grows.

The Kelvin–Helmholtz instability is found in many familiar situations giving
rise to the growth of waves by the wind over a surface, or the rippling motion
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of loose flapping sails. A classic example is the development of billow clouds by
wind shear in the atmosphere. It is frequently a critical element in the nonlin-
ear, large-amplitude development of many instabilities, e.g. Rayleigh–Taylor,
leading to turbulence. The Kelvin–Helmholtz instability also plays a major role
in the nonlinear development of the instability itself, introducing progressively
longer wavelengths into the motion, as well high-frequency eddies.

As we have seen, vortex sheets are unstable due to Kelvin–Helmholtz insta-
bility. If the sheet is finite, the perturbation is strongly developed at the ends
and the instability grows rapidly into the nonlinear phase, which causes the
sheet to roll up as discussed in Section 11.8.

4.5 Shallow Water Waves

Thus far the wave amplitude has been assumed to be small, so that the flow is
treated in the linear approximation, where only first-order perturbation terms
are considered. In fact this condition may not be valid, e.g. in the flow of water
from a breaking dam or a tidal bore. Many of these flows, which are the finite
amplitude, long-wavelength form of those discussed in Section 4.2.1.2, may be
treated by a simple method provided the characteristic length of the flow 

(e.g. wavelength) is much larger than both the depth of the water h0 and the
amplitude of the disturbance η0.

Neglecting viscosity and surface tension, the equations of incompressible,
ideal flow in two dimensions are

du

dt
= −1

ρ

∂p

∂x

dw

dt
= −1

ρ

∂p

∂z
− g (4.39)

∂u

∂x
+

∂w

∂z
= 0

where x is the direction of propagation and z the height measured upwards
from the bed, and u and w the corresponding components of the velocity. As
for linear waves within the shallow water approximation Section 4.2.1.2, the
term dw/dz may be neglected, so that

p = p0 + ρ g [h(x, t) − z]

where p0 is the atmospheric pressure and h(x, t) is the total height of the
surface above the bed. Consequently

du

dt
= −g

∂h

∂x
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The rate of change of the velocity u is therefore independent of the depth z.
Thus if u is initially constant with depth it remains so throughout the motion,
so that u depends on x and t only,

∂u

∂t
+ u

∂u

∂x
= −g

∂h

∂x
(4.40)

Since the bed is solid, w = 0 when z = 0, and the equation of continuity inte-
grates to give

w = −∂u

∂x
z

Assuming the bed is flat, the z component of velocity at the surface is

w =
dh

dt
=

∂h

∂t
+ u

∂h

∂x

so that
∂h

∂t
+ u

∂h

∂x
+ h

∂u

∂x
= 0 (4.41)

We introduce the phase velocity of the waves in the linear approximation
c =

√
gh to write

∂u

∂t
+ u

∂u

∂x
+ 2c

∂c

∂x
= 0

∂(2c)
∂t

+ u
∂(2c)
∂x

+ c
∂u

∂x
= 0

Adding and subtracting these two equations we obtain two further equations{
∂

∂t
+ (u ± c)

∂

∂x

}
(u ± 2c) (4.42)

On the lines C±, called characteristics dx/dt = v ± c, the terms J± = v ± 2c
are constant (characteristic invariants) respectively. The characteristics repre-
sent waves moving with the local linear phase speed forwards and backwards in
the fluid, carrying information about the state of the flow upstream and down-
stream in terms of the characteristic invariants. We investigate their properties
and the method of calculation based on them in Chapter 9.

Returning to the condition that dw/dt may be neglected, the orders of mag-
nitude of the various parameters are easily found as follows:

u (∂u/∂x) ∼ g (∂h/∂x) =⇒ u ∼ √
g h

(∂u/∂t) ∼ g (∂h/∂x) =⇒ t ∼ 
/
√

g h
(∂w/∂z) ∼ (∂u/∂x) =⇒ w ∼ √

g h (h/
).

Therefore dw/dt ∼ (h/
)2 g � g as required.
The shallow water approximation, generalised to include viscosity, Coriolis

force and a variable, finds wide application in both oceanographic and atmo-
spheric modelling.
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4.6 Waves in a Stratified Fluid

In a gravitational field, an oscillation may be established if the properties
of the fluid vary with height. We have already seen such a wave motion at
the boundary between two fluids of differing density. However, waves may be
established more generally if the fluid is inhomogeneous when the density or
temperature varies with height. Since the hydrostatic condition requires that
the pressure varies with height, such variation may be due to temperature
or compositional variations. There are two areas of physics, where they play
important roles:

1. In meteorology layers of differing temperature occur due to the lapse rate
in the atmosphere.

2. In oceanography layers of differing salinity, and therefore density, give
rise to a stratified fluid.

The force on a fluid particle is associated with the change of buoyancy,
resulting from the difference between its density and the local density and the
resultant gravitational force. The buoyancy force on a fluid particle given by
Archimedes’ principle, is due to the net upthrust resulting from the density
difference and is therefore simply ρ′g per unit volume, where ρ′ is the density
perturbation. We may consider such density variations quite generally as due to
a variation of entropy with height in the fluid body. Since the motion is assumed
to be adiabatic, the displaced fluid carries with it its entropy, differing from
that of the fluid it displaces. Provided the wavelength is small compared with
any density variation due to gravity, the fluid behaves as though incompress-
ible. Density changes are therefore considered to be associated with entropy
changes only. The wave is treated as a small perturbation to the ambient state
of the fluid, density ρ0, entropy s0 and pressure p0, the latter satisfying the
hydrostatic pressure condition, equation (1.25), namely ∇p0 = ρ0g. Introduc-
ing the perturbation increments ρ′, s′ and p′, and noting that the change in
density is due solely to the change in entropy,

ρ′ =
∂ρ

∂s

∣∣∣
p
s′

Since the ambient fluid is at rest, the ambient velocity v0 = 0 and we have
from Euler’s equation the perturbation velocity given by

∂v′

∂t
= −∇p′

ρ0
+

∇p0

ρ0
2

ρ′

= −∇p′

ρ0
+

g
ρ0

∂ρ

∂s

∣∣∣
p
s′ (4.43)
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Since the entropy of a fluid particle is constant, the density, depending only on
the entropy, must be considered to be constant in the equation of continuity
so that

∇ · v′ = 0 (4.44)

The equation of entropy conservation (1.16) yields

∂s′

∂t
+ v′ · ∇s0 = 0

Within this approximation, we note that the density perturbation appears
only through the product with gravity ρ′g; elsewhere it is neglected, e.g. in
the equation of continuity. This is a widely used approximation, known as the
Boussinesq approximation, for dealing with effects resulting from buoyancy.
We shall meet it again later in Chapter 7 to treat free convection.

For a wave with wavenumber k and frequency ω, the perturbation veloc-
ity takes the form v′ = v0

′ exp [ı (k · r − ωt)], with similar expressions for the
entropy and pressure increments, and it follows from the above equations that

k · v′ = 0
ı ω s′ − v′ · ∇s0 = 0

ı ω v′ +
1
ρ0

∂ρ

∂s

∣∣∣
p
s′ g − ık

ρ0
p′ = 0

Since k · v′ = 0, the wave is transverse, with displacement perpendicular to
the direction of propagation. Taking the scalar product of the last equation
with k,

p′ = − ı

k2

∂ρ

∂s

∣∣∣
p
s′ k · g

Noting that the entropy gradient is parallel to gravity, and eliminating s′, p′

and v′, we obtain the dispersion relation3

ω2 = −1
ρ

∂ρ

∂s

∣∣∣
p
g

ds

dz
sin2 θ (4.45)

where θ is the angle the direction of propagation k makes with the upward
vertical ẑ, namely −g. If the wave is propagated vertically, θ = 0, the frequency
ω = 0, and if horizontally, θ = π/2, at the maximum propagation frequency

ω0 =

√
−1

ρ

∂ρ

∂s

∣∣∣
p
g

ds

dz
(4.46)

3Note that the subscript 0 will be omitted henceforward, being unnecessary.
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The fluid therefore has oscillations at frequencies in the range 0 < ω < ω0 at
a corresponding angle θ = arcsin(

√
ω/ω0). When the direction of propagation

is horizontal, the frequency takes its maximum value and the fluid motion
consists of vertical columns of rising and falling fluid.

When the fluid is stable, according to the arguments of Section 1.5.3,
ds/dz < 0 and ω0

2 > 0 is positive. The waves have a real (oscillatory)
frequency. On the other hand if ds/dz > 0, ω0 is imaginary, and unstable
growth of the disturbance is predicted in agreement with equation (1.37).

We may identify several different characteristic forms of the waves from this
general form:

1. Density gradient stratification If the stratification is due to density alone

ω0 =

√
−g

ρ

dρ

dz
(4.47)

known as the buoyancy or Brunt–Väisälä frequency. These waves are
important in layers of differing salinity in the deep ocean.

2. Temperature gradient stratification If the stratification is due to temper-
ature gradient alone, the thermodynamic relations from equations (1.28)
and (1.29)

−1
ρ

∂ρ

∂s

∣∣∣
s

=
α T

cp
and cp = T

∂s

∂T

∣∣∣
p

we obtain

ω0 =

√
α g

dT

dz
(4.48)

3. Stratified fluid in both mechanical and thermal equilibrium If the fluid is
in both mechanical and thermal equilibrium, the temperature is constant
and therefore, making use of equation (1.29),

ds

dz
=

∂s

∂p

∣∣∣
T

dp

dz
= −ρ g

∂s

∂p

∣∣∣
T

= ρ g
∂V

∂T

∣∣∣
p

= α g

Hence in this case

ω0 =

√
T

cp
α g

=
g√
cpT

for an ideal gas (4.49)
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4. Stratified fluid in adiabatic equilibrium If the fluid has a density and
temperature profile given by the adiabatic lapse rate, equation (1.30),
the entropy does not vary with height, ds/dz = 0, and the frequency
ω = 0. The fluid therefore does not support these waves.

5. Stratified fluid with temperature gradient The fluid has a temperature
gradient dT/dz and is subject to adiabatic convective disturbance. The
frequency must be corrected to take this effect into account:

ds

dz
=

∂s

∂T

∣∣∣
p

dT

dz
+

∂s

∂p

∣∣∣
T

dp

dz

=
cp

T

dT

dz
+ α g (4.50)

ω0 =

√
α g

(
dT

dz
+

α g T

cp

)
(4.51)

and is zero if the temperature gradient is equal to the adiabatic
lapse rate.

These waves play an important role in the dynamics of atmospheric motions
in meteorology, reflecting a difference between the environmental and adiabatic
lapse rates.

Waves of this general type have unusual behaviour, because the dispersion
relation depends only on the wavenumber k through the angle, θ, between the
wave vector and gravity. Consequently, to calculate the group velocity we must
use its three-dimensional expression4

vg = ∇k

(ω

k

)
=

∂

∂ki

(ω

k

)
(4.52)

where ∇k is the gradient operator in k space. Hence, since

sin2 θ =
k2 − kz

2

k2

we obtain the result after differentiation that

vg =
ω0 kz

2

k3
√

k2 − kz
2

(
k − k2

kz
ẑ
)

(4.53)

It is easy to show that vg · k = 0 so that the group velocity is perpendicular
to the wave vector, i.e. the phase velocity. Since there must be symmetry about

4This expression is obtained by extending the usual derivation to three dimensions.
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the axis of gravity g, namely ẑ, it is clear that the group velocity lies in the
plane containing k and g.5 The waves therefore have the unusual property that
energy is transmitted along the wavefront, rather than perpendicular to it in
the normal way. The particle motion v′ is, as we have indicated, transverse
and therefore parallel to the group velocity. Therefore

vx
′

vy
′ =

vgx

vgy

=
ky

kx

4.7 Stability of Laminar Shear Flow

The steady laminar flow in a pipe is characterised by a velocity parallel to the
axis of the pipe, whose value varies across the pipe, but is constant along it. It
is therefore characterised by a velocity shear between the wall and the centre.
As we saw in Section 4.4 such motion is unstable in inviscid flow due to the
Kelvin–Helmholtz instability. As an example, we consider the two-dimensional
case where the velocity is constant in the x direction, i.e. vx(y) = U(y), and
the pressure uniform across the duct p(x) = P (x), namely plane Poiseuille flow
(Section 3.6.2). To consider the stability, we follow the same approach as that
used earlier and apply a sinusoidal perturbation along the duct with amplitude
variation across it, namely A(y) exp {ı (kx − ωt)}. Considering the perturba-
tions vx → U + v′x, vy → v′y and p → P + p′, and assuming the undisturbed
flow obeys the Navier–Stokes equations, we obtain

∂v′x
∂t

+ U
∂v′x
∂x

+ v′y
∂U

∂y
= −1

ρ

∂p′

∂x
+

μ

ρ
∇2v′x

∂v′y
∂t

+ U
∂v′y
∂x

= −1
ρ

∂p′

∂y
+

μ

ρ
∇2v′y (4.54)

∂v′x
∂x

+
∂v′y
∂y

= 0

To reduce this set of equations to a single ordinary differential equation we
introduce the streamfunction

ψ(x, y, t) = φ(y) exp {ı (kx − ωt)} (4.55)

with modes defined by the wavenumber k and the complex frequency ω, the
growth or decay of the mode being determined by �(ω). The velocity compo-
nents become

v′x =
∂ψ

∂y
= φ̇(y) exp {ı (kx − ωt)} v′y = −∂ψ

∂x
= −ı k φ(y) exp {ı (kx − ωt)}

(4.56)
5For if k lies in the (x, z) plane, then so must vg (and also the perturbation velocity v′).
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The streamfunction form automatically solves the equation of continuity for
an incompressible fluid. Hence substituting for v′x and v′y and eliminating p′,
we obtain the Orr–Sommerfeld equation

(U − c)
(
φ̈ − k2φ

)
− Üφ = − 1

kR
(....

φ − k2φ̈ + k4φ
)

(4.57)

where c = ω / k and is subject to the boundary conditions for plane
Poiseuille flow

φ = φ̇ = 0 when y = ±h (4.58)

The Reynolds number is defined as R = Umax h / ν.
The Orr–Sommerfeld equation satisfying the boundary conditions is an

eigenvalue problem such that solutions can only be found for particular val-
ues of c given the value of the Reynolds number R, i.e. only specific values
c(R) generate physically realistic solutions. Of particular interest are the neu-
tral stability solutions �(c) = 0 which separate the stable and unstable regions
of the flow for different values of the wavenumber k. The calculation of this
neutral stability curve presents mathematical difficulties. A typical plot of the
wavenumber k for varying Reynolds number R is shown in Figure 4.3.

R
crit

ℑ(c)>0ℑ(c)<0

R

k

(b)

(a)

Figure 4.3: Sketch of the neutral stability curve for a representative parallel flow. The
region inside the loops is unstable. The full line (a) has flow profile with no point of
inflexion and the dashed line (b) includes one.

For Reynolds number below the critical value R < Rcrit the flow is stable
for all values of the wavenumber k. However, once R > Rcrit a limited group
of wavenumbers starts to grow unstably. The value of the critical wavenumber
varies from flow to flow; for example, for plane Poiseuille flow, calculations
show that Rcrit = 5772 (Lin, 1955; Drazin and Reid, 1981).

Since the Reynolds number is generally large for these unstable flows, we
may consider the situation if we neglect the terms in R in the Orr–Sommerfeld
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equation. When this is done an important result is Rayleigh’s inflexion point
theorem, which states that: A necessary condition for linear instability of an
inviscid shear flow is that the velocity profile across the duct U(y) must con-
tain a point of inflexion somewhere across the duct. This implies that if the
viscous term is neglected, flow profiles not containing a point of inflexion are
stable. Plane Poiseuille flow is such an example, yet investigation shows that
the stability plot has the form shown by curve (a) in Figure 4.3 with a region
of instability. As R tends to infinity, the upper and lower branches of the
stability curve converge to reduce the region of instability to zero in accord
with the inviscid result. When the flow profile has a point of inflexion the
behaviour as R → ∞ is markedly different (Figure 4.3, curve (b)), the two
branches diverging, so that the flow remains unstable.

It is interesting that there is a clear difference between viscous and ‘non-
viscous’ flows in this problem. It might be expected that viscosity would tend
to damp out any oscillation, but in fact clearly it actually supports the growth.
However, Rayleigh’s theorem does play a role in that flows with a point of
inflexion are more susceptible to instability.

The stability condition derived from the Orr–Sommerfeld equation expresses
the behaviour in time of the wave mode k at a fixed point growing exponen-
tially. This is known as an absolute instability.

However, we may consider the instability growing in a wave packet moving
through the fluid with the group velocity of the wave. The onset of growth will
be at wavenumbers near to kmax at the critical Reynolds number Rcrit. Waves
within the group near onset will grow only if they lie within the narrow region
of k space spanned by the stability plot for the given value of R, otherwise
they will decay. The group velocity has the usual value dω/dk ≈ d{�(ωcrit)}/dk
since �(ωcrit) = 0. This instability behaviour is known as convective instabil-
ity. The wave packet may move away from its origin sufficiently rapidly, so
that at a fixed point the amplitude decays, although the mode is temporally
unstable.

The difference between the two types of instability can be seen from
Figure 4.4. The onset condition for each may be distinguished:

Absolute instability
∂ω

∂k
= 0 k = kcrit �(ω) = 0

Convective instability
∂ω

∂k
�= 0 k ≈ kcrit �(ω(k)) > 0

Clearly if the fluid is uniform along the direction of propagation of the wave
group, the onset of stability is unchanged by convection. However, in some
important applications, the growth rate may change from amplifying to decay-
ing along the trajectory. As a result waves which are absolutely unstable may
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in fact be stable because they move into a region where �(ω) < 0 before strong
growth occurs and they subsequently decay. The stability condition can there-
fore only be established once the full flow is known.

(b)(a)

Figure 4.4: A sketch to contrast the growth of a wave group subject to absolute (a) and
convective (b) instabilities. The arrows show the direction of propagation of the peak of the
wave group.

4.8 Nonlinear Instability

Thus far we have considered only the development of the instability when its
amplitude is small. In this regime its growth is governed by the linear develop-
ment exemplified by equations such as the Orr–Sommerfeld, Rayleigh–Taylor
or Kelvin–Helmholtz equations. Since the amplitude growth is exponential,
this phase is relatively short lived before the waves become sufficiently strong
that additional interactions between the waves set in. Near the onset of insta-
bility (R � Rcrit), the dominant wave is the one which is just unstable (kcrit).
This grows strongly and is the primary disturbance. Nonlinear terms cause the
wave to interact with itself. Landau (Landau and Lifshitz, 1959) described this
interaction as one involving the square of the wave amplitude. The primary
term is simply the linear growth with rate σ = �(ω). Averaging over times
which are long compared with the period, terms of odd powers in the amplitude
will average out as they contain only sinusoidally varying time dependencies.
On the other hand even powers contain a non-zero average. Thus the time
average growth is given by

d|A|2
dt

= 2σ|A|2 − γ|A|4 + . . . (4.59)

where γ is a constant, known as the Landau constant. For Reynolds numbers
close to the critical value, the linear growth rate σ ≈ const(R−Rcrit). This
growth equation is easily integrated to give

|A|2 = A0
2
/{ γ

2σ
A0

2 +
(
1 − γ

2σ
A0

2
)

exp(−2σt)
}

(4.60)

where A0 is the initial amplitude.
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If γ > 0 the instability initially grows exponentially in a similar manner
to a linear instability. However, after a time τ ∼ ln

(
2σ/γ − A0

2
)
/2σ, the

nonlinearity associated with the fourth-order term sets in, progressively
reducing the growth rate. Eventually when t � τ the growth is stabilised
and a new configuration of steady flow is generated with a wave of amplitude
|Alimit| =

√
2σ/γ ∼ √R−Rcrit. This condition is known as supercritical sta-

bility. If the initial amplitude is greater than this limiting value (A0 > |Alimit|)
the amplitude will decrease to the limiting value. At the critical Reynolds
number the critical mode becomes unstable and will grow to its nonlinear
stable amplitude. Consequently, at the critical Reynolds number Rcrit the
stability plot bifurcates with a new branch depending on the amplitude Alimit.
As the Reynolds number is increased, new waves become unstable and grow
in a similar fashion, but with an oscillation frequency, which is normally
incommensurate with the previously generated ones, and with an initial phase
which is randomly determined. These in turn saturate to generate a complex
pattern of disturbances, which may be Fourier analysed in terms of a set of
waves at different frequencies and wavenumbers. Because of the random phases
each wave is independent and the ensemble forms a set of rapidly varying,
poorly correlated motions. In general we may thus conclude that a series of
further bifurcations takes place associated with additional nonlinear terms.

In contrast if γ < 0 it is evident from equation (4.59) that the nonlinearity
increases the growth of the instability. In particular, the solution of equa-
tion (4.60) at a time τ = ln

(
2σ/|γ| + A0

2
)
/2σ makes the amplitude of the

wave infinite. In this region the omitted higher order terms in the Landau
equation cannot be neglected. For example, if the sign of the next term is
−γ′|A|6, the growth is again stabilised.

If the Reynolds number is significantly in excess of the critical value, sev-
eral modes with differing frequencies become unstable. Consequently once the
nonlinear instability is well established, the motions of the fluid contain many
different incommensurate frequencies and wavelengths. These waves interact
with one another through parametric interactions introduced by the nonlin-
earities in the governing equations. The waves rapidly become distributed in a
‘quasi-random’ fashion, and the flow becomes turbulent.



Chapter 5

Turbulent Flow

5.1 Introduction

Turbulence is a very general phenomenon occurring during fluid motion, in
which the fluid acquires a rapidly varying random motion superimposed on the
steady mean flow. The effect is clearly illustrated in the classical experiment
performed by Reynolds in the 1880s (Reynolds, 1883). In this a jet of ink
was injected into a tube of water flowing at increasing speeds (Figure 5.1). At
low speeds the jet continued along a linear path, as the flow continued along
a steady streamline as predicted in laminar flow, typical of Poiseuille flow.
As the flow speed increased, the flow no longer remained steady, developing
oscillations whose amplitude progressively increased, and eventually became
broken, the ink totally filling the flow. At this stage the flow is fully turbulent.
Reynolds found that the onset of turbulence is determined by a critical number
Rcrit, whose value varies from one flow configuration to another. For flows with
R > Rcrit the flow develops turbulence. Further increase in the speed led to a
shortening of the distance over which the transition from laminar to turbulent
flow took place. Immediately above the critical value, there is a transition
region of unsteady flow before the turbulence is fully developed at Reynolds
numbers in excess of about 4000. For pipe flow the critical Reynolds number
of Rcrit ≈ 2300 varies from flow to flow depending on the level of turbulence
in the incoming flow.

It is found that in turbulent flow, the time-varying turbulent component of
the flow consists of a series of superimposed random eddies. These may be
visualised either as a set of spatial and temporal fluctuations in velocity with
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Laminar flow

Turbulent flow

Turbulent flow (observed with an electric spark)

Figure 5.1: Reynolds’ sketch of the flow in which ink was injected into water flowing along
a pipe (Reynolds, 1883). The flow velocity is increased from below the critical Reynolds
number in the upper picture to above in the lower, when the flow becomes unstable and
turbulent. The bottom picture shows a short time exposure of the turbulent flow.

scale length λ, or equivalently as a spectrum of waves of spatial frequency k.
From the Fourier transform theorem, clearly λ ∼ 1/k. When turbulence is fully
developed these eddies have a clear distribution ranging from large ones, whose
velocities are of the order of the mean flow speed and dimensions of the order
of the characteristic scale of the flow, to small ones whose size is determined
by their damping due to viscosity.

An elementary picture of the development of turbulence through this cas-
cade is obtained by considering the breakup of structures in the flow due to
nonlinearities. The flow of fluid in a pipe is strongly sheared with the velocity
along the centre line corresponding to the mean flow speed and zero at the edge
of the pipe. There is a velocity fluctuation of approximately this value moving
along the pipe at approximately half the average flow velocity. The nonlinear
term in Euler’s equation generates spatial harmonics in the usual manner. At
medium-eddy Reynolds numbers this gives rise to the nonlinear growth of fluc-
tuations of higher spatial frequency, which progressively increase in number
and decrease in size. The eddies are, however, damped by viscosity. Once the
Reynolds number of the individual fluctuation becomes small its generation of
smaller scale length eddies is damped and no further development occurs. The
onset of turbulence is determined by a critical value of the Reynolds number
insufficient to damp this behaviour for the largest eddies.
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Although turbulence was discovered over a century ago, and has been exten-
sively studied ever since, it has remained an intractable problem for analysis.1

As will be seen several major difficulties remain:
1. The onset and initial development of turbulence. Several distinct mecha-

nisms have been proposed, each leading to the breakdown of an initially
laminar flow into turbulence. The relationship of these different processes
for specific problems is not understood.

2. The structure of the velocity spectrum in well-developed turbulence, i.e.
the velocities of specific structures, either ‘eddies’ or ‘waves’ in the fluid.

3. In several specific turbulent flows, the turbulence is found to contain
coherent structures, which may be retained for long times, rather than
being homogeneously distributed.

4. Empirical models have been used satisfactorily in engineering applica-
tions for many years, many based around dimensional analysis with
experimentally determined constants, but still lack a rigorous basis.

Progress towards resolving these issues is slow and difficult. However, advances
are being made using computer simulation to address the complexity of
turbulence.

5.1.1 The Generation of Turbulence

In general turbulence is generated by a wide variety of effects. Indeed it is
difficult, if not impossible, to identify a general mechanism which encompasses
all flows. Normally it has its origin in the nonlinear development of the insta-
bility of an oscillation in the flow, although, as we shall see, the process by
which the flow becomes chaotic may take place by two completely different
general routes. As a result, it is not appropriate in this book to give more
than a brief general outline of the underlying processes by which turbulence is
generated; an excellent survey encompassing both experimental and theoreti-
cal ideas is to be found in the book by Tritton (1988). Despite the fact that

1The difficulty of solving the general problem of turbulence is reflected in several quota-
tions of which the following two are representative:

When I meet God, I am going to ask him two questions: Why relativity? And
why turbulence? I really believe he will have an answer for the first.

(Werner Heisenberg)

and

I am an old man now, and when I die and go to heaven there are two matters on
which I hope for enlightenment. One is quantum electrodynamics, and the other
is the turbulent motion of fluids. And about the former I am rather optimistic.

(Horace Lamb)



120 Introductory Fluid Mechanics

the specific details of each process may be quite dissimilar, the final state of
fully developed turbulence discussed in the next section (Section 5.2) is usually
similar in structure.

As we have seen previously in chapter 4, instability is the result of a process
by which a perturbation grows essentially without limit. The perturbation itself
generates further growth by the disturbance introduced into the flow. In the
previous analyses we have examined the linear phases of growth, where the
perturbation was treated as a small first-order term alone, and higher order
contributions have been neglected. As the perturbation grows, the higher order
terms, such as (v · ∇)v, increase in relative strength more rapidly and make
progressively larger contributions to the flow (Section 4.8).

Higher order terms are of higher power in the amplitude of the wave. Conse-
quently the growth spectrum is not confined to a single harmonic, but higher
harmonics, i.e. frequency doubling, will be generated. Different incommensurate
frequencies develop with significant amplitude and random phase as proposed
in the Landau model (Section 4.8). These new waves in turn give rise to further
wave mixing introducing sum and difference frequencies through nonlinearity.
If these waves are not damped, e.g. by viscosity, the net result is the rapid
growth of a distribution of waves over a wide range of frequencies (Landau
and Lifshitz, 1959, p.103). This process is essentially random in that the ini-
tial phase of the noise, from which growth of the waves of incommensurate
frequency occurs, is random. The final turbulent distribution of waves is there-
fore random. Once the turbulence is fully established, the spectrum of the
waves assumes a universal frequency distribution, characteristic (but not uni-
versal) of most common forms of fluid dynamical turbulence, discussed in the
next section. Turbulence in other systems, e.g. plasmas, may also show a uni-
versal distribution, but with different scaling. Nonlinear instability growth of
this type leading to turbulence is most often found in shear flows, such as pipes
or ducts and boundary layers.

A second route to turbulence is due to period doubling and the generation
of deterministic chaos (Tritton, 1988). As the strength of the driving source
causing some types of oscillation in the fluid increases, the trajectory in the
phase space of the oscillation no longer closes on the first circuit, but repeats
to close on the second, i.e. the period has doubled. Continuing to strengthen
the drive causes the period to continue to increase up to a limit–the Feigen-
baum limit –when the motion passes through an infinite sequence of loops in
phase space without closing, filling a limited region of the phase space. At this
point a state of deterministic chaos is reached, and with it the state of fully
developed turbulence. Characteristic of this route to turbulence are convective
heat flows, typically the Rayleigh–Bénard instability (Section 7.5.4) and its
nonlinear development, which have been extensively studied.
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In view of the complex and general nature of the processes by which tur-
bulence is established, it is not surprising that its initial development still
remains poorly understood. The linear phases of the various instabilities are
comparatively simple to analyse, and the general behaviour of their nonlinear
development understood through computer simulation. However, the develop-
ment of the full spectrum of waves and their interactions remains an intractable
problem.

Expressed in terms of particle motions rather than their Fourier conjugates
(spatial and temporal frequencies), these take the form of a series of eddies of
appropriate spatial frequencies as described earlier. The motions give a useful
simple physical picture of the fully developed turbulent motion, which is devel-
oped in the next section (5.2) on homogeneous turbulence. The eddies lead to
extensive mixing of the fluid induced by the turbulence. This may be either
beneficial or deleterious depending on the application.

5.2 Fully Developed Turbulence

At large Reynolds number turbulence develops quickly and produces a rapid
and irregular variation of velocity with time. The particle paths are irregular
and extensive mixing occurs. The particle velocity may be divided into two
terms, the mean or flow velocity u and the fluctuating velocity v′. The velocity
of a fluid particle is therefore

v = u + v′ (5.1)

L.F. Richardson introduced the concept of turbulent motion as a super-
position of eddies, or motions, of various sizes2 and the consequent turbulent
cascade. As the Reynolds number increases and the flow becomes unstable, the
largest eddies appear first with a size which is characteristic of the dimensions
of the flow, due to the fact that, as their gradients are smaller, they are most
weakly damped and less rapidly dissipated. An important role is played by the
largest eddies, whose size is for example that of the dimensions of the body
�. The velocity fluctuation associated with these large eddies is of the same
order of magnitude as that of the velocity differential in the mean flow Δu,
namely the variation over the distance �. Clearly the length � plays an impor-
tant role as the distance over which the fluid is mixed by turbulent motions;
it is therefore known as the mixing length.

2Although the structure of turbulence is strictly determined by the spatial spectrum of
the fluctuations, the concept of simple eddies in configuration space is more easily visualised
and therefore appropriate for pedagogic purposes. However, it should be remembered that
an eddy of size λ corresponds to a fluctuation of wavenumber k ∼ 1/λ.
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The turbulence may be specified in terms of a distribution function for the
velocity. Thus consider the relationship between two arbitrary points and times
P0 = (r0, t0) and P = (r, t). We define the difference in their separation and
fluctuation velocities at a particular time t = t0

x = r(P ) − r0(P0) and w = v′(P ) − v′(P0)

The distribution law F (x) is the probability of finding a fluctuation w at P .
Clearly, as defined above, the distribution depends on the position P0. We
define (Kolmogorov, 1941b):

1. Homogeneous turbulence if the distribution law F is independent of the
point P0 on which it is based.

2. Isotropic turbulence if the turbulence is homogeneous and the distribu-
tion law is also invariant with respect to rotations and reflections of the
co-ordinate system x.

We restrict our study to isotropic turbulence. Considering a Fourier expansion
in space of the distribution F (x), we obtain a distribution of structures of
wavelengths λ = 2π/k which correspond to the eddies. The nonlinear term,
(v · ∇)v, in the Navier–Stokes equation introduces an interaction between the
terms: those with wavenumber k1 interact with those of k2 to generate a third
satisfying k3 = k1 + k2, i.e. eddies of longer wavelengths progressively create
shorter wavelength ones. There is a progressive transfer of energy from the
longer wavelengths, where eddy motion is created, to shorter ones, where it is
dissipated by viscosity due to larger velocity gradients, and their velocities will
therefore be less than Δu. Indeed we may expect that there is a spectrum of
smaller motions with smaller velocities. In consequence, due to the nonlinearity,
fully developed turbulent flow is a cascade, in which energy flows from the
largest eddies of size � progressively down to the smallest of size λ0, which are
heavily damped by viscosity.3

Using three basic hypotheses Kolmogorov (1941b) was able to analyse
Richardson’s cascade and thereby identify the basic structure of well-developed
turbulence at large Reynolds numbers. These hypotheses are:

1. The small-scale turbulent motions are statistically homogeneous and
isotropic. In general the large-scale motions are determined by the bound-
aries of the motion and are therefore anisotropic. However, during the
course of the cascade, isotropy is rapidly introduced by the successive

3Big whirls have little whirls that feed on their velocity.
and little whirls have lesser whirls and so on to viscosity.

(attributed to L.F. Richardson)
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nonlinear interactions. Thus when the Reynolds number is high, the
statistics of the smaller scale motions have a universal nature, similar
for all turbulent flows.

2. At high Reynolds numbers the statistics of the small scales are deter-
mined only by the viscosity ν and the rate of energy dissipation ε.

3. The statistics of the intermediate scales are determined only by their size
λ and the rate of energy dissipation ε.

Kolmogorov hypothesised that the turbulence exhibits statistical similarity
in each of the three distinct separated regions � � λ � λ0. This implies scale
invariance in the inertial range. As a result the characteristic scales of the
turbulence are easily derived by dimensional analysis (Landau and Lifshitz,
1959, §32).

We define the eddy Reynolds number

Rλ =
λvλ

ν
(5.2)

where vλ is the velocity fluctuation associated with an eddy of length λ. For
large eddies Rλ is large and viscous damping negligible. On the other hand for
the smallest eddies of size λ0, Rλ0 ∼ 1 and the fluctuation is highly damped.

Since the energy dissipation rate in the flow due to turbulence must be deter-
mined by the largest eddies, which are the primary source of the fluctuations,
the parameters which characterise these are the density ρ, the size � and the
velocity differential Δu. Using dimensional arguments the energy dissipation
rate per unit mass must therefore scale as

ε ∼ Δu3

�
(5.3)

This energy is dissipated as heat and must be accompanied by work done by
an external force or by a loss of kinetic energy. To an external observer, it
therefore appears as a viscosity, which must be ascribed to the turbulence,
and must be characterised by the parameters of the large eddies (Kolmogorov,
1941a). If we ascribe the energy dissipation in the turbulent flow to a turbulent
viscosity, the scaling must be given by dimensional analysis as

νturb ∼ �Δu (5.4)

In a purely viscous flow (equation 3.11) we have seen that the energy dissi-
pation per unit mass in a flow with gradient du/dy is given by

ε = ν

(
du

dy

)2

(5.5)
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In a turbulent flow the scaling of the largest eddies, with velocities Δu and
size �, are directly determined by the velocity variation in the fluid, i.e. the
velocity gradient, through

du

dy
∼ Δu

�

The corresponding result for the energy dissipation yields the turbulent
viscosity, namely

νturb ∼ �Δu ∼ �2

(
du

dy

)
(5.6)

Hence the dissipation rate is

ε ∼ νturb
Δu2

�2
(5.7)

consistent with equation (3.11).
At the critical Reynolds number, the largest eddies fail to be damped by

viscosity. Therefore the kinematic viscosity and the turbulence viscosity must
be comparable. Hence νturb/ν ∼ R/Rcrit.

The turbulence itself is characterised by the density ρ and by a turbulent
flow parameter, e.g. the energy flux from the largest eddies ε, where the turbu-
lence is generated, to the smallest, where it is dissipated. This energy cascades
down through the eddies driven by the nonlinearity, before being dissipated by
viscosity. The energy transfer rate is a constant passing through the interme-
diate sizes of eddy (λ0 � λ � �). The turbulent velocity of an eddy of size λ
is therefore

vλ ∼ (ελ)1/3 ∼ Δu

(
λ

�

)1/3

(5.8)

The temporal velocity variation seen at a point is easily obtained, since
over time τ the fluid has moved u τ . Therefore over lime τ we see fluctuations
associated with an eddy of size u τ and the fluctuation is

vτ ∼ (ε τ u)1/3 (5.9)

However, the temporal variation of velocity of a specified fluid particle, i.e. the
Lagrangian variation, cannot depend on the mean velocity. It must therefore
have the magnitude

v′τ ∼ (ε τ)1/2

The smallest scale motions are those for which Rλ ∼ 1. Since

Rλ ∼ vλ λ

ν
∼ �Δu

ν

(
λ

�

)4/3

∼ R
(

λ

�

)4/3
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the smallest motions have size

λ0 ∼ �

R3/4
∼ ν3/4

ε1/4
(5.10)

known as the Kolmogorov length scale. The corresponding velocity

vλ0 ∼ Δu

R1/4
(5.11)

The simple picture in terms of eddies of size λ, which we have used heretofore,
is not suitable for more detailed study. A more formal approach describes the
turbulent motion in terms of the Fourier transform of the turbulent velocity, the
wavenumber k replacing the scale length λ ∼ 1/k. The energy in the cascade
is a continuous distribution and is normally expressed in terms of the energy
per unit mass in motions with wavenumber k in the range dk. This quantity
is easily obtained by dimensional analysis, since as we have seen the energy
distribution depends only on the density, energy flux and the size of the motion
(1/k). Thus the Kolmogorov distribution takes the form

E(k) dk ∼ ε2/3k−5/3 dk (5.12)

We may estimate the departure from the power law form of the distribution
near the Kolmogorov length by including the viscous dissipation from equa-
tion (5.5). When the flux down the cascade is reduced by viscous dissipation

dε

dk
∼ −ν k2 E

Initially, for not too small scale lengths λ � λ0 (kλ0 � 1) the reduction in
the flux from the constant value in the cascade will be small, and the energy
density will be approximately given by equation (5.12). Hence substituting for
the flux

d lnE

d ln k
∼ −5

3
− 2

3
ν

k4/3

ε1/3
(5.13)

which falls off at
k ∼

( ε

ν3

)1/4
=

1
λ0

as expected.
In recent years Kolmogorov’s picture has received considerable further study,

and weaknesses have been found. Indeed the structure of turbulence remains
one of the major unsolved problems of classical physics. In particular it is found
experimentally that the turbulence of the smallest eddies is patchy. There are
regions in which the small eddies and their dissipation are strong, and vice
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versa. Consequently it is found that the required scale invariance is no longer
upheld when higher order moments of the velocity are taken. Nonetheless the
model works well for low-order moments and therefore gives a useful model of
turbulence. Despite these problems, the Kolmogorov k−5/3 distribution (5.12)
gives reasonable agreement with spectra measured in experiments.

5.3 Turbulent Stress–Reynolds Stresses

The turbulent viscosity may be clearly identified by an argument given by
Reynolds (1895) which follows the same lines as that given by Maxwell for the
viscosity of gases. We consider the flow of momentum due to the turbulent
fluctuations through an element of area δA, whose normal is parallel to the x
axis. The velocity components are vx, vy and vz. The momentum in directions
x and y flowing through δA in time δt is respectively

δJx = ρ vx
2 δA δt

δJy = ρ vx vy δA δt

The mean fluxes are therefore

δJx = ρ vx
2 δA δt

δJy = ρ vx vy δA δt

The total velocity v = u + v′ including the mean and fluctuation velocities,
and since v = u and v′ = 0 we obtain

vx
2 = ux

2 + v′x
2

vx vy = ux uy + v′x v′y

Thus the mean momentum transfer in time δt through δA becomes

δJx = ρ
(
u2

x + v′x
2
)

δA δt

δJy = ρ
(
ux uy + v′x v′y

)
δA δt

which represent terms due to the mean flow and the turbulence. The mean
velocity term corresponds to the normal convective flow of momentum, which
is included in the momentum flux tensor. The terms resulting from turbu-
lence alone can be considered the x components of a turbulent momentum flux
tensor, i.e. as a turbulent stress

σxx = −ρ v′x
2 (5.14)

σyx = σxy = −ρ v′x v′y (5.15)

with similar terms to complete the tensor in the remaining directions.
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We note the signs of the stresses. In fact the cross-correlation terms v′x v′y
are generally negative when the velocity gradient is positive. The resultant
stresses are therefore frictional and dissipative (compare equation 3.1). This
confirms our physical understanding, and is thus consistent with the second
law of thermodynamics and the dissipative nature of the turbulence process,
as discussed in the previous section (5.2).

5.4 Similarity Model of Shear in a Turbulent
Flow–von Karman’s Hypothesis

An earlier approach, but with associations to that of Kolmogorov, is due to
von Karman. He assumed that the turbulent stresses are local phenomena
associated with the distribution of the mean flow velocity in the locality at
which the stress is measured. This condition is equivalent to the hypothesis
that the turbulent fluctuations are similar from point to point differing only
by scale factors in length and time, which themselves depend on the local
velocity and its gradients. In this respect, the model has close similarities to
that of Kolmogorov, but allows changes in space and time, which appear as
variations of the corresponding scale factors. At large Reynolds numbers, such
that the turbulence is well developed, the shearing stresses are due to turbulent
transport alone, independent of the viscosity. They are therefore functions only
of the density ρ and the distribution of the mean velocity, i.e. the derivatives
of u with respect to y. Assuming only the lowest derivatives are influential, the
shear stress must be a function of the form

σ = f

(
ρ,

∂u

∂y
,
∂2u

∂y2

)

The only dimensionless product that can be formed from these variables gives
a value for the stress

σ =
χ2ρ (∂u/∂y)4

(∂2u/∂y2)2
(5.16)

where χ is Karman’s constant to be determined by experiment.

5.5 Velocity Profile near a Wall in Fully Developed
Turbulence–Law of the Wall

Consider the turbulent flow near a smooth wall. The velocity parallel to the
wall u will be sheared normal to the wall, y, in the usual fashion. The veloc-
ity profile is established by the shear stress, which in this case is due to the
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momentum transport by turbulence towards the wall. The net flow of momen-
tum to the wall giving rise to the stress clearly depends on the gradient of
the mean velocity du/dy, since in the absence of a gradient there would be no
net momentum flux. At large Reynolds numbers the turbulent momentum flux
far from the wall dominates that due to viscosity, i.e. viscosity is a negligible
parameter. The stress therefore depends only on the velocity gradient, density
and the distance from the wall. Therefore, by dimensional analysis the shearing
stress has the form

τ = ρ χ2 y2

(
du

dy

)2

Near the wall the flow velocity is nearly zero and the acceleration small. The
shear stress is therefore nearly constant and equal to the wall shear stress τ0.
Prandtl made the further assumption that in this region the shear stress was
constant and equal to the wall shear stress.

Introducing the friction velocity v∗ =
√

τ0/ρ and integrating, we obtain

u =
v∗

χ
ln y + C

The constants χ ≈ 0.4 and C are established by experiment. In fact it follows
from dimensional analysis that the argument of the log must be a dimen-
sionless product, therefore C = B + ln(v∗/ν), where B = 5.5 is a pure number
determined by experiment. Thus we finally obtain

u

v∗
= 2.5 ln

[
y v∗

ν

]
+ 5.5 (5.17)

which is independent of the Reynolds number.
Although the calculation is strictly speaking only valid near the wall, since

the stress has been treated as a constant, it is found that this functional form
is well obeyed throughout the entire flow in many cases, e.g. pipe flow.

However, there is a serious problem in the behaviour as y v∗/ν → 0, where
it can be seen that the velocity u → −∞. This reflects the fact that near the
wall, the eddies, which comprise the turbulent fluctuations, are inhibited by the
wall. Near the wall, the dominant momentum transfer will be due to viscosity,
not turbulence. Thus there is a narrow layer, known as the viscous sub-layer,4

where the shear is given by (3.1) and the velocity has the simple form

u = v∗
(

yv∗

ν

)
(5.18)

4The viscous sub-layer is sometimes called the laminar sub-layer. However, although the
momentum transfer is dominated by viscosity, the flow is still turbulent.
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An estimate of the thickness of the sub-layer is easily found by plotting the
universal distribution law and the viscous sub-layer profiles and noting that
the intersection occurs at yv∗/ν = 11.8. The thickness of the laminar sub-layer
is therefore approximately 10 ν/v∗.

In fact the situation is slightly more complicated than that discussed above,
where the viscous sub-layer is merged directly into the turbulence. In experi-
ments it is found that there is a buffer layer where both viscosity and turbulence
are active. The complete velocity profile is well described by

viscous sub-layer:
u

v∗
=

(
y v∗

ν

) (
y v∗

ν

)
< 5

buffer layer:
u

v∗
= 5.0 ln

(
y v∗

ν

)
− 3.5 5 <

(
y v∗

ν

)
< 30

turbulent core:
u

v∗
= 2.5 ln

(
y v∗

ν

)
+ 5.5 30 <

(
y v∗

ν

)
(5.19)

In the preceding analysis we have assumed the wall is smooth. However in
many experimental situations the wall is rough with surface irregularities with a
mean square root height ε. If the wall is sufficiently rough the viscous sub-layer
and the buffer layer are both overwhelmed by the roughness. In this case the
viscosity ν is no longer a relevant parameter and is replaced by the roughness
height ε. The distribution law again takes the form dictated by dimensional
analysis with ε ∼ const ν/v∗, namely

u

v∗
= 2.5 ln

(y

ε

)
+ 8.5 y > ε (5.20)

giving good agreement with the classic experiments of Nikuradse (1933) if
ε v∗/ν > 70.

5.6 Turbulent Flow Through a Duct

The analysis leading to the law of the wall is only valid near the wall where
the shear stress is nearly constant. Away from the wall near to the centre of
the duct, the stress will vary in steady flow to balance the pressure gradient.
In this core region of the flow, the motion is fully turbulent and viscosity
plays a negligible role. The profile of the flow is similar from cross-section to
cross-section with the maximum velocity at the duct centre. The characteristic
parameters now include the duct (or tube) width h, the distance from the tube
axis y′ and the velocity on the duct axis umax. Using dimensional analysis, the
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form of the velocity profile must be

umax − u

umax
= f

(
y′

h

)
(5.21)

where the form of the function f (y′/h) is undefined. This important result is
known as the velocity defect law.

As we shall see, there are a number of different forms of f (y′/h) including
a power law form. Despite their differences all give reasonable agreement with
each other and with experiment.

The velocity defect law applies to a different region of flow to the law of the
wall. We imagine that the two join smoothly in a second buffer zone, which is
generally taken to lie at about 0.2h from the wall.

We consider a duct of spacing 2h with the flow symmetrically distributed
about the axis. The pressure gradient is assumed to be constant along the
duct ∂p/∂x = const. Since −∂p/∂x + ∂τ/∂y = 0, the shearing stress is linearly
dependent on the distance from the axis

τ = τ0
y′

h
(5.22)

where y′ = h − y is the distance from the axis.

5.6.1 Prandtl’s Distribution Law

Prandtl assumed that, despite equation (5.22), the turbulent stress across the
duct was constant. Thus the law of the wall (5.17) holds across the entire duct.
Therefore the velocity on axis

umax = v∗[2.5 ln(h v∗/ν) + 5.5]

for a smooth duct.
The velocity defect

(umax − u(y))
v∗

= 2.5 ln
(y

h

)
(5.23)

which does not depend on the viscosity and has the correct form.
This result, despite its inconsistency, gives good agreement with experiment.

As a result it is often known as the universal velocity distribution law.

5.6.2 Von Karman’s Distribution Law

In this case we retain the variation of the stress across the duct (5.22), and use
expressions from von Karman’s similarity theory (Section 5.4), so that

τ0

ρ

y′

h
= χ2 (∂u/∂y)4

(∂2u/∂y2)2
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This equation may be integrated twice directly in terms of y′, the distance
from the axis. In the neighbourhood of the wall, y′ → h and y → 0, the flow
becomes that along a plane wall (Section 5.5). Since the distance from the wall
y � h, h is no longer a characteristic parameter of the flow. Therefore the flow
in this region is given by the same argument as for the law of the wall, and
yields the boundary condition on the turbulent flow

du

dy
=

1
χ

v∗

y
=

1
χ

v∗

(h − y′)
y′ → h

The second boundary condition is established by the velocity at the axis

u = umax y′ = 0

Performing the first integration we obtain

du

dy
=

v∗

χ
(
2
√

h y′ − a h
) → 1

χ

v∗

(h − y′)
as y′ → h and iff a = 1 (5.24)

where only the constant of integration a = 1 satisfies the boundary condition.
Since this equation is also satisfied by the Prandtl law of the wall near the
wall, it is clear that the values of χ ≈ 0.4 must be the same in both cases.
Integrating a second time,

u = umax +
1
χ

v∗
{

ln

[
1 −

√
y′

h

]
+

√
y′

h

}
(5.25)

At the wall the velocity has a logarithmic singularity, as we found with
the universal velocity law (5.17). As in the previous case this is resolved by
introducing either the viscous and buffer sub-layers or the surface roughness. In
the limit h → ∞, the von Karman distribution (5.25) clearly becomes identical
to the universal velocity distribution law (5.17). The velocity defect is

(umax − u(y))
v∗

=
1
χ

{
ln

[
1 −

√
y′

h

]
+

√
y′

h

}
(5.26)

This velocity defect law thus obeys the result that in turbulent flow the veloc-
ity profile across the duct exhibits similarity independent of the Reynolds
number.

Generally the two profiles equations (5.23) and (5.26) are nearly equal,
although experiment tends to be in slightly better agreement with Prandtl’s
universal velocity distribution law. Noting that the velocity profile is symmetric
about the axis of the duct, we see that both models conflict with expectation.
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On the axis of the duct, the second derivative of the mean velocity is infi-
nite, i.e. the curvature of the profile is infinite. This is implausible, and is an
example of the more general problem associated with the local models. Similar
problems arise in other axially symmetric turbulent flows, such as pipes, jets
and wakes, where the symmetry also induces infinite curvature of the profile
on axis.

Nonetheless it is found that results generated by this model are generally
in good agreement with experimental measurements. The velocity distribution
law is therefore used to give the basis for a range of empirical engineering
scaling relations, which are found to be widely applicable.

Case study 5.I Turbulent Flow Through a Horizontal Uniform
Pipe

Table 5.1: Representative values of surface
roughness for various industrial materials

Material Roughness (mm)
Concrete, coarse 0.25

Concrete, new smooth 0.025
Drawn tubing 0.0025

Glass, plastic, perspex 0.0025
Iron, cast 0.15

Sewers, old 5
Steel, mortar lined 0.1

Steel, rusted 0.5
Steel, structural or forged 0.25

Water mains, old 1.0

In pipe flow we must include an additional parameter to those already considered in
our study of the flow along a wall, namely the pipe diameter, D. Dimensional analysis
shows that the maximum flow velocity umax on the pipe axis is given by a functional
relationship

umax

v∗
= F

(
R,

ε

D
, 0

)
and that the velocity u a distance y from the wall is

(umax − u)
v∗

= F

(
R∗,

ε

D
,
(a − y)

a

)

where a = D/2 is the radius and R∗ = v∗D/ν the Reynolds number based on the
friction velocity and the diameter. The earliest form of the function F was proposed
by Darcy based on his experiments:

(umax − u)
v∗

= 0.08
(
1 − y

a

)3/2
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Subsequently it has been assumed that the universal velocity distribution law (5.23)
holds for the axis of the pipe, and

(umax − u)
v∗

= 2.5 ln
(

a

y

)

From an engineering point of view the velocity distribution is not a particularly
useful quantity. The important engineering parameter is the frictional force at the
wall and the corresponding pressure drop required to overcome it and drive the flow
along the pipe. Balancing the pressure Δp along the length of the pipe L against the
frictional force on the wall,

AΔp = τ0 P L

where P is the perimeter of the pipe and A the cross-sectional area, namely πD and
πD2/4 for a circular pipe respectively. This relationship is used to define the ‘hydraulic
diameter’ of a non-circular pipe 4A/P . The preceding relationship is used to define
the dimensionless Fanning friction factor

f = 2
(v∗

u

)2

(5.27)

such that
τ0 =

D

L
Δp =

1
2
ρ u2 f (5.28)

where the total mass flow rate through the pipe is ρ u A. The friction coefficient is
easily calculated from the velocity distribution law. Assuming the universal velocity
distribution law (5.23) holds across the pipe,

u =
2π

πa2

′a�
y

[
umax − v∗ F

(
1 − y

a

)]
(a − y) dy

where y′ is the point where u = 0. The integrations are easily performed to give for
a � y′

u = umax − 3.75 v∗

Experimental measurements (Nikuradse, 1933) slightly change the constant in this
result to

u = umax − 4.07 v∗

Substituting for the velocity on axis using the universal velocity distribution law
(5.23), we obtain

u

v∗
=

⎧⎪⎨
⎪⎩

2.5 ln
(

av∗

ν

)
+ 1.75 smooth

2.5 ln
(a

ε

)
+ 4.75 rough

(5.29)

The friction factor is then obtained in an implicit form after corrections from experi-
mental data

1√
f

=
{

4.0 log
(R√

f
) − 0.4 smooth

4.0 log (D/e) + 2.28 rough (5.30)

where R = (uD/ν) is the Reynolds number based on the mean velocity u.
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This relationship has been cast in a single compact form by Colebrook (1939):

1√
f

= −4.0 log
{

ε/D

3.7
+

1.25
R√

f

}
(5.31)

The graphical representation of this equation plotted by Moody (Figure 5.2) gives a
particularly convenient form for application (Moody, 1944). Table 5.1 shows represen-
tative values of the roughness heights for a range of materials with different engineering
application, varying from very smooth to old worn pipes of uncertain provenance. The
limit at which roughness dominates the viscous layer is given by Rouse’s limit

1√
f

=
R
100

ε

d

shown dashed in Figure 5.2.
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Figure 5.2: Plot of the Fanning friction factor as a function of Reynolds number
R = uD/ν for varying values of the dimensionless roughness ε/D. Also shown is the lower
limit of fully developed turbulence where roughness submerges the viscous layer
(dashed line).
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5.I.i Blasius wall stress correlation

The universal velocity distribution is cumbersome for application, e.g. in the calcula-
tion of the wall friction. A much simpler approximation which has a limited range of
validity is the power law distribution

u

umax
=

(y

a

)1/n

(5.32)

where n is an integer whose value varies depending on the Reynolds number. It is
found from experiments that at the lowest Reynolds numbers R � 4000, the value
of n is 6. At R ∼ 105 the value of n increases to 7. At very large Reynolds numbers
R ∼ 3 × 106 the value is 10. Thus for most purposes a value of n = 7 is appropriate.
The ratio of the mean velocity to the maximum velocity is easily shown to be

α(n) =
u

umax
= 2

� 1

0
(1 − z)z1/ndz =

2n2

(n + 1)(2n + 1)

Following a careful analysis of experimental data, Blasius deduced that the Fanning
friction factor for smooth pipes could be written as

f = 0.0791R−1/4 = 0.0791
(

uD

ν

)−1/4

(5.33)

for R < 105. The corresponding wall shear stress is

τ0 = 0.033 25 ρ u7/4 ν1/4 a−1/4 (5.34a)

If for the moment we assume that a velocity distribution (5.32) with n = 7 is appro-
priate in corresponding to the upper limit of the Reynolds number, we have that
u/umax ≈ 0.817. Hence

umax

v∗
= 8.74

(
v∗a
ν

)1/7

(5.34b)

If we make the reasonable assumption that this equation reflects not only the value
on axis, but the general case away from the wall, then

u

v∗
= 8.74

(
yv∗

ν

)1/7

(5.35)

It is clear that this equation cannot hold adjacent to the wall where du/dy → ∞.
Thus again we see the need to include the viscous and buffer sub-layers near the
wall to account for the reduction of turbulent momentum transfer and the increased
importance of viscosity. It is easy to show that the intersection of the 1/7 power law
velocity profile with that of the linear viscous sub-layer occurs at

u

v∗
=

yv∗

ν
= 12.5

which is very similar to the value for the law of the wall, 11.8.



136 Introductory Fluid Mechanics

100 101 102 103
103104

104105
105

yv*/ν

0

5

10

15

20

25

30

35
u/

v*

Power law n = 7
Power law n = 10
Viscous sub-layer
Universal velocity law

106 107

u D/ν

0.01

0.02

0.005

f

1/7 power law
Universal law
Laminar flow

(a) (b)

Figure 5.3: Comparison of power law turbulence distributions for velocity and wall shear
stress with the universal velocity law forms. (a) Velocity profile and (b) Wall shear stress.

Figure 5.3 shows the values from the power law distributions for velocity (5.35)
away from a wall, and for the wall shear stress, i.e. the friction factor (5.33). It can be
seen that the 1/7 power law gives good agreement with the universal law for Reynolds
numbers in the range 4000 < R < 105. For large values of the Reynolds number a
power law with a larger value of n is more accurate, as demonstrated by the case
n = 10 (Figure 5.3(b)), accurate over the range 40 000 < R < 106.

Equation (5.34a) or equivalently (5.34b) gives a reasonable estimate of the wall
shear stress knowing either the mean mass flow or the centre line velocity, provided
a suitable value for n can be identified. If the scaling factor C(n) in the relationship
(equation 5.34b) between the mean velocity and the friction velocity is known from
experiment, then

u

v∗
= C(n)

(
v∗ a

ν

)1/n

(5.36)

The parameter C(n) defines the scalings of all the other quantities, see problem #25.
Nikuradse (Schlichting, 1968, p.563) in an extensive experimental study of the velocity
profile turbulent flow in a smooth tube, found that as the Reynolds number increased,
the flow was well represented by equation (5.36) with increasing n.

Appendix 5.A Prandtl’s Mixing Length Model

A simple model introduced by Prandtl allows an estimate of the turbulent parameters
to be made using simple physical ideas drawn from the kinetic theory of gases. The
process of turbulent mixing is introduced via the concept of a characteristic length �
over which the fluid is transported by the turbulent motion, and thereby transferring
momentum from one surface of the fluid to another. Although this model is not entirely
consistent with scaling methods or with some experimental facts, it is nevertheless a
convenient analogy by which a helpful empirical picture of the Reynolds stresses can
be visualised. The characteristic scaling length � is regarded purely as a parameter
determined by experiment.
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Suppose the fluid is flowing steadily in the direction x near a wall with a velocity
profile u(y) perpendicular to the wall, but varying with the distance from the wall y.
Fluid particles will form ‘lumps’, which, due to the turbulence, move bodily from one
layer of the flow to another carrying the momentum parallel to the wall appropriate
to the layer from which they originate. Suppose the distance between the layers is
on average �; then the velocity deficit originating from the lower mean velocity layer
(below) is

Δu1 = u(y) − u(y − �) ≈ �
du

dy

Similarly, lumps from y + � arrive at the layer from above with velocity excess

Δu2 = u(y + �) − u(y) ≈ �
du

dy

These velocity differences give rise to a fluctuation at y, whose absolute value is

|v′x| ≈
1
2
| (Δu1 + Δu2) | ≈ �

∣∣∣∣du

dy

∣∣∣∣ (5.A.1)

The characteristic length � is imagined to be the average distance a lump of fluid
remains integral, before it disassembles and loses its identity. It is approximately the
distance over which the velocity differences match the velocity fluctuations. We can
picture the transverse velocity fluctuation arising from the collision of two lumps from
y − � and y + �, both moving in the x direction, but with differing speeds and thus
with a fluctuation velocity component given by (5.A.1). Due to the incompressible
nature of the fluid, they will separate in the y direction with a velocity proportional
to the x component of the mean fluctuation speed |v′x|:

|v′y| ≈ const |v′x| ≈ const �

∣∣∣∣du

dy

∣∣∣∣ (5.A.2)

To obtain the turbulent stress we need the correlation term |v′xv′y|. Lumps which
move upwards with v′y > 0 mostly give rise to v′x < 0 and vice versa. Hence

v′xv′y ≈ const |v′x| |v′y|
≈ − const �2

∣∣∣du

dy

∣∣∣du

dy

(5.A.3)

If du/dy > 0, i.e. the shear velocity gradient is positive and the fluid arrives from
larger values of y, the x component of the fluctuation velocity v′x is positive, but the
y component v′y negative, and vice versa. The cross-correlation term v′xv′y is therefore
negative. On the other hand if the velocity gradient is negative, the correlation term
is positive. The form of equation (5.A.3) reflects this sign change. We may include the
unknown constant in our definition of the mixing length �, which is not defined. Thus
the turbulent shear stress is

σ = ρ �2
∣∣∣du

dy

∣∣∣ du

dy
(5.A.4)
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where we have taken into account the fact that the sign of the stress must reflect
the velocity gradient as noted above. The shear stress thus obtained is frictional,
conforming to both expectation and experience. This confirms the validity of the sign
of the correlation term (5.A.3) deduced using a non-rigorous argument.

The unsatisfactory nature of the model can be clearly seen in the direct kinetic
theory analogy between the motion of the ‘lumps’ of fluid with molecules between
collisions. Between collisions molecules travel in straight lines with no momentum
change. In contrast the lumps of fluid are continually interacting with the neighbouring
fluid and neither is their path straight nor their velocity constant (due to viscosity).
It is possible to fix these problems, but this adds to the complexity of this picture.
However, when we compare this result (5.A.4) with that obtained previously based
on energy dissipation and dimensional arguments (equation 5.6), the latter gives a
more satisfactory derivation, clearly demonstrating that the velocity correlation must
be negative. Prandtl’s derivation in this section, however, illustrates the importance
of mixing in a turbulent fluid.



Chapter 6

Boundary Layer Flow

6.1 Introduction

A crucial step forward in the understanding of fluid behaviour was made at the
start of the twentieth century by Prandtl in a remarkable paper, which intro-
duced all the basic concepts of the boundary layer and its separation Prandtl
(1904). Previously it had been thought that fluids of vanishingly small viscosity
behaved as ideal fluids. As a consequence steady flow exhibited no drag due
to d’Alembert’s paradox. However, Prandtl argued that even with vanishingly
small viscosity a narrow layer existed immediately adjacent to the surface of a
body immersed in a flowing fluid. Within this layer there existed a velocity gra-
dient, where viscosity is active due to the fact that fluid immediately adjacent
to the wall is at rest (no-slip condition). The no-slip condition was introduced
by Prandtl (1904) causing considerable controversy. The ideal flow equations,
namely Euler’s equation and the equation of continuity, lead to an elliptic form,
which only allows one boundary condition at the surface (Section 2.6), but the
no-slip condition requires two, namely zero components of velocity both normal
and parallel to the surface. The inclusion of viscosity increases the order of the
governing differential equations within the Navier–Stokes form and therefore
admits the additional boundary condition. The mathematical expression of this
distinction is provided by the method of matched asymptotics (Appendix 6.A),
where the inner solution is the boundary layer approximation near the wall and
is based on the full Navier–Stokes form, and the outer asymptotic solution the
ideal free stream Euler flow. This difference reflects the asymptotic nature of
the ideal flow equations in the limit as viscosity tends to zero. Outside this thin
viscous boundary layer, the fluid flows with its free stream value as determined

Introductory Fluid Mechanics for Physicists and Mathematicians, First Edition. Geoffrey J. Pert.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

139



140 Introductory Fluid Mechanics

by the ideal flow. The boundary layer thus provides the source of the drag
observed in experiments. It is the source of vorticity, locally destroying the
condition of irrotationality, and forming the wake. Boundary layer theory is
covered in detail in Schlichting (1968) to which reference may made.

We may easily estimate the scale of the boundary layer by a simple argument
based on momentum balance. Thus consider the laminar flow over a thin flat
plate. The ideal flow is that of a uniform flow of constant velocity equal to that
of the incoming flow, U . At the surface of the plate, the fluid is brought to rest.
Consequently there exists a velocity difference of U across the boundary layer.
If the boundary layer thickness is δ, this corresponds to a velocity gradient
∼ U/δ, which will generate a shear stress at the wall of μU/δ opposite to the
direction of flow. Thus over a distance of x along the plate, an impulse of
μUx/δ per unit width retards the fluid:

Momentum removed from the fluid ∼ μ
U

δ
x

This momentum loss must be accounted for by slowing down the fluid moving
in the boundary layer, where the momentum flux along the wall ρU2 enters
the layer. Since the momentum is lost from a thickness δ over a distance x, we
may write

ρ U2 δ ∼ μ
U

δ
x

and hence obtain the scaling of the boundary layer thickness

δ ∼
√

ν x

U
(6.1)

We see that the thickness increases as the square root of the distance along the
plate. The wall shear stress in consequence is τ0 ∼ √

ρ μ U3/x and hence the
drag force per unit width

√
ρ μU3 x. The drag coefficient based on the wetted

area scales as
CD ∼ R−1/2 (6.2)

where R is the Reynolds number based on the length of the plate.
The boundary layer is clearly a region of shear flow. We have seen in Sec-

tion 4.7 that such flows are inherently unstable, depending on the Reynolds
number based on the width of the flow. The corresponding Reynolds number
for the boundary layer is established by the width of the layer, which increases
along the plate. Hence if the plate is sufficiently long, the flow becomes unsta-
ble at the critical point. As the instability grows rapidly, turbulence follows
quickly at the experimentally measured point of transition. Consequently, in
many typical situations a major fraction of the boundary layer is turbulent,
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which increases the drag due to friction, but surprisingly may also lead to a
reduction in the total drag.

Physically the boundary layer is a narrow region at whose outer edge vis-
cous forces become asymptotically very small and flow essentially inviscid,
thus merging with the irrotational flow around the body. When a no-slip con-
dition is imposed at the surface in inviscid flow, the mathematical problem
becomes overdetermined (see Section 2.6). Thus it is possible to satisfy only a
limited subset of the boundary conditions by ideal flow. Comparing the Euler
and Navier–Stokes equations, it can be seen that the introduction of a small
region of viscous perturbation near the surface in the boundary layer increases
the order of the governing differential equations, which allows the additional
boundary condition and removes the over determination. Physically, with a
small coefficient of viscosity, the boundary layer forms a thin transition layer
within which the higher order Navier–Stokes equation is valid and is continu-
ous with the irrotational free stream, where the viscous perturbation is small.
Formally this is accomplished by the method of matching asymptotics in which
the asymptotic solution of the boundary layer is matched to that of the free
stream at an arbitrary level of approximation (Appendix 6.A).

6.2 The Laminar Boundary Layer in Steady
Incompressible Two-Dimensional
Flow–Prandtl’s Approximation

We consider flow that is incompressible, and everywhere locally planar, laminar
and steady. It may be described by the continuity (1.11) and Navier–Stokes
(3.13) equations

∇ · v = 0 and (v · ∇)v = −1
ρ
∇ p + ν ∇2v (6.3)

Assuming that the flow is two dimensional only and that the Reynolds num-
ber is large, the boundary layer is thin and the flow nearly parallel to the surface
of the body. Thus derivatives are large normal to the surface, i.e. across the
boundary layer y, compared with those along it x

u � v and
∂2u

∂x2
� ∂2u

∂y2
(6.4)

where u and v are the x and y components of the velocity v (Prandtl, 1904).
As a consequence the pressure change across the boundary layer necessary

to provide any acceleration in the y direction is small and
∂p

∂y
≈ 0 (6.5)
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The pressure throughout the boundary layer is therefore equal to that in the
free stream, which is determined by Bernoulli’s equation

1
ρ

dp

dx
= −U(x)

U(x)
dx

(6.6)

Equations (6.3) thus simplify to

u
∂u

∂x
+ v

∂u

∂y
− ν

∂2u

∂y2
= U

dU

dx
(6.7)

∂u

∂x
+

∂v

∂y
= 0 (6.8)

Note that we must retain terms containing vx∂/∂x and vy∂/∂y, which are of
comparable magnitude.

The equations may be generalised to consider the boundary layer flow along
the surface of a curved body whose radius of curvature is large compared with
the boundary layer thickness. Taking the co-ordinates x along the surface and
y perpendicular to it, it can be shown that at the same level of approximation,
the only change is to include the transverse pressure gradient in equation (6.5)
required to balance the centrifugal term

∂p

∂y
= κρu2

where κ is the curvature. However, since κδ � 1, the pressure change across
the boundary layer is small and the planar form in (6.7) and (6.8) may be used
without modification for a curved wall.

If the body has a characteristic scale length � and the flow velocity a char-
acteristic speed U0, we can cast these equations into dimensionless form by
introducing the scaled variables

x′ =
x

�
y′ =

√
R y

�
u′ =

u

U0
v′ =

√
R v

U0
U ′ =

U

U0
(6.9)

where R = � U0/ν is the Reynolds number. On substitution equations (6.7)
and (6.8) become

u′∂u′

∂x′ + v′
∂u′

∂y′
− ∂2u′

∂y′2
= U ′dU ′

dx′

∂u′

∂x′ +
∂v′

∂y′
= 0

(6.10)

These equations are independent of the fluid properties, and so therefore are
the solutions. They reflect an essential similarity of the flows in the boundary



Boundary Layer Flow 143

layer. Thus if the Reynolds number changes, the thickness of the boundary
layer and the transverse velocity change by 1/

√R.
A useful integral relation can be derived by integrating equation (6.7)

through the boundary layer

h�
0

(
u

∂u

∂x
+ v

∂u

∂y
− U

dU

dx

)
dy = −τ0

ρ
(6.11)

where h is much larger than the boundary layer thickness, and τ0 is the wall
shear stress.

From the second boundary layer equation (6.8) we may replace

v = −
y�
0

∂u

∂x
dy

in equation (6.11) and after integrating by parts obtain

h�
0

(
2u

∂u

∂x
− U

∂u

∂x
− U

dU

dx

)
dy = −τ0

ρ

or, rearranging,

h�
0

∂

∂x
[u (U − u)] dy +

dU

dx

h�
0

(U − u) dy =
τ0

ρ
(6.12)

Two measures, which are often used, are the displacement thickness δ1 and
the momentum thickness δ2 defined by the loss of mass and momentum from
the free stream into the boundary layer respectively over the distance x:

δ1 =
1
U

∞�
0

(U − u) dy (6.13)

δ2 =
1

U2

∞�
0

u (U − u) dy =
τ0

ρ U2
(6.14)

Since the fluid is incompressible, the displacement thickness is the distance
the free flow streamlines are shifted due to the boundary layer. The decrease
in the volume of flow due to friction

� ∞
0 (U − u)dy is accommodated by a

displacement of the free flow of the same volume Uδ1. The momentum thickness
is obtained in a similar way by balancing the loss of momentum flow in the
boundary layer

� ∞
0 u(U − u)dy with that of the free flow U2δ2.
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There is a useful relationship amongst these parameters obtained from
equation (6.12), namely

d
dx

(
U2 δ2

)
+ δ1 U

dU

dx
=

τ0

ρ
(6.15)

We note that these relations are valid generally for turbulent as well as
laminar boundary layers provided the wall shear stress, τ0, is given the appro-
priate value.

6.3 Laminar Boundary Layer over an Infinite Flat
Plate–Blasius’s Solution

In the case of the flow of an incompressible fluid over a flat plate with the
incoming flow direction parallel to the plate surface, the ideal flow velocity
U is constant over the surface. It is assumed that the fluid in contact with
the surface has zero velocity–no-slip condition. Furthermore, if the plate is
very long it becomes effectively infinite. In this case the length � is no longer a
characteristic parameter of the flow, and equations (6.10) must be transformed
in such a way as to remove � from the scaled variables, x′ and y′, which can
therefore only appear in the combination

η =
y′√
x′ = y

√
U

νx
(6.16)

Alternatively, from dimensionless analysis we may argue that the only dimen-
sionless combination involving the independent variables is η, and that in
consequence the solutions must be functions of η alone (Section 3.8.2). Thus
the problem is cast into a self-similar form with η as the sole independent
variable.

Since the flow is incompressible we may solve the equation of continuity by
introducing the streamfunction (Blasius, 1908)

ψ =
√

ν xU f(η)

so that

u = U ḟ(η)

v =
1
2

√
νU

x

[
η ḟ(η) − f(η)

]
and the Navier–Stokes equation becomes

...
f +

1
2

f f̈ = 0 (6.17)
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subject to the boundary conditions

f = 0 ḟ = 0 at η = 0 ḟ = 1 at η = ∞
This third-order ordinary differential equation cannot be evaluated analyti-

cally, and the solution must be generated numerically. As the solution extends
to η → ∞ the boundary layer thickness is conventionally defined as the point
at which the streamfunction f is 1

2 and gives

δ = 1.73
√

ν x

U
(6.18)

The asymptotic value of the transverse flow velocity approaching the free
stream is

v → 0.8604

√
U ν

x
as y → ∞

This finite velocity component is required since, as the longitudinal velocity is
reduced along the plate, the total conservation of the mass flow requires that
there must be a weak outward flow. This latter condition, that the velocity is
indeed weak, is established by noting that since the Reynolds number is large,
Uν/x is small.

A plot of the normalised longitudinal velocity u/U is shown in Figure 6.1 as
a function of the normalised distance from the wall y

√
U/νx and is compared

with values used by the momentum integral method to be discussed in the
next section.

0 1 2 3 4 5

y√{U/νx}

0

0.5

1

u/
U

Exact
u/U = (y/δ)*(3/2−1/2*(y/δ)**2)
u/U = (y/δ)*(2.0−(y/δ)**2*(2.0−(y/δ)))

6

Figure 6.1: The velocity profile in a laminar boundary layer over a flat plate calculated
with the exact solution and two approximations. Note the good agreement shown by the
approximations.

The wall shear stress is obtained from the velocity gradient at the wall

τ0 =

√
ν U3

x
ḟ(0) = 0.332

√
ν U3

x
(6.19)
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and hence we define the local coefficient of skin friction cf

cf = 0.664Rx
−1/2 (6.20)

where Rx = Ux/ν is the local Reynolds number, and a factor of 2 has been
introduced to take account of the upper and lower wetted surfaces. Hence,
integrating along the plate, we obtain the total skin fiction or drag coefficient
for a long plate of length � wetted on both sides as

Cf = 1.328R−1/2 (6.21)

The displacement and momentum thicknesses calculated from this solution
are δ1 = 1.721

√
νx/U and δ2 = 0.3323

√
νx/U .

6.4 Laminar Boundary Layer–von Karman’s
Momentum Integral Method

An alternative simpler and versatile method, limited to two-dimensional flow,
is obtained by placing the initial order of magnitude arguments (Section 6.1)
on a firmer footing. We consider a section of the boundary layer of length δx a
distance x along the plate, extending a height h above the plate into the free
stream, Figure 6.2.

h

x

u(y)

δx

U(x)

y

δ

τ

Figure 6.2: The arrangement of the flow cell in a laminar boundary layer over a flat plate
used in the momentum integral calculation.

The total momentum flow through the face at x is

Momentum flow =
h�
0

ρ u(y)2 dy

where u(y) is the velocity along the plate at height y parallel to the plate, the
fluid in contact with the plate is at rest, and the component of velocity normal
to the plate is zero at the surface of the plate and in the free stream. The
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momentum flow through the face at x + δx is given by a similar expression.
Hence the gain in momentum in the interval x to x + δx per unit width per unit
time must be balanced by the wall shear stress at the plate surface τ0δx per
unit width and the net pressure force on the faces, ∂p/∂x δx per unit area. Thus

d
dx

h�
0

ρ u(y)2dy = −τ0 − d
dx

h�
0

p(y)dy (6.22)

The mass flow through the face at x is

Mass flow =
h�
0

ρ u(y) dy

with a similar value at the face at x + δx. Since no flow enters into the section
either by flow through the face parallel to the plate in the free stream, or
through the plate, we obtain

d
dx

h�
0

ρ u(y) dy = 0 (6.23)

Multiplying by the free stream velocity U(x) we obtain

d
dx

h�
0

ρ U(x)u(y)dy = ρ
dU(x)

dx

h�
0

u(y) dy (6.24)

We now make the approximation that the normal velocity is everywhere
zero, in view of the fact that the fluid is incompressible, and the values of the
boundary conditions at the plate and the free stream (see Section 6.3). Hence
∂p/∂y = 0 and the pressure is constant across the boundary layer. The pressure
is given by the value in the free stream, which is determined by Bernoulli’s
equation:

dp(x)
dx

= −ρ U(x)
dU(x)

dx

where U(x) is the free stream velocity outside the boundary layer. Subtracting
equation (6.22) from equation (6.24) we obtain

d
dx

δ�
0

[U − u(y)] u(y) dy +
dU(x)

dx

δ�
0

[U − u(y)] dy =
τ0

ρ
(6.25)

where δ(x) is the boundary layer height and u(y) = U if y > δ. This equation
is easily seen to be equation (6.12). For a flat plate U is constant and in
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consequence dp/dx = 0, and equation (6.25) is simplified by the omission of
the term resulting from the velocity gradient. The final equation is that for the
wall shear stress, which is due to the viscous stress at the wall,

τ0 = −μ
∂u

∂y

∣∣∣∣
0

(6.26)

Thus far the analysis has been quite general, with only the assumption
regarding constant pressure across the boundary layer, although additional
terms may need to be introduced if the surface has curvature. We must now
make some assumptions regarding the velocity profile in the boundary layer.
The profile must obey a number of boundary conditions:

u = 0 at y = 0 and u = U at y = δ
∂u

∂y
= 0 at y = δ and

∂2u

∂y2
= 0 at y = 0

The final condition arises since the flow velocity near the wall is approximately
zero, and hence the change in the momentum flow through a small element δy
adjacent to the wall is zero. Since this difference is balanced by the change in
the shear stress over δy, namely (∂/∂y)(μ∂u/∂y)δy = 0.

The simplest approximation satisfying these conditions is the cubic

u(y) = U

[
3
2

(y

δ

)
− 1

2

(y

δ

)3
]

(6.27)

Substituting equations (6.27) and (6.26) into equation (6.25) and integrating
we obtain

39
280

ρ U2 dδ

dx
=

3
2

μ U

δ

Hence integrating subject to δ = 0 at y = 0, we obtain the boundary layer
thickness

δ = 4.64
√

μx

ρU
(6.28)

in accordance with our earlier scaling arguments (equation 6.1). The drag is
determined by the wall shear stress

τ0 = 0.323

√
ρμU3

x
(6.29)

Since the plate has two wetted surfaces, top and bottom, the drag coefficient
based on the wetted area is therefore

Cf = 1.29 R−1/2 (6.30)
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We may alternatively use a quartic approximation for the velocity profile by
introducing the additional constraint

∂2u

∂y2
= 0 as y → ∞

since there is no acceleration at the outer edge of the boundary layer. The
solution is

u(y) = U
(y

δ

) [
2 − 2

(y

δ

)2
+

(y

δ

)3
]

(6.31)

The value of the thickness δ = 5.84
√

νx/U .
The profiles (Figure 6.1) from these approximate solutions agree well with

that from the accurate solution given earlier (Section 6.3). The boundary layer
thicknesses δ used in these solutions are essentially scale factors introduced
for each approximation, and therefore not comparable from approximation to
approximation or with the Blasius solution. However, the displacement and
momentum thicknesses do both express physical quantities and reflect the
accuracy of the overall approximation and may therefore be compared. Com-
parisons given by the values of the displacement (1.732, 1,740, 1.752)

√
νx/U

and momentum displacement (0.332, 0.323, 0.343)
√

νx/U thicknesses for the
exact, cubic and quartic solutions, respectively, are very satisfactory. We note
also that the momentum displacement thickness is directly proportional to
the wall shear stress, which therefore also shows good agreement amongst the
different methods.

6.4.1 Application to Boundary Layers with an Applied
Pressure Gradient

The momentum integral method is considerably simpler to apply than direct
calculation to two-dimensional flows, but is not suitable in three. It was adapted
by Pohlhausen (see Schlichting, 1968, pp. 192–203), to take into account pres-
sure gradients using equation (6.25) and the quartic approximation (6.31) to
the velocity profile. Defining the parameter

Λ =
δ2

ν

dU

dx
(6.32)

we obtain

u = U
(y

δ

) {[
2 − 2

(y

δ

)2
+

(y

δ

)3
]

+
Λ
6

[
1 − 3

(y

δ

)
+ 3

(y

δ

)2 −
(y

δ

)3
]}
(6.33)



150 Introductory Fluid Mechanics

It is easily seen that separation, predicted when du/dy|0 = 0 (Section 6.7),
occurs if Λ = −12.0. If the flow has a stagnation point at its leading edge, e.g.
an aerofoil, then it is found at the value Λ = 7.052. However, the simple model
leads to inaccuracy as separation is approached, and the line of separation is
not accurately predicted.

The displacement and momentum thicknesses are easily obtained by
integration (Schlichting, 1968, pp.192–199)

δ1

δ
=

3
10

− Λ
120

and
δ2

δ
=

37
315

− Λ
945

− Λ2

9072
(6.34)

For a laminar boundary layer, the shear stress at the wall follows from
τ0 = μdu/dy|0

τ0 δ

μ U
= 2 +

Λ
6

(6.35)

Unfortunately the parameter Λ is expressed in terms of the ill-defined
term δ which is introduced for the purposes of calculation and has no phys-
ical significance. Thus to obtain the relation to physical measurements the
parameters

Z =
δ2

2

ν

K = Z
dU

dx
=

(
37
315

− 1
945

Λ − 1
9072

Λ2

)
Λ (6.36)

are introduced. Using equation (6.15) the differential equation is derived

dZ

dx
=

F (K)
U

(6.37)

where

F (K) = 2
(

37
315

− 1
945

Λ − 1
9072

Λ2

) (
2 − 116

315
Λ +

79
7560

Λ2 +
1

4536
Λ3

)
(6.38)

Since the ideal flow profile U(x) around the body is known from earlier mea-
surements or calculations, we may numerically integrate equation (6.37) using
equations (6.36) and (6.38), from point to point, starting at the stagnation
point at Λ = 7.052 or K = 0.0770 where F (K) = 0. By calculating succes-
sively Z, K, Λ, F (K) and finally dZ/dx, the integration is advanced along the
surface.
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6.5 Boundary Layer Instability and the Onset of
Turbulence–Tollmein–Schlichting Instability

The laminar boundary layer is a strongly sheared flow with velocity varying
from zero at the surface to the free stream value at the boundary layer edge.
We therefore expect that if the boundary layer is sufficiently wide that viscosity
becomes too weak to damp any oscillatory waves, unstable growth similar to
that in a duct will be established. Within the boundary layer the variations in
y are much stronger than those along the surface x, since the Reynolds number
based on the boundary thickness is Rδ ∼ √Rx. The local flow in the boundary
layer is therefore approximately that between two parallel walls a distance δ1,
the momentum thickness, apart.

