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Preface

In standard university courses, the teaching of special relativity is often limited
to show the absolute (i.e. four-dimensional) formulation of relativistic kine-
matics, mechanics and electromagnetism, whereas the equally interesting long
chapters of geometrical continua and fluid dynamics are left for the general
relativity investigation only. Actually, students become familiar with relativis-
tic kinematics and the relativistic formulation of electromagnetism even from
their first-year courses, and this is a really important step in their formation.
However, they are given very little information about the so-called relative
observer point of view in relativity and the different ways in which one can
reintroduce the classical concepts of space and time, 3-momentum and energy,
etc. from their space-time counterparts, namely the space-time itself, the 4-
momentum, etc. The formalisms underlying this decomposition process, or
341 splitting techniques, have been widely developed starting from the 1950s
but can be found only in General Relativity textbooks.

We consider strongly important to make students familiar with Special
Relativity either from the absolute (space-time, four-dimensional) point of
view or from the relative (space plus time, 3 + 1-dimensional) point of view,
in order to give a central role to the measurement problem and to the observer,
even studying Special Relativity.

This book, which apart from standard topics, includes also a geometrical
introduction to continuous media and fluid dynamics, aims at pursuing an
effort in this direction, summarizing the Italian school contribution with the
pioneering works of Carlo Cattaneo since 1950 at the University of Rome,
Ttaly.

It is therefore a pleasure to acknowledge Prof. Wolfgang Rindler, an “old
friend” of Cattaneo and his coworkers since about 50 years, for many stim-
ulating discussions and useful suggestions in addition to his special effort in
improving the content as well as the English of this manuscript. Moreover, we
are also grateful to Prof. L. Stazi for his comments and the careful reading of
the hundreds of formulas in the manuscript.



VIII  Preface

A final remark concerns the reader: he is supposed to be familiar enough
with ordinary tensor calculus on Riemannian manifolds and endowed with a
good amount of patience!

Rome, Giorgio Ferrarese
February 2007 Donato Bini
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1

Classical Physics: Axiomatic Formulation

1.1 Methodology

Mathematical sciences contribute to physics either at an instrumental level
(algebra and geometry give in fact the descriptional methods, whereas anal-
ysis gives the calculus methods for a qualitative and quantitative control of
solutions corresponding to a certain schematization) or at a methodological
level.

Nowadays, physical theories can be regarded as true axiomatic construc-
tions which make them very close to mathematical theories. However, such
a relation between mathematical and physical theories should not be pushed
over the limit in which their different roles come to be confused. In fact,
both mathematical and physical theories are obviously related through the
“hypothetical-deductive method”, but they are substantially different. As con-
cerns their similarities, both of them assume a certain set of objects (primary
quantities) and relations among them given a priori (axioms or postulates).
Axioms must only be compatible. Then, from the primary quantities one
obtains, by definition, some other objects (secondary quantities) and the rela-
tions between primary and secondary quantities are logically derived by means
of theorems.

In any mathematical theory, the choice of objects and axioms is completely
free, apart from their logical consistency: to the primary and secondary quan-
tities, the theory cannot give any concrete meaning and what is really impor-
tant are the relations existing among such objects only; as a consequence of
this universality, the theory can be applied to many different situations.

For a physical theory instead, the objects must have a precise meaning in
terms of the physical reality they represent, in the sense that they necessarily
must have a counterpart in real objects. Moreover, all the observable relations
among the real objects must be in agreement with the relations postulated or
deduced from the theory. In other words, together with the “internal coher-
ence” of the theory, a “perfect correspondence” between the theory and the
reality is required.

G. Ferrarese and D. Bini: Classical Physics: Aziomatic Formulation, Lect. Notes Phys. 727,
1-201 (2008)
DOI 10.1007/978-3-540-73168-9 1 (© Springer-Verlag Berlin Heidelberg 2008



2 1 Classical Physics: Axiomatic Formulation

This principle directly inspired both Mach and Einstein. According to such
a point of view, a physical theory, differently from a mathematical one, comes
out not only as a consequence of a single intuition, but it is the result of
a series of intuitions and comparing with the reality, with possible adjust-
ments of the initial theory as well as of the control procedures. Moreover, any
physical theory, even in the case of the long-awaited unified model, is never
complete or definitive because it must include all phenomena and it has to
be in agreement with all the observable relations among them (in the past
as well as in the future). Apart from the discovery of new phenomena, the
agreement is conditioned to the sensitivity of the instruments, to the refining
of the experimental techniques, etc.

Actually, the assessment of the physics is the result of many theories (me-
chanics, electromagnetism, heat theory, thermodynamics, etc.), each with its
own postulates, in addition to the general axioms common to all the theories.
If the methods which control the theory reveal a discrepancy between the
theoretically expected results and the experimental ones, first to be modified
will be the specific axioms of a theory; then, if this is not enough, the general
postulates will be changed.

In the history of modern physics, there existed two different moments in
which the general postulates have been modified. The first concerns the black-
body spectrum: the disagreement between theory and experiments was dras-
tically solved renouncing the continuity hypothesis of the energy exchanges
between radiation and matter (Planck, 1900). This led to the birth of quan-
tum mechanics, associated with the names of Bohr (1913), Born, Schrodinger,
Heisenberg and Dirac (1915).

The second concerns relativity: the disagreement between theory and ex-
periments (especially after the Michelson-Morley experiment, 1887-1891) was
drastically solved renouncing to the traditional ideas of space and time. This
led to the Theory of Special Relativity [I], thanks to great contribution of A.
Einstein (1905).

Examining the main ideas of that theory is the aim of this book.

1.2 General Axioms

In pre-relativistic physics, there exist two fundamental schemes only: the ma-
terial scheme and the electromagnetic one; in correspondence, there exist two
different theories: mechanics and electromagnetism. Each natural phenomenon
was framed, in a simple way, in one of these two theories. Therefore, in the
assessment of pre-relativistic physics, we find a set of general axioms and two
more sets of specific axioms; the first one concerning mechanical phenomena
and the second the electromagnetic ones.
There are three general axioms:
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A. Ezistence of an absolute space, E3

This axiom aims at specifying the ambient, i.e. the most natural de-
scriptional context, for all the physical phenomena. The postulated abso-
lute space, Ej3, is a strictly Euclidean three-dimensional space. Its points
(primary quantities) can be referred, for instance, to orthogonal Carte-
sian coordinates ' (i = 1,2,3), associated with an orthonormal frame
7 = (0, ¢;), having its origin in O and unit vectors c;. To denote the dis-
tance between the points O and P, we will write OP = z’c; (the summa-
tion with respect to the dummy index i is assumed). Once the orthonormal
frame is fixed, the coordinates z* of P are uniquely determined.

Passing to another orthonormal frame 7’ = (O’,c;/), the same point
P will have coordinates z'%: O'P = z? ci/ The relation between 2 and
z% is obtained expressing the vectors c;; as a linear combination of the
vectors ¢;:

C;r = Rii/ci ~ C; = Ri,ici/ y (11)

where the matrices ||Riy|| and ||R ;|| are inverses of each other (we will
follow the convention that the upper index is the row index and the lower
index is the column one). In fact, the vectors {c;} and {c; }, as defined in
(1), are orthonormal:

Cir + Cpr = 5i’k/ ~ C; - Cp = 5ik y (12)

where d0; is the Kronecker symbol

JOifi#k,
5““_{11“:13. (1.3)

By using (1) in ([L2)), one obtains the orthogonality conditions:
RURF o = 0~ RYRY kb = dur - (1.4)
Moreover, the triangular relation OP = OO’ 4+ O’P, assuming
OP =z'c;, 00 =Tc;, OP=2a"cy=2"Rlyc, (1.5)
gives the linear and invertible relations:
=Rl + T (1.6)

The invertibility of (L], implicit in the interchangeability of the coordi-
nates z¢ and z* (the exchange is equivalent to moving the prime to those
letters which are without), is also a consequence of ([L4]), which gives the
condition

(det||Ri s |)* =1 (1.7)

! Following a standard convention for tensorial calculus, the prime is put on the
index and not on the kernel.
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that is, the (orthogonal) matrix R?; has its determinant equal to &1 and
represents a rotation (4 1) or an antirotation (—1). Furthermore, (L)
shows that the coefficients R?;/, besides the meaning of relating vector
components in ([LI)), coincide with the derivatives of ? with respect to
the zi: ' )
3 1
o' g, 29 (1.8)
ox’ ox’
It is implicit in axiom A that the whole physical reality can be represented
in terms of the geometric ingredients of Fs: points, curves, surfaces, ten-
sor fields, etc., which have an intrinsic meaning in Fj, that is they are
independent of the choice of the triad; this latter always has an accessory
role, being determined up to translations and rotations (equivalence of
orthonormal Cartesian frames).

The use of orthogonal Cartesian coordinates (the most simple in E3
and with a global meaning), of course, does not prevent the use of other
coordinates (polar, cylindrical or curvilinear in general), often with a local
meaning only.

B. Euzistence of an absolute time

This axiom postulates the existence of a universal time, that is, a well-
determined sequence of instants, independent of the space F3 and hence
of the observer and his motion (absolute clock). This axiom allows any
observer not only to order phenomena happening in a given place (local
calendar) but also to compare elementary phenomena which occur at dif-
ferent points in Fs, as well as to specify if they are simultaneous (notion
of contemporaneity) or not (notion of temporal ordering). Everything is
done objectively, i.e. independently of the observer and his motion.

It is also implicit, in axiom B, that every phenomenon has a well-
determined temporal dumtionE the evaluation of which depends on the
choice of a temporal coordinate ¢:

Rzi/ =

t=at' +b, a>0, (1.9)

defined up to a linear transformation, in the sense that it is still possible
to choose both the origin (b) and the unit (a).

From the mathematical point of view, the absolute time is represented
by an ordered set of instants, say T (not ordered, when inverting the
time is allowed), homeomorphic to an oriented straight line R. The Carte-
sian product R x E3 defines the space-time of classical physics, i.e. a new
absolute: E4, which is a four-dimensional manifold, with a foliation struc-
ture, and spatially homogeneous and isotropic. From the physical point
of view, axiom B implies the existence of synchronizable standard clocks,
working absolutely, i.e. independently of position, velocity and physical
phenomena.

2 “Tempus absolutum, verum et mathematicum, in se et natura sua, sine relatione
ad externum quodvis, aequabiliter fluit, alioque nomine dicitur duratio” [2].
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However, primary quantities are the points P € E3 and the instants of
time; derived quantities are the event E, characterized by a point and an
instant, with a physical correspondence in elementary phenomena (e.g. the
lighting of a lamp, the ring of a bell, etc.), and the material points, after
the introduction of the concept of mass. The latter have their physical
counterpart in the material elements, say the moleculeSE which aggregate
to form the various natural bodies or the physical world.

The study of physical reality and its laws obviously presupposes the
presence of the observer or the concept of a global reference frame, with
its (absolute) measurement instruments for lengths and times.

Generally, one identifies frames with coordinate systems; actually, the
concept of frame is more general and related to the so-called natural un-
deformable bodies (rigid frames or solids, for brevity). In fact, a physical
reference frame is any natural body on which one can put a system of
Cartesian coordinates. So a reference solid has to be necessarily an inde-
formable body.

In this sense, any Cartesian triad 7 in E3 defines a unique solid frame,
made up by the space of all the points in 7. Conversely, the same solid
frame is characterized not only by 7" but by any other triad which can be
obtained from 7 by time-independent translations and rotations.

In other words, one can attach oc® systems of orthogonal Cartesian
coordinates to the same solid reference frame, and all are equivalent.
Such coordinates are then related by transformation laws as in (L),
with R? and T independent of time, and defined as spatial internal
coordinates.

The notion of time allows to examine, relative to of a given solid .5,
the motion of a point or that of a system of points (that is the motion
of natural bodies), and hence to develop ordinary kinematics. In particu-
lar, one can develop rigid kinematics, or the motion of material systems
S’ analogous to S, defining other solid frames. From this, finally, rela-
tive kinematics follows, allowing to compare locally in F5 and at every
instant, the motion of a material element with respect to two different
frames. Such a comparison is summarized by the two general laws of addi-
tion of velocities (theorem of relative motions) and accelerations (Coriolis
theorem).

It is clear that, from a kinematical point of view, the reference solids are
all equivalent or indistinguishable; however, from a physical point of view,
i.e. for the formulation of the physics laws, they can be distinguished: this
motivates the necessity of a third general axiom.

3 At least in the cases in which the molecules, due to their internal symmetry, can be
represented by their center of mass only. In absence of such internal symmetries,
the scheme material point must be completed by introducing other geometrical
quantities (applied vectors, tensors, etc.) which specify the internal structure.
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C. Euxistence of a preferred rigid frame, S*

To this preferred rigid frame, all the physics laws are directly sub-
ordered. S*, which must be still operationally determined, will be iden-
tified with the fized stars in mechanics, and with the cosmic FEther in
electromagnetism.

1.3 Axioms of Newtonian Mechanics

To the primary notions of absolute space and time, Newtonian mechanics adds
the notions, also absolute (i.e. independent of the reference frame), of mass and
force. The mass is a constitutive property of matter, a scalar quantity denoted
by m; the force is the result of the physical action on a test (pointlike) body,
due to the presence of other natural bodies or possibly to direct connection
with them; an effect which can be schematized with an applied vector f.

The fundamental axioms are only two:

1. The law of motion (ma = £, m > 0);
2. The principle of action and reaction.

Their validity is limited only to the preferred frame S*; this should also be
stressed because, differently from m and f, the acceleration a has not an abso-
lute character but depends on the chosen reference frame for its measurement.

From axiom 1 for the special case of a free material point (f = 0) follows
the law of inertia, which constrains, from the physical point of view, either
the special frame S* or the absolute scale of times. Let us consider, in fact,
particles in inertial motion in empty space, i.e. far enough from other material
bodies, in order to not feel any physical influence by them. In S*, they describe
linear trajectories with a uniform velocity or they are at rest; and this cannot
be valid in any frame, or for any time scale.

However, independently of the Newtonian formulation, which starts from
the two static notions of mass and force, classical mechanics can be structured
by a set of axioms (see [3], pp. 192-196), which can all be expressed in terms
of the acceleration with respect to S* only. They allow the introduction of the
(dynamical) notion of mass and hence that of force, namely

f=ma. (1.10)

Definition (LI0) then becomes the LEX II, as soon as the force law, i.e.
the dependence of the force on its effective parameters, is specified. In all
those problems which can be framed in the scheme of the “material point”
(restricted problems), the force law is necessarily of the kind

f=f(Pv,t). (1.11)

The force law is assumed not to be related to the choice of the reference
frame (principle of force law invariance), and hence it must be expressible in
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terms of absolute parameters (like the distance r = |PQ| of moving points
or its temporal derivative 7), as it is in the case of the law of Newtonian
gravitation.

The introduced axioms allow to develop the dynamics of the material
point (free or constrained) relative to the frame S*, and then that of the
material systems, either with a finite number of degrees of freedom or contin-
uous systems. Thereafter, the formulation is extended to any solid reference
frame, using the Coriolis theorem. In such an extension, which implies the
occurrence of apparent forces, a fact appears which is directly related to the
expression of the general postulates of the theory, in terms of acceleration:
namely, the acceleration of a point is invariant, passing from a fixed reference
frame S to any other in linear uniform motion with respect to S: a = a’. Thus,
Newtonian mechanics satisfies an invariantive and fundamental property: the
preferred frame S* can be replaced by any other reference frame in linear
uniform motion with respect to it.

In other words, classical mechanics not only admits a single preferred frame
but also the whole set {S,} of the co® equivalent frames: the Galilean or iner-
tial frames, characterized by the law of inertia only (see [4] p. 157). Newtonian
mechanics is thus governed by the Galilean principle of relativity: the (differ-
ential) laws of the motion are the same in every Galilean frame.

Let us consider now two Galilean frames, Sy and Sg. The Galilean general
transformation law is the change of coordinates associated with the two triads
7 and 7', arbitrarily chosen as concerns position and orientation in S, and
Sy, respectively. These transformations are of the same type as in (L), with
Ry constant and T a linear function of ¢ (in fact the T are the coordinates
of the origin O’ of the triad 77, which undergoes a linear uniform motion with
respect to 7).

Including the time dependence, one then finds the Galilei group Gip:

e =Rz +ult+s, t=at'+b (i=1,2,3). (1.12)
If the two triads 7 and 7, in the corresponding solids, are chosen so that

i) they are superposed at t = 0: R%; = &, and s* = 0;
ii) the z'- and 2!~ axes have the same orientation of the relative velocity of
Sé with respect to Sg: u = uc; = ucy,

then they are said to be in z'-standard relation. In this case, (LI2) reduce
to the Galilei spatial transformation laws:

o' =2V +ut, 223 =228 (1.13)

Clearly, the Galilean principle of relativity can also be expressed in the
following way: the differential laws of mechanics are formally invariant with
respect to the transformations (LI2), or, in more physical terms, no mechanical
experiment, performed in a given Galilean frame, can show the motion of this
frame with respect to another Galilean frame.
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Let us stress that the Galilean principle of relativity (GPR), as we have
already seen, depends on the absolute character of the acceleration and the
dynamical definition of mass and force. Thus, once it is assumed that the force
f maintains its absolute meaning (principle of force law invariance),

iz, @, t)c; = f7 (2,4, t) ¢y, V Galilean transf. (1.14)

the GPR appears no longer as a postulate, but as a theorem. Its logical role
will be different in relativity theory, where such a principle is assumed a priori
to be valid, in an extended form, for all the physics.

1.4 Axioms of Maxwell’s Electromagnetism

As in the case of classical mechanics, electromagnetism introduces proper
primary quantities. They are the electric charge e, the electric field E and
the magnetic field H. Starting from these essential quantities, one obtains,

by definition, the derived quantities, like the charge density p def gg, i.e. the

charge contained in the element dC of volume and the current density J def pv.
The axioms of the theory are two: first of all, Maxwell’s equations

1
divH=0, curlE4+ O.H=0,
¢ (1.15)

1 4
AvE=4rp, cwlH— QE= "7,
C C

which specify the (differential) relations between the electromagnetic field and
the continuous distribution of charges and currents that generate itA

Equation (I8 form a partial derivatives system, with eight scalar equa-
tions (four of which are homogeneous); it is linear in the components of E
or H, and c is a universal constant, with the dimensions of a velocity. These
equations, valid in S*, are of said of Eulerian type because the coordinates
involved are the ¢,z internal to S*.

Another axiom concerns the mechanical action F on a test charge e
(Lorentz force), namely:

F:e(E+1v><H) , (1.16)
c

where v is the velocity of the charge in S*. This action is proportional to the
charge; in the special case of particle at rest (v = 0), it is also proportional
to the electric field F = eE.

However, as stated above, in any physical theory, the choice of the axioms
is the synthesis of experimental results and, from this point of view, Maxwell’s

4 System ([[I5) is the so-called Heaviside form of Maxwell’s equations, in the Gauss
unrationalized system of units.
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equations do not constitute an exception. They are a summary of many previ-
ous experiments, which besides the formalization of electromagnetism, helped
in foreseeing future developments of the theory. One of the most significant
among such experiments (Oersted) gave the value of the universal constant c,
by the invariant relation:

=inv. =c, (1.17)

where M is the dipole moment of a circular current loop, of area ¥, and I is
the intensity of the current in the loop. The value of ¢ obtained in this way,
namely ¢ ~ 3,00,000 km/s, was practically coincident with that of the light
velocity in vacuum, as coming from different experiments.

From (LI3)), some general consequences follow.

(i) From (IIH)4, taking the divergence of both sides, and using the identity
div curl = 0, as well as (LIH)s, the charge conservation equation follows:

Op+div(pv) =0. (1.18)

Equation (LIS expresses, in Eulerian form, the condition that, in the evolu-
tion of the charged continuum in S*, each region C € C' maintains its charge,
a property similar to the mass conservation law; it can be written as

d /p dC =0 ~ /p dC = [ pdC’. (1.19)

(ii) In the regions where there are no charges (p = 0) and currents (J = 0),
the electromagnetic field satisfies the relations:

divH=0, CurlE—l—i@tH:O,

(1.20)
divE =0, crlH-'9E=0.
Differentiating ([L20))2 with respect to time, one gets
1
curl(’?tE + 8ttH =0 y (121)
¢
so that, using ([L20)4,
1
curlewrlH = — 0y H ; (1.22)
¢
similarly, from (L20)24 one gets
1 1
curlcurlE = — catcurIH =2 onE . (1.23)

Furthermore, from the identity, valid for any vector field Vi

5 The curl of a vector field v can be expressed as
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curl curl v = grad(divv) — Agv (1.24)
and using (L20)q 3, the preceding relations (L22]) and (L23]) become
1 1
DHEA2H_ 26ttH:0, DEEAQE_ 2attE:0; (125)
c c

that is, in vacuum, E and H both satisfy the d’Alembert equation. It follows
that ¢ has a third important meaning. In fact, in analogy with elasticity the-
ory (e.g. the one-dimensional case of a vibrating string), one gets for ¢ the
meaning of propagation velocity (in vacuum) of E and H; this is called an
electromagnetic wave

Here, as in elasticity theory, the word “wave” has the meaning of solu-
tion of the field equations. Such a meaning for ¢ suggested to Maxwell the
hypothesis, later confirmed in experiments, that light could be an electromag-
netic phenomenon, and this allowed him to make predictions of more general
phenomena, related to wave propagation. In fact, from (T3] to (1G], one
obtains the so-called physical optics, and hence, with a limiting procedure,
geometrical optics.

The meaning of ¢ becomes more clear when one studies the propagation
of discontinuity waves for the Maxwell’s equations. To see this, let us assume
that, at time t = t¢, a certain perturbation is introduced in a given electro-
magnetic field, for instance by means of an electric discharge. This implies
that at t = tp, one has dE, JH # 0 in a certain region, limited by a sur-
face 0p. The region initially perturbed will evolve into a moving surface o,
representing the boundary between the region affected (at that time) by the
perturbation and the unperturbed space. In other words, ¢ is the instanta-
neous wave front of the perturbation, and it is also a discontinuity surface for
both the field components and their derivatives. If the discontinuities occur
only in the maximum order of derivatives appearing in the field equations, o
represents an ordinary discontinuity wave; otherwise it is a shock wave.

curlv = ¢’ x v (0; = 8/0x") .
From this definition,

curl curlv = ¢ x Bi(ck X Opv) = ¢t x (ck X Qi V)
=c"(c¢" - Bv) — dipv(c’ - c¥)

=co(c’ - aiv) — 6" OV,

and finally
curlcurlv = grad(divv) — Agv .

5 In presence of electromagnetic sources one has instead

|:|H:—47Tcu1rlJ7 OE =4n (gradp+ 123tJ) .
c c
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The fact is that Maxwell’s equations imply that all the ordinary discon-
tinuity waves, in vacuum or with regular sources, move with velocity ¢ (with
respect to S*), independently of the causes generating the perturbation itself[l

In other words, if f(¢,2%) = 0 is the Cartesian equation of the wave front
o in S*, at each point of o the propagation velocity is always c:

o f
grad f

Equivalently, every electromagnetic wave front satisfies the (Eikonal) differ-
ential equation:

= const = c. (1.26)

50 fO; f — 012 (8. f)°=0. (1.27)

Equation (.26 represents the simplest propagation law for a surface: constant
speed. However, as in the general case, the evolution of the wave front is
uniquely determined, as soon as the initial configuration oy and the initial
direction of propagation are assigned: o is parallel to og. In the special case
in which o is reduced to a single point (epicentral waves), the wave fronts
are spheres with a common centre; if o( is a plane, one has plane waves etc.

Summarizing: the universal constant ¢, coming from electromagnetic con-
siderations in Maxwell’s theory, assumes the meaning of propagation speed
of the electromagnetic waves. From this follows the necessity of selecting a
preferred reference frame in which (II5) hold that is S*. In any other frame,
the propagation velocity would necessarily be different.

Thus, even if ([LI0)), as well as the differential equations for mechanics,
are invariant with respect to coordinate transformations internal to S*, they
do not satisfy the GRP. This latter consequence can be directly confirmed,
using (LI2); in fact, neither Maxwell’s equations, the force law (LI6]) nor
the propagation law ([[27)) are formally invariant with respect to the Galilei
transformations (LI2]).

Hence there is a fundamental difference between mechanics and electro-
magnetism. In the latter case, S* is the only preferred frame (it was called
cosmic Ether, being an imponderable medium which allowed the light propa-
gation). In the case of mechanics, instead, S* cannot be distinguished from all
00? equivalent frames. Assuming the validity of Maxwell’s theory in the pre-
ferred frame S*, clearly, the same theory can be extended to any other solid
frame (Galilean or not, or even deformable). However, as for the case of the
mechanics, because of the fictitious forces, such extension requires explicitly
the characterization of the motion of S with respect to S*.

At this point, once the laws of classical physics are accepted, one has the
fundamental problem to localize the preferred frame S*, taking into account

7 In other words, such velocity does not depend either on the kinematical status of
the charges at the beginning of the propagation or on the propagation direction.
Experimentally, this effect can be checked by looking at the process (spontaneous
or not) of photon emission, by collision of relativistic particles.
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that this should be conditioned only by Maxwell’s equations, so that it cannot
be physically localized by means of mechanical experiments, but only through
electromagnetic experiments. Such a localization was specifically sought for
by the classical experiment of Michelson and Morley (1887), as we will see in
the next section.

1.5 Optical Experiments and Classical Physics

In this section, we briefly review also few optical experiments which lead to
the idea that the cosmic Ether should be identified with the fixed star space
(see also []).

Astronomical Aberration

If two different observers, in relative motion along a line r, measure the in-
clination with respect to r of the light emitted by a fixed star A, the two
measurements 6 and 6’ are slightly different and depend on the star position.
It follows that by observing the same phenomenon after 6 months (to make
the effect bigger), the same part of the sky appears to be deformed.

Such a phenomenon was found by J. Bradley in 1728. He observed that
the stars, as seen from the Earth, seem to describe on the sky, in 1 year, a
small ellipse, with the semimajor axis a = 20”,47 of the ellipse parallel to
the ecliptic, and the semiminor axis b = a sin A, where A is the latitude of
the star. He called this effect aberration, as if it were a sort of optical illusion,
related to the motion of the Earth around the Sun. Classical mechanics allows
the explanation of the effect, by using the addition of velocities law. In fact, let
us assume that, in the reference frame S*, both the star A and the observer O
are at rest; let ¢ be the (absolute) velocity of the light ray, as emitted from A,
so that, for the observer O, the direction of the ray is OA. For the observer O,
in motion with relative velocity u with respect to O, the apparent direction
of the light ray is that of the relative velocity ¢/, given by the law of addition
of velocities:

cd=c—u. (1.28)

Thus, from Fig. [LT] we find the relation
sin(Af) u

sin(m —¢) ¢’
from which the approximate formula (to first order in Af) holds:
u .
Af = sinf. (1.29)
c

Classical mechanics shows, thus, a theoretical effect depending on 6, i.e.
on the position of the star, which is of the first order in the ratio u/c. In
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Fig. 1.1. Astronomical aberration

particular, let O’ be an observer on the Earth, and hence in (approximately)
uniform linear motion with respect to S*: u ~ 30 km/s, the orbital velocity of
the Earth. With this choice of u, the experimental data are in agreement with
(C29) and with the identification of the cosmic Ether with the space of fixed
stars. However, the interpretation of the such a formula is limited because of
the existence of big experimental errors.

Luminal Doppler Effect

A second experiment, which confirms the identification of the cosmic Ether
with the space of the fixed stars, is a simple application of the Doppler effect.
Let us recall here the classical relation which gives the frequency variation
law of a monochromatic plane light wave when the observer is in motion with
respect to the source. If the observer and the source are both at rest with
respect to the Ether S*, one has

_c
V=
where v is the frequency and \ the wavelength. For an observer S', in motion
with respect to the Ether with (constant) velocity u, parallel to the propa-
gation direction of the wave front n (n-n = 1), the situation is different.
Assuming, for instance, that the observer S’ moves away from the source, the
wave relative velocity will be ¢ — u, and it will contain a number (¢ —u)/\ of
waves. Hence, with respect to S’ the wave frequency will be

, c—u ( U)
- — (1=
v A v ¢/’

or u-n
1/':1/(1— . ) , (1.30)
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where u-n = u. Actually (I30) is also valid when u is not parallel to n and
represents the frequency variation law of a light wave, passing from the Ether
to a frame S’ moving with respect to the Ether with a constant arbitrary
velocity u.

In an equivalent form, defining Arv = v/ — v, one has (luminal Doppler

effect)
=— . (1.31)

From this relation, one finds that, at a classical level, a transversal Doppler
effect does not exists: u'n =0 — v/ = v. The maximum effect is longitudinal,
and it is of the first order in the ratio u/c, as for the stellar aberration.

Let us note that in (30]), together with the absolute notion of time, also
the wave length A (distance between two successive crests) has been considered
as invariant, passing from the Ether to S’, in accordance with the classical
invariance of space distances. Now one faces with the problem of how it is
possible to operationally control (IL31]), without performing measurements in
the Ether, which is still to be localized.

Let us assume once again that the Ether will coincide with the space of the
fixed stars, and let us consider, as a source, a star in the ecliptical plane. Let
S’ be the frame of the Earth and assume we perform frequency measurements
at a temporal difference of 6 months. Together with (L.30), one will also have

UH:I/(1+U) ’
C

where wu is the speed associated to Earth orbital motion (v = 30km/s). Thus,
we have

U
VU =20, vV—v'=-2"v,
c
and (3T reduces to
Iy u
=— . 1.32
v+ v c ( )

Equation (32) solves our problem because both v/ and v are observable. If
the Ether coincides with the fixed star space, one has to find agreement with
the experimental data, assuming u = 30km/s. This is exactly what happens,
independent of the chosen source and within the experimental errors.

Fresnel-Fizeau Effect

An experiment, not so simple in its interpretation, if compared with the pre-
vious two, has been done by Fizeau in 1851, to verify an effect of light prop-
agation in a moving medium foreseen by Fresnel in 1818.

In a transparent, homogeneous and isotropic medium, at rest with respect
to the Ether, it is known that the speed of light becomes
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vy = “<ec , (1.33)

where n > 1 characterizes the medium and is called its refraction index. What
happens if the medium S’, where the light propagates, is in uniform transla-
tional motion with respect to the Ether? Figure shows the experimental
device created by Fizeau to answer this question. A half-silvered plate, placed
in A, divides the light ray coming from the source S. The rays follow the rect-
angular path ABCD, by means of proper mirrors, having an inclination of 45°,
and then reach O, where a screen is placed to show interference fringes. Along
their path, the rays pass trough two transparent tubes (arranged longitudi-
nally along AD and BC, respectively), in which a homogeneous and isotropic
liquid (water for instance) flows with constant velocity, but in opposite direc-
tion in the two tubes.

When the liquid is at rest in the two tubes, in O there are no interference
fringes. These appear instead when the liquid is moving, and the fringe’s
amplitude varies with the fluid velocity wu.

Hence, the light velocity is modified by the motion of the transparent
medium, either by means of its speed u or by its orientation because this
affects differently the two rays, depending on whether the motions in the
tubes agree or not.

To see this in detail, let us denote by v(u) the light speed in the tube (with
respect to the laboratory), as a function of the speed of the liquid w, in the
case in which the two motions agree. If [ is the common length of the tubes,
the temporal phase-displacement of the two rays At (due to the fact that the
ray in motion in opposite direction with respect to fluid in the tube will take
a longer time to reach O) is given by

At = - . (1.34)

Fig. 1.2. The Fresnel-Fizeau apparatus
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Moreover, a first-order Mac-Laurin expansion of the function v(u) gives

dv
v(u) ~vg + ku, k= (du)u—o ; (1.35)

thus, (L33]) becomes

At — 4lku _ 4lku

vg — k?u? 02<1 _k2u2) ’

where the expression ([34]) for vy has been used. At the considered first order
in u/c, we have

1
At = 2 4lknu . (1.36)

Obviously, the temporal displacement At depends on the parameters [, n, u,
which must be considered as fixed in the course of an experiment, and on the
coefficient k, which uniquely determines the position of the fringes. Fizeau
found that (I30) was in agreement with the experimental data if k (assumed
to be depending on the used liquid, i.e. on n) was given the form:

k=1- . (1.37)

From this and from (33]) and (33)), the approximated expression for v(u) is

v(u) = v + <1 - Zé) u. (1.38)

We will see (L38) again in the next chapter, as a direct consequence of the
relativistic addition of velocities theorem. However, in what is stated above,
there exists an incongruence. Equation (L36]) has been deduced relative to a
frame at rest with respect to the Ether (in fact this is the condition of the
observer O and the experimental device, except for the water), and in the
same frame, one must give an interpretation to (IL38]). Vice versa, (L38]) has
been obtained by using (L37), and comparing (L306) with the experimental
data corresponding to a terrestrial laboratory. Thus, the procedure is not
consistent. The incongruence can be avoided, by repeating the calculation of
At in an Earth laboratory. In doing so, the new value of At will be different
from what gives (IL30)), either for terms of higher order in u/c or because of the
presence of the velocity of the laboratory with respect to the Ether. Therefore,
(L34) is still valid in an Earth laboratory, if it is in slow motion with respect
to the Ether; thus, comparing with experimental data, the validity of (3]
follows too.

On the contrary, one can also assume that the empirical formula (L38]),
which holds to the first order in an Earth laboratory, is still valid to first order
also in a laboratory at rest in the Ether. In any case, the value (IL37) of the
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coefficient k, obtained experimentally assuming the validity of (L36]), cannot,
on the basis of a pure logical argumentation, be considered the (experimental)
proof of the same (L36]) and, hence, as a proof of the slow motion of the Earth
with respect to the Ether.

Fortunately, the theory of electromagnetism helps. In fact, ([L38) can
be proved by using Maxwell’s equations, for a dielectric nonmagnetizable
medium, in slow motion with respect to the Ether. From these equations,
one finds exactly the value (38 proposed by Fresnel and Fizeau, for the
propagation velocity of a plane wave.

Alternatively, the same value can be obtained, assuming that a primary
wave moving in the Ether with velocity ¢, because of electric polarization phe-
nomena, creates dipoles which become, in turn, centres of secondary spherical
waves (Huygens theorem). The electromagnetic field, resulting from the super-
position of the two kinds of waves, is equivalent to a single wave, propagating
with the velocity ([L38]).

In conclusion, the Fresnel-Fizeau effect confirms that the Earth is moving
slowly with respect to the Ether, but its speed through the Ether is certainly
different from the value 30 km/s of the Earth velocity with respect to the fixed
stars. Hence, the Ether cannot be considered at rest with respect to the fixed
stars.

The Michelson—Morley Experiment

If the Ether were not at rest with respect to the Earth, as follows from the
optical experiments described above, the velocity of light with respect to the
Earth—because of the addition of velocities—should be different, in different
directions and in different seasons. To demonstrate this light anisotropy on
the Earth, Michelson and Morley in 1887 performed the following experiment,
which was improved and repeated later, always with a negative result.

The apparatus, assumed to be at rest with respect to the Earth (lab-
oratory), is shown in Fig. A ray of monochromatic light arrives on a
half-silvered plate L, placed at 45°. Out come two rays, which follow different
paths, for going and coming back, by means of the mirrors S; and Sy, and
which are combined on a screen O, to show inference fringes. One of the two
paths is in the direction of the velocity u of the Earth with respect to the
Ether, and the other has the perpendicular direction. Let 77 and T, denote
the flight times of the two rays. For the first ray, we have

l l l l
T1=1+1=2lc=2 12

c—u c+u c2 —u? ( u > ' (1.39)
cl|l1l— 5

C

For the second ray, instead, if ¢’ denotes its velocity with respect to the Earth,
we have
c=u+c;
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i
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\

Fig. 1.3. The Michelson-Morley apparatus

from this, as the trajectory is orthogonal to u, the value of ¢’ follows:

d =+/c2—u.

Therefore, the time used by the second ray is given by

2l lo

Ty = =2 .
T cy/1—u2/c?

(1.40)

The phase-displacement between the two rays, according to classical
physics, is then

AT:T2_T1: ﬁzu/c,

2 / 1
2= )

cy/1— 32 VA
and it is generically nonzero, except for special length of the two arms and
special values of u. This implies the existence of interference fringes, actually
observed by O.

Let us now rotate the whole apparatus by 90°, so that the two arms, and
hence the two paths, are exchanged. The phase-displacement then becomes

2 lo
AT = lh — ,
cy/1— B2 ( \/1—[32>
differing from the previous one, also in its sign. In fact, assuming AT > 0, i.e.
lo > ll/\/l — 32, we get AT’ < 0, because

ly I
V11— 32 T8

2>ll;
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analogously, when AT < 0. Finally, one has

A=AT o A7 = 2t D) <1 ! )

e/1-82\ 12

or
2([1 + 12)

A= 1-p2-1 0. 1.41
e(l1—p32) (\/ p ) < (1.41)

Assuming § < 1, we have the approximate result

2
A:—Z“Ll“bz £0. (1.42)
c c

The theoretical condition A # 0 implies, after exchanging of the two arms, a
displacement of fringes. However, the effect of the second order in u/c could
not be seen experimentally, in spite of the precision accuracy of the experi-
mental device, in the different periods of the year and the different ways in
which the experiment was performed. Systematically, the rotation of the two
arms (even when the platform was placed on a mercury liquid basis) did not
show any variation of fringes: A = 0.

Within classical physics, assuming ¢ # oo, the experimental result admit-
ted the only possible interpretation u = 0, i.e. Ether at rest with respect to
the Earth, in contradiction to the optical experiments described above.

A subsequent hypothesis due to the same Michelson, and then also to
Stokes, according to which the Ether was dragged by the Earth, in the vicinity
of its surface, was abandoned because no fringes were observed repeating the
experiments at mountain level. The Lorentz—Fitzgerald hypothesis of length
contraction for moving bodies with respect to the Ether was then introduced
(in fact, it implies |AT| = |AT’| and hence A = 0, if one supposes that the
length of the arm displaced along the velocity of the Earth with respect to
the Ether was not [, but [ \/ 1 — (32, differently from the orthogonal one).

According to an epistemological point of view, widely accepted today (fal-
libilism) and not by chance developed, in consequence of the scientific fact we
are briefly dealing with, one should suppose that it is not possible to prove
the truth of a theory, but only the falsity. Therefore, one should conclude that
on the basis of the negative result of the Michelson and Morley experiment,
all the classical physics should be put in crisis. Because of the impossibility
to solve the problem of localizing the Ether (apart from the use of an ad hoc
hypothesis), following the logic, one arrived to deny its physical existence as a
unique privileged frame. A trace of this way of reasoning can be found already
in Poincaré, earlier than in the celebrated essay of Einstein in 1905.

It was immediately clear that the Ether problem should be related to the
difference between classical mechanics and electromagnetism, the first admit-
ting an infinity of preferred frames and the second only a single one. Such a
difference, in agreement with the idea of a unified physics, was suggested by
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the effective mixing of natural phenomena and in particular, by the impossibil-
ity of separating such related phenomena, like mechanical and electromagnetic
ones (see e.g. the particle theory of light).

This demand for unification required, first of all, the extension of the GRP
also to the electromagnetic phenomena, and from this point of view, it was
the same Einstein to understand concretely this fundamental necessity and
to be aware that it had to imply the invariance of the light velocity (through
the formal invariance contained in Maxwell’s equations), hence to think of a
fundamental revision of the notions of space and time, i.e. the only notions
really common to all the physical phenomena. With his words, in the 1905
essay []: “We will raise this conjecture (the purport of which will hereafter
be called the “Principle of Relativity”) to the status of a postulate, and also
introduce another postulate, which is only apparently irreconcilable with the
former, namely, that light is always propagated in empty space with a definite
velocity ¢ which is independent of the state of motion of the emitting body...”
Einstein was creating the axiomatic body of the new physics: special relativity.
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2

Space-Time Geometry and Relativistic
Kinematics

2.1 Introduction to Special Relativity

In the history of physics, Einstein occupies a position analogous, in certain
respects, to that of Galilei, so big being the revolution they both determined
in the scientific thought. Galilei, after 2000 years, eliminates the Aristotelian
ideas on the dynamics (force directly related to velocity) with the help of the
well-established methods of experimental control of a theory, and introduces
the foundation of classical mechanics; Einstein, on the other hand, on the
basis of the recent progress of particle physics, eliminates the distinct notions
of space and time and introduces the new relativistic mechanics. In Einstein’s
ideas, there exist two “corner stones”, on which special relativity formulation
is based:

i

ii)

Extended relativity principle, made up by two parts because it posits
(a) the ezistence, in Nature, of a class of co® preferred solid frames Sy,
inertial or Galilean frames, just as in classical mechanics; (b) the formal
invariance, with respect to these frames, of all the physics laws and not
only of those of mechanics.

Light speed axiom, according to which the light speed, in vacuum, has
the same value ¢ in all the Galilean frames, irrespective of the emission
properties of the source. This axiom is clearly related to the validity of
Maxwell’s equations, which are considered the general laws of electro-
magnetism. According to point (i), these are formally invariant in all the
inertial frames. In turn, such a validity, extended from the Ether to all
the Galilean frames, implies two facts. On one side, it gives to the abso-
lute quantities of classical electromagnetism (e.g. p, E and H) a relative
meaning, and, hence, creates the problem to specify their transformation
laws, passing from one frame to another; on the other side, it marks the
appearance of a universal constant: the light speed in vacuum, which con-
strains the new mechanics to admit a velocity (i.e. ¢) which has to be the
same in each Galilean frame:

G. Ferrarese and D. Bini: Space-Time Geometry and Relativistic Kinematics, Lect. Notes
Phys. 727, 21-[I07 (2008)
DOI 10.1007/978-3-540-73168-9 2 (© Springer-Verlag Berlin Heidelberg 2008
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2 Space-Time Geometry and Relativistic Kinematics

jj in S

c= (2.1)
ds’ | ,
da in S,

for any light signal in vacuum.

In the classical situation d¢t = dt’, ([Z1) is not compatible with the ad-
dition of velocity law (a linear and uniform motion, with velocity ¢ with
respect to Sy, appears linear and uniform in S’é too, but with velocity
¢/ = ¢ — u, where u is the relative velocity of S; with respect to Sy). In
particular, it follows that in any frame, there is a different value of the
light velocity, according to its direction (optical anisotropy). Hence, it is
necessary to assume dt # dt’ together with ds # ds’: the validity of (Z1)
implies the necessity to renounce not only a universal time but also the
idea of an absolute space. From here it follows Einstein’s criticism of the
traditional idea of an absolute time, which he rightly considers a conven-
tional quantity, without any operational meaning. But up to what point
is it correct to speak about simultaneity, in terms of absolute quantities?
Within a given Galilean frame S, an operational criterion, to establish if
two events, F and F, occurring at two different points A and B, are simul-
taneous, is the following. Let us assume that the light speed be the same,
in each direction (optical isotropy), and let us imagine that when the two
events occur, two light signals were emitted from A and B, respectively. If
these were simultaneously recoiled on a screen placed in the middle point
of AB, M, then the two events can be considered as simultaneous. Other-
wise, their arrival order will specify the corresponding temporal sequence.
This criterion allows us to operationally synchronize the co® (one for each
space point) standard clocks of a given Galilean frame. But, is it possi-
ble to transport—as classical mechanics does—the notions of simultaneity
and arrival order, from one inertial frame to another? The answer is no.
In fact, let us consider, together with S;, another Galilean frame Sé, in
linear uniform translational motion with respect to Sy, with velocity u.

Let us suppose that the events Y and F’ be simultaneous in Sg, occurring
at A and B at the time ¢ = 0. Let then A’ and B’ be the points of S
superposed, at t = 0, to the points A and B, and M’ be the mid-point of
A’B’. Initially (i.e. at t = 0), M’ (in S;) coincides with M (in Sg); however,
repeating the previous experiment, because of the motion of M’, the ray
emanating from B= B’ will meet M’ before the one coming from A= A’.
Hence, to the observer M’, the switching a light in B will seem to arrive
before that the one coming from A: this is the relativity of simultaneity or
the fact that two events, simultaneous in one frame, are not simultaneous
in another Galilean frame.

The situation would have been different if the light speed were infi-
nite: in fact, classical mechanics and its notion of absolute time are both
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consistent with ¢ = oo; in spite of the fact that from 1675 (Rémer), the
finite value of the light speed was known.

However, assuming the existence of a class of co® preferred frames, in
each of these frames, one can still introduce a universal time ¢, but this
t is, a priori, independent of the time ¢’ of another frame: t' # at +
b. Furthermore, according to Einstein, not only the time but also the
lengths have a relative meaning; that is, the ordinary distance between
two points, in the same Galilean solid, is not invariant: two events that, in
a given Galilean frame occur at distinct points, in another Galilean frame
may occur at the same point, and vice versa. In other words, even if all
the Galilean solids, assumed to be equivalent, have the same geometric
structure (strictly Euclidean), they are no more superposed to the same
three-dimensional space Fj3, as it is the case for the classical physics.
For example, the condition of uniform translational motion (for rods or
clocks) in a given Sy determines a variation for lengths and times, due to
the relative nature of spatial and temporal measurements, and not to a
deformation of clocks and rods.

2.2 General Axioms

Let us summarize the general axioms of Einstein physics.

A. Ezistence of an absolute space-time
This axiom implies that the only primary quantity is the event E, or
“elementary phenomenon”. The set of all the events { E'} form the universe
in its becoming, and this is the four-dimensional unification of space and
time in a unique absolute: the space-time.

It is implicitly assumed in A that all the physical reality can be rep-
resented in terms of the geometrical objects of the space-time (points,
curves, hypersurfaces, 4-vectors, etc.). In particular, the Galilean or in-
ertial solid frames can be considered (in a new form, as will be specified
in the next postulate) and identified as solids in uniform translational
motion with respect to the fixed stars.

B. Euxistence of Galilean frames
In the space-time, it is possible to identify a class of co? preferred frames
(the Galilean frames), each of them characterized by a three-dimensional
space, 2, endowed with a universal time ¢ and with all the ordinary prop-
erties; that is the spatial isotropy, the spatial and temporal homogeneity,
the validity, in X, of the strict Euclidean geometry, and the completeness,
in the sense that, in each Sg, all the various phenomena can be coordi-
nated (in a relative form). In other words, the generic event E appears, in
S, as occurring at a certain point P of the solid, and at a certain instant
t. Thus, once one has selected a Cartesian triad 7 in X, E is represented
by a numerical quadruple (¢,2%) (i = 1,2,3): the space-time coordinates
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of the event E. In another Galilean frame, S’é, the same event E will be
associated with another point P’ € S; and by an instant ¢’ of the tempo-
ral scale associated with S’é; hence, it will be represented by a numerical

quadruple (¢, xi/), different from the previous one but determined by this
(Lorentz transformations).

However, together with ¢ # at’ + b, one will also have z? # Riyz? +
u't + s' because, as stated above, the Galilean solids Sy and S} are not
superposed to a common FEjs, as is the case classically.

In any case, because of the completeness of the physical description in
Sg, the history of S’é can be followed in Sy too, even if only in relative
terms; that is, the particles of Sé will appear in uniform translational
motion. Thus, even with the unique new absolute: the space-time, the
ordinary notions of space and time are not eliminated, in the Einsteinian
conception, because these are the fundamental terms of our experience;
they, clearly, can be found in the Galilean frames, but with a relative
meaning. The experimental physicist, operating in a Galilean frame S,
(laboratory), does his measurements in terms of lengths and time intervals,
knowing that the values he can find, in the study of a given phenomenon,
will be different from those found by another observer, at rest in another
Galilean frame. The additional fact is that, not only the measurements but
also the properties that one measures, have, a priori, a relative meaning
(velocity, acceleration, mass, charge, electric and magnetic fields, etc.).
Hence is the necessity to know the transformation laws of these quantities,
passing from one to another Galilean frame. In turns, this requires the link
of the relative quantities to the absolute quantities, from which they come
and can be seen as a renaissance of the platonic philosophy: the world
shows itself by means of shadows, the only things accessible by men; even
if these are coherent shadows, with an objective content, as emanating
from the “absolute”.

However, the physicist especially looks for the fundamental relations
between observables; that is, for the physical laws, which, because of their
universal character, must satisfy invariance requirements. More precisely,
in spite of the relativity of the geometric terms used to formulate physics
laws in S, the following axiom holds.

Eztended relativity principle (ERP)

All the physics laws are formally invariant, passing from one reference
frame S, to another Sé. That is, no physical experiment may allow to dis-
tinguish between Sy and Sg. This is an extension of the classical Galilean
relativity principle due to the extension of the absolute space and absolute
time axioms. However, the invariance is only formal, in the sense that all
the ingredients entering the formulation of the physics laws have a rela-
tive meaning. The problem of studying their transformation laws is then
naturally posed.
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In any case, special relativity substitutes the existence of a universal
constant for the indetermination of the physical space and the time, that is

D. Independence of the emission for the light speed in vacuum
In each S, the light speed in vacuum does not depend on the source
motion, and it has the same value in each direction. Because of the ERP,
such a speed cannot depend on the chosen Galilean frame S, and it should
have the value ¢ which it takes in the rest frame of the source: ¢, = c’g =c.
Let us note that the latter postulate becomes a theorem if Maxwell’s
equations are accepted as laws of electromagnetism, obviously subordi-
nated to the ERP; that is, every electromagnetic perturbation propagates
in vacuum with velocity ¢, independent of the initial disturbance.

Finally, ¢ is a limit velocity, in the sense that

E. No material particle, in Sy, can move at (or faster than) the light speed

m vacuum

v? < c? for any material particle. (2.2)

This axiom, as will be elucidated in what follows, can be obtained by
adding the causality principle to the preceding axioms. It is widely con-
firmed, both in the macroscopic and the microscopic range, in high-energy
physics experiments. Here we prefer to assume it from the beginning.

In any case, (22]), valid in every S, because of the ERP, represents
a nonholonomic, unilateral and quadratic constraint, which does not in-
troduce in S, horizons (i.e. limitation for the particles trajectories), but
restricts only the motion laws.

2.3 The Minkowski Space-time

The problem is now that of geometrizing the chosen axioms in order to build
up a model for the Universe: the Minkowski space My, where the Galilean
frames should be localized, the Lorentz transformation be derived, i.e. where
all the physics theories can be developed. In fact, even if the relative point of
view is allowed, and it is close to the phenomenological reality as it appears to
the observer, the absolute point of view in My is primary, either for developing
the general procedures or to define the various physical quantities.

In classical mechanics, the problem of finding representative spaces for ma-
terial systems was considered too. As an example, for the motion of a holo-
nomic system, two different formulations exist: one of geometrical-kinematics
content (configuration space and phase space) and another of pure geometric
content (event space, or the space of the world lines). A material point is
a particular holonomic system and hence for it both the possibilities are al-
lowed. However, in the relativistic framework, the second formulation should
be favoured, not only for its absolute content (the first has necessarily a rel-
ative meaning because such is the time; similarly for the configuration space,
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which can be identified with a Galilean space) but also because it allows the
conceptual vicinity between the time and the space coordinates.

There is, clearly, a fundamental difference: while in a classical context there
exist a 1 — 1 correspondence (up to a weak condition d¢/d\ > 0, see below)
between all the physically allowed motions and the curves, in the relativistic
case, i.e. in the event space, such a condition does not exist because of the
constraint (2.2]).

To be more specific, let us consider a Galilean frame S, referred to internal
(orthogonal Cartesian) coordinates z*. From axiom D, let us denote 29 = ct,
so that z¥ has the dimensions of a length. Then, we can interpret =% (a =
0,1,2,3) as the Cartesian coordinates of a four-dimensional affine spacd Ey.
Such interpretation obviously requires that an affine frame be arbitrarily fixed
in &4, namely an origin © and a basis {c,}.

The generic point E € £4: QF = z%c,, represents an event, i.e. the special
event that, in the considered Galilean frame, occurs at P = 2% at the instant
t = 2%/c. Analogously, a generic motion in S,

xt=z'(t) t € (to,t1), (2.3)

has two characteristics: a geometric one (the relative trajectory, ¢ = PoP1)
and a kinematic one (the law of motion along the trajectory s = s(t)). These
are summarized, in &4, by an oriented curve segment £7:

0
2 = (1) d; —c>0, (2.4)
where the time of the reference frame is chosen as parameter along the curve.
The latter is not a special parameter because it can be replaced by any
other parameter A\, chosen with only the condition of saving the orientation
of £T:
dz?

dA >0 Ve ()\0,/\1) . (25)

L Tt is well known that an affine space &4 can be defined as a set of elements
(points) in a 1 — 1 correspondence with the ordered 4-tuple of real numbers
z% (e = 0,1,2,3), defined up to linear and invertible transformations: z* =
A%z 4 A% A% = 8300‘/81’0/ being a regular matrix, constant as the A®.
Alternatively, £ can be thought as a set £ of elements (or points O,P,Q,...)
associated with a linear space Ty such that there exists a surjective application
a: EXxE —  Ti between ordered pairs of £ and elements of Ty, that is
(O,P) - v = a(O,P) = OP, satisfying the conditions:

1. VOef and v eTyIP e : 0P =v;
2. OP+PQ=0Q, VO,P,Q € & (triangular relation).

Then, five-ordered points of £: 2 and U, (the origin and the “unit points”), such
that the vectors ¢, = QQU, are linearly independent in 74 and define an affine
frame.
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Thus, every pointlike motion M in S, (z° = z%(s), s = s(t)), in the event space
&y, is represented by a well-determined arc T : 2% = 2%(\). In particular,

(i) to the uniform rectilinear motions in Sg: @ = const. (i = 1,2,3) corre-
spond, in &4, straight lines % = const., and among these

(ii) the points of the Galilean frame (at rest in Sy: 2° = const.) are represented
by straight lines, parallel to the z°-axis.

Conversely, an oriented arc £T € &£, does not define, in general, a physically
allowed motion. In fact, even if \ is eliminated: 2° = 2°(\),2* = 2*(\), —
2! = 2%(t), the condition ([Z2)) should be satisfied, i.e. 6;4'2% — (%)% < 0, or,
after multiplication by (dt/d\)? > 0:

da? da® dz®\ 2
5lk(d/\><d)\)_<d/\) <0, )\E()\Q,/\l),
the latter being a form invariant with respect to the choice of the parameter

. Therefore, a necessary and sufficient condition for /T € &, to represent a
physically possible motion in Sg, is that the following limitation:

dz® dzf
ma5<d)\) (d/\) <0 V)\E()\Q,/\l) (26)
be satisfied, with
-1 0 0 O
def 0O 1 0 0
Mmag = 0 01 0 (2.7)
0 0 0 1

The limitation (2.6 can be geometrically interpreted. To this end, let us
introduce, in &4, the scalar product associated to the symmetric matrix ([2.7]):

VWY o Vew? YV, Weé,. (2.8)

Such an operation satisfies all the ordinary scalar product properties, namely

1. commutative: V- W =W -V,
2. bilinear: (U+V) - W=U-W+V -W,; (aU) -V =q(U-V);
3. nonsingular: V-.W =0 V V — W=0,

as it can be directly verified.

As concerns the property 3, the condition magvawﬁ =0 VV®isequiv-
alent to magW? = 0, that is WP = 0, since the matrix mas is regular:
det [|magl|| = —1.

As in the ordinary case, the condition V - W = 0 can be geometrically in-
terpreted, in terms of orthogonality of the two vectors; the vectors orthogonal
to V form the orthogonal hyperplane to V, etc.

The operation (2.8]) gives, in particular, the meaning of the coefficients mag,
identifying them as scalar products of the (affine) frame vectors:
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Mag = Cq * C3 (o, 6=0,1,2,3); (2.9)
moreover, it associates a scalar quantity to any vector V, the norm ||V||:
[[V]| = magVeV?, (2.10)

which is not necessarily positive; for example, ||co]| = —1.

The affine space &, endowed with the scalar product (Z8]), assumes the
structure of Euclidean space (not in a strict Senseﬁp) : the Minkowski space My.
Such a space is characterized also by the distance §(E, F') > 0 between the
two events E and F

def o o i i
0% = |mas(af — 2%)(@p — op)| = (el — )@k — o) — (2f —2)?]
(2.11)
built up with the relative spatial distance
A= \/dlely - aip)(wh — 2) (2.12)
and the relative time interval: At = |tz — tg|, so that
62 = |A — AL (2.13)

This is a geometrical model for the special relativistic absolute: the four-
dimensional Minkowski space-time. First of all, its points are the events of
the natural world; the history of all the physically allowed motions (sequence
of events in causal relation) is given by particular oriented arcs ¢+ or world
lines of My. They must satisfy the condition (Z) which, after introducing
the tangent vector A = A\%c,,

det dz®

@ = =0,1,2 2.14
)\ dA (a 07 Y 73)7 ( )

is equivalent to the condition
A = mapA®AP <0 VA€ (Ao, \1) - (2.15)

This is a typical property of the world lines which has an intrinsic meaning
and does not depend on the choice of the parameter A. In fact, if A = A(\),

then
dN

dx

VTR
AA_AA<d)\ ,

A=X

and hence

so that, from ZI5)), ||| < 0.

2 An Euclidean space is strictly Euclidean if one assumes instead that V'V # 0,
then ||V|| > 0 or ||V]| <O0.
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At this point, we have considered the mathematical translation of the ax-
ioms A and E. We still have to give a representation, in My, of the Galilean
frames, and also to show how M, deals with the relativity principle. However,
strengthening the structure of affine space by introducing a scalar product, the
various geometrical quantities of My (points, vectors, tensors, etc.) and their
properties should be invariant with respect to more general transformation
than those (linear and invertible) of an affine space (Lorentz transformations).

Finally, as concerns the definition of a Galilean frame S, we have that in
My, as in &4, its history is represented by straight lines, parallel to cg; any
of the oo! hyperplanes orthogonal to cg can represent the physical space X,
associated with S,. Changing the Galilean frame S, will be then equivalent
to exchanging (in My) co with another vector of the same kind: cj: cf, - ¢, =
—1. The result will be that the equivalence of all the Galilean frames will
correspond to the geometrical indistinguishability of the vectors ¢o and ¢
which are used to represent them.

2.4 The Minkowski Metric

It is now convenient to consider some formal aspects of Minkowski geometry,
which, being improperly Euclidean, is quite different from properly Euclidean
geometry. First of all, by using the fundamental products,

Co - C3 = Mg = diag(—1,1,1,1), (2.16)

the selected affine frame is constrained being necessarily orthonormal the basis
{cq}: the vectors ¢, have unitary magnitude (the magnitude or modulus of a
vector V being defined as V = \/ |V - V|), and they are mutually orthogonal.
Orthonormal bases are typical for (properly or not) Euclidean spaces. It can
be shown (see [1], p. 82) that, in any nonsingular Euclidean space, there exist
infinite orthonormal bases; moreover, in the same case, the number of vectors
having positive (or negative) norm is invariant: such integer number defines
the signature of the Euclidean space. From this point of view, the Minkowski
space My is an (improper) Euclidean space of signature +2, or — + 4+,
because all the orthonormal bases contain a vector with norm —1, and three
vectors with norm +1.

With the choice (ZId]), the basis {c,} is orthonormal; however, it is not
unique as occurs for the ordinary space. If {co } is a basis of the same kind,

Co’ " Cgr = Ma/pr = diag(—l, 1, 1, 1) (O/,ﬁ/ = 0, 1, 2, 3) 5 (217)

the transformation matrix which defines the change of the basis, L%, (to
distinguish it from the generic transformation matrix A%,/),

Ccy = L% cq (2.18)
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should be a rotation (also said a 4-rotation), in the sense that it satisfies the
properties analogous to (24)):

L% LPgmas =map  (,0=0,1,2,3); (2.19)

Equation ([ZTI9) constrains the choice of the L%,/ (arbitrary, a priori), as was
the case for the components of a rotation matrix R*;; in the ordinary space

Riy R jibij = bijy (4,5 =1,2,3) . (2:20)

Here, the conditions obtained from (2.19) are 10 (in fact, because of the sym-
metry, it is enough to assume « < () and, hence, the rotations in M, form a
group with 16 — 10 = 6 parameters.

From (Z19) we also have

(det[[L¥[))* =1 (2.21)

thus, such a group contains both rotations (det||L%,/ || = 1) and antirotations
(det|[L% || = —1).

In any case, the coefficients mqap are necessarily invariant: mag = Mas g for
all possible orthonormal bases related by (Z19); they are no longer invariant
if the basis {co } is generic: ¢,y = A%, ¢, and, in this case, one has

Margr = A% Aﬁﬁ’maﬁ # Mag (,3=0,1,2,3). (2.22)

The transformation law (Z22]) characterizes, as we will see in the following,
a 2-tensor: the metric tensor of M,, whose main role is that of defining, in
My, the scalar product; in other words, it defines the space-time lengths and
the angles, with an abuse of language because here a definition of the angle
between two vectors is different from the one valid in the ordinary space.

Another property, equally important, of the metric, is that of raising or
lowering of indices. More precisely, together with the matrix ||mqgs||, given in
(&), let us consider the inverse matrix ||m®”|| such that

m*mg, = 69 ; (2.23)

in our case (orthonormal basis), one has m®® = mz.
By means of the reciprocal elements m®?, one can construct the dual basis
c® of the basis c,, defined as follows:

c® =m*eg ~ Co = Mmapc’ (2.24)

or, explicitly, ,
= —co, c'=c¢ (i=1,2,3). (2.25)

From (Z23) and using (2I6)) the following property holds:

¢ cq =03 . (2.26)
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With this assumption, one can decompose each vector with respect to the
basis {c,} or its dual {c*}

V =V, = Voc® . (2.27)

The components V¢ (along ¢, ) are termed contravariant, while the V,, (along
c®) are said to be covariant; from ([2.24) follow the invertible relations:

Vo = MasV? ~ Ve =m*V; (2.28)

or, explicitly Vo = —V9 V; = V¢ (i = 1,2,3). It is worth noticing the similar
role played in ([Z28) by the matrices ||maps|| and ||m®P||: the first is used to
lower an index, the second to raise it. They also play a similar role with respect
to the metric: in fact, exchanging of them is equivalent to exchanging of the
basis {c,} with its dual basis {c®}. In other words, from (2.20]), one has the
following two representations of the metric, covariant and contravariant:

Mag = Cq - C3 , meP =c*.c?; (2.29)
in addition, there are the two symmetric relations for the components of a
vector:

Vo=V -.c,, Ve=V.c*. (2.30)

2.5 Vectors and Their Classification. The Lightcone

Let us proceed, now, with the classification of vectors in M,;. We have the
following definitions: (1) vectors u with vanishing norm: u-u = 0, are null
vectors (or lightlike or isotropic); (2) vectors s with positive norm, s -s > 0,
are spacelike vectors (like ¢;); (3) vectors v with negative norm, -~ < 0, are
timelike vectors (like cgp).

Let us consider the whole set of null vectors, at an arbitrary point Q €
My, to be chosen as the origin of the coordinates, for simplicity. Thus, the
components of a generic null vector u = QU are identified with the coordinates
z® of its end point U. When u varies within such a family, U describes a
hypersurface, defined by the following homogeneous and quadratic relation:

Magr®z’ =0 ; (2.31)

this is a three-dimensional cone, Cs: the absolute feature of My, or the light-
cone.

Cs separates, as we will see later, the vectors with positive norm (external)
from those with negative norm (internal). In a properly Euclidean space, like
the ordinary one, obviously, the lightcone Cs degenerates to a single point;
differently from what happens in a generic (i.e. nonproperly) Euclidean space,
like My, where a nontrivial null vector does exist.
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Let us consider, in fact, the subspace of My generated by the vectors Ay+pus
(v being a timelike vector, s a spacelike vector and A, € R). The associated
norm,

Ay + ps|| = (A + ps) - (\y + us)
= NIyl + 22y - s + 4?8,

is a continuous function of A and p, in all the real plane. Once evaluated at the
point P = (A #£ 0, u = 0), it is negative, while at the point Q = (A = 0, u # 0),
it is positive. Thus, there exists a point R = (), j7), internal to the segment
PQ (and hence different from Q) such that ||\y + fis|| = 0.

For example, if {c,} is an orthonormal basis, in the subspace Fs = {Aco +
pect b uen, there exist two isotropic straight lines: —A% + p? =0 — X = +p,
which are defined by the two null vectors: u; 2 = co £ c;.

It is worth noticing that

1. u; +uy = 2¢g is a timelike vector; that is, the lightcone C3 is not a vector
subspace of Mjy.

2. An orthonormal basis cannot contain a null vector, by definition; however,
in My, there exist bases of null vectors; for example, cp+c1, co—cy, cp+ca,
co + c3 are four, linearly independent, null vectors. In fact, the condition

a®(co+c1) +al(cy —c1) + a?(co+ ca2) + a(co +¢3) =0
is equivalent to
(@® 4+ o' +a? 4+ a?)co+ (@ — al)e; + a’cy +ales =0,
or
A+t +a’+a*=0, a"—al=0, a®*=0, =0,

that is o = 0 (3 =0,1,2,3) and, hence, they form a basis in M.
3. The two null vectors u; and us are not orthogonal

(C0+C1)'(CQ—C1)=—2.

This is a general property, that is for any two null vectors u and u’ not
aligned, one has
u-u'>0 or u-u' <0,

the orthogonality being thus excluded

3 Let us assume, without loss of generality, a basis {ca} such that the null vector
u is represented by u = u(co +c1). If u’ is a null vector too, then u’ = aco + bici7
with a® = §;,b°b*. The scalar product with u is given by u’ - u = u(b! — a); it
follows that u’ - u =0 < b' = a, and hence b? = b = 0, that is u’ parallel to u.
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In scalar terms, for any event-origin F, the lightcone is defined by the
Cartesian equation (Z31)), or, explicitly:

Sippxtak — (330)2 =0, (2.32)
which represents a circular cone. The intersection with the generic hyperplane
20 = ct, orthogonal to the z°-axis, is an ordinary sphere: djpzia? = c?t2,

centred at O = (ct, 0,0,0) and with radius ctf Such a sphere can be seen as a
projection of Cs on 3, where it represents, for each ¢, the wave front of a light
wave, emitted from F = Q at t = 0. Furthermore, C3 separates the external
(connected) part from the internal (not connected) one, made up by the two
branches of the cone.

Let us consider, now, the set of all the timelike vectors T' € M. It can be
easily shown thatE as for null vectors which were not aligned, two timelike
vectors cannot be orthogonal; thus, for the timelike vectors «, v/, only the
following two cases are allowed:

(a)y-v >0, (b)y-v<0.

As a consequence, once v is fixed, the product v - v = ma7*y'"? is a
continuous function of the /%, that is of 4. If 4/ varies in a connected region
of T', because of the theorem on the zeros of continuous functions, the sign of
~ - 4" should remain unchanged; in other words, it is not possible to have, in
such a domain, 7 - 4" > 0 and ~ - 4/ < 0: this, in fact, would imply ~ - 4" =0
for a certain 4/, which is impossible. Therefore, all the vectors 4’ such that
-4 >0, or v-~" <0, should belong to not connected regions of T, i.e.
the two (internal) branches of the lightcone. On the other hand, if 4 and +/
belong to the same branch of the lightcone, one has v-~" < 0 because v-~v < 0.
In different words, two vectors in the internal part of a branch always have
negative product.

Assuming v = ¢y and v’ = «, we have, by definition:

Ci={y:co-v<0} positive half-cone.

C; ={v :co-v >0} negative half-cone.

The terminology positive or negative, of course, has not any intrinsic meaning
and is introduced only to distinguish between the branches of the lightcone

4 We notice that vectors on the hyperplane have components (0,s', s?, s*), while
vectors aligned with the 2%-axis have components (’yo, 0,0,0).

Otherwise, an orthonormal basis containing two timelike vectors would exist, and
the signature will be no more than +2. Moreover, the following property holds
that a vector v orthogonal to a timelike unit (without loss of generality) vector
~ is necessarily spacelike. In fact, assuming v = co and v = v%cq, it follows
v -y = —v°. Thus, the hypothesis v L ~ implies v° = 0 and hence v = v’c;, so
that ||v|| = dixv'v" > 0. Finally, it should be noted that a timelike vector and a
spacelike one need not be orthogonal. For example, this is the case for v = ¢co and
s = —v + 2c¢; for which s~ = 1.

5
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which form the two connected parts of T'; alternatively, the definition of the
branches does not depend on the choice of cg.

The set of all the spacelike vectors, S = {s : s-s > 0}, is instead connected;
in fact, all the cases

s-s’>0, s-s=0, s-s<0

are possible.

A picture of all the vectors in M} is obtained by considering, in X, a sphere
o centred at Q and of unit radius, as well as all the vectors s € X. Each s
can be associated to a vector V = ~ + s, which is timelike, null or spacelike,
when s < 1, s = 1, s > 1, respectively. From this follows the meaning of the
sphere o, which characterizes (through =) all the vectors of My: internal, on
the boundary, or external to o.

Therefore, it follows that My is a homogeneous Fuclidean space, but it is
not isotropic even if there exist no privileged points in My, there are, clearly,
preferred directions; this is different from all the three-dimensional sections
3., associated with inertial frames, which are all homogeneous and isotropic
(see axiom 2 of B).

In each of the three different classes of vectors, the directions (timelike,
null and spacelike) are equivalent, that is geometrically not distinguishable,
in the sense that one can pass from one to another with a 4-rotation. In other
words, 4-rotations do not change the type of vectors and leave unchanged the
lightcone Cs, as well as its two branches: C; and Cy .

2.6 Elements of the Geometry of Minkowski Space-time

After this discussion of the one-dimensional subspaces of My, let us consider
two-dimensional subspaces. A two-dimensional subspace is defined by the lin-
ear combinations of two independent vectors:

Ey ={v : v=AVi+ uva}i ucn,

or, briefly Es =< vy, vy >. There exist three different types:

1 Elliptic subspaces. They are formed by spacelike vectors only.
For example: < c1, ¢y >; in fact, for any vector v €< ¢y, co >, one has

(Ae1 + pcs) - (Aer + peg) = A+ p® >0,

with the equality valid only for the trivial case A =0, u = 0.

2 Hyperbolic subspaces. They are formed by vectors of all the three kinds
and contain two null (or isotropic) directions.
An example is given by < cg,c1 >, and it has already been discussed.
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3 Parabolic subspaces. They are formed by a null direction u and by spatial
vectors only, which are all orthogonal to u; in fact, if the subspace is
< u,w >, one can always assume w orthogonal to u: w-u = 0. Thus, for
any vector v in the subspace, v = \u + pw, one gets

v-v:uszZO, v-u=pw-u=20,

with the equality valid only if p = 0, or v .= Au; from this follows the
existence of a null direction, with all the other directions being spacelike
and orthogonal to the null one.

An example is given by < ¢cg + ¢1,co >, with ¢ + ¢; a null vector.

Intuitively, one can image a parabolic subspace as the limit of a hyperbolic
one, when the two isotropic directions collapse into a single one. More pre-
cisely, a hyperbolic subspace is divided, by the two isotropic straight lines, r;
and r9, into four not connected parts, two of which contain timelike vectors
and the other two contain spacelike vectors; each timelike direction, in turn,
admits an orthogonal spacelike direction. When ro — 71, by varying the 2-
plane containing €2, each spacelike vector will become orthogonal to the null
direction in which both 7y and ro (as well as the two regions of negative norm
vectors) will collapse.

Finally, it is possible to geometrically classify the two-dimensional subspaces
(2-planes) of My, according to their intersections with the lightcone: these
are two real distinct straight lines, two real and coinciding straight lines, or
two complex directions, if the subspaces are hyperbolic, parabolic or elliptic,
respectively.

The same classification occurs by considering the induced metric from the
Minkowskian one, in each subspace, that is the 2-metric associated with the
scalar product between vectors of a basis (even not orthogonal) in the same
subspace. In fact, by a theorem on completion, every basis in a subspace is
a part of a basis of My; hence, practically, one has to consider the minors
gir (1, k = 1,2) of the full metric. From this point of view,

(i) Elliptical and hyperbolic subspaces are regular (det||g;k|| # 0), and with
signature ++ or —+, respectively.
(ii) Parabolic subspaces are singular (det ||gix|| = 0).

Thus, for the subspace < ¢y, c2 > one has

1 0
det g = det e el = | 9| =120,

and the signature is ++; analogously, for the subspace < c¢g,c; > one has

-1 0
delaull = | Y] =170,

and the signature is —+; finally, for the subspace < cg + ¢1,c2 > one has
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0 0

0 1‘:0’

et | - |
and the induced metric is singular.
Let us consider, now, the three-dimensional linear subspaces of My, or 3-
planes, or hyperplanes. They are spanned by three linear independent vectors,
Vi, V2, V3!

Es={v:v=2Avi+puvy+ VVB}A7M7V€9‘|‘: =<Vy,Vg, V3 > .

From what has been stated above, it is clear that M, will admit the follow-
ing:

1) Elliptical hyperplanes (with signature + + +); they are formed by spatial
vectors, apart for the vector zero.
An example is given by ¥ =< ¢y, ca,c3 >.

2) Hyperbolic hyperplanes (with signature —+4); they are formed by vectors
of any kind, and they include a two-dimensional cone of null straight lines

(see [I], p. 129).
An example is given by ¥ =< ¢g, ¢y, co >. Here we have

l[Aco + pey + vea|| = =A% 4 p? + 12,

from which, when A2 = u? + /2, one has oo! null straight lines, that is an
ordinary cone.

3) Parabolic hyperplanes (singular); for these, as for the parabolic 2-planes,
the concept of signature is meaningless because they do not admit or-
thonormal bases (such bases will necessarily contain the null vector of
the hyperplane). Actually, they contain a null direction u and all the re-
maining vectors are spacelike. Moreover, as in the two-dimensional case,
all the vectors are orthogonal to the null direction itself, thus, this is the
hyperplane orthogonal to u.

In other words, to any vector v &€ My, there corresponds, without excep-
tions, an orthogonal three-dimensional subspace. This is disjoint from v (and
regular: hyperbolic or elliptic) only when ||v|| # (8; when v is null, the normal
subspace contains v and it is necessarily parabolic.

