
Statistics and Econometrics for Finance

Abdulkader Aljandali

Multivariate Methods 
and Forecasting with 
IBM® SPSS® Statistics



Statistics and Econometrics for Finance

Series Editors
David Ruppert

Jianqing Fan

Eric Renault

Eric Zivot

More information about this series at http://www.springer.com/series/10377



This is the second part of a two-part guide to quantitative analysis using the IBM

SPSS Statistics software package. This volume focuses on multivariate analysis,

forecasting techniques and research methods.



Abdulkader Aljandali

Multivariate Methods
and Forecasting with IBM®

SPSS® Statistics



Abdulkader Aljandali
Accounting, Finance and Economics Department
Regent’s University London
London, UK

ISSN 2199-093X ISSN 2199-0948 (electronic)
Statistics and Econometrics for Finance
ISBN 978-3-319-56480-7 ISBN 978-3-319-56481-4 (eBook)
DOI 10.1007/978-3-319-56481-4

Library of Congress Control Number: 2017939132

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with
regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Preface

IBM SPSS Statistics is an integrated family of products that addresses the entire

analytical process, from planning to data collection to analysis, reporting and

deployment. It offers a powerful set of statistical and information analysis systems

that runs on a wide variety of personal computers. As such, IBM SPSS (previously

known as SPSS) is extensively used in industry, commerce, banking and local and

national government education. Just a small subset of users of the package in the

UK includes the major clearing banks, the BBC, British Gas, British Airways,

British Telecom, Eurotunnel, GlaxoSmithKline, London Underground, the NHS,

BAE Systems, Royal Dutch Shell, Unilever and W.H. Smith & Son.

In fact, all UK universities and the vast majority of universities worldwide use

IBM SPSS Statistics for teaching and research. It is certainly an advantage for a

student in the UK to have knowledge of the package since it obviates the need for an

employer to provide in-house training. There is no text at present that is specifically

aimed at the undergraduate market in business studies and associated subjects such

as finance, marketing and economics. Such subjects tend to have the largest

numbers of enrolled students in many institutions, particularly in the former

polytechnic sector. The author is not going to adopt an explicitly mathematical

approach, but rather will stress the applicability of various statistical techniques to

various problem-solving scenarios.

IBM SPSS Statistics offers all the benefits of the Windows environment

as analysts can have many windows of different types open at once, enabling

simultaneous working with raw data and results. Further, users may learn the

logic of the program by choosing an analysis rather than having to learn the IBM

SPSS command language. The last thing wanted by students new to statistical

methodology is simultaneously to have to learn a command language. There are

many varieties of tabular output available, and the user may customise output using

IBM SPSS script.

This book builds on a previous publication, Quantitative Analysis and IBM SPSS
Statistics: A Guide for Business and Finance (Springer, 2016), which provided a

gentle introduction to the IBM SPSS Statistics software for both students and

v



professionals. This book is aimed at those who have had exposure to the program

and intend to take their knowledge further. This text is more advanced compared to

the one above-mentioned and will be beneficial to students in their final year of

undergraduate study, master’s students, researchers and professionals working in

the areas of practical business forecasting or market research data analysis. This

text would doubtlessly be more sympathetic to the readership than the manuals

supplied by IBM SPSS Inc.

London, UK Abdulkader Mahmoud Aljandali

June 10th 2017
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Introduction

This is the second part of a two-part guide to the IBM SPSS Statistics computer

package for business, finance and marketing students. This, the second part of the

guide, introduces multivariate regression, logistic regression, Box-Jenkins method-

ology alongside other multivariate and forecasting methods. Although the emphasis

is on applications of the IBM SPSS Statistics software, there is a need for the user

to be aware of the statistical assumptions and rationale that underpin correct and

meaningful application of the techniques that are available in the package. There-

fore, such assumptions are discussed, and methods of assessing their validity are

described.