Detailed calculations of the solutions of the Orr–Sommerfeld equation using
the Blasius velocity profile for the flow along a flat plate with no veloc-
ity gradient show the characteristic behaviour (Figure 6.3) for a shear flow
with no point of inflexion. The two branches are both asymptotic to zero as
Rδ = Uδ1/ν → ∞. The value of the minimum Reynolds number at which insta-
bility occurs is sensitive to the details of the calculation, but Rcrit ≈ 450 is in
good agreement with careful experiments for flat plates.

However, if the ambient flow has a pressure gradient, characteristic of the
flow around a finite body, the boundary layer velocity profile has a point
of inflexion when dp/dx > 0 (adverse pressure gradient), and not occurring
if dp/dx < 0. Hence it follows from Rayleigh’s point of inflexion theorem
that boundary layers with adverse pressure gradients are more susceptible
to instability. The neutral stability plot therefore has the characteristic form,
Figure 6.3, in which the two branches do not join asymptotically. Consequently,
as may be expected, the flows are unstable even at large Reynolds numbers.
As may be expected the point of instability is very sensitive to the pressure
gradient (Figure 6.3).

Once the boundary layer Reynolds number Rx exceeds the value at the crit-
ical point where the flow becomes unstable, the instability grows rapidly and
soon becomes turbulent. The onset of turbulence is found experimentally a
short distance beyond the point of instability at the point of transition. For
example, for a flat plate the transition point is experimentally found to be
at Rx ≈ 3.5 × 105 corresponding to Rδ1 ≈ 1000 compared with the calculated
critical point at Rδ1 ≈ 450. The approximate values of the critical point are
easily found from the data in Figure 6.3 once the profile of the boundary layer
has been calculated by the Pohlhausen method. This approach has been widely
used to identify the onset of turbulence theoretically and was used to design
laminar wing sections, where the profile was designed to allow the airflow to
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Figure 6.3: Approximate values of the boundary layer Reynolds number R = Uδ1/ν at
which the boundary layer becomes unstable as a function of the velocity gradient shape
factor Λ (data from Schlichting, 1968).

remain laminar over the wing surface for as long as possible by delaying the
region of adverse pressure gradient. This was achieved by making the wing pro-
file with the maximum thickness pushed back along the chord typically to about
50% of the chord compared with 5−20% for a conventional wing, thereby reduc-
ing the friction drag and allowing greater speed and longer range. Such aerofoils
were used for a number of successful piston-engined aircraft during the Second
World War, but their advantages diminished with dirt contamination on the
surface. With the advent of jet-powered aircraft the laminar flow concept was
adapted as integral to standard wing design. More recently supercritical wings
used for transonic flight (Section 12.4.3) have a profile superficially similar to
laminar flow wings.

6.6 Turbulent Boundary Layer on a Flat Smooth
Plate

The flow along the surface of a flat plate may be visualised as directly com-
parable with that along the wall of a duct. The width of the duct is replaced
by the boundary layer thickness and the maximal velocity on axis by the free
stream velocity. Using the universal velocity law, the velocity at the boundary
layer edge y = δ is the free stream value

U

v∗
= 2.5 ln

(
δv∗

ν

)
+ 5.5 (6.39)
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This velocity distribution may be used in the momentum integral formulation
of the boundary layer, equation (6.25). However, the final result is complex and
difficult to evaluate. Nonetheless we may, at this stage, neglect the contribution
of the viscous sub-layer and use the velocity defect relation in the momentum
integral (6.25) to obtain

v∗2 =
1
χ

d
dx

{
v∗2δ

[
U

v∗
+ 5.0

]}
(6.40)

Since the local friction coefficient

cf =
τ0

1
2ρU2

= 2
v∗2

U2

cf will be shown to be very small, U � v∗. Differentiating equation (6.39) we
obtain

dδ

dv∗
= − δ

v∗

{
0.4

U

v∗
+ 1

}
and |v∗ dδ/dx| � |δ dv∗/dx|. Hence we obtain

dδ

dx
≈ 0.4v∗

U
and 0.4 v∗ x ≈ U δ (6.41)

This result may be understood as follows. The turbulent fluctuation velocity
is given by |u′| ∼ |v′| ∼ v∗ from equation (5.15). Since the turbulence will pen-
etrate into the free stream with a speed approximately equal to the fluctuation
velocity, i.e. the friction velocity, the rate of increase in the thickness of the
boundary layer will be

dδ

dx
∼ v∗

U

where δ ∼ v∗x/U , as above.
Substituting this result in equation (6.39) we obtain the local friction

coefficient

0.4

√
2
cf

= 2.5 ln (Rx cf ) + 2.875 (6.42)

where the numerical constant 2.875 is determined by experiment.
Equation (6.42) is an implicit equation for cf which must be integrated

over the plate to obtain the total drag coefficient Cf =
� �
0 cfdx. Since this is

a cumbersome result to use, Schlichting obtained a more compact result by
fitting an analytic expression to data obtained from the above equation:

Cf = 0.455(log10 Rl)−2.58

cf = 0.455(log10 Rx)−2.58 − 0.510(log10 Rx)−3.58
(6.43)
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The boundary is not entirely turbulent. There is an initial laminar section,
until the boundary layer becomes unstable and turbulence is established. We
can take this into account by modifying Schlichting’s result

Cf = 0.455(log10 Rl)−2.58 − ARl
−1 (6.44)

The term A is the difference in the drag force calculated by the appropriate
forms of Dturb equation (6.43) and Dlam equation (6.21) at the onset of turbu-
lence for turbulent and laminar flow in the boundary layer respectively. This
correction is illustrated in Figure 6.4(b).

100 101 102 103 104 105 106 107 108 109 1010 100 101 102 103 104 105 106 107 108 109 1010

Rx R1

10-4
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10-2

10-1

1

c f
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c f
Laminar

Turbulent

Laminar

Turbulent

(a) (b)

Figure 6.4: Laminar and turbulent boundary layer local and total friction coefficients.
Dotted lines show the power law approximation. The onset of turbulence is set at R� = 105

(full line) and R� = 5 × 105 (dashed line). (a) Local friction coefficient and (b) Total
friction coefficient.

6.6.1 Turbulent Boundary Layer–Power Law Distribution

For some purposes, the solution given above for the turbulent boundary layer is too
complex to be useful. As for pipe flow, a simpler solution based on a power law
distribution is appropriate in these cases, e.g. to treat heat transfer in the turbulent
boundary layer discussed in Section 7.4.

As the flow near the tube wall is the fully developed form of the boundary layer, we
assume that the velocity and stress distributions found in pipe flow (Case Study 5.I.i)
may be directly applied to the boundary layer, with the change that the pipe radius is
replaced by the boundary layer thickness (a → δ) and the velocity on axis replaced by
the free stream velocity (umax → U). Equation (5.32) in the boundary layer becomes

u

U
=

(y

δ

)1/n

(6.45)

The total friction force on one side of the plate per unit width is calculated from the
momentum integral (6.25)

D(x) =
� �

0
τ0(x) dx = ρ

� δ(x)

0
u (U − u) dy = ρU2 δ2(x) (6.46)
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where δ2 is momentum thickness. From the velocity distribution we obtain

δ2(x) =
n

(n + 1)(n + 2)
δ(x)

∴ τ0

ρU2
=

n

(n + 1)(n + 2)
dδ

dx

The displacement thickness is also easily calculated to be δ1 = [n/(n + 1)] δ.
For a 1/7 power law, we may apply the Blasius stress formula (5.33)

τ0 = 0.0225 ρU7/4 ν1/4 δ−1/4 (6.47)

Substituting for τ0 and integrating,

δ(x) = 0.376x

(
U x

ν

)−1/5

(6.48)

Hence we obtain the drag force per unit width on one side of a plate of length �

D(�) = 0.036 ρU2 �

(
U �

ν

)−1/5

(6.49)

The local and total friction coefficients for a plate wetted on both sides are

cf = 0.0576Rx
−1/5 (6.50)

Cf = 0.074R�
−1/5 (6.51)

where the factor 0.072 is increased to 0.074 in accordance with experimental measure-
ments. This result is found to give good agreement for the range from the onset of
turbulence in the range 5 × 105 < Rl < 107.

In this case also the distribution at higher Reynolds numbers is well described by
higher values of the power index n. The relevant relations for the boundary layer thick-
ness, drag and drag coefficients are all easily derived in terms of velocity coefficients
C(n) and the friction coefficients T (n) and V(n) following the methods used for the
flow in a pipe (problem #25):

U = C(n) {v∗ δ/ν}1/n
v∗ cf = F(n) (U δ/ν)−2/(n+1)

τ0 = T (n) {U δ/ν}−2/(n+1)
ρU2 v∗ = V(n) {U δ/ν}−1/(n+1)

U
(6.52)

The relationships amongst these scaling parameters in boundary layer flow are the
same as those in pipe flow (equation P.8), but with the changes to the variables
u → α(n)−1U , a → δ and f → cf .

The boundary layer thickness is given by

δ(x) = D(n)x

(
Ux

ν

)−2/(n+3)

(6.53)

where D(n) = {[(n + 2)(n + 3)/n] T (n)}(n+1)/(n+3). Values of D(n) are given in
Table 6.1.
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Table 6.1: Parameters for power law approximations.

n 7 8 9 10
C(n) 8.74 9.71 10.6 11.5
T (n) 0.022 51 0.01 758 0.01 427 0.01 179
V(n) 0.150 0.1329 0.1195 0.1086
D(n) 0.3707 0.3129 0.2716 0.2386
F (n) 0.036 06 0.027 82 0.022 88 0.018 08

The drag force on one side of the plate is

D(�) = F (n) ρ U2 �

(
U �

ν

)−2/(n+3)

(6.54)

where F (n) = [n/(n + 1)(n + 2)] D(n) is the drag force scaling term.1

Hence

Cf = 2 F (n)R�
−2/(n+3)

cf = 2
(n + 1)
(n + 3)

F (n)Rx
−2/(n+3) (6.55)

These larger values of n may be used to construct an approximate model of the
boundary layer at larger values of the Reynolds number than applicable to n = 7.

6.7 Boundary Layer Separation

The boundary layer introduces a major change to the flow around unstream-
lined bodies. This causes the incoming flow to leave the surface of the body and
move away into the body of the flow. We have already alluded (Section 2.4) to
this behaviour in discussing separation in ideal flow and the consequent non-
uniqueness of any ideal flow solution. In fact viscosity through the action of the
boundary layer ensures a unique flow pattern in conformity with experiment.

Consider the flow around a cylinder. We have already described the pat-
tern in ideal flow with no separation. In particular we found the pressure was
described (2.96) by an expression which had maxima at the stagnation points
on the axis where the body streamline joined and left the surface (θ = 0 and π)
and minima at the greatest width (θ = π/2 and 3π/2), Figure (6.5). The max-
imum pressure was p0 + 1

2ρU2 and the minimum p0 − 3
2ρU2 where U is the

incoming flow velocity–a difference of 2ρU2. Near the surface the flow is accel-
erated from θ = 0 to π/2 and decelerated from θ = π/2 to π, where it is again

1Note that this term F (equation 6.54) for the drag coefficient on a flat plate is not the
same as the alternative expression F (equation 6.52) for the drag coefficient at the tube wall.
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Figure 6.5: The pressure differential (p − p0)/
1
2
ρU2 around a cylinder in laminar

(subcritical) and turbulent (supercritical) layers compared with that in irrotational flow.

brought to rest. In the region θ = 0 to π/2, a fluid particle gains just sufficient
kinetic energy to enable it to overcome the adverse pressure gradient from
θ = π/2 to π.

However, the presence of viscosity in the boundary layer extracts energy
from the particle by requiring it to do work against the shear stress, which
can only be at the expense of its kinetic energy. Consequently it reaches the
minimum pressure with insufficient energy to overcome the pressure barrier
and enable it to reach the stagnation point on the downstream axis. In fact, as
the fluid is incompressible, there will be a build up of fluid as the speed near
to the surface is brought to zero. This clearly is an impossible situation, and
the body streamline is forced away from the surface. Separation has occurred.
The line of separation is the line on the surface at which separation occurs.
Evidently a necessary condition for separation is that the pressure gradient is
adverse, i.e. ∂p/∂x > 0 along the surface.

Near the line of separation the streamlines and the corresponding flow veloc-
ity profile across the boundary layer take the form shown in Figure 6.6. The
line of separation is identified by the condition ∂u/∂y

∣∣
s

= 0.
If the flow in the boundary layer is laminar, this behaviour must be con-

tained in the solution of the boundary layer equations (6.7) and (6.8). Since
the approximations made in their derivation fail at the line of separation, where
the velocity along the surface is zero, the condition of separation appears as
a singularity in the solution. This fact may be used to derive some useful
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Figure 6.6: The streamlines and velocity profiles in the neighbourhood of the line of
separation (S). The angle that the surface of separation makes with the surface is shown

(α). At the line of separation the velocity gradient away from the surface ∂u/∂y
∣∣∣
s

= 0.

(a) Profiles of streamlines near the line of separation. The arrows indicate the direction of
flow and (b) Profiles of flow velocity near the line of separation.

scaling near the line of separation in laminar boundary layers (Figure 6.6a). In
particular for geometrically similar flows, the line of separation is independent
of the Reynolds number, since it is determined by the scaled parameter x′ = x/�
alone. In the case of flow around a circular cylinder the polar angle at separa-
tion is 104.5◦. Similarly the angle at which the surface separating the upstream
fluid from that in the flow downstream behind the surface of separation must
be given by arctan(dy/dx) ∼ arctan(const/

√R). In the neighbourhood of the
line of separation, the flow may be modified by the backflow and resulting
turbulence. Experiment shows that in practice separation always takes place
after the line of maximum velocity and is independent of the Reynolds number
R. It normally occurs at or slightly later than predicted by the singularity
in the boundary layer equations. The surface of separation is found to tend
towards the tangent after leaving the surface, provided the latter is smooth.
At a salient edge (corner) the flow follows the line of the surface before the
corner; the flow inside the corner is generally turbulent and non-steady. The
case of two surfaces meeting in a cusp or at a finite angle has already been
discussed in connection with the flow around aerofoils, where it was found to
be similar to two jets meeting at the junction and to produce a narrow wake.

The area of the wake represented by the separated downstream flow is con-
stant at the body. From the form of the streamlines it is clear that at the line of
separation, the velocity gradient away from the surface satisfies ∂u/∂y

∣∣
s

= 0.
Behind the line of separation, the flow is back towards the leading edge due to
the adverse pressure gradient.

The flow in the downstream separated region has significantly lower pres-
sure (Figure 6.5) than that which would have been generated if the flow had
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remained attached to the body as in ideal flow. Since the upstream flow approx-
imates to that in ideal flow, where upstream and downstream pressures are
balanced, there is a substantial pressure difference across the body. This will
contribute a marked drag.

(a)

(c)

(e)

(b)

(d)

(f)

Figure 6.7: Sketches of the flow in the different regimes at various Reynolds number
around a cylinder. Turbulent regions are shown dashed. (a) R < 5 Stokes’ flow, unseparated
flow, (b)15 � R � 40 Fixed pair of vortices (c) 40 � R � 150 Laminar vortex street
(d) 150 � R � 3 × 105 Transition region in which a laminar boundary layer generates a
turbulent vortex street (e) 3 × 105 � R � 3.5 × 106 Laminar boundary layer becomes
turbulent (f) 3 × 106 � R Turbulent boundary layer generating vortex street in a
narrow wake.

6.7.1 Viscous Flow Over a Cylinder

The flow of fluid around a cylinder exhibits many of the effects we have already
seen in earlier chapters. These are illustrated in Figure 6.7. The different regimes are
characterised by a range of Reynolds numbers R = UD/ν based on the diameter of
the cylinder. Figure 6.8 shows the drag coefficient of a cylinder as a function of the
Reynolds number, and shows effects associated with the different flow structures at
appropriate Reynolds numbers. Several different regions can be identified:

a. R � 5. Stokes’ flow regime. The flow is laminar, unseparated and steady. The
drag is accurately given by Lamb’s formula provided the Reynolds number is
small (�0.5).

b. 5 � R � 40. A stationary vortex is formed following separation. The flow
remains laminar and steady. Superficially the flow resembles that proposed by
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Kirchoff and Rayleigh (Appendix 2.A.1) although that calculation was for invis-
cid flow, whereas here viscosity plays a dominant role.

c. 40 � R � 150. The flow is no longer stationary, but remains laminar. Instability
of the stationary vortex leads to vortex shedding and the formation of a reg-
ular vortex street (Appendix 2.A.2.3). At low Reynolds numbers (R � 90) the
periodicity is governed by instabilities in the wake. At larger R � 90 the peri-
odicity is given by the vortex shedding rate determined by the Strouhal number
(page 74).

d. 150 � R � 300. A transition region in which vortices become turbulent although
the flow around the cylinder remains laminar.

300 � R � 3 × 105. The flow in the wake is fully turbulent. In this regime the
flow is doubly unstable, the first instability occurring when the flow separates
from the surface and forms the vortex street, the second the instability of the
vortex train which becomes irregular and turbulent. Evidence of a turbulent
vortex street can be detected. The boundary layer is laminar.

e. 3 × 105 � R � 3 × 106. The boundary layer becomes turbulent. The wake is
narrow and lacks any structure. Drag is strongly reduced.

f. R � 3 × 106. The boundary layer and wake are fully turbulent. A turbulent
vortex sheet can be identified.

An extensive account of this behaviour, with many photographs illustrating the
behaviour shown in Figure 6.7, can be found in the book by Tritton (1988).
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Figure 6.8: The drag coefficient on a cylinder CD = FD/ 1
2
ρU2D is shown as a function of

the Reynolds number R = UD/ν where D is the diameter of the cylinder. The letters refer
to the different regimes identified in Figure 6.7. Also shown is Lamb’s approximation at low
Reynolds number (adapted from Schlichting, 1968).
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Figure 6.8 shows the variation of the drag coefficient as the Reynolds number is
varied. It can be seen that the scaling of drag is different in the different regimes.
Stokes’ flow region (a) is characterised by a drag coefficient varying nearly as 1/R.
The laminar boundary layer separated flow (d) has a nearly constant drag coefficient as
discussed in the next section. The laminar/turbulent boundary layer transition leads
to a dramatic fall in drag coefficient, known as the drag crisis, followed by a gradual
increase in its value as the Reynolds number increases.

6.8 Drag

We may identify three distinct forms of drag:

1. The drag resulting from the pressure difference arising from separation
is known as form or pressure drag. It is the dominant drag force for
unstreamlined bodies. The wake formed typically has dimensions com-
parable with those of the body.

2. The drag directly due to the wall shear stress in the boundary layer
known as friction, skin or viscous drag. This is the dominant drag for
streamlined bodies. It gives rise to a narrow wake approximating to the
vortex sheet of ideal flow.

3. The drag found in ideal flow in three-dimensional flows, known as induced
drag. This is associated with streamlined bodies of large aspect ratio, i.e.
wings (Section 11.54). In most circumstances (except for wings) it is
relatively weak compared with the previous types.

The scaling of form drag in laminar flow is easily established. The pressure
drop across the body is a fraction of the pressure drop due to the stagnation
pressure on the upstream surface and the much reduced pressure behind the
line of separation, a consequence of the disconnected flow, namely the pressure
drop ∼ ρU2. The area over which this pressure drop is exerted is a fraction
of the cross-section S, as seen by the incoming flow, and determined by the
position of the line of separation. In laminar flow the position of the line of
separation around the surface is independent of the Reynolds number R and
this fraction of the cross-section of the body is constant. If the boundary layer
is turbulent this constancy is lost. The drag force on the body is thus

FD ∼ ρ U2 S

and the drag coefficient CD is consequently constant.2 In laminar boundary
layer flow the form drag coefficient is independent of the Reynolds number.

2The area parameter S used to define the drag coefficient is not consistently applied. Thus
for form drag it is conventionally the cross-section, for friction drag the wetted area, and in
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Figure 6.9: Plot of the experimentally measured drag coefficient CD as a function of the
Reynolds number R for a sphere (adapted from Schlichting, 1968). The values from Stokes’
and Oseen’s theorieseasured y m at small Reynolds numbers are shown for comparison.

As the Reynolds number is increased a sudden rapid decrease in the drag
coefficient is found, a situation known as the drag crisis, a phenomenon exhib-
ited in the flow of both cylinders (Figure 6.8) and spheres (Figure 6.9). Exam-
ination of the pressure profiles (Figure 6.5) shows that this is due to a delay of
the onset of separation. This is a consequence of the boundary layer becoming
turbulent before separation. The mixing associated with the turbulence mixes
faster moving fluid from the outer faster moving layers of the boundary layer
and the free stream into the slower moving fluid near the surface. This prevents
the stagnation in the boundary which gives rise to separation. There is of course
also a concomitant increase in the skin drag. Over a limited range of fairly high
Reynolds numbers (3 × 105 � R � 3 × 106 for a cylinder) the boundary layer
just separates before becoming turbulent. However, once separated it rapidly
becomes turbulent. As a result of entrapment of the flow by the turbulence,
the boundary layer reattaches itself after a short gap–a phenomenon known as
reattachment. At lower Reynolds numbers the boundary layer remains laminar
up to separation and becomes turbulent away from the surface. On the other
hand, at higher values it becomes turbulent before separation.

aerodynamics the plan area of the aerofoil. These differences reflect the different nature of
the drag force. Care must be taken to identify which form is being used in any particular
application.
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Case study 6.I Control of Separation in Aerodynamic
Structures

Separation has a severe effect on the performance of aerofoils. At moderate incidence
the aerofoil operates in the classical streamline flow mode giving high lift and low
drag. However, as the angle of incidence is increased, lift increases together with the
pressure differential necessary to generate it. As a result, a situation eventually occurs
when it is no longer possible to maintain the streamlined body flow, and the surface
of separation on the upper surface moves rapidly towards the point of maximum
thickness. This phenomenon is known as the stall, and can be a serious problem as its
onset is rapid and occurs at times of high lift, e.g. at take-off. The stall gives rise to
high drag, as the region behind the line of separation is at low pressure, in contrast to
that upstream. The profiles of lift around both the span and the chord the wing are
also modified giving possible control problems.

Clearly it is important to control separation, and to find methods of delaying it to
as high an angle an incidence as possible, to improve the lift at slow speeds during
take-off and landing. Several methods have been proposed to achieve this:

• Inducing controlled turbulence. This can be achieved by installing small obstruc-
tions into the airflow over the wing to initiate the turbulence.

• Introducing a flow of more rapid air from the lower surface into the slower
moving upper boundary layer. This is achieved by two types of slotted extensions
to the aerofoils. Leading edge slots (‘slats’) and slotted flaps at the rear. Both
work on the principle that faster moving air flows through the slot into the lower
parts of the boundary layer. Both are normally used at take-off and landing,
and markedly increase both the lift and angle of stall.

• Direct injection of blown gas into the upper wing surface. This has been tried
experimentally but is not practical.

• Injection of a different gas into the boundary layer.

• Moving surfaces on the aerofoil. An experimental aircraft with this modi-
fication was constructed, but for obvious reasons it was not regarded as a
workable option.

6.9 Laminar Wake

Although we have already introduced the idea of the wake in our discussion of
irrotational flow (Section 2.3) and the infinitesimally thin vortex sheet trailing
away from a wing to be discussed in more detail later (Section 11.8), we have
not properly specified the concept of the wake. As we have seen, the flow of a
uniform stream around a body at large Reynolds numbers is only modified over
a finite locality downstream of the body. This is this region of the wake, where
viscosity has played a role in changing the velocity and the flow has become
rotational. Thus we may separate the flow into rotational and irrotational
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regions. Within the latter Bernoulli’s equation is expected to remain valid. By
definition the wake of a streamlined body is narrow. In contrast the width of
the wake of an unstreamlined body is of the order of the cross-section of the
body. Depending on the value of Reynolds number and the nature of the flow
(streamlined or separated), the wake may be laminar or turbulent. In Stokes’
flow at low Reynolds number the disturbance extends over the entire flow, and
the concept of the wake loses its meaning.

We consider the body in a steady flow of incompressible fluid at pressure P
and velocity U in the x direction. The total force on the body is due to the rate
of loss of momentum by the fluid flowing through a closed surface S enclosing
the body

Fi = −
�
S

Πij dSj = −
�
S

{ρvivj + P δij − σij} dSj (6.56)

The equation of continuity requires that
�
S

ρvi dSi = 0 (6.57)

We introduce the velocity perturbation u = v − U and the pressure pertur-
bation p. As in Section 11.8.4 we consider the surface S comprising two planes
in (y, z) at x1 far upstream and x2 downstream closed by a surface at infinity.
Since the perturbation at infinity is zero, the contribution from the closing
surface at infinity is zero. The force on the body is therefore

Fi =
(�

x1

−
�

x2

)
{ρ ui ux + p δix − σix} dy dz (6.58)

As we move downstream away from the body, the gradients in the x direction
become progressively smaller. Therefore if the surface S is taken sufficiently
far from the body, the gradients in x produce stresses much less than the
momentum flux terms −ρuiUj , i.e.

μ
∂ui

∂x
� ρUui or

ρ Ux

μ
� 1

In this case the viscous stress tensor downstream far from the body takes
the form ⎛

⎜⎜⎜⎜⎝
σxx = 0 σxy = σyx σxz = σzx

σyx = μ
∂ux

∂uy
σyy σyz = σzy

σzx = μ
∂ux

∂uz
σzy = μ

∂uy

∂uz
σzz

⎞
⎟⎟⎟⎟⎠ (6.59)
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Only stress components associated with the direction x of the incoming flow
contribute to the force over planes normal to the flow, as such planes only have
an area vector in that direction. The viscous stress components over a plane
x2 far downstream make contributions to the force

�
σxj dSj =

�
x2

σxx dy dz ≈ 0
�

σyj dSj = μ
�

x2

∂ux

∂y
dy dz = μ

� (
ux(y′) − ux(y′′)

)
dz

�
σzj dSj = μ

�
x2

∂ux

∂z
dy dz = μ

� (
ux(z′) − ux(z′′)

)
dy

where ux(y′) and ux(y′′) and ux(z′) and ux(z′′) are the perturbation velocities
at the edge of the wake in the plane x2. However, since the flow is irrotational
outside these limits, the viscous contribution from the remainder of the plane is
zero, and we may extend the range of integration to infinity, where the pertur-
bation is zero, uy, uz → 0 as y, z → ±∞. Hence the total viscous contribution
to the momentum loss (6.56) is zero

�
S

σijdSj =
�
x2

σx dy dz ≈ 0 (6.60)

In the irrotational flow outside the wake, the pressure perturbation
p = −ρ U · u = −ρ U ux. Far downstream outside the wake, u � U , and the
pressure perturbation p ∼ ρ u2 � ρU · u may be neglected. Hence collecting
terms together and noting that the perturbation over the upstream surface x1

is zero, we obtain the final expression for the force

Fx = −ρ U
�

wake

ux dy dz

Fy = −ρ U
�
x2

uy dy dz

Fz = −ρ U
�
x2

uz dy dz

(6.61)

where the integral for the drag Fx is taken over the wake alone, whereas those
for the lift Fy and Fz encompass the whole of the downstream plane x2.

The mass of fluid removed by the body into the wake is

−ρ U
�

wake

dy dz
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Hence the drag force is just the loss of momentum in the wake resulting from
obstruction presented by the body. If the body is symmetric the lift forces
are zero, as may be expected from considerations of symmetry. For a body of
large aspect ratio, the lift force is that obtained previously in Section 2.4 for
a two-dimensional section, confirming the validity of the approximation made
when using the ideal flow approximation to calculate lift. However, it should
be noted that the effective profile of the aerofoil is modified by the thickness
of the boundary layer.

We may estimate the scale of the wake by noting that if the flow is laminar, it
must obey the Navier–Stokes equation. Since the wake is narrow, the velocity
variations are dominated by the transverse gradients, normal to incoming flow.
Thus the viscous and inertial terms for the velocity component parallel to the
incoming flow take the forms

ν
∂2ux

∂y2
∼ ν ux

Y 2
and [(v · ∇)v]x ∼ Uvx

x

where Y is the width of the wake. Within the wake these terms are comparable
and hence

Y ∼
√

νx

U
� x (6.62)

if the wake is narrow.
The area of the wake, i.e. ∼ Y 2, determines the drag, and consequently

Fx ∼ ρ U ux Y 2 ∼ ρ ν x ux. Since the drag is independent of the distance down-
stream from the body, it follows that the x component of the perturbation
velocity falls off as

ux ∼ Fx

ρ ν x
∝ 1

x
(6.63)

A final note of caution: this analysis applies only if the wake is laminar. In
fact in most cases the wake is turbulent, and the above results are not valid.
A discussion of the turbulent wake follows in Section 6.10.1.

6.10 Separation in the Turbulent Boundary Layer

Consider the steady flow of fluid over the surface of a body at Reynolds number
above the critical value for turbulence to develop. The flow is initially laminar,
but turbulence will develop in the boundary layer before separation. As we
have discussed earlier, if the flow is initially irrotational, then far from the
body it will remain so. Whilst close to the body, the vorticity may be non-zero
and rotational flow may develop.
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For vortices of size greater than the Kolmogorov length, λ0, equation (5.10),
viscous dissipation is insignificant, and the vortices must themselves obey the
ideal flow equations, as for example the prototype vortex of Section 2.10.1.2
In particular Kelvin’s theorem tells us that over a scale length � λ0, circula-
tion is conserved along a streamline. Thus the rotational region is bounded
by streamlines denoting the onset of rotation (Figure 6.10). In practice this
boundary is blurred over a distance ∼ λ0.

Rotational

DampingIrrotational

Figure 6.10: Sketch of the flow around a body with turbulent separation.

Due to these blurred edges, fluid may be transported across the boundary by
the small eddies and as a result given rotation. Thus the rotational region pro-
gressively penetrates into the irrotational (but, of course, not vice versa). There
are large vortices which penetrate into the irrotational flow, since vortices can
be established in irrotational flow. The resultant flow is both turbulent and
irrotational. Since

∇2φ =
∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
= 0

a rotation in the plane (x, y) is damped in the z direction normal to the plane
of their motion since

φ ∝ exp
[
ı (kxx + kyy) −

√
kx

2 + ky
2z

]

Thus small vortices (with large kx and/or ky) are rapidly damped normal
to their plane.3 Only large eddies occur in the irrotational flow and these are
rapidly damped. The largest eddies are of the same size as the rotational region
formed by the wake, and the complete turbulent region therefore about twice
that width (Figure 6.11).

Most of the dissipation occurs in the small eddies and therefore in the region
of rotational turbulent flow, called the region of turbulent flow. Since rotation
can only start from the surface of a body, the turbulent region must also start
at the body, along a line on the surface, the line of separation. As in laminar
flow the position of the line of separation depends on the structure of the
boundary layer.

3The alternative solution with positive sign, exp (kzz), is clearly unphysical.
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Figure 6.11: Sketch of the flow around a body with turbulent separation identifying the
boundary layer, the line of separation, the wake and the regions in which the flow is
irrotational or rotational, and laminar or turbulent.

6.10.1 Turbulent Wake

As we noted earlier, at large Reynolds numbers the boundary layer is turbulent
and separation occurs to generate a turbulent wake. As before, we consider a
flow with incident velocity U, and introduce a mean velocity increment (aver-
aged over the turbulent eddies) u = v − U. If the width of the wake is a, the
longitudinal velocity is ∼ U and the transverse ∼ u, the streamlines at the edge
of the wake make an angle ∼ da/dx ∼ u/U with the direction of the incoming
flow x.

Since the flow outside the wake is irrotational much of the discussion of
Section 6.9 for the laminar wake may be applied in this case also, provided the
integrals are performed over the same region. Outside the wake, the integrals
give zero. Assuming the body is cylindrical, the drag force on the body is

F ∼ ρU ua2 (6.64)

and substituting for u and noting that F is constant,

da

dx
∼ F

ρ U2 a2

a ∼
(

F x

ρ U2

)1/3

u ∼
(

F U

ρ x2

)1/3

(6.65)

Whether the flow in the wake remains turbulent or the turbulence dies out due
to viscosity depends on the Reynolds number

R ∼ u a

ν
∼

(
F 2

ρ2 U xν3

)1/3

(6.66)
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Thus as x → ∞, R → 0. Thus at large distances, far from the body, the tur-
bulence gradually decays and the wake eventually becomes laminar.

Appendix 6.A Singular Perturbation Problems and
the Method of Matched Asymptotic Expansion

Many problems in physics fall into the category of singular perturbations. In these
a small parameter plays a dominant role within a transition region. The physicist
usually solves such problems by subdividing the domain into two sub-domains: in the
first, the inner region, it the perturbation plays an active role, and in the second, the
outer region, it is inactive. The solution in each of the two sub-domains is matched
in some appropriate fashion to give the complete solution. Clearly, boundary layer
flows fall into this group. The inner region is the boundary layer itself and the outer
region the irrotational flow around the body. The small ‘perturbation’ parameter is
the kinematic viscosity ν, and the region of matching is at the boundary layer width δ.
Many problems in fluid mechanics, particularly in aeronautics, fall into this category
(see Chapter 14). We have already met some: for example, Stokes’ flow around a
sphere where the perturbation parameter is the Reynolds’ number (Section 3.7.1.2).
Another important case is shock waves (Chapter 10). The flow around a thin wing,
the perturbation parameter, ε, being the thickness of the wing (Case study 2.II) is a
further typical example. When ε = 0 the flow is simply a uniform flow with constant
velocity. However, if ε → 0+ the wing section is a branch cut on the real axis across
which the tangential velocity changes discontinuously. Problems of this type, when the
solutions for ε = 0 and the limit as ε → 0+ are different, have been called asymptotic
paradoxes by Birkhoff (1955). For a full account of perturbation methods applied in
fluid mechanics the reader is referred to van Dyke (1975).

Although the method as outlined gives a good qualitative understanding it cannot
generate quantitative estimates of the flow. The approach is formalised in the method
of matched asymptotic expansions, which is used for the class of singularly perturbed
problems where the domain may be divided into two (or more) sub-domains, one of
which is a transition region of rapid change. Different solutions are constructed in the
inner and outer regions, each of which is inaccurate in the other. The solutions in the
two regions are generated by a power series expansion in terms of the perturbation
parameter. These series are often only semi-convergent, hence asymptotic. In the outer
region the problem may be treated as a regular perturbation. However, in the inner
region, where the perturbation terms are non-negligible, an alternative small param-
eter is used. In the limit as the small parameter vanishes, the governing differential
equation is reduced in order. Hence only a limited subset of the boundary conditions
applies to each solution. A suitable matching between the solutions is required which
determines an approximation to the global solution.

The method is best illustrated by an example, which was used by Prandtl (Schlicht-
ing, 1968, pp.73–74) to demonstrate the importance of a weak perturbation, which
introduces a term of higher order into the governing differential equation and removes
an overdeterminacy of the boundary conditions.
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Consider a light mass m attached to a spring of constant k and damping d, whose
motion satisfies the second-order differential equation

m
d2x

dt
+ d

dx

dt
+ kx = 0

The mass is accelerated from rest instantaneously to speed U . The boundary condi-
tions are consequently x = 0 and dx/dt = U at time t = 0. If the mass m = 0, the
second-order term of the equation is lost and a first-order differential equation is gen-
erated, which cannot satisfy the two boundary conditions. With finite mass in the
limit m → 0+ the problem is well defined and has a simple solution.

The problem is conveniently transformed into dimensionless variables as
(x d/mU) → x and (t k/d) → t, and we introduce the perturbation parameter ε =
(mk/d2) to give the dimensionless equation of motion

ε
d2x

dt
+

dx

dt
+ x = 0 (6.A.1)

with boundary conditions x = 0, dx/dt = 1/ε at time t = 0. The exact solution is

x =
1√

1 − 4 ε
[exp(−λ λ − t) − exp(−λ λ + t)] (6.A.2)

where
λ± =

1
2ε

(
1 ±√

1 − 4 ε
)

(6.A.3)

For ε small, λ+ ≈ 1/ε and λ− ≈ 1.
The problem can be visualised from a physical point of view as an initial phase

(inner region) in which the dimensionless force due to the spring x is small (as x is
small). In this phase, dominated by the initial velocity, the perturbation term plays
an important role and the mass moves as

ε
d2x

dt
+

dx

dt
≈ 0

dx

dt
= exp

(
− t

ε

)
x = 1 − ε exp

(
− t

ε

)
(6.A.4)

This motion is clearly unphysical as t → ∞, and the solution is limited to times � ε
and extensions x � 1 when the mass is nearly brought to rest by the damping.

For long times (outer region) the motion is a damped return from the maximum
extension at x ≈ 1 at time t ≈ 0 to the rest position in which the mass plays no role.
The governing differential equation and solution become

dx

dt
+ x = 0 or x = A exp (−t) (6.A.5)

the matching point being taken at the maximum extension, A = 1.
Referring back to the exact solution (6.A.2), we can see that the initial motion

corresponds to the term in λ+ and the later to that in λ−. The matching of the two
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solutions is, however, poorly defined by this physical picture. We shall see that the
solution in this split form is the first terms of the perturbation expansion in the inner
and outer regions and will identify a more accurate matching procedure.

We now proceed to tackle the problem by the method of matching asymptotic
expansion. We develop a series expansion for the outer solution in terms of ε in terms
of a set of functions xn

x =
∑
n=0

εnxn (6.A.6)

whose form is found by substituting in equation (6.A.1)

dx0

dt
+ x0 = 0 and

dxn

dt
+ xn = −d2xn−1

dt2
(6.A.7)

and form a recursive set of first-order differential equations subject to, as yet undefined,
boundary conditions at the matching point determined by the inner solution.

The inner region is defined by small values of t � ε. We therefore magnify the range
of values by introducing a second dimensionless variable T = t/ε in terms of which we
again form a set of solutions Xn as suggested by the earlier analysis.4 Substituting
the perturbation expansion

X =
∑
m=0

εmXm (6.A.8)

in equation (6.A.1) we get the recursive set of perturbation functions

d2X0

dT 2
+

dX0

dT
= 0 and

d2Xm

dT 2
+

dXm

dT
= −Xm−1 (6.A.9)

which are subject to the boundary conditions Xm = 0 (m ≥ 0) and [dX0/dT = 1 and
dXm/dT = 0 (m ≥ 1)] at T = 0.

The zero-order solutions are easily obtained

X0(T ) = 1 − exp(−T ) and x0 = A0 exp(−t) (6.A.10)

To find the matching condition we make the reasonable hypothesis (limit matching
principle) that in the limit as the perturbation becomes very small, ε → 0:

The outer limit of the inner region = the inner limit of the outer region

Hence we assume that there exists a value of t = δ(ε) such as δ =
√

ε so that

lim
ε→0

δ(ε) → 0 and lim
ε→0

(δ/ε) → ∞

4This scaling is arbitrarily set by the investigator. Forms may be found to give optimum
results. Usually the nature of the problem identifies the appropriate scaling factor. The scaling
is introduced so that the ‘action’ in the inner solution occurs for values of the independent
variable T ∼ 1, and similarly that for the outer t ∼ 1. Both solutions therefore encompass
the essential features of their part of the overall solution.
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so that limε→0 {x0(δ) = X0(δ/ε)}, or x0(0) = X0(∞) and A0 = 1. We note that this
zero-order solution is identical to that found earlier from physical arguments.

Substituting for x0 and X0 we obtain the first-order terms x1 and X1

x1 = −t exp(−t) + A1 exp(−t) and X1 = 2 (1 − exp(−T )) − T (1 + exp(−T ))
(6.A.11)

subject to the boundary conditions. The matching constant A1 is easily found, since
ε T = t → 0 at the limit and x1(0) = A1 = X1(∞) = 2.

0 0.2 0.4
t

0

0.2

0.4

0.6

0.8

1

x

Exact
Zero order
First order

ε = 0.1

Figure 6.A.1: Comparison of the exact solution with the zero- and first-order
perturbation expansions for ε = 0.1.

An alternative limit matching principle, which may be used to match perturba-
tion terms of differing orders, is the asymptotic matching principle of Kaplun and
Lagerstrum, which has the following form (van Dyke, 1975):

The mth-order expansion term of the nth-order perturbation term
= The nth-order expansion term of the mth-order perturbation term

Applying this procedure to the inner and outer terms obtained earlier, we express the
inner perturbation term in terms of the outer variable

X1 = (1 − t) + (1 + t) exp(−t/ ∈) + 2 ε (1 − exp(−t/ ∈) ≈ (1 − t) + 2 ε (6.A.12)

Correspondingly the expansion of the outer perturbation term is

x1 = exp(−t) − ε (t − A1) exp(−t) ≈ (1 − t) + εA1 (6.A.13)

for t → 0. Applying the matching condition, we find A1 = 2 as before.
Having obtained the inner and outer solutions we construct a composite solution

that is uniformly valid over the full domain by noting that at the matching point δ
defined above, x(δ) = X(δ/ε) = xmatch, so that

xcomp = xinner + xouter − xmatch (6.A.14)
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behaves as the inner solution for small x and the outer for large x, taking the correct
value at the matching point.

The two-term (zero and first order) composite solution is therefore

xcomp = (1 + 2ε) [exp(−t) − exp (−t/ε)] − t [exp (−t/ε) + ε exp (−t)] (6.A.15)

Figure 6.A.1 compares the zero- and first-order perturbation terms with the exact solu-
tion for ε = 0.1. It can be seen that the matched solution gives a good approximation,
particularly as higher order terms are included.





Chapter 7

Convective Heat Transfer

7.1 Introduction

Convected heat transfer is associated with the movement of energy by fluid
motion. The fluid (liquid or gas) motion may be either self-induced (natural)
or imposed by external forces (forced):

Natural convection Fluid flow arises naturally as a result of buoyancy
forces in a gravitational field. Lower density fluid rises and higher sinks
giving rise to a rotating circulation pattern, density variation being estab-
lished by thermal expansion in a temperature gradient. The layered
fluid is unstable in the same manner as Rayleigh–Taylor unstable flows
(Section 4.3). Such flows are found extensively in nature as in the sun’s
convective zone, earth’s mantle and natural convective cooling.

Forced convection The flow is driven externally by pressures applied to
the system. This approach is widely used to transfer heat from a source
to a fluid and subsequently to a separated receiver via heat exchangers.
In consequence the scalings are extremely important to designers and
engineers.

Fluids are able to transfer energy efficiently from one point to another by
convection of the heat associated with the internal and kinetic energies of
the fluid elements. These two aspects have very different behaviour and it is
appropriate to consider them separately.

The basic equation of heat transport is most easily obtained from the entropy
transport equation (3.12) and making use of the ‘second T dS equation’ (1.31)
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we obtain
ρ cp

dT

dt
= σij ε̇ij + ∇ · (κ∇T ) − T

ρ

∂ρ

∂T

∣∣∣
p

dp

dt
(7.1)

In flows in which the temperature varies, the usual incompressible approxi-
mation must be used with care due to the temperature variation of the density.
A more satisfactory approximation in keeping with the experimental situation
is that of isobaric flow, i.e. flow at constant pressure. However, provided the
absolute temperature differences are small, and the flow velocity much less
than the sound speed, the fluid dynamics are still satisfactorily described by
the condition ∇ · v = 0.

Viscous heating is normally small compared with the other heat transfer
processes and therefore negligible. If the temperature variation of the density
ρ, specific heat at constant pressure cp and thermal conductivity κ can also be
neglected, equation (7.1) reduces to

dT

dt
= χ∇2T (7.2)

where χ = κ/ρcp is the thermal diffusivity.

7.2 Forced Convection

The simplest, but typical, forced convection problem arises from the flow of
fluid over a surface, or through a pipe with a temperature difference between
the surface and the bulk fluid external to any boundary or surface layer. As
an example consider a pipe of diameter D through which fluid is flowing with
mean speed u. If there is a temperature difference Θ between the pipe and the
fluid, heat flows at a rate q per unit area per unit time from the fluid to the
pipe. The heat transfer coefficient, H, is defined as

H =
q

Θ
(7.3)

For direct thermal conduction through a slab of thickness D and thermal
conductivity κ, the heat transfer coefficient is simply shown to be H = κ/D.

The heat transfer through a composite slab of several different layers, each
of thickness Di and thermal conductivity κi, is easily calculated since the heat
transfer rate through each is constant. Therefore

q = Hiθi and Θ =
∑

i

θi for each layer

∴ 1
H

=
∑

i

1
Hi

(7.4)

where θi is the temperature difference across layer i.
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Forced convection is an important engineering discipline. Heat exchangers
of various designs are an essential element in power generation, chemical engi-
neering, etc. As a result an extensive set of numerical relations for the design of
a variety of complex systems, such as tube banks, has been developed. These
systems are principally based on experimental studies and dimensional analy-
sis, and are thus empirical. Underlying them is the physical understanding of
heat transfer in flowing media. In these practical systems the flow is normally
turbulent, making the system inaccessible to detailed analytic modelling.

Dimensionless parameters

We may identify the characteristic scaling laws using dimensional analysis,
noting that the characteristic parameters of the fluid are density ρ, dynamic
viscosity η, specific heat at constant pressure cp and thermal conductivity
κ. We also define the kinematic viscosity ν = μ/ρ and thermal diffusivity
χ = κ/ρ cp. To these are added the scale variables of the problem, namely
length, temperature difference and heat flow rate (L,Θ, q), which form the
complete set of dimensionless products

N = q L/κΘ = H L/κ︸ ︷︷ ︸
Nusselt no.

P = cp η/κ = ν/χ︸ ︷︷ ︸
Prandtl no.

R = ρ uL/η = uL/ν︸ ︷︷ ︸
Reynolds no.

(7.5)
For many materials, their characteristic properties, namely viscosity, thermal
diffusivity and density, are temperature dependent. In this case the values used
to determine the dimensionless parameters are conventionally those at the film
temperature, which is defined as the mean between the hot and cold surfaces
(or fluid) Tfilm = 1

2(T1 + T2). This convention will be assumed throughout this
chapter unless otherwise stated.

An additional dimensionless parameter is often used, namely the Stanton
number

S = H/ρ u cp = N/P R (7.6)

The Nusselt number has a simple physical interpretation. Suppose the tem-
perature difference Θ is maintained over the scale length L; then the heat flux
due to thermal conduction alone is q′ = κΘ/L and the Nusselt number

N =
q

q′
=

Total heat transfer rate
Heat transfer rate due to conduction alone

(7.7)

In fluid flowing over a surface, the Nusselt number reflects the effect of
the boundary region near the surface on the transfer of heat into the body
of the fluid, additional to that which would take place due to thermal
conduction alone.
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The Nusselt number is particularly useful for simply determining the heat
flow from one fluid to another across a wall, e.g. in a basic heat exchanger.
Suppose the temperature difference between the fluids is Θ and the respective
thermal conductivities are κ1 and κ2 and thicknesses L1 and L2. The wall has
conductivity κ and thickness L. The heat transfer coefficient follows imme-
diately from the result for thermal conduction heat flow through a layer of
composite materials

H =
1

(1/H1 + 1/H + 1/H2)

=
1

L1/κ1N1 + L/κ + L2/κ2N2
(7.8)

where N1 and N2 are the respective Nusselt numbers.
For small temperature differences Θ, the Nusselt number is approximately

constant and the heat transfer rate is approximately directly proportional to
the temperature difference

q ∝ Θ (7.9)

This simple and very general result is known as Newton’s law of cooling. It
is valid for many heat transfer problems, and provides a great simplification in
their analysis.

7.2.1 Empirical Heat Transfer Rates from a Flowing Fluid

7.2.1.1 Heat transfer from a fluid flowing along a pipe

Consider fluid flowing along a pipe of inside diameter D. Clearly the Nusselt
number fully specifies the heat transfer rate, and furthermore from Bucking-
ham’s theorem

N = f (R,P) (7.10)

For the case where the fluid motion is either laminar or turbulent, but no
natural convection occurs, we shall find that this relation takes a convenient
simplification

N ≈ Pmf (R)

where m is a number about 1/3 giving good agreement with a wide range of
data. The function f (R) is found by experiment.

As a typical example, consider the heat transfer from the fluid within a pipe
in fully developed turbulent flow, where R > Rcrit ≈ 2100, and far from the
entrance. It is expected that, within a limited range of Reynolds numbers,
f (R) ∼ Rn where n is a constant. Experimentally it is found that n ≈ 0.8
and hence we have the following empirical formula for the Nusselt number in
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a smooth pipe in turbulent flow (Fishenden and Saunders, 1950; McAdams,
1973; Welty et al., 1984):

N ≈ 0.023Pm R0.8 (7.11)

valid if 0.6 ≤ P < 160, R � 104 and pipe lengths L � 10 D, viscosity etc. being
measured at the bulk fluid temperature. The best value of the exponent is
found experimentally to be m = 0.4 if the fluid is heated or 0.3 if it is cooled.
The difference is believed to be due to the temperature variation of the vis-
cosity within the viscous sub-layer. This equation, originally due to Dittus
and Boelter (1930), is the synthesis of a considerable body of experimental
data, and represents a typical example of the empirical engineering approach
needed for calculations in this complex field, where analytic solutions are
relatively few.1

7.2.1.2 Heat transfer from a fluid flowing across a pipe

An important case is provided by an external flow across a cylinder where, as
we have seen, separation develops within the boundary layer. In the separated
region behind the surface of separation, the flow becomes complex and turbu-
lent, but still contributes to the overall heat transfer between the cylinder and
the fluid. This gives rise to a complex distribution of the local Nusselt number
over the surface of the cylinder, whose form depends on the Reynolds number.
At very low Reynolds number (R � 1) before the boundary layer is established,
the heat flow can be calculated numerically from the governing equations. Once
the laminar boundary layer is well established at 103 � R � 105, separation
occurs at about a polar angle of about 85◦. As a result the local heat trans-
fer coefficient exhibits a minimum at this line, due to the thickening of the
boundary layer. Following separation, the heat transfer increases in the tur-
bulent wake due to the turbulence. At larger Reynolds number the boundary
layer becomes turbulent before separation and a second minimum occurs in
the heat transfer profile, one at the laminar/turbulent transition point and
one at the point of separation. Empirical studies of experimental data show
that the overall Nusselt number is well described by a relatively simple form
(McAdams, 1973)

N = C Rn P1/3 (7.12)

where both C and n are constants based on the range of R, Table 7.1.

1The original form of the equation, due to Dittus and Boelter (1930), had the correct
power law form, but with a different numerical coefficients, which has subsequently been
refined (see Winteron (1998)).
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Table 7.1: Parameters for heat flow across a cylinder.

R 0.4–4 4–40 40–4000 4000–40 000 40 000–400 000
C 0.999 0.911 0.683 0.193 0.0266
n 0.333 0.385 0.466 0.618 0.805

This expression is often approximated by the values for the regime
1000 < R < 100 000 by the simple expression

N = 0.26R0.6 P0.3 (7.13)

which is valid for most engineering applications.

7.2.1.3 Heat exchanger design

Heat exchangers play an important role in mechanical and chemical engineering
enabling heat to be transferred from fluid flowing along one pipe to a second flowing
externally. Typically their design is required to satisfy a number of conflicting
constraints, which we examine in an elementary fashion. Although this is a typical
engineering, rather than physics, problem, heat exchangers are characteristic of those
needed to be solved in the practical application of fluid mechanics. Fishenden and
Saunders (1950) or McAdams (1973) give the values of typical engineering scaling
parameters for the design of pipe banks, and may be consulted for more detail of the
design. Typical design constraints to be satisfied are:

• Total temperature difference along the pipe.
• Mass flow rate in the system.
• Weight of pipe.
• Power required to drive flow.
• Total volume.

Using simple scaling arguments it is possible to identify the conflicts between these
constraints, and the compromises which have to be made to achieve a satisfactory
design.

Normally it is required to estimate the length of pipe necessary to change the tem-
perature of the fluid in the pipe from an inlet temperature T1 to an outlet temperature
T2. Typically this is achieved in a series of n pipes arranged in parallel, each of length
� and diameter D. The mass flow rate is a design parameter

M = nρuπuD2/4

Similarly the temperature difference between the fluid entering the pipe and leaving it
is a design parameter, so that the total heat transferred per unit time is also a design
constant

Q = M cp (T2 − T1) = n�πuDH(T2 − T1)

The total heat transfer coefficient is determined as the combination of the terms
for the flow from the external flow, through the pipe and into the internal flow by
equation (7.4).
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If we assume, as an example, that the heat transfer is limited by the flow inside
the pipe, then the heat transfer coefficient scales as H ∼ (ρ u)0.8/D 0.2, from which we
can obtain the necessary scaling for the length of the pipe � ∼ D 0.8/n0.2. Therefore
the aspect ratio D/

√
n � scales as n0.7D 0.2.

If their wall thickness is constant, the pipes’ total weight scales as n�D ∼ n0.8D1.8.
Therefore for minimum weight for a given heat transfer, the pipes should be long with
a small diameter through which the fluid moves at high velocity in a system of small
aspect ratio.

However, such a system would require a high expenditure of work to drive through
the pipes. In turbulent flow the pressure drop scales as Δp ∼ �u2/D ∼ 1/n2.2D 4.2.
The total rate at which work is done is the product of the pressure drop and the
volume flow rate, namely

W = ΔpπD2/4u ∼ 1/n2.2D 4.2

Therefore for a minimum work rate both n and D should be made as small as possible.
Further constraints such as limited volume are also likely to be imposed, which require
�D 2 as a design parameter. This requires nD 3.5 to be set, and the ratio of heat transfer
to power dissipation now scales as ∼ 1/D 3.5 or n, implying that a large number of
very thin short pipes are required.

7.2.1.4 Logarithmic mean temperature

In many cases the temperature difference along the pipe will not be constant as
heat is transferred from one fluid to the other. It is easy to show that provided
Newton’s law of cooling is maintained, i.e. the Nusselt number is constant,
the overall heat transfer is given by the logarithmic mean of the temperature
differences at the two ends Θ1 and Θ2

Θ =
(Θ1 − Θ2)
ln(Θ1/Θ2)

(7.14)

Consider a length δx of the pipe. The heat loss per unit time from the fluid
in the pipe is (κΘ/D)N π D δx and causes a temperature change dΘ/dx δx in
the fluid mass ρ uπ D2/4 passing through this cross-section. Hence

ρcp u
πD2

4
dΘ
dx

δx = −κΘ
d

N D δx

and

ln
Θ2

Θ1
= − κ

ρcp

4N
uD2

� (7.15)

where � is the length of pipe. The total heat transferred is simply given by the
total cooling along the pipe, namely ρ cp u (πD2/4) (Θ1 − Θ2), which gives an
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average heat transfer coefficient

h =
κΘ
d

N =
ρ cp u (πD2/4) (Θ1 − Θ2)

π D �
=

κ

D

(Θ1 − Θ2)
ln(Θ1/Θ2)

N (7.16)

and equation (7.14) follows. If the temperature difference is small, the loga-
rithmic mean reduces to the arithmetic mean 1

2(Θ1 + Θ2).

7.2.2 Friction and Heat Transfer Analogies in Turbulent Flow

A very useful set of results is obtained by noting the close association between
momentum and heat transfer in a flow with fully-developed turbulence.
Both transport processes are due to the eddy motion of particles within
the fluid.

The analogy allows us to identify the heat flow through the boundary region
of turbulent flow in ducts and pipes, if the flow profile has already been empir-
ically determined. Assuming constant viscosity and thermal conductivity, a
constant heat flux along the wall, q, establishes a self-similar transverse tem-
perature profile with increasing temperatures along the duct, which is described
by a series of increasingly detailed models.

7.2.2.1 Reynolds analogy

In turbulent flow there is a clear relationship between the convective processes
which transfer momentum, i.e. friction, and those which transfer energy, i.e.
heat. For suppose a fluid particle is moved from the main stream, where its
velocity is u to the wall, where it is brought to rest; then the momentum
conveyed to the surface is mu, where m is the mass of the particle. At the same
time, if there is a temperature difference Θ between the free stream and the
wall, and assuming the particle remains in contact long enough to reach the
wall temperature, the same mass has transferred heat mcp Θ. The ratio of the
momentum to heat transfer is thus u/cp Θ. Since the momentum transfer to
the wall per unit area per unit time is the wall shear stress τ , the heat transfer
rate per unit area per unit time, q, is given by the Reynolds analogy

q

τ
=

cp Θ
u

(7.17)

the heat flux q being constant along the wall. This expression is often cast in
dimensionless form by introducing the Stanton number S = q/ρ u cp in terms
of which the expression is written in terms of the (Fanning) friction factor f ,
equation (5.27),
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S = f/2 (7.18)

The conditions under which the Reynolds analogy is valid are clearly:
1. The momentum and heat transfer rate coefficients must match, i.e. the

turbulent Prandtl number Pturb = 1 In principle.
2. The friction drag must be directly due to viscosity, i.e. there is no form

drag.
The analogy is therefore most appropriate for the flow through pipes and ducts,
and for flow over regular surfaces with no separation.

7.2.2.2 Prandtl–Taylor correction

It is implicit in the above derivation that the flow is everywhere turbulent, so
that the turbulence carries a fluid particle from the free stream to the wall.
Thus the buffer zone is assumed to reach to the wall. In practice, we have seen,
the turbulent motion is limited by the viscous sub-layer, Section 5.5, where
the turbulent eddies are no longer dominant. Within this zone, momentum
transfer is due to viscosity, and energy to thermal conduction.

Let the temperature drop from the wall to the edge of the viscous sub-layer
be b Θ; then the heat transfer across the layer by thermal conduction is

q =
κ b Θ

ε

where ε is the thickness of the sub-layer. The friction drag across the sub-layer
is the wall shear stress

τ =
μ a u

ε

where a u is the velocity at the edge of the layer.
Across the region from the free stream to the edge of the sub-layer, the

Reynolds relation holds, but with boundary values b Θ and a u respectively
instead of zero. Hence

q

τ
=

(1 − b) cp Θ
(1 − a)u

=
κ b Θ
μ a u

Solving,
b

a
=

P
[1 + a(P − 1)]

where P = c μ/κ is the Prandtl number. Hence

q

τ
=

cp Θ
u

· 1
[1 + a (P − 1)]

(7.19)

Experiments show a ∼ 0.4 − 0.6.
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If the boundary of the viscous sub-layer is set at y v∗/ν = 5, the value of
a = 5u f/2, and hence the Stanton number

S =
f/2

1 + 5
√

f/2 (P − 1)
(7.20)

If P = 1 the relation reverts to the Reynolds form. For gases P ∼ 0.65 − 1 and
the correction can be neglected. For liquids P � 1 most of the temperature
drop is across the sub-layer and the Taylor–Prandtl correction significantly
reduces the heat flow.

If a = 0 the flow is entirely turbulent, and we again recover the Reynolds
expression, whereas if a = b the flow is entirely laminar and

q

τ
=

κΘ
μ u

7.2.2.3 Von Karman’s correction

Von Karman (1939) modified the Taylor–Prandtl form to use the more com-
plete description of the profile near the wall including the buffer layer, equa-
tion (5.19). The analysis is broadly similar to that for the earlier correction.
By including the turbulent viscosity and thermal conduction, the basic fluid
equations may be written as

τ = ρ (ν + νturb)
du

dy

h = −ρcp (χ + χturb)
dT

dy

(7.21)

Reynolds’ analogy leads to equality between the turbulent thermal diffusivity
χturb with the turbulent kinematic viscosity νturb. Following Section 5.6.1, the
shear stress and heat flux are assumed to be constant through the boundary.

Defining a set of scaled variables,

y+ =
y v∗

ν
u+ =

u

v∗
T+ =

ρ cp v∗T
h

(7.22)

hence

(
1 +

νturb

ν

) du+

dy+
= 1(

1
P +

νturb

ν

)
dT+

dy+
= −1

(7.23)
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In the viscous sub-layer νturb = 0 and

T+ = T+
0 − Py+

where TW+ is the normalised wall temperature. In the buffer layer we include
diffusion due to both kinematic and turbulence for both the viscosity and
thermal conduction. To calculate the turbulent diffusivity, νturb in the buffer
layer we substitute the velocity profile from equation (5.19) into the dynamic
equation (7.23) to get

νturb

ν
=

y+

5
− 1 (7.24)

Substituting and integrating from the edge of the viscous sub-layer,

T+ = TW+ − 5P − 5 ln
{

y+P
5

− (P − 1)
}

(7.25)

In the turbulent core, the turbulent viscosity dominates and is given by

νturb

ν
=

y+

2.5

Substituting and integrating from the edge of the buffer zone into the core,

T+ = TW+ − 5P − 5 ln
{

y+P
5

− (P − 1)
}
− 2.5 ln

(
y+

30

)
(7.26)

To proceed we need to calculate the temperature in the free stream. In the
turbulent core

dT+

dy+
= −du+

dy+

in accordance with the Reynolds analogy. It is reasonable to expect that the
position where the value of the temperature equals its mean T+

m across the duct
coincides with that of the velocity u+

m, so that

T+
B − T+

m = u+
m − u+

B

a result consistent with Reynolds’ analogy (7.17) applied to the core. The
subscript B represents the point at the junction of buffer zone and the core.
Hence

TW+ − T+
m = 5P + 5 ln (1 + 5P) + u+

m − 5 ln 6−5 (7.27)

Since the friction factor f = 2/u+
m

2 and the Stanton number
S = 1/u+

m (T+
0 − T+

m), we obtain von Karman’s correction

S =
f/2

1 + 5
√

f/2
{P − 1 + ln

[
1 + 5

6 (P − 1)
]} (7.28)
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7.2.2.4 Martinelli’s correction

Von Karman’s correction in the previous section makes a notable improve-
ment over the simple Taylor–Prandtl form by including the buffer region in
which both kinematic and turbulent diffusion are active. However, his analysis
assumed that in the fluid core, diffusion is entirely due to turbulence, and the
effective Prandtl number in this region is 1. In practice this is satisfactory for
gases and liquids where P � 1.

Martinelli (1947) allowed the Prandtl number in the core to include the
kinematic thermal diffusivity as well as the turbulent. With a uniform heat
flux at the wall, the fluid heats along the duct. In the steady state, a constant
temperature profile is established across the duct separable in (x, y), namely
C × T (y) (Kays, 1966, pp 104–109). Thus

d

dy

[
q(y)

dA

dy

]
= −ρcp Cu(y)T (y)

dA(y)
dy

where A(y) is the area from axis to the point y. Defining the mean value of the
product (u(y)T (y)) namely (uT )m and integrating across the duct, the wall
heat

q0 = ρ cp C

A0�
0

u(y)T (y)dA
/ (

dA

dy

)
0

=
1

vid
ρ cp RC(uT )m (7.29)

where A0 is the area of the duct and vid = 1 or 2 for planar or cylindrical
systems respectively. TM = (uT )m/um is known as the mixed mean fluid tem-
perature. In the core of the flow both the velocity and temperature are nearly
constant and may be replaced by their mean value. Hence including variations
in both the momentum (shear stress) and heat flux across a duct of width 2h
using equation (5.22)

τ = ρ (ν + νturb)
du

dy
=

(
1 − y

R

)
τ0

q = −ρ cp (χ + χturb)
dT

dy
=

(
1 − y

R

)
q0

(7.30)

where τ0 and q0 are the wall shear stress and heat flux respectively. The flow
profile near the wall is given by equation (5.19) including the buffer layer.

In the viscous and buffer layers, y 	 R and the term (1 − y/R) may be
approximated to 1. The temperature across these layers are therefore given by
equations (7.24) and (7.25). The temperature at the boundary between the
buffer layer and the core

T+
W − T+

B = 5P + 5 ln {5P + 1}
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Since Reynolds’ relation holds νturb = χturb as before and we may use the
first of equations (7.30) to calculate the turbulent viscosity in the core

1 +
νturb

ν
= 0.4

(
1 − y+

R+

)
y+ (7.31)

In the core the kinematic viscosity is small compared with the turbulent. Sub-
stituting for turbulent thermal diffusivity in the second equation (7.30)

dT+

dy+
= −

(
1 − y+/R+

)[
1/P + y+

(
1 − y+/R+

)
/2.5

] (7.32)

To obtain the temperature difference between the edge of the buffer layer and
a point in the core, we note the following integral

� (1 − x)
α + x (1 − x)

dx =
1
2
{ln [α + x (1 − x)] + ln{[z − (1 − 2x)]/[z + (1 − 2x)]}

(7.33)
where z =

√
1 + 4α.

Writing α = 2.5/
(P R+

)
we obtain

T+
B − T+ =1.25 ln

{
α + (1 − y+/R+) (y+/R+)
α +

(
1 − y+

B/R+
) (

y+
B/R+

)
}

+
1.25
z

ln
{

[z − (1 − 2y+/R+)][z + (1 − 2yB+/R+)]
[z + (1 − 2y+/R+)][z − (1 − 2yB+/R+)

} (7.34)

We need to calculate the mixed mean fluid temperature TM across the duct.
For a circular tube of radius R and taking the temperature at the tube centre
TC

β =
T+

W − T+
M

T+
W − T+

C

=

A0�
u+ T+

W − T+

T+
W − T+

C

dA

A0�
u+ dA

(7.35)

which is evaluated numerically. TM = (u T)m/um is known as the mean-mixed
fluid temperature. From equation (7.29) it can be seen that the heat transfer
coefficient and therefore the Nusselt and Stanton numbers depend on (TW −
TM). Values of β for a range of Reynolds’ and Prandtl numbers are given by
McAdams (1973, p.212)

The temperature difference between the wall and the centre of the duct/tube
is given by equations

T+
W − T+

C =5P + 5 ln {5P + 1}
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+ 1.25 ln
{

α

α + 30/h+ (1 − 30/h+)

}
(7.36)

+
1.25
z

ln
{

[z − 1]
[z + 1]

[z + (1 − 60/h+)]
[z − (1 − 60/h+)]

}

where h+ = 1
2 R

√
f/2, α = 5

√
2/f / (P R) and z =

√
1 + 20

√
2/f / (P R)

where the Reynolds’ number is based on the full duct width or diameter.
Since the heat transfer coefficient depends on (TW − TM), the Stanton num-

ber for the flow

S =
1

um+ (T+
W − T+

M )
=

√
f/2

β(T+
W − T+

C )
(7.37)

Using equation (7.36) the heat transfer is obtained.
When P > 1 equation (7.37) is equivalent to von Karman’s correction (equa-

tion 7.28). Martinelli’s correction embraces much of the physics of heat transfer
in well developed turbulent flow (R > 4000) generalising Reynolds’ analogy.
It gives reasonable accuracy for liquids and gases (P > 0.6). It overestimates
heat transfer in liquid metals (P < 0.1) due to molecular thermal conduction
between the eddies (Pturb #1), and to the approximation used to integrate
equation (7.30). At large Prandtl numbers (P > 50) errors arise due to the
approximate characterisation of the buffer layer (equation 5.19) as thermal
conduction is dominated by this region. For a full discussion of these effects
see Kays (1966, pp164–173).

As it is not a simple expression, Martinelli’s approximation has found little
application in engineering design calculations, correlations based on experiment
data and more recently computer simulation being preferred.

7.2.2.5 Colburn’s modification

The Taylor-Prandtl and von Karman results for heat transfer at surfaces have
been based on the ‘law of the wall’ velocity distribution (§5.5). However tur-
bulent flow in a smooth pipe can also be described by a power law (§5.I.i). If
the power law index n = 8, the Fanning friction factor

f ≈ 0.46 (uD/ν)−1/5

Collating the results of several experiments Colburn (1933) deduced that the
Stanton number

S P 2/3 ≈ 0.023R−1/5 ≈ f/2 (7.38)

provided that the quantities are measured at the film temperature. Good
agreement with experiment is found for the limited range of Prandtl numbers
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0.5 < P < 50 and Reynolds’ numbers 5000 < (R) < 200000. Subsequently a
number of other power law correlations have been proposed (McAdams, 1973,
p.219), Incropera et al. (2007, p.532) mainly based around the Taylor-Prandtl
correction. That due to Gnielinski (1976) is probably the most accurate and
covers the transition region from laminar to turbulent flow., 0.6 < P < 2000
and 3000 < R < 5 × 105.

7.3 Heat Transfer in a Laminar Boundary Layer

We have earlier examined in some detail the formation and structure of bound-
ary layers along the surface of a body in a flowing fluid (Chapter 6). If the
temperatures of the surface and of the fluid are different, we may expect
that a growing thermal boundary layer will form as the fluid is progressively
cooled along the surface. The heat from the undisturbed free stream diffuses
through the boundary layer to the surface in exactly the same way as the
momentum.

The close similarity between the formation of the viscous and thermal bound-
ary layer equations is clearly seen by comparing their respective governing
equations

u
∂u

∂x
+ v

∂u

∂y
− ν

∂2u

∂y2
= 0

u
∂θ

∂x
+ v

∂θ

∂y
− χ

∂2θ

∂y2
= 0

∂u

∂x
+

∂v

∂y
= 0

(7.39)

where θ is the temperature difference between the fluid and the surface. Both
sets of equations have identical boundary conditions u = θ = 0 at the surface
y = 0 and u = U , and θ = Θ, the free stream values outside the boundary layer,
which are identical if ν = χ or P = 1. This is a further example of the Reynolds
analogy and shows that it also holds for laminar flows. More generally we may
expect that if P > 1 and χ < ν, the thermal conduction is weaker and the
temperature gradients are larger nearer the wall. The thermal boundary layer
is therefore thinner than the viscous one. On the other hand if P < 1, the
thermal boundary layer is thicker.

In the particular case where the Prandtl number P = 1, an exact solution
for the thermal boundary layer over a flat plate is easily obtained from
the corresponding result for the velocity generated by Blasius’s solution,
Section 6.3.
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7.3.1 Boundary Integral Method

More generally we may apply the boundary integral method in Section 6.4 to
the case of an arbitrary Prandtl number. We therefore extend our earlier cal-
culation of the boundary layer on a flat plate to consider the thermal boundary
layer. We note first an important consequence of the similarity of the viscous
and thermal equations (7.28) in this particular case: that is, the structure of
the resultant complete boundary layer will be similar, differing only in scale,
along the plate. Consequently the ratio of the thickness of the thermal bound-
ary layer δt to the viscous δ, namely ξ = δt/δ, is constant and depends only on
the Prandtl number.

Following the method as applied to momentum transport of calculating the
change in the momentum flow within a small layer of height h and width δx,
the heat transported through the plane at x per unit time equals

h�
0

ρ cp uTdy

where T is the temperature of the fluid. The heat conducted from the element
of the wall per unit time is

−κ
∂T

∂y

∣∣∣
0
δx

Proceeding as before, we equate the overall change in the heat transported
through the walls of the element to the heat flow to the surface

κ
dT

dy

∣∣∣
0
δx =

h�
0

ρ cp uT dy
∣∣∣
x
−

h�
0

ρ cp uT dy
∣∣∣
x+δx

(7.40)

Introducing the temperature difference between the wall and the fluid, θ =
T − TW , making use of the mass conservation relation and assuming ρ and cp

are constant, we obtain the local heat flux to the wall

hx = κ
dθ

dy

∣∣∣
0

=
d
dx

δt�
0

ρ cp (Θ − θ)u dy (7.41)

where Θ is the temperature difference between the wall and the free stream.
The boundary conditions are similar to the viscous case, namely

θ = 0 at y = 0 and θ = Θ at y = δ
∂θ

∂y
= 0 at y = δ and

∂2θ

∂y2
= 0 at y = 0
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The last condition arises because the fluid adjacent to the wall is stationary
and therefore not heated.

For the solution we introduce a suitable approximation for the tempera-
ture distribution. As before, a cubic in y is appropriate satisfying the above
boundary conditions

θ(y) = Θ

[
3
2

(
y

δt

)
− 1

2

(
y

δt

)3
]

(7.42)

which gives

Θ U
d
dx

δt�
0

{
1 − 3

2

(
y

δt

)
+

1
2

(
y

δt

)3
} { 3

2

(y

δ

)
− 1

2

(y

δ

)3
if

(y

δ

)
< 1

1 otherwise

}

dy =
3
2

χΘ
δt

(7.43)

Since the integral is clearly a function of the ratio of the boundary layer
thicknesses, ξ = δt/δ, we obtain

δt f
(

δ

δt

)
dδt

dx
=

3
2

χ

U

39
280

δ
dδ

dx
=

3
2

ν

U
(7.44)

where

f (ξ) =

{
3
20 ξ − 3

280 ξ3 if ξ < 1
3
8 − 3

8 ξ−1 + 3
20 ξ−2 − 3

280 ξ−4 otherwise
(7.45)

If, as we argued earlier, the ratio of the viscous and thermal boundary thick-
nesses, ξ, is constant along the surface, we may solve these equations subject
to the condition that the boundary layer thickness is zero at the start of the
plate, δ = δt = 0 at x = 0:

δ =

√
280
13

√
ν x

U
and δt =

√
3 f (ξ)

χ x

U
(7.46)

from which it is clear that the condition f (ξ) = const is valid. The value of ξ
is found from the ratio of the two thicknesses (Figure 7.1)

ξ2f (ξ) =
39
280

P−1 (7.47)

The heat transfer coefficient varies along the plate as the boundary layer
thickens. To account for this we introduce a local heat transfer coefficient due
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Figure 7.1: Plot of the ratio of the thickness of the laminar thermal boundary layer to
that of the viscous ξ as a function of the Prandtl number n. Also shown are the
approximations for large and small Prandtl number.

to the surface heat flux

hx = −κ
∂T

∂y

∣∣∣
0

=
3
2

κ

δt
= 0.323

κ

ξ

√
U

νx

The local Nusselt number is

Nx = 0.323 ξ−1
√
Rx

The mean Nusselt number is obtained by integrating along the length L of
the plate over both surfaces

N = 0.646ξ−1
√
RL (7.48)

Two limiting cases are readily found:

1. Thermal conduction weak: ξ < 1, f (ξ) ≈ 3/20 ξ and δ/δt ≈ 1.026 3
√P.

For the range 0.6 < P < 10, the mean Nusselt number, N ≈ 0.664
3
√P 2

√RL, forms the basis for the Colburn correction.

2. Thermal conduction strong: ξ � 1, f (ξ) ≈ 3/8 and δ/δt ≈ 1.64
√P.

The mean Nusselt number N ≈ 1.128 2
√P 2

√RL.
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7.4 Heat Transfer in a Turbulent Boundary Layer
on a Smooth Flat Plate

As we have seen, the velocity distribution across the turbulent boundary layer
is in general described by either the law of the wall, equation (5.17), or the
more complete form incorporating the buffer layer, equation (5.19). Hence for a
smooth plate we may apply von Karman’s correction of the Reynolds analogy
to the friction factor given by equation (6.42), and enable the local heat transfer
coefficient to be calculated. However, it is clear that the resulting expression
involves an implicit form for the friction factor, and is not therefore convenient
for calculation.

Fortunately a simpler approach is possible. As we have seen, Blasius’s power
law distribution, Section 6.42, gives a good approximation over the Reynolds
number range 5 × 105 < R < 107 where the velocity distribution is

u = U (y/δ)1/7

with thickness
δ = 0.376 x (U x/ν)−1/5

Applying the Reynolds analogy it follows that the temperature distribution
will have the same form as the velocity, i.e.

θ = Θ (y/δt)
1/7

where θ is the temperature difference between the fluid and the wall. If the
Prandtl number P = 1, the thermal boundary layer thickness δt is equal to
that of the velocity δ. Clearly equation (7.30) is valid in this case also, but
with turbulent velocity distribution. It may be simply integrated to give the
local heat flux to the wall

hx = 0.0292 ρ cp U
( ν

Ux

)1/5
(7.49)

a result in accordance with the Reynolds analogy.
However, this analysis has assumed that the thickness of the thermal bound-

ary layer is the same as that of the velocity. As we have argued, this is not
the case unless the Prandtl number P = 1. The correction for P 
= 1 is equiva-
lent to the Prandtl–Taylor correction and related forms discussed earlier. For
this problem, the simple empirical form due to Colburn, which introduces a
factor of 3

√P, is convenient, and is valid over the range of Prandtl numbers
0.6 < P < 50. The local and complete Nusselt numbers are consequently

Nx = 0.0292P1/3Rx
4/5

Nm = 0.0365P1/3Rm
4/5

(7.50)
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More generally it may be assumed that the correction to the boundary layer
thickness is a power n of the Prandtl number

δt

δ
=

1
Pn

In this case the Nusselt numbers become

Nx = 0.0292P(1−8n/7) Rx
4/5

Nm = 0.0365P(1−8n/7) Rm
4/5

(7.51)

Colburn’s approximation varying as P1/3 corresponds to n = 0.583. However,
limited experimental data suggests that a better approximation is n ≈ 0.5 and
that the dependence of the Nusselt number on the Prandtl number is as P 0.43

Bennett and Myers, 1982, p.374. However, since the range of allowed values
of the Prandtl number is relatively small, the differences between these values
are consequently also not excessive.

It must be remembered that this equation for the overall Nusselt number is
based on the assumption that the boundary layer is turbulent at the start of
the plate. In practice this is unlikely to be the case until an initial section of
flow, which is laminar, has been established. This extends until the Reynolds
number along the plate Rx ≈ 500 000.

7.5 Free or Natural Convection

In free convection the movement of the fluid is due to buoyancy induced by
thermal expansion as it is heated. As we saw in Section 1.5.3 the fluid in a
gravitational field will be unstable if the temperature gradient exceeds the
adiabatic lapse rate. In fact the onset of substantive fluid motion may be
inhibited by viscosity. The resultant flow sets up currents in the fluid tending
to restore equilibrium, and may be either laminar or turbulent depending on
the physical conditions. The moving fluid transports heat at a rate determined
by the flow velocity generated, which is itself dependent on the temperature
gradient.

In a typical situation heat is applied to a hot plate vertically below a cold
surface. The hot fluid at the bottom expands, becomes buoyant and rises to
the top where it transfers its heat to the cold surface. On cooling its density
increases and the fluid sinks forming a cycle of heating and cooling. A sta-
ble rotational system may be established if the temperature gradient is not
too large.
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As before we may use dimensional analysis to identify the characteristic
parameters of this behaviour. The heat transfer is described by the Nusselt
number

N =
HL

κ
(7.52)

where H is the heat transfer coefficient and L the length scale as before.
The rate at which heat is transferred by free convection depends the

buoyancy terms due to thermal expansion β and the gravitational acceleration
g and the temperature difference Θ. Clearly the heat transfer rate will also
depend on the length scale L, the viscosity ν and the thermal diffusivity
(or conductivity) χ. From dimensional analysis it follows that the Nusselt
number is a function of

G = β Θ g L3/ν2︸ ︷︷ ︸
Grashof no.

P = ν/χ︸ ︷︷ ︸
Prandtl no.

(7.53)

The physical significance of the Grashof number lies in determining the rel-
ative importance of viscous, inertia and buoyancy forces, and plays a similar
role to the Reynolds number in forced convection flows. Thus the relative scale
of the forces per unit mass due to inertia, viscosity and buoyancy are∣∣(v · ∇)v

∣∣ ∼ u2/L
∣∣ν ∇2v

∣∣ ∼ ν u/L2
∣∣g Δρ/ρ

∣∣ ∼ β g Θ

respectively.
If the inertia term is comparable with the buoyancy the scaled velocity

u ∼ √
β g LΘ, and the viscous term is small if

u2/L

νu/L2
∼

√
β g L3 Θ/ν2 ∼ √G � 1

On the other hand if the viscosity dominates the scaled velocity
u ∼ β g L2 Θ/ν, and the inertia terms are small if

u2/L

νu/L2
∼ β g L3 Θ/ν2 ∼ G 	 1

Thus if G � 1, viscous force is negligible and inertia balances buoyancy; on
the other hand if G 	 1 the viscous force balances the buoyancy. In particular
the ratio of the rates of heat transfer due convection and conduction are

Convection
Conduction ∼ G1/2 P G � 1

Convection
Conduction ∼ G P G 	 1
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An additional dimensionless product

GP = Ra = β Θ g L3/ν χ (7.54)

is known as the Rayleigh number. If G is sufficiently small that the viscous force
balances the buoyancy and P is not too small, the heat transfer is expected to
depend on Ra alone. Similarly when G is large and the convection is turbulent,
the Nusselt number is expected to depend on G P2.

7.5.1 Boussinesq Approximation

As we have seen in Section 4.6 stratified fluid may be treated by the Boussinesq
approximation to take account of the buoyancy terms, whilst remaining essen-
tially incompressible. Free convection may be treated in like manner, thereby
reducing the overall complexity of the problem. In this case the density change
giving rise to the buoyancy is due to thermal expansion.

Thus if the temperature is written as T = T0 + T ′ where T0 is the back-
ground mean temperature and T ′ the temperature increment, the density
increment is

ρ′ = −ρ0 β T ′ (7.55)

where ρ0 is the mean density, which is treated as a constant. The pressure
p = p0 + p′ where p0 is the background pressure corresponding to the thermal
state (ρ0, T0) at the position r in mechanical equilibrium with the gravitational
field g

p0 = ρ0 g · r + const

Neglecting the second-order terms in the increments, the pressure term in
the Navier–Stokes equation (3.13) takes the form

∇p

ρ
≈ g +

∇p′

ρ0
+ β T ′ g

the last term being the buoyancy. Substituting in equation (3.13), the
Navier–Stokes equation becomes

∂v
∂t

+ (v · ∇)v = −∇p′

ρ0
− β T ′ g + ν ∇2v (7.56)

The transport of heat is governed by the entropy equation (3.12). Since the flow
is strongly subsonic, the pressure variation due to density changes is extremely
small. The appropriate specific heat is that at constant pressure. Therefore

Tds ≈ ∂s

∂T

∣∣∣
p
dT = cp dT
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In addition the viscous work term is of second order and therefore neglected.
Hence the temperature variation is given by

∂T

∂t
+ (v · ∇)T ≈ χ∇2T (7.57)

Since the flow in the continuity equation is taken to be steady, we finally
obtain the Boussinesq approximation

(v · ∇)v = −1
ρ

p′ − β T ′ g + ν ∇2v

(v · ∇)T ′ = χ∇2T ′

∇ · v = 0

(7.58)

where we have dropped the subscript 0.
Since the Boussinesq approximation is widely used for problems involving

buoyancy in both geophysics and meteorology, it is important to clearly identify
the approximations that have been made in this derivation:2

1. Density changes from the mean value are small due to temperature dif-
ferences from the volume expansivity, β and scale temperature difference
Θ, namely β Θ 	 1.

2. Volume changes are small due to compression associated with the bulk
compressibility, α and the pressure change due to change in height,
namely α L g 	 1

3. Volume change is small due to heating by energy released by the change
in gravitational potential, namely β L g/cp 	 1.