For example, the hyperplane < ¢y + ¢1, ca, c3 > is parabolic; thus,

0 0 O
det|lgi]|=10 1 0|=0;
0 0 1

moreover, for any vector of the hyperplane: v = A(cg+c1)+ pce +ves, whence
v-v=p2+12>0, (co+c)-v=0, Y\uv.

6 In any Euclidean space (proper or not), a linear subspace admits a unique sup-
plemental and orthogonal subspace which is also nonsingular (see [I], p. 82).
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2.7 Proper Time

The classification of vectors in My, and the lightcone, allows us to geometri-
cally specify, first of all, the whole class of Galilean frames, and, in particular,
all those frames having the same time orientation: the set of orthochronous
frames. More precisely, for a generic frame, the unit timelike vector v = cg
(and, hence, the associated congruence of equi-oriented straight lines) can
belong to either of the light half-cones. Orthochronous frames, instead, are
characterized by vectors -« belonging to the same branch of the lightcone:

V vy e{yt = v <0.

In the following, we will limit ourselves to orthochronous Galilean frames,
the only ones for which the notions of present, past and future are meaningful;
that is, we will assume M, endowed with only one of the two light half-cones,
say Cf. We will say, briefly, that M, is time oriented, and we will use the
notation: My (Cy), or, equivalently, M;".

The impossibility to distinguish, from a geometrical point of view, among
the unit vectors =, clearly has its physical counterpart in the equivalence of
all the associated Galilean frames, as has been postulated above.

Together with the orthochronous Galilean frames (each with its proper
representative physical space, 2, orthogonal to =, and hence elliptical), the
light half-cone C; gives geometrical consistence to the world lines /T = EyE;.
As we have already seen, they must have, at any point E, the tangent vector
contained in C;r : thus, necessarily, the whole world line belongs to the half-
cone Cy, having the vertex at Ey. C therefore characterizes all the events
which can be connected with Ey by means of a world line (a straight line
or a curve): it is the future of Ey, or the geometrical horizon. The latter, as
already stated, gives no rise to any physical horizon. In fact, if the event Ej is
characterized in S by the pair (Pg, o), all that happens at P, at the instant
to, may influence what happens at each P € S,. In particular, a particle
emitted suitably at Py can reach any P € S;.

Each world line can be parametrized by an intrinsic parameter T, analogous
(apart from the dimensions) to the ordinary curvilinear abscissa. It can be

defined, indirectly, through the tangent vector condition of norm —c?, namely,
dQF da®

V= = , 2.33

dr ( dr > ( )
with

V-V=-*<0. (2.34)

Comparing with a generic parametrization A of the same world line,
dA : dA def dQF
V= th d =
vdr’ wi d7_>0 and YV a\

it follows that the condition (2Z.34]) becomes



38 2 Space-Time Geometry and Relativistic Kinematics

ax\ > ) dr 1
v'v<d7) == o gy TEYYY

As 7 is one of the admissible parameters for the oriented world line £*, we
have d7/dX > 0. So (Z34) is equivalent to the first-order differential condition:

dr 1 dx® dz>

ax VT an an (2.35)

This condition defines the parameter 7 up to an additive constant, as soon as
the parametric equations & = z%(\) of the curve £ are known:

1 [F dz® dze
= —_ 1e% . 2-
T 7'0—|—C/E0 Map 4\ 4 dA (2.36)

7(E) is invariant with respect to the (completely free) choice of the param-
eter A on £, as is clear from (2.35):

1
dr = \/—mag dae daf . (2.37)
c

This is an absolute quantity, defined on the world line, and with the dimensions
of a time. It is called proper time of the particle associated with the world
line ¢, and it is proportional to the curvilinear abscissa, by a factor of c:
ds = cdr. In particular, if one assumes that a Galilean frame is fixed in My,
and t is the associated relative time, one can put A = ¢, so that ([235]) gives
a relation between 7 and the ordinary relative velocity of the particle in the
Galilean frame under consideration:

dr _ v(t)? 2 _ s ik
g \/1 2 v(t)* = dipvto” . (2.38)

In order to find the physical meaning of the proper time let us distinguish
between the case in which the particle world line is a straight line or has
curvature. In the first case, V=const., there exists a unique Galilean frame
which is the particle’s rest frame. This frame is defined by the vector v =
V/c and hence by the timelike congruence of straight lines with the same
orientation of . In such a frame, v = 0 Vt, so that ([238) gives t = 7, up
to an unessential additive constant: the particle’s proper time coincides with
that measured by a standard clock of the Galilean rest frame

In the second case, instead, a Galilean rest frame for the particle does
not exist, and all that has been said for the rectilinear cases loses its global
character. That is, VE € ¢+, V(E) still defines a Galilean frame, characterized
by the unit timelike vector v = V(F)/c and, even in this case, (d7/dt)g = 1,
or d7 = dt, but only at the event E. In other words, this is the instantaneous

7 On the platform ¥ orthogonal to -, the particle’s position is always the same.
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rest frame of the particle, which depends on the point E considered on the
particle’s world line.

The introduction of the proper time illustrates the well-known twin paradozx.
Let us assume that a pair of twins (i.e. two material points), move away from
a common position Py and at the same instant tp, and hence, from the same
event Ej; besides, let us assume that the first will maintain its initial velocity,
and that the other will accelerate, until a re-meeting event F; is reached. In
Eq, i.e. when their world lines intersect again, for the second twin, there has
elapsed a lesser quantity of proper time; that is, he is younger than the other.
In fact, for the first twin, there exists a Galilean frame S, such that

vy =0 VtE(tQ,tl),Hletl—to.

For the second twin, in the same Galilean frame, we have

t1 v2 t1
7'2:/(31’7'2:/ 1-— gdt</ dt =t —tg,
L9 to ¢ to

i.e. 7o < 71, which completes the proof.

2.8 Test Particle Kinematics (Absolute and Relative)

To the absolute parameter 7 corresponds the absolute kinematics of the mate-
rial point, through the fundamental notions of 4-velocity V and 4-acceleration

A:
dQFE da® dv  d?QF d2z®
dr ( dr ) ’ dr dr? ( dr? ) (2.39)

Apart from their names, which are clear in the relative context, V and A
have also a clear geometrical meaning. The first one, V, is a tangent vector
to the world line /1, and the second one, A, is orthogonal to the world line,
as it follows from differentiating (234)):

V-A=0. (2.40)

As a consequence, A belongs to the spacelike platform of the instantaneous
rest frame; differently from V which is timelike, the 4-acceleration is a space-
like vector, i.e. with positive norm:

A-A>0. (2.41)

The ratio T = V /¢, because of (234]), is a unit timelike vector, that is the
unit tangent vector to £*. Thus, if s denotes the curvilinear abscissa on ¢+

def dQE dz®
T = = 2.42
ds ( ds > ’ (242)



40 2 Space-Time Geometry and Relativistic Kinematics
then the relation between V and T becomes

V=T, (2.43)
which is also equivalent to (2.35]):

d
“—¢ — s=cr+const (2.44)
dr

Analogously, by differentiating (2:43]) with respect to 7, one has

A =c*C, (2.45)

where C is the spacelike curvature vector of the world line ¢ in E:

def AT
C = . 2.4
ds (2.46)

Equations (Z43) and ([Z43) specify the geometrical meaning of the vectors
V and A with respect to the world line £*. The kinematical meaning of
these vectors will be evident once, in My, a Galilean frame S, is fixed by the
characteristic vector v and the associated spacelike platform ¥ (the physical
space).

Let t be the coordinate time of the Galilean frame (with 2° = ct), and
let P be the point orthogonal projection of E € ¢* on X. The following
decomposition holds: QFE = QP + z%v; by differentiating this relation with
respect to the proper time, one has

dOP  da® dt
V—< at + q '7) g (2.47)

Thus, taking into account (2.38]), and introducing the notation (Lorentz
factor):

dt 1
= = 5 2.48
=4, -2/ (2.48)
one gets
V=n(v+ecy), (2.49)

with v the particle’s relative velocity (in Sg):

dQP
v dt (2.50)

Similarly to ([2.49)), after a further differentiation, and using the relation:
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it follows that )

A =7? a—l—ZQ(V-a)(V—i—c'y) , (2.51)
with a the relative acceleration (in Sg):
dv  d*QpP
dt - A2

The relations [2:49) and (2.51)) give the relative form, in S, of the 4-velocity
and the 4-acceleration, and the decomposition has an invariant meaning with
respect to the choice of S, due to the absolute character of V and A

a =

(2.52)

n(v+cy) =n'(v +cy') =inv. (2.53)

/2

2
| v ] = o Ty ) ) =

Conversely, from (2.49]), by using the orthogonality between v and ~ and the
fact that + is a unit timelike vector, one finds V - v = —n¢, or

1
n:—CV-'y, (2.54)

so that (Z49) allows us to obtain the expression of v in terms of V and «,

namely,
v=—c <~/ + (V\-fv)) : (2.55)

Analogously, from (251]), one can obtain the relative acceleration a. First of

all one has A

A7:_n (V'a)a
c
and then, from (ZX]]), one gets
A
2 2

or, explicitly, as from (254)),

¢\’ A .-~
= A - V). 2.56
? (V-7> ( V-y ) (2:56)
The same result should, obviously, be obtained by differentiating ([2.55]) with
respect to t.

The relations (Z49) and (5], as well as their inverses (Z53]) and (256,
have a general character, either as concerns the pointlike motion or for the
Galilean frame. In particular, in the proper Galilean frame Sg, defined by v =
V /e, 2358) and ([256) give v? = 0 and a® = A; this specifies the kinematical
meaning of the 4-acceleration (confirming also its spatial character).

a—=

veav= o (as )@,
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2.9 Lorentz Transformations

We have already stated that the essential features of a Galilean frame, in My,
are summarized by a unit timelike vector field ~:

or by the product ¢y, which represents the 4-velocity of all the particles of the
associated reference solid. The congruence of the co® straight lines (covering
the whole Minkowski space), aligned and oriented according to =, represents
the history of the Galilean frame. Once the origin of the frame 2 is fixed, the
straight line passing through 2, and directed along ~, is the temporal axis of
the frame, while the orthogonal subspace through 2 defines the physical space
(at t = 0) of the frame itself; in other words, the space platform of the frame,
denoted by 3.

In the three-dimensional space ¥ (signature + + +), one can obviously
introduce Cartesian coordinates, or more general internal coordinate systems
(polar, cylindrical, etc.).

The passage from absolute quantities (in My) to their relative counterparts
(in Sg) is obtained by spatial (orthogonal) projection on ¥, using the projec-
tion operator

Pr=1+v®~ ~ PsG =05 +7%s - (2.58)

In this sense, if T is the world line of a material particle, the relative trajectory
on ¥ is the projection of £ orthogonally to . Such a trajectory clearly
depends on the selected Galilean frame.

Analogously, (2.49) and ([2.55]) and their inverses, (2.51]) and (2.50]), repre-
sent the relations between the local (absolute and relative) kinematical char-
acteristics: velocity and acceleration, respectively, once decomposed along ~
and X. These relations are intrinsic (i.e. only - is needed), and the coordinate
system is still at disposal.

Let us study, now, the passage from one Galilean frame to another. To this
end let us consider, in My, two Galilean frames: S, and Sé, characterized by

unit timelike vector fields v and 4/, respectively (v, € C5):

vy <0, v-y=-1, v+ =-1. (2.59)
The vector ¢y’ is the 4-velocity of any of the particles of Si; in Sy this has
the following decomposition, according to ([2.49)):

oy =plutey), (2.60)

where u € ¥ is the translational velocity of S’é with respect to S, and, from

(2.13) and @54),
1
= =77 2.61
= e VY (2.61)
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Let us change, now, the role of the two Galilean frames, in ([2.60]) and (2.61)).
This is equivalent to change unprimed quantities with primed ones and vice
versa; so, by using the fundamental property of the light velocity ¢’ = ¢; we
find

ey =p W +cy), (2.62)

and hence 1

B V1—u'?2/c?
where now u’ € ¥’ is the translational velocity of Sy with respect to S;. By

comparing (Z61)) and (263), one has p’ = p, so that the so-called reciprocity
lemma follows:

/

p =-v7, (2.63)

u =u; (2.64)

that is, the relative speed of Sy with respect to S’é coincides with that of Sy with
respect to Sg, and it does not depend on the order in which the two frames
are considered.

Moreover, (2.62]) allows us to obtain the decomposition of u’ along v and
¥, similar to (2260) for 4’. One has

ey =p' (0 +ey') = pu' +p’(u+ev),

from which, using 1 — p? = —p?u?/c?, one finds

! U2
u=-plu+ C'y .

Summarizing, in My, the following transformation laws, associated with the
two Galilean frames S, and Sé, hold:

2
oy =plutey), —u=p <u + uc 7) - (2.65)

In ([267), we see either the absolute character of the two Galilean frames
(v and 4") or the relative character of the apparent translational velocities u
and u’. These last constant vectors represent two well-determined directions
in ¥ and ¥’ (corresponding to apparent motions).

Thus, as in the case of the special Galilean transformations, the presence
of u and v’ in (ZE6EH) suggests the introduction, in both the platforms ¥ and
3, of (congruent) Cartesian triads, in standard direction. We then assume
1 = versu so that S} will appear (in Sy) as moving along the z' direction:

u=ucs ; (2.66)

¢ and c3 will be chosen so that they form, with c1, an orthogonal left-handed
triad. Similarly, in X', we can use the triadd:

8 According to a standard notation, we will denote indifferently c., or c.-.
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¢ =—versu', — u' =-uc), ch3=cy3. (2.67)
The choice is consistent: in fact, from ([Z.63]), c2 and c3 are orthogonal to both
c; and 7 (and hence to the 2-plane < «,u >), and ¢}, = ¢z and ¢4 = c3 are
orthogonal to both ¢} and 4/, which belong to the previous 2-plane due to
(2.63).
Moreover, the two orthonormal bases {7, ¢;} and {v/,c,} are equi-oriented
and can be superposed by using a rotation because the same property holds for
the pairs (,u) and (4/,—u’). In fact, the determinant of the transformation

@33) is +1:

p
p
det ou? “ll=p21 —u?/P) =1.
p
c

Thus, ([Z6h) gives the following transformation laws:

v =p(y+Pe1), B=u/c, p=1/\/1-02,
(2.68)

c) =plci +PB7v), cy5=caga,

where, even if the two Galilean frames are completely arbitrary, the unit vec-
tors ¢; and ¢ have a precise kinematical meaning, because they characterize
the relative motion directions of the two frames:

u=ucy , u' = —uc] . (2.69)

In other words, (2.68]) implies the following transformation matrix ||L%g]||:

p pB 0 0

0 0
poﬁglo, (2.70)
0 0 0 1

and they correspond to the special Galilean transformations. For the generic
event £ € My, ([268) gives rise to the two coordinate representations: QF =

%, = 2'%cl,, that is, explicitly,

2Oy + 2le; + 2%cy + 23c3 = 2/Op(v + fBer) + 2’ pler + ) + 1'%y + 2'3cs .
From this, one gets the direct relations:

20 = pa’ + g2’y 2l =p’t 4 p2’0), 223 =23 (2.71)
and the inverse:

20 =p(a® — Bzt), 2t =p(at - pa®), 2/ =23, (2.72)

because of the reciprocity lemma, the two sets of relations can be obtained, one
from the other, by exchanging primed and unprimed quantities and 5 with —3.
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Equations (Z.71]) and ([Z.72)) are the z!-standard (homogeneous) special Lorentz
transformations. The inhomogeneous transformations correspond to a choice
of the origin €’ different from €2, and thus, they differ by a constant translation
in My only.

As p = p(B), the transformations (Z.71)) depend on the single parameter (3:
0 < 8 < 1, and they form a connected group, L1. In fact, they contain the
identical transformation (for 8 = 0), the inverse (for § — —f3), as well as the
product of any two transformation, with

1" ﬂ"‘ﬁ/
s 1465

These are special rotations (of My) around €: they leave unchanged the
2-plane < v,v' >, as well as all the vectors in the orthogonal 2-plane X N/,
which plays the role of a rotation axis.

As we have already stated, also the group of the general rotations around 2,
without any special choice of the orthonormal basis vectors, form a group: the
six parameter group of the homogeneous Lorentz transformations, which will
be considered in the following section (see e.g. [2] for a structural analysis of
the Lorentz group). We notice here that these transformations will be obtained
starting from an orthonormal basis c,, once there are assigned the vectors
and u, satisfying the constraints v -+ = —1 and « - u = 0. These are only
two conditions for the eight variables at disposal, i.e. the components of the
two vectors v and u along the selected orthonormal basis {c, }; therefore in
the case 2 = ) only six more free parameters remain. Otherwise, the free
parameters become 6 + 4 = 10 (inhomogeneous Lorentz group, or Poincaré

group).

(2.73)

2.10 General Lorentz Transformations: I

In the transformation laws ([2:68), general as concerns the Galilean frames
Sy and Sy, the triads 7 € ¥ and 7" € ¥’ are very special because of the
xl-standard relation: u = ucy, u' = —uc). This restriction, clearly, is not
essential, because, using ([2.68)), the general case, in which 7 € ¥ and 7’ € ¥’
are arbitrarily chosen, can be obtained. To perform this extension, we proceed
as follows:

1. Choice of an arbitrary triad T in S,

The problem is to rewrite (268) in a symmetric form, cancelling the
special property of ¢; (with respect to ¢z 3) due to the alignment with the
relative velocity u: u = ucy (u* = ud?). To this end, let us write pc; in
the form c; + - - -, using the following identity:

2 2
pe—1 p 1
r (=1 p+1 1+p< p2>
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or 2 2 2

us p uuy  p
=1+ =1+ . 2.74
P l+p 2 1+p (2.74)

It follows that
1 pz
C cy + u,
pC1 1 214p

and, from (2.68])5:

r_ p p
cl—c1—|—c2 (1+pu—|—c'y>u~c1.

Thus, (Z68) assumes the form (general as concerns the choice of 7 € S,):

1
’y’zp(’y+cu), cgzci+cp2<1ipu+c'y)u-ci, (2.75)
where now 1

(2.76)

u = uici y P = 1
\/1 -, Siputu®
c
The next step is now

Choice of an arbitrary triad T' in Sy

The problem is that of replacing the preferred triad ¢} in [Z75), with
an arbitrary triad in X’. For this, it is enough to perform, in ¥/, a spatial
rotation, using an ordinary orthogonal matrix R’;. Denoting still by c|
the rotated triad, we have, for the most general change of orthonormal
bases in Mjy:

, 1
V=plv+ vl

c =R {ci—i—cpz<lipu+c'y)u-ci} (k=1,2,3).

(2.77)

In (X)), there are (implicitly) six independent parameters: the three
components u’ (or u; = u-c¢; = 5ikuk) of the relative velocity of Sé
with respect to Sy, and three parameters for the matrix Rk (e.g. the
Euler angles or the Rodriguez parameters, see e.g. [3], p. 113). In terms
of coordinates of the generic event E € My: 2%y + z'c; = 2/%4" + 2'%c!,
7)) give the general homogeneous Lorentz transformation:

1 .
2 =p (x’o + CC/kRZkUi)
¢
o (2.78)
o= Puig® + ' MRY (5}C +

p i :
=1,2,3).
c c2l+puhu) (Z 57)
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In the limit ¢ — oo, one re-obtains the general homogeneous Galilei
transformation (II2)). Equation [278) can be inverted easily. Using the
notation

Yyl =R, Y=y (2.79)

Equation ([Z78)) become:

0 70 i 7 7,0 [
_ 2= . 2.80
x p(x +Cy> o=y L (2.80)

We will now derive the corresponding expressions for 2/ and y¢, from
which the 2% will follow immediately. Let us start obtaining y; from

(Z80)2, using (Z74), one gets

2 2
wirt =y + pu2x’0+ UQ P y = py+ Puzxxo 7
c cc1l+4+p c
or )
1.
y= wux' — U (2.81)
c
This relation allows us to cast (2.80); in the form
1, 2 1 1
20 = pa’% + T uxt — u2 pr'l = 2’0+ Tt
c c p c
so that .
20 =p <x0 — ula,’l) : (2.82)
c
From (2.81]), one obtains the expression for y:
et 2 e 1 2 ) 2
y:uzx - (mo—uzx ) ZP( 2+u2)um:1_pu 2’
p c c p c c
that is
i U
y=pluz'— 2 ). (2.83)

At this point we can obtain y¢, from (Z30)s:

; o1 ; 1 1 p* u?
i 0 2,1 0 _ k) _ i k_ 0
Yy = P u (x C’U/kx > 62 1 4 p’LL (’U/k$ c x

¢
2 2 2
c A21l+p c? 1+p
moreover, using the identities,
u? 1 u? 1 1 1
1— L L+p— ,p)= 1+ =
ccl+p 1+p c 1+p P P
p 1
l+p 1+p’
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one obtains, from (2.82]), the inverse form of (I?EIE:

1

0_ cuiaji)

5 (2.84)
Ripa'* = ot — Puiz® + Los ulupa® (1=1,2,3).

21l+p T
We notice that, in obtaining the Lorentz transformation, we have assumed
M, to be endowed with one of the two light half-cones. With this assump-
tion, the two Galilean frames Sy and S; are equi-oriented in time (in the

future, as well as in the past): v -4’ < 0, that is p > 0. If this were not
true, one has 4 -+’ > 0, that is

1
p__\/1—62<

Analogously, if the two Galilean frames are equi-oriented in space (i.e. 7
and 7’ both left-handed, or right-handed), in (Z78), we have
det||R%|| = +1.

Thus, the complete (homogeneous) Lorentz group is described by (2.78])
and ([Z84), through the parameters u; and R’y (the latter not independent
of each other), without any sign restriction, for p or for the determinant
of the matrix R';. However, it is not possible to pass continuously from
the positive light half-cone to the negative one, as well as, in the same
way, it is not possible to change continuously the orientation (left-handed
or right-handed) of the spatial triad 7 or 7’. In other words, the com-
plete homogeneous Lorentz group is not connected, but it is made up of
four connected parts. Each part is characterized by an orthonormal basis:
{7, c;} and {7/, c}}, satisfying the following conditions: (i) v and ~’ belong
to the same branch of the lightcone: v-4" < 0, and p = 1/+/1 — u2/c% > 0;
(ii) the bases of My are equi-oriented, in the sense that the determinant of
the relative transformation L®g (cj; = L%gc,) is 1; this is also equivalent
to det||Rx|| = +1 because of ZT8)) and ([Z34). The transformations L5
have then the form:

0.

p guhRE
IL%sll = pu’ ;o 1opr b || (2.85)
hT 29y pu Uh k

and constitute a connected group (Lorentz proper group), which gives
rise to the complete group by adding the space and time reflections. The
orthonormal frames {~, c¢;}, belonging to any of the four connected parts

See [, p. 67, taking into account that, from (@4), one has p?/(1 + p) =
A p— 1) fu.
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(with the c; defined up to spatial rotations), characterize co® Galilean
frames which are equi-oriented both in space and in time.

Thus, the connected parts are all equivalent, as concerns the relativity
principle, and it is not restrictive to assume that M, is endowed with or-
thonormal frames, satisfying conditions (i) and (ii) only. In other words,
we will assume M, oriented, and endowed with only one of the two light
half-cone, let us say M, (C5). All the relations between the absolute quan-
tities of M, (C5 ) will automatically satisfy the relativity principle. So we
will proceed by formulating, in M, (C3), the physical laws, starting from
the dynamical ones, passing then to consider the relative formulation in a
certain Galilean frame, i.e. defining the relative ingredients starting from
the absolute quantities.

2.11 Relativity of Lengths and Times

In the limit ¢ — oo, ([Z63) reduces to 4" = ~: M, (C5), degenerates to the
Cartesian product of an Euclidean 3-space and an oriented straight line, while
u’ = —u is the complete reciprocity theorem. In the same limit, (Z71) reduces
to the special Galilei transformation (LI3).

When ¢ is finite, ([2.63) states the relative meaning of lengths and times
associated with a Galilean frame. Let us write (271) and ([Z.72)) in the usual

form (i.e. witht = 2°/c, 2' = z, 2% = y, 2% = 2 and analogously for the primed
variables):
1 I} 1
t= t+ x’), T = ' +cBt), =y, z=2,
\/1—[32< . \/1—[32( ). Y=y

as well as

I 1 _ﬂ I 1 _ — !
t_\/1—62 (t cx) ;o \/1_52(3: cpt)y, y=y, z=2",
(2.87)

where § = u/c. The typical relativistic mixing of space and time coordinates
is evident from these relations; moreover, they allow us to derive some kine-
matical effects, already contained in the postulates.

1. Relative meaning of simultaneity
Let us consider two events F and F' happening, in Sy, at two different
points of the z/-axis, say A’ and B’, and here to be simultaneous ¢, =
the = tg, that is

E = (t,2,0,0) , F = (t, 7'%,0,0).

How do these events manifest themselves in the frame S;7 They still
happen on the z-axis (yg = zp = 0; yr = zrp = 0), but they are no longer
simultaneous. In fact, from (2.86]); one has
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_ 1 / u o 1 / u
tE_\/1—52(tE+c2mE)’ tF_\/1—52(tF+c2mF)’
(2.88)
so that U
(2 — 2p) ; (2.89)

tp —tp =
F—1E /1 P

if 2%, = 2y, obviously, the two events coincide, both in Sy or in Sy, but,
in general, tp —tg # 0.

Also the time ordering has a relative meaning: t > t; may coexist
with tp < tg, unless the two events are in a causality relation, i.e. £ and
F' are associated with the same timelike world line.

Time dilation

Let us consider a phenomenon happening at a fixed point of Sé, over a
time period Tp. What is its duration in S,7 To answer this question, it is
enough to specify its duration by means of the initial and final instants
and to consider the associated events, F and F'.

Let (2',0,0) be the point of S; where the phenomenon happens, and
tg and tp =ty + Tp be the initial and final instants. From (2.88)) one has

1 ’ u 1 / u tlF - tSE‘
T=tp—tg= S g (tF+ sz)_\/1—62 (tE+ 0233) =

so that
Tp

BV

thus, in Sy, the duration of a local phenomenon of Sé appears longer: this
result is known as time dilation. For example, the life of an observer in Sé
appears longer, when measured with the universal time of S,.
Lorentz contraction

Let a rod A'B’, of length Lo, be at rest along the z’-axis in S, and let
the endpoint A’ be at  while B’ is at 2’ = Lg; what is the length of the
rod, as measured from S,? Operationally, one has to measure the distance
L between the intersections A and B left, on the z-axis, by the world lines
of A’ and B’ at a fixed instant ¢ of S,.

Using (2.81) one has

> T (2.90)

rp —ut xrA — ut TR — TA

V-8 J1-p J1-p2

or Lo = L/\/l — (32, so that

vy — Ty =

L=Lo/1-3<Lg. (2.91)

In other words, the rod, in Sg, appears contracted by a factor depending on
its speed u: this phenomenon is called Lorentz contraction of the moving
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lengths. It is worth noting that the contraction concerns the direction

of motion of Sy (that is of the rod) with respect to Sg; if the rod were

displaced orthogonally to the x-axis, there would be no contraction (y’ =

y, 2 = 2).

Moreover, as the Lorentz factor should be real, the relative speed u of
Sé with respect to S, should always be less than c. This is consistent
with postulate E, which prohibits any particle motion at a speed faster
than that of light. This axiom could be verified as a whole, assuming—
for absurdity—that an electromagnetic signal could travel with a speed
greater than c. Then it would be possible to receive the same signal before
its emission, and even to send it back to the emitter, before it actually
would have been emitted; this would be a clear violation of the causality
principle.

It is also interesting that it is still possible to have a weak form of special
relativity without assuming the postulate E, accepting the above stated
violation of the causality principle.

Note. Equations (ZTI)-(272)) may have a double interpretation:

e Like a Cartesian coordinate change, for the generic event E € My, this
governs the passage from an affine frame to another and vice versa.
It is the most natural interpretation, and it is adapted to the abso-
lute character of the events. In this sense, this should be the primary
interpretation.

e Like an endomorphism of My, in the sense that the 2% and the z'®
are associated with different points: E and E’ respectively, in the same
affine frame R = (2;4,c;). From this point of view, it leaves each of
the two light half-cones invariant and gives the correct meaning to the
notions of past, present and future of an event.

An important consequence of the relativistic speed limit should be noted
here. It implies the impossibility of the existence of rigid bodies in relativ-
ity. For if any body is pushed at one point, the opposite part of the body
cannot immediately start to move, otherwise we would have transmitted a
signal at infinite speed. So every body must be deformable, and not rigid.

2.12 Muon Mean Life and the Time Dilation

Let us consider (Z9T)) for the length contraction. This necessitates a rigid rod
for which a Galilean rest frame would exist; in this frame, its length is Lo
(proper length). In a Galilean frame in which the rod is in linear and uniform
motion, with longitudinal (i.e. in the direction of the rod) velocity v, its length
is no longer L, but

L =Loy/1—v2/c?. (2.92)

In other terms, this is a purely spatial phenomenon, i.e. a sequence of events
which admits a Galilean frame where they all happen at the same time, but
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they are localized in points of a segment. In another Galilean frame, the spatial
localization of the points is exactly of the same kind, but they are no more
simultaneous.

The situation is similar for a purely temporal phenomenon, i.e. a sequence
of events which admits a Galilean frame where they all are located at the
same position, but they correspond to different times and (2390) holds. We
mean that, while in the rest frame, the phenomenon is only characterized by
its duration Ty (proper duration), in another Galilean frame S,, the events
not only happen in different places but give rise to a uniform motion with
velocity v, the duration of which is

T =Ty/\/1—v2/c?. (2.93)

In (Z92) and ([Z93), the Lorentz factor n appears, which is very close to 1
when v < c as for bodies in the solar system. Thus, at least in this regime, the
relativistic effects of length contraction and time dilation are not relevant. For
instance, if v/c ~ 10, corresponding to the Earth orbital motion, then 1/n =
0.000995. Hence, from ([2.92)) and taking into account that the Earth diameter
is Dy ~ 10° cm, the Earth, as seen by a Sun observer, would appear contracted
(longitudinally) by about 6.5 cm. Analogously, from ([2.93)), a purely temporal
Earth phenomenon, lasting a century, when examined from the Sun, would
have a duration of 2.5 min more. The effects become important when the
velocities approach that of light, as it happens, microscopically, for elementary
particles.

Let us consider the experimental data for the muons which are contained in
the cosmic rays. They have the same charge as the electron, but a 200 times
heavier mass. Their proper life is very short: Ty = 2.15 x -10~%s, and then,
after this time (on average), they spontaneously decay into an electron (with
the same charge) and two neutrinos.

In a time interval of the amount of their proper life, even if they could move
at the speed of light, they could make a very short path: L = ¢Ty = 645 m.
This result would be not acceptable because of the experimental observation
of muons in the atmosphere, which were produced at more than 1 km higher.
It is explained by the relativistic time dilation, according to which the real life
of muons is T' = T/ \/ 1 —v2/c? and depends on their velocity. Thus, using
the experimental value v = 0.99 ¢, one gets n = 10, and the path becomes
~ 6400 m, in agreement with observations (see [0, pp. 33-34).

2.13 Theorem of Relative Motions

Let us start from formulas (2.86]) and (287)), which specify the change of
the coordinates, for a space-time event passing from a Galilean frame S, to
another frame Sé; the aim is to discuss the problem of relative motions.
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To this end, let us consider, in Sy, a pointlike motion M: z* = 2%(t), t €
(to,t1). From (287) we have, immediately, the parametric equations z’*(¢) of
the curve corresponding to M in S’é:

5
gt e - et

= Sl = Sl

From the first relation, in principle, one can deduce t = ¢(¢'), and substitute
in the others obtaining then 2'* = 2*(¢). From these, by differentiation with
respect to ¢/, one gets the components v"* = (dz’*/dt’) of the relative velocity
v/ in S’:

g

Y =yt), 2==z(@). (2.94)

B da’t dt
Codt de

17

with
a1 1-p2
dt dt'/dt 1 —wwl/e?
The relations between the z-standard components of the relative velocity
v and v’ then follow easily:

(2.95)

o't = vl —u . 023 =23 \/1 - p ) (2.96)
1—wvl/e? 1—uvl/c?
Equation (296]) represents, though in a scalar form, the relativistic addition
of velocity law. It can also be cast in a vectorial form, independent of the
choice of the Cartesian triads in Sy and Sj. For instance, the denominator of
the two fractions in (298] is simply 1 —u - v/c?. Let us introduce, thus, the
two quantities, invariant with respect to internal transformations of S,:

a=+/1-u2/c?, c=1-u-v/c®; (2.97)

so that (2290 becomes

=" , /8= R (2.98)
o o
To get the vectorial formula, one needs to remember that this should be an
extension of the classical relation v/ = v — u; that is, it will be a relation
between 3-vectors and it should be referred to Sy or Sé; a priori, this is not
correct: in fact v and v’ are 3-vectors in the two platforms ¥ and ¥/, and it
is not possible to pass from one to the other, without using ~ or 4. However,
an indirect comparison, between the two platforms, can always be done: i.e.
it is possible to boost ¥’ on ¥ by means of a rotation of My. This makes the
unit vectors ¢ coincident with the ¢; (i = 1,2,3). In other words, between
the vectors s’ € ¥/ and those s € X, there exists an invertible isometry map
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R so that s’ — Rs’ € X; such a correspondence can be given by interpreting
the components of s' along T’ as components along T :

s’ =s'c) — Rs' =s''c; . (2.99)

Clearly, this map implies Ru’ = —u and it leaves invariant those vectors (in
%) which are orthogonal to u’. Then, one can identify Rv’ = v'’c;, or simply,
by omitting the symbol R for brevity, v/ = v'’c;.

It is convenient to recast (2.98); in the following form:

[

1 1 1 1
v =av + (1l —a)v =av + v
( ) (1+a)

)

i.e. using the relation wv' =uv-c' =u-v:

— ' 2.100
v av 2lta U ( )
Thus,
/1_O‘v1 1 /1T uv 1), /2,3:O‘v2,3,
o c\c2l+a o
hence,
, 1 /1 u-v
vV = + - 1 u )
c\c2l+a
and finally, using (22972,
1
v = (av ot Uu) . (2.101)
o 1+«

Equation (2I0T) represents the relativistic theorem of relative motions (it
is also known as the welocities transformation formula). It has an intrinsic
meaning, i.e. it does not depend on the choice of the two triads 7 € S, and
T e Sé, and it is valid for any choice of the two frames. The Galilean formula,
v/ = v — u, obviously comes from the ¢ — oo limit.

Equation (2.I01)) should be considered together with the link between the
relative times ¢ and . In differential terms, this link (all along the motion) is
expressed by (Z95]), which can also be written in intrinsic form, as:

dt  «

P (2.102)
However, in the case v =const., we also have ¢ =const. and hence, from
(2I00): v' =const. Thus, linear and uniform motions have an intrinsic mean-
ing, as in classical mechanics. This was already known: v =const. implies V =
const. and then v/ =const.

The transformation law of the velocities (ZI01]) is compatible with the
axiom E, in the sense that it implies v'2 < ¢? whenever v? < ¢2. In fact, from

@I0T) and @2397) one has
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2
J2 o a2ty (¢T° u2—2a(a+0)u-v
1+« 1+«

e () ot o)
_ ;Z {aQZj + ?i;[(a—ka)(l —a) —2a(1 — 0)]}

2112 a+o

o [a o 1+a(1—|—o¢)(cr—o<)]
|

2
o2 <U2 _1> —|—O’2:|,
C

1= (3)2 (ZQ —1) , (2.103)

which completes the proof.

Equation ([Z.103)) can be obtained directly, from (2.38]), which, because of the
absolute meaning of the proper time 7, gives rise to the following invariance
property (with respect to the choice of the Galilean frame and along a given

world line):
02 o,
1- 2 dt =1/1— 2 dt’ =inv. =dr . (2.104)

It then follows, using (Z102), that

and thus

v
o _ b= 2 _ "N
- 2 ’ 0
o 1 112
¢
i.e. (21I03), or, equivalently,
y = ”Z . (2.105)

Let us note that (ZI01]) can also be derived from the invariance of the
4-velocity: n(v + ¢y) = inv. = /(v + ¢y'); using (2.I07), this becomes v+
¢y’ = afo(v + ¢y), which gives immediately the components v"* = v’ - ¢},
taking into account (Z.68]).

Note. The isometric boost of the two spaces ¥ and Y, necessary to compare
the relative ingredients associated with the frames Sy and S, can be bet-
ter geometrically formalized acting directly on vectors, rather than on their
Cartesian components with respect to the two triads 7 and 7" in z-standard
relation. According to this point of view, one interprets the effective compo-
nents of a vector v/ € ¥/ as if they were along the triad 7 (that is on X), thus
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verifying that the associated map is an isometry. Therefore, more generally,
one can operate independently on the triads 7 and 7. For the transformed
isometric vector Rv’ of a vector v/ € ¥/, we have

Rvi=c—-Xu ~ RV =s+Ap-1)u,
with o = s + A\pu and

def 1 1
AV = -
u V1=

In these relations, there appears o, i.e. the orthogonal projection of v/ on the
2-plane X N Y’ (the “axis” of the rotation), as well as s, i.e. the orthogonal
projection of v/ on X, orthogonally to «v. The two expressions are equivalent.
In particular, when v/ = u’, one gets o = 0, and hence A = 1, Ru’ = —u; if
instead v/ € ¥ NY (v/-u' =0), one has A =0 and s = o.

3=

2.14 Optical Experiments and Special Relativity

As an application of the theorem (Z.I0T]) on relative motions, let us reconsider
here the optical experiments, previously discussed in terms of classical physics.

1. Stellar aberration
Vector multiplication, by u, of both sides of (ZI01]), yields

, «@
v xu= vxu,
o

from which, using v = v' = ¢, it follows that

. o .
cusin® = " cusiné ,

o
or
2
-
sing/ =sing ', ¢ . (2.106)
1— "cosf
c
To first order in § = u/c:
1- 32
\/ s ~ 140 cosf,

1— fPBcosf

so that sin 8" — sin 6 ~ w/c sin 6 cos 0. Now, using 6’ = 6 + A, to first
order in Af one has sin§’ — sinf ~ cosAf, and hence ([2I06]) assumes
the classical form (C29): Af = [sin 6.
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2. Relativistic luminal Doppler effect
This effect can be obtained by considering, either from an absolute or
a relative point of view, the photon as a material particle, taking into
account the fundamental property: the photon frequency v satisfies the

invariance property
de  dt’
=" =iv. (2.107)
14 14
with respect to any change of Galilean frames. Using (2.I02]), one then
has the relativistic Doppler effect formula:

U
N 1—Ccos6‘ u-c

= = -1, cos 0 = . (2.108)
v v u2 uc
\/1 e

From this follows a longitudinal effect (c parallel to u):

1 E€Eu
A N
v C 1, e=+41, (2.109)

v u?
i
c
which, to first order in u/c, reduces to the classical effect:

~e .

v c
If, instead, the velocity c¢ of the light ray is perpendicular to u (trans-
lational velocity of S, with respect to Sg), (ZI08)) gives the transverse
Doppler effect formula:

Av_ by (2.110)

v \/1_u22
¢

One then finds more than a simple relativistic correction: a new phe-
nomenon which is of the second order in u/c:

Auwlu2
v 2¢

3. Fresnel-Fizeau effect
Let us assume Sg as the water rest frame; the light signal speed is then
v' = ¢/n, with n the refraction index of the water. Assuming that the
direction of propagation of the light, in Sy coincides with u, what is the
value of the speed of light in S;7 We need to use the inverse formula of
(2101), obtained by exchanging primed and unprimed quantities:
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1 , o +o
v = av’ — u ) .
o’ 1+ o

But u’ = —u, so that

1 a+ o
vV = o <Ozv' -+ 1+a u) s (2111)
where
a=+1-u?/c?, o =14+u-v'/?. (2.112)

In our case, v/ = ecu/(nu), with ¢ = £1; then ZIII]) becomes

1 c a+o u
vV = we  + U .
o’ n 1+« u

In other words, the light ray velocity, in Sg, is v = v versu, with

1 /
v= I(aec+a+au>, o =1+ " e=x1. (2.113)
o n l+a ne
This is an exact relativistic formula. To first order in u/c (so that o ~ 1),
one gets
c 1
v=e¢ +<1— 2>u, e=+1, (2.114)
n n

from which, when e = 1 (propagation along u), one obtains the earlier seen
(I38). Nothing surprising, of course, in this result, because the Lorentz
transformations reduce to the Galilei ones, to first order in f.
4. Michelson—Morley experiment

Here a difference appears because the involved effect is of second order in
. Assuming that the Earth is an inertial frame Sy, also in the relativistic
context, the light velocity v’ should be the same (¢) in each direction (op-
tical isotropy of the Earth), and hence AT = AT’, or A = 0, according to
the previous notation. Thus, the lack of fringe shift is in perfect agreement
with special relativity. In other words, the Michelson—Morley experiment
in agreement with the special theory of relativity confirms that the Earth
is a Galilean frame (to the second order), as in classical mechanics.

2.15 Coriolis Theorem

From the theorem of relative motions (2I0I]), considered for an arbitrary
motion M, after differentiation with respect to t’, one gets the relative ac-
celeration composition law in the context of Galilean frames, or the Coriolis
theorem, even if, classically, this theorem concerns any kind of frame and thus
has a more general meaning.
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More precisely, using (ZI02): dt/dt’ = /o, and (291 for the definition of
a and o, from (2I0T) one gets

, ol o) o a+o
a' = oa — ul — av — u
olo 1+« o2 1+«

a (u-a)u +u-a(av a-l—au)}

- aa+62(1+0z) 2o 1+«

o? [ +u-a 1
= ca v — u
o3 c? 1+a

[ (u-v) (u-a) (u-a)
= s _a— 2 a+ 2 v — 02(1+a)u] ,
and finally,
2 1 (u-a)
!/
al= [a+02ux(vxa)—c2(1+a)u] , (2.115)
with the inverse relation
o? / 1 / / (u ’ al)
a= s [a—CQHX(V xa)—62(1+a)u] , (2.116)
where 1
/ /
o :1—|—C2u-v . (2.117)

Equation (2110 represents the relativistic version of the Coriolis theorem
in intrinsic form in S;. However, as already stated, it is only a partial gen-
eralization, because, in special relativity, only Galilean frames are admitted.
Actually, it generalizes the classical theorem: a’ = a on the acceleration in-
variance in the context of Galilean frames, to which it reduces in the limit
¢ — oo. Similarly, also the theorem of relative motion (2ZI01]) generalizes the
corresponding classical one: v/ = v—v.., with v,. the dragging velocity, only in
the case v, = u =const. Equation (ZIT3) has been obtained by differentiat-
ing with respect to ¢’ the analogous relation (2I01]). However, we should have
performed two different steps: (1) evaluate, starting from (2.90]), the relations
among the components a’ and a’? of the relative accelerations with respect to
T and 77; (2) interpret the result in intrinsic form, boosting the triad of S in
Sg. But the result would have been the same because boosting ¥’ on ¥ and
differentiating with respect to time are two commutable operations.

Equation (ZIT5) shows that, differently from classical mechanics, the rel-
ative acceleration is not invariant passing from one frame to another. The
invariance exists only for uniform rectilinear motions: a = 0 implies a’ = 0.

Relativistic kinematics determines second-order corrections to the classical
relative motion theorems: v/ = v — u and a’ = a. In fact, from

o 1 1
~1 V- u?
o —|—02<uv 2u>,
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and
1+a/o

1y Ll
~ u-v
1+a 922 2% )

v’zv—u—l—1 u-v—lu2 v—1 u~v—|—1u2 u
c? 2 2 2

1 1 1
a'~a+ [<3u~v—2u2>a+ux(vxa)—2u~au}.
c

one gets

Note. As we have already stated, comparison between vectors on ¥ and
3’ is related to the isometric boost of ¥ to X; it depends only on the two
platforms and not on the choice of the origins Q and €2’. More precisely, if the
two origins do coincide, the boost (rotation around = ' in the 2-plane
and 4') induces a map between points P’ € ¥’ and P € X. The special Lorentz
transformations ([Z87) can be then interpreted intrinsically in X, associating
with 2’¢ the Cartesian coordinates (in 7) of the image of P’ in X. From
this point of view, denoting (with an abuse of notation) with P’ this image
too, the special Lorentz transformations can be summarized in the following
correspondence (t,P) « (¢, P’) (see [@], p. 41):

1 1
t = <t— 2QP-u),
e ¢
1 1
QP = QP — t— QP -u)u.
a (14 a)c?

2.16 Vectorial Maps

In order to use the map language, which permits one to treat, in an intrinsic
way, mixed tensors of any rank in any vector space, let us briefly summarize
here its most important properties (see [I], pp. 24-44).

A wectorial map t, defined in a vector space E,, is a linear map of E,, into
E,, (endomorphism):

t:v — tv)eEb, Vv ekb,, (2.118)
satisfying the linearity condition:
t(au+ bv) = at(u) + bt(v) Yu,ve E,, abeR. (2.119)

The set ) of all the maps of E, has the structure of a linear space. In fact, if
t,t' € Q, and a € R, we can define



2.16 Vectorial Maps 61
t+t':(t+t)v)=t(v)+t(v), at : (at)(v) =at(v), VveE,;

the maps ¢t + ¢/ and at are linear (like ¢ and t'), and all the axioms of a
vector space are satisfied. It follows that (2 is a vector space isomorphic to the
space of (affine) mixed tensors tj; hence it can be identified with this space,
associated with F,,, having dimension n?.

Such isomorphism (linear and bijective) follows by considering the quanti-
ties t'; obtained by decomposing, with respect to the fixed basis {e;} € E,,

the transformed vectors of the basis themselves:
tley) =t're; (k=1,2,..,n). (2.120)

Thus, the quantities t'; are the components of the mixed tensor associated
with the map t; they are called coefficients of the map t, with respect to the
basis {e}. The map t operates by linearity on a generic vector v € E,;:

t(v) = t(v'er) = v¥t(ex) = v¥t'se; , (2.121)

i.e. the transform with respect to a given basis {e;} of a vector is a vector,
obtained by contracting the original components with the coefficients of the
map, in that basis:

vt = Rt (2.122)

If E, is a Riemannian space, i.e. endowed with a nonsingular metric g;:
det||gix|| # 0, the position of the indices in t') is inessential, in the sense that
one can pass from t';; to the other equivalent forms: covariant, contravariant
and mixed (tik = gijghktj n). In general, instead, the tensor t'), defines two
different map laws, corresponding to the cases in which the contracted index
is the first or the second one:

b = with or L T (2.123)

and one needs to specify if the transformed vector of v if left transformed, or
right transformed.

We note that the coefficients of the map are essentially dependent on the
choice of the basis {e;}, and they transform according to the tensorial law.
However, considering the matrix ||t'x|| of the coefficients of the map, it is easy
to check that there exist n scalar quantities, related to the matrix, which are
independent of the chosen basis {e;}. These are the fundamental invariants
of the map: Iy, (k=1,2,...,n), and coincide with the sum of principal minors
of order k of the matrix ||t¢5|| [:

L= Grognglf Lt

= OB a s  k=1..n, (2.124)

10°A minor is principal if its principal diagonal is included in that of the original
matrix.
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wherdl]
05, 5y = 16!5[611 "'56:] . (2.125)
In particular, one has
L=ty +t%+ - t", =Trt, I, = det||t's|| .

A map is called proper, if the invariant of maximum order I, = det||t's||
is nonzero, and this is an absolute property. In this case, t maintains linear
independence, in the sense that it transforms independent vectors into inde-
pendent vectors; in particular, the transform of a nonzero vector always is
nonzero.

Conversely, if I, = 0, the map is called degenerate, and there always exists a
nonzero vector v whose transform is zero. The set of vectors v € F,, satisfying
the condition ¢(v) = 0 forms a vector subspace of E,,, which is called the kernel
of t. For a proper map, the kernel is reduced to the zero vector only.

A vector v € E, such that ¢t(v) is parallel to v,

t(v) = Av, AER, (2.126)

is called an eigenvector of t; X is the corresponding eigenvalue of t, associated
with v. Because of the linearity property of ¢, from (ZI20)), it is clear that if
t admits an eigenvector v, then it admits co! eigenvectors, all parallel to v:
t(av) = at(v) = Aav, and forming a one-dimensional subspace, say < v >.

Equation (ZI28]) can be conveniently written as t(v) = M\%(v), where t° is
the identity map: t°(v) = v, having as coefficients the Kronecker tensor 5{“
Therefore, (Z126]) assumes the form:

(t =M (v)=0. (2.127)

In order that the latter condition to be satisfied, for nonzero vectors (proper
eigenvectors), the map t — A\t® must be degenerate, leading to the following
condition for A:

det||t — X°|| =0, (2.128)

or, explicitly, the eigenvalue equation:
S (=) L tt =0, (2.129)
k=0

' As standard, indices antisymmetrization is denoted by square brackets while sym-
metrization by round brackets. For example, for a 2-tensor A we have

1 1
Alap) = Q(Aaﬂ - Aga) , Alap) = Q(Aaﬂ + Aga) -

2 The notation t° = I is also used and especially when two or more maps are
involved.
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or, explicitly
()" A" + (=) A e~ L, A+ 1, =0 (2.130)

The (complex) solutions of (2.I30]), when substituted back in (2127, give rise
to a linear system, which, for each real \, gives the associated eigenvectors.
In scalar terms, one must solve the linear homogeneous system:

(t'he — A )W* =0, (2.131)

which, because of ([ZI28), admits at least one real eigensolution v (if A and
t' are real).

The following general property holds: eigenvectors associated with distinct
eigenvalues are independent. A case of special interest is when ¢ has n distinct
eigenvectors, with which one can form (in an infinite number of ways), a basis
of eigenvectors. In this case, with a proper selection of the basis vector, the
map assumes a diagonal form:

M O o0
0 Xo -+ 0
0O 0 0 M\

where Ay, ..., A, are the (all distinct) eigenvalues of t. As already stated, the
introduction of a nonsingular metric, g;; = €; - e (with inverse g““ =el- e,
and e’ the dual basis of e;), allows one to identify the mixed tensor #'; with
its covariant counterpart: t;; = gyit'y, or the contravariant one: t** = gkt
and also the (other) mixed one: t;* = gug"™t!,,.

As a consequence, there exist other equivalent forms to express the paral-
lelism condition ([ZI26]), as well as the condition ([ZI28]). For example, the

covariant form of (Z120) is

tinv® = A = Agipv® | (2.132)
so that ([Z128) becomes

det||tik — Agix]| =0 . (2.133)

In Riemannian spaces, symmetric tensors, t;, = ty; (and t(z) = tix), have a
particular importance as concerns their eigenvectors, satisfying the following
property: eigenvectors corresponding to distinct eigenvalues, are orthogonal
to each other, besides being independent. This does not exclude that a single
vector can be isotropic, but this cannot be true for two isotropic vectors be-
cause they cannot be orthogonal. In particular, in Riemannian spaces, if the
n eigenvalues of a symmetric tensor ¢ are real and distinct, the corresponding
n eigendirections are orthogonal in pairs, and give rise to a basis of orthonor-
mal eigenvectors. Moreover, if E, is strictly Euclidean, the previous result
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generalizes so that each symmetric 2-tensor is diagonalizable; that is, as a
consequence of the symmetry, one has the reality of the eigenvalues, as well
as the existence of orthonormal bases made up of eigenvectors.
Associated with a map ¢, one has also other maps:
1. the conjugate map : Kt (also denoted by t7), such that (Kt)!; = t;;
2. the complementary map : Rt, such that (Rt)") (Kt)*; = (det t)8};
3. the inverse map : t=1, such that (7)1, tF; =t (t7H)k; = 5;
A number of relations among the invariants of ¢ and related maps (Kt, Rt,
t~1) can be derived. For example, we have

L(Kt) = L(¢),
L(#?) = I (t) — 212(1)
L(t3) = (L (7)) — I(t)I1(t) + 3I3(t)
etcllq A used terminology is the following;:

1. if t = Kt, then t is said a dilation map;
2. if t = —Kt, then t is said an axial map.

Moreover, the Hamilton—Cayley identity [1],

3 (=1 L, (t)t* =0, (2.134)
>
k=

(=)

can be used to express the inverse map as a polynom in the map t with
coefficients the fundamental invariants:

(=) L) I(t)=1. (2.135)

For n = 4, we have explicitly
1
I,(t)

which for antisymmetric tensors, having I;(t) = 0 and I3(t) = 0, specializes
to the form

t1 [I3(t) T —L(t)t + I, (t)t? — 7], (2.136)

13 Furthermore, if ¢t and 7 are two generic vector maps, a number of identities among
the associated invariants can be derived, e.g.

Iz(t +T) = Iz(t) +12(7') + Il(t)fl(T) — Il(tT) ,

1
3

+30(t7°) = L (t+7) + 3L (t + 7) I2(t + 7)

Is(t+7) = [11 (t%) + L1 (%) + 31, (1) +
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th= —L(t) T —Iy(t)t* . (2.137)

Finally, in special case in which ¢ is a Rotation , i.e. Kt =t and I,,(t) = 1
the following (Cayley) representation of ¢ holds: there exist a unique skew-
symmetric map @ (KQ = —Q) so that

t=101-Q) ' (1+Q). (2.138)

2.17 Levi—Civita Indicator and Ricci Tensor

In any manifold of dimension n (and hence in My), one can introduce the
affine tensor, also known as Levi—Civita indicator ¢"*-"». This is a n-indices
system whose components can only assume values 1,0, —1, and precisely

o 0 if the indices are not all distinct
e'ttn = ¢ (=1)P if the indices form a p class (2.139)
permutation (even or odd) of 12...n.

€1-+in can be defined in terms of the generalized Kronecker delta:
=5 (2.140)

Q1.edn . Sl1...0p . .
€ - 5171 9 611...

In My, referred to Cartesian coordinates, we have €123 = 1, and €*%°7 is
an odd-type tensor (changing sign according to the orientation of M,) whose
components transform with the law:

oz’ 9z'P 9x'P 92’
ox> Ozt Oxv Ox™

with the sign + or — depending on whether

obre — 4 AT (2.141)

’
ox

det PYsY

= =+£1.

In the case of Riemannian spaces (associated with a metric g;;, with ¢ =
det||gi;||) and general (non-Cartesian) coordinate systems, the role of the
Levi-Civita indicator is played by the Ricci tensor (see e.g. [I] p. 77) defined
by

MNiy..in = [Sgng] \/|g|6i1---in ’ (2142)

where one has the [sgng] = +1 when g > 0 and [sgng] = —1 when g < 0.
Niy.. i, 1S & true tensor, differently from the Levi-Civita indicator, and it is
associated with the unit volume n-form; in My, referred to Cartesian coordi-
nates, we have 9123 = —¢0123 — _1: when the coordinates are not Cartesian
we have instead

« v 1 « v
Napur = —V|9l€apus ,  1PH = ey (2.143)
Vgl
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It is also useful to recall the identities:

naﬁpvnamw = _255:; ) naﬂpdncmﬂy = _52';;:; : (2.144)

The Ricci tensor is used to define the space-time dual of tensors of any rank.
In fact, if ¢;,..;, is an antisymmetric tensor of rank p (i.e. a p-form), the dual
of ¢ is the antisymmetric tensor of rank 4 — p defined by

*tip+1...i4 — Z:)l| ,,,]il...ipip+1...i4ti1”.ip . (2145)

In particular, if ¢ = ¢; is a vector (p = 1), we have

ik = pmiiky, (2.146)
if t = t;; is an antisymmetric tensor of rank 2 (p = 2), we have

= ;n“’“jtlm , (2.147)

so that the dual is also an antisymmetric tensor of rank 2; if ¢ = ¢;;;, is an
antisymmetric tensor of rank 3 (p = 3), we have

A
“t = 677”’”@“ : (2.148)

so that the dual is a vector; finally, if ¢ = ¢;;,; is an antisymmetric tensor of
rank 4 (p = 4), we have
1 ..
t = 2477”’%]“ : (2.149)
so that the dual is a function or a O-form. The duality operation can be iterated
and for an antisymmetric p-tensor we have

[Fr4)f e = [sgg] (~1p P (2.150)

It is worth to note that in the two cases, “space-time” (n = 4, [sgng] = —1)
and space (n = 3, [sgng] = 1), the previous relation imply

= (=1)P 1t (space — time) (2.151)
t=t (space) . (2.152)

A final remark concerns notation for the duality operation. It is conventional
to put the * on the left of the symbol denoting the tensor (unless one needs
not to specify a right-duality operation different from a left-duality operation,
especially when dealing with antisymmetric tensor of rank higher than 2).
This notation is but less convenient when one uses index-free notation and
products of many vector maps. Therefore, with an abuse of notation, in such
cases, we often put the * over the letter denoting the tensor.
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2.18 General Lorentz Transformations: 11

In this section, we study the geometry of 4-rotations in M, using the repre-
sentation of the general Lorentz group in terms of antisymmetric 2-tensors [6].
As we have already seen in Sect. 2.10, the Lorentz group is the set of
all possible coordinate transformations in M, associated with two Cartesian
(orthonormal) frames {Q, x%, ¢, } and {Q', 2’ ¢/, }. These are linear and in-

homogeneous:
% = Lg% + T ; (2.153)

the four coefficients T“ are arbitrary and represent space-time translations

while the coefficients L g,
Ox“

L% = AR (2.154)
are associated with the orthonormality of the vectors ¢, and ¢/ :
Ca - €3 =Mag =C, - Cj . (2.155)

The coefficients Lz characterize also the transformation laws of the unit
vectors of the two considered frames

cy = L%cq , (2.156)

so that they can be interpreted as the coefficients of a 4-rotation L which
maps the vectors ¢, into the vectors c.,:

cy = Leg . (2.157)

The role of the two frames can be exchanged by moving simply the position
of the prime so that 2I53), (ZI54) and (ZI50) have their analogous:

/e = L/aﬁxﬁ 4 e (T/a _ —LlaﬁTﬁ)

P (2.158)

9B

The matrices L®g and L'®g are inverse of each other because of the identities:

Llo‘g Cp = L/aﬁcla.

o 0x'™  0x'™ OxP

- = fe% P _ So
% = ox'8 ~— dxr dz'B — L%, LPsg=14j5. (2.159)

Furthermore, the orthonormality properties (2-I55]) provide restrictions to the
change of basis [ZI50), i.e. to the matrix L®g; in fact, one has the following
ten relations:

LPL? gmps = Mag (o, 6=0,1,2,3), (2.160)

so that (2I53) specify a group of coordinate transformations L1 with 10
parameters: (16 —10) = 6 for the L* and 4 for the T'*. This is called Poincaré
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group of the Minkowski space My. In terms of changes of bases (2.156]), (2.160)
characterizes the orthogonal group Lg of My. Two different points of view are
then possible, one associated with the orthogonal Cartesian coordinates of My
and the other with the orthonormal frames of Mjy.

Let us assume the basis ¢, to be fixed while the basis ¢/, as well as the
coefficients L g of (2.I56) to be allowed to vary. Among all numerical matrices
satisfying (2.I60), there is the identity matrix:

L% =35, (2.161)

i.e. the rotation which leaves the initial basis as invariant. Such a rotation
has determinant +1, whereas a generic Lorentz matrix satisfies the condition
(similar to that valid for a rotation in the ordinary space):

det ||[L%3]| = +1 . (2.162)

Therefore, if one considers the L%z as continuous functions of a parameter
t € (0,7, with the initial condition L*g(0) = 0§, it is not possible to obtain
all the orthonormal bases {c/,} € My: those derived by applying to c, a
matrix with determinant —1 are excluded. This also happens in the ordinary
space where the rotation group (which depends on three parameters) is not
connected, but consists in two connected parts, O and O~ (O stands for
orthonormal); in fact

1. in both OT and O™, there are only rotations with determinant +1 (equi-
oriented bases: both left-handed or right-handed);

2. any two bases, one in O" and the other in O™, are related by an anti-
rotation: det ||R%|| = —1 (non equi-oriented bases: one left-handed and
the other right-handed).

As stated above, in the case of My, the connected parts become four:
OF(C5) and O~ (CF) because of the presence of the lightcone Cs. In fact,
Cs is a barrier not only between timelike (internal) and spacelike (external)
vectors but also for the timelike vectors which cannot pass continuously from
a half-cone to the other.

Alternatively, the condition that the orthonormal bases {c,} and {c,,} are
equi-oriented, i.e. det ||L%g|| = 1, does not imply the possibility to pass from
one to the other continuously: it is necessary to add the condition that the
two timelike vectors ¢p and ¢ belong to the same half lightcone. Thus, to
remain in one of the four connected parts, Oi(Cai), one must consider the
set of all orthonormal bases O such that for each pair {c,},{c,} € O the
following conditions hold:

1. ¢ and ¢, belong to the same half lightcone;
2. det ||LYg]| = 1.

Assuming the above conditions, each of the four connected parts of My is
endowed with equi-oriented orthonormal bases.
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2.18.1 Representation of the 4-Rotations
with Pairs of Spatial Vectors

Let us consider one of the four connected parts of the homogeneous Lorentz
group. In this case, Lorentz transformations generate a continuous group of
transformations with six parameters: Og; in addition, for each pair of orthonor-
mal bases {c,},{c,} € Og, the timelike vectors ¢y = =, ¢{; = v/, belong to
the same half lightcone and specify two orthochronous Galilean frames: Sy and
S, having generic spatial triads {c;} and {c}}. We note that one can always
consider the special case of triads in x!-standard relation by performing an
ordinary rotation in ¥ (the space platform associated with v in Sg) and an
analogous rotation in X’ (the space platform associated with 4" in Sg). More
precisely, as we have seen in Sect. 2.10, denoting by u the relative velocity of
the Galilean frame S; with respect to Sy, the following relations hold:

v 1 !
b=plco+ u), p=
c u2
1= 5 (2.163)

. p p u
. =R'% |c;i - Cj .
Cy k[c +cuc<C0+cl+p>}

These relations involve six parameters: the three components of u € ¥ and
the three parameters corresponding to the spatial rotation R, such that

det||R'x|| =1. (2.164)

Equation (2I63) can be cast into a more familiar form by using the rep-
resentation of the ordinary rotations in terms of three parameters and, in
particular, in terms of a single vector q. In fact for an ordinary rotation R,
we have the representation [T}, 3]

2
V/:RV:V+1+q2[qXV+qX(qXV)], (2.165)

implying that the transformed vectors of ¢; € ¥ are given by

def

. 2
Ap = R'kci =i + [ax ¢k +q-ckq — g’cy)] (2.166)

L+¢?

Introducing now the components of q along ¢, q = ¢*cy, as well as the spatial
Levi-Civita alternating symbol

€ilk = Ci - € X Cf , (2.167)

we find the coefficients Ry

2 ) ) )
9 (d'en’ + d'qx — ¢°0}) ; (2.168)

Ry =0}
k k+1+q
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where R'¢* = ¢*, i.e. q is an eigenvector of R; moreover, q specifies the rota-
tion axis (with its direction) as well as the rotation angle (with its magnitude;
in fact ¢ = tan(¢/2) where ¢ is the angle of rotation). For example, when
q = tan(¢/2)cs, we find

‘ cos¢p —sing 0
Ry = | sing cos¢p 0] . (2.169)
0 0 1

Similarly, using the decomposition u = u’c;, we also have Ripu; = Ay - u.
Adopting such a notation allows us to rewrite (ZI63]) in a more compact form

o=~ | Co + u 5
C
(2.170)

P p u
L=A JAVAR :
Ck k+c k U(Co+cl+p)

Note that in the limit ¢ — oo, (ZI63)) reduce to
¢, = ¢y, c, = A =R . (2.171)
The components of the Lorentz matrix L%g are then given by

L% =p, Lig= P
¢
) (2.172)
o _ P i i L p i
Lk— Ak~u, Lk—C'Ak—F uAk~u.
c 2l+p

Let us focus, now, on the composition law for the product of two rotations. In
fact, in addition to L : {c,} — {cl,} (characterized by the vectors q,u € %)
consider a second rotation: L' : {c,} — {c/} (characterized by the vectors
qd’,u’ € ') which implies

1 1
cl=p <c6 + Cu') , o = 2
\/ L= (2.173)
/ / u/
of =+ A <cg+’;1+p,) AL =Aud),
where ' '
u =uc}, qd =q"c,. (2.174)
The transformation
L'=IL (2.175)

directly maps the basis {c,} into {c”} and can be represented by relations
analogous to (2I70) with both the vectors q”,u” € ¥, namely,
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1 1
C/OI — p/I <c0 + Cu//) , p/I — u//2
1= (2.176)
11 11 "
o= oy apa (a Y ) A= )

The vectors q”,u” € X are functions of gq,u € ¥ and q’,u’ € ¥’; such a
relation thus represents the composition law of two 4-rotations. Note that this
law can also be obtained directly in terms of the vector q only, exactly as
the composition law of the product of two ordinary rotations (or Rodrigues
formula, see [3], p. 113):

q,,:q+q’+q’><q

2177

A similar relation (with the only difference of a + sign at the denominator
of 2IT7) holds in the three-dimensional hyperbolic case, with signature:
— +,+.

In the case of a Minkowski space-time, we find convenient to generalize
@ITD) using the representation of 4-rotations L in terms of antisymmetric
2-tensors. This is quite natural since an antisymmetric 2-tensor is equivalent
to a pair of spatial vectors, as for the case of the electromagnetic tensor, which
can be represented in terms of the electric and magnetic vector fields.

Later we will briefly introduce another method, based on Clifford’s algebra
[7] and also associated with antisymmetric tensors. We thus proceed now
analyzing the general properties of antisymmetric 2-tensors in My [8].

2.18.2 Invariants of an Antisymmetric 2-Tensor

Let us consider a four-dimensional linear space E4, and let A be a contravari-
ant antisymmetric 2-tensor, i.e. A € Ey4 A Ey

1
A= 2A°‘5ea neg , (2.178)

where {e,} is a generic basis in E4[™ Due to a general property (see [II,
p. 53), the tensor A

(1) is a bivector: A = u A v,

or

(2) it can be expressed (in infinite ways) as the sum of two bivectors:

A:A1+AI1, Ay =vgAvy, .A/1:V2/\V37 (2179)

14 As a standard notation, we use bold face letters to denote tensors (noncapital
letters for vectors mainly). The vectorial map associated with the mixed repre-
sentation of a 2-tensor is denoted by the same (capital) letter as for the tensor
but is not in bold face.
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where v, (o =0,1,2,3) are four linearly independent vectors: vo A vy A va A
vy =V # 0. In case 2), assuming the (ordered) set of vectors v, as a basis
in Ey4, the components of A with respect to such a basis are

0 1 0 O
-1 0 0 0
w _
A= 0O 0 0 1]°
0 0 -1 0
and det || A#”|| = 1. Moreover, because of the tensorial behaviour of the com-

ponents A" the sign of this determinant is invariant under a change of basis,
i.e. it does not depend on the choice of the basis. Hence, it is always positive
for every A which is not a bivector. Therefore, for every contravariant (or
covariant) antisymmetric 2-tensor of the form (ZI79) we have

det ||[A*|| > 0, (2.180)

where the equality holds if and only if A is a bivector.

The above property holds, in particular, if Fy = M,. In this case, denoting
the metric tensor as gog (generically), one can consider the various forms of the
tensor A: covariant (A,g), contravariant (A%?) and mixed (A%g = gz, A%"),
the latter identifying the vectorial map A. One can then consider the four
invariants of A:

I(A)= A% =Tr A=0

L(A) = 255;;,,4a A8, — 1A0‘pAPa:—;.71(A2)
(2.181)

I3(A) = @gg;m* AP Ar, =0

Ii(A) = det||A%g|| = gdet [[A*7]],

where 65155 is the generalized Kronecker tensor introduced in (ZI25). Equa-
tion ([ZI81])4 together with (ZI80) implies that, if A is nondegenerate, I,(A)
has the sign of the determinant of the space-time metric g; in particular, as-
suming the basis {v,} used to represent the bivectors A; and A} in (ZI79)
instead of {e, }, leads to I;(A) = g implying then I4(A) < 0 in My. Due to the
invariant property of I,(A), this result specifies its geometrical meaning. In
fact, generically V. = vy Avy Avy Avs is associated with its absolute extension
V4, defined by the positive invariant:

o def 1

‘/ v;ﬁpgx/aﬁpalj ‘/aﬁpo _'5QBPUUOUTU£U§, (2.182)

HUTE

as well as its extension relative to a frame {e,}, Vg:

Vi det||o%,], vi= 0" uea; (2.183)
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VR then is related to V4 by the property
Vi= V1%|g| =inv. = |det [|va - vgl|] , (2.184)

invariant with respect to the choice of the basis {e,}. When {e,} = {v,}, we
find Vg =1 and, using (2.I81))4 and (ZI84), we see that both scalars |[I;(A)]
and V3 assume the same value |g|; hence, they coincide: [I4(A)| = V3, and V
can then be written as

1
V:VQ/\Vl/\Vg/\Vg,:Al/\A/lE2A/\A. (2185)

Let us define the (pseudoscalar) invariant I (A):
(A2 14 >0. (2.186)

We have .
[T(A)?=V3; (2.187)

moreover, denoting by *V the dual of V' (odd-type scalar):

1
V= 4'%3,”1/“5/” : (2.188)

we have in addition
Wi= V3, (2.189)

so that ([2I87) is also equivalent to

[(A)="V. (2.190)

2.18.3 Algebraic Properties of Antisymmetric 2-Tensors
From (ZTI78) we have
1 4!
V = 8A°‘5A”"ea NegAhe, Ne, = 8 AleB prle & eg®e, Ve, ,
so that the components of V' are given by
vedee = 3Aled grel (2.191)

and we find

* ! appo 1 o T 1 a o
V= 4!7]angV Bpo _ STIOLBPGA[ BAP ] — 877045;7014 BAP ) (2192)

Using then the dual of A

£ 1 1
A= Q*Aaﬁea Neg , * AP = 2naﬁpoAPf’ , (2.193)
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is easy to prove the additional property of I(A):

" 1 1 .
[(A) = " AapA™ = = L(AA). (2.194)

*

I(A) characterizes the product of A and A (see [9], p. 588):

AAd=—T(A)A° A" =T, (2.195)
moreover, since I*(A) is a symmetric function of A and ;l, we also have
AA = AA = —T(A)A° . (2.196)

From this equation, taking the determinant of both sides, it follows

and (2I80) becomes
L4(A) = Li(A) = —[I(A)? . (2.197)

A second property of I (A) follows from (ZT9G]). In fact, replacing A by A+ B
n ([ZT196) leads to

(A+B)(A+B)= —I(A+ B)A
the left-hand side of this equation can be cast in the form
AA+AB+BA+ BB = I (AA)A° + AB + BA + 0 (BB)A°

while at the right-hand side we have

* 1 * * *
I(A+B)= 4 L(AA) + I(BB) +2(AB)| . (2.198)
Therefore we find 1
AB + BA = 5N (AB)AY | (2.199)
ie a relatlon equivalent to (m to which it reduces when A = B. Next,
replacing B by B and B by B (being ** = —1, as shown in Sect. 2.17),
EI199) becomes
* 1
AB — BA = 5N (AB)AY ; (2.200)

multiplying this equation by AB and using (Z96]), we can express the square
of AB as a linear function of the same AB:

(AB)? = [ (A)I(B)A° + ;11 (AB)AB . (2.201)
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We note that when B = A, using (2I81) and (ZI97), (Z201) gives the

Hamilton—Cayley identity for antisymmetric 2-tensors:
At = —I(A)A® — I, (A)A? . (2.202)
Multiplying (2:200) by A we have

ABA = ;11 (AB)A—I(A)B ; (2.203)

when B = A, the latter allows us to obtain A2 in terms of A and A:
A3 = _L(A)A— T(A)A. (2.204)

Equations (2I99) and (Z200) together with (Z201]) imply simple properties
for the Poisson brackets [A, B]:

[A,B] = AB — BA, (2.205)

which give the structure of a Lie algebra to the (Euclidean) space of antisym-
metric 2-tensors A2 = My A M. For instance, from (ZI99), with A = B and

B = —A, we have: AB + BA = BA + AB, that is

[A,B] =[A, B . (2.206)
Similarly, from (2200]), rewritten also exchanging A with B, one finds

[A,B] = —[A, B]. (2.207)

Finally, we have
“[A,B] = [4,B] = [A, B] (2.208)

the parenthesis [A, ;1], instead, vanishes identically.
Therefore, two independent antisymmetric 2-tensors: A and B together with

/*1, é, [A, B] and *[A, B] form a basis in the linear space A2

2.18.4 Bivectors and Their Classification

The properties of antisymmetric 2-tensors outlined in the previous section do
not imply any special requirement for A and B. However, it is convenient
to distinguish between the general case: I4(A) # 0 and the degenerate one:
I,(A) =0.

The decomposition (ZI79) suggests to study the general case starting from
bivectors. To this end, let us consider the bivector A = u A v, with u and v
independent and defining a linear subspace Fy =< u,v >; let us denote by
AP = u*vP —uPv® the components of A with respect to the basis {e, ® eg}
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of M2; equivalently, A*? are the contravariant coefficients of the linear map
associated with A which maps each vector w € My into a vector Aw given by

Aw = (v-w)u— (u-w)v , (2.209)

belonging to Es (principal plane) and orthogonal to w: Aw-w = 0; thus, Aw
has the direction of the intersection between Es and the hyperplane orthogonal
to w. The exception is represented by those vectors orthogonal to Fsy, which
belong to the kernel of A: Aw =0,Vw L FEj.

Since AMy = Es, all possible (real) eigendirections of A belong to Es.
Furthermore, I4(A) = 0, since A is a bivector. The eigenvalue equation is
then given by

det [|[A%5 — A5 || = N [L(A) + ] =0, (2.210)
and admits, besides the double root A = 0 (the vectors of the 2-plane normal
to Ey are all in the kernel of A), the roots of the equation

L(A)+ X =0, (2.211)
where I5(A) is given by
L(A) = [[ul[[v]] = (u-v)*. (2.212)

Let us now assume, without loss of generality, that the basis {e,} is adapted
to Es: e; € Es (i = 0,1); denoting by V the extension of A with respect to
ep A e, we have

I(A) =Vga,  ga=det|le; eyl =|leqll|le1]| — (eo-e1)®. (2.213)

We distinguish then the following three cases:

1. ga >0 ~ I3(A) > 0: the signature of Ey is (++), i.e. Fy is ellip-
tic, and there are not null directions; (Z2I1]) has no real solutions and,
consequently, in Fs, there are no real eigendirections.