This, the second part of the IBM SPSS Statistics guide, is itself divided into three

sections. The first chapter of Part I introduces multivariate regression and the

assumptions that underpin it. The chapter discusses the multicollinearity and

residual problems. Two-variable regression and correlation are illustrated, and the

assumptions underlying the regression method are stressed. Logistic and dummy

regression models in addition to functional forms of regression are the subject

matter of Chap. 2. The Box-Jenkins methodology, stationarity of data and various

steps that lead to the generation of mean equations are introduced in Chap. 3. The

practical utility of time series methods is discussed. Exponential smoothing and

naı̈ve models Chap. 4 conclude Part I. Part II introduces multivariate methods such

as factor analysis (Chap. 5) discriminant analysis (Chap. 6) and multidimensional

scaling (Chap. 7). This part concludes with a chapter on the hierarchical log-linear

analysis model (Chap. 8).

Part III comprises chapters that introduce popular concepts usually taught under

research methods. Testing for dependence using the chi square test is discussed in

Chap. 9, while applications on parametric and non-parametric tests are made

available to the reader in Chap. 10. Parametric methods make more rigid assump-

tions about the distributional form of the gathered data than do non-parametric
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methods. However, it must be recognised that parametric methods are more

powerful when the assumptions underlying them are met. This book concludes by

a review of the concept of constant and real prices in business and the effect it might

have on the recording of data over time (Chap. 11).
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Part I

Forecasting Models



Chapter 1

Multivariate Regression

More often than not, regression models involve more than one independent
(predictor or regressor) variable. It is hard to think of any dependent variable
(Y) in business applications that might be determined by just one factor. For

example, forecasting methods are commonly applied to series such as inflation

rates, unemployment, exchange rates, and population numbers etc. that have com-

plex relationships with determining variables. This chapter introduces the multi-

variate linear regression model. This model may be regarded as a descriptive tool,
by which the linear dependence of one variable on others is summarised. It may also

be regarded as an inferential tool, via which the relationships in a population are

evaluated from the examination of sample data. The question of inference may be

conveniently grouped into two general classes; estimation and hypothesis testing.

The multivariate linear regression model thus plays a crucial role in examining the

relationships between variables and producing forecasts.

The multivariate linear regression model may be written in algebraic form as:

Yi ¼ b0 þ b1X1i þ b2X2i þ ::::: þ ei for i ¼ 1, 2, :::::, n

where Yi represents the values of a dependent variable, X1i, X2i, . . ... are the values
of a set of independent variables, n is the number of gathered observations and ei
represents the model error. The bi are called regression coefficients whose numer-

ical values are to be determined. There are a series of assumptions that underpin the

use of the above model. Violation of these assumptions may lead to incorrect

inferences being made, so good research will spend some time in testing and

evaluating these assumptions which are described in the next section.
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1.1 The Assumptions Underlying Regression

1.1.1 Multicollinearity

When the regressor variables are truly not independent or are rather correlated with

each other (i.e. they display redundant information), multicollinearity is said to

exist. It is imperative that users of multivariate regression not only understand the

effects of multicollinearity, but learn to diagnose it. Consider the fictitious data in

the table overleaf. If we regress Y on X1, we will find (Table 1.1):

Y
⏞ ¼ 0:195þ 0:582X1

with a coefficient of determination of 63.4%. The positive gradient of X1 makes

sense, since as Y increases, so too does X1. Note in the table that X2 is treble X1

save for the last datum point. These latter two supposedly independent variables are

in fact strongly correlated or multicollinear. Regressing Y on X1 and X2 we now

obtain:

Y
⏞ ¼ �3:977þ 15:166 X1 � 4:498 X2:

The gradient of X1 has increased nearly 26-fold to a value of 15.166. Further the

gradient of X2 is negative, which does not make sense. A negative gradient would

infer that in general as Y increases then X2 decreases.Multicollinearity may result

in the regression coefficients being mis-specified in magnitude and/or in sign.

Given that the regression coefficients are gradients reflecting rates of change

(a particularly important concept in Economics), inferences about the regression

coefficients may become unreliable in this situation, even though the coefficient of

determination may be high. Note that it is possible that the regression errors may be

very small, yet the regression coefficients are estimated poorly.