4. Temperature difference Θ is small compared with the absolute tempera-
ture T in the form β L g T/cp Θ � 1

Equations (7.47) are easily put into dimensionless form by introducing the
dimensionless variables

ṽ = vL/ν p̃′ = p′L2/ρν θ̃′ = θ′/Θ

to give the forms

(ṽ · ∇̃) ṽ = −∇̃p̃′ − G θ̃′ĝ + ∇̃2ṽ

(ṽ · ∇̃) θ̃′ =
1
P ∇̃2θ̃′

∇̃ · ṽ = 0

(7.59)

where ∇̃ is the gradient operator related to the scaled distance r/L and ĝ the
unit vector in the direction of gravity. The similarity of flows governed by these
equations referred to earlier is clearly seen. If the Boussinesq approximation is
not valid additional dimensionless terms play a role.

2These approximations are discussed in detail by Tritton (1988).
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7.5.2 Free Convection from a Vertical Plate

As noted earlier, analytic solutions to the Boussinesq equations for free con-
vection are few. One of the most useful is provided by the application of the
boundary layer methods to free convection of the fluid rising from a heated
plate mounted vertically. Provided the Grashof number is not too large the
flow is laminar and a progressively widening layer of heated fluid forms moving
up and along the plate. Experiments have shown that the onset of turbulence
occurs at a Grashof number G ≈ 4 × 108. The flow is similar to that in the nor-
mal boundary layer, limited by viscosity, except that the flow is self-generated
rather than driven. The thicknesses of the viscous and thermal structures are
therefore equal in this case.

We will address this problem in two ways directly equivalent to those used
in Chapter 6, namely the direct approach using similarity and the momentum
integral method.

7.5.2.1 Similarity analysis

Applying the approximations made in Section 6.2 to the Boussinesq equa-
tions (7.47) we obtain

vx
∂vx

∂x
+ vy

∂vx

∂y
= ν

∂2vx

∂y2
+ β g θ

vx
∂θ

∂x
+ vy

∂θ

∂y
= χ

∂2θ

∂y2

∂vx

∂x
+

∂vy

∂y
= 0

(7.60)

where x and y are co-ordinates taken parallel and normal to the plate respec-
tively with the origin at the lower end. θ is the temperature difference between
the local fluid and the free stream.

We define the similarity variable

ξ = Cy/x1/4 C =
[
β g Θ/4 ν2

]1/4 (7.61)

where Θ is the temperature difference between the wall and the free stream.
Introducing the functions f (ξ) and g(ξ), we may write

vx = 4 ν C
√

x ḟ (ξ) vy = ν C
[

ḟ (ξ) − 3 f (ξ)
]
/
√

x θ = Θ g(ξ) (7.62)

which yield on substitution in equations (7.60)
...
f + 3 f f̈ − 2 ḟ 2 + g = 0 and g̈ + 3Pf ġ = 0 (7.63)
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The boundary conditions are f (0) = ḟ (0) = 0, and g(0) = 1, ḟ (∞) = g(∞) = 0.
It follows from (7.50) that the thickness of the boundary layer scales as δ ∼√

x/C. Since the Prandtl approximation is only valid if the boundary layer is
thin, δ 	 L, the length of the plate, it follows that this condition requires that
G1/4 � 1.

Equations (7.52) may be integrated by a standard numerical method. How-
ever, the two point boundary conditions introduce complications, which may
(for example) be solved by a shooting method to obtain the eigenvalues, which
depend on the Prandtl number P. The local Nusselt number is obtained from
the thermal conduction heat transfer rate at the surface of the plate

N = − 1
κΘ

L�
0

κ
∂θ

∂y

∣∣∣∣
0

dx = −4
3

C L3/4 ḟ (0,P) = F (P)G1/4 (7.64)

7.5.2.2 Boundary layer integral approximation

The preceding calculation is accurate provided the Grashof number is large
and the flow laminar. However, it is a cumbersome process to calculate the
numerical values for arbitrary values of the Prandtl number. Fortunately the
boundary layer integral method provides a good approximation to the above
method and yields an analytic solution in a closed form. The method is based
on von Karman’s momentum integral method for the viscous boundary layer,
Section 6.4. It therefore follows a simple physical picture in which conser-
vation of momentum and conservation of energy are directly applied across
the layer.

The velocity is zero both at the wall and external to the layer (i.e. the free
stream); the viscous force at the edge is also zero u(0) = u(δ) = du/dy|δ = 0.
The temperature difference between the fluid in the boundary layer and exter-
nal to the layer θ is Θ at the wall, θ(0) = Θ. At the boundary layer edge, the
temperature difference and the heat flow are both zero, θ(δ) = dθ/dy|δ = 0.
There is a further boundary condition which follows from the first equation of
the set (7.49), namely ∂2u/∂y2 = −β g Θ. Since the fluid flow is directly caused
by the temperature difference, the thickness of the thermal and velocity layers
must be equal, δ.

The momentum equation is directly obtained from equation (6.25) with the
pressure gradient term replaced by the buoyancy and noting that the free
stream velocity is zero

d
dx

δ�
0

ρ u(y)2 dy = β g

δ�
0

θ dy − ν
du

dy

∣∣∣∣
0

(7.65)
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where δ is the thickness of the boundary layer and the integrated heat flow

d
dx

δ�
0

u θ dy = −χ
dθ

dy

∣∣∣∣
0

(7.66)

The simplest approximate profiles for the temperature and velocity across
the layer are simple polynomials satisfying the boundary conditions

θ = Θ
(
1 − y

δ

)2
and u = U

y

δ

(
1 − y

δ

)2
(7.67)

where U(x) is an unknown scaling velocity to be evaluated. The maximum
velocity is easily shown to be 4U/27 at y = δ/3.

The integrals across the layer are easily evaluated to give

1
105

d
dx

(
U2 θ

)
=

1
3

β g Θ δ − ν
U

δ
and

1
30

Θ
d
dx

(U δ) = 2χ
Θ
δ

(7.68)

To solve these equations we try power law variations along the plate

U = C1x
m and δ = C2x

n (7.69)

which when evaluated yield the following results

m =
1
2

and C1 = 5.17 ν

(
20
21

+
ν

χ

)−1/2 (
β g Θ
ν2

)1/2

n =
1
4

and C2 = 3.93
(

20
21

+
ν

χ

)1/4 (
β g Θ
ν2

)−1/4 (
ν

χ

)−1/2
(7.70)

Substituting these values into equations (7.56) and introducing the Prandtl
and Grashof numbers, the maximum velocity at distance x is

xumax(x)
ν

= 0.766 (0.952 + P)−1/2 Gx
1/2 (7.71)

and the layer thickness

δ

x
= 3.93P−1/2 (0.952 + P)1/4 Gx

−1/4 (7.72)

where Gx is the Grashof number based on the length x.
The local Nusselt number is

Nx =
x

κΘ

(
−κ

∂θ

∂y

∣∣∣∣
0

)
= 2

x

δ
= 0.508P1/2 (0.952 + P)−1/4 Gx

1/4 (7.73)
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Assuming the temperature is constant over the plate, we may integrate along
the plate to obtain the overall Nusselt number

NL = 0.677P1/2 (0.952 + P)−1/4 G1/4 (7.74)

Figure (7.2) shows a comparison of the overall Nusselt number calculated
from the exact integration of the Boussinesq approximation quoted by
Schlichting (1968) with values from the boundary integral approximation
equation (7.63). The agreement is within 10% over the complete range of the
Prandtl number, which is satisfatory for most purposes.

0.001 0.01 0.1 1 10 100 1000
P

0.1

0.2

0.3

0.4

0.5

0.6

N

Boundary integral
Exact solution

Figure 7.2: Comparison of the values of the overall Nusselt number for free convection
from a vertical plate calculated from equation (7.63) and by integration of the exact
equations (7.52) from Schlichting (1968) as a function of the Prandtl number P.

7.5.3 Free Convection from a Heated Horizontal Plate

It may be expected that there is a marked difference between the cases where
the hot surface is uppermost or lower. If the hot surface faces upwards the
convection currents develop freely above the surface. On the other hand if
the hot surface faces downwards convection is inhibited. In fact the Nus-
selt number for plates facing upwards is about twice that for those facing
down. Experimentally it is found that if the Rayleigh number is not too high
(105 < Ra < 2 × 107) the Nusselt number is well approximated by

N ≈ CRa
1/4 (7.75)

where C ≈ 0.54 for plates facing upwards, and C ≈ 0.27 for those facing down.3

3The scale length of the plate is taken as the ratio of the plate surface to the perimeter.
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At larger Rayleigh numbers (2 × 107 < Ra < 3 × 1010) the flow above the
top heated plate becomes turbulent and the Nusselt number becomes

N ≈ C ′Ra
1/3 (7.76)

where C ′ ≈ 0.14. For downward-facing plates equation (7.64) is still valid.
The behaviour exhibited in the change of power from 1/4 to 1/3 as the

Rayleigh number increases is characteristic of free convection. The latter
behaviour is relatively easy to understand in that once the flow becomes
strongly turbulent, it must be expected that the experimentally observable,
the heat transfer coefficient, is no longer dependent on the characteristic
length L. This is easily shown to require that N ∼ G1/3.

7.5.4 Free Convection between Parallel Horizontal Plates

If we consider the behaviour of fluid between two horizontal plates whose
temperatures T1 and T2 differ, the lower plate being hotter than the upper
(T1 > T2), the system is in equilibrium with no fluid motion provided the tem-
perature difference T1 − T2 between the plates is small. This equilibrium is
stable with the viscosity balancing the buoyancy induced by the expansion of
the fluid due to the heated lower plate T1 > T2. The stability depends on the
Rayleigh number calculated from the temperature difference (T1 − T2) and the
plate separation d; that is, the fluid is stable if

Ra < Ra crit ≈ 1708 (7.77)

see Figure 7.4 which shows the variation of the Nusselt number as convection
is initiated, following the onset of the instability. In this limit, when equilib-
rium is disturbed, regions of rising and falling fluid occur (Figure 7.3). Fluid
heated by the lower plate rises up to the top plate where it is cooled and falls
again. A continuous cycle of circular flow is established with horizontal motion
at the top and bottom. For Rayleigh numbers not too much above critical
(Ra � 5 × 103) the cells are well established and take the form of long rolls of
rising and falling fluid as sketched in Figure 7.3.

T2

T1

Figure 7.3: Sketch of the convection currents established at Rayleigh numbers just greater
than critical Ra > Ra crit. The flow forms in Bénard cells–long cylindrical rolls.
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Figure 7.4: Sketch of the variation of the Nusselt number near the onset of free convection
between parallel plates.

As the Rayleigh number increases (Ra � 2 × 104) the cells become less well-
ordered three-dimensional structures whilst still remaining steady. Further
increases of Ra lead to the development of periodic variations, which give way
to less regular variations. Convection cells can still be observed, although the
flow within is turbulent, at Rayleigh numbers well above critical (Ra � 106)
(Figure 7.5). Tritton (1988) contains a full account of the formation and devel-
opment of Bénard cells illustrated with excellent photographs, and should be
consulted for further information.

At Rayleigh numbers well above threshold (Ra � 105) only fluid passing
close to the lower boundary is heated. The resulting hot rising regions are
quite narrow, and so are the cold falling ones (figure 7.5). Much of the fluid
circulates isothermally as turbulence mixes it. Turbulence is generated within
the narrow hot and cold boundary regions.

T2

T1

Figure 7.5: Sketch of the convection currents established at Rayleigh numbers much
greater than critical Ra ∼ 106. The flow forms in turbulent cells of rising and falling fluid.

At still larger Rayleigh numbers (Ra � 106) the cellular structure disappears
and we have the region known as turbulent convection. The temperature gra-
dient (averaged in time) is large at the boundaries, but the fluid is nearly
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isothermal at the centre. In the centre the fluid efficiently transports heat, but
the boundaries constrain the eddy motion, and large temperature gradients
are necessary to support the heat flux by conduction. In this regime each plate
acts independently as a heated plate, the scaling changes to the 1/3 power and

N ≈ 0.069Ra
1/3P 0.074 (7.78)

has been proposed for the range 3 × 105 < Ra < 7 × 109.
If the Rayleigh number is less than critical or the hot plate is the top surface,

heat transfer is by thermal conduction alone and N = 1.
An important practical situation arises from the scaling of the critical

Rayleigh number. Given a fixed separation of the surfaces and a fixed
temperature difference, the heat flow between the surfaces can be minimised
by reducing the plate separation. Indeed if the spacing is limited by inserting
a series of intermediate plates, the separation of each gap and the temperature
difference are both diminished, reducing the Rayleigh number. If this is
reduced below the critical value, heat transfer is due to conduction alone and
thereby minimised by eliminating convection. This simple technique is the
basis of insulating fibrous and porous material as well as metal foil insulation.

7.5.4.1 Rayleigh–Bénard instability

The instability between parallel horizontal plates of an incompressible fluid in a
temperature gradient can be investigated within the Boussinesq approximation
by considering small sinusoidal perturbations in the (x, y) directions with tem-
poral variation exp(−ı ω t) where ω is complex, so that �(ω) represents growth
or decay of the wave. Just below the threshold of the instability, the fluid is at
rest and therefore ω = 0. Thus as we approach and finally achieve the condition
of marginal stability at threshold the fluid is still just stationary. Under the
condition of marginal stability, a stationary pattern of Bénard cells is estab-
lished. At the onset of the instability we may therefore assume that the flow
is stationary and ω = 0, which greatly simplifies the analysis. This condition,
known as the principle of exchange of stabilities, can be formally justified from
the approximations and the boundary conditions (see Chandrasekhar, 1981).

The boundary conditions on the flow are that, at the solid surface, the per-
turbations associated with the instability in temperature and normal velocity
are zero. In addition since the flow has a no-slip condition at the walls, it fol-
lows from the continuity condition that ∂vz/∂z = 0 at the walls, where z is
taken across the duct.

The initial conditions across the duct are that the velocity is zero, and the
temperature varies linearly as −Az. The perturbation is described by the per-
turbation terms of velocity v′, pressure p′ and temperature T ′. Substituting
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into the Boussinesq equations (7.47) and neglecting second-order terms as
usual, we obtain

ν ∇2v′ =
(∇p′

ρ

)
+ β g T ′

χ∇2T ′ = −Av′z ∇ · v′ = 0
(7.79)

Making use of the second equation, the boundary conditions on the velocity
component v′z can be reduced to ones on higher order derivatives of T ′.

We eliminate the term in p′ from the first equation by making use of the
vector operation ∇∧∇∧ ≡ ∇∇ · −∇2 to obtain

ν ∇4v′ = −β

(
∇2T ′ − ∂2T ′

∂z2

)
g (7.80)

or for the z component

∇4vz =
βg

ν

(
∂2T ′

∂x2
+

∂2T ′

∂y2

)
(7.81)

Assuming the perturbation has a sinusoidal variation in (x, y),

T ′(x, y, z) = T (z) exp (ık · r)
v′z(x, y, z) = W(z) exp (ık · r)

where k is a vector in the (x, y) plane. Introducing the dimensionless distance
ζ = z/d with boundaries at ζ = ±1/2, and a = kd, we obtain(

d2

dζ2
− a2

)
T = −Ad2

χ
W

(
d2

dζ2
− a2

)2

W =
a2d2βg

ν
T

(7.82)

Hence eliminating either W or T , we obtain identical differential equations for
T and W (

d2

dζ2
− a2

)3

T + Ra a2 T = 0

(
d2

dζ2
− a2

)3

W + Ra a2 W = 0

(7.83)

whose solutions subject to the boundary conditions determine the value of the
wavenumber corresponding to marginal stability for a given Rayleigh number.
The boundary conditions can be written as

T =
(

d2

dζ2
− a2

)
T =

d
dζ

(
d2

dζ2
− a2

)
T = 0 at ζ = ±1

2
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or

W =
dW
dζ

=
(

d2

dζ2
− k2

)2

W = 0 at ζ = ±1
2

We thus have two ordinary differential equations in the two linked variables
T and W either of which can be used to find the result. Since the equations are
homogeneous of sixth order and we have six boundary conditions, the problem
resolves to the determination of the eigenvalue for a particular value of the
Rayleigh number Ra . To find this we note that the solution may be either even
or odd in ζ and that solutions have the form exp(α ζ). Substituting we find
the six roots of α

α2 = −a2(τ − 1) and α2 = a2[1 + 1/2 τ (1 ± ı
√

3)] (7.84)

where τ = 3
√Ra/a4. Linear combinations of these solutions generate the gen-

eral solutions, the eigenfunction being the one matching the boundary condi-
tions for the given value of Ra , and found by solving a transcendental equation
for a in terms of τ . Hence Ra is obtained. The marginal solution corresponds
to the lowest value of Ra for which a solution exists, i.e. the first possibility
to arise as the instability is approached. This problem is treated in detail by
Chandrasekhar (1981) and by Drazin and Reid (1981).

7.5.5 Free Convection around a Heated Horizontal Cylinder

The convective heat flow from a long cylinder of diameter D is basically similar
to that from a flat plate. Simple power law correlations are available to give
good empirical values for the heat loss, namely

N = C Rn
a (7.85)

N and Ra being calculated using the cylinder diameter D. The best fit con-
stants C and n are found empirically to be given by the values in Table 7.2.

Table 7.2: Parameters for heat flow across a cylinder.

Ra 1.0−10−10−2 10−2−102 102−104 104−107 107−1012

C 0.675 1.02 0.850 0.480 0.125
n 0.058 0.148 0.188 0.250 0.333

Case study 7.I Positive Column of an Arc

A somewhat surprising application of these approximations allows the development of
simple scaling relations to describe the positive column of a high-pressure, horizontal,
unconfined arc (Suits and Poritsky, 1939; Cobine, 1985). An arc is a plasma column
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normally carrying a current of several amps with a low potential drop of a few tens of
volts in gas at about atmospheric pressure. The regions associated with the electrodes
are relatively small. Most of the heat is generated in the column, which may be sev-
eral centimetres long between the electrode regions known as the positive column. A
long positive column is stretched upwards by strong convection currents arising from
the strong heating. The positive column is formed from plasma at a temperature of
about 5000◦C, which is highly conducting and self-sustaining. It approximately forms
a cylinder about 1 centimetre in diameter.

It can be argued that the major heat loss from the positive column is due to strong
convection currents generated in the surrounding gas by the large temperature differ-
ence between it and the plasma core. Typically less than 10% of the heat is estimated
to be lost by direct convection of core gases. A simple model of the convection is
therefore to consider the hot core as equivalent to a solid cylinder. Assuming that the
results of the previous section may be extrapolated to the high temperatures involved,
the convective heat loss is given by equation (7.74) with values of n given in Table 7.2.

The heat loss per unit length of the cylindrical core must balance the heat generated
by ohmic heating, namely Ei where E is the electric field and i the current. Thus we
may write

Ei = π D h = π κΘC Ra
n

= π κΘC

(
D3M2p2g Θ
P μ2 Rg

2 T 3

)n (7.86)

where D is the diameter of the plasma core, Θ is the temperature between the core
and the background gas, M is the molecular mass, Rg the gas constant, and we have
used the ideal gas equation for the density ρ = pM/Rg T and the thermal expansivity
β = 1/T appropriate to an ideal gas. We also make use of the result that the Prandtl
number for a gas is a constant (≈ 0.73 for air).

One further result from the theory of low-temperature plasmas is required: that is,
the drift velocity of the current carriers is proportional to the field. Since the electrons
are the principal current carriers and ve = μeE, where μe is the electron mobility, the
current is therefore

i =
πD2

4
neeμeE (7.87)

The electron density ne in the core depends only on the temperature and can be
treated as constant. Hence

i
E

= const (E i)2/3 n

Eliminating the diameter D we obtain the current/voltage relation for the arc, namely

E = const i (2−3n)/(2+3n) (7.88)

which is the well-known negative resistance characteristic of the arc. For an arc
burning in air at a temperature ∼ 5000◦C, the film temperature is approximately
2500◦C and the kinematic viscosity ν ∼ 5 × 104 m2/s. Thus for an arc diameter
of 10−2, the Grashof number G ∼ 75, and the Prandtl number P ≈ 0.73, it is
estimated that the parameter n ≈ 0.1 for the arc in air, in which case the power
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of the characteristic is −0.74, compared with a value of −0.60 experimentally. The
agreement is satisfactory given the crudeness of the approximations.

The model can also be applied to the variation of diameter D and field E with
external pressure p. The agreement is acceptable. For further details see Suits and
Poritsky (1939) or Cobine (1985).

Confirmation of the importance of convection has been provided by the behaviour
of arcs in a gravity-free environment. As a result the voltage drop and the current are
reduced by the absence of strong cooling.



Chapter 8

Compressible Flow and
Sound Waves

8.1 Introduction

The condition for the fluid to be treated as incompressible is evidently that
the density changes are small, Δρ, i.e.

Δρ

ρ
� 1

However, in supersonic flow, it will be shown that the flow is approximately
adiabatic and therefore

Δp ≈ ∂p

∂ρ

∣∣∣
S

Δp = c2Δρ

where c is the adiabatic sound speed. We note that since ∂p/∂ρ |s is positive in
all materials, the sound speed is a real quantity. In steady flow it follows from
Bernoulli’s equation that the pressure changes satisfy the condition

Δp < ρv2

where v is the flow speed. Hence we obtain the condition for steady incom-
pressible flow

Δρ

ρ
< v2 ∂ρ

∂p

∣∣∣∣
S

=
v2

c2
= M2

Thus in subsonic flow, Mach number M = v/c � 1, the flow may be treated
as incompressible. In fact, as we shall see (Section 12.2), we may treat flows
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with M � 1 by a perturbation of the incompressible solution. Compressibility
effects are therefore predominantly associated with flows, where v � c.

If the flow is non-steady, we may extend the preceding discussion to include
flows which change over a time τ and scale length �. If the time-dependent
terms dominate in Euler’s equation, we have

∂v

∂t
∼ −1

ρ
|∇p | or

v

τ
∼ 1

ρ

Δ p

�
and

Δρ

ρ
∼ � v

τ c2

Hence the condition for incompressibility is τ � �/c, i.e. the time taken for
pressure waves moving at the sound speed to pass through the characteristic
region of the flow. Taking these results together we find that the condition for
incompressible flow to be a good approximation is

Max{v, �/τ} � c (8.1)

We now show that sonic and supersonic flows are generally, although not
entirely, dissipationless. Dissipation is due to two effects:

1. Viscosity. The importance of viscosity within the bulk of the flow is
determined by the Reynolds number R � �c/ν, where we have used
the sound speed instead of the flow velocity since v � c in compressible
flow. Using results from kinetic theory, the kinematic viscosity ν ≈ 1

3cλ
where c is the mean thermal speed of the molecules and λ their mean
free path. Hence

R ∼ c

c

�

λ
∼ �

λ
� 1 (8.2)

since the fluid approximation is only valid for scale lengths � � λ. Thus
viscosity is only important for supersonic flows M > 1 over distances of
the order of the mean free path or less.

2. Thermal conduction. The importance of heat transport in the fluid by
thermal conduction is determined by the ratio of the heat flux due to
thermal conduction κT/� to the flux of kinetic energy ρ v3

κT

� ρ v3
=

1
P R

c2

v2
∼ 1

P R � 1 (8.3)

where κ is the thermal conductivity, cp T ∼ c2 � v2 and the Prandtl
number for compressible fluids, namely gases, P = μcp/κ ∼ 1. Hence
we conclude that thermal conduction is only significant when viscosity
is also.

Consequently sonic and supersonic flows are essentially dissipationless. Vis-
cosity and thermal conduction normally only play a role in some minor sit-
uations, such as the damping of sound waves, apart from the shock layer
(Section 10.5).
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8.2 Propagation of Small Disturbances

Let us consider a uniform fluid flowing with constant velocity v0 and with
specified pressure p0, density ρ0. A small disturbance is introduced at some
point in the fluid, and propagates through the flow. Consider small increments
to the velocity, pressure and density respectively

v = v0 + v′ ρ = ρ0 + ρ′ p = p0 + p′

Since the flow is dissipationless (ideal) Euler’s equation holds and

∂v
∂t

+ (v · ∇)v = −1
ρ
∇p

and is complemented by the equation of continuity

∂ρ

∂t
+ ∇ · (ρv) = 0

We transform to the frame moving with the fluid. Since the disturbance is
a small perturbation, we may linearise the equations to give

∂ρ′

∂t
+ ρ0∇ · v′ = 0 (8.4)

∂v′

∂t
+

1
ρ0

∇p′ = 0 (8.5)

where v′, p′ and ρ′ are the increments of velocity, pressure and density
respectively.

Introducing the adiabatic sound speed since the flow is dissipationless

p′ =
∂p

∂ρ

∣∣∣
S
ρ′

equation (8.4) becomes

∂p′

∂t
+ ρ0

∂p

∂ρ

∣∣∣
S
∇ · v′ = 0 (8.6)

Introducing the velocity potential v′ = ∇φ′ we obtain from equation (8.5)
by integration

p′ = −ρ0
∂φ′

∂t

since p′ = 0 if φ′ = 0, i.e. there is no disturbance. Thus

∂2φ′

∂t2
− c2∇2φ′ = 0 (8.7)
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where the adiabatic sound speed

c =

√
∂p

∂ρ

∣∣∣
S

=
√

γp

ρ

for a polytropic gas. As noted earlier this is always a real quantity, so that
wave solutions exist.

The disturbance propagates through the fluid with speed c relative to the
fluid, and the velocity of the wave is transformed back in the laboratory frame
(see Section 9.1). These wave perturbations are the familiar sound waves.

8.2.1 Plane Waves

Suppose the disturbance is uniform in the plane (yz); then the governing dif-
ferential equation becomes

∂2φ′

∂x2
− c2 ∂2φ′

∂t2
= 0 (8.8)

whose general solution is

φ′ = f(x − ct) + g(x + ct) (8.9)

representing forward (→ +x) and backward (→ −x) propagating waves in the
x direction respectively. Taking the gradient we see that the only non-zero
component is ∂φ′/∂x representing a velocity perturbation in the x direction, i.e.
parallel to the direction of propagation. Sound waves are therefore longitudinal,
as is well known.

In a forward-travelling wave vx = ḟ(x − ct), the velocity perturbation may
be simply expressed in terms of the pressure and density fluctuations

v′ =
p′

ρ0 c
=

c ρ′

ρ0
(8.10)

The ratio z = p′/v′ = ρ0 c is known as the specific acoustic impedance. The
temperature perturbation

T ′ =
∂T

∂p

∣∣∣
s
p′ =

T

cp

∂V

∂T

∣∣∣
p
ρ0 c v′ =

c α T v′

cp
(8.11)

where α is the volumetric coefficient of expansion (1/V ) ∂V/∂T .
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8.2.2 Energy of Sound Waves

The energy density of the fluid is given by the sum of the internal and kinetic
energies per unit volume, namely ρ

(
ε + 1

2v2
)
. Thus retaining only the lowest

order terms in the perturbation, the energy density is

ρ0 ε0 + ρ′
∂ (ρ ε)

∂ρ
+

1
2

ρ′2
∂2 (ρ ε)

∂ρ2
+

1
2

ρ0 v′2

Since a sound wave is adiabatic, all derivatives are taken at constant entropy.
The second term may be rewritten using the first law of thermodynamics,
dε = T ds − pdV , in terms of the enthalpy as

∂ (ρ ε)
∂ρ

∣∣∣
s

= ε +
p

ρ
= h

∂2 (ρ ε)
∂ρ2

∣∣∣
s

=
∂h

∂ρ

∣∣∣
s

=
∂h

∂p

∣∣∣
s

∂p

∂ρ

∣∣∣
s

=
c2

ρ

and hence the energy density becomes

ρ0 ε0 + h0 ρ′ +
1
2

c2 ρ′2

ρ0
+

1
2

ρ0 v′2

The first term is the constant energy density of the ambient fluid, and the
second term, the change of energy as the density changes, averages to zero
as there is no net mass variation in the ambient fluid. Neither of these terms
therefore contribute to the average energy density, which is given by the integral
over the volume. We may therefore regard the remaining terms as the energy
density of the sound wave, namely

E =
1
2
ρ0 v′2 +

1
2

c2 ρ′2

ρ0
(8.12)

In a travelling wave these two terms are equal so that E = ρ0 v′2 = c2 ρ′2/ρ0,
but this result is not true in general. However, for a general set of distur-
bances, this result holds for the averaged energy density. This is an expression
of the general theorem that the mean potential and mean kinetic energies of
an oscillating system are equal, provided the amplitude is small.

To calculate the energy flux q we make use of energy conservation in
the form

∂E

∂t
= ρ0 v′ · ∂v′

∂t
+

c2

ρ0
ρ′

∂ρ′

∂t
= −v′ · ∇p′ − p′∇v′ = −∇ · (p′ v′) = −∇ · q

(8.13)
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and hence the energy flux
q = p′ v′ (8.14)

In a travelling wave, the pressure increment p′ = c ρ0 v′ and the energy flux
is parallel to the velocity perturbation, whose direction is given by unit vector
n̂, so that

q = cE n̂ (8.15)

thus yielding the familiar result that the energy flux is the product of the
energy density and the group velocity of the wave.

8.3 Reflection and Transmission of a Sound Wave
at an Interface

A sound wave is incident at an angle (to the normal) θ1 on a plane interface
between fluid at density ρ1 and sound speed c1, and fluid at ρ2 and c2. Along the
interface the pressure and normal component of velocity must be unchanged
in the two media. Since the media are assumed to be isotropic, it is evident
from the symmetry of the system that all waves generated must lie in the plane
of incidence. At the interface the incoming wave may generate two outgoing
waves, the backward-going reflected wave and the forward-going transmitted
wave. Since the boundary conditions do not depend on time or the tangential
components, it follows that the frequency and the tangential projection of the
wave vector parallel to the interface must be unchanged. The angle that the
reflected wave makes with the normal is π − θ1 and that of the forward-going
refracted transmitted wave θ2. Hence since k‖ = (ω/c) sin θ we have that

sin θ1/ sin θ2 = c1/c2 (8.16)

Taking the plane (x, y) to be that of the incident wave, the incident, reflected
and transmitted waves take the form

φi = Ai exp {ı ω [ (x/c1) cos θ1 + (y/c1) sin θ1 − t]}
φr = Ar exp {ı ω [−(x/c1) cos θ1 + (y/c1) sin θ1 − t]} (8.17)
φt = At exp {ı ω [ (x/c2) cos θ2 + (y/c2) sin θ2 − t]}

The total velocity potential on the upstream side is φi + φr and on the down-
stream side φt. Therefore noting that the pressure perturbation p = −ρ ∂φ/∂t
and that the normal velocity perturbation vx = ∂φ/∂x, we obtain, from the
pressure and normal velocity perturbations on each side of the interface, the
amplitudes of the reflected and transmitted waves in terms of the incident wave

ρ1 (Ai + Ar) = ρ2 At and (Ai − Ar) cos θ1/c1 = At cos θ2/c2 (8.18)
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Solving for At/Ai and Ar/Ai gives the amplitude transmission and reflection
coefficients

At

Ai
=

2 ρ1 c2 cos θ1

ρ2 c2 cos θ1 + ρ1 c1 cos θ2
and

Ar

Ai
=

(ρ2 c2 cos θ1 − ρ1 c1 cos θ2)
(ρ2 c2 cos θ1 + ρ1 c1 cos θ2)

(8.19)
If ρ1 c1 cos θ2 > ρ2 c2 cos θ1, Ar < 0, and there is a change of phase on reflec-

tion, the compression part of the cycle reflecting as an expansion.
The normal energy flux at the surface for each wave is given by(

ρ ω2 A/c
)

cos θ, hence the intensity coefficients for reflection R and
transmission T are

R =
{

(ρ2 c2 cos θ1 − ρ1 c1 cos θ2)
(ρ2 c2 cos θ1 + ρ1 c1 cos θ2)

}2

=
{

(ρ2 tan θ2 − ρ1 tan θ1)
(ρ2 tan θ2 + ρ1 tan θ2)

}2

T =
4 ρ1 ρ2 c1 c2 cos θ1 cos θ2

(ρ2 c2 cos θ1 + ρ1 c1 cos θ2)
2 =

4 ρ1 ρ2 tan θ1 tan θ2

(ρ2 tan θ2 + ρ1 tan θ2)2

(8.20)

It follows immediately that R + T = 1 as required by the conservation
of energy.

8.4 Spherical Sound Waves

If the sound wave diverges/converges symmetrically from/to a point, the wave
equation takes the simple form

∂2φ′

∂t2
− c2 1

r2

∂

∂r

(
r2 ∂φ′

∂r

)
= 0 (8.21)

Substituting

φ′ =
ψ′

r
(8.22)

reduces the equation to
∂2ψ′

∂t2
− c2 ∂2ψ′

∂r2
= 0 (8.23)

which, as we have seen, has the general solution

ψ′ = f(r − ct) + g(r + ct) (8.24)

representing outgoing and incoming waves respectively. Thus the general
solution is

φ′ =
f(r − ct)

r
+

g(r + ct)
r

(8.25)
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The arguments of the arbitrary functions f and g are retarded potentials,
familiar from electromagnetism, and the 1/r term arises from the inverse square
law as the energy flux decreases/increases with the area to maintain a constant
total energy flow.

We consider now the sound wave generated by a source at the origin.
Clearly only the outgoing wave is present, so that φ′ = f(r − ct)/r. The time
dependence of the retarded potential only becomes important as the phase
shift becomes large, i.e. when the distance r becomes of the order of the
wavelength λ of the wave.

Provided that the size of the source � is small compared with the wavelength
λ, we may neglect the temporal term in the wave equation for short distances,
i.e. for � � r � λ. The wave equation reduces to Laplace’s equation

∇2φ′ = 0 (8.26)

which has the solutions
φ′ = −a

1
r

+ b · ∇
(

1
r

)
+ . . . (8.27)

corresponding to monopole, dipole and multipole terms of the electrostatic
field. The strengths a, b, . . . are determined by the details of the source itself
in the neighbourhood of the origin. This solution represents the asymptotic
form of the exact solution (r � �) taking into account the detailed form of the
source. In the context of the method of matched asymptotics of Appendix 6.A,
this solution is the outer solution. The values of the constants a, b . . . are
generated by matching to the inner solution in the neighbourhood of the source.

If we consider distances much greater than the size of the source, �, namely
r � �, only the lowest order terms contribute. Consider the term −a/r. As we
showed in Section 2.8, a potential of this form represents a source or sink with
a volume flow of 4πa out through a surface surrounding the origin.

In incompressible flow (as in Section 2.8) this represents a change in the
total volume of fluid inside a surface surrounding the body generating the
sound wave at the origin. It therefore represents a change in the volume of
the body, whose surface is moving, pushing or pulling fluid through the fixed
surface.. Thus if V (t) is the volume of the source and V̇ the rate of change of
volume, the source term a = V̇ /4π.

Matching the solution for � � r � λ to the general form,

φ′ = − V̇ (t − r/c)
4πr

(8.28)

The velocity perturbation due to the wave follows immediately

v′ =
V̈ (t − r/c)

4 π c r
n̂ (8.29)

at sufficiently large distances such that the term in r−2 may be neglected.
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The intensity I of the wave, namely the average total energy emitted per
unit time, is obtained by integrating the energy flux over the surface of a large
sphere of radius r

I =
�

S
ρ c v2 ds =

ρ

4 π c
V̈ 2 (8.30)

and depends on the time average of the square of the second time derivative
of the body volume.

8.5 Cylindrical Sound Waves

We follow the same procedure as for spherical waves, but the analysis is more
complicated due to the two-dimensional nature of the waves. We consider a
wave homogeneous in the z direction which specifies the axis of cylindrical
symmetry. The wave depends on time and the distance from this axis R. The
general axisymmetric solution is obtained by the summation of many spherical
waves originating at/converging to the axis from the point z. Thus the spherical
radius r =

√
R2 + z2. The lowest order wave (monopole solution) is therefore

obtained by integrating equation (8.25) from z = −∞ to z = ∞, or equivalently
r from r = R to r = ∞, namely

φ′(R, t) =
∞�
R

f(ct − r)√
r2 − R2

dr +
∞�
R

g(ct + r)√
r2 − R2

dr

=
(ct−R)�
−∞

f(ζ)√
(ct − ζ)2 − R2

dζ +
∞�

(ct+R)

g(ζ)√
(ζ − ct)2 − R2

dζ (8.31)

representing the outgoing and incoming waves respectively.
We consider again the case of an outgoing wave generated by the pulsating

body, where the characteristic scale of the perturbing body � is small compared
with the wavelength λ and when the distance R satisfies � � R � λ so that
the phase terms may be neglected. The relevant solution of Laplace’s equation
for a line source in cylindrical geometry is

φ′ = a ln(χR) =
Ṡ(t)
2π

ln (χ(t)R) (8.32)

where χ(t) is an undetermined function of time. Comparing this with the result
for a two-dimensional source from Section 2.10.1 and using the same argument
as before, we see that the source term a = cross-sectional area.
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We may relate this expression to the general cylindrical wave solution for
outward-going waves as follows. For R → 0 we may write

φ′ = lim
R0→∞

(t−R/c)�
−R0/C

f(t′)√
c2(t − t′)2 − R2

dt′

≈ f(t)
[
arccosh

( x

R

)]R0

R
≈ −f(t) ln

(
R

R0

)
(8.33)

where R0 imposes a cut-off necessary to avoid the logarithmic singularity as
R → −∞. In reality this is avoided by the behaviour of the source term as
t → −∞.

Comparing equation (8.32) with (8.33) we see that f(t) = c Ṡ(t)/2 π and that
the term χ(t) reflects the fall-off of the source Ṡ(t) implicit in the requirement
that Ṡ(t) tends to zero sufficiently rapidly as t → −∞ to allow the integral to
converge.1

Thus finally we obtain a general expression for the perturbation potential
due to a pulsating line source

φ′ = − c

2π

(t−R/c)�
−∞

Ṡ(t′)√
c2(t − t′)2 − R2

dt′ (8.34)

1The equivalence of these two forms (8.32) and (8.33) is easily seen from electrostatics, in
the calculation of the potential due to a line charge: (8.32) by Gauss’s theorem and (8.33)
by an integral over the individual charges along the line.



Chapter 9

Characteristics and
Rarefactions

9.1 Mach Lines and Characteristics

Consider a disturbance initiated at point O in fluid moving steadily and uni-
formly at velocity v. In the fluid frame the head of the disturbance will prop-
agate into the field as a sphere of radius cτ at a time τ after its initiation. In
the laboratory frame we have the situation depicted in Figure 9.1. At time τ
the disturbance initiated at O has reached points P on a sphere of radius cτ
whose centre C is displaced from O by the flow by vτ . If the flow is subsonic,
v < c, the perturbation moves backwards as well as forwards and in time the
entire space is reached by the disturbance (Figure 9.1(a)). In contrast if the
flow is supersonic, v > c, the perturbation only moves forwards swept along by
the flow. Only a restricted space enclosed by the cone, formed by the tangents
to the sphere, is reached by disturbance (Figure 9.1(b)). This region contained
by the cone, known as the Mach cone, whose half angle μ is given by

μ = arcsin
( c

v

)
(9.1)

clearly defines the range of influence of the point O. The surfaces of the cone are
known as Mach lines in two dimensions, or Mach surfaces more generally. The
angle μ that the Mach lines make with the flow is known as the Mach angle.1

1Historical note The role of pressure waves travelling at the sound speed defining the
nature of supersonic flow was identified by Mach in a series of papers published between
1887 and 1890 in the Reports of the Meetings of the Scientific Academy of Vienna, which are
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cτ

vτO C

P

(a) (b)

cτ

vτO

P

C

T

μ

Figure 9.1: The development of a disturbance in uniformly flowing fluid as seen in the
laboratory frame: (a) shows the situation when the flow velocity is less than the sound
speed and (b) when it is greater. The disturbance originates at the centre O, which moves
to C in the time τ . The disturbance is thus represented by a point P . If the flow is
supersonic all points lying outside the cone formed by the tangent to the sphere T do not
see the disturbance.

The two Mach lines leaving the point clearly contain information, the char-
acteristic invariant, about the nature of the flow perturbation introduced at
O in an appropriate form. The characteristic invariant is a quantity whose
value remains constant on a particular characteristic. In general the form of
the characteristic invariant is not easily expressed in analytic form, but we shall
examine two particular cases where it can be identified. Clearly two Mach lines
can only intersect at the point of origin, otherwise the flow disturbance would
be multi-valued.

Although the concept of Mach lines has been developed in the context of
steady uniform flow, it is clear that this concept applies more generally when
the flow is non-uniform and both the velocity and sound speed are local quan-
tities. Indeed we shall show subsequently (Section 9.4) that the Mach lines are
a particular example of the general system of characteristics applicable to the
particular case of steady two-dimensional irrotational flow. In general the Mach
lines are defined by the angle μ between the Mach line and the streamline by
the condition

sinμ =
c

v
(9.2)

Thus the component of the velocity normal to the Mach line is the sound speed
c. In the case of two-dimensional steady flow in Cartesian geometry, we shall
find in Section 9.4 that an analytic form of the characteristic invariant may be
found, but of a rather complex nature.

summarised in (B, 1890; Reichenbach, 1983). The terms ‘Mach line’, ‘Mach cone’ and ‘Mach
angle’ are due to Meyer (1908), and ‘Mach number’ to Ackeret (1925).
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Similar arguments may be applied in the case of one-dimensional time-
varying flow where the characteristics are pressure waves running ahead and
behind the flow, i.e. with speeds

dr±
dt

= v ± c (9.3)

In the case of a uniform one-dimensional flow the characteristic invariants are
particularly simple, as shown in Section 9.3.2

9.2 Characteristics

We now present some general results concerning the nature of characteristics.
Many of the adiabatic equations of fluid motion are of hyperbolic form. A
feature of the solutions of this equation is that they may be represented by a
set of waves, along which an invariant quantity is propagated. The Mach lines
discussed above are the characteristics for the particular case of steady two-
dimensional irrotational flow, but in all cases of supersonic, steady flow and
time-dependent flow of compressible fluid, it can be shown that characteristics
can be found. However, the subsonic steady flow equations are of the elliptic
type, and real characteristics do not exist. This difference can be traced to the
behaviour of the waves originated by small disturbances as discussed above.

The nature of characteristics may be illustrated by the following discus-
sion. Suppose we have a set of partial differential equations in two dependent
variables (u, v) and independent variables (x, y), namely

L = 0 and M = 0 (9.4)

where L and M are differential operators in u and v and their derivatives.
If the equations are hyperbolic, there exist linear combinations of λL + μM
such that there exist lines y(x) along each of which a solution of the combi-
nation φ(u, v) remains constant. These lines are the characteristics and the
corresponding functions φ are their characteristic invariants. This procedure
is illustrated by the examples in Sections 9.3 and 9.4. An alternative, but
equivalent, approach to characteristics is found in Section 10.A.1.

2Historical note The general theory of characteristics in one-dimensional time-
dependent flow was developed by Riemann (1860) in a remarkable paper. The role of the
characteristics in determining the flow through the invariants is clearly defined. Using an
isentropic equation of state the analysis considered both waves of expansion and compression,
the latter leading to discontinuity.
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9.2.1 Uniqueness Theorem

An important consequence of this concept of characteristics is the establish-
ment of the uniqueness of the flow at any point, given the state of the flow along
some initial line I, provided certain basic conditions are met. The following
uniqueness theorem can be proved (Courant et al., 1928).

Consider a solution with continuous second derivatives in the region ABP
bounded by two characteristics C+ and C− through P and the interval AB
bounded by the initial line I between them (Figure 9.2). Suppose another
solution also with continuous second derivatives is given in ABP with the
same values on AB ; then the second solution is identical to the first in
region ABP.

C+ C −

P

I

B

A

Figure 9.2: The domain of dependence of P . On the characteristic C+ the invariant J+ is
constant, and on C−, J− is constant.

Note this does not establish that the two solutions are identical outside ABP.
The initial values of the problem are only specified on the sector AB of the line
I intercepted by the two outermost characteristics through P . The domain of
dependence of P is the region of space enclosed by the characteristics through
P . This is the region of space whose values can influence the flow at P .

Similarly the state of the flow at P can influence the flow in the space
enclosed by the outgoing characteristics through P –the range of influence.

The uniqueness theorem has the important consequence that solutions of
inviscid compressible fluid dynamics provide a unique solution to the Cauchy
(or initial value) problem provided they possess continuous second derivatives.
The problem is defined such that: given a set of initial values on a boundary I,
the solution at a specified point is uniquely determined within the appropriate
space, namely its domain of dependence.
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9.2.2 Weak Discontinuities

Weak discontinuities are defined as solutions where the variables are contin-
uous, but the first derivative is discontinuous. Since small disturbances are
propagated along characteristics, it is clear that weak discontinuities must also
follow a characteristic. More specifically the uniqueness theorem excludes solu-
tions with discontinuous derivatives. Since the values of the dependent variables
are continuous across a weak discontinuity, the characteristics on each side of
the discontinuity must be parallel. Points on either side of the discontinuity,
whose domain of dependence is formed by the characteristics through them,
will have continuous derivatives. Thus the weak discontinuity must propagate
along a characteristic.

Weak discontinuities are typically found at a transition from a uniform state,
where the upstream gradients are zero and change to ones reflecting the motion
of the fluid. Similarly the transition from non-steady to steady flow must also
occur along a characteristic. Therefore the head of a rarefaction or expansion
wave must travel along a characteristic into the ambient steady state fluid.

9.2.3 The Hodograph Plane

Many problems involve two independent variables and two dependent ones,
from which the flow can be calculated. Examples are one-dimensional time-
dependent flow, where the independent variables are (x, t) and the dependent
ones (v, c), and steady two-dimensional irrotational flow, where the variables
are (x, y) and (u, v). In such cases we define a transformation between the
space of the independent variables (x, y) and that of the dependent ones
(u, v), the latter being known as the hodograph plane. This transformation
is well established provided the Jacobian ∂(u, v)/∂(x, y) and its inverse exist.
The hodograph plane is spanned by the characteristics in the same way as
configuration space.

9.2.4 Simple Waves

A simple wave is defined as a flow in which one family of characteristics all
lie along a single line in the hodograph plane. In this case the Jacobian for
the transformation between the hodograph and the configuration space clearly
does not exist.

Let the family of the characteristics containing a single line be C−, for exam-
ple. On this line, in the hodograph plane, the values of the dependent variables
will be fixed by the characteristic invariant. Any characteristic of the other
family C+ will intersect this line at only one point, and will therefore have
the values of the dependent variables associated with the C− invariant fixed
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everywhere on that characteristic. The consequence is that the gradient of an
individual member of the family of the second characteristic C+ in configura-
tion space will be constant, as the values of both flow variables are then set
by their own invariant. Thus the characteristics C+ form a family of straight
lines of different gradient in configuration space.

Simple waves form an important class of flows, being those adjacent to a
steady flow. Consider the characteristics C−. The values of the dependent
variables are everywhere constant. Thus the value of the characteristic invariant
on each C− line is the same. The characteristics lie on a single line in the
hodograph plane. The flow is therefore a simple wave.

Consequently we obtain the important result that all flows adjacent to a
steady state are simple waves. The weak discontinuity separating the steady
and non-steady flows propagates along one of the two characteristics from the
start of the disturbance, C+ in the above example, and is a straight line path in
configuration space. No characteristic of this family from the originating point
can penetrate into the steady flow region. Thus the domain of dependence of
any point in the steady flow excludes the originating point, and the range of
influence of the latter excludes the former.

9.3 One-Dimensional Time-Dependent Expansion

Consider a cylindrical tube containing gas at pressure p0 and density ρ0 at
rest, v0 = 0. The tube is closed by a piston which is withdrawn resulting in an
expansion into the space vacated by the piston. The characteristic variables
of the problem are therefore the independent variables: distance along the
cylinder from the initial position of the piston x and time from the instant
the piston starts to withdraw t. The dependent variables are the flow velocity
along the cylinder v and one of the thermodynamic state variables, typically
the sound speed c. Since the flow is adiabatic, entropy is constant and only
one state variable is independent, because the others are determined by the
equation of state. The flow is described by the equation of continuity

∂ρ

∂t
+ v

∂ρ

∂x
+ ρ

∂v

∂x
= 0 (9.5)

and by Euler’s equation

∂v

∂t
+ v

∂v

∂x
+

1
ρ

∂p

∂x
= 0 (9.6)

Introducing the adiabatic sound speed

c2 =
∂p

∂ρ

∣∣∣
S
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and since the flow is adiabatic

dp =
∂p

∂ρ

∣∣∣
S
dρ = c2dρ (9.7)

we obtain by substitution the equations of the characteristics[
∂

∂t
+ (v ± c)

∂

∂x

] [
v ±

� cdρ

ρ

]
(9.8)

Thus on the characteristic lines

C+
dx

dt
= v + c J+ = v +

� cdρ

ρ

C−
dx

dt
= v − c J− = v −

� cdρ

ρ

(9.9)

where J+ and J− are the characteristic invariants, known as Riemann invari-
ants in this case. From their governing equations it is evident that the charac-
teristics propagate at the sound speed relative to the flow, a result in conformity
with the physical picture described in Section 9.1. The complete set of invari-
ants is completed by the entropy

C0
dx

dt
= v J0 = S

A polytropic gas has the adiabatic equation of state p/ρ γ = const, so that
c2 = const γ ρ (γ−1) and hence

� cdρ

ρ
=

2 c

(γ − 1)

Thus the Riemann invariants can be written as

J± = v ± 2 c

(γ − 1)
(9.10)

Since the ambient fluid into which the expansion propagates has a uniform
state with zero initial velocity, the rarefaction as described above forms a simple
wave. The characteristics, C+, start from the initial state and then propagate
into the expansion. Their invariant is therefore determined by the initial con-
ditions of the ambient gas, and once set remains constant throughout the flow.
As the initial conditions are uniform, the value of the Riemann invariant is

J+ = v +
2 c

(γ − 1)
=

2 c0

(γ − 1)
(9.11)
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everywhere throughout the flow, where c0 is the initial sound speed. The set
of characteristics C+ thus falls on a single line in the hodograph plane (9.11).

The gradients of the characteristics C− are given by (9.9)

dx

dt
= v − c

Along an individual characteristic both v and c are constant and the charac-
teristics themselves are straight lines, each of different gradient. If the piston
path is known we may successively calculate the flow throughout the expan-
sion. Thus let the piston trajectory be given by xp(t). The gas flow velocity at
the piston must be equal to the piston velocity at time τ , namely

v =
dx

dt

∣∣∣
τ

Hence, since the Riemann invariant (equation 9.11) is known, the gradient of
the corresponding C− characteristic leaving the piston at this time is

dx

dt

∣∣∣
C−

=
(γ + 1)

2
dx

dt

∣∣∣
τ
− c0 (9.12)

The trajectory of each C− characteristic may be plotted starting from the
appropriate point on the piston path. The velocity and sound speed are the
values corresponding to those at the piston v = vp and c = c0 − [(γ − 1)/2]vp.
Note that as the piston speed increases, the sound speed decreases. If the piston
stops being accelerated, the succeeding C− characteristics are all parallel and
the flow is uniform with the corresponding values of v and c appropriate to
the piston speed. Finally if the piston velocity vp > [2/(γ − 1)]c0 the sound
speed c < 0, indicating a void has formed behind the piston as the flow cannot
maintain contact with the piston.

At any instant, the head of the rarefaction is the point reached by the distur-
bance leading to expansion of the ambient uniform gas. Clearly it is determined
by the first C− characteristic reaching that point. The head therefore propa-
gates back into the undisturbed gas with speed c0, i.e. with the sound speed
relative to the flow. The tail of the rarefaction is correspondingly the C− char-
acteristic at which the expansion is complete, either at the piston or at a region
of steady flow. In this case also the characteristic moves at the sound speed
relative to the flow.

9.3.1 The Centred Rarefaction

The case where the piston is instantaneously accelerated to a steady velocity
at time t = 0 is a particularly simple case of the preceding one. The C− charac-
teristics must reflect the fact that for times t < 0 their gradient is −c0 and for
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C+

C−

x = −c
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x

Pisto
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}
Figure 9.3: Sketch of the characteristics of a centred rarefaction behind an instantaneously
accelerated piston.

times t > 0 it is given by equation (9.12). Hence the family of C− characteris-
tics start with one at a gradient −c0 propagating into the undisturbed fluid,
followed by a series of straight line characteristics of increasing gradient each
starting at the origin, bounded by the one at which the flow velocity equals the
piston speed (Figure 9.3). This has gradient given by equation (9.12). There
then follows a further region of uniform flow adjacent to the piston. The char-
acteristics associated with the expansion thus form a fan centred on the origin.
The equation of the characteristics C− is

x

t
= v − c

and hence, making use of the values associated with the C+ invariant,

c =
2

(γ + 1)
c0 − (γ − 1)

(γ + 1)
x

t

v =
2

(γ + 1)

[
c0 +

x

t

] (9.13)

Along the line
x/t = [2/(γ − 1)] c0

the sound speed c = 0 and consequently the density ρ = 0. Thus if the pis-
ton expands rapidly such that vp > [2/(γ − 1)] c0, the gas density falls to zero
behind the piston. The gas cannot be sufficiently accelerated to keep up with
the piston, and a cavity is formed. Alternatively if the gas expands into a void,
the leading edge of the expansion moves outwards with speed [2/(γ − 1)] c0.
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The tail of the rarefaction propagates downstream only if

dx

dt

∣∣∣
tail

< 0 and vp <
2

γ + 1
c0 (9.14)

otherwise the characteristics propagate downstream of the initial piston posi-
tion as illustrated in Figure 9.3.

9.3.2 Reflected Rarefaction

Suppose the upstream flow section is terminated by a rigid wall. We assume
that the characteristics C− only propagate back into the undisturbed gas,
i.e. condition (9.14) is satisfied. However, since the wall is rigid, the flow veloc-
ity at the wall must be zero v = 0, a condition which is not satisfied by any
but the first C− simple wave characteristic (head). The boundary condition is
satisfied by the establishment of a set of C+ characteristics leaving the wall,
which modify the flow such that the boundary condition is satisfied, and which
represent the reflected C− characteristic. Since the velocity normal to the wall
is zero, the Riemann invariant of the C+ characteristic is unchanged from that
of the C− one, and its direction is that of a reflection at the wall. The immedi-
ate flow involving this set of characteristics C+ and C− is not simple and their
trajectories are not straight.

C+

C−
0

1

2

W
al

l

Pi
sto

n

Figure 9.4: Reflection of a centred rarefaction propagating into undisturbed gas 0�;
downstream of the rarefaction behind the piston is region 1� and behind the developed
reflected wave, region 2�.

The flow therefore contains three regions of steady flow, Figure 9.4:

• Region ©0 The initial state before the expansion starts spanned by C±
characteristics with J± = ±2c0/(γ − 1).
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• Region ©1 The region following the expansion fan, bounded by the
constant motion of the piston, spanned by characteristics C+ and C−
with invariants

J+ = 2c0/(γ − 1) and J− = 2vp − 2c0/(γ − 1)

The velocity and the sound speed in region 1� follow directly

v1 =
1
2
{J+ + J−} = vp

c1 =
1
2

γ − 1
2

{J+ − J−} = c0 − 1
4

(γ − 1) vp

• Region ©2 Following the reflection, this region is spanned by C− char-
acteristics from region ©1 and C+ characteristics reflected at the wall.
In this region the flow is brought to rest by the rigid wall:

J− = 2vp − 2c0/(γ − 1) and J+ = 2c0/(γ − 1) − 2vp

The velocity and the sound speed in region ©2 are easily calculated

v2 =
1
2
{J+ + J−} = 0

c2 =
1
2

γ − 1
2

{J+ − J−} = c0 − 1
2

(γ − 1) vp = 2c1 − c0

from which the pressure and temperature ratios across the reflected rar-
efaction may be obtained:

p2

p0
=

[
2

(
p1

p0

)(1−γ)/2γ

− 1

]2γ/(γ−1)

T2

T0
=

[
2

(
p1

p0

)(1−γ)/2γ

− 1

]2
(9.15)

Since c2 − c0 = 2(c1 − c0) it follows that for a weak rarefaction the pres-
sure change p2 − p0 ≈ 2(p1 − p0) as for a sound wave.

The flow between regions ©1 and ©2 is a simple wave spanned by straight
line C+ characteristics from the individual reflections, forming a second expan-
sion fan approximately centred at the mid-point of the reflection at the wall.
In the immediate neighbourhood of the reflection, where the two expansion
fans intersect, the flow is no longer simple, and is more difficult to calculate.

If the condition (9.14) is not satisfied, the interaction is of infinite duration
and simple analytic results are not achievable.
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9.3.3 Isothermal Rarefaction

If thermal conduction in the fluid is very strong (e.g. in plasma), the fluid
may be maintained at approximately the same temperature throughout the
expansion. The required condition is that the thermal heat flux balances the
work done accelerating the gas, but with very small temperature gradient. In
this case the equation of state becomes one of constant temperature, T = const.
Although the flow is not dissipationless, the method of characteristics may be
used, but temperature, instead of entropy, is constant on the streamlines. The
appropriate sound speed is therefore the isothermal sound speed c =

√
∂p/∂ρ

∣∣
T

(=
√

p/ρ in an ideal gas). It is easy to see that an isothermal fluid corresponds
to the limit of a polytropic gas with γ → 1, i.e. infinitely large internal energy.

The velocity of the flow in a centred isothermal rarefaction follows directly
from equation (9.13) with γ = 1. Thus v = c0 + x/t and c = c0, where c0

is the isothermal sound speed at the head. Inserting this velocity profile
into the equation of continuity and assuming a density profile of the form
ρ = ρ0 exp(−αx/t), we obtain the equation of continuity

∂ρ

∂t
+ v

∂ρ

∂x
+ ρ

∂v

∂x
=

[
αx

t2
−

(
c0 +

x

t

) α

t
+

1
t

]
ρ = 0

and hence conclude that the density profile ρ(x, t) = ρ0 exp(−x/c0t) is consis-
tent, where ρ0 is the density at the head.

The total energy in the rarefaction at time t is

� ∞
0

ρ(x, t)
[
ε0 +

1
2
v2

]
dx = ρ0

� ∞
0

exp
(
− x

c0t

) [
ε0 +

1
2

(
c0 +

x

t

)2
]

dx

= ρ0 c0 t

[
ε0 +

5
2

c0
2

]

where ε0 is the specific internal energy at the head of the rarefaction. In the
rest frame of head of the rarefaction the flow speed v0 = c0 The convected flux
of energy into the rarefaction per unit time is

ρ0 v0

(
h0 +

1
2
v0

2

)
= ρ0 c0

(
ε0 +

3
2
c0

2

)

The downstream isothermal flow is maintained by the excess flow of heat from
the head of the rarefaction. Hence the additional energy flux required to main-
tain the isothermal rarefaction in an ideal gas is

ρ0 c0
3 = p0 v0 (9.16)
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9.4 Steady Two-Dimensional Irrotational
Expansion

The equation of continuity

ρ
∂vx

∂x
+ ρ

∂vy

∂y
+ vx

∂ρ

∂x
+ vy

∂ρ

∂y
= 0 (9.17)

and Bernoulli’s equation

vx dvx + vy dvy +
c2

ρ
dρ = 0 (9.18)

which may be combined to give

(
v2
x − c2

) ∂xx

∂x
+ vx vy

(
∂vx

∂y
+

∂vy

∂x

)
+

(
v2
y − c2

) ∂vy

∂y
= 0 (9.19)

together with the condition for irrotationality

∂vx

∂y
− ∂vy

∂x
= 0 (9.20)

form the governing equations. To find the characteristics we form linear com-
binations of these equations using undetermined multipliers λ1 and λ2, namely

λ2

(
v2
x − c2

) ∂vx

∂x
+ (λ1 + λ2 vx vy)

∂vx

∂y
− (λ1 − λ2 vx vy)

∂vy

∂x

+ λ2

(
v2
y − c2

) ∂vy

∂y
= 0 (9.21)

We now look for a reduction of this equation to characteristic form, i.e. along
the line dy/dx = ζ, some function φ(x, y) is constant. Hence[

∂

∂x
+ ζ

∂

∂y

]
φ(x, y) =

∂φ

∂vx

∂vx

∂x
+

∂φ

∂vy

∂vy

∂x
+ ζ

(
∂φ

∂vx

∂vx

∂y
+

∂φ

∂vy

∂vy

∂y

)
= 0

(9.22)
Hence, noting that these two forms must be the same apart from an undeter-
mined factor f(vx, vy),

∂φ

∂vx
= f(vx, vy)λ2 (v2

x − c2) = f(vx, vy) ζ−1 (λ1 + λ2 vx vy)

∂φ

∂vy
= f(vx, vy)(−λ1 − λ2 vx vy) = f(vx, vy) ζ−1 λ2 (v2

y − c2)

(9.23)
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which have consistent solutions if

ζ−2 (v2
y − c2) − 2 ζ−1 vx vy + (v2

x − c2) = 0 (9.24)

Hence the gradients of the characteristics are

ζ± =
vx vy ± c

√
v2
x + v2

y − c2

vx
2 − c2

(9.25)

and only have real solutions if v2
x + v2

y > c2, i.e. the flow is supersonic.
In the (x, y) plane the characteristics are the Mach lines, i.e. lines making an

angle μ with the streamline. The streamline angle θ = arctan(vy/vx), and the

Mach angle μ = arctan(c/
√

v2 − c2) where v =
√

v2
x + v2

y is the total speed.
The Mach lines are at an angle θ ± μ with respect to the x axis. Thus

tan(θ ± μ) =
tan θ ± tan μ

1 ∓ tan θ tan μ

=
vy/vx ± c/

√
v2 − c2

1 ∓ vy c/(vx

√
v2 − c2)

=

[
vy

√
v2 − c2 ± vx c

] [
vx

√
v2 − c2 ± vy c

]
v2
x (v2 + c2) − v2

y c2

=
vx vy ± c

√
v2 − c2

v2
x − c2

= ζ± (9.26)

and the Mach lines and characteristics coincide in accordance with our earlier
physical arguments (Section 9.1).

9.4.1 Characteristic Invariants

The characteristic invariants for this problem are much more difficult to gener-
ate than in the previous case. In principle they are contained in the functions
φ(x, y) given by equation (9.22). However, it is easier to obtain their values
by direct analysis of the form of the streamlines and the characteristics. To do
this we will need to identify derivatives along and normal to the streamlines,
which will differ from the laboratory values as this is a curvilinear co-ordinate
system. As we will need to calculate the curl and div of vector quantities
we define a local set of Cartesian co-ordinates (x, y) to which we can refer
the curvilinear set. Let θ be the angle that the streamline makes with the
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x direction. Then vx = v cos θ and vy = v sin θ where v is the total velocity.
Taking the derivatives and allowing θ → 0 we obtain

∂vx

∂x
=

∂v

∂s

∂vx

∂y
= v

∂θ

∂s

∂vy

∂x
= v

∂θ

∂n

∂vy

∂y
=

∂v

∂n
(9.27)

where s is the length of arc along the streamline and n along its normal.
Thus the equation of continuity and the condition of zero vorticity become

∂(ρ v)
∂s

+ ρ v
∂θ

∂n
= 0

∂v

∂n
− v

∂θ

∂s
= 0

Further, it follows from the strong form of Bernoulli’s equation for a polytropic
gas that

v dv = −1
ρ

dp = −c2 dρ

ρ
(9.28)

holds for variation in any direction. Thus we obtain

v
∂θ

∂n
= −∂v

∂s
− v

ρ

∂ρ

∂s
= −∂v

∂s

(
1 − v2

c2

)
= cot2 μ

∂v

∂s

since v = c cosec μ. Hence along a characteristic

dv =
∂v

∂s
ds +

∂v

∂n
dn

= v

(
tan2 μ

∂θ

∂n
ds +

∂θ

∂s
dn

)

= v tan μ

(
∂θ

∂n
dn +

∂θ

∂s
ds

)
= v tan μ dθ (9.29)

since dn = tanμ ds. Therefore

v
dθ

dv
= cot μ (9.30)

The component of the velocity along the characteristic is vt = v cos μ and
hence, since c = v sinμ,

dvt = cos μdv − v sinμdμ = v sinμ (dθ − dμ)
= c (dθ − dμ)
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To proceed we introduce Bernoulli’s equation remembering that it holds
throughout the flow as the latter is irrotational. Therefore

dθ − dμ =
dvt

k
√

v2
max − v2

t

θ − μ =
1
k

arcsin
(

vt

vmax

)
− π

2
+ A±

where k =
√

(γ − 1)/(γ + 1) = c∗/vmax. When v = c∗, the critical velocity,
μ = π/2 and θ = A.

Finally

arcsin
{

vt

vmax

}
= arctan

{
k vt

c

}
= arctan {k cot μ}

and we obtain along the characteristic

θ = μ +
1
k

arctan {k cot μ} − π

2
+ A (9.31)

which gives the characteristic invariant. The angle μ defines the value of the
limit speed from Bernoulli’s equation

v2 =
v2
max

1 + [2/(γ − 1] sin2 μ
(9.32)

The second characteristic is inclined at an equal angle of opposite sign
to the streamline, and thus has μ replaced by −μ. Therefore the two
invariants are

J± = θ ∓ f(μ) (9.33)

f(μ) = μ +
1
k

arctan {k cot μ} − π

2
(9.34a)

Since cot μ = tan(π/2 − μ) =
√

M2 − 1 we may write the invariant as a func-
tion of the local Mach number M in terms of the Prandtl–Meyer function

f(μ) = ν(M) =

√
(γ + 1)
(γ − 1)

arctan

{√
(γ + 1)
(γ − 1)

(
M1

2 − 1
)}

− arctan
{√(

M1
2 − 1

)}
(9.34b)

The Prandtl–Meyer function is defined to set ν(1) = 0. Equation (9.32) can
also be written in terms of the Mach number

v2 =
v2
max

1 + [2/(γ − 1)] M−2
(9.35)
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The characteristic form in terms of the Mach number is often easier to use
than that in terms of Mach angle. For convenience the Prandtl–Meyer func-
tion ν(M) is often tabulated, together with the Mach angle μ. An extensive
tabulation of the Prandtl–Meyer function can be found in Anderson (2007).

Using equations (9.34a) and (9.34b) together with equation (9.32) for the two
characteristics passing through any point, we may calculate the angle that the
flow makes with a prescribed direction θ = J+ + J− − π and the total veloc-
ity from f(μ) or ν(M) = J− − J+, and thus from the latter the sound speed,
pressure and density using Bernoulli’s formula. Hence the flow is uniquely
calculated. This leads to a useful method of calculation in which the charac-
teristics and hence the flow are progressively traced through the flow field–the
method of characteristics –which is used to calculate the flow through ducts
and nozzles.

9.4.2 Expanding Supersonic Flow around a Corner

This problem is very similar to the rarefaction treated earlier. The flow is a
simple wave since the incoming flow along the surface is uniform until the start
of the corner is reached. One set of characteristics, in this case C+, fills the
entire space with a uniform value of the invariant J+.3 Consequently since J−
is constant on any C− characteristic, the angle θ that the streamline makes
with the initial line, defined parallel to the surface, is constant on the charac-
teristic. Since the streamline is parallel to the surface at the point where the
characteristic C+ meets the surface, the angle of the tangent to the surface
defines the value of the flow velocity vector, θ, on the characteristic C− leaving
the surface at the point. The value of the Mach angle is given by the value of
J+ and θ, and hence the angle of the characteristic to the initial line of the
line is determined, and thus the entire flow on that characteristic.

9.4.3 Flow around a Sharp Corner–Centred Rarefaction

If the corner is reduced to an angle the characteristics expressing the rotation
of the flow become a fan originating in the corner, similar to the earlier case
in time-dependent flow. The characteristics, which rotate the flow, are straight
and bounded by the initial and final ones where the flow velocity is parallel
to the surface. In each case the characteristic must originate in the corner and
therefore so must this family of C− characteristics (Figure 9.5). Thus suppose
the angle of the corner is χ; then the flow is rotated by the expansion through
χ to become a uniform flow parallel to the surface.

3The sense of the angles Ψ, θ and μ is taken from the upstream flow into the expansion
and dictates the role of the individual characteristics.
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C−

χ

ψ

Figure 9.5: The flow around a sharp corner showing the streamlines (dot–dash lines) and
C+ characteristics (dashed lines).

Consider a supersonic flow incoming at Mach number M1, velocity v1 and
sound speed c1. A particular C− characteristic makes an angle ψ with the C−
characteristics in the incoming flow, θ is the angle the streamline makes with
the surface of the corner of entry and μ the Mach angle. On this Mach line
the velocity and sound speed are constant. The C+ characteristics all originate
in the upstream initial flow and terminate on the surface of the angled plates.
The invariant J+ is therefore constant throughout the flow and equal to its
value in the upstream flow

J+ = θ − f(μ) = −f(μ1)
= θ − ν(M) = −ν(M1) (9.36)

Since the invariant J−

J− = θ + f(μ) = θ + ν(M) (9.37)

is constant on an individual C− characteristic, it follows that the streamline
angle θ, the Mach angle μ, the Mach number and the flow variables vr, vψ and c
are all constant on the characteristic C−, where vr and vψ are the components
of the velocity parallel and perpendicular to the characteristic. Therefore the
characteristic C− is a straight line at an angle ψ, as expected since the wave
is a simple wave.

Defining the zero of ψ when θ is also zero, i.e. at the first characteristic, the
angles ψ and θ obey the geometric relation

ψ + μ = θ + μ1 (9.38)

Eliminating the streamline angle θ from equations (9.36) and (9.38) we obtain

ψ = [f(μ) − μ] − [f(μ1) − μ1]



Characteristics and Rarefactions 237

and substituting for f(μ)

arctan(k cot μ) = kψ + arctan(k cot μ1) = kψ + ε (9.39)

where ε = arctan(k cot μ1) = k
√

M1
2 − 1. The ratio k vr/vψ = k cot μ = tan

(kψ + ε) defines the Mach angle.
Since vψ = c, Bernoulli’s equation may be expressed as

vr
2 + vψ

2 +
2

(γ − 1)
vψ

2 = vr
2 +

1
k2

vψ
2 = vmax

2 =
1
k2

c∗2 (9.40)

Noting that k =
√

(γ − 1)/(γ + 1) = c∗/vmax, equation (9.40) takes the form

(k vr)2 + vψ
2 = c∗2 (9.41)

which is consistent with

vr = k c∗ sin(kψ + ε) and vψ = c∗ cos(kψ + ε) (9.42)

At a particular azimuthal angle ψ of the C− characteristic, the Mach angle
is given by cotμ = [tan(kψ + ε)]/k = vr/vψ. The spatial co-ordinates of the
flow variables are then found from the stream angle θ, which is given by the
invariant θ = f(μ) − f(μ1) using either (9.36) or (9.38).

The sound speed, pressure and density in terms of their stagnation values
(c0, p0, ρ0), equations (1.48 and 1.49), are calculated from the sound speed c =
vψ. Since the flow is adiabatic, (p/p0) = (ρ/ρ0)γ , c2 = γp/ρ = c2∗ cos2(kψ + ε)
and c2∗ = [2/(γ + 1)]c2

0, we obtain the conditions in the downstream flow:4

p

p0
=

{
2

(γ + 1)
cos2(kψ + ε)

}γ/(γ−1) ρ

ρ0
=

{
2

(γ + 1)
cos2(kψ + ε)

}1/(γ−1)

(9.43)

As the streamlines turn through an angle θ, the characteristic is rotated
through to an angle given by equation (9.38), ψ = θ + μ1 − μ. The angle of
the final characteristic leaving the surface when θ = χ is therefore given by

f(μ2) = χ + f(μ1) ψ2 = χ + μ2 − μ1 (9.44)

4Historical note The full solution to this problem of supersonic flow around a sharp
corner is due to Prandtl and Meyer, using a method not explicitly involving characteristics.
Meyer was a graduate student and Prandtl his supervisor. The full solution, along with results
for oblique shocks, is found in Meyer’s PhD thesis, (Meyer, 1908).
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Unfortunately this equation requires the inversion of the function f(μ), which
is not elementary. It is therefore simpler at this stage to use the tabu-
lated values of the Prandtl–Meyer function to find the Mach number from
ν(M2) = χ + ν(M1), and hence the streamline angle and flow variables.

As we saw earlier for the centred rarefaction, there is a limiting condition
beyond which the initial state of the gas cannot sustain the expansion. In
this case there is a maximum angle beyond which the sound speed becomes
negative, i.e. the flow cannot follow the surface and cavitation occurs. This
occurs at the corner angle χlim where c2 = 0 and μ2 = 0, i.e.

χlim =
1
k

(π

2
− ε

)
− μ1 (9.45)

The flow just described is reversible. In that we inject a flow opposite to
that exiting from the angle into the corner from the exit, the characteristics
would also be reversed and the flow would also reverse and therefore com-
press. However, an alternative expanding flow is possible with the streamlines
following the pattern described above. In practice the latter expanding flow
is found.

9.4.3.1 The complete Prandtl–Meyer flow

If the initial flow is sonic, M1 = 1, we obtain the extreme case of the above
flow. The initial C− characteristic is identified by the condition that vr = 0
since v1 = c1 and μ1 = π/2. Hence ε = 0. The limiting angle of the corner thus
takes its maximum value

χlim =
(

1
k
− 1

)
π

2
=

(√
(γ + 1)
(γ − 1)

− 1

)
π

2
(9.46)

The flow through the rarefaction is easily calculated in terms of the critical
velocity, and pressure and density in terms of the angle ψ. Figure 9.6 shows
the values through the expansion for gas of index γ = 7/5 plotted as functions
of the local Mach number M = v/c.

If we consider an incident flow at a Mach number M1 �= 1, the flow may be
directly related to the points on the complete Prandtl–Meyer plot, where the
local Mach number equals that of the incoming flow, since the characteristic
invariants of each flow will be the same (apart from an additive constant in
the values of θ and ψ). Consequently the values of the angles μ1, ψ1, θ1 and
the flow variables c/c∗, p/p∗ and ρ/ρ∗ from the graph may be used to set
the initial values to the flow, and the remainder of the complete expansion
used to give the values for an incomplete expansion. More accurately we may
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Figure 9.6: The flow variables calculated through a complete Prandtl–Meyer expansion
for a polytropic gas of γ = 7/5. The plots shows the sound speed c/c∗, pressure p/p∗,
density ρ/ρ∗ in terms of the critical values, and the characteristic angle ψ, Mach angle μ
and streamline deflection θ in terms of the local Mach number M .

introduce the Prandtl–Meyer function, ν(M), equation (9.34b), and use its
tabulated values. It follows from equations (9.44) and (9.38) that the rotation
of the flow is given by

χ = ν(M2) − ν(M1) (9.47)

Then, given the incoming flow Mach number M1, we obtain ν(M1) from the
table. From the value of χ, ν(M2) and thus M2 are obtained. The pressure
and density ratios p2/p1 and ρ2/ρ1 follow directly from the stagnation ratio
pressure and density ratios given by equation (1.49) since the upstream and
downstream Mach numbers are known.

9.4.3.2 Weak rarefaction

If the expansion is weak so that the deflection of the flow is small, the rar-
efaction becomes equivalent to a weak discontinuity lying along a single char-
acteristic C− at the Mach angle. The properties are very easily evaluated in
terms of the velocity increment, from which the sound speed, pressure and den-
sity changes are easily calculated. Since the C+ characteristics are everywhere
constant, we may use equation (9.29) to calculate the change in the velocity
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across the C− characteristic, i.e. along the C+ one. Thus for a small deflection θ

v2 − v1 = v1 θ tan μ

= v1 θ
1√

M1
2 − 1

(9.48)

since tan μ = 1/
√

M1
2 − 1. From Bernoulli’s equation the increment in the

sound speed is therefore

c2
2 − c1

2 ≈ − (γ − 1) v1 (v2 − v1) = − (γ − 1) v1
2 θ

1√
M1

2 − 1
(9.49)

where M1 is the Mach number of the flow.
Since the flow is isentropic, we may use the adiabatic equation of state to

calculate the pressure and density changes:

p2 − p1

p1
= − γ

(γ − 1)
c2

2 − c1
2

c1
2

= −γ
v1

2

c1
2

θ
1√

M1
2 − 1

ρ2 − ρ1

ρ1
= − 1

(γ − 1)
c2

2 − c1
2

c1
2

= −v1
2

c1
2

θ
1√

M1
2 − 1

(9.50)



Chapter 10

Shock Waves

10.1 Introduction

Shock waves are associated with compression, whereas the flows we have so far
investigated have all involved expansion. Returning to the piston problem, we
reverse the direction of travel of the piston into the gas, rather than out. The
gradients of the characteristics C− are still given by equation (9.12). Thus as
vp < 0, the slope of the characteristic progressively increases. Physically this
is due to the fact that the sound speed in adiabatic change varies as

c ∝ ρ(γ−1)/2

and the sound speed increases in compression.
The characteristics C− thus converge and eventually intersect. This, how-

ever, cannot occur as the flow would become multi-valued at the intersection,
which is physically impossible.1 The model we have used must therefore have

1Historical note The argument that the characteristics intersect leading to disconti-
nuity is due to Riemann (1860) The difficulty appeared earlier in Poisson (1808) in studies of
compressive finite amplitude sound waves (simple waves) and was identified more definitively
later by Stokes (1848) and Earnshaw (1860), when the compressive part of the sound wave
was shown to progressively steepen. Riemann (1860) proposed that at this point the flow
underwent a discontinuous transition. However, the concept of discontinuities in solutions
of the (differential) hyperbolic equations caused mathematical difficulties, which have only
been recently resolved, Appendix 10.A.3 (see Salas, 2007). Furthermore Rayleigh (1945,
vol. 2, §250–253) showed that because the flow was assumed to be adiabatic, the condition
of energy conservation could not be satisfied. However, this latter problem had already been
resolved by Rankine (1870) and subsequently by Hugoniot (1887, 1889) who independently
realised that the flow was non-isentropic. The lack of continuity was accounted for by
the introduction of dissipational factors within a narrow shock layer accounting for the
discontinuity in the context of asymptotics.
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become invalid. The reason for this is easily seen, for as the intersection is
approached, the gradients in the physical quantities, velocity and temperature
become large. Consequently we can no longer neglect the effects of viscosity and
thermal conduction, and they contribute strongly and ensure the single-valued
nature of the flow. This transition is known as a shock, and takes place over a
narrow region of thickness of the order of the mean free path, the shock layer.
Since both viscosity and thermal conduction give rise to dissipation, the shock
transition must lead to an increase in the entropy of the flow. This increase in
entropy requires that the velocity of the flow on entry to the shock be super-
sonic, i.e. the Mach number M1 = v1/c1 > 1 where v1 and c1 are respectively
the flow velocity relative to the shock and the sound speed on entry. The shock
layer is therefore a narrow zone in which the full dissipational equations must
be solved, sandwiched between two asymptotic flows of isentropic fluid. In prin-
ciple the complete flow could be treated by the method of matched asymptotic
expansion (Appendix 6.A), but this is normally unnecessary.

As the intersection is approached the envelope of the characteristics C− takes
the form of a cusp known as the shock cusp.

10.2 The Shock Transition and the
Rankine–Hugoniot Equations

As the shock is typically only a few mean paths in thickness, within the fluid
description, it has zero width. Thus we may regard the shock as a discontinuity
in which the flow variables change their values from their upstream to their
downstream values as they pass through the shock. Since the shock is very
narrow and contains no external sources of mass, momentum or energy, the
flux of each of the three quantities leaving (downstream) the shock must equal
that entering (upstream). This condition is most easily established in the rest
frame of the shock, where if the upstream values are (v1, ρ1, p1, h1) and the
downstream ones (v2, ρ2, p2, h2) we obtain for the case where the shock is
normal to the flow:2

Mass conservation ρ1 v1 = ρ2 v2

Momentum conservation ρ1 v1
2 + p1 = ρ2 v2

2 + p2

Energy conservation
(
h1 + 1

2v1
2
)

ρ1 v1 =
(
h2 + 1

2v2
2
)

ρ2 v2

(10.1)

2Historical note These conservation equations were independently derived by Rankine
(1870) and Hugoniot (1887, 1889). The existence of discontinuities in the solutions of the
inviscid hyperbolic equations proved to be a major stumbling block to the acceptance of
the theory of shock waves. Their existence was not finally accepted until the work of Becker
(1922) (Section 10.5.1) established that stable solutions were possible. Nowadays it is known
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The third of these equations may be simplified to obtain

h1 +
1
2
v1

2 = h2 +
1
2
v2

2 (10.2)

Thus Bernoulli’s equation is applicable across a shock in addition to its role in
ideal flow.

These equations are completed by the equation of state in the form h(p, ρ), so
that there are then three equations for three unknown quantities. For example,
if the upstream (v1, p1, ρ1) values in a polytropic gas are known, a unique
solution is easily obtained.

In many cases the situation in the laboratory system involves the shock
moving into an ambient gas at rest. In that case the transition from the shock
frame to the laboratory frame is readily established by the transformation
v = U − u, where u and v are the velocities in the laboratory and shock frames
respectively, and U the shock speed. Since the velocity is taken as positive for
flow into the shock, the velocity of the shock into the undisturbed gas is U , and
u1 = 0 so that the ambient gas is stationary. In such experimental situations
the boundary conditions are usually specified either by the Mach number of
the shock moving into gas at rest (M1), or by the downstream pressure (p2)
driving the shock.

10.2.1 Rankine–Hugoniot Equations for a Polytropic Gas

The Rankine–Hugoniot jump relations across a shock of given Mach number
M1 propagating into a polytropic gas are relatively easy to obtain (prob-
lem #32). The results are

y =
ρ2

ρ1
=

v1

v2
=

(γ + 1)M1
2

(γ − 1)M1
2 + 2

(10.3a)

Π =
p2

p1
=

2γM1
2 − (γ − 1)

(γ + 1)
(10.3b)

T2

T1
=

c2
2

c2
1

=

[
2γM1

2 − (γ − 1)
] [

(γ − 1)M1
2 + 2

]
(γ + 1)2M1

2 (10.3c)

v2

c1
=

(γ − 1)M1
2 + 2

(γ + 1)M1
(10.3d)

v2

c2
=

√{
(γ − 1)M1

2 + 2
2γM1

2 − (γ − 1)

}
(10.3e)

that generalised solutions called weak solutions of the hyperbolic equations exist satisfy-
ing the general integral relations, expressions of the conservation laws, equivalent to the
Rankine–Hugoniot relations. Experimentally shock waves were first observed by Mach and
Salcher (1887), although their attribution was unclear at that time. An interesting review of
the controversy surrounding ‘waves of permanent type’ is given by Salas, (2007).
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We note the important result that v2 < c2 since γ > 1, a condition which
can be extended to gases with a general equation of state. This ensures that
downstream characteristics can reach the shock, and enables energy from the
driving source to be supplied to the shock to account for the increasing energy
in the flow in the laboratory frame, where the ambient gas is at rest.