2. g4 <0 ~ I3(A) <0: the signature of Ej is (—+), i.e. Ey is hyperbolic.
Besides the double root A = 0, there are two different real eigenvalues: A =
:I:\/ —I5(A), and hence there exist in Es two independent eigendirections:
u; and us. One then has

uAv=hu Aug, (2.214)

where h is the signed extension of the parallelogram (u,v) with respect
to (ug,uz). Then, from (2:209) follows that

Aw = h[(uz - w)u; — (ug - w)ug], Vw e My, (2.215)
so that

Aul = h[(u2 . 111)111 — (u1 -ul)u2],
Allg = h[(u2 . 112)111 — (u1 -UQ)UQ] y (2216)
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and, since u; and uy are the eigendirections of A (Au; parallel to u; and
Auy parallel to us), we have that uy -u; = 0 and us - ug = 0, i.e. g
and us are necessarily the two isotropic directions of FEs; the associated
eigenvalues A are given by A = +(huy - us), in agreement with (Z213)). In
particular, if u; and us satisfy the normalization condition u; - us = 1
(which still leaves u; and us defined up to a factor), one has A = +h.

3. ga =0 ~ I3(A) = 0: 2211) has the double root A = 0. The vectors of Es
cannot have positive (negative) norm, because in such a case, g4 would
be positive (negative) too. Thus, there necessarily exists a null vector u.
Assuming that one of the vectors e; coincides with u, we see, from (2.213)),
that u is orthogonal to all the vectors of Es. Moreover, it is unique, up
to a factor: if there were another one, uy, not collinear with u, then, from
Z218) with h = 0, one would have Aw =0, Vw, ie. A =0, contrarily
to the hypothesis.

Let s € 5 be a generic vector orthogonal to u and, hence, with nonzero
norm. The normal (with respect to Es) not degenerate hyperplane: II, con-
tains u and has signature (— + +); as a consequence, besides the isotropic
direction, Es only contains spatial vectors: ||s|| > 0.

Actually, one still has a relation similar to (22T5)):

Aw = h[(s-w)u — (u-w)s|,
which Vw € F5 becomes
Aw = h(s-w)u, Yw e By .

Thus, each vector w € F5 is mapped into a vector parallel to u, i.e. along
the only null direction of Fs. In fact, the condition Aw = h(s-w)u = 0,
with w € Fs, is equivalent to s-w = 0, that is, w parallel to u. Note that
FEs cannot have orthonormal bases: otherwise the signature should have
been (++); moreover, every orthogonal basis of Es necessarily contains
the null direction u.

Therefore Es is parabolic as well as the orthogonal 2-plane which con-
tains u (the isotropic vector) and the null directions of A, as in the above
cases 1 and 2.

We can now discuss some orthogonality properties of antisymmetric 2-
tensors.
Let A = (A*%) and B = (B“?) be two antisymmetric 2-tensors; the invari-

ant def
A-B= A,3B* = —I,(AB) (2.217)

is called the scalar product of A and B. When A - B = 0, the two tensors are

said orthogonal. We have that if A is a bivector, then its dual A is a bivector
orthogonal to A:

L(A)=0 — L(A)=0 and A-A=0. (2.218)
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This follows directly from (2I96]) and (2I97). The orthogonality property of

the bivectors A and A is equivalent to the orthogonality of the two subspaces
E5 and E3, to which they belong, respectively. To see this let A = u A v;
because of the independence of u and v, we have that a vector w is orthogonal
to the plane Fy =< u,v > associated with A if and only if Aw = (v-w)u —
(u-w)v = 0. Moreover, using the antisymmetry of the Ricci tensor 7 and the
symmetry of the tensor u®u?, it follows that

*AYPug = PP ugun, =0, TAPug = PP ugu,0, =0,

that is Au = 0 and Av = 0. Thus u and v are orthogonal to the subspace I3

associated with ;1; as u and v span the subspace Es associated with A, we
also have the orthogonality of Fy and E3.

As a consequence of the uniqueness of the orthogonal 2-plane to a given
bivector A = u/\v it follows that, if A and B are bivectors associated with

orthogonal subspaces, necessarily one has B = AA, with A a factor.
Note that (Z2T8)) is contained in (ZI96]) which for bivectors assumes the

form AA = 0; similarly, from (2201]), the orthogonality of two bivectors A
and B is equivalent to the condition AB = 0.

2.18.5 Canonical Decomposition of Antisymmetric 2-Tensors

Let us consider a generic antisymmetric 2-tensor A, i.e. such that

*

L(A) = Ii(A) = —[[(A)2 <0 (2.219)

In this case, the associated map admits an inverse: A~!, and because of
[2I3946), for the (left) inversion and (left) duality operation, the following re-
lation holds: . .

A=—-1(A)A", (2.220)

so that the adjoint (or dual) map differs from the inverse by the factor:

1 *
—I(A) = 4[1 (AA) . (2.221)
We find then the following commutation property

AT = [A]7L. (2.222)

We note that for bivectors ([2.222]) as well as the original (Z.2220)) is meaningless.
The following relation between A and the complementary map of A: RA,
defined by

!5 When A is parabolic, the uniqueness remains, but the 2-plane orthogonal to Es
is not supplementary because it contains, like Fo2, the isotropic direction of A.
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*

(RA)T % T(4)A, (2.223)
has, instead, a general validity. Equation (2223) reduces to (2220) in the
general case I4(A) < 0; for bivectors, instead, the complementary map always

vanishes, differently from A.

Let us turn to the decomposition (ZI79) of A as the sum of two bivec-
tors. We have that A can always be expressed as the sum of two orthogonal
bivectors, that is the following canonical decomposition holds:

A=A +A], A -A, =0, (2.224)

and it is unique. To show this let us assume the decomposition (2:224]) and
use the orthogonality property of A; and A/; we then have for the associated
maps (see Sect. 2.18.4)

AL =2Ay, Ay =NAY, AN =-1;
thus the decomposition (Z224]) becomes
A=Ay + A = A+ XA, (2.225)
where the pair (A1, A\) determines A up to the transformation
Al =My, N=-1/). (2.226)

Consider now the dual of both sides of (Z225)), and take into account that,
for each antisymmetric 2-tensor in My, one has ** A = — A. Therefore, one has

the relation: )\;l = )\;11 — A2 A; which, once subtracted from ([2225]), gives A;
(as well as A}) in terms of A and A:

1 5 A

A = A—-)A Al = A+ )A) . 2.227
1 1+ )\2( ) ) 1 1+ )\2( + ) ( )
Equation (Z22Z7) is not yet the solution because we must require that A is a

bivector. To do this, it is enough to impose Il(Aljll) = 0 and use ([2:227), so
that

* *2 *
LI(AA+NA? — XA — \2AA)=0.
From this relation, using (Z194), 2I81); and (Z200) with B = A,

L(AA) = [ (AA) = —41 (4),
(2.228)

L(A%) = -2D(A),  L(A) =14,

we obtain the equation for A:

*

(AN — L(A)N—T(A) =0. (2.229)
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It (A) =0, (ZZ29) then implies A = 0, in agreement with the fact that A is
a bivector; if, instead, I (A4) # 0, it admits the two roots:

)

ofs B VBRI 2] A=t 22w)

Apart from the degenerate case, and using for A any of the values ([2.230]),
[2227) gives the sought for bivectors A; and A] of the canonical decompo-
sition (2224)). We note that exchanging the two roots A\; and Ay given by
[2230) leaves A invariant, and it is equivalent to exchanging A; with A} in

@227).
Let us study now the relation between the invariants of A and those of A;
and A}. We recall that for 2-tensors B and C' we have

et 1opor e |
L(B+C) ¥ L 005(B%y + C%,)(BY5 +C%)

= I(B) + L(C) + L(B),(C) — I,(BC) . (2.231)

Using now B = A; and C = A} (antisymmetric orthogonal bivectors)
together with (2224)), the previous relation becomes

L(A) = I,(A1) + I (A}) = —;Il(A%) - 311(14/12) :

In order to evaluate I4(A), one has to consider instead the odd-type scalar

1(A) of @IT):
* 1 * 1 *, 9
[(4) = =  II(A4) = — L(A4)) = AL (AD)
that is,
[(A) = —\(4;) . (2.232)

Similarly, exchanging A; with A/, one finds f(A) = —\N1y(A}); thus, since
AN = —1, we can write

[(A)? = ~Li(A) = ~L(A) [(A}) . (2.233)

Summarizing, the relations between the invariants of A and those of its
orthogonal components A; and A} are

L(A) = (A + LAY, Li(A) = L(AD) (A} . (2.234)

Equation (2.234]) confirms the negativity of I,(A), since of the two bivectors
Ay and A} one is elliptic (I > 0) and the other is hyperbolic (I < 0).
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Equation ([2234]) also shows that the sum of two orthogonal parabolic bivec-
tors is still a parabolic bivector; moreover, using (Z233)) and (Z232]), one has
the following expression for A%

o DL(AY)
A2 = A (2.235)

2.18.6 Properties of a 4-Rotation

The spectral analysis of antisymmetric tensors which we have discussed above
will be now applied to 4-rotations. We start studying the representation of the
Lorentz group in terms of antisymmetric 2-tensors, i.e. the so-called canonical
decomposition. Thought of as a linear map of vectors, a 4-rotation is a vector
valued function: L = ||L®g|| satisfying the following properties:

1. it maintains the scalar product of any two vectors: Lu-Lv = u - v,
Vu,v € My;

2. it leaves unchanged the orientation of My, that is it maps each basis
{ea} € M, into another one with the same orientation.

From the property (1), using the commutation theorem, one gets the con-
dition (KL)L = L° where (KL) = L% is the conjugate map of L. Taking
the fourth invariant of both sides, and using the property (2), one then gets
I,(L) = 1. Conversely, the latter two conditions imply 1 and 2. ThusE nec-
essary and sufficient condition for a generic L to be a rotation is

(KL)L=1L", L(L)=1. (2.236)
Let us now introduce the complementary map of L, (RL):
(RL) = I,(L)(KL)™*. (2.237)

From (2236), after left multiplication by (KL)~! and using ([2236),, we
find L = (RL); conversely, such equality which reduces (2.237) to the form
L = I(L)(KL)™! implies (KL)L = I4(L)L°, so that [I4(L))* = [I4(L)]*.
Therefore, necessary and sufficient condition for L to be a rotation is

(RL)=L, I4L)>0. (2.238)

It is easy to obtain a relation between the first and the third invariant of a
rotation. In fact, using the Hamilton-Cayley identity (ZI36]) and (2.230),
one finds

L' =L(L)L° — Iy(L)L + I,(L)L? — L?, (2.239)

as well as the following expression for (RL):
(KL)™' = (RL) = (L)L° — (L)(KL) + I, (L)(KL)? — (KL)*; (2.240)

16 This is a general property, well known in the ordinary case.



82 2 Space-Time Geometry and Relativistic Kinematics

then, evaluating the first invariant of both sided™1: Iy (RL) = I3(L) and, from

Z238),,
L(L) = Is(L) . (2.241)

2.18.7 Expression of a 4-Rotation by Its Antisymmetric Part

In the three-dimensional case, every rotation can be expressed as second de-
gree polynom in its antisymmetric part. We look for an analogous property
in the four-dimensional Euclidean space, with signature (— + ++). Let us
decompose L in the sum of its symmetric part D (i.e. a “dilation map”) and
its antisymmetric part A (i.e. an “axial map”):

L=D+A. (2.242)

Using ([Z236); with L given by ([2242)) as well as the analogous L(KL) = L,
one has

D>~ AD+DA-A*=1°, D*+AD-DA-A*=1",

from which
D?*=A"+ A’ DA=AD. (2.243)

We have thus expressed D? as a function of A; however, our aimid is to express
D as a function of A. Solving (Z239) with respect to L? and using (2238]);,
L' = (KL)= D — A, together with (2241 leads to

L3 =1 (L)L?> - L(L)L — KL+ I,(L)L" ;

using the representation of L given by ([2:242)) and taking into account (Z243)),
then implies

D3 +3D?A +3DA? + A® = I,(L)(D? + 2DA + A?) +
—I(L)(D+A) —D+A+L(L)L°;

separating the antisymmetric and symmetric parts, we have

D3 +3DA?* = ,(L)(L° + D* + A*) — 1+ I,(L)|D

3D?A+ A3 =211 (L)DA + [1 — I(L)]A,
so that taking into account (2243]); leads to
D[(2 + I3(L))A° + 4A?] = 21, (L)(A° + A?) = 21, (L) D?

3A + 443 = 2I) (L)DA + [1 — I,(L)]A.

17 As stated in Sect. 2.17, for any nondegenerate map ¢, we have I1(Kt) = I (t).
'8 Equations (Z243) are necessary condition for L being a 4-rotation; but they
are not sufficient because they only represent the first of the two characteristic

properties (Z230]).



2.18 General Lorentz Transformations: II 83

Introducing then the “dilation map” B % [2 + Ih(L)]A° + 442 — 2I,(L)D
(satisfying the condition B = KB) and using (2.243])2, the above relations
can be written as

DB=0, AB=0. (2.244)

Moreover, from the definition of B, we have the additional condition
D?B — A’B = B;

the left-hand side of this equation vanishes identically, being D(DB)— A(AB)
and using the conditions (2.244]). Thus necessarily we have B = 0, and this is
exactly the sought for relation for D:

211 (L)D = [2 + Io(L)]A° + 442 . (2.245)
In the general case I1 (L) # 0, ([Z243) gives D in terms of A:
D =aA® +bpA? (2.246)

where the scalars a and b are expressed in terms of invariants of L, instead
of A: 2+ (L) )
+ 12
= , b= 0. 2.247
21, (1) nw? 2240

2.18.8 Canonical Form of 4-Rotations
Equation (2240 allows us to write L in the form
L=aA’+ A+0bA%, (2.248)

with a and b given by ([2247)). Our purpose is now to express a and b in terms
of the invariants of A. From (2.248]) we have

2
Il(L) = b =4da — 2bIQ(A) 5

that is 1
a
L(A) =2 - 2.24
24) =2, — 5, (2.249)
or equivalently
1 1
I(A) = 2[2+12(L)] — 4112(L). (2.250)

Moreover, (2.248)) gives the product (K L)L, using the Hamilton—Cayley iden-
tity to express A%:
At = —1(A)A? — I,(A)A° | (2.251)

that is
(KL)L = [a® — b*I4(A)]A° 4 [2ab — 1 — b* Iy (A)]A? .
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Thus, from (2236); and ([Z249), we have the relation:
LY = [a® — b°1,(A)]A°,

so that
a? -1
I,(A) = 52 (2.252)

or

I,(A) ! {[2+ L(L)]* —4I3(L)} . (2.253)

T 16
Moreover, [2I86l), I4(A) < 0, gives the following restriction to the invariants
of L:

—1<a<1l ~ [2+L(1)?<4I}(L), (2.254)

with the equality sign holding only if A is a bivector.
Equations (2249]) and ([2252) give, even if not uniquely, the scalars a and
b in terms of the invariants of A. In fact, from (2252 we have

1 a?
p2 =y alA)

substituting this expression in (2.249]) leads to the second degree equation
in a/b:
2

a a
b 2, — L(A) + L(4) = 0.
Consequently,
Zzl—i—e\/D, €=+1, (2.255)
where D is given by
e 1
DY L(A) + I(A) = 62— L) >0, (2.256)

and it is nonnegative because of (Z250) and ([2:253]). As we will see later, this
is the only restriction to A, in order that the right-hand side of (2248)) be a
rotation. Once the ratio a/b is determined, (Z249) gives the expression of b,
and then, from (2.253]), we get the expression of a:

!
a=¢ L+eVD . b= ‘ . (2.257)
V21 + /D) — Ly(4) V21 + /D) — Ly(4)
We note that from (2256]) follows the identity
2(1 + VD) — I(A) = (1 4 eVD)? — I,(A) ;

thus, the radicand in (2.257)) is nonnegative for each A and vanishes only when
€ = —1, I4(A) = 0, IQ(A) =0.
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2.18.9 Simple Rotations

A 4-rotation L is called simple if its antisymmetric part A is a bivector:
A =uAv,or I(A) = 0. From ([2252), we have then a® = 1, or a = €, where
¢/ = +1 and b is given by (2253]) (or from (Z257)), when I,(A) = 0):

/
/ € /

b= , €, ==+1.
1+ey/1— I(A)

As a consequence of the arbitrariness of A, we have the following represen-
tation of simple rotations in Mjy:

2
L=¢ A"+ A+ A : (2.258)
1+ey/1— I(A)

which recalls the three-dimensional hyperbolic case: ¢ =1 (see [I]).
If the principal plane associated with the bivector A: Fy =< u,v > is
elliptic: Io(A) > 0 and from the constraint (Z250]), one obtains the condition:

L(A) <1; (2.259)

the rotation is thus said of elliptic type and denoted by L; it is said of hy-
perbolic type, instead, when Io(A) < 0 and of parabolic type when I>(A) = 0.
Let us start considering the first two cases: Io(A) # 0. We recall that A maps
each vector w € My in a vector of Ey: Aw = (w-v)u— (w-u)v. Thus, each
vector belonging to FY (the plane orthogonal to Es) is mapped into the zero
element. From (2.258)) we also have

Lw=¢w, Vw € Ej | (2.260)

that is, any vector orthogonal to Es is fized, or mapped by L into the opposite,
according to the value of ¢ = +1.

Let us see, now, how L acts on the elements of Fy. Since A maps any
vector w € I in a vector orthogonal to this plane, then A%?w has the original
direction. Actually, using (2.204]) with I4(A) = 0, for all the vectors of Ey we
have

APw = —L(A)w, Vw e Es . (2.261)

Thus, substituting in (Z258]), we find (only for vectors in E»):
L=¢(ey/1—T,(A) A + A) . (2.262)

Let us now assume that Fs is of elliptic type, i.e. with signature (4++); in
this case, A does not admit (real) eigendirections Taking into account the
orthogonality condition: Aw -w = 0, Vw € Es, and using ([2.262)) leads to

19 In order w be an eigendirection of A, Aw must be aligned with w, but from the
properties of A, we have that Aw is orthogonal to w. In an elliptic 2-space, it is
not possible to satisfy both these conditions, and hence A does not admit (real)
eigendirections.
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Lw - w = e’ /1 — I,(A)||w]| ; (2.263)
that is, the following invariant property holds:
Lw -
|‘|V ||W =inv. =€ cosp, Yw € By | (2.264)
W

where ¢, implicitly defined by the relation:
cosp=e\/1—I(A), 0<I(A)<1 (2.265)

is independent of w and defines the amplitude of the rotation: 0 < ¢ < 7. This
is an effective rotation; in fact, since Es is elliptic, I2(A) > 0, both the null
rotation and the symmetry, ¢ = 0,7, are excluded. Thus, L does not admit
eigendirections in o, but only in Ef (rotation axis) (Fig. 2.1).

If the subspace Es is instead hyperbolic (I3(A) < 0), one should add the
two isotropic directions of FEo (which are now eigendirection of A) to the
eigendirections of E} (now of elliptic type); the rotation will be said to be
hyperbolic of the first kind, Lf]r , or of the second kind: L, , corresponding to
the values ¢ = —1 and € = 1 respectively, in the case ¢ = 1 and conversely in
the case ¢ = —1 (Fig. 2.2).

Moreover, in a hyperbolic subspace Fs, the Schwartz inequality gives

(a-b)* > |lal||lbl]], Vabe B,

with the equality sign holding only when a and b are collinear. As a conse-
quence, in each of the four regions in which Fs, is divided by the isotropic

Fig. 2.1. Rotations in an elliptic space
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e=1 e=1
e=-1 g'=-1

11>0

Fig. 2.2. Rotations in a hyperbolic space

directions, it is possible to define the pseudoangle 1 > 0 of the two vectors a
and b. Hence, in each of the four regions, the sign of the scalar product a - b
is invariant: in the temporal regions I and III (see Fig. 22), a- b < 0, while
a-b > 0 in the spatial regions IT and IV. So the pseudoangle v is uniquely
defined by the relations:

e : b
cosh ) def @ b in regions I and IIT
¢ (2.266)
def a-b . .
coshy) = b in regions II and IV
a

and ¢ = 0 only for b = Aa with A > 0.
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Equations (Z262) imply that (Z264]) in the hyperbolic case becomes

L .
VW o inv.=cosh ,  VYw e By, e ==+1, (2.267)
ee’[|w]|

where 1, implicitly defined by the relation
coshyp = /1 —I,(A),  I(A) <0, (2.268)

represents the pseudoamplitude of the rotation.
When € = 1 and ¢’ = 1, the four regions of Fs are invariant for L:

L~ -~v=—coshy <0, V~ € 1, III, v = unit vector,

etc. Thus, the half lightcones are conserved; for ¢ = 1 and € = —1, the regions
I and IIT as well as IT and IV (and also the half lightcones) are exchanged,
similarly for ¢ = —1.

We note that a hyperbolic rotation L admits basis of eigenvectors, differ-
ently from the elliptic case in which only the vectors in a plane are eigen-
vectors. These are formed with two isotropic vectors in Ey and two arbitrary
(noncollinear) vectors of Ej.

L=¢ (AO + A+ ;AQ) : (2.269)

Finally, if I5(A) = 0, the rotation is of parabolic type (Fig. 2.3); it does not
admit eigendirections in Ey besides the isotropic one, say 1, belonging to both
the orthogonal and parabolic 2-planes Ey and Ej. This is a very special case,
since the amplitude of the rotation is independent of L. In fact, from (2269,
for each w € Fj, the transformed vector Lw is given by

Lw=¢w+£l, Vw € Fs ; (2.270)

Fig. 2.3. Rotations in a parabolic space
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Lw-
thus the ratio ﬁv ||W is independent of L (and of w):
w

L .
VW e, Yweb,. (2.271)

[wl|

Hence, apart from the factor ¢ = 41 and the existence of a whole rotation
2-plane (instead of an axis), the situation for what concerns simple rotations
is analogous to that of the three-dimensional case.

2.18.10 4-Rotations as Product of Simple Rotations

Let us turn to the case of a generic rotation: I4(A4) # 0, decomposing A as

the sum of two orthogonal bivectors: A = Ay + Af, with A; - A} = 0. We

assume A of elliptic type,@ so that A is necessarily hyperbolic. With each

of the two bivectors is associated a simple rotation, like in (Z258]). We can

show now that L is always given by the product of two of such rotations.
Let us start noting that (2234]) imply:

D=(1-L)(1-1), (2.272)
where we have introduced the notation
L =1 (A) <1, IL=1I(A])<0. (2.273)
We then have
21+ eVD) — I(A) = (ey/1 - L+ /1 -1})% >0, (2.274)

and the following expressions for a and b:

1+ hi 1
= = 2.2
h+h' "’ h+h'"’ (2:275)
where
h=e/1—1,, h=V1-1,. (2.276)
Rewriting a, using (2275])1
(1—h)(1—-"n)
=1
a + bt b
we find that (2:248) can be written as:
_ _p 2
L=A"+A+ A=mA=h) o, 4 (2.277)

h+Hh h+h "~

20 If Ay is parabolic, then A} is parabolic too, and consequently L is a simple
rotation of parabolic type.
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At this point, we have to express the right-hand side of (2277]) in terms of A
and A)}. We proceed proving the following identity:

G-mO-W) o, A A a2
hew A haw Tien e (2.278)

Starting from (2:200), which holds for each pair of antisymmetric tensors (in
particular for A = B = A;) and using (ZI8T))2, we have

A2 = A2 + [,(A%)A°

so that 1
VAT = AT+ L(A%)AY
using then (2235 leads to
LAR + 1A + ILILA° =0, (2.279)
so that
AO _ A/12 A%

C1-h? 1-h2
where we have used II} = (1 — h?)(1 — h'?) as a consequence of ([Z276).
Finally, after substituting this relation on the left-hand side of (Z278)) and
recalling that A2 = A% + A2, the above identity ([Z2ZT8)) is proven.

Summarizing, each 4-rotation L can be cast in the following form:
A3 AP

L=A"4+ A4, + A} + +

1+h 14K (2.280)

and, due to the orthogonality of A; and A}, can be written as a product of

two simple rotations, one of elliptic type (L) and the other hyperbolic (Ly,):
A}

lte/1-1°

12
Af

Lo=A+ A, + ,
' 1+e/1-1

Ly =A%+ A+ (2.281)

that is
L=L.JLy,=LyL.. (2.282)

In particular, the above decomposition shows that the isotropic lines of the
principal plane of A} are the only eigendirections of L: in fact, these are the
only common eigendirections of Ly and L.

2.18.11 The Case of Orthogonal Symmetries: I; (L) =0

Let us now consider the case I1(L) = 0, which also implies 2 + I5(L) = 0.
This follows from (2.245) which reduces to the form 4A? = —[2 + I5(L)]A°,
and implies in turn
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1 9 1
I(A) = = h(4%) =1+ (D), (2.283)
that is,
1
A% = —212(A)A0 . (2.284)

Using ([2284]), we then have 4A* = I2(A)A°, and the Hamilton—Cayley iden-
tity ([Z202) provides the condition [I2(A)]? = 4I4(A). Thus, from ZITT),
I,(A) < 0VA, necessarily follows that Ir(4A) = 0 and I4(A) = 0, or
I,(L) = -2 from (2.:283).

Summarizing, the condition /1 (L) = 0 implies the two equalities:
IQ(L):_Za AZO,

hence, the rotation is only represented by its symmetric part D, satisfying the

condition (see ([2:243))):
L=D, D?*=D". (2.285)

Such a case is similar to that of the azial symmetries in a three-dimensional
space; in fact, since

L(L)=0, L(L)=-2, LL)=0, LI)=1,

L admits two real distinct eigenvalues: A = £1 which are both double roots.
Hence we have the existence at least of two eigenvectors: u and u’: Lu = u
and Lu’ = —u’, which are necessarily orthogonal, due to the symmetry of L.

Let us denote by u; and uj another pair of vectors, forming with u and u’
a basis in My. We have

Lu; = Au+ pu’ +vu; +ou] . (2.286)
Applying L to both sides and taking into account (Z285]) we find
u; = \u— pu’ + Llvu; +ouf], (2.287)
and in addition
olu) = A1+ v)u+p(l —v)ud' + (1 - vHu —vou] , (2.288)
using again ([22280]). Adding and subtracting ([2286) and ([2287]), we obtain

L{(v — Duy + ouj] = (1 — v)u; — ou) — 2Au,
(2.289)
L{(v+ Duy +ouj] = (1 +v)u; + ou) +2pu’.

We now have to distinguish between the two cases: ¢ # 0 and ¢ = 0. In
the first case (o # 0), (Z287) determines Lu}, starting from Lu;; moreover,
[2289)) is equivalent to the conditions
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Lv = —v', Lv=v,

where
v=pu + (v+1u +ouf, vV =X u+ (v—1u +ouf;  (2.290)

therefore the vectors v and v’ of ([2290)), independent of u and u’, are both
eigenvectors of L, corresponding to the eigenvalues A = —1 and A\ = 1, respec-
tively, and hence orthogonal.

If instead o = 0, from (Z288]), we have the following two subcases:

l.o=0, v=1, A=0,
2.0=0, v=—-1, u=0,

in which one of the vectors (Z290) reduces to zero. However, in the case 1,
we have from (Z286) Lu = pu’ + uy; thus, assuming

Lu) = Nu+p/'u' +v'u +o'u (2.291)

for the components L along the basis {u,u’,uy,u]}, we see that I;(L) =
1+ ¢’, i.e. ¢/ = —1. Furthermore, applying L to both sides of (2291 gives

p/ = 3 pv'; thus, the transformed vector Luj results in Luj = Nu + v/ (u; +

spu’) —uf and the vectors (Z290) are given by

1 1
v = _2)\’11_ 41/v-|-u’1 , v = pu’ + 2uy ; (2.292)

similarly, in case 2, we have

1 1
2u'u' - 4V'V' +uf . (2.293)

v = \u—2u; , v

Finally, in the case I1(L) = 0 (and only in this case), the rotation L is diag-
onal and admits a pair of orthogonal 2-planes generated by eigendirections.
In detail, one of such subspaces < u,v > is invariant for L, and the other
< u/,v/ > is mapped into the opposite. These are orthogonal symmetries,
say S, with respect to the nondegenerate 2-planes. Again this case can be
characterized by using antisymmetric tensors. In fact, if A = uAv is a bivec-
tor with an associated subspace Es nonparabolic (I3(A) # 0), the following

representation holds:
2

- I(4)
where I5(A) > 0 or I;(A) < 0if Es is elliptic or hyperbolic, respectively. After
decomposing the generic vector w € M, as the sum of a vector w4 € Fs and

another wy € FJ, the symmetric of w with respect to the 2-plane Fs turns
out to be

S =-A° A% (2.294)

S(w)=wa—wWy =2Wy — W,

from which (2294 follows, using (Z261)) and the identity: A*w4 = A%w.
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We note that the bivector A introduced above is not the antisymmetric part
of L (which is instead represented by the symmetric tensor D) but is a bivector
associated with the subspace II that specifies the symmetry and defined up
to a multiplicative factor (Grassmann tensor of the 2-plane IT). However,
[2294) which characterizes the rotations with I;(L) = 0 in the context of
simple rotations completes the previous representation (2248))-(2257).

Finally, as concerns the symmetries (2.294]), they still generate (by prod-
ucts) the rotation group.

2.18.12 Cayley Representation

For 4-rotations L, we also have the Cayley representation [I]:

L=Q" -Q) Q" +Q) =@ +Q)Q"-Q) ", (2.295)

where @ is an antisymmetric tensor, satisfying the condition

J(Q) Y 1,(Qo— Q) = 1+ L(Q) + I(Q) £0. (2.296)

In analogy with the ordinary case, @ is said to be the characteristic tensor of
the rotation L. As we will see in the following, @ is defined only for rotations
such that

(L) 2421 (L) + I(L) #£0. (2.297)
Equation ([2295) can be written explicitly. To this end, let us use the
Hamilton-Cayley identity for the map X = Q" — Q:

X t= !

= LX) [I3(X) 1 —I(X)X + L (X)X? - X?]. (2.298)

Moreover we have I;1(X) = 4, I5(X) = 6 + [(Q) and I3(X) = 4 + 215(Q);
using then the Hamilton-Cayley identity also for Q*,

Q' = -1(Q)Q* - I1(Q)Q"
one get the expression of L in terms of Q:

1 _ 0

2[1+ L(Q)]Q +2Q* +2Q°} . (2.299)

This relation represents L as a third-degree polynom in @ instead of the
second-degree polynom of the canonical representation ([2.248)) in terms of the

antisymmetric part A. Under the hypothesis 2296, J(Q) # 0, 2299) can
be solved for @

L =

Q= (L-LL+L%"!; (2.300)
21 See [10], p. 88, taking the contraction Q = K/k,k # 0.



94 2 Space-Time Geometry and Relativistic Kinematics
introducing then the notation ¥ % L 4 L9, the Hamilton Cayley identity
implies

yl = 14(1Y) (L0~ BY)Y + L)Y -V} .

On the other hand, it is easy to show that
LY)=4+1L(L),

L(Y) =6+ 3L(L) + Ir(L), (2.301)

Is(Y)=4+4+30L(L) +2I5(L) + Is(L) =4+ 41, (L) + 212(L).
Thus, using again the Hamilton—Cayley identity,
L* = (L)L? — I(L)L* + I3(L)L — I,(L)L°
=L(L)L? — I,(L)L* + (L)L — L,
Equation (Z300) assumes the form

Q= I4(1Y) {—12I(L) + Io(L)]L° + 2[1 + I, (L) + I>(L)|L
—2[L° + I,(L)|L? +2L%} . (2.302)
From (2.299), the relation between @ and A follows immediately:
_ 21+ L(Q)Q +2Q°
4= J(Q) : (2.303)

Therefore, differently from the ordinary case, A is not a simple function of Q.
Similarly, (2299)) gives the fundamental invariants of L, in terms of Q:

4
L(L) = (L) = [1—1.(Q)]
I;]Eg; (2.304)
I(L) =2 [3—4J(Q)] . I(L)=1,
so that the invariant (2297 is given by
16
0= 0 (2.305)
Conversely,
L(Q) = I(QL) 6- L), LQ) =1- 4?((3 . (2.306)

Equation (2305) shows that the Cayley representation only includes rotations
like I(L) # 0; that is, rotations with I(L) = 0, i.e.

24 (L) =—2I,(L) — IL(A)=0, (2.307)

are excluded. The latters are necessarily simple rotations as the symmetry S
(but not all of these, differently from the ordinary case).
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2.18.13 Composition Law

We will study now the modifications to the Rodrigues formula [2I7T) passing
from the three-dimensional case to the four-dimensional one.

Let L and L’ be two rotations associated with the antisymmetric tensors Q
and @', respectively

L=(Q"-Q)7'Q"+Q), L'=@Q-@)(Q"+Q).

We look for the map Q" associated with the rotation product of L’ and L:
L" = L'L, at least in the generic case: I(L),I(L"), (L") # 0 (see (2297 for
their definition). Let us assume

def
v = Lv, v =LV, Vv € My .

The map v — v" associated with the product L” = L'L is implicitly defined
by the relations

QW +v)=v —v, QW' +v)=v"-v", (2.308)
which follow from (2.293]) and using the linearity of the map @Q; in fact
Q- QLV) =@ +Q)(v) — Vv -Q(W)=v+Q(v), (2309

so that
QW)+ Q) =—v+v', (2.310)

which immediately reduces to ([2.308));, similarly for the derivation of (2.308])s.
We look then for the map Q" such that

Q'V"+v)=v"—v. (2.311)
A straightforward calculation shows that

@+Q+QQ- Q@) +v) - QR +V)
_QQ/Q(V’ + V) =v" —v ; (2312)

thus, we need to evaluate the product:
CE-QQQW +V) - QQQW +v).
To this end, we note that from (2I96) and (Z200) we have
* % 1 * * *
QY =Q'Q+ ! QQHQ’, QQ=QQ=-1(Q)Q", (2.313)

with
1(Q) = —ih(@é) : (2.314)
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Thus,
QO =QQ 0+ h(QQNQ = -1@)0+ 1@ .

with . /
HQ)=-,L(@QQ). (2.315)

Similarly, exchanging @ and Q' in the above product we have directly

QQQ=-1(Q)F' + | 1h(Q2)Q

and hence,
C = 1(@)OW" +V) — LRI +V)
HQA W +v) — @RI +)
or, using (Z308):
C =L@ +V +V =)+ 1Q)Q (v =V +v" +v)
-, @ )

= [1@)@+ QA1 +v) ~ L H@QQ" )

x/

QO —v) — T(Q)Q (v — ).
Moreover, from ([2.308) and ([2313)2 we have

so that C can be written as

C=1@Q)Q+1QQ]1" +v)

*

LQQ)" =)+ QL@ )" ),
and (2312) becomes
Q+Q +QQ-QQ +1Q)Q+1QQ )" +v) +
- Eee) - HQI@)| (v ~v) = (v~ ).
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Using this result, one finally gets the sought for composition law for rotations
in terms of Q:

%/

Q+Q +QQ-QQ +1(Q)Q+1(QQ
1+ 110(QQ) - 1(@QI(Q)

where f(Q) is defined by (Z3T4)—(2.3TH]), and it is related to I4(Q) by (ZI91):
[1(Q))> = —I14(Q). In the case of simple rotations, (Z316]) reduces to the ordi-
nary law; moreover, as in the three-dimensional case, it includes the limiting
case of rotations with I(L) = 0, and hence it has a general validity.

Q' = : (2.316)

2.19 General Lorentz Transformations: I1I

We have outlined above the fundamental role of antisymmetric 2-tensors (and
their associated tensorial space A?) in the representation of rotations in Mj.
As in the three-dimensional case, rotations in My are characterized by certain
isotropic tensorial functions defined in A2. In the preceding sections, the close
relation between 4-rotations and antisymmetric 2-tensors has been discussed,
using the properties of the associated maps. The same approach can be used
in a complex context by means of the technique of null tetrads taking into
account that any 4-rotation admits at least an isotropic eigenvector, as well
as in the real domain [I0], in the context of Clifford’s algebra of M. We will
briefly introduce here this point of view limiting ourselves to the Minkowskian
case; the extension to any linear space E,, endowed with a nonsingular metric
is straightforward.

Independently of its metric structure, one can associate with M, a finite
dimensional space A. In fact, the various linear spaces A? (¢ = 0,1,2,3,4),
formed by antisymmetric tensors of various order (up to the maximum order
4), are related to My as follows:

o A? =R, scalars:

a = ae,
o A= My, vectors:
a=a%e, ,

o A% = M, A M,, antisymmetric 2-tensors:
A= %A"‘ﬁea Neg, with e, A eg = 2le|, ® eg),
o A3 = My A My A My, antisymmetric 3-tensors:
T= ?}! T*%Ve, Neg Ae,, with e, Aeg Ae, = Sle, ®eg e,
o A*= My A My A My A M,, antisymmetric 4-tensors:
Q= Qe  NegNeyAe,, with e, Aeghe, Ae, = dle, RegRe, Re,),

22 Such a technique is better included in the more general context of anholonomic
frames, and it is widely used in general relativity, see e.g. [11].
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where {e,} is an arbitrary basis in My and, to uniform notation, e = 1.

It is convenient to consider the direct sum (Cartesian product) of such
spaces A:

A=A oA AN DA DA, (2.317)
this is a finite dimensional space with dimension: 1 +4+ (3) + (5) + (§) =
16. We note that both the direct sum of the spaces of symmetric tensors of
various order associated with M, and the direct sum of all the tensorial spaces
associated with M, have not a finite dimension.

Up to now the 16-dimensional space A has only the structure of linear space.
However, it can be endowed with an internal noncommutative product, which
we will denote with a o (Clifford’s product), using the metric of My. Let us
start defining the o product of two antisymmetric tensors, A and B of different
order, say k and h, respectively, with k& < h. The following representations
hold

R
1' (2.318)

B= h!BﬁlmBheﬁl ARRRIA €8y,

where a7 ...ap,531...0,=0,1,2,3.
The exterior product of A and B is an antisymmetric tensor of order (k+h)
given by

1
AAB= k'h'Aal~~akBﬁl”'ﬁhea1 Noo-Neg, Neg, A+ Neg, . (2.319)

Successively, from the tensor product A%t BA-Ffr by contraction of in-
dices (i.e. using the metric gog = e - €3 of My), we can deduce other anti-
symmetric tensors of lower rank:

Aalnvak—lngﬁl---Bh , Aal---ak—25251Bﬁlﬁ2~~5h, o 7Aﬁk..ﬂ1 Bﬁ1--ﬂkﬁk+1--ﬂh )
It is useful to introduce the notation
€ay.ap =€ N Neg, Nooe g (2.320)

the o product (or Clifford’s product) of A and B is defined by

def
AoBE AAB + alAal'”O‘k’lgl Bﬁl”'Bhealmak_152mﬁh +

a2Aa1'“ak_2525136162“'6"90“...ak_253...ﬁh 4ot
akABk...ﬁlBﬁl”'Bkﬁk+1”ﬂheﬁk+1mﬁh ) (2.321)

where
1

aj = . . o
S LCERIUE)]
Note that extending the definition of a; to the value j = 0: ag = 1/(h!k!)
allows writing A A B in the form

j=1,... k.
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A /\ B == aoAal'”ak Bﬁl'nﬁheal...akﬁl...ﬁh M

Using the ordinary composition rule of the product, it is clear that the product
@2327)) can be extended to all the elements of A. The o product is noncommu-
tative, but it can be iterated and hence it results associative. Thus, the space
A, endowed with the linear extension of the product (Z321]), becomes an as-
sociative algebra, and any ordered pair (o, 3) of elements of A is associated
with a third element v € A:

(@,8) — vZaocBeA;

this relation defines Clifford’s algebra C of Mjy.
As an example, let us consider the o product of two vectors u and v. In
this case, h = k = 1, and the o product reduces to

uov=uAv+4+u-v. (2.322)
In fact, (Z32I) can be written as

uov u“vPens + ugv’e

_ 1
Sl 010!
where e,3 = e, A eg and e = 1, that is, (Z322). In particular, when v = u

[2322) implies
uou=|[ul|, (2.323)

while, if u and v are orthogonal
uov=uAv, ulv. (2.324)
Thus, if one considers in M, an orthonormal basis {c,}, (2.322) implies
Ca0C3 =Cq AC3+ Mag (o, 6=0,1,2,3) . (2.325)

Clifford’s algebra contains a subalgebra and a group. In fact, the direct sum
operation @ is associative and hence the space A can also be written as the
direct sum of two spaces: AT and A~, defined by

AT EA AN, A ATeA®, (2.326)
both of them with dimension 8; that is
A=ATOA . (2.327)

The elements of At are said “even”, while those of A~ are said “odd”. On
one side, Clifford’s algebra induces in AT a subalgebra: C™, such that

AT o AT =AT, A" oA #AA;
hence, the o product is not adapted to the structure (Z327). On the other side,

one can consider the regular elements of Clifford’s algebra, i.e. those elements
a € C satisfying the following properties:
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1. they are dnvertible. This means that a € C has an inverse a~! € C:
acal=aloa=e=1;
2. they satisfy the property:

'—we My, Vv e My . (2.328)

aovoQ

Such elements of C form Clifford’s group: I' € C which is of special impor-
tance for the representation of rotations in My. In fact I' contains both even
and odd elements, and the quotient I'/A? — 0 is isomorphic to the Lorentz
group; in other words, each element a € I" specifies a well-determined Lorentz
matrix L:

L=La), acl. (2.329)

Conversely, each L specifies an element o € ', up to a multiplicative factor.
In fact, the correspondence ([2.329)) is associated with the relation:

Lv=aovoa ', Vael',ve M, (2.330)
or equivalently,

L'v=alovoa, VaeTl,veM,. (2.331)

2.19.1 Clifford’s Product Composition Law

We can now characterize the regular elements of Clifford’s algebra. To this
end, we will derive the composition law of Clifford’s product. Let us consider
then a generic element o € A:

1 1 1
o =ae+a%e, + Ao‘ﬁeag + To‘ﬁ"*eagnY + QYPre ; (2.332)
2 3! 4! afvyp

introducing the Ricci tensor 1,8, we have

Capp = naaﬁpeav €aBpoc = naﬁpaz s (2-333)

where

1
Y= _4'77%75%575 (2.334)

is an odd-type antisymmetric 4-tensor, i.e. a basis in A*. Thus, we have the
following expression for a:

a=getatAtatak, (2.335)
where a = a%eq, A = ;A%eqs, and
a= 3 T,03,67 = age” (odd-type vector)

(2.336)
a= 41! QP Nappo (odd-type scalar).
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Equation (2338) represents the generic element o € A in terms of a pair
of scalars (a,a), a pair of vectors (a,a) and an antisymmetric 2-tensor A.
Actually, a, is a pseudovector, and a is a pseudoscalar obtained through the
duality operation from an antisymmetric 3-tensor 77%%? and an antisymmetric
4-tensor Q*PP7  respectively:

~ 1 « * ~ 1 afpo *
Gy = B!nmﬁpT Bp ==*1_. i = 4!77QB,MQ Bro == | (2.337)

with the inverse relations,
T =0, QT = —an™’r7 . (2.338)
Let 8 € A be another element of A:
B=be+b+B+b+bx, (2.339)

and consider the product a o B = 7 taking into account (2321]). v is still an
element A, and it can be written as

y=ce+c+CHc+ecX, (2.340)

where the various quantities ¢, ¢, C, ¢, ¢ are functions of the analogous quan-
tities of v and S.

For example, multiplying the scalar a by the various elements of 3, there
arise the following terms:

ab, ab, aB, ab, ab.

Multiplying instead the vector a by 8 and using (2322]) and (2338)) gives rise
to the following terms:

ab, aAb+a-b, a/\B—l—OLo[BO‘ﬁeg7
*1- 1 *1.\ 1 1. aBpo
an*b+ 2!aa( b) B”egp, —B!aabn Pr €8p0

which are equivalent to

*

ab, aAb+a-b, éa—Ba, a-BE+[a/\b] , ba,
respectively using (2:333)). Introducing the compact notation

1
B= 2Baﬁea5, —  Ba=(B*ap)e, , (2.341)

the above terms can be written as

a-b, ba—Ba, aAb+[aAb], §a+5a, a-b.
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Summarizing, we have the following relations among the coefficients of the
product a o 3 and those of the single factors:

c=ab—ab+a-b+a b+ TrAB,

¢ = ab + ba — (ba — ab) + Ab — Ba — Ba — Ab,

C=aB+bA+[A,Bl+aAb+arb+[arb+bAal+aB+bA,
¢ = ab + ba+ ba — ab + Ab — Ba + Ab + +Ba,
¢=ab+bat+a-b—b-a— TrAB;
(2.342)

here we have used the standard notation: AB = (A%*,B”g) and [A,B] is the
antisymmetric tensor associated with the commutator AB — BA:

[A,B] = ;(Aapoﬁ — BY,APP)e,p . (2.343)

As a final remark, we note that ([2:342) hold in general and are the corner
stones of Clifford’s algebra, reducing the product of any two elements of C to
certain tensor algebra operations.

2.19.2 Regular Elements of Clifford’s Algebra

Let us study now the regular elements of Clifford’s algebra, starting from even
elements; we have
a=0, a=0. (2.344)

The product o 3 is still even: ¢ =0, ¢ =0 and ([2342)) implies
= 1
c=ab—ab+ 2Tr (AB),
C = aB + bA + [A,B] + aB + bA,
- 1 ,
¢=ab+bi— Tr(AB): (2.345)

furthermore, the products AB, BA, AB and BA have the same first invariant.
In fact, for example, the coefficients of the map AB are

1
A%, B = A% B,

so that )
Tr(AB) = — 2A5pn5”‘“’BW = Tr(BA) .

In [2345), ¢ and ¢ are thus symmetric functions of e and 3, differently from
C. Hence, necessary and sufficient condition to have a« o 3 = B o« is

AB=BA ~ [AB]=0; (2.346)
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that is, a and 8 can be exchanged if and only if the associated antisymmetric
2-tensors A and B commute.

Moreover, necessary and sufficient conditions in order that a = ae+A+aX
might have an inverse 3 = be + B + bX = a~! are

AB = BA

-1
ab — ab + 2Tr(AB) =1

A (2.347)
aB +bA + @B +bA =0

~ 1 *
ab+bi— ) Te (AB) = 0,

that is @« o 8 = B oa = e. To complete the characterization of the even
elements, it is necessary to add to ([2.347) the conditions

aovof3c My Vv e M,y .

To this end, let us evaluate first of all the factor a o v from [2372)):
aov:av—!—Av—dv—l—;lv;

we can consider then the product (v o v) o 3, which is of odd type, so that
c=0, C=0, c=0,

and the nonvanishing coefficients are given by

c = [(ab+ab) I +bA — aB + aB — bA — BA — BAv
(2.348)
¢ = [(ab—ba) T4+bA + aB + bA + aB + BA — BAJv.

The parity condition ¢ =0 Vv then implies
(b — ab) 1 +BA — BA=0bA+aB +bA+aB,
which, by symmetrization and antisymmetrization gives the two relations:

(b — ab) 1+L[BA+ AB — BA— AB] =0,
) ) o (2.349)
5B, Al — J[B, Al = bA+ aB + bA +aB.
Taking into account the identity (Z.208)), we have that a € T'" if one requires
additional conditions to (Z2347)), namely,

(bi — ab) = BA — BA
(2.350)

aB +bA = —bA — aB.
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Moreover, by duality, (Z344]) gives the relation:
QB +bA = aB+bA .
Comparing with (2:350), we then obtain the two conditions:
iB+bA=0, aB+bA=0.

Next, assuming @ # 0 and a # 0 (general case), we find B = ~bA/a = —bA/a,
and b/a = b/a = A\. Thus, finally

B=-), b=Xa, b=, (2.351)

with A a parameter still unknown . From (Z3471)2, with the constraints ([2351]),
we have

1
(a® —a*)\ — oA (A%) =1,

so that, assuming
(a® —a*) + 1(A) #0, (2.352)

one gets the value of A:

1
A= (@) 4 B(A) (2.353)

Equation ([2347), in turn becomes
. 1 %
2Maa = — 2)\ Tr(AA) ,
that is, in agreement with ([2194]):

ai = 1(A). (2.354)

We have just proven the following theorem:
The even and regular elements of Clifford’s algebra in M, can be written
as a = ae + A + aX and are characterized by the two conditions:

(@2 —a%) + L(A) £0, aa=1(A), (2.355)

where [ (A) is the odd invariant defined by (2194):

1

1(4) = —ifl(A;l) =,

Anp* AP (2.356)

also related to I4(A):
[1(A)2 = —L(A) . (2.357)

The inverse of a, because of (2351)—(Z353), is given by
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1
a”t= ae — a .
(a2 — a2?) + Il(A2)( A +ax), (2.358)

that is, apart from the normalization factor, there is only the replacement
A — —A in the expression of .
Similarly, assuming o and 3 of odd type,

a=a+a, B=b+b, (2.359)
and imposing the conditions,
aofB=0oa, aofB=1, PBovoaecM, VveM, (2.360)

one can determine the odd-type elements of Clifford’s group. We have that the
regular odd-type elements o« = a+ a are only those satisfying the conditions:

lall —llalf#0, a-a=0; (2.361)
in this case, the inverse of a is given by:
ol = ! _,(a—a). (2.362)
[lal| — [l

In the following, we will consider only the even elements and the associated L-
representation (2330]) in terms of antisymmetric 2-tensors. This characterizes
the proper Lorentz group, excluding antirotations.

2.19.3 Proper Rotations and Antisymmetric 2-Tensors

We have seen that each regular element of Clifford’s subalgebra C* (see
(2344)- (2355))) defines a 4-rotation L. To obtain the expression of L, one has
to consider an arbitrary vector v € M, and evaluate the product a~*ovoa;
in fact Lv = aovoa~! In detail, from [Z348); and taking into account
(Z351)- ([2353), we have the following expression for L:

1 « y
L= 243 1+2[ad — aA] + A% + A? 2.
a2 — g2 +12(A) {(a +a ) + [a a ]"’ + } s ( 363)

where both the antisymmetric 2-tensors A and A appear as well as the two
scalars a and @, which are not independent because of (Z3355])5. In the repre-
sentation ([Z363)) of L obtained starting from o € ', we see that « does not
enter in an essential way, since there always exists an arbitrary factor at dis-
posal. In fact, the right-hand side of (Z.363) is invariant under transformations
like

a—Xa, a—ia, A—IA, (2.364)

since both the numerator and the denominator in (2.363]) are homogeneous
and second-degree function of a. We can then use the factor A to simplify
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[2363). After assuming for instance a # 0 (that is, A nondegenerate), and
defining:

g=aja, Q=A/a, (2.365)
Equation (Z363) can be written as
. 1 9 B * 9 * 2
L—J(Q){(l—i—q)ﬂ—i—Q[Q qQ] +Q +Q}, (2.366)

so that ([2.353)-(2.357)) assume the form
«

JQ) =1-+5hL@Q#0, q¢=1Q), ¢=-1(Q). (2367

Note that (2366) gives L in terms of the antisymmetric 2-tensors @ and its
dual Q. One can also eliminate the dual using (2:204) and (Z.200):

[QQ=-Q-LQQ, [Q°=Q+L(Q), (2.368)
so that one re-obtains the Cayley representation (2.299)):
L=(Q"+Q)(Q"-Q)". (2.369)

Therefore L results in an isotropic function of the antisymmetric 2-tensor
Q = (Q“g), which is also a third-degree polynom, because of the Hamilton—

Cayley identity (Z.202).
Moreover, ([Z366) corresponds to the vectorial operator acov o a™! associ-
ated with the even element «, in agreement with (2.330):

a=e®QDgEEA. (2.370)

Hence, if one considers another rotation L':

1
U= i nir (141 — I T+21 + B]Q" +2Q% +2Q7] ,  (2.371)
2 4

associated with the antisymmetric tensor Q’, or to the even element o’:
ad=e®dQ g €A, (2.372)
one can evaluate the product:
L"=LL, (2.373)
i.e. the rotation associated with the even element a’’:
"

o' =doa, (2.374)

clearly defined up to an arbitrary multiplicative factor:

23 The inverse of the product coincides with the product of the inverses, in inverse
order.
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1 /—1

=d o(aovoaoa ' =(doa)ovo(a oa) .

/ ! ’—
O OV o

o' can then be obtained applying the general relations (2.342) with a = 1,
a=0,A=Q,a=0,a=q¢,andb=1,b=0,B=Q, b =0, b= gq. In fact,
assuming ¢ # 0, that is, assuming the following constraint for Q and Q'

L—ad + ,TH(QQ) £ 0. (2:375)

the 4-rotation L” is still of the form (2366]):

, 1

= DD [(1+ 1 — I T+21 + IJ]Q" +2Q" +2Q°] , (2.376)
2 4

where Q" is given by [2342)3 in terms of @ and Q. Hence, the following
relation (equivalent to C'/¢) holds:

Q+Q+QQ-QQ +d0+4q0
1—qq' + ,TrQQ’ ’

which is exactly the composition law (Z.3TG), if one uses (Z367).

Q" = (2.377)
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3

Test Particle Dynamics

3.1 Fundamental Laws of Test Particle Dynamics

In the relativistic situation, we have seen that the acceleration of a point
particle is no longer invariant in the context of Galilean frames. This reflects
also into the assessment of the dynamics because it is no more possible to
introduce the dynamical concepts of mass and mechanical force following the
classical approach, i.e. starting from the postulates on the acceleration.

On the other hand, a theory like the relativistic one cannot be grounded on a
static definition of mass and force. The problem can be solved working directly
with the absolute point of view, i.e. in My, and assuming a time orientation.
The relative point of view, together with all the associated consequences and
modifications, will then follow, a posteriori, from the absolute formulation.

First of all, the law of inertia a = 0, as from (ZIT3]), has an absolute
meaning and can be expressed by the condition A = 0, Vr € (79,71), or in
the rectilinear form of the world line (V = constant) of the particle itself.

The second law of the dynamics, instead, should be adapted to the rela-
tivistic case and results no longer in the expression ma = f but in its more
general version p = f, p = mv being the linear momentum which includes
also the case of variable mass particles. Such an extension, clearly, requires
the preliminary definition (geometrical and dynamical) of the scheme “ma-
terial point” which, because of its simplicity, plays a central role in the new
relativistic theory too.

In classical mechanics, such a scheme (geometrical point, endowed with a
positive scalar quantity: the mass m, invariant by definition), can be used to
represent either the material elements (or particles, for brevity), or the finite
dimensional material bodies in certain dynamical conditions. A posteriori, in
fact, it is justified, in the dynamics of material systems, by the theorem of
the centre of mass motion. Independent of this theorem, however, a pointlike
scheme can be considered also in special relativity, where a material particle
can be represented by an oriented world line ¢ (its history in My), and by
a scalar invariant mo > 0, locally defined on this line (its proper mass). If

G. Ferrarese and D. Bini: Test Particle Dynamics, Lect. Notes Phys. 727, 109-{I45] (2008)
DOI 10.1007/978-3-540-73168-9 3 © Springer-Verlag Berlin Heidelberg 2008
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my is tnvariant along all the history of the particle mo = constant, one says
that the particle has no internal structure. This is a special case because the
more general scheme for pointlike particles does not excludes that the mass
can vary along ¢T, i.e. mg = mo(E), VE € £7. In the latter case, one says
that the particle has an internal structure of scalar type.

We will assume mg > 0; however, an analogous treatment could be done
for the case mg < 0, associated with “exotic particles”ﬂ Separately, we will
also discuss the case of massless particles mg = 0, corresponding to photons,
as well as a unified dynamics of massive and massless particles.

However, the pointlike scheme, which we consider in the following, is not
the most general one. In fact, for a more adequate description of matter, it
may be necessary to introduce other local quantities, like the spin or other
vectors or tensors. Moreover, we will see that the mass will be strictly related
to the energy, so that mg describes practically internal states of the particle.
Thus, the problem of assuming mg a continuous function all along £*, or not
(as in quantum mechanics), arises too.

In any case, from a global point of view, for “particle” we will mean the pair
of an oriented world line (or an arc) T and a function mg(E) > 0, defined
VE € (T; from a local point of view, instead, the particle will be identified by
the event £ € £+, the value of mg and the 4-velocity V, tangent to the world
line at that event [T, 2] 3]. So we define the linear 4-momentum:

PY moV  VEert. (3.1)

The applied vector (E, P) summarizes either the kinematical or the material
state of the particle because from P one obtains both mg and V. In fact, from
(1) and the condition V - V = —¢2, the norm of P follows: ||P|| =P -P =

—m3c?, and hence

1 1 P
me= +v-P-P, V= pP= © .
c mo \/—P'P

(3.2)
As concerns the absolute laws of point mechanics, the law of inertia assumes
a quite different form from the ordinary one. More precisely, requiring that
in absence of any external action a particle cannot modify either its internal
structure or its kinematical state, it can be formulated in the following form:
Law I (or inertia law): For any isolated particle, both the proper mass and
the 4-velocity (and hence the 4-momentum) are invariant:

P = const. (3.3)

Due to (82), (B3) summarizes either the condition mo= constant, or the
geodesic law: the world line of a particle, in the absence of any external action,

1 'We will see that the canonical formulation of the dynamics will depend on m2.
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is a straight timelike line of My. From Law I, Law II follows easily. In fact,
if a particle undergoes the action of an external force, its 4-momentum varies
(and this happens either if T has nonvanishing curvature, or if the mass
myg effectively depends on FE). Thus dP/dr # 0 and can be interpreted as a
local measure of the 4-force K acting on the particle and responsible for its
deviation from geodesic (inertial) motion. Thus, Law II can be formulated in
the following form:

Law II: The deriwative of the 4-momentum with respect to proper time equals
the 4-force:

K(E) = VE € [t (3.4)

Equation ([B3.4)), in spite of representing directly a physical law, can be used to
define the value of the 4-force K(7) starting from ¢* and mg(7). Conversely,
this is the fundamental equation for the absolute dynamics of point particles,
once the 4-force characterizing the associated physical action is assigned.

In the so-called restricted problems of the material point scheme, the pa-
rameters can be at most 7,mg, £ and V, ie. 7, £, P:

K =K(r,E,P). (3.5)

This is a function of nine variables which, in order to represent a real phys-
ical action, should be invariant with respect to the Lorentz transformations,
similarly to the invariance with respect to the Galilean transformation laws
of the force: f = £(¢, P,v) in classical mechanics. Such a property, which is
automatically satisfied here because of (B8] implies that the 4-force K be a
vectorial function of My, depending only on absolute quantities.

Thus, generally, in special relativity, the concept of force can be extended
easily either from the absolute or the relative point of view. In general rel-
ativity, instead, the absolute mechanism of the gravitational action will be
completely modified.

Finally, Law III, that is the action and reaction principle, completely loses
its validity in relativity because here the concept of action at a distance is
excluded by principle. And this for two reasons: first of all, the simultaneity
of two events has not an absolute meaning; hence, the concept of an instanta-
neous action is meaningless. As a second reason, there is the fact that every
physical action propagates with finite speed, that is, a certain amount of time
is necessary for the action to be effective. Hence, the concept of an immediate
action is meaningless too.

The action and reaction principle, however, remains valid in collision prob-
lems, as well as in all the cases in which there are directed and mediated
actions, either in the case of particle-particle interaction or in the case of
particle—field or even field—field interaction.
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3.2 Cauchy Problem

In the restricted problems of the point particle scheme, the fundamental law
of absolute dynamics is the following:

dP
=K(r,E,P), 3.6
. =K(,E.P) (36)
where P = mgV is the 4-momentum of the particle, and 7 is its proper

time. Because of the dependence of K also on F, (B8) is not a first-order
differential equation for the unknown P. Actually, P should be considered
as an auxiliary unknown, depending on E through m and V. Moreover,
once the force law is assigned, the evolution of the particle, related to the
determination of both mg and the world line £, is subject to ([B3.6), but also
to the constraint V - V = —c2, which takes into account the meaning of the
proper time parameter 7. Thus, fundamental equations of point dynamics are

dpP
dr
These equations, because of the relations P = mgV and V. = dQFE/dr, form a
differential system in 4 + 1 equations, for the five unknowns E(7) and mg(7),

which can be cast into mormal form, in the following way. Let us use the
definition of P = myV in [B.);; we find

dmg dv
A% =K(, F V).
dr + mo dr (7—7 , 1O, )

=K(r,E,P), V.-V=-¢. (3.7)

From this, by scalar multiplication by V, and taking into account that (B.7)2
implies V - dV/dr = 0, one gets the following first-order differential system,
normal in the unknowns mg, V and QF:

dmg 1 dv 1 dQFE
=- _K-V, =K K-V)V, =V; 3.8
dr c? "0 47 * 02( ) dr (38)
to ([B.8)), one must add the condition V - V = —c2. However, such a condition

can be weakened requiring its validity at a certain instant only, let us say
initially, at 7 = 79. In other words, the system (B.7) is equivalent to ([B.8),
supplemented by the initial condition:

V- V=-¢* at 71=19. (3.9)
To prove this, let us scalar multiply [B.8])2 by V; we find

dv

AV
mo dr

1
:K-V(1+ 2V-V) ,
c
or
m()CQdX_

1
=(K- V)X, X=(1+,V-V]. 1
o d4r = E-V)X, (+02 ) (3.10)
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Thus, any solution of system (B.8)) gives a unique solution X (7) of (B10). But
(BI0Q) is linear and homogeneous in X and for it a uniqueness theorem is valid.
Hence, if X (7) vanishes initially, i.e. X(79) = 0 so that (39)) is satisfied, then
X(r)=0o0r V-V = —c% V7 > 79 in a certain neighbourhood of 9. In other
words, the differential system (B.8) implies the constraint ([B7)2 once this is
satisfied initially. Similarly, one may say that (B0)s is a conservation equation
for the system (B9, and this is an involutive constraint in the terminology of
Cartan.

Thus, once the force law is assigned, the absolute dynamics of the point
particle is determined by the solution of the normal system ([B.8]) and, accord-
ing to regularity properties of the force law, the evolution of the particle is
uniquely determined by the initial conditions:

mo = mo,o , E:Eo, V:VQ at T =170 - (311)

Vo, in turn, is not completely free, but must be chosen compatibly with
B3). Moreover, neither the orientation of Vy is free. In fact, in the context
of equi-oriented Galilean frames (i.e. assuming M4 endowed with one of the
two half lightcones, say C5 ), Vo should belong to this half-cone too.

Hence, other than in the classical situation, the initial data are not free,
but they must satisfy the following limitation:

mo,0 > 0, ||V0|| = —62 , Vg€ C;_ s (312)

which, because of the above-mentioned property of conservation for the norm
of V, imply that the world line of the particle is timelike and has the same
orientation as V. Put differently, for any kind of 4-force K, the Cauchy
problem [B.8)-@II) gives rise to a world line entirely contained in the half-
cone C;‘ , with its vertex at Fy. The latter condition gives also a dynamical
meaning to such half-cone: it is the future of Ey or all the events which can
be influenced by Fjy, in the sense that they can be in causal relation with Ej
as a consequence of the presence of K.

It is also useful to distinguish between dynamical motions (effectively per-
formed by a material particle, under the action of an external field K(r, E, P)
and conditions (BI2))) and kinematical motions (a sequence of events not
causally connected). These last motions may imply a speed faster than that
of light and be represented by world lines external to the lightcone. For ex-
ample, if a flash light sends signals onto a screen circularly at a distance r,
in a certain Galilean frame, then, allowing the flash light to uniformly ro-
tate with period T' < 2mr/e, one has an image which moves uniformly on
a circular trajectory, at speed v > c. This is not surprising because it is
the causality principle which forbids faster than light speed. Different would
be the case of postulating the existence of tachionic particles: this would be
possible only in a different relativistic theory, because postulate E will be
violated [4].
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3.3 Classification of 4-Forces. Conservative Forces

Independently of the force law ([B3]), in a generic event E, K can always be
decomposed, in a unique way, into the sum of two vectors: one parallel to V
(and hence timelike), and the other orthogonal to it, and hence spacelike and
belonging to the hyperplane ¥, orthogonal to V (see Fig. 3.1):

1
K=\V+F, FeL:F V=0, A=- K. V. (3.13)

This decomposition distinguishes between two kinds of 4-forces, according to
whether K be tangent to the world line of the particle or orthogonal to it:

1. K= AV (or F =0);
2. K-V=0(or A=0).

The first kind of 4-forces are of thermal type, whereas the second are of
mechanical type, and the reason of these names stems from (B.8)):

d
K=V — mo=A#0, V = const.
dr (3.14)

K-V=0 — mg=const., A =K/my.

The 4-forces of the first kind have no effects on the motion, that is on
the curve arc (straight line) in M, which represents it, but, through my,
they influence the internal structure of the material point. Thus, this can be
considered an action of thermal type.

On the other hand, 4-forces of the second kind have only the effect of ac-
celerating the particle, bending the world line without modifying its internal
structure; hence, they correspond to the ordinary mechanical actions. For in-
stance, of such a kind is the effect of an electromagnetic field on a charged
particle, i.e. the Lorentz force. As it will be discussed in Chap. 9, electromag-
netism specifies this force as

Fig. 3.1. Space-time splitting induced by the world line of a material particle
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e

K,= Fo,V7, (3.15)
c

where e is the (invariant) charge of the particle, V# its 4-velocity and F, 3 the
electromagnetic tensor. This is not, in general, a force law like that specified in
[B3) because Fyp is subordinated to Maxwell’s equations and is not directly
given as a function of E. However, F,3 is antisymmetric: Fi,3 = —Fj3,, and
hence the Lorentz force is always of mechanical type:

K- V= Kva— FogVevP =0.

An important consequence of this is the fact that the electromagnetic field
cannot change the proper mass of a particle. Summarizing, the notion of 4-
force includes two different physical actions, separated in the classical situation
and here strictly related: the thermal action and the mechanical one.
However, [3.3]), typical in restricted problems, does not exclude the exis-
tence of positional forces, i.e. depending only on the point-event E where it
is applied: K = K(F). Among these, in turn, one can consider conservative
forces, characterized by the existence of a regular and uniform scalar function
U(E) of E, such that, for all E in the domain of definition and for all world
lines passing through FE, the mechanical power is an exact derivative, that is

du

K- V= , 3.16
dr ( )
or explicitly
ou du
VK, =V« = VE, V;
Ox> dr
hence: su
K, = PP or K = Gradl , (3.17)

even if V is not completely arbitrary but subordinated to the condition V-V =
—c?. In fact, choosing V® = (c 0,0,0), one gets Ko = OUy/dx° and, in turn,
choosing Va = (v2¢,¢,0,0), V (¢2c 0,¢,0), V¥ = (v/2¢,0,0,¢), one finds

Equation (BIZI) characterizes K starting from the potential function U.
From this it follows that a conservative 4-force is necessarily positional, like
Up.

The hypersurfaces U (2, 21, 22, 23) = const. form, in My, the field equipo-
tential hypersurfaces. They are three-dimensional and characterize the field
itself, through the congruence of the co® orthogonal curves (flux lines of K).
We notice here, from one side, the strict analogy with the classical case (either
for their definition or their representation properties) and, from the other side,
the big difference between conservative forces in classical mechanics and con-
servative 4-forces. The former have their conservative meaning with respect
to a given Galilean frame, but there is not any absolute notion of conser-
vativity (for instance, the Earth gravitational field is conservative, as well as
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central, only in the frame in which the Earth is at rest; in a frame in which the
Moon is at rest, this field is no longer conservative, nor positional). Definition
(314) has instead an absolute meaning and leads to the definition of I as the
intrinsic potential of the 4-force K.

We list few examples of 4-forces:

K = constant uniform field
K = ¢(|QE|)vers|QFE] central field, with centre Q
K = ¢(|QE|, V)vers|QQE| general central field, with centre |

where |QE| = \/|QF - QE|. The first two fields are conservative, with potential
U = Koz® and U = ¢ [ $(z) dz respectively, with z = |QF| and ¢ = +1,
according to the positive/negative sign of the norm of QF.

3.4 Constrained Material Point

As in classical mechanics, it is meaningful to consider also in special relativity
the scheme of constrained material point. One has to put, a priori, a limitation
to the scheme, and this can concern either the world line £+ (belonging, for
instance, to a certain hypersurface) or the material content of the particle.
Thus, a relativistic and quite general constraint can be expressed as

o(E,P,7) >0, (3.18)

with ¢ a scalar (invariant) function. The constraint ([B.I8]) can be of special
kind; for example, holonomic (i.e. depending on E and 7 only) or nonholo-
nomic (i.e. depending on P too); unilateral (¢ > 0) or bilateral (¢ = 0); de-
pendent or independent of 7. Furthermore, through P, the constraint (B3I]))
could impose limits to the proper mass mg. In this sense, a very simple bilat-
eral constraint is

mo = const . (3.19)

which refers only to the internal structure of the particle. We define the con-
straint to be ideal if the corresponding 4-reaction is R = AV, with \ generic.
In the constrained scheme, the fundamental law of relativistic dynamics
should be written by distinguishing the active 4-force from the reaction of the
constraint, which is a supplementary unknown for the problem; from here the
necessity of specifying the dynamical properties of the constraint itself (e.g.
ideal constraint or not) follows. Thus, the fundamental equation becomes

dpP

=K(E,P,7)+R, (3.20)
dr

or, similarly to (B.8]):
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d 1
5”0 —— J(K+R)-V

TdV ¢ X (3.21)

mo =K+R+ ,(K+R)-VV.

dr c?
In particular, when R = AV the above equations reduce to
dmyg 1 dv 1

=— K- V42 =K K-VV 3.22
dr c2 tA, Mo dr * 2 ’ (3:22)

where the unknown A\ is specified from the constraint. In particular, if the
constraint is that given in BI9]) (particle without any internal structure),
B22), is a “pure” equation for the determination of the motion. Once ([3.22))-
is solved, starting from certain initial conditions, then ([22]); gives the value
of A:

A= LK B, P(r)] V().

and hence the value of the reaction of the constraint is also known.

3.5 The Conservative Case. Hamiltonian Formulation

Let us consider now the fundamental system (3.8]), which determines, starting
from an assigned 4-force law, the point particle dynamics, with variable proper
mass (i.e. the system ([B7)). Instead of using the derivative of P = moV, we
assume the expression of V in terms of P, given by (8.2))2, and consider, then,
the following first-order differential system in the unknown QF and P:

dP dQFE cP

B N VA, (3.23)

Such a system clearly implies the condition V -V = —¢? as a direct conse-

quence of (323)2 and is equivalent to (B.7) and hence to (B8). It is therefore
a first-order (normal type) formulation, in eight unknowns: P = P(7) and
E = E(7) (in (38) there were nine unknowns), which confirms the unique-
ness of the motion, once the (regular) force law K is assigned, together with
the initial conditions Ey and Py, satisfying the single limitation Py € C5 (Ej).

In scalar terms, assuming as variables the coordinates of E, namely z, and
the momenta P, = mqsP?, the system (3.23)) becomes

dP, da® b p
= K. (E,P,7), oo (3.24)
dr dr  \/-mroP,P,

The existence and uniqueness of the motion is obtained by including the initial
conditions (Cauchy problem):

2 =25, Pa=PFP,0 at 7=19 (3.25)
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with the coordinates of the event Ey: z{, belonging to the regularity domain
of K, and maﬁPa)oPg)o <0,ie Pge C;(Eo).

System ([3:24]) is of special interest because when K, is conservative it gives
rise to a Hamiltonian formulation. In fact, if the 4-force is conservative: K, =
OU /Dx*, by introducing the proper material energy of the particle: £ = mgoc?,
as well as its positional energy IIp = —U, [B.24)) are equivalent to the following
canonical system, with Hamiltonian function H(z, P) = Ily — &o:

dP, OH dz®  OH

=— = . 2
dr Oxe’ dr 0P, (3.26)
In fact, from B, we have
H=-U(z) — c\/—mr PP, , (3.27)
and hence, using the relation
0 (=P-P)=-2P%=—-2m*P, (3.28)
op, = = -2m*P,, .
one gets
POL
OH c OH :_8Ll - K. (3.29)

P,  -P-P’ 0z  0z°

thus the differential systems ([3.24) and [B28]) coincide.

The dynamical equations ([B26]), which summarize the conservative case
from an absolute point of view, give an example of Hamiltonian system not
equivalent to a Lagrangian one. In fact, the possibility to reduce it to a
Lagrangian form is subject to the invertibility of the relations:

o = OH
0P,
(in our case d;: = 8‘9}7,1 ). This corresponds to the requirement that det

||0*H/OP,0Ps|| # 0; in our case, instead, we have

Jor.o

aPaanH =0. (3.30)

The proof follows easily once the second derivatives of H are directly evalu-
ated. In fact, from (328) and (329) we have

O*H c op , PPP
8PQ8P5_P<m + g ) , P=V-P.P, (3.31)

from which one gets the result:

02H c pops c
Ps= . (p° Ps) = (P*—P*)=0.
PP " P< T ope ﬁ) pl )=0



3.5 The Conservative Case. Hamiltonian Formulation 119

Thus, for an arbitrary choice of the Pz variables, the system

O*H

Xg = =0,1,2
8Paapg I6] 07 (OZ 07 ’ 73)7

of four linear and homogeneous equations in the four unknown Xj admits
eigensolutions (it is satisfied for X3 = Pz # 0). Thus condition ([B.30) is
satisfied, as it can be shown by using ([B.31).

Similarly, the same result can be easily obtained by noticing that the func-
tions at the right-hand side of (3:24])2, i.e. the derivatives OH /0P, besides
being regular when P # 0, are homogeneous of zero order in the P,. It
follows, from one side, the impossibility to obtain the momenta P, (all in-
dependent) as functions of the velocity V¢ (subordinated to the condition
maBVO‘VB = —c?); from the other side, using the Euler theorem:

0 (0OH
dP;s (apa> Fp =0,
we get again (B.30).