The density and pressure ratios can conveniently be written in terms of each
other

Π =
p2

p1
=

(γ + 1) ρ2 − (γ − 1) ρ1

(γ + 1) ρ1 − (γ − 1) ρ2
=

(γ + 1) y − (γ − 1)
(γ + 1) − (γ − 1) y

(10.4a)

y =
ρ2

ρ1
=

(γ + 1) p2 + (γ − 1) p1

(γ + 1) p1 + (γ − 1) p2
=

(γ + 1) Π + (γ − 1)
(γ + 1) + (γ − 1) Π

(10.4b)

It is clear from equation (10.4a) that the compression ratio varies between
the limits (γ − 1)/(γ + 1) ≤ y ≤ (γ + 1)/(γ − 1) corresponding to shocks with
zero and infinite upstream pressure respectively.

A useful relationship, due to Prandtl, is easily obtained from the preceding
analysis between the product of the upstream and downstream velocities and
the maximum velocity vmax (1.43), and thus the critical velocity c∗ (1.47). Since

v2
max =

2γ

(γ − 1)
p1

ρ1
+ v1

2

we may substitute for γ p1/ρ1 = c1
2 in (10.3a) to obtain

v2

v1
=

(γ − 1)
(γ + 1)

(
1 +

(vmax
2 − v1

2)
v1

2

)

v1v2 =
(γ − 1)
(γ + 1)

vmax
2 = c2

∗ (10.5)

10.2.1.1 Strong shocks

If the Mach number is very large, M1 � 1, the shock relations take a particu-
larly simple form

y =
ρ2

ρ1
=

(γ + 1)
(γ − 1)

Π =
p2

p1
=

2
(γ + 1)

M1
2 (10.6)

Θ =
T2

T1
=

2(γ − 1)
(γ + 1)2

M1
2
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The remaining terms are easily found. We note that the compression ratio
tends to a constant value and the downstream pressure scales as the square of
the Mach number.

10.3 The Shock Adiabat

The flux j = ρ1v1 = ρ2v2 through the shock is given by the second Rankine–
Hugoniot relation, which can be written p1 + j2V1 = p2 + j2 V2 in terms of the
specific volume V = 1/ρ. Hence

j2 =
p2 − p1

V1 − V2
(10.7)

This requires that if p2 > p1 then V1 > V2 and vice versa. This relationship
allows a further useful expression

v1 − v2 = j

(
1
ρ1

− 1
ρ2

)
= j (V1 − V2)

=
√

[(p2 − p1) (V1 − V2)] (10.8)

Using the third Rankine–Hugoniot relation

h2 − h1 − 1
2

(V2 + V1) (p2 − p1) = 0

and substituting the internal energy ε for the enthalpy h,

ε2 − ε1 +
1
2

(V2 − V1) (p2 + p1) = 0 (10.9)

This relationship is known as the shock adiabat, or, when plotted as a func-
tion of the final state p2(V2), as the Hugoniot curve. For general materials it is a
function of the equation of state, and, if known experimentally, it may be used
to deduce useful information about the form of the equation of state. Clearly
the adiabat is a function of the initial conditions. Each different upstream state
(p1, V1) will generate a different Hugoniot.

The Hugoniot for a polytropic gas is particularly simple, namely

p2 − p1

p2 + p1
= −γ

V2 − V1

V2 + V1
= γ

ρ2 − ρ1

ρ2 + ρ1
(10.10)

This equation may be combined with the shock momentum conservation equa-
tion (10.1) in the form

p2 − p1 +
ρ1 ρ2

ρ2 − ρ1
(v2 − v1)2
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to give the useful relation for a polytropic gas

(p2 − p1)
2 =

ρ1

2
(v2 − v1)

2 [(γ + 1) p2 + (γ − 1) p1]

=
ρ2

2
(v2 − v1)

2 [(γ + 1) p1 + (γ − 1) p2] (10.11)

The Hugoniot for this case may be simply expressed in a universal form in
terms of the pressure ratio Π = p2/p1 and the density ratio y = ρ2/ρ1 shown
in Figure 10.1 for the case γ = 5/3.

0.5 1 1.5 2 2.5 3 3.5 4

V2/V1
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1
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3
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P 2
/P

1

Shock adiabat
Isentropic adiabat

γ = 5/3

Figure 10.1: The Hugoniot curve for a polytropic gas with adiabatic index γ = 5/3 in
terms of the specific volume V . Note that the pressure axis is plotted on a logarithmic scale.

Figure 10.1 exemplifies the typical form of the adiabat for many materials.
The curve is concave towards larger final density, having a hyperbolic shape.
The curve extends from a limiting compression at high upstream pressure
through the initial condition to the limiting rarefaction at low pressure. There
are two possible families of transitions satisfying the Rankine–Hugoniot equa-
tions. In general the compressive transition involves dissipation and gives rise
to an entropy increase. Since discontinuous solutions formed in expansion
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decrease entropy, we conclude that there is an additional constraint to the
Rankine–Hugoniot relations imposed by the second law of thermodynamics,
which ensures the uniqueness of a shock discontinuity, i.e.

s2 > s1 (10.12)

The gradient of the chord (p1, V1) to (p2, V2) is −j2 = −ρ1
2 v1

2 and therefore
expresses the shock velocity. Hence allowing the final state to be nearly the
same as that of the initial, we see that the gradient at the initial state yields
the upstream sound speed through

dp

dρ

∣∣∣
1

= −(ρ1 c1)2

In fact, as we show, the adiabatic curve through (p1, V1) has a third-order
contact with the shock adiabat for weak shocks (Section 10.3.1). This is
illustrated in Figure 10.2.
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Hugoniot through initial point (p1,V1)

Hugoniot through final point (p2,V2)

Isentrope through initial point (p1,V1)

Isentrope through final point (p2,V2)

Chord through (p1,V1) – (p2,V2)

γ = 5/3

Figure 10.2: Upstream and downstream Hugoniot curves for a polytropic gas with
adiabatic index γ = 5/3 plotted together, so that the upstream curve starts at
(p1 = 1, V1 = 1) and the downstream one at (p2 = 10, V2 = 18.5). Also plotted are the
adiabatic curves through each point, and the chord between the initial and final points.
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Figure 10.2 allows the identification of many of the characteristic properties
of shocks directly. Since the form is representative of nearly all materials, the
results apply very generally. The shock adiabat lies above the isentrope through
the initial point for compression, but below for expansion, thus confirming that
shocks are only allowed in compression. The shock adiabat touches and inter-
sects the isentrope at the initial point, in conformity with our later conclusion
that the entropy change is of third order (Section 10.3.1). The magnitude of
the gradient of the adiabat is greater than that of the chord from (p1, V1) to
(p2, V2), and therefore the shock velocity is larger than the initial sound speed
v1 > c1. We show later that the entropy gain is of third order in the pressure
jump, and it follows that the entropy increases along the adiabat as the pres-
sure increases. A result consistent with problem #33, which can be established
quite generally (Landau and Lifshitz, 1959, §84).

In expansion, the shock adiabat would lie below the isentrope, reflecting
a decrease in entropy for a transition obeying the Rankine–Hugoniot rela-
tions. This would be forbidden by the second law of thermodynamics. However,
the Hugoniot plot allows extension to increasing specific volume (expansion)
although forbidden by this additional constraint. The initial point (p1, V1)
therefore lies on the expansion branch of the shock adiabat starting at the
final point (p2, V2).3 At the point (p2, V2) the magnitude of the gradient is
greater than that of the chord from (p1, V1) to (p2, V2) and hence v2 < c2.

10.3.1 Weak Shocks and the Entropy Jump

It may be expected from our previous discussion that weak shocks will prop-
agate along a characteristic. However, since a shock is a strong discontinuity
with the values of the flow variables changing discontinuously, this is not guar-
anteed. Nonetheless it is easy to show that the velocity of a weak shock is
indeed the adiabatic sound speed. A weak shock is one in which the change in
the values of the parameters is small. Thus

p2 = p1 + δp ρ2 = ρ1 + δρ v2 = v1 + δv h2 = h1 + δh

The Rankine–Hugoniot equations linearise to

ρ1 δv + v1 δρ = 0
ρ1 v1 δv + δp = 0

δh + v1 δv = 0

3Note that the shock adiabat from (p2, V2) is not the same as that from (p1, V1), even
though both have the initial and final points in common.
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Introducing the entropy change δs and making use of the thermodynamic
relation dh = Tds + (1/ρ)dp we reduce the equations to

∂p

∂s

∣∣∣
ρ
δs +

[
∂p

∂ρ

∣∣∣
S
− v1

2

]
δρ = 0[

ρT +
∂p

∂s

∣∣∣
ρ

]
δs +

[
∂p

∂ρ

∣∣∣
S
− v1

2

]
δρ = 0

(10.13)

Since the temperature T is non-zero, these relations are only consistent if
δs = 0. Thus we conclude that to first order the shock is adiabatic. It is also
clear that the shock velocity is

v1 ≈
√

∂p

∂ρ

∣∣∣
S
≈ c1

The velocity change across the shock is clearly given by

v1 − v2 =
∂p

∂ρ

∣∣∣
S

(ρ2 − ρ1)
ρ1v1

and since v ≈ v1 ≈ v2 ≈ c =
√

∂p/∂ρ|S
(v1 − v2)

v
≈ (ρ2 − ρ1)

ρ
≈ (p2 − p1)

ρ c2
(10.14)

To identify the nature of the entropy change we must take the expansion
to higher order. Expanding the enthalpy in Taylor’s series in terms of entropy
and pressure,

δh = T δs + V δp +
1
2

∂V

∂p

∣∣∣
S

δp2 +
1
6

∂2V

∂p2

∣∣∣
S

δp3 (10.15)

where V = 1/ρ is the specific volume and we have made use of the thermo-
dynamic relation used above to treat the derivatives of the enthalpy. From the
third Rankine-Hugoniot equation we obtain

δh =
1
2

(v1 + v2) δv =
1
2

(V2 + V1) δp

=
1
2

{
2V1 δp +

∂V

∂p

∣∣∣
S

δp2 +
1
2

∂2V

∂p2

∣∣∣
S

δp3

}

Hence we obtain the result that

δs =
1

12 T1

∂2V

∂p2

∣∣∣
S

δp3 (10.16)

and we infer that the entropy change is third order in the pressure and density.
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Since for nearly all materials ∂2V /∂p2
∣∣∣
S

> 0, we conclude that entropy
increases across the shock, and that a weak shock is thermodynamically irre-
versible provided the pressure increases across the shock, i.e. the shock is
compressing. This entropy increase is the result of viscosity and thermal con-
duction within the shock front transition region as discussed earlier. It is also
clear that shocks cannot form in expansion, an entropy decrease being for-
bidden by the second law of thermodynamics. There is therefore an entropy
condition to be added to the Rankine–Hugoniot equations defining the shock:

s2 ≥ s1 (10.17)

This important result has only been derived for weak shocks, although
applying to general materials. The generalisation to consider arbitrary shock
strength and any material was achieved independently by Bethe (1942) and
Weyl (1944), who identified additional criteria to ensure an entropy gain in
compressive discontinuities. Fortunately for most materials these conditions
are satisfied, and it may be assumed quite generally that shocks form in com-
pression subject to the Rankine–Hugoniot relations. The result is proved for
a polytropic gas in problem #33.

This result is important in the context of the Cauchy problem. As we have
seen, solutions are well defined provided they are continuous. In compression
we have shown that the flow is discontinuous when a shock is formed, the
shock relations being expressions of the integral (conservation law) forms of the
inviscid compressible fluid dynamical equations. In fact the Rankine–Hugoniot
equations are not unique as a solution of the Cauchy problem; that is, if
the upstream flow parameters are given, there are multiple solutions down-
stream. Once the entropy condition (10.17) is added, the uniqueness of the
solution is obtained, as can be seen from the discussion of the Hugoniot plot
in Section 10.3. A more formal discussion is given in Appendix 10.A.

For weak shocks equation (10.14) takes the form

(v1 − v2)
v

=
(ρ2 − ρ1)

ρ
=

1
γ

(p2 − p1)
p

(10.18)

This result is identical to that for an adiabatic change, as is expected since the
entropy increase in weak shocks is only third order in the shock strength.

10.4 Shocks in Real Gases

Thus far we have considered shock waves in ideal polytropic gases only, i.e.
ones for which the enthalpy is

h =
γ

γ − 1
p

ρ



Shock Waves 251

However a shock wave may involve considerable heating of the gas, which
may result in changes in the vibrational and electronic structure of the
molecules. These may take a short time to achieve, but the gas behind
the shock will achieve a state of thermal equilibrium in which the various
modes are balanced. The value of the polytropic constant γ is determined by
the number of degrees of freedom f of the gas molecules. For a monatomic gas
only motional degrees are allowed and f = 3, and for diatomic molecules two
additional rotational degrees are allowed, f = 5. The polytropic constant is

γ =
f + 2

f

and for monatomic gas γ = 5/3 and for diatomic gas γ = 7/5.
As the temperature is increased the internal energy of the molecules becomes

comparable with the vibrational and ultimately the electronic excitation ener-
gies. As a result progressively more degrees of freedom become involved and
γ is decreased. The value of γ behind the shock wave may be estimated by
considering the total specific enthalpy

(γ′ − 1)
γ′ = ε + p V = εt + εr + εv + εe + p V (10.19)

where the terms ε are the specific internal energies associated with the various
different modes and V the specific volume. However, we note that the vibra-
tional and electronic modes do not become fully developed as classical degrees
of freedom until

e ∼ k T � ΔE

where ΔE is an appropriate energy interval.
In addition to these excitation effects the gas will also be dissociated and

ionised if the temperature is sufficiently high. Generally ionisation becomes
important before electronic excitation contributes significantly to the enthalpy
(Figure 10.3).

Suppose the cold gas, into which the shock is driven, is composed of molecules
M , which dissociate into two monatomic molecules A and B, which are them-
selves subsequently ionised. The total enthalpy per molecule of the gas, M , is
made up of components from the dissociated molecules and their products, the
ions and electrons:

h′ = (1 − α) εM + εV + α D + α xA IA + α xB IB

+ α (1 − xA) εA◦ + α xA εA+ + α (1 − xB) εB◦ + α xB εB+

+ α (xA + xB) εe− + p V
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Figure 10.3: Sketch of the variation of specific enthalpy (h) with temperature (T ) for a
diatomic molecular gas whose constituent atoms are singly ionised. The regions where
vibrational excitation (V ), dissociation (D) and ionisation (I ) play a role are indicated.
The variations of dissociation and ionisation with initial number density of the molecule
(N ) are shown.

where α is the dissociation fraction and xA and xB the fractional ionisation of A
and B respectively. D is the dissociation energy per mole and IA and IB the ion-
isation energies of A and B per mole of M . For a diatomic molecule the internal
energy of a molecule comprises thermal, rotational and vibrational energies

εM =
3
2

k T + k T + εV

For a diatomic molecule the total vibrational energy of the molecule is deter-
mined by a Boltzmann distribution amongst the set of vibrational energy levels.
The mean energy of a single mode of oscillation of frequency ν is

εV ≈ h ν

[exp(n hν/kT ) − 1]
where h is Planck’s constant.

The dissociation fraction is determined by the law of mass action

α2

1 − α
=

K

NM
heterogeneous molecules

=
K

4NM
homogeneous molecules
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where NM is the density of molecules M and K the dissociation constant,
which varies as

K =
Zatoms

Zmolecule
exp(−D/kT )

where D is the dissociation energy and Z are the partition functions.
The ionisation fractions are described by Saha’s equation, which is similar

to the law of mass action

xZ

1 − x
≈ h3

NA (2 π k T )3/2

g0

2 g1
exp(−I/kT )

where I is the ionisation energy, g0 and g1 the statistical weights of the neutral
and ion respectively, Z the fractional number of electrons and NA the number
of atoms of species A. Only one stage of ionisation is assumed. If the density is
low and the temperature high, Saha’s equation may need to be replaced by one
based on a coronal equilibrium in which total detailed balance is not assumed.

The internal energies of the ions are mainly their kinetic energies only,
excitation playing a relatively small part in the overall energy balance,
because the bound electrons are more readily ionised than excited. The
internal energies of the atoms, ions and electrons per particle are therefore
simply their kinetic energy

εA◦ = εA+ = εB◦ = εB+ = εe− =
3
2

k T

The total pressure follows in a similar manner using Dalton’s law of partial
pressures. Thus the pressure per molecule of M is

p′ = (1 − α) pM + α(1 − xA) pA◦ + α xA (pA+ + pe−)
+ α(1 − xB) pB◦ + α xB (pB+ + pe−)

But in thermal equilibrium the pressures are all due to the thermal energy

pM = pA◦ = pA+ = pB◦ = pB+ = pe− = kT

and the pressure takes the simpler form

p = [1 − α + α (1 + xA + xB)] NkT

= [1 + α (xA + xB)] NkT (10.20)

where N is the number density of the molecules M . The specific enthalpy is

h =
1
M

{ 5
2

kT [1 + α + α (xA + xB)] + kT (1 − α)

+ εV + α D + α xA IA + α xB IB

}
(10.21)

where M is the molecular mass of M .
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10.5 The Hydrodynamic Structure
of the Shock Front

As we have discussed, the actual shock cannot be a mathematical discontinuity
in which the jumps in velocity, density and pressure occur abruptly. Rather
the behaviour of the fluid in the discontinuity must be governed by the viscos-
ity and thermal conduction in the fluid, which generate the entropy increase
necessary to support the shock. Such an analytic model was developed for poly-
tropic gases by Rayleigh (1910), Taylor (1910) and Becker (1922). In general
a purely hydrodynamic picture in terms of viscosity and thermal conduction
is not satisfactory. The continuum approximation cannot be maintained as
the shock thickness is of the same order of magnitude as the mean free path.
In addition the use of bulk averaged transport coefficients, which imply that
relaxation amongst the different energy modes is instantaneous, is invalid. A
full discussion of the structure of the shock front is given in Zel’dovich and
Raizer (1967, chap. 7). Becker’s model,which we follow here, allows a descrip-
tion of the essential properties of the shock transition in a gas, particularly if
the shock is weak, when we may express these changes using fluid dynamical
principles of conservation. In the shock frame, the flow is steady: the conserva-
tion laws of mass (1.18), momentum (3.9) and energy (3.11) require that the
corresponding total fluxes are constant through the shock

ρv = C1 = ρ1M1c1

ρv2 − τ = C2 =
(

1
γ

+ M2
1

)
ρ1c1

2 (10.22)

ρh v +
1
2
ρv2 − τ v − q = C3 =

(
1

(γ − 1)
+

1
2
M1

2

)
ρ1c1

3

where τ = 4
3 μ′ dv/dx − p is the total stress and q = κdT/dx the heat flux

due to thermal conduction. The effective (‘longitudinal’) viscosity is associated
with the longitudinal stress for a one-dimensional flow and includes the second
coefficient of viscosity 4

3 μ′ = 4
3 μ + ζ. To investigate this flow we assume a

perfect gas whose pressure p = nk T where n = ρ/M is the number density
of particles, k Boltzmann’s constant and M the molecular mass. The internal
energy may be written in terms of the temperature and the number of degrees
of freedom f of the molecule as 1

2 f nk T .
The growth of entropy through the shock layer is determined by the viscous

forces and thermal conduction from equation (3.12)

ρ v
ds

dx
=

1
T

{
μ′

(
dv

dx

)2

+
d
dx

(
κ

dT

dx

)}
(10.23)
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The entropy jump is obtained by integrating this equation across the shock

ρ v (s2 − s1) =
∞�

−∞

1
T

{
μ′

(
dv

dx

)2

+
d
dx

(
κ

dT

dx

)}
dx

=
∞�

−∞

{
μ′ 1

T

(
dv

dx

)2

+ κ

(
1
T

dT

dx

)2
}

dx ≥ 0 (10.24)

after an integration by parts. The total entropy generation across the shock
is therefore positive as required. However, the entropy generated has been
shown elsewhere (Sections 10.3.1 and 10.2.1) to be independent of the values
of the viscosity and thermal conductivity. The role of viscosity and thermal
conductivity is to determine the structure and thickness of the shock layer but
not its limits.

This is a remarkable conclusion, in that a steady state flow between two
constant states of flow can be established with values independent of the effects
responsible for it. It is not obvious that such flows are possible. However, this
can be rigorously established for a shock of arbitrary strength in a general
fluid. To demonstrate this conclusion we consider in detail two cases:

1. Arbitrary shocks in polytropic gas with Prandtl number = 0.75 (Becker’s
solution).

2. Weak shocks in a general material.

The generalisation of both these cases involves the formal treatment of the
governing differential equation without calculating the detailed structure. We
note in passing that these are the two cases for which we proved that shocks
satisfying the entropy condition existed. Extensive experimental experience
confirms these conclusions and shows that shocks exist in this form.

In general the entropy has a maximum within the transition layer. Clearly the
term due to viscosity is positive throughout the layer. However, the thermal
conduction heat flux flows from the high temperature downstream towards
the low temperature upstream. Since the gradient is zero at each limit, the
temperature profile has a point of inflexion. Heat is removed from the fluid
downstream of the point of inflexion, flows upstream and is added upstream.
The entropy generation due to thermal conduction alone is therefore positive
upstream of the temperature point of inflexion and negative downstream. This
may give rise to the maximum in the entropy.

The thermal conductivity may be written in terms of the longitudinal
Prandtl number P

κ =
cp μ′

P =
γ

(γ − 1)
R
P μ′
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where R = k/M is the gas constant. Neglecting the second coefficient of vis-
cosity, kinetic theory yields for the first coefficient of viscosity

μ′ ≈ μ =

√
2RT

π
ν ρ � (10.25)

for hard-sphere elastic molecules. The constant ν ≈ 0.998 and � is the mean
free path.

10.5.1 Polytropic Gas Shocks

We next consider the general case of arbitrary Mach number, but for a gas with
restricted properties, namely ideal with a Prandtl number P = 3/4.4 The conservation
equations (10.22) may be reduced to

C1 v + p − μ′ dv

dx
= C2

1
(γ − 1)

C1 RT v + C2 v − 1
2
C1 v2 − κ

dT

dx
= C3

(10.26)

The problem may be more conveniently treated by introducing a set of dimensionless
variables to avoid unnecessary constants. We also introduce the dimensionless length
in terms of mean free paths from equation (10.25) by neglecting the second viscosity

w =
C1

C2
v θ =

(
C1

C2

)2

RT and s =
x

�

Equations (10.26) take the simpler form

4
3

A

√
θ

w

dw

ds
= w +

θ

w
− 1 (10.27)

γ P−1 A

√
θ

w

dθ

ds
= θ − (γ − 1)

2

[
(1 − w)2 + α

]

where A =
√

2/π ν, and α = 2C1 C3/C2
2 − 1.

As the distance tends to infinity (the boundaries of the shock) the gradients reduce
to zero. Therefore

w1 + w2 =
2γ

(γ + 1)
and w1 w2 =

(γ − 1)
(γ + 1)

· 2C1 C3

C2
2

whose values are consistent with those obtained directly (equations 10.3).

4Historical note Solutions when either the viscosity (P = 0) or the thermal conduc-
tivity (P = ∞) are individually zero were obtained independently by Rayleigh (1910) and
Taylor (1910). The solution for the case P = 3/4 was obtained by Becker (1922). The formal
behaviour of the general problem of arbitrary Prandtl number is due to von Mises (2004).
No general analytic solution is possible.
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In general these equations must be solved numerically. However, there is an analytic
solution due to Becker (1922), which is valid for the particular value of the Prandtl
number P = 3/4. This value is typical of many gases, e.g. for air P = 0.88, although
not applicable to any particular gas. Substituting a quadratic in w for θ it is easily
shown that both equations (10.27) are identical if

θ =
(γ − 1)

2γ

(
2C1 C3

C2
2 − w2

)
=

θ2 w1
2 − θ1 w2

2

w1
2 − w2

2
− θ2 − θ1

w1
2 − w2

2
w2 (10.28)

This solution, when P = 3/4, has the remarkable property, which is given either
directly from equation (10.22) or from equation (10.28), that the sum of the enthalpy
and kinetic energy flows is constant through the shock, namely

cp T +
1
2

v2 = cp T1 +
1
2

v1
2 (10.29)

which is a form of Bernoulli’s equation. The equation may be expressed in terms of
the dimensionless variables as

γ

(γ − 1)
θ +

1
2

w2 =
C1C3

C2
2 (10.30)

Since the gradients at both boundaries w1 and w2 are zero, equation (10.27) must
take the form

4
3
A

√
θ

w

dw

ds
= −(w1 − w)(w − w2) (10.31)

If the viscosity is constant through the shock, then there is an analytic solution to this
differential equation

(w1 − w)w1

(w − w2)w2
=

(w1 −√
w1w2)w1

(
√

w1w2 − w2)w2
exp

{
3(w1 − w2)
4(w1 + w2)

w1

A
√

θ1

s

}
(10.32)

where the distance s = x/� is measured in mean free paths from s = 0 at the point of
inflexion in velocity w =

√
w1w2.

This equation has a convenient form in terms of the velocity ratio η = v/v1 = w/w1

in the shock and the Mach number M1

(η − η2)
η2

(1 − η)
=

(√
η2 − η2

)η2

(1 −√
η2)

exp
{
− 3

4ν

√
π

2γ

(M1
2 − 1)

M1
s

}
(10.33)

This solution clearly approaches the initial and final conditions asymptotically as the
flow moves from −∞ to +∞. The thickness of the shock is estimated from

s′ =
(w1 − w2)∣∣dw/ds|max

∣∣ ≈ 4
3
A

√
θ1

w1

w1
2 − w2

2

(w1 + w2) − 2
√

w1w2
(10.34)

Figure 10.4 shows the variation of the shock thickness with Mach num-
ber for a gas with polytropic index γ = 7/5 and constant viscosity. Since
(w1 − w2)/(w1 + w2) = (M1

2 − 1)/M1
2 and w1/

√
θ1 =

√
γM1, the shock front thick-

ness decreases approximately as ∼ M1/(M1
2 − 1). There is clearly a serious problem
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Figure 10.4: Plots of the shock layer thickness calculated in terms of the mean free path
for gas of constant viscosity as a function of the Mach number and polytropic constant
γ = 7/5. The constant and corrected temperature widths are plotted. Also shown are the
density, pressure and temperature ratios across the shock.

with this solution as the thickness for Mach numbers greater than approximately 3
is less than the mean free path. In part this may be ascribed to the neglect of the
variation of the viscosity through the shock. However, for variations over these short
lengths, the hydrodynamic approximations fail and the shock should be described in
terms of a kinetic theory model.

Figure 10.5 shows the variation of the velocity, pressure and temperature though a
Mach 2 shock in a gas with index γ = 1.4. It can be seen that the thickness over which
the variation takes place is about two mean free paths, consistent with Figure 10.4.
The entropy difference shows a maximum at the point of inflexion of the velocity
profile. This is found quite generally. It does not, however, reflect any violation of the
second law of thermodynamics, as the entropy is only required to increase over the full
transition. Using the first law of thermodynamics in the form

ρ T ds = dh − 1
ρ

dp

and making use of equation (10.29) and the second equation of the set (10.22), the
entropy generation rate may be written as

ρ v T
ds

dx
= ρ v

[
−v

dv

dx
− 1

ρ

d
dx

(
4
3
μ′ dv

dx

)
+ v

dv

dx

]
= −v

d
dx

(
4
3

μ′ dv

dx

)
= −4

3
μ′ v

d2v

dx2

(10.35)
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Figure 10.5: Plots of velocity ratio v/v1, density ratio ρ/ρ1, temperature ratio T/T1,
pressure ratio p/p1 and entropy gain (s − s1)/cv through a Mach 2 shock in a polytropic
gas with γ = 1.4.

for constant viscosity and Prandtl number P = 3/4. The entropy generation rate there-
fore increases up to the point of inflexion of the velocity profile, and falls thereafter.
This occurs as a result of the different behaviours of the two terms comprising the
entropy generation rate. Due to viscosity, the rate from equation (10.23) increases
throughout the shock. Thermal conduction, on the other hand, varies as κ d2T/dx2

and therefore changes sign at the point of inflexion.
Following Thomas (1944), we may approximately account for the variation of

the viscosity and thermal conduction in the shock by modifying equation (10.32) to
include the temperature change by using the approximate form from equations (10.25)
and (10.28):

s′ =
(w1 − w2)∣∣dw/ds|max

∣∣ ≈ 4
3
A

{
(w1 − w2)

[(
w1 + w2) (w1 w2 − (w1 + w2 − 1) w2

)]1/2

(w1 − w)(w − w2)

}
min

(10.36)
Figure 10.4 shows these corrected values for a range of Mach numbers. It can be seen
that the shock front thickness is now typically a few mean free paths wide provided
the shock is not too strong. For weak shocks the viscous model is not too inaccurate,
but we will discuss real gas effects in the next sections, which modify the structure
of the shock front.
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The solution of the governing equations for an arbitrary value of the Prandtl number
is due to von Mises (2004) and is expressed in a general form that does not allow an
analytic expression. The results show the same general behaviour as Becker’s solution.

10.5.1.1 Shocks supported by heat transfer

We noted earlier that is possible for a shock to be supported by heat transfer alone
without the action of viscosity, a case first examined by Rayleigh (1910) and by Taylor
(1910). It might be argued that both viscosity and thermal conduction are controlled
by viscosity and that one is consequent on the other. However, it is also possible
to have heat transfer totally independent of collisions, e.g. by radiative transfer. In
general this heat flux is always anti-parallel to the temperature gradient −dT/dx.

In the absence of viscosity the momentum equation takes the form

p + ρv2 = C2 =
1
γ

(
1 + γM1

2
)

(10.37)

The flow on the Hugoniot plot is a straight line between the points (p1, V1) and (p2, V2).
Since the left hand side of the first equation (10.27) is zero, we obtain the tem-

perature through the shock layer as a function of the velocity in the dimensionless
variables

θ = w (1 − w) (10.38)

which has a maximum at w = 1/2. The behaviour of the flow depends on whether this
maximum lies within the shock layer flow. Noting that

w1 =
γM1

2

1 + γM1
2 and w2 =

γ
[
(γ − 1)M1

2 + 2
]

(γ + 1)
(
1 + γM1

2
) (10.39)

clearly w1 and w2 have the limits γ/(1 + γ) ≤ w1 ≤ 1 and γ/(1 + γ) ≥ w2 ≥ (γ − 1)/
(γ + 1) for small and large Mach numbers M1 respectively:

• For weak shocks, M1 <
√

(3γ − 1)/[γ (3 − γ)], when γ/(γ + 1) > w2 > 1/2, the
maximum lies outside the flow. The temperature gradient is therefore dT/dx > 0
everywhere. The heat flow is counter to the stream as required to generate the
necessary pressure gradient. This is consistent with the preceding weak shock
layer calculation.

• For strong shocks, M1 >
√

(3γ − 1)/[γ (3 − γ)], and w1 > 1/2 > w2. The tem-
perature maximum therefore lies within the shock layer. The heat flow below
the point w = 1/2 is therefore downstream taking the heat away from the head
of the layer where it is required. Writing the second equation of (10.26) in terms
of the heat flux and substituting for the temperature,

C1

C2
2 q = −K dθ

dx
= − (γ + 1)

2
(w1 − w) (w − w2) (10.40)

where K(w, θ) is a rate coefficient of appropriate form for the type of heat trans-
fer process. This equation becomes inconsistent when the sign of the tempera-
ture gradient changes at the maximum, provided the velocity is monotonically
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decreasing. The latter can easily be shown to be the case from the above equa-
tion if K is constant, but also more generally The flow requires an isothermal
discontinuity, a discontinuous isothermal jump, from the point where θ = θ2 to
the final downstream flow at w = w2. This can only be accomplished by the
introduction of viscosity, which is contrary to our original assumption.

We may therefore conclude that it is possible to have shocks supported solely by
heat transfer provided the shock is sufficiently weak, the necessary dissipation and
entropy growth being provided by heat transfer alone. For strong shocks this is no
longer possible without the isothermal discontinuity.

10.5.2 Weak Shocks

For weak shocks the pressure and entropy differences are small across the flow. We
therefore seek to expand the flow variables in terms of powers of the pressure and
entropy differences using the conservation equations and Taylor’s expansions (Landau
and Lifshitz, 1959, §87). This follows closely the procedure used in Section 10.3.1.
We shall find that the reciprocal of the shock thickness δ is first order in pressure
difference, but that the entropy difference is second order. We need therefore to retain
terms up to (and including) second order in pressure and only first order in entropy.5

Thus the momentum and energy conservation equations take the form

(p − p1) + C1
2 (V − V1) − 4

3
C1 μ′ dV

dx
= 0 (10.41)

and
(h − h1) +

1
2
C1

2
(
V 2 − V1

2
) − 4

3
C1 μ′ dV

dx
− κ

C1

dT

dx
= 0 (10.42)

where, as before, we have used the specific volume V rather than density. Expanding
the change in specific volume by Taylor’s series,

V − V1 =
∂V

∂p

∣∣∣∣
s

(p − p1) +
1
2

∂2V

∂p2

∣∣∣∣
s

(p − p1)
2 +

∂V

∂s

∣∣∣∣
p

(s − s1) (10.43)

It will transpire that the reciprocal of the thickness of the front is of order (p − p1)
and that in consequence spatial derivatives of the form d/dx increase the order by
one. Hence the term ds/dx is of third order and therefore negligible, whilst dp/dx is
second order. Thus

dV

dx
=

∂V

∂p

∣∣∣∣
s

dp

dx
+

∂V

∂s

∣∣∣∣
p

ds

dx
≈ ∂V

∂p

∣∣∣∣
s

dp

dx
(10.44)

Substituting for dV/dx and V − V1 in equation (10.41) we obtain[
1 + C1

2 ∂V

∂p

∣∣∣∣
s

]
(p − p1) +

1
2
C1

2 ∂2V

∂p2

∣∣∣∣
s

(p − p1)
2 +

∂V

∂s

∣∣∣∣
p

(s − s1) =
4
3
μ′C1

∂V

∂p

∣∣∣∣
s

dp

dx

(10.45)

5This expansion is in line with our earlier conclusion that the total entropy jump was of
third order in pressure.
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Multiplying this equation by (V1 + V2)/2 and subtracting from equation (10.42) we
obtain

(h − h1) − 1
2

(p − p1) (V1 + V2) − 2
3
μ′C1 (V − V1)

dV

dx
− κ

C1

dT

dx
= 0 (10.46)

The third term is of third order and therefore negligible, and from the definition of
the enthalpy and retaining only terms up to second order,

h − h1 =
�
1

T ds + V dp ≈ T (s − s1) +
1
2

(V + V1) (p − p1) (10.47)

Expanding dT/dx and neglecting the term in ds/dx as before in equation (10.43),

T (s − s1) =
κ

C1

∂T

∂p

∣∣∣∣
s

dp

dx
(10.48)

Eliminating the entropy change in equation (10.45) we finally obtain an equation
for pressure across the shock front

1
2
C1

2 ∂2V

∂p2

∣∣∣∣
s

(p − p1)
2+

[
1+ C1

2 ∂V

∂p

∣∣∣∣
s

]
(p − p1) = C1

{
− κ

T

∂V

∂s

∣∣∣∣
p

∂T

∂p

∣∣∣∣
s

+
4
3
μ′ ∂V

∂p

∣∣∣∣
s

}
dp

dx

(10.49)
This equation may be simplified by noting that as x → ±∞, dp/dx → 0 and p → p1 or
p → p2, the final upstream and downstream states of the shock. Hence the quadratic
on the left hand side of the equation may be expressed as (p − p1)(p − p2) and we
obtain the differential equation

dp

dx
=

1
2
C1

{
∂2V

∂p2

∣∣∣∣
s

/ [
− κ

T

∂V

∂s
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+
4
3
μ′ ∂V

∂p

∣∣∣∣
s

]}
(p − p1)(p − p2)

=
1
2
C1

c2

V 2
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∂2V

∂p2

∣∣∣∣
s

/ [
4
3
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κ
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(
∂T

∂p
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c2

V 2

]}
(p − p1)(p2 − p) (10.50)

since ∂V/∂s
∣∣
p

= ∂T/∂p
∣∣
s
.

Since the shock is weak the viscosity and thermal conduction are nearly constant.
Setting the origin of the co-ordinate x = 0 at the point of inflexion of the pressure,
1
2 (p1 + p2) (at the mean pressure point), and integrating we obtain

x =
4aV 2

(p2 − p1) ∂2V
/
∂p2

∣∣
s

ln
{

(p − p1)
(p2 − p)

}

=
4aV 2

1
2 (p2 − p1) ∂2V

/
∂p2

∣∣
s

arctanh
{

p − 1
2 (p1 + p2)

1
2 (p2 − p1)

}
(10.51)

where approximating C1 ≈ c1/V1 since the shock is weak, we obtain

a =
V

2c3

[
4
3
μ′ +

κ

T

(
∂T

∂p

∣∣∣∣
s

)2
c2

V 2

]

which is a quantity associated with the decay of sound waves.
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Hence we obtain the layer thickness

δ = 8aV 2/(p2 − p1) ∂2V
/
∂p2

∣∣
s

(10.52)

and
p =

1
2
(p2 + p1) +

1
2
(p2 − p1) tanh

(x

δ

)
(10.53)

The density and hence the velocity variations are easily obtained to first order

ρ − ρ1 ≈ 1
c2

(p − p1) and
v

v1
=

ρ1

ρ
(10.54)

The entropy follows from equation (10.48)

s − s1 =
κ

16 a c V T

∂T

∂p

∣∣∣∣
s

∂2V

∂p2

∣∣∣∣
s

(p2 − p1) sech2
(x

δ

)
(10.55)

The entropy change has a maximum at x = 0, i.e. at the point of inflexion associated
with thermal conduction. If the shock is a result of viscosity alone this maximum
should vanish. This result is in accord with our earlier observations. The entropy
change tends to zero on the downstream side of the shock, which is clearly in error.
This discrepancy reflects the fact that the calculation has been carried out to second-
order accuracy only, but we have previously (Section 10.3.1) shown that the entropy
jump is a third-order term.

Weyl (1944) considered the generalisation of this result for an arbitrary material,
and showed that stable shock layers representing a matched solution between two ideal
flows existed. As may be expected this general result does not allow a solution in a
closed analytic form.

When the fluid is an ideal polytropic gas the adiabatic equation of state is
pV γ = const. Thus

∂T

∂p

∣∣∣∣
s

=
(γ − 1)

γ

T

p

∂p

∂V

∣∣∣∣
s

= −γp

V
= −γRT

V 2
= − c2

V 2
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∂2V

∂p2

∣∣∣∣
s

=
(γ + 1)

γ2

V

p2

and making use of Maxwell’s relations we obtain

a =
2V

c3

[
4
3
μ′ + κ

(
1
cv

− 1
cp

)]
=

2V

c3

[
4
3
μ′ +

(γ − 1)κ
cp

]
=

2V

c3
μ′

(
4
3

+ (γ − 1)P−1

)
(10.56)

where P = cp μ′/κ is the Prandtl number for the longitudinal viscosity. Taylor and
Maccoll (1935) obtained this result directly from equations (10.26) for a polytropic gas.

It follows from equation (10.56) that the shock layer is formed for all values of
the Prandtl number, i.e. independently of whether the dissipation is due to viscosity
or thermal conduction or a combination of the two. However, the two processes act
differently to decelerate the flow and increase the entropy:

• Viscosity is a friction force which acts to convert the directed motion of the flow
into random thermal motion. The heat is generated by collisional scattering from
the conversion of the kinetic energy of the one-dimensional flow into randomly
thermal modes.
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• Thermal conduction transfers heat from the hot regions upstream to the
cold gas downstream. The consequent increase in pressure at the higher density
causes the flow to decelerate. The heating of the gas is a consequence of the
compression resulting from the increased pressure. This mechanism can only
occur in continuous flow if the shock is not too strong.

10.6 The Shock Front in Real Gases

In Section 10.5 we examined the structure of the shock front as generated by
viscosity and thermal conduction. The very important result was found that
dissipation allowed the generation of a shock transition independent of the
details of the dissipation, the latter only determining the thickness of the front,
which was typically only a few mean free paths. In real gases, this approach cor-
rectly identifies the underlying physics, but is not accurate. Fortunately, exact
values of shock wave thickness are rarely needed, and a qualitative estimate is
normally sufficient. The problems are:

• The scale length of a few mean free paths is not sufficient to allow the
approximations of continuum theory.

• The time scale of the flow through the front is insufficient to allow thermal
equilibrium to be established.

To overcome these problems, kinetic theory has been used to calculate the
shock thickness (Zel’dovich and Raizer, 1967, chap. 7). The thickness thereby
obtained was significantly greater than that due to Thomas’s continuum
theory. Hornig and co-workers obtained experimental measurements of front
thickness in approximate agreement with the kinetic theory results (Bradley,
1962, chap. 7), using an optical technique based on optical reflection within
the shock front.

When the fluid is a monatomic gas and the shock not too strong, the role
of the shock front is simply to randomise a fraction of the directed motion
of the gas in front of the shock into the thermal energy behind it. This is
accomplished by a series of collisions amongst the gas molecules, which lead to
a thermal equilibrium (Maxwell–Boltzmann) molecular velocity distribution.
Typically only two or three collisions are required to substantially reduce the
flow velocity, although slightly more are needed to achieve full equilibrium.
Within the fluid picture this is due to the viscosity, and the thickness estimated
thereby is not inconsistent with this kinetic picture.

When the gas is polyatomic, the situation is more complicated in that addi-
tional degrees of freedom are introduced. Suppose the shock is so strong that
molecular vibration or electronic excitation is not established. To illustrate this
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behaviour suppose the only additional mode introduced is rotation. This typ-
ically relaxes into an equilibrium distribution more slowly than the motional
modes–usually 10 to 15 collisions. In hydrogen it takes about 300 collisions,
due to the low moment of inertia of the molecule and the consequent large
separation of the rotational levels. The rotational relaxation occurring more
slowly is therefore nearly independent of the translational one. The gas there-
fore rapidly relaxes to conditions behind a shock with three degrees of freedom,
i.e. γ = 5/3 associated with translational motion, within the model discussed
earlier. The slower relaxation of the rotational modes increases the number of
degrees of freedom and decreases the temperature correspondingly. A diatomic
gas with two rotational modes relaxes to the Rankine–Hugoniot final state of
a gas with γ = 7/5. The increase in entropy from the initial condition behind
the shock front to the final one is due to the dissipation associated with the
mode relaxation. The time taken for the energy distribution of a mode to relax
to the thermal equilibrium value is known as the relaxation time.

In fact rotational relaxation is usually sufficiently fast that it can be accom-
modated within the shock front and its relaxation process is not identifiable
in the manner described above. Such modes which are fully populated in the
shock front are known as active modes. The energy separation of the states is
generally small compared with the thermal energy available making excitation
easy. However, vibrational and electronic excitation levels generally have
large energy gaps exceeding the thermal energy. Their relaxation is generally
slow compared with the active modes, the relaxation playing a distinctive
role in the temporal development of the flow behind the shock (Figure 10.6).
They are known as inert modes. The relaxation time for the active (motional
and rotational) modes is typically a few collision intervals, due to the small
energy gaps. For the inert modes relaxation times are generally of the order
of microseconds, although these are small compared with the characteristic
times of the flow and therefore are effectively a discontinuity. However, they
are readily measured experimentally.

The slow relaxation of the inert modes causes viscosity to play very little
part in the changes in the pressure and density during this phase of relaxation.
As a result the pressure and specific volume vary linearly during this phase.
Figure 10.7 shows the effects of this for a gas with one inert mode. It can
be seen that the initial compression from (p1, V1) to (p′2, V ′

2) associated with
the active modes takes places along a curved path, whereas the final stage
to (p2, V2) is along a straight line on the Hugoniot plot. Note that due to
the additional modes, the final state Hugoniot, including the inert modes, lies
below (in pressure) that for the active modes alone. If the shock is sufficiently
weak, it may happen that the shock chord lies below the tangent to the active
mode Hugoniot (but above the full one). In this case no intermediate shock
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Figure 10.6: Sketch of the variations of the pressure, density and temperature with time
behind the shock front for a gas with one inert mode (a) and one with two (b). Note the
change in relaxation rate when thermal equilibrium is nearly achieved for the faster mode.
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Figure 10.7: Sketch of the Hugoniot curves for a gas with one inert mode. The upper
curve is the Hugoniot plot for the active modes of a shock (dashed), initial state (p1, V1)
and passing through the intermediate state (p′

2, V
′
2 ). The relaxation to the lower final

Hugoniot is along the straight line to the final state (p2, V2). If the shock is weak the shock
transition to the active modes alone may not be allowed and the shock moves directly along
a straight line (dotted) to the final state (p′′

2 , V ′′
2 ).
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is able to form,6 but one may with full relaxation. In this case the active
modes thermalise almost synchronously with the relaxation of inert modes.
This latter situation is rare as the excitation of vibrational modes requires
reasonably strong shocks. The most likely situation where this may occur is a
weak shock in hydrogen.

The second viscosity ζ is clearly associated with volume change. Relaxation
processes such as this may therefore be described within the fluid picture by
an appropriate value of this coefficient. However, it will be appreciated that in
this case, the value of this viscosity will depend on the characteristic time in
the problem and the relaxation rate, i.e. it cannot be treated as a tabulated
constant, unlike the first coefficient or thermal conductivity. Fortunately its
use is very infrequent.

As the shock strength increases, additional modes are brought into play:
firstly vibration and dissociation, subsequently electronic excitation and ion-
isation. All these processes are slow to reach equilibrium. Relaxation times
are measured in nanoseconds and microseconds instead of collision intervals.
The slow rate of relaxation means the region behind the shock front is thick,
and clearly structured as the temperature falls to accommodate the energy
required to excite the vibrational and electronic energy levels. Since the trans-
lational relaxation rates are very much faster than those of excitation, the
motional modes have a Maxwellian distribution and a well-defined tempera-
ture, although total equilibrium is not yet achieved. Within the relaxation zone
there is a clear structure as the temperature decreases, the density increases
and the pressure falls, which can be observed experimentally.

10.7 Shock Tubes

A shock tube is a relatively simple device for generating shock waves in the
laboratory under controlled conditions (Figure 10.8). It is constructed from a
circular or rectangular tube usually of steel. High-pressure gas in the driver sec-
tion is separated from a low-pressure gas in the driven section. The separating
diaphragm is rapidly removed allowing the high-pressure gas to expand into
the low-pressure driven gas. The expansion into the low-pressure gas produces
a wave, which eventually settles down into a stable shock. A centred rarefac-
tion propagates back into the driver section. The driver and driven gases are
separated by a large discontinuity in density and temperature, known as the
contact surface, but pressure and velocity are constant across it. Although the
contact surface is generally stable, strong mixing between driver and driven
gases occurs due to the turbulence resulting from the rupture of the diaphragm.

6Since the shock is subsonic with respect to the active modes.
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Figure 10.8: Schematic of the basic shock tube configuration (a). The high-pressure driver
gas is separated from the low-pressure driven gas by a diaphragm. Removal of the
diaphragm drives a shock wave into the driven gas, separated from the driver gas by a
contact surface discontinuity (b). A centred rarefaction propagates back into the driver. At
the end of the shock tube the shocked gas is brought to rest in a reflected shock. The
resulting pressure distribution is shown in (c).

Measurements are therefore always made after the shock has travelled some
distance and is well separated from the contact surface. Different gases are
normally used as the driver and driven.

If the tube is closed by a rigid end, a reflected shock propagates back through
the shocked gas. This is often prevented by a large evacuated expansion tank,
called a dump chamber, separated from the shock tube by a second diaphragm,
where the moving shocked gas is brought to rest. A reflected rarefaction is also
formed from the end of the driver section, which normally plays no role in the
shock-forming process.

The sudden rupture of the diaphragm at a controlled pressure is critical
to the reproducibility of the generated shocks, and can by accomplished in a
number of ways:

• A mechanically driven knife is used to puncture the diaphragm.
• Annealed diaphragms of plastic or metal with well-defined bursting pres-

sure are used, often scored to rupture evenly.
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The driver pressure is raised slowly until the diaphragm bursts. Plastic is
used for low pressure and metal, typically copper or aluminium, for high.

Shock tubes have a variety of applications which make use of both the high
temperatures generated and the rapid rise in temperature:

• Chemical kinetics measuring molecular reaction rates and dissociation
times.

• Aerodynamics as a hypersonic wind tunnel allowing high temperatures
and pressures, e.g. to simulate atmospheric re-entry of spacecraft.

• Testing conditions in the turbine section of jet engines.
• Generating plasma flows under controlled conditions.

A major limitation for these applications is the limited flow time of a few
milliseconds between the transit of the shock and the contact surface or the
reflected shock.

10.7.1 Shock Tube Theory

A simple model of the shock tube for polytropic gases is easily developed using the
theory of the centred rarefaction (9.3.1) and the Rankine–Hugoniot equations for a
polytropic gas, equations (10.3).

If Ms is the Mach number of the shock propagating into the undisturbed gas7, the
pressure ratio across the shock is (equation 10.3b)

p2

p1
=

2γ1Ms
2 − (γ1 − 1)
γ1 + 1

(10.57)

where γ1 is the polytropic index of the driven gas in which the shock forms.
The velocity of the gas in the laboratory frame flowing behind the shock is given by

u2 = U − v2 =
[
1 − (γ1 − 1)Ms

2 + 2
(γ1 + 1)Ms

2

]
U =

2
(γ1 + 1)

(
Ms

2 − 1
Ms

)
U (10.58)

where v2 is the velocity of the flow behind the shock in the shock frame.
The pressure and velocity are constant through the shocked gas, and therefore the

pressure is p2 at the contact surface. Since the pressure and velocity are constant
across the contact surface, the pressure and velocity at the tail of the rarefaction are

p3 = p2 and u3 = u2 (10.59)

The pressure ratio across the rarefaction is due to an adiabatic change

p4

p3
=

{
c4

c3

}2γ4/(γ4−1)

=
{

c4

c4 − 1
2 (γ4 − 1)u3

}2γ4/(γ4−1)

(10.60)

7The velocity of the shock U propagating into the undisturbed gas in the laboratory frame
is equal to the velocity of the gas entering the shock in the shock frame v1, but in the opposite
direction.
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Collecting all these results together we obtain the pressure ratio between the initial
driver and driven gases

p4

p1
=

{
2γ1Ms

2 − (γ1 − 1)
(γ1 + 1)

} {
1 − (γ4 − 1)

(γ1 + 1)
c1

c4

(
Ms

2 − 1
)

Ms

}−2γ4/(γ4−1)

(10.61)

It is clear that there is a maximum shock strength which can be generated for the
largest pressure ratio

Ms(lim) =
1
2

(γ1 + 1)
(γ4 − 1)

c4

c1
+

√
1 +

[
1
2

(γ1 + 1)
(γ4 − 1)

c4

c1

]2

≈ (γ1 + 1)
(γ4 − 1)

c4

c1
(10.62)

Equation (10.61) is rather inconvenient in not allowing closed solutions for the
Mach number as a function of the pressure ratio. As one normally wants to know
the Mach number as a function of the pressure ratio, solutions are usually obtained
graphically, Figure 10.9. To obtain a particular Mach number for a minimum pressure
ratio, it is clear from equation (10.62) that the term containing the ratio of sound
speeds should be maximised, i.e. the ratio c1/c4 should be minimised. The driver gas
should therefore be a light gas such as hydrogen or helium, the latter being generally
preferred for safety reasons.
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Figure 10.9: Variation of the pressure ratio p4/p1 for an argon shock driven by helium, all
gases at room temperature. Also shown is the Mach number of the reflected shock when the
primary shock is brought to rest.

To obtain very high-shock Mach numbers Ms ∼ 20 it is necessary to use very high
driver pressures with hydrogen. This has led to the combustion-driven shock tube
where the driver gas is a mixture of hydrogen and oxygen, which is uniformly ignited
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by a thin wire heating element. A thick scored metal diaphragm is used to prevent the
expansion starting before the maximum pressure is reached, but allows the rupture to
take place smoothly and (reasonably) reproducibly. The driver gas is both light (hydro-
gen) and hot, both of which increase the sound speed and therefore the shock strength.
The optimum composition oxygen:hydrogen ratio is approximately 8%:92%. To
increase the Mach number further, the flow is constricted by reducing the cross-section
at the junction of the combustion chamber with the flow tube, typically by a factor
of about 2. By these means shock Mach numbers of about 18 are generated in argon.

10.8 Shock Interaction

In this section we will consider the behaviour of a planar shock when it inter-
acts with either a rigid wall or a second shock, both of which are parallel to the
initial shock. When the shock is incident normally on a rigid wall or a second
shock, the situation is reasonably simple. The case of two shock waves inter-
acting obliquely is much more complicated and we will leave a discussion of
that situation to more advanced standard texts such as Courant and Friedrichs
(1948, chap. 3 §D) and Landau and Lifshitz (1959, §93).

10.8.1 Planar Shock Reflection at a Rigid Wall

Of particular practical importance is the case when the shock tube is closed
by a rigid plate. The flow is brought to rest by a reflected shock wave which
propagates back into the already shocked gas. As a result the density and tem-
perature in the working zone are both increased. The primary shock moves into
undisturbed gas at shock speed U with parameters ρ1, p1, c1 and u1 = U − v1

= 0 in the laboratory frame. Behind the shock, the gas has parameters ρ2, p2, c2

and u2 = U − v2, also in the laboratory frame. The relationship of the down-
stream parameters to the upstream ones is given by the Rankine–Hugoniot
equations (10.1).

The reflected shock moves back away from the wall with a speed U ′ in the
laboratory frame into the downstream gas behind the primary shock (Fig-
ure 10.10). We recall that the positive direction is that of flow into the moving
shock, i.e. the opposite of that for the primary shock. The conditions down-
stream of the reflected shock ρ′3, p′3, c′3 and u′

3 = v′3 − U ′ = 0 are similarly deter-
mined by the Rankine–Hugoniot equations, from those behind the primary
shock, where the upstream flow velocity is u′

2 = v′2 − U ′ = −u2 in the frame
of the reflected shock. These equations may be solved quite generally for the
parameters behind the reflected shock given the Mach number of the primary
shock Ms, but not in analytic form for a general equation of state. However,
for a polytropic gas the solution is relatively simple.
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Figure 10.10: Sketch of trajectories of the incident and reflected shocks at a rigid wall.
The incident shock moves with speed U and the reflected one, U ′.

The Mach number of the flow into the reflected shock, Mr = (u′
2 − U ′)/c2,

determines the density, pressure and temperature state behind the reflected
shock following relations (10.3).

From the equation for the velocity behind the primary shock (10.3d) we
obtain in the laboratory frame

u2 = v2 − U = − 2
(γ + 1)

(
Ms

2 − 1
Ms

)
U (10.63)

which is negative since the flow is in the direction of the moving shock.
In the frame of the reflected shock, the incoming velocity is v′2 = U ′ + u′

2 and
the outgoing one v′3 = U ′ since u′

3 = 0. Hence from the velocity ratio across a
shock (10.3a)

U ′ =
[(γ − 1)Mr

2 + 2]
(γ + 1)

[
U ′ + u′

2

]
=

[
(γ − 1) Mr

2 + 2
]

2(Mr
2 − 1)

u′
2

where Mr = (U ′ + u′
2)/c2. Since the reflected and incident shocks move in

opposite directions, u′
2 = −u2, and we obtain

u2

c2
= − 2

(γ + 1)

(
Mr

2 − 1
Mr

)

= − 2
(
Ms

2 − 1
)

√{[
2γMs

2 − (γ − 1)
] [

(γ − 1) Ms
2 + 2

]} (10.64)

making use of the ratio of sound speeds (10.3c) across the initial shock. Hence
we may calculate the reflected shock Mach number from that of the primary
shock in the shock tube, Figure 10.9.
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Figure 10.11: Plots of the reflected shock Mach number Mr as a function of the incident
Mach number Ms for polytropic gases of index γ = 5/3 and γ = 7/5.

Figure 10.11 shows the Mach number of the reflected shock Mr as a
function of the incident Mach number Ms. For weak shocks Mr ≈ Ms ∼ 1
and the reflected wave is simply the direct reflection of the incoming ‘sound’
wave. The overall pressure jump behind the reflected shock is readily shown
to be (p3 − p1) = 2(p2 − p1) as in a sound wave. For strong incident shocks,
on the other hand, it is easily seen that the reflected shock Mach number has
a limiting value

Mr lim =

√
2γ

(γ − 1)
=

√
f + 2

where f = 2/(γ − 1) is the number of degrees of freedom of the driven gas.
The corresponding density (yr), pressure (Πr) and temperature (Θr) ratios
across the reflected shock are

yr =
γ

(γ − 1)
=

f + 2
2

(10.65a)

Πr =
(3γ − 1)
(γ − 1)

= f + 3 (10.65b)

Θr =
(3γ − 1)

γ
=

2(f + 3)
(f + 2)

(10.65c)

There is clearly only a limited maximum density rise that can be achieved
across a shock and reflected shock, which is subsequently brought to rest, how-
ever large the driver pressure. This limiting value is γ(γ + 1)/(γ − 1)2, which is
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10 for a monatomic gas with γ = 5/3, (f = 3). The limit values for the overall
pressure and temperature ratios are easily found from equations (10.6). The
overall temperature jump is 2(γ − 1)(3γ − 1)/γ(γ + 1)2M2

s , a value of 0.45M2
s

for γ = 5/3, the bulk of the incident kinetic energy being converted to heat as
a consequence of the entropy increase.

Reflected shocks are useful for several applications enabling the pressure and
temperature to be easily increased with little increase in experimental effort in
shock tube experiments.

10.8.1.1 Collision between two planar shocks

Consider the case where two shocks of Mach numbers Ms and M ′
s are trav-

elling in opposite directions along the x direction, Figure 10.12. They collide
normally, forming two reflected shocks Mr and M ′

r travelling in opposite direc-
tions away from the collision. Behind the reflected shocks both the downstream
pressure p3 = p′3 = p and the downstream flow velocity in the laboratory frame
u3 = −u′

3 = u must be equal.8

M'rMr

M's

Ms

3'

1'

2'

3

2

1

T

x

t

Figure 10.12: Sketch of trajectories of the two incident and reflected shocks. The incident
shocks move with Mach numbers Ms and M ′

s and the reflected one with Mr and M ′
r. The

contact surface is T .

If the two shocks are not identical, we have a set of equations based on the
polytropic Rankine–Hugoniot equations (10.3) which allow us to express the
two compatibility equations for velocity and pressure. We proceed by making
use of the relations (10.3) to derive the pressure and flow velocities behind each
incident shock derived earlier. The flow velocity behind each primary shock is
given by equation (10.63) for each shock. Making use of equations (10.11) we

8Since the signs follow the convention on page 243, the downstream flow velocities are
opposite for the two shocks.
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may write

(p − p2)
2 =

ρ2

2
(u2 − u)2 [(γ + 1) p + (γ − 1) p2]

(
p − p′2

)2 =
ρ′2
2

(
u′

2 + u
)2 [

(γ + 1) p + (γ − 1) p′2
] (10.66)

Thus we have a pair of nonlinear simultaneous equations for the common
pressure p = p3 = p′3 and flow velocity u = u3 = −u′

3, which may be solved
given the values of p2, p′2, u2 and u′

2 calculated from the Mach numbers of the
incoming shocks Ms and M ′

s. A numerical solution using the Newton–Raphson
method is satisfactory, and efficiently gives the values of the pressure p
and velocity u behind the reflected shocks. The Mach numbers Mr and M ′

r

(equations 10.3), and the density ratios yr and y′r (equation 10.4a), across
the reflected shocks are obtained from the corresponding pressure ratios
Πr = p/p2 and Π′

r = p/p′2, and thence the temperature and sound speed ratios
are obtained.

When the two shocks have different strengths, the density behind each
reflected shock is different. There is therefore a contact surface discontinu-
ity across which the pressure and flow velocity are constant, and between gas
which has passed through the first and the second shock. The velocity of the
contact surface itself is equal to that of the gas, namely u, and is towards the
weaker shock due to the higher pressure behind the stronger primary shock.
To illustrate this behaviour the collision between two shocks of Mach numbers
Ms = 8 and M ′

s = 4 in a gas with γ = 5/3 generates reflected shocks having
Mach numbers Mr = 1.633 and M ′

r = 3.188 respectively. The overall compres-
sions from the initial condition are y = 7.194 and y′ = 10.4. The common flow
velocity behind the shocks is u = −3.108.

If the two shocks are of equal strength, it is easily seen that symmetry
demands that the flow velocity behind the shocks must be zero, u = 0. Hence
the problem may be considered as an extension of the flow described in the
previous section, where the shock is reflected from a solid wall, the contact
surface taking the place of the wall.

10.8.2 Overtaking Interactions

Thus far we have considered only interactions in which the flows collide. Since
a shock moves supersonically with respect to the gas ahead of it and subsoni-
cally with respect to that behind, we conclude that a trailing shock will always
catch and interact with one ahead of it. Furthermore a rarefaction moves soni-
cally with respect to both the upstream and downstream fluid (9.3). Therefore
in a similar fashion a shock will always catch a rarefaction and vice versa a
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rarefaction a shock. On the other hand the separation of two rarefactions will
remain constant. A succinct general account of these interactions is given by
Bradley (1962, chap. 3 §5).

10.8.2.1 Shock overtaking a shock

The flow in this case is similar to that of the colliding shocks and may be
analysed by a similar method based on equation (10.11). The result is a
forward-going shock and a backward rarefaction. Between the two is a contact
surface

S> S> −→ R< T S>

where S> is a forward-going shock, R< a backward-going rarefaction and T a
contact surface.

10.8.2.2 Shock–rarefaction overtaking

The interaction of a shock with a rarefaction is a complex interaction as a
consequence of the extended physical form of the rarefaction. As a result the
interaction may take a long time and lead to the generation of a complex series
of waves. However, if the overtaking wave is much stronger than the overtaken
one, the interaction may be completed in a finite time and yields

S> R> −→ S< T . . . T S>

R> S> −→ R< T . . . T S>

where the backward-going shocks S< are a series of weak compression waves
which will in due course coalesce into a shock. The set of contact surfaces
T . . . T is formed from different parts of the interaction.

10.8.2.3 Shock interaction with a contact surface

Two different modes of interaction are possible depending on a general
acoustic impedance. In Section 8.3 we found that a sound wave was reflected
with or without phase reversal if the acoustic impedance ρc was increased or
decreased across the surface respectively. Generalising this result to consider
shock waves crossing the boundary such that the total velocity and pressure
are continuous across the density discontinuity, we find that the acoustic
impedance is replaced by

A =
1
c

[
γ (γ + 1) + (γ − 1)

1
Π

]1/2

(10.67)

where Π is the pressure ratio generated by the applied pressure of the incident
shock in each gas.
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1. Generalised acoustic impedance decreases across the interface.
Both forward-going and backward shocks result:

S> T −→ S<T S>

2. Generalised acoustic impedance increases across the interface.
A forward-going shock and backward rarefaction result:

S> T −→ R< T S>

Simpler sufficient conditions may be derived (Courant and Friedrichs, 1948;
Bradley, 1962), but are not general.

The latter case has an interesting application. Rock and concrete are strong
in compression, but weak in tension. An explosive charge placed against the
front surface drives a shock through a block. At the rear, the wave is reflected
back as a rarefaction which fractures the material. The ‘dam busting’ bouncing
bomb during the Second World War was based on this effect.

10.9 Oblique Shocks

Thus far we have only considered planar shocks in which the flow is normal
to the plane of the shock. In fact shocks can occur where the flow is inclined
at an arbitrary angle to the shock. This situation is easily treated by a simple
extension to the theory of normal shocks.9

We resolve the incoming flow speed v1 into its normal v1n and tangen-
tial component v1t. Consider the situation as seen in the frame moving with
velocity v1t along the shock front. In this frame only the normal component
of velocity is seen, and the shock is therefore developed as a normal shock
front. The Rankine–Hugoniot equations (10.1) therefore hold, but with the
total velocities replaced by their normal components. Thus the downstream
values (p2, ρ2, v2n) are given by the Rankine–Hugoniot relations from the set
(p1, ρ1, v1n). Returning to the laboratory frame, it is clear that only the normal
velocity is changed, and that therefore v2t = v1t.

Since the transverse component of the velocity is constant across the shock,
the difference in the velocity vectors across the shock (v1 − v2) is normal to
the shock, a result that will be useful later.

9Historical note The original analysis of oblique shocks is due to Prandtl and Meyer
(1908) in the latter’s PhD thesis (Meyer, 1908), which also contains experimental observations
of shocks in supersonic flow. The shock polar (§10.14) was introduced by Busemann (1930).
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Using the third Rankine–Hugoniot equation,

h1 +
1
2

(v1n
2 + v1t

2) = h2 +
1
2

(v2n
2 + v2t

2)

h1 +
1
2

v1
2 = h2 +

1
2

v2
2 (10.68)

Prandtl’s relation (10.5) holds for the normal components of the velocity. It
must therefore be modified in a similar fashion by the inclusion of the tangential
velocity component

v1n v2n =
(γ − 1)
(γ + 1)

(
vmax

2 − vt
2
)

(10.69)

The effect of the shock is to refract the streamlines towards the shock. The
shock angle β is determined by the following conditions:

v1n = v1 sinβ

v2n =
1
y

v1n =
1
y

v1 sinβ (10.70)

v2t = v1t = v1 cos β (10.71)

The downstream flow makes an angle θ with the initial flow, i.e. an angle
(β − θ) with the shock front. Therefore

v2 sin (β − θ) =
1
y

v1 sinβ

v2 cos (β − θ) = v1 cos β

(10.72)

We now particularise the flow to that of a polytropic gas for which the
compression ratio is given by (10.3a) in terms of the Mach number of the
normal flow M = v1 sinβ/c1. Thus

tan (β − θ) =
1
y

tan β =
[(γ − 1)M2 + 2]

(γ + 1)M2
tan β (10.73)

defines the angle of the shock.
The angle through which the flow is deflected is easily found to be given by

tan θ = 2 cot β
M1

2 sin2 β − 1
M1

2[γ + cos (2β)] + 2
(10.74)

where M1 is the Mach number of the incoming flow, so that M = M1 sin β.
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This is an important relation for the application of oblique shocks in aero-
nautics. Unfortunately the form is not very convenient as one generally has
the angle of rotation of the flow given, and needs to know the angle of the
shock to the incoming flow. The inversion of the above equation is not simple,
although reasonably rapid using some method for solving nonlinear equations,
e.g. Newton–Raphson. To avoid this complication a plot of θ versus β for dif-
fering Mach numbers M1 is convenient. This is known as the θ–β–M plot
and is shown in Figure 10.13. Once the shock angle is known together with
the Mach number of the incoming flow, the flow downstream of the shock is
readily calculated, since M = M1 sinβ.

We may note a number of important points about this plot:

1. There are two possible solutions to the oblique shock: one is always sub-
sonic and the other normally supersonic in the flow behind the shock.
The subsonic and supersonic regions are separated by the sonic line,
where the downstream flow velocity equals the sound speed. The strong
shock region occurs at larger shock angles β, so that the shock is more
nearly normal, and therefore stronger. The weak region at smaller angles
represents a more oblique, and therefore weaker, shock.

2. There is a maximum angle through which the flow can be turned. The
flow behind the shock at this limit angle is always just supersonic. The
limit line separates the weak and strong shock regions. Shock angles
greater than the limit line are strong and vice versa.

3. If the angle of rotation of the flow θ = 0, the two possible solutions corre-
spond to a normal shock, β = 90◦, the strong case with the downstream
Mach number M2 < 1; or in the weak case to a weak shock wave at the
Mach angle μ leaving the flow unchanged.

4. As the deflection angle is increased the shock becomes stronger.

5. Experimentally it is found that the weak branch is found, the strong
branch not naturally occurring.

Weak oblique shock

When the shock lies on the weak branch and the deflection of the flow through
the shock is small, θ ∼ 0, it follows from equation (10.74) that M1 sinβ ≈ 1, i.e.
the shock angle β equals the Mach angle μ. This is expected as a weak shock
is equivalent to a weak discontinuity, which as we have seen propagates along
the Mach line. In this case the normal component of the velocity v1n ≈ c1 or
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Figure 10.13: The (θ–β–M) plot for a gas of γ = 1.4 appropriate to air. The different
curves apply for increasing Mach numbers 1.05, 1.1, 1.15, 1.2, 1.25, 1.3, 1.35, 1.4, 1.45, 1.5,
1.6, 1.7, 1.8, 1.9, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6, 3.8, 4.0, 4.5, 5.0, 6.0, 8.0, 10.0, 20.0,
∞ moving outwards. The limit line separates the weak and strong shock regions, the weak
region corresponds to small shock angle β and the strong to large. The sonic line separates
subsonic and supersonic flow behind the shock.
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M ≈ 1. The downstream properties of the shock are determined by (M − 1)
or equivalently the deflection angle of the velocity θ. Thus we have

v1n = v1t tanβ

v2n = v2t tan (β − θ)

≈ v1n

(
tan β − θ sec2 β

)
tan β

Hence the velocity increment through the shock is

v2 − v1 = v2n − v1n ≈ −v1 θ sec β (10.75)

As may be predicted, this result is identical to that for a small deflection in a
rarefaction except, of course, that the sign of the increment is reversed.

The increments in the sound speed, pressure and density are easily obtained
by the use of Bernoulli’s formula across the shock:

v2
2 − v1

2 = 2v1n (v2n − v1n) + (v2n − v1n)2 ≈ −2v1
2 θ tan β

∴ c2
2 − c1

2 ≈ (γ − 1) v1
2 θ

1√
M1

2 − 1

Since the shock is weak, the flow is nearly adiabatic. Therefore we may with
little error use the adiabatic equation of state to calculate the pressure and den-
sity changes, or alternatively use the results for a weak normal shock (10.18):

p2 − p1

p1
= γ

v1
2

c1
2

θ
1√

M1
2 − 1

ρ2 − ρ1

ρ1
=

v1
2

c1
2

θ
1√

M1
2 − 1

(10.76)

We note that these values are identical to those obtained for a weak rarefac-
tion (9.50), with the sign of the deflection reversed, as may be expected since
both represent the change resulting from the flow through a single Mach line.

10.9.1 Large Mach Number

When the Mach number is large, the compression ratio is independent of the
Mach number (equation 10.6). Writing c = cot β and c0 = cot θ we obtain the
quadratic equation

y c2 − (y − 1) c0 c + 1 = 0

whose solution yields two possible values for the shock angle β, one super-
sonic (weak shock) and one subsonic (strong shock) on the downstream side.
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Which one occurs in practice depends on the physical situation, but usually the
supersonic one occurs. However, the above equation only has real solutions if

c2
0 (y − 1)2 > 4y or θ < arcsin

{
(y − 1)
(y + 1)

}
= arcsin

(
1
γ

)
(10.77)

The shock angle β is easily calculated from the value of c at the limit, namely

β = arcsin

√
(γ + 1)

2γ
(10.78)

For larger angles of flow or shock, no shock attached at the apex is possible.

10.9.2 The Shock Polar

Consider the flow in the hodograph plane using Cartesian co-ordinates with the
x direction parallel to the incoming flow. The normal and transverse velocity
components are

v1n = v1 sinβ v2n = v2x sinβ − v2y cos β

v1t = v2t = v1 cos θ = v2x cos θ + v2y sin θ (10.79)

Hence
tan β =

v1 − v2x

v2y
(10.80)

Using Prandtl’s relation for oblique flow (10.69), the substitutions (10.79) and
vmax =

√
(γ + 1)/(γ − 1) c∗,

v2x sin β − v2y cos β

v1 sinβ
=

(γ − 1)
(γ + 1)

+
2c∗2

(γ + 1) v1
2 sin2 β

(10.81)

Substituting for β from equation (10.80) we obtain the equation for the
shock polar

v2y
2

{
2

(γ + 1)
v1

2 − v1v2x + c∗2

}
= (v1 − v2x)2

(
v1v2x − c∗2

)
(10.82)

where the definitions of the limit speed (1.43) and the critical velocity (1.47)
have been used to simplify the expression.

Figure 10.14 shows a typical plot of the shock polar at Mach number
M1 = 1.96 where M1 = v1/c1 is appropriate to the incoming flow, rather than
the normal component only as used previously. The graph is a strophoid and
related to the folium of Descartes. The curve is a plot of the function (10.82).
The flow velocity behind the shock is given by the vector OP in both magnitude
and direction. The range of the downstream flow is clearly seen between the
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Figure 10.14: The shock polar for a polytropic gas with adiabatic index γ = 5/3. The
critical speed c∗ = 1 and the incoming flow speed V1 = 1.5, Mach number M = 1.96. The
line OP represents the flow behind the shock in magnitude and direction. The line OT is
the tangent to the polar representing the limiting angle. Note there are three possible
intersections of a flow with a given direction with the polar.

limiting values, A, u0 = c2∗/v1 and B, v1, both limits corresponding to flow
normal to the shock. There are three intersections of the flow at a specified
angle with the polar. Two represent possible final states P and Q, the third,
R, corresponds to a final flow speed greater than v1 and is therefore forbidden.
However, the Rankine–Hugoniot equations are reversible, irreversibility only
being introduced by the entropy condition. The intersection R therefore repre-
sents a flow starting at R and terminating at B. The polar has an asymptote
for the branch v2 > v1 at M where u2 = u0 + 2v1/(γ + 1).

The sonic limit C, a circle of radius c∗, identifies the transition between
subsonic AC (strong shock) and supersonic BC (weak shock) flow in the down-
stream flow. The sonic point at which the downstream flow is sonic is easily
calculated by equating v2

2 = c∗2. When possible the supersonic (weak shock)
flow downstream is normally established.
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The line corresponding to the limiting angle θlim is shown on Figure 10.14 as
the tangent OT to the polar from the origin. In this case the limiting angle is
about 20.2◦. The limiting condition is established close to the sonic transition,
in supersonic flow.

Since the vector OB represents the incoming flow and OP the outgoing flow,
it follows that BP is the normal to the shock,10 a result which can also be
seen from equation (10.80). In consequence ON is the tangential velocity and
BN the normal component in front of the shock. Furthermore, since BP is
perpendicular to ON, ∠OBP = π/2 − β, and the shock angle

β = arctan
(v1 − v2x)

v2y
(10.83)

The limiting angle is not too difficult to calculate by equating the gradient of
the shock polar at T to the gradient of the line OT. This leads to a quadratic
equation in the value of v2x at the limit, namely

a v2x
2 + b v2x + c = 0

whose coefficients are complicated but may be expressed as simple functions
of the incoming flow speed and the two bounds u0 = c2∗/v1 and u2 = u0 +
2v1/(γ + 1):

a = v1 − 1
2
(u2 − u0)

b = −1
2
v1 (3u0 + u2)

c = u0 v1 u2

The velocity v2y is obtained from the shock polar (10.82) and hence the limiting
angle. Figure 10.15 shows plots of the limiting angle for shock formation as
a function of the Mach number of the incoming flow M1 for two different
polytropic indices. Also shown is the approximation (10.85), which can be
seen to overestimate the angle for Mach number M1 � 1.2. As noted earlier
the downstream flow at the limiting angle is just subsonic (strong shock).

When the Mach number of the incoming flow is large, M � 1, the
shock polar reduces to a circle passing through the abscissa points√

(γ − 1)/(γ + 1)c∗ and
√

(γ + 1)/(γ − 1)c∗; it is then a trivial problem to
show that

sin(θlim) =

[√
(γ + 1)/(γ − 1) − √

(γ − 1)/(γ + 1)
]

[√
(γ + 1)/(γ − 1) +

√
(γ − 1)/(γ + 1)

] =
1
γ

(10.84)

in accord with our earlier calculation.
10Since OB − OP = v1 − v2 which is normal to the shock.
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Figure 10.15: The limiting angle for the formation of an attached shock for polytropic
gases with adiabatic index γ = 5/3 and 7/5 as a function of Mach number M1 of the
incoming flow. The inset plot shows the values for weak shocks (full line) compared with
the approximation (10.85) (dotted line), the upper curves referring to γ = 7/5 and the
lower ones to γ = 5/3.

When the shock is weak, M ≈ 1, v1 and v2 are both nearly equal to c∗, thus
v2x ≈ v2, v2y ≈ c∗θ and θ is small, The shock polar takes the simple form

θ2 ≈ (γ + 1) (v1 − v2)
2 (v1 + v2 − 2c∗)

2c∗3

Hence it is easy to show that

θlim =
4
√

γ + 1
3
√

3

(
v1

c∗
− 1

)3/2

=
8
√

2
3
√

3(γ + 1)
{M1 − 1}3/2 (10.85)

The values generated by this approximation are shown in Figure 10.15 com-
pared with those obtained from the accurate solution. It can be seen that the
approximation is reasonable for Mach numbers M1 � 1.2, where the angles of
attachment are quite small.

10.9.3 Supersonic Flow Incident on a Body

Consider a wedge of half angle θ with a supersonic flow symmetrically incident
upon it. A shock will form on each side starting from the apex at an angle β to
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the incoming flow direction, provided a shock is allowed. If the shock rotates
the flow through an angle θ, the resulting flow downstream of the shock will
be parallel to the surface of the wedge and satisfy the necessary conditions
for a uniform flow along the wedge surface. This requires that the wedge half
angle θ < θlim. If this condition is satisfied, an oblique shock will form, whose
strength will be correspondingly reduced to that appropriate for the normal
component of the incoming flow speed M = v1n/c1 rather than the flow speed
itself M1 = v1/c1. The pressure generated on the surface of the wedge will be
correspondingly reduced.

However, if the wedge exceeds the limiting angle θ > θlim the shock can no
longer attach to the apex of the wedge. The shock therefore detaches itself to
provide sufficient space between the shock and the wedge surface to allow the
flow to rotate parallel to the surface.

The problem now becomes a difficult one to solve and recourse may be
made to computational methods. As the wedge angle becomes progressively
larger, the shock is further detached from the surface. The limiting case at
which the wedge has increased to 90◦ is a blunt body, when the flow stagnates
at the leading edge.

Although the complete flow is difficult to evaluate we may deduce the pres-
sure on the axis of the body where a stagnation point is established. Thus
consider a symmetric blunt body with the flow incident normally along the line
of symmetry with velocity v1 (Figure 10.16). After passage through the shock,
normal to its surface, the velocity is reduced to v2. The streamline along the
axis will touch the surface of the body and continue to follow it symmetrically
above and below the line of the incoming flow. Therefore by symmetry the flow
is brought to rest at the point where the axial streamline meets the surface
v3 = 0. Since the flow is adiabatic behind the shock, Bernoulli’s equation (1.41)
may be used along the streamline between the two points ©2 and ©3 with the
adiabatic equation of state to obtain

p3

p2
=

{
1.0 +

(γ − 1)
2

v2
2

c2
2

}γ/(γ−1)

(10.86)

The ratios of the pressure and the Mach numbers across the shock are easily
obtained from the Rankine–Hugoniot set (10.3). Hence we obtain the pressure
ratio between the stagnation point on axis and the incoming flow

p3

p1
=

p3

p2

p2

p1
=

2γM2 − (γ − 1)
(γ + 1)

{
1.0 +

(γ − 1)
2

(γ − 1)M2 + 2
2γM2 − (γ − 1)

}γ/(γ−1)

=
(

(γ + 1)
2

)(γ+1)/(γ−1) M1
2{

γ − (γ − 1)/2M1
2
}1/(γ−1)

(10.87)
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Figure 10.16: Sketch of the shock wave and streamlines (dashed) around a sphere with a
detached shock. The pressures p1, p2 and p3, at the corresponding points 1�, 2� and 3�
refer to the upstream flow, the downstream flow behind the shock and the stagnation point
on the surface of the sphere.

For strong shocks the pressure ratio is [(γ + 1)/2](γ+1)/(γ−1)M1
2 at the sur-

face of the body compared with 2γ/(γ + 1)M1
2 behind the shock due to the

adiabatic flow behind the shock, i.e. a factor of 2.53 for γ = 5/3 and 2.56 for
γ = 7/5, which is a substantial increase.

10.10 Adiabatic Compression

It is possible to achieve compression without generating a shock provided the
characteristics of the flow do not intersect. In the simplest case of the very slow
compression of a finite volume of gas by a piston at one end, when the piston
velocity v always remains slow compared with the sound speed c throughout
the compression, the characteristics leaving the piston always remain separated
provided their transit time across the volume �/c is small compared with any
change due to the piston velocity or the sound speed. This is the important
case considered in classical thermodynamics as a reversible adiabatic change.

The limiting case of such compression is one where all the characteristic meet
at some point at a particular time as the piston is pushed (in the x direction)
into a uniform ambient gas. Let all the characteristics C+ converge on the point
x = 0 at time t = 0. Since the C− characteristics start in the undisturbed flow,
the wave is a simple wave and the velocity and sound speed are constant on the
C+ characteristics, which are therefore straight lines starting at the piston and
in this limiting case pass through the point (0, 0). Let the start of the piston
motion be from the point x′ = � at time t′ = τ . Since the first C+ characteristic
propagates from x = � to x = 0 at speed c0, the collapse time must be τ = �/c0,
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where c0 is the sound speed in the ambient gas. The equation of an arbitrary
C+ characteristic is

dx

dt

∣∣∣
+

= v(t′) + c(t′) =
x

t
(10.88)

where v(t′) and c(t′) are the flow velocity and sound speed on the C+ charac-
teristic leaving the piston at t′. Since the Riemann invariant J− is everywhere
constant, we proceed as for the centred rarefaction to give

v(t′) =
2

(γ + 1)

{
x′

t′
+ c0

}

c(t′) =
(γ − 1)
(γ + 1)

x′

t′
+

2
(γ + 1)

c0

(10.89)

where x(t′) is the piston position. Noting that the flow velocity at the piston
must equal the piston speed, we obtain the differential equation

dx′

dt′
=

2
(γ + 1)

x′

t′
− 2

(γ + 1)
c0 (10.90)

which may be directly integrated with the boundary condition x = �, t = τ to
give

x′ = − 2
(γ − 1)

c0 τ
t′

τ
+

(γ + 1)
(γ − 1)

c0 τ

(
t′

τ

)2/(γ+1)

v(t′) = − 2
(γ − 1)

c0 +
2

(γ − 1)
c0

(
t′

τ

)−(γ−1)/(γ+1)

c(t′) = c0

(
t′

τ

)−(γ−1)/(γ+1)

(10.91)

From the sound speed we may immediately calculate the pressure and density
on each C+ characteristic, namely

p(t′) = p0

(
t′

τ

)−2γ/(γ−1)

ρ(t′) = ρ0

(
t′

τ

)−2/(γ−1)
(10.92)

where p0 and ρ0 are the pressure and density of the ambient gas respectively.
Since the wave is a simple wave, the density and sound speed are constant

along the characteristic. The total mass through which the characteristic C+

passes must equal that between the piston and the centre, i.e. the total mass of
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gas along each characteristic is constant. Since the speed of the characteristic
through the gas is c, the length of path from its start at the piston to con-
vergence is c(t′) t′, and the constant mass is therefore ρ(t′) c(t′) t′. Substituting
the adiabatic equation of state in this result we obtain equations (10.92) and
hence (10.91).

The state of the gas at any particular point (x, t) during the compression is
easily found by identifying the particular characteristic C+ on which the point
lies. The characteristic leaving the piston at (x′, t′) passes through the points
(x, t) such that

ξ =
x

c0 t
=

x′

c0 t′

=
(γ + 1)
(γ − 1)

(
t′

τ

)−(γ−1)/(γ+1)

− 2
(γ − 1)

(10.93)

Hence the sets of equations (10.92) and (10.91) can all be expressed in terms
of the single variable ξ ∈ (1, ∞) expressing the complete solution

v

c0
=

2
(γ + 1)

(ξ − 1)

c

c0
=

(γ − 1)
(γ + 1)

ξ +
2

(γ + 1)

p

p0
=

[
(γ − 1)
(γ + 1)

ξ +
2

(γ + 1)

]2γ/(γ−1)

(10.94)

ρ

ρ0
=

[
(γ − 1)
(γ + 1)

ξ +
2

(γ + 1)

]2/(γ−1)

The solution exhibits self-similarity. All points with the same value of ξ
have the same state. More generally we can see that the spatial profiles of
v, c, p and ρ have the same form at different times but with scale factors which
depend on the time alone. The problem is therefore reduced to one in a single
dimensionless variable ξ alone. We shall return to a fuller discussion of this
behaviour in a later chapter.

The motion is independent of the initial starting point �. If � is increased the
corresponding collapse time τ is increased proportionately, so that the variable
ξ is unchanged. The functional form of the solution in terms of the similarity
parameter ξ remains the same, and only the length scale is changed by an
appropriate scale factor.

As the final stages of compression are reached, t → τ , the piston reaches the
convergence point, and both the sound speed and the fluid velocity c, v → ∞,
hence the pressure and density also. This is clearly an unachievable final state.
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However, this behaviour underlies the essential compression required by designs
of fuel capsules for inertial confinement fusion.

Appendix 10.A An Alternative Approach to the
General Conservation Law Form of the Fluid
Equations

In the laboratory (or Eulerian) frame, the general equations of fluid mechanics can be
written in several forms, of which the general conservation form is appropriate for a
general discussion:

∂ρ
∂t + ∇ · (ρv) = 0
∂
∂t (ρv) + ∇ · Γ = 0
∂
∂t [ρ (ε + 1

2 v2)] + ∇ · [ρv (ε + 1
2 v2) − v · τ + q

]
= 0

(10.A.1)

where ε is the specific internal energy of the fluid, h = ε + p/ρ the specific enthalpy,
and q the heat flux vector. Γ is the momentum flux tensor

Γi,j = ρ vi vj − τi,j (10.A.2)

and τi,j is the total stress tensor

τi,j = σi,j − p δi,j (10.A.3)

where σi,j is the viscous stress tensor and δi,j the Kronecker delta (1 if i = j and 0
otherwise).

The set of equations is of the general conservative form

∂u

∂t
+ ∇ · f = 0 (10.A.4)

where u is a general conserved quantity and f the flux associated with it.
Clearly for any volume V enclosed by surface S

d
dt

�
V

udV +
�

S
f · ds = 0 (10.A.5)

expresses the same result in an integral form expressing global balance within the
system.

10.A.1 Hyperbolic Equations

Generally, in many fluids viscosity and thermal conduction are weak, i.e. the fluid
behaves as an ideal dissipation less continuum, and to a first approximation dissipation
can usually be neglected. We therefore seek to develop approximations in an ideal
inviscid fluid, and introduce corrections to the flow where necessary to take account
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of dissipative effects. In these circumstances the equations of fluid dynamics (10.A.1)
form a set of nonlinear hyperbolic equations.

Let us consider the simple one-dimensional case of the time-dependent Eulerian
non-dissipative system, which can be expressed in the general form

∂u

∂t
+ A

∂u

∂x
= 0 (10.A.6)

where u and f are general ‘vector sets’ (column matrix) of the fluid variables

u = {ρ, ρ v, ρ (ε + 1
2v2)}

f = {ρ v, (ρ v2 + p), ρ v (h + 1
2v2)}

and A is the matrix ∂f/∂u. This set of three equations represents the general set
of conservation equations in one dimension, and takes the form of three first-order
quasi-linear differential equations in two variables x and t.

The equations are hyperbolic if the eigenvalues of A are real. In the case of an ideal
fluid, they can be shown to be v + c, v, v − c where c is the isentropic sound speed:
c2 = ∂p/∂ρ |s.

Since the eigenvalues are distinct we may diagonalise A by a similarity transforma-
tion A′ = PAP−1 so that

P
∂u

∂t
+ A′P

∂u

∂x
= 0 (10.A.7)

where A′ is diagonal, and P is a function of the variables u only. Hence we obtain the set[
∂

∂t
+ λi

∂

∂x

]
Γi = 0 (10.A.8)

for the eigenvalues λi. The functions Γi, obtained from
�

P du, are constant on the
lines dx/dt = λi respectively, and are the Riemann invariants. For this case of the
ideal fluid equations, they take the form

[v +
�

cdρ/ρ], s, [v −
�

cdρ/ρ]

respectively, where s is the specific entropy.
In principle a knowledge of the initial values of these quantities allows us to integrate

along the characteristics in space–time and determine the flow.

10.A.2 Formal Solution

At any point (x, t) we may determine the three values of the variables u if the Riemann
invariants are known, provided we know the equation of state, i.e. p(ρ, s), or more suc-
cinctly c(ρ, s), by tracing the development of the fluid variables in space and time along
the characteristics. Thus in principle we integrate along the field of characteristics to
determine the flow. Clearly the value of u at the point (x0, t0) is determined only
by points which lie within the outermost characteristics through (x0, t0)–its domain
of dependence (Figure 10.A.1). Similarly it can only influence future events within
its outermost outgoing characteristics–the range of influence. The existence of such
solutions has been formally demonstrated (Courant and Hilbert, 1962).
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Initial
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B

x

t

(x0, t0)P

For this system the following uniqueness theorem is valid (Courant and Hilbert,
1962; Courant and Friedrichs, 1948):

Consider a solution with continuous second-order derivatives in the region
ABP bounded by two characteristics through P, and the domain of depen-
dence AB cut off by them on the initial line I. Suppose another solution
with continuous second derivatives is given in ABP which assumes the
same values on AB as the first. Then the second solution is identical to
the first within the domain ABP.

10.A.3 Discontinuities

The uniqueness theorem quoted above requires that the solution be continuous up
to the second order everywhere within the domain of dependence. However, dis-
continuities arise naturally within fluid mechanics by virtue of the nonlinearity of
the governing equations (Courant and Friedrichs, 1948; Landau and Lifshitz, 1959).
These occur in two forms, namely strong and weak discontinuities. Strong disconti-
nuities involve a jump in value of the flow variables and include shocks and contact
discontinuities. Shocks involve flow through the discontinuity, whereas tangential dis-
continuities do not. Weak discontinuities are continuous, but with a change of gradient.
As we have seen, weak discontinuities, which include the head of rarefaction waves,
propagate along the characteristics (Landau and Lifshitz, 1959).

If two characteristics were to intersect, the Riemann invariant would become inde-
terminate. Such intersections can occur in compression, where they lead to shocks. In
this neighbourhood, the ideal flow condition breaks down. When the characteristics
approach over distances of the order of the mean free path, large gradients in the flow
are established, and dissipation becomes important. This leads to an entropy increase
in accordance with the second law of thermodynamics across the shock. The thick-
ness of the ‘discontinuity’ is of the order of the mean free path, which is vanishingly
small in the continuum theory. In general fluid theory, the collisional behaviour at
a molecular level gives rise to dissipational processes, namely viscosity and thermal
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conduction. Within the fluid description, the shock ‘discontinuity’ is controlled by
dissipation, principally viscosity. The shocks therefore appear as narrow zones within
which viscous effects are dominant (10.5), which in molecular terms are typically a
few mean paths thick (Zel’dovich and Raizer, 1967).

Considering the case of a general fluid with dissipation, the general conservation
law in integral form (10.A.5) requires that across a normal shock

S =
f(u2) − f(u1)

(u2 − u1)
(10.A.9)

where S is the shock speed, the shock moving from left to right, f the fluxes normal
to the shock, and u1 and u2 the values of u on the upstream (left) and downstream
(right) sides of the shock respectively. Note that this relation must be obeyed for all
the elements of u with the same value of S. In one dimension these are the familiar
Rankine–Hugoniot relations for a normal shock (equation 10.1).

10.A.4 Weak Solutions

The question arises as to whether strong discontinuities in the form of shock waves
can be accommodated within inviscid theory in the absence of dissipation, i.e. as
solutions of the hyperbolic equations. In recent years the extension of the description
of functions to include functions which are non-differentiable has made this possible,
thereby formally resolving many of the problems which troubled nineteenth-century
fluid dynamics.

Discontinuities arise naturally in the general solution of nonlinear hyperbolic equa-
tions. At such points the differential equations break down, but these are expressions of
more general integral relations, e.g. the integral forms of the conservation laws. Using
a test function, namely a smooth function of compact support, we may construct gen-
eralised solutions by integration of the product of the solution and test functions. In
this way the derivatives are transferred from the solution to the test function. The
solution, called a weak solution, satisfies this integral relation for all allowable test
functions. The Rankine–Hugoniot equations (10.A.9) form such a set of weak solu-
tions for the fluid equations (Lax, 1954). Weak solutions of the dissipationless fluid
equations therefore satisfy the differential equations where the derivatives exist, and
the Rankine–Hugoniot relations across discontinuities. However, in contrast to the
actual physical situation, rarefaction as well as compression discontinuities can occur,
i.e. the solution is not unique.

Two questions arise if we wish to use the dissipationless equations alone for
calculation:

1. Is the solution unique? Clearly the previous uniqueness theorem fails when
discontinuities occur.

2. Is the solution without dissipation the limit of vanishing viscosity to the com-
plete fluid dynamical problem?

In fact both questions are related. The discontinuities in ideal flow can be shown
not to be uniquely specified by the Rankine–Hugoniot condition. In the real fluid such
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uniqueness is imposed by the additional requirement for an entropy increase. In the
inviscid case, this is established by the following results, which have been proved for
one-dimensional systems (Oleinik, 1963a):

1. Solutions of dissipative equations converge to weak solutions of the hyperbolic
system in the limit of vanishing viscosity (Oleinik, 1963a).

2. Such solutions of the viscous system satisfy

S[u, u1] ≥ S ≥ S[u2, u] (10.A.10)

known as the entropy condition, where S is the shock speed (10.A.9), and

S[a, b] =
f(b) − f(a)

(b − a)
(10.A.11)

where u lies between u1 and u2 (Hopf, 1969/70; Quinn, 1971).

3. Weak solutions of the hyperbolic system satisfying the entropy condition are
unique (Quinn, 1971; Oleinik, 1963b).

The entropy condition has a clear relation with many of the familiar properties of
shocks (see equation 10.17). Since the limit of a weak shock is a sound wave, which
propagates at the local sound speed S[u, u] → c(u), the shock speed is supersonic with
respect to the upstream flow S ≥ c(u1) and subsonic with respect to the downstream
one S ≤ c(u2). Indeed the entropy condition reflects the facts that the shock adiabat
is generally convex and that physical shocks are compressive as required by the second
law of thermodynamics (Courant and Friedrichs, 1948). The entropy condition thus
ensures that the shock in the ideal fluid satisfies the second law of thermodynamics,
and that there is an entropy increase across the shock.



Chapter 11

Aerofoils in Low-Speed
Incompressible Flow

11.1 Introduction

In this chapter we investigate the flow around two-dimensional aerofoils and
three-dimensional wings using irrotational incompressible flow models, i.e. solu-
tions to Laplace’s equation.1 The flow around a solid body depends markedly
on the shape of the body. In particular the drag force may be greatly reduced
by a careful choice of shape. The general shape of a low-drag body is estab-
lished by some simple principles. Strong drag at large Reynolds numbers is
generated by the presence of a large turbulent wake behind the body, which
must therefore be avoided. During the flow around the body, the streamlines
must leave the body at some point. This occurs along the line of separation.
The flow behind the line of separation is rotational and often turbulent hav-
ing been modified by viscosity in the boundary layer adjacent to the surface.
The pressure in this region is normally much less than that which would be
predicted if the flow were able to remain irrotational. As a result separation
leads to substantial modifications of the forces on the surface of the body
calculated from ideal flow. Consequently d’Alembert’s paradox is no longer
valid, and drag is generated. To reduce the drag, the wake formed by the sepa-
rated flow should be made as narrow as possible. The shape of the body must
avoid establishing the conditions for separation, in particular strongly increas-
ing pressure gradients and sharp corners. Therefore a streamlined body has a
rounded leading edge, where a stagnation point forms at all working incoming

1An excellent fuller introduction to aerodynamics is given by Anderson (2007).
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flow directions. Downstream the pressure varies slowly and smoothly up to the
point at which separation is required. The profile is consequently elongated
downstream, tapering to a point (or line) at which the flows along the two sur-
faces meet smoothly without having to turn any sharp corner or large angle.
Such bodies are called streamlined. Separation is avoided except where desired
at the trailing edge, provided the body is slender (thickness small compared
with length) and the long axis (chord) is at a small angle to incoming flow;
(angle of attack). The body then offers only a small disturbance to the incoming
flow; shapes are familiar in many areas such as fast-swimming fish and aircraft.

The flow around the streamlined body cannot be entirely irrotational. Vis-
cosity plays a role close to the surface, even with materials such as air, whose
viscosity is very small. When the viscosity is small the region in which vorticity
is induced is very narrow, and the flow around the surface may be accurately
described by an ideal irrotational flow model. Rotational flow is confined to a
thin boundary layer around the surface and a narrow wake leaving the trailing
edge. If the flow velocity is small compared with the sound speed, we showed in
Chapter 8 that the flow is nearly incompressible. At velocities comparable with
the sound speed a scale transformation (the Prandtl–Glauert approximation)
(Chapter 12) extends the range of the incompressible flow approximation as
an accurate approximation.

As we showed in Chapter 2, the flows in two or three dimensions have a
marked difference in their connectivity. In two dimensions the configuration is
multiply connected and therefore cyclic, so that a circulation must be specified
in order to achieve a unique solution to the flow around an aerofoil. In practice
the circulation is determined by the Kutta condition, which ensures that the
flow remains finite around the boundary discontinuity at the trailing edge.
The flow therefore leaves the wing surface at the trailing edge. In contrast
three-dimensional flow is simply connected and therefore acyclic. A unique flow
around the three-dimensional wing is therefore possible. However, the presence
of the trailing edge discontinuity gives rise to a vortex sheet leaving the wing
at the trailing edge. The Kutta condition is required to ensure that the sheet
leaves only at the trailing edge.

11.1.1 Aerofoils

A typical aerofoil profile as used for a wing section is shown in Figure 11.1.2 It
has an asymmetric streamlined profile. At the leading edge the profile is blunt
and a stagnation point is developed. There is thus no corner at any angle of

2An aerofoil or wing section is the two-dimensional cross-section chordwise through the
three-dimensional wing.
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Figure 11.1: A typical aerofoil profile inclined at an angle of attack of α = 10◦ to the
incoming flow U as indicated by the arrow.

attack,3 which would be the consequence if the leading edge were angled. In
contrast the trailing edge is a sharp angle, nearly a cusp, which forces the flow
from both the upper (vacuum) and lower (pressure) surfaces to separate and
leave the body at this point. If the aerofoil is not too thick, and not operated
at too large an angle of attack, separation will not occur over either the upper
or lower surface before the trailing edge is reached. In this configuration lift
will be developed, and drag will be relatively small.

The flow around an aerofoil calculated directly within the ideal irrotational
flow conditions will not leave the surface at the trailing edge. Since ideal flow
allows the non-physical condition of flow around an outside corner, we might
expect such behaviour to occur at the trailing edge. In fact experimental
evidence shows this is not the case, and provided the aerofoil is operating
in a streamlined flow mode, the streamlines from both the upper and lower
surfaces will meet smoothly, and leave at the trailing edge. As the velocities
on the upper and lower surfaces are different, there may be in consequence a
surface of tangential discontinuity between the two flows in ideal flow.4 When
viscosity is included, this problem is resolved and the discontinuity surface is
replaced by a narrow wake. The non-uniqueness inherent in ideal flow is thus
resolved by this condition.

The profile itself is characterised by its chord (width) and thickness
(Figure 11.2), and in three dimensions by the span b, the distance from wing
tip to wing tip. The plan area of the wing S is the projection of the wing onto
the plane containing the span and the chord. We define the aspect ratio of the
wing as the ratio of b2/S. It is approximately equal to the ratio of span to the
chord b/c. Typical values are about 6.

The characteristic aerodynamic parameters of the wing are:

1. The lift coefficient, which is the dimensionless form for the lift force:

CL =
Fy

1
2 ρU2 S

(11.1)

3The angle of attack is the angle between the incoming flow and the axis of the profile.
4In two-dimensional flow, the pressure on both upper and lower surfaces at the trailing

edge must be equal. Hence pressure continuity across the wake ensures that the velocities on
both the top and bottom surfaces are the same. This is not the case for three-dimensional
flow, where the directions of flow differ.
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Figure 11.2: Aerofoil profile indicating chord and thickness showing an incoming wind at
10◦ incidence. The x direction is taken parallel to the wind and the y normal to it, showing
the direction of the lift force.

where Fy is the total lift force normal to the incoming flow, and S the
wing plan area, defined as the projection of the area onto the surface
containing the chords of all sections (note that this not the same as the
surface area). For thin wings, it can be shown that CL ≈ 2πα where α is
the angle of attack.

2. Drag, which is minimised by the streamlined profile. It is characterised
by the drag coefficient

CD =
Fx

1
2 ρU2 S

(11.2)

The ratio of lift to drag, CL/CD, is typically about 100 for a well-designed
wing.

3. The remaining wing parameter, namely the pitching moment M of the
lift force about some specified point, e.g. the leading edge. Conventionally
the moment is taken as positive when the moment is such as to raise the
leading and depress the trailing edge:

Cm =
M

1
2 ρU2 � S

(11.3)

where � is the specified reference length, typically the chord.

The centre of pressure is defined as the point on the chord through which the
lift force is effectively applied. Since the lift is at right angles to the incoming
stream and the angle of attack small, the point of zero moment is approximately
Cm/CL.

11.2 Two-Dimensional Aerofoils

As noted earlier, the aspect ratio of a typical wing is large. The airflow over
the wing is therefore almost two dimensional in the plane of the chord and
the thickness. The transverse flow in the direction of the span is relatively
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small, although as we shall show it plays an important role in determining the
characteristics of the wing. We may therefore approximate the flow over the
wing in terms of a series of sections of slightly differing cross-sections and obtain
the final aerodynamic characteristics by integrating along the wing span. This
procedure requires a detailed study of the two-dimensional wing section and
its properties.

The aerofoil causes only a small deviation in a uniform flow originating at
−∞ and flowing out at +∞. Far from the body the disturbance will die away
and the flow return to its incoming uniform condition. Thus if the incoming
flow has velocity U the asymptotic flow at a large distance r from the body
must be expressed by the Laurent series for the complex velocity

dw
dz

= Ue−ıα +
A

z
+

B

z2
+ . . . (11.4)

the values of A and B being determined by the geometrical form of the stream-
lined body.

If the body is not a source, the flux through any surface enclosing it must
be zero. Hence the radial component �(A) = 0, and the circulation around the
body Γ = 2π�(A). Furthermore B can be interpreted as the vector strength
of a doublet at the body, also known as a bicirculating flow (Section 2.10.1).

11.2.1 Kutta Condition

As we have seen, it is only possible to construct a unique solution for the flow
around a body in two dimensions if both the flow at infinity and the circulation
around the body are known. Thus it is not possible a priori to calculate the
lift from the wing without some prior knowledge of the circulation.

This condition is established by a hypothesis first propounded by
Kutta (1902) and independently by Zhukovskii (1906),5 which allows ideal
flow solutions to successfully represent the flow around the wing. This is known
as the Kutta condition6 and can be expressed in a number of equivalent ways:

• The flow is finite at the trailing edge, i.e. no velocity singularity associated
with flow around a corner occurs.

• If the upper and lower surfaces at the trailing edge meet at a finite angle,
the trailing edge is a stagnation point, since the two flows must be along
their respective surface.

5The spelling of Zhukovskii is often anglicised to Joukowski or Joukowsky.
6This condition is frequently called the Kutta–Zhukovskii condition.
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• If the trailing edge is a cusp, i.e. the angle between the upper and lower
surfaces is zero, the flow velocities on the upper and lower surfaces are
equal in magnitude and direction.

• The pressures on the upper and lower surfaces at the trailing edge are
equal.

• The surface vorticities on the upper and lower surfaces at the trailing
edge are equal.

• The streamlines from both top and bottom surfaces leave the wing
smoothly at the trailing edge.

The circulation is provided by an additional vortex of the type discussed in
Section 2.10 around the wing (equation 2.69), which is necessary to generate
lift. Physically we may see the origin of this vortex in the increased acceleration
needed on the vacuum (upper) surface of the wing to compensate for the dis-
placement of the fluid induced by the wing. The displacement required on the
pressure (lower) surface is much less. The generation of lift is due to the pres-
sure differences between the upper and lower surfaces resulting from Bernoulli’s
equation. In the next section, the lift is calculated by the Kutta–Zhukovskii
formula, equation (2.105), from this circulation, and is in good agreement with
experiment.

In ideal flow Kelvin’s theorem requires constancy of circulation. Thus since
the ambient state is one of zero circulation, the circulation must be balanced
by a vortex of opposite rotation. This starting vortex is established on starting,
as shown in Figure 11.3. In ideal flow with no circulation and a finite angle of
attack, the body streamline will leave from the upper surface having passed
around the trailing edge. As we have seen, this is unphysical at the trailing
edge and leads to a separation of the flow at that point. In the initial phase
immediately after the airflow over the wing has started, the separated flow
forms a vortex over the wing as sketched in Figure 11.3a. As the airflow flows
over the wing, the vortex detaches and moves downstream. At this stage, the

(a) (b)

Figure 11.3: Development of the starting vortex initially at the trailing edge and
convecting downstream with its connecting vortex sheet. (a) Initial vortex, and
(b) Detached vortex.
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circulation around the wing is just that required to bring the body streamline
to the trailing edge. The circulation of the vortex is equal to and opposite in
sign to that around the wing. The detached vortex moves continuously down-
stream in the free stream as shown in Figure 11.3(b). If the circulation around
a line enclosing both the wing and the starting wing is calculated, the total is
zero, consistent with Kelvin’s theorem, the circulation around the wing being
exactly balanced by that of the starting vortex. On a three-dimensional wing it
is connected with the flow around the wing by trailing vortices from the wing
tips, tip vortices, the whole forming a horseshoe pattern (see Section 11.8),
consistent with Helmholtz’s second theorem (theorem ii, p. 28). This struc-
ture, although it is slowly damped out by viscosity, plays an important role in
determining a component of the drag.

11.3 Generation of Lift on an Aerofoil

In Section 2.11 we showed that the lift force on a wing section was given by
the Kutta–Zhukovskii formula, equation (2.105), as

L = −ρ U Γ (11.5)

where L is the lift per unit span and Γ the circulation.
The flow around the wing is calculated in ideal flow by a solution to Laplace’s

equation, which is linear. We may therefore imagine the flow to be made up of
the superposition of two different flows. Thus consider the case of a flow with
unit velocity along the chord giving circulation Γ′, and separately one with
unit velocity normal to it giving circulation Γ′

2.
7 Then if we have a wind of

velocity U at an angle α to the chord, the total circulation is

Γ = Γ′
1 U cos α + Γ′

2 U sinα

since ideal flow is linear, and the Kutta condition holds for the combined flow.
Thus the lift per unit span is

L = −ρ U
(
Γ′

1 U cos α + Γ′
2 U sin α

)
We may introduce the total circulation for unit velocity as

Γ′ =
√

Γ′
1
2 + Γ′

2
2 Γ′

1 = −Γ′ sin α0 Γ′
2 = Γ′ cos α0 α0 = − arctan

(
Γ′

1

Γ′
2

)
(11.6)

7In reality the flow normal to the chord cannot exist in this form. However, the solution
to Laplace’s equation satisfying the Kutta condition does exist. Since this is only used in the
superposition with the solution for an incoming flow parallel to the chord satisfying the Kutta
condition, the resultant flow will also be a solution to Laplace’s equation again satisfying the
Kutta condition and will be satisfactory for small angles of attack.



302 Introductory Fluid Mechanics

Substituting for the components of the circulation we obtain

L = −ρ Γ′ U2 (sinα cos α0 − cos α sin α0) = −ρ Γ′ U sin (α − α0) (11.7)

The angle α0 therefore defines the flow direction of zero lift–first axis –of
the profile relative to the chord. Since the lift is proportional to U2, we define
the lift coefficient for the wing section as8

cL = − L
1
2 c ρ U2

= a sin (α − α0) ≈ aα′ (11.8)

where a = −2Γ′/c and c is the chord, and α′ = α − α0 is the effective angle
of attack.9 The variation of the coefficient of lift as ∼ sin α′ is a very general
result, provided the effective angle of attack α′ is sufficiently small. The lift
slope a ≈ 2π for a wide range of profiles as confirmed by experiment.

11.4 Pitching Moment about the Wing

The anti-clockwise pitching moment per unit span on the wing taken about
the leading edge of the wing follows directly from pressure on the surface of
the wing

M =
�

p (xdx + y dy) (11.9)

As with the lift we may consider the moment in terms of the angular
momentum communicated to the wing by the flow. Consider a cylindrical
surface of radius R far from the body so that the asymptotic velocity distri-
bution (11.4) is applicable. The velocity components for the asymptotic flow,
equation (11.4), are

ur = Ucos θ − B cos (θ − β)
2πR2

+ . . . uθ = −Usin θ +
Γ

2πR
− B sin (θ − β)

2πR2
+ . . .

(11.10)
where β is the direction of the vector B and the angles θ and β are measured
with respect to the incoming flow.

The product is

ur uθ = −U2 sin θ cos θ + U
Γ

2πR
cos θ + U

B

2πR2

× [sin θ cos (θ − β) − cos θ sin (θ − β)] + . . .

8We shall use lower case c to identify coefficients for wing sections and upper case C for
the complete wing.

9See footnote 13 on page 67 where the change of sign is discussed.
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The torque on the wing is equal to the angular momentum per unit time
entering through the surface, which is

M = −
� 2π

0
ρ R ur uθ R dθ

Retaining only those terms which are non-zero on integration, the moment is

M = −ρR2
� 2π

0

BU

R2
sin β dθ = −2πρB U sin β = −2πρBn U (11.11)

where Bn is the component of B normal to the incoming flow.10

Similar to our analysis of the lift we take two components B′
1 and B′

2 for the
components of B for unit velocity parallel to the axis of zero lift and normal
to it.11 We note that the magnitudes B′

1 and B′
2, and angles β1 and β2, are

determined by the profile of the wing section alone. The pitching moment at
an effective angle of attack α′ is

M0 = −2πρU2
[
B′

1 cos α′ sin
(
α′ + β1

)
+ B′

2 sinα′ sin
(
α′ + β2

)]
If we now consider the moment about the point (x0, y0) the pitching moment

becomes

M0 = −2πρU2
[
B′

1 cos α′ sin (α′ + β1) + B′
2 sinα′ sin (α′ + β2)

+
1
2π

Γ′ sin α′ (x0 cos α′ − y0 sinα′) ]
Expanding the trigonometric expressions we obtain

M0 = −2πρU2
(
a sinα′ cos α′ + b sin2 α′ + b′ cos2 α′) (11.12)

where
a = B1 cos β1 + B2 sinβ2 +

Γ′

2π
x0

b = B2 cos β2 − Γ′

2π
y0 b′ = B1 sinβ1

The section pitching moment coefficient about the point (x0, y0) is therefore

cm = − M0
1
2ρ U2 c

The change of sign is discussed in footnote 13 on page 67.

10Unlike the circulation, the bicirculation vector B is not independent of the origin at
which is set, i.e. the point about which the moment is taken.

11See footnote (7) on page 301.
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We may choose the point

xc = −2π

Γ′ (B1 cos β1 + B2 sin β2) yc = −2π

Γ′ (B1 sin β1 − B2 cos β2)

so that a = b = 0 and
M = −2 π ρ U2 B1 sin β1

the pitching moment, is independent of the angle of attack α′. This point,
which is found for all profiles, is known as the aerodynamic centre or focus.
Its existence has been confirmed by experiment. However, its location can
only be found by more detailed calculation for specific profiles. In general it is
found to be close to the quarter chord point, c/4 from the leading edge. The
corresponding pitching moment coefficient is

cμ = 4π B1 sinβ1 (11.13)

The lift may be imagined to act through a point rather than distributed
over the surface of the wing, namely the centre of pressure. The position of the
centre of pressure is defined as the point where the line of the resultant lift
meets the chord. If the effective angle of attack is small, the position is given
by xp = M0/L = c cm/cL. Clearly the centre of pressure changes as the angle
of incidence varies.

Referring to equation (11.12), it can be seen either by substituting for
a, b and b′ or directly that the moment about any general point (x, y) is the
sum of two components, one of which is independent of the angle of attack M,
and one which varies with the lift:

cm = cμ + cL [(x − xc) cos α − (y − yc) sinα] (11.14)

If cμ = 0 the centre of pressure is independent of the angle of attack. If cμ > 0
the centre of pressure travels towards the leading edge with increasing angle of
attack, which promotes instability. Therefore for a wing without a tailplane,
the condition for stability is cμ < 0.

11.5 Lift from a Thin Wing

In the last two sections, 11.3 and 11.4, we have obtained general expressions
for the lift and pitching moment of a wing section. These have enabled us to
obtain some important general principles concerning the properties of a wing.
However, unfortunately the expressions obtained thereby involve terms which
require a detailed knowledge of the flow about the profile before quantitative
values of the principal quantities are obtained, namely the circulation and
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the bicirculation vector. There are two classical approaches to this problem,
which allow analytic values to be calculated. The conformal transform approach
has now been superseded by numerical calculations. However, the thin wing
approximation is still useful for rapid calculations.

We define a thin wing as one whose thickness is much less than the chord.
The wing may be then considered as a thin plate, whose profile lies along the
mean or camber line, i.e. mid-way between the upper and lower surfaces of
the wing. The airflow about the wing is then that associated with a flow in
which the normal velocity at the mean line is zero. The problem of calculating
the flow around such a wing therefore reduces to finding a flow whose velocity
normal to the mean line is zero, and thereby satisfying the necessary boundary
condition.

The problem of calculating the flow about a thin wing may be tackled in two
different ways. In a previous chapter, Case study 2.II, we derived the velocity
using the analytic nature of the solution and the Cauchy integral theorem
to analytically continue the flow away from the surface of the wing. In this
section we use a more direct approach using a straightforward model based on
the surface vorticity to calculate the flow. The result yields expressions which
are more amenable to numerical evaluation. In this section we will neglect
the effect of finite thickness, which as we have previously seen can be treated
independently of the camber and angle of attack, which alone give rise to lift.

As we discussed earlier, this aim may be achieved by replacing the wing by
a vortex sheet. Since the flow is two dimensional, the sheet comprises a series
of rectilinear vortices with axes parallel to the span of the wing. Furthermore,
since the wing is thin, the two sets of vortices on the top and bottom surfaces
of the wing coalesce into a single set along the mean camber line. The strength
of these vortices is adjusted so that the induced velocity normal to the mean
line cancels that due to the component of the incoming flow.

Since the wing is thin and the angle of attack small, the flow around the
wing can be considered to be a small perturbation to the incoming flow. As
before we introduce the perturbation velocity u = v − U. From Bernoulli’s
equation the pressure perturbation p = p0 − ρU · u. Since the wing is thin it
is treated as a vortex sheet with vorticity γ(s) = u2 − u1 where u1 and u2

are the perturbation velocities at the point s along the top and bottom sur-
faces of the wing respectively. Therefore the lift force on an element δs of the
wing is

δFy = (p2 − p1) δs = −ρ U γ(s) δs (11.15)

Since the circulation Γ =
�

γ(s) ds along the wing, the Kutta–Zhukovskii for-
mula follows directly.
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The problem may be further simplified if the camber is small, so that
(dy/dx)2 � 1 (

ds

dx

)2

= 1 +
(

dy

dx

)2

≈ 1

where s is the distance along the mean line, x is measured along the chord
from the leading edge and y perpendicular to it. Similarly subject to the above
constraint, the vortex sheet may be treated as lying along the chord rather
than the camber line.

The velocity components parallel to and perpendicular (upwards) through
the surface due to the incoming flow U at the angle of attack α are

u‖ = U cos [α − arctan (dy/dx)] ≈ U

u⊥ = U sin [α − arctan (dy/dx)] ≈ U (α − dy/dx)

and the perturbation velocity components velocity components due to the sur-
face vorticity

u‖ ≈ 0

u⊥ ≈ c

c�
0

γ(x′)
2π(x − x′)

dx′

neglecting the small induced velocity component parallel to the surface. since
the sheet is treated as lying along the chord. This integral has a singularity
at x′ = x. However, since the velocity induced by a vortex sheet at its surface
has no normal component, the integral is in fact the principal value integral
discussed earlier. Since the total normal component of velocity must be zero

U

(
α − dy

dx

)
+ c

c�
0

γ(x′)
2π(x − x′)

dx′ = 0 (11.16)

Hence we obtain the governing equation of thin wing aerodynamics, namely
Glauert’s equation (Glauert, 1947), obtained earlier (2.91):

c

c�
0

γ(x′)
2π U(x − x′)

dx′ =
dy

dx
− α (11.17)

To solve this equation we introduce the eccentric angle θ defined by

x =
1
2

c [1 − cos(θ)] and y = c f(θ) (11.18)
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Hence we obtain

1
2π U

c

π�
0

γ(θ′) sin(θ′)
(cos(θ′) − cos(θ))

dθ′ =
dy

dx
− α (11.19)

To solve this equation Glauert introduced a Fourier series expansion for the
vorticity

γ(θ) = −2U

{
A0

[1 + cos(θ)]
sin(θ)

+
∞∑

n=1

An sin(nθ)

}
(11.20)

At the trailing edge the vorticity is easily shown to be zero. In this way
satisfaction of the Kutta condition is ensured, and the flow is well behaved.
Substituting this form into equation (11.19) and performing the integrals using
the results from Appendix 11.A yields

dy

dx
= (α − A0) +

∞∑
n=1

An cos(nθ) (11.21)

This equation directly yields the coefficients An in a similar manner to that of
a Fourier series, namely multiplication by cos(nθ) and integration from 0 to π
in turn, to give

A0 = α − 1
π

π�
0

dy

dx
dθ

An =
2
π

π�
0

dy

dx
cos(nθ) dθ

(11.22)

To calculate the lift we must calculate the total circulation along the wing,
namely

Γ =
� c

0
γ(x) dx =

1
2

c
� π

0
γ(θ) sin(θ) dθ

= −cU
� π

0

{
A0

(1 + cos(θ))
sin(θ)

+
∞∑

n=1

An sin(nθ)

}
sin θ dθ

= −π cU

(
A0 +

1
2
A1

)
(11.23)

using the standard integrals. It is easy to show using equations (11.18) and
(11.22) that equation (11.23) is identical to equation (2.93) obtained earlier in
Case study 2.II. Hence the lift coefficient is

cL = π (2A0 + A1)

= 2π

[
α +

1
π

π�
0

dy

dx
(cos(θ) − 1) dθ

]
(11.24)
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For thin aerofoils, the slope of the lift profile takes the simple form

dcL

dα
= 2π (11.25)

The axis of zero lift is defined by the angle

α0 =
1
π

π�
0

dy

dx
(1 − cos(θ)) dθ

displaced from the geometrical axis defined by the chord.
The moment of the lift about the leading edge is calculated from the local

lift force (11.15) integral

M = −ρ U
� c

0
x γ(x) dx =

1
4

ρ U c2
� π

0
γ(θ) [1 − cos(θ)] sin(θ) dθ

=
1
2

ρ U2 c2
� π

0

{
A0

(1 + cos(θ))
sin(θ)

+
∞∑

n=1

An sin(nθ)

}
[1 − cos(θ)] sin(θ) dθ

=
π

4
ρ U2 c2

(
A0 + A1 − 1

2
A2

)
(11.26)

The pitching moment as calculated above is defined with positive sense
anti-clockwise with respect to the x and y axes as for the circulation, i.e. a
positive couple tending to lift the trailing edge with respect to the leading
one. Conventionally the moment is defined with opposite sense, i.e. tending
to lower the trailing edge. Thus in conformity with normal practice, we
must introduce a negative sign into the pitching moment coefficient (see
footnote 13 on page 67) and the pitching moment coefficient about the
leading edge

CM,0 = −π

2

(
A0 + A1 − 1

2
A2

)
(11.27)

The value about the quarter chord point

CM,1/4 =
π

4
(A2 − A1) (11.28)

is independent of the angle of attack. The quarter chord point is therefore
the aerodynamic centre of the wing profile. For thicker wings the aerody-
namic centre has been shown to exist and is found to lie close to the quarter
chord point.
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11.6 Application of Conformal Transforms to the
Properties of Aerofoils

The thin wing approximation provides a useful solution to many of the prob-
lems of wing design, particularly as wings are generally fairly thin. However
it is not able to account for the effects of the thickness of the wings. Thus
although the general behaviour predicted in the previous section 11.5 is a good
approximation, it does not provide an accurate estimate of the lift or pitching
moment.

As we have noted in Section 2.12, conformal transforms of a circle can be used
to generate an aerofoil section. However, as noted there, the profiles obtained
are rather inconvenient for engineering applications. Nonetheless a number of
useful and fairly general properties can be derived from considerations of the
flow about the generating circle.

11.6.1 Blasius’s Equation

When using complex functions for the analytic calculation of the properties of
an aerofoil in irrotational incompressible flow, it is particularly convenient to
express the aerodynamic force and pitching moment directly in terms of the
complex velocity.

The pressure forces and moment on an element of the surface are

dFx = −p dSx = −pdy dFy = −pdSy = pdx

dM = −p (xdSy − y dSx) = p (xdx + y dy)
(11.29)

Hence

dFx − ı dFy =
1
2
ρv2 (dy + ı dx) M = −1

2
ρv2 (xdx + y dy)

Since
dy + ı dx = ı dz∗ xdx + y dy = � (z dz∗)

and the surface of the body is a streamline dψ = 0

dw∗ = dφ − ı dψ = dφ + ı dψ = dw =
dw
dz

dz

Hence integrating over the surface we obtain

Fx − ıFy =
1
2
ı ρ

� (
dw
dz

)2

dz M = −�
{

1
2

ρ
�

z
(

dw
dz

)2

dz

}
(11.30)
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These contour integrals are taken over the surface of the aerofoil. However
Cauchy’s theorem allows the contour to be extended arbitrarily provided no
new poles are included, i.e. the flow does not include any new sources or vor-
tices. The integrals may be evaluated by summing over the residues of the
poles in the usual way.

Extending the contour to one far from the body, the Kutta–Zhukovskii for-
mula for the lift (2.105) follows immediately if the second-order terms in the
perturbation velocity are neglected since

(vx − ıvy)
2 (dx + ı dy) ≈ −2 U (ux dx + uy dy)

x,ξ

y,η

TT’

β
α

Second axis

First axis

C

U

γ

Figure 11.4: Conformal transformation of a circle in the ζ plane into an aerofoil section in
the z plane. The two planes are shown plotted on the same set of axes. The centre of the
circle C, being transformed at ζ0, is conventionally taken to be the centre of the aerofoil.
The trailing edge point T ′ in the ζ plane transforms into the trailing edge of the wing T , the
line CT ′ defining the first axis, or axis of zero lift, of the profile at angle β to the x, ζ axes .
The second axis of the profile is defined by the condition of zero pitching moment and at
angle γ to the x, ζ axis. The incoming airflow of velocity U is at an angle α to the x, ζ axes.

11.6.2 Conformal Mapping of a Circular Cylinder

It is found (see Appendix 11.B) that a number of conformal transformations of
a circle have a streamlined profile similar to an aerofoil structure (Figure 11.4).
Unfortunately only a limited number of such profiles are available, and no sim-
ple transformation is available for the inverse process. However, these special
cases are valuable in that they offer an insight through analytic modelling into
the flow around realistic wing sections. Although this method of calculating the
aerodynamic properties of wings is obsolete nowadays, having been replaced
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by more general direct calculation using computers, the method is nonetheless
valuable in providing an exact analytic solution for a restricted set of profiles.
These are useful for validating and benchmarking more sophisticated methods
of calculation, which although accurate are nonetheless approximate.

As discussed above, there is a one-to-one correspondence between points
on the wing with those on the circle. The properties of the resulting aerofoil
section are set by the position ζ0 of the centre of the circle in ζ space and
its radius. The thickness of the profile is determined by the real part of the
displacement of centre �(ζ0) and the ‘camber’ or slope of the mean line by the
imaginary part �(ζ0). Normally the circle is chosen to pass through only one
singular point of the transformation, which corresponds to the trailing edge.
Any other singularities are placed inside the circle and do not contribute to
the profile. Thus we may identify the point T ′ in ζ space on the circle with the
equivalent point T in z space at the trailing edge on the wing. At the trailing
edge the wing generally has a sharp turning point, where the tangent changes
its direction discontinuously. As has been shown, if the transform behaves as

z − zT = (ζ − ζT )(2−τ/π)

in the neighbourhood of T ′, the tail angle passes through an angle τ .
The mapping is normally defined so that the singularity lies on the real ζ

axis at T ′. The potential for flow around the circle of radius R with circulation
Γ and velocity U inclined at an angle α to the x axis in ζ space is

F (ζ) = U exp(−ια) (ζ − ζ0) +
UR2 exp(−ια)

(ζ − ζ0)
− ıΓ

2π
log (ζ − ζ0) (11.31)

Hence the velocity is

F ′(ζ) = vη − ı vν = U exp(−ια) − UR2 exp(−ια)
(ζ − ζ0)

2 − ıΓ
2π (ζ − ζ0)

(11.32)

The conditions to be applied to the mapping require:
1. dz/dζ is non-zero everywhere in the ζ plane outside the circle.
2. dz/dζ → 1 when ζ → ∞.
The velocity in the z plane is

dw
dz

= vx − ı vy =
dF

dζ

dζ

dz
(11.33)

At the trailing edge if the velocity is finite

dF

dz
= 0 (11.34)
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and the trailing edge point in the circle (ζ) plane must be a stagnation point. If

ζT = ζ0 + R exp(−ιβ)

so that −β is the angle between the line from the centre C ′ of the circle to the
trailing edge T ′ in the ζ plane, then(

dF

dζ

)
T

= U exp(−ια) − U exp[−ι(α + 2β)] − ıΓ
2πR

exp(−ιβ)

and therefore

Γ = −2 ı π U R(exp [ι(α + β)] − exp [−ι(α + β)] = 4π U R sin (α + β) (11.35)

determines the circulation Γ for a well-behaved flow as required by the Kutta
condition. The circulation is just that required to ‘drag’ the streamlines round
to move the stagnation point to the trailing edge T ′.

11.6.3 The Lift and Pitching Moment of Aerofoils Generated
by Transformations of a Circle

It is very convenient that the major properties of aerofoils generated by the
conformal transformation of a circle may be generated from those of the govern-
ing circle by an application of the Kutta condition, as exemplified by equation
(11.35), and described in more detail in Appendix 11.B.

As noted earlier the integral in the Blasius expression for lift and moment
may be extended out to large values of |ζ|, where we may use the general
asymptotic expression for transformation (11.B.2). The complex velocity in
the z plane is therefore

dw
dz

=
dF

dζ

dζ

dz
=
[
U exp(−ια) − U exp(ια)

(ζ − ζ0)
2 +

2ı U R sin(α + β)
(ζ − ζ0)

]
dζ

dz
(11.36)

and
dz
dζ

= 1 − k1

ζ2
− 2k2

ζ3
− . . . (11.37)

Substituting these values into the Blasius expression for the lift we obtain

L = 4 π ρU2 R sin(α + β) (11.38)

where α and β are the angles that the incoming flow, and the line between the
centre C ′ and the trailing edge T ′, make with the ξ direction respectively in
the circle plane ζ (see Figure 11.4). Since β defines the angle of the axis of zero
lift, the angle α′ = α + β is the effective angle of attack. Furthermore, since
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angles are unchanged by the transformation, we may conclude that α′ is the
effective angle of attack in the plane of the wing z.

Taking the centre of the profile to be at the centre of the generating circle,
z0 = ζ0, the pitching moment about the centre is

MC = −�
{

ρ

2

� [
(ζ − ζ0) +

k1

(ζ − ζ0)
+ . . .

]

×
[
U exp(−ια) − U exp(ια)

(ζ − ζ0)
2 +

2 ı U R sin(α + β)
(ζ − ζ0)

]
dζ(

1 − k1

ζ2
− . . .

)
}

Collecting terms of order ζ−1 we obtain

MC = �
{� [

2U2a exp(−2ια) − 2U2R2 − 4U2R2 sin2(α + β)
] dζ

ζ

}
= 2π ρ U2 � [ı k1 exp(−2ια)] (11.39)

If k1 = k2 exp(2 ı γ) then

MC = −2 π ρ U2k2 sin[2(γ − α)] (11.40)

The second axis, which is defined as the angle of attack when the pitching
moment is zero, is found at α = γ = 1

2 arg(k1), and therefore directly by the
conformal transform employed. An important case is where the first and sec-
ond axes coincide, β = γ, and the wing has neutral stability. This is clearly
not possible with either the Zhukovskii or Karman–Treffetz transformations
(Appendix 11.B) where k1 is real and γ = 0 and the second axis is parallel to
the chord.

We may rewrite equation (11.40) in terms of the effective angle of attack

MC = 2π ρ U2 k2 sin 2(β + γ) − 4 π ρ U2 k2 sin(α + β) cos(2 γ + β − α)

= 2π ρ U2 k2 sin 2(β + γ) − L
k2

R
cos(2 γ + β − α) (11.41)

Clearly the first term

MF = 2π ρ U2 k2 sin 2(β + γ) (11.42)

is independent of the lift and represents the moment about the focus.
The second term identifies the position of the focus with respect to the

centre. Since the lift may be assumed to act through the focus normal to the
angle of attack, the focus may be seen to lie on the line CF at an angle 2(β + γ)
to the first axis and a distance k2/R from the centre. Since the angle between
the first and second axes is (β + γ), the second axis bisects the angle between
the first axis and the line from the centre to the focus.
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11.7 The Two-Dimensional Panel Method

In Section 2.10.2 we showed that the two-dimensional flow around a body may
be described by a series of distributed sources and vortices on the surface of the
body. We also briefly introduced the general idea of the panel method in the
discussion of the uniqueness of the representation of the surface of the body
by a vortex sheet. The surface of the body is subdivided into a finite num-
ber of small elements, namely panels. In general, each panel contains either a
finite source or a rectilinear vortex (or both) in the form of either a point or
distributed source/vortex. A boundary condition is applied at specified collo-
cation points on the surface of the body within the panels, the flow at each
point being linearly proportional to the source/vortex strength, and the con-
stant of proportionality being a geometrical factor known the influence factor.
As we have seen in the discussion of the thin wing (case study 2.II), simple
sources are appropriate to take account of the thickness of the wing, and vor-
tices for the camber. In the absence of circulation (symmetric bodies) the flow
may be uniquely specified by a set of single sources and control points in each
panel. However, if circulation is present (asymmetric bodies) vorticity must
be introduced, and an additional boundary element is required. For example,
one of the earliest panel methods for calculating the characteristics of aero-
foil sections uses a set of sources and a single constant vorticity at the centre
of each panel, each taking the form of a straight line segment of the aero-
foil. The condition of zero normal velocity at each collocation point in the
panel centre is supplemented by one based on the Kutta condition. Thus for
N panels, there are (N + 1) unknowns and (N + 1) non-singular simultaneous
equations, whose coefficients are the (N + 1) × (N + 1) influence factors. This
ensures the uniqueness of the solution, which may be calculated by standard
matrix methods.

The induced flow at the centre of each panel may be readily written in
terms of the influence factors and source/vortex strengths, and hence the total
velocity due to the sum of the incoming flow and the induced velocity may also
be written down. The boundary conditions may be written in two different,
but equivalent forms (Section 2.7.1):

1. Neumann condition. The normal component of the total velocity through
the panel must be zero, since the surface is solid.

2. Dirichlet condition. The potential just inside the vortex sheet correspond-
ing to the body must be constant.

As noted above, the set of equations is singular. Thus we must provide an
additional constraint to allow the singularity to be removed. This is provided
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by the Kutta condition, which takes the simple form for the surface vorticity;
that is, the total surface vorticity at the trailing edge of the wing must be
zero. Thus at the trailing edge the vorticity in the panels on the upper (� − 1)
and lower � surfaces must be equal and opposite in sign γ�−1 + γ� = 0 provided
they are short and of equal length.

The incoming flow velocity and the induced velocity produced by any panel j
at any panel i 	= j are both continuous across the vortex sheet. The only veloc-
ity discontinuity is that due to vorticity of panel i itself. Hence the circulation
around the wing is

Γ =
N∑

i=1

γi (11.43)

from which the lift may be calculated by the Kutta–Zhukovskii formula.
Since a system of doublets can be used to introduce circulation, combina-

tions of sources and doublets may also be used. Panel methods based purely
on the vorticity alone (vortex panel methods) are difficult to implement and
infrequently used due to the zero diagonal elements of the influence matrix. For
higher accuracy, extended sources within each panel (e.g. linearly distributed)
should be used. The size and distribution of the panels themselves is important
in improving the accuracy and speed of calculation. For more details on the
implementation of these methods and a full discussion of the panel method
reference should be made to Katz and Plotkin (2001).

11.8 Three-Dimensional Wings

Experiments have shown that the basic two-dimensional airflow over a wing
section closely follows the picture established by the Zhukovskii hypothesis.
At low speed the characteristic properties of lift and pitching moment are well
described by the appropriate models based on ideal flow. Clearly drag, which
involves viscosity, cannot be calculated by the ideal flow approximation, and
falls outside the scope of this section.

However, in three dimensions the mathematical structure of the problem of
airflow around the wing is markedly different.12 This follows immediately from

12Historical note Prandtl and his co-workers developed the three-dimensional model of
the flow around a wing during the First World War, which delayed its general publication. The
work was eventually released in two papers entitled ‘Airfoil theory’ published in Reports of
the Society of Science in Göttingen. A summary of this work (in English) was subsequently
issued as Prandtl (1921) and is described in Prandtl and Tietjens (1957). Lanchester (see
Ackroyd et al., 2001, chap. 7) had earlier correctly identified the physical picture of vortex
motion resulting from flow around the wing tip, but without the mathematical structure
developed by Prandtl.
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the change in the connectivity resulting from the finite extent of the body
(Section 2.6.1). In two dimensions the aerofoil section is doubly connected and
the circulation around it is therefore arbitrary until specified by Zhukovskii’s
condition. In contrast, in three dimensions the wing is simply connected, and
there exist reducible loops which may be contracted to a point in the irro-
tational flow. Consequently the circulation around an arbitrary wing section
must be balanced by the total flux of vorticity through a surface enclosing the
wing tip with base at the wing section. The flows in the two cases are there-
fore markedly different. The reconciliation of these differences caused major
problems in the early investigations of aerofoil behaviour. The resolution was
early proposed by Lanchester (see Ackroyd et al., 2001, pp.57–69), but in an
obscure form. Independently Prandtl (1921) generalised this approach casting
it in a more mathematical form, as outlined in this section.

The flow around a simply connected, regular solid13 in three dimensions
is smooth and uniquely determined by the incoming flow (Section 2.6). Thus
the flow around a sphere (Section 2.8.3) is smooth and has no circulation.
However, in this case if the pressure of the incoming flow is too low, the
flow will cavitate. Quite generally, as we have seen, the solution to the flow
around a corner in the ideal approximation (Section 2.10.5) always leads to
cavitation. Thus we conclude that the flow must separate at a sharp trailing
edge in the manner discussed in Section 2.3.

Since the flow is irrotational, Bernoulli’s equation ensures that in two dimen-
sions the flow velocities over the top and bottom surfaces are the same at the
trailing edge; consequently there can be no discontinuity in the velocity leaving
the trailing edge. In contrast, in three dimensions the speeds must be equal,
but their directions may be different; consequently a tangential discontinuity
or vortex sheet may leave the trailing edge, forming the wake.

The relationship between the two- and three-dimensional flows is now expli-
cable. We consider the case of a wing of large aspect ratio, i.e. span much
larger than the chord, b 
 c. The flow around a particular section of the wing
is therefore approximated by the two-dimensional model. Since there is a pres-
sure difference between the lower (pressure) and upper (vacuum) surfaces, the
streamlines are bent outwards on the lower surface and inwards on the upper as
flow is permitted around the tip. We therefore expect that, in addition to the
two-dimensional flow in the plane of the chord, there is a cross-flow along the
span outwards on the under surface and inwards on the top. As the flow leaves
the trailing edge, the tangential discontinuity or vortex sheet is formed, with
the lines of vorticity approximately normal to the trailing edge (Figure 11.5).

13A regular surface in this context is smooth and has no discontinuities in gradient. Thus
a wing section with an angular or cusp trailing edge is not regular.
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Figure 11.5: Schematic diagram of the vortex sheet formed at the trailing edge. For
simplicity the wing is represented by a line, and the sheet by a set of finite vortex lines. The
sense of rotation of the vortices is shown in conformity with the convention used earlier.

This sheet is swept out from the wing by the flow increasing in length, and
forms the wake.

Wings with no taper across the span have constant circulation along the
span. At the wing tip the strict condition of irrotationality is violated as the flux
of vorticity along the wing due to the circulation over its surface must be bal-
anced by a flux of vorticity through a surface enclosing the tip (since ∇ · ζ = 0).
This gives rise to a vortex leaving the tip (tip vortex ) which is required
to allow the vortex lines to be continuous (Helmholtz’s second theorem,
ii page 28).

The wing profile in general will taper towards the wing tips, and the cir-
culation around the wing consequently decrease as the tip is approached. The
vortex lines associated with the circulation, which form a bound vortex around
the wing section, are approximately parallel to the trailing edge, and their num-
ber decreases outwards. Since Helmholtz’s second theorem requires that vortex
lines be continuous, we see that the decrease in the number of vortex lines along
the span must be balanced by those leaving the trailing edge in the vortex sheet.
In the ideal flow picture, the lines are completed by the starting vortex estab-
lished when the flow is initiated, and moving continuously downstream. Since
the vortex sheet is unstable it rolls up into two helicoidal trailing vortices leav-
ing the wing tips before reaching the starting vortex over a distance of several
spans, the vortex lines forming a spiral within the roll. The total circulation,
however, remains unchanged, consistent with Helmholtz’s fourth theorem (iv,
page 28). In practice this structure is damped by viscosity far downstream of
the wing. The vortex structure thus forms a complete pattern of loops behind
the wing–a horseshoe vortex (Figure 11.6).

The flow pattern induced by the trailing vortices gives rise to a downward
velocity between the vortex pair (downwash), and an upward flow outside them
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Figure 11.6: Sketch of the general horseshoe pattern of vortices about the trailing edge of
a wing following the rolling up of the vortex sheet. The sense of rotation of the vortices is
shown in conformity with the convention used earlier.

(upwash). This upward flow is made use of by flocks of geese flying in their
characteristic V formation during migration. It is also used by aircraft flying
in either a V or echelon formation. In each case the lift required is reduced and
consequently, as we shall show, the resulting drag.

At the wing tip z = −b/2 the circulation around the wing is small and
increases towards the median line of the wing z = 0, before decreasing towards
the other wing tip z = b/2. In conformity with our convention, the circulation
is taken as positive through the small angle. The strength of the vortex sheet
is determined by the rate of rotation x → y, the axis of the circulation being
along the z axis. Clearly the strength of the vortex sheet is determined by the
rate of change of circulation along the span. The direction of the surface vor-
ticity or strength is parallel to the x axis for z > 0 and anti-parallel for z < 0.
Thus from Helmholtz’s second theorem we estimate the surface vorticity as

Σ(z) ≈ −dΓ(z)
dz

î

where î is the unit vector in the x direction and Γ the circulation of the bound
vortex.

11.8.1 Velocity at the Wing Surface

As we saw in Section 2.7.1 we may represent an arbitrary body by a vortex
sheet whose surface matches that of the body. Three-dimensional flow around
a wing can therefore be considered to be composed of two sets of vortex sheets:

1. The bound vortices around the wing sections, whose strength decreases
along the span.

2. The free vortices leaving the trailing edge of the wing and closed by the
starting vortex far downstream, effectively at infinity.
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The velocity at any point in the flow can therefore be calculated as the sum
of three different velocity terms:

1. The incoming velocity U.
2. The velocity induced by the bound vortex sheet around the wing vs due

to the vorticity Σs.
3. The velocity induced by the wake vortex sheet vw with vorticity Σw.
In this picture the wing is imagined to be an internal region of air separated

from the external stream by the discontinuity of the sheet. The normal velocity
of the fluid at the boundary of the sheet is zero. It follows from the Neumann
boundary condition in a simply connected space (Section 2.6) that the velocity
inside the sheet must be zero.

Hence we may write the velocities external + and internal − to the sheet as

v± = U + v±
s + v±

w

where v±
s are the velocities induced by the sheet.

The flow velocities due to incoming flow and induced by the wake are con-
tinuous across the sheet. The velocity induced by the remainder of the bound
vortex sheet, excluding the element at which the calculation is made, is given
by vs = 1

2 lim (v+
s + v−

s ) (Section 2.2.1). The total velocity inside the sheet v−

is zero. The velocity on the surface is

1
2
v = U + vs + vw (11.44)

11.8.2 The Force on the Wing

The force on the wing is due to the pressure on the surface of the wing, which
in turn is given by Bernoulli’s equation. The total force is therefore

F = −
�
S

pdS

= −ρ
�
S

{
p0

ρ
+

1
2
(
U2 − v2

)}
dS

=
1
2
ρ

�
S

v2dS

=
1
2
ρ

�
S

v ∧ (n ∧ v) dS

where n is the unit normal to the surface element dS since the constant terms
integrate to zero over the closed surface S of the wing, n · v = 0 since n is
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normal to v and we have used the expansion of the vector triple product

v ∧ (n ∧ v) = (v · v) n − (n · v) v = v2 n

Since the velocity inside the sheet is zero, v is the velocity difference across
the sheet, and n ∧ v is the surface vorticity Σs so that

F =
1
2
ρ

�
S

v ∧ Σs dS (11.45)

Substituting the total velocity outside the wing (11.44), we obtain three
distinct components of the force:

1. Lift L = ρU ∧
�
S

Σs dS (11.46)

We shall show that this is approximately given by the integral of the
local lift force, as determined by the Kutta formula, along the span.

2. Drag
D = ρ

�
S

vw ∧ Σs dS (11.47)

3. Cross-coupled
C = ρ

�
S

vs ∧ Σs dS (11.48)

In the usual case, when when the aspect ratio of the wing is large (the
span is much larger than the chord), the vortex lines are nearly parallel,
the cross-coupled term is small and can be neglected.

11.8.3 Prandtl’s Lifting Line Model–Downwash Velocity

In order to proceed, Prandtl made a set of simplifying assumptions about
the nature of the form of the wing and the flow known as the lifting line
approximation:

1. The wing has a median plane of symmetry.
2. The chord parallel to the plane of symmetry is everywhere small com-

pared with the span.
3. The trailing edge may be treated as a straight line.
4. The bound vortex lines are all parallel to the span.
5. The velocity induced at any point P by the trailing vortices is equal to

the velocity induced at the point on the trailing edge on the same section
as P .

6. All the trailing vortices leave the wing parallel and parallel to the incom-
ing velocity.
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It follows from Helmholtz’s second theorem that the number of lines of vor-
ticity leaving the bound vortex sheet over the wing in an element δz must
determine the strength of the free vortex sheet leaving the trailing edge Σ δz
(Figure 11.5). The strength of the free vortex sheet a distance z from the
median line is thus

Σ(z) = −dΓ(z)
dz

î (11.49)

in agreement with our earlier picture.
Within the lifting line model the bound vortex is assumed to lie along the

trailing edge and therefore its contribution to the induced velocity at the trail-
ing edge is zero. However, the trailing vortex sheet is an assembly of rectilinear
vortices running away from the trailing edge parallel to the median plane, each
of width δz and with circulation δΓ = Σ δz. These vortices make a total con-
tribution, given by equation (2.30) with θ1 = 0 and θ2 = π/2, to the velocity
at a point z

u =
1
4π

b/2�
−b/2

1
(z − z′)

dΓ
dz

∣∣∣
z′

dz′ î ∧ k̂

Hence there is only a component in the y direction

uy = − 1
4π

c
� b/2

−b/2

1
(z − z′)

dΓ
dz

∣∣∣
z′

dz′ (11.50)

where Γ(z′) is the circulation around the section at z′. Since the circulation,
Γ(z), about the wing is a negative quantity,14 this velocity is downwards at
the trailing edge. The integral is evaluated as a principal value integral. This
term is known as the downwash velocity.

The forces follow directly:

1. Lift Substituting for the strength of the vortex from (11.49) in equa-
tion (11.46) we obtain

L = ρU ∧
�
S

Σs dS = −ρ U
� b/2

−b/2
Γ(z) dz ĵ (11.51)

where the circulation15

Γ(z) =
�

Σ d�
∣∣
z
k̂ (11.52)

Hence the lift is normal to the incoming flow velocity, as expected. This
result is an extension of the Kutta–Zhukovskii formula from two dimen-
sions, as might be expected if the aspect ratio is large.

14See footnote 13 on page 67 where this change of sign is discussed.
15̂i, ĵ and k̂ are the unit vectors in the x, y and z directions respectively.
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2. Drag Similarly substituting for the strength of the vortex from (11.49)
in equation (11.47), we obtain

D = ρ
� b/2

−b/2
uy Γ dz î (11.53)

The drag is therefore a force in the direction of the incoming flow. Substi-
tuting for the downwash velocity (11.50) in equation (11.47), we obtain
the induced drag due to the transverse flow along the span:

D =
ρ

4π

� b/2

−b/2
c
� b/2

−b/2

1
(z − z′)

Γ(z)
dΓ
dz

∣∣∣
z′

dz′ dz î (11.54)

Integrating by parts we may write this expression in the alternative form

D = − ρ

4π

� b/2

−b/2
c
� b/2

−b/2

dΓ
dz

∣∣∣
z

dΓ
dz

∣∣∣
z′

ln |z − z′|dz′ dz î (11.55)

Although formed in irrotational flow, the extended vortex sheet leaving
the trailing edge of the wing is included with the wake, thereby violat-
ing d’Alembert’s paradox. Together with the parasitic (viscosity-induced
skin) friction it contributes to the total momentum transfer through the
wake, and thus the drag.

3. Cross-coupled Substituting for the downwash velocity (11.50), the
cross-coupled term (11.48) can be written as

C =
ρ

8π

�
S

�
S

[Σs(r) ∧ Σs(r′)] ∧ (r − r′)
|r − r′|3 dS dS′ = 0 (11.56)

since in the model the vortex lines are everywhere parallel to the trailing
edge. This condition, i.e. that the vortex lines on the surface of the wing
are nearly parallel, is obeyed quite generally. The cross-coupled term is
consequently normally small.

The incident velocity must be corrected for the downwash, so that the effec-
tive incoming flow onto the wing has velocity U′ = U + u. The change in the
magnitude of the velocity is relatively small, but the effective angle of incidence
is rotated by a small angle, the angle of downwash,

αd = arctan
(uy

U

)
(11.57)

which decreases the angle of attack. If the two-dimensional expression for the
lift around a section (11.8) is used, the effective angle of attack should be taken



Aerofoils in Low-Speed Incompressible Flow 323

as α ≈ α′ − αd = α − α0 − αd. As a result the lift slope is decreased. The lift
coefficient is

CL = aα = aα′ (11.58)

where a is the effective lift slope and a that of the wing section treated as a two-
dimensional flow. We note that the lift slope a is a characteristic parameter of
the wing section determined by its circulation and specifies its lift parameter.

The induced drag can be interpreted as the rotated component of the lift
due to the downwash ∼ αdL so that the total force remains normal to the
effective flow.

We note that the induced drag does not violate d’Alembert’s paradox as
the flow is no longer completely steady, the wake (vortex sheet) increasing in
length as the trailing vortex moves progressively downstream with the flow.

The induced drag force can be seen from equation (11.54) to be independent
of the value of the span. The lift on the other hand increases linearly with
the span. The ratio of drag to lift for an infinite wing becomes small limited
only by the unavoidable parasitic drag due to viscosity. Ultralow-drag wings,
e.g. for human-propelled flight, are therefore long and thin. On many airliners
small upturned winglets are fitted to the wing tips to prevent the cross-flow
around the tip and thereby reduce induced drag, since fuel efficiency is an
important issue.

Despite its approximations, the lifting line model is remarkably accurate and
is still valuable, providing a rapid analytic model for the calculation of lift and
induced drag.

11.8.4 Lift and Drag as Properties of the Wake

It is instructive to see how the lift and drag are determined by the flow in the
wake. Consider two infinite planes normal to the incoming flow direction x,
namely (y, z) planes, one far upstream of the body x1 and one downstream
x2. The force on the body must then be given by the difference in the total
momentum flux through the two planes. Making the same assumptions as
previously, the flow is only weakly perturbed by the body, and the lift force
per unit width is determined by the loss of momentum of fluid flowing through a
closed surface consisting of the two planes normal to the incoming flow direction
and closed at infinity:

Fy = −ρ U
�
back

uy dy dz

where uy is the y component of the perturbation velocity. The flow, which is
perturbed by viscosity, passes through the back plane in a narrow region of
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the flow, which is not irrotational, known as the wake.16 The fluid in the wake
has passed close to the surface of the body and acquired vorticity due to the
action of viscosity. The wake is narrow as the body is streamlined and the
separation, which must occur, takes place only at that trailing edge. However,
the irrotational velocity perturbation, which occurs in ideal flow, will be much
more extensive. Thus we may write

Fy = −ρ U

(� ∞
y+

+
� y−

−∞

)
uy dy

where y+ and y− are the upper and lower boundaries of the wake respectively.
In the region outside the wake there is potential flow, so that uy = ∂φ/∂y and

Fy = −ρ U

b/2�
−b/2

(φ− − φ+) dz

But the circulation around the body is

Γ =
�

u · dl =
�
∇φ · dl = φ− − φ+ (11.59)

Hence, substituting, we recover the Kutta–Zhukovskii lift formula, equation
(2.105), for the lift per unit width, Fy.17

The drag force per unit width is similarly evaluated by comparing the
momentum flow through the front and back planes far from the body where
the pressure p′ = p − p0 and velocity (u = v − U) perturbations are small. To
lowest order in the perturbation the drag force is

Fx =

(�
front

−
�
back

)(
p′ + ρ U ux

)
dy dz (11.60)

From Bernoulli’s equation it follows that, neglecting terms of second order,

p′ ≈ −ρU · u
The only contribution to the drag in first order is therefore from the wake
where the flow is no longer irrotational

Fx = −ρ U
�

wake

ux dy dz (11.61)

16In ideal flow the wake is the tangential discontinuity across which the tangential compo-
nent of velocity is discontinuous, i.e. a vortex sheet.

17This derivation is strictly only valid for a three-dimensional flow around a wing with
large aspect ratio. As we have discussed earlier, the discontinuity at the trailing edge is not
formed in two-dimensional flow and the circulation is established as a boundary condition by
Zhukovskii’s condition.
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However, in the absence of viscosity the wake is a thin discontinuous layer
across which ux is approximately continuous. The above equation therefore
indicates that the drag is small, which is indeed the case since Fx � Fy. In
ideal flow this term is zero as the wake is a pure discontinuity. In practice, due
to viscosity the wake has a finite width and the contribution of this term to
the momentum loss represents the parasitic drag referred to earlier.

However, there is also transport of energy downstream associated with the
net kinetic energy gain resulting from the cross-flow in the wake vortex sheet,
which we have neglected thus far and takes place over an area of dimensions
typically of the order of the span, much larger than the wake. This energy flow
must be supplied by the work done by a force which the wing exerts on the fluid
in the direction of motion. This force is equal to and opposite to the drag force
applied by the fluid to the wing, namely induced drag. The drag force is calcu-
lated from the increase in the kinetic energy of the air at the downstream plane

1
2

�
ρ (∇φ)2 U dy dz

per unit time, since a mass
�

ρ U dy dz is swept out. The drag force18 is given
by the work done Fx U . Since the flow is incompressible, ∇2φ = 0, Fx may be
written as19

Fx = −1
2

�
ρ (∇φ)2 dy dz

= −1
2
ρ

⎧⎨
⎩

b/2�
−b/2

[
φ

∂φ

∂y

]
+

dz −
b/2�

−b/2

[
φ

∂φ

∂y

]
−

dz

⎫⎬
⎭

where + and − refer to the top and bottom of the wake respectively, and the
span is z = −b/2 to z = +b/2.

Since uy = ∂φ/∂y is continuous across the wake and φ− − φ+ = Γ(z) as
before, we obtain

Fx =
1
2
ρ

� b/2

−b/2
Γ(z)uy dz (11.62)

which is identical to the result obtained earlier (11.53).
It follows from either equation (2.106) or equation (11.59) that the circula-

tion is a first-order term in the perturbation (u/U). It therefore follows that the

18This term is obtained by including the next order terms from Bernoulli’s equation in
equation (11.60).

19Using Green’s theorem�
V

(∇φ)2 dV =
�

S
φ∇φ · .dS −

�
V

φ∇2φ dV
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lift coefficient is of first order in (u/U), but the induced drag coefficient second
order. Since the circulation is proportional to the incoming flow velocity, it
follows that both the lift and induced drag vary as U2 and that, provided the
lift is linear as in Section 11.3, the lift and induced drag coefficients depend
only on the geometrical configuration. Hence CD � CL. Furthermore, since the
circulation scales linearly with the incoming flow speed, Γ ∼ U and approxi-
mately linearly with the angle of attack α, a useful general relation between
the induced drag and the lift for wings of geometrically similar profiles can be
seen from equations (11.52) and (11.54): that is, for a given wing profile, the
drag and lift coefficients are related as

CD

CL
2 ≈ const (11.63)

as a consequence of the dependence of each term on the circulation, the con-
stant being determined solely by the geometric form of the wing profile. It
follows that the induced drag scales with the angle of attack approximately as
CD ∼ α2.

Referring back to equation (11.54) for the induced drag, we see if that all
dimensions in the z direction are increased in proportion, the circulation Γ(z)
remaining constant for the scaled values of z, the drag force is unchanged and
the drag coefficient reduced. On the other hand, the lift is increased by the
scale factor, the lift coefficient remaining constant.

In ideal flow the wake is vanishingly thin, and drag resulting from the rota-
tional (viscous) components in the flow is therefore vanishingly small. However,
when viscosity is included there is a significant region of rotational flow where
viscosity has played an important role. The total drag is therefore the sum of
the induced drag and the parasitic drag, which results from the action of viscos-
ity in the boundary layer at the surface of the wing, as we saw in Chapter 6.
However, the relationship of the induced drag with equation (11.61) for the
loss of momentum in the direction of flow in the wake is not immediately obvi-
ous. The flow which contributes to the induced drag is irrotational and may
extend far outside the wake, as noted earlier. But it was argued earlier on the
basis of Bernoulli’s equation that the only contribution to the drag is due to
rotational flow in the wake. In fact, as we have already noted, induced drag is
a second-order effect, which is neglected in the derivation of equation (11.61).
Indeed we may conclude that across the wake there must be a small (second-
order) discontinuity in ux induced by the vortex sheet, which contributes to
the general integral of the momentum transfer rate parallel to incoming flow,
Fx, across the back plane.



Aerofoils in Low-Speed Incompressible Flow 327

Case study 11.I Calculation of Lift and Induced Drag for
Three-Dimensional Wings

11.I.i Wing loading

The lift and induced drag given by equations (11.52) and (11.53) may be consid-
ered to be the integrals over the wing of contributions from elements dz of the span,
namely ρU Γ(z) dz and ρ uy Γ(z) dz respectively. These terms therefore represent the
elementary loading of the wing from the different elements.

In Section 11.3 we showed that the lift coefficient of two-dimensional sections
was approximately linearly proportional to the effective angle of attack. Generalising
this result for three-dimensional wing profiles by including the upthrust, this result
becomes

CL = a (α − α0 − αd) = a′ (α − α0) = a′ α′ (11.64)

where αd is the angle of downwash (11.57), α′ = α − α0 is the effective angle of attack
(11.8) and we assume that the downwash vanishes at the angle of zero lift. The lift
slope a, namely the constant of proportionality (11.8) between the lift coefficient and
the effective angle of attack, in the absence of downwash is determined from the two-
dimensional theory for sections along the span. The inclusion of the downwash modifies
this value to a′. For thin wings, we recall a = 2π.

Since the lift coefficient
CL = − ρU Γ

1
2 ρU2 c

(11.65)

where c is the chord, equating the values of the lift coefficient and substituting for the
angle of downwash αd, we obtain

Γ(z)
1
2 c(z) a(z)U

= −α′(z) − 1
4π U

� z′=b/2

z′=−b/2

dΓ(z′)
(z − z′)

(11.66)

which provides an integral equation from which Γ(z) may be determined, provided
c(z), a(z) and α′ are known. The two-dimensional flow about the wing section at z is
specified by the lift slope a(z).

Prandtl’s integral equation (11.66) provides the connection between the two-
dimensional theory of wing sections and the realistic flow about a three-dimensional
wing. The three-dimensional profile of the wing is specified through the chord and
slope angle. We may consider the problem in two separate ways:

1. Given the loading, i.e. Γ(z), find the form of wing profile and the induced drag.
2. Given the wing profile, calculate its circulation and aerodynamic properties.

The latter is the more difficult. The first case being relatively straightforward, we
consider only the second.

To solve this equation we write the distribution of the circulation along the span as
a Fourier series

Γ(z) = −2 bU

∞∑
n=0

A(2n+1) sin[(2n + 1)θ] (11.67)
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where θ is the polar angle defined by z = −1
2 b cos θ, so that the wing tips are respec-

tively θ = 0 and θ = π. The sum contains only sine terms, since the circulation is
zero at the tips, and only contains even terms since the wing is symmetric about the
median line θ = π/2. Substituting in the integral equation we obtain

4 b

a(θ) c(θ)

∞∑
n=0

A(2n+1) sin[(2n + 1) θ] = α′(θ)

+
b

2π

π�
0

∞∑
n=0

(2n + 1)A(2n+1) cos[(2n + 1)θ′]

1
2b(cos θ − cos θ′)

dθ′

The integral is obtained from equation (11.A.5) to yield

∞∑
n=0

A(2n+1) [(2n + 1)μ(θ) + sin θ] sin[(2n + 1)θ] = μ(θ)α′(θ) sin θ (11.68)

where μ(θ) = a(θ) c(θ)/4 b. The angle of attack relative to the axis of zero lift, namely
α′(θ) = α − α0(θ), will vary along the span if the wing has aerodynamic twist. This
need not arise from a constructional twist in the wing, but may be due to changes in
the section along the span, which give rise to a rotation of the zero-lift axis.

In a practical case, the series is truncated to a finite set of terms, say n ≤ m. The m
coefficients A2n+1 are then evaluated as solutions of the set of simultaneous equations
(11.68) taken at m independent points.

If the wing does not have an aerodynamic twist, it follows from equation (11.68)
that the set A(2n+1) is linearly proportional to the effective angle of attack α′.

Lift The lift is directly calculated from the loading using the integral of the
Kutta–Zhukovskii formula (11.52) along the span. Since

Γ(z) dz = b2 U

∞∑
0

A(2n+1) sin(2n + 1)θ sin θ dθ

and
π�
0

sin mθ sin nθ dθ = δm,n

it follows that the lift and the lift coefficient for the entire wing are

L =
1
2

π ρU2 b2 A1

CL =
π b2A1

S
= π AA1

(11.69)

where A = b2/S is the aspect ratio of the wing.
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Downwash velocity The downwash velocity directly from equations (11.50) and
(11.A.5) is

uy =
1

4π

π�
0

2bU
∑

(2n + 1)A2n+1 cos(2n + 1)θ′
1
2 b (cos θ′ − cos θ)

dθ′

= U

∞∑
0

(2n + 1)A2n+1
sin(2n + 1)θ

sin θ
(11.70)

Induced drag The induced drag is given by equations (11.53) and (11.70)

uyΓ(y) dy = b2 U2
∞∑

m=0

(2m + 1)A2m+1 sin(2m + 1)θ
∞∑

n=0

A2n+1 sin(2n + 1)θ dθ

Hence integrating over the span, the total induced drag and the corresponding
drag coefficient are

D =
1
2

π ρ b2 U2
∞∑
0

(2n + 1)A2
2n+1

CD = π A

∞∑
0

(2n + 1)A2
2n+1 = π AA2

1 (1 + δ)

(11.71)

where δ = {
∞∑
0

(2n + 1)A2
2n+1}/A1 ≥ 0 may be considered to be the correction

to the case of elliptic loading.

11.I.ii Elliptic loading

Since the total lift depends only on the first Fourier component A1, it follows from
(11.71) that the minimum induced drag subject to constant lift is obtained when
A1 = CL/πA and An = 0 (1 ≤ n ≤ ∞). In this case the downwash velocity is constant
along the span. Since

Γ = −2 bU A1 sin θ = Γ0 sin θ

z = −1
2

b cos θ

it follows that (
Γ
Γ0

)2

+
(

z

b/2

)2

= 1 (11.72)

where Γ0 = −2 bU A1 is the circulation on the median line.
The total induced drag coefficient for elliptic loading may be expressed in terms of

the lift coefficient as
CD = πAA1

2 =
1

πA
CL

2 (11.73)

Thus the induced drag varies as the square of the lift, and in this particular case
of elliptic loading, the approximation of equation (11.63) is exact. Induced drag is
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therefore strong when the lift is high, e.g. at take-off or at high altitude. Its value
under these conditions can be larger than that due to parasitic drag resulting from the
action of viscosity. Gliders and high-flying aircraft are therefore designed with wings
of high aspect ratio, despite the difficulty of manufacture. Aircraft with elliptic wings,
such as the Spitfire, minimise the induced drag. However, such wings are difficult
to fabricate, and tapered wings with an appropriate taper ratio, approximating to
the elliptical, usually provide a satisfactory compromise. It can be shown that the
loading is elliptic at all angles of incidence only if the chord function c(z) is such that
a(0) c(0) = a(θ) c(θ) sin θ. Hence if the profiles of all sections are geometrically similar,
a(θ) ≈ const, the profile of the chord c(z) must also be an ellipse.

11.9 Three-Dimensional Panel Method

In Section 11.7 we outlined briefly the use of the panel method for calculating
the flow around aerofoil sections. However, the method achieves its greatest
applicability for the calculation of the flow around complete aeroplane surfaces
in three dimensions.

The basic method is the same as in two dimensions in that the body surface
is broken up into a large number of small panels. The flow over the surface is
calculated in terms of the strengths of the singularities assigned to each panel.
Applying the boundary conditions at the surface in either the Neumann or
Dirichlet forms leads to a set of simultaneous equations for the strengths.
However, in this case there is the additional complication of the wake, which
takes the form of a vortex sheet leaving the trailing edge of all the streamlined
surfaces. This will introduce additional induced velocities, leading to downwash
and induced drag as we have seen. In contrast to the two-dimensional case, we
may need to invoke a Kutta condition, with the necessary support being given
by the vorticity of the wake, namely γ�−1 + γ� = γw, so that the deficit in
vorticity along the wing equals that in the trailing wake. As a result the set of
simultaneous equations is non-singular and no additional condition needs to be
invoked. To take account of the wake vorticity, we must introduce additional
panels in the wake. This usually takes the form of the wake being assigned by
a user-defined surface leaving the trailing edge of the body surfaces. Panels
are designated in the same manner on the wake as on the body. It will be
appreciated that in the choice of panels in three dimensions, experience and
intuition play important roles.

The nature of the singularities which are used can vary with choices from
sources, doublets and vortex loops. The singularities may be point or may be
distributed over the panel, the latter giving higher accuracy.

The panel method is widely used, not only for the study of wing sections, but
in other areas of fluid mechanics such as the design of racing yachts, high-speed
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racing cars, etc. The method is considerably more sophisticated than indicated
in this brief account. For an extensive discussion of the panel method in two
or three dimensions the text by Katz and Plotkin (2001) is recommended.