However, being H(x, P) independent of the parameter 7, the canonical sys-
tem ([B26]) admits the generalized integral of the energy:

-H= c\/—maﬁPan +U(z) = const. = h, (3.32)

for all the solutions of (3.26)).
This can be seen also from (B:8)); which, in the conservative case, assumes

the form e dU
o _ _ , — &+ U = const.
dr dr

We notice that the fact that the (conservative) point particle dynamics can
be formulated in Hamiltonian and not in Lagrangian terms can be physically
interpreted in the sense that, at least from the absolute point of view, the
wave aspect of matter should be preferred, with respect to the particle one.
In fact P,, being a covariant vector, defines a three-dimensional hypersurface
(or wave front), locally associated to the world line £+ (ray); in turn, the
elementary wave, is perpendicular to /1.

The intrinsically conservative case suggests the idea of more general parti-
cles described by a Hamiltonian function H(x,P,7), which is not separable
like H. In this case, the associated Hamiltonian system, starting from the
initial conditions Fy and Pg, characterizes a world line £+ (ray) and an ele-
mentary wave, not necessarily orthogonal to /1. For instance, this is the case
of spinning test particles for which P is no more tangent to the ray but also
transports the proper material energy of the particle, related to the norm
of P.

Note. The first integral [3.32) reduces the rank of the Hamiltonian system
B29) by a number of two, so that the integration of the system is equivalent
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to that of an Hamiltonian system of six equations in six unknown, followed
by a quadrature. More precisely, one must solve (3.32)) with respect to one of
the P,, e.g. Py:

Py = H(z®, P, h) , (3.33)
and hence consider the reduced Hamiltonian H. After this, assuming as inte-
gration variables z° (in place of 7), we have the reduced system:

3

et __om AR _OH ) (3.34)

daz0 op; dz0 02t
from which one can derive the solution: 2 = z°(z%), P, = P;(2°). The latter
functions, in turn, inserted in (3.33)), allow to express Py as a function of z°,
too, and hence also the energy H of (327). Thus, performing a quadrature
on the original equation dz'/dr = OH/dP, (where the right-hand side is a
known function of 2°), one gets the relation between z° and 7.

We notice that the system (B:34]) does not admit the energy integral, because
H explicitly depends on 2°; moreover, from the relation 2V = ct, this system
represents, practically, the relative dynamics with respect to any Galilean
frame, as it will be better discussed in Sect. 3.9. Thus, in the intrinsically
conservative case, differently with respect to the absolute dynamics, it is the
relative one, described by a regular Hamiltonian system, which is not singular.
In any case, differently from the ordinary conservative case, such formulation
results invariant with respect to the choice of the frame.

3.6 The Relative Formulation of the Dynamics

We have now the problem to formulate the fundamental equations of the
point particle dynamics, in a three-dimensional sense, that is with respect to
a Galilean frame. This is in order to obtain relations which can be tested in a
Galilean laboratory and also to see the difference with respect to the classical
formulation.

Because of the extended relativity principle, these equations should be for-
mally invariant passing from one Galilean frame to another; therefore the
values of the various involved quantities will change, differently from the ab-
solute formulation.

As already stated, to fix a Galilean frame is equivalent to select, in Cy,
the timelike unit vector ~; for a generic motion (£7,mg) then the following
decomposition of the 4-velocity V arises:

1
= \/1—1)2/02 ’

where 7 is the Lorentz factor; similarly, for the 4-momentum one has P =
moV = m(v + ¢y), where

V =n(v+ey), (3.35)
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is the relative mass of the particle. By defining

p = mv relative 3-momentum
{ (3.37)
£ =mc? relative material energy,
one also gets the following decomposition of the 4-momentum:
&
P=p+ v, (3.38)

which states that the spatial component of the 4-momentum is the relative
3-momentum, while the temporal one is the relative material energy, a part
for the factor of ¢. Clearly, as m = nmg, we have £ = n&.

In the fixed Galilean frame, the global time coordinate ¢ is given; hence, the
world line of any particle can be parametrized by ¢: 7 = 7(t). The absolute
equation of motion dP/dr = K, using ([B38]) and the relation dt/dr = 7,

then, becomes
dp 1d€ 1

= K.
at T eat”! n

from here, splitting K in its components along « and into X:
K= Kg — (K . ’)/)’)/, Kg = PE(K) (339)

the two equations (one vectorial on X, and the other scalar) follow:
) ; c
p= Ksg, Ez—n(K-'y), (3.40)

where a dot means differentiation with respect to t. Defining the relative
mechanical force,

F= Ky, (3.41)

Equation (340) assumes the Newtonian form of the theorem of linear mo-
mentum:
p=F. (3.42)

In the limit ¢ — oo, one has F = Ky, and the criterion of re-obtaining the
classical (vectorial) quantity as the limit of the spatial part of the relativistic
(4-vectorial) quantity is satisfied. In the case of V, similarly,

v=lim V.
CcC—00 77

From (40)2, using the relations ¢y = V/n—v, and K- v = Ky, - v, we have

1
~‘K-y=F.v- ,K-V.
7 "
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Thus, defining the relative thermal power:
¢g=- K-V, (3.43)

Equation ([3.40), assumes the classical form of the energy theorem:
E=F -v+q. (3.44)

We notice that, even in the “Newtonian form”, the relativistic point dynamics
formulation, summarized by [B42) and ([B3.44), is different from the classical
one, also because of the widening of the scheme (particles with scalar struc-
ture, i.e. with mo not a constant): for ([3.42]), the main difference is that,
in the linear momentum p = mv, the mass m is not a constant, but (ex-
plicitly) depends on the relative velocity and on the time ¢ through mg:
m = mo(t)/\/1 — v(t)2/c2. Note that the dependence on v remains also in
the most simple case of particles without internal structure, for which mg
becomes a characteristic constant.

Equation ([3.44]) appears deeply modified, for two reasons: (1) the energy of
the particle £ does not coincide with the ordinary kinetic energy mwv?/2; (2)
at the right-hand side appears the thermal power ¢ which should be added to
the ordinary mechanical power F - v. The source of the energy is, then, the
whole power:

W=F- -v+gq, (3.45)

so that the decomposition of the 4-force becomes

K=n <F + ch'y) . (3.46)

We emphasize the fact that F is the source of linear momentum and not
of velocity because of the variability of the relative mass m. In any case, in
agreement with the absolute formulation (3.8, also from the relative point of
view, the physical action, represented by the 4-force K, has the two effects of
(1) accelerating the particle, (2) modifying its material energy:

&o

i
C

From this point of view, because of the presence of the term ¢, that is because
of the variability of mg, as from ([B.8));, we have

&= (3.47)

dm()
¢y, =D, W=7 (3.48)

-
Equation (3.44]) is independent of that of the linear momentum, differently
from the classical situation. However, the presence of ¢, that is a first link
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between mechanics and heat theory, is not the unique fundamental novelty of
the relativistic pointlike scheme. The other conceptual aspect, not less impor-
tant than the previous one and certainly more general because it is present
also for particles without internal structure, is the fact that the energy £ and
the mass m of the particle differ by a multiplicative constant, as if they were
two different aspects of the same physical quantity (equivalence between mass
and energy).

Clearly, € contains either the rest energy £ = moc? (intrinsic) or the (rela-
tive) kinetic energy, due to the relative velocity of the particle: v. The relation
with the ordinary kinetic energy is immediately obtained, with an expansion
of the right-hand side of ([3.47) up to the first order in v?/c?. In fact, one has
the approximated relation:

1
E=&+ 2m0v2 , (349)

which shows, for slow motions v? < ¢?, two main terms: the proper mate-
rial energy moc? and the relative kinetic energy T = mqov?/2. From here it
follows the closeness of ([B.44]) with the classical energy theorem; this is then
strengthened in the case mg =constant, where & = 0, and hence E=T. The
relative material energy as a function of v is plotted in Fig. 3.2.
In particular, one has
lim £(v) = +o0 .

v—C

This result confirms that a material point cannot reach the speed of light,
unless its relative material energy becomes infinite. Analogously, m = £/c?
is the inertial mass which measures the increasing difficulty of the point to
further accelerate when its speed becomes close to that of the light, in a given
Galilean frame. From this point of view, one may consider, as more significant,
the absolute parameter mg, which measures the classical inertia and gives rise
to a hierarchy of particles, without internal structure.

2
MC

\

o}

Fig. 3.2. The relative material energy plotted as a function of v
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We notice that the various definitions introduced above, all have a real
physical content: they establish the physics laws from a relative point of view
in a form close to their Newtonian counterparts, in agreement with extended
principle of relativity. In particular, the Einsteinian equivalence, between mass
and energy, can be easily derived from a general principle of mass and energy
conservation, valid for isolated systems.

In other words, if in the ambit of an isolated system, one has increment of
material energy A€, in correspondence, a mass defect AE/c? is created: this
effect has been widely confirmed in experiments.

3.7 Transformation Laws: Unification Between
Mechanics and Heat Theory

The relative formulation of the dynamics of material point with scalar struc-
ture myg is summarized by the two independent equations (one scalar and the
other vectorial):

d d&

dt(mv):F, dt:F-v+q=W V.S, . (3.50)

They are formally invariant with respect to the choice of any Galilean frame
Sg, passing to another Galilean frame, Sé, is equivalent to put a prime on all
the various quantities in ([B.50]). They are not substantially invariant because
all the various quantities appearing in (3.50]), including ¢ and v, have a relative
meaning. Thus, it is necessary to specify, as we have already done for ¢ and
v, the transformation laws of the fundamental quantities p, F, &, ¢.

Let us start with transformation law of the mass m. From ([B30]), we have

mo , mo
) m = ;
V1 —v2/e? V1—v'2/c?
thus, by eliminating mg (invariant, once specified the event E of the world
line):
P V1—v2/c? |
V1—v2/c?
Moreover, from (2.103)), it results

1 —v2/c2
Vi-v?/e :07 c=1-u-v/®, a=+1-u2/c, (3.51)

\/1—0’2/62 o

with u the relative velocity of S’é with respect to S,. Hence,

m

m =" m. (3.52)
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From here it follows the introduction of the terminology of longitudinal
mass or transversal mass of use in dynamics, when one passes from a Galilean
laboratory to another moving in the direction of v (v parallel to u) or in the
orthogonal direction (v orthogonal to u).

The classical invariance of the mass comes from ([3.52)), in the limit ¢ — oc:

lim m’ = lim m = mg = inv.
CcC— 00 c— 00

From ([@3.52), after multiplication by ¢2, one gets the variation law of the
material energy:

g="¢ (3.53)

Again, from (52), after multiplication by v/, and by using the relativistic
addition of velocity law,

1
v = (v— +0/au> , (3.54)
o 14+«

one gets the variation law of the linear momentum:

p _ 1+U/amu

= L (3.55)

Let us pass now to thermal power ¢, defined by ([B.43]). We have
g=q-2*/), ¢ =qpl-v?/),
where ¢q is a local invariant of the particle, called the proper thermal power:
qgp=-K-V. (3.56)

The variation law of the thermal power follows, from the above relations, by
eliminating qo:

g = (3)2 q. (3.57)

The remaining task is that of finding the transformation law of the relative
mechanical force. From the invariance property of K, by ([8.46l), one gets

/
n(F—i—W’y) =77'<F'+W’7/) = inv. ;
c c

thus, from BXEI)), it results
/
o c

Finally, projecting on the basis {c/, }:
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/

1 1
Y= a(’)’+ﬂ01) , ¢ = a(Cl +5v), caz=ca3,

the following relations are obtained:

g

1 1/1
W= (w-om)
c c

1 «
F| = <F1 — fW) , F2’)3 = 0F273.

g

From here, one gets immediately the variation law of the total power W:
1
W= "W-F-u). (3.58)
o

For the remaining relation, we can write

Fl = OéFl + (]. — a)F1
1—a?
= oF} F
041+1+a 1
1 u?
= oF}
a1+621—|—o<
1 u-F
=afF] + v u .
c

Fy

Interpreting now the components of F' in S, instead of S (i.e. boosting ¥’
on X)), one gets the relation:

1 1 [u-F
F= |aF+ ("7 —w)u. (3.59)
o A \1+a«

We notice that [358) can be derived directly from ([3.54), (357) and (3.59),

and taking into account the meaning of WW. However, (3.59) shows that, dif-
ferently from ¢, the mechanical force F’ depends not only on F but also on
the thermal power ¢. In fact, we have

1 1
F' = |:O<F - ,(F-w+q) u] , (3.60)
o c
where 1
def
=V - . 3.61
wWEV—, " (3.61)

The following fundamental fact arises, as a peculiarity of the relativistic sit-
uation: in the framework of special relativity, it is meaningful to formulate a
theory for pure mechanics, while it is a nonsense to formulate a theory for
heat, only. In fact, from (B57), we have that ¢ = 0 implies ¢’ = 0, and vice
versa: the presence or the absence of a physical action of thermal type is an
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intrinsic fact. The same is not true for the mechanical force F': if it is absent
in a frame, in general it is not into another:

1
F=0 = F-=-_%uzo0,
cc o

even if a very small, i.e. of the order 1/c%. In a relativistic framework, then,
from pure mechanics, one is naturally driven into thermomechanics (g # 0).
This situation is somehow similar to the electromagnetism: it is a nonsense,
from a relativistic point of view, to develop a theory for the electric field only or
the magnetic field only, but the really meaningful theory implies the presence
of both fields. This of course will not exclude the possibility of having, in a
certain frame of reference, electric or magnetic field only.

3.8 The Cauchy Problem in Relative Dynamics

Let us consider now the general equations for point dynamics (3.50), in a
generic Galilean frame, assuming that both the frame (i.e. ) and the force law
(i.e. K = K(7, E, P)) are assigned. Clearly, the component Ky, = K+ (v-K)~
has the same dependence of K. The mechanical force F = 1/57Ky seems to
have, in addition, the dependence on v, through n; however, if V and mg are
known, assigned ~, also v (and m = nmg and & = mc?, as well) is known.
Thus, F has exactly the same dependence as K, and the same is true for
q = —K - V/n?. In relative terms, the variables 7, E, P are equivalent to the
ordinary quantities P (position), p (linear 3-momentum), £ (material energy)
and t (universal time of the frame); in fact, from F one gets P and ¢, from P
one has p and &, and finally from 7 one gets ¢. In this sense, in the restricted
problems, the relative force F and the relative heat power ¢ have the following
dependence:

F=F(z,p,&t), q=q(z,p, & ) (3.62)

or, equivalently
F = F(x7'i:) 87 t) ) q - q(m) j:757t) 3 (3'63)

taking into account that p summarizes v and m, or &.
From the latter point of view, [B.50) can be cast in scalar terms, in the
following second-order system for the unknown z* (i = 1,2, 3) and &:

d (€, : de :
& <02 a:) =F", e S FF (3.64)

The similar formulation (first-order ordinary differential system of seven equa-
tions for seven unknowns, in the variable ¢), in terms of position z*, linear
momentum p; = 6;p* and energy £, appears to have more physical meaning:

2 2

'i:i: i:(sikpkv pZ:E(xvpagat)v 6‘: ¢

¢ Fip;+q(z,p,Et) . (3.65)
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For this system, similarly to the corresponding absolute one, the Cauchy prob-
lem arises associated with the initial conditions:

ﬂii = 336 ,  Pi = Di0 £ = 50 at t=1to. (366)

Obviously, because of the meaning of the p; and £& = mc?, subordinated at
the condition 1 — v?/c? > 0, we have

and the initial data cannot be arbitrary, but they must satisfy the limitations:

2 ,
) >0 (p2 = 5ikplpk) , (3.67)

2

‘m:1—(wﬂ >0, & >0, (3.68)
&o

and this is a big difference with respect to the classical situation.

Equation (3.68]) implies that a discussion on dynamically possible motions
can be started on the basis of (3.65]), but then at any instant, the constraint
([B67) should be verified. It should be noted that, differently from the problem
(3.8 for the absolute dynamics where the conservation equation 1+ V-V /c? =
0 was present, in the case under consideration here, (3.67)) gives an effective
unilateral constraint. The unilateral character of the constraint excludes the
possibility of reactions, but it creates a problem completely different from
the previous one. In any case, the system (B.GHl) implies, for the variable
X =1-c?*p?/&2, the following first-order (linear, inhomogeneous) differential

condition: )

X =-2_, (XF'p; —p*q/€) ; (3.69)

c
82(
this relation involves either the mechanical force or the thermal power (see
[(B52) and shows that the initial value,

def

Yo = XoFipio — pggo/Eo (3.70)

plays a central role, discriminating the case X (¢) increasing (that is an always
positive X), from the decreasing one, in which there can exist critical points
X = 0 starting from which the solution may be meaningless.

Another form of the system (B.65]), which will allow to avoid the constraint
(57, is obtained assuming as variables z*, p; and mo, in place of 2%, p; and
&. In this case, both the energy & = mc? and the mass m = mq//1 — v2/c2
should be expressed in terms of the new variables; otherwise, from

mo mom
m = = 5
V1= p2/(m2)  /m? —p)e?

it results m? — p?/c? = md, so that

m = \/m% +p32/c2, p? = Sup'p” . (3.71)
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Taking into account (3.6H)2, and by differentiating, one gets the following
relation:

1 1 .
m = (m(ﬂ’ho + 2p1Fi) s
m C

which maps the energy theorem ([B.65))3 into the form: mgrg = gm/c?. Thus,
system (B.63]) transforms as

- 5ikpk
Vmg + p?/c?
pi - E(xvp) mga t)

Cti

(3.72)

(3m3) = Lv/md+p?/c®q(z,p.md,1).

In this last formulation, mg appears through the power m3, allowing the
treatment to be valid for both particles (mo > 0) and exotic particles (mg <
0). Moreover, the constraint (3.67)) rewritten into the form,

p2

1- )
p? + m3c?

is automatically included in BZ2)1, so that the initial data x4, pio and mo o
are completely free, a part from the condition mg ¢ # 0.

3.9 The Intrinsically Conservative Case

In the general formulation (B72)) and ([3.63]), the functions at the right-hand
side are more or less complicated according to the expression of the 4-force
law K(E, P, 7). Therefore, they are simplified when K is special, for instance
positional and conservative:

_ou
~ Oxe
Let us examine this latter case, assuming that the Cartesian coordinates xz®
were internal to the frame: v = ¢g. From the general relations given in (3:46))

K, (a=0,1,2,3). (3.73)

1

1 1 d
Fi: Kl q:—QK'V:— Z/{
n n

n? dr’

and using (B.71)) to express 1, we have

p2
=4/1 3.74
1 + mae? (3.74)

so that one obtains the following expressions for the mechanical force and the
thermal power, respectively:
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Fy=(1+p*/(m3c®)"Y20u/oz" (i =1,2,3)
(3.75)
q=—(1+p?*/(mdc?)"Y?au/ot.

Equation (370); shows that the mechanical force F is neither positional nor
conservative. However, it comes from the potential

Uz, p,mo,t) = (14 p2/(m2e2) "YU (1) (3.76)

which depends on the time ¢ and both p; and mg, through the ratio p?/(m3c?).

Thus, in any Galilean frame, system ([B.72)) simplifies as:

- 5ikpk
\/m3 + p?/ec?

while system (B.65]) assumes the form:

i’ , pi=0U/dx", moc® +U = const. , (3.77)

2
B = Z,(Sikpk . pi=0U/0x' € = —0U /0t (3.78)
with the same initial conditions (3.60]), as well as the limitations (B.67) and
[B58). Obviously, in order to explicitate the system, one should consider U =
V1 —c2p2/E2U(t, x). In any case, even if system (B.77) is formally invariant
passing from one Galilean frame to another, the characteristic function U =
U /n is not invariant (it is instead invariant the absolute potential 4 (E)). Thus,
from (B276) the invariance property nU = 'U’ = inv. follows; in other words,
taking into account [B51]), the transformation law of the relative potential is
the following:
v ="U, (3.79)
o
with the functional identity being subordinated to the Lorentz transforma-
tions. Finally, let us note that, by eliminating mg using the energy theorem,
system (37171, does not assume a Hamiltonian form.

3.10 Pure Mechanics: Particles with Scalar Structure

As we have already stated, in a relativistic framework, a “pure mechanics” is
obtained excluding thermal actions, i.e. assuming

1
==K V=0 (3.80)

This is the ordinary pointlike scheme (material point, without internal struc-
ture); in fact, (380) implies, for (B72)s, the condition my =const., as from
B8))1. In other words, (B80]) gives to the energy theorem the classical form,
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but with a different content for the energy &: & = Fjv', and this, in turn, is
equivalent to the condition 1o = 0, that is mg =const.

In this case (particles without internal structure: my = const. and ¢ = 0),
the energy theorem follows from the equations of motion (B72))1 2:

x'i _ 5ikpk
Vmg 4 p?/e?

In these last equations, mg is a “structural” constant, characteristic of the
considered particle, with the material energy £& = mc? given by the formula:

& =c/moc® + p? p? = 0%pipy . (3.82)

Equation (3.81]) ensure the invariance property of the more general (3.GH),
passing from a Galilean frame to another. This invariance is but, only formal
and not substantial. For instance, in S’é, according to ([B.60), the mechanical
force is given by:

1 1 1
F = F- _F. — .
- [a 2 <v 1+au>] , (3.83)
and so the mechanical power is
1
W= W-F-u), (3.84)
o

differently from the classical situation, where F' = F and W/ =W — F - u.

3.11 The Conservative Case in a Classical Sense

Let us consider now, in the context of pure mechanics (¢ = 0), the special
case in which the mechanical force, relative to Sg, comes from a potential U:

_ oU (x)

F; )
ox*

(1=1,2,3). (3.85)
Obviously, this is not an absolute property because it strictly depends on the
choice of the Galilean frame. That is, the hypothesis (B.85]) destroys the formal
invariance of the dynamical equation [B.8I]). In fact, from (383)), as soon as
u # 0 (ie. Sy # 9g) the mechanical force F’ acquires a dependence on v/,
either explicitly or implicitly, through o, and hence it is no more conservative.

Even with this limitation, which makes S, a preferred frame, the conserva-
tive case is still important, as in the classical case, and gives rise to a canonical
system. In fact, by introducing the total relative energy

H=mc® —U = c\/moc2 + §kppj, — U(z), (3.86)
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system (B.81]), rewritten in the following form:

ik
=, O, U (3.87)
Vmoc2 + 8ilp;p, Ox*
assumes the Hamiltonian form:
. OH 0OH
- = 3.88
P P i (3.88)
Actually, from ([B.86):
OH ey,
opi  /moc? + Ipipy
v ! (3.89)
OH _ oU
ozt Oxt’

which completes the proof. In the limit of slow motions, the Hamiltonian

function reduces, as from ([349), to the classical formula for the total energy

of a material point in a conservative field (a part for the constant rest energy
2

moc?):

1
H ~ moc® + 2m0v2—U.

However, the conservative case ([3.83)) is different from the intrinsically con-
servative one not only as concerns the invariance but also because the function
(B36) has a nonzero Hessian determinant, differently from H defined in (B.27]).
That is, (8:87); is invertible and gives rise to the relations:

mo(sikka
i )
\/1 — Oy aiak /2

moreover, the Hessian of H, with respect to the components of the momentum,
has to be different from zero. In fact, assuming m(p) = \/ m3 + p?/c?, so that
O0H/0p; = p*/m(p), it is easy to show that

pi = mv; = (3.90)

0’H 1 e 1
=— / 5k 3.91
Op;Opg m362p Pt m ( )
Thus, the matrix Hagja[ék H has the form ||a?* + 3% || and, using the general

relation , ,
det [|a™ + Xo*|| = A" + LN 4 L, N T, (3.92)

with n the matrix order, and Iy,. .., I, the principal invariants of a™* (with
respect to the matrix &;;). In the present case, A = 1/m, n = 3, a’* =
—p'p* /(m3c?), and it results in
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n=-" L=0, Iy=0;

S m3e?’
so that, from (3.92))

3 2 2 2
1 1
m m3cz \'m V(m3 + p?/c2)5

Thus, differently from the intrinsically conservative case, the canonical system
(B:88)) is equivalent to a Lagrangian system, with Lagrangian:

0’H

det
‘ ‘ OpiOpk

det OH

£ =L e

pi=pi(q,4,t) > )

where the relations p; = p;(q, ¢, t) are obtained by solving the equations ¢* =
OH/Op; with respect to the p+ when this is possible as it is in the present
case. It follows

L= xlpl(x,x,t) - [H]pi:pi(z,i,t) 5
using, then, (B:86) and (B90]), one gets

L= (Gipi'i® — )+ U(x) = —moc® /1 —02 /2 +U(z) . (3.93)

mo
1—v2/c?

The associated Lagrange equations,

d oL oL
- = .94
dt 0 Ot 0, (3:94)
give, clearly, the theorem of momentum:
d i ou
gt (md*) — Oi = 0, (3.95)

i.e. give rise to a second-order normal differential formulation of the dynamics
in the unknown z*(t). More precisely, taking into account the energy theorem:

ou

£=Fi' = oy it =U, (3.96)
one can rewrite (390 in the form
mit = U _ Ly 00 L OU i
ort 2 drt 2 ozk ’
and thus, they are equivalent to the following second-order, normal system:
moi’ = \/ 1 — §yiidh /c? (5“@ — 612 xxk) ggk : (3.97)

Such a system, in the considered Galilean frame, admits the energy integral,
as it follows from ([B.96): & — U = const., that is,
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m002

= const. 3.98
V1 = Spdidk /2 — Ulx) ! (3.98)

for all the solutions of (397); furthermore, the Lagrangian function ([3.93]) does
not explicitly depend on the time, so that system (3.94)) admits the generalized
energy integral:

H(z, i) = gfi i’ — L = const. , (3.99)

for all the solutions of ([3.94]), and this coincides with (3.98]). Similarly, in terms
of canonical variables, being ¢ an ignorable coordinate in the Hamiltonian
function ([B0]), the associated system (B.88]) admits as a first integral the
same function H(x,p):

ev/moc? + 6% pipy, — U(x) = const. (3.100)

for all the solutions of (B:88]). This allows to express, for all dynamical solution,
p? = 6% p;pi, as a function of the position and the initial data.

3.12 Classical Approximation

As in the conservative case of pure mechanics discussed in ([B.97]), also in the
general case (F # 0, ¢ # 0), the dynamical equations can be written in terms
of the four variables x* and &, or in terms of #* and mg. One has to use directly
B64)), which gives rise to the following, normal form, differential system:

1 oot ik 1 ..k 3 X .
Eit = (0" —ds ,3'2") Fi(x,2,E,t) — d'q(z,2,E,t
c2 ( c2 ) ( ) 2 ( ) (3101)
&= Fpik + q,
or, equivalently,

1 1
fa=F — F-v+gv
c? e ) (3.102)

SZF-V—i—q.

Assuming instead, as variables x* and mg, and using ([B.72), the fundamental
system ([B.I0I) can be written as

i ’[}2 61']43 1 -i -k . ]_ .
mox” = 1— 2 — szx Fk(x,x,m07t)—62qx
1 )
m = q(x, &, mo,t) (v? = oypdiah),

2

v

02\/1 T2
c

which shows the meaning of mg as the inertial mass for any choice of the
Galilean frame. In particular, in the Galilean frame in which the particle is at

(3.103)
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rest v = V/¢, such that vo = 0 and ap = A, and using (.41)) and B.43)), one
gets

1
Fo=Ky=K+ ,K-VV, ¢g=-K-V,
C

and (3I03) become

. 1
moag = Fo , o = 50 (3.104)

which are equivalent to the original absolute formulation ([B.8]). We note that
BI04, gives again, in the relativistic framework, the classical law ma = F,
even if this result holds in a particular Galilean frame, variable with the
particle. Conversely, this may give a criterion to extend, in relativity, the
classical physics laws, according to which one can consider the classical laws
still valid, but only with respect to the Galilean frame in which the par-
ticle is at rest. Then, the formulation can be extended to any Galilean
frame, by considering the transformation laws of the various quantities in-
volved.

Finally, it is also worth to note that, in the limit ¢ — oo, the formulation
BI03) is equivalent to the classical case:

moi’ = F* mo = m = const. , (3.105)

from which the inertial meaning of mg is confirmed and its purely mechanical
meaning too, without the thermal coupling.

3.13 Unified Scheme: Particles and Photons

Within the particle scheme, considered up to now, we have excluded both
the cases my < 0 and mo = 0. The first case (mg < 0) can be taken into
account, without significative changes in the scheme considered, above and
it represents exotic matter, or particles with negative material energy (and
hence not too much physically relevant). The second case (mo = 0) must be
discussed separately because in this case some fundamental quantities, like the
4-momentum, loose their direct meaning. Allowing to consider also particle
with very small masses, it is quite natural to consider the case m = 0 as
a limiting one of the particle scheme. From this point of view, taking into
account the relation

mo
m = ,

2
-
C

it is clear that, if v < ¢, the limit mg — 0 implies m — 0 too, in every
Galilean frame; a particle which would correspond to such a model will not
be physically observable. As a consequence, if one would like to consider a
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physically compatible scheme, also for the case my = 0, one should allow v = c.
This observation suggests the corresponding scheme, for the case mg = 0, that
is a scheme apt to represent particles moving at the speed of light. This is the
case of photons, introduced by Einstein in 1905 to explain the photoelectric
effect.

They are, then, limiting particles (my — 0 and v — ¢, so that m will be
finite and nonzero), for which the world line is lightlike:

dE
A-A=0, )\_d/\' (3.106)
Therefore, for these particles, one cannot introduce the notions of proper time
7 and 4-velocity V. Similarly, the 4-momentum P = moV is meaningless
because it is derived from my and V. Properly speaking, even if both mg
and V have no more meaning, their product may have. In fact, for a generic
particle, the 4-momentum P can be written as

moV = mo)\d)\ ., dr= 1¢—>\ SAd)

dr ¢
and the scalar quantity, P* = mod\/d7, may have a physical meaning. Then
P = P*X can be meaningful in the limit my — 0 and d7 — 0 if the latter are
infinitesimal of the same order. From this point of view, which gives to P a
primitive meaning with respect to mg and V, the following definition appears
quite natural for a particle with scalar structure: an oriented world line ¢+,
timelike or lightlike, and a tangent (nonnull) vector field P(E). When ¢% is
timelike, one can introduce the (preferred) proper time parametrization, as
well as the 4-velocity V and the proper mass myg, defined starting from the
decomposition P = mgV. When, instead, £ is lightlike, i.e. (3.I06]) holds, for
any choice of the parameter \ along ¢+, the vector P remains tangent to £,
but is lightlike:

IIP][=0. (3.107)
Summarizing, in the unified scheme (material particles and photons), the fun-

damental ingredients are two: the oriented world line £T and the field of tan-
gent vectors P # 0, with norm

[P| <0, (3.108)

with the equality holding for photons. Finally, if P is aligned along ¢/t and
has the same orientation, one speaks of particles, otherwise of exotic particles.

The condition P tangent to £ represents a strong limitation for the par-
ticle scheme. In fact, once introduced on ¢* an arbitrary parameter )\, the

4-momentum P is
) 1\ ) ( )
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for all parametric representation, with the scalar P* (assumed to be positive)
naturally depending on the chosen parametric representation. That is, from
the invariance of P: PAX = P* X' = inv., and using the relation

dN
A=) , 3.110
I\ ( )
one finds the transformation law for P* when \ varies:
oodN
PN =" PN, 3.111
aA ( )

This is the exactly the transformation law for vectors, which motivates the
notation for the position of the index \. Taking then into account the positivity
of the quantity d\'/d\ also follows the invariance for the sign of P*, which
substantiates the two different (but similar) schemes: P* > 0 (particle), and
P* < 0 (exotic particle). In the following, in order to avoid an indicator
€ = £1, we will restrict our attention only to particles: P* > 0.

3.14 Fundamental Invariants

The norm of P is a first absolute invariant for the unified particles, which
we will show to be effective in the relative ambit only. More important is the

differential invariant:
dA dN

Px T pY
and, by integrating along ¢T, the finite invariant I(FE) > 0, defined up to an
additive constant

=inv.=1, (3.112)

E
I(E) = /E PAl(/\)d)\ = inv. (3.113)

Vice versa, by differentiating the invariant (BI13]), one gets the component

P of P:
dr

dA

so that the unified scheme can also be characterized by the oriented world
line ¢+ (timelike or lightlike), endowed with a scalar invariant: I(F), which
assimilates the photons to the material particles; in particular, for the latter

=1/P*, (3.114)

def . . .
case, the proper mass mo = P7 is contained in (3114):

1 dr
= . 11
mo  dr (3.115)

Obviously, because of the positiveness of P*, I is also an admissible parameter
for £+, and it is such that P becomes an exact derivative:

P =dE/d), Pl=1. (3.116)



138 3 Test Particle Dynamics

In the quantum treatment of photons, the universal constant h (Planck
constant) plays a role:
h~6.6310"%J s (3.117)

with dimensions of an angular momentum (or of the action): [h] = [M L*T~1].
We can include this constant in P*, by putting

P= "N, (3.118)

where the new quantity »* is characterized by the same variation law of P>
at varying the parameter \:
/ dx dA
N A .

vE=vTy T Sy (3.119)
It is easy to recognize that, if the parameter X has the dimensions of a time,
then v is a frequency. In fact, from one side, [P] = [MLT~'] (being P a
linear momentum) and from the other [P] = [PA][LA~!], so that, if [\] = [T,
it results

MLT ' =[P\LT™', = [P =M,

and hence,
A =T, (3.120)

Summarizing, the invariant (BI13) gives rise, by using [BII8), to another
invariant for both material particles and photons, that is the proper frequency
V>0

1 E ) d /1 1
V(E) —/EO UA(A)d/\—an. N <V> =\ (3.121)

The following relation holds
2

TE) = y(m) -

(3.122)

so that, in the unified scheme, the invariant I can be replaced by V. Because
of the different meaning of such invariants, P can be obtained starting from

BI09) and using conditions (BI14) and BI122):

dy c?
Pl =1 PV=""=—"_. 3.123
’ dr hI? ( )
In the unified scheme, from the absolute point of view, the local invariants I,
or V, play the role of the proper mass mg: hence, the latter has only a partial
meaning, like 7 and V, for timelike world lines.
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3.15 Particle and Photon Dynamics

As concerns the absolute dynamics, in the unified scheme, one cannot use the
proper time parametrization of the world line because this has no meaning
on null world lines. It is necessary to use an arbitrary parameter A, and to
rewrite ([B.6]) in the form:

dpP

=Ky\(\,E,P 124
d\ )\(7 B )7 (3 )

assuming that this equation have absolute character, i.e. not depending on the
choice of \. It follows that the 4-force Ky should transform like a derivative,
or with the covariance law:

dA

K)\’ :K)\dA/ 5

(3.125)
complementary to (BILT]), so that the parameter A can be chosen arbitrarily.

In particular, by using the canonical parameter I, the unified dynamics of
particles, in the ambit of restrict problems, is governed by the following set
of equations:

dE P
dl =P, a7 =K(I,E,P), [IP|]| <0, (3.126)
where K = K is the generalized 4-force, and dF/dI the analogous of the
4-velocity. The absolute parameter I is defined by means of 1133114,
both invariant with respect to the choice of A, vice versa, (BI13]) holds only
for material particles.

The unified treatment (BI26) includes, obviously, the energy theorem; in
fact, assuming

. £
|[P|| = —1mic® = — 2 (3.127)
from (BI26])2 one obtains the relation
d (1., 1. . dE

where the scalar ¢ can be interpreted as proper thermal power. From this point
of view, which reintroduces the proper mass as a quantity derived from P,
the photon is characterized by the condition mg = 0, like a particle without
internal structure, which implies also § = 0 (absence of thermal interaction).

However, formulation ([BI28) does not include the limitation ||P|| < 0,
which should be added to the equations. It uses, as a parameter for £+, the
absolute invariant I, which makes the mass as unit: P! = 1, but it does
not have the dimensions of a time, and hence it cannot be considered as a
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substitute for the proper time. In any case, (3122]) defines a second invariant:
V > 0 (absolute frequency), which also gives the temporal invariant:

def 1
T = >0, 3.129
) (3120)

where V is defined by (3121)), in terms of P:

1 Eq 2
- LA, A= P
V Eo 14

From here, by differentiating and using (3159, one gets

dT 1

I >0; (3.130)
Thus, together with I and V), also T' is admissible along £7: this is an absolute
temporal parameter which, differently than the proper time, is meaningful also
for photons. To it one can refer all the fundamental quantities for the unified
particles, starting from the frequency V), or the equivalent mass M = h)/c?
which, in terms of T', have the following expressions:

1 h

V= T M = 27 (3.131)
with dE
P=MV, V= ar - (3.132)

Hence, the absolute dynamics of unified particles is summarized by the follow-
ing set of equations, similar to the canonical ones (3.126]):

dE dpP
M =P
©odT

= < .
T Ky, [[P[[<0, (3.133)

where M is now a known function of T'. The limitation ||P|| < 0 ensures that
the world line of the particle is timelike or lightlike.

Finally, as concerns the relations with the proper mass mg and the proper
time 7 of the material particles, from [BI32l), we have MV = moV, so that:

d c d

MY =cmo, 4 = yar-

(3.134)

3.16 Unified Relative Dynamics of Particles

Differently from mg (absolute quantity), the concept of relative mass m can
be introduced also in the unified scheme in any Galilean frame, that is also
for photons (corpuscular theory of light). In fact, if a Galilean frame is fixed,
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S (), and the £T is parametrized by the coordinate time of the frame X\ = ¢,

BI09), using also [BII8), becomes

dE  hv
— pt _
P=P g = e (v+cy),
with v the relative frequency of the particle (luminal or material) and v its

relative velocity. Thus, in S, also for a photon, the ordinary decomposition
(3:38) holds
&
P:p—i—cfy, p=mv, (3.135)

with the relative frequency or mass:

dt hv
_ pt _ _
m = Pt = U= 2 (3.136)

together with the relative material energy, given by
E=mc*=hv. (3.137)

We notice that the component P! = dt/d\ has either the meaning of relative
mass or that or relative frequency, and both these quantities are well defined
for the unified particles.

Equation (BI37) shows that the energy of a photon is proportional to its
relative frequency. Moreover, from (BI19]), which gives the variation of the
frequency, with respect to that of the parameter along £, one gets the vari-
ation law of the frequency (and hence of the energy and of the mass) in the
ambit of the Galilean frames. In fact, using A = ¢ and A\ = ¢/, respectively, it
follows: v/ = vdt'/dt, i.e. using (2Z102):

, l—u-v
vV=v ,
V1 —u2/c2
in agreement with ([B353]). Equation (BI38)) defines the transversal Doppler
effect.

As concerns the relative dynamics of particles, in the unified scheme, it is
clear that, once fixed a Galilean frame, and using the associated time coordi-
nate ¢, it is enough to put A = ¢ in (3124]), obtaining

d

P=K,(t,E,P), O =4 (3.139)

(3.138)

From here, the relative equations of motion, using either (BI35), as well as
the decomposition of K; along v and onto X:
)4%
K, =F+ . (3.140)
¢
More precisely, [B.139), as for the case of material particles, splits into the
two Newtonian equations:
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p=F, &E=W, (3.141)
where the total power is given by
W=F- -v+gq, (3.142)

which defines the relative thermal power ¢, in terms of YW and F. Equivalently,
as in (343)), ¢ is also given by:

dE dr\?
- -K,- ~ = g 14
q Eog q <dt) q; (3.143)

in fact, from BI40) it follows:

dE

K
At

= <F+ VCVq/) (v+ey)=F-v-W.

Thus, also in their generalized form (to include material particles and pho-
tons), the fundamental equations [BI4I]) are invariant with respect to the
choice of the Galilean frame; the invariance being formal and not substantial
because of the relative meaning of the involved quantities. In particular, as
(BII9) gave the variation law for the frequency (BI38) (and hence for the
energy and the mass), (3120, for A =t and A = ¢, gives the transformation
laws for the mechanical force F and the power W. In fact we have

/
LAV <F + W'y) (3.144)
C g &

from which, using the standard procedure, one gets again (358 and (359):
L1
W= (W-F-u),
g
1 :
P R S
o A \1l+a

Finally, from BI42) and (3I43]), we have the variation law of the thermal
power:

(3.145)

q = (j)zq, (3.146)

already found in the case of material particles. Equation (3.I140]) again gives,
also for photons, the intrinsic meaning of the condition ¢ = 0 (absence of
thermal actions). In fact, (3IZ1) can be written in the form: ¢ = —K-P/(P")2,
that is

¢=q¢/m*, (=-K-P, (3.147)

where ¢ is the scalar invariant defined in ([B.128) which, in the unified scheme,
corresponds to the proper thermal power ¢y. However, the condition ¢ = 0
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which for material particles is equivalent to the invariability of the proper
mass myp, in the unified scheme, according to (BI26)3, corresponds to the
conservation of the norm of P:

[|P|| = const. = ||Po|| < 0. (3.148)

Because for a material particle we have ||P|| = —m3c?, B.I48) shows that
photons behave like particles without internal structure and with proper
mass mg = 0. This is but only qualitative because for photons the notion
of proper mass, as that of proper rest frame, have no meaning. We notice that
BI48), taking into account the definition of the characteristic function I(\)

and ([B.120);, implies that

dr\?
Al =P 3.149
=P () (3.149)
or, in relative terms to Sy:
dar\?
22 =P : 3.150
v® —c” =||P|] o) ( )

in particular, for material particles, from (BI14) and (BI36) we have

dt hv
g=-m= 2 (3.151)
so that ([EI49) assumes the ordinary form: m = mq/+/1 — v2/c2.

Finally, it is worth to mention that, in the unified scheme, the dynamical
source Ky, satisfying the invariance property (B.128): KydA = Ky.d)\ =inv.
cannot be given, a priori, through the law Ky = Ky(\, E,P); in fact, the
considered scheme is not free, but constrained by the condition (BI08):

P <0.

Thus, it has partially the meaning of reaction to the constraint, a property
which is also inherited by F and q. This is specially true for the particles
on the border (photons), where the constraint becomes bilateral, and from

(BI37) implies p* = £2/c?, or v = c.
3.17 An Alternative to the Unified Dynamics
In unified dynamics too one can consider a formulation similar to (B3XI]).

First of all, (3.14I) can be summarized by the following scalar relations, in
the variables x%, p; and m = £/c*:

) 1 . 1
it = " 0%py, p; = Fi(t,z,p,m), m= ,Wi(t,x,p,m), (3.152)
m c
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with the constraint ||P|| < 0, that is, from (ZI35]):

p? —m?c? <0 ~ v <é? (3.153)
we see that such constraint does not represent a limitation for the relative
trajectory but only for the motion law. However, as in the ordinary case, the
constraint ||P|] <0 can be included in the dynamical equations, by using as a
parameter ||P|| in place of m or &:

[P = r?c? . (3.154)

One finds
p? —m?c® =m?c?, (3.155)

from which the value of m follows, having in addition the meaning of fre-
quency: m = hv/c?, i.e.

2
m = \/m2+]22 . (3.156)

We notice that, at least for the material particles, m has the meaning of proper
mass, and it vanishes for photons; vice versa, the relative mass m is always
positive because for photons, one has v = ¢ # 0.

By differentiating ([3.I53]), one gets

=, [037) 2 /7]

which maps system (BI5]) in its equivalent form:

_ 5ikpk
V2 +p2/c?’

X

pi = Fi(t,z,p,m?),
(3.157)

. 2 . .
(M%) = 2 V2 + p2/c2 q(t, z, p,10?).

We easily recognize that the variables are changed and, in place of m, appears

the absolute parameter /m?; however, the differential system is still of the first

order with mechanical and thermal sources given, separately, by F; and q.
However, system (BI50) includes the constraint ||P|| < 0; in fact, from

BI54), it follows that

(m2 +p2/C2)U2 _ p2 ~ m2v2 _ (1 o ’l}2/02)p2 ;
that is the restriction v? < ¢2, for all the solutions of the system. System
BI54), as the analogous (BIEI), represents the relative dynamics of unified
particles, and the parameter m discriminates between material particles and
photons. For the latter case, one has i = 0 and ¢ = 0 and the system (3.150)
reduces to
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x.i = caikpk/pa ]51' = Fl(tvxap) ) (3158)

which implies v = c. It is then clear the role played by the covariant vector p;,
which, with the direction, gives rise to the velocity v® along the ray (relative
trajectory of the photon), while with its norm gives the energy carried by the
elementary surface, orthogonal to it, as from (B.I55):

p? =m?c?. (3.159)

Differently, from (B.I54)), one finds p* = (m? — m?)c?, and the velocity along
the ray is determined by p; and m.
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4

Applications

4.1 Principal Tetrad for Nonnull Curves in M,

One of the most interesting aspects of the mathematical methodology is that
of generalizing to any space a result introduced and verified in a particular
framework. Such a stimulating procedure can be interpreted as the necessity
of making universal certain concepts, eliminating eventual limits due to the
framework where they have been first introduced.

In relativity, this happens very often; results and geometrical quantities,
typical of the classical apparatus, are redefined in a completely different frame-
work (for dimension and geometry), like the Minkowski space Mjy.

In a strictly geometrical ambit, a typical example of such extension is given
by the so-called Frenet—Serret formulas, fundamental for the intrinsic clas-
sification of curves in My. The extension is not difficult, when the curve is
timelike (or spacelike): a well-determined tetrad corresponds, locally, to the
principal triad of the ordinary case; actually, to the ordinary curvature and
torsion correspond generically three “curvatures”. Differently, the extension
for lightlike curves, i.e. tangent to the lightcone, is not so simple. In this case,
in fact, it is necessary to introduce quasi-orthonormal bases, or more generally,
anholonomic bases, which are first attached to the curve and then, more and
more specialized, in order to be intimately related to the curve itself.

We will discuss here the nondegenerate case only. Without any loss of gen-
erality, let us consider a timelike and future-oriented curve ¢* representing
the world line of a material (or exotic) particle.

Let us recall that, in My, an orthonormal frame is defined by an event €2,
taken as the origin, a timelike axis 2° and three mutually orthogonal spatial
axes x° (i = 1,2,3); all of them characterized by the unit vectors ¢, (o =
0,1,2,3). A world line, in My, can be defined by the parametric equations
z® = z%(\) (@ =0,1,2,3), with A a generic parameter. If the world line is
not lightlike, i.e.

dz® dz?

N : 4.1
Mag 4\ d)\#o (4.1)

G. Ferrarese and D. Bini: Applications, Lect. Notes Phys. 727, 147167 (2008)
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as it is the case for £* (timelike and future-oriented), one can consider a special
parameter s (curvilinear abscissa) invariant with respect to the choice of z®:

A

dze dazf

s=50 —|—/ —Mg dA; (4.2)
N Pax ax

the minus sign is necessary for timelike curves. Thus, assuming such a param-
eter, one has
x® = x%(s) (¢=0,1,2,3); (4.3)

i.e., using a shorten notation:
QF = QFE(s) , (4.4)

so, with a prime, we will denote differentiation with respect to s. As in the or-
dinary case, at each E € ¢T, the unit tangent vector T and its first derivative,
i.e. the curvature vector C, have a direct meaning:

Td:CfdQE7 Cdéde;
ds

iy (4.5)

the curvature vector C, in turn, gives rise to the unit vector N (principal
normal of the curve), as well as to the geodesic curvature C' > 0 (we will not
consider here the case of a straight line: T = const.):

C=CN. (4.6)

The 2-plane, in E, containing the tangent vector and the principal normal,
is still called osculating plane.
Let us consider, now, the hyperplane II, defined by T and its first and
second derivatives:
I=<T,T,T" >; (4.7)

We assume ¢1 regular enough and generic, in the sense that the vectors T,
T’ and T” are linearly independent. Furthermore, let us assume that either
My or the hyperplane II is (independently) oriented, so that a convenient
notation is MI or IIT, respectively. It is possible, then, to consider a unit
vector B, uniquely defined by the following three conditions:

1. B is orthogonal to both T and N;
2. Bell;
3. the triad (T, N, B) is congruent to IIT, say left-handed.

Finally, let D be the unit normal to II, oriented so that the tetrad
(T,N,B,D) is coherent with the orientation of M. In this way, the four
vectors (T, N, B, D) uniquely define a basis, dependent only on the point F
and the curve £T, called the principal tetrad of the curve £+ in E. The two vec-
tors B and D define, in F/, two half lines: the binormal and the threenormal,
respectively. The hyperplane II,,, spanned by N, B and D:
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II, =<N,B,D >, (4.8)

is normal to T, and then elliptic.
Our purpose is now that of deriving the expressions for the vectors N, B
and D, in order to obtain in M, the analogous of the ordinary Frenet formulas.

4.2 Frenet—Serret Formalism

In the ordinary three-dimensional case, the Frenet—Serret formulas give, in
intrinsic way, the derivatives (with respect to the curvilinear abscissa) of the
vectors of the principal triad: t, n and b, in terms of the same triad. Similarly,
for a curve in £ € My, endowed with a principal tetrad, one can evaluate the
first derivatives of the corresponding vectors: TV, IN’, etc.

The vector B, in turn, being contained in II, can be expressed as

B = AT + pT' + vT" ; (4.9)
so that, using the relation T/ = CN and its first derivative,
T =C'N+CN’, (4.10)
one gets the following expression for B:
B = AT + (uC +vC")N + vCN’ .
From this relation, using the orthogonality of B and N, it follows:
pC +vC" =0; (4.11)
hence, B should be represented as
B =)\T+vCN’, (4.12)

that is N’ belongs to the plane spanned by T and B; moreover, scalar mul-
tiplication of (IZ) by T gives 0 = -\ — vCN - T/ = —\ — v(C?, that is:
A = —v(C?. Thus, assuming C' # 0, both A and x can be expressed in terms
of the curvature C' and the parameter v:

!
A= —vC?, W= —UCO ; (4.13)

then, (AI2) becomes
N =CT+ 7B, (4.14)
where 7 represents the first torsion of the curve:

1
= o (4.15)
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Equation ([@I4]) gives the derivative of N and, apart from the signs, is similar
to the classical formula. As concerns the derivative of B, because of (1)

and (LI4), we have
B.T--B-T'-0, B -N=--B.N-=_r;

thus, defining
=B -D=-B-D’, (4.16)

we obtain
B =N +75D. (4.17)

Finally, passing to D’, we have
D-T=-D-T =0, D N=-D-N'=0,

so that
D' =-5B. (4.18)

The Frenet—Serret formulas (see [1], pp. 8-12), then follow:
T=CN, C>0,

N =CT+7B,
(4.19)
B = 7N+ 4D,

D' = —fB.

4.3 Curvature and Torsions

The scalar quantities C', 7 and ( are fundamental in the study of curves in
My because (exactly like ¢ and 7 in the ordinary case) they allow an intrinsic
characterization of the curve itself, up to a Lorentz transformation. In fact
(#I9), completed with QF’ = T, form a well-determined first-order linear
system in the unknown F, T, N, B and D.

From this point of view, [{I9) play an important role also in the absolute
dynamic, giving the intrinsic equations of the motion, particularly important
in the presence of constraints (for example, when £* belongs to a given hy-
persurface in My, etc.). In any case, how can one express the curvature and
torsions of £1, starting from the parametric equations ([3)) of the curve, and
what is their geometrical meaning?

Let us notice, first of all, that the scalars C', 7 and § do not depend on the
orientation of the curve. In fact, changing the sign of the curvilinear abscissa,
the vector T changes sign but T/ = C remains unchanged, and with this,
both C' and N are invariant because of (£]). Analogously, B too changes sign
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but B’ remains unchanged. D, instead, does not change: this implies, using
(#I9)3, the invariance of 7 and .
From (£I9);, being T' spacelike (because it is orthogonal to T), one gets
immediately
d2z> d2aP
C= T/|| =1/m . 4.20
Vi o8 g2 ds? (4.20)
As concerns 7, one can use ([{I9), taking into account that N, and hence
N, is determined by differentiating (£19));:

1 o
N =_"T" - T . 4.21
o o2 (4.21)
In fact, using the property ||T|| = —1 and [{@I9)s, it follows:
T=xV/||IN'|| +C?] (4.22)

where ||IN’|| can be derived from (21)):

O/ T/ . T//

0/2
AT =2,

1
N/ — T//
Nl = i1+

and thus, being
1

one gets the result

1 A3z d3aP
N'|| = o -C"”?) . 4.23
IV = o (1mos e (4.23)
In this way, we have already determined C, 7 and N’; thus, from (ZI9),
follows B:

1, 11, O, .
B= (N OT)_T(OT T —CT) (4.24)

finally ({19); specifies either 5 or D:

8 =+V/|B]| - 2I; D:;(Bf+TN>. (4.25)

Let us pass now to discuss the geometrical meaning of the curvatures.
Clearly, for C' and 7, we can repeat all that has been said in the ordinary
case (see [2], pp. 30-34): C > 0 measures the displacement of the curve ¢
from the rectilinear behaviour (C is said the geodesic curvature); differently
from C, 7 can assume both signs: it measures the variation of the osculating
plane, i.e. the displacement of the curve from the plane behaviour. In fact,
if 7 = 0, from ([@I9)2, one has N’ = CT, so that (£I9); implies that T”
belongs to the osculating plane.
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Also (8 can assume both signs; however, its absolute value has a meaning
which can be obtained by proceeding in an analogous way as in the ordinary
case, for curvature and torsion, namely

6= tim_ ¢

As—0 |AS| ’ (426)

where ¢ is the angle between the two hyperplanes II and II’, corresponding
to the values s and s’ = s + As of the curvilinear abscissa; that is, ¢ is the
angle between D and D’, both spacelike:

cosp=D-D’". (4.27)

As for the ordinary torsion, the sign of § has a precise geometrical meaning. In
fact, let us evaluate the signed distance §(F, E’) of the generic point £’ € £T
from the hyperplane II(E). We will assume such a distance as positive or
negative, corresponding to E’ placed, with respect to II(F), in the same side
of (E,D) or in the opposite side, that is,

§=EE -D. (4.28)

The distance ¢ is a quantity of the fourth order in (s’ — s), so that to be
evaluated it is necessary to expand E'E’ up to the fourth order:

1 1
3 4
where €5 is the rest in the Taylor series. From (@I9), one has TV = CN,
T = C'N+C(CT +7B) and T = 3CC'T + (C? — C12 + C")N + (27C" +
C7")B 4 C74D; thus, substituting in the previous expression, leads to

EE' =TAs + ;T'(AS)Q + o, T'(As)’ + | | T"(As)" + €5,

1 1
EE' = TAs + ZCN(AS)Q + 4, (CT+ C'N + CtB)(As)?
1
+ 4 [3CC'T + (C* — C* + C")N
+(2C'T + C7")B + C76D](As)* + €5 . (4.29)

Then, scalar multiplication by D gives
1
5= 4|CTﬁ(As)4 +e-D, (4.30)

so that from (Z30) we have

ar
T Or asmo (As)t

B (4.31)

Thus, in a neighbourhood of the point E € ¢T, the sign of § is invariant
(positive or negative, according to the sign of 73); that is, the curve is all
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placed from one side, with respect to the osculating hyperplane II(E), and
more precisely, it stands where +D is placed, if 78 > 0 or 75 < 0, respectively.

The principal tetrad, as well as the Frenet—Serret formulas (£19), are no
longer valid when the curve ¢+ is lightlike because the concept of curvilinear
abscissa is lost in this case. Thus, as for the case of the photon dynamics,
one must use a generic parameter, and the tangent vector to the null curve is
defined up to a multiplicative factor. The intrinsic characterization of a null
curve, that is the analogous quantities of C, 7, 8, can be obtained using a
quasi-orthogonal basis, e,. The latter (in general anholonomic) are built up
by considering, for the generic point E € £T, a pair of orthogonal 2-planes: 11
and IT; the first, for instance, hyperbolic (and containing the tangent vector
of the null curve ¢7) and the second elliptic. Among the infinite adapted basis
to the 2-planes, i.e. characterized by

€p2 € 1I , €13¢€ T s (432)
recalling that II (hyperbolic) contains two null straight lines, it is meaningful
to consider those having:

1. eg2 are null vectors, satisfying the normalization condition eg - €3 = 1;
2. ey 3 are spacelike orthonormal vectors.

It results in

= 0af2-4} » (4.33)

0

e e 0
a €5 — 1
0

— o O O

0 1
1 0
0 0
0 0

where the symbol {2 — 8} denotes 2 — 3 modulus 4. The bases like {e,} are
not orthonormal: in fact, they contain two null vectors (ep and e3) and are
termed quasi-orthonormal (see e.g. [3]). In the structure (II,II'), the vectors
ep,2 are defined each up to a multiplicative factor, while e; 3 can be arbitrarily
rotated in the 2-plane IT'; a set of equivalent tetrads {e, } arises, to which one
must add the possibility to select the pair of hyperplanes II and II’. By using
the Cartan method of the repére mobile [4, [5], one recognizes that

1. along any null curve parametrized by an arbitrary parameter ¢, i.e. with
equations x®(t), one has two local invariantdd: I(t) and J(t), built up
with the derivatives of z*(t) (up to the third and fourth order, respec-
tively), and the Kronecker tensor; they are independent on the choice of
the coordinates and, as concerns the dependence on the parameter t, the
differential forms: Id¢ and Jdt are invariant too.

Thus, one can introduce, on the curve, an absolute parameter o (do = Idt),
analogous to the curvilinear abscissa;

! For a nonnull curve, these invariants are four: one corresponding to the curvilinear
abscissa and the three others related to the curvatures: C, 7 and (.



154 4 Applications

2. in each point of the curve, there exists a special quasi-orthogonal tetrad:
{ea} def (T, N, B, D), such that, by adopting the parameter o, it satisfies
the conditions analogous to the Frenet—Serret formulas ([@.19)):

do ) do ’ do

N i

dOE:T dT:N dN _ T -B
{ ’ : (4.34)

One recognizes immediately that the curvatures are, now, no more three,
but only two: 7 and /3 (the first curvature: C, is unitary); however, being T
and B null vectors, in order to determine 7 and 3, one only needs (£34))4,
which gives the ordinary relation:

2
<C(11]3> =7+ 5%, (4.35)

The latter is an equation for 7 because (3, in turn, is determined by the
invariant J above mentioned, that is:

18] = (jj)w : (4.36)

Further details can be found in [5].

4.4 Intrinsic Equations

The Frenet—Serret formulas (£19]) can be conveniently used to discuss absolute
properties of the motion, especially in the presence of constraints when, for
very special external fields, it is possible to distinguish between the geometrical
properties from the kinematical ones. As an example, let us consider the case
of a massive particle, with proper mass mo > 0, in the (purely positional)
external field:

K=K(E). (4.37)
The absolute equation
dpP
=K(FE), (4.38)
dr
taking into account the expression of the momentum: P = myV, becomes
dm()
4 V+moA =K(E), (4.39)
-

where, because of the relation s = ¢7+const., between the curvilinear abscissa
and the proper time, we have

V =T, A =cC. (4.40)
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Projecting on the principal tetrad, K can be decomposed as
K=KrT+KyN+ KB+ KpD, (4.41)

and the intrinsic equations of motion become

dmo 1 1
= K = K Kp = Kp=0. 4.42
gs = 2 BT moC BN, Kp=0, Kp=0 (4.42)

Relations ([42]) are not equivalent to the original ones ([L3])) because the
chosen basis is itself unknown. However, (4:42))3 4 play a role similar to (£.42])2,
in the sense that, as the last equations give C', they express the torsions 7 and
[ in purely geometrical terms. In fact, by differentiating with respect to s and

using ([£19)3 4, one gets

dK dK

B-7Ky = -D = 4.4
ds TIAN 0; ds 07 ( 3)

so that another differentiation gives

‘B=0, (4.44)

where we have assumed the following;:

dK 0 d’K 0? 0

=T K =718 K N K. 4.4
ds oxe 7 ds? 0x0xP +C oxe (4.45)

Therefore, once the force law [@3T) was assigned, [E42)2, (E43); and (@44

give the expression of the three curvatures of £7: C, 7, 8 as functions of my,
T, N, B, D. In this sense, system (@I9), completed with ([@Z42]); and the
additional equation dQQE/ds = T, can be solved, allowing the determination
of the world line ¢t as well as the proper mass mg, once initial conditions
were fixed.

The problem is simplified if the external field K is constant; then, from
#43)1, it follows 7 = 0, so that ¢* is flat, which is also derived directly from
(m): P :moszT+P0.

Finally, as concerns the intrinsic equations of the relative motions with re-
spect to a given Galilean frame, we recall that the following fundamental re-
lations hold

V1—v2/c? '
From this, at least in the case of particles without internal structure, mg =
const., we have the following equation:

(mv)=F, (4.46)

dt

me " v+ mpa=F, (4.47)

c2
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where m¢ and m, are defined by

mo mo

me = (1—v2/c2)3/2" Mn = (1—v2/c2)1/2

(4.48)
and represent the longitudinal and transversal mass, respectively. The latter
denomination comes from the intrinsic form of (£47). In fact, decomposing v
and a along t and n, respectively (tangent and principal normal unit vectors),
and introducing the curvature radius r(s), (£47)) becomes

&2
meit+mn n=F, (4.49)
T

and gives to m¢ and my the meaning of inertial mass along the tangent and
the principal normal, respectively. As in the classical case, the force F belongs
to the osculating plane, so that, projecting on the principal triad, one gets
the intrinsic equations:

mtéth, mnT:Fn, OZFb (450)

Equations (£E0) are especially useful in the case of a fast particle, constrained
(in a given Galilean frame) onto a fixed curve or surface; however, similarly
to what happens for the absolute formulation, they are also useful for a free
test particle. In this case, in fact, if the force F does not depend explicitly
on the time: F = F(P,v), (£50), combined with the Frenet-Serret formulas,
reduce the kinematical problem to a pure geometric one (the determination of
the motion law, being sub-ordered to the resolution of a first-order differential
equation for s).

4.5 Conservative Lorentz-like Forces

Let us consider now, in the special relativistic ambit, a class of Lorentz-like
forces, i.e.
Ko=F.,3V? (a=0,1,2,3), (4.51)

being Fi3 an antisymmetric tensor of rank 2: F,3 = —Fp,. These 4-forces
are of mechanical type: K-V = K,V = 0, and exclude any possible thermal
action: go = 0; therefore, they imply the conservation of the proper mass of
the particle, my.

Let us also assume that the tensor F,,3 admits a potential, i.e. there exists
a regular vectorial field ¢(F), such that

Fog = 0atp — 03¢a - (4.52)

If ¢ is not lightlike (a case excluded here), we can decompose it in its modulus
and direction: ¢, = ¢4, that is
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¢ =¢(E)v(E), [yl = £1; (4.53)
it follows
Faﬁ = (b(ao/m - 8[3704) + aa¢75 - aﬁ(b'}/a s (4'54)
and we have
3 d¢ d o
K, = (;5(3(1’75 - 857a)v + aa¢('7 : V) - dT7a dr =V9 ) - (4'55)

In particular, let v be uniform and timelike:
~ = const., v =-1, (4.56)

so that it represents a Galilean frame S,. In this case, (£.55]) simplifies to the
following (intrinsic) form:

K=(y-V)Grado, Grad ¢ = 9,0 — jf'y . (4.57)

We notice that the force field K now depends on E (through ¢) and V (and
also from =); it is intrinsically conservative if and only if ¢ = constant, and
in such a case, one has trivially K = 0.

Let us examine, now, the mechanical force F, relative to the reference frame
associated with v (Sg), introducing in My—without any loss of generality—
Cartesian coordinates with v = ¢g, and the other three spatial axis belonging
to the 3-space X, orthogonal to + (i.e. coordinates adapted to Sg). We have
then v9 = 1,9 =0, vo = —1, 7; = 0 and, from [@57),

d
K =V, Grad¢ — df'y , Vo=—cn. (4.58)

Thus, in Sg, the relative force, F = Ky /n associated with K, is given by
F = —cgrad¢, grad ¢ = 0;¢ ; (4.59)

it comes from a potential ¢(E), depending on the space-time coordinates and
hence, on the time coordinate of S, too; therefore, F is not conservative in
general, neither in the preferred frame Sg. It becomes conservative in Sy if
and only if ¢(E) does not depend on ¢; in this case, which will be considered
in detail below, we have

F =gradU , U= —co(a*,2%,2®) — W=F.v=U. (4.60)

It is evident that the conservativity of the force F (and also the more general
condition ([@5J)) is strictly related to Sg, at least for the following two reasons:

1. passing from Sy to another frame S the (Lorentz) transformation formu-
las of the coordinates involve the time too;
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2. in the dynamical problem relative to S’é, the physical action ([@LG0), even
if it remains of mechanical type, is represented by a more general force

F’, as given by (3.60):

F’:i[aF—cle-(v— " )u} (4.61)

1+«

also depending on the velocity.

4.6 Central Forces in a Galilean Frame

In the context of the forces like (£60]), even if confined to a well-determined
Galilean frame S, the central ones are characterized by the condition of being
directed towards a fixed point O € S, and with intensity only depending on
the distance of the point P from O: p = |OP|. In this case, one has ¢ = ¢(p),
so that ) ,

oU z* — xg

o p

or, in terms of intrinsic quantities of the Galilean frame Sy:

Fy=0,U =

_ oU(p) OP

F A
dp p

\/5ik (z0 — a)(zk — k) . (4.62)
Such a force will be attractive (repulsive) if dU/0p is negative (positive).
Moreover, the equation of motion,

d

g =F, (4.63)

implies the existence of the energy integral: £ — U = H = const., that is:

— mo
V1—v2/c?

it follows that, once the total energy H is fixed, the accessible region for the
motion is determined by H + U(p) > 0.

In a relativistic context too, the typical property of central motions survives,
that is the trajectory is planar and the area integral exists. In fact, by taking
the vector product by OP of ([£63]), and using ([{.62), one finds

mc® —U(p) = H, (mo, H = const.) ; (4.64)

d d
OP x dt(mv) = dt(OP xmv) =0,

so that a first integral of the angular momentum follows:

OP x mv = mok, (4.65)

with k a constant vector:
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mok = OPQ X (mv)o . (466)

If k = 0 (that is OPg parallel to v or, in particular, Py = O or vg = 0), the
motion is necessarily a straight line passing through O, and the law of motion
is given by (4.G3)), projected on the radius OP. In fact, assuming

dU

F=F(p)u, F(p) = , u=vers OP,

dp
and making explicit the dependence of m from the velocity, given by (LG4,
from ([A63]) one gets the following scalar equation:

(1—p2/c2)3/2 ~ dp ; (4.67)

this equation can be, obviously, also obtained by using the energy integral
@.59); .

If k # 0 (general case), from ([AGH) it follows that the vector OP is always
orthogonal to k, and thus the motion is planar (determined by the initial
values Py and vy), passing through the centre of the force O. Introducing in
this plane a system of polar coordinates (p, #), with origin in O, and assuming
cs aligned with k, one gets the area first integral:

mp?0 = mok | k = ke ; (4.68)

in particular, it follows that 6, as a function of the time, increases monotoni-
cally, so that the particle will be never at rest. By eliminating m, using (&.64]),

and (LG, one gets
k&

= e U)

where £ = mgc? is the proper energy. Thus, once the trajectory p = p(f) is
known, the law of motion 6 = 6(¢) follows by quadratures.

In this way, independently on the specification of the potential U(p), the
dynamical problem is reduced to the determination of the (planar) trajectory
only. It is then convenient to use the first integrals (4.64]); and ([4.69]), in place
of the motion ([LG3). From the expression of the velocity in polar coordinates,

(4.69)

. . . d
V2 = p202 4 5% = (0 + p'2)62 o = p’
de
and using the condition (£69]), the square of the velocity follows:

k2E2

2 2, 2 0

ve=(p° +p ; 4.70
( )MW+WM2 410

thus, (£64]); becomes

& _ k252 p2 + p'2
H+U(p) 270 pA[H + U(p)]2’
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£y = [H+U(p)]2—k28§[(1>2+<1)/21. (4.71)

or

c? p P

One finds, then, the resolvent equation of the trajectory; in fact, introducing
the new variable, £ = 1/p, and squaring both sides of (£T71l), one finds

2 62

[HAUQP +,, =0. (4.72)

’2 2 ¢

+ —
SO g
From here, by differentiating with respect to 6, one gets the second-order
differential equation of the dynamical trajectories:

CQ

e L U@ =0, (4.73)

5”""5

which contains the circular trajectories £ = const.

4.7 The Keplerian Case

Let us assume now that the potential U be of Newtonian type, i.e. with the
field proportional to the proper mass of the particle,

szmfﬁzme%& (4.74)

where f denotes the Newtonian gravitational constant. Thus mg, together
with its inertial meaning has also a gravitational significance: the hypothesis,
less natural, of proportionality to the relative mass gives a different dynamical
problem. Equation (4] describes, in a relativistic framework, a central grav-
itational field of Newtonian type (that is instantaneous), due to an isolated
central body (the Sun, for example). In the hypothesis (£74]), the equation of
the trajectories (£73]) becomes the classic one:

2

& rwe="", (4.75)
p
where )
o def fMQ 1 def fHMQ
=1- = 4.7
¢ <kc>’ p - KE&w?’ (4.76)

with the condition

1—(fM0>2>0. (4.77)
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The solution of (@70 can be written in the form:
1
& = Acos (w0+o<)+p , (4.78)

where, because of the arbitrariness of «, the constant A can be assumed
positive; moreover, the constant H of the total energy, given in (£64]);, can

also be assumed positive because of the presence of the term mc?, in general
bigger than U:
&
H = 0 —U(po) > 0. (4.79)
V1 —v/c?
By introducing the notation A ef e/p, it follows from (LT78) that
p b , (4.80)

B 1+ ecos(wl + )

where e > 0 and « € [0,27) are constant, which are determined from the
initial conditions. Finally, assuming 6 having its zero value along the line
joining O with the perihelium, it is o = 0, and (£380) reduces to

p

= . 4.81
1+ e cos wb ( )

p

This equation does not represent a conic because w # 1, and the orbit can
be limited or not, according to the value of e: limited for e < 1, unlimited for
e > 1. This circumstance is strictly related to the value of the total energy H,
which we will write in the form:

H=E+&, (4.82)

in analogy with the classical two bodies problem. Thus, ([{L73]) becomes

2 2 2
N2, 2.2 oW . ¢ (HT N E E

and, by using (LX1]), one gets

2
w4 E E
—-1)= 2 . 4.83
ACETIE (R (1.83)
Moreover, using (£82), [@70)2 becomes
1 M, E
= 1 4.84
p  kPw? < * 50) ’ (4.84)

so that ([@83)) is equivalent to

fmoMo

) (62—1):E<1+ ! ) (4.85)

1+ E/&
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or, introducing H and using (@84 and [@70);:

1—w? &
; (-1=1- .

Therefore, one has a criterion to discriminate among the orbits, by means of
the “eccentricity” e, and the energy constant H > 0, taking into account that
1—w?>0:

. (4.86)

e<l when H<& (-&<E<O0)
e=1 when H=§& (E=0) (4.87)
e>1 when H>§& (E>0).

Summarizing, if e < 1, (L8I]) represents a curve bounded between the two
circles, with centre O and radii » = 1/(1+e) and R = 1/(1 — e), respectively
(in particular, if e = 0, i.e. H = w&y, one has exactly a circle). Moreover, when
the orbit intersects one of these circles, at the intersection point, one has £’ = 0
(maximum or minimum distance from the centre O), that is, using (£.69):
!/
p=p0=— Kol =0;
H+U(®©)

as a consequence, the velocity is transversal, and the trajectory is tangent to
the same circle.

Moreover, the advance of the perihelium, after two successive loops, is not
27 (as it would be for an elliptic orbit), but 27 /w > 27 (being w < 1), and the
trajectory has the typical form of a rosette (see Fig. 4.1). If w is rational, then
the orbit is closed; in the opposite case, the trajectory is dense in the corona
bounded by the two circles. This is a result of Minkowskian gravity, which finds
its complete confirmation in general relativity in the relative formulation of
the so-called exterior Schwarzschild problem, where we have the precession
of the perihelium, for every freely gravitation particle. There, however, the
trajectory equation is different because of the presence of a term like &3 (see
[6], p. 260). In the limit ¢ — oo, one finds the classical case (see [2], p. 304,
with M = My and m, = m = my).

Fig. 4.1. Rosetta-like motion
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4.8 Motion of Charged Particles
in a Uniform Magnetic Field

Let us now consider another fundamental problem, that is the motion of a
charged particle in a given electromagnetic field, as for example that of an
accelerated particle in a synchrotron. The motion is considered with respect
to a given Galilean frame and, hence, it is described by the fundamental
relativistic equations:

d

d
dt (me®) =F-v+q, (4.88)

(mv)=F, gt

where m = mg/+/1 — v2/c2. The physical action F is due to the electromag-
netic field and, as it is well known, it is purely mechanical: ¢ = 0. Thus,
the charged test particles we are considering have no any internal structure:
mg = const. and, if e denotes the charge of the particle, the mechanical force
is the Lorentz one:

F:e<E+1va>. (4.89)
C

We will study the dynamical problem in the following hypothesis:
1. absence of the electric field: E = 0 Equation (£3]8)) then becomes

d e d
= H
dgt (mv) cv xH, d&t

(mc®)=F-v=0; (4.90)
whatever magnetic field were assigned in the “restricted ” problem: H =
H(P,v,t), the energy integral holds mc?> = const., that is the speed is
constant:

v =const. = vy < c. (4.91)

Thus, because of hypothesis 1, the particle’s motion is uniform. The tra-
jectory, instead, has no a priori limitations, but it is sub-ordered to the

equation:
ma="vxH , (4.92)
¢
with m constant: mo
m = . 4.93
\/1 —v3/c? (4.93)

From ([@92), by differentiation, follows, then, the relation
ma="(axH+vxH), (4.94)
c

and we assume another hypothesis:

2 The case E # 0 is discussed in [, p. 520.
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2. the magnetic field is uniform: H = const. and without any loss of gener-
ality, aligned along the z-axis:

H = Hcs, H > 0and const. (4.95)

It follows the existence of another first integral, that is the momentum with
respect to the z-axis, being F orthogonal to the z-axis itself: mz = const.,
or

Z = const. = % . (4.96)

Thus, if one assumes Zg = 0, that is vo L z, the motion is planar, and
it is contained in the plane II, defined by (P, vy), and orthogonal to the
z-axis. According to the above hypothesis, one has then

3. vp is orthogonal to H, and the trajectory is a circle. This can be see by
projecting (A92]) onto the z—y plane: II or, directly, from (£94). In fact,
from the hypothesis 2, it assumes the following form:

e
ma= (axH),
c
so that the vectors a and a are orthogonal to each other, and to H, and

the condition a =const. follows too.