Appendix 11.A Evaluation of the Principal
Value Integrals

In many problems of fluid dynamical importance, principal value integrals are encoun-
tered, which may be solved by Fourier techniques exemplified by equation (11.23)
to calculate the circulation around a thin wing, and subsequently in the calculation
of induced drag. This requires the evaluation of the integral (11.19) which contains
the terms

In = c

π�
0

cos(nθ)
cos θ − cos θ′

dθ (11.A.1)

The above integrals have a pole at θ = θ′, which corresponds to the velocity induced
by a vortex at itself. We therefore exclude the singularity from the integral evaluating
only the principal value:

In = lim
ε→0

⎧⎨
⎩

θ′−ε�
0

cos(nθ)
cos θ − cos θ′

dθ −
π�

θ′+ε

cos(nθ)
cos θ′ − cos θ

dθ

⎫⎬
⎭

We first evaluate I0 noting that

1
cos θ − cos θ′

=
1

2 sin θ′

{
cos[ 12 (θ′ + θ)]
sin[12 (θ′ + θ)]

+
cos[ 12 (θ′ − θ)]
sin[12 (θ′ − θ)]

}

Hence

I0 = lim
ε→0

{
1

sin θ′
log

[
θ′ − 1

2ε

θ′ + 1
2ε

]}
= 0 (11.A.2)

The integral I1 is

I1 = c

π�
0

cos θ

cos θ − cos θ′
dθ =

π�
0

cos θ − cos θ′

cos θ − cos θ′
dθ = π (11.A.3)

and finally since

cos(n + 1)θ− cos(n + 1)θ′ + cos(n − 1)θ − cos(n − 1)θ′

= 2 cos nθ (cos θ − cos θ′) + 2 cos θ′ (cos nθ − cos nθ′)

we have the recurrence for I(n+1)

I(n+1) + I(n−1) = 2 cos θ′In (11.A.4)

whose solution is easily seen to be

In = A cos nθ′ + B sin nθ′ = π
sin nθ′

sin θ′
(11.A.5)

since A = 0 and B = π/ sin θ′ are determined by the known values of I0 and I1.
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Appendix 11.B The Zhukovskii Family of
Transformations

Zhukovskii’s transformation

z = ζ +
�2

ζ
(11.B.1)

and the related modifications formed the basis for much of the theoretical calcula-
tion of the flow around aerofoils before rapid numerical computing became available.
Although this method is no longer used, it provided the basis for the calculation of
the flow around two-dimensional wing sections up to the 1960s. However, as it still
gives a nice example of the power and the limitations of calculations using confor-
mal transforms, it remains of interest. The transformation is used to relate the flow
around a cylinder to that around an aerofoil section. A circle in the ζ plane passes
through one of the singularities in the transformation at ζ = ±�, which transforms to
give the sharp trailing edge at z = ±2�. The simple transform is somewhat limited by
conditions at the trailing edge. However, modifications to the transform and the intro-
duction of iterative corrections allowed accurate calculations to made of the pressure
distribution around the wing in the incompressible limit.

The complex potential for a wind directed onto the aerofoil at an angle α from
x = −∞ is U exp(−ıα)z. Therefore we require a transformation which yields z = ζ for
large values of |ζ| and |z|. Such a form is

z = ζ +
k1

ζ
+

k2

ζ2
+

k3

ζ3
+ . . . = F (ζ) (11.B.2)

where the series converges for large |ζ|.
As we have noted, the mapping ceases to be conformal at a zero of dz/dζ. At this

singular point the mapping of a circle in the ζ plane will yield two tangents enclosing
either a finite angle or a cusp (touching or zero angle). To demonstrate this result
consider a small region enclosing the singularity at ζ0

dz
dζ

= F ′(ζ) = (ζ − ζ0)κ−1f(ζ)

where f(ζ) ≈ const = A. Hence

z − z0 ≈ A

κ

(ζ − ζ0)κ

As the path of ζ passes around the singularity, arg(ζ − ζ0) changes by π and
consequently arg(z − z0 ) by κπ. The angle between the two arms of the transform
is therefore 2π − κπ (Figure 11.B.1). The angle between the tangents is therefore
π(2 − κ), and is a cusp if κ = 2.

The centre of the profile is defined by the centre of the generating circle. Two axes
for the profile are specified:

1. The first axis is defined by the direction of the incoming flow when no lift is
developed. It is the line joining the centre of the generating circle to the point
representing the trailing edge. We define the angle β as that between the chord
and the first axis. For a symmetric profile β = 0.
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z0
κπ

z

ζ0ζp

Figure 11.B.1: Transformation around a singularity.

2. The second axis is defined as the direction of the incoming flow when the moment
of the lift over the wing (pitching moment) about the centre is zero. The sense
of the pitching moment is taken to be positive when the sense of the moment
is such as to lift the leading edge of the wing. We define the angle γ as that
between the chord and the second axis. If the second axis lies above the first, i.e.
the angle γ > β, the wing is stable, and if γ < β it is unstable.20 We have shown
in Section11.6.3 that the parameter k1 in the expansion (11.B.2) determines the
angle of the second axis through γ = 1

2 arg(k1)

11.B.1 Zhukovskii Transformation

The basic properties of the Zhukovskii transformation are seen in problems #36 and
#39. In the first a circle centred at the origin generates a symmetric profile, and
not passing through either singularity gives a finite thickness. In the second example
the circle generates a laminar section; the centre is located on the imaginary axis
generating an asymmetric profile and passes through both singularities generating
cusps at both ends and a profile of zero thickness. More general profiles pass through
one singularity only to give a blunt leading edge and sharp trailing edge. The
symmetric thickness function g(x) of Case study 2.II is determined by the real part
of the centre in ζ space and the mean line term h(x) by the imaginary part.

11.B.1.1 Transformation of a circle to a streamlined symmetric body

If the centre of the circle is displaced along the real (ξ) axis and passes through one of
the singular points, we obtain a symmetric streamlined body (Figure 11.B.2), typical
of a fast-swimming fish, or the tailplane and fin of an aircraft. The transformed point
corresponding to the singularity is a cusp, where the profile turns through 2π radians
as for the laminar section. This is the trailing edge of a wing section. The circle passes
closes to, but not through, the second singularity. Consequently the profile is blunt at
the leading edge, as for the ellipse.

11.B.1.2 Transformation of a circle to a streamlined asymmetric body

If the centre of the circle is further displaced in the imaginary (ν) direction whilst
passing through one discontinuity only, the symmetric profile is bent around the

20Figure 11.4 shows an unstable configuration where the second axis lies below the first.
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C′ T′S S′ O T

−

Figure 11.B.2: The geometrical arrangement of the ζ and z planes for the Zhukovskii
transformation of a circle to a symmetric streamlined body, the centre C′ of the circle of
radius (1.1) being at (−0.1, 0) passing through the singularity at (1, 0). The point S on
the leading edge is the transformation of S′ on the circle and similarly on the trailing edge
T and T ′.

skeleton formed by the laminar transformation passing through both discontinuities
(Figure 11.B.3). The centre of the circle for the laminar skeleton is taken on the line
passing through the centre of the generating circle and the discontinuity. This yields
the first axis of the profile, which is the direction of zero lift.

From these results we see that the position of the centre of the circle in the ζ plane
determines the shape of the profile in two ways:

• The real part of the displacement determines the thickness. If the wing is not
too thick, the ratio of the thickness to the chord, the width of the wing between
the leading and the trailing edges, known as the thickness ratio, is given approx-
imately by 1.3�(d)/�.

• The imaginary part of the displacement determines the camber of the trans-
formed profile. As we have seen, the ratio of the maximum displacement of
the centre line from the chord, known as the camber, to the chord is given by
�(d)/2�.

11.B.2 Karman–Treffetz Transformation

Zhukovskii profiles are unsatisfactory as practical wing profiles because they suffer
from a number of deficiencies. Firstly the leading edge of the profile is too massive
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C″
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Figure 11.B.3: The geometrical arrangement of the ζ and z planes for the Zhukovskii
transformation of a circle to an asymmetric streamlined body, the centre of the circle C′

being at (0.1, 0.1) and passing through the singularity at (1.0, 0.0). Also shown (dotted)
is the skeleton of the profile given by a laminar transformation by a circle centred at C′′ on
the axis of zero lift (dashed).

compared with the thin tail. Secondly the maximum camber lies too close to the centre
of the profile. Furthermore, the cusp at the trailing edge is very difficult to construct.
Realistic profiles have a finite angle between the two surfaces at the trailing edge.

Generalising the Zhukovskii form, we may write the transformation as

z − κ�

z + κ�
=
(

ζ − �

ζ + �

)
κ

(11.B.3)

where κ = 2 for the Zhukovskii transformation. The general behaviour, and in par-
ticular the aerodynamic properties, of this transformation are very similar to that of
the Zhukovskii one. We may therefore follow a similar analysis to identify the various
forms, and we shall simply identify the major differences.

The Karman–Treffetz transformation may be expanded as

z = ζ +
(κ2 − 1)

3
�2

ζ
+ . . .

Hence k1 is real and γ = 0. The second axis is therefore parallel to the chord and, like
the Zhukovskii profile, unstable.

The discontinuities at ±� transform to ±κ�, showing the change in scale. However,
the major difference in the final profile is at the discontinuity. From Section 11.B the
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change in the argument of the term z − κ� defines the angle at the trailing edge, which
is therefore κπ. Clearly the range of values of κ is 1.5 ≤ κ ≤ 2. The transformation
scale of that for the Karman–Treffetz is less than for the Zhukovskii as the points ±�
change to ±κ�.

The transformation involving the circle passing through both singularities, which
led to a laminar section for the Zhukovskii transformation, now has finite angles at the
ends, and the resultant has a finite thickness. Thus the skeleton of a Karman–Treffetz
profile is thick (Figure 11.B.4).

C″

T′S S′ O

C′

T
+

Figure 11.B.4: The geometrical arrangement of the ξ and z planes for the
Karman–Treffetz transformation of a circle to a symmetric streamlined body, the centre of
the circle C′ at (−0.1, 0.1) passing through the singularity at (1.0, 0.0). Also shown
(dotted) is the skeleton of the profile given by a laminar transformation by a circle centred
at C′′ on the axis of zero lift (dashed). The parameter κ = 1.95 corresponds to a trailing
edge angle of 9◦.

11.B.3 Von Mises Transformation

The Zhukovskii and Karman–Treffetz transformations are relatively inflexible and
cannot reproduce many of the desirable properties of real aerofoils. In particular, as we
have seen, the aerofoil sections are always unstable. To this end von Mises proposed a
generalisation of the Zhukovskii transformation including an extended number (n + 1)
of singularities (−�, u1, u2 , . . . , un) whose location could be adjusted to give a range
of properties within relatively non-restrictive limits, provided they all lay within or on
the generating circle:

dz
dζ

=
(

1 +
�

ζ

)(
1 − u1

ζ

)(
1 − u2

ζ

)
· · ·

(
1 − un

ζ

)
(11.B.4)

Clearly the Zhukovskii transformation corresponds to the case u1 = −�, u2 = · · ·
= un = 0. The only condition required is that all the singularities u1, u2, . . . , kn lie
inside the generating circle in the ζ plane.

Expanding the product we may write

dz
dζ

= 1 +
k0

ζ
− k1

ζ2
− 2k2

ζ3
− · · · − nkn

ζ(n+1)
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and hence, integrating,

z = ζ + k0 ln ζ +
k1

ζ
+

k2

ζ2
+ · · · + kn

zn

Since we require that z → ζ as |ζ| → ∞, it follows that k0 = � −∑
um = 0, and the

singularities must satisfy the condition

n∑
m=1

um = � (11.B.5)

Thus the ‘centre of mass’ of the singularities ui must equal the value at the trailing
edge �, or alternatively the origin must be at the centre of mass of all the singularities.

The second axis is no longer along the chord, and the angle γ = 1
2 arg(k1). Its

direction can be flexibly set by an appropriate choice of the singularities.
There is a cusp at the trailing edge. If n ≤ 3, the three terms in the expansion k1

are easily obtained:

k1 = �2 − 1
2

n∑
i=1

n∑
j =

i�=j
1

uiuj k2 =
1
2

⎡
⎢⎣ n∏

i=1

ui − �

n∑
i=1

n∑
j =

i�=j
1

uiuj

⎤
⎥⎦ k3 =

1
3
�

n∏
i=1

ui

In general only a limited number of singularities are used. We consider the two cases
n = 2 (three singularities) and n = 3 (four singularities):

• In the case n = 2 the sum of two singularities, u1 and u2, must be real and equal
to u1 + u2 = �. Thus writing

u1, 2 =
�

2
± μ � exp(ιθ)

hence

k1 = �2 − u1u2 = �2
(

3
4

+ μ2 cos 2θ + ıμ2 sin 2θ

)
(11.B.6)

The angle of the second axis is therefore given by

γ =
1
2

arctan
{

μ2 sin 2θ
3/4 + μ2 cos 2θ

}

• In the case n = 3, it is normal to choose one of the singularities to be at u1 = +�.
The remaining two are then arranged symmetrically about O so that u2 = −u3.
Hence

u2, 3 = ±μ � exp(ιθ)

and

k1 = �2
(
1 + μ2 exp(2ιθ)

)
k2 = 0 k3 = −1

3
μ2 �4 exp(2ιθ) (11.B.7)
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The angle of the second axis is therefore given by

γ =
1
2

arctan
{

μ2 sin 2θ
1 + μ2 cos 2θ

}

In the present form the profile will have a cusp at the trailing edge. We may remove
this by modifying equation (11.B.3) to give a finite angle κπ between the tangents as
before

dz
dζ

=
(

1 +
�

ζ

)(κ−1)(
1 − u1

ζ

)(
1 − u2

ζ

)
· · ·

(
1 − un

ζ

)
(11.B.8)

and hence the governing condition becomes

n∑
m=1

um = (κ − 1)� (11.B.9)

Figure 11.B.5 shows a typical profile generated by an n = 4 transformation. The
profile shown has an S-shaped (relevé) profile. The skeleton is formed by transforming
the circle passing through the two singularities (±�, 0) with centre on the first axis
lying almost along the x axis.

C′
T′S S′ O

C″

u2

u3

T
+

•

•

Figure 11.B.5: The geometrical arrangement of the ξ and z planes for the n = 4 von
Mises transformation of a circle to a streamlined body, the centre of the circle C′ of radius
1.1135 being at (−0.11, 0.088 324) passing through the singularity at (1.0, 0.0). The
singularities are (1.0, 0.0), ±(−0.282 843, 0.282 843). Also shown (dotted) is the generating
circle of the profile centre C′ and the circle passing through the singularities at ±(1, 0)
centred at C′′ on the axis of zero lift (dashed).

11.B.4 Theodorsen’s Solution for an Arbitrary Profile

The conformal transforms identified above are very useful for identifying the general
properties of wings, but are difficult to apply to actual designs, which may have been
identified by experiment and experience. To overcome this problem, iterative methods
were developed to treat the inverse problem: that is, given a wing profile, calculate
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the velocity and pressure around it. These were based on the use of Zhukovskii or
Karman–Treffetz transformations, the latter having the advantage of allowing a finite
trailing edge angle.

A map is made of the wing section from the wing plane (ζ) into an approximating
plane (z′), using a standard transformation. The resulting form is nearly circular.
Using a constant area the approximating circle is converted into a true circle (z).
Three steps are involved:

1. Derivation of the relations between the flow in the plane of the wing (ζ) and
the plane of the near (approximating) circle (z′).

2. Derivation of the relations between the flow in the near circle plane of the wing
(z′) and the plane of the true circle (z).

3. Combination of the above relations to obtain the velocity distribution in the
plane of the wing section (ζ).

At the conclusion of the first iteration, the velocity profile does not exactly match
that required at the surface of the wing, but the differences are small. A perturbation
solution is therefore used to correct this. In most situations only one iteration was
found to be needed. Further details can be found in the texts by Abbott and Doenhoff
(1959) and Ashley and Landhal (1986), and of an earlier method in the text by von
Karman and Burgers (1935).

We shall not discuss these transformations further as they are well covered in many
standard texts. Methods based on transformations have been largely superseded for
aerofoil design by direct computer modelling, principally using the panel method.





Chapter 12

Aerofoils in High-Speed
Compressible Fluid Flow

12.1 Introduction

Thus far we have treated supersonic flow by exact solutions of the equations
of fluid dynamics. As we have seen, in expansion the flow is the consequence
of a series of non-dissipative pressure waves each acting independently in an
ideal fluid. Each wave propagates more slowly through the medium modified
by its predecessors. In contrast, in compression the successive pressure waves
travel more rapidly and consequently accumulate directly to generate a shock
in which the entropy increases. The behaviour of the fluid in expansion or
compression is therefore markedly different.

However, we have also found that if the disturbance of the flow is small, it
is accomplished by a simple pressure wave throughout the fluid travelling at
the local sound speed along a characteristic Section 8.2. Furthermore we have
seen that weak shocks have a very small entropy increase of only third order
and therefore propagate as sound waves.

These considerations suggest that we examine whether small disturbances in
compressible gas flow can be treated as a set of simple pressure waves, which
account for flows in both compression and expansion within a single consistent
framework. With such a goal in mind, we examine when the steady flow of the
fluid maintains irrotationality in the presence of shocks, although, of course,
the entropy differs upstream and downstream of the shock.

Introductory Fluid Mechanics for Physicists and Mathematicians, First Edition. Geoffrey J. Pert.
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Since Bernoulli’s equation holds across the shock, then

(v · ∇)v =
1
2
∇v2 − v ∧ (∇∧ v) = −∇p

ρ

Hence making use of the second T dS equation

∇
(

h +
1
2
v2

)
− v ∧ (∇∧ v) = T ∇s (12.1)

However, as we have seen in Section 2.3, Crocco’s theorem shows that in
steady flow h + 1

2v2 is constant everywhere in an irrotational flow provided the
flow is homo-energetic and homo-entropic. Since Bernoulli’s equation holds
everywhere, including across the shock, the entropy change across the shock is
related to the vorticity change

v ∧ (∇∧ v) = v ∧ ζ = −T ∇s (12.2)

where ζ = ∇∧ v is the vorticity.
In general the entropy change across the shock varies with the intensity of

the shock. However, we may identify two important cases in which the vorticity
remains unchanged across the shock:

1. The shock is weak. From equations (10.16) and (10.14), Δs ∼ Δp3 and
Δv ∼ Δp. Hence the vorticity jump across the shock scales as Δζ ∼
TΔs/v ∼ Δp3 → 0. If Δp → 0 we may neglect the vorticity behind the
shock and treat the downstream flow as irrotational. This is the case
treated in this chapter.

2. The shock has constant intensity along its surface ∇s = 0. Hence either
ζ = 0 or v ‖ ζ. The latter cannot be the case as can be shown as follows.
The vorticity component normal to the shock is formed by the derivatives
in the shock surface of the tangential velocity component. However, since
the flow is irrotational upstream of the shock and the tangential veloc-
ity is continuous across the shock, the downstream tangential derivatives
must also be zero, and therefore the normal component of the vortic-
ity is zero. But the normal component of the velocity cannot be zero,
therefore v ∦ ζ. Consequently the vorticity is zero and the flow remains
irrotational.

In these two cases, if the upstream flow was irrotational, the downstream
flow behind the shock is also. Since the overall flow is irrotational we may
simplify the equations of fluid dynamics by introducing the velocity potential
φ, where v = ∇φ. In steady flow, Euler’s equation may be expressed as

(v · ∇)v = −1
ρ
∇p = −c2

ρ
∇ρ
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and the equation of continuity as

∇ · (ρv) = ρ∇ · v + v∇ρ = 0

hence

c2∇v − v · (v · ∇)v =
(
c2 − φx

2
)
φxx +

(
c2 − φy

2
)
φyy +

(
c2 − φz

2
)
φzz

− 2 (φx φy φxy + φy φy φyz + φz φx φzx) = 0 (12.3)

where the suffices denote partial derivatives, e.g. φx ≡ ∂φ/∂x.
If the effect of an obstacle introduced into the flow is a minor disturbance

to the uniform incoming flow, we may seek to reduce the complexity of this
equation (12.3) by neglecting terms of higher order in the perturbation. Thus
if the incoming flow velocity is U in the x direction and the perturbation v, the
total velocity is U + v. The corresponding potential is U x + φ, where φ is the
potential of the perturbation. Neglecting the terms containing cubic powers of
φ, we obtain from equation (12.3)

(
1 − M1

2
) ∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
≈ 0 (12.4)

where the Mach number M1 = U/c1, c1 being the sound speed of the incoming
flow.

From Bernoulli’s equation, the enthalpy

h = h1 − 1
2

[
(U + v)2 − U2

]
≈ h1 − 1

2
(
vy

2 + vz
2
) − U vx (12.5)

yields the pressure

p = p1 − ρ1 U vx − 1
2

ρ1

(
vy

2 + vz
2
)

(12.6)

where ρ1 is the density in the incoming flow, and from the thermodynamics

dh =���Tds +
1
ρ
dp

since ds = 0.
It is clear that equation (12.4) takes different forms if the flow is:

Subsonic M1 < 1. The equation has an elliptic form. In this case the flow
pattern is a solution of a modified form of Laplace’s equation in which
one dimension is increased by the scale factor

√
1 − M1

2.
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Supersonic M1 > 1. The equation has a hyperbolic form. In this case the
flow pattern is described by a series of waves leaving the source of the
perturbation at the Mach angle arcsin(c1/U) to the incoming flow. These
are the characteristics or pressure waves discussed earlier.

Clearly the perturbation limit is not valid if the Mach number is too large
M1 	 1 or if the flow transonic M1 ≈ 1.

12.2 Linearised Theory for Two-Dimensional Flows:
Subsonic Compressible Flow around a Long
Thin Aerofoil – Prandtl–Glauert Correction

The flow around an aerofoil in compressible flow in the linearised approx-
imation may be directly compared with that around the same aerofoil in
incompressible flow by a simple scale transformation to reduce the linearised
perturbation equation (12.4) for the potential to Laplace’s equation (2.20).
In order to do this the potential function for the potential must be scaled to
satisfy the boundary conditions at the wing surface.

Since the wing is a streamlined body in subsonic flow, the perturbation to
the flow is small and we may use equation (12.4) for the potential

(
1 − M1

2
) ∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
= 0 (12.4)

At the surface of the wing the flow velocity component normal to the surface
is zero (

U +
∂φ

∂x

)
nx +

∂φ

∂y
ny +

∂φ

∂z
nz = 0 (12.7)

where the unit vector n̂ is the outward normal to the wing. Let the wing
section C be given by y = f±(x), where + refers to the upper and − to the
lower surface. The wing is thin, the angle of attack small |ny| ∼ 1, nx and nz

are nearly zero and, as the span is large, the z component of velocity may be
neglected. The boundary condition reduces to

Unx ± ∂φ

∂y

∣∣∣
C

= 0 (12.8)

where the + sign is taken for the upper surface and the − for the lower one.
Now consider the incompressible flow about the same wing section in the

scaled co-ordinate system

x′ = x y′ =
√

1 − M1
2 y z′ =

√
1 − M1

2 z

U ′ = U φ′ =
√

1 − M1
2 φ ρ′1 = ρ1

(12.9)
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where the x co-ordinates are unchanged and the y and z ones reduced by a fac-
tor β =

√
1 − M1

2. The incoming flow at speed U and density ρ1 is unchanged.
The wing section C ′ remains unchanged, y′ = f±(x′). Equation (12.4) trans-
forms to equation (2.20) in the scaled frame. The boundary conditions in the
scaled frame become

U ′n′
x ± ∂φ′

∂y′
∣∣∣
C′

= U ′ dy′

dx′
∣∣∣
C′

± ∂φ′

∂y′
∣∣∣
C′

= U
dy

dx

∣∣∣
C
± ∂φ

∂y

∣∣∣
C

= Unx ± ∂φ

∂y

∣∣∣
C

= 0

(12.10)
The unit vector component nx ≈ ±dy/dx along the contour C, namely y(x),
the sign depending on whether the upper (+) or lower (−) surface is considered.
The choice of scaling for the potential φ is therefore made to match that
required to satisfy the boundary conditions in the incompressible system.

The perturbation velocity components are

vx =
∂φ

∂x
=

1√
1 − M1

2

∂φ′

∂x′ =
1√

1 − M1
2

v′x

vy =
∂φ

∂y
=

∂φ′

∂y′
= v′y vz =

∂φ

∂z
=

∂φ′

∂z′
= v′z

(12.11)

The pressure increment around the profile (12.6) neglecting second-order
terms is given by

p = −ρ1 U vx = − 1√
1 − M1

2
ρ1 U v′x =

1√
1 − M1

2
p′ (12.12)

Defining the pressure coefficient as

Cp =
p

1
2 ρ1 U2

=
1√

1 − M1
2

p′
1
2 ρ′1 U ′2 =

1√
1 − M1

2
C ′

p (12.13)

we obtain the Prandtl–Glauert correction for compressible flow: that is, the
pressure coefficient is increased by the factor 1/

√
1 − M1

2 over the incom-
pressible value by compression. The section lift coefficient cL is therefore also
increased by the same factor cL = c′L/

√
1 − M1

2.
It is easy to show that the Kutta–Zhukovskii lift formula (2.105) is

unchanged in compressible flow within the perturbation approximation (see
Section 11.8.4). Thus the lift is

Fy = −ρ1U

lz/2�
−lz/2

Γ(z) dz
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where lz is the wing span. Transforming between the compressible and incom-
pressible flows we have that the circulation is

Γ =
�

v · d� =
� ∂φ

∂x
dx +

∂φ

∂y
dy

=
1√

1 − M1
2

� ∂φ′

∂x′ dx′ +
∂φ′

∂y′
dy′ =

1√
1 − M1

2

�
v′ · d�′ =

1√
1 − M1

2
Γ′

(12.14)

and the lift force transforms as

Fy = −ρ1 U

lz/2�
−lz/2

Γ dz = − 1
(1 − M1

2)
ρ′1 U ′

l′z/2�
−l′z/2

Γ′ dz′ =
1

(1 − M1
2)

F ′
y

(12.15)
Although the dimensions of the wing section lxl′x and ly = l′y are unchanged
by the transformation, the span changes in conformity with the z scaling
lz = l′z/

√
1 − M1

2. The total lift coefficient for the complete wing CL in com-
pressible flow is directly related to that of the transformed wing in incompress-
ible flow by

CL =
Fy

1
2ρ1U2lxlz

=
F ′

y

1
2 ρ′1 U ′2 l′x l′z

√
(1 − M1

2)
=

C ′
L√

(1 − M1
2)

(12.16)

consistent with equation (12.13).
It is simple to see that the expression for the induced drag derived in Section

11.8.4, equation (11.62) (and therefore (11.53)), carries over into linearised
compressible flow. Since the circulation is unchanged for the transformation
from wing C to C ′, the relationship between the induced drag force on the
wing in compressible flow and the transformed one in incompressible flow is

Fx =
ρ1

4π

� lz/2

−lz/2
c
� lz/2

−lz/2

1
(z − z′)

Γ(z)
dΓ
dz

∣∣∣
z′

dz′ dz

=
ρ′1

4 π (1 − M1
2)

� l′z/2

−l′z/2
c
� l′z/2

−l′z/2

1
(z − z′)

Γ′(z)
dΓ′

dz

∣∣∣
z′

dz′ dz =
1

(1 − M1
2)

F ′
x

(12.17)

Remembering that the drag force is independent of the span, we may com-
pare the drag coefficient from the compressible flow with that from an incom-
pressible one over an identical wing, i.e. one of span lz, namely CD0. Hence the
drag coefficient scales as

CD =
Fx

1
2ρ1U2lxlz

=
F ′

x
1
2ρ′1

(
1 − M1

2
)
U ′2l′xlz

=
CD0

(1 − M1
2)

(12.18)
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Similarly the lift coefficient from the identical wing CL0 = C ′
L so that the

relationship CD/CL
2 = CD0/CL0

2 ≈ const is retained in compressible flow.

12.2.1 Improved Compressibility Corrections

The Prandtl–Glauert correction (12.13), which was derived above, is a linear
correction to a nonlinear problem. This is a reasonably accurate approximation
provided the Mach number of the incoming flow is low, M1 < 0.7. Subsequent
work has included some of the nonlinearities to generate corrections which are
applicable at greater (but still subsonic) Mach numbers.

The earlier, but widely used, correction is due to von Karman and Tsien

Cp =
C ′

p√
1 − M1

2 +
[
M1

2/
(
1 +

√
1 − M1

2
)]

C ′
p/ 2

(12.19)

A subsequent form is due to Laitone

Cp =
C ′

p√
1 − M1

2 +
(
M1

2
{
1 + [(γ − 1)/ 2] M1

2
}

/ 2
√

1 − M1
2
)

Cp
′

(12.20)

12.3 Linearised Theory for Two-Dimensional Flows:
Supersonic Flow about an Aerofoil – Ackeret’s
Formula

The flow past a thin wing in a supersonic stream in two dimensions is only
slightly disturbed from the ambient uniform state and the perturbation approx-
imation, equation (12.4), may be used to calculate the flow. However, when
the incoming flow is supersonic, M1 > 1, the form of the equation is changed

∂2φ

∂y2
− (

M1
2 − 1

) ∂2φ

∂x2
= 0 (12.21)

from an elliptic to a hyperbolic partial differential equation. We therefore
expect the solution to be expressed in terms of a set of waves originating
at the surface of the wing. Since the body only presents a perturbation to the
flow, the waves, either rarefactions or shocks, are weak (Figure 12.1) and far
from the body degenerate into sound waves. The outgoing sound waves carry
significant energy away from the body and therefore generate a form of drag,
known as wave drag. The mechanism is therefore very similar to that of wave
drag of ships due to surface waves, which were discussed earlier on page 99.
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Figure 12.1: Sketch of the rarefactions and shocks around an aerofoil in a supersonic flow.
All the waves are weak and at the Mach angle to the incoming flow.

The wave nature of this system is easily seen if we write ‘time’ as t = x/U

and the ‘wave velocity’ as c = U/
√

M1
2 − 1 to give

∂2φ

∂y2
+

∂2φ

∂z2
− 1

c2

∂2φ

∂t2
= 0

the two-dimensional equation for the propagation of waves away from the wing.
It is easily seen that the ‘time’ δt = δx/U is the interval over which the wing
moves a distance δx and that the wavefronts are propagating out at the Mach
angle α = arcsin(1/M1). The picture is therefore identical to that discussed in
Section 8.2.

Since the wing is assumed to be two dimensional the governing equation for
the flow reduces to

∂2φ

∂y2
− β2 ∂2φ

∂x2
= 0 (12.22)

where β =
√

M1
2 − 1, whose general solution is expressed in terms of incoming

and outgoing waves
φ = f1(x − βy) + f2(x + βy) (12.23)

subject to a boundary condition on the wing surface:

∂φ

∂y

∣∣∣
ξ(x)

= ∓Unx ≈ Uξ̇(x)

where n is the outward unit normal and ξ(x) the profile of the wing section.
The − sign refers to the upper surface and + to the lower.

Since only outgoing waves can be established the correct solution must have
f1(x − βy) for the upper surface y > 0 and f2(x + βy) for the lower y < 0.
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Furthermore, since the wing is thin and the velocity must be parallel to the
wing surface, the boundary condition takes the form

∂φ

∂y

∣∣∣
ξ1(x)

= −βḟ1(x) ≈ Uξ̇1(x) upper

∂φ

∂y

∣∣∣
ξ2(x)

= βḟ2(x) ≈ Uξ̇2(x) lower
(12.24)

Matching the boundary conditions to the solution we obtain

φ =

⎧⎪⎨
⎪⎩

−U

β
ξ1(x − βy) upper

U

β
ξ2(x + βy) lower

(12.25)

At the leading and trailing edges the functions ξ(x) are discontinuous. How-
ever, as the treatment allows only weak discontinuities, weak rarefactions and
weak shocks leave the edges. The flow is constant along the lines x ∓ βy, which
are the Mach lines or characteristics of the flow. Between the discontinuities
the flow is a simple wave.

The pressure distribution is given by Bernoulli’s equation

p − p1 = −ρ1 U
∂φ

∂x
= ±ρ1 U2

β
ξ̇(x ∓ βy) (12.26)

for the upper and lower surfaces respectively.
The section lift coefficient follows directly from the pressure differential

between the upper and lower surfaces

cL = − 2
β �x

�x�
0

[
ξ̇1(x) + ξ̇2(x)

]
dx =

4 �y

β �x
=

4 α√
M1

2 − 1
(12.27)

where α = �y/�x is the angle of attack (Figure 12.2).

ly

lx

ξ2(x)

ξ1(x)

α

Figure 12.2: Sketch of an aerofoil in a supersonic flow.
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The drag coefficient is similarly calculated from the pressures over the upper
and lower surfaces

cD =
1

1
2ρ1 U2 �x

�x�
0

[
p1 n1x + p2 n2x

]
dx =

2
β �x

�x�
0

[
ξ̇ 2
1 (x) + ξ̇ 2

2 (x)
]

dx

Defining the angles subtended by the wing surfaces at the trailing edge θ1,2

≈ ξ̇1,2 + α,1 we obtain

cD =

[
4α2 + 2

(
θ 2
1 + θ 2

2

)]
√

M1
2 − 1

(12.28)

The minimum drag therefore is found from a flat plate, θ1 = θ2 = 0. The drag
depends on the mean square deviation of the wing surface from a flat plate, and
is due to the wave drag set up by waves leaving rugosities on the surface. Efforts
must be made to ensure that any roughness of the surfaces of an aeroplane
designed for supersonic flight is reduced to a minimum.

For a flat plate when the Mach number M1 	 1 the lift to drag ratio is
identical to equation (12.53) found later for weakly supersonic flow.

12.4 Drag in High-Speed Compressible Flow

12.4.1 Swept Wings

At speeds at or above the sound speed, shock waves form at the wing surface.
This leads to a marked increase in the forces experienced by the wing, due to
the formation of a blunt body shock at the leading edge of the wing. In addition
to the danger of structural failure in wings designed for subsonic flight, it means
a substantial increase in the drag, and therefore the power required to drive
the aeroplane forward. At speeds just below but close to Mach 1, shock waves
will form on the thickest section of the upper surface due to the accelerated
velocity. All these effects are damaging unless special wing profiles designed
specifically for high-speed flight are used.

The simplest solution to avoiding this problem is to reduce the normal com-
ponent of the velocity on-to the wing leading edge, for, as we have seen, it
is this velocity which determines whether a shock is established. Thus most
modern aircraft designed to fly at speeds of about M1 ≈ 0.8 are built with
wings swept to an angle of about 30◦.

A serious problem with swept wings is the one-wing stall caused by the cross-
flow, due to the spanwise pressure differentials along the wing, especially on

1Note that ξ̇(x) < 0.
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the upper surface. This leads to a thickening of the boundary layer towards the
tip, and possibly stalling–particularly at high angles of attack. It is prevented
by decreasing the thickness of the wings towards the tip, and by fitting wing
fences to prevent the cross-flow.

12.4.2 Drag in Supersonic Flow

In supersonic flight there are three forms of drag:

1. Skin friction. This is drag arising from the boundary layer in streamlined
flow. The magnitude is essentially given by the methods discussed in
Chapter 6 taking into account the compressibility of the fluid. It may
contribute a significant fraction (∼ 30%) of the total drag.

2. Vortex drag. This is drag which results from the shedding of the trailing
vortices behind the wing. These form within the trailing wake behind
the aerofoil and are effectively stationary with respect to the fluid. Their
contribution can therefore be fairly accurately estimated from the incom-
pressible flow theory of induced drag, Section 11.8.4.

3. Wave drag. This is due to the energy carried by pressure (sound and
shock) waves generated at the surface of the wing by the disturbance. As
we have seen, it is specific to supersonic flow, and is a consequence of the
hyperbolic nature of fluid mechanics when the flow velocity exceeds the
sound speed. Since it can make an appreciable contribution to the overall
drag, efforts are made to reduce or, if possible, eliminate its contribution.

The most familiar method to offset the introduction of supersonic flow con-
ditions and thus reduce wave drag is to sweep the aircraft wing. As we have
seen, the onset of a shock is determined by velocity normal to the wing sur-
face, not by the total velocity (Section 10.9). Most aircraft operating at Mach
numbers M1 � 0.7 are built with swept wings despite the inherent cross-flow
problems associated with them (Section 12.4.1).

12.4.3 Transonic Flow

Transonic flow is the case where, although the incident flow is subsonic, regions
of supersonic flow occur. Typical of this case are flows at incident Mach number
M1 � 0.7 where the Mach number may increase to values about 1 due to the
acceleration introduced by the divergence induced by the body.

Even if the wing is sufficiently swept to guarantee that the incident flow
is subsonic, the fluid is accelerated by the increased thickness to provide the
pressure reduction on the vacuum surface of the wing. At the critical Mach
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number the consequent acceleration leads to the flow becoming sonic. Clearly
it is important to be able to estimate the critical Mach number of the incoming
flow Mcrit at which the sonic condition is reached on the wing surface. Assum-
ing that the position of maximum flow velocity or equivalently the minimum
pressure coefficient is known in incompressible flow, we may use one of the sub-
sonic corrections, equation (12.13), (12.19) or (12.20), to estimate the Mach
number of the incoming flow at which the flow over the wing becomes sonic.
To do this we need to relate the pressure coefficient at the pressure minimum
to the flow speed. From Bernoulli’s equation we may obtain the pressure coef-
ficient at an arbitrary point on the wing surface from the Mach number of the
flow at that point M and the incoming flow Mach number M1

Cp =
2

γM1
2

⎧⎨
⎩

[
1 + (γ−1)

2 M1
2

1 + (γ−1)
2 M2

]γ/(γ−1)

− 1

⎫⎬
⎭ (12.29)

The pressure coefficient at the point at which the flow just becomes sonic is
therefore

Cpcrit =
2

γMcrit
2

⎧⎨
⎩

[
1 + (γ−1)

2 Mcrit
2

1 + (γ−1)
2

]γ/(γ−1)

− 1

⎫⎬
⎭ (12.30)

Assuming the pressure coefficient over the wing surface in incompressible
flow is known, either from wind tunnel measurements or calculations, one of the
corrections may be used to estimate the critical Mach number of the incoming
flow Mc. From the ratio of the pressure coefficient of the compressible and
incompressible flows, the value is obtained most simply by graphical methods
(Figure 12.3).

Once the flow becomes supersonic, wave drag sets in behind the sonic sur-
face, enhancing the normal subsonic induced and parasitic drag. This increase
becomes marked at a Mach number Md slightly above the critical value Mc at
which the flow first becomes sonic, known as the drag divergent Mach number,
sketched in Figure 12.4. In particular, as the aerofoil thins towards the trailing
edge, the flow again becomes subsonic, requiring a passage through a shock
(Figure 12.5(a)). As a result there is a substantial increase in the drag and a
change in the pressure distribution over the wing. The shock frequently gives
rise to separation in the boundary layer, known as the shock stall. Although the
flow is nearly sonic and the linearised approximation fails, the lift continues to
increase until the effects of separation associated with the shock stall cause a
decrease in the lift. Once the flow is fully supersonic the drag decreases again.

The substantial increase in the drag found in the transonic region is known
as the sound barrier. It therefore requires significant engine power to overcome
this drag and achieve supersonic flight, which led to major difficulties in the
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Figure 12.3: Critical Mach number for generating supersonic flow as a function of the
incompressible pressure coefficient C′
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Figure 12.4: Sketch of the increase in lift and drag as the Mach number approaches the
value associated with the sound barrier.
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Figure 12.5: Sketches of the sonic transition line and shock wave for the flow about a
conventional and a supercritical wing section. Note the separated flow generated by the
shock on the conventional wing. (a) Conventional wing at Mach no. M1 ∼ 0.7, and
(b) Supercritical wing at Mach no. M1 ∼ 0.8.
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early days to achieve Mach numbers greater than 1. In addition to the increase
in drag, there are significant control problems due to the separation associated
with the shock.

Although the conditions of applicability are not well obeyed, the lift increases
as predicted by the Prandtl–Glauert expression as the Mach number increases
up to a limit, after which it decreases. Comparing the variation of the lift
coefficient with the drag coefficient (Figure 12.4) we find that the lift maximum
often occurs at a larger Mach number than the drag divergent Mach number.
The lift to drag ratio is therefore a maximum just above the drag divergent
Mach number, which in turn is larger than the critical Mach number. The
detailed behaviour in this regime has important financial implications for the
design of commercial transport aircraft where speed, determining utilisation,
and drag, involving fuel efficiency, must be balanced against each other.

From Figure 12.3 it is clear that the critical Mach number may be increased
by making the incompressible pressure coefficient small, i.e. using a thin wing.
However, there are clear limits to the advantage to be gained by reducing the
drag in this manner as the lift is also reduced, and a specified lift is required.
An alternative method of reducing drag is to allow the flow over the wing to
become weakly supersonic and the shock consequently weak. This is achieved
by designing a wing profile which has a nearly flat upper surface with negative
camber over the forward part of the wing (Figure 12.5(b)) (Whitcomb and
Clark, 1965). As a result the rear section of the wing must have a strong
positive camber, which gives rise to a ‘cusplike’ shape of the lower surface.

12.5 Linearised Theory of Three-Dimensional
Supersonic Flow–von Karman Ogives
and Sears–Haack Bodies

The flow around a three-dimensional body is described by

∂2φ

∂y2
+

∂2φ

∂z2
− (

M1
2 − 1

) ∂2φ

∂x2
= 0 (12.31)

which has the form of the wave equation in cylindrical geometry. The problem
of cylindrical sound waves, which are governed by an identical equation, was
investigated in Section 8.5, with a general expression found in the limit of
large distances from the axis of the source. We further discussed in Section
12.3 the general pattern of flow in the supersonic regime in two dimensions,
when the disturbance is sufficiently small that perturbation theory may be
used. We saw that it was represented by a series of pressure waves leaving
the surface of the body at the Mach angle and carrying with them significant
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energy, which gives rise to wave drag. The same behaviour is found in three
dimensions, where we may consider the disturbance in the asymptotic limit to
be represented by a set of cylindrical waves formed by the body, as described by
equation (12.31). This is identical to the cylindrical sound wave equation with
the distributed source determined by the gradient of the area of cross-section
Ṡ(x), time represented by t → x/U and the sound speed by c → U/

√
M1

2 − 1.
Using the results from Section 8.5 we obtain the velocity potential at radius R
as given by equation (8.34) (von Karman and Moore, 1932)

φ =
U

2π

x−βR�
0

Ṡ(ξ) dξ√
(x − ξ)2 − β2R2

(12.32)

where one end is at x = 0 and the other at x = �. For convenience we have set
β =

√
M1

2 − 1. The waves are propagated from the surface of the body within
the cones x − βR = 0 and x − βR = �, whose surfaces are weak discontinuities.

We consider a thin cylindrical body, whose area S(x) is zero at one end,
and aligned with the flow. To calculate the drag we need to determine the
momentum carried away by the waves. Thus we calculate the integral of the
x component of the momentum flux tensor over a surface enclosing the body,
e.g. a very large cylinder of radius R → ∞. The appropriate component of the
momentum flux tensor is

Πxr = ρ vr (vx + U) ≈ ρ1
∂φ

∂r

(
U +

∂φ

∂x

)
(12.33)

Since there is no mass source, the mass flux through the surface at R, and
consequently the term containing U , must both be zero. The force is therefore

Fx = −2 π R
� ∞
−∞ Πxr dx = −2 π R ρ1

� ∞
−∞

∂φ

∂r

∂φ

∂x
dx (12.34)

As we are only interested in the asymptotic region as R → ∞, we need
consider only the lowest order terms (in 1/R). The values of (x − ξ) ∼ βR give
the largest contribution to the integral, and we may approximate

(x − ξ)2 − β2R2 ≈ 2 β R (x − ξ − β R)

and retain only terms of lowest order to obtain

φ ≈ − c

2 π
√

2R

x−βR�
0

Ṡ(ξ) dξ√
x − ξ − βR

∂φ

∂r
= − 1

β

∂φ

∂x
≈ U

2π

√
β

2R

x−βR�
0

S̈(ξ) dξ√
x − ξ − βr

(12.35)
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Substituting for ∂φ/∂r yields the drag as the triple integral

Fx =
ρ1 U2

4 π

∞�
−∞

X�
0

X�
0

S̈(ξ1)S̈(ξ2)√
(X − ξ1)(X − ξ2)

dξ2 dξ1 dX (12.36)

where X = x − βR.
To proceed we interchange the order of integration taking care with the

limits. The upper limit for the second integral (ξ2) is along the length being �
and that for the first (ξ1 < ξ2) being ξ2, which is the lower limit for X. Thus
we obtain

Fx =
ρ1 U2

4 π

��
0

ξ2�
0

L�
ξ2

S̈(ξ1)S̈(ξ2)√
(X − ξ1)(X − ξ2)

dX dξ1 dξ2

where L is a large distance tending to infinity. The integral over X
is a standard form, evaluated using either the third Euler substitution
t2 = (X − ξ1)/(X − ξ2) or by completing the square with a cosh substitution
to give

Fx = −ρ1 U2

2 π

��
0

ξ2�
0

S̈(ξ1)S̈(ξ2) [ln(ξ2 − ξ1) − ln(4L)] dξ1 dξ2 (12.37)

If the source gradients ˙S(0) = Ṡ(�) = 0 are zero at the ends of the body, the
term in L vanishes. Hence

Fx = −ρ1 U2

2 π

��
0

ξ2�
0

S̈(ξ1)S̈(ξ2) ln(ξ2 − ξ1) dξ1 dξ2

= −ρ1 U2

4 π

��
0

��
0

S̈(ξ1)S̈(ξ2) ln |ξ2 − ξ1|dξ1 dξ2 (12.38)

The scaling of wave drag is clearly Fx ∼ ρ1U
2S2/�2 and the drag coefficient

correspondingly scales as CD ∼ S2/�4, proportional to the square of the cross-
sectional area.

Comparing this result (12.38) with equation (11.55) for induced drag, we
note the formal equivalence of the two forms. Of course the physical behaviour
which leads to the drag is different in the two cases. Induced drag is associated
with subsonic vortex flow around the tips of the wings and involves an integral
along the span. Wave drag is due to the momentum removed from the flow by
waves generated at the wing surface in supersonic flow, and involves an integral
over the chord. As a consequence of this mathematical equivalence, we may
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apply the Fourier series method (case study 11.I.i) used for induced drag in
incompressible flow in a similar manner to this problem also. Thus following
equation (11.67) and defining

x =
1
2

� (1 + cos θ) 0 ≤ θ ≤ π

we write

Ṡ(x) = −�

∞∑
n=1

An sin nθ (12.39)

the terms A0 = 0 being a consequence of the boundary condition on S at the
ends of the body. The relevant integrals are evaluated using the methods as in
case study 11.I.i. Hence the drag force

Fx =
π ρ1 U2 �2

8

∞∑
n=1

nAn
2 (12.40)

The cross-sectional area is obtained by integration

S(θ) =
�2

4

{
A1

(
π − θ +

1
2
sin2θ

)

+
∞∑

n=2

[
sin (n + 1) θ

n + 1
− (n − 1) sin θ

n − 1

] }

and the volume of the body is easily calculated

V =
π

8
�3

(
A1 − 1

2
A2

)

The required condition on the source/area function may be satisfied in two
ways:

Von Karman ogive has one pointed end and a cylindrical base with sides
parallel to the axis. It is clear that the term A1 contributes to the base
area S(�)

A1 =
4 S(�)
π �2

The drag is clearly a minimum if An = 0 for n �= 1 and has value

Fx =
2 ρ1 U2

π

S(�)2

�2

CD =
4
π

S(�)
�2

(12.41)
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with area distribution

S(θ) =
S(�)
π

(
π − θ +

1
2

sin 2θ

)
(12.42)

This body is known as a von Karman ogive. It is a member of a general
family of such bodies pointed at one end and flat at the other, and that
find wide application as nose cones for aircraft and rockets.

Sears–Haack body is symmetric with two pointed ends. In this case A1 =
0 and

A2 = −16 V

π �3

The drag force and drag coefficient are

Fx =
64 ρ1 U2

π

V 2

�4

CD = 24
V

�3

(12.43)

and the area distribution is

S(θ) =
4V

π �

(
sin θ +

1
3

sin 3θ

)
(12.44)

The radius varies along the axis as

R(x) = Rmax

(
4x − 4x2

)3/4
Rmax =

√
16V

3 π2 �
(12.45)

Sears–Haack bodies are typically used as a model for projectiles.

It is found that quite generally drag is not very sensitive to small departures
from the optimum shape provided the area distribution is smooth.

12.5.1 Whitcomb Area Rule

In many cases it is found that the drag experienced by an asymmetric body
is equal to that of an equivalent body of revolution, having the same cross-
sectional area distribution. In the asymptotic limit, far away from the body, the
flow becomes axisymmetric and equal to that around the equivalent body. This
may be understood in terms of the multi-pole expansion noted in Section 8.4,
where the lowest order term is the simple axisymmetric monopole source. At
the very large distances R → ∞ used to calculate drag, the contributions from
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higher order terms become vanishingly small, in accord with more detailed
analysis.

Independently, as a result of experimental wind tunnel testing, Whitcomb
(1956) unexpectedly found shock formation could occur at Mach numbers as
low as 0.7, leading to strong drag. Following a suggestion by Busemann that,
at near sonic speeds, stream tubes become inflexible and no longer able to
expand or contact to accept the changes in aircraft cross-section (see page 22),
Whitcomb realised that the fuselage must be able to accommodate the stream-
lines displaced by the wings and tailplanes to reduce shock formation and
wave drag. To minimise drag, the aircraft cross-section as a whole must more
closely approximate a Sears–Haack body, consistent with the above theoret-
ical result. He therefore proposed the important area rule that the drag of a
slender wing transonic aeroplane could be reduced by indenting the fuselage
(‘Coke-bottle’ shape) so that the overall cross-section was smoothly varying
and more closely matched the ideal Sears–Haack form. More recent anti-shock
design employs careful arrangement of components, and/or adding additional
features (Küchemann carrots). This has proved to be extremely successful and
is extensively used, particularly for commercial transport aircraft where eco-
nomic considerations require drag minimisation.

Case study 12.I Hypersonic Wing

At very high Mach numbers a very thin wing is used to reduce the drag. A thin plate
serves as a model of such a wing, The flow around the wing is shown in Figure 12.6
inclined at an angle α. On the pressure side of the wing, the flow is compressed
by a shock parallel to the wing surface and is attached to the leading edge of the
wing provided the angle of attack α is not large. This shock generates an increased
pressure on the underside. At the trailing edge, the flow expands through a centred
rarefaction back to a direction nearly parallel to the incoming flow. On the top side
this configuration is reversed. A centred rarefaction at the trailing edge expands the

Shock

Rarefaction

Rarefaction

Shock

Pressure

Vacuum

α

Figure 12.6: Sketch of the shock waves, rarefactions and streamlines (dashed) around a
thin wing in hypersonic flow at an angle of attack α.
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flow parallel to the surface of the wing, reducing the pressure. At the trailing edge a
shock turns the flow back nearly parallel to the incoming flow.

Lift is generated by the difference between the pressures on the upper and lower
surfaces. Drag, however, is caused both by the pressure difference and by waves leaving
the upper and lower surfaces, and is enhanced by any surface deviations from the plane,
which lead to additional characteristics, and waves, leaving the surface.

We can estimate the lift from a flat plate aerofoil, as depicted in Figure 12.6 by
calculating the pressures over the upper and lower surfaces. Over the upper surface, the
flow expands in a Prandtl–Meyer expansion, whose properties were evaluated earlier.
The flow is rotated around a corner of angle α. The angle of attack α is generally small
and the Mach number of the incoming flow M1 large. Using the notation of Section
9.4.2 the pressure ratio between the upper surface and the incoming flow is

p3

p1
=

[
cos2(kψ + ε)

cos2 ε

]2γ/(γ−1)

where ψ is the angle of rotation of the characteristics C− measured from the one on
entry, p3 is the pressure behind the rarefaction, and ε is given in Section 9.4.3. On
exit the angle ψ = α + μ1 − μ, where μ is the Mach angle. Since α is small and the
Mach number M1 	 1, μ ≈ μ1 is small. Hence using the results from Section 9.4.3,

μ − μ1 ≈
[

1
vr

∂vψ

∂ψ
− vψ

v2
r

∂vr

∂ψ

]
ψ

= vmax

(
−k2

vr
sin2 ε − k vψ

vr
2

cos ε

)
ψ

=
(
−k2 − k2 cos2 ε

sin2 ε

)
ψ

≈ −k2ψ (12.46)

since M1 	 1, ε ≈ π/2 − 1/k
√

M2
1 − 1 ≈ π/2.

Hence we obtain the pressure ratio across the rarefaction

p3

p1
≈

[
1 − k2

(1 − k2)
M1 α

]2γ/(γ−1)

=
[
1 − 2

(γ − 1)
M1 α

]2γ/(γ−1)

(12.47)

The pressure on the lower surface is obtained from the pressure ratio across a shock
inclined so as to rotate the flow through the small angle α. Since the Mach number is
large, the shock polar becomes a circle. For small angles of deflection, the weak shock,
which occurs in practice, has

v2x ≈ U and v2y ≈ Uα (12.48)

and therefore it follows from the shock polar that

|U − v2| = |(U − v2x) î + v2y ĵ| ≈ v2y ≈ Uα (12.49)
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where î and ĵ are unit vectors in the x and y directions respectively. Hence

|U − v2| = |Unn̂ + Utt̂ − v2nn̂ − v2tt̂| = V1n − v2n = Uα

where n̂ and t̂ are the normal and tangential unit vectors respectively. Using equation
(10.8) we obtain

(Uα)2 = (p2 − p1)(U − V2)

where V = 1/ρ is the specific volume. Using equation (10.8b) we eliminate the specific
volume in terms of the pressure ratio Π = p2/p1 to yield the quadratic equation

(M1α)2 =
2(Π − 1)2

γ [(γ − 1) + (γ + 1)Π]
(12.50)

whose solution is

p2

p1
= Π = 1 +

γ(γ + 1)
4

(M1 α)2 + γ(M1α)

√
1 +

(γ + 1)(M1α)2

16
(12.51)

The section lift coefficient is therefore

cL =
(p2 − p3)

1
2ρU2

=
2

γM1
2

{
1 +

γ(γ + 1)
4

(M1 α)2

+ γ (M1α)

√
1 +

(γ + 1)(M1α)2

16
−

[
1 − (γ − 1)

2
(M1α)2

]2γ/(γ−1)
}

(12.52)

If
√

(γ − 1)/2 (M1 α) > 1, the flow forms a void on the upper surface and the corre-
sponding pressure term is zero.

If α � M1α � 1, the flow is perturbed weakly by the wing, and we may alterna-
tively apply the perturbation method discussed in the next chapter. The lift coefficient
takes the simpler form cL ≈ 4α/M1 in agreement with the earlier approach (Section
12.3).

We may also estimate the drag due to the pressure difference across the wing as

cD ≈ cL α (12.53)

This term is due to supersonic flow alone and is the result of the energy flow generated
by the waves, i.e. wave drag. The source of the drag can be seen in the energy transport
away from the wing by the waves. The finite expansion of the rarefaction wave from the
vacuum surface inherent in the fan plays an important role in this regard. In accordance
with Section 10.8, as the two waves move away from the shock, the rarefaction interacts
with the shock and progressively weakens it. Thus at large distances from the object
the two waves destroy each other, and the net energy loss is limited. Similarly for the
rarefaction and shock from the pressure surface. If the shocks were allowed to progress
unchecked to infinity, the drag would become infinite in order to sustain the shock out
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to very large distances. This drag is of course in addition to that due to skin friction
and vortex generation.

In the course of this calculation we assumed that the angle of attack, and there-
fore the angle of the deflection of the flow, is small. Without this approximation,
the calculation can be carried in the same manner using the properties of the full
Prandtl–Meyer expansion for the rarefaction and the (θ, β,M) plot for the shock, but
not in an analytic form. For a general profile, the calculation may be continued in a
similar fashion by considering the upper and lower surfaces made up of a series of short
plane segments each inclined at an appropriate angle. The pressure on each segment
is then calculated directly, and hence the lift, drag and moment.



Chapter 13

Deflagrations and Detonations

13.1 Introduction

Thus far we have not considered the situation when the energy of the fluid is
changed either by a chemical reaction or by an external source, such as laser
irradiation. Two distinct modes of flow are possible:

1. Deflagration The heat is released whilst the fluid expands, the density
decreasing through the deflagration. The flow is continuous, and similar
to a rarefaction with additional heat input. Deflagrations are a familiar
feature as (usually controlled) flames. They also occur during the heating
and ablation of a solid target by imposed laser irradiation.

2. Detonation The heat is released rapidly and the fluid compressed. The
flow is essentially discontinuous, resembling a shock with heat input. We
shall show later that a detonation may be imagined as a deflagration initi-
ated by a shock. Detonations are also familiar as the source of explosions.
The breakdown of gas by laser radiation is a detonation process.

13.1.1 Deflagrations

The speed of a chemical reaction varies with temperature, increasing rapidly as
the temperature is raised. If the reaction is exothermic (energy is released) heat
will spread to undisturbed regions of the flow, where reactions are initiated.
There are many different mechanisms by which heat is transferred from the
front to the undisturbed fluid, specific to the individual process.

Introductory Fluid Mechanics for Physicists and Mathematicians, First Edition. Geoffrey J. Pert.
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13.1.1.1 Propagating burn

As an example to illustrate the deflagration mechanism, we consider the prop-
agation of a simple burn through a combustible mixture, which occurs by
the following process. Burning fluid, heated by the reaction, heats the unburnt
fluid ahead of it by thermal conduction to start the reaction. The reaction front
therefore propagates steadily through the undisturbed fluid, leaving behind a
region of hot burnt combustion products (Figure 13.1). Due to the increased
temperature and therefore pressure, the fluid behind the front is accelerated
and flows from the combustion zone. In this situation the thermal diffusion
and the burn time are matched and the structure propagates as a steady flow
pattern. In most cases fluid flow within the burn zone is small and the region
has nearly constant pressure.

T2

T1

Ti

x →

Reaction Pre-heat

F(T) T

Figure 13.1: Sketch of the structure of the flame zone.

Within the flame zone, chemical reactions of the type

∑
xνMν →

∑
x′

νM
′
ν (13.1)

between the molecules Mν with the stoichiometric coefficients xν chemi-
cally react to produce product molecules M ′

ν with the coefficients x′
ν (e.g.

2 H2 + O2 → 2 H2O). For an elementary reaction (i.e. a single step reaction),
the number of reactions per unit volume (the reaction rate) at temperature T
is given by the Arrhenius expression

R(T ) = Aρ
∑

xν
∏
ν

Cν
xν exp (−U/k T ) (13.2)
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where Cν is the mass concentration of species ν and U the reaction activation
energy. It is evident that the reaction has a strong temperature dependence,
switching on at the ignition temperature Ti and switching off as the fuel ν = f
is exhausted, Cf → 0, through the zone. The heat liberated per second per
unit volume is given by F (T ) = Δq R(T ) where Δq is the heat released in a
single reaction. Assuming that the fuel f of molecular mass mf is completely
consumed, q = (Cf/mf xf ) Δq is the heat generated by burning of unit mass
of the input gas. The exponential form of the rate ensures a rapid growth of
the burning phase, which is limited by depletion of the fuel. The burning phase
is therefore short with rapid onset once the ignition temperature is achieved
and an equally rapid fall as the reaction consumes the fuel (Figure 13.1).

In the deflagration process, since the temperature gradients are large, the
main heat transfer from the combustion zone to the undisturbed gas is by ther-
mal diffusion. In addition since the gradients of the reaction constituents are
equally large, particle diffusion also plays an important role, which is neglected
in this simple picture. If τ is the duration of the reaction given approximately
by an energy balance, then

ρ1 (h2 − h1) ≈ τ

T2�
T1

F (T ) dT / (T2 − T1)

where F (T ), the rate of energy release by the chemical reaction per unit vol-
ume per second at temperature T , is averaged over the temperature range,
and T2 and h2 are the temperature and enthalpy at the end of the reaction
respectively. T1 and h1 are the temperature and enthalpy in the unignited fuel.
The initial density ρ1 is used as the mass heated remains constant, determined
by the initial condition. The reaction rate is a strong function of temperature,
being nearly zero below the ignition temperature and rapid above. The reac-
tion zone tends to be quite short once ignition is established and is preceded
by a relatively long pre-heat zone heated by thermal conduction (Figure 13.1).
The final temperature behind the flame is given later by equation (13.4). The
thickness of the reaction zone is determined by the heat transport from the
reaction given by the expression for heat diffusion from a point source

δ ≈
√

4χτ

where χ = κ/ρ cp is the thermal diffusivity. Substituting for δ and τ we obtain
an approximation for the laminar flame speed, the velocity at which the front
moves forward. A more accurate value is given by the Zel’dovich formula
(problem #47)

S ≈ δ

τ
≈ 1

ρ1 (h2 − h1)

⎧⎨
⎩2

T2�
T1

κF (T ) dT

⎫⎬
⎭

1/2

(13.3a)
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In estimating this speed it is assumed that the fluid motion is laminar.1 In
most cases the structure of the flame is more complex. Molecular diffusion
plays an important role as the molecular number densities are of an equal
magnitude to the thermal ones, the relative strength being expressed by the
dimensionless Lewis number, the ratio of the thermal to the mass diffusion
coefficients Le = χ/D. If the Lewis number is unity, the mass and thermal
transport equations become similar and the solution may be analysed as by
Semenov, and by Zel’dovich and Frank–Kamenetskii, by a simple generalisa-
tion of the method of problem #47 (see Glassman and Yetter, 2008, Chap. 4).
In intense flames turbulent mixing becomes an important mixing agent. This
important area from an engineering standpoint lies outside the scope of this
book and one of the standard references on combustion (e.g. Glassman and
Yetter, 2008) should be consulted.

If the length scale in the experiment � is much larger than the width δ
we may regard the flow as changing discontinuously across the deflagration,
although, as we have argued, the flow has a finite structure within this zone.
From kinetic theory the thermal diffusivity of a gas χ ∼ λc ∼ τc2, where λ is
the mean free path, c2 is the mean squared thermal velocity and τ the mean
free time between collisions. Hence we may alternatively express the velocity
of the deflagration front as

S/c ∼ δ/cτ ∼
√

χ/c2τ ∼
√

τ/τ (13.4)

In practice there is only a small probability of a reaction in each collision, so
that τ � τ , and therefore S � c ∼ c. Deflagrations (or burn waves) therefore
propagate subsonically into undisturbed gas at rest.

In the rest frame of the front variations with time are usually much slower
than the characteristic time, τ , so that the front may be considered to propa-
gate as a steady state structure. Outside the burn zone, dissipative processes
are weak, and therefore the integrated conservation laws generating the mass,
momentum and energy relations, namely the Rankine–Hugoniot equations,
must hold across the deflagration with the condition that the energy input
from the reaction is accounted for. This is easily done by including the heat of
formation g in the total enthalpy of the molecules

H = h + g = ε + pV + g = E + g (13.5)

1An alternative form of the speed using an average of the product of rate coefficient and
thermal diffusivity R and χ is

S =

√
2χ R

T2 − Ti

Ti − T1
(13.3b)

This result, due to Mallard and Le Chatelier, requires a value of the poorly defined ignition
temperature.
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where E is the total internal energy including the heat of formation. If g1

and g2 are the heats of formation before and after burn, the heat of reaction
q = g1 − g2. Clearly the change in the enthalpy per unit mass across the flame
front is h2 − h1 = q.

Since the flows are strongly subsonic v1 � c1, p1 ≈ p2 and H1 ≈ H2, we
obtain by treating the reactants and products as perfect gases with polytropic
indices γ1 and γ2

p1 ≈ p2 T2 ≈ cp1

cp2

T1 +
1

cp2

q ρ2 ≈
{

γ2 (γ1 − 1)
γ1 (γ1 − 1)

}
ρ1

/ {
1 +

q

cp1 T1

}

cp1 and cp2 are the specific heats at constant pressure in the undisturbed and
burnt fluid respectively.

Furthermore, since the downstream flow behind the burn is hotter than the
upstream in front, its density is less. The flow is therefore expanding, and in
the rest frame the downstream velocity is larger than the upstream one.

Propagating burn in the form of a flame is a familiar feature, although in
many cases the input flow velocity is limited by the supply of the reactants,
e.g by a controlled flow as in a torch, or by the gaseous release from a solid as
in a fire.

13.1.1.2 Deflagration propagating in a closed tube

We note that since the deflagration is subsonic relative to the upstream gas,
characteristics leave it moving upstream into the unburnt gas, and modify the
flow upstream of the front. Since the front velocity is determined by the heat
of reaction, this allows the flow to satisfy the prescribed boundary conditions
imposed by the experimental conditions.

For example, consider a burn initiated at the closed end of a cylinder. Since
the deflagration is propagated from a wall, the downstream flow is brought to
rest; that is, since the front speed v1 is given, then so is v2, the exit velocity.
The flow speed downstream in the rest frame relative to that upstream is
v1 − v2 < 0, i.e. towards the end if the deflagration is at rest. However, in
the laboratory frame this velocity must be zero relative to the end. Therefore
the gas must flow with velocity v2 − v1 along the pipe upstream of the front.
Far upstream from the front the gas is at rest. Hence a compression wave
must travel down the tube, which will steepen to a shock separating the fluid
entering the deflagration from the ambient upstream gas.

13.1.2 Detonations

If the chemical reaction is initiated by the density and temperature increase in
a shock resulting from the heat released in the reaction, for example, the shock
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in the preceding problem is sufficiently strong. The front will be supersonic.
When the shock has passed and initiated the reaction it continues for a time
τ as before. The front velocity is the shock velocity and the thickness of the
reaction zone therefore

δ′ = τ × Shock velocity

Typically the thickness is small compared with experimental scale length � and
we may also treat the detonation as a discontinuity.

Hence the modified Rankine–Hugoniot relations hold for this case also.

13.2 Detonations, Deflagrations
and the Hugoniot Plot

In the rest frame of the burn zone, the Rankine–Hugoniot relations are modi-
fied to take account of the energy release

ρ1v1 = ρ2v2

p1 + ρ1v1
2 = p2 + ρ2v

2
2

H1 +
1
2
v2
1 = H2 +

1
2
v2
2

(13.6)

Hence we obtain the Hugoniot adiabat relations

H2 − H1 =
1
2
(V1 + V2)(p2 − p1)

E2 − E1 =
1
2
(V1 − V2)(p2 + p1)

ε2 − ε1 =
1
2
(V1 − V2)(p2 + p1) + q

(13.7)

In a similar manner to Section 10.9 we may construct the Hugoniot curve
for the end points (p2, V2) from a given initial point (p1, V1), illustrated in
Figure 13.2. In contrast to the shock case, which corresponds to q = 0, this
curve no longer passes through the initial point. The curve is displaced to
larger values of p and V by the reaction energy q. Since

p2 − p1

V2 − V1
= −ρ2

2 v2
2 = −ρ2

1 v2
1 = −j2 < 0

where j is the mass flux, it follows that either p2 > p1 and V2 < V1, or p2 < p1

and V2 > V1. There are therefore two branches of the Hugoniot curve:

Compression flow V2 < V1 corresponding to detonation
Expansion flow V2 > V1 corresponding to deflagration
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V1

p1

p2

V2

Strong

Weak

Weak
Strong

Deflagration

Detonation

Figure 13.2: Sketch of a typical Hugoniot plot for flows with chemical reaction.

The enthalpy of a polytropic gas h = γ/(γ − 1) pV substituted into the
Hugoniot relation yields the equation of the corresponding Hugoniot plot

(γ2 + 1)
(γ2 − 1)

p2 V2 − (γ1 + 1)
(γ1 − 1)

p1 V1 + p1 V2 − p2 V1 = 2 q (13.8)

where the initial and final adiabatic indices may be different due to the change
in chemical composition of the gas.

Clearly the plot of p2 versus V2 is a rectangular hyperbola. Furthermore,
if the pressure ratio across the deflagration becomes very large, p2/p1 → ∞,
the density ratio tends to a finite limit V2/V1 → (γ2 − 1)/(γ2 + 1), as in
a strong shock. The maximum compression in a detonation is therefore
(γ2 + 1)/(γ2 − 1).

Under most conditions of burn the initial pressure p1 and internal energy
ε1 are small compared with those generated by the heat release, and may be
neglected. Equation (13.8) simplifies to[

(γ2 + 1)
(γ2 − 1)

V2 − V1

]
p2 = 2 q (13.9)

More generally, there exist a family of Hugoniot curves lying regularly
between the shock curve and that with energy release q. The curves in the
set are approximately parallel, each corresponding to an energy ε q. It is clear
that no two curves of the set may intersect, for to do so would correspond to a
non-unique value of the energy release. Clearly ε = 0 corresponds to the shock
transition and ε = 1 to the energy release q.

Equation (10.7) also holds for deflagrations and detonations so that the gra-
dient of the line from final state ©2 to initial state ©1 defines the flux through
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the front. Inspection of Figure 13.2 shows that for each branch there are two
possible intersections of this line with the same flux. These are separated by
the singular cases where the flux line is tangent to the adiabat, known as
Chapman–Jouget detonations or deflagrations respectively. In both cases the
intersection with the smaller change in pressure or density is known as the
weak transition and the larger one as the strong transition (Figure 13.2).

The following rules, known as Jouget’s rules, are easily established from the
geometry of the Hugoniot plot in Figure 13.2 recalling that the case ε = 0
corresponds to the shock flow:

Strong detonation: flow supersonic in front, subsonic behind
Weak detonation: flow supersonic in front, supersonic behind
Strong deflagration: flow subsonic in front, supersonic behind
Weak deflagration: flow subsonic in front, subsonic behind

The Chapman–Jouget process plays an important role in the study of
deflagrations and detonations. At the Chapman–Jouget point the flux line
is tangent to the Hugoniot plot, therefore

dp2

dV2

∣∣∣
H

=
p2 − p1

V2 − V1

Differentiating the Hugoniot relation,

dε2 − 1
2

[(V1 − V2) dp2 − (p1 + p2) dV2] = 0

but
dε = T ds − pdV

hence
T2 ds2 =

1
2

[(V1 − V2) dp2 − (p1 − p2) dV2] = 0 (13.10)

At the Chapman–Jouget point the entropy is an extremum and is constant
along the Hugoniot curve, which is therefore parallel to the adiabatic plot.
Therefore

ρ2
2 v2

2 =
dp

dV

∣∣∣
H

=
∂p

∂V
= ρ2

2 c2
2 (13.11)

The flow speed of the burnt gas is therefore sonic at the Chapman–Jouget
point.

Similarly the flow speed of the incoming flow is given by

v1
2 = −V1

2 (p2 − p1)
(V2 − V1)
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and hence

dv1
2 = − V 2

1

(V2 − V1)
2 [(V2 − V1) dp2 − (p2 − p1) dV2] = 0 (13.12)

The incoming flow velocity is therefore an extremum. This result confirms
the result already apparent, that the flux term j2 has a minimum at the
Chapman–Jouget point. It also follows from the behaviour of the Hugoniot
adiabat (Section 10.3) that at the Chapman–Jouget point the entropy is a
minimum/maximum on the detonation/deflagration branch.

It is clear that the intermediate Hugoniot plots form a continuous sequence
between the shock (ε = 0) and the developed deflagration (ε = 1). At the shock
limit, ε → 0, the two Chapman–Jouget points merge, the weak fronts being
lost, to give an extremum and point of inflexion. Noting the behaviour along
the shock Hugoniot and the continuation referred to above, the following rules
are established by analogy from Figures 13.2 and 13.3 (below):

Chapman–Jouget deflagration: velocity and entropy are maxima
Chapman–Jouget detonation: velocity and entropy are minima

Chapman–Jouget flow in a polytropic gas

At the Jouget point the downstream velocity is equal to the sound speed
v2 =

√
γ2 p2 V2 and the flux j2 = γ2 p2/V2 which, when substituted in

(10.7), gives

p2 =
(p1 + j2V1)

(γ2 + 1)
V2 =

γ2(p1 + j2V1)
(γ2 + 1)j2

=
v1

2 + (γ1 − 1) ε1
(γ2 + 1) (γ1 − 1) ε1

=
γ2

[
v1

2 + (γ1 − 1) ε1
]

(γ2 + 1) v1
2

(13.13)

Substituting these relations in equation (13.8) yields a fourth-order equation
for the incoming velocity v1

v1
4 − 2v1

2
[(

γ2
2 − 1

)
q +

(
γ2

2 − γ1

)
ε1

]
+ γ2

2 (γ1 − 1) ε1
2 = 0 (13.14)

since the internal energy ε = pV/(γ − 1). This is a quadratic equation in v1
2

whose two roots correspond to the detonation and deflagration branches of the
Hugoniot adiabat. The former is the larger of the two. This equation is the
standard form x4 − 2bx2 + c = 0 whose solution is

x =
√

b ±
√

b2 − c =

√
1
2

(
b +

√
c
)
±

√
1
2

(
b −√

c
)

and whose reciprocal is

x−1 =
√[

b ∓
√

b2 − c
]
/c =

√
1
2

(
b +

√
c
)
/
√

(c) ∓
√

1
2

(
b −√

c
)
/
√

(c)
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The corresponding solution for the inflow velocity is

v1 =
{

1
2

(γ2 − 1)
[
(γ2 + 1) q + (γ1 + γ2) ε1

]}1/2

±
{

1
2

(γ2 + 1)
[
(γ2 − 1) q + (γ2 − γ1) ε1

]}1/2

(13.15)

The outflow velocity which follows from the relation v2 = V2 v1 / V1 is also
equal to the sound speed

c2 = v2 =
{

1
2

(γ2 − 1)
[
(γ2 + 1) q + (γ1 + γ2) ε1

]}1/2

± (γ2 − 1)
(γ2 + 1)

{
1
2

(γ2 + 1)
[
(γ2 − 1) q + (γ2 − γ1) ε1

]}1/2

(13.16)

The velocity difference, which is the relative velocity of the outflow with
respect to the incoming fluid, is

v1 − v2 = ±
{

2
[
(γ2 − 1) q + (γ2 − γ1) ε1

]}1/2
(13.17)

As noted earlier the energy released by the chemical reaction is frequently
much larger than that of the incoming fluid, q 
 ε1, which greatly simplifies
the above results. However, we must separate the values for a detonation from
those of a deflagration:

Detonation The velocities reduce to

v1 =
√ [

2 (γ2
2 − 1) q

]
v2 = c2 =

γ2

(γ2 + 1)
v1 v1 − v2 =

1
(γ2 + 1)

v1

(13.18)
and the thermodynamic state of the gas to

V2

V1
=

γ2

(γ2 + 1)
p2

p1
=

2(γ2 − 1)
(γ1 − 1)

q

ε1
=

γ1 v1
2

(γ2 + 1)c1
2

ε2 =
2γ2q

(γ2 + 1)
(13.19)

Deflagration The velocities reduce to

v1 =
(γ1 − 1) γ2 ε1√
[2 (γ2

2 − 1) q]
v2 = c2 =

√ [
2 (γ2 − 1) q

(γ2 + 1)

]
(13.20)

and the thermodynamic state of the gas to

p2

p1
=

1
(γ2 + 1)

ε2 =
2q

(γ2 + 1)
(13.21)
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As can be seen, the velocity ratio across a Chapman–Jouget deflagration
is large. Such a front propagating in a closed tube therefore moves rapidly
away from the end and generates a strong shock. We therefore conclude
that Chapman–Jouget deflagrations are unlikely to be established in
practice unless the burnt gas can be rapidly removed, e.g. by flow into a
vacuum.

13.2.1 The Structure of a Deflagration

If we assume that during a deflagration process thermal conduction, mass
diffusion and viscosity are all weak and can be neglected, i.e. the heat deposited
at each point in the flow is almost entirely due to the chemical reaction, then
the conservation laws must hold at each point in the deflagration. Thus if a
fraction ε of the reaction is complete, we have at each point on the trajectory

ρ1v1 = ρεvε = ρ2v2

p1 + ρ1v1
2 = pε + ρεvε

2 = p2 + ρ2v2
2

E1 + p1V1 +
1
2
v1

2 + q = Eε + pεVε +
1
2
vε

2 + (1 − ε)q = E2 + p2V2 +
1
2
v2

2

Since the relation
pε − p1

Vε − V1
= −j2

holds at each point ε, each point lies on the chord from (p1, V1) to (p2, V2)
and its position is given by the Hugoniot corresponding to a fraction ε of the
overall reaction. The flow through the deflagration takes the form shown in
Figure 13.4.

There are two possible end points corresponding to the weak (2) and the
strong (2′) end points in Figure 13.3. A passage to the lower (strong) end
point can only take place if the flow passes through the region where ε > 1,
which is clearly impossible. Hence only weak deflagrations are allowed.

When thermal conduction and diffusion are included, but viscosity is neg-
ligible, the intermediate curves include the additional energy deposited by
conduction, but still lie between the initial (ε = 0) and final (ε = 1) curves
for all physically realistic situations.

Deflagrations in which viscosity dominates the heating process are improb-
able. We therefore conclude that in practice only weak deflagrations occur.

If we consider a typical deflagration, the experimental parameters determin-
ing the flow are the upstream physical state of the fluid and the heat released
by the chemical reaction. As we have seen in Section 13.1.1.2, the head of
the front is sometimes preceded by a shock wave, which must be taken into
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Figure 13.3: Sketch of the path of a deflagration through the family of Hugoniot curves.

account in modifying the initial conditions. Although we have concluded that
only weak deflagrations are possible, this leaves a large range of possible flows
from the very slow to the Chapman–Jouget flow. There is therefore a degree
of indeterminacy in the flow at this stage. This uncertainty is removed when
we include thermal conduction and diffusion necessary to ensure the initiation
of the chemical reaction at the head of the front. This condition determines
the flow in a particular situation, limiting it to one path only through the set
of adiabats. In Section 13.1.1 we argued that the distance penetrated by the
head of the heat front is determined by the thermal and mass diffusivity and
the duration of the reaction. The velocity of the heat front into stationary
gas is therefore determined by the speed of the head of the heat front which
initiates the reaction, namely ∼ √

χ/τ . It is easy to see from the discussion of
Section 13.1.1 how this situation may be formulated more formally. The solu-
tion will depend on the detailed behaviour of the reaction rate, the thermal
conductivity, the mass diffusion coefficient and the viscosity with temperature
and density through the deflagration in direct analogy with the analysis of
shock structure, Section 10.5.

13.2.1.1 The Shvab–Zel’dovich model of a deflagration

A relatively simple model of the structure of a deflagration is given the
Shvab–Zel’dovich approximation. Consider a one-dimensional laminar flame front
moving with flame velocity S into unburnt gas with initial concentration (by mass)
Cν of molecules Mν at density ρ1, pressure p1 and enthalpy h1 in its rest frame. After
passage through the burn zone the density is ρ2, pressure p2 ≈ p1 and h2 = h1 + q
(Section 13.1.1). The intermediate flow is governed by the one-dimensional flow equa-
tions modified to take into account molecular diffusion and the chemical reaction. Since



Deflagrations and Detonations 375

the diffusion coefficient for each molecular species may be different and molecules are
either destroyed or created by the reaction, each species has a separate conservation
equation

d(ρCν S)
dx

+
d
dx

{
Dν

d(ρCν)
dx

}
= ±xν mν R(T ) (13.22a)

d(ρ hS)
dx

+
d
dx

{
χ

d(ρ h)
dx

}
= Δq R(T ) (13.22b)

where the + sign is taken for the reaction products and the − sign for the reactants,
mν is the mass of molecule Mν and Δq is the energy liberated per reaction. Since the
flow is nearly isochoric (constant pressure), the momentum equation can be omitted,
provided the viscosity is small.

Dividing each equation of the set (13.22a) by ±mν xν and equation (13.22b) by Δq,
the complete set of equations (13.22) reduces to the form

d
dx

{
η S − D

dη

dx

}
= R(T ) (13.23)

where ην = {(ρCν/mν xν) and (ρ h/Δq)}, provided the diffusivity of every molecule
has the same value Dν = D and the Lewis number χ/D is unity, χ = D. The approx-
imate solution of this equation is obtained in problem #47. The boundary conditions
on entry to the flame are the initial density, concentrations and enthalpy (i.e. initial
values of the set ην), with zero gradients at entry and exit at ±∞. Knowing the con-
centrations and temperature through the zone, the rate coefficient may be evaluated
and hence the complete structure obtained numerically.

13.2.1.2 Detonations as deflagrations initiated by a shock

As we have seen, a deflagration may generate a shock wave ahead of it as it
progresses. If the shock is sufficiently strong it will heat the fluid and initiate
the combustion process. In this case the burn forms a detonation. Behind the
shock, the flow is subsonic and the burn itself identical to a deflagration with
its head in the shocked gas.

Since the flux is given by
j2 = − p − p1

V − V1

for both the shock and the deflagration, both the initial state (1), the shocked
state (∗) and the final state (2) following the burn lie on the chord from
(p1, V1). This line makes two intersections with the final detonation Hugoniot,
Figure 13.4, corresponding to a strong (2) and a weak (2′) detonation. Treating
the shocked state (∗) as the starting point for the deflagration we see that:

A strong detonation corresponds to a weak deflagration
A weak detonation corresponds to a strong deflagration

Since we have concluded that only weak deflagrations exist, it follows that
only strong detonations occur.
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Figure 13.4: Sketch of the path of a detonation initiated by a shock.

13.2.2 Chapman–Jouget Hypothesis

In many experimental situations the flow in a detonation is specified only by the
initial undisturbed rest state of the fluid and the energy release. In contrast to a
shock wave (Section 10.2), where the downstream pressure or the Mach number
is also given, this leaves a deficit of one parameter to uniquely identify the flow.
Thus the boundary conditions on the flow are insufficient to uniquely specify
the flow. For example, if we consider a detonation propagating into undisturbed
gas in a known state with a specified energy release per unit mass, there remain
a range of strong detonations possible depending on the downstream condition.
To obtain a unique solution it is often convenient to use the Chapman–Jouget
hypothesis, which states that the flow takes a Chapman–Jouget form, where
the downstream flow velocity is sonic in the stationary frame.

Thus consider a detonation propagating in a tube closed at one end by a
piston which is slowly withdrawn (Figure 13.5). At the piston the flow must be
outwards. But since the detonation starts at the piston, it is travelling inwards
into the undisturbed fluid. The detonation is compressive, and therefore the
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Figure 13.5: Detonation propagating in a tube with an expanding piston.
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flow velocity of the combustion products relative to the unburnt gas is

v1 − v2 = v1

(
1 − ρ1

ρ2

)
> 0

i.e. travelling in the direction of the detonation away from the piston.
Since the detonation is strong the flow is either subsonic or sonic in the rest

frame of the front, but the flow velocity must be changed to match the piston.
This can take place in either a shock or a rarefaction. A shock is supersonic
relative to the flow and will therefore catch up with the detonation, where the
downstream flow is subsonic, and become a part of it. Similarly the head of
a rarefaction is locally sonic and will also be absorbed unless the downstream
flow from the detonation is itself sonic.

Consequently the detonation must have a Chapman–Jouget form.
In contrast, as we have seen, the flow in a deflagration is weak or

Chapman–Jouget established by the detailed structure determined by the
distributed heat release, thermal conduction and viscosity. In fact a Chapman–
Jouget flow is extremely unlikely to occur. Since the downstream flow veloc-
ity is greater than the upstream one, the deflagration must move upstream in
order to accommodate the fluid behind it if the cylinder is closed by either a
stationary piston or one moving upstream. As we have seen, this leads to a
preceding shock wave with the result that the downstream one is not sonic.
Only in special cases can a Chapman–Jouget deflagration be established, as
discussed in the next section.

Case study 13.I Deflagrations and Detonations
in Laser–Matter Breakdown

When an intense laser pulse is focused into gas or onto the surface of a solid, the
material is ionised and rapidly forms a plasma in which strong absorption of the
laser radiation occurs. The resulting high-temperature gaseous medium then undergoes
rapid hydrodynamic motion with heat input from the absorbed laser pulse. A good
approximation is obtained by treating the plasma as a polytropic gas with γ = 5/3 and
constant ionisation Z. There are a range of possible flows depending on the wavelength
and intensity of the laser and the nature of the material with which it interacts.
These different flows take the form of steady and time-dependent deflagrations and
detonations depending on the conditions.

In order to have a broad understanding of this behaviour we need to appreciate some
basic properties of laser–plasma interaction, which are governed almost completely by
the electron density and temperature:
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• Energy is absorbed within the body of the front from the laser beam, whose
irradiance (energy flux) is Φ. The energy release per unit mass is therefore Φ/j
where j is the mass flux.

• Radiation can only propagate in plasma when the electron density is less than
the critical density at which the laser frequency equals the characteristic oscilla-
tion frequency of the electrons in the plasma. A simple expression for the critical
mass density in kg/m3 is

ρcrit (kg/m3) ≈ 1.66
A

Z
λ (μm)−2

where Z is the fractional ionisation, A the mass number of the ions and λ (μm)
the wavelength of the radiation in microns.

• Provided the electron density is markedly less than the critical density,
the absorption coefficient is due to electron collisions with ions, inverse
bremsstrahlung, with value

μ = b ρ2 c−3 (13.24)

where the temperature is represented by the sound speed, b is a constant depend-
ing on the wavelength and plasma composition, and c the mean thermal velocity.

• In the neighbourhood of the critical density, absorption is due to a variety of non-
linear mechanisms. Experimentally this is found to result in strong absorption
of typically 30% locally at the critical density of the incident radiation.

High-intensity laser radiation breaks down cold unionised material initially by a
multi-photon release of electrons leading to a low density of electrons. These are rapidly
heated by inverse bremsstrahlung and in turn cause further ionisation. A rapid cascade
thus occurs leading to a plasma with a high degree of ionisation. This breakdown takes
different forms in gases and solids due to the markedly dissimilar background density
with respect to the critical density.

13.I.i Solid targets

In this case the ambient density is typically about 102–103 critical, i.e. ρ0 
 ρcrit. The
plume expands into vacuum, so that no downstream limitation on the flow occurs. The
ambient temperature is very much less than that generated by the heating T1 � T2

and may be neglected. Absorption takes place in an expanding plasma plume as the
material heats and expands. The flow therefore has the form of a deflagration. As we
have seen, a shock precedes the heat front penetrating into the solid and probably
initiates ionisation. A zone of heating and expansion from the high density follows the
shock at the head of the deflagration structure, resulting from thermal conduction,
before absorption takes place. In contrast to deflagrations generated by chemical heat
release where thermal conduction initiates the reaction, energy deposition is inde-
pendent of the heat front and depends solely on the local thermodynamic state and
the incident (external) energy flux. Since there are two different absorption processes,
there are correspondingly two limiting forms of the deflagration depending on which
is dominant. We compare and contrast these two systems within a one-dimensional
flow model.
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13.I.i.a High-intensity irradiation – deflagration model

If the radiation is very intense, the electron temperature is high and inverse
bremsstrahlung plays little part in absorption. The energy deposition is therefore
localised at the critical density. No energy can be deposited from the laser beam
upstream of the critical density, where a zone of thermal conduction heats the fluid
behind the shock (Fauquignon and Floux, 1970). Within this region the fluid is pro-
gressively heated and expanded to flow smoothly into the zone of local absorption. In
this case the simple nature of the deflagration zone makes it time independent.

In contrast to the case of a reaction-supported deflagration, there is no additional
condition specified by the initiation of the heat deposition or similar limitation. The
flow therefore requires an additional condition to be determinate. This is supplied by
the requirement that, similar to a detonation, the deflagration must be a Chapman–
Jouget flow with the exit velocity equal to the local sound speed. This model assumes
radiation is absorbed only in the neighbourhood of the critical density, no heat is
deposited further downstream, and the subsequent flow must be a rarefaction. Hence,
following our earlier argument, the downstream flow must be sonic and from equa-
tions (13.20) and (13.21) the flow conditions are

ρ2 = ρcrit v2 = c2 = 3

√
2 (γ − 1)Φ
(γ + 1) ρcrit

p2 =
[
2 (γ − 1)
(γ + 1)

]2/3

ρ
1/3
crit Φ2/3

In fact the plasma is likely to be sufficiently hot that the rarefaction is maintained
at uniform temperature by thermal conduction; that is, it is an isothermal rarefac-
tion, which is driven by a downstream heat flow p2v2 as described in Section 9.3.3
and the downstream exit velocity is the isothermal sound speed v2 = c2. The defla-
gration is described by the modified Rankine–Hugoniot equations (13.6) with the
Chapman–Jouget condition applied to the isothermal sound speed at the downstream
end. Neglecting the heat loss to the rarefaction, the solutions for the exit velocity and
pressure are then

ρ2 = ρcrit v2 = c2 = 3

√
2 (γ − 1)Φ

(3 γ − 1) ρcrit
p2 =

1
γ

[
2 (γ − 1)
(3 γ − 1)

]2/3

ρ
1/3
crit Φ2/3

Φ, the heat deposited per unit time per unit area in the deflagration, is a fraction
of that incident due to reflection at the critical density. We note two characteristic
results:

• The downstream velocity is larger for the adiabatic flow, reflecting the general
result that for a deflagration the Chapman–Jouget flow velocity is a maximum.

• The downstream pressure of the isothermal Chapman–Jouget deflagration is
greater than that of the adiabatic, so that the former is a weak deflagration as
required.

Taking into account the heat conducted downstream, namely ρcritv2ε2,

p2 =
[
2 (γ − 1)
(5γ − 3)

]2/3

ρ
1/3
crit Φ2/3 (13.25)
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This model represents one limiting case, namely one where the absorption is entirely
at the critical density and no distributed absorption occurs. The plasma is very hot
and thermal conduction ensures that energy is spatially distributed.

13.I.i.b Low-intensity irradiation – self-regulating model

If the irradiation intensity is relatively weak, the temperature of the plasma in
the plume is no longer sufficiently high that the downstream plasma is absorbent.
The entire incident energy flux Φ is therefore deposited within the plasma body. The
plume is heated by inverse bremsstrahlung, which provides sufficient distributed heat
to maintain the expansion without the need for thermal conduction to be active.
Absorption at the critical density is negligible and plays no role in the flow. The
absorption is determined by the optical depth, namely the product of the absorption
coefficient and the length (μx). Since heating at the head of the deflagration must be
supported by absorption of the radiation to maintain the flow, the overall optical depth
is of order unity. The spatial heat distribution within the plasma varies in time as the
scale length of the plasma plume increases. Consequently the density must decrease
and the temperature increase with time along the plume. The flow self-regulates to
maintain this relation. If the plasma is too hot or too tenuous the optical depth is
reduced, more radiation reaches the ablation surface, and increased ablation restores
the status quo. Similarly vice versa if the plasma is too cold or dense. The flow is
therefore stabilised by the functional form of the absorption coefficient (Afanas’ev
et al., 1966; Caruso et al., 1966). Scaling relations for the optical depth, flow speed
and energy follow from dimensional analysis

b ρ2 c−3 v t ∼ 1 v ∼ c Φ ∼ ρ v c2

The constants of proportionality are easily seen to be of order unity from consideration
of momentum and energy conservation. Hence we obtain the general scalings

c ∼ b1/8 Φ1/4 t1/8 ρ ∼ b−3/8 Φ1/4 t−3/8 (13.26)

with constants of proportionality of order unity.
Since the problem involves only two characteristic parameters, namely b and Φ, it

is expressible in a self-similar form with parameter

ξ =
x

b1/8 Φ1/4 t9/8
∼ x

c t
(13.27)

in terms of which the overall flow may be expressed as a set of ordinary differen-
tial equations, which can be numerically integrated by standard methods to obtain
accurate scalings.

In practical situations the purely one-dimensional solution given above fails when
the length of the plasma becomes comparable with the focal spot radius. At this point
the flow expands radially and the absorption rapidly decreases to form a steady flow.
Since the initial planar flow from the target is subsonic, it cannot pass through the
sonic point (Section 1.8.1.2). However, the transition through a sonic point is allowed
in a divergent channel. The two- or three-dimensional expansion of the plasma plume
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therefore allows the sonic transition to occur at a distance of approximately the focal
spot radius from the target, Under these conditions, the absorption coefficient falls
rapidly with distance and the optical depth is approximately limited to the value at
the sonic point. A steady flow is therefore established and an additional parameter,
namely the focal spot radius r0, is introduced into the scaling:

ρ ∼ b−1/3Φ1/3r0
−(ν+1)/3 c ∼ b1/3Φ2/9r0

−(2ν−1)/9 (13.28)

where ν = 1 for a line focus and ν = 2 for a spot. As before, the scaling constants
are of order unity, and can only be calculated from simplified models or by numerical
simulation.

We note that in this case of the self-regulating model, the flow is uniquely specified
by the experimental parameters and no additional condition is necessary.

The two models presented here clearly represent opposite limits of the full solution. The
limiting condition is readily seen to be that the self-regulating model holds if ρ < ρcrit.
However, accurate calculations of the flow in the general case involving thermal
conduction, and absorption by both inverse bremsstrahlung and nonlinear processes
at the critical surface, can be only be generated by numerical modelling. Nonetheless
the simple models given above do generate useful estimates of the plasma conditions
in their appropriate regime. The values generated are broadly in agreement with those
found in experiments within the regimes for which the models are applicable. However,
it should be noted that there are a number of plasma effects which are not included
in the models and in many cases markedly change the nature of the interaction.

13.I.ii Gaseous targets

Gaseous targets, in contrast to solid targets, have the ambient density less than the
critical density. Consequently, stronger absorption results from higher density, and heat
deposition is promoted by compression, not expansion. Thus the heat front is found
in the shock transition of a detonation. As the detonation propagates towards the
laser along the beam, initial ionisation is due to multi-photon breakdown, followed by
rapid collisional absorption once the first electrons are released. An ionisation cascade
within the shock structure of the detonation completes the breakdown (Raizer, 1977).

A laser-driven detonation, however, differs from one driven by a chemical reaction
in one characteristic. In a chemically driven burn, each molecule contributes an equal
energy to the total, namely q per unit mass. On the other hand, in a laser-driven
explosion, the energy is delivered at a constant rate determined by the laser inten-
sity, Φ. The energy absorbed per unit mass is therefore Φ/j, which depends on the
characteristic values of the detonation flow parameters, in particular the detonation
velocity or the rest frame velocity into the wave, v1. The Hugoniot adiabat relation
(13.7) therefore becomes

ε2 − ε1 =
1
2
(V1 − V2)(p1 + p2) + Φ

√
(V1 − V2)
(p2 − p1)

(13.29)

The Hugoniot adiabat for such a detonation is significantly modified from that of a
chemical reaction, Figure 13.2. The adiabat for a laser-driven detonation is sketched
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Figure 13.6: Sketch of the Hugoniot for a laser-driven detonation. The Chapman–Jouget
point and the asymptotic limit are noted.

in Figure 13.6. We note that if the strength is small, the detonation passes through
the initial point, the energy delivered per unit mass being very small. This form of
Hugoniot should be contrasted with that in Figure 13.2.

In the limit where ε1 � q = Φ/ρ1v1, the Hugoniot takes the simpler form from
equation (13.9)

p2 =
{

2(γ − 1)
√

V1 − V2

(γ + 1)V2 − (γ − 1)V1

}2/3

Φ2/3 (13.30)

Two useful relations which can be derived from the momentum and energy equations
respectively are

ε2 =
V2 (V1 − V2)
(γ − 1)V1

2 v1
2 =

2V1V2

[(γ + 1)V2 − (γ − 1)V1] v1
Φ (13.31)

Since the breakdown must be a Chapman–Jouget flow, we obtain the conditions
from equations (13.18) and (13.19), in particular the velocity of the front

v1 =
{

2(γ2 − 1)
Φ
ρ1

}1/3

ε2 =
21/3γ

(γ2 − 1)2/3(γ + 1)

(
Φ
ρ1

)2/3

(13.32)

being the minimum possible velocity and maximum heating. These results are in good
agreement with values measured in experiments.



Chapter 14

Self-similar Methods in
Compressible Gas Flow and
Intermediate Asymptotics

14.1 Introduction

As we have noted, many flows may be reduced from a multi-dimensional prob-
lem to a simpler one using the concept of self-similarity. Although we briefly
discussed the underlying idea of self-similarity in an earlier section (3.8.2) deal-
ing with dimensional methods in viscous fluids, the method achieves its greatest
power and application in treating problems of compressible flow. In many cases
these would otherwise be intractable except by computational simulation. We
have already met several problems which could be reduced to self-similar form
in previous chapters, e.g. Blasius’s solution for the boundary layer over a flat
plate, Section 6.3, and Kolmogorov’s model of isotropic turbulence, Section 5.2.
In each of these a characteristic dimensional parameter was missing from the
list required to specify the flow. In fact there are many cases of this behaviour.

Self-similar motion in time-varying flow is one in which the parameters
that specify the state and velocity of the flow vary in such a manner that the
spatial distribution of these variables is similar to itself as the flow proceeds.
The scales of the magnitude of the variable and its spatial variation change
with time. Consequently if the distribution in space is known at specified
times, then the values at other points in space will be known at times lying
on well-defined lines or surfaces.

Introductory Fluid Mechanics for Physicists and Mathematicians, First Edition. Geoffrey J. Pert.
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We have already met a number of simple flows of this type, namely centred
rarefactions, Section 9.3.1 and Section 9.4.2, and adiabatic compression,
Section 10.10, although we have not drawn attention to their self-similar
nature. In this chapter we will show how to use these methods to develop
solutions to complex problems.

The method is usually based on dimensional analysis to identify specific
functional relationships amongst the variables characterising the problem. To
solve a particular problem we identify three classes of parameters:

1. Independent variables. The determining variables of the problem,
e.g. spatial distance r and time t. Most problems we investigate are sym-
metric and involve one spatial dimensional (Cartesian, cylindrical polar
or spherical polar) co-ordinate r and time t.

2. Dependent variables. Typically the experimentally measurable
quantities of the problem, e.g. pressure p, density ρ and velocity v, at
points in space and time specified by values of the independent variables.

3. Constant parameters. The values which specify the flow, e.g.
background pressure p0, ambient density ρ0 and incoming velocity v0.
These are the initial values, boundary conditions and fluid parameters
of the specific problem, whose number is appropriate to the solution of
the differential equations.

The solution must take the form of a relationship in which any one of the
dependent variables is expressed in terms of the independent set and the param-
eters. It follows from Buckingham’s Π theorem that this solution must have the
form of a function of a complete set of independent dimensionless products, at
least one of which contains the appropriate dependent variable. In general the
terms of the three classes are all dimensional, expressed typically with respect
to the three basic dimensions of mechanics: mass [M ], length [L] and time [T ].

The expression of a problem in self-similar form requires that the functions
representing the dependent variables are separable in the independent vari-
ables. Thus if we consider a time-dependent, one-dimensional flow, then the
density, for example, must be able to be expressed in a relationship of the form

ρ = D(t) f

[
r

R(t)

]

where D(t) is the scale factor for density with the dimensions of density, and
R(t) the scale factor for length with dimensions of length also dependent on
time, the self-similar distribution f(ξ) being expressed in terms of the self-
similar variable ξ = r/R(t). The distribution of density in space is constant



Self-similar methods and Intermediate Asymptotics 385

over lengths on a scale which varies in time; the magnitude of the density varies
in time. Typically the characteristic scale length is expressed as a power law
in time: R(t) = Atδ, where A is a dimensional constant of dimensions [L][T ]−δ

formed from the initial and boundary values of the problem. The self-similar
variable is therefore ξ = r /A tδ.

Self-similar solutions are exact solutions of the equations of fluid mechanics
usually subject to specific initial conditions. However, they have a much wider
application as intermediate asymptotics of the general problems (Barenblatt,
1996). Suppose there are two governing parameters R1 and R2 with the same
dimensions as the variable r; then an intermediate asymptotic is an asymptotic
representation of the solution as r/R1 → 0 whilst r/R2 → ∞. Thus suppose,
for example, that the initial condition of the problem is limited to a region of
space of radius R0. As time progresses, the dimensions of the resulting flow
become large compared with the initial radius, the only dimensionless parame-
ter containing R0, namely r/R0 → ∞. Since dimensional analysis assumes that
if dimensionless parameters are either very large or very small, they may be
neglected, the flow becomes self-similar once it is much larger than the initial
dimension. Consequently all memory of the initial condition is lost. Similarly
it may happen that as the scale becomes very large, additional constraints
are introduced. The self-similar solution is only applicable within limits much
larger than the initial condition and much smaller than the final one. As we
saw in Appendix 6.A we may match the outer (self-similar) solution to the
inner (initial phase) by a perturbation expansion using the method of matched
asymptotics.

Self-similar problems of this type fall into two kinds:

1. Type 1 problems: the constants (or boundary values) allow the iden-
tification of both the terms A and δ. The value of the similarity constant
δ is therefore uniquely specified by dimensional constraints.

Most problems are of the first kind. We illustrate these with a range
of problems dealing with the expansion and compression of gas bod-
ies. In many cases analytic solutions can be found. Self-similar solu-
tions of many problems of this type are given by Sedov (1959) and by
Stanyukovich (1960).

2. Type 2 problems: the constant parameters do not allow the term δ
to be generated by dimensional analysis. It is still possible to identify
a similarity parameter ξ = ar/tδ, where a is an unknown dimensional
constant. The value of δ is, however, determined by the nature of the
singularities in equations (14.33) since the resulting functions represent-
ing physical quantities must be well behaved. The value of δ is thus
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equivalent to an eigenvalue of equations (14.33). Several examples of this
type of self-similar flows are to be found in Zel’dovich and Raizer (1967).

Problems of the second kind do not admit analytic solution and require
a numerical solution to find the ‘eigenvalue’. To illustrate this case we
will examine the problem of a collapsing shock wave.

14.2 Homogeneous Self-similar Flow
of a Compressible Fluid

Homogeneous flows are ones in which the volume of every fluid element is
changed by the same fraction in every time interval, i.e. the dilation rate is
constant in space. Alternatively the velocity of a fluid element is linearly pro-
portional to its distance from the centre, the scale factor varying as a function
of time only (Nemchinov, 1964). Such flows have a particularly simple separable
self-similar form, but are nonetheless very useful for estimating the expansion
or compression of limited volumes of gas with the intermediate asymptotic
approximation. The simple case of the generation of a homogeneous flow in
an infinitely small body of gas with power law heating in time is treated in
problem #48.

14.2.1 General Homogeneous Expansion
of a Compressible Gas

The simple model of problem #48 may be generalised to embrace a large class
of flows where the flow is multi-dimensional and the heat pulse has an arbitrary
form. Considering a body of gas whose characteristic dimensions Xi(t) are not
necessarily equal, the self-similar condition is the generalisation of the equation
of homogeneous flow

ξi = xi/Xi(t) (14.1)

to all ν dimensions of the motion. The dimensionless variables ξi are a set of
Lagrangian co-ordinates constant in time for a particular fluid particle. The
heating of the gas can take an arbitrary (rather than power law) functional
form with time, subject to the initial rate of energy deposition being finite.
The initial spatial dimensions need not be zero, but it is required that the
density and pressure distribution functions, f(ξi) and φ(ξi), match the spatial
heat deposition function W (ξi) at the start of the motion (t = 0).

The velocity of a fluid particle ξi is

vi =
dxi

dt

∣∣∣
ξi

= ξi
dXi

dt
=

xi

Xi
Vi (14.2)
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where Vi = dXi/dt. It follows from this equation that the flow must have sym-
metry in the coordinates xi, namely vi(−xi) = −v1(xi) etc. The mass of a
cell fixed in the fluid of volume dτx and the elementary volume dτξ of the
Lagrangian co-ordinate element ξi are constant in time. The Jacobian of the
transformation between the configuration spaces is

dτx

dτξ
= J =

∂(x1, x2, . . . )
∂(ξ1, ξ2, . . . )

=
ν∏

i=1

Xi

The flow is therefore homogeneous as the ratio of the volume elements in
configuration space for fluid elements of identical size depends only on a factor
varying in time. Since ρ J is invariant of motion (Section 1.3.1) and J is a
function of time alone, the density ρ is a separable function of time and the
Lagrangian space co-ordinates (similarity variables)

ρ = ρ0(t) f(ξi
2)

where f(ξ1
2, ξ2

2, . . . ) is represented as f(ξi
2) taking account of the symmetry

of the function f(ξi
2) noted above.

Euler’s equation enables us to find the density (and equivalently pressure)
distribution functions. The equation takes the form

∂p

∂ξi
= ξi f(ξi

2) ρ0(t)Xi(t)
dVi

dt
(14.3)

Hence the pressure is also a separable function, and therefore all other ther-
modynamic state variables are as well:

p = p0(t)φ(ξi
2)

where φ(ξ1
2, ξ2

2, . . . ) is represented by φ(ξi
2). Therefore

∂[φ(ξi
2)]

∂(ξi
2)

= −1
2

λi f(ξi
2) and p0(t) = λi

−1 ρ0(t)Xi
dVi

dt
(14.4)

for all i. λi are separation constants, which have an arbitrary value and
usually determine the relationship of the characteristic scale width Xi to the
fluid boundary.

The equation of energy conservation in Lagrangian co-ordinates can be
written as

dε

dt
− p

ρ2

dρ

dt
= Q (14.5)

where Q is the heat release rate per unit mass and ε the specific internal
energy. Clearly Q must be separable

Q = Q0(t) q(ξi
2)
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For a polytropic gas

q(ξi
2) = μ φ(ξi

2)/f(ξi
2)

Q0(t) = μ−1

{
1

(γ − 1)
ρ0(t) ṗ0(t) − γ

(γ − 1)
p0(t) ρ̇(t)/[ρ(t)]2

}
(14.6)

where μ is a separation constant. This equation together with equation (14.4)
defines the pressure and density distributions from q(ξi

2).
The mass M and the total energy E(t) in the gas at any time, which is the

sum of the kinetic Ek and thermal Et energies, are easily found:

M =
�

ρ dτ = [Jρ0(t)]
�

f(ξi
2) dτξ

Ek =
�

ρ
1
2

ν∑
i=1

vi
2 dτ =

1
2
[Jρ0(t)]

�
f(ξi

2)
ν∑

i=1

ξi
2 Vi

2 dτξ (14.7)

Et =
�

ρ cv T dτ =
1

(γ − 1)

�
pdt =

1
ν

[J ρ0(t)]
�

f(ξi
2)

ν∑
i=1

ξi
2Xi

dVi

dτ
dτξ

since the pressure is zero at the gas boundary.
Ellipsoidal flows are a useful sub-class of flows, which are particularly easy to

evaluate. Although the initial shape of the body may be ellipsoidal, rather than
spherical, so that Xi and Vi take different values, the heat distribution function
and the state variables have no preferred direction in Lagrangian space. Thus
these variables are functions of the Lagrangian ‘radius’

ζ2 =
ν∑

i=1

ξi
2 =

ν∑
i=1

(
xi

Xi

)2

The density distribution function f depends on ζ2 only

�
ξi

2 f(ξi
2) dτξ =

1
ν

�
ζ2 f(ζ2) dτξ

Defining

Ψ =
1
2

�
ζ2 f(ζ2) dτξ�
f(ζ2) dτξ

we obtain
3∑

i=1

{
Vi

2 +
2

ν (γ − 1)
Xi

dVi

dt

}
= ν

E(t)
Ψ M

(14.8)

where E(t) is the total energy of the gas.
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This equation taken together with equation (14.4) in the form

X1
dV1

dt
= X2

dV2

dt
= · · · = λ

p0(t)
ρ0(t)

(14.9)

uniquely defines the flow, in a convenient form for numerical integration. The
fluid may have a finite initial energy E(0), and the temporal form of the heating
pulse Q0(t) is subject to the condition that lim(t→0) Q0(t) → Atn, n > −1 (see
problem #48).

14.2.1.1 Adiabatic flow

If the fluid is initially hot and not subsequently further heated, E(t) = const,
the flow is adiabatic, and the entropy of each fluid particle is constant in time
although not necessarily the same throughout the flow, the temporal distri-
butions of pressure and density must satisfy the adiabatic equation of state

p0(t)
ρ0(t)γ

=
p0(0)
ρ0(0)γ

(14.10)

If in addition the fluid is isentropic, i.e. the entropy is everywhere constant,
then it follows from equation (14.4) that

γf(ξi
2)(γ−2) ∂f

∂(ξi
2)

= −λi (14.11)

where the set λi are the separation constants which determine the relationship
of the variables Xi to the boundary. Considering ellipsoidal flow and taking
a suitable value of λ we obtain

f (γ−1) = f0
(γ−1)

(
1 − ζ2/ζ0

2
)

φ(γ−1)/γ = φ0
(γ−1)/γ

(
1 − ζ2/ζ0

2
) (14.12)

subject to φ(ζ0) = 0, i.e. the pressure at the edge is zero. We may set ζ0 = 1
so that the set Xi(t) are the edge of the distribution, and f0 = 1 so that ρ0(t)
is the density at the centre.

14.2.1.2 Isothermal flow

In many cases where a small mass of gas is heated (for example) by a laser,
the fluid internal energy per particle (temperature) is approximately constant
throughout the body of gas. A condition which may be due either to strong
thermal conduction or to the nature of the heat deposition is q(ζ2) = const.
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The spatial distribution of the density and pressure follows immediately from
equations (14.4) and (14.6) to be

f(ζ2) = f0 exp(−ζ2/ζ0)
2 (14.13)

where f0 and ζ0 are appropriately chosen. We may define ζ0 = 1 so that the
sets Xi(t) are the 1/e half widths of the distribution and f0 = 1 so that ρ0(t)
is the density at the centre.

14.2.2 Homogeneous Adiabatic Compression

If the separation constants λi < 0, the flow represents an inward motion of the
fluid with the sign of the terms (ζ2/ζ0

2) in equations (14.12) positive. The flow
therefore represents the adiabatic collapse of a mass of gas towards the centre
driven by an inward pressure gradient.1 The temporal dependence of the exter-
nal pressure applied at the edge determines whether a shock is formed, and
therefore the extent of the adiabatic implosion. The velocity Vi = dXi/dt < 0
is seen to be inwards. This flow should be compared with that in Section 10.10,
where compressive flow is also adiabatic and not accompanied by a shock, pro-
vided the temporal dependence of the externally applied pressure is such as to
avoid the intersection of the inward characteristics. In this case very high com-
pression may in principle be achieved provided the pressure pulse is carefully
structured.

14.2.2.1 Homogeneous collapse of spheres

We consider the self-similar adiabatic compression of an isentropic spherical
body of gas of radius R(t) by an external pressure applied at the outer edge.
This case is treated by a simple extension of the above model using equa-
tions (14.4). Defining h(t) = R(t)/R(0) as a measure of the compression, it
follows that since the motion is adiabatic and the mass constant

ρ0(t)
ρ0(0)

=
(

R(t)
R(0)

)3

= h(t)3 and
p(t)
p(0)

=
(

R(t)
R(0)

)−3γ

= h(t)−3γ

(14.14)
Writing the separation constant as

λ = −ρ(0)R(0)2

p(0)
1

t02 = γ

(
R0

c0 t0

)2

(14.15)

1The application of homogeneous flow to compression is due to Kidder (1975).



Self-similar methods and Intermediate Asymptotics 391

where c0 is the speed of sound at time t = 0 at the origin r = 0, the equation
of motion is

t0
2 h(3γ−2) d

2h

dt2
= −1 = −2 γ

(
R0

c0 t0

)2 1
f(ξ2)

dφ(ξ2)
d(ξ2)

(14.16)

If γ = 5/3 the solution is obtained subject to the boundary condition h(0) = 1

h2 = (1 + bτ) (1 − τ) (14.17)

where

b =
1 − q

1 + q
τ =

t

tc
tc =

t0
(1 + q)

q = −t0 ḣ(0) = −t(0)
V (0)
R(0)

≥ 0

(14.18)
We note that tc is the collapse time, i.e. the time taken for the radius R(t) to
become zero.

When b = 1 the flow is initially stationary, the dimension factor h =
√

1 − τ2

and the surface pressure scales as p(R, t) = p(R, 0)/(1 − τ2)5/2. When b = 0 the
Mach number is constant, the dimension factor h =

√
1 − τ and the surface

pressure scales as p(R, t) = p(R, 0)/(1 − τ)5/2.
Solving for the spatial part of the equation of motion, subject to the bound-

ary conditions φ(0) = f(0) = 1, we obtain

φ(ξ) =
(
1 + β ξ2

)5/2 and f(ξ) =
(
1 + β ξ2

)3/2 (14.19)

where

β =
1
3

(
R(0)
c0 tc

)2

(14.20)

where c0 is the sound speed at the centre c0 =
√

γ p0 ρ0.
When the gas is initially at rest q = 0 and the collapse time tc = t0, the flow

velocity and the sound speed are easily shown to be

v =
dr

dt

∣∣∣
ξ

= − c0τ√
1 − τ2

√
3βξ2 and c =

√
γ p

ρ
=

c0√
1 − τ2

√
1 + βξ2

(14.21)
for a gas with γ = 5/3. The Mach number is

M =
|v|
c

=

√{
3β ξ2

1 + β ξ2

}
τ <

√
3 (14.22)

The path of the characteristics is given by the usual expression

dr

dt

∣∣∣
±

= v ± c
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The Mach lines (trajectory of the characteristics) can be expressed in ana-
lytic form2 which shows that the arrival time at the centre of the ingoing
characteristic leaving the surface at τ0 is given by

τ1 =
(1 − g)
(1 + g)

where g =
(√

β + 1 −
√

β
)2

√
3 (1 − τ0)

(1 + τ0)
(14.24)

For small values of β � 1, the arrival time of the characteristic τ0 at the
centre, τ1 ≈ τ0, is nearly the same as the time it leaves the surface. For weakly
driven compression, the characteristics only converge slowly, and sequentially
reach the centre (Figure 14.1(a)), the fluid slowly compressing adiabatically.

For large values of β � 1, the arrival time of the characteristic τ0 is given by
τ1 ≈ 1 − 2 [(1 − τ0)/(1 + τ0)] [4β]

√
3, which approaches 1 for very large β. The

characteristics therefore converge towards the centre for very strongly driven
collapses (Figure 14.1(b)). However, the arrival time of a later characteristic is
always after that of an earlier one. The characteristics do not intersect.

It can be shown quite generally that in no case do the characteristics inter-
sect before convergence at the centre. Consequently no shock is formed during

2The solution is obtained by the substitution

r± = R0

√
(1 − τ2)

β
f±(τ)

Making the further substitution

f±(τ) =
1

2

(
F± − F±

−1)

we obtain the velocity of the characteristics

v ± c = −
√

3

2
c0

[
F±(τ) − F±

−1(τ)
] τ√

1 − τ2
± 1

2
c0

[
F±(τ) + F±

−1(τ)
]

=
dr±
dt

∣∣∣
±

= −
√

3

2
c0

[
F±(τ) − F±

−1(τ)
] τ√

1 − τ2
±

√
3

2
c0

√
1 − τ2

[
dF±(τ)

dτ
− dF±−1(τ)

dτ

]

the first term being the flow velocity v, and the second the sound speed c. Equating terms
we obtain the differential equation

−
√

3
(
1 − τ2)

[
dF±
dτ

− dF−1
±

dτ

]
= ± [F±(τ) + F±

−1(τ)
]

Noting that dF±−1/dτ = −F±−2 dF±/dτ , the solution is readily obtained for a Mach line
passing through the surface of the sphere at time τ0 at r = R0

√
1 − τ0

2:

F± =
[√

β + 1 +
√

β
] [ (1 + τ)

(1 + τ0)

(1 − τ0)

(1 − τ)

]±1/2
√

3

(14.23)

since f±(τ0) =
√

β.
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Figure 14.1: Plots of the inward Mach lines for small and large values of the parameter β.
Note the contrasting convergence of the lines to the centre. The Mach lines (shown dashed)
plotted start at intervals of tc/10 at the outer surface. The path of the outer surface is
shown by the full line. (a) β = 0.25, and (b) β = 10.

the compression phase. This is a consequence of the slowly increasing time
history of the pressure pulse applied to the outer surface of the sphere, namely
p ∼ (1 − τ2)−5/2. If the pressure increases more rapidly a shock will form con-
verging onto the centre, destroying the adiabatic nature of the collapse.

14.2.2.2 Homogeneous collapse of shells

Consider an isentropic hollow shell with inner radius Ri and outer radius Ro

collapsing into a void driven by a pressure pulse on the outer surface. It is easily
shown that, if the collapse is homogeneous, equations (14.14) and (14.17) apply
in this case as well. The time dependence of the scale factor h(t) is therefore
given in this case also by

h2 = 1 − τ2 where τ = t/tc (14.25)

where tc is the time to collapse. If the shell is initially at rest the pressure
on the outer surface scales as p(Ro, t) = p(Ro, 0)/(1 − τ2)5/2, whereas that on
the inner surface is always zero, p(Ri, t) = 0. If the adiabatic index of the gas
γ = 5/3, the spatial distributions of pressure and density through the shell are

p(r, t) = p(Ro, 0)
(

r2 − Ri
2

Ro
2 − Ri

2

)5/2

and ρ(r, t) = ρ(Ro, 0)
(

r2 − Ri
2

Ro
2 − Ri

2

)3/2

(14.26)
If c0 is the initial sound speed in the gas, the collapse time is

tc
2 =

(
Ro

2 − Ri
2
)
/3 c0

2 (14.27)
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Unlike the homogeneous compression of a sphere, there is a single solution
for the shell. The introduction of a second boundary condition, namely at the
inner surface in addition to that at the outer, removes the flexibility introduced
by the parameter β to the solution for a sphere. As a result the ratio of the
time to collapse tc to the sound transit time R0/c0 is fixed.

Figure 14.2 shows a typical example of such an idealised collapse. Notice
how rapidly the final stages of the collapse occur as the external pressure
increases rapidly.
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Figure 14.2: Variation of density with distance at various times relative to the collapse
time. The initial condition is prescribed by a uniform shell of inner radius 1 unit and
thickness 0.1 units. The initial density and sound speed are both 1 unit.

It may appear that the value of this solution is limited by the specific density
distribution, since most practical problems involve uniform shells. However, the
concept of intermediate asymptotics proves useful here, as we may represent
a uniform shell of thickness Δ and outer radius Ro by the equivalent homoge-
neous form with the same mass, total internal energy and total entropy. If the
shell is thin, Δ � Ro, this requires the parameters of the homogeneous flow to
take the values

Ro − Ri =
5
2

(
5
7

)3/2

Δ tc =
(

5
3

)1/2 (
5
7

)5/4 √
Ro Δ
c0

p(Ro, 0) =
(

7
5

)5/2

p0 ρ(Ro, 0) =
(

7
5

)3/2

ρ0

(14.28)

where p0, ρ0 and c0 are the initial pressure, density and sound speed in the uni-
form shell. The approximation is valid provided the inner surface of the shell
does not reach the centre before convergence. Making use of the results from
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Section 9.3.1, the time taken for the inner surface to reach the centre is approx-
imately (γ − 1) Ri/2 c0 = Ri/3 c0. From equation (14.28) this requires that the
shell thickness Δ/Ro < (7/5)5/2 / 15 = 0.1546. This condition also ensures that
the first characteristic propagates through the shell before convergence.

14.3 Centred Self-similar Flows

The self-similar picture of flow can be set in a more formal context using
dimensional analysis. The resultant flow equations are more complex than those
derived for the homogeneous flows but are less restrictive in their application.
It will be found that they fall into two distinct classes specified by the nature of
the similarity variable. We will consider as examples a problem from each class.

Since the density and pressure both contain the dimension of mass, it is clear
that at least one of the parameters must also contain mass. Let this term be a
and its dimensions

[a] = [M ] [L]k [T ]s

We may introduce dimensionless forms for the velocity, density and pressure
based on the dimensions of a and the independent variables

v =
r

t
V ρ =

a

r(k+3)ts
D p =

a

r(k+1)t(s+2)
P (14.29)

where V , D and P depend on dimensionless combinations of r, t and the other
parameters.

In general we can find from the parameters individual combinations with
the dimensions of length and time separately. However, in some circumstances
this may not be possible, and it is only possible to find a combination b with
dimensions containing both length and time, e.g. c0 =

√
γp0/ρ0

[b] = [L]m [T ]n

In this case the spatial variable and time can only enter the problem through
the dimensionless combination

ξ =
r

b1/m t−n/m
(14.30)

Such a problem is called self-similar and ξ is known as the self-similar variable.
Since V , D and P can only be functions of ξ and any constant dimensionless
parameter, it follows that the system exhibits similarity with itself for constant
values of ξ for differing values of r and t.

For one-dimensional time-dependent flow, the partial differential equations
in two variables are replaced by a single one in ξ with considerable improvement
in the ease of solution. The equations of one-dimensional time-dependent flow
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of a polytropic gas may be written as
∂ρ

∂t
+

1
r(ν−1)

∂

∂r

(
r(ν−1)ρ

)
= 0

∂v

∂t
+ v

∂v

∂r
+

1
ρ

∂p

∂r
= 0

∂

∂t

(
p

ργ

)
+ v

∂

∂r

(
p

ργ

)
= 0

(14.31)

where ν is the dimensionality parameter

ν =

⎧⎨
⎩

1 in planar Cartesian geometry
2 in cylindrically symmetric geometry
3 in spherically symmetric geometry

Substituting for the velocity, density and pressure in terms of the dimen-
sionless forms (14.29), and introducing the sound speed as a variable through
c2 = Zr2/t2 so that Z = γP/D, we obtain

ξ

[
(δ − V )V̇ − 1

γ

(
Ż + Z

Ḋ

D

)]
= V 2 − V − (k + 1)

γ
Z (14.32a)

ξ

[
−V̇ + (δ − V )

Ḋ

D

]
= −s − (k − ν + 3)V (14.32b)

ξ (δ − V )

[
Ż

Z
− (γ − 1)

Ḋ

D

]
= −s(1 − γ) − 2 − [k(1 − γ) + 1 − 3γ]V

(14.32c)

where δ = −m/n. The equations in this form are somewhat inconvenient in
that they form a simultaneous set of three ordinary differential equations,
whose properties are not easy to identify. However, they may be cast into a
single ordinary differential equation plus two further equations, which may be
integrated by quadrature:

dZ

dV
=

Z

{ [
2 (V − 1) + ν (γ − 1) V

]
(V − δ)2 −

(γ − 1)V (V − 1)(V − δ) − [2 (V − 1) + κ(γ − 1)] Z

}
(V − δ) [V (V − 1) (V − δ) + (κ − νV ) Z]

(14.33a)

d ln ξ

dV
=

Z − (V − δ)2

[V (V − 1) (V − δ) + (κ − νV ) Z]
(14.33b)

(V − δ)
d lnD

d ln ξ
= [s − (k − ν + 3) V ] − [V (V − 1) (V − δ) + (κ − νV ) Z]

[Z − (V − δ)2]
(14.33c)

where κ = [s + 2 + δ(k + 1)] /γ.
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These equations identify a number of singularities in their solutions, which
must be taken into account in finding the solution, as discussed in detail by
Sedov (1959). The general solution is found by a numerical solution of the first
equation (14.33a) followed by two quadratures for the remaining equations.
Fortunately in a number of cases integrals based on the conservation laws may
be used to identify one or two integrals of the equations.

Equation (14.33a) contains a number of singularities, where either or both
of the numerator and denominator go to zero. Some of these points play a
significant role in the problems we investigate. In particular the singularity at
the origin (V = 0, Z = 0) where ξ → ∞ plays a critical role in many flows. It
is easily seen from equation (14.33a) that in this neighbourhood

Z = C V 2 (14.34)

This singularity is a node. Since ξ → ∞ it is clear that this singularity rep-
resents the flow in the limit of convergence t → 0. The density tends to a
constant value.

Singularities play an important role in the examples we investigate. Z is the
dimensionless square of the sound speed, and V − δ the flow speed relative to
the self-similar wave ξ = const. The line Z − (V − δ)2 = 0 represents the sonic
condition relative to the wave, and therefore separates the region of subsonic
flow from supersonic flow. Transition across this line can only take place at a
singularity or in a shock wave, where the adiabatic equations break down.

14.4 Flow Resulting from a Point Explosion
in Gas – Blast Waves

In Section 14.2 we considered the expansion of a mass of heated gas into vac-
uum. We now turn our attention to the situation where a large quantity of
energy is suddenly released at a point (or a line or a surface depending on the
geometry) into gas at a uniform density.3 The gas at the point is instanta-
neously heated to a high temperature and pressure. As a result a shock wave
will be driven into the ambient gas followed by an expanding flow. The only
dimensional characteristic parameters specifying the flow are the ambient den-
sity ρ1 and the energy E (or energy per unit length or energy per unit area).
The ambient gas is assumed to be cold, so that its pressure and temperature
may be neglected. The speed of sound in the background gas is therefore zero.

3This problem was solved by several workers independently: Taylor (1941), von Neu-
mann (1941) and, slightly later, Landau (1959, §99), Stanyukovich (1960, §64) and
Sedov (1959, §4.11), Taylor and Landau and Stanyukovich giving numerical solutions and
von Neumann and Sedov the analytic form followed here.
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The parameters cannot be combined to form a dimensional quantity with the
dimensions of length or time. The problem is therefore self-similar. The param-
eter a may be conveniently taken as the ambient density ρ1 so that k = −3
and s = 0. The parameter b not containing mass is E/ρ1 with dimensions

[b] =
[

E

ρ1

]
= [L](ν+2) [T ]−2

Thus m = ν + 2 and n = −2. The value of the self-similar power coefficient is
δ = −n/m = 2/(ν + 2) and we form the self-similar variable

ξ = r
( ρ1

E t2

)1/(ν+2)
(14.35)

At this stage the energy E is a quantity with the dimensions of energy a
fraction α of the energy released E0, α being determined subsequently. The
dimensionless forms of the variables are obtained in terms of the parameters
ρ1 and E/ρ1

ξ =
(

E

ρ1

)−1/2δ r

tδ
v =

r

t
V (ξ) ρ = ρ1 D(ξ) p = ρ1

r2

t2
P (ξ) M = ρ1 rν M(ξ)

(14.36)
where δ = 2/(ν + 2) and M is the mass contained between the surfaces at the
origin and at a distance r.

The value of E is taken such that the position of the shock front is determined
by a constant value ξ = 1 of the self-similar variable

R(t) =
(

E

ρ1

)1/(ν+2)

t2/(ν+2) (14.37)

The shock velocity U(t) is therefore

U(t) =
dR

dt
=

2
(ν + 2)

(
E

ρ1

)1/(ν+2)

t−ν/(ν+2)

=
2

(ν + 2)

(
E

ρ1

)1/2

R−ν/2 (14.38)

Since the energy release is large, the shock is strong. The downstream state
behind the shock is therefore described by the approximate Rankine–Hugoniot
forms (10.6)

ρ2 ≈ ρ1
γ + 1
γ − 1

p2 ≈ 2
γ + 1

ρ1 U2 u2 ≈ 2
γ + 1

U
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u2 being the velocity behind the shock in a laboratory frame. The downstream
density immediately behind the shock is therefore constant and the pressure
decreases as

p2 ∼ ρ1 U2 ∼ ρ1

(
E

ρ1

)2/(ν+2)

∼ E

Rν

This scaling is readily understood as the total energy is a constant of the
motion, so that the energy density (per unit volume) scales as E/Rν . Since it
follows from thermodynamics that the pressure scales as the energy density,
this result follows.

The gas flow behind the shock is adiabatic, described by equations (14.31).
The dimensionless variables take the values behind the shock

V2 =
4

(ν + 2) (γ + 1)
D2 =

(γ + 1)
(γ − 1)

P2 =
8

(ν + 2)2 (γ + 1)
ξ = 1

(14.39)
The calculation is greatly simplified by the identification of three integrals

of the motion, which are essentially expressions of the differential equations
expressed in conservation law form:

1. Mass Integral Since the flow contains no mass source at the origin,
and is symmetric and one dimensional, the mass M between any two
surfaces moving with the fluid is invariant of the motion. Taking the
surfaces at the origin r = 0 and at a distance r(t), the mass may be
treated as a Lagrangian variable, i.e. one which remains constant for a
particular fluid element. The mass contained by the surface r(t) is

M = σν

r(t)�
0

ρ r(ν−1) dr

with the area parameter

σν =

⎧⎨
⎩

2 in planar Cartesian geometry
2π in cylindrically symmetric geometry
4π in spherically symmetric geometry

The mass M may be written in dimensionless form as

M = ρ1 rν M = ρ1 ξν tν δ M (14.40)

Since the total mass of fluid is conserved, the rate of change of the mass
inside the surface ξ is balanced by the flow through the surface. The
velocity of the surface outwards is simply dr/dt|ξ and the net outwards
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flow velocity through it therefore [v − dr/dt|ξ]. Consequently

dM

dt
= σν ρ r(ν−1)

(
dr

dt

∣∣∣
ξ
− v

)
(14.41)

Expressing this result in dimensionless form we obtain

−ν δ M − σν D (V − δ) = 0 (14.42)

which is an integral of the equation of continuity, namely the second
equation of the set (14.32) due to the conservation of mass. Note that
since in general V < δ, M is positive.

We may use this result to identify the state of a specific fluid element as
it moves in time. Since M is constant it follows from equations (14.40)
and (14.42) that

M

M0
=

tν δ ξν D (δ − V )
tν δ
0 ξν

0 D0 (δ − V0)
= 1 (14.43)

where the subscript 0 refers to values at the initial position of the element
at time t0. The current position follows immediately from R = R0 (t/t0)δ.

2. Adiabatic Integral Behind the shock the flow is adiabatic, so that the
entropy of a fluid particle is unchanged through the flow. Since the motion
is one dimensional we may identify a fluid particle by the mass from the
centre to the surface r, namely M, which therefore acts as a Lagrangian
variable. The only variables which can determine the entropy of a parti-
cle in the flow are the imposed parameters E and ρ1 and that identifying
the fluid particle M. Considering the function p/ργ = F (M, E, ρ1) rep-
resenting the value of the entropy, we may use dimensional analysis to
determine the form of the function F (M, E, ρ1) as

p

ργ
= C

ρ1E

M
ρ−γ

1 (14.44)

where C is an unknown dimensionless constant. Substituting the dimen-
sionless forms for p, ρ and M from equation (14.36), we obtain

P

Dγ
= CM(ξ)−1ξ−(2+ν) (14.45)

This equation is similarly an integral of the third equation of the
set (14.32) determined by the conservation of entropy in an ideal flow.

The trajectory of an adiabat is therefore given by M(ξ) ξ(ν+2), where
M(ξ) satisfies the mass integral (14.42).
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3. Energy Integral If the energy is constant we may also seek an integral
of the motion based on energy conservation. It is assumed that the explo-
sion is so strong that the energy released is much larger than that in the
background gas, i.e. we can assume the background gas is very cold and
neglect its pressure and internal energy. The total energy contained with
the surface embraced by the shock wave is therefore constant and equal to
E0, the energy of the explosion. Furthermore, if we consider the energy of
the gas within the surface ξ defined by the similarity variable, its value
must also remain constant provided the surface lies within the shock-
heated gas. The velocity of a point on this surface is simply v′ = δ r/t.

In a short time interval δt, energy σν r(ν−1) ρv(h + 1
2v2) δt flows out

through the surface ξ. On the other hand, the volume increases in
that time by σν r(ν−1) v′ δt and the associated energy increase is
σν r(ν−1) v′ (ε + 1

2v2) δt. Equating these two terms we obtain

Z = γ
P

D
=

[
(γ − 1)V 2(V − δ)

]
2 [δ/γ − V ]

(14.46)

This result provides an integral of the set of equations (14.31). Substituting
for Z in the second equation of the set (14.33b), we obtain

d ln ξ

dV
=

[
(γ − 1)V 2 − 2(δ/γ − V )(V − δ)

]
2 V (δ/γ − V ) [V {1 + (γ − 1) ν/2} − 1]

(14.47)

which can be directly integrated by expressing the terms in V in partial
fractions, subject to the boundary condition at the shock ξ = 1, namely
V = 2δ/(γ + 1)

r

R
= ξ =

[
(γ + 1)

2δ
V

]−δ [
(γ + 1)
(γ − 1)

(γ

δ
V − 1

)]−α1

×
[

(γ + 1)
(γ + 1) − δ {2 + ν(γ − 1)}

(
1 − 2 + ν(γ − 1)

2
V

)]−α2

(14.48)

where

δ =
2

ν + 2
α1 =

1 − γ

2(γ − 1) + ν
α2 =

(ν + 2) γ

2 + ν(γ − 1)

[
2 ν (2 − γ)
γ (ν + 2)2

− α1

]
(14.49)

provide a parametric solution for ξ in terms of V . The ratio Z, namely
the square of the sound speed, is found from the energy integral equa-
tion (14.46). Eliminating the mass from the adiabatic integral (14.45) using
equation (14.42) yields

Z = C D(γ−2) (V − δ)−1 ξ−(2+ν) (14.50)
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the constant C being obtained from the values behind the shock. Hence we
obtain the density D, and thus the pressure P to complete the solution. It is
clear from equation (14.49) that V = V0 = δ/γ at ξ = 0, i.e. the flow velocity
is zero at the centre, and V = V2 = 4/δ (γ + 1) at ξ = 1, i.e. immediately
behind the shock. Thus V is limited in the range V0 ≤ V ≤ V2.

Detailed tabulation of the results can be found in the book by Sedov (1959).
The dimensionless energy parameter α = E/E0 is found by evaluating the total
energy

E0 =
R�
0

(
ρv2

2
+

p

(γ − 1)

)
σν r(ν−1) dr (14.51)

which reduced to its dimensionless form becomes

8 σν

(ν + 2)2(γ2 − 1)

1�
0

(
D V 2 + P

)
ξ(ν+1) dξ = 1 (14.52)

Figure 14.3 shows plots of the velocity, density and pressure in a spherical
blast wave normalised to their values at the shock wave, as functions of the dis-
tance relative to the shock wave. The value of the polytropic constant γ = 1.4.
Some interesting features are immediately apparent. The density at the cen-
tre tends to zero, but the pressure is finite. The temperature at the centre is
therefore very large, the energy remaining after the explosion. The pressure is
nearly constant and the velocity almost linearly dependent on the radius until
the shock wave is approached. In this case the parameter α ≈ 1.175.
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Figure 14.3: Plots of the velocity, density and pressure normalised to their values behind
the shock at different distances from the shock for a spherical blast wave with γ = 1.4.

14.5 Adiabatic Collapse of a Sphere

Consider the case of a sphere of uniform density ρ0 and pressure p0 under the
action of a piston with an appropriate pressure history. As we have already seen
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in Sections 10.10 and 14.2.2, strong compression of the ambient gas may be
generated if the coalescence of the characteristics can be avoided. An adiabatic
self-similar motion of class 1 is easily found. In this case no analytic solution
exists. The dimensional constants are a = ρ0 and b = c0 =

√
γp0/ρ0, the sound

speed. Clearly δ = 1 and κ = 0.
The simple value of δ = 1 simplifies the problem. The sonic line becomes

Z = (1 − V )2, which the flow must avoid during the collapse.The solution
involves three singular points.4 The solution starts at the point V = 0, Z = 1
lying on the sonic line, which is a singularity A (a focus) where the solutions
touch the Z axis.. The point of convergence O at the origin where V = 0, Z = 0
and ξ → ∞ is a focus where all the solutions touch the V axis. The point B,
V = 2/(3γ − 1), Z = 3[(γ − 1)/(3γ − 1)]2, is a saddle point. This limits the
solutions which can start from A at (0, 1) and reach O at (0, 0) to Mach num-
bers M < M0crit ≈ 1.30 near O.5 Figure 14.4 shows the typical trajectories of
the collapse for three different values of the Mach number at convergence. The
approach and reversal near the saddle point B can be clearly seen. The larger
the Mach number M0 at convergence, the closer the integral curve approaches
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Figure 14.4: The trajectory of the collapse of a uniform sphere and the subsequent shock
bringing it to rest. The singularities are shown together with the sonic line. The calculation
is for a gas with γ = 5/3, and convergence Mach numbers M0 of 1.15, 1.2, 1.25 and M0crit .

4The singular points are identified using Sedov’s notation.
5This value may be compared with the value of

√
3 in homogeneous collapses, equa-

tion (14.22).
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the saddle point B, and the more rapid the subsequent motion. In the early
stages of compression the flow is only weakly dependent on M0 before the
neighbourhood of B is reached. In the later stages after convergence, the weak
reflected shock bringing the gas to rest can be seen crossing the sonic line.

Measuring the time from the instant of convergence, the flow divides into
two separate phases:

• The collapse phase when the time t < 0, and we must take the self-similar
variable ξ = r/{c0(−t)}. The dimensionless velocity V > 0.

• The post-collapse phase when the time t > 0, and the self-similar variable
ξ = r/{c0 t}. The flow continues to move inwards, V < 0, until meeting
the shock reflected at the collapse point, which brings the flow to rest.

The flow is continuous through the convergence where ξ → ∞. Consequently
we have in the neighbourhood of the point Z = V = 0, Z− = Z+, V− = −V+

and D− = D+, where the subscripts indicate values at equal values of ξ, before
and after the convergence.

At convergence it is easily seen that

Z ∼ V 2 V ξ ∼ const and D ∼ const (14.53)

Therefore, transforming back into laboratory variables we have near
convergence

M = v / c v = const c = const ρ = const and p = const (14.54)

and the Mach number M = V/
√

Z is well defined.
The dimensionless forms appropriate to this problem are easily identified

ξ =
r

c0 t
v =

r

t
V (ξ) ρ = ρ1 D(ξ) p = ρ1

r2

t2
P (ξ) M = ρ1 rν M(ξ)

(14.55)
The derivation of the mass integral, equation (14.42), given earlier, may be

applied with δ = 1. The adiabatic integral is simply identified as

p

ργ
= ρ1

−(γ−1) c0
−2 P

Dγ
ξ2 = C ′ (14.56)

Substituting in terms of Z we obtain

Z = C D(γ−1) ξ−2 (14.57)

where the constant C = 1 is determined by the initial state of the gas at A. This
result allows a direct calculation of the density from the sound speed parameter
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Z. The calculation therefore proceeds as an integration of equation (14.33a)
to obtain V as a function of Z starting at O with prescribed Mach number.
A quadrature using equation (14.33b) gives ln ξ followed by the application of
the adiabatic integral to give D.

The integration is continued into the post-convergence phase until the
upstream conditions for a shock bringing the flow to rest are reached, i.e.
the values of Vu and Zu are such that the downstream value Vd = 0 is given by
the Rankine–Hugoniot equations

Vd = 1 +
{

(Vu − 1) +
2

(γ + 1)
[Zu − (Vu − 1)2]

(Vu − 1)

}
= 0 (14.58)

The final state of the gas is given by the value of Zd:

Zd =
(

γ − 1
γ + 1

)2 {
(Vu − 1)2 +

2Zu

(γ − 1)

[
2γ

(γ − 1)
(Vu − 1)2 − Zu

]}
(14.59)

The compression generated by these flows depends on how closely the solu-
tion approaches the singularity B (Figure 14.5) The Mach number at con-
vergence is also limited by the nature of the saddle point to a value M0crit ≈
1.292 12. As expected the compression is weaker for smaller values of M0.
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Figure 14.5: Compression ratio of the gas during the collapse of a sphere as shown in
Figure 14.4 for Mach numbers M0 at convergence of 1.15, 1.2, 1.25 and M0 = 1.2911. The
time is measured as a ratio of the collapse time.

The compression may be considered to be driven by a piston whose radius
is R(t). Since the flow velocity at the piston must equal the piston speed, the
position of the piston or alternatively the time into the compression may be
simply calculated from equation (14.43) or by simple quadrature from

dξ

ξ
=

dr

r
− d(−t)

(−t)
=

( −v

r/(−t)
− 1

)
d(−t)
(−t)

= (V − 1)
dt

t
(14.60)
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since V = v/[r/(−t)] is taken to be positive, as the motion is inward. Fig-
ure 14.6 shows the time history of the dimensionless flow parameters at the
piston for various values of the Mach number at convergence for a gas with poly-
tropic index γ = 5/3. As the Mach number at convergence is increased towards
the limiting value M0crit , it can be seen that a correspondingly larger part of
the motion is spent in the neighbourhood of the singular point B. In this region
both Z and V have nearly constant values approximately equal to those at the
singularity B, namely Z ≈ 1/12 and V ≈ 1/2. The Mach number is therefore√

3 in this region. Making use of this result we may derive the solution for the
behaviour of the flow at the limit of convergence for gas with γ = 5/3 as follows.
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Figure 14.6: Plots of the dimensionless flow parameters: pressure ratio p/p0, compression
ratio D = ρ/ρ0 and inwards velocity v/c0, and Z and V at the piston as functions of the
fractional collapse time τ = c0 (−t)/R into the collapse (γ = 5/3).

The values of the laboratory variables at the piston R = 1 are therefore

v = 1
2α c0 τ−1/2 ρ = 2 α−3/2 ρ0 τ−3/2 p = 25/3 α−5/2 p0 τ−5/2 (14.61)

where τ = c0(−t)/R is the time to collapse as a fraction of the total col-
lapse time. These scalings are in excellent agreement with the values shown in
Figure 14.6.
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An integral solution, given in problem #49, can be shown to be an exact
solution of the equations of motion, and passes through the singular point
V = 1/2, Z = 1/12. It is therefore the limit solution leading to infinite com-
pression. However, it is unable to satisfy the initial conditions V = 0, Z = 1,
which must therefore lie on the other branch of the solution through the saddle
point B (Figure 14.4).

From Figure 14.6 it can be seen that once the flow is far from the singularity
B, the velocity of the piston becomes nearly constant and the variable V ∼ ξ−1.
In this case Z ≈ (M0V )2 ∼ ξ−2. The density ρ ∼ const and pressure p ∼ const
scalings follow immediately.

14.6 Convergent Shock Waves –
Guderley’s Solution

A spherical shock wave is generated, converging to the centre in a system with
spherical symmetry (ν = 3). The shock is initially generated at much larger
distances from the centre than those at which we are observing, e.g. by a
spherical piston. Converging into the centre, the energy becomes concentrated
at the shock, and the ‘memory’ of its initiation becomes lost. The flow achieves
some form of limiting process in which the structure of the wave repeats itself.
Since the initial conditions have been ‘lost’, the only external parameters are
those of the ambient gas into which the shock propagates, namely the density
ρ1 and the pressure p1 of the ambient gas. As the shock radius becomes very
small, the strength of the shock increases so that it may be treated as strong
and both the initial pressure p1 and enthalpy h1 may be neglected in the
calculation of the flow behind it. The only dimensional terms remaining in the
problem are the background density ρ1 together with the independent variables
r and t. Referring to Section 14.3, the dimensional powers of the parameter
a are k = −3 and s = 0; b does not exist and m and n therefore undefined.
Since the problem is self-similar, it must be of type 2 where we cannot a priori
determine the value of the scaling power δ, but must calculate it from the
condition that the solution is well defined.

The shock collapses towards the centre becoming progressively stronger
for times t < 0, with the flow behind the shock moving inwards. At the
instant of collapse at time t = 0, the shock converges on the centre. Following
convergence, a reflected shock moves outwards through already shocked gas,
which is still moving inwards, bringing it nearly to rest for t > 0. The final
state of the gas is calculated from the conditions following the reflected shock
(Guderley, 1942).
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During the phase of convergence (t < 0) we seek to find the state of the flow
at and behind the shock front as functions of the self-similar variable:

ξ =
Ar

(−t)δ
(14.62)

where δ is an unknown constant and A a dimensional constant whose value
(if required) may be found from knowledge of an initial shock front location
(radius R at time −t). The flow is found as before from the strong shock jump
conditions and the adiabatic gas flow equations (14.31). The shock trajectory
is described by the self-similar form with a constant value of ξ, say ξ = 1. The
shock velocity is

Ṙ = −δ
R

(−t)
the − sign reflecting the inward motion of the shock. Since the velocity of the
flow into the shock in the shock frame is equal to the velocity of the shock into
the stationary gas in front of it, the parameters behind the shock are

V2 =
2

(γ + 1)
δ D2 =

(γ + 1)
(γ − 1)

Z2 =
2γ(γ − 1)
(γ + 1)2

δ2 ξ = 1 (14.63)

as in the previous case, equation (14.39). After passing through the shock at
ξ = 1, the fluid flow is continuous outwards to infinity, i.e. for increasing ξ as
ξ → ∞ where V → 0 and Z → 0, no additional discontinuities (such as shocks)
occurring. It is easily seen that the flow behind the shock wave is subsonic,
since Z − (V − δ)2 > 0. However, at the point of convergence (0, 0) the flow is
supersonic. The flow must therefore pass through the sonic line at a singularity
[P3]6 as described below. This motion is described by equations (14.33), which
are subject to the requirement of continuity throughout the solution, which in
turn determines the value of the power δ.

Following the same arguments as those leading to equation (14.45), it may
be shown that the adiabatic integral may be generalised for a general power δ
as follows:

p

ργ
=

1

ρ
(γ−1)
1

P

Dγ

r2

t2
=

1

ρ
(γ−1)
1

[
ρ1r

ν

M

]2(1−δ)/νδ [ r

tδ

]2/δ

=
B

ρ
[(γ−1)−2(1−δ)/νδ]
1

M−2(1−δ)/νδ ξ−2 = const

where B is an unknown constant with appropriate dimensions. Substituting
for the dimensionless mass from equation (14.42) we obtain

Z = C D[(γ−1)−2(1−δ)/(δν)] (δ − V )−2(1−δ)/(δν) ξ−2/δ (14.64)

6We use Guderley’s numbering of the singularities for this problem.
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The constant C is evaluated at the downstream state of the appropriate shock.
It is easily shown that if δ = 2/(ν + 2), appropriate to the blast wave, equa-
tion (14.45) is obtained.

As we have seen, the general equations of one-dimensional fluid motion may
be cast into the dimensionless forms (14.32). Solving the three simultaneous
equations, these equations may be reduced to the set (14.33). Using Cramer’s
rule the determinantal forms of the solutions are written as

dZ

d ln ξ
=

Δ1

Δ
dV

d ln ξ
=

Δ2

Δ
d lnD

d ln ξ
=

Δ3

Δ
(14.65)

where the determinants Δ1, Δ2 and Δ3 are formed from the coefficients of the
terms in equations (14.32). The determinant is

Δ =

∣∣∣∣∣∣∣∣
−1

γ
(δ − V ) −Z

γ
0 −1 (δ − V )
1
Z

0 −(γ − 1)

∣∣∣∣∣∣∣∣
= 1 − (V − δ)2

Z
(14.66)

Suppose that Δ = 0; that is, on the parabola (V − δ)2 = Z corresponding to
sonic flow relative to the surface ξ = const, the process of moving across this
line is the sonic transition from subsonic flow (behind the shock) to supersonic
(towards infinity). If Z, V and D are continuous crossing this line, as we require,
it follows that Δ1 = Δ2 = Δ3 = 0 where the solution crosses this line. Referring
back to equations (14.63), we see that behind the shock V2 = [2/(γ + 1)] δ and
Z2 = [2γ(γ − 1)/(γ + 1)2] δ2, and at infinity V (∞) = Z(∞) = 0. The solution
must therefore intersect the parabola at some point, the flow initially being sub-
sonic and becoming supersonic. The condition of singularity, namely that the
derivatives are finite, determines the allowed value of δ, which is found by trial
and error integrating equation (14.33a) up to the parabola from the shock.
Integration of equations (14.33) is straightforward using standard numerical
packages. An initial starting value can found from approximations using expres-
sions from a modified set of equations derived from (14.33).7 At the singular
point, the numerator and denominator of equation (14.33b) must both be zero

(V − δ)2 − Z = 0 and Z [2 (δ − 1)/γ + ν V ] − V (V − 1) (δ − V ) = 0

which has three roots

V ± =
γνδ − γ + 2(1 − δ) ±

√
[γνδ − γ + 2(1 − δ)]2 + 8γ(ν − 1)δ(δ − 1)

2γ(ν − 1)
V 0 = δ (14.67)

7To illustrate this process it is convenient to use (14.33b).
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It can be shown that V − and V0 are not possible singularities, so that (V +, Z+)
is the required point where Z+ = (V + − δ)2. Unfortunately, without knowing
δ we cannot determine V + and vice versa. If the surd in equation (14.67) is
zero, the resulting values of V and Z lie on the parabola but not on the integral
curve from the shock. However, if this is used to give an initial estimate of δ it
is remarkably accurate (Stanyukovich, 1960, p.522). Finally direct integration
up to the point where either Δ1 or Δ2 changes sign is used iteratively to find
the value of δ.

Convergence (t = 0) occurs at the singular point [P4] where V = Z = 0,
ξ = ∞. Although V = 0, the inward flow is not brought to rest, but continues
inwards until a reflected shock wave generates a slow outward motion which
decreases with time and eventually comes to rest. The similarity variable now
changes ξ → Ar/tδ. The variables Z and D are unchanged by passage through
the convergence point at t = 0. However, as a consequence of the redefinition of
ξ, the continuing inward flow corresponds to values V < 0. Equations (14.32)
are still valid.

The reflected shock cannot be considered strong, so that the full Rank-
ine–Hugoniot equations must be used. Expressed in terms of the variables V ,
Z and D these are

Du (Vu − δ) = Dd (Vd − δ)

(Vu − δ) +
Zu

γ (Vu − δ)
= (Vd − δ) +

Zd

γ (Vd − δ)

(Vu − δ)2 +
2Zu

(γ − 1)
= (Vd − δ)2 +

2Zd

(γ − 1)

(14.68)

where subscript u refers to the upstream flow before passage through the shock
(inwards) flow and d to the downstream after.

The final flow condition is determined by the requirement that ξ → 0 reg-
ularly, which requires a transition through a further singularity [P6] where
V = κ/ν, Z → ∞. Thus the flow through the reflected shock must be matched
to the solution from [P6]. As described by Guderley this is accomplished by
progressively integrating the upstream solution to calculate the upstream val-
ues of V and Z and hence the downstream values, at each step progressing the
downstream solution to the new value of Z until the values of V match. The
solution for γ = 1.4 is plotted in Figure 14.7.

An important quantity is the compression ratio at convergence (ρ4/ρ1) and
behind the reflected shock (ρR/ρ1), whose values are given in Table 14.1.
The most characteristic observable feature is the rapid increase of the
total compression behind the reflected shock as the value of γ for the gas
is reduced.
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Figure 14.7: Plot of the (V , Z) history of the flow behind a spherical shock wave in a gas
with γ = 1.4.

Table 14.1: Compression ratio for a collapsing shock.

γ δ ρ4/ρ1 ρR/ρ1 γ δ ρ4/ρ1 ρR/ρ1

5/3 0.688 38 9.55 30.92 1.6 0.694 19 11.06 41.11
1.5 0.704 43 14.39 69.87 7/5 0.717 18 20.07 143.06
1.3 0.733 78 31.27 402.37 9/7 0.736 65 33.76 439.65

The differential equation for an incoming characteristic C−, namely
dr/dt = v − c, is transformed in dimensionless units to

dr

dt
= V

r

t
+
√

Z
r

t
=

ξṘ

δ

(
V +

√
Z

)
where R is the radius of the shock wave. Since the sound speed c is always
positive and the time negative during convergence, it is necessary to set
c = −r/t

√
Z. If we consider the characteristics which pass through the line

ξ3 in the (r, t) plane corresponding to the singularity [P3], then√
Z(ξ3) − δ + V (ξ3) = 0

Hence, substituting, we find the slope of the C− characteristics to be

dr

dt
=

ξ3Ṙ

δ

[
V (ξ3) +

√
Z(ξ3)

]
= ξ3Ṙ
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which is the slope of the line ξ3 itself. Therefore either the line ξ3 is a char-
acteristic C− or it is an envelope of them. In fact it must be a characteristic,
and it is therefore the C− characteristic converging self-similarly to the centre
corresponding to the singular point ξ3. Thus the characteristic C−(ξ3) bounds
the region of influence of the incoming flow.

14.6.1 Compression of a Shell and Collapse
of Fluid into a Void

The collapse of fluid into a void (bubble) or equivalently the driven collapse of
a shell may also be tackled by the method outlined above for the solution of the
convergent shock wave. In contrast to the collapse of a sphere, Section 14.5, the
solution is started at the point (V = 1, Z = 0), corresponding to a cold shell
with an incoming velocity. The solution involves a problem of type 2 in which
the exponent δ is determined by the nature of the solution and the singularity in
the governing differential equation at the crossing of the sonic line. However,
in contrast to the converging shock wave, the value of δ is not unique – at
least for values of γ � 8.47. This leads to a set of solutions for different Mach
numbers at convergence as for the sphere treated in Section 14.5. Only one
of these solutions is analytic in that the gradient through the singularity (a
node) is continuous. In the case of γ = 5/3 this occurs at a value of δ = 0.9396.
In the case of a collapsing bubble in water, treated by Hunter (1960), where
γ ≈ 7, the range of δ is very small and the solution approximately unique.
However, for a gas shell with γ = 5/3, the range is quite large. The solution
is consequently more complex than the examples treated earlier, and will not
be pursued further. For more details, the reader is referred to the paper by
Brushlinskii and Kazhdan (1963), where the full solution is discussed.

The collapse of shells is more easily treated by direct simulation, which
allows greater flexibility in the conditions imposed externally on the collapse.
This may lead to non-adiabatic collapse and the formation of shock waves if
the external conditions are badly applied. To this end we may consider two
distinct modes of collapse:

1. Initially imposed velocity Consider a shell of uniform density with
inner and outer radii 1 and 1.1 units respectively, imploding with a uni-
form velocity 1 unit. The shell is assumed to be very cold and the pressure
consequently small. The fluid particles therefore retain their initial veloc-
ity and the width of the shell remains constant. The density of a fluid
particle, whose initial radius is R, therefore increases as R2/r2 (Fig-
ure 14.8). This compression continues until the inner surface reaches the
centre, when an outgoing shock is formed. Near the centre the r−2 density
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Figure 14.8: Convergence of a simple cold shell of uniform density 1 unit moving inwards
with velocity 1 unit. The spatial distribution of density is shown at different times before
and after convergence which occurs at approximately 1 unit of time. The density follows a
1/r2 dependence during the collapse.

scaling fails as the initially small temperature is adiabatically increased
to give rise to a variation in velocity. After collapse the outgoing shock
precedes a rapid expansion. It can be seen that the compression is nearly
adiabatic except very close to the centre, where a shock is formed. In
this region close to the centre, the self-similar solution described above
becomes applicable. However, the complexity of the latter solution out-
weighs any value it may have for all practical purposes.

2. Pressure driven As we have seen (Section 14.2.2.2) it is possible to
adiabatically compress a shell from rest by the application of a piston at
the outside surface. However, the initial density profile and the temporal
development of the pressure must be carefully matched if shocks are to be
avoided. In practice, shells are less sensitive to pressure pulse mismatch
than solid spheres and therefore easier to drive to high compression. Once
the transit of the initial characteristics is complete, the density profile
settles to a form similar to that of the self-similar motion, Figure 14.2.

In any realistic collapse, both these effects must occur together. The shell
must be initially driven to attain the inward velocity. Similarly if the shell is
driven, the effects of radial convergence and inward momentum will increase



414 Introductory Fluid Mechanics

the compression near the centre. A judicious choice of the temporal profile of
the applied pressure can clearly improve the compression achievable.

Case study 14.I The Fluid Dynamics of Inertial Confinement
Fusion

14.I.i Basic principles

In this section we briefly discuss the underlying physics of inertial confinement fusion
(ICF). This is essentially a problem of applied hydrodynamics and involves many
topics covered earlier. Plasma physics also plays a role, but is generally subordinate
to the hydrodynamics at the introductory level outlined here.

Inertial confinement fusion relies on the ability of a pellet of fusion material (usually
a 50:50 mixture of deuterium and tritium, DT) to undergo fusion before disassembling
by expansion. This requires the fluid to be at high temperature � 10 keV ≈ 107 K.
Making use of equation (14.8) we may estimate the disassembly time of a sphere of
uniformly heated plasma of sound speed c and radius R from the time taken for the
density to decrease by half as

τ ≈ R/3 c (14.69)

since the fluid is a plasma with equal numbers of ions and electrons under these
conditions (E/M = 3c2).

The rate at which fusion reactions occur in the plasma is determined by the aver-
age of the rate product 〈σv〉, where σ is the cross-section for fusion and v the random
thermal velocity, over the velocity distributions of the deuterium and tritium ions. It
is found that in the temperature range 20 − 50 keV, the ratio of 〈σv〉 and c is approx-
imately constant and consequently the fractional burn-up of the fusion constituents is

f ≈ ρR/(6 + ρR) (14.70)

taking into account the depletion during the burn, where the density ρ is measured
in g/cm3 and the radius R in cm. In practice, depletion limits the fractional burn to
about 35%. To achieve these values requires a density/radius product ρR > 0.3 g/cm2.
The burn time can be increased by restricting the expansion of the fuel by enclosing
it in a heavy shell, known as a tamp. However, this requires considerable input energy
and is consequently inefficient, although other design constraints may introduce a
measure of tamping.

The thermonuclear gain is defined as

g =
Fusion energy yield

Initial thermal energy
(14.71)

A simple uniformly heated sphere has a gain of only about 50, which is insufficient to
overcome the losses inherent in the pumping power source and generator. Typically
values ∼ 104 are required for an effective power plant.

The parameter ρR is a measure of the collision probability for particles within the
plasma body. If a region with ρR > 0.3 is generated at the centre of the pellet, escaping
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α-particles and photons suffer collisions and transfer energy to heat a colder surround
of DT mixture to fusion temperatures and thereby induce a burn, which propagates
through the pellet, namely hot spot ignition. In this case only the central region need
be heated to fusion temperatures, the outer parts remaining relatively cold. The gain
may thus be greatly increased.

The energy released by burning 1 g of DT fuel is 3 × 105 J equivalent to about 75Mt
of TNT. The largest amount of energy which can be expected to be handled routinely
and safely is about 100 MJ (25 kg of TNT). This corresponds to a pellet mass of 0.3 mg
of fuel. Since we have argued that we require a ρR product of not less than 0.3 g/cm2

and M ≈ ρR3 = (ρR)3/ρ2, we see that the density of the pellet must be ≈ 102 g/cm3

or a compression over liquid DT of about 5 × 102. Under these conditions the pressure
in the hot spot is about 1012 atm and even in the cooler outer regions about 109 atm.
These values are clearly far in excess of those achievable mechanically.

14.I.i.a Hydrodynamic compression

We have seen that it is possible to achieve high compression during the collapse of
spheres and shells. The compression achievable in a collapsing shock is only about
30, Table 14.1. On the other hand, if the collapse is achieved adiabatically very large
compression may be obtained. This is a consequence of the fact that the entropy
generated in a shock leads to a temperature rather than a density increase, by which
the pressure is raised. The generation of shocks in the collapsing pellet therefore leads
to a reduction in compression. A purely adiabatic collapse leads to a cold core, which
is ideal for the outer cold region into which the burn may propagate. However, it is
essential to design a central hot spot, e.g. by generating a shock propagating into
this region by a suitable design of the drive pulse. Although the original proposal for
inertial fusion was based on spheres, it was quickly realised that multi-layered shells
were a more effective approach, and have been used subsequently. It can be shown
that collapsing spheres are much more sensitive to deviations from the ideal pressure
pulse than shells (a consequence of the fact that significant compression can occur
during the coasting compression phase) and that, provided it is smooth, the profile
of the applied pulse is not too critical. In addition the energy required to compress a
sphere is significantly greater than that needed for a shell. Current designs for inertial
fusion targets are all based on multiply layered shells.

A typical fusion pellet consists of a thin inner layer of frozen DT on the inner shell.
The outer layers of the shells are in two parts. An inner layer of relatively heavy
material acts as a shield preventing X-rays or fast electrons penetrating the fuel and
raising its temperature to prevent high compression being achieved. An outer layer of
lighter material is used to generate the pressure. The outer layers also act as a tamp,
helping to increase the disassembly time of DT fuel.

The pellet and drive pulse must be carefully engineered to overcome a number of
problems, essentially related to uniformity and stability. The shells and the drive beams
must be uniform to a few per cent to allow a uniform collapse and high compression.
Hydrodynamic instabilities, principally the Rayleigh–Taylor instability (Section 4.3.2)
at interfaces undergoing acceleration, destroy the uniformity of the collapse, and there-
fore present a serious problem and must be limited or avoided.
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In case study 13.I.i we showed that large pressures can be generated by the ablation
of material away from a surface. This is essentially the same as the rocket effect
where the momentum transfer from the escaping burnt fuel generates the pressure.
In principle any source of heat rapidly deposited at the surface generates such a
pressure, which may be used to compress the fuel, provided the rate is sufficiently
large. However, the pressure generated by these methods is not sufficiently large than
needed to balance the pressure generated in the burning fuel. The required pressure
multiplication is the result of two factors, namely the convergence of the collapsing
shell and the rapid release of momentum accumulated over a long drive period. Several
methods have been proposed to provide the drive source:

1. Direct drive laser heating In this case the laser directly irradiates the
surface of the outer layer of the shell. From equation (13.25) we see that higher
pressure is obtained with higher critical density, i.e. shorter wavelength lasers. As
a result the recent design of direct drive fusion is based on laser pulses of 0.35 μm
wavelength. Due to the fact that the drive is applied at the critical density, which
is significantly less than solid, the interface is susceptible to the Rayleigh–Taylor
instability. Direct drive also suffers from a number of problems associated with
plasma instabilities and care must be taken with the magnitude of the pulse
intensity. These effects are also mitigated by the use of short-wavelength lasers.

2. Indirect drive laser heating As we noted above, higher pressures are
achieved with shorter wavelength radiation. This raises the possibility of using
soft X-rays for the drive, where the absorption is due to photo-ionisation and
the critical density much greater than solid. The Rayleigh–Taylor instability is
thereby avoided. By placing the pellet in a hot enclosure, namely a hohlraum,
filled with thermal black body radiation, the uniformity of illumination may (in
principle) be improved. A major disadvantage of this approach is the inefficiency
resulting from the energy required to generate the X-rays.

3. Light and heavy ion heating An alternative approach which is less well
developed is to use either light or heavy ions, or electrons generated externally,
but by different means; however, the necessary generators of suitable ion beams
are not currently available.



Problems

Problem 1: Show that in two dimensions the Lagrangian equations for the Jacobian
and the derivative may be simplified when r = (x, y) by introducing the normal
vector s = (y, −x) to give

J =
∂r
∂λ

· ∂s
∂μ

∇f =
1
J

{
∂s
∂μ

· ∂f

∂λ
− ∂s

∂λ
· ∂f

∂μ

}

where (λ, μ) are the invariant Lagrangian parameters. Calculate the gradient and
divergence in this geometry.

Extend this result to consider an axisymmetric system r = (�, z) and construct
the divergence using the results for two dimensions.

Problem 2: A simple device is used to measure the velocity of flow, in particular
the air speed in aircraft. The tube has a blunt end such that the flow is brought to
rest at the tip (stagnation point) (Figure P.1). In the free stream, which is
re-established down the outside of the tube, the flow velocity returns to the incoming
(free stream) flow speed U . Measurement of the pressure between these points yields
the flow speed.

p1

p2

v1 = 0

v2 = U

Figure P.1: Sketch of the arrangement of a simple Pitot tube to determine the velocity of
the flow U , by measuring the pressure difference p1 − p2.

Assuming the flow may be treated as incompressible, find the relationship between
the flow speed and the pressure difference
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Problem 3: A venturi is a constriction in a pipe (Figure P.2). Assuming steady
incompressible flow, uniform across the duct, derive an expression for the pressure
difference between the flow in the pipe and through the constriction. Hence show
how the device may be used to measure flow speed.

S2

S1

p1

p2

v2v1

Figure P.2: Sketch of a simple venturi to show the constriction in which the flow velocity
is measured.

Problem 4: Consider a large reservoir at a height h connected through a pipe to an
outlet with a tap, which can be either on or off. The pressure at the reservoir p1 is
atmospheric, pa. From the equation of continuity, the flow velocity at the reservoir is
approximately zero v1 ≈ 0 as the cross-section of the surface is much larger than
that of the tap. Hence Bernoulli’s equation takes the form

1
2�

��
0

v2
1 +

�
�
��

pa

ρ

p1

ρ
+ ρgh =

1
2
v2
2 +

p2

ρ

Show that if the tap is open and the exit pressure is atmospheric, the exit flow
velocity is equal to the free fall value. Alternatively, if the tap is closed, and the exit
velocity is zero, show that the pressure across the tap is equal to the hydrostatic
head.

Problem 5: Two identical jets of incompressible fluid meet at an angle 2θ.
Assuming the flow is ideal and laminar during the interaction, show that the
resulting flow consists of two jets, one forward going and one backward. Calculate
the mass flow in each.

Problem 6: A Pelton water turbine consists of a series of hemispherical buckets
arranged evenly around the rim of a wheel. A jet of water is injected from a nozzle
into the centre of the buckets so as to rotate the wheel. The water is ‘reflected’ in the
bucket so as to form a jet lying outside the incoming flow. The buckets are spaced so
that one is always within the jet. The water, after striking the bucket and being
reflected, leaves in a narrow range of angles, at an average value θ, in the opposite
direction to the incoming flow. The incoming flow is tangential to the rim of the
wheel. The change of momentum due to the reversal of the flow direction contributes
a net force on the wheel rim.
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Noting that, in the frame of reference of the stationary bucket, the water flow is
quasi-steady, then Bernoulli’s theorem may be applied to relate the incoming and
outgoing flows. Assuming no viscous loss in the bucket, calculate the force on the
bucket in terms of the density and cross-section of the jet, the incoming and outgoing
speeds and the angle of deflection θ′ in the frame of the buckets. Transform back into
the laboratory frame and calculate the torque on the wheel and the power developed.