Finally, in the hypothesis 1-3, the motion is uniform: § = const. (§ = 0),
planar, and the magnitude of the acceleration is also constant:

02\ 2 0?2\ ?
a® = (5)% + ( ) = < > = const. ;
P P

thus, 1/p is const. and the orbit is a circle. We can determine the centre C' and
the radius R of the circle, starting from the initial conditions. The centre C' is
placed in I, along the line orthogonal to vy and passing for Py. To determine
it, let us assume polar coordinates, with origin in C, and the usual notation p
and ¢ and conventions for the unit vectors u and 7. It results p = R, v = ROt
and a = —RO?u; furthermore, R = const. = +v, and, from (ZI2):

—mRE? = zRéH <0.

Thus, one finds that the sign of @ is opposite to that of the charge e:

mRf = —zRH . v=R|d|, (4.97)
and finally,
cmuv
R= , 4.98
or m Ccv
R=" : (4.99)

el Hy/1— 02/
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Thus, if v, H and R (radius of the particle accelerator) are known, (£99)) allows
to obtain the ratio between the charge and the proper mass of a particle:

le] ¢ v
= . 4.100
mo RH \/ 1—v2/c? ( )
The analogous result, obtained using classical mechanics, in place of ([£99),
corresponds to a lesser value:
cmov

R, = R,
el =

and, obviously, the difference R — R. becomes bigger and bigger, as soon
as that v approaches the speed of light. Equation ([@99) is in agreement with
experiments, so that the use of the relativistic formula is essential in projecting
an accelerating machine.

As a final remark, we notice that, because of the presence of ¢, in ([€99), the
magnetic field H should be intense enough, in order that R has a reasonable
value for the experimental device (and not of the order of km).

4.9 Extension of Maxwell’s Equations
to any Galilean Frame

As already stated in Sect. 1.4, Maxwell’s theory can be formally extended,
in a classic context, from the heter S* to an arbitrary Galilean frame S’, in
motion with respect to S*. Let 75 and 7 be two orthonormal triads, in S*
and S’, respectively, with unit vectors ¢; and c;(¢), and let vo and w be the
kinematical characteristics of the motion of S” with respect to S*.

Let us start from the formulation of the classical electromagnetism in vacuo,
in the heter frame S* that is the set of Maxwell’s equations (LI5):

1
divH=0, curlE4+ O0H=0,
¢ (4.101)

1 4
div E =4mp , curl H— " OE = "3,
c c

Passing from S* to S, one has to transform these equations using, for the
generic point P, in place of the Cartesian coordinates z° relative to Ty € S*,
the analogous coordinates #' relative to Tg € S’. To this end, it is necessary to
use the transformation formulas 2! = x%(¢, 2’), obtained from the fundamental
relation OP = OQ(t) + 2% ¢} (t), with OP = z'c;, that is:

2t = 0Q(t) - ¢ + 2 e, (t) - ¢, (4.102)
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or the inverse relations:

-/ ’

' =aPe ¢ (1) —00(t) - ¢ . (4.103)
We will denote by E’, H' the electric and magnetic fields E and H (both
invariant) once expressed in terms of the time ¢ and the variables z*", by using

([#I02). The spatial operators div and curl have an invariantive property with
respect to the transformations (I02):

c' x g ¢t n
= , v
Oz 0 (4.104)
cl g ¢t g in
. .= . L, =1nv
ozt ox?
the temporal derivative, instead, has not an invariantive meaning;:
o 9 9" 9
L 4.105
ot "ot ot o (4.105)

Moreover, according to (£I03]) and using the Poisson formulas for the rigid
kinematics, one has

’

9w (i=1,2,3), (4.106)
ot
where
W & vo(t) + w(t) x QP = W(t, P) ; (4.107)

in addition, for an arbitrary vector field v(¢, ), the following general decom-
position holds

1 v
gv, = 2curlv X ¢; + 0'1(' ) (4.108)
xl
having assumed
v) de 1 0
ol & ) (a; +gradvi) . (4.109)

Thus, by using (£I05]), one gets the following transformation formula:

ov(t ov/(t.x' 1 v’
Vét’ z) = (at’x) - 2curl v/ x W — O'E;V) ; (4.110)
where, following (109):
’ e . ,U/ 1
ol Lrypig) = ) (8Wv’ + gradv’ - W) : (4.111)

At this point, the transformation of ([LI0I]) follows immediately, if one takes
into account that E, H and p have an absolute meaning, while the current
density J = pv, because of the theorem of addition of velocities, becomes
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J=J +)pW. (4.112)
Therefore, Maxwell’s equations in the Galilean frame S’ assume the form:
1
divH=0, curl E4+  OH = Ap
¢ . A (4.113)
dvE=4rp, cwlH- 9E= (I +pW)-Ag,
¢ c
where, following (£ITT]), we have introduced the notation:
1/1 v
A, = (2curl v x W+ O'E/V)> , (4.114)
c

for every vector field v, and the vector W has the kinematical meaning defined
in ([@I07). Equation (IIT3) extends the formulation of classical electromag-
netism to an arbitrary frame S’, and it shows clearly the noninvariantive
content of Maxwell’s equations when changing the heter frame S*: in fact,
new terms appear at the right-hand side of (Z101])2 4, and these terms identi-
cally vanish, whatever the electromagnetic field be, if and only if W =0, i.e.
vo =0 and w = 0, so that S’ = 5*.

If S’ # S*, such terms are always present: apparent electromagnetic current
densities, analogous to the inertial forces (dragging and Coriolis) of classical
mechanics. Clearly, they are really present and can be measured in S/, but
they disappear in the heter frame S*. The situation, in My, will be completely
different (as we will see in Chap. 9) since (AI0T]) will result instead formally
invariant.

It is also clear that, even in the formulation [IIT3]) of Maxwell’s equations,
the heter frame still plays a special role; in fact, W (¢, P) is directly connected
to the motion of S’ with respect to S*. In particular, if S’ is in rectilinear
uniform motion with respect to S*, it results W = u = const.
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5

Relativistic Kinematics
for a Three-Dimensional Continuum

5.1 Continuum Mechanics. Relative
Representation of the Motion

We study here the relativistic mechanics of a continuum adopting a different
point of view from that for a material point. In the latter case the absolute
formulation of kinematics and dynamics was considered before the relative
one. In the present case, instead, it is convenient to begin with the classical
point of view in terms of an arbitrary Galilean frame S, and then pass to the
relativistic extension in My, that is, to the absolute formulation.

Because of the relative aspect of our treatment, we assume that the un-
derlying reference space is the ordinary Euclidean manifold E3 (to which a
Galilean frame Sg is superposed) endowed with the natural topology. The
mathematical scheme of the continuum, including both geometrical and kine-
matical aspects, is obtained by considering connected and bounded subsets C'
of E3 (generally variable with the time). Their evolution, in S, is described
by the vectorial function

OP = OP(t,yl,yg,yB) , PeC, (5.1)

where y* (i = 1,2, 3) are three curvilinear coordinates which label the generic
particle of the continuum at each instant ¢ € (¢o,t1). They are often called
“label coordinates,” or “Lagrangian coordinates,” because they label the par-
ticle itself.

Once a Cartesian triad 7 in S, is fixed (see Fig. [5.]), the Lagrangian coor-
dinates can be interpreted as (curvilinear) coordinates of a point P, represen-
tative of the particle. Varying the particle, i.e. the parameters y?, P, describes
a three-dimensional configuration field C or the reference configuration of the

! The continuum scheme will not be justified a priori from a statistical point of view,
by using probabilistic considerations or limiting processes on the point particle
scheme.

G. Ferrarese and D. Bini: Relativistic Kinematics for a Three-Dimensional Continuum, Lect.
Notes Phys. 727, 169-206] (2008)
DOI 10.1007/978-3-540-73168-9 5 © Springer-Verlag Berlin Heidelberg 2008
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Fig. 5.1. Evolution of a generic continuum in a Galilean frame S,

system. The configuration field C of the positions of the co® particles of the
system at the generic instant ¢ is called instead the actual (or instantaneous)
configuration of the system.

Clearly the Lagrangian coordinates y’ are not uniquely defined, but only
up to an invertible transformation

v =), (5.2)
which does not involve time. We will assume that
def oyt
A= det Hay’k >0, (5.3)

which is more restrictive than A # 0 and ensures the local invertibility of (5.2)).
Such a limitation introduces a well-determined orientation in the continuum.
For all t € (to,t1), (5] are the (vectorial) parametric equations of the actual
configuration C': thus, (3] corresponds, in the three-dimensional case, to the
condition d\/d\ > 0, which characterizes the admissible parameters of an
oriented curve for the case of a single material point.

The vectorial function (B.I]) and the corresponding scalar equations

=2ty YY), (i=1,2,3) (5.4)

are assumed to be sufficiently regular (even C'*°), with respect to all four
variables and, in particular, invertible for each ¢ € (¢g, t1):

y =yt at 2% 2%) (5.5)

this implies that, at each instant, one has a bijective map between the points
of the reference configuration and those of the actual one. In other words, two
different particles M and M’ of the continuum (corresponding to different
values of y*) remain distinct throughout the motion. This does not mean that
the spatial trajectories of two particles cannot intersect each other, but only
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that two particles cannot occupy the same position at the same instant; that
is, they must have nonintersecting world lines.

As a consequence, during the evolution, there cannot be collisions or breaks
and every loop or closed surface of C remains closed at every instant ¢. This
follows from the fundamental requirement that each element of the continuum
has its own individuality and cannot be destroyed. Hence, we will not consider
any process of matter annihilation or generation.

Equation (4] define the position at any instant ¢ of each particle (i.e. for
fixed values of y*). For fixed t, they instead describe the actual configuration
of the system parametrically, in terms of y*. Thus, (5.4) give the motion of
the whole system, particle by particle, varying the four parameters 3’ and .
This is the so-called Lagrangian point of view, which discusses the dynamical
characteristics of the system as a function of the particle and time, and hence
it assumes y* € C, and t € (tg,t1) to be independent variables.

Conversely, the functions (&.0]), which are equivalent to (5.4]) but assume
2t € C and t € (to,t1), correspond to the Eulerian point of view, a different
description of motion according to which the kinematical ingredients are the
point P and the time ¢. In fact, (B5) give, at each instant ¢, the label of the
particle which, at that moment, occupies the point P in C.

We notice that, in the Eulerian description, the variables z* are defined in
a domain (C') which is not fixed in the considered Galilean frame, but varies
with t. However, for the points of C, either the Cartesian coordinates x* or
the curvilinear coordinates y* are admissible. Thus to preserve the orientation
of the continuum, from (&3], the following limitation holds:

ox’

D = det yk

ef ‘ >0. (5.6)

We will denote by e; the derivatives of the vectorial function (G.II) with respect
to the parameters y*:

def O0P(t,y)

;& , i —1,2,3). ,
e oy (i 3) (5.7)

These are three linearly independent vectors because, for each P and ¢, the
relation

; oxk
Oﬂei =0 y e, = ayz Ck (58)
implies o’ = 0. In fact, (58) is equivalent to
;. 00P Ok
o =a x.ck:O,
oy’ oy’
i.e. it corresponds to the linear and homogeneous system
Ok
o =0, (k=1,23),
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whose solution is necessarily o = 0 because of the limitation (G.6]).

The vectors e;, defined at each point P € C by (1), form the so-called
natural basis, depending on both the considered instant and the particle: e; =
e;(t,y). This basis, exactly like the Cartesian one ¢, can be used to decompose
a vector applied at P € C' (P being the position of the particle P,, at the
instant t).

The Cartesian representation (in terms of cj) as well as the natural repre-
sentation (in terms of ey) are equivalent, and one can consider the transfor-
mation laws for the change of basis. From (5.7)) one has

8 k

e; = ;Z;i Ck (5.9)
and the inverse relations o
yl

Ck = axkez . (5.10)

The scalar product in the region C' represented, in Cartesian terms, by the
Kronecker tensor, d§;x = c; - ¢k, defines the Lagrangian metric:

gr Ceier,  (,k=1,2,3). (5.11)

In fact, from (B9 one has the tensorial relation

ozt 9x™
ik = , . Sim » 5.12
Ik = ayi gy (5.12)
implying
def 2
g = detl||gix|]| =D* > 0. (5.13)

5.2 Fundamental Kinematical Fields

Differently from the vectors e; and the Lagrangian metric g;;, which have a ge-
ometrical meaning only in the actual configuration C, the temporal derivatives

dOP dv _ 920P

V= AT e T o

o (5.14)

have a kinematical meaning, i.e. they represent the velocity and the accelera-
tion of the generic particle of the continuum with respect to S, in terms of
intrinsic quantities. From (G it follows that (B.14)) define v and a as func-
tions of y* and ¢, that is, in Lagrangian form. The corresponding Eulerian
form is obtained by substituting the y* by using (E3), once the differentia-
tions are performedE Decomposing v and a with respect to the basis e; and

2 For a generic function f of the coordinates and time we will often use the notation
f(t,y) in place of f(t,y*,y? y*) or f(t,z) in place of f(t, ', 22, z%).
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ci, one obtains the natural and Cartesian components, respectively. We have
the following relations:

» 0
v =v'e; = ifcy (a’ck = atxk(t,y) ;O = 8t) ’

and, using (&.I0) in the last term, one gets

r Oy’ ]
Dk ©1

from which, because of the independence of the vectors e;, we have

Ulei =

i Oy
V= (5.15)

Clearly, as v’ are functions of y* and ¢, the derivatives 9y’ /0x", as well as 2",

should be thought of as depending on these variables, too; that is, one must
substitute the 2° by using (54)), once the derivatives have been performed.

Similarly, denoting by #* the Cartesian components of the acceleration, one
has the relations

it =0 (ty), i =0ua(ty), (5.16)
so that y
a=d'e;, a'= 8; it (5.17)

Commonly, the Cartesian components of the velocity ¥, expressed in terms
of 2* and ¢ by means of (5., are called Eulerian velocities and are denoted
by e*:

def
ek = [8t$k}yi:yi(t7w) .

Similarly, the Cartesian components of the acceleration, according to (G104,
are the partial derivatives, with respect to time, of the Cartesian components
of the velocity: #* = 0,4*. To see the relation between the components of
these quantities with respect to the natural basis we proceed as follows. On
the one hand, one has a = a’e; and on the other, by definition, a = d;v; thus

(5.18)

ale; = 8t(viei) = O'e; + v'0re; = Ov'e; + v'hFey, = (atvi + Ukhki)ei ,
where we have used the notation
ove; < hitey, (5.19)

hence we have . . .
at = o' + byt (i=1,2,3). (5.20)

The quantities h;, appearing in ([.20) arise from the decomposition of the
vectors dyey, according to the natural basis e;. Since the vectors e; = e;(t,y)
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depend on time, it follows that the tensor h; is, in general, nonvanishing, and
the relations (5.20) do not coincide with the analogous Cartesian relations:
a' # Op'. Before specifying better the meaning of h;y, it is convenient to
briefly summarize some results already obtained for the metric tensor mqg of
My, in terms of g;i.

First of all, the basis e; is not orthonormal, so that the scalar products
gik = €; - ey, are different from the Kronecker tensor d;;. However, the matrix
gir is regular because of (EI3)), and it can be inverted; denoting the inverse
by ¢**, we have

g g = 0 . (5.21)

It is therefore, meaningful to consider the dual basis e’ of the basis e;, obtained
raising the index with the metric ¢**:

e = gike;.C ~ e; = gikek . (5.22)

The following fundamental duality relation, obtained using (B.21]), holds:

e ey =0 ; (5.23)
similar to (B.I1]), the contravariant metric is given by

gt =e. e . (5.24)

As for maps or m®P, in S, the metric g;x or g** can be used to raise and
lower the indices of tensor components, giving rise to different but equivalent
representations: covariant (with lowered indices) or contravariant (with raised
indices) and also mized. In particular, the scalar product of two vectors v and
w, in Sy, can be expressed as

v-w = gipv'w® = vpw® = vFwy, = vy (5.25)

Let us now consider the fundamental relation (519l), associated with the
decomposition of the vectors €; (where a dot replaces the partial derivative
0;). These vectors, because of the definition (5.7)), coincide with the gradient
of velocity v with respect to the coordinates y':

& =0aiv(ty),  (9;=09/dy"). (5.26)

It follows immediately that &; - e, = h;"es, - ex = h;"gni, from which we find
the meaning of the covariant components h; = hihghk:

hik = €&;-ep =0;v- ey, (i,k =1,2,3) . (5.27)

The last expression shows that h;x is a 2-tensor in the sense that an arbitrary
change in the label coordinates y* = y*(y’) transforms h;; according to the
typical law of tensors:

8y/l ay/m

hik = Ayt Oyk

Wim - (5.28)



5.3 Shear and Vorticity 175
In fact, from (&), one has

JOP  OP Oy’

e, = .= .
g 8yz aylk 8yz ’

and hence the transformation law of the vectors e;:

1k
e, = % el ~ e, = e . (5.29)

oy’
Equation (5.27)) then gives rise to the relation

N ov 8y/l . ay/me/ B 8y/l ay/m
oy't 9yt Oyk m Oyt OyF

ie. (528). Moreover, (5:29) clarifies the meaning of the limitation (&3)): the
two natural basis, e; and €’;, associated with the coordinates y* and y'?, re-
spectively, have the same orientation (both left-handed or both right-handed)
and this is equivalent to selecting, for the continuum, one of the two possible
orientations.

!/
hik h m

5.3 Shear and Vorticity
The tensor h;* or hiy, = hi9g;i, defined in (5I19):
é; = hipe® = 9;v | (5.30)

summarizes the two fundamental kinematical elements of a continuum: the
deformation wvelocity or shear and the angular velocity. More precisely, let us
denote the symmetric part of h;x by ki and the antisymmetric part by wg,
that is:

hir = kik + wig , (5.31)
where ot
kie = hry = 5 (har + hia),
(5.32)
def
wik = hpg) = 5 (hik — hii).-
For the tensor k;i, by using (5.27), one gets
1 . . 1
kip = _(€;-ep+e,-e) = _0e -ex),
2 2
that is: .
kir, = 2atgik : (5.33)

This tensor takes into account the temporal variation of the metric g (t,y),
for each particle, and it is called deformation velocity tensor. The tensor w;g,
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also termed vorticity tensor, has instead the meaning of angular velocity. To
justify this meaning, let us consider the vector

1 .
w = 2z,umeZ x el (5.34)

Now since kjze’ x e® = 0 (ki is symmetric, and the product e’ x e* is
antisymmetric), one has, using (5.37),

1 ) 1 )
w = Q(kik + wik)e’ x eb = 2hi;€eZ x ef .

Therefore, from (5.30), the vector w can also be expressed in the form
L
w= e x ore; . (5.35)

Equation (£.38) is similar to the formula for angular velocity in rigid motion,
expressed in terms of an orthonormal triad {i,} (at rest with respect to the
moving rigid body) and its derivatives, with respect to time (see [I], p. 125):

The fundamental difference between the two relations is that, in the case of a
continuum, the natural basis depends on the coordinates y* (which also leads
to the use of partial derivatives in place of the total derivative with respect
to time); in other words, at least as concerns changes in the direction, the
continuous system behaves as if each particle were a rigid microsystem, with
respect to a generic (not orthonormal) triad.

Furthermore, because of the identity €; = 9;v, the vector w(t,y), defined
in (B.35), also has a direct meaning in terms of the velocity field:

1 . 1
w = 2el X OV = 2CUI1V . (5.36)

Using a terminology common in fluid mechanics, w represents the local vortex
of the continuum.

The vector w is of course invariant, in the sense that it depends only on the
considered particle and time, but not on the choice of Lagrangian coordinates:

1 . 1 .
w= Qwikel x e =inv = 2w’ike” x e'* . (5.37)

. . . (c)
In particular, in terms of the Cartesian components w ;;, one has

1 (c .
w=, (w)ik cxck, (5.38)
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where
© Oyt oy™
T
Note that in the last relation it is implicitly assumed that the natural com-
ponents wy,, are expressed in terms of the coordinates ¢ and x, by means of
EX). Moreover, from ([B.30]), the expression for w, as function of the Eulerian
velocity e = e*c;, defined in (5.IJ), is the following:
1 1, Oe
w= 2culrle =€ X g (5.40)
In contrast to the antisymmetric tensor w;j, which can be represented by the
vector w (the dual of wig, i.e. wy = 1/2n%Jw,;, see Chap. 2), the deformation
velocity tensor has six (and not three) independent components. It is directly
related to the Lagrangian metric g;;, by (£.33]) and, like w, it can be expressed
in terms of the velocity field v:

(5.39)

kir = ;(@‘V cep+ Ok -e;). (5.41)

C
Equation (B.41)) is also valid for the Cartesian components k jx:

(© 1 (0Oer  Oe; o &
kik= 9 <8xi + axk) , e; = e, (5.42)

which, in turn, are related to the natural components by the tensorial relation

L ozt dz™ (o)

ik — . m - 4
E gy oy k1 (5.43)

Finally, it is worth mentioning that there are no algebraic relations between
the two kinematical quantities w; (angular velocity) and ki (deformation
velocity); however, these quantities are not independent from a differential
point of view. More precisely, the gradient of w is a function of the first
spatial derivatives of the deformation velocity. In fact,

Ow Oz
diw = . 5.44
! dzk oyt ' (5.44)
and by introducing, from (5.40)), the components of the Eulerian velocity with
respect to the Cartesian basis e = e, c”, we have
ow 1, o’ 1 &ep ;4

= _C

oxk 2 8 dxidzk 2 axiﬁxkc xe

Thus, taking into account the identity

826k

Oxtoxh

cxc=0



178 5 Relativistic Kinematics for a Three-Dimensional Continuum

then leads to

Ow N 1 82€h + 82€k ci % ch N 10 88h + 3€k Ci % Ch
dzk 2 \ 9xidzk = Oxidxh T 202t \ dxk T 9zt ’

and using (5.42]), we have

ow o © .
ouk = o Enkc xch. (5.45)

From this relation it immediately follows that if at a certain instant ¢ the

(c)
deformation velocity vanishes everywhere: k=0, VP € C, at that instant,
the angular velocity is constant in CI:

©
kne=10, VPe(C, = w =const., VP e C; . (5.46)

If the condition is satisfied everywhere at any instant, the angular velocity
depends only on t: w = w(t), and the motion is necessarily rigid. This justifies
the name of deformation velocity for the tensor k.

We will see, in the next section, how ([G.43)) is modified passing from the
Cartesian to the curvilinear coordinates y°.

5.4 Christoffel Symbols and Covariant Derivative

Let us start from the tensor h;y, defined in (B.27):
hir = O;v - e , (1,k=1,2,3), (5.47)

which, with the symmetric and antisymmetric parts, respectively, gives rise
to the deformation velocity and the angular velocity:
def 1
kit = hry = 5(0iv - ex + Ok v - €;),
(5.48)
def
Wik = h[ik] = %(&V ‘e — 8kV : ei).
In terms of Cartesian coordinates, v becomes the Eulerian velocity e(t,x) =
eFcy,, so that (5.48) assumes the form

(c) 1 [/ Oey oe; (c) 1 [ Oey, Oe;
= ’ s k= . — . 5.49

Fin=y <8aﬂ i 83:’“) Y=o\ gz T 9k (5.49)
To see how the relations (5:49]) are modified passing from the Cartesian to the
Lagrangian coordinates y*, we consider the gradient

) ()
3 This is the case if the deformation is homogeneous, that is, the components k
do not depend on the position in C.
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oO;v = ai(’vkek) = &»vkek + v’“@iek (5.50)

and, hence, the second derivatives

920P
oier = _ . . 5.51
or Oytoyk (5.51)
These are linear combinations of ey,:
dier =T"ipen = Dy e’ (5.52)

where the three index coefficients I'?;;, or their alternatives ik, obtained
by lowering the index h:

Tirs = gl (5.53)

denote the contravariant and covariant components of the gradient 0;ey,
respectively:

Fhik = &»ek -eh s Pik,h = &»ek -ep . (5.54)

These coefficients can be expressed by means of the metric g;; and its first
derivatives as follows:

1
Likn = 5 (0igkh + Okgni — Ongik) , (5.55)

which identifies them as the ordinary first-type Christoffel symbols. In fact,
one has
Dignr = Oi(ey - en) = Oiey, - e, + Oiey, - ey,

and hence
Oignk = Likn + Linge (5.56)

giving the derivatives of g;, as functions of the coefficients I';;, j,. Conversely,
one can invert the relations (5.56]), obtaining (5.55]). In fact, cyclic permutation
of the indices i, h, k, in ([B.50]), leads to

Okgni = Lkni + Thins Ongik = Uik + Thryi

next, adding the first of these to (5.56]) and subtracting the second, (5.55)
follows immediately.
The Christoffel symbols, especially the second-type Christoffel symbols

1
I = g"Tiky = 29“(@*%1 + Okgii — Ogik) » (5.57)
play an important role in the Lagrangian differentiation of tensorial functions.

Taking into account (.52), the gradient of v (5.50) assumes the following
form:
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v & (Vak)er (5.58)

where
Vﬂ)k def &-v’“ + Fkihvh . (5.59)

In contrast to the case of Cartesian coordinates, 0;v is no longer represented
by the simple partial derivative 9;v%, but it is necessary to introduce a dif-
ferential operator V; which depends on the Christoffel symbols. The latter
operator has an absolute meaning, in the sense that, as follows from (G.58),
the 2-index quantity V;v* has tensorial behaviour under a change of the La-
grangian coordinates y*:

b 8y/h ayk
Ayt Oyl

It is called covariant derivative of v.
If for the vector v one considers the decomposition v = vie”, one needs—in

place of (5.52)—the derivatives of the dual basis e, which, because of (5.23)),
can be written as:

Vv V't (5.60)

k

dief = —TF;el. (5.61)
This leads to an analog of (5.58]):
v = (Viup)er (5.62)
where
Vior < 00 — T pon (5.63)

By comparing (£.58) and (£.62), one gets
(VioP)er = (Vivp)el
that is, using (0.22), the relations
(Vio*) = g™V, ~ (Vivp) = g Vivk . (5.64)
Importantly, the metric behaves like a constant under covariant differentiation:
Vig"* =0 ~ Vigne=0 ~ VioF=0, (5.65)
as follows easily from the definitions
Vig"* = 0ig"* + Tyg!t + Tk g,
Vignk = 0ignk — Thingix — Tlikgni, (5.66)
Vol = —Tlpéf + T8t

which are extensions of (5.59) and (B.G3) to the case of tensors with several
indices. Thus, we can formulate the following general rule. Passing from Carte-
sian (2%) to Lagrangian coordinates (y°), for any tensorial object, the partial
deriwative must be replaced with the covariant derivative:



5.4 Christoffel Symbols and Covariant Derivative 181
&» - V. (5.67)
In this way (£49) become

1 1
ki = 2(Vivk + Vkvk) , Wik = 2(vivk — Vkvi) . (5.68)

Furthermore, because of the symmetry of the Christoffel symbols, with respect
to the lower indices:

Thy =T, Likn = Trin (5.69)
Equation (£.68)); can be cast in the equivalent form:
i — ;(awk ~ Ovi) | (5.70)
Similarly, the differential tensorial relation (5.45]) becomes
Opw = Viknpe' x ¥ | (5.71)
where
Viknk = Oikne — Dinkye — ligkn - (5.72)
Note.
e The deformation velocity can also be expressed by using (B33): ki =
1/20:gik, which clearly has a tensorial meaning for arbitrary transforma-

tions of the coordinates y* that do not involve time. In fact, g transforms

as o 7 o /
y" oy
ik = , ) 5.73
which implies

8y/l ay/m ,

1
——s Ko = 04 .
k ayz 8yk Im im 2 t91m

However, the above discussion cannot be repeated when passing from the
Cartesian coordinates to the Lagrangian ones, which involves time. In
other words, to (.33 does not correspond the Cartesian analog

(c)
kik=1/20:0;, = 0,
but (£49) instead. In fact, from (E33]), by using (512) in place of (B73)),

we have

19 [0zt dz™
Rk = 5 o <ay1‘ dyk 5“”)

170 [0 83:’”5 +83:l 0 ox™ 5
2 layi \ ot ) oy "™ T ayiayk \ ot )|
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At this point, to get the Cartesian components, it is enough to identify
the y* with the 2*, using (51) when necessary; from (5I8]) we find

(c) 119 (8xl> , 0 (‘%m) ]
kik = i 05 Oim + 0 Ot
2 [ax ot y=y(t.2) oxk \ Ot y=y(t,z)

1 [ Oél de™
~ 2 (axiékl T ok 51"”) ’

that is, (549, .

e The second-type Christoffel symbols I''j;, associated with the coordinates
y* through the metric g;; and its first derivatives do not transform as
tensorial quantities; in fact, as it can be easy checked from (5.73]), we have

b 8y/l ay/m 8yh F/n 82y/m 8yh

k Oyt Oyt oy'm ! Ayidyk Oyl ( )
where I, are the coefficients analogous to I'",,:
n 1 n ag/mp 8glpl 8gllm
'y, = 2g/ P ( oyl + y'm — ayr ) (5.75)

For linear transformations of the Lagrangian coordinates y*, (5.74)) reduces

to a tensorial law: 9%y''/0y’0y* = 0 and the coefficients I'7;;, are said to

be an affine tensor. Contrasting to the first-type Christoffel symbols, the
coefficients I';;, form a well-determined geometrical entity I, in the sense
that the transformation laws (&.74):

1. allow one to determine the components I'7;;, of T, relative to the coor-
dinates 3, once the analogous I'”7;;, relative to the coordinates 3'* are
known, together with the map of the coordinate change.

2. form a group, that is, the following property holds: for three admissible
coordinate systems y°, y'* and y"?, the transformation I — T resulting
from (B4 coincides with the product of the two transformations: T —
I and T7 — T and each inverse transformation is a transformation of
the same type.

Finally, the Cartesian form of the Christoffel symbols follows from (5.57),

with 3* = 2% and g1 = Ok
C
Frg=0; (5.76)

hence, from ([574), with y'* = z¢, one gets

0%zt oyt

hy = " :
F Oytoyk Ol

(5.77)

Equation (B.77) can be checked in two ways, either starting from (5.51]) or
by using (E57). In fact, from (E5I) and by using OP = xlc;, we find
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02!
) c,
Ayt oy* :

which is equivalent to (551 because of (&I0); analogously, from (G.51),
by using (B12) and the dual relation

dier =T"ipey, = (5.78)

hl _ oy oy §Pa

© OzP Oz1
one has
h l 2,1 s r 2.8
rh, — 1 0y™ Oy 57 3lx ox s ox" 0°x .
2 OxP Oz Oyioyk Oyt Ayk Oyloy’

0%z Ox® 0%z Ox" 0%z Ox®
oykoyt oyl "* + Ayidyk oyl Tt Ayldyt dyk
0%x® Ox" ] _oy" 5 0?z*

Oykoyl oyt | Oz 1 oyioyk

which coincides with (G77).

5.5 Local Analysis of the Motion of a Continuum

The meaning of the kinematical quantities introduced in Sect. 5.3 easily fol-
lows by analysing the velocity field of the continuum in the instantaneous
configuration C. In fact, let us consider, first, the vectorial function (5.1) and
assume that the time ¢ is fixed. A first-order Taylor expansion gives

o0P . | gt
0Q=0P+ ) Ay’ + 02), Ay ¥yl -y,
that is, by using the notation of (B.7)):
PQ =e; Ay’ +0(2); (5.79)

by applying the same procedure to the velocity function (5I4]);, with fixed ¢,
we have

vq = vp + OivAy' +0(2) . (5.80)
Let us now use the following decomposition of 9;v, obtained from (5.30]) and
©.31):
;v = kikek + wikek =k; +w;, (5.81)
where
k; < kipe® (5.82)
and

w;j def wire® = w x e;. (5.83)
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From the definition (537, the duality relations (5.23]) and by using the anti-
symmetry of w;; we then find

k

1
wXxe = whk(eh X ek) X €; = 2whk [(eh ce;)e" — (ek . ei)eh}

1
whk((slhek — 5feh) = 2(w¢kek — whieh) = w;pe® .

N =N

Thus (&81]) becomes
8¢V = k1 +w X e; y (584)

and the approximate formula (B.80), using (79), gives the following first-
order relation: '
v =vp +w x PQ+Kk Ay +0(2). (5.85)

The relation (E85]), although only a first approximationE is invariant with
respect to the choice of the Lagrangian coordinates. This is obvious for all the
terms except the last; however, it is easy to show that

k; Ay’ = KAyt = inv. (5.86)

In fact, k;, as follows from (.82]), form a set of vectors labelled by the index
1 following a covariant transformation law (exactly as e;). To show this let us
start from the transformation law

B ay/l 8y/m

K i (5.87)

contracting both sides by e, one gets

. ay/l ﬁy’m 3y'l

ki _ , /€I m k _ ) /€I m 'm ,
L€ ayl 8yk Im€ 8yz Im€
and hence Ny
Kk = a?z@‘ X, (5.88)

which proves the relation (5.86). Comparing (5.85]) with the fundamental for-
mula for rigid kinematics

vVQ =Vp +w X PQ, (589)

one immediately recognizes some substantial differences. Equation (5.89) is
exact, while (.88)) is only approximate; in (589]), w has a global meaning for
the entire rigid body, because it only depends on time. Conversely, in (5.85),
w has a local meaning, because it also depends on the particle: w = w(t,y);

4 The second approximation requires only differentiations and the use of the relation

G-



5.5 Local Analysis of the Motion of a Continuum 185

finally, in (G.85]), there is an extra term, due to deformations which, like w,
has a local meaning and is absent for the case of the rigid body.

The condition ki, = 0,VP € C, not only reduces (5.83]) to the form (5:89),
but, as we have already seen, it implies the constancy of w in C. Moreover,
the last term in (B.85) can be seen as the gradient of a quadratic form. More
precisely, writing, for the sake of brevity, Ay’ = y¢, —y’ = ¢’ and introducing
the (homogeneous) function

K(©) = jhug'e,

we find ‘ .
ki Ay’ = kjefet = grad. K (§) ,

with k;, depending only on y® and ¢, and not on £!. Thus, (5.85) can also be
written in the form

vQ = vp +w x PQ + grad K (€) + O(2) , (5.90)

and has a direct Lagrangian meaning, because the parameters 4* and y’ + Ay’
denote two distinct particles of the continuum, the positions of which are the
points P and Q, respectively. Clearly, (5.83]) characterizes the instantaneous
velocity distribution of the continuum, in the neighbourhood of the arbitrary
point P € C. The Eulerian form of (G.85]) is instead given by

(c) -
eq =ep+w x PQ+ k; Az +0(2), (5.91)

where now PQ = Ax'c; and ep(, z) replaces vp(t,y) after eliminating y with
the aid of (&.3)).

Finally, as concerns the term k;Ay?, for any fixed i = 1,2, 3, the vector k;
can be interpreted as the deformation velocity, at P € C| along the coordinate
line y° = var. because it can be obtained from the sum k; Ay, assuming all the
Ay = 0, except for Ay’ = 1. The vectors k; can clearly replace completely the
tensor k;i. For instance, the compatibility conditions for the angular velocity,
given in (B.71)), can be written as

8kw = ei X (8Zkk — 8kkz) . (592)

Moreover, from (5.61]), one has d;k. = (O;knr — krI'lin)e”, so that (5.92)
becomes (by using the symmetry properties of the Christoffel symbols)

ei X ((%kk — 8kki) = (8zkkh — Flihkkl — akkih + Flkhkil)ei X eh
= (8zl€kh — Flikkhl) ei X eh = vikkh ei X eh .
Similarly, the temporal derivative of the angular velocity, because of (.30,

becomes . ‘
et = —hile" (5.93)
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and, from (530]), one gets
1 1,k j
Ow = 2curla— Qhk e” x hi;e’ .
Hence, since h;j = hj; — 2w;; and w;je/ = w X e;, we have
thlhijek x el = —Qhkzwjiek x el = —Qkkzwjiek x e =2Kk' x (w X €;) ;
thus one obtains the general formula
1
Orw = 2curla —kw +k, , (5.94)

where k is the cubic deformation wvelocity and k. the deformation velocity
along w: ' _ _
k=X e = g%k , k, = w'k; . (5.95)

Equation (.94 shows that the temporal derivative of w is uniquely deter-
mined by the acceleration a and the characteristics of the continuum.

5.6 Passing from One Galilean Frame to Another

The above description of the motion of a continuum is valid, either in the
classical framework or in the relativistic one, as long as the discussion is
limited to a single Galilean frame. In fact, as concerns the “spatial aspect”, the
relativistic geometry in a given Galilean frame coincides with the classical one;
furthermore, within a single Galilean frame, the time is an absolute quantity in
special relativity also. As a consequence, if no more than one frame is involved,
one would not expect differences between classical and relativistic kinematics.
But in the relativistic context there are differences in the transformation laws
of the various relative quantities (of kinematics or dynamics), when passing
from one reference frame to another. This is true for the single material point
(as we have already seen) and also for the continuum (as we will see presently).
The reason for such a different behaviour is that, while in the classical situation
the passage from one Galilean frame S, to another Sé (assumed to be in
z-standard relation, without any loss of generality), is governed by the Galilei
transformations

=x—ut, Yy =y, =z, t'=t, (5.96)
in the relativistic context, one has instead the Lorentz transformations

1 1 U
= "(r—ut), y=y, ZF=z, t= (t— x), 5.97
Yout), y=y Y- (5.97)
where a = V/1 —u2/c2. In both (E906) and (EI7), once the Lagrangian coor-
dinates y' are fixed, one can pass from the motion relative to Sg: 2* = 2'(t,y)
to that relative to Sy:
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D (AT (5.98)

In the relativistic case (5:97)) the time ¢’ is not invariant but depends on the
considered particle instead:

t = ; (t — CUQx(t,y)) =t(t,y), (5.99)

and conversely,
t=t(t,y). (5.100)

In the case of a single material point we have already seen the differential
relation:

dt! o
= 5.101
&= o’ ( )
where
1
0:1—62u-v. (5.102)

Here the same relation holds with the ordinary derivatives with respect to
time replaced by partial derivatives and recalling that now v = v(¢,y).
Let us start considering the transformation law for the quantity (G.0)):

D = det =D(t,y); (5.103)

ox’
oy*

classically D is invariant with respect to the choice of Galilean frame, but not
with respect to Lagrangian coordinates 3°. Let us evaluate then the derivatives
of the 2'* (given by (598))) with respect to y*; using (E07); o 3 with ¢ expressed
by (GI00), (5.99) reduces to an identity: ¢’ = t'; hence 9t'/Oy* = 0:

1] ot u [ Ox Ox Ot
= — . .104
0= o Lo~ (e * v o) (5104
It follows that

ozt 1 (ox? n ozt ot o ot
oyk  a \oyk = ot oyk oyk )’
12,3 2,3 2,3
Ox _ Ox n Ox*° Ot 7 (5.105)
Oy oyk ot oyk
with 9t/0y* derived from (EI04). Introducing the Cartesian velocity with
respect to Sg,

PO (5.106)

ot

as well as the natural basis,
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o, (5.107)

one gets the relation
ot u Ox! 1

Uayk e c2 8yk = 0211 ceL . (5108)
Thus, (E.103) become

oz't 183:1< 1 u2>_oz(9x1

oYk ao Oyk U+c2ux ) ooy
(5.109)
ox'*3 a3 1 ox' 4,
= U il
Oyk oyk 2o Oyk
Hence, rewriting /o in the form
1 1-—
a:1+ 2ux'1—|—V:1—|— U—I—I/,
o cco o
implying
a—1 1 u?
= = — 5 5.110
v o o(l+a) ( )

Equation (5.I09]) can be made more compact as follows:

o't Ot n 1 - e 4 UG ozt
— . X 14 ;
oyk Oyt o F Loyk

after contracting by c; and using the relation dic; = ¢; = u/u, one has the
corresponding vectorial relation valid in Sg:

, n 1 n v
e, =e,+u-eg v u
k 2o u? ’

where e is the vector of the natural basis in Sé boosted to Ss. Finally, by
introducing the components of u along e

up=u-ey, (5.111)

and using (BI10)), we get the general formula

1
r_
e, =e,+ 25 UFW (5.112)
with ot u
=v-— . 5.113
W=V l+a ( )

Equation (5I12) represents the fundamental formula for the kinematics of
deformation of a continuum and in the classical limit, ¢ — oo, is consistent
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with the invariance property: e} = ej. From this, one can obtain the relation
between the two metrics g;, and ¢}, locally associated with the continuum
with respect to the two different Galilean frames considered. Moreover, by dif-
ferentiation with respect to time of both sides of (5I12]) and by using (10T,
one gets the quantities dpej,, which, like the corresponding quantities in Sg,
summarize the (local) angular and deformation velocities of the continuum,
with respect to the Galilean frame S’é. Hence, the associated transformation
laws can be computed (see [2]).
As we will see, the classical invariance properties

A ! !
K = ki, Wik = wik , VSg, Sg

are not conserved in the relativistic case. It follows that the ordinary notion
of rigidity loses its meaning in relativity, in the sense that k;;, =0 % k'3 = 0.

5.7 Kinematical Invariants

Equation (5I12]) represents the starting point for obtaining the transforma-
tion laws for the main geometrical and kinematical quantities of the contin-
uum: gik, g“’“, ik, wik, TP, etc. Before proceeding to derive these laws, we
examine some fundamental relativistic invariants, which we will compare with
the corresponding classical analog. We start by deriving the variation law of
the determinant (£.0)), which coincides with

D:el X €2 - e3 (5114)

or
D = \/det||gix|| - (5.115)

From (5.I09) one has this determinant relative to Sg:

o (912131 822131 (93331
D' = det 81$2 + X281x1 82$2 + X2822131 (93332 + X283x1 s
g 31$3 + X3(91$1 82$3 + X382$1 83x3 + X3(‘93x1

where, for the sake of brevity, we have used the notation X223 = i%3u/(c%0);
it is easy to verify the relation

D ="D. (5.116)

g
The left-hand side of (G.I16)) is a function of the variables y* and t, while
the right-hand side depends on y* and t. Therefore we have to use (5.39) for
the left-hand side and (GI00) for the right-hand side. When ¢ — oo, one
has D' = D; in other words, D is not a relativistic invariant with respect
to the choice of the Galilean frame, contrary to what happens in classical
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kinematics. We note that (B.I16]) has been obtained by means of (5.109), that
is in x'-standard coordinates. Actually it has a general validity, because of
the intrinsic meaning of both D and D', as concerns the choice of coordinates
in the respective Galilean frame. The same result can be derived by using
(BI14), that is, starting from (EI112). In fact, using the notation

1 u 1
W:c2a<v_1+a>: w o = e =e+uW, (5117)

one finds the following expression for the product e} x e:
e& ><e’2:e1 Xe2+(u2e1—u1e2) XW,
so that
/ / !
€ X ey -e3=e; Xey- (83+U3W)+83 X (u2e1 —uleg) -W .

Hence

DI=D+(U391 X ey + uses X e; +ujex X eg) -W
furthermore, because of the duality relations (5.23]), we have

e = et X €49 = e, = De't!l x it?2 (5.118)

and thus
D'=D(1+u-W). (5.119)

Finally, because of (B.IT1), one has (1+u-W) = /0o, so that (Z.119) coin-
cides with (B.I16). Moreover, (5.110) is associated with a relativistic invariant.
In fact, using the relation / /

o _o_m (5.120)
a o 7
holds not only for a single material point (as we have already seen) but also for
a continuum, in the case in which the generic particle is fixed by its Lagrangian
coordinates. Then (B.II6) becomes D' = Dn/n’, giving rise to the following
invariance property:
n'D' =nD = inv. , (5.121)

with the usual substitution of (5:99]) or its inverse (EI00). The quantity nD
is invariant with respect to any change of Galilean frame, it has a local mean-
ing and, of course, it can be expressed either in the Lagrangian or in the
Eulerian form. It generates, in turn, a differential invariant; in fact, differenti-
ating with respect to ¢’ both sides of (EI2I]) and taking into account (I120)
leads to
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o', 0D «a (0dn oD
oD gy = o\ ae P )

so that, dividing both sides by D’ = Da/o > 0, one gets the invariant relation

og'  n' oD 0On  ndD

or Toor ot Tpar T (5.122)
To obtain the classical limit, we note that
n’
on=0,1—-v2/*)"1?="v.a, (5.123)

2
so that n — 1 and 9yn — 0 in the limit ¢ — oo, and (B.122) becomes

19D 10D

Doy Dot

because of the absolute meaning of time, from these equations follows the
invariance property of D.
Equation (5122)) states the invariance of the quantity

def on ndD

ot T Dot (5.124)

with respect to the choice of the Galilean frame; but the kinematical meaning
of B should still be elucidated.

Equation (B123) clarifies the dynamical meaning of the first term; thus we
have to interpret the ratio 9;D/D, which is clearly independent of the choice
of the Lagrangian coordinates y* (like 1, d;n and hence B). The following
Lagrangian relation holds (see [3], p. 511):

=divv=e-0v==F, (5.125)

where k is the cubic deformation velocity, already introduced in (&93). To
prove this we start from the decomposition (&.81)

divv=¢e’- (ki +wxe)= e - ket
so that
. ik L
divv = ¢"ky, = 59 A Gik (5.126)

where the last term follows from (B33]). Moreover, divv is related to the
determinant of g;:
g = det||gik]| - (5.127)

In fact, denoting by ¢ the algebraic complement of g, one has 0;g =
c*0rgik = 99" Orgik, so that
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) 1 2
1k
8 ik — 8 = 8 y
9" O ’ ig o g
and hence ) L
g = _g"*0gir . 5.128
/g Vg 59" 019k ( )

Equation (5120) then becomes
1
divv = 0i\/9 - 5.129
/g v (5.129)

Since, from (E.I3)), \/g = D (G.125)) is now proved. Furthermore, the invariant
B, introduced in its Lagrangian form

B=0m+ndivv =B(t,y) , (5.130)

can also be cast in the Eulerian form

. e’ .

B(t,z) = B(t,y(z)) = ‘37; +el g; +n§xi = ‘37; + g; (nel),  (5.131)
where e’(t,x) = vi(t,y(x)) are the Eulerian components of the velocity. This
is achieved by replacing n with n(¢,z) and 9;n(t,y) with the substantial
derivative

on . 0n

ot te oxt’
in (BI30), besides the obvious replacement of v(¢,y) with e(¢,x). Finally,
taking into account the ordinary decomposition of the 4-velocity V = n(e +
), that is, VO = en and Vi = e’ it follows that B is the four-dimensional
divergence of V:

(5.132)

B(t,z) = DivV = 9,V . (5.133)
Equation (EI33]) confirms the absolute meaning of B, because the divergence
of a vector is a scalar, invariant under linear transformations (and, in partic-

ular, under Lorentz transformations). In fact, under a linear transformation
% — 2’ = A28 + A’® we have

8x/a

lae .
Aﬁ_@xﬁ’

(5.134)

using then the transformation law of the components of a vector V'* =
A’V P, one obtains

V8 dxf  dxP 0x'
dx'>  dz'e 9B

and hence the invariance property

8/av/o¢ _ A/aﬁap 8pvﬁ — 5Z<9pvﬁ ,

' V' =95VP = inv. (5.135)
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5.8 Dilation Coefficients

Consider the transformation law of the natural basis {e;} associated with the
(arbitrarily fixed) Lagrangian coordinates y°, passing from one Galilean frame
Sg to another S, i.e. (RIIZ). The dual of the basis {e]} is given by

e =¢e' — c2awzu ; (5.136)
from (BII3) one has
1
W W=a-o, (5.137)

so that it is easy to check the reciprocity relations
e el =4 . (5.138)
Equation (E.112)),
, 1 .
U .
e, = (5}C + Czawzuk) e,

gives the vectors e}, as the transform of the vectors ey, by means of the
displacement map A = (A'y):

e, = Ae, = A'ye; , (5.139)
with .
Ay i wiuy. (5.140)
2o

The inverse A~! = B of the map A, such that
A" By =05y, (5.141)
can be obtained from (GI36]):
e = Bier = <5},C - 21 wzuk) ek
ca
= BTe' = (BY);'e" ; (5.142)

in fact, the coefficients of B: By = e’ - (Bey) = (B'e’) - e, are given by

, . 1 .
B, =6 — w'ug . 5.143
B0k = o WUk ( )
The presence, in C, of the metric tensor g;; = e; - e; allows one to introduce,
besides the mixed form, the completely covariant and contravariant forms of

the tensors A and B:

1 . ) 1 .
Alk:glk+ ) wiug Azk :gzk_|_ ) ’szuk,
c‘o c‘o
(5.144)
1
i,k

ik _ ik
Bik = gik =, Witk , BT =g"— o wul.
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The representation (5139 allows one to compare linear, surface and volume
elements, relative to the configurations C' and C’ of the continuum, associated
with two different (arbitrary) Galilean frames Sy and Sg. From this compari-
son, the relative dilation coefficients can be defined.

1. Linear dilation coefficients
Let us compare, first of all, the metric tensors. From (I12]) we have

g/ik = gik + 2€ik , (5.145)

€; being the relative deformation tensofl

1 1
ik = 50, (uzwk + upw; + c20w2uiuk) , (5.146)

or by using (B.113)
! + ! (5.147)
€k — U;v URV; — U; U . .
FT o0, k k -~ k
Next consider a linear element dP = dy'e;, emanating from P € C; let
dP’ be the corresponding element in P’ € C":
dP’ = AdP = dy'e} ,
and decompose dP and dP’ into magnitude and unit vector:
dP = |dP|a, dP’ = |dP'|a’ .

It is quite natural to define as linear dilation coefficient, at P and in the
direction a, the ratio

def |[dP’| — |dP|

da
|dP|

= |Aa|—1. (5.148)

We have |Aa| = \/(A4a) - (Aa) = \/¢'ixa’a, so that from (TI45) it follows
that

S0 = /14 2eipaiak — 1 (5.149)
or explicitly
a=i1+ L lom-a)vea)— L ouea2| -1 (5.150)
o= -a)(v-a) — . —1. .
o n%o

In particular, for a = e;/|e;| = e;/,/gii (no sum over repeated indices is
needed here), one has the linear dilation coefficients, in the directions of
the vectors e;:

5 Here the deformation does not have the usual meaning as for a single continuum
in a fixed frame of reference, but it is relative to two different frames.
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1 1
_ 2
0; = \/1 + e <2uivi — 7720'ui) —1. (5.151)

Let us now consider the angle ©,, formed by the directions a and b ema-
nating from P € C: cos O, = a-b; the angle formed by the corresponding
directions in P’ € C’ is given by

Aa Ab a‘el - b”“e§~C g ina'b*

" |da| " |4Ab| T \/g'gaiak /gl (14 0a)(1+0)

that is, by using (5.145) and (5.146):

cos©'

. 1 ) 1
cos Oy = (14 6.)(1+6) {cos@ab + 20 [(u -a)(v-b)
1
+(u-b)(v-a)— n2a(u -a)(u- b)} } . (5.152)

In particular, for a = e;/|e;| and b = ey /|ex| (no sum over repeated indices
is needed here), one has the angular transformations, corresponding to the
vectors e; and ey, (shear):

I‘ . 1 .
cos O’ = (14 6)(1 + 6) [cos Ok

1 1
+ 5 (uivk+ukvi— ) uzuk>} . (5.153)
20/ GiiGkk nco

. Surface dilation coefficients

Let us consider an oriented surface element: nd o, in P € C, and let n’do’
be the corresponding element in P’ € C’; we can determine the relation
between the two surface elements, with the usual assumption of boosting
n’ do’ onto S,. We have

n do =dP x dQ = dy’ e; x dz" e, = VGEikh dy’ dzF e

where €, is the Levi-Civita alternating symbol; similarly, one must as-
sume:

n’ do’ = (AdP) x (AdQ) = dy’ €] x dzF e}, = \/¢'eipn dy® dzF e
= i dy' dz" €.

It follows, from comparison, that

or by using (5130
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o

! 1
n’da':\/i(nda— ndo-wu).

Furthermore, the Jacobian determinants

ort oz’
D = det = , D' =det =./q,
satisfy the invariance property (G.I121)):
D n o«
D=79D =inv. = ==
n n mv D 77, o ’
thus the previous relation becomes
PR 1
n' do’ = - (ndo— 2o do - wu) . (5.154)

From this equation we get the surface dilation coefficient in the direction

n:
of do’ —d
5, et G0 4T (5.155)
do
or explicitly
a 2 1—a?
by = U\/l—CQQ(n-W)(n-u)+ 20 (n-w)2—1. (5.156)
3. Volume dilation coefficients
The cubic dilation coefficient §. is defined by
get AC' —dC D’ o
e — — 1 = — 1 y 1
0 qc D - (5.157)

using (.121)).

In the limit ¢ — oo all the dilation coefficients vanish. For v = 0, instead,
S, is the local rest frame of the continuum and the above relations refer to the
way in which the continuum (in relative uniform translational motion, with
respect to Sé) differs from the rigidity condition.

Having defined the local deformation coefficients, we can start studying the
transformation laws for the angular and deformation velocities.

5.9 Transformation Laws for Angular
and Deformation Velocities

Our purpose now is to obtain the gradient of the continuum velocity v/(¢',y),
with respect to S;. To this end it is enough to differentiate the relation (5.112)
with respect to ¢/, using (GI0T)):
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A = "9, . (5.158)
o
This gives
Uq 1
ope, = ore; + 0w + u-oe; — Oiou; | w ,
2o c? o
with 1
8tW = 8tV = a, 8150' = —0211 a. (5159)
Thus, by using the identities
Btei = &-v s at/e/i = aiVI 5 (5.160)

and introducing the map A defined by (5I39]), we have
1
8iv’ = aA (aiV—I— 9 uia) . (5161)
g c°o

The same result can, obviously, be obtained from the theorem of relative

motions: .
vi= <av ot Uu) , (5.162)
o 1+«

by differentiating both sides with respect to y’, which appear only in v and o.
In scalar terms, we can set 9;v' = h/;€’*, analogously to 9;v = h;,e”; using
GI139), e" - e}, = A", (EI61) becomes

« 1 1 . 1
h/ik — (jAhk |:hzh + c20uiah + C2UuJ (h” + c20uiaj> wh]

or
a - 1
h’ik = a'A v AR? (hij + CQO_uiCLj) s (5.163)

as from (I40). The tensor h';; summarizes (locally) the angular and defor-
mation velocities of the continuum with respect to Sy, analogously to hi in
Se:

Wi =K +win hir = ki + wire (5.164)

so that (BI63) contains the sought-for relations. Here, clearly, k;;, depends
either on the deformation velocity k;; and the angular velocity w;; or on a
and u; an analogous dependence has w’;;. In the classical situation (¢ — c0),
we have k', = ki and W' = wik, which give an absolute meaning to both the
deformation and the angular velocities, in contrast to the relativistic situation.
Now, from (BI6T]), one has the expression for the local angular velocity w':

1,
w = 2e” x v ; (5.165)
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by using (B.I30) and (I37), we then have

1 : 1
W= YeixA 0;v + u;a
20 o
1 ,
- u x aA{w’&-v—i—(a—l)a]
2¢2a o o
1 : 1 )
= jel x A(O;v) — 9021 % :A(wlaiv —a).

Otherwise, from the form (5I39) of A, it follows that

e x A(0;v) = 2w + !
c

2Crei x (u-0v)w,

and, by using the decomposition (5.84])
oiv=Xk;+w X e, (5.166)
we have
u-9;v=(k,—wxu)-e;, (5.167)
where k,, is the deformation velocity along u, already introduced:
k, = u'k; . (5.168)
Moreover, (BI37)) implies

- 1
e' x A(O;v) = 2w +
c

2Cr(ku—wxu)xw

:(1—|—a)w—|— , (ku X W —w-wu);
o 2o

the expression for w’ is then
p

1la a 1 a
i
= 1 ) k, xw—w-
“ 20( +U w+2c20[0( W —w-wu)

+ux Ala+ky, —w X W)] , (5.169)

where k,, = w'k; is the deformation velocity along w. Equation (5169) can
be further developed by expanding the vector product u x A(w x w), using

(I3) and (GI39):

uxA(wxw):ux(wxw+ wxw-uw)

c2o

=cla—o0)w — (w-u)w — (UXW-wuxw;

2o
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the general expression then follows:

1 a? 1
w/:2<1+02>w+2620 H+u x AK)] , (5.170)
where
o 1
H= (kyxw-w wu)+w-uw+ , (w-uxwjuxw,
o 2o (5.171)
K=a—-k,.

In the classical case (¢ — o0), (EI70) reduces to the invariance property
w’ = w, as expected; in the relativistic case, instead, one has a typical mixing
of the various kinematical quantities: the angular velocity w’ has no longer an
invariant meaning, being a function of u and v (through ¢ and w), a, w and
also of the deformation velocity (through k, and k).

Let us now determine the transformation law of the deformation velocities:
ki :&-v—w X €;.

From (BI70) and (E139), we have

1 2 1
w x e, = <1+a>waei+2 [H x Ae;

2 o? 2o
+u- A(e;))A(K) — A(e;) - A(K)u] .

Using then the identity

AT(w) = “u, (5.172)

g
and the commutation property of the scalar product leads to

1 2
w/xe’i:2<1+j2>w><A(ei)

+,0 (HxA(el)+ " A(K) — AT A(e;) Ku) .

Next, taking into account (GI6T]), we have
k/i = 81'V/ — w’ X e;

2
:A(&iv)—1<1+a )waeH—

o
;A(2a— K
2 o2 (Tu (22 )

1
2c¢%0
—H x Ae; + AT Ae; ~Ku} ; (5.173)
moreover, from (B.IG7), it follows that

A(@Zv) = 81'V + Cl

20(81-v ‘u)w

=k, +wxe; + (ky —w xu) -ew,

2c¢20
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and, from (5IT7I)); and the (already used) identity (G172,

—H x Ae; = @ (w- Ae;k, — k, - Ae;w + w - wu x Ae;)
o

a
—Ww-uw X ; — (w-uxw)(

U;W — W - Aeiu) .
o

2o

Equation (ZI73) thus becomes

,'_oc__l(_oz)Q _ « {_'(a cr)
kz_akl 21 ” (.u><e1+20202 Us; a+a W X W

o
2wxu)wt+w-wux Ade; — w-uw X g;
o

1
-, (w~u><w)(u1-w—Uw-Aeiu)+ku-ei
2o o

+w - Ae;ky, + ui(ky + Aa) + UATAei (a— kw)u] ,  (5.174)
«

where the identity k, - w = k,, - u has been used and the product AT A4 is such
that
ATA(ei) =e; +

) (uiw + w;u + 21 wzuiu> . (5.175)
2o 2o

In the classical case (¢ — o), (BIT0) reduces to the invariance k’; = k;, as
expected; in the relativistic case, instead, as for the angular velocity, one has
a mixing of the various kinematical quantities, k’; being a function of k;, u
and v (through o and w), a and also of the angular velocity w.

Equations (BI70) and (5I74]) have a general validity, because they refer to
any continuously deformable system; they show that the classical notion of
rigidity is meaningless in a relativistic context: in fact, the absence of defor-
mations in Sg: k; = 0, has no absolute meaning, since in general k’; # 0:

K 1(1 a)2 <o+ « [ (a+a) »
i = — — w €; —U; w W
2 o 2¢202 o«
—2(w><u)iw+w-wu><Aei—Uw-uwxei
«
1
o

+u;Aa + ZATAei . au} #0. (5.176)

(w-uxw) (uiw - Zw . Aeiu)

Similar to the deformation velocity (GI70), in the rigid case (in Sg) where
k; = 0, the transformation for the angular velocity reduces to the form

W' ! 14 o w + 1 [ % wu
= —_ W
2 o2 2¢20 L o

1
tw-uw + , (wruxwjuxw+u x Aa| . (5.177)
o
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5.10 Born Rigidity. Thomas Precession

Equations (B.I70) and (EI74]) are completely general as concerns the motion
of the continuum and the choice of the two Galilean frames S, and S’é. Let
us assume that S, be the rest frame for some particular element P of the
continuum; this means that at P:

v=0, =o0=1 u=-v, a=1/y, (5.178)
and hence, from (G.113)

/

n /

= (5.179)
Thus, we have the following expressions for w’ and k';:
! 1 1 0 1 0 1! 010
W=, 1—1—7]/2 w +2027]’(H —n'v x A’K"), (5.180)

1 1 1\?
k' = ,k?+2(1— ,) w! x e
Ul
1 ! 1 7,0 ! 0 / (U
—1—2 21 417 n + o vjw’ X v 4+ 2w’ x V') v
c n

+w? vV x (e AO N — kY eV — v - A%0K,

—v] (kg, 1+77 A 0) — 1/ AT A%&0 . (1+77 —K° ) }
n n'

where w® and kY are the proper angular and deformation wvelocities, and

GI340), (B139), (BI71) and (BI75) reduce to

o_ N 0 0 0_ .0 o
H —1+77I[(1—77’)w Vv —kp x V'], K" =a . ko,

1 7 1 7
/0 1 ! 0 _ 1!
ei_ei_cgl+n/viv7 A()_()_C21+77/().VV’

1
AT A%0 =€l — v,
I

0

and, finally, the proper acceleration a® is related to a’ by the composition law

RI13)

Thus, omitting the prime, the following relations hold in any Galilean frame:

1 1 0 1 0 0 0
@y (HnZ)w T oe(1 4 g LM vv = (L) x v v xal)]

1 1 1\?
ki = kV+ ) <1 - ) w’ x e} (5.181)
7 U
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1
’ 5.182
+202(1 +n) ( )
1
{<n+ >v?w0 x v 42w’ x v) - elv
n
1 1
+(n—1Dw’-vv x el — + nv?kg + [(n —1)e) — 27]v?v] Kov
n c
1
T n(v?ao +na’-elv) + (24 n)v)a’ ~vv} ,
c
where
1 7 1 n?
a’=n?(a+ o K a-vv | , e?:ei—i— 9 g vV,
ctl+n c?l+n (5.183)

) =v-e) =nu;.
So far, we find that in the motion of a continuum, with respect to an arbi-
trary Galilean reference frame Sg, the values of the angular and deformation
velocities w and k; are related to the proper values w® and k9 by the following
equations:

1 1 1 1-
w = (l—l— )wo—l— { nw0~vv—vx(n2a—kg) ,(5.184)

2 n? 2¢?n |1+
1 1 1\?
n 2 n
Ll
2¢2(1+1n)

{2nviw0 x v 42w’ x v)-ev
+(n— 1)44.70 SVV X € — 772(1 +n)(via+a;v) — (1 + n)vikg

+|(n—1) 20 K?
—1e; — vv| -kovp.
R () R
In a relativistic context, the following definition of rigid motion is very
useful: a continuum is said to move rigidly in the sense of Born [4] if the
proper deformation velocity vanishes identically:

kY =0, vt,PeC, (i=1,2,3). (5.186)

3

This is obviously an absolute property of the motion, which must not be con-
fused with rigidity in the classical sense. Then (5.I80) implies that, in every
Galilean frame, there is deformation; more precisely, from (G.I84) it follows
that

1 1 0 Lofl=m 5, 2
w:2<1+n2>w 4—20277 L_’_nw -vv —n°vxal, (5.187)
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1 1\°
k; = <1 - ) W’ x e (5.188)
2 U
1
+202(1 +n)
[2nviw’® x v+ 2w’ x V) - e;v

+(n—Dw” vv x e; —n*(1 +n)(via+ a;v)] # 0.

Moreover, for each continuum motion, the local angular velocity is related
to the spatial deformation gradient by means of (5.92); thus, in the case of
a Born-rigid motion of the continuum the proper angular velocity w® has a
global meaning in C, in the sense that at each instant it is independent of the
particle:

0w’ =0. (5.189)
Clearly, w” is not an absolute constant; in fact, according to (5.94):
o_ 1 0
O’ = 2curla #0. (5.190)
On the other hand the angular velocity, relative to a generic Sg, has no global

meaning, like w®, because it depends on both the velocity v of the continuum
and the acceleration a. More precisely, from (B.I87); we have

1 1\
w:2<1+n2)w +, (5.191)
with )
def —N o0 2
P = 2¢2 L_’_nw SVV — v xa] . (5.192)

Thus, besides the deformation one has an angular precession v, dependent on
v and a as well as on w? (it is independent of w? only if w® is perpendicular
to v). In the first approximation, we re-obtain the Thomas precession [5]:

1

2V xa. (5.193)

y -,

5.11 Material Continuum. Number and Matter Density

Given a geometrical continuum C' in S,, one can pass to a material one
by defining in C' a function u = p(t,y) representing the relative material
density; with the generic element of the continuum in an initial volume
dC = dy' dy? dy? in C, is then associated the elementary mass:

dm = uD dC . (5.194)
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This can be done in any Galilean frame; thus, in Sé, the mass of the element is
given by dm’ = /D’ dC, and this must satisfy the transformation law (3.52)
, O

am’ = " dm . (5.195)
«

Equation (BI95) induces a transformation law for the density u. In fact, from

BII4), we have
/
dm’ = ** dm ,
o
so that (B.193)) gives rise to the transformation law of the density

W =u(2)2 : (5.196)

as well as to a finite invariant

!/
752 - :2 = inv. (5.197)

Condition (5.194) can be easily explained in terms of the substitution the-
orem for multiple integrals, according to which the measure element in C
is expressed, in Cartesian coordinates, by the product dz! dz? dz?, and in
generic curvilinear coordinates y* by |D(y!,y?, 4%)|dy! dy? dy?®, with D the
Jacobian determinant of the transformation z° = z%(y!, 42, »3). In our case,
since D > 0, the measure element is given by D dC. We also note that the rel-
ative scalar 1/D has the meaning of particle number density. Thus a material
continuum is a geometrical one endowed with a matter density p. For each of
its elements, because of (L.194)) and (.195), we can apply the above analysis
of the material point.

When ¢ — oo, we recover the classical invariance of the density, with respect
to changes of Galilean frames: y/ = u. In relativity, instead, the ratio u/n?
is invariant, and the density, once known in a certain frame, is also known in
any other frame through (L.I97); it will depend on the relative velocity u of
S with respect to Sy as well as on the velocity v(t,y) of the element of the
continuum in Sg; that is, we have now a dynamical notion of mass.

5.12 Absolute Kinematics. Proper Quantities

From the absolute point of view a three-dimensional continuous system is
represented by the co? world lines of the single particles, all future-oriented,
and not intersecting each other since the continuum should be thought of as
the set of 0o® distinct material points (at each instant and in every Galilean
frame). In other words, the evolution of a continuum is geometrically defined
by a unit timelike vector field, whose flow lines are the histories of the particles
of the continuum itself. In this sense, the family I" of such lines represents a
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generalization of those special (linear) congruences, characterized by constant
vector fields, which represent the Galilean frames. In that case, they are global
congruences, because the straight lines cover all My; for a generic continuum,
instead, the flow lines cover only a certain world tube T € My.

Once a Galilean frame (that is a temporal direction v and the associated
spatial platform X) is fixed, the configurations of the continuum C, relative
to the various instants ¢, coincide with the plane sections of the tube 7,
orthogonal to -y, or with their spatial projections onto the reference spatial
platform . In the interior of 7, besides the world lines of the particles, is
defined the 4-velocity V. This is determined from the equations of the world
lines

¥ =ct, =1 (t,y), (5.198)

by differentiation with respect to the proper time 7 of each particle, given by

1 t
T(to, t,y) = c/ \/—magi:"‘j:ﬁdt
to

t 2
/t \/1 Y (;’y)dt, (5.199)

depending on #* that is on the considered particle. The 4-velocity V can be
obviously expressed either in Lagrangian or Eulerian terms, because of the
invertibility of (5I08). The 4-velocity corresponding to the generic point
E € T: V(E) defines the tangent vector, at E, to the corresponding particle
world line or the 4-velocity in its rest frame Sy. In Sy, the relative velocity of
the particle, at F, vanishes: vy = 0, and the invariant relations, in the passage
from one Galilean frame to another, assume a precise meaning. They are the
proper quantities, i.e. relative to Sp; thus, (BI2]]) gives rise to the invariant

D(t,y)

-

which characterizes the proper volume element dCy = DydC with respect
to fixed Lagrangian coordinates. Hence, the proper numerical density of the
particles 1/Dy follows. Similarly, from (GI97) one gets the proper density of
proper mass:

Do(t,y) =D = >0, (5.200)

dmo

dCy -

uo<E>=;;zu<t,y>[1—”f2’y)} ~ o=

(5.201)
Finally, we have seen that (5.122)) is closely related to a first-order differen-
tial invariant, namely the divergence of the 4-velocity: 9,V . However, from

G.199)
d

g = 0= n() (5.202)
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we have the following transformation of (&.122)):

1 d 1 dDy

n 1
B=0m+ _0:D= _0;(nD) = D) =
¢ D ! D t(n ) nD(]] (77 ) DO dr

Thus the invariant B, defined by (E130), turns out to be related either to the
4-velocity V, because of (B.I33)), or to the invariant Do(E) = Dg(x):

B(t,y(x)) = B(t,z) = 0,V . (5.203)

From this follows a differential relation between Dy and V (as a consequence
of (B.128), in the instantaneous rest frame):

1 d

Dy =0,V . 204
D()dT 0 8 (5 0)

This equation, since Dy = Dy(z) and dDy/dT = V9, Dy, implies the con-
servation of proper numerical density :

aa< ! V“):O, VEET. (5.205)
Dy

Note. From the various examples of scalar quantities that we have studied in
the preceding sections, one sees clearly the difference between scalar functions
of the event E and scalar invariants with respect to the Lorentz transforma-
tion: the latter depend only on the event E, while the former depend on other
variables also.

For example, for a given continuous system in motion, the quantities 7,
0¢(nD) are all scalar functions, but not scalar invariants, because they depend
on the considered Galilean frame besides the chosen event E = (z%) = (¢, z);
more precisely, they are functions of the surface element, containing £ and
~ € C5 . The products D, 9;(nD)/D are scalar invariants, because they do not
depend on the chosen Galilean frame, but only on the event E = (%) = (2'%).
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6

Elements of Classical Dynamics
of a Continuum

6.1 Introduction to Continuum Classical Dynamics

Once the essential geometrical-kinematical quantities (relative or absolute)
necessary for the description of a three-dimensional continuum have been
introduced, we can move on to the fundamental dynamical aspects of the
relativistic theory. First of all, let us examine the classical framework of the
equations of the continuum dynamics in the context of the Galilean frames
where such equations are invariant. The passage to an arbitrary rigid frame
is obtained with the usual procedure adding to the equation of motion the
inertial forces (dragging and Coriolis forces). As for the kinematical case, here
we limit ourselves to the essential elements of the dynamicsEl

Following the notation already introduced, let S, be a Galilean frame, asso-
ciated with an arbitrary Cartesian orthogonal triad: 7 = O ¢ ¢ c3; let C be
the actual configuration (in Sg) of the continuum system S, z° (i = 1,2, 3) the
Cartesian coordinates of the generic point P € C' and ¢ an arbitrary portion
of C' with boundary o.

In the continuum scheme, the mechanical action is represented by two kinds
of force:

1. mass or volume forces, specified by a characteristic vectorial function
F(P,...), defined in C, in the sense that, for any portion ¢ € C, the re-
sultant force and the resultant moment (with respect to O) of such forces
are expressed, respectively, by the following volume integrals:

r[c]:/uF dc, mo[c]:/OquF ac (6.1)

2. contact or surface forces, specified by the vectorial function ¢,,(P), defined
on the boundary of C' and for each direction n: specific stress at P relative
to the direction n. This is a vectorial function depending on P as well as

! For a more detailed discussion the reader may refer to [I], p. 525 and [2], p. 181.
G. Ferrarese and D. Bini: Elements of Classical Dynamics of a Continuum, Lect. Notes Phys.

727, 207237 (2008)
DOI 10.1007/978-3-540-73168-9 6 (© Springer-Verlag Berlin Heidelberg 2008
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C
ndo

pFdC

o

¢ do

a) b)

Fig. 6.1. Distribution of forces and stresses for a continuum

on the direction n, i.e. on the considered 3-plane in P (see Fig. [6.1]), such
that, for any surface o € 9C, the resultant of force and moment (with
respect to O) of such forces are expressed, respectively, by the following
surface integrals:

r®[o] = / ¢,, do, mg) [o] = / 0Q x ¢,, do . (6.2)

Adapting, now, the fundamental equations of the mechanics to the arbitrary
portion ¢ of the continuum and passing to the limit ¢ — P, with the necessary
regularity hypothesis, one gets the following (local) Eulerian conditions, which
are no longer depending on the limit itself:

I Cauchy theorem, which specifies the dependence of the specific stresses on
n:

b, =n0', P =09, ; (6.3)

n=ct
hence, ¢,, is a linear and homogeneous function of the director cosines of
n in each point of the boundary of C: 9C.
II First indefinite equation:

pe = uF — 9;¢" (6.4)
where the dot denotes the substantial derivative
def i
() = () +e€ai() (6.5)
I Second indefinite equation, that is reciprocity relations for the stresses:

¢, -0 =a¢, -n, Vn,n’ (6.6)
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To these (Eulerian) equations one must add the continuity equation, which
represents the principle of mass conservation in local form. More precisely,
in the classical situation, for each particle of the continuum the mass
element

dm = uD dC , dC = dy' dy? dy? (6.7)

being invariant with respect to the choice of the Galilean frame S, is
independent on ¢ (in Sy):
uD = const. , Vy'  fixed . (6.8)
In Lagrangian form, (6.8]) is equivalent to the condition
oh(uD) =0, VYity', (6.9)
and, from here, one has the Fulerian form

(uD) =0, Vta", (6.10)
where D(t,z) % D(t,y(z)). Thus, using (I25) and (@), this last rela-
tion can be cast in the form

D .
D= dive = 0;¢' (6.11)

and gives the ordinary continuity equation: 1+ p dive = 0. This equation,
in turn, using ([G.3)), can be transformed to obtain the following;:
principle of mass conservation:

O+ Oi(pe’) =0 . (6.12)

The scheme of the continuum is somehow incomplete. In fact, the evalua-
tion of the kinetic energy, defined, for each part ¢ € C' of the continuum,
by the integral

T[c] = ;/,uede, (6.13)

implies that the kinetic energy of each element can be confused as that
of the centre of mass only, neglecting the motion relative to the centre
of mass itself. In other words, the continuum scheme ignores the thermal
energy. Because of this evaluation defect, in the continuum scheme the
energy theorem is a direct consequence of the equations of motion, as for
the case of the single particle. It can be written in the usual form:

T[] =W]q, Wi =W + wWhe], (6.14)

with T (®)[c] the power of the external forces (mass forces in ¢ and contact
forces on the surface o) and W@ [c] the power of the internal (contact)
forces, that is:
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wWW[e] = / @' - 9edC . (6.15)

The above-mentioned defect of the scheme can be avoided by correcting
the energy theorem (614]) with the aid of the first law of thermodynamics,
summarized by the following three axioms:

(a) each portion ¢ of the continuum has an internal energy E[c|:

Ele] = / pe dC, (6.16)

where € is the specific (i.e. for unit mass) internal energy;

(b) the heat is also energy (apart from a conversion factor) which enters
the energy conservation law through its power Q[c] (heat absorbed, in
algebraic sense, by ¢ per unit time):

Qe = [ madc. (6.17)

where ¢ is the specific (i.e. per unit mass) thermal power;
(c) for any portion ¢ € C, the following balance relation holds:

T+E=W®© +qQ, (6.18)

which corrects (G.I4). Hence, using the mass conservation (612]),
[GIR) assumes the form & = Q — W®, which can be put in the local
form:

First law of thermodynamics:

é=qg— w, (6.19)

with wW the specific power of the internal (contact) forces, i.e. per unit
volume: ' .
w = @' die . (6.20)

Equation ([6.20) can be rewritten in its Eulerian form using the relation

(c)
e =k ¢ +w x c. (6.21)

For ordinary continua, such a power is independent of the angular velocity.
This follows from (6.0); in fact, if one introduces the Eulerian stress tensor
X (i,k =1,2,3), by means of the decomposition

o' = X'k, (6.22)

then, using (6.3)), ([G.6]) becomes (X * — X*")n;n/; = 0; thus, the symmetry

property ‘ ‘
X*F =Xk (i,k=1,23) (6.23)
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holds, and (6:20]) assumes the form
(i) i ©
w = X* Ly (6.24)

(c)
with k ;; denoting the deformation velocity, in Eulerian form:
(c) 1/ 0 7]
k= ) 3 2
k ik 2 (8$Zek+8ajke) (6.25)

6.2 Lagrangian Form of the Fundamental Equations

We now briefly recall some concepts of the Lagrangian mechanics of continua.
The relativistic Cauchy equation (G.4) is of Eulerian kind and can be cast into
the corresponding Lagrangian form without changing the (arbitrarily chosen)
Galilean frame S,.

Let y* (i = 1,2,3) be a set of Lagrangian variables in S, which we will in-
terpret as the curvilinear coordinates of the points in the actual configuration
C of the continuum. Let {e;} be the natural basis relative to the coordinates
y', gir = €; - e}, the Lagrangian metric with associated Christoffel symbols of
the second-type I'";,, and the covariant derivative be denoted by V;. The par-
tial derivatives of the basis vectors give the following geometrical-kinematical
relations:

e =Tl en, Oe; =0;v= (Vivk)ek , (6.26)
where v = v*e;, is the Lagrangian velocity, 0; = 9/0y" and d; = 0/0t.

The velocity gradient summarizes the two fundamental tensors: w;* (angular
velocity) and k;* (deformation velocity):

Vi’Uk = wik + klk . (627)

Introducing the dual basis {e’} of {e;} with e’-ej, = d}, the symmetric tensor
kir = gijk’ 1 assumes the form

1 1
ki = 2(V1"Uk + Vkvi) = 28tgl-k ; (6.28)

similarly, the antisymmetric tensor w; = gijwj k= (Vivg — Viv;)/2 is equiv-
alent to the vector
k

w==¢e"xoe; = 2wikez x e, Wik =W €; X ey . (6.29)

The Lagrangian form of the continuum dynamical equations is obtained by
transforming F and ¢, defined by (6.4) and (6.19); this requires the introduc-
tion of the Lagrangian stresses Y*:
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yi= %Y gf = Y xhic; (6.30)
T

In detail, as concerns ([G.4]), one should take into account the following:

1. on the left-hand side one has the substantial derivative, which, in
Lagrangian terms, becomes the partial derivative 0y;
2. the divergence of the vectors ¢’ becomes

9 1, i
i@ = \/gal(\/gY ). (6.31)

In fact, from (630), one has

O 4 0 [0zt )\ oy 0 [0,
83:i¢ - Oxt <8ka > Ozt oyt <8ka

oyh Ot L 0%zt oyt _

= oY oxt Oyk + Oyhoyk oz’
next, using
8y’f ox* sh
ozt dyk — F
and the relations

one gets ([G3T):

1 i
\/gai(\/gY ) .

0
9xk¢k =R Y" + T Y =
Equation (64 then becomes

HOw = F — ;gaingf) ; (6.33)

introducing the Lagrangian stress characteristics Y'** which are symmetric,
like the corresponding Eulerian quantities X, and defined by

Y!=Yve,, (6.34)
Equation (633)), in scalar terms, then becomes

pa® = pF* — v, Yy'"* (6.35)
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and using the Lagrangian form of ([GI2]) (mass conservation)
Orp + pViv' =0 (6.36)

leads to
pdt = pFk — v, Y% — pko® (6.37)

with k = ¢**k;, the cubic dilation coefficient. Equation (6.33) and its equiv-
alent ([637)) give the acceleration in terms of the sources and will be used in
the intrinsic formulation of continuum mechanics [3].

Finally, the power of the internal forces ([6.24]), in Lagrangian terms, still
has the same structure

wW =Y *Ey; (6.38)

k;r can now be expressed either by means of the velocity vy or the Lagrangian
metric g;x:

1
kir, = 2atgik : (6.39)
Equation (6.3])) then assumes the form
L1
w = 2Y1k8tgik, (6.40)

so that for each particle (i.e. for fixed y*) w(®dt is a differential form in the
variables dg;x:

w dt = ;Y“‘“ dgir,  (y* = fixed) . (6.41)

6.3 Isotropic Systems

In Lagrangian terms the fundamental equations are ([6.8)) and (G38]), that is

pat — pF* + Vv, Y% =0 | (k=1,2,3)
(6.42)
WD — p =0, D=y,

which involve the mass density u, the particle number density 1/D, the accel-
eration a* and the stresses Y*; the mass force F* and the reference density /1.
are assumed to be assigned; however, comparing with the Eulerian framework,
we now have the presence of the metric g;i, either through the Christoffel sym-
bols or, explicitly, in D; furthermore, all the components are referred to the
basis {e;} related to the continuum itself and, hence, the variable with it. In
other words, the Lagrangian dynamics is not exhausted in the relations (6.42)),
involving the metric g;; and the same basis {e;}; from the point of view of
the variables the evolutionary problem is enlarged and an intrinsic Cauchy
problem can be formulated too (see below).
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By using the identity d,e; = 0;v, we have
a = 8t(viei) = (8t11i)ei + vial-v y

and thus the system (6.42]) can be written, in terms of the velocity, in the
following form:

w(0p* +v'Vok) — uF* + Vv, Y* =0, (k=1,2,3),

1 (6.43)
M&;H—divv =0.

In either form, Lagrangian or Eulerian, however, the number of equations
(four) is different from the number of the unknowns (ten, without considering
the metric). This should not be surprising, because the equations obtained do
not yet take into account the physical properties of matter which is schema-
tized by the continuum; in this sense, they are valid for a fluid, a solid, an
elastic system as well as a plastic one, for reversible or irreversible transfor-
mations.

To get the number of equations equal to the number of unknowns, one
must introduce the characteristic properties of the considered material. For
instance, the isotropic property, which we are going to discuss, is enough to
reduce to seven the number of the unknowns.

Let us note that, once the reference configuration C, and the corresponding
metric g, are fixed, the stress tensor Y% and the deformation tensor e,;; =
(gik — gxir)/2, pulled back to Cy, are both symmetric; hence, they each have a
triad of eigenvectors with respect to g.;x: the stress and deformation principal
triads, respectively.

We will call the continuum z'sotropz'cﬁ if it admits a configuration C\ such
that the principal deformation triad, relative to the displacement C, — C, is
also a principal tension triad with respect to the metric g.;, of C, for each
transformation of the system and for each C.

This definition uses the concepts of deformation and stress only; the pre-
ferred configuration C,, whose existence is postulated, enters only through
the Lagrangian metric g.;x; thus, the invariance with respect to the choice of
the Lagrangian coordinates y* is complete.

The property that the Lagrangian stress tensor Y** should admit, with re-
spect to the reference metric g%, the same eigendirections of the deformation
tensor €;;, has an important consequence: the stress tensor Y% is necessarily
a polynomial function of the second degree in e, ;5 (see [4], p. 42):

V¥ = pof + qeni® +recide st (6.44)
with 1
def i def ]
YiPE gV, e = 0 (935 - gaig) (6.45)

2 This definition is due to A. Signorini, see [] p. 136.
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where the metric g.’* is the reciprocal of g.;.. Equation (6.24) shows that
the stress tensor can be expressed in terms of the three scalars p, ¢ and r,
reducing to three its components; obviously, the metrics g;; of C' and that
g«ir of Cy are both involved.

A nonviscous fluid, that is, a continuum which in any configuration C' has
the specific stress reduced to a single pressure: ¢,, = p,u, with p,, > 0, is a
particular isotropic system. Moreover, because of the Cauchy theorem (G.3)),
pu is independent of u: p,, = p (pressure). Equivalently, we have

Y% = poy (6.46)

which is a particular case of ([6.44)).

6.4 Symbolic Relation of Continuum Mechanics

With (6.33) one must associate the boundary conditions on C, which give the
local identity between the surface force f and the normal stress: Yy = N;Y".
We thus have the following system

V(P)=uF —a) — \;gai(\/gYi) =0 inC, (6.47)

WQ) =f-N,Y =0 indC,

which can be summarized by a single scalar relation: the symbolic relation of
the continuum systems.

Let us consider an arbitrary vector function &(P), defined on C + 9C, and
having a regularity class C™(i.e. a continuous function, with the partial deriva-
tive also continuous up to the nth order); when V = 0 and W = 0 the integral

1[5]5/CV-5d0+ | Wegax (6.48)

clearly vanishes for any choice of the function &: I[€] = 0. The converse is
less trivial: if the integral ([6.48)) is zero for any choice of &, then V =0 in C
and W = 0 in 9C, simultaneously. To show this, let us assume that, for any
choice of £(P), it is I[€] =0

/V-5d0+ W.¢do =0, V&, (6.49)
C oC

but V is not identically zero; for instance, V! > 0 for a certain point Py €
C'. Because of the continuity of V(P), there exists a neighbourhood of Py
belonging to C, say a sphere S.(Py), with centre in Py and radius €, in which
V1> 0. Let us assume, then, for £(P), the following choice:
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(62 — |P0P|2)”+1e1, VP S SE(P()),
€ — (6.50)
0, VP &5,

which satisfies the required regularity conditionsf With such a choice of £,
the second term of (G:49) vanishes, while the first reduces to

/ Vi — [PoPH) T dC .
Se

As V1(e? — [PoP|?)"*! > 0 in the whole of S,, the above integral never van-
ishes, contrary to the hypothesis. Hence (6.49) implies that V. = 0 in C
necessarily, and similarly one can show that W = 0 in 0C.
We have thus proven the equivalence between the system (6.47) and the
scalar relation (@49) (first fundamental lemma of variational calculus).
Moreover, taking into account the expression (641) for V and W, the
functional ([G.48]) can be written as

I[&]:/Cu(F—a)f dc—/c ;g@i(\/gYi){dCW—/ (f— N, Y -£d¥,

oC

and, transforming the second integral by means of the divergence theoremﬂ
649]) assumes the following form (symbolic relation of continuum mechanics):

F—a)-¢£dC Y9, f-edx=0. 6.51
/cm a) +/c s+/ac ¢ (6.51)

Interpreting the vectorial function €(P) as a nominal velocity field over the
points of C, the latter equation implies that at any instant, the full nomi-
nal power of all the forces acting on the system: mass, inertial, internal and
surface, vanishes.
Using (651 one confirms the Lagrangian expression of the specific power
of the internal forces
wD =Y. v . (6.52)

Clearly, if one pulls back the stresses Y? to the reference configuration C, and
uses the decomposition with respect to the basis {e}} corresponding to {e; )
then one finds

Y = xe; (6.53)
where the vectors e; do not depend on time and the coefficients X are
termed Piola—Kirchhoff characteristics. They are nonsymmetric and related
by the condition

3 ¢, as defined by BE50), is C™ in C + 9C.

4 The product Y* - &, under a Lagrangian coordinate change, transforms as the
components of a contravariant vector.

5 The bijective mapping C' « C. induces a pointlike correspondence, which is
naturally extended to the associated vectors as well as tensors.
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x"el xep=0. (6.54)
Equation (638 becomes

w = x*e - div = x"(kij +wi) e e (6.55)

and the angular velocity w;; now appears.

6.5 Reversible Transformation Systems. Free Energy

A continuous system is said to undergo a reversible transformation if, besides
the internal energy ¢, it admits a second characteristic function: the entropy
S, additive as well and expressible by the specific entropy s,

S :/ us dC'; (6.56)
c

such a function is defined so that for each transformation of the system, and
using the absolute temperature scale, the ratio between the thermal power ¢
and the temperature 6 coincides with the temporal derivative of the function s:

q ds
0= at (6.57)
Clearly, the specific entropy, like the internal energy, is defined up to an addi-
tive constant, and its form is suggested by the physical properties of the ma-
terial body schematized by the continuum. Again, like €, s should be thought
of as a function of the state parameters, say 11, 72,..., besides the Lagrangian
coordinates ¢’ and time.

From an analytic point of view, the reversible transformation systems are
characterized by the property that the ratio (¢/0)dt is an exact 1-form; that
is, for each closed cycle and for each element of the continuund:

q
dt=0.
7{0 0

For irreversible transformations instead, this integral is negative, because of
the second law of thermodynamics

5 That is, any transformation which, starting from a certain state, takes the system
again to the same state.

" The specific entropy can also be defined for general thermodynamical systems
but in place of (G57) one has the restriction

ds>q7
dt — 6

where the equality holds for reversible transformations only.
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The property (6.57) identifies a class of continuous systems which, in a
sense, correspond, in the context of thermomechanical phenomena, to the
holonomic frictionless systems of analytical mechanics. The latter are charac-
terized by a Lagrangian function (in the case of conservative forces)E whereas
the reversible transformation systems are characterized by the thermodynam-
ical potential, or free energy:

Fe_s0. (6.58)
When the function F is known, at least for isothermal or adiabatic trans-
formations, one gets the same number of equations and unknowns for the
evolutionary problem. In fact, from the definition ([G58]) and using ([G57]), for
each transformation of the system one has

dF de ds P df  de do

a At dat. Car a4 %ar

and the first law of thermodynamics gives rise to the following condition:

dr_ 1 (6.59)

Using then the Lagrangian characteristics of tension (introduced in (G.40)) to
express w) we have

1 .
dF = = Y*dg, — sdf . (6.60)
2p

Thus the thermodynamical potential F can only depend on the metric g;; of
the actual configuration and on the temperature 6, besides on the Lagrangian
coordinates y°:

F=Fy,gi,0), (6.61)

or on equivalent variables. For instance, once the reference configuration C.
is fixed (dg.;r = 0), the metric g;; can be replaced by the deformation char-
acteristics:

F = F(y, €xike, 0) - (6.62)
Equation (6.60) then becomes
1 .
dF = = Y*de,q, — sdb (6.63)
I
leading to the conditions
; OF oOF
Yk =~ =— ik =1,2,3). 6.64
uae*lk ) S 69 Y (Z7 ) Y ) ( )

Hence, once the thermodynamical potential is assigned, ([6.64]); gives six more
equations to be added to the four equations of (6.49), yielding, at least for

8 In the case of nonconservative forces one must think of the kinetic energy function.
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isothermal transformations (6 = const.), the same number of equations as
unknowns. Equation (G.64]); can then be used to determine the entropy s as a
function of the deformation characteristics, the temperature and the internal

energy e, as follows from (G58]) and using ([G.64):

oF
e=F—40 20 (6.65)
For reversible transformation systems the same number of equations and
unknowns is also obtained in the adiabatic case ¢ = 0, i.e. s = const. from
5D ;. To show this, let us start by noting that the Helmholtz postulateﬁ

implies that

0*F

062
([664])2 can thus be solved with respect to 8: 8 = 0(y, ¢, s), and the internal en-
ergy can be expressed, using (G.68]), in terms of the deformation characteristics
and entropy:

<0; (6.66)

€=¢(y, €, 8) . (6.67)

Moreover, for reversible transformation systems, the first law of thermody-
namics (619) gives the following expression for de:

1. 1.
de=—_" Y% dgp+0ds=—"Y* des, +0 ds
2p Iz

so that 5 5
€ €
— , 0= _, (i,k=1,2,3). 6.68
e 957 ) (6.68)
It is easy to see that, when s = const., (6.68); gives six relations between
stress and deformation, which is what is needed to get the same number of
equations as unknowns. Equation (G.G8)s gives instead the absolute temper-
ature in terms of deformation characteristics and the entropy, determining in

turn the thermodynamical potential (G.58])

Y'ik —_

Oe
F=e—s0=¢— . 6.69
e—sh=e—s, (6.69)
We note that ([G.68]) is equivalent to ([G.64)2 once the latter is solved with
respect to 0. It can also be solved with respect to the entropy s. In fact, from
the identity
oF

a0 0=0¢/0s

S,

9 This postulate is usually expressed as follows: the specific heat at constant volume,
cv, must always be positive (see [4], p. 110). It is also equivalent to the condition,
following from (G.65)), that the internal energy e is an increasing function of the

Oe 0 *F

o0 = ¥ 992 =0

absolute temperature 6 > 0:
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after differentiating with respect to s one gets

B 0%F 0%¢ .
062 0=0¢/0s 0s? 7

Il
[

hence, because of ([G.60]), the energy must satisfy the restriction

%€

952 >0, (6.70)

which ensures the solvability of ([6.68])2 with respect to s.

So, at least for isothermal or adiabatic transformations, the thermodynam-
ical potential (directly, or indirectly through the energy) allows a correct for-
mulation of the dynamical problem However, the problem of determining
the characteristic function F still remains.

Without developing a systematic treatise of thermomechanics, we will here
limit ourselves to show how, in certain concrete situations, the experience can
suggest the choice of the thermodynamical potential as well as the stress—
deformation relations, which, in turn, give rise to the constitutive equations
for the material system under consideration.

6.6 Perfect Fluids. Characteristic Equation
and Specific Heat

A perfect fluid is a nonviscous fluid undergoing reversible transformations and
without internal constraints; this definition excludes the case of perfect liquids,
which are nonviscous fluids satisfying also the incompressibility constraint:
D = 1. For a perfect fluid, together with ([G48): Y% = pg'* (i,k = 1,2,3), we
have ([6.G3)); then taking into account the identity

1 1 .
D - ik 03 . 1
Dat 29 atg k (6 7 )
([660)) still holds in the form

p
= P ap—sds. 72
AF == /pdD = sdf (6.72)

It follows that the thermodynamical potential will depend on the metric g;x
only through the invariant D = /g, or the actual density:

10 For reversible transformations which are not isothermal or adiabatic, the knowl-
edge of the thermodynamical potential is not sufficient to give an equal number
of equations and unknowns: it is thus necessary to use other equations, e.g. the
heat equation.
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_ M
p="r. (6.73)
One then has
F=F(1,0), (6.74)
and from (G72]) and (E73),
dF = 52du—sd9.
Hence oF oF
— 2 —
D=l ou’ 5= g9 - (6.75)

Equation ([@70); shows that for a perfect fluid there exists a well-determined
relation between pressure, density and temperature (characteristic equation
of the fluid):

B def o OF
p=fwd), f=u on

Knowing f (often from experience) allows one to add to (6.42) and (G.46]) one
more relation, which is enough (at least for isothermal transformations) to
make the dynamical problem determined [ However, from (6.70), it follows
that the function f alone is not sufficient to fully determine the thermody-
namical potential, but only up to an arbitrary function of the temperature; for
F, instead, the definition ([G.58)) allows its determination only up to a linear
function of 6[7

The function f is often deduced integrating the specific heat at constant
volume; in fact, since ¢ is the heat absorbed per unit time, the specific heat
is given by

(6.76)

g
de
In particular, for reversible transformation systems, because of ([G.51), one has
g = 0 ds/dt, so that [6X77) becomes

(6.77)

c=0,. (6.78)

Introducing now the free energy from (6.64])2, one finds

d [OF °F  PF den
¢=049 (aa) =0 <392 T e a6 ) ' (6.79)

1 One should think of the Eulerian case; the Lagrangian formulation, as already
noted, implies the presence of another quantity: the metric g;x.

2 This is a consequence of the fact that both the internal energy and the entropy
are defined up to an additive constant.
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If the transformation is not generic, but leaves the metric unchanged: de,;; =
0, one then gets the specific heat at constant volume:

2
_08.7-'

e =0 >0, (6.80)
or because of (6.65):
Oe
e =y >0 (6.81)

From (6.76]) and (6.80)) it is clear that, at least for perfect fluids, the knowl-
edge of the two functions, f and ¢, (both depending on p and ), is equivalent
to that of the free energy defined up to a linear function of the temperature.

6.7 Perfect Gas

Among perfect fluids, perfect gases are characterized by the following condi-
tions:

1. the product of pressure and specific volumd™ is a function of temperature
only:
pV=9(0)>0 ~  p=pug(0); (6.82)

2. the internal energy e is independent of the density:
e=c¢€(0). (6.83)

Under these hypotheses ([G.75)1 becomes 0F /Ou = g(0)/u, which, after inte-
gration with respect to pu, yields

F =g(0)logu+ h(6) (6.84)

where h is an arbitrary function of temperature. For the internal energy e,
besides (G.84)), one has the expression

oOF dg dh
e-]—"—@aa—<g—0d9>log,u+h—9d9, (6.85)

compatible with (G.83]) only if
dg B d /g B
9= 0= ~ de()_o

or
g=R0, (6.86)

with R a positive constant. Thus, for a perfect gas the characteristic equa-
tion is

13 That is, the volume per unit mass in the actual configuration V = 1/p.
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p= f(/lfv 9) = Rou , (687)

while the thermodynamical potential is determined up to an arbitrary function
of the temperature:
F = ROlog pu+ h(h) . (6.88)

To obtain the function h(#) it is sufficient to know the specific heat at constant
volume ¢, or pressure ¢,. In fact, for a perfect fluid (679) reduces to the form:

O*F  O0°F du
c=—0 + ;
002 ouol do

moreover, for constant pressure transformations, that is, for f(u, ) = const.,

we have
af L af du B
00 Opdd

and one has the following invertible relation between constant volume-and
constant pressure-specific heats:

0,

Cp,=0Cp+ 0 6.89
p y (6.89)

By using ([6.87) and (6:88]), in the case of a perfect gas one sees that the specific
heats differ by a constant:

p=c+R. (6.90)
As a consequence of ([G.69) and (G.88)) ¢, is given by
d?h
co=—0 15 (6.91)
If ¢, is assigned, (G91) specifies h(0) and hence F from (6.88]), up to a linear
function of temperature. For instance, if ¢, = const., we have h = —c¢,0log0,
and from (G.8])
F =0(Rlog u — ¢, log) . (6.92)

The energy e and the entropy s are then obtained from (631 and (G.75),
respectively:
il
€=c,0, s = Rlogu — c,logf =log (90 ) . (6.93)

Expressing temperature by means of the entropy, it follows that
g = plt/ev e=s/ev (6.94)

[693]); gives then the internal energy in terms of p and s:
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€ = cyult/eves/ev (6.95)

In the case of adiabatic transformations, introducing a new factor v = ¢,/c,
and using (6.90]), we have

@140 (6.96)

Cy Cy

~

From (6.94]) one then gets the relation
0=Kuy—1, K =e */% =const. (6.97)

Thus, for adiabatic as well as isothermal transformations ([6.77) reduces to a
direct relation between pressure and density (reduced characteristic equation):

Op = cpu” ¢ = RK = const. (6.98)

6.8 General Expression for the Power
of the Internal Forces

We will pass now from nonviscous fluids to the more general case of isotropic
systems. For a generic system undergoing reversible transformations charac-
terized by a thermodynamical potential F = F(y,¢,0), how is the isotropic
property represented in terms of F7

To answer this question, it is convenient to derive a general and intrinsic
expression for the work of the internal forces, which needs the choice, in C,
of an arbitrary anholonomic system of triads; that is, a distribution of bases:
Ay = XG)? roo=1,2, 3 generally dependent on P, as well as on time but
without any other special meaning, for the moment. With the basis {A()} is
associated the anholonomic metric in C\:

9iry(s) = )\(T) . A(S) = g*ikAzr)/\](Cs) y (T‘, S = 1, 2, 3) 5 (6.99)
with its reciprocal ¢(")() such that

(T))

where the cobasis vectors A" = (A;7) are given by

AD = xg"E o~ A = gD = gD L (6.101)

Consider the stress and deformation tensor components along the anholonomic
basis introduced above, i.e. €x()(5) and Y (") respectively. We have the
following relations:

' In order to distinguish a tensorial index from an ordinal one we will denote the
latter with a parenthesis.
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exite = AN euiyeyy Y = AIN@ORY (6.102)
yielding, because of (6.40]), the power of the internal forces:
w(i)5t = Yik(SE*ik = Y(T)(S)(Se*(r)(s) + 26*(T)(S)Y(h)(s))\zh)5)\§r) y (6.103)
where § = dt 0y; using then the identity
i (r) — seyi (1) (Msyi (M syi
leads to
i o r)(s Rh)(s) 1 (T) 7
wW et =y )56*(T)(3) — 26*(T)(S)Y( X ))‘i 5/\(h) . (6.104)

Consider next the product )\(k)iéz\f n) and specify its symmetric and antisym-
metric parts:

)\(k)ié)\(h) = 2()\(k)i6/\(h) + )\(h)ié/\(k)) + 26W(k)(h) , (6.105)

where ‘ |
0wy (n) = k)0 () — An)idA(x) - (6.106)

The reference metric g.;r is constant with respect to the differentiation J;
from (6:99]) the symmetric part can thus be written as

Ay 0Ny + Ay iA (k) = Ay OAmyi + A 6Akyi = SNy Ayi) = 090k (n) »
and (GI08) becomes
AwyiOA(y = ;(5g(k)(h) + 8wy (h))» (h,k=1,2,3). (6.107)
Therefore, taking into account (GI0T), ([EI04) assumes the form:
w5t = YO be, (1)) = enryo)Y W90 (Bgayny + dwagm) - (6.108)

An alternative form to (GEI08) is obtained by considering the covariant
expressions of the stresses in C":

— def i i i =
Yir = gijgu Y ~ Yk = gigMyy (6.109)
as well as the deformation tensor e*:
ik def 1 i

Hence, from (G.38))

. 1 1 1
wWot = g"g"Vidgin = — 9" ginVindg" = = 6] ¥udg" |
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we get the following form for the power of the internal forces:
wWot = —;Yikégik = —Yyoek (6.111)
Using now the components along the anholonomic basis {A(y} leads to
—wWst = }7(7,)(5)569)(8) + 26(:)(5)}7(}1)(5)/\5}1)5)\1-” ,
and thus using (6.107)
— w5t = V06" 4+ 7OV 9™ B Gg ) + 0w - (6.112)

The expressions (GI08)) and ([GIT2) for the power of the internal forces are
quite general, i.e. they do not require any particular choice of the anholonomic
frame {X(;y}. They are clearly simplified if the frame is further specified, for
instance, by requiring that, for any ¢, the {A(,)} form an orthonormal triad:
09(kyry = 0. In the following we will explicitly consider this case, with {X()}
coinciding with the principal deformation triad.

By using the exterior product, (GI06) can be written as

1 1
dw = 2>\<’”> X O = A X SAl) (6.113)

or, equivalently,
]' ke S
ow = —45w(r)(s))\( ) x A ; (6.114)

(6114) explains the kinematical meaning of the antisymmetric quantities

©106) [5]. In fact, we have
Ay =ANpe]  ~ e =Aoid, (6.115)
so that from (6I13) and using the property def =0
dw = ;)\(” X (0N €] + Al dep) = ;)\(” x AN (a0,
or, from (GI07]),
dw = ik(” x X (8g(5)(r) + 0w(s)(r) = ik(’”) x X 8wi) |

which completes the proof.

6.9 Isotropic Systems: Constitutive Equations

For a system undergoing reversible transformations, the isotropic condition is
equivalent to the hypothesis that the thermodynamical potential depends on
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the deformation characteristics e,;; only, through the associated invariants
I, (k= 1,2, 3), with respect to the reference metric or the equivalent scalars:

ir ls km

L= gike*ik ) Q = girgfse*ike*rs s C= Gs 95 G5 €Exik€sxrsCxim - (6]—]—6)
The isotropic property follows immediately if
F=F(LQ.0C), (6.117)

(the dependence on the temperature being implicit). The hypothesis that a
system undergoes reversible transformations can be cast, from ([6.64); and
(6116), into the following six equalities:

Lo  OF 4  OF

— Y%= 2
i 3L9*+

; oF |
ir ks ir ls _km

wrs T3 « O Os  Exrs€sim - 6.118
9Qg*9*6 909 G Gsx Exrs€sl ( )

Thus, any principal direction A of the deformation tensor (with respect
to the metric g.x), _e*ik)\(k) = Eg*ik)\(k), is also a principal direction of
the tension tensor: Y* Xy = Bg*X(;); one then finds the following relation
among the corresponding eigenvalues:

1 oF oF oF

- B=_ +2" E+3, E?. 6.119

o oL 0Q ac ( )

Thus the deformation and tension tensors admit the same eigenvectors.
Conversely, let us assume that the triad {A} (r = 1,2,3) of the eigendi-

rections of €, (with respect to g.;x) is also an eigentriad for the tensor Yk,
We can show that using the relation

- ;Y““ée*ik — 57 (), (6.120)

which is valid for any variation of the ¢;;, starting from C., there follows a
dependence on the e, as in ([EI17). To see this, let us specialize the an-
holonomic frame {A} (r = 1,2,3) in (GI09) to coincide (locally) with the
principal deformation triad. This implies the simultaneous reduction of the
three tensors €., Y and gsik to the diagonal form:

€x(r)(s) = E(r)Ors, y (") = grgrs Iy (s) = Ora » (6.121)

with F(,.) and B() the principal tension and deformation characteristics, re-
spectively. Then, from ([E.I08), and the antisymmetry of the tensor dw(,y(s),
we have

wWét = B(T)5E(T) — 6*(T)(S)B(S)5(h)(5)5(k)(r)5w(h)(k) = B(T)(SE(T) . (6.122)

This equation, in turn, specifies the thermodynamical potential using ([6.59),
namely
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L0
dF = — wWdt — sdf ,
0

in the sense that, as follows from (G.I20), F reduces to a differential form in
the three variables, E ., apart from the dependence on :

1
6F(e)=— BUISE ; (6.123)
o
that is, 6F () is necessarily of the form @I17)M
For a system undergoing reversible transformations, the free energy (apart
from its dependence on the temperature) can be regarded either as a function
of the (direct) deformation characteristics, €., or of the equivalent (inverse

characteristics) €* et (g — gik) /2. If F(e.) denotes the thermodynamical
potential expressed in terms of the variables €* the isotropic property is
equivalent to the hypothesis that F(e.) depends on €* only through the in-

variants I, (k = 1,2,3) or the equivalent scalars

ik _rs_Ilm

L= g*ikeik ) Q = Gxirgxks€ k€:s7 C= g*zrg*lsg*kme €x €& - (6]—24)

In this case the following equations correspond to (G.I18]):

15 OF OF 8]?
}/i = 7 Yxi 2, - xirYxks *irYxlsYxkm 0 lm 6.125
(Y= pp 92509 Grks€s” +3 o5 GuirGulsGrkm €. € (6.125)

and the eigenvalues satisfy the relations

1. OF oF 3.7-'
B= +2 _E+3 6.126
I oL oQ GC ( )
For isotropic systems—even if the fundamental variables are reduced to
three—there remains the fundamental problem of the choice of the free energy
6I17): the quadratic relations (G.IT18)—(G.I25) between stress and deforma-
tion can only be used to suggest hypotheses for it. For instance, after a suitable
choice of the reference configuration, the constitutive equations (E125]) could
be selected as linear and homogeneous functions
OF <. OF oF
— = AL 5 - = i 5 P — O 5
oL oQ ~ " ac

with A and i (Lamé constants) independent of the characteristics e*.

Equation (GII8]), as well as the equivalent (G.I20), express the stresses in
terms of deformations and they are a special example of constitutive equations,
being characterized by the thermodynamical potential F of the continuous
system. In turn, denoting by s the displacement PP, one has

e, =e’ +0;s, gir=e;- e, (6.127)

5 The principal deformation characteristics are functions of the invariants (GI16).
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and the deformation characteristics assume the form
1
€k = 2(81-5 -ej +Oks- e +0;s-0ks), (6.128)

that is, they can be expressed in terms of s, a variable which can replace the
velocity: v = O;s.

Hence, the constitutive relations (G.II8]) solve the dynamical problem, be-
cause they give the tensions in terms of displacement and, then, allow one
to obtain, in the fundamental system (643)), the same number of equations
as unknowns, also taking into account the covariant derivative V,; associated
with the metric g;x = g«ir + 2€ik-

In the case considered above, up to an arbitrary function of the temperature,
the potential is of the form

Fe ;(EQ +270) (6.129)

which is physically meaningful, at least for elastic systems, in the case of
infinitesimal deformations: €,;x ~ —¢;,. This is, instead, in contrast with
the nonlinear elasticity theory, grounded on the hypothesis that the relations
([6128) are quadratic [5], which we will not consider here. We prefer to discuss
another, intrinsic, formulation of the Lagrangian mechanics of continuous
systems, which has a geometrical-kinematical counterpart, both in special
and general relativities.

6.10 Dynamical Compatibility of a Continuum

The ordinary formulations of continuum mechanics are generally expressed
in terms of displacement components and assume the choice of a reference
configuration; that is just the point of view used in Sect. 6.9 for an isotropic
system undergoing reversible transformations.

We are now going to consider a different point of view which uses as fun-
damental unknowns the metric, the deformation velocity and the angular
velocity, that is, all variables associated with the actual configuration. This is
a dynamical formulation which, endowed with proper initial data, ensures the
compatibility of the evolutionary problem and, in particular, the Euclidean
property for the metric.

More precisely such a formulation is of intrinsic type, both for the mean-
ing of the variables involved and the choice of the local reference frame, de-
rived from the continuum itself through the Lagrangian variables which are
at disposal; in addition one must consider the precise geometrical-kinematical
meaning of the chosen variables and their tensorial properties.

Finally, apart from the choice of the initial data, no longer free but with
involutive constraints (in the sense of Cartan), the determination of the motion
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of the continuum implies the possibility to integrate a well-determined (first-
order) Cauchy problem; this is the main problem to which the secondary
variables, determined a posteriori by quadratures, are subordinated.

After this short introduction, let us consider in the Newtonian context a
continuum C in regular motion with respect to a fixed Galilean frame R,. Let
{y'} (i = 1,2,3) be an arbitrary set of Lagrangian coordinates, defined up to
an invertible transformation
X3

det >0, (6.130)

dy
oyY’

and let C' be the instantaneous configuration of the continuum
OP = OP(t,y) ~ = x'(t,y) , (6.131)

where z° (i = 1,2, 3) are (global) Cartesian coordinates. Let {e;} be the natu-
ral basis, locally associated at P € C' with the chosen Lagrangian coordinates,
and {e’} the cobasis, defined by the conditions e’ - e, = 4%. Finally, let g be
the Lagrangian metric:

ox" 0x°®

ik — : 57‘5, .,k:1,2,3 . 6.132
= G e G IRCRES)

gik = €; - €L, ~

From the kinematical point of view, the motion of the continuum is determined
by the vectorial function (6I31), and it can be reduced to the integration of
the following differential system:

o;er = I‘jikej , ove; = 0;v = hi¥ey, v =a, (6.133)

in the four vectorial unknowns: e; (i = 1,2, 3) and v which are functions of the
variables ¢’ and t. The coefficients on the right-hand side of ([6.133) all have
a geometrical-kinematical meaning and depend on y* and ¢: the second-type
Christoffel symbols, already defined,

, 1.
[ = 2ghj(8ighk + Okgni — Ongir) (6.134)

and the tensor h;;, summarizing the deformation velocity k;; and the angular
velocity w;x of the continuum:

hir = ki + wik (6.135)
being

ef 1 e of 1,
kik d:f 28tgik 5 Wik d:f w-€e; Xeg, w d:f 297' X 8tei . (6136)

Finally, v. = 0y OP and a = 0;v denote the Lagrangian velocity and accel-
eration of the generic element of the continuum; the latter, even if with a
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different role, completes the previous coefficients, so that at the right-hand
side of ([B.I33) appear the characteristics h;, and a’ as well as the metric gy,
through the Christoffel symbols. To ensure the compatibility of the system
itself, such coefficients cannot be chosen freely; in fact, they must satisfy the
following differential (necessary and sufficient) conditions:

Rind =0, A" =0, 0Oihix = Viag + hijhi? (6.137)
where R;p7 is the curvature tensor associated with the metric g

Rign? < 0,13, — 0T gy + T Ty — T T ) (6.138)

while A;p, is related to the gradient of hyy:

Asen = Viwnn, — Vikni + Vikir | (6.139)

with V,; being the covariant derivative.

The compatibility conditions of the system (G.I33]) can then be summarized
in three groups of equations, corresponding to (GI37).

The first condition has a purely geometrical meaning, i.e. it concerns the
metric only (and its first- and second-order derivatives), present through the
Christoffel symbols; it is equivalent to six equations (congruence conditions),
which imply, at each instant, the actual configuration C' of the continuum,
endowed with an Euclidean flat metric.

Condition (GI37)2, instead, has a geometrical-kinematical meaning, be-
cause it contains the metric (through the covariant derivative) as well as the
deformation and angular velocities.

Finally, (€I31)3 has an evolutive meaning for the tensor h;, and it is the
only equation containing the acceleration a;.

The system ([GI37) gives rise to a first-order Cauchy problem, in the vari-
ables g;r and h;y:

Otgir = 2h(ry Ohix = Viag + hil by ; (6.140)
these variables are subjected to the constraints
Rin? =0, Ay"=0, (6.141)

which must be satisfied at each instant and, in particular, initially. The con-
straints (6I14)) are involutory, in the sense of Cartan. In fact, from (6141
(and the Bianchi identities, see e.g. [4]), it follows that the two tensorial fields
Riin? and A" must satisfy the following linear homogeneous first-order dif-
ferential equations:

OtAikn = Rini’ aj + 2hp? Apjij — 2hi? Apens,
(6.142)
O Rikn? = —Rikn'hi? + Rigihy' — 2V Agp?,
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whose coefficients contain the characteristics of the continuum a; and h;g,
besides the Christoffel symbols, through V.

To show this, let us start by noting that the definitions (GI34]) and (6138)
imply the identities

O = Hyd | OyRign? = ViHgn? — Vi Hip? | (6.143)

where ot
Hik,j = vikkj + kaﬂ - ijik (6144)

is symmetric with respect to the first pair of indices and depends on the
deformation tensor and the metric. In turn, antisymmetrizing (6140)2, we
have Ojwir, = V;ax) and, after covariantly differentiating both sides,

OV pwip = VhV[iak] + 2Hh[ijwk]j ; (6.145)

similarly, for the symmetric part Ogk;; = Viar) + hijhk;j, taking into account

(6144, one gets
O (Vhwir — Vikpn + Vikin) = ViViag — ViVgan) + Vi Viap

+2Hpijwiy; — 2K g hig — 2gth[lijhk]j )
where
Knir & Viha (6.146)
so that
Apik = Knix — Hpik - (6.147)

Using now the Ricci theorem (see e.g. [4])

V.:Viay = ViVian + Rip' ha; (6.148)
as well as the antisymmetric properties

Ak = Kpag » Ry’ =0, (6.149)

one immediately obtains (after differentiation) (6I42);. To this linear and
homogeneous relation between the tensors 0;A, A and R there corresponds
an analogous relation between 0; R, A and R, as a differential consequence of
ml' In fact, M) and (m imply ijikh = Vjvihhk—Vinkh, from
which, by antisymmetrizing over the first pair of indices and using (6148]), we
have

2V Hygn = Rji'shun + Rji' nhia — 2V Agin -

This confirms (6I142); and concludes the proof.
The linearity and homogeneity of the system (6142) implies the involutive
structure of the constraints (GI4T]), in the sense that, because of ([GI40), the

tensors Ajpi and R;; & vanish at any instant, if they are initially null. It follows
that the compatibility conditions of the system (6133, that is, (GI37), are
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equivalent to the Cauchy problem (6.I40]), if the initial data g;z0 and ho
satisfy the constraints (EI4I)) at ¢ = 0, i.e. in Cjy—.

Apart from the (differential) restrictions on the initial data, the problem of
determining the motion of the continuum is thus reduced to the integration
of the Cauchy problem (6.140]), which, however, requires the knowledge of the
acceleration field a;; this is in agreement with the Galilei principle, for the
priority of the acceleration in the formulation of the mechanical laws. Apart
from this specification, which we will investigate later, the formulation (6.140)
represents an evolutionary scheme made up by a first-order Cauchy problem
with involutive constraints, naturally giving restrictions to the initial data.

In the case of a continuum, besides the constraint (6.141]); which concerns
the initial metric only, gir,0, the angular and deformation velocities must

satisfy the conditions (G141,
Viwkh = ka’}”‘ - vhkki . (6.150)

This is a total differential system for w;i, such that the initial angular velocity
wo(y) is determined, up to a constant, from the initial deformation velocity
kik,0; the latter must then satisfy the congruence conditions

Vj(kaM — th]ﬂ') — Vl-(kahj — vhkkj) =0. (6.151)

So one has an evolutionary scheme, independent of the choice of the Galilean
frame R, because the involved variables g;x, hir and a; have an intrinsic
meaning. Such a scheme is invariant with respect to the choice of the La-
grangian coordinates and unaffected by transformations like

t=t, y'=9). (6.152)

Obviously, in Cartesian coordinates, the metric reduces to the Kronecker ten-
sor 6%, and the covariant derivative V; reduces to the partial one d;. However,
the Cauchy problem still has the same structure, with the acceleration law
assumed to be known, in agreement with the so-called restricted problem:

a; = ai(t,yj,gik,hkj) . (6.153)

The acceleration plays the role of a dynamical parameter, in the sense that the
specification of the function (EI53) is related to three groups of equations:
Cauchy, continuity and constitutive equations. Clearly, the analytic structure
of the system (6.140) and (6.I41]) (Cauchy problem plus constraints for the
initial data) remains unchanged, apart from the addition of new dynamical
variables. Similarly, the congruence conditions (6.I50) and the differential
consequence ([6I5]) remain unchanged.

We will consider the complete dynamical picture later, when studying the
relativistic case, which is more transparent and more compact.
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6.11 Hyperelastic Continua: Intrinsic Dynamics

In the Cauchy problem (G.I40) the acceleration enters into the second group of
equations only through its gradient V;ay; as a concrete and sufficiently general
example we will consider the case of a hyperelastic continuum undergoing
isothermal or adiabatic transformations, without internal constraints.

The dynamics of such a continuum is governed by the Cauchy and continuity

equations (see (G.42))
u(F — a) - jgainYi) —0,  u/g) =0, (6.154)

with g = det||g;x||, as well as by the constitutive equations (characteristic of
the material), which in the present case are expressed in terms of a single
scalar function depending on six variables: the isothermal or adiabatic ther-
modynamical potential W. In the context of finite deformations, (6154 are
usually written in the Kirchhoff scalar form, obtained by projecting them onto
a fixed triad in the reference configuration C,, and hence invariant or not, ac-
cording to the choice of the coordinates 3* in C,, Cartesian or curvilinear. As
concerns the constitutive relations, such a formulation—which requires the
introduction of the Piola-Kirchhoff (nonsymmetric) tensor—also requires the
definition of a potential function V', built up from W but depending on nine
variables instead of six (like W).

Another point of view, directly related to the “moving frame” of stereo-
dynamics (Euler equations, principal and secondary problem), is based on
the scalar equation (G.33]), obtained from (6I54]); after projection on the ba-
sis {e;}:

w(F' —a') = VY% =0, (i=1,2,3). (6.155)

These are “intrinsic” Lagrangian equations, in the sense that they are referred
to a triad {e;}, moving with the generic particle of the continuum and hence
unknown. This triad is defined up to transformations like

’

0y’

€, 6.156
o (6.156)

e, =

which do not exclude that e; may be anholonomic. Thus, (6I58]) are not equiv-
alent to ([G.I54))1, because they presuppose the knowledge of the vectorial func-
tions e;(¢,y); hence, one is motivated to study their geometrical-kinematical
compatibility, as we have done in the previous section.

However, by using the Lagrangian stress tensor Y* and the metric g
instead of the deformation €;;, 'Y the constitutive equations, because of (G.64))
and ([G.G8), can be written in the following form:

. ox” Ox° .
16 Or the Eulerian one: X" = am_ (;Uk Y™ with 2" the Cartesian coordinates of P.
Yyt Oy
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ow

Yt = -2 :
uagik

(i,k=1,2,3), (6.157)

with W depending, as concerns the actual configuration, on y* and g;,: W =
Wy, g). One always assumes the symmetric condition

oW oW

- ) { k )
0gik Ogri 7

which is equivalent to requiring that W depends on six variables only: g1 =
gi1, g2 = g22, 93 = 933, 94 = 2§23, 95 = 2931, Y6 = 2912-
The continuity equation (G.I54), in turn, is equivalent to the scalar condi-
tion
1= 1e\94/9 (6.158)

which gives the mass density in C in terms of the actual metric, starting from
the initial data: p. and g, = det||g.ix||-
Finally, using the identity

1
M= 9,(v9) . 6.159
o (V9) (6.159)
the constitutive relations (6.157) and (G.I58]) reduce (6I55]) to the form
- . OW Ok ow
ai = Fi 42 ( RHe rk) + 2V, < ) , (6.160)
Ogir \ i« 99ik
where dor ‘
Ty = T — T (6.161)

6.12 Cauchy Problem

Equation (6.I60]) allows one to give an explicit form for the first-order differ-
ential system (6.I140) in the variables g, ki and wik, at least in the case of
hyperelastic continuous systems:

O gir = 2k,
Oikir = Vi + (ki' + wit) (kr + wia), (6.162)
atwik = V[iak].

First of all, one must introduce on the right-hand side of (G.I62) the accel-
eration gradient in terms of the fundamental variables, taking into account
that, by (6I53), it has the form
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~ 1
Viar, =V, F + 2Wkl |:,u

*

1
Vi(Orpex) — 2 Oipus O + VI

*

+2v; (') <8l“* +Fl) I AA A (6.163)

where the (known) function W;!:

= def ow
Wil = gnp )
Ogni

(6.164)
depends, like W, only on the metric g;x (and on the fixed Lagrangian param-
eters). For the mass action, instead, the differential system is compatible with

a general force law . ‘
F'=F'(t,y,9,h,09) , (6.165)

which is a priori independent of the Lagrangian velocity v’; however, it is easy
to see, from (G.43]), that one can obtain a formulation similar to that of (6-47),
in terms of gix and v'.

Under the hypothesis (6.I65]), (6.I60) gives the components of the La-
grangian acceleration a’ in terms of the variables t, y*, gix, hik, and derivatives
8jhik and 81;‘9@’1@

Thus, the dynamics of hyperelastic continua can be summarized in a well-
determined first-order Cauchy problem for the variables g, kir and w; (all
having a precise geometrical-kinematical meaning), represented by the system
([6162), with the following initial data: configuration C, density u.(y), metric
g«ix, corresponding to the chosen coordinates y?, 1 deformation velocity k. (y)
and angular velocity w, (y) satisfying in C, the constraintd' (G.I49).

The mass force F and the thermodynamical potential W enter the evolution
equations (6.162]) through the gradient (IBEEIE; thus, once the function W
is assigned, conditions (6I62]) and the initial data ensure the geometrical—
kinematical compatibility of the scheme.

Moreover, the normal form of the system (G.I62]) guarantees the uniqueness
of the solution, at least in the analytic case (we are thinking of a series expan-
sion in ¢ of the solutions). Once the principal problem has solved in this way in
order to obtain the motion, one has to integrate the total differential system

7 One must consider the tensorial meaning of the difference between the Christoffel
symbols associated with two different metrics.

If the y* are Cartesian orthogonal coordinates, one has guir = 0i.

We notice, once again, that (EI50)2 is equivalent to determining the angular
velocity w.(y), starting from kj, if w;, are known at a point of C.. This is a
strong limitation, for the choice of the initial data, corresponding to the angular
velocity. In turn, the initial deformation velocity is subjected to the congruence

conditions (GI5T]).

The particular case of a perfect fluid presupposes a potential W = W (D) depend-

18
19

20

ing on the scalar D &f \/g/g*7 from which Y% = pg'*, being p = —pu. W".
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[6133), starting from (GEII8) and from the solution of the principal problem,
thus obtaining the basis e; and configuration C' (secondary problem).

The intrinsic form considered here can also be obtained in relativity (special
or general). In contrast, the approach in terms of displacement which we have
examined, for instance, in the case of the hyperelastic continua, as in the
isotropic case (but with general validity), can be framed in special relativity,
but not in general relativity.

The system (6162), which presupposes for the Cauchy data the choice of
the configuration C\, satisfies an important requirement: the invariance with
respect to the choice of Lagrangian coordinates; that is, (6162]) must have
tensorial meaning with respect to transformations like (6.152), since in C,
there are no a priori preferred coordinates.

We will explore in the next chapter how the general picture of continuum
mechanics is modified in special relativity.
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7

Elements of Relativistic Dynamics
of a Continuum

7.1 Relativistic Extension

Let us focus now on continuous systems in the Minkowski space My, assumed
to be time-oriented. The admissible frames are not all the orthonormal frames
Co, (=0,1,2,3):

Co - C3 = Mg = diag(—1,1,1,1), (7.1)

but only those having the timelike vector co € Cy .

In the Galilean frame S, associated with the orthonormal frame c,, we set
co = (7-v = —1) to stress the different role played by ¢y with respect to the
spatial vectors ¢; (¢ = 1,2, 3). In fact the three spatial vectors c¢; are defined
up to an arbitrary spatial rotation R in the oriented 3-plane ¥, orthogonal to
5.

Also for a continuous system in the relativistic context one must distinguish

between the absolute formulation of the dynamics and that relative to an
arbitrary Galilean frame. The former is invariant under space-time translations
or rotations (Lorentz transformations); the latter is instead invariant under
time and space translations as well as spatial rotations.

From a physical point of view, the most significant formulation is the rela-
tive formulation, which obeys the relativity principle and hence it is formally
invariant with respect to the choice of the Galilean frame. Moreover, the in-
variance is not substantial and we need to specify the transformation laws of
the various kinematical quantities with respect to a change of the Galilean
frame.

Let us start from the absolute point of view with the continuum represented
by a congruence of co® nonintersecting timelike lines, which fill a world tube
T € My.

Together with the 4-velocity V at each point E € 7 are also defined two
positive scalar quantities: the proper numerical density of particles 1/Dg (the
proper volume element is proportional to Dy, that is, dC/dCy = 1/Dg) and
the proper density of proper mass po(E).

G. Ferrarese and D. Bini: Elements of Relativistic Dynamics of a Continuum, Lect. Notes
Phys. 727, 239-262 (2008)
DOI 10.1007/978-3-540-73168-9 7 (© Springer-Verlag Berlin Heidelberg 2008
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The local tension state of the continuum, from a relative point of view,
is also characterized by the relative specific stresses ¢,,; the latter must be
substituted by the specific 4-stresses Ty (T stands for tension and N € M,
is a unit vector), since they must be defined in any Galilean frame, that is, in
any spatial section Y. through E € 7. From this point of view, it appears quite
natural to require for the Ty properties similar to the corresponding classical
ones. We then have the following postulates for the relativistic continuous

systems [21 3, []:

I From the absolute point of view, the tension state of the continuum is
characterized by a vectorial function over a 3-surface: T v, which is defined
in the closure of T and for each vector N;

IT The relativistic Cauchy postulate holds, in the sense that Ty is a linear
and homogeneous function of the components of N:

Ty = N, T, T = (TN)N_co (7.2)
IIT The reciprocity axiom holds:
Ty -N =Ty N, VN, N, (7.3)
that is the Eulerian stress 4-tensor 7%?, given by
T = T*cp, (@=0,1,2,3), (7.4)
with respect to the Cartesian basis c,, satisfies the symmetry properties:
T = TP (a,3=0,1,2,3) . (7.5)

Next, one has to specify the relativistic extension of the Cauchy theo-
rem, that is the evolution equations. The most natural extension is sug-
gested again by the classical evolution equations, interpreting the latter
as the spatial and temporal components of the same space-time equation,
respectively; more precisely, from (65) and (GI2) one has

pe = (pe) —jre =0, (ue)+e'di(ue) + pede’ = d,(ue) + d;(pee’)
so that system (G.4)—(6I2) can be cast in the following form:
Oip+ 0i(ue’) =0, d(ue)+d;(pee’) + 8;¢' = uF .
Thus, using (201
p=npo,  n=1/y/1-¢/c*, (7.6)
as well as the ordinary decomposition of the 4-velocity (in Eulerian terms):

V =n(e+cy) ~ VO=nc, Vi=ne, (7.7)



7.2 Proper Mechanical Stresses and Thermal Energy 241

the above equations can be summarized by a single space-time equation:
Oa(oVeV) +0;¢" = uok,  k=7nF; (7.8)

the latter, in turn, suggests the most natural relativistic extension. In fact,
the first term on the left-hand side of (L8] represents a space-time diver-
gence, and it is therefore invariant under Lorentz transformations. Simi-
larly, the term on the right-hand side has an absolute meaning, since pq is
invariant and k a vector field, not necessarily orthogonal to «. The second
term on the left-hand side of (7)), instead, being a spatial divergence, is
not invariant. However, by using (8], the assumed postulates I and II
and the fact that the coordinate stresses T transform like contravariant
vectors, one gets their simplest generalization by simply replacing 9;¢" by
0o, T¢. Thus, we assume the following dynamical postulate:
IV FEwolution equations:

Oa(ptoVOV) + 0T = uok, VE€eT. (7.9)

In ([Z9) all the fundamental relativistic ingredients of the absolute me-
chanics of continuous systems appear: the proper density of proper mass
o, the 4-velocity V, the (coordinate) 4-stresses T® and finally the
4-density of mass force k. As in the classical case to the indefinite equa-
tions one must add the

V' Boundary conditions:

VoT® =g, (7.10)

where V, is the unit normal, internal to the boundary B of 7 (necessarily
spacelike). These conditions only require the specification of the surface
external 4-forces g, in each point of B.

As in the classical case, in relativity (Z9) and (ZI0) can be summa-
rized by a single scalar symbolic relation. We will not enter into details
here. However, we point out that the classical point of view, which results
from adapting the “cardinal equations” of the mechanics to a continuum,
has a clear correspondence in the Minkowski space, in the sense that the
axioms II-V follow, substantially, from adapting the linear and angular
momentum equations of the mechanics to a continuum scheme (integral
formulation).

7.2 Proper Mechanical Stresses and Thermal Energy

The richness of the relativistic scheme with respect to the classical one already
shown in the case of a point particle also appears in continuum mechanics.
Here both the tension and the mass forces do not have in general a purely
mechanical character. One must consider that
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Ty-V#£0, k-V#£0, VE€T and N€ My. (7.11)

Thus, the interface between mechanical and thermal actions is not limited
to the external forces (including surface forces) but is extended to internal
and contact forces too (tension forces). We can then give to (Z9) a more
transparent form, decomposing the coordinate 4-stresses into the parts parallel
and perpendicular to the 4-velocity V:

T = X* + Q*V | (7.12)

with
X*-V=0. (7.13)
The 4-vectors X% and Q“V are named, respectively, the purely mechanical
and the thermal stresses. The vectors X® satisfy the conditions (ZI3) and
hence are spacelike vectors. The vectors Q®V are parallel to V and hence are
timelike vectors. Note that both X and Q¢ belong to the proper frame so
that they have an intrinsic meaning.
In the following we will consider only ordinary continuous systems, charac-
terized by the additional postulate Xy = N,X“ concerning the mechanical
stresses. We note that the vector Q<, because of the reciprocity axiom, is not

independent of the mechanical stresses; in fact, after scalar multiplying (Z.12])
by V and using (ZI3), we have T® - V = —c2Q%; using (Z.3)) then leads to

_CZQO‘:TV.Ca:XV-CO‘—I—VQQL}V-CO‘ .
Thus, one has the following expression for Q¢:
« 1 (0% «
Q :_02 (XV'C +VQV ) )
that is,
1
Q= 2 (o V—Xy), (7.14)
where the proper density of thermal energy conduction
€co=—Q-V (7.15)

has been introduced. From ([L.14)) we see that the 4-vector Q% depends on V
and can be expressed using the mechanical stresses and the scalar invariant
€c,0- The decomposition ([TI2)) can thus be written as

1 1
T = 26670VO‘V + X — 2XV ¢V, (716)
c c
where V| €. o and the mechanical (nonsymmetric) stresses X appear.

We define a continuum to be ordinary (with symmetric characteristics and
without thermal conduction) if the following postulate holds:
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VI The proper mechanical stresses satisfy a reciprocity axiom:
Xy -N =Xy N, VN, N’ . (7.17)
In this case, Xy -V =0, VN, implies
Xy =V, XY=0, (7.18)

that is, absence of mechanical stresses in the direction of V(VE € T).
For an ordinary relativistic continuum, (ZI4]) then becomes

Q= ficoV, (7.19)

where fi.,0 is the proper density of thermal conduction:

€c
fieo = 0’20 ; (7.20)

Furthermore, ([C.I6) assumes the reduced form:
T = X + 1o oVOV . (7.21)

Using the proper mechanical stresses, the relativistic Cauchy equation (9]
becomes
00 (X + pV*V) = pok (7.22)

where [ig is the total proper demsity, sum of the pure matter density and
thermal conduction:

fo = po + fhe,o - (7.23)

We stress that the alignment of Q along V follows from the symmetry prop-
erty of the mechanical stresses. For continuous systems having nonsymmetrical
tension characteristics one has an enlarged scheme both from a geometrical
and physical point of view. Actually, (ZI9) will no longer be valid and, from
an energetic point of view, the situation will be similar to that of an electro-
magnetic field.

Equation (Z.22) can be given in a scalar (Eulerian, because the independent
variables are the z%) form, by introducing the Cartesian components of the
4-velocities as well as the decomposition

X = X*cg | (¢ =0,1,2,3), (7.24)

where the tension coefficients X% are symmetric because of (ZI7): X% =
XPe and satisfy the conditions X’V = 0. Equation (Z22) then becomes

Do MP = pokP (7.25)
with M P the energetic tensor:

MeB L pyeys 4 xes (7.26)
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and the usual conditions:
VoV =—c, X =XP  XPVz=0, (7.27)

so that one has the typical form of conservative equations with sources.

Equation (Z.28) are four first-order partial differential relations (divergence-
like equations) between the mass forces (sources proportional to the proper
density of pure matter 1) and the energetic tensor M, which summarizes
the three fundamental characteristics of a continuous system (see (.26])): the
total proper density [LQE the 4-velocity V* and the purely mechanical proper
stresses X7

We will show later that M ®? (with support in 7') summarizes the continuum
material scheme under the only condition of admitting a timelike eigenvec-
tor. In other words, knowing M®? is equivalent to knowing the fundamental
ingredients fip, V* and X*?, under the limitations (Z27).

From this point of view, for continuous systems the tensor M*? plays the
same role as the one played by the Lagrangian function for a system with n
degrees of freedom: they both describe—in a synthetic way—all the contents
of the scheme, in all its generality.

The fundamental equations of the continuum absolute dynamics have the
following form:

aa(ﬂoVo‘Vﬁ + Xaﬁ) == Mokﬁ,
(7.28)
XYy =0, VoV, =—c

where the source k7 must be assigned. These are 9 equations in 16 unknowns:
o, flo, V and X8 (the latter are 10, because of the symmetry of the tensor).
The scheme is then compatible, starting from fixed initial and boundary condi-
tions, with infinitely many possible motions of the system, even under regular-
ity hypotheses for the assigned functions k%. Compared with the classical situ-
ation, there is one more indetermination due to the presence in fig = o + fe,0
of the thermal inertia term p.o. Hence it is necessary to add to (Z.28]) seven
more equations, the so-called constitutive equations, concerning the internal
structure of the continuum as well as its reaction to external solicitations.

7.3 Space-time Splitting Techniques. The Energy Tensor

The projection of a tensor along a given direction as well as onto the perpen-
dicular 3-space constitutes a very useful and general decomposition method.
This method is purely algebraic and is called natural decomposition. Here we
elucidate it in the case of 2-tensors.

Let 7% be an arbitrary 2-tensor and V¢ a timelike vector, both defined at
a given point F € M,. We have the following polynomial decomposition (in
V') with tensorial character

! From this, once po is known, one gets the thermal conduction term ¢ o.
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TP = 5P L yegh yvhge 4 gyeyh (7.29)

where the various quantities S*#, S8, S’® and S (respectively, a 2-tensor, two
vectors and a scalar) satisfy the orthogonality conditions:

SV, =0, SV3=0, S°Vz=0, S°V,=0. (7.30)
In fact, from (7Z30), multiplication of (Z.29) by V, Vs gives
TPV V5 = S(V, V)2 .

Thus, after defining
V= —(V,VY), (7.31)

one has the following expression for the scalar S:

1
S= TPV, Vs . (7.32)

Similarly, multiplying (Z.29) by V., and Vj separately gives
TPV, = -V2(SP +SVF),  TPVg=—-V3(S'™+ SV7),
from which the expressions for the vectors S? and S’ follow:

1
v

_ 1

B8
S |4

, TV —SVF g , TV — SV . (7.33)
Finally, the same (T2Z9) together with (Z32) and (T33) determines S’ as
a function of 7% and V', and this completes the proof.

The decomposition (Z9) is simplified if 7% is special. In particular,

o If T°F is symmetric, from (T33) it follows that the two vectors S and S’
coincide: S = 5’ and ([.29) becomes

T =8 4 vogh L vAg™ 4 svevh (7.34)

S8 being symmetric too;
o If T8 is antisymmetric, (33) imply S = 0 and S* = —S’“, so that (Z.29)
becomes
TP = 88 pyegh _yhge (7.35)

with $? now antisymmetric.

Let us go back to the energy tensor M of the continuum, satisfying (Z.20)
and (Z27)), and show that it characterizes the continuum scheme itself, giving
all the necessary descriptional elements. To this end, let us assume the field
M®P to be assigned a priori as a symmetric tensor defined in the world tube
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T € My, and admitting a future-oriented timelike eigenvector V, VE € 7.
From M®? one can obtain the total proper density and the mechanical stress
tensor. In fact, M*® can be interpreted as a vectorial map from an arbitrary
vector v into a vector w = M(v), i.e. v — w® = M*vg. One can then
derive the principal directions of M?:

M*Pyg = o™ . (7.36)

Moreover, M can be cast in a diagonal form, since it admits an orthonormal
basis of eigenvectors. In fact, by hypothesis, it has a timelike eigendirection
which defines the world lines of the continuum as well as their 4-velocity V.
Thus, in (Z31) one must consider V2 = ¢2 and from (Z.36]) one has

MV = \ve . (7.37)

Equation (Z37) simplifies the natural decomposition of M % along V, which
is of the type (T34)) because of the symmetry of M*?; hence, from (Z32) we
have

1 1 1
_ af _ « o
S=  MValp= NVVa=— . (7.38)
Equation (33]); then implies
A
§P=-"VPi-svP=0,
c
so that (T34 can be written as
[e3 (03 )\ « (03
M5:85—02V Ve 8V =0. (7.39)

Comparing now the decomposition (7.39) with (Z26) shows that S can be
interpreted as the proper mechanical stress tensor X and, in turn, —\/c?
is the proper total density fig.

We also note that X, as a tensor in My, defines a degenerate map, admit-
ting V as a null eigendirection; on the other hand, as a symmetric tensor in
3o (the spacelike platform orthogonal to V) it can be put in a diagonal form.
Its (three) eigendirections are called principal directions of proper tension.

Hence a symmetric tensor field M7, with a timelike eigenvector, character-
izes a symmetric material scheme (ordinary continuum) with mass density 1.

Electromagnetism too admits a symmetric energy tensor E*?, built up from
the electromagnetic field. However, such a field is also defined outside the
charged matter, and it does not admit a preferred timelike eigenvector. This
is a fundamental difference between the two schemes [I].

7.4 Dust Matter and Perfect Fluids

Let us consider the limiting case of material systems, exemplified by dust
or sand, for which the 4-tensions can be neglected. This is the dust matter
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scheme, characterized by the twofold condition that both the contact and
thermal actions vanish identically:

X =0, teo=0, VEe€T. (7.40)
The energy tensor reduces to the form
MeP = o Vove (7.41)

where 1o is the pure matter density, and V' is the 4-velocity.
One can study the special case in which the volume forces vanish too: k¢ =
0. Equation (Z22)) then becomes 9, (1oV*V) = 0, so that

8a(u0Va)V + Movaaav = 8a(u0V°‘)V + ,LLQA =0 y (742)

where A = V*9,'V = dV/dr is the 4-acceleration. After contracting (-42))
with 'V and using V - A = 0, one obtains the proper mass conservation
equation:

Oa (V) =0, VE €T . (7.43)

The latter equation implies, in Eulerian terms, the property that along the
generic world line of the continuum the elementary proper mass podCy = dmy
is constant:

d
oDy = const. ~ d (Do) =0, VEeT. (7.44)
T

In fact, by using the identity

1 dDy
— 9,V 7.45
DQ dr ( )
(T43) becomes
a o _ dpo | po dDo
V@ Outto + 100,V = dr —|—D0 dr =0,

which coincides with (Z44])). Thus the world lines of each element are timelike
straight lines and the proper mass is conserved just as for a single point-mass
in the absence of external forces.

A less extreme case is that of nonviscous fluids, namely material systems
for which the mechanical stress X,, is parallel to n, VE € 7 and Vn € X
(spatial platform in the proper frame, i.e. orthogonal to V):

X, =pon, VE € T, Yn e Y. (746)

The proportionality factor pg is independent of n and is called proper pressure
of the fluid at the considered point. We can now evaluate X*? from (7.40);
using the equality X,, = n,X* = naXO‘BCB, one has
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naXaB = ponﬁ = pOnamaﬁ )

so that
(X8 — pom®®)n, =0, VYne. (7.47)
Because of the arbitrariness of n € X, (Z47) is equivalent to the condition

that, for any fixed value of 5 = 0, 1,2, 3, the vector X —pym®? is orthogonal
to X and hence parallel to V:

X — pom®P = NPy« (7.48)
Using the restriction (T27)3: X*?V,, = 0, one can now determine \’:

1
—pom®?Vy = —c* N - AT = PV,

that is )
X0 = pqy (maﬁ + 2Vavﬁ> : (7.49)
C

and also »
M*® = pym®® + (,uo + fteo + cg) veys (7.50)

As concerns the number of equations and unknowns, in the case of dust mat-
ter there are five equations for five unknown: po and V' (([Z28])2 vanishes
identically). In the case of nonviscous fluids there are seven unknowns: pyg, fio,
Ve and py but still only five equations. In fact, (C28]); identically vanishes
even in this case because of ([(49):

1
Do (maﬁ + 2 VaVB) Vo =po(VP VP =0.

To have the same number of unknowns and equations one therefore needs two
constitutive equations. It is sufficient, for example, that the thermal inertia
is absent and that a reduced state equation (i.e. an explicit relation between
pressure and proper density) holds; this is exactly the perfect fluid scheme,
characterized by (Z50) plus the conditions

peo =0, flo = po = po(po) - (7.51)

From here one can directly approach relativistic perfect fluids.

Let us return to the general case in order to compare the classical and the
relativistic situations as well as to show the fundamental role of the first law
of thermodynamics in giving us a fully determined set of equations.

7.5 Absolute Dynamics of Ordinary
Relativistic Continua

Let us consider the evolution equations (7.22)) for an ordinary relativistic
continuum in a given Galilean frame:
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Oa(floVV +X%) = pok .
Expanding the derivative, one has
Do (oV)V + 10V sV = pok — 0, X,

where V*0,V = dV/dr = A. Thus

Do (0VV + [i0A = pok — 0, X . (7.52)
Multiplying by V and using V - A = 0, one has

—?0,(f10V) = ok - V — 0, XY -V ;
but X“ -V = 0 identically, so that

0o XV =0,(X*- V) —-X*- 9,V =-X*-9,V,

and one finds
A0a(10V®) = —pok - V = X*- 9,V ,

or
0a (fioVY) = poro — w((;) , (7.53)

where we have introduced the following proper quantities:

o e y.v thermal radiation power density,
(7.54)
wé‘) df Xa. 9,V internal forces power density;
the thermal radiation power density is meant per unit of proper mass while
the internal forces power density is considered per unit of proper volume.
Substituting (Z53]) in (Z52]) leads to the Newtonian equation:

A =Fy, (7.55)
where F represents the proper mechanical force per unit proper volume:

def o 1 i
Fo < pok — 0.X" — , (oro - wiV . (7.56)

The Newtonian equation (Z.58) shows in what sense the element of a contin-
uum can be compared to a point-mass (apart from the multiplication by the
proper volume element dCp): as concerns the acceleration, the proportional-
ity factor is now fig = o + fte,0 (total inertial mass per unit proper volume),
and it includes both the pure matter inertia po and the thermal inertia g o.
As concerns the proper mechanical force Fjy, instead, one must add to the
material point term
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1
pof = po | k — CQTOV = poks, ,

(in place of the 4-force k, one has the proper density of 4-force: dK/dCy =
1ok) the contribution of the internal (contact) forces

) 1 4
pof® = —9,X* + - wV (7.57)

these terms are both orthogonal to V, because of (Z54]); and (ZI13), that is
X* V=0 ~ XV;=0. (7.58)

Equation (53] represents the energy theorem of the relativistic continuum
in the proper frame Sy. In fact, after evaluating the derivative and using the

identity ([C43)), (C53) becomes

2 d

Dy dr (F0D0) = Wo = puoro — wf (7.59)

Thus, up to multiplication by the proper volume element dCy = DodC, (Z.59)
corresponds to the (proper) energy theorem of the material point (even if with
a different meaning):

d&y

g = Do (&0 — fioc® dCy, qo — Wy dCo) .

Clearly, passing to the continuum implies a twofold modification, because of
the presence of the density of proper thermal energy p.c? in addition to the
pure matter term poc? and because of the thermal power, which includes the
4-force (mass) term, as well as the contribution due to internal stresses.

The proper power of internal forces w((;) can be cast in the classical form
([624)) differently from the relative power. In fact, transforming (Z54]) through
the tension characteristics X% = XA leads to

; 1
wy=XM%%:2xﬂ%%+%%%

Next introducing the proper deformation 4-velocity

eof 1
Fap © (0aVs +05Va) | (7.60)

one has the (quasi) classical expression (because it is four-dimensional):
wl =X ko . (7.61)

The latter, in turn, can be reduced to the classical expression if, according to
(T34)), we consider the natural decomposition of the tensor 9, Vj:
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0oV = Hop + VaSa+ V3S'o + SV, V3, (7.62)

with the conditions
Ho3VP =0, S.,sV*=0, S°Vz=0, S°V,=0. (7.63)

In fact, since (9,V3)V? = 0, one has
S=0, S’ =0, Sp=— A (7.64)

Moreover, the 4-acceleration is proportional to the curvature vector of the
world line by a factor c?:

Ay = 2C,, (7.65)
so that (C64]) imply for (C62) the form
0oV = Hog — VaCl , (7.66)

subjected to the conditions given in (Z.63):
Ho,sVP =0, HyV*=0, C,V*=0. (7.67)
Using the restriction (58] one then gets the following expression for (Z61I):
W) = XPrps = X Hnp) (7.68)

which, in terms of proper quantities, has the same meaning as the classical
formula (6.24]). In fact, as will be more clear later, the spatial tensor H(,g)
has the meaning of ordinary deformation velocity, even though with respect
to the Galilean rest frame.

Finally, as concerns (T09), besides expressing the energy theorem it is
strictly related with the classical mechanics of continuous systems. In fact,
by introducing the density of proper internal energy €

poéo = figc? o=+ 102 (7.69)
Ho
so that (89) becomes
1 d 1T @
Dyég) =10 — 7
NODO dT (/’LO 060) To /140 wO ) (7 0)

thus representing (in the Galilean proper rest frame Sp) the first law of ther-
modynamics (G19]).

Comparing the relativistic situation with the classical one, (70) is for-
mally identical to the expression ([GI9) of the first law of thermodynamics,
apart from the replacement of the classical quantities by the corresponding
proper relativistic quantities. However, there is a relevant difference: in clas-
sical mechanics ¢ and e represent the internal energy of the continuum and
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the exchanged heat (either through radiation or conduction), respectively; in
relativity, instead, gy and €, come directly from the adopted scheme, clearly
richer than the classical one.

One then finds, as for the material point, the relativistic unification between
mechanics and thermodynamics. In addition, the relativistic scheme contains
another fundamental element for the description of the thermal field: the
proper vector of thermal conduction qg. We will come back to this point in
the next chapter.