Correct the power for the time each bucket remains in the flow. Hence calculate
the maximum efficiency of the device.

Problem 7: The combination of a two-dimensional uniform flow with velocity U
and the flow from a combination of a line source and a line sink of strength m
separated by a distance d (Figure 2.1) yields the cylindrical form of the Rankine
oval. Show that the streamfunction at a point P may be written as

ψ =
m

2π
(θ− − θ+) + U r sin θ (P.1)

where r and θ are the polar co-ordinates of P relative to the mid-point between the
sources, and (r−, θ−) and (r+, θ+) the position of P relative to the sink and the
source.

Hence find the form of the oval.
Show that as the separation of the source and sink becomes small the flow around

a circular cylinder is obtained.

Problem 8: Define the elliptic co-ordinate system

x = c cosh ξ cos η y = c sinh ξ sin η (P.2)

so that in complex form

z = x + ıy = c cosh(ξ + ıη) = c cosh ζ
{≈ 1

2 exp(ζ) as ζ → ∞}
where ζ = ξ + ıη is the complex form of the elliptic co-ordinates (ξ, η). Thus there is
a conformal mapping z � ζ.

Show that the lines ξ = const are a family of ellipses

x2

c2 cosh2 ξ
+

y2

c2 sinh2 ξ
= 1 (P.3)

with semi-major axis a = c cosh ξ and semi-minor axis b = c sinh ξ.
The lines η = const are a family of hyperbolas

x2

c2 cosh2 η
− y2

c2 sinh2 η
= 1 (P.4)

Show that:

• As ξ → 0 the ellipse collapses to a plate along the x axis of length 2c.

• As ξ → ∞, the plots of constant values of the co-ordinates (ξ, η) become
circles of radius 1

2 c eξ and straight lines of gradient tan η through the origin.
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Problem 9: Using the results of the above problem #8, show that the velocity
potential

w = C cosh(ζ − ζ0) (P.5)

represents the flow about the ellipse described by ξ0 with incoming velocity
(C/c) exp(−ξ0) at an angle −η0 with respect to the major axis, where ζ0 = ξ0 + ıη0.

Verify that the stagnation points lie on the surface at the points (ξ0, η0) and
(ξ0, η0 + π).

Show that the maximum velocity on the surface, which must lie at the minor axis,
η = π/2 or 3π/2, is given by

vmax =
4 a

a + b
U (P.6)

Problem 10: Using elliptic co-ordinates show that the flow described by the
complex potential

w = ı k ζ/2π (P.7)

is a vortex centred at the origin about one of the family of ellipses ξ = const width
circulation −k.

Problem 11: An ellipse with semi-major axis a and semi-minor axis b is subjected
to a stream of velocity U at an angle of attack α with reference to the major axis.
Using results obtained from problems #8, #9 and #10 show that the additional
circulation required to achieve a stagnation point on the major axis is −2π U sin α.

Problem 12: Using the velocity potential, calculate the flow in the neighbourhood
of a stagnation point at the surface of a blunt body in irrotational incompressible
flow. Note that the incoming flow is normal to the surface, and the resultant flow is
symmetric about the streamline to the stagnation point.

Problem 13: Calculate the second derivative of the velocity potential at the
stagnation point of the flow about a circular cylinder with no rotation. Hence, using
the results from problem #12 deduce the coefficient in the flow near a stagnation
point in two dimensions in terms of the radius of curvature at the stagnation point.

Obtain the behaviour near the stagnation point of an axisymmetric flow in a
similar way.

Problem 14: Calculate the shear strain rate tensor for a cylindrical vortex in fluid
with viscosity μ azimuthally rotating with angular velocity ω(r). Hence calculate the
torque exerted by neighbouring surfaces on each other.

Problem 15: Two coaxial cylinders of radius R1 and R2 rotate independently with
angular velocities Ω1 and Ω2 respectively. The gap between the cylinders is filled with
a fluid of viscosity μ. Using the results from problem #14 calculate the torque per
unit length exerted by one cylinder on the other, assuming laminar flow in the fluid.

In the limit as Ω2 → 0 and R2 → ∞ show that the flow is identical to that of the
external flow in a Rankine vortex. (This result is the basis for the rotating cylinder
viscometer.)
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Problem 16: Calculate the total kinetic energy of a Rankine vortex with core
radius R.

Noting that the central core rotates as a solid cylinder, replace it with a ‘spindle’
which supplies a torque sufficient to maintain the motion. Hence calculate the power
required to support the motion against the energy loss by viscosity.

Noting that this energy must be that damped by the vortex, estimate the rate of
decay of the vortex before it starts to dissipate and hence the growth of the core.

Problem 17: Consider a simple two-dimensional vortex of circulation Γ, centred at
the origin, with irrotational flow elsewhere. Noting that the vorticity only has a
single component, simplify equation (3.14) to obtain the familiar equation of
diffusion. Using the standard solution for a line source, calculate the radial
distribution of vorticity at a later time, t.

Problem 18: A viscous incompressible fluid flows slowly along a capillary tube of
radius a due to a pressure drop Δp along the length � of the tube. The flow rapidly
achieves a steady uniform state over a distance of a few tube diameters. Noting that
the flow is axisymmetric and that, since it is uniform, the axial velocity, vz, is
constant along the tube, calculate the total mass flow through the tube.

Problem 19: Consider problem #17 of vorticity diffusion as one of dimensional
analysis. Noting that the problem is linear in the circulation Γ, show that it leads to
a self-similar form with self-similar variable η = R2/ν t, and hence to the solution
found in problem #17.

Problem 20: The drag on a ship’s hull W is due to two factors: wave drag due to
the displacement and frictional drag on the hull. The physical quantities involved are
the length of the ship L, the volume of water displaced D, the speed of the ship U ,
the viscosity μ and density ρ of water, and the acceleration due to gravity g. Show
that the complete set of dimensionless products is W/ρU2 L2, L/ 3

√
D, ρ �U/μ and

U/
√

� g. Comment on the application of these results to ship tank testing to measure
the drag of a ship.

Problem 21: Water is confined in a tank of rectangular cross-section with sides X
and Y to a depth h. Write down the boundary conditions at the walls of the tank.
Identify the normal modes of oscillation of the water in the tank.

The surface of the water is disturbed by a small-amplitude perturbation. Show
that the disturbance can be expressed in terms of the normal modes of surface waves
in the tank.

Problem 22: Derive the modified condition for stability against the
Rayleigh–Taylor instability for a heavy fluid of density ρ+ above a lighter fluid ρ−
resulting from the surface tension σ at the interface.

A square mesh is fitted across the open end of a container filled with water.
Calculate the maximum size of mesh that will prevent the inverted jar of water from
emptying due to the Rayleigh–Taylor instability at the air/water surface.
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Problem 23: An impulsive acceleration is applied to a light/heavy interface, which
is therefore unstable for a very brief time. Show that a constant velocity
perturbation is imposed on the surface, which grows linearly with time
(Richtmyer–Meshkov instability)

Problem 24: The general solution of the Kelvin–Helmholtz problem,
equation (4.37), for the complex frequency contains two terms ω = ω0 ± ı ω1.
Consider the development of the perturbation in the limit as both the velocity shear
(U+ − U−) → 0 and the density difference (ρ+ − ρ−) → 0, and therefore ω1 → 0 and
ω → ω0 is approached. Show that this leads to a steady propagation of the original
perturbation and a purely growing wave.

Problem 25: The velocity on the tube axis given by the Blasius correlation for pipe
flow may be written in terms of the scaling parameter C for power law n,
equation (5.36). The Fanning friction factor f , wall shear stress and friction velocity
may each be written in terms of dimensionless variables F , T and V, which
themselves depend on C for different values of the parameter n:

u = C(n) {v∗ a/ν}1/n
v∗ f = F(n) (u a/ν)−2/(n+1)

τ0 = T (n) {u a/ν}−2/(n+1)
ρ u2

v∗ = V(n) {u a/ν}−1/(n+1)
u

(P.8)

Show that these parameters are given by

1
2
F(n) = V(n)2 = T (n) = C(n)−2 n/(n+1) (P.9)

Problem 26: An estimate of the friction coefficient over an extended range of
Reynolds numbers may be made by using the power law formula appropriate to its
value with highest accuracy. An estimate of the best value of the power n for a given
range is obtained by equating the wall stress at the upper and lower limits of
neighbouring values to give a piecewise continuous function for the wall shear
stress. Show that the bounding value of the Reynolds number is
given by

R(n, (n + 1)) = C(n)−n(n+2) C(n + 1)(n+1)2 (P.10)

where R(n, (n + 1)) = au/ν is the bounding Reynolds number between powers n
and (n + 1).

Problem 27: Consider the boundary layer in the neighbourhood of a stagnation
point in a two-dimensional flow, where the free stream velocity along the surface
varies linearly with the distance along the surface x. Comparing the magnitudes of
the various terms in the two-dimensional boundary layer equations (6.7) and (6.8),
show that the boundary layer thickness is constant and scales approximately as√

ν/c where c is the constant of proportionality of the free stream velocity along the
surface U = c x.
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Problem 28: Using the result of problem #27 deduce that the streamfunction in a
two-dimensional boundary layer can be written as

ψ =
√

ν c x f(η) where η =
√

c/ν y (P.11)

Substituting into the x component of the boundary layer equations, derive a
differential equation for f(η), and deduce the necessary boundary conditions.

Problem 29: Use the approximate Karman–Pohlhausen boundary layer method
(Section 6.4.1) to derive values for the displacement and momentum thicknesses of
the boundary layer near a stagnation point.

Problem 30: Derive the expressions for the flow in a centred rarefaction obtained in
Section 9.3.1 using self-similar methods.

Problem 31: Derive the Prandtl–Meyer solution, obtained in Section 9.4.2 for the
supersonic flow around a corner using a self-similar method.

Problem 32: Using the Rankine–Hugoniot equations and the equation of state for a
polytropic gas, show that the jump relations are given by the set of equations (10.3).

Problem 33: The entropy per unit mass of a perfect gas is given by

s = cV ln (p/ργ) + const (P.12)

Using equation (10.4a) for the density ratio across the shock, show that the entropy
jump across a discontinuity is positive in compression and negative in expansion.
Conclude that, quite generally, only compressive shocks occur in polytropic gases.

Problem 34: Using the geometry of the shock polar curve (Figure 10.14), show that
the total velocity increment for a small deflection angle is given by equation (10.75).

Problem 35: When the Mach number of the incoming flow is large show that the
shock polar equation (10.82) reduces to that of a circle, centred on (γ/(γ1 + 1) v1, 0)
with radius 1/(γ + 1) v1. Hence show that the limit angle is given by arcsin(1/γ).
Show also that the downstream flow is sonic.

Problem 36: Show that the Zhukovskii transform of the circle ζ = R exp(ı θ)
centred at the origin, but not passing through the singularities, generates the ellipse

x2

(R2 + �2)2
+

y2

(R2 − �2)2
=

1
R2

(P.13)

Problem 37: Using the results of problems #9 and #10, derive the circulation
required to cause the body streamline to leave the surface at the major axis. Hence
derive the lift coefficient for an elliptic wing section.
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Problem 38: Using the results of problem #36 and Section 11.6.2, calculate the
circulation necessary to give a stagnation point at the major axis. Confirm that this
value is identical to that obtained in problem #37. Hence show that lift coefficient is

cL ≈ 2π α (1 + b/a) (P.14)

Show that if b = 0 the lift reduces to that found from a flat plate, equation
(11.25), and if b = a that from a circular cylinder, equation (11.38).

Problem 39: Show that Zhukovskii transformation of the circle radius R centred on
the imaginary axis at ı d and passing through both singularities generates the arc of
a circular lamina centred on the imaginary axis at (�2 − d2)/d and radius
(�2 + d2)/d, subtending an angle 2χ = arccot(d/�). Deduce the camber of the lamina
treated as an aerofoil.

Problem 40: Using the results from Section 11.6.2 show that the axis of zero lift of
a Zhukovskii lamina is at an angle β = π/2 − χ to the chord line between the leading
and trailing edges.

A uniform wind of velocity U is introduced at angle of attack α to the chord line
of the wing. Deduce the necessary circulation about the wing to ensure that the flow
at trailing edge is finite (Zhukovskii condition). Hence calculate the lift coefficient.

Problem 41: The arrangement of the sails on a ‘fore-and-aft’ rigged sailing craft, a
sloop, is shown in Figure P.3. The wind blowing from the side billows the sails out
into an approximately aerofoil section with chord varying up the sail. The keel, also
acting as an aerofoil, prevents sideways motion of the boat. Considering the forces on
the boat due to the wind and the keel, show how the craft is able to sail into the
wind. Explain why in principle the maximum drive is when the wind is normal to
the axis of the boat.

Wind

Keel

Sails

Figure P.3: Sketch of the arrangement of sails on a ‘fore-and-aft’ rigged sailing craft.

Problem 42: Using expressions (9.50) and (10.76) for the pressure drop across a
rarefaction and a shock in which the deflection is small, show that the lift from a flat
plate in hypersonic flow is given by

cL ≈ 4α/M1
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Problem 43: Generalising the previous problem #42, consider an aerofoil section in
supersonic flow made up of a series of straight line segments, each of length δsi,
inclined at an angle αi to the direction of the incoming flow. The deflection at each
junction gives rise to a rarefaction or shock depending on the sign of the angle
[αi − α(i−1)]. Assuming that the angles αi are small and noting that the pressure
changes across both shocks and rarefactions in the perturbation limit are given by
the same simple expression common to both equations (9.50) and (10.76), derive the
pressure coefficient on each surface. By summing the pressure differences over the
upper and lower surfaces obtain Ackeret’s formulae for the lift and drag coefficients,
equations (12.27) and (12.28), when the segments become infinitesimally small.

Problem 44: The hypersonic wing may be treated by an alternative approach,
which leads to a simpler calculation. The velocity behind the shock parallel to the
incoming flow is almost unchanged, and the transverse velocity just matches that
needed to provide the flow along the surface. Transform to the frame moving with
the incoming flow, where the planar flow normal to the wing surface has velocity v1 α
away from and towards the surface. Treating the surface therefore as a piston driving
a normal shock downwards (10.2) and a centred rarefaction (9.3) upwards into the
gas, with the flow velocity at the piston surface v2 = v1 α, derive equation (12.51).

Problem 45: Using Bernoulli’s equation for a compressible gas, derive the pressure
coefficient/Mach number relation, equation (12.29).

Problem 46: The critical Mach numbers for the flow around a sphere and a
cylinder are respectively
For a cylinder Mcrit = 0.418 135.
For a sphere Mcrit = 0.5675.
Using equations (11.4) and (2.59), verify these values using the Prandtl–Glauert
correction.

Although the flows around the cylinder and sphere are qualitatively similar, there
is a clear difference in compressible flow. Account for this distinction.

Problem 47: Derive the Zel’dovich formula for the laminar flame speed S by
making the following approximations in the rest frame of the burn:

1. Neglect particle diffusion.
2. Due to the strongly increasing burn rate with temperature after ignition and

the subsequent rapid decrease due to fuel depletion, the burn has a short-lived
intense narrow distribution.

3. The burn zone may be divided into two parts.
4. In the first zone the reactants are pre-heated from the ambient temperature T1

to an intermediate ignition temperature Ti, no reaction taking place. In this
region heat conduction is balanced by convection of the fluid at the flame
speed.

5. In the second zone the reaction takes place with heat extracted by thermal
conduction. The zone extends in temperature from Ti to T2 when the reaction
is complete.

6. The detailed structure of the burn zone may be neglected.
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Problem 48: A mass of cold gas M initially of zero spatial width in a space of ν
dimensions expands into vacuum. Each fluid element (ζ) of the body of gas is heated
at a rate which depends on a power of time

e = a tn = AW (ζ) tn

where A is a dimensional constant, W (ζ) the (dimensionless) heat distribution
function and n ≥ 0.

Using dimensional analysis show that the motion is self-similar, and further
conclude that the motion is homogeneous.

Finally, using dimensional analysis find the forms of the density and pressure.

Problem 49: The self-similar collapse of a uniform sphere, Section 14.5, under the
action of an applied pressure in the limit of infinite convergence can be calculated in
a simple manner by considering the self-similar form derived from the Lagrangian
element R, the initial radius of a fluid element. The self-similar variable is defined by
the dimensionless quantity s = c0(−t)/R with the subsidiary quantities f = r/R and
ε = ρ0/ρ. Using the equation of continuity in the form ρr2 dr = ρ0R

2 dR and Euler’s
equation show that

ε =
ρ0

ρ
= f2

(
f − s

df

ds

)
=

1
2

α3 s3/2 (P.15)

and
d2f

ds2
= ε−(γ−1) s f2 dε−1

ds
(P.16)

Hence show that for γ = 5/3

f = 22/3 31/4 s1/2 ≈ 2.089 s1/2 and ε = 2 33/4 s3/2 ≈ 4.559 s3/2 (P.17)

Compare this result with the limit passing through the singularity in Section 14.5.
Show that the Mach number is 1/

√
3.

Problem 50: The self-regulating model (case study 13.I.i.b) for the one-dimensional
time-dependent laser heating of a solid target can be expressed in self-similar form.
Consider the case when the input intensity is constant. Using dimensional analysis,
identify the self-similar variable (13.27) for the problem. Hence, using the equations
of mass, momentum and energy conservation, derive a set of ordinary differential
equations to describe the flow in dimensionless form.
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Problem 1: In two dimensions the Jacobian is

J =

∣∣∣∣∣∣∣∣
∂x

∂λ

∂x

∂μ
∂y

∂λ

∂y

∂μ

∣∣∣∣∣∣∣∣
=

∂x

∂λ

∂y

∂μ
− ∂x

∂μ

∂y

∂λ
=

∂r

∂λ
· ∂s

∂μ
(S.1)

and the gradient and divergence

∂f

∂x
=

1
J

∣∣∣∣∣∣∣∣
∂f

∂λ

∂y

∂λ
∂f

∂μ

∂y

∂μ

∣∣∣∣∣∣∣∣
=

1
J

{
∂f

∂λ

∂y

∂μ
− ∂f

∂μ

∂y

∂λ

}
(S.2)

and

∂f

∂y
=

1
J

∣∣∣∣∣∣∣∣
∂x

∂λ

∂f

∂λ
∂x

∂μ

∂f

∂μ

∣∣∣∣∣∣∣∣
=

1
J

{
∂f

∂μ

∂x

∂λ
− ∂f

∂λ

∂x

∂μ

}
(S.3)

Collecting these terms together we obtain

∇f =
1
J

{
∂f

∂λ

∂s

∂μ
− ∂f

∂μ

∂s

∂λ

}
(S.4)

and

∇ · A =
1
J

{
∂Ax

∂λ

∂y

∂μ
+

∂Ax

∂μ

∂x

∂λ
− ∂Ay

∂μ

∂y

∂λ
− ∂Ay

∂λ

∂x

∂μ

}
=

1
J

{
∂A

∂λ
· ∂s

∂μ
− ∂A

∂μ
· ∂s

∂λ

}
(S.5)

In an axisymmetric system r = (�, z) we evaluate the divergence by replacing A by
�A and the normal vector s = (z, −�)

∇ · A =
1

� J

{
∂(�A)

∂λ
· ∂s

∂μ
− ∂(�A)

∂μ
· ∂s

∂λ

}
(S.6)
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Problem 2: Let the point ©1 be taken at the tip v1 = 0, and point ©2 in the free
stream v2 = U . Applying Bernoulli’s theorem to the streamline adjacent to the body,
and assuming incompressible flow,

1
2�

��
0

v2
1 +

p1

ρ
=

1
2�

��
U2

v2
2 +

p2

ρ

Hence

U =

√
2(p1 − p2)

ρ
(S.7)

Although useful, this equation is only an approximation as there are several factors
not taken into account, such as compressibility, finite size of the pressure sensor at
the tip and effect of viscosity. In consequence the device is normally calibrated
experimentally before use.

Problem 3: Let the cross-section of the pipe be S1 and that of the constriction S2.
Assuming incompressible flow, and that the flow velocity is constant across the pipe,
the equation of continuity in steady flow yields

ρ v1 S1 = ρ v2 S2

where v1 and v2 are the flow speeds in the pipe and the constriction respectively.
Measuring the pressures in the pipe p1 and in the constriction p2 gives

1
2
(v2

2 − v2
1) =

1
2

[(
S1

S2

)2

− 1

]
v2
1 =

(p1 − p2)
ρ

Hence

v1 =

√√√√ 2 (p1 − p2)

ρ
[
(S1/S2)

2 − 1
] (S.8)

which yields the flow speed if the pressure differential p2 − p1 is measured.

Problem 4: Bernoulli’s equation including gravity takes the form

1
2�

��
0

v2
1 +

�
�
��
(pa/ρ)

p1

ρ
+ ρgh =

1
2
v2
2 +

p2

ρ

If the tap is open the exit pressure is atmospheric, p2 = pa, and the exit flow velocity
v2 =

√
2gh, the free fall value.

If the tap is closed, the exit velocity is zero, v2 = 0, and p2 = pa + ρ g h, the
hydrostatic head.

Problem 5: Let the density of the fluid be ρ, and the velocity and cross-section of
each jet be v and A respectively. The total mass flow rate in each jet is m = ρAv.
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Since the pressure on the jets before and after the interaction is the constant
atmospheric pressure, the flow speed of the fluid is unchanged.
The conservation of momentum and symmetry normal to the mutual axis of the
flows ensures that after the interaction the motion is along the axis. The momentum
flow along the axis of flow is

2mv cos θ = mf vf − mb vb (S.9)

where mf and mb are the total mass flow rate in the forward and backward jets and
vf and vb are the forward and backward flow speeds respectively, both of which
equal v. The total mass flow into and out of the interaction is

2m = mf + mb (S.10)

Hence
mf = 2m (1 + cos θ) and mb = 2m (1 − cos θ) (S.11)

Since the velocity of the incompressible fluid is constant before and after the collision
of the jets, the change in the mass flow rate must be associated with a change in
area of the jets. In a real flow the interaction is clearly complex and viscosity and
particularly turbulence must be expected to play a major role.

Problem 6: In the frame of reference of the stationary bucket, the water flow is
quasi-steady. We apply Bernoulli’s theorem to relate the incoming and outgoing
flows. Since both experience the same atmospheric pressure we conclude that the
flow speed in the frame of the bucket is unchanged, namely

v′out = v′in (S.12)

Remaining in the bucket frame we calculate the force on the bucket by the rate of
change of the momentum flux in the direction normal to the plane of the bucket:

F = ρ v′in A (v′in − v′out cos θ′) (S.13)

where v′, θ′ refer to values in the bucket frame, ρ is the density and A is the
cross-section of the incoming jet. To transform back into the laboratory frame:

vin = v′in + vb

vout cos θ = v′out cos θ′ − vb

vout sin θ = v′out sin θ′

where vb = ωR is the bucket speed, R the radius and ω the angular velocity of the
wheel. The exit speed in the laboratory frame is therefore

vout =
√ [

v2
in − 2vinωR + (ωR cos θ)2

]− ωR cos θ (S.14)

and the exit angle in the bucket frame takes the rather complex form

θ′ = arcsin
{

vout sin θ

vin − ω R

}
(S.15)
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Hence we obtain the torque on the wheel:

τ = ρ (vin − ω R)2 AR [1 + cos θ′] (S.16)

The work done in the time Δt that the bucket is in the jet is thus

ρ (vin − ω R)2 AR [1 + cos θ′] ω Δt (S.17)

The actual time a bucket spends in the water jet is slightly increased because there
is a short time when two buckets are simultaneously struck by the jet, due to the
rotation of the buckets. During the interval Δt the mass striking the bucket is
ρ vin AΔt whereas the mass flow used above in equation (S.13) for the force was
ρ (vin − ω R)A. Thus power is developed for a time [vin/(vin − ω R)] Δt by each
bucket, allowing for the fact that for a short period of time, two buckets
simultaneously are struck by the jet due to their spacing. The average power
delivered by the wheel is therefore

P = ρ (vin − ωR) vin Aω R [1 + cos θ′] (S.18)

Maximum power is developed when the bucket speed ω R = 1
2 vin, and has a fraction

1
2 [1 + cos θ′] of that delivered by the incoming water jet 1

2 ρAv3
in.

Problem 7: The total streamfunction is the sum of that due to the incoming flow
Uy and that due to each of the sources (m/2π) θ which may be written as

ψ =
m

2π
(θ+ − θ−) + U r sin θ (S.19)

where the angles

θ− = arctan[y/(x + d/2)] and θ+ = arctan[y/(x − d/2)] (S.20)

Hence the oval is given by the curve for which ψ = 0

Uy +
m

2π

{
arctan

[
y

x − d/2

]
− arctan

[
y

x + d/2

]}
= 0 (S.21)

Since

tan(arctan A − arctan B) =
A − B

1 + AB

it follows that the surface may be expressed as

U y = − m

2π
arctan

[
d y

(x2 + y2 − d2/4)

]
(S.22)

If the sink/source separation is very small, d → 0, the surface becomes

U y → − m

2π

d y

(x2 + y2)
(S.23)
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Noting that m is negative and writing the doublet strength M = md, we obtain a
circle with radius R =

√|M |/(2π U) and streamfunction

ψ ≈ Uy

{
1 − M

2π U (x2 + y2)

}
(S.24)

to recover the solution for a circular cylinder (2.94), which can be seen to be the
summation of the uniform flow with that from a doublet of appropriate strength.

The length of the oval is found by setting y → 0 as

x0
2 = (d/2)2 − (md/2π U) (S.25)

and the width, when x = 0, is the solution of

y0
2 = (d/2)2 − d y0 cot(2πU y0/m) (S.26)

Problem 8: The complex number z is represented as

z = x + ı y = c cosh ζ = c cosh ξ cos η + ı c sinh ξ sin η

Equating real and imaginary parts, and eliminating η, we obtain

x2

c2 cosh2 ξ
+

y2

c2 sinh2 ξ
= 1 (S.27)

i.e. an ellipse if ξ = const with semi-major axis c cosh ξ and semi-minor axis c sinh ξ.
Similarly, eliminating ξ we obtain

x2

c2 cos2 η
+

y2

c2 sin2 η
= 1 (S.28)

i.e. a hyperbola if η = const with semi-major axis a = c cos η and semi-conjugate
axis b = c sin η.

If ξ = 0,
z = x + ı y = c (cos η + ı 0 sin η) (S.29)

which corresponds to a flat plate of length 2c.
If ξ → ∞,

z = x + ı y = cosh ζ → 1
2

c exp(ζ) =
1
2

c exp(ξ) {cos η + ı sin η} (S.30)

Therefore at large distances lines of constant ξ become circles of radius 1
2 c exp(ξ)

and lines of constant η straight lines of gradient tan η.

Problem 9: The real and imaginary parts of the complex potential are

w = φ + ı ψ = C {cosh(ξ − ξ0) cos(η − η0) + ı sinh(ξ − ξ0) sin(η − η0)} (S.31)

Hence the streamline ψ follows the lines ξ = ξ0 and η = η0. The first of these is the
surface of the ellipse, which is therefore a streamline and may be solid. Far from the
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body, the streamline tends to the straight line θ = arctan η0 which corresponds to
the angle between the incoming flow and the major axis of the ellipse.

The complex velocity is

v = vx − ı vy =
dw

dζ

/
dz

dζ
=

C sinh(ζ − ζ0)
c sinh ζ

(S.32)

The incoming flow velocity is easily obtained by allowing |ζ| → ∞

U =
C

c
exp(−ζ0)

If ζ = ζ0 or ζ = ζ0 + ı π sinh(η − η0) = 0 and the complex velocity is zero – a
stagnation point.

When η0 = 0 the incoming flow is parallel to the major axis. Since the maximum
displacement occurs at the minor axis x = 0, y = ±b the velocity must take its
maximum value there and be in the x direction, i.e. η = π/2 or 3π/2

vmax = 2
C

c

exp(−ξ0)
1 + exp(−2 ξ0)

=
2

1 + (a − b)/(a + b)
U =

a + b

a
U = U

(
1 +
√

1 − e2
) (S.33)

since (a + b) = c exp(ξ0) and (a − b) = c exp(−ξ0); e is the eccentricity.

Problem 10: The complex potential

w = φ + ı ψ = ı kζ2π = ı k (ξ + ıη)/2π

yields the streamfunction ψ = kξ/2π and is therefore constant on the elliptic surface
ξ = const. exp(ξ) At large distances η → θ, the polar angle, and the flow therefore
rotates about the surface centred on the origin. The potential φ = −kθ/2π.
Therefore the circulation is −k.

Problem 11: Adding a circulation to the incoming flow, the complex potential is

w = C cosh(ζ − ζ0) + ı k /2π (S.34)

We require

v =
dw
dζ

/
dz
dζ

=
{C sinh(ζ − ζ0) + ı k /2π}

c sinh ζ
= 0

at ζ = ξ0. Therefore, since C = U (a + b),

k = −2π C sin(η0) = −2π U (a + b) sin(η0) (S.35)
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Problem 12: Define a set of co-ordinates x and y in the tangent plane to the body
at the stagnation point and z outwards along the incoming streamline. In the
neighbourhood of the stagnation point (x = y = z = 0) the flow is symmetric with
respect to x and y. Therefore, expanding the velocity potential as a Taylor’s series
about the origin,

φ = φ0 +
∂φ

∂xi
xi +

1
2

∂2φ

∂xi ∂xj
xi xj + . . .

but ∇φ = 0 at a stagnation point and all terms containing xi xj , i �= j, must also be
zero due symmetry.

Since the flow is irrotational and incompressible, ∇2φ = 0 and therefore

φ = φ0 +
1
2

[
∂2φ

∂x2

(
x2 − z2

)
+

∂2φ

∂y2

(
y2 − z2

)]
(S.36)

In a two-dimensional and axisymmetric flow this result is simplified to

φ =

⎧⎪⎪⎨
⎪⎪⎩

φ0 +
1
2

∂2φ

∂x2

(
x2 − z2

)
two dimensions

φ0 +
1
2

∂2φ

∂�2

(
�2 − 2 z2

)
axisymmetric

(S.37)

respectively.

Problem 13: Differentiating the complex potential of the flow around the cylinder,

∂2φ

∂z2
= 	
{

d2w
dz2

}
= 	
{

2U
R2

z3

}
= 2U

R2 exp(−ı3θ)
r3

At the stagnation point θ = π, the flow is towards the cylinder, and the coefficient is
correspondingly −2/R. Since the blunt body is tangential to a circle of radius of
curvature R, the flow incident at the stagnation point is described by

φ ≈ φ0 + U
(
x2 − z2

)
/R (S.38)

where x is measured in the tangent plane and z outwards along the streamline (as in
problem#12).

For a sphere of radius R the derivative along the incoming flow is easily obtained

∂2φ

∂z2
=

∂vr

∂r

∣∣∣
θ=π

= −4U

R2
= −∂2φ

∂�2

and therefore the flow near the stagnation point

φ ≈ φ0 + 2U
(
�2 − 2 z2

)
/R2 (S.39)
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Problem 14: Take a local Cartesian co-ordinate set (x, y), with x in the radial
direction and y in the azimuthal one, to calculate the local rate of shear strain tensor
component ėxy. Consider the changes in velocity induced by a small azimuthal angle
shift δθ

δvx = −vθ δθ and δvy = vθ (1 − cos δθ) ≈ 0 ∴ ėxy =
1
2

(
dvθ

dr
− vθ

r

)
=

1
2

r
dω

dr

so the total torque per unit length at the interface is

τ = 2π R3 μ
dω

dr
(S.40)

where μ is the coefficient of viscosity.

Problem 15: In the steady state, there is no gain in angular momentum between
the cylinders. The torque τ is therefore constant across the gap. Integrating
equation (S.40),

ω − Ω1 =
τ

4π μ

(
1

R1
2 − 1

r2

)

The torque is therefore

τ = 4πμR1
2R2

2 (Ω2 − Ω1)(
R2

2 − R1
2
) (S.41)

Substituting for τ ,

ω =

(
Ω2R2

2 − Ω1R1
2
)

(
R2

2 − R1
2
) +

(Ω1 − Ω2) R1
2R2

2(
R2

2 − R1
2
) 1

r2
(S.42)

If R2 → ∞ and Ω2 → ∞
ω = Ω1

R1
2

r2

in agreement with the Rankine vortex.

Problem 16: The kinetic energy in a Rankine vortex is easily calculated from the
velocity profile, equation (2.75),

1
8

2π ρ ζ2

{
R�
0

r3 dr +
rmax�
R

R4 dr

r

}
=

1
4π

ρΓ2

{
1
4

+ ln
(rmax

R

)}
(S.43)

where an outer limit to the vortex rmax is imposed to avoid the logarithmic
divergence at infinity.
The vortex is damped by viscosity due to the shear initially starting at the interface
between rotational and irrotational flow, but spreading through the flow. We may
estimate the initial rate of dissipation very simply from the viscous torque at the
interface. The flow internal to the interface is a uniform rotation, characteristic of a



Solutions 435

solid, with angular velocity ω = 1
2 ζ acting as a ‘spindle’ supplying energy via a

viscous torque on the interface. At the interface there is viscous force. The work
done per unit time by the ‘spindle’ is therefore τ ω = μΓ2/π R2. In the absence of
any such external agent, the energy of the vortex must decrease at this rate due to
viscosity. Assuming viscous damping is weak and the flow remains nearly
irrotational, the radius R of the interface must increase to accommodate the energy
loss. Since the total circulation of the core remains constant

R
dR

dt
= 4 ν (S.44)

where ν = μ/ρ. This represents only an approximation for small times whilst the
velocity profile of equation (2.75) is valid. For large times such that initial size is
proportionately very small, the radius may be expected to scale as

R ∼
√

8 ν t (S.45)

Problem 17: The vorticity associated with a two-dimensional vortex is a vector
with a single component perpendicular to the plane of variation. The vorticity
dissipation equation (3.14) therefore takes the simpler form characteristic of
diffusion. Writing this in polar co-ordinates and neglecting the angular term due to
symmetry,

∂ζ

∂t
= ν

1
r

r∂

∂r

(
r∂ζ

∂r

)
(S.46)

which has the well-known solution, which may be checked by substitution,

ζ =
Γ

4π ν t
exp
(
− r2

4 ν t

)
(S.47)

since the circulation Γ = 2π
∞�
0

ζ r dr.

Problem 18: It follows from the equation of continuity

1
r

∂(r vr)
∂r

+
�
�
��

0
∂vz

∂z
= 0

that since the radial velocity vr is zero at the wall, it must be zero everywhere.
Under conditions of slow flow, the dynamics are dominated by viscosity and the

inertial term may be neglected. The Navier–Stokes equation takes the form

−∇p + μ∇2v = 0 (S.48)

Taking components we obtain

∂p

∂r
= 0 and

∂p

∂z
= μ

(
d2vz

dr2
+

dvz

dr

)
(S.49)
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The pressure is therefore constant across the tube and depends on the axial distance
z alone.

Integrating and noting that the axial velocity vz must be zero at the wall r = a
yields

vz = − 1
4μ

dp

dz

(
a2 − r2

)
(S.50)

A further integration yields the total mass flux through the tube

J =
a�
0

2π r ρ vz dr =
π ρ a4

8μ

Δp

�
(S.51)

This is Poiseuille’s equation and forms the basis of a simple method of measuring
viscosity.

Problem 19: The variables in the problem are: distance r = [L], time t = [T ], vortic-
ity ζ = [T ]−1, circulation Γ = [L]2[T ]−1 and kinematic viscosity ν = [L]2[T ]−1. Since
the diffusion is linear, the variable ζ is directly proportional to Γ and may only appear
in the combination ζ/Γ = [L]−2. A complete set of dimensionless variables is therefore

r2

ν t
and

ζ ν t

Γ

Since r and t can only appear in the dimensionless combination, then

η =
r2

ν t
(S.52)

Hence the solution must take the form

ζ =
Γ
ν t

f (η) (S.53)

and the derivatives take the form

∂

∂t
= −η

t

d
dη

and
1
r

∂

∂r

(
r

∂

∂r

)
=

4
νt

d
dη

[
ν

d
dη

]
(S.54)

Substituting in equation (S.46) for ζ/Γ, and the derivatives, we obtain

4
d
dη

(
η

df
dη

)
+

d
dη

(
η f
)

= 0 (S.55)

whose solution with the boundary condition df /dζ = 0 when f = 0 is

f = const exp(−η/4) (S.56)

As in problem#17 the constant (4π)−1 is found by integration giving equation (S.47).
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Problem 20: The dimensional matrix is

ρ μ g L D U W

[M] 1 1 0 0 0 0 1
[L] −3 −1 1 1 3 1 1
[T] 0 −1 −2 0 0 −1 −2

It is easily checked that there exist non-zero determinants of order 3 within the array
and the rank of the matrix is therefore 3. A solution array, which may be checked by
substitution, is

k1 k2 k3 k4 k5 k6 k7

W/ρ U2 L2 −1 0 0 −2 0 −2 1
L/D1/3 0 0 0 1 −1/3 0 0
ρ U L/μ 1 −1 0 1 0 1 0

U/(Lg)1/2 0 0 −1/2 −1/2 0 1 0

The area factor L2 in the dimensionless drag is usually replaced by the wetted area
S ∼ D/L to define the drag coefficient, which may be written as

CD =
W

1
2 ρS U2

= F (ψ,R,F) (S.57)

where ψ = L/ 3
√

D is the fineness coefficient, R = ρUL/μ the Reynolds number and
F = U

√
Lg the Froude number.

In a ship tank experiment it not possible to achieve complete similarity. Although
the model and prototype may achieve geometrical similarity, it is not possible to
have similarity with respect to both the Reynolds and Froude numbers at the same
time. Froude hypothesised that it is possible to separate the drag due to friction in
the boundary layer (Section 6.6), which depends on R, and wave drag (case
study 4.I), which depends on F alone, allowing the total drag to be written as

W = WF + Ww =
1
2

ρS U2 Cf (R) + ρ, g D cw(ψ,F) (S.58)

where S is the wetted surface area and using a different dimensionless scaling for the
wave drag. The frictional drag coefficient is measured in a separate set of
experiments, e.g. with flat plates, or by using scaling relations for turbulent
boundary layer flow, thereby separating the wave and frictional drag. Hence
measurements of the total hull drag in the model experiments scale to the prototype
at constant ψ and F . In engineering practice, extensive scaling relations for the
coefficient cw are available.



438 Solutions

Problem 21: At the boundaries x = 0 and x = X, and y = 0 and y = Y , the
normal component of velocity must be zero, i.e.

∂φ

∂x
= 0 if x = 0 or X and

∂φ

∂y
= 0 if y = 0 or Y

Assuming the surface is initially (t = 0) at rest, the general surface wave takes a
standing wave pattern

φ = φ0 cosh{k(z + h)} cos(kx x) cos(ky y) sin(ω t)

where kx = π nx/X, ky = π ny/Y and k =
√

kx
2 + ky

2. These waves form the
normal modes of the oscillation with nx ≥ 0 and ny ≥ 0 integers, the individual
frequencies ω(k) being given by the dispersion relation (4.12).

The general wave is found from the Fourier series expansion of the initial
disturbance

η(t) =
∑

nx=0

∑
ny=0

Anx ny
cos(π nx x/X) cos(π ny y/Y ) cos[ω(nx, ny) t] (S.59)

where the displacement amplitudes Anx ny
are easily related to those of the

potentials.

Problem 22: From equation (4.29) the frequency at a contact surface when the
heavy fluid is above the light is real when

σ k2 > (ρ+ − ρ−) g

The sinusoidal perturbations at the surface must form standing waves where the
normal component of velocity at the mesh walls is zero. The most unstable mode,
nx = 1, ny = 0, is determined by the mesh spacing d, and the corresponding
wavenumber k = π/

√
d. Waves with wavenumber less than k cannot exist at the

surface. Consequently if

d �
√

σ/ (ρ+ − ρ−) g ≈ 9mm (S.60)

no unstable waves can grow on the surface.

Problem 23: The basic characteristics of the Richtmyer–Meshkov instability are
obtained from equation (4.32). An impulsive acceleration to velocity ΔU is applied
in a very short time Δt, so that the acceleration a = ΔU/Δt, and

γ =

√
(ρ+ − ρ−)
(ρ+ + ρ−)

� k
ΔU

Δt

In the limit Δt → 0, γΔt is small and we obtain from equation (4.32)

η ≈ η0 and v ≈ η0 γ2 Δt =
(ρ+ − ρ−)
(ρ+ + ρ−)

k ΔU (S.61)
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In practice this instability is normally associated with shock waves moving through a
contact discontinuity between two media of different densities. In this case the fluids
are compressible, but the above results still give a good approximation to the
behaviour.

Problem 24: Writing the complex frequency in the form ω = ω0 ± ı ω1 since they
are a conjugate pair,

η = η+ exp {i [kx x − (ω0 + ı ω1) t]} + η− exp {i [kx x − (ω0 − ı ω1) t]}
→ [η0 cos h (ω1 t) + η1 sin h (ω1 t)] exp [i (kx x − ω0 t)]
→ [η0 + η′

1 t] exp [i (kx x − ω0 t)] as ω1 → 0

The first term with amplitude η0 represents the steady propagation of the original
perturbation with no change of amplitude downstream with the flow since ω0 = kxU .
The second term is a purely growing wave also propagating downstream.1 It is this
term which leads to flapping flags and sails as a uniform flow is initially perturbed
by the supporting post. In non-ideal flows the vortex sheet induced by the
disturbance is diffused by viscosity and the flow returned to its initial condition.

Problem 25: The friction velocity v∗ may be written as

v∗ = C(n)−n/(n+1) (a/ν)−1/(n+1) un/(n+1)

to give the value of V(n). Using this value the Fanning friction factor may be written as

f = 2 (v∗/u)2 = 2 C(n)−2n/(n+1) (a/ν)−2/(n+1)
u−2/(n+1)

and we obtain the required result for F(n). The value of T (n) follows directly
from τ0 = 1

2 ρ u2f . Values of C(n) given by experiment are listed in Table S.1.

Table S.1: Experimental values of the
parameter C(n).

n 7 8 9 10
C(n) 7.14 8.12 9.04 9.96

Problem 26: From equation (P.8) the boundary is at

T (n)R(n, (n + 1))−2/(n+1) = T (n + 1)R(n, (n + 1))−2/(n+2)

Therefore

R(n, (n + 1))2/(n+1) (n+2) =
T (n + 1)

T (n)(n+2)/2
=

C(n + 1)2(n+1)/(n+2)

C(n)2n/(n+1)

and equation (P.10) follows.

1This term is familiar from solutions of a second-order linear differential equation when
the roots of the characteristic equation are equal.
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Problem 27: From the solution to problem #12, U = c x, where c is the velocity
gradient. We may therefore assume that vx ∼ c x also. The various terms in
equation (6.7) are then

u
∂u

∂x
∼ c2 x v

∂u

∂y
∼ c x v

δ
ν

∂2u

∂y2
∼ ν

c x

δ2
U

dU

dx
∼ c2 U

and from equation (6.8)
∂u

∂x
∼ c u

∂v

∂y
∼ v

δ

from which we obtain v ∼ c δ and ν c x/δ2 ∼ c2 x or δ ∼√ν/c. The boundary layer
thickness is therefore independent of position along the surface.

Problem 28: The only dimensional quantities in the problem are c and ν. Since the
boundary layer thickness varies as ∼√ν/c and is independent of x, it is clear that
the streamfunction must vary as

ψ =
√

ν c x f(η) where η =
√

c/ν y

Differentiating,

vx =
∂ψ

∂y
= c x ḟ(η) and vy = −∂ψ

∂x
= −√

c ν f(η) (S.62)

Differentiating again, it is clear that the equation of continuity (6.8) is satisfied.
Substituting for vx and vy in the x component of either the Navier–Stokes

equation (3.13) or the boundary layer equation (6.7), we obtain
...
f + ff̈ − ḟ2 + 1 = 0 (S.63)

subject to the boundary conditions (f(0) = 0; ḟ(0) = 0) and ḟ(∞) = 1, which follow
since at the surface the velocity is zero, and at infinity the velocity normal to the
surface is −c y at y = ∞. This equation cannot be solved in analytic form, but
numerical solutions may be obtained by standard methods (Schlichting, 1968, p.90).

Problem 29: The approximate boundary layer flow near a stagnation point is
easily obtained from the Pohlhausen modification of the von Karman boundary
integral method in Section 6.4.1. The displacement and momentum thicknesses δ1

and δ2 respectively are given in terms of the parameter Λ = (δ2/ν) dU/dx, whose
value at a stagnation point is λ0 = 7.052. Making use of the results in Section 6.4.1,
we obtain δ1 = 0.641

√
ν/c and δ2 = 0.278

√
ν/c. These values may be compared with

those obtained from the integration of the differential equation in the previous
problem #28, namely δ1 = 0.648

√
ν/c and δ2 = 0.292

√
ν/c.

Problem 30: The variables in the problem are:

Independent variables x t
Parameters c0 ρ0

Dependent variables u c ρ
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We note that there are no parameters expressing length or time alone, the ambient
sound speed being the parameter containing both length and time. Thus the
complete set of dimensionless products formed from this group of variables is are

η =
x

c0 t
U =

u

c0
C =

c

c0
P =

ρ

ρ0
(S.64)

η is the similarity variable. The derivatives are

∂

∂x
=

∂η

∂x

d
dη

=
1

c0 t

d
dη

∂

∂t
=

∂η

∂t

d
dη

=
η

t

d
dη

The one-dimensional equation of continuity and Euler’s equation become

∂ρ

∂t
+ v

∂ρ

∂x
+ ρ

∂v

∂x
→ (V − η)

dP
dη

+ P
dV

dη
= 0 (S.65)

∂v

∂t
+ v

∂v

∂x
+

c2

ρ

∂ρ

∂x
→ (V − η)

dV

dη
+

C2

P
dP
dη

= 0

If these two equations are consistent, the determinant of their coefficients must be
zero. Therefore

(V − η)2 − C2 = 0 (S.66)

Thus we obtain

V = η ± C

V = const ∓
� C dP

P
(S.67)

which we recognise as the equations of the characteristics. Thus choosing an
appropriate pair of solutions, we obtain

x

t
= v − c

Γ+ = v +
� cdρ

ρ
= const (S.68)

as before.

Problem 31: Expansion around a corner involves a problem in two spatial
dimensions, but not temporally varying. The problem contains no parameter with
dimensions of length. Using polar co-ordinates the characteristic variables in the
problem are:

Independent variables r θ
Dependent variables vr vθ c
Parameters U c0 ρ0

From these we may form the dimensionless products

θ, Vr =
vr

vmax
, Vθ =

vθ

vmax
, C =

c

vmax
(S.69)



442 Solutions

There is no dimensionless product which can be formed from the variable r using a
combination of the dependent variables and the parameters. Consequently all of the
above dimensionless variables must be functions of θ alone. As the normalising
velocity it is convenient to use the maximum speed vmax =

√
U2 + [2/(γ − 1)] c2

0.
The condition for irrotationality is included by introducing the velocity potential

φ, whose dimensionless form is

Φ =
φ

r vmax
(S.70)

Hence the velocities become
Vr = Φ, Vθ = Φ̇ (S.71)

Since
c

c0
=
(

ρ

ρ0

)(γ−1)/2

the equation of continuity and Euler’s equation take the respective forms

ΦC + Φ̇Ċ +
2

(γ − 1)
Φ̇Ċ = 0

ΦΦ̇ + Φ̇Φ̈ +
2

(γ − 1)
CĊ = 0

(S.72)

It is obvious by inspection that these equations have the solution Φ̇ = C or vθ = c,
obtained earlier from a consideration of the characteristics. The solution for Φ is
easily obtained by substituting for C

(γ + 1)
(γ − 1)

Φ̇Φ̈ + ΦΦ̇ = 0 (S.73)

We neglect the trivial solution Φ̇ = 0 to obtain

Φ = A cos(kθ + ε) (S.74)

where k2 = (γ − 1)/(γ + 1) as before. The constant A is easily shown to be unity by
the application of Bernoulli’s equation, using the normalisation given above.

Thus we obtain the solution found earlier in Section 9.4.2, but without the overt
application of characteristics. The latter may be seen through the appearance of θ as
the sole independent variable.

Problem 32: Since the enthalpy is given by h = [γ/(γ − 1)] p/ρ for a polytropic
gas, we may solve the Rankine–Hugoniot equations directly to obtain explicit values
for the downstream flow in terms of the upstream values.

From the first and second Rankine–Hugoniot equations (10.1) we obtain

p1 − p2 + ρ1 v1 (v1 − v2) = 0

and hence, using Bernoulli’s equation (10.2),

γ

(γ − 1)

(
p1

ρ1
− p2

ρ2

)
+

1
2

(v1 + v2) (v1 − v2) = 0
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Eliminating p2 and substituting for ρ2 we obtain

γ

(γ − 1)
p1

ρ1

(
1 − v2

v1

)
− γ

(γ − 1)
v2 (v1 − v2) +

1
2

(v1 + v2) (v1 − v2) = 0

Hence there is either the trivial solution v2 = v1 or

p1

ρ1v1
− v2 +

(γ − 1)
2γ

(v1 + v2)

and introducing the Mach number of the incoming flow M1 = v1/c1 = v1/
√

γp1/ρ1,
we obtain for the compression (density) and velocity ratios

y =
ρ2

ρ1
=

v1

v2
=

(γ + 1)M1
2

(γ − 1)M1
2 + 2

(S.75)

The remaining equations are simple to obtain by substitution in equations (10.1):

Π =
p2

p1
=

2γM1
2 − (γ − 1)

(γ + 1)

T2

T1
=

c2
2

c2
1

=

[
2γM1

2 − (γ − 1)
] [

(γ − 1)M1
2 + 2
]

(γ + 1)2M1
2

v2

c1
=

(γ − 1)M1
2 + 2

(γ + 1)M1

v2

c2
=

√{ (γ − 1)M1
2 + 2

2γM1
2 − (γ − 1)

}

where the ideal gas law p = Rg ρ T is used to obtain the temperature T .

Problem 33: The entropy of a perfect gas is given by

s = cV ln
(

p

ργ

)
+ const

Using equation (10.4a), the entropy change across the shock is given by the function

z = ln
{

(γ + 1) y − (γ − 1)
(γ + 1) − (γ − 1) y

}
− γ ln(y)

The following properties of z are easily shown

z = 1 ż = z̈ = 0
...
z =

1
2
γ (γ2 − 1) for y = 1

and that z has no turning points except at y = 1. Hence δs > 0 if 1 ≤ y ≤ (γ + 1)/
(γ − 1) and δs < 0 if (γ − 1)/(γ + 1) ≤ y ≤ 1. Shocks are therefore allowed in
compression, but not in expansion, extending our earlier conclusion for weak shocks
more generally, but limited to polytropic gases. The result is in fact applicable to
nearly all materials, but with the proviso noted earlier (Section 10.16).
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Problem 34: Referring to Figure 10.14 the incoming flow velocity v1 is represented
by the line OB and the outgoing v2 by the line OP . The normal components of the
velocity are represented by BN and velocity increment PN before and after the
shock respectively. The velocity increment is therefore BP , which is normal to the
shock, i.e. the shock lies along the line ON . From the sine theorem applied to
�OBP it follows that

BP =
sin θ

sin ∠OBP
OP ≈ θ

cos β
OB (S.76)

since θ is small and the shock is weak OP ≈ OB, which is equation (10.75).

Problem 35: When the Mach number M1 is large we may neglect c1 in comparison
with v1 so that the critical velocity is given by

1
2
v1

2 +
������1
(γ − 1)

c1
2 =

(γ + 1)
2 (γ − 1)

c∗2

Hence equation (10.82) becomes

v2y
2 = (v1 − v2x)2

[v2x − (γ − 1)/(γ + 1)v1]
(v1 − v2x)

which after cancellation gives

v2y
2 + (v2x − v1) [v2x − (γ − 1)/(γ + 1)v1] (S.77)

and is the equation of a circle passing through ([γ − 1]/[γ + 1]v1, 0) and (1, 0), i.e.
centred on (γ/(γ1 + 1) v1, 0) with radius 1/(γ + 1) v1. From Figure 10.14 the limiting
angle is given by the tangent to the circle through the origin, namely

θ = arcsin
{

[1/(γ + 1)] v1

[γ/(γ1 + 1)] v1

}
= arcsin

(
1
γ

)
(S.78)

Problem 36: From problem #9 the complex potential w1 = C cosh(ζ − ζ0) has
stagnation points at ζ = ζ0. From problem #10 the complex potential w2 = ı k ζ/2π
is a circulating flow around an ellipse. Thus we require a combination of the flows
w = w1 + w2 with an appropriate value of k such that the stagnation point lies at
the end of the major axis ζ = (ξ0, 0). The complex velocity

dw
dz

=
dw
dζ

/
dz

dζ
(S.79)

is zero if dw/dζ = 0, provided dz/dζ �= 0.
The complex potential is

w = C cosh(ζ − ζ0) + ı k ζ/2π (S.80)
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and
dw

dζ
= C sinh(ζ − ζ0) + ı

k

2π
(S.81)

On the surface of the ellipse ξ = ξ0 and therefore the stagnation point occurs when

dw

dζ
= C

[
�������0
sinh(ξ − ξ0) cos(η − η0) − ı�������1

cosh(ξ − ξ0) sin(η − η0)

]
+ ı

k

2π
= 0 (S.82)

The required circulation to give a stagnation point at η = 0 is therefore

k = −2π C sin η0 = −2π U c exp(ξ, 0) sin η0 = 2π (a + b)U sin η0 (S.83)

since a + b = c exp(ξ, 0) (problem #8).
The lift coefficient is therefore

cL =
−ρU Γ

1
2 (2 a) ρU2

= 2π
(a + b)

a
sin η0 ≈ 2πα

(
1 +

b

a

)
(S.84)

since the angle of attack α = η0 and the chord is equal to the major axis 2 a.
This result is in agreement with the previously obtained values for a thin wing

b = 0, equation (11.25), and a circular cylinder b = a.

Problem 37: Writing the equation of the circle

ζ = R exp(ı θ) (S.85)

so that the transformation takes the form

z = x + ı y = R exp(ı θ) +
�2

R
exp(−ı θ) =

[
R +

�2

R

]
cos θ + ı

[
R − �2

R

]
sin θ (S.86)

and hence eliminating θ between the real and imaginary parts

x2

(R + �2/R)2
+

y2

(R − �2/R)2
= 1 (S.87)

we obtain an ellipse with semi-major axis a = (R2 + �2)/R and semi-minor axis
b = (R2 − �2)/R.

Problem 38: From problem #36 we obtain the relationships between the
transformation parameter � and circle radius R with the semi-major and semi-minor
axes of the ellipse

R =
a + b

2
and � =

a − b

2
(S.88)

In the ellipse frame the complex co-ordinate z is represented by its value in the circle
ζ = R exp(iθ) transformed by the conformal transformation

z = ζ +
�2

ζ
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Noting that the angle θ0 between the incoming flow and the major axis is unchanged
by the conformal transformation, the complex velocity potential in the frame of the
ellipse is obtained from that in the circle frame

w(z) = ζ exp(ıθ0) +
�2

ζ
exp(−ıθ0) +

ı k ln ζ

2π
(S.89)

where k is the circulation associated with the flow around the ellipse required to
place the stagnation point at the end of the major axis. Hence

dw
dz

=
dw
dζ

/
dz
dζ

=
U
[
exp(−ıθ0) − (R/ζ)2 exp(−ıθ0)

]
− ı k/2π ζ

1 − (�/ζ)2
= 0

yields the required circulation

k = −2π UR · 2 sin θ0 = −2π U (a + b) sin θ0 (S.90)

in agreement with the previous problem.

Problem 39: Writing the Zhukovskii transformation as

(z − 2 �)
(z + 2 �)

=
{

(ζ − �)
(ζ + �)

}2

gives
arg(z + 2 �) − arg(z − 2 �) = 2 {arg(ζ + �) − arg(ζ − �)}

It is clear that the chord −� to � subtends the angle 2χ at the centre of the circle
and therefore χ at the point P on the circumference in the ζ plane (Figure S.1). In
the z plane, the corresponding chord −2 � to 2� subtends an angle 2χ at the

ζ plane

P″

S′

P′

C′

T′O′

B′

OS

z plane

−2l 2ll−l

P
B

2χ

y

ξ

C

η

x

χ

2χ

π+χ

T

Figure S.1: The geometrical arrangement of the ξ and z plane for the Zhukovskii
transformation of a circle to a circular lamina. Both the points P ′ and P ′′ transform to P .
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corresponding point P ′. Thus as the point P moves around the circle in the ζ plane,
the angle subtended by the chord remains constant. The path of P ′ is therefore a
circle in the z plane.

The angle χ moves from 0 to π on the upper arc of the ζ circle generating the arc
in z from +2� to −2� traversed anti-clockwise. On the lower chord in ζ, the angle χ
moves from π to 2π and again generates the same arc in z from −2� to +2� but
traversed clockwise.

Since the circle in the z plane passes through the singularities ±�, the transformed
circle passes through the equivalent points ±2 �. The transformation of the centre in
ζ gives the centre at [−ı (�2 − d2)/d] and the radius [(�2 + d2)/d] in z. The camber
ratio is therefore 2 d/2 � = arccotχ, consistent with the conformal nature of the
transformation.

Problem 40: Referring to Figure 11.4 it can be seen that the axis of zero lift is the
line from the centre of the transformation circle to the point corresponding to the
trailing edge, i.e. where the circle passes through the point (�, 0) on the chord line.
The angle between the axis of zero lift and the chord line is β = π/2 − χ.

From equation (11.35) it follows that since β = arctan(d/�) the necessary
circulation is

Γ = 4πR sin(α + β) = 4π (� sin α + d cos α)

Hence, since the total chord length is 4�, the lift coefficient is

cL = 2π (sin α + c cos α) (S.91)

where c = arctan β is the camber ratio. Note that if c = 0 we recover the result for a
flat plate. At zero angle of attack (α = 0) the flow is parallel to the chord line and is
finite at the leading edge as well as the trailing edge. At non-zero angles of attack,
the flow at the leading edge is no longer finite and a laminar wing of this profile
would suffer severe separation. In practical wings this is avoided by the blunt nose to
the wing section.

Problem 41:
The sails generate a lift force normal to the direction of the wind, which may be
resolved into components parallel SL sin β and perpendicular SL cos β to the direction
of the boat, where β is the angle between the wind direction and the direction of the
boat (Figure S.2). In addition there are components due to drag of the sail due both
to parasitic and induced drag SD. The keel is aligned with the axis of the boat and
takes the form of a symmetric aerofoil section. When the flow is inclined at a finite
angle θ to the axis, the keel exerts a lift force normal to the direction of motion KL

and the hull, including the keel, a drag KD parallel to it. As both the keel and the
hull are designed as symmetric streamlined bodies to minimise both skin and wave
drag, the total hydrodynamic drag on a well-designed racing yacht may be relatively
small. Induced drag from the flow of air upwards over the top of the sail adds to the
total drag D. Resolving the forces along and perpendicular to the motion gives

SL sin β − SD cos β = KD

SL cos β + SD sin β = KL

(S.92)
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Figure S.2: Sketch of the aerodynamic forces generated by a boat sailing into the wind.
The sail generates both lift SL and drag SD from the wind. The keel generates lift KL from
the flow of water past the hull, which also generates a drag force KD.

As with an aerofoil the induced drag on the sail may be minimised by a large span,
i.e. a tall mast. The angle of attack of the wind on the sail should not lead to stalling.
However, when starting a small boat, such as sail board, there may be an advantage
in allowing the airflow to stall to obtain high lift briefly with low hull drag. On large
racing yachts, the induced drag on the keel may be reduced by winglets, which may
compensate for the additional drag, although they also have other advantages.

The lift force on the sail is determined by the angle of attack α on the billowed
sail and is adjusted by the sailor to avoid separation, SL ≈ 1

2 CLsail ρair Asail U
2 sin α,

where Asail is the area of the sail, ρair the density of the air, U the wind speed. The
lift coefficient CLsail ∝ sin α is determined by the angle of attack, α, between the
wind and the axis of zero lift, taking into account the downwash. Assuming the sail
drag SD is small, and the wind normal to the axis of the boat β = π/2, the motion is
along the axis of the boat and the drag is solely due to parasitic drag on the hull
(including the keel) alone. This configuration gives maximum drive and speed. The
boat speed is determined by KD/SL = ρwater CDhull V

2/ρair CLsail U
2 ≈ 1, where

ρwater is the density of water and V the speeds respectively. In principle the boat
speed may exceed the wind speed. Clearly there is a limit to how close to the wind
the boat may sail upwind, determined by the minimum value of sinβ = KD/SL,
which is a function of forces on the sail and hull.

Sailing downwind the wind force on the sail pushes the wind, essentially as a drag
force. In this configuration the wing is stalled, and the boat speed is limited to the
wind speed.

Problem 42: The flow over the top surface of the plate is conditioned by a
rarefaction which ‘refracts’ the flow through an angle α. As the rarefaction is
assumed to be weak the pressure is reduced by

δp

p1
= γ

M1
2√

M1
2 − 1

α
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Similarly the flow over the lower surface is ‘refracted’ by a weak shock giving a
pressure increase of the same value. The total pressure difference is therefore 2δp and
the lift force per unit span is approximately δp � where � is the length of the plate.
The lift coefficient is correspondingly

cL ≈ 2 δp �
1
2ρv1

2�
=

4α

M1
(S.93)

as given in the text.

Problem 43: When the flow is deflected through an angle ([αi − α(i−1)] at the
junction of two elements i − 1 and i, where αi is the angle the element i makes with
the incoming flow, the pressure increment in the weak rarefaction or shock limit is

[δpi − δp(i−1)]
p1

= γ
M1

2√
M1

2 − 1

[
αi − α(i−1)

]
the sign of the pressure increment being the same as the deflection angle
[αi − α(i−1)], reflecting either a compression (> 0) or expansion (< 0). In the
perturbation limit M1 ≈ 1 and p1, the incoming pressure, the excess pressure at the
surface i, is therefore

δpi

p1
= γ

M1
2√

M1
2 − 1

αi

The pressure coefficient cp on the surface i is therefore

cpi = pi/1/2ρ u1
2 ≈ 2αi/

√
M1

2 − 1 (S.94)

Defining x parallel and y perpendicular to the incoming flow, the force on element i is

δFyi ≈ δpi δx and δFxi ≈ δpi αi δx

Substituting and noting that, since αi = ∓δyi/δxi, where the plus sign applies to the
lower surface (compression) and the minus to the upper (expansion), we must
distinguish the surfaces in the sums identifying the forces

Fy ≈ ρ1u1
2

{
lower∑

i

δy

δx

∣∣∣
i
δxi −

upper∑
i

δy

δx

∣∣∣
i
δxi

}

Fx ≈ ρ1u1
2

{
lower∑

i

(
δy

δx

∣∣∣
i

)2

δxi +
upper∑

i

(
δy

δx

∣∣∣
i

)2

δxi

} (S.95)

which lead directly to Ackeret’s equations (12.27) and (12.28).

Problem 44: In the rarefaction, the flow is determined by the Riemann invariant
for the C+ characteristic from the ambient gas, equation (9.11), i.e.

c = c1 − (γ − 1)
2

v1α (S.96)
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which immediately reduces to equation (12.47) above after substitution for the Mach
number and the equation of state.

In the shock, we note that equation (10.8) applies to a normal shock and thus we
obtain equation (12.50) as before, The calculation follows the earlier one to yield
equation (12.51).

Problem 45: Bernoulli’s equation for a compressible fluid obeying the polytropic
gas equation of state may be written in terms of the sound speed c as

1
(γ − 1)

c2 +
1
2
v2 =

1
(γ − 1)

c1
2 +

1
2
v1

2 (S.97)

or, introducing the Mach number,

1
(γ − 1)

+
1
2
M2 =

c1
2

c2

[
1

(γ − 1)
+

1
2
M1

2

]
(S.98)

Hence, since c2/c1
2 = (p/p1)

γ/(γ−1) we obtain

p

p1
=

{
1 + (γ−1)

2 M1
2

1 + (γ−1)
2 M2

}γ/(γ−1)

(S.99)

from which equation (12.29) follows directly.

Mcrit Cpcrit Cpcrit

√
1 − Mcrit C′

pmax
Cylinder 0.418 135 3.3026 3.00 3.00
Sphere 0.5675 1.584 1.25 1.25

Problem 46: In the table above we compare the pressure coefficient calculated from
equation (12.30) multiplied by the Prandtl–Glauert correction factor with the max-
imum pressure coefficient for the incompressible flow around a cylinder and a sphere.

The large values of the incompressible pressure coefficient C ′
p are due

to the blunt body shape of both the sphere and the cylinder, whose thickness:chord
aspect ratios are both 1. Consequently the streamlines around the body
suffer a greater relative displacement compared with a body of low aspect ratio,
e.g. a wing section. This results in the generation of higher pressures. This effect
is reduced for the sphere where the three-dimensional relieving effect of the flow
is due to the streamlines passing around the sides of the object, item (iii) on page 63.
This corresponds to the marked change in the critical Mach number, and indeed
to its low values for both cylinder and sphere compared with a streamlined aerofoil.

Problem 47: Let the flame speed be S. In the rest frame of the flame the overall
energy balance including convection, thermal conduction and heat release is

d
dx

{
ρ1 hS − κ

dT

dx

}
= F (T )
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The initial density is used as ρ1 S corresponds to the constant mass flux which is
heated. The boundary conditions are T → T1, dT/dx → 0 as x → −∞ and
dT/dx → 0 as x → ∞. The final temperature T2 is obtained as an integral of the
equation. The value of the flame speed S is an eigenvalue of this equation.
In zone ©1 F (T ) ≈ 0 and

κ
dT

dx

∣∣∣
i
= ρ1 (hi − h1) S

In zone ©2 the convection term ρS dh/dx � κ d2T/dx2 and

κ
d
dx

{
κ

dT

dx

}
=
{

κ
dT

dx

}
d

dT

{
κ

dT

dx

}
= κF (T )

Integrating subject to dT/dx → 0 as T → T2 at x = ∞,

κ
dT

dx
=

√√√√2
T2�
T

κF (T ) dT

Matching the solution at the zone boundary Ti,

S =
1

ρ1 (hi − h1)

√√√√2
T2�
Ti

κF (T ) dT

Since F (T < Ti) ≈ 0, we set T1 as the lower limit of the integral. As the pre-heat
ignition temperature is Ti ≈ T2, the upper temperature limit of the pre-heat is
nearly T2. The flame speed is approximately

S =
1

ρ1 (h2 − h1)

√√√√2
T2�
T1

κF (T ) dT

where the enthalpy of the pre-heat mixture treated as a perfect gas is h = cp T .

Problem 48: Defining the dimensionless Lagrangian variable ζ as, for example, the
fraction of the mass enclosed by the symmetry surface containing the fluid particle,
the body of gas is heated at a rate which depends on a power of time:

e = a tn = AW (ζ) tn

where A is a dimensional constant, W (ζ) the (dimensionless) heat distribution
function and n ≥ 0.

The dimensions of the only dimensional parameters in the problem are [M ] = [M ]
and [A] = [M ][L]2[T ]−(n+2). It is not possible to construct a dimensionless product
containing length without also including time. Hence the motion is self-similar with
parameter

ξ =
r

A1/2t[(n+2)/2]
(S.100)
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The position of the fluid particle ζ must be given by

r = const A1/2t(1+n/2)g(ζ) (S.101)

The body of gas therefore expands homogeneously in that each length is increased
by the same factor, since d(δr)/dt

∣∣
ζ

is independent of r. Furthermore ξ = g(ζ),
where g(ζ) is an appropriate unknown function, and since the position vector of an
individual fluid element is unique, there is a one-to-one correspondence between ξ
and ζ, or equivalently ξ is itself a Lagrangian variable, and consequently the
self-similar variable can be expressed as

ξ = r/R(t) where R(t) = cA1/2 t(1+n/2) (S.102)

where the constant c is determined by an appropriate (arbitrary) condition.
Finally, since the dimensions of density and pressure are

[ρ] = [M ] [L]−3 and [p] = [M ] [L]−1 [T ]2

the density and pressure are separable and can be expressed as

ρ = M r−ν f(ξ) = M A−ν/2 t−ν(1+n/2) ξ−ν f(ξ)
p = M A2/(2+n) r[−4/(2+n)−2+ν] φ(ξ)

= M A(1−ν/2) t[(2−ν)(1+ν/2)−2] ξ[−4/(2+n)−2+ν] φ(ξ) (S.103)

The spatial distributions of density f(ξ) and pressure φ(ξ) are determined by the
form of the heat deposition W (ζ).

The particle velocity is

v(ξ) =
dr

dt

∣∣∣
ξ

=
r

R(t)
dR(t)

dt
=

r

R(t)
V (t) (S.104)

where V (t) = dR/dt is the velocity of characteristic scale length R(t), and may be
used to identify a characteristic speed of expansion.

The solution is applicable for the case of constant energy M A, when n = 0.
In reality a body of gas may have a small, but finite, initial radius. This solution is

applicable once the flow radius becomes much larger than the dimensions of the
original body. At such time the memory of any imposed structure has been lost. The
analysis given in the text shows that the model can be continued once the
homogeneous flow structure is established.

Problem 49: Let R be the initial radius of a fluid element, which is a Lagrangian
variable, and define dimensionless variables s = c0(−t)/R, f = r/R and ε = ρ0/ρ;
then the velocity

dr

d(−t)
= −v = V

r

(−t)
= V c0

f

s
= c0

df

ds
(S.105)

From the equation of continuity it follows that

ε =
r2

R2

dr

dR
= f2

(
f − df

ds

ds

dR

∣∣∣
t

)
= f2

(
f − s

df

ds

)
(S.106)
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and from Euler’s equation

dv

dt

∣∣∣
R

= −c0
d
ds

(
df

ds

)
ds

dt

∣∣∣
R

= c0
d2f

ds2

= −1
ρ

∂p

∂r
= γ

p0

ρ0
ε−(γ−1) d(ε−1)

ds

ds

dr

∣∣∣
t
= c0 ε−(γ−1) s f2 d(ε−1)

ds

since
dr

ds

∣∣∣
t
= c0 (−t)

[
1
s

df

ds
− 1

s2

]
= −R

s

ε

f2
(S.107)

We therefore have the pair of simultaneous differential equations

d2f

ds2
= ε−(γ−1) s f2 d(ε−1)

ds
and ε = f2

(
f − s

df

ds

)
(S.108)

whose solution for γ = 5/3 is easily shown by the substitution f = αs1/2 to be

f = 22/3 31/4 s1/2 ≈ 2.089 s1/2 and ε = 2.33/4 s3/2 ≈ 4.559 s3/2 (S.109)

passing through s = 0 with f = 0 and ε = 0. The Mach number is

M =
v

c
= ε1/3 df

ds
=

1√
3

(S.110)

Problem 50: The characteristic parameters are the absorption constant b and the
laser power Φ, whose dimensions are

[b] = [M ]−2 [L]8 [T ]−3 and [Φ] = [M ] [T ]−3

It is not possible to form a dimensionless product involving the length x without
including the time t. The only dimensionless product is

ξ = b−1/8 Φ−1/4 t−9/8 x (S.111)

and the problem is self-similar with variable ξ. The dimensionless forms of the
velocity, density, pressure and internal energy are similarly found to be

v = b1/8 Φ1/4 t1/8 V (ξ) c = B1/8 Φ1/4 t1/8 C(ξ)
ρ = b−3/8 Φ1/4 t−3/8 D(ξ) p = b−1/8 Φ3/4 t−1/8 P (ξ)

ε = b1/4 Φ1/2 t1/4 E(ξ) μx = D2 C−3ξ

(S.112)

The direction x is taken in the direction of the outgoing flow, i.e. in the opposite
direction to the laser beam. The laser flux within the plasma can be cast into
dimensionless form, I(ξ) = Φ(ξ)/Φ0, normalised with respect to the incoming power
Φ0. Clearly several of these quantities are not independent: for a polytropic gas of
constant γ

E =
1

(γ − 1)
P

D
=

1
γ(γ − 1)

C2 (S.113)
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Noting that

x
∂

∂x

∣∣∣
t
= ξ

d
dξ

and t
∂

∂t

∣∣∣
x

= −9
8

ξ
d
dξ

and that terms such as v, ε, ρ and p contain an explicit dependence on t, we may
transform the conservation equation equations for mass, momentum and energy to

∂ρ

∂t
+

∂(ρ v)
∂x

→
(

V − 9
8

)
ξ

dD

dξ
+ D

(
ξ

dV

dξ
− 3

8

)
= 0

∂v

∂t
+ v

∂v

∂x
+

1
ρ

∂p

∂x
→
(

V − 9
8

)
ξ

dV

dξ
+

1
8

V 2 +
1
D

ξ
dP

dξ
= 0

∂ε

∂t
+ v

∂ε

∂x
− p

ρ2

∂ρ

∂t
− μΦ(x) →

(
V − 9

8

)
ξ

dE

dξ
+

1
4

E (S.114)

+
P

D2

(
9
8

ξ
dD

dξ
+

3
8

D

)
− D2 C−3 I = 0

∂Φ(x)
∂x

− μΦ(x) → dI

dξ
− D2 C−3 I = 0

giving a set of four first-order simultaneous differential equations which may be
numerically integrated by standard methods. The boundary conditions are

v(0) = 0 ρ(0) → ∞ ε(0) = 0 p(0) = p0 Φ(0) = 0 and Φ(∞) = Φ0 (S.115)

The value of the pressure at the target p0 is unknown and must be found as an
eigenvalue of the solutions satisfying the two point boundary conditions.
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Density, 2
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Dimensionless products, 91
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Kelvin–Helmholtz instability, 104
non linear instability, 115
Rayleigh–Taylor instability, 103
Richtmyer–Meshkov instability, 422
stability of laminar shear flow, 112
Tollmein–Schlichting instability,
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Fluid particle, 1
Fluid point, 1
Force on a body in ideal flow, 66
Forced convection, 176–193, 205
Form drag, 71, 161
Free convection, 193
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Friction and heat transfer, 182–188
Colburn’s modification, 188
Martinell correction, 185
Prandtl–Taylor correction, 183
Reynolds analogy, 182
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Friction factor, 132
Fully developed turbulence, 121
Fundamental equations, 3
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weak solution, 292
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Grashof number, 194
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energy transmission, 98
Guderley’s problem, 407
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along a pipe, 178
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compression, 390–395
shells, 393
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expansion, 386–390
Homogeneous turbulence, 121
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Hugoniot plot, 245

with energy release, 368
Hugoniot relation, 245
Hydrodynamic condition, 3
Hydrostatic head, 418
Hydrostatic stability, 15
Hydrostatics, 12–16

equilibrium fluid, 12
lapse rate, 12
stability, 15

Hypersonic wing, 359

Ideal flow, 2, 3
Ideal flow around a plate, 71
Ideal fluid flow, 25–74
Incompressible flow, 33–34

drag at high speed, 350
Incompressible fluid, 18
Induced drag, 161, 325
Induced velocity, 38
Inertial confinement fusion, 414–416
Infinitesimal volume, 1
Intermediate asymptotics, 385
Irrotational flow, 31–33

Crocco’s equation, 31
velocity potential, 32

Irrotational incompressible flow, 35
around a corner, 66
Laplace’s equation, 35
Rankine ovals, 49
sphere, 48
two dimensions, 51–74

complex functions, 52
flow around a body, 55
flow around a cylinder, 62–65
flow around a thin wing, 59
free vortex, 54
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Irrotational incompressible flow
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Rankine vortex, 54
source, 52
source and doublet sheets, 55
tied vortex, 53
vortex, 52

uniqueness, 35
Isothermal discontinuity, 261
Isothermal flow, 4
Isothermal rarefaction, 230

Jouget’s rule, 370

Karman vortex street, 73
Kelvin’s theorem, 26
Kelvin’s wedge, 100
Kelvin–Helmholtz instability, 104
Kolmogorov distribution, 125
Kutta condition, 299
Kutta–Zhukovskii lift formula, 301

Lagrangian frame, 4–8
Laminar thermal boundary layer, 188
Laminar wake, 163
Lapse rate, 12–15

dry adiabatic lapse rate, 13
environmental lapse rate, 15
moist saturated adiabatic lapse rate,
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Laser–matter breakdown, 377–382

gases, 381
solids, 378

deflagration model, 379
self-regulating model, 380
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Kutta–Zhukovskii, 68, 301
rotating cylinder, 65
thin wing, 59, 308

Lifting line theory, 320
Linearised theory of supersonic flight in

three dimensions, 354
Linearised theory of supersonic flight in

two dimensions, 347
Logarithmic mean temperature, 181

Magnus effect, 65
Martinelli correction, 185
Method of matched asymptotics, 169
Mixed mean fluid temperature, 186
Modelling, 88
Moist saturated adiabatic lapse rate, 13
Momentum thickness, 143
Moody plot, 132
Munroe effect, 22

Natural convection, 193–205
Navier–Stokes equation, 80
Newton’s law of cooling, 178
Newtonian viscosity, 75
Nonlinear instability, 115
Nusselt number, 177

Oblique shocks, 277–287
high Mach number, 281
low Mach number, 279
shock polar, 282

Orr–Sommerfeld equation, 112

Panel method
three dimensions, 330
two dimensions, 314

Pelton wheel, 418
Permutation symbol, 5
Perturbation methods for compressible

flow, 341
Pitching moment

thin wing, 308
Pitching moment of aerofoil, 302
Pitot tube, 417
Plane Poiseuille flow, 81
Polytropic gas, 17
Prandtl number, 177, 194
Prandtl’s boundary layer equations, 141
Prandtl’s distribution law for turbulent

flow through a duct , 130
Prandtl’s equation, 327

Fourier series solution, 327
Prandtl’s mixing length model, 136
Prandtl–Glauert correction, 344
Prandtl–Meyer flow, 235
Pressure, 2
Pressure relieving effect on sphere, 63
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Rankine vortex, 54
Rankine–Hugoniot equations, 242
Rankine–Hugoniot relations

with energy release, 366
Rarefactions

centred rarefaction, 226
limit velocity, 226
reflection, 228
steady two dimensional, 231
time dependent, 224

Rate of dilation, 76
Rayleigh number, 195
Rayleigh–Bénard instability, 203
Rayleigh–Taylor instability, 103
Rectilinear vortex, 29, 39
Reynolds’ ink drop experiment, 117
Reynolds’ stress, 126
Richtmyer–Meshkov instability, 422
Riemann invariants, 225
Riemann’s solution, 224
Rotation velocity, 76
Rough wall, 129

Sears–Haack body, 358
Self-similarity, 89, 383–386
Separation, 156–163

turbulent boundary layer, 166
Shallow water waves, 106
Shaped charge flow, 22
Shear flow stability, 112
Ship wave drag, 99
Shock adiabat, 245
Shock front structure, 254–267

gas shocks, 256
real gases, 264
supported by heat transfer, 260
weak shocks, 261

Shock polar, 282
Shock separation, 351
Shock stall, 351
Shock tube

theory, 269
Shock tubes, 267–271
Shock waves, 241, 242
Shvab–Zel’dovich deflagration, 374
Similarity, 88

Simple waves, 223
Sinks, 42
Skin drag, 161
Slots and flaps, 163
Sound barrier, 352
Sound waves, 211–218

cylindrical, 217
energy, 213
plane, 212
reflection, 214
spherical, 215

Source sheets, 43
Sources, 42
Spherical sound waves, 215
Stagnation density, 18
Stagnation pressure, 18
Stagnation sound speed, 18
Stokes equation, 82
Stokes’ flow, 82
Stokes streamfunction, 34
Strain rate, 76

longitudinal, 76
transverse, 76

Streamfunction, 33
Streamlined bodies, 295
Streamlined flow, 41
Streamlines, 16
Streampipes, 22
Stress, 77
Strouhal number, 74
Supercritical wing, 354
Supersonic flow, 219, 221
Supersonic flow interactions, 271–277

overtaking interactions, 275–277
shock overtaking contact surface,

276
shock overtaking rarefaction, 276
shock overtaking shock, 276
shock collision, 274
shock reflection at a wall, 271

Swept wings, 350

Temperature, 2
Thermal boundary layer, 188–193

laminar, 188
turbulent, 192
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Tollmein–Schlichting instability, 151
Torque, 77
Trailing vortices, 316
Transonic flight, 351
Turbulent boundary layer

flat smooth plate, 152
power law distribution, 154

Turbulent flow, 117–138
Blasius’s power law approximations,
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Kolmogorov distribution, 125
Kolmogorov’s theory, 123
law of the wall, 127
Reynolds’ ink drop experiment, 117
Reynolds’ stress, 126
rough wall, 129
smooth wall, 127
through a duct, 129
von Karman similarity model, 127

Turbulent pipe flow
empirical relations, 132

Turbulent thermal boundary layer, 192
Turbulent wake, 168
Two-dimensional steady flow

characteristic invariants, 232
characteristics, 231

Uniqueness, 36
Units, 86

Velocity defect, 130
Velocity potential, 32
Velocity profile near a wall, 129
Vena contracta, 19
Venturi, 418
Viscous fluid equations, 78–81

energy, 79
entropy, 80
momentum, 79

Viscous stress, 78
Viscous sub-layer, 128
von Karman boundary integral method

for a flat plate, 146
von Karman distribution law for

turbulent flow through a duct ,
130

von Karman ogive, 357

von Karman similarity model of shear
flow, 127

Vortex loop, 55
induced velocity, 40

Vortex rows, 72–74
Vortex sheet, 40
Vortices, 29–31

Rankine vortex, 54
simple vortex, 29, 53
Vortex sheet, 29

Vorticity, 27
rotation, 76

Wake, 158, 163–169
laminar, 163
turbulent, 168

Wave drag, 351
ship, 99

Waves in incompressible fluids, 93–102
capillary waves, 96
gravity waves, 97
shallow water waves, 106
stratified fluid, 108
surface waves, 94

contact discontinuity, 102
free boundary, 96
infinite fluid, 102

Waves in stratified fluid, 108
Weak solutions, 293
Whitcomb area rule, 358
Winds

downwash velocity, 320
Wing loading, 327
Wing sections, 296
Wings, 315–331

elliptic loading, 329
force on wing, 319
induced drag, 325
lifting line theory, 320
velocity at surface, 318
wake, 323

Zhukovskii aerofoil profile, 333
Zhukovskii aerofoils, 332, 339

Karman–Treffetz profile, 334
Theodorsen’s solution, 338
von Mises profile, 336
Zhukovskii profile, 333
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