7.6 Relative Dynamics of Ordinary Relativistic Continua

As we have already done for the material point, we are now ready to consider,
besides the absolute formulation, the “relative” formulation with respect to
a given Galilean frame. To develop such an approach which is fundamental
from a physical point of view one needs to:

1. specify the temporal direction «, which characterizes the frame and (lo-
cally) decompose along ~ and orthogonally to it, in ¥, all the various
tensorial quantities;

2. correctly (from both the mathematical and physical point of view) define
the relative quantities;

3. obtain the transformation laws of the relative quantities for an arbitrary
change of the frame.

Let us consider then a general Galilean frame S, and let v = co be the
temporal direction and {c;} (i = 1,2,3) a spatial triad in X (associated with
internal coordinates). From (I8)) we have the following conditions for the
mechanical stresses X:

VoX*=0 ~ X% V=0,
and using the relations V) = —nc and V; = ne; one gets the following expres-
sion for X9: .
X0 = TeXE. (7.71)
c
Moreover, the natural decomposition of X%: X = ¢’ — (X’ - 4) 5, where
o' =X"%c,exn, (i=1,2,3), (7.72)
assumes here a simple form, because of the condition
. ) . 1_..
X'V=0 «— X':(e+cy)=0 «— X .v=- X'-e,
c

or )
Xi.y=— ¢'-e.
c
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In fact, the latter becomes
. 1
Xi—g'+ ¢lev,  (i=123), (7.73)

and the proper mechanical stresses X are all functions of the vectors ¢'—

given by ([2)—and of e and ~. ‘

It is quite natural to call the vectors ¢* the specific coordinate stresses,
relative to the chosen Galilean frame S,. They also satisfy the ordinary Cauchy
theorem, so that the specific stress relative to the normal n € ¥ is

¢, =n9', VYne¥,;,  VYPcC. (7.74)

The natural decomposition (T.7I))-(7.73]), even if intrinsic in Sy, essentially
depends on the choice of S,. In particular, in the proper frame Sy, one has
X% =0and X’ = ¢>6, which specifies the physical meaning of the vectors X¢.

Let us project now the evolution equations (C22) onto ¥ and along -,
starting from the term 9, (fipV*V). By using the (Eulerian) decomposition

V =n(e+cy) (7.75)

and defining the total density of relative mass

~ def . 9
9y

one has

0u(0VV) = dijici(e + )] + | Allic(e + )]
— O,(pc'e) + Dy(jie) + [i(jie) + Dufle

Hence, expanding the partial derivatives and using ([G.3) together with the
kinematical identity (6I1]), we have

1

OalfioVOV) = |

[(aDe) + (AD) ] .
Similarly, (L1 and (Z73) imply
0a X = 09" + iai(¢i e)y+ 012 Di(eid’) + 013 Oi(eig’ - e)y .
Introducing now the relative mass force per unit relative mass, F:
pF = ks = po(k+k-4y), 1= pon?, (7.77)

gives rise to the linear momentum theorem

def

1 . i 1 i
[ (ADe) = pF T — 060 — (i), (7.78)
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as well as to the energy theorem

1 . def ; 1 ;

D (iDc?) = uyW = —pock -y — 9i(@' - e) — 2 O(e; @' - e) . (7.79)
In contrast to (ZZ0), the latter equation is not in its final form, since the
right-hand side should correspond to the total power W. However, by using
[C7E): —cy = e — V/n, and introducing the specific relative quantities (per
unit relative volume)

WE = [fic internal energy,

ur = —pok - V/n radiation thermal power, (7.80)
. . 1
wd = @' - (&-e + 2 eiate) internal forces power,

([CT78)) can be cast in the typical form:

Looper —w i piosr, Lyo
D (uDé) =W = F-e+r Mw . (7.81)
Comparing this relation with the material point scheme, we have the addi-
tional term —1/pw, which is related to the internal structure of the con-
tinuum. In the relativistic Cauchy equation ([Z78]) there appears, instead, the
term —1/c20;(e; "), absent classically, but also contained in the expression of
the power w®.

7.7 Transformation Laws of the Fundamental
Relative Quantities

Equations ([Z.78) and (Z80) obey the relativity principle, since they are for-
mally invariant with respect to the choice of the Galilean frame S,. However,
they are not substantially invariant because of the relative meaning of the
various quantities. All the relative quantities introduced above (in particular
€, r and w(i)) have instead a real physical content; that is, they cannot be
made as vanishing by a simple change of Galilean frame. In fact, the follow-
ing properties of absolute invariance hold (the index 0 denoting the proper
quantities):
€= ,[L()CZ/,LL() =inv. = éo,

n3r =~k -V =inv. = 7, (7.82)

nw® =X 9,V = inv. = w.

Equations (7.82)); 2 directly follow from the definitions (7.80)), 2, using (7.76])
and (Z69) as well as the relation u = uon?.
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Equation (82); follows, instead, from ([54))y using (Z58), (CTI) and
[T3), that is:

wf) = X0,V = X" da[nle + cy)

A\
= 0nX* - 4+ XY 0,e
n

=7 (Xi-('?ie—i— 1X0-8te>
c

. 1 ) )
=1 (¢>l Dot e ate> = .
From (Z.82)), using the relations
/ 2 .
T a:\/l—uz, o=1-"7°, (7.83)
n o« c c

one immediately gets the transformation laws of r and w, when passing

from Sy to Sg:
r = (Q)BT, w'® = (a) w | (7.84)
o o
which in the classical situation (¢ — oo) reduce to invariance laws.

As concerns the mass force of (Z.77), the corresponding transformation law
can be derived from the one valid for the material point, apart from the fact
that F and ¢ now refer to the unit of relative mass. Thus, from B.60), after
multiplying both sides by dm/dm’ = a/o, one gets the transformation law

for F:
«

1
F' = oF — (F-w+r)ul| , (7.85)

o? c2
involving the thermal power r given by (792 as well as the vector

aef 1
1+a

(7.86)

Also in this case, as for the material point, the condition F = 0 does not
imply F/ = 0, and hence has no absolute meaning. On the other hand, both
the conditions r = 0 and w" = 0 are absolute.

We next consider the transformation laws of the relative mechanical stresses
@' = X'*¢;, or, equivalently, that of ¢, = ni¢'. To this end we proceed as
follows:

1. start from the proper mechanical stresses X*:
X = X*cg | (7.87)

that is, from the symmetric tensor X%;
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2. use the Lorentz transformation in standard z!-direction:

1 1
xlo = (xo — ﬁxl) , xll = (xl — ﬁxo), {El273 = $273; (788)
o o

3. evaluate the components X'%* = (92'%/0z)(0x'% J02P) X P where

1
oze | 0 0 10 (7.89)
0 0 0 1

From (Z.89) we thus have the relations
1
11 _ 2 00 10 01 11
X' _0[2(6X _6X _5X +X )7
1
Xlla — (Xla o 6X0a)’
o

12a __ 2 133 _ 33
X% = x2  X'38 = X33,

where a = 2,3; from the latter, in turn, up to a boost on 3, we obtain the
relative stresses to Sy:

¢ = X", (7.90)
that is,
1 /1
¢/1 — < X11C1 +X12C2 +X13C3 o ﬂX10c1>
a \ « «
Bl 0 02 03 i 00
— X" e+ X%co+ X c3 | + 2X cy, (791)
a \ « «Q
/a 1 al a2 a3 6 Oa
o) :aX cp+X%co + X C3—aX c, (a =2,3).

We must now transform the right sides using the relation
i ik 0 0 1 i Lo
o' = X"cy, X'=X"o= e |+ ¢ -ecy) , (7.92)
c c
so that . 1
X%cp = ', XV = cipl-e. (7.93)
¢ 2
Moreover, by using the identity

1 u?

2allta)’ (7.94)

1
=14z, T =
«

the sum )
S'= X'"c; + X%y + XPc3, (i=1,2,3),
(0%
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reduces to the form ‘ ) )
S'=¢' +zX"cy,

that is, )

1 ¢'-u

S =gt a1 o™ (7.95)

Similarly, from (Z93)) and using the symmetry of X we have

. 1 . 1 )
XOz: €k¢)k-cl: ek¢)1_ck
Cc Cc

or
1
X0 — C¢1 -e, (1=1,2,3); (7.96)
thus, (Z.91])2 become
1
P =" — CQQ¢)a -wu, (a=2,3), (7.97)

with w defined by (.80]).
As concerns (Z91));, there appear terms as in (Z97)) and additional terms

as in (93]) and ([96):
. 2 .
! o' — ! o' - wu —5 1eiqbz—|—xX01c1 + 15 e; @' - ecy
o ca o\ c c? o2
o' — 1 o' wu+z (o — L o' -wu —ﬂ 1ei¢)i—|—xqb1-ec1
Aa ca a \c
1 32

i
+ Qei¢> -ecy .
c?«

¢)/1

1
Using the relation ol = @, leads to
u

1 18 1 1
n_ 1 1 - )
P =0 c2a¢ Wu+ca1+a<¢u 20, P Wu)
B

1 1 B
_ca¢e_ 3a? 1—|—a¢" eut c3a2¢e en-

Noting that ¢, - e = ¢, - u, after some algebraic manipulation one gets

1 u

B c4o<21—|—oz¢ulwu

1 1
/1 1 1
=¢ — -wu — U
o =¢ Cgacb 2o o
1
+C4a2u¢w~eu,

and finally

1 1
¢l =o'~ , ¢ wu- cga <¢w - y -Wu> . (7.98)

o
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Therefore, taking into account the meaning of u in z'-standard coordinates,
(917 and ([C9])) are summarized by the following relation, without any re-
striction on the choice of the triad 7" € Sg:

i i L : 1
Pr=¢ — , @ wu- Cg‘a <¢>w — 2% -wu> : (7.99)

After multiplying by n; one then also gets the corresponding relation between
the mechanical stresses in S, and Sé, with respect to the given direction n:

1 n-u

/ 1
Bo= b o= (00 2 duw) L (@0

where the dependence on the velocity e and on the continuum element is
through the vector w given by (Z.36)).

In the limit ¢ — oo one recovers the classical invariance: ¢, = ¢,,; in
the relativistic context, instead, the condition ¢,, = pn in S; does not have
an invariant meaning, since ¢, # p'n. In other words, the classical concept
of nonviscous fluid is meaningless in relativity, and the hypothesis of pure
pressure can only be formulated in the proper frame. However, since ¢,, =
w;¢’, ([C99) can be cast into the form

¢l = (5; — czlauiwl) (qﬁl — c21a¢l -Wu> , (7.101)
and thus in terms of the tension characteristics:
X'k = piximpBk, (7.102)
through the spatial 2-tensor

1
u'wy (7.103)

i def <4
B, i~
cC

which has already been introduced in Chap. 5.

7.8 Energy Theorem and the First Law
of Thermodynamics

In the classical context, the first law of thermodynamics is meant to be a
substitute for the energy theorem, i.e. it is introduced to correct the evaluation
of the kinetic energy. Equation (T80) confirms this interpretation, in the sense
that it is equivalent to the first law of thermodynamics, once it satisfies the
relativistic Cauchy ([Z78]). To show this, it is enough to eliminate from (78]
and (Z.80) the specific mechanical power: F - e. After multiplying (Z.78]) by e
and using the relation
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1
e? = c? <1 - 772) , (7.104)

one has
uF e =

so that (T80) becomes

1 Mo )
o (D) =0
n n

Multiplying the latter expression by 7 finally gives

1 [ : .

introducing then the specific internal energy pé = fic?, as from (Z.80);, leads
to

1; (;;m)' — n(ur —w) . (7.105)

This is exactly the relativistic form of the first law of thermodynamics given
by G.I9). Because of the invariance properties nD = inv. = Dy and p/n? =
inv. = po and using the substantial derivative

() € ddT() =V*a(), (7.106)

([TI07) is equivalent to the energy theorem ([.70)) in the proper Galilean frame
of the generic continuum element:

1 d

Dy dr (10 Doéo) = poro — w . (7.107)
Furthermore, using the kinematical identity (5201

1 dDg

1
=0, V* ~ 0O @) =0, 7.1
Dy ar = 0, (DOV) 0 (7.108)

allows us to cast (ZI0T) into a balance equation:
Ba(0&oV®) = poro — wl = n(pr —w®) . (7.109)
In conclusion, from the relative point of view, the general framework of rel-

ativistic continuum mechanics is summarized by the following Eulerian equa-
tions:
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1/1 .\ 1 | ;
D <C2/J,Dée> = T]Q/Lkz; — 811;[) — Czat(e@ ),

(7.110)

1 /1 : .
D <77MD€) = n(ur —w),

where the dot denotes the molecular derivative (C.I06). Obviously, the relative
numerical density 1/D is not independent of the velocity e from the differential
point of view since we have .

g =dive, (7.111)
which takes the place of the classical equation of mass conservation. The gen-
eral equations are then 5 in 12 unknowns: p (mass density), 1/D (numerical
density), e; (Bulerian velocity), X'* (tension characteristics) and é (specific
internal energy). To have the same number of equations as unknowns, one
needs seven more equations. This is not surprising, since one should include
into the equations the characteristic properties of the continuum (thermody-
namical state functions). These are the constitutive equations which, as in
the classical case, involve the energy e and the mechanical stress X i.e.
the so-called characteristic functions é = é(u, D, e;) and X% = X% (u, D, e;),
necessary to make the scheme fully determined.

7.9 Continua Without Material Structure
The system (II0) can be conveniently transformed after separating uoéy =

fioc? (with é = &y from (Z82))) into the pure matter proper energy from the
proper thermal energy:

Loé = poc? + €0, €= A 4e, (7.112)
where ¢ def €c,0/ 1o or, in relative terms,

pé = pc? + 15066,0 = uc® + pe . (7.113)

Equations (CI10) and (ZITI]) then become

p (eDe) = poks — 8ig" — , {@(eiﬁb )+ p(uDee) ] ;
1 /1 ’ 1|1 /1 ’ .

_ _ —w® 7.114
D <77MD) 2 {D <nuD€> n(pr —w )} ; (7.114)
g =div e,

which shows the sources of linear momentum and energy, respectively, con-
sidered in the ordinary sense, that is, in the strictly material context. From



7.9 Continua Without Material Structure 261

the absolute point of view, up to the boundary conditions, such sources were
summarized in the volume 4-forces and in the 4-stresses; from the relative
point of view, instead, they are identified with ky;, 7, the mechanical stresses
¢" and with the thermal energy e.

Thus, in order to have the same number of equations as unknowns, one
must specify these sources, which are a priori completely free, apart from the
invariance conditions imposed by the relativistic theory.

Apart from the analogy of (CII0) and (ZITIl) with the material point
dynamics, the presence in € of the thermal contribution both to the inertia
and to the internal energy represents a completely new feature of relativistic
continuum mechanics. This is even more evident if one considers a continuum
of classic type, without internal structure, i.e. a continuum such that each
particle has the proper mass as a conserved quantity:

d
dr (roDo) =0 ~ oDy = const. for each element of S . (7.115)

In each Galilean frame, the following conservation theorem holds:

(gD) =0 ~ ';;D = const. for each element of S, (7.116)

and ([(IT4) reduces to the form

Pe = nlur — ), (7.117)
Ui
which is the ordinary first law of thermodynamics. The presence on the right-
hand side of the thermal power shows that it cannot be deduced from the
equations of motion. Thus, in the continuum scheme, even without any in-
ternal structure, the energy theorem remains independent of the equations of
motion. This is a peculiar property of the continuum scheme, because it has
no counterpart in the dynamics of particles without internal structure.
In conclusion, for an ordinary relativistic continuum, the relative equations
are six (one more than in the general case, because of the constraint (ZI15)):

' D
(/;D> =0, [ =dive,

1 1 P | o1 ‘
puDe) = ks = 06" =, |O(eid’) + ) (uDee) | (7.118)
H

: _w®

0 n(pr —w'’),

and there are five unknowns: u, D and e;. The last equation is a constraint
on the laws of the sources &, 7 and X* (with the last two terms coming from
the internal force power). For instance, it can be used to determine r, starting
from the constitutive functions ¢ = ¢(...) and X* = X (...), which remain
free. Obviously, in such a case ky, must also be assigned.
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If, instead, the thermal power is assigned, the constitutive equations for
e =¢(...) and X** = X?(...) are necessarily subject to the thermodynamical
constraint (CII8)3. We note that (ZII8))4 represents the conservation of the
particle number all along the motion. In fact, it can be written as

DatD:_DalDe +8ze :D81 (De> )

8t<1;> + 0; (;a’) =0. (7.119)

This completes the proof if one compares the equation just obtained with the
ordinary mass conservation equation, taking into account that 1/D represents
the number of particles of the continuum per unit volume in S,.

Finally, as concerns the classical situation (¢ — o00), the system (114
allows us to re-obtain the ordinary Cauchy equation and it also shows that
the energy theorem reduces to the mass conservation theorem: D = const.
The coupling with thermodynamics is then lost and the first law of thermo-
dynamics must be assumed as an extra postulate representing the relativistic
correction to order 1/c? of the same (I114),.

or
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8

Elements of Relativistic Thermodynamics
of a Continuum

8.1 Introduction

We have already noted that relativity with its fundamental notion of space-
time is the most convenient framework for the description of physics, in partic-
ular for mechanical and electromagnetic phenomena. In fact, in the mechani-
cal context, it represents the first important step in the process of conceptual
unification of physics. This process, starting from ordinary particles (constant
proper mass), becomes more and more meaningful in the dynamics of par-
ticles endowed with internal material structure, where the energy theorem
is independent of the momentum theorem. There are two important aspects
concerning such unification: (1) the mass and the kinetic energy combine into
the material energy; (2) the mechanical and thermal actions combine into the
4-force.

Passing from the pointlike scheme to the more general one of a continuum,
the unifying process is continued in a natural way. In fact,

1. the notion of 4-stress summarizes the mechanical stress, the internal en-
ergy and the thermal conduction vector;

2. the mass or volume 4-force includes both the mechanical action and the
thermal radiation;

3. the surface 4-force takes into account both the mechanical action on a
surface and the effect of thermal contact with other bodies.

There are clear advantages associated with the absolute formulation of the
thermomechanics of continua. However, besides the elegant and synthetic ab-
solute formulation one has to consider, especially from the physical point of
view, the relative formulation with corresponding properties of invariance, ei-
ther formal with respect to the choice of the Galilean frame or contentwise
under time translations and space translations and rotations. In order to have
a physical content and a general validity a relative theory must be in turn for-
mulated in an arbitrary Galilean frame. In addition, the theory must include

G. Ferrarese and D. Bini: Elements of Relativistic Thermodynamics of a Continuum, Lect.
Notes Phys. 727, 263-307 (2008)
DOI 10.1007/978-3-540-73168-9 8 (© Springer-Verlag Berlin Heidelberg 2008
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the transformation laws of the relative ingredients, passing from one frame to
another.

The relativistic framework is deeply modified with respect to the classical
one (and even simplified) either for the relativistic corrections to the tradi-
tional physical ingredients (mechanical stress, power of internal forces, internal
energy, mechanical power, etc.) or for the changes required to the fundamen-
tal equation and, finally, for the relative meaning and dynamical content of
such quantities, typical in relativity. In such a framework, the classical result
becomes better clarified, especially as concerns the decoupling mechanism of
certain quantities (see e.g. the role of the first law of thermodynamics).

In this chapter we will limit our attention to the case of nonpolar continua,
characterized by the condition that the 4-stress tensor be symmetric [I].

The more general scheme of polar relativistic continua, not considered here
because of its complexity, is related to nonsymmetric energy-momentum ten-
sors. The latter are continuous systems which already in the classical context
require the introduction of mass and stress moments [2} [3] from the dynami-
cal point of view; moreover, from the geometrical-kinematical point of view,
they imply the enlargement of the pointlike structure to spinning particles,
by means of applied vector fields (directors) (see e.g. the case of Cosserat
continua [4, [5]) or tensor fields (general microstructures). The study of po-
lar continua in the relativistic context is motivated by the conjecture that
the further unification of thermodynamical and electromagnetic properties of
matter will require a relation between the antisymmetric part of the stress
tensor and the electromagnetic field.

However, we will not further discuss the fascinating problem of unification,
but we will start again from the ordinary scheme, in order to complete some
general aspects concerning the mechanical stresses and their associated proper
values, e.g. the Lagrangian power of internal forces and the associated notion
of isotropy, the class of systems undergoing reversible transformations and the
thermodynamics of perfect fluids.

8.2 Nonpolar Continua

Let us consider the decomposition of the coordinate 4-stresses T (o =
0,1,2,3):

T =T+ Q“V T V=0, (a=0,1,2,3). (8.1)
The total stress Ty = N,T* (VE € T and VN € My) splits into two parts:
TN:TN+QNV, TN:NaTa , QN = N, Q% (82)

which we will call proper total mechanical stress and proper thermal fluz at
the point E and along the direction N, respectively. The former, orthogonal
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to V according to (812, is a spacelike vector. The latter is instead parallel
to V and hence timelike. In the following we will use the notation

T = TaﬁC5 5 Ta = TQBCQ 5 (83)

without assuming a priori the symmetry of 7.
Let us decompose 7“7 into its symmetric and antisymmetric parts:

Teb = xoP 4 FoP | xoP X plas) - pof df plag] (8.4)

We will call X$# = X the proper mechanical stress tensor and F&P = —FJ®
the proper electromagnetic tensor. These two quantities are unified by 1B,
Consider now the natural decomposition along V of all three tensors intro-
duced above: X A F F and Q~, locally associated with the tension tensor
T8, We have

X3P = X0 4 xovP 4 XPye 4 xveys (8.5)
and similarly
FP = HOP L E°VP —EBVe | Q% =qf +eoV®,  (8.6)

where all the newly introduced tensors are spatial, i.e. they belong to the
platform ¥y orthogonal to V at F € 7

XB = xPo XY =0, XV, =0,
(8.7)
HoP = —HP>  HV3=0, E*Vo=0, q§Va=0.

Clearly, they are not all independent; for example ([81l)2, after the decompo-
sition (84]), becomes
X§Vs + FgPVs =0.

Because of [83)), (B0) and (87), this equation is equivalent to the condition
X+ XV* 4 E* =0, that is:

X=0, X%=_F.
Therefore, (81) and (83 assume, respectively, the following forms:
X§P =X — pevP - pPye (8.8)

and
1 1
TP = X0+ HYP + qqVFP —2E°V® + e oVOVF (8.9)
C C

with €. introduced in (Z.20). One can then evaluate the antisymmetric part
of the tension tensor:
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Tlefl = god 4 (pey e ve - (B0 1 L gf)ve
N 9210 9c2 %0 '

Hence, the necessary and sufficient condition for the tension tensor 7%? to be
symmetric is

HY¥ =0, E“=— (8.10)

262 qg °

In this case (nonpolar continua), which is the only one we consider hereafter,
T8 has the form

1
T8 = X8 4 2 (66 SVP 4 qi Ve + e oVOVP) (8.11)

and is summarized by the 4-velocity V¢, the (spatial and symmetric) proper
mechanical stress tensor X%, the scalar invariant proper thermal inertid]
Heo = €c0/c* and the spatial vector qs of the proper thermal conduction.

We note that expression (81T is the typical (relative) form of the energy
tensor associated with the electromagnetic scheme. Comparing the two fields,
material and electromagnetic, one must assume po = 0 and interpret €. ¢ as the
proper electromagnetic energy density, qg as the Poynting vector and, finally,
X as Maxwell’s stress tensor. However, in this formal analogy, which can
be extended to any Galilean frame with v # v, = V/¢, Maxwell’s energy
tensor has no direct counterpart in the proper mechanical stress tensor 7B

given by (84):
T8 = XP 4 qu sy (8.12)

rewritten here by using (88)—(8I0). Such a tensor, different from X*” is also
nonsymmetric:

alle] 1 @
Tles] — 2 (Ve —ggvP) . (8.13)
Nonpolar continua are still characterized by the reciprocity axiom:
Ty N =Tpn -N, VEcT, VN,N € M,. (8.14)

If we assume this axiom to be valid for the proper mechanical stress tensor
Ty also,

Ty N =Ty N, VEeT, VYN,N €M, (8.15)
then 177 is symmetric too, like TP:
xoB — thﬁ , Fé’tﬁ =0,

and, as a consequence of ([8.8]) and (8.I0), one has again the scheme of nonpolar
continua, without thermal conduction: qo = 0 and 7% = X5,

! The idea of incorporating in the tension tensor a proper energy term different
from that of pure matter ro“Vﬁ is due to C. Cattaneo [0].
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8.3 Proper Thermodynamics of the Nonpolar Continua

For a nonpolar continuous system (811]) and (83]); imply that the 4-stresses
have the form

1
T = X% + 2 [Vaqo + (qg + 6070VQ)V] R (816)
where we have used the notation
X xofe, (8.17)

Thus the proper ordinary stresses X along N

Xy & N, X (8.18)

satisfy the reciprocity property
XN-NI:XN/-N, VE €T, VN,NIEM4. (819)
The coordinate stresses X as well as qg are spatial vectors:

V.V=—¢, q-V=0, X*.V=0. (8.20)
The latter condition, because of ([819), is equivalent to Xy - ¢* = 0 for every
possible choice of the Cartesian basis ¢, ; hence Xy = 0 implying the linear
dependence of the vectors X*:

Xy =VoX*=0. (8.21)

Thus, when Vy # 0, B2I) allows us to express the coordinate stress X° as a
function of the others:
Vi .
X0 =-""X". 8.22
" (322)

Moreover, introducing the total proper mass density fig

def €c,0
2’

~ def
o = o + Heyo fhe,0 (8.23)

as a sum of pure matter inertia and thermal inertia (see (L23))), the relativistic
Cauchy equation (T9) can be written in the form

1 1
Oa [(ﬂova + qg“) V+X*+ 2 Veqo| = pok (8.24)

or, in scalar terms,
Do MP = piokP (8.25)

where the energy tensor M®” has the form
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MP = [jVevP 4 X8 + (Va + VA, (8.26)
with the restrictions
VeV, =—c2, X=X XV3=0, ¢V.=0. (8.27)
To 8Z7) one must add the boundary conditions on 97 :
v, T =g, (8.28)

with v being the internal unit normal vector to the hypersurface 07, which
is the boundary of the world tube 7. The field g should be assigned on 97,
corresponding to the external thermomechanical contact. However, (824]) can
be written in intrinsic terms as we have already done in (&.40]) for the case
qo = 0 (absence of thermal conduction); performing the derivative and scalar
multiplying by V give first of all the scalar equation analogous to (Z.53)),

1 1
*0a <ﬂoVa + 2 qff) = —pok -V — (XO‘ t 2 Va(lo) 0V,
from which we obtain the proper energy theorem

P0a(fiV) = pogo — wl . (8.29)

where the following proper quantities (per unit proper volume) have been
introduced:

Hogo - to(ro + ge,0) total thermal power,

1oTo def ok -V radiation thermal power,
(8.30)

1
H09ec,0 - <8aq8‘ + ,d0- A) conduction thermal power,
c

wéi) =D GRG R Y internal forces power .

By substituting (829)) into ([824]) we finally obtain the equation analogous to
(@53): .
poA = .7:0 5 (831)

where F is the total proper mechanical force per unit proper volume:
~ def 1 o 1 (i)
Fo = pok — 0a 2qOV —|— V D) (Hogo —wg )V 5 (8.32)

this expression reduces to the previous Fy when the additional terms due to
the thermal flux qg are neglected. As concerns the proper power of internal
forces w(()), one still has the expression (T.68)): wy () — xaBy «3; moreover, by
introducing the proper density of internal energy ¢ using (Z112)
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ot o2 - e=ctae, %0 (8.33)
Ho
the energy theorem (B29) assumes exactly the form (770, valid when go = 0,
1 d . I
(moDoé) = g0 —  wl, (8.34)

poDo d7 Ho

and represents the first law of thermodynamics in absolute terms and in the
proper frame.

Finally, in order to have the same number of equations as unknowns one
can consider ([831]) and [834) as fundamental equations, so that, using (833)),
the following system of equations (proper formulation) arises:

e\ dv .
Ho (1 + 02) dr =Fo,
dQF
v =V vi==e (8.35)
1 d € 1 T @
Dq (1 = — )
/,LQ.DQ dr |:'u0 0 ( * 02):| C2 (qo 2%} %o )

To these equations one must add the boundary conditions (B828), the initial
conditions and the equation of conservation of the proper numerical density:

o <;0 va> ~0. (8.36)

According to this point of view (i.e. choosing F, V, py and Dy as fundamental
variables), in order to have the same number of equations as unknowns we
must specify all the sources; that is, not only the external fields k and g, with
their thermomechanical content, but also the law of the 4-tensions T, i.e.
X qp and €. Obviously, X%, qp and ¢ will depend, a priori, on the same
variables appearing in the law of T%: E, V, ug and Djy: this is the so-called
equipresence principle [T].

8.4 Relative Formulation

The system of absolute equations ([835) and (830) plays a central role be-
cause of its invariance property with respect to the choice of the Cartesian
coordinates 2% (a = 0, 1,2, 3). However, the (three-dimensional) physical con-
tent of this system is not evident, because all the involved quantities are not
directly measurable (unless the observer’s frame would coincide with the local
rest frame of the continuum). To see such a content one has to consider in-
stead the corresponding formulation relative to an arbitrary Galilean frame.
As in the case qp = 0 previously examined the following three steps are then
necessary:
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1. select arbitrarily in C;r the temporal direction « characterizing the frame
and decompose, locally, all the various tensorial quantities along ~ and
the normal hyperplane X;

2. define the various relative quantities, either from the (formal) mathemat-
ical point of view or from a more physical point of view;

3. derive the transformation laws of all the involved relative quantities under
an arbitrary change of the frame.

Let us start by examining (824]); for the sake of brevity we assume that
the Cartesian coordinates z¢ are adapted to the chosen frame: cg = . First
of all we note that, as for the ordinary case qp = 0, the proper stresses X¢
are not all independent, because of [822]); in fact, using the decomposition
V =1n(e + ¢y) with e = e(¢, x) the Fulerian velocity, we have

XY = ieixi . (8.37)
The three vectors X' can be further decomposed as follows:
X'=¢' - X' -yy,
with ¢’ € X. Hence, using 820)3, i.e. X - e+ ¢X’ -~ = 0, one gets
Xi=¢' + 1¢i ey, (8.38)

so that, combining (837) and (B3]]), we have that the mechanical stresses
X (a=0,1,2,3) are well-determined functions of e, 4 and the three vectors
T.

Xo = (5;" + ieiéé") (¢>i + igbi -e*y) . (8.39)

We call ¢' (i = 1,2,3) the coordinate mechanical stresses relative to v (so
that ¢,, = n;¢" is the stress relative to n € X). They belong to ¥ and can
also be written as '

o' = X¢y, . (8.40)

The tensor X **, which is spatial (being the complete spatial projection of X %)
and symmetric in the considered frame, gives rise to the FEulerian tension
characteristics. Similarly, the proper thermal conduction vector qo can be
decomposed in the form qp = q — qp - ¥7, so that 820, implies

1
dQ=d+ 4q-ey. (8.41)

The spatial vector q € X is called relative thermal conduction vector; it van-
ishes if and only if qp = 0.

Let us now project (B24) on ¥ and along ~ starting from the term
0a(poV*V). Using the decomposition of V: V = n(e + ¢), and defining
as in the ordinary case (qo = 0)
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def
P=n’po s (8.42)

we have the following decomposition:

! ((oDe) + (pD)er]

9a(poVV) = D

where () denotes the substantial derivative:
() =0() + e (t,z)0ui (), (8.43)

and the Eulerian kinematical identity

g —dive, (8.44)

has been used.
Similarly, from (839) we have

i, 1L i 1 i 1 i
0. X% = 0;,0" + Cai(d) -e)y + 2 Oi(ei@") + Cgat(ei¢7 e)y .
Using then (843) and ([8.44) leads to
. 1
0a(V¥ao) = (nao)" +naodie’ = (1Dqo)" ;
A1) implies
0.(Vea0) = | (nDa) + | (nDa-e)
o QO—an Cane’Y.
Finally we have
) 1 ) 1
Oa(agV) = di(nd'e) + ,0¢(na-ee) +cdi(ng')y + S:(nq-e)y.
Next, after introducing the relative mass force uF

uF € oks = po(k + k- v7) (8.45)
®24) gives the momentum theorem

1 ~ de
p(ADe) = FYr F,, (8.46)

where the total force density F includes, besides the ordinary term F (see
[C78))), the contribution due to the thermal flux F.:

e 7 1 7
F¥ uF —0;¢" — 2 Or(eid’),

i . (8.47)
Fe'= = 5| p0Da) +0i(nd'e) + ,0i(ng-ee)|.
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The energy theorem is then given by

1 ~ 2\. . 9. i _ 1 1 . .
BUIDE) = —pock 7= 010" -e) = L[ | (aDae)

LOu(esdst - ©) + Aulna- e>] ~ ou(ng) -

In contrast to (846, the above equation is not in a physically meaningful
form yet; this form can be obtained by using the relation —cy = e — V /7 and
expanding the derivatives on the right-hand side. In fact, using the identity

1
e? =¢? <1 - 772) , (8.48)

and introducing the following relative quantities per unit volume:

Hé = fic internal energy,
def o
ur = — pok -V radiation power,
Ui
ef 1, , 11 ) .
e dof _ 9iq" — [ O(q-e)+nq- e} conduction power,
n cn
o def g 1 .
w = ¢"- | Oe e;0e internal forces power ,
)= @ @ + a) ternal f
c
(8.49)
we can write the energy theorem in its more familiar form:
1 N R
MD(uDe) =F - e+Q, (8.50)

where Q is the total thermal power:

1

Qdéfq_ def
I

w®, ¢ ¥ ryg. (8.51)

8.5 Transformation Laws of the Fundamental
Relative Quantities

The general equations (840) and ([B50) satisfy the relativity principle, since
they are formally invariant with respect to the choice of the Galilean frame
associated with the vector «v. However, they are not physically invariant, be-
cause of the relative meaning of the various quantities involved.

All the quantities introduced above, and in particular ¢, 7, ¢. and w®, have
a real physical meaning. If we denote by an index 0 the proper quantities, the
following properties of invariance hold:
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Ho

n3r = —k-V =inv. = rg,
(8.52)

1 1 .
e = — <8aq3 + L% ~A) = inv. = ge,0,
Ho c

nw = X*. 9,V = w((f),

which complete (C82]), by the inclusion of the thermal flux. Hence, as in the
ordinary case, the transformation laws of the quantities r, ¢. and w("), passing
from one Galilean frame Sy to another Sg, easily follow:

G () e (e e

Analogously, for the mass forces and the coordinate stresses (see (838]) and
([B43)) the transformation laws are exactly those of the ordinary case (qo = 0),

that is, (Z.85]) and (T.99)):

F' = 0042 |:O¢F— 012(F~W—|—r)u} ,
(8.54)

. ) 1 1
@' = <5}~C - c2aulwk) (¢k - c2a¢k 'WU) , (1=1,2,3),

where the dependence on the Eulerian velocity e is either through the scalar
o =1-e-u/c? or through the vector w:

u

w=e— . .- (8.55)
Finally, for the thermal conduction vector q, from (842]) we have
/ L g wu (8.56)
e — W . .
d=a- , a
Using then the relativistic theorem of addition of velocities
1
e = <ae ot au) , (8.57)
o 1+«
we also have the following transformation law for the vector w:
, o«
= ) 8.58
w=_w ( )

Equation ([854]); shows that, from a relativistic point of view, the cases q = 0
(absence of thermal conduction) and r = 0 (absence of thermal radiation) are
allowed. On the other hand, a pure heat theory (in the absence of a mechanical
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interaction) is meaningless; in fact, F = 0 in S, does not imply F/ = 0 in S’
but rather o
r_
F'=- 2™ #0.

In the classical case (¢ — o0) the situation is obviously different, all the
quantities introduced above having an invariant meaning with respect to the
choice of the Galilean frame. Furthermore, most of the relations decouple and
give rise to the ordinary theories.

8.6 Classical Form of the Relativistic Cauchy Equation

The relativistic equation ([8.48) contains the various nonclassical terms, which
appear on both sides and generate a thermodynamical coupling, absent in the
ordinary theory of continuous systems. However, if we use (844]), (840]) then
assumes the typical conservative form:

di(fie) + 0;(jiee’) = F (8.59)

similar to the absolute equation from which it is derived. To this equation,
in general, one should not couple the mass conservation equation, differently
from the classical case. Taking into account the meaning (842) of i, it is
convenient to separate the pure matter term (u = n%ug) from that related
to the thermal conduction (u. = n%p.0) by introducing the thermal energy
density ¢, already used in (833):

pE = pec? ; (8.60)

([B42) then assumes the form
N €
“:“(1+c2) : (8.61)

where ¢ is a scalar invariant. The decomposition (8.61]) can also be used in the
motion equation ([8359), showing the thermodynamical coupling through the
thermal energy e, which represents a strictly relativistic result. Clearly, when
q # 0 the vector F., given by (847, is a coupling term too.

A first alternative form to (8H0) can be obtained by taking into account
A1), which gives the equivalent expression:

0 1 0 1 ,
or ([Le + 6k¢k) t o K[LGH- 2 €k¢k) 61}
= uF — o (¢> - 026 ekd)k> +F..

The latter equation suggests the introduction of the coordinate dynamical
stresses:
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oL - e Terd® | (8.62)

which, both in the classical approx1mat10n (¢ — o0) and in the _proper frame

= 0, coincide with the ordinary stresses ¢'. The vectors q&l are in 1-1
correspondence with the ¢'; in fact, from ([B62]) and using (848]) one has

o 1
' =, exd” (8.63)

so that
2

¢ =o'+ 22 cierd . (8.64)

Therefore, the previous equation, at least in the case q = 0, expresses the
classical form

oP 0 09’
=uF — ) .
Y 8 1(’Pe) m PR (8.65)
where P represents the total linear momentum per unit volume:
def €
p L (1 + 62) e + ez¢> (8.66)

The conservative form (860, typical of the classical situation, is still valid
in the relativistic case when q = 0, with a larger meaning due to both the
mechanical sources (dynamical stresses (}51 in place of ordinary stresses ¢i)
and the newly defined linear momentum, with the addition of the two terms
related to the internal energy € and to the dynamical stresses ¢A>Z. Moreover,
the conservative form (865]) remains valid also in the presence of thermal flux
q. In fact, by introducing the dynamical thermal conduction q, through the

same law (862):

. def 1 ..
4=4q- ,q-ee  ~ q=q— ,q-ee, (8.67)

the additional mechanical force F. given by ([84T)2 assumes the following
form:

_ Jor.  aP.e) 0.
Fe==loe T o Tow|
where 5
def 1 .27, A odef 1)
Pc = 62 <77q + CZ q- ee> ) (r/)c = anq e. (868)

Thus, in the general nonpolar case with q # 0, the relativistic Cauchy equation
retains its classical form (8.63):

oP 0 . 0
MENCTOE B (8.69)
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—

where the total linear momentum P and the total stresses @' also include,
besides the ordinary contributions P and ¢, the thermal terms P, and qbicz

~ def 1 2 'k N 2773A
P=P+Pc=pet+ ,|peetned” +nqa+ ,q-ee),
c c

(8.70)
idef i i _ 51‘_1 i E, N ok
¢—¢+¢c— k Czeek ¢+62qe'

In particular, neglecting terms of higher order in 1/c2, (8Z0) give the approx-
imate expressions:

1 ~
P~pet (u6e+ek¢k+q) ,
¢ (8.71)

" i1y i
¢ = — L(clerndt —dle).

8.7 Transformation Laws of the Dynamical Stresses

Let us consider the relation (862) between the ordinary stresses ¢ and the

dynamical ones ¢’ rewritten in the form

pidef (1 — i
o X <5k - 2° ek> oF = §irot (8.72)
through the introduction of the Eulerian tensor
~ik dﬁf 6i]€ ]‘ 1k 8 73
g (5 ) (5.73)

i.e. a (regular) spatial tensor such that

‘ 1
det||g™*|] = >0, 8.74
115" o (8.74)

with reciprocal tensor g;; (denoted by the same symbol):
772 ik ;
gik = Ok + o2 Gi€k 9" grj = 65 . (8.75)

The two tensors ¢** and grj depend on the choice of the Galilean frame
Sg, and hence have a relative meaning. In the proper frame (e = 0) they
coincide with the spatial metric, a fact that will allow us to better specify
their geometrical meaning. It is easy to see that, passing from S; to Sé, the
following transformation laws hold:

§k = Al AR gh 9he = BYiB"gn (8.76)
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where the matrices

1
a

def

i def
Ay =

51;,3 + c20wzuk , B = 5;@ — w'uy, (8.77)

satisfy the relation A’y B*; = 5;- (see Chap. 5). We also note that, because of
[®E]) and the reciprocity theorem of the velocities

u=-u, (8.78)

the tensors A and B given by (BX1) are not only inverse to each other, but
can also be transformed from one to the other:

Bl = Al . (8.79)

Let us now consider the transformation law of the ordinary stresses (854])2:

o — B, <¢>k— . ¢>k-wu) ; (8.80)

2o
using (0] leads to
o . . , 1
¢ =§"kd " = A ALY B <¢l -, ¢ -wu)
o
_Ai_ahAj ¢l_ 1 ¢l_
- J 19 h C2Oé wu )
so that .
st i ((ad X
¢'=A" (qb — c2a¢ ~Wu> . (8.81)
If we decompose the vectors (fbl along the Cartesian basis, that is
o' = X'key, | (8.82)
it is easy to find the relation with the nonsymmetric tension characteristics:
~ . . . 1 .
X*=g'p X" = X% — | elep XM (8.83)
c
Moreover, (&) implies:
X'tk = AT Xk (8.84)
that is, the two (different) nonsymmetric tensors X'* and X* have in S,
the same principal invariants. The same property is no longer true for the

ordinary characteristics X% given by (840); in fact, the latter are symmetric
and transform as follows (see (854])2):

X'k = B xh B,k (8.85)
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8.8 Nonviscous Fluids and Dynamical Pressure

The introduction of the dynamical stresses (B.62) in a given Galilean frame
S, implies a relativistic consistence for the hypothesis of a pure pressure:

@' = pc N Xk = pgik (8.86)

~ 17 .
in fact, using (8381, we find ¢ =pch, VS, and hence such hypothesis is
invariant with respect to the choice of the Galilean frame. The scalar p has the
meaning of proper pressure of the fluid, and this is a different way to define

nonviscous fluids. The hypothesis ([8388), using (8.64) and 73], is indeed
equivalent to the condition that the ordinary stresses ¢' have the form

¢ =pic o~ X =pg*, (8.87)
implying that in the proper frame there is no proper viscosity:
oo = poditecy, . (8.88)

In fact, consider ([854))2 and specialize S, to be the proper frame Sy. Thus
e =0 and, from (857, for a fluid element at rest in Sp:

e =—-u. (8.89)

After multiplying by n; and using the reciprocity axiom, [854]); assumes the
form:

1 1
Aa(l+a)

u-n 0

0 0
(u-ng¢, + ¢, -nu) + c4o<2(1—|—o¢)2¢“.uu'

P = ¢y +
Replacing u through ([889) and omitting the prime for the sake of brevity
lead to the following dependence between ordinary proper stresses and those
relative to an arbitrary Galilean frame Si:

b, = ¢y + AP, (8.90)

where

A¢, = Lo [¢>O-ne+e-n(¢70+ " qbo-eeﬂ (8.91)
"2l 4n T © o 2(1+n) e ' '

Equation ([BA0) shows that in a relativistic context it is necessary to distin-
guish between static and dynamical stresses; that is, in any Galilean frame S,
the stresses depend on the dynamical state of the fluid element (apart from
other conditions) ¢, = ¢, (e, @), different from what happens classically.

We notice that for any direction n orthogonal to e the relativistic correction
to the ordinary stresses A¢,, is always parallel to the velocity e and it is a
linear and homogeneous function of ¢>2 =e;0".
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Let us assume the continuum to be a nonviscous fluid, that is, from (887):
¢’ =pon, VYned. (8.92)

From (R90) we then have

2 2 2 2
n n-oe n
bo=m[nt iy oo (24,7, ) o <ot faerme
(8.93)

Equation B32) implies the following form of coordinate stresses in any

Galilean frame Sg:

. . 2 . .
@' =po (CZ + 7072 618) = pog™er (8.94)

which is not compatible with a pure pressure; such a compatibility concerns

instead the dynamical stresses ¢’ = poc’ only, confirming the equivalence

between (8.86]) and (8.92]).

8.9 Lagrangian Form of the Relativistic Cauchy Equation

As we have seen above, the relativistic Cauchy equation ([B.69) has been de-
rived using Eulerian coordinates. We will proceed now to transform it in its
Lagrangian form [4]. To this end, let us assume for the continuum a generic
set of Lagrangian coordinates y' (i = 1,2,3), i.e. curvilinear coordinates for
the points in the actual configuration C. Let {e;} denote the natural basis
associated with the coordinates 3’ in C € Se and g;;, = e; - e}, the Lagrangian
metric with associated Christoffel symbols of the second-type I'*;. and the
covariant derivative V;.

The partial derivatives (spatial and temporal) of the basis vectors {e;}
(and similarly for the cobasis {e'}) give the following geometrical-kinematical
relations:

0 0
8l-ek = Fhikeh y 8tei = 8iv y (81 = ayi y 815 = 8t) s (895)

where v = v'e; denotes the Lagrangian velocity. The velocity gradient V;vy,
summarizes, in turn, the two fundamental tensors: w; (angular velocity) and
kir (deformation velocity):

Vivg = wik + kik v = gkivi . (8.96)
The symmetric tensor k;:

def

1
ki, = 2(Vz-vk + Vivi) , (8.97)
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can also be written as 1
ki = 25t9ik ; (8.98)

the antisymmetric tensor w;y is instead equivalent to the vector
1, 1
w= e x ore; = 2curlv , (8.99)

where €’ is the dual basis of e;: €' - e, = 6}, and

1 .
w= Qwikel xeb, wp=w-e xe;. (8.100)
The Lagrangian form of (869) requires the introduction of the Lagrangian
coordinate static stresses Y or the dynamical ones Y*:
0y ci 0y o
Yi= . Yi= : 8.101
9ok @ 9ok © (8.101)
Moreover, we have the following: (1) the left-hand side of (869 can be ex-
pressed using the substantial derivative (843]), which in Lagrangian terms is
exactly the temporal derivative 9;; (2) for the vectors ¢', in Lagrangian terms,
one still has the ordinary expression for the divergence:
o' 1 ,
= " 9(DYY), D=./g. 8.102
07 = La(DYY), D=y (8.102)

Using (8I01))1, we find
aqf _ 9 (aaﬂ' Yk>

Oxt Ozt \ Oy*
i h i 9,k 2,0 h
_ 0 (0", 3y':ahYk8x 8y.—|—Yk 0%z 3y”
oy \ Oy* oxt Oy Ozt Qyhoyk Oxt
Next, using the relations
oyt ozt %zt oy, h 1
0T _ gk =Tl Thy = 9D 8.103
Ozt dyk k2 gyhoyk oz ok e = pk ( )
leads to ]
o' ko ph o~k L k
=Y T+ T Y = _0k(DYT) .
gpi = OY " T D b ( )
Thus, (869) cast in Lagrangian form becomes
1 - 1 .
DP) = uF — _0;(DY?) , 104
SODP) = uF — _0,(DY) (8104)

where we have the linear momentum and the generalized stresses given by

EE2) and (ET0):



8.10 Lagrangian Form of the Power of the Internal Forces 281

- de 1 i .23,
Pd:fuv—k ) (uav+n2vin—|—nq+ Z q.vv>,

c c

(8.105)

vy gy,

¢

where

i A S ai i i Lo
Yi=g%Y", ' =g'%d", G =0i— v (8.106)

As in the classical case, (8I04) can be written in scalar terms in a number of
ways, according to the stress characteristics and the bases used. For instance,
assuming o . .

Yi=Y%e,, Y' =Ye,, (8.107)
it is possible to introduce the dynamical tension characteristics Yk

Yik = gl yik (8.108)

these are not symmetric, different from the corresponding Eulerian quantities
Xk given by (882). With this choice and using (897, (8I104) becomes

1 R . _
D (DPF) + Pk = pF* — v,y (8.109)

that is . ~ . .
OPF = uFk — VY — kP — Ph(w, 4 kb | (8.110)

where & %' g%k, is the cubic deformation velocity. Equation (8I10), using
(BI07), determines the acceleration a as a function of the sources and paves
the way to the intrinsic formulation of the mechanics of relativistic continua,
although the nonsymmetric character of Y makes (8I09) not familiar.

8.10 Lagrangian Form of the Power
of the Internal Forces

In order to complete the Lagrangian formulation, we have to transform the
power of the internal force given by (849)4. In Eulerian terms, we have

. . . . 1
w® = szkik ~ = @' - (Oe + 2 e;0e) (8.111)
where ) 5 5
~ CL €;
ik = Ki i 112
kik kk—|—2c2 (6 ot +ek5t) (8 )

and k;i is the ordinary deformation tensor:

1 [(0Oer,  Oe;
ki = 9 <8IE1 + 5:Ek) . (8.113)
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The temporal derivative of e can be cast in Lagrangian form taking into
account that, for any Eulerian quantity, (843]) holds:

2() = () —€'ai() -
Thus, using (8I0T));, (BIIT)2 becomes
wd = Yi. {&-v + 012 v (v — vkﬁkv)} ,

that is .
wd) = Yk {Vivk + 2 v (Opv - e — vhvhvk)] .

Moreover, because of the identity
Ov-ep = 0wy — vV,

we find

- ) 1
w® = yik {Vivk + 2 0[Oy, — vh(Vkvh + thk)]} .

The symmetry of the tension characteristics (either Eulerian, X% or
Lagrangian, Y'**) then implies

) , 1
wd) = Yk [kik + 2 Ui(at’vk — 2Uhkhk)] s (8.114)
so that, using (898]),
G _ Ly 2 h
w\ = 2Y Ovgir + C2v¢(8tvk —0"Ognk)| - (8.115)
This expression immediately gives the classical limit of w®:

1
lim w® = 2Y1k8tgik ,

c— 00

and it can be further transformed in order to have a single temporal derivative;
in fact, the last term can be written as v"9,gnr = Oyvr — gnrOrv™, so that

. 1., 2
w® = 2Y““ <5tgik + QUighkﬁtvh) . (8.116)
c
Introducing now the covariant form of the tension tensor

Yin = Y*gugrn (8.117)

and using the identity



8.10 Lagrangian Form of the Power of the Internal Forces 283

YinOrg™ = =Y 0,91, ,
we finally get

. 1 .
w® = _Zmatg“f , (8.118)

where the tensor §°* has been introduced in (8I00)3:
ik _ ik Lk
gt =g" = Jv'v". (8.119)

Summarizing, while expressions (8115) and (8II8) for the power of the in-
ternal forces (expressed in terms of g;, and g'*, respectively) are equivalent
in the classical case, in relativity only (BIIS) assumes a fundamental role,
giving w) as a differential form in the variables ¢'* (for each element of the
continuum, i.e. for fixed y?).

Another useful expression for w() in terms of the dynamical stress variables
Y can easily be obtained:

yik W i gk, il = gid gkhy, (8.120)

Y& are symmetric, different from the Y given by (®IO7) and have a
4-degree polynomial form in the Lagrangian velocities v'. In fact, using the
inverse relations we have

Yin = GjigniY ™, (8.121)
where the tensor g;; has been defined in (B75):
2
Gik = gik + o2 ViVk'; (8.122)
thus, (BII8]) can also be written as
. 1.
w® = Lyikg g (8.123)

2

Obviously, both (BII8) and its counterpart (8123]) are formally invariant with
respect to the choice of the Galilean frame and are also in agreement with the
transformation law (853))s; in fact, in Lagrangian terms, for each element of
the continuum we have

o ="8,="%,. (8.124)
ag

/
We notice that w(® vanishes in S, (and hence in every Sy) only for motions

satisfying the conditions
1

2

these are the so-called rigid motions in the sense of Born, already seen in
Chap. 5. More precisely, consider the Minkowski metric m,g and the associ-
ated natural decomposition in S, along ~:

i

Oegik =05 (8.125)



284 8 Elements of Relativistic Thermodynamics of a Continuum
— 1 — T ﬁ = 0
Mag Map — YaVB Map?Y .

Comparing this form with the corresponding absolute one, along V|,
0 1 0 /8
Mo = Mg = VaVs, magV"” =0,
we have, irrespective of the choice of the coordinates,
0 _ 1
Meg = Map + 2 VaVe —vav3 -

Thus
mis = 1iag + | (Carp+epta+ | eacn) | (8.126)

and the total spatial part of the proper metric mgﬁ turns out to be given by

2
Thgﬁ =Mag + 7072 €atg ; (8.127)

in coordinates adapted to Sy, it coincides with the spatial Eulerian tensor:

2
g, = dik + 7072 eiek = ik - (8.128)

These relations specify the geometrical meaning of the Eulerian tensor g,
i.e. the proper spatial metric, induced in the space ¥ of Sy; moreover, the
condition (8I25)) has an absolute meaning and implies (in Sg) the vanishing
of the proper deformation velocity: kY, = 0.

Therefore in relativity the local deformation compatible with the vanishing
of the power of the internal forces is not related to the ordinary rigid motion,
but to the Born-rigid one.

8.11 Energy Theorem and First Law of Thermodynamics

Equation (8E0) confirms the classical interpretation of the first law of thermo-
dynamics as a substitute for the energy theorem []]. To see this, it is enough
to eliminate from (8350) the mechanical power F - e by using the relativistic
Cauchy equation ([840); in fact, after multiplying this equation by e and using

B439)), we have
1

e AT 02 P
pF-e= (aD)e"+  ale?)
. 2 1 ~ 2 ~ 2.
= nDc”) — oaDc*) + ., pctn
D( ) Dnz( ) 3
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using ([849);, (B5E0) then becomes

1
Dn?

. 1., i
(ADc?) — . fic*n = pg —w |

and using ([852)2 3,4 as well as the relation Dn = Do:

772

(1)
Dy '

(ADc?) = fic*) = pgo — 7wy

This equation, due to (842) and the similar relation p = n?ug, coincides with

(foDoc?) i
n Do = Hoqo — wé) )
which, because of the Eulerian identity
n() =V = (), (8.129)
T

reduces to the first law of thermodynamics ([834]). The latter, in turn, coincides
with the energy theorem (8350, as follows studying it in the proper Galilean
frame of the generic element of the continuum. In fact, using the Fulerian

identity (B.30])
— 9V, (8.130)

we find the conservation law of the total proper internal energy (829):
Oa (0€V'Y) = poqo — wéi) . (8.131)
We can also write (8131 in the Eulerian form:

o0& 0 - 1 )
" = C= _p®
or T oyi€¢) = (DE) = nlpg —w), (8.132)
where £ is the relative internal energy density for both pure matter and ther-

mal energy density:
def 1 o

1
EE = (uc® + pe) . (8.133)
n n
As we have already seen in the case of the relativistic Cauchy equation, (8132)

can be conveniently rewritten, enlarging the energetic content of £. In fact,
because of (867), (8BZ9); can be written in the form

B —1aqi+ 1 a( ‘o) 4+ 8( - ecl)
Hle = noxt = An|ot q gri 3

~ plaec) 1P 8)

o 10¢ 1 [a

8 i .
C noxt | 2p Gt(q'eﬂ— 8xi(q'ee)+n2(q'e)
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or
_0¢ | 1[0, 5. 0, 9.
—HIe = g T L%(n q-e)+, (g ec)
2
+n*(q + cgd-ee)-é] ,
Now, by using the identity
2
. c” .
e- &= 77377 , (8.134)
we obtain the following expression for g.:
gt 1[d 5. 0, 5. - .
— . = ) . . -ee’ . . Nl
Pe = o i+ ol g (@) + 5 (°q-ee’) +1q- (ne) (8.135)
Hence, (8I32)) turns out to be equivalent to
90 0 s A
(Ee") = 8.136
o (€D =0, (3.136)

where the energy density & includes also thermal conduction:

5 de 1 2 1
E¥eq iPge="" (1+52)+ La-e, (8.137)
c n c c
and the total source Q has the form
O ur —w®) = 9% _ Mg ey (8.138)
ort 2

We note that the last term in the expression for Q is genuinely relativistic, and
depends on the relative acceleration €; hence, the first law of thermodynamics
is coupled with the Cauchy equation and this is a novelty with respect to the
classical situation.

Moreover, one immediately finds the Lagrangian form of (8130 as well as
that of the quantities & and Q, given by ®I37) and (8I3Y). The Eulerian

differential system (8.69) and (813d):

oP 0 . . ot
o o P == 0
oo * (8.139)
06 0 .
ot T oui =@

with the general content specified in &70), (BI3T) and BI38), is formally
invariant with respect to the choice of the Galilean frame; it gives four (conser-

vative) scalar equations in the same number of unknowns: x4 and e; these are
the general equations of the thermodynamics of nonpolar relativistic continua
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and need the sources as well as the associated initial and boundary conditions
to be assigned.

For a single mass point the sources are reduced to the 4-force only, which
summarizes the mechanical and thermal action. For a continuum, instead, be-
sides the mass 4-force (with the quantities F and r) there are the 4-stresses
which, from a relative point of view, give rise to the mechanical stress and
the internal energy together with the thermal conduction vector. Thus, taking
into account ([862)), (867), (BI0)2 and ®I3F), (BI39) should be completed
(apart from initial and boundary conditions) assigning the functional depen-
dence of the various quantities, as in the classical case: F and r for the external
(volume) force, B ¢', € and o as concerns the constitutive behaviour of the Sys-
tem. These sources require the equipresence principle as a direct consequence
of their absolute nature; moreover, at least in the case considered here, the
sources are a priori free. One must then take into account the invariant prop-
erties of the sources and specify the state variables on which they depend;
these can partially be suggested by the Lagrangian expression (8118 for the
power of internal forces.

8.12 Finite Deformations in Relativity. Isotropic Systems

The theory of finite deformations [9] with the associate typical tensors
(Cauchy—Green, pure deformation, local rotation, etc.) can be extended in
relativity. Assume a reference kinematical state (Cy, v, ) characterized by the
configuration C, and the velocity field v, to be arbitrarily fixed in the chosen

W

Galilean frame S,;. We will denote by a “,” all the quantities relative to the
reference configuration C, and without the “,” all those associated with the
actual configuration C' corresponding to the motion of the continuum.

For the generic element of the continuum, besides the tensor ¢* (given by
(BI19) and representing the proper spatial metric at the coordinate time t),
we can consider the one associated with the reference configuration Ci:

~ik ik Lok
9« = 09« — 2U*U* . (8140)
c

Then the following definition of direct and inverse deformation character-

istics is quite natural passing from the configuration C, to C:

e 1 , 1, ,
e @t gl =al - L ' o),
. f (8.141)
gik def 2(gik _ Aik) — ik _ 00 (vivic _ vivk)'

2 In the boundary conditions the analogous surface sources also appear.

3 A priori, in the scheme both the temperature and the heat equation do not appear.
A brief discussion concerning these aspects will be outlined when discussing the
Cauchy problem.
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Equation (BI4I) refer to Lagrangian coordinates but it can also be easily
adapted to Eulerian coordinates. The covariant form of the deformation ten-
sors is naturally defined as follows:

~ det 1. ~ i i
€xik = 9 (it — Gik) = €xik + 9¢2 (772U ok — ﬁfU*Uf),
1 1 (8.142)
~  def ~ ~ % %
Ci = o (Guin = Gir) = € + o o (Evi0E = 00",

Similar to the classical case [4], the invariants of the direct deformation, with
respect to the metric Gyi, or §.°F, are functions of the invariants of the inverse
deformation with respect to the metric §;; or §**. But, actually, the mixed
forms of the deformation tensor which can be considered are four:

kg €70k, €gr9s” . €9, (8.143)
and are not all independent:

o Y b i i

E*HQ*kj = kg J , e.i g*u — engk .

We can choose, for instance, the first of the mixed forms in (8143 and intro-
duce the notation

&l =gy, Er=E1rg7 (8.144)

so that é,%y, = €iy,.

In order to build up a relativistic theory of finite deformations one has to
consider in C' and C, the induced proper metrics §°* and §%* instead of the
natural metric g;; or g.;k. The conditions v? < ¢? and v? < ¢? ensure that
both these are proper Euclidean metrics.

The classical definition of isotropy [4 [§] can be extended in relativity as
follows. The continuum C is isotropiclil with respect to the kinematical status
(Cy,vy) of Sg, if for each motion and at each instant the symmetric tensors
Yir and é;. (or éik) admit the same principal directions with respect to the
metric g;x (or g*), for all E € 7.

The above condition is equivalent to the existence of constitutive relations
like [10]

Vip = §9Y5 = poi + qé' + ré' ey, (8.145)
where p, g and r are scalar invariants i Isotropic systems are then character-
ized by the condition that, once a certain kinematical state is fixed (local or

4 For the sake of simplicity, we will assume that there always exists an isotropic
state corresponding to a planar spatial section of the world tube 7. This requires a
preferred Galilean frame, in which the status of the system is considered at certain
instant. However, the isotropic state for the continuum has a local meaning and
it corresponds in general to a curved section of 7: in this case the meaning of
instantaneous configuration is lost.

5 Products of more that two matrices €; can always be expressed in terms of these
quantities by using the Hamilton—Cayley identity.
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global, necessary to evaluate the finite deformations), the Lagrangian tensor
of the dynamical stresses Y, is a quadratic function of the mixed deformation
tensor €y, in briefly, an isotropic function.

Similarly, pulling back Y}, to the isotropic configuration C, and using the
identity €’ = é,%) the quadratic relation ([BI45]) becomes

Vi = poj + qé' +rét ey (8.146)
Lowering then, in (8I46]), the index ¢ with the metric g;:
Gik = Gwik + 2€sxik (8.147)

and using the Hamilton—Cayley identity for the last term of (8I46]), one ob-
tains the Lagrangian characteristics Y, = gijf/j . in terms of direct deforma-
tions:

Yik = Pguik + Qéwir + Révijésngs’" | (8.148)

where P, Q and R are functions of p, ¢ and r, and of the direct (or inverse)
deformation invariants.

As in the classical case, nonviscous fluids are included in (8I4%]) in the
case of vanishing ¢ and r. We notice that the hypothesis of isotropy (8145,
formulated directly in Sg, has an invariant meaning with respect to the choice
of the Galilean frame. In fact, the covariant tensors Y, g;x and é;; have the
same transformation laws (see (B8H) and (8M)2); thus, (8I45), invariant
with respect to the choice of the Lagrangian coordinates, becomes

Yi, = pgik =+ qgik =+ Téijghkgjh ; (8149)

it has an absolute meaning and can then be examined from a relative point
of view.

8.13 Continua Without Material Structure

An interesting reduced scheme is that of a continuum without internal struc-
ture, corresponding to the classical scheme of a mass conservation system. As
we have already seen, in the case q = 0 we have the proper mass conservation
law:

Vaaa (MQDQ) =0 s (8.150)

i.e. the absolute property
D
oDo = H2 — const. ; (8.151)
n

valid for each element of the continuum, with the meaning that the proper
density of proper mass po is proportional to the proper numerical density
1/ Dy.
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In this case, the sources are not completely free; in fact, (8131), because of
[®33), assumes the form

de i
(% + €)0alpoV®) + uodT = poqo — wé) , (8.152)

which, using [8129)), gives rise to the following restriction:

/;é = n(ug —w) . (8.153)

This is the relativistic form of the first law of thermodynamics; it involves
the sources ¢, r, ¢ and the Lagrangian tension characteristics Y% through the
power of the internal forces. Equation (8I52]) suggests the following definition
of systems undergoing reversible transformations, motivated by the classical
case, as those systems for which there exists a function of state (like €) called
the proper entropy s, such that for each transformation of the continuum
ro ds
= , 8.154
90 dr ( )
where 6 is the absolute temperature.
From the relative point of view, being ro = 7°r, the identity (8I29) reduces
BI54) to the form
3
nr .
0y
thus, for systems undergoing reversible transformations, in each Galilean
frame one has

0= s, (8.155)
where 0 is the relative temperature:
0
0=". (8.156)
n

The converse is also valid: if (8I55]) holds in any Galilean frame and with the
following invariance properties:

s =inv., nr =inv. , n*0 = inv. , (8.157)

then (BI54) holds too.

The reversibility condition ([8I54]) introduces the relative temperature 6 as
an integrating factor for r» and another function of state: the entropy s. The
latter directly concerns the thermal radiation r and allows one to write (8131])
in the form

D\ uD D\ .
<M77 ) = un Oos — (Mn 6) —nDw" + Dy, (8.158)
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or

DY\ D : D ' .
(“n) :_(“n ]—') _S<M77 90) D + pnDg.,  (8.159)

where F is the free energy (per unit proper mass):

Fe 50, . (8.160)
As a consequence, the sources become F, ¢° and q as well as the two functions
of state: € and s (or equivalent functions like F and s).

In the general case too, using ([8I58) and (BI59), the reversibility hypothe-
sis can give suggestions about the properties of the sources, taking into account
the expression of the internal force power (8I1I8]) or (8I23]). However, similar
to what happens in the classical case, such hypothesis is particularly effective
for a continuum without internal material structure and not in the general
case.

8.14 Reversible Systems Without Material Structure

Let us now assume that (8I51]) and (8I54]) are satisfied; then, from (BI5]]),
at least for g. = 0, we have the following restriction for the sources:

e=0p5—  w (8.161)

Ho
which is unconditionately valid, i.e. it holds for each reversible transformation
of the system. Using (RII]]) (or (8I23), it follows that, for each element of
the continuum, the function of state ¢ depends on the entropy s, as well as

the variables §* (or §;x) given by &II9):
e=e(y’,s,§%) . (8.162)
Moreover, the continuum admits constitutive equations of the form

Oe Oe
0o = Yip = QMOaA ;
ik

og " (8.163)

implying that it is necessarily hyperelastic.

Equations ([8I63]) allow to deal with the isoentropic case: s = const. in a
purely mechanical context (that is, without considering the coupling with the
heat equation; the latter is necessary when the temperature is considered as
a new variable). The isothermal case, instead, is related to the free energy F.
More precisely, (8I59]) gives the following restriction:

. . 1 .
F=—sbp—  w, (8.164)
Ho
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thus for each element of the continuum, F depends on one side on the absolute
temperature 6y and on the variables §* (or gix):

F=F 00,5"); (8.165)
on the other side, the following constitutive relations hold:

oF oF
Yik =2 J 8.166
k o ('9g”€ ( )
In both cases, isentropic or isothermal, assuming the validity of the Helmholtz
postulateﬁ
0% 0?F
>0 ~ 5
0s? 06

the characteristic functions of state reduce to a single one: € or F. In other
words, as in the classical case, systems undergoing reversible transformations
are characterized by a single constitutive function, which allows us to specify
all the sources, apart from the mechanical action F and the surface thermo-
mechanical one.

At least from the constitutive point of view such relativistic systems are the
counterpart to the ordinary Lagrangian systems in the context of continuous
systems, both of them described by a single function.

If the mass 4-force is intrinsically conservative, that is

<0, (8.167)

k = GradlU(x) , (8.168)

with U a scalar invariant, one finds in each S’gﬂ

uF = po(k + k - vv) = GradU(z) (8.169)
and
ur =~y v = o dU 7
n n dr

6 Such a postulate states that the specific heat is always positive for a constant
configuration []. It is equivalent to the condition that the internal energy is an
increasing function of the absolute temperature 6o > 0:

Oe *F
o0~ osz ~ "
once (BIG0) and (BI6G): for the internal energy
OF
£ = .7: — 90 890

are considered.

" Note that the symbol Grad denotes the projection orthogonal to -y of the space-
time gradient Grad.
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that is, from (RI29]): .
ur = —pold . (8.170)

Therefore, each continuum with applied mass solicitation like (8IG8]) nec-
essarily undergoes reversible transformations too, with
u Bo

s=—_, 0= ..

8.171
8o . (8.171)

where 6y is now an arbitrary positive constant. This is a very special case,
in which all the sources (including mechanical mass forces) are derived by a
single function of state: the internal energy or the thermodynamical potential;
in fact, (8160, specifies the intrinsic potential U, according to (8IT1));:

oOF

=0
u 08907

6y = const. (8.172)

8.15 Isotropic Reversible Systems
Without Material Structure

Let us assume again that the continuum C has no material structure and is
subjected to reversible transformations, so that, together with (8I5I), the
constitutive relations (8I63])—(®I66) hold.

If one avoids a direct coupling with the heat theory also in the relativistic
context, that is, if one only considers isothermal (6y = const.) or isentropic
(s = const.) transformations, it comes out:

ow

Yir =2 R 8.173
k=200 0 (8.173)
where the potential W is given by
e(yt, G, 5)|s=const. adiabatic internal energy,
W= (8.174)

F(y', 3%, 00)|po=const. isothermal free energy.

In this case one has a completely determined mechanical scheme, in the sense
that, once the potential W and the constitutive law of the thermal flux q is
known (in isothermal conditions one must assume q = 0), one has the same
number of equations as unknowns. Apart from initial and boundary conditions
(which can easily be derived in relative terms from the absolute formulation),
the final set of equations in Lagrangian form is the following:

1 AL L, Gi wDy\
D@(D'P) = uF — D&(DY ), Oy ( , ) =0, (8.175)
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where

- de € 1 i N i
’Pd:fu(l—kcz)v—kc2 (n%iYZ—l—nq—i—QZQq-vv)

. . . . . 1

VYL Ty, Yi=g*Yae', a¥q- Lq-ww,  (8176)
C C

}/ik = 2772 (‘9@”“ ) ng = glk - 2 U,L’Uk;

this requires that the internal energy e in the adiabatic case coincides with
W and is related to F in the isothermal case, taking into account (8I60) and

(my

w adiabatic case,

(8.177)

€ =

OF

W — (90 P > isothermal case.
00 Op=const.

As in the classical case, (BI7H) can be written in scalar terms in different

ways, but the Lagrangian form of the system introduces one more unknown:

the metric g;;. Hence, one is forced to pass to the intrinsic formulation.

Equation (BITH) requires that both the specific mass force F and the po-
tential function W (y®, §'*), characteristic of the material, as well as the con-
stitutive law of q are all assigned.

The determination of W is related to the experimental study of the response
of a material (i.e. of the internal stresses) to the various kind of solicitation:
pression or simple flexion, presso-flexion, torsion, etc. Symmetry properties as
the existence of preferred configurations (natural status, isotropic status, etc.)
may eventually reduce the number of variables on which W depends and even
suggest the functional form. For instance, for isotropic systems, W becomes
a function of three variables, instead of six. In fact, W depends on the direct
deformation é,;, only through its fundamental invariants I, (with respect to
the metric §.,x) or equivalent variables. To show this let us recall the isotropy
property (8I48]) which reduces (8I73)) to the following differential form:

(Pguin + Qévir + RéJ e jn)én™ = uoW (&™) (8.178)
deducible from
19144
~ = MO A4 )
0Gik K O ik
where a dot here denotes that the infinitesimal variation W can thus be consid-
ered as a function of the direct deformation characteristics é,**, in agreement

with (8141):

Yir = 240 (8.179)

% = g 4 2e,* (8.180)

(the metric §,.** or g.;, should be known).
Condition (B.IT8) holds for any transformation of the system, that is, for any
choice of the variables €% (or €,;z). Moreover, after introducing the invariants
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jk (linear, quadratic and cubic of €*) in place of the deformation invariants
Ik: ~ . A . . A - .
Ji = gen€® Ty =¢&587,, Ty =elednen (8.181)
we find
J1 = gene® Ja=280567,, J3 =361 87060, (8.182)

where é."; = g.;é.7'. Equation (8IT8) thus becomes

1 _ = N
G BTs = oW () (8.183)

. 1 .

PJi+ 2@:]2 +
and turns out to be equivalent to the condition that, for each element of
the continuum, W depends on the direct deformation only through the three
variables Ji (in a 1-1 correspondence with the deformation invariants Iy).

Furthermore, in (8148]) one has

W(J W(J W(J
le‘za ) 62:2“2‘9 W) R:?)’;8 <2 (8.184)
n 0J1 n 0Js n 0J3
with the general relations
h=1, Jo=I1?—2I,, Js=1I} —301,+3Is. (8.185)

In this way, all the ingredients necessary to develop a relativistic finite elas-
ticity theory are introduced, in particular a second degree theory, similar to
the classical one, due to Signorini [I1] I2]. One has to require the condition
that, according to (8I8I]), the constitutive relations ([B8I49) were exactly of
the second degree in the inverse deformation or in the direct deformation [I3]
for an analogous theory.

8.16 Perfect Fluids with Heat Transfer

Consider now the special case of a perfect fluid, characterized by the absence of
viscosity (892) and by a reduced constitutive relation between proper pressure
po and proper density of proper mass jo. We note that, similar to the classical
case [§], in the context of continua without material structure a relativistic
perfect fluid can also be defined through the condition that for each element
of the continuum the internal forces (a) do not contrast the disjunction of
elements of the continuum, (b) do not provide work for any transformation
without change of proper volume; and (c) that the system undergoes reversible
transformations.

Such hypotheses are summarized by the condition that the thermodynami-
cal potential F given by (8I6Q) depends on the metric G** through the proper
numerical density of the particles 1/Do:
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1 1 \/ .
= = y/det|[g%]| ; 8.186
Dy = yp = Vel (5.150)
moreover, in any configuration C, we find
. OF (Do, 0
Yit = pogik, Po = —HoDo E‘?DOO 0) . (8.187)

Using now the proper mass conservation law (due to the assumed absence of
material structure)

D
oDy = P2 2 const. > 0 , (8.188)
n
we have the characteristic equation

Po = po(ko,bo) - (8.189)

Finally, for a perfect fluid with thermal conduction, the set of evolution equa-
tions, in Lagrangian form, is the following:

1

p(DP) = uF -

1 Si wDY\
DGZ(DY ) Ot ( , > =0, (8.190)

where
. 1 2 .. 1.
P= [u+ 2 <u€+n2po+ cgngq-VH v+ 514

a=q9— ,q-Vv,
A (8.191)
Y! = (]305}C + 2 T]q”vk> ek,
OF (x,00) def 1
0= — y r = .
Ox Ho

When q = 0 and considering isothermal or adiabatic transformations, the
system (BI90) gives rise to a purely mechanical scheme, as for the more gen-
eral case of a continuum without material structure and undergoing reversible
transformations. Such a scheme is completely determined starting from the
function F; when q # 0, at least in the general case, in order to have the same
number of equations as unknowns one needs either the relativistic heat equa-
tion (not yet formulated in a very satisfactory way) or the evolution equation
for the thermal flux q, that is the so-called entropy principle.

8.17 Introduction to the Cauchy Problem

The classical approach to physics is very different if compared with the rel-
ativistic one. Consider, for example, the case of mechanics; in the classical
theory, based on the Galilean principle of relativity, the only possible point
of view is the relative one. On the other hand in relativity there are three
possible formulations:



8.17 Introduction to the Cauchy Problem 297

1. the absolute point of view, which is framed in the four-dimensional space-
time (flat in special relativity or curved in general relativity) and expressed
in tensorial language. It is simple and elegant because of its geometrical
content but, unfortunately, it deals with four-dimensional (absolute) ob-
jects, which are but not (directly) observable.

2. the relative point of view, which is tied to an arbitrary three-dimensional
reference frame, i.e. a Galilean “solid”, and is expressed in terms of physi-
cal (observable) quantities. This point of view, instead, is more efficient for
the applications, because of its three-dimensional content, and uses quan-
tities which are directly observable. Moreover, it is formally invariant with
respect to the choice of a reference frame (principle of relativity).

3. the proper Galilean frame point of view, associated with the world lines
of the continuum itself. In this case, once given a reference frame, the
proper quantities become the observables. For instance, we have seen how
the hypothesis of pure pressure for a relativistic fluid is formulated in
the proper Galilean frame. Though it represents an absolute property of
the continuum, it assumes a dynamic character in every frame. Similar
to a Born-rigid motion which appears deformable in every frame, so a
relativistic nonviscous fluid in general appears as viscous in any frame
(see Sect. 8.8).

The unifying aspect of relativity is particularly evident in the mechanics of
continua, where the 4-stress tensor combines three proper quantities: mechani-
cal stress, thermal fluz and internal energy density. Again, the three kinematic
ingredients: acceleration, angular velocity and deformation velocity (distinct
in classical theory), are summarized, in relativity, by a single 4-tensor: the
space-time gradient of the 4-velocity: V [14] [15].

In this context we will to discuss the intrinsic Cauchy problem in special
relativity for thermomechanical continua, intrinsic in the sense of the rigid
Euler dynamics or according to the “répere mobile”. In fact, let us consider
an anholonomic frame distribution and the associated essential ingredients
(geometrical and physical); we have a principal (Cauchy) problem and then
a secondary problem, sub-ordered to the first and totally integrable. Here the
assumed variables (all spatial) are metric, angular and deformation velocities,
acceleration and mass density. We will also discuss the corresponding con-
ditions of compatibility; the latter, classically, constrain only the deformation
velocity, whereas in relativity, constrain both the acceleration and the angular
velocity. Consequently, the initial constraints involve the acceleration as well
as the constitutive functions which, in such a way, have influence also on the
initial data.

8.17.1 Relativistic Compatibility

Denote by I' a timelike congruence of world lines identifying a kinematic con-
tinuum in My. The lines of T never intersect each other (conservation of the
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particles’ number) and are characterized by the timelike unit tangent vector
field 4, v - v = —1, so that V = ¢ represents the local 4-velocity of the
continuum itself.

Introduce local coordinates y* with (o = 0,1,2,3) and ° = ct adapted to T';
let {eq} be the natural basis associated with y* and g3(y) the corresponding
metric, analogous to (LI but now in four dimensions.

I" induces in My an almost-product orthogonal structure 1 x 3, locally defined
by the timelike direction v and by the spatial platform ¥, i.e. the orthogonal
complement to v in the tangent space. This structure allows a systematic
and natural decomposition of all tensor fields in M, which can be directly
achieved by using an adapted anholonomic basis. For example, a convenient
almost-natural basis {€,} is the followingd:

~ def ~ def Vi
eonNVOeo, e = e, — !

~ 1
VO ey ~ e =e€; + 2 V;V 5 (8192)

having tensorial behaviour under transformations of the coordinates y“ inter-
nal to T', that is

-/

W=y, v =y ), (8.193)
and giving rise to the (Euclidean) induced metric on X
Yik = € - €, (8.194)

with inverse v
The following fundamental relations are associated with (8I92):

~ o 1 _ ~ 1
Oi8p =985+ ,HiV, 08 =H;"& + ,AV,
¢ ¢ (8.195)

oV = H, %8y, OV = Alg;,

where H;* = % H;; and = (0, 51) are the Pfaffian derivatives correspond-
ing to the frame vectors of (8192):

0 ~ qef O Vi 0 0 1

o< ye 5 7o ~
Ay’ Ayt Vo oyd Oyt + c?

V;0. (8.196)
Equation (8I95]) contain all the geometrical-kinematical ingredients for the
description of the continuum I', namely the proper deformation velocity Ky,
the angular velocity Q. (which together form the tensor H;, = K + Qi),
the 4-acceleration A; = ¢>C; (C; being the curvature vector of the world lines
of T') and finally the spatial Christoffel symbols IY,,. One can evaluate the
anholonomic tensor associated with the derivatives (8190,

8 We have indicated here both the general form and the corresponding one in
adapted coordinates to I', the latter being specified by a ~.
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[50” 56] = Agaﬁga 5 (8197)
whose nonvanishing components are

Ai

0. —
A’LO_C2

;o A% =20y, . (8.198)

A direct calculation gives then the following expressions:

Ci = [51‘“/0-“9 (%)] ;
o
1
K, = 23%‘1@7

Qi =0 {51 (%) — O (%ﬂ )
Yo Yo

Codef 1R ~ ~
T = 399" (0ivin + Okvni — Onyin)-

(8.199)

Similarly one can evaluate the Riemann or curvature tensor of My, defined
by o _

Ragp = [80“ 85]6p — A"gad,'ép = Ragpgég y (8200)
and identically zero, M, being a flat space-time. However, when its compo-
nents are considered as functions of the tensors H,j, A; and I'7;;,, the vanishing
condition is equivalent to certain relations among these fields which are just
the compatibility conditions of the differential system (8I95]). More precisely,
the curvature tensor, because of its symmetries, has only three types of inde-
pendent components: Rigpn?, Rk and Roi° (see e.g. [16], (5.65) and (5.67),
as well as [I7,[18]). A direct evaluation shows the following set of anholonomic
conditions:

. . 1 . . .
Rign? = Pan? + , (HinHi? — HinHy? — 2Q.Hy) = 0,
c
~ ~ 2
Rirn® = Bign = ViHgn — Vi Hip — 2 QixAn =0, (8.201)
~ 1 )
Rojor = Cik = OHyp, — (Vz‘ + 2Ai) Ay — HijHp? =0,
c
where Pj;;7 is the spatial curvature tensor associated with the spatial connec-
tion T
Pn? € 0Ty — 0T, + Ty — Ty, T ; (8.202)

and V; denotes the Cattaneo’s transverse covariant derivative [19], i.e. the
covariant extension of the Pfaffian derivatives 0; by means of the connection
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I‘jikﬁ We note that the conditions (8201))1 2 generalize the Gauss—Mainardi—
Codazzi equations to the case of a distribution of 3-planes {X}; in fact, if {2}
is integrableE i.e. if Q;, = 0, we have the ordinary form of the equations with
H;, symmetric representing the second quadratic form of 3.

The last set of equations (8.201))5, having evolutive character, yields the time
derivative of the tensor H;j; hence, as in the classical case [20], the dynamical
compatibility leads to the following system:

~ 1 .
a’)/ik = 2H(ik)7 8sz = <V7, + 62 Al) Ak — HinkJ s (8203)

with the supplementary conditions (8201])1 »:

Rign? =0, Bign = 0. (8.204)

Compared with the classical situation, here we no longer have the separation
of the variables ~; and H;. Moreover, in ([8204]); we have not only the
metric, through the spatial Christoffel symbols I'V;, but also the tensor Hjy;
the acceleration A; appears instead in (8204]),.

The constraints (8204) when expressed in terms of I, H;, and A; are
still involutive. In fact, we have the following spatial identities (i.e. Bianchi
identities, see [18], p. 88):

~ . 2 .
Vi Pign? + 2 QueHyr”’ =0, (8.205)
where the 3-tensor H;;/ is related to the deformation velocity by
Hi,? " (Vi + VioKn: — VaKie) s (8.206)

moreover, since Cj;, = 0 we also have a first-order differential system, linear
and homogeneous in the spatial tensors R;in? and Bjkp:

~ 1
ORikn; = Hj'Rign, — Hp 'Rt — <Vk + 2 Ak) Byji
~ 1 1 8.207
+(Vi+ 2 Ai | Brjr — 2 (AjBigh — AnBikj) ( )
OBikn = —Rigni AL + Hy, ' By + H; ' By, — Hy, ' Bpy.

Therefore, as in the classical situation, once the proper acceleration field is
assigned

9 For any spatial vector X = X*8&, the Cattaneo’s transverse covariant derivative
is given by

Vi XF =9, X" +1F,; X7

10 In this case I is said to be a normal congruence.
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Ai = Ai(y,"/jk, ij, ) s (8.208)

the evolution of the continuum can be reduced to the Cauchy problem (8203),
with given initial values vir,o and Hjx o (on an initial hypersurface) and sub-
jected to the conditions (8204]).

The evolution equations still have a precise geometrical meaning (vanishing
of the curvature tensor, Bianchi identities, etc.), and the classical ingredients
have their direct counterparts in the proper ingredients of the continuum.
Moreover, apart from the presence of the tensor Hy, in [8201)q, there is a
new variable in 8200)s: the proper acceleration A;. On the other hand, the
condition Bjgp, = 0 implies By, = 0, from which the following relations
between the tensors €2, and A; hold (Jacobi identity):

Oy, = 612 A, Vi — 612 QurAp = 0. (8.209)

Consequently, introducing the tensor A;xp:
Agen & B — ;)B[ikh]a (8.210)

which is in 1-1 correspondence with B;pp:
Bign = Aikh — 3A[ikn), (8.211)

Equation ([8204)2 can be written in the form of a (total) differential system
for the angular velocity ;:

Airh = VaQii + ViKni — ViKan
1
+CQ (QenAi + Qi A — Qi Ap) =05 (8.212)

here, different from the classical case, we have the presence of the acceleration
A; as well as that of the metric, through the spatial Christoffel symbols.
However, the system [8212) no longer has the unlimited integrability of the
classical case but there are compatibility conditions [18§].

8.17.2 Intrinsic Cauchy Problem in Relativity

The relative decomposition of the Riemann tensor (8201) with A; = ¢2C;:

Rixn? = Pign? + Hyp Hy 7 — Hip Hy, ) — 29 Hy, 7
Rign® = Bign = ViHyn — ViHip — 2Qi,Ch, (8.213)
Roior = Cix = OH,p, — 2 (61 + Ci) Cr — HijHy, 7,

associates with the curvature tensor three independent spatial tensors: Rk,

By and Ci; Ripnj obviously satisfies all the algebraic properties of a curva-
ture tensor; By is antisymmetric with respect to its first pair of indices and
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satisfies a cyclic property according to ([8.209)9; finally, Cj, is a symmetric ten-
sor, because of the condition ([8209);, with the additional conditions (8209)):

0k = 6[1-01,@], %[iQkh] — C[iQkh] =0. (8.214)

If the Cauchy problem is formulated in anholonomic terms, the following
differential system of first order (in time) for the variables ;. and H;, =
Qi + K holds:

Ovix = 2H iy,
B (8.215)
0H;, = Hinkj + Q(Vi + Cl)Ck

Together with ([82T5]) we should consider, a priori, further conditions (82T4]).

However, ([8214); is a consequence of the system ([B2T0)); in fact, (82I5]) can
be written in the equivalent form:

Ovir = 2K, 0y, = V;,Cy),
N (8.216)
0K, = Hinkj + 2V(¢Ck) + 2C;C%.

Summarizing, the effective constraints for the variables ;. and H; (in invo-
lution, because of the Bianchi identities) are given by (8213])1 2 only:

Pien? + Hipn Hi? — Hip Hy, — 2Q,,Hp = 0,
B B (8.217)
ViHpy — Vi Hy, — 2Q44.Cp = 0,

since (82I4)); is a consequence of (82I7)s, noting that
1 -
2B[ikh] = Vi Qun — CiS%n = 0.

Thus, we have 6 + 9 = 15 restrictions (all independent) to the initial data:
Yik,0 and K;j o with their first and second derivatives.

In the Minkowski case the field equations ([82I6]) as well the constraints
B217) both depend on the curvature vector C;. So, what is the role that the
acceleration plays in (82106]) and (8217)7

Clearly, the acceleration components are not additional field variables (be-
sides ;1 and H;), because they obey Galilei principle; hence, they are func-
tions of the thermodynamic variables of the continuum I'. This fact loses its
meaning in the case of the vacuum, just because of the absence of matter.
However, it is worth to note that for any choice of the reference frame I’
the formulations ([82I6]) and ([82I7T) of the evolution problem in M, have an
inwvariant meaning for every coordinate transformation internal to I':

yOI _ yO/(y)’ yil _ yi/(yl,y27y3)~
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Therefore, it has an intrinsic meaning in the considered frame, and this is a
substantial difference from the formulation of the analogous problem in terms
of coordinates.

As a consequence, the case of vacuum is completely different from the case
of presence of matter. In other words, in the case of vacuum, I' cannot have
more than a purely geometrical-kinematical meaning; it is completely at dis-
posal and there are no preferred choices due to physical reasons (i.e. there is
no inertia without matter). Some simplifying choices, as concerns the gravi-
tational equations, can be suggested only by the initial conditions.

8.17.3 Thermodynamical Continuum at Rest in I

Let us consider first of all the case of a thermomechanical continuum at rest
in I'. Let the coordinates be adapted to I' and satisfy the condition:

Yo=-1 "~ goo=—1, (8.218)
always compatible and invariant under coordinate transformations like
v =y ey, v =y v ). (8.219)

The field equations ([B2I6]) are then combined with the conservation equa-
tions of the matter: VgM*? = 0, so that we must determine both the rest
congruence of the continuum I'y (coinciding with I') and the proper dynamical
variables. Taking into account the expressions (B8I99) for C; and Q;:

5 i I ~ (i
Ci =" (&-7%87 ) . Q=70 [ai <7’“> — Ok <7 )] . (8.220)
Yo 2 Yo Yo
which reduce in this case (790 = —1) to
1/~ _
Ci =0, Qi = 5 (@'% - 3k%‘) , (8.221)

we have the following Cauchy problem for the (anholonomic) variables v, v,
Hik,MkO and MOO:

Ovik = 2H(ry, 0y = Ci,

0H;,. = (%1 + Cl)C]q + Hinkj,
_ (8.222)
8M00 = —KMOO — (Vl + Ci)MQi + HikMik, K = Hii,

MY = — K M0 + 2Hy MO + Cy Mo — (V; + Ci) M.

Furthermore, the Cauchy data on a given surface must satisfy the involutive

constraints (8217)).
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The energy tensor M? is not specified yet, and the form of the Cauchy
problem depends on the structure of M®P i.e. it is different according to
the considered continuum: dust, perfect fluid, mechanical, thermomechanical,
polar, neutral or with electromagnetic field.

As a concrete example, let us consider a nonpolar continuum

MP = poVeve 4 78 (8.223)

where the proper stress tensor 7% (mechanical and thermal) is given by
7% = X0 4 QP 4 “Lyevys, (8.224)
c

with €.0 = fic0¢® the conduction thermal energy. T*? includes the proper
mechanical stresses X P:

X = xP XPVy =0, (8.225)
and the proper thermal stresses:
Q8 = 012 (qgvﬁ + quva) , (8.226)
depending on the thermal flux gf':
q5Va = 0. (8.227)

The tensor M then takes the (standard) form

M = [gVove £ XP 4Q°% 10 2 1o + preo, (8.228)

where fig is the total energy density. Therefore in the proper frame v = V /¢
and using the anholonomic basis (8192 the components of M*? are

1. . .
M = foc?, M% = "¢, M*=X*  (i=1,23). (8.229)
c
To determine the vector ¢ it is necessary to add to ([B222) certain supple-
mentary equations namely the Fourier equation (modified in the sense of

Cattaneo [21])
dq0i = —v <QO¢ + kfgﬂo) (8.230)

and the heat equation

1 We follow here the scheme introduced in [22] and further developed in [23]3 (see
p. 118). The modification to the Fourier law introduced by Cattaneo [24] has been
cast in covariant form later by Kranis [25]. Different modifications also exist due
to Vernotte, Eckart, etc. and they are briefly reviewed by Kranis in the above-
mentioned paper.
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3wéi)
00,

In (8230) ky is the Fourier constant while the coefficient 1/v has the di-

mensions of time and represents the thermal inertia; finally C is the specific

thermal capacity of the medium, w(()l) is the mechanical power:

Coy = —by +Q. (8.231)

wl) = X0V, V= X H,, | (8.232)
and (@ the thermal power:
Q= —Vaas =~ (Vi+Ci) b (8.233)

Thus, (8222])4 reduces to the form

2
Hyg qg] (8.234)
and can be solved with respect to the acceleration A; = A; (fi0, Xk, Hik, qoi, o),

if the condition . .
det || fioc?Si + X% || #0 (8.235)

is satisfied. Thus the proper formulation of the Cauchy problem results in the
following set of equations:

Ovik =2H(ry , 07 =C;
OH,y, = (Vi + Ci)Cy + Hi 7 Hyj + Py, Pig = Py ,
o = —K g — 2 €c,0 + Keco+ Hik + C( it z)qO ’ (8236)

0qoi = —v(qoi + kfgioo) ;

1 0 ; i
00y = — [00 (X““Hik) +(Vi+Ci)gg|

C 20,

with the constraints (8217 for the initial data. Such a differential problem
must then be completed with the constitutive equations

€co=¢o0Y), Xit=Xu(Y), (8.237)
where Y denotes the set of the unknowns of the system (8230]):

Y = (ks vis Hik, Ho, qoi,6o) -
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We notice here the typical relativistic link between the initial conditions and
the constitutive equations (8237): both functions €. and X are not free
but related by the constraint (82T7), because of their dependence on fiy =
po + €c0/c® C; and Hyg. For a continuum without thermal flux (ordinary
continuum) we have instead a purely mechanical scheme, i.e. the variables are
only ik, vi, Hix and pg.

Finally, the case of a continuum examined in an arbitrary reference frame
(i.e. the case I' # I'g) can be treated similarly (the whole discussion as well
as all the mathematical details can be found in [23]3).

We conclude this chapter noting that we have considered here only the for-
mulation of the general continuum relativistic dynamics, with special attention
to the intrinsic aspects of the associated Cauchy problem. The resulting set of
differential equations, completed by assigned constitutive relations and initial
data, forms a system of coupled partial differential equations with (polyno-
mial) analytic coefficients but still containing Pfaffian derivatives (essential
for the intrinsic formulation outlined above). Putting the system in its nor-
mal form and verifying the hypotheses of the Cauchy—Kowalesky theorem [26],
i.e. discussing local existence of the solutions, is an open problem.
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Relativistic Electromagnetism in Vacuum

9.1 Introduction

After the formulation of the general axioms of special relativity, we have
examined the relativistic aspects of mechanics (with the associated specific
postulates) in both the schemes of material point and continuous material
systems. Actually, since the general axioms of special relativity have been in-
troduced in order to solve the incompatibility between classical mechanics and
electromagnetism, it is also interesting to study the modifications induced to
electromagnetism. These modifications, however, will be less important than
the really revolutionary ones that occurred in the conceptual apparatus of
mechanics; in fact the postulate that the light velocity is constant relative to
any Galilean frame is related to the idea that Maxwell’s equations are for-
mally invariant passing from a Galilean frame to another, as required by the
extended relativity principle. As a consequence, the electromagnetic phenom-
ena (in vacuum) in any fixed Galilean frame are still governed by the ordinary
Maxwell’s equations, as we are going to discuss in detail.

Let us recall that, relative to classical physics, electromagnetism is summa-
rized by two sets of axioms. From one side, we have Maxwell’s equations in
vacuum, which determine the differential relations between the electric field E
and the magnetic field H and the associated sources (charges and currents):

divH=0, curlE—i-l('?tH:O,

10 A (9.1)
divE =47p, cwlH- 9E= "1J,

C C

with p and J the charge and current density, respectively.
From the other side, we have the Lorentz formula for the mechanical force
acting on charged matter due to the fields E and H (classically separated):

F:e(E—!—lva) ; (9.2)
c

G. Ferrarese and D. Bini: Relativistic Electromagnetism in Vacuum, Lect. Notes Phys. 727,
309-338] (2008)
DOI 10.1007/978-3-540-73168-9 9 (© Springer-Verlag Berlin Heidelberg 2008
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where e is the charge in relative motion with velocity v. When v = 0, (@.2)
gives the electrostatic or Coulomb force.

In classical physics, (@) and ([@2]) have no general validity (that is for any
Galilean frame), but their validity is postulated in a special frame S, the
cosmic Ether, and hence all the quantities appearing in (O.1)) and (@.2]), E, H,
p, J and e, are invariant.

Even with this limitation, Maxwell’s equations have two fundamental con-
sequences. The first concerns the propagation speed of an electromagnetic
perturbation (ordinary discontinuity waves) in vacuum: this equals the uni-
versal constant ¢, irrespective of the initial characteristics of the perturbation
(e.g. the electromagnetic source as well as its motion with respect to the Ether,
etc.). Initial conditions can influence certain properties of the perturbation,
like the frequency, but not the speed, which is always (experimentally) co-
incident with light speed in vacuum, c¢. This numerical coincidence has just
represented the first element in favour of the interpretation of light as an
electromagnetic phenomenon. A second element has been the transversality
common to both the electromagnetic waves (deduced from Maxwell’s equa-
tions) and luminal waves (experimental fact).

Another important consequence of (@) is the continuity equation of the
electric charge:

Op+divy =0, J=pv, (9.3)

which expresses, for the charge, a typical property of the mass, i.e. its conser-
vation in the absolute frame.

Electromagnetism, like mechanics, also had a number of experimental con-
firmations as well as many theoretical developments, connected with a pure
electromagnetic field (in vacuum) or in the presence of matter, at rest with
respect to the Ether, or in slow motion with respect to this. More precisely,
the agreement between theory and observations is satisfying enough when the
following two conditions hold: (1) welocity u of the laboratory, with respect
to the Ether, as well as velocities v’ of particles, with respect to the labora-
tory, are very small with respect to the light velocity: u/c < 1, v' /e < 1; (2)
instrumental precision of the first order, in u/c and v'/c.

If the instrumental precision is higher and allows the evaluation of second-
order effects (as the experiment of Michelson and Morley) the disagreement
between theory and experiments appears, and both Newtonian mechanics
and electromagnetism have to be considered in the fully relativistic context
with fundamental modifications, as concerns the mechanical aspects, and less
important modifications, as concerns the electromagnetic ones.

In any case, the two classically distinct physical theories: mechanics and
electromagnetism, because of the different invariance properties with respect
to the choice of the frame, find their proper geometrical and physical unifica-
tion in the relativistic situation.
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9.2 Sources and Electromagnetic Action. Axioms

We pass now to the formulation of the specific axioms of relativistic electro-
magnetism, by requiring preliminarily:

1. agreement with all the relativistic postulates already introduced (includ-
ing the extended relativity principle), either in general or in the case of
mechanics;

2. extension of classical electromagnetism, in the sense that the (classical)
first-order agreement between theory and experiment is maintained.

Furthermore, as the new theory has to be formulated both in absolute and
relative terms, all the physical quantities of the classical theory: electric charge
e, charge density p, current density J, electric field E, magnetic field H and
Lorentz force F, classically defined in the absolute space, should now be intro-
duced in any Galilean frame and, analogously to the mechanical quantities,
they would have a relative meaning, depending on the considered Galilean
frame. Thus, in a relative formulation of electromagnetism (a prioritary point
of view, with respect to the absolute one), besides fixing the ingredients and
the fundamental relations (field equations), one also has to specify their trans-
formation laws.

We start considering the specific postulates, concerning sources and Lorentz
force.

For the sources, that is for the electric charge because currents are derived
quantities, we have the following:

Axiom I

The electric charge of a material point (or that of the generic element of
charged continuous material system) is invariant (in magnitude and sign),
passing from one frame to another:

e=¢ =inv. (9.4)

In particular we have e = eq, eg being the proper charge of the particle,
evaluated in the local rest frame. Axiom I gives to the electric charge
a completely different role if compared with that of mass in relativity.
The latter, in fact, is characterized by the law: m\/l —v2/c? = inv. =
mo. The validity of (@4) is obviously sub-ordered to the agreement with
experiments of all the possible consequences that can be derived from it
(and from the other axioms); for instance, experiments concerning thermal
effects support such a validity (see [I], p. 38). In any case, axiom I directly
gives the transformation law of the charge density p.

To see this, let us consider the generic fluid element of a charged con-
tinuous material system. In an arbitrary Galilean frame S, the charge of
such element is expressed by

pdC=pDdc, dcdy' dy? dy?, (9.5)
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where p is the relative (in Sg) charge density, and D = det||0z"/dy|| is
the reciprocal of the relative numerical density of the particles. From (@.4))
we have the following invariance property:

pdC =p' dC’ ~ pD = p'D' = inv. (9.6)

Furthermore, the product D (and not D) is also invariant, passing from
one frame to another, so that we have

/

- Pl = po = inv. , (9.7)

non
with pg the proper charge density; the latter, for a charged continuous sys-
tem, plays the same role of py for neutral material continuous system; thus,
like 1o allows the introduction of the proper 4-density of linear momentum
1oV, it gives rise to the proper 4-density of current:

s v, (9.8)

which summarizes the relative current density J = pv and the charge
density p. In fact, in a given Galilean frame, the 4-velocity V has the
ordinary decomposition V = n(v + ¢v), and ([@.8) becomes

S=p(v+tey), p=mnpo- (9.9)
From here, one has the relative quantities:

1
J=Sy=S+S.-4vy="Px(S), p:—cS-'y. (9.10)
The formal analogy between ([@.9]) and the decomposition of the 4-momentum
of a particle (p — m, J — P) immediately gives the transformation laws
of the relative quantities p and J:

= p, J=J- gpu; (9.11)

the first relation, of course, is in agreement with (@.7)). From the absolute
point of view, the sources are described by a timelike vector field S; in
fact, from (@), we have ||S|| = —pg ¢?; a priori, it can have a temporal
orientation, coinciding or not with that chosen for the space-time M, (and
induced on the world lines of test particles). Such an orientation, in fact,
specifies the sign of py in (@8], so that the field S completely describes
the sources, and with no ambiguity (world lines and pg):

€
po=Cv/-IISI,

€c

V= S,
V-S|

(e =+£1). (9.12)
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At this point, after introducing the electromagnetic sources (with ax-

iom I), we should specify the electric (E) and magnetic fields (H). With an
inversion of the logical order, instead, we will assign, first, the axiom con-
cerning the force generated by E and H, which actually mediates between
electromagnetism and mechanics.
Axiom II The electromagnetic action in My is represented by a mechan-
ical 4-force K, such that, in any Galilean frame, the associated relative
force F coincides with the Lorentz force. Axiom II gives a purely mechan-
ical meaning to the electromagnetic action (¢ = 0) and allows for F the
validity of the Lorentz force ([@0.2]) also in the relativistic context, extend-
ing thus the validity to any Galilean frame. Explicitly, from the general
relation:

w
K:n(F—l—c'y), W=F -v+gq, (9.13)
we have that axiom II is equivalent to the two conditions:
1 def _
F=e¢e|lE+ vxH), W=F v=eE-v. (9.14)
c

Thus, in any Galilean frame and for any choice of internal coordinates
(assuming v = cp), the components of K have the form

, 1
Ko=—-"w=-"Ea" |  K,=nF =ne |:Ez + (vx H)i] ; (9.15)
& & &

the problem of summarizing these components in a certain law for K,
then arises. This is suggested from the observation that such components
are:

1. proportional to the charge e;

2. linear function of the velocity v (and hence of the 4-velocity).

It then appears quite natural to assume for K, the following expression:
Ko=FougV?, (a=0,1,2,3), (9.16)
c

up to a factor. The quantity F,g is a 2-tensor, K and V being two 4-
vectors and e and ¢ two invariant quantities (see e.g. [2], p. 22, for the
tensoriality criterion); it is necessarily antisymmetric, because of the con-
dition K,V< = 0 valid for any V. Moreover, in order to summarize the
electric and magnetic fields, it should have six independent components,
as it is the case for an antisymmetric 2-tensor.

9.3 Electromagnetic Tensor

Assuming that (@.I6]) summarizes the relations (@.15)), independent of the
choice of the Cartesian coordinate system, we still have to specify how F,3
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is related to the electric and magnetic fields. Such a relation follows from a
direct comparison of ([@I5]) and (@I6); in fact, for the various components
we have Fy; = —F;, F1o = Hs, F13 = —Hs, etc. However, the relation can
be written directly in tensorial form, by using the natural decomposition
introduced in Chap. 2. If v = (v*) denotes the 4-vector along which the
natural projection is taken, the decomposition of F,g turns out to be

Fag = Hag + ’yaEg — ’mEa, (9.17)

where the antisymmetric property of F,3 has been used and the vector
E, and the antisymmetric tensor H,g satisfy the conditions:

E =0, Hu.57v? =0. (9.18)

Without any loss of generality, we will assume v as a unit timelike vector:
Yov® = —1, so that it represents the chosen Galilean frame. Independent
of the choice of the coordinates z* and using ([@.I8]), we have

E, = aﬁ,},ﬁ , Hag = Fag — ’YozEB + ’ygEo” (919)

which represent just the electric and magnetic fields, as we are going to
show in detail, a fact that motivates the notation used.
More precisely, let us assume that the Cartesian basis {c,} is adapted
to Sy, in the sense that
Y=cp; (9.20)

that is
V=1, +"=0, y=-1, =0, (i=1,2,3). (9.21)
From the above conditions, (OI8]) become
Ey=0, Ha=0 = Eo=0.E, Hap=063H;, (9.22)
and the decomposition (@I7) for the sum F,3V? of ([@I6) implies
FogVP =6  HyVE — OB,V + 6L E VO . (9.23)
Thus, since
VO =nc, Vi=m', (9.24)
it results that, with

Hik = —H3 0 Hl s (925)

[@23) assumes the form
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. 1
FogVP = —60nE v + 8 ne [Ei + C(v X H)l} .

Equation ([@I5) then follows after multiplication by e/c. Thus we have
proven that, due to axiom II, the Lorentz 4-force is necessarily of type
(@.16)), with F,p related to the electric and magnetic fields by (@17, for
any choice of the Galilean frame S, () and of the coordinates ®. Using
adapted coordinates to Sy ([@IT) simplifies as

FOi = Ei Fik = Hi (926)

or
0 —BE, —EBE, —FE;
_|B. 0 Hy -—H,
Fo=|m _w o & |- (9.27)

Es Hy —H 0

Axiom IT is therefore equivalent to postulating the existence of an antisym-
metric 2-tensor: the electromagnetic tensor field Fi, g3 which summarizes in
any Galilean frame the electric and magnetic fields, according to (017
and the electromagnetic action by means of ([@I6]). Finally, the tensorial
behaviour of F, 3 implies for the components in any other coordinate sys-
tem the general transformation law:

, oxP O0x”

af — ax/a axzﬁ po - (928)

9.4 Absolute Formulation of Maxwell’s Equations

We now have to specify the relativistic equations for the electromagnetic
field, that is the relations between E and H (i.e. the tensor Fi3) and the
sources p and J = pv (i.e. the current density vector S%). We have the
following:

Axiom III

The evolution of the electromagnetic field, in vacuum, is governed by
the ordinary Maxwell’s equations, in any Galilean frame. This is a quite
natural axiom which implies, for its compatibility, that Maxwell’s equa-
tions are formally invariant under Lorentz transformations and hence can
have an absolute formulation in M,. The latter is indeed possible because
Maxwell’s equations can be written in terms of the two fundamental ingre-
dients: the electromagnetic field Fi,5 (and its first-order derivatives, which
also have a tensorial meaning) and the current density S®. More precisely,
the ordinary Maxwell’s equation (@) can be cast in the following form:

8pFag + (9QF5P + anga =0,

\ (9.29)
8BFocB: :Sa, (a,ﬂ,p=0,1,273);
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where
FoB = memPoF,, (9.30)

is the completely contravariant form of F'.

To show that the system ([@.29) is equivalent to the system (@), we
notice first of all that system (@.29)) also contains eight independent equa-
tions: ([@.29)2 are four equations like ([@29);, which apparently are 4> = 64.
This number is reduced since in ([@29); one cannot choose two coinciding
indices; in fact, if a = g, they become

OpFoa + 0atop + 0aFpa =0,

which is identically zero, because of the antisymmetry of F,3. Further-
more, the antisymmetric property of F' implies that the left-hand side of
@.25)::

Thap = 8pFa5 + 8ang + anga , (9.31)

is an antisymmetric 3-tensor itself, and hence it has only (3): 4 inde-
pendent components, as for instance those with strictly increasing indices:
To12, To13, To2s, Ti23-

With the Galilean frame S, fixed and with the F,g given by (9.27), it is
easy to see that (@.29); summarize the homogeneous Maxwell’s equations.
In fact, the latter can be obtained as indicated below:

1
<08tH + curl E) =0 corresponding to indices 012, 013, 023,
3,2,1

divH=0 corresponding to indices 123.

Concerning (3.29)2, from ([@.27) and (@.30), we have
FY% = [y =F; F'* = Fy, = Hy, (9.32)
so that the contravariant components of F' are given by

0 E E, I
-F, 0 Hy —H,
~Fy —-Hy 0 H
~Fy Hy —H, 0

FoB = (9.33)

Taking into account [@3): S° = cp, S = pvt, we see that ([@29)2 summa-
rize the inhomogeneous Maxwell’s equations; more precisely

div E = 47p, corresponding to the index 0,

1
<cur1 H- atE) =0 corresponding to indices 1, 2, 3.
¢ 1,2,3
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Equation (@.29)), besides representing (0.1 in any Galilean frame, are in-
variant under linear transformation of the z®, and hence have a tensorial
behaviour in My [] Moreover, (@29) contain the continuity equation (I3)
which, being of Eulerian type, can be written as

Orp + div(pe) =0. (9.34)

In fact, after differentiating ([@.29)> with respect to the index « and then
contracting this index, we have

4dm

000, F* =~ 0,57 ;

c
using now the symmetric property of the second derivatives 0,0, (Schwartz
theorem), as well as the antisymmetric property of F, leads to 0,0,F*" =
0, implying the scalar (invariant) condition

9a5% =0 (9.35)

Using ([@.9]), the latter equation can be written in the form
Ly qo i1 i
C(%S + 05" = CBt(pc) +0i(pe') =0,

which is exactly (0.34]).

Equation ([@37]), having absolute meaning just as (@34) from which
it has been derived, represents the charge conservation in any Galilean
frame and for all the evolution of a charged continuous system, a property
similar to that of mass conservation of material systems. This is a different
property with respect to the invariance of the charge assumed by axiom I.
Therefore, in My, the two separated theories, classical electromagnetism
and Newtonian mechanics, are naturally unified in a single theory with
the same invariance properties. The most important modifications have
concerned mechanics: in fact, the unification of thermal and mechanical
action has been obtained through the new idea of space and time (relative,
and no more absolute quantities) as well as the identification of the two
concepts of mass and energy, previously distinct.

For the electromagnetic field, we have the inclusion of the electric and
magnetic fields in the single electromagnetic tensor Fig as well as the
unification of charge and current density through the vector S¢. More-
over, there is a progress with respect to the classical situation. In fact,
in the classical context every electromagnetic problem had to be formu-
lated in the absolute space, or the Ether frame; relativistically, instead,
all the Galilean frames are equally valid and indistinguishable, also for

! Actually ([@29); are also invariant under general coordinate transformation be-
cause they can be written as the exterior derivative of F,g (see e.g. [2]).
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electromagnetic phenomena. Thus, the Galilean frame is completely avail-
able and the solution, once obtained in a certain Galilean frame, can then
be automatically transferred to any other frame by simply performing a
change of coordinates and using the relativistic transformation laws.

9.5 Homogeneous Form of Maxwell’s Equations

Let us multiply (@.29); (written with respect to a certain Cartesian coordinate
system ) for the Levi-Civita indicator e and contract the indices p, o, 3.
Using the antisymmetry of both € and F' we have

3¢7P*P 9, Fop = 0 — Dp(€7P*PF,p) = 0.

After introducing the dual of F':
of 1
* pop e QemﬁFaﬁ . (0,p=0,1,2,3), (9.36)

which is still an antisymmetric tensor (because of the antisymmetry of €),
[@29]); assume the form

0,"F7" =0,

similar to the left-hand side of ([@.29)5. Thus, the standard form of Maxwell’s
equations is the following:

0, " F*" =0, 0, P = CS , (x=0,1,2,3), (9.37)
where the same differential operator (a divergence) enters, also confirming

that they are eight independent equations only. *F' is obviously formed with
the electric and magnetic fields. In fact, using ([@27) and (ZI39), we have

. 1
FOL — 2(60123F23 +O182Fy,) = 1B R, = By,

*FOQ 260231F31 :F31 y *F03 :F12 ’
that is _ _
PO = [ (i=1,2,3); (9.38)
analogously,

"F?=Fy=-E, ‘F®=Fn=-E, "F'=Fp=—E,

or
_ ' 0 E* -—E?
—*Fk_p*t=|_-E* 0o E' |. (9.39)
E?> —E' 0
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Finally, the tensor *F? is

0 H' H? H?
-H' 0 —-E* E?
~H? E3 0o -—-FE'|>
-H® —-E* FE! 0

B = (9.40)

and its completely covariant form *F,z is obtained by changing sign to the
elements of the first row and the first column in the table ([@.40); the compo-
nents F°# follow, instead, by replacing in the table ([@.40) H with E and E*
with —H* simultaneously.

The matrix representation (@40 can also be written in a more compact
form, using the definition ([@36]). It is necessary to consider the natural de-
composition of the Levi-Civita indicator with respect to the vector v charac-
terizing the framel Such a decomposition, due to the antisymmetric property
of €P7%8 is necessarily linear in v

ePoaB — gpoal + ,\/ngaﬁ _ ,ypgvaﬁ + ,yagvpﬁ _ ,yﬁgvpa ’ (9.41)

where the tensors €779 and é*# (with rank 4 and 3, respectively) are anti-
symmetric and spatial, in the sense that they satisfy the following conditions:

oy =0, &Py =0. (9.42)

Furthermore, using adapted coordinates to Sy (7% = 1,7% = 0), ([@42); reduces
to €770 = ( and, because of its antisymmetry, it follows that é?7%? vanishes
identically:

eroeh = . (9.43)

We notice that ([@43), directly verified using adapted coordinates, holds in
any coordinate system, because é°“? is a tensor. Thus, the decomposition

(@41) becomes
ePoal — Pyogpaﬁ _ ,ypgoaﬁ + ,yagopﬁ _ ,\/ﬁgopa , (9.44)

i.e. the only surviving quantity is the spatial and antisymmetric tensor 7.
Such a tensor in a system of adapted coordinates has only nonvanishing com-
ponents of the form é7% with i,j,k = 1,2,3, and it assumes, in ¥, a role
similar to that played by the tensor (ZI39) in Mjy: it is called the spatial
Levi-Civita indicator.

Therefore, using ([@O.I7) and (@I])), (@36]) implies the following decomposi-
tion for *F*f:

1
*paf _ 5 ("/ngaﬁHaﬁ _ "/”g‘mﬁHag _ gopﬁEﬁ _ €”p°‘Ea) ’

2 Actually one should consider the Ricci tensor when the coordinates are not Carte-
sian. Here we have assumed Cartesian coordinates and the Ricci tensor coincides
with the Levi-Civita indicator.
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that is
*F7P = —E7 4+ H? — 4" H° | (9.45)

where
por ©eovap  pge ;gpaﬁHaﬁ . (9.46)

Equation (@.43]), which gives the electric and magnetic fields in terms of *F
and ~ (i.e. the frame Sg):

HP = —~, F77 | E°P =~HP —4PH —*F°P (9.47)

has a general validity, like (@I7). In a system of adapted coordinates it sum-
marizes (@.40). Finally, we notice that passing from F*? to * F*# we have the
replacements H,3 — —FE.3 and E, — H,, as already stated.

9.6 Transformation Laws of Electric and Magnetic Fields

Independent of the choice of the coordinates * the decomposition ([@.I7) of
the electromagnetic field is invariant with respect to the choice of the Galilean
frame S, (specified by 7). The decomposition of Fi,3 along the unit timelike
vector 4’ of another Galilean frame Sj is therefore completely similar to (O.17):

Fop = Hog +v0,E5 —15E, (9.48)
with the limitations
EN*=0, Hy/" =0, o= —Hp, . (9.49)
We thus have the following (local) invariance property:
Lo+ VaEy — V4Bl = Hop + YaEs — v5Eq = inv. (9.50)

which gives the relation between the electric and magnetic fields, relative to
the two frames. In fact, by using the relations

1 1 1 2
")’/ = ('}’ + u) y C/l = (Cl + u"}’) ) o = \/1 - ug ) (951)
« c « c c

or in components:

1 B
V= <75+ ° ) . (8=0,1,2,3). (9-52)

Multiplying [@50) by 7%, contracting and then using (@.52]) as well as ([@I8)
and ([@.49) lead to

1 1
—Eé =, [—Eg + c(—’yguO‘Ea +u*Hug)| »
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that is
E’_1 E+1H O‘4—1uE
= u . .
8= o B c Ba c VB

This formula can be expressed in S, using a system of adapted coordinates
(so that Ey =0, Hoo = 0, yo = —1) and recalling table (@.20)); it results in
1 1 1
E,=-— u-E, E = [Ei—k (uxH)i].
ac @ ¢
After contracting these components now with the vectors ¢, (co = ) and
using the notation 7 = 1/«, we have

1 1 1
E = (E + uxH+ u- E’y) : (9.53)
a c c

This formula holds in M, and hence cannot be used directly for measurements
performed in different frames. However, we can consider the isometric boost of
Y’ (to which E’ belongs) on % (to which E and u x H belong); this procedure
is equivalent to interpret the components of E' along the basis ¢, of ¥ as
components with respect to the basis c; of X.

We thus proceed to evaluate the components E’ - ¢}, starting from (@.53]).

Usin 5 and the relations ¢}, s = ¢2 3 and u = ucy, we have
2,3 s ’

1
E'.c) = (E1—B°E) = E,
a
) ) (9.54)
E - (;1273 = o2 |:E2)3 + C(u X H)2)3 .
Equation (@54); can then be written as
1 1 1 o?—1 1 I u-E
Ei= Ei+(1- )E.=E B = E - :
T 1+( a) T 1+o<(oz—|—1) Tt c2a(1+a)u’

then contracting (@54) with the basis vectors ¢; of X, we have the represen-
tation of E in Sy (which we still denote by E'):

1
o

1 1 u-E
E — (E—i—cuxH— v u>. (9.55)

Al+a
A similar relation can be derived for H, using the invariant decomposition
([@Z5) and repeating the above procedure. This is equivalent to replacing Hqg

by —E.p and E, by H,. As for (@.50), we have the general relation:

1 1 lu-H
H — (H— uxE— u>. (9.56)

« c ccl+a
It is meaningless to perform the limit ¢ — oo to obtain the classical relations
corresponding to ([@.55]) and (@.50); in fact, in the framework of ordinary elec-
tromagnetism, the electric and magnetic fields only live in the Ether frame. In
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other words, the classical situation of a Galilean relativity is only compatible
with a static theory of electromagnetism, with E and H having an invariant
meaning with respect to the choice of the Galilean frame; in addition, (@)
and ([@2) do not contain anymore 1/¢ terms.

In the relativistic context, instead, as from (@.55)) and (@.50]), the fields E’
and H' are functions of both E and H, exactly as are the force and the thermal
power in mechanics. Equations ([@.55]) and ([@.56]) show that, if in a frame only
the electric field is present: H = 0, a magnetic field will appear in any other
frame: H = —1/(ac)u x E, even if very small. Equivalently, the condition
H = 0 (or E = 0) has no absolute meaning, and hence from a relativistic
point of view a pure theory of the electric field or the magnetic field has no
meaning at all.

9.7 Invariants

The electromagnetic field F,,3 can be interpreted, in My, as a vectorial map,
and hence it has a set of determined eigenvalues and eigenvectors. It is con-
venient to consider the mixed form: F“g, typical for a vectorial map, which
has only a sign variation with respect to table (@.27) in the first row:

Thus, we have

Fe3 = By —H, 0 i, ; (9.57)
Es Hy —H 0

with F'*g are associated the following four invariants:

I, = F*, = TvF,

L o 1. 1
L=, 005F pFﬁU:—2F pF”a:—211(F2),

(9.58)
Iy = Lo po, po, p
3 — 3 afu P o v
Iy = det [[Fg]],

where 5&:::@’; is the generalized Kronecker tensor already defined in Chap. 2:

NS k!é["gl . ~5g:] . (9.59)
Only two of these invariants are meaningful, since

L =0, I;=0. (9.60)
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Equation (@60); is evident; to show (@602 we recall that any third order
antisymmetric matrix has always null determinant:

0 El E2 0 El E3 0 E2 E3
I3 = | E; 0 Hs |+ | B4 0 —Hy |+ | Ey 0 H,
Ey —Hs 0 Es H 0 Es —H; 0

0 Hs —Hs
+ | —H3 0 H,
Hy, —H; 0

=F (H3E2 — H3E2) + El(—H2E3 + H2E3) + E2(H1E3 — H1E3) =0.

The other invariants I, and I, are nonzero:

Iy=—-E? - E - F; + H + H} + H}

or
I, =H? - E?; (9.61)
By Hy —H By 0 —H Ey 0  H;
Iy=-E|E, 0 H |+FEy|Ey —H3 Hy |-E3|E; —Hy 0
By —H, 0 Es  H, 0 By Hy —H
=-FEHE-H-FEHE -H-FBHE -H,
that is

L=—(E-H)?<0. (9.62)

We then have the following invariance properties:

H? - E? =H"” - E"”? = inv. E-H=E H =inv., (9.63)

)

which can also be directly verified using the transformation formulas ([@.53])
and (@.50).

Thus, for an electromagnetic field, we have to distinguish between the gen-
eral case: I 4 # 0, and the special case in which one or both the invariants
vanish. When I = 0, the electric and magnetic fields are mutually orthogonal
in any Galilean frame; if instead Iy = 0, then the two vectors E and H have
the same magnitude in any frame and hence they are always both present.

If there exists a Galilean frame in which the electric field (or the mag-
netic field) vanishes, it is necessarily I, = 0, but I3 should be nonvanishing;
otherwise, the whole electromagnetic field vanishes identically. When both the
invariants are null, the electromagnetic field is said to be singular or radiative;
in this case,

E-H=0, H? = E? £0, VS, . (9.64)

The invariants (@61 and ([@62]) can also be obtained by the products of F
with itself or its dual *F. In fact, from (@I7):
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Fog = Hop +7aBs —y9Ea,  F? = H 4 y°E° — 1B,

one gets F,s F*% = H,g H*® — EgEP — E, E*, and using adapted coordinates
(without any loss of generality, because the product F,gF @8 is invariant), the
latter becomes

F,F*’ =2(H? - E*) =2I, . (9.65)

Analogously, from (@45): *F*8 = —F*# + y*HP — ~BH* one has
Fo5*F*P = —H,3E° — EgHP — E,H®,
which using ([@.28) and ([@.39) becomes

Fop*F% = 4E-H=—4\/-1I, . (9.66)

9.8 Energy Tensor of the Electromagnetic Field

From Maxwell’s equations (2.29)

0pFap + 0aFsy+ 05Fpa =0,  0,F° = 4:5“ : (9.67)
one can derive evolution equations similar to those of a continuous system.
More precisely, consider the evolution problem of a charged continuous system,
starting from given initial and boundary conditions. In My the continuum
follows a world tube 7, characterized by the vector field S = pg'V describing
the distribution of both charges and currents from an absolute point of view. In
turn, such a distribution generates in My (in the interior as well as the exterior
parts of 7) an electromagnetic field F,g, satisfying (@.67) and constraining
the motion of the continuum itself through the Lorentz force. For the generic
element of the continuum one then has an autoinduced action represented, in
agreement with (O.I0), by the elementary force dK,:

1 1
dK, = deFosVP = " podCoFasV? |
C C

with dCj the proper volume element. After introducing the proper density of
4-force

def dKoz
a = ) 9.68
pof aCy (9.68)
one then gets the following law:
1
pOfa = CFaBSﬁ ; (969)

which specifies the dependence of pg fo on both the electromagnetic field Fi,g
and the sources S”. Hence, in 7 one has new vector fields for the autoinduced
mechanical action, in the sense that the continuum (conductor and charges)
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generates the electromagnetic field through Maxwell’s equations, and this, in
turn, affects the motion of the continuum itself through the action ([@.69); the
latter is, of course, sub-ordered to Maxwell’s equations (Q.G7). We can then
eliminate the current density (0.69) and finally express fo in terms of Fup
and its first derivatives. More precisely, such a dependence can be put in a
divergence form:

pofa = —0,E.", (9.70)

where E,” is a 2-tensor built up by the electromagnetic field and still to be
determined. To prove ([@.70Q) let us start from (0.67))2, which reduces ([@.69]) to
the form

pofa = 417TFQ58PFBP = 417T [0p(FapF"P) — FPP0,Fog] . (9.71)
Transform then the last term in (O71)) using (O.61);:
~FPrY,F5 = FPP(0,Fp, + 05F,0) = FPP0,Fj, + FPPOgF,,
that is, exchanging the indices p and (§ in the last product
—~FPrQ,Fo5 = FPP0,F, + FrP0,Fs, ,

leads to )
—2FPP9,F,5 = FFPO,F5, = 2aa(zfﬁpﬂgp) :

Equation (@71 thus becomes
1 1
pofa =, {@(FaaFﬁp)*- 43a(FﬁpFﬁp)} :

which coincides with ([@70) after defining E,” as

1 1 1
(FapFﬂﬁ - 45§F”"Fpg) =, (FapFﬂﬁ - 25512) . (9.72)

™

g det 1
i

Eq
The tensor E,” is called the energy-momentum tensor of the electromagnetic
field Fyp. It has vanishing trace:

L(E)=E, =0, (9.73)

and is symmetric, as one can easily see by considering the contravariant (or
covariant) form:

1
ATE*f = FOgFrP — 4m°‘pFﬁ"F50 : (9.74)

This is a quadratic homogeneous function of the electromagnetic field Fig,
and hence it is defined either in 7, where it satisfies the conditions (@70, or
in the exterior of 7, where one has the conservation conditions

9,E*" =0 . (9.75)
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9.9 Splitting of the Energy Tensor
of the Electromagnetic Field

In relative terms, the energetic tensor (O.74) will be expressed, as Fyg3, in
terms of electric and magnetic fields. In fact, using the decomposition (@I7)
of Fagt

one has, from Eq. (@I8]),
FogFPP = H3HPP 4 4P HY3EP + v*HPPEg + vy EgE® — E°EF .
Taking into account (@.65]), we then have
ATE? = H*3HPP + v*HPP Ej
pIyQ 16} o P 2 o p 1 2 2 ap
+vPHYgE” — E°EP + E*y%y —2(H — E*)m®’ .
Consider now the decomposition of the metric tensor; because of its symmetry,

we have
m® = 4y AP iy

with the conditions m®%vy, = 0, m*y, = 0. Contracting by v*+* implies
—1 = m; contracting then by ~z leads to v* = —m® + %, so that m® = 0.
Finally, the decomposition of the tensor m®? is
m* = m*P — yoyP (9.76)
and (@7@) becomes
AT EYP = MP + PP + 4P PY + WA~ | (9.77)
since
1
Mer e _pape 4 HY3HPP — 5 (H? — E*)m®  Maxwell’s stress tensor,

def

Pr = HPPE, Poynting vector,
det 1 2 2 .
W = 2(E + H?) electromagnetic energy.

(9.78)
Equation (@.77) represents the natural decomposition of the tensor 4w FE?
along v and onto ¥, the hypersurface normal to -; the tensor M*”, like £,
is symmetric and it is spatial as the vector P“:

My, =0, PPy, =0.

Furthermore, using a system of adapted coordinates, from (O.76) one gets
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m* = mi* = 5ok, (i,k=1,2,3)  spatial metric . (9.79)

From (@.78); 2 and using ([@.25) one obtains the components of the Poynting
vector: ‘ ‘
Pi=(ExH) ~ P=ExH, (9.80)

as well as those of Maxwell’s stress tensor:
M* = —E'EF — H'HF + Ws'k (9.81)

We notice that P is an eigenvector of M, associated with the eigenvalue
W: M* P, = WP?. The decomposition (I.77) as well as the various associ-
ated spatial quantities all have a relative meaning, that is depending on the
chosen Galilean frame ~. However, by changing the frame one would have
a decomposition similar to (@.77) and (@.78)), apart from the addition of an
overall prime. At this point, given the general formulas (@.55) and ([@50]), one
should determine the transformation laws of the various quantities (O.78); in
particular one can show that there ezist an infinite number of Galilean frames
in which the Poynting vector vanishes.

We notice that the relative law (@.77) for the energetic tensor of an electro-
magnetic field is formally analogous to those of a polar continuous medium,
with heat conduction; this analogy allows to compare the two schemes, even
if so different. Moreover, besides the analogies, we recall that the energetic
tensor ([@.77) is also defined in the exterior of the world tube 7 associated
with the sources; for a material continuum the energetic tensor has instead
no meaning in the exterior region, that is outside matter.

9.10 Spectral Analysis of the Electromagnetic Tensor

Definition ([@72]) implies that the spectral analysis of the energetic tensor
E*B is strictly related to that of the electromagnetic field F.p3, which has
only two nonvanishing invariants. In fact, the characteristic equation for Fi,g
is biquadratic:

M+ LN+, =0, (9.82)
with 1

I, = 2FagFo‘B = H?> - E?,

2 (9.83)
[ <1F *FW) =—(E-H)?<0
YT\ =

Equation (@.82)) in the case I3 — 41, # 0 (that is, excluding the case Iy = I =
0) has two roots for z = A2, one positive and the other negative:

1 1
= (_12+\/I§—4I4) >0, 22 =—, (Ig+\/I§—4I4) <0, (9-84)
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so that the electromagnetic field has two real opposite eigenvalues + A\; and
two purely imaginary eigenvalues +i\s:

1

Alz\/2 <_12+\/122—414> >0,
1

Agz\/z <12+\/I§—4I4) > 0.

Moreover, F can be decomposed (even if not uniquely, see Chap. 2) in the
sum of two orthogonal bivectors F; and F}:

(9.85)

F=F +F,, (9.86)

with Fy € II, a hyperbolic 2-plane invariant for Fy, and F} € I, an elliptic
2-plane invariant for F}, being IT and II’ orthogonal to each other: F;(IT") = 0
and F)(IT) = 0.

From the vectorial map point of view, Fy € II (hyperbolic) has two real null
eigenvectors, while F]| € II' (elliptic) has no real eigenvectors. Equivalently,
F.s admits, in general, only two real eigenvectors, both of them null; these
are associated to the real eigenvalues £ A\;. Such two directions reduce to a
single one, when II is parabolic: I5(Fy) = 0; in this case, II' also becomes
parabolic, i.e. Io(Fy) = 0.

However, with respect to the orthogonal decomposition ([@.80]) the following
general relations hold:

I = I(F1) + I(FY) , Iy = I(Fy) - L(F), (9.87)

so that the two isotropic directions of II reduce to a single one if and only if
Iy = 0and Iy = 0, that is A\; = 0 and A\ = 0. This case is called radiative: Fi,g
reduces to a bivector (I = 0) of parabolic type (I2 = 0). In other words, the
above-mentioned property of the electromagnetic field can also be expressed
as follows: every electromagnetic field Fi 3 admits only two eigendirections,
both isotropic, which coincide only in the radiative (singular) case.

Excluding the singular case, the components F*g of F (i.e. the coefficients of
the associated vectorial map) are simplified when referring to an orthonormal
basis {d,} adapted to the two planes IT and IT', in the sense that

d())l cll , d273 ell'. (988)
In this case, the transformed vectors Fg = (9 F*5d,, have the form
F():Adl, Flzpdo, FQZILLdg, ngydz,

so that the matrix (9 F®5 turns out to be

(d)FaB —

o O > O
S o oOoT
T oo o
oOR © O
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From this representation, one can write the associated completely covariant
form (only the elements of the first row change sign); because of the antisym-
metry of the electromagnetic tensor, one finds p = A\ and u = —v. Thus, for
any choice of the adapted basis ([@.88) the matrix F*3 is given by

0 A0 0 0 X 0 0

@Wpa _[X 0 0 0  @pas_| -2 0 0 0

Fog 00 0 —p F 0 0 0 —ul- 029
00 u 0 0 0 pu 0

Therefore, (4 fe g results to be expressed in terms of the two scalars A and p
which are invariants, because of the relations

Iy = -\ 4%, Iy = =\ 2. (9.90)

Comparing ([@.90) with ([@85) one gets A = A\? and u? = \3.

Equation (@89) is the canonical form of the electromagnetic tensor; the
singular case in which the two characteristic 2-planes II and II’, in spite of
being orthogonal, are both of parabolic type and have a common isotropic
direction [, is excluded. In fact, in this case there are no orthogonal adapted
bases and F,3 is necessarily a parabolic bivector, which can be written as

Fag = f(lavg - lg’Ua) . (9.91)

Here ¢ is an arbitrary factor (a multiplicative parameter for the isotropic
vector 1) and v, is a spatial vector, orthogonal to 1 (like all the vectors in IT
and IT"), which can be assumed to be normalized to 1:

v? =wvg0’ =1, (9.92)

because in (@91]) v can always be scaled by an arbitrary factor re-absorbed
then in &.

9.11 Spectral Analysis of the Energy Tensor

of the Electromagnetic Field

We pass now to study the decomposition of the energetic tensor F,3, a second-
degree homogeneous function of Fig:

1
47TEag = Fangp - 4mag(Fngpg) 5
that is, as from (@33):

1
47TEag = —Faprg — 212 mag . (993)
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In fact, F,s considered as a vectorial map, induces either in II or I the
orthogonal affinity, and the quadratic form of E, 3 implies that it has eigendi-
rections belonging to II or to II' only. Thus, the tensor E,g, different from
F.p, is diagonal, and it admits co? orthogonal tetrads. The latter are the or-
thonormal bases (0.88)) adapted to IT and I, for which an arbitrary rotation
is still possible in both planes.

As concerns the eigenvalues, excluding the singular case, which will be ex-
amined later, it is clear that there are two distinct eigenvalues, say A and X,
each of them with multiplicity 2. Furthermore, since I;(E“g) = 0, they are
necessarily opposite: A = —\'.

Let us determine, first, the eigenvalue of F,g for the directions in II. Denote
by u € II the null eigenvector of Fi, 3 associated with the eigenvalue \; given

by ([@88);; from (@33) it follows that
1
A Eapu’ = —Njug — o I2tta s
hence, u is eigenvector of 4w, 3, associated with the eigenvalue
1 1
A= N L= \J13 -4l
1 9 2 2 2 4

Next, assuming
1
k:2\/122—4[420, (9.94)

in the general case (k > 0) the eigenvalues of 4w E,g are —k, —k, k, k, and the
matrix (9 B4 of the components with respect to the tetrad (I88) is given by

k0 0 0 E 0 0 0
Wpa | 0 =k 0 0 N Wpap |0 =k 0 0
AWEESs =1 0 0 ko Am ik 0 0 k 0
0 0 0 k& 0 0 0 k

(9.95)

Clearly, both forms (@.89)) and (@.99)), having a general meaning, are referred to
an orthonormal basis {d p)}ﬁ which essentially depends on the point E € My
in which the electromagnetic field is evaluated, exactly as the two planes II
and IT'.

If, from ([@89) and ([@98), one needs Cartesian components along a fixed
basis cq, it is enough to decompose the vectors d, as

d(p) = d%(p)Ca ; (9.96)
and use the transformation laws (both E,3 and F,g are tensors):

B = 4% ,)d? (o) DEWI) | ped — o @B (DR (9.97)

3 The index in parenthesis is not a tensorial index but only ordinal.
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The canonical general forms for F' and E also follow:

FP = Ad* (0)d’ (1) = @7 (0)d* (1)) — i(d* 2y d” (3) — d° (2)d% 3))
ArE*P = k(da(o)dﬁ(o) — da(l)dﬁ(l) + da(2)dﬁ(2) + da(g,))dﬁ(g) . (9.98)

Finally, in the singular case, one has
ATE," = Fop FPP = 2 (1av, — Lva) (1Pv, — 1P0°) = 21,1 00"

or, using (@.92)),
4rEoP = €2121P | (9.99)

9.12 Electromagnetic 4-Potential. Gauge Invariance

Let us consider now the homogeneous Maxwell’s equations (3.29);:
(9,,Faﬁ + 5ang + 55Fpa =0, VE € My ; (9.100)

they are satisfied identically in My, when the electromagnetic field admits a
vector potential ¢q (), defined and regular all over My; in that case, Fop can
be expressed by the following relation:

Fop = 0adp — Opda. (9.101)

In fact, the Schwartz theorem allows to commute partial derivatives, so that
0pFop = 0,0003 — 030,04, and the proof only requires a cyclic permutation
of the indices p, o and .

The representation (O.I0T]) has a general validity in the neighbourhood of
any point F € My, in the sense that (@.I00) necessarily imply (TI0T). This
is a general property of closed differential forms of any order (see e.g. [3,
p. 37): the electromagnetic field, being antisymmetric, defines a second-order
differential form, which is closed because of ([@.I00) and from this, the existence
of a local potential vector.

The vector field ¢, (z) defined by (@I0T) is called the 4-potential of the
electromagnetic field F,3; more precisely, it is only one of the 4-potentials of
the electromagnetic field F,g because it is not uniquely defined by (@.I01])
(exactly as the scalar potential of a conservative force). In fact, every field
like

Gl = P + Oap (9.102)

with ¢(z) a scalar (invariant) function, still satisfies (O.101)):
aa¢lﬁ - aﬁ¢:1 = Ot — aﬁ¢a = Lo,

for any choice of the potential p(z). In other words, the 4-potential ¢ () de-
fined by (@.I07)) is not intrinsically related to the electromagnetic field F,g, but
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it can undergo a transformation ¢, — ¢/, as in (@I02), with ¢ an arbitrary
scalar potential. This is called the gauge invariance of the electromagnetic field
with respect to its vector potential and shows that, to describe the field Fi,g
through (@I0T]), the components ¢, (x) are not completely arbitrary: one has
at disposal the function ¢(z); hence the independent components of ¢, are
only three. One can then impose a priori an additional differential condition
to the 4-potential which in no way influences the electromagnetic field. The
choice of such a condition is often related to the inhomogeneous Maxwell’s
equations, in order to simplify their form, for instance.
In fact, writing such equations in terms of ¢, gives

4
0(Badp = Oyba) = Sa

that is 4
00(0°,) = 00,0 + :sa .

In this form, the inhomogeneous Maxwell’s equations show a scalar field, given
by the four-dimensional divergence of ¢ = (¢ )H:

Div ¢ = 9," = m?” 9,y — ;mw(a,,qsg +0,0,) (9.103)

as well as a second-order differential operator: the D’Alembert operator, with
parameter ¢ (wave equation for light):

. - 1
o, d:f mpdapad _ 5lkai8k — 2 8152t . (9104)

Using such a notation ([@:29)2 become

4
9a(Div ¢) = O du + :Sa . (a=0,1,2,3). (9.105)

It is then quite natural to choose the supplementary condition for the 4-
potential as
(Divep) =0, VE € My, (9.106)

which is known as Lorentz gauge condition. The latter can be satisfied in
infinite ways, taking into account the transformation (@.102) and with a proper
choice of the arbitrary function . More precisely, assuming that (@106]) is not
directly satisfied by the potential ¢, one has to require such a condition for
the transformed function ¢/, imposing that ¢ is a solution of the differential
equation

1
Uep = _2mpg(ap¢a + 8o¢p) )

4 Note that Div and Grad operations correspond to divergence and gradient in the
space-time.
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with the right-hand side of this equation a known function of . Summarizing,
Maxwell’s equations ([@29]) can also be written as:

4
uc¢>=—:s, Divep =0, VE&EM,;, (9.107)

without any restriction on the electromagnetic field, given a posteriori by

@I0T). Equations ([@.I07), like ([@29]), imply that the source S satisfies, in
the world tube 7 € My, the conservation equation

DivS=0, VEeT, (9.108)

and, from this point of view, the differential condition (@I08]) is a direct
consequence of the field equations (O.I07)). If one assumes, instead, (Q.I107);
and ([@I08) as field equations then

4
ch&:—:s, VEe M, Divep=0, YEcT, (9.109)

implying no longer ([@.I0T)2, but the more general differential condition
O.(Diveg) =0, VE € M,.

The latter, in turn, under regularity conditions at the infinity (a fact which
should be better specified), is equivalent to the Lorentz condition: Div ¢ = 0.

We notice the close analogy between (@.I09));, i.e. the vectorial equation
in My: O.¢ = —47/cS, and the Poisson equation: apart from the different
second-order differential operator 0., which reduces to As in the limit ¢ — oo,
the analogy between the gravitational field and the electromagnetic one is
complete when ¢ — U, S — pu, 1/c — f (Newtonian gravitational constant).
As we see here, to the single gravitational potential, in the electromagnetic
analogy, corresponds the four potentials ¢,,. In general relativity we will have a
larger number of potentials, from 1 to 10: U — g4, and in the so-called unified
theories (geometrization of the gravitational field and the electromagnetic
one), the potentials become 14, at least.

9.13 The Material and the Electromagnetic Schemes

We have already seen that the Lorentz 4-force comes from a superpotential
Eas,
—poft =0, EY, (9.110)

which is closely related to the electromagnetic field Fi,3:

1
A B = FaﬁFpﬁ o 4mapF ) F= FPUFPU 3 (9111)
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but F,3 and E,g are not in 1-1 correspondence, because (QIII) are not
directly invertible. Equations (@I10) are the conservation equations for the
electromagnetic field, like the similar equations for material continuous sys-
tems:

po [ = Op M (9.112)
(@I12) have also the meaning of evolution equations for the material system,
different from (@II0) which only summarize the action autoinduced from the
electromagnetic field governed by Maxwell’s equations.

Clearly, the analogy between (@I10) and (@I12) is purely formal, because
the two tensor fields E“? and M“” have an algebraic structure completely
different, in agreement with the two distinct schemes, the one material and
the other electromagnetic. More precisely, while M “” is represented by

M = [igVOVP 4+ X (9.113)

and summarizes the mechanical characteristics of the continuous system: ,[L(E:
total material density, V: 4-velocity and X *?: proper mechanical stress ten-
sor, the field (@ITT)), instead, does not summarize all the ingredients of the
electromagnetic scheme, at least for two reasons: it is only partially related to
F.s and totally ignores the distribution of charges and currents as described
by the function S = pg'V.

In other words, (O.I10]) are simple algebraic consequences of Maxwell’s equa-
tions, considered as evolution equations for the electromagnetic field as well
as the charged continuous material, which generates it.

Similarly, the autoinduced field f* given by ([@.69) only partially substitutes
the sources S°: in fact, even if (3.69]) are invertible, because of the condition
det || Fopl| # 0, the vectors f, and S are orthogonal. Moreover, apart from
the different role of (I.110) and (@112)) as well as that of the tensor fields F*#
and M the (local) algebraic structure of such tensors is different. To see
this, we can compare the decompositions of the two tensors, inside the world
tube 7, described by charges and currents[d

Thus, from one side we have ([@.113), where V is an eigendirection of M®?,
since X*V5 = 0, (o = 0, 1,2,3); from the other side, from (.77), evaluated
in the proper frame of the generic charged element, that is for v = V /¢, we
have

1 1
AT = WV 4 (FEVE 4 PIV) + Mg (9.114)

with an obvious meaning of symbols.

We see that the structure of the tensor E“P is more general with respect to
that of the energetic tensor associated with an ordinary continuous scheme (i.e.
nonpolar). In fact, (114) assumes, for each E € 7T, two preferred directions:
V (4-velocity of the charge) and Py (proper Poynting vector); the former is

5 We assume here no thermal conduction stresses for simplicity.
6 Note that for the material continuous system the energetic tensor has no meaning
outside T .
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temporal while the latter spatial, because of the orthogonality condition: Py -
V = 0. This then represents the energetic tensor associated with a continuous
system, with internal structure of vectorial type, that is with a “director” Py.
In different words, (@I14]) implies the following coordinate 4-stresses:

T® = dxEc,, , (9.115)
analogous to (T12)
T = X + Q°V | (9.116)
with
1 1 1
X* = M§ + CPOVO‘ , Q% = CPOO‘ + 2 WoV <, (9.117)

hence, the purely mechanical 4-stresses do not satisfy axiom VI:
1
X = MEP 4 vepl £ xPe
¢

Therefore, the problem of unification of the two relativistic schemes, mate-
rial continuum and electromagnetic field, if really solvable, should be framed
in the context of polar continua. This implies the loss of the spatial reci-
procity axiom VI and hence the enlargement of the continuum scheme from
the geometrical-kinematical point of view, introducing as a “director” the
proper heat conduction vector, which has the Poynting vector as a counter-
part in the electromagnetic field. However, in this case, polarity has a differ-
ent meaning with respect to the classical situation, because the mechanical
4-stress tensor is assumed to be nonsymmetric, different from the ordinary
stress tensor, which is instead symmetric.

Another enlargement of the scheme, even from a dynamical point of view,
is obtained by introducing “pairs” (mass or contact pairs, both mechanical or
thermal) and rejecting the reciprocity axiom III: these are relativistic polar
continua, in the most general sense, that is with nonsymmetric energetic ten-
sor, and consequent asymmetry of the ordinary stress tensor as well as of the
momentum of stress tensor.

9.14 Evolution Equations for a Charged Material System

Let us consider now, from a general point of view, the evolution of a charged
continuum material system in the absence of thermal stresses; this is a mixed
scheme in which, besides the thermodynamical complication, there is a direct
coupling between matter and electromagnetic field [4]. More precisely, the
energetic tensor of the material system,

MP = g VovP 4 xo8 (9.118)
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is sub-ordered to the evolution equations:
0, M = pofr +pof®, («=0,1,2,3), (9.119)

where the sources, at the right-hand side, include either the mass force (inter-
nal and external, of mechanical and of thermal type) or the mechanical action
induced by the electromagnetic field on the continuum, given by (@.69):

1
pof® = CFaﬁsg : (9.120)

This, in turn, is built by the electromagnetic tensor F,, 3 and the associated
sources Sy, both constrained by Maxwell’s equations. Thus, the complete set
of equations is the following:

1
Op M = g frn + pof<, pof = CFaﬁsﬁa
8pFo¢B + 8aFﬁp + 8ﬁFpa = 0, (9121)
4
0,70 = T se,

where, besides the initial and boundary conditions, the energetic tensor M is
the same as in ([@I11]), and the mass force f2 is assigned. It is clear that, from
@I27), the coupling between the two fields (material and electromagnetic) is
only through the Lorentz force f, also expressed as follows:

pof® = —0,E*,
with £*? a well-determined function of the electromagnetic field Fi g as in
(@III). Therefore, the final set of general equations ([@I2T)) for the coupling

of matter and charge assumes the form

Bp(M®? + B*?) = o,

apFozB + 80¢F5p + 8BFP0¢ = 07 (9122)
4
gyrer = VT

and the interaction between the two fields is governed by the energetic tensor
of the electromagnetic field:

1
ATEYP = F3FPP — J Epr PO (9.123)

Finally, (@OI07) gives rise to the reduced set of equations:
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47

0o(M? 4+ B) = pof2 . D.p=— 'S, Divg=0,  (9.124)
c

in terms of the potential vector ¢, which is used to express F,,3 and hence
Eqp.
Moreover, ([@.I122]) shows that for the continuum one still has conservation

equations as (@112): K
O, = o2 (9.125)

where E° is the total energetic tensor:

Eozp d:ef MeP 4 For
1 1
= [iVeVP + X8 4 i <FO‘BF”B — 4m°‘prgF"”> , (9.126)

that is the sum of the energy-momentum tensors: material and electromag-
netic; explicitly, in the matter case:

- 1
E*P = (ﬂo—l— 47TC2W0> Veve 4 Xer

1 1
+47TM5") + 47rc(VaP(g’ +VPPS). (9.127)
As we have already seen, for a neutral continuous system, ([@I25]) can be
interpreted as conservation equations (with sources, in the region internal to
matter, and without sources in the exterior) for the linear momentum and the
total energy of the system: matter plus electromagnetic field. More precisely, in
any Galilean frame, (@.120]) give rise to the conservation of linear momentum
and energy for the set of three fundamental fields: pure matter, internal tension
(either of mechanical or thermal type) and electromagnetic, with energetic
tensors: poVeV?, TP = uQOVO‘VB + X% and E*8, respectively; they should
be considered in their form, associated with the chosen Galilean frame and
from here, the total matter density: i = p+ e + fte, the total energy density:
ué = fic?, the total coordinate stresses (material and Maxwell’s), etc.

Besides the mixing of the various energetic forms and linear momentum, we
notice that the coupling which we have been considering here grounds on the
hypothesis that in the interior of the material continuum one can assume the
vacuum Maxwell’s equations as holding. Properly speaking, in the presence
of matter in place of H and E one has to consider the electric and magnetic
induction, that is the induced electromagnetic field, which is related to the
permeability (electric and magnetic) of the considered matter; similarly, one
should specify if the material is a conductor, the ordinary Ohm law, etc.

Thus, the set of equations (@I23) does not represent the general (com-
plicated) coupling of the two fields (matter and charge): one has to specify
for example the constitutive equations, so that practically one should look at
them as a first approach to a more general problem.
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