A further point is that the standard error of the sample regression coefficients can

be inflated by multicollinearity. There are estimation procedures designed to

combat multicollinearity – procedures designed to eliminate model instability and

to reduce the variances of the regression coefficients. One alternative for reducing

multicollinearity, but remaining within standard least squares estimation, is to try

transformations on the regressor variables. For example, in the case of two regres-

sors, X1 and X2 which are highly correlated, defining a variable Z¼ X1 þ X2 might

Table 1.1 Fictious data Y X1 X2

1 3.8 11.4

2 3.2 9.6

3 4.0 12.0

4 4.5 13.5

5 8.6 27.0
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produce an effective result. BE CAUTIOUS, however, in forming new variables

like Z that do not make sense in the context of the problem at hand. For example,

the researcher should be extremely reluctant to sum variables that are measured in

different units. A second alternative is simply to remove one of a correlated pair of

regressor variables.

The technique of ridge regression is probably the most popular estimating

technique for combatting multicollinearity. Ridge regression falls into the category

of biased estimation techniques. The method is based on the idea that least squares

yields unbiased estimates and indeed enjoys minimum variance of all linear unbi-

ased estimators, but there is no upper bound on the variance of the estimators and

the presence of multicollinearity tends to produce large variances. As a result, a

huge price is paid for the unbiased property inherent on ordinary least squares.

Biased estimation is used to attain a substantial reduction in variance with an

accompanied increase in stability of the regression coefficients. The coefficients

do become biased and simply put, the reduction in variance should be of greater

magnitude than the bias induced in the estimators. Ridge regression is available in

IBM SPSS Statistics, but the syntax has to be written to run the procedure.

To detect potential multicollinearity, the user could run Pearsonian correlations

between every pair of regressor variables and test for significance. An alternative is

to run the regression analysis and generate variance inflation factors (VIF). The
VIF’s represent the inflation in variance that each sample regression coeffi-

cient experiences above the ideal i.e. above what would be experienced if there

was no correlation between the regressor variables. As a rule of thumb, a VIF

above 10 is a cause for concern. VIF’s are available in the IBM SPSS Statistics

regression procedure and can be generated by selecting Collinearity diagnostics
under the statistics tab as shown in Fig. 1.1.

1.1.2 Homoscedasticity of the Residuals

Residuals (or errors or disturbances) in a regression analysis are simply the

differences between the observed and predicted values of Y:

Residual or eið Þ ¼ Yi � Y
⏞
i, for i ¼ 1, 2, 3, ::::, n

and n is the number of observations.

The linear regression model requires that the residuals in the population should

have zero mean and constant spread or variance about the regression line. If this is

the case, then we should expect constant variance of the residuals about the

regression line in our gathered sample. The property of constant residual variance

is known as homoscedasticity. In practice, this assumption is often violated. It is

almost endemic that as numbers become larger in an investigation, variation about

the trend or fitted model becomes larger. The property of non-constant residual

1.1 The Assumptions Underlying Regression 5



variance is called heteroscedasticity. If the homoscedasticity assumption is vio-

lated, the regression coefficients are still unbiased estimates of their population

counterparts, but they are no longer fully efficient. This means that other unbiased

estimates exist that have smaller sample variances. The formula used for computing

the variances of the sample regression coefficients may be nowhere near correct if

the variance of the residuals is not constant.

Figures 1.2 and 1.3 are examples of a diagram that is commonly used to detect

whether or not the homoscedasticity assumption is met. These diagrams plot the

standardized values of the regression residuals on the vertical axis against the

standardized predicted values. Both variables are standardized (zero mean, variance

of one), so that the magnitude of the raw data values does not come into play. In

Fig. 1.2, the spread or variance of the residuals seems pretty constant as we move

from the left to the right of the graph. In Fig. 1.3, however, this is not the case.

Figure 1.2 suggests homoscedasticity of the residuals; Fig. 1.3 suggests

heteroscedasticity. If plots such as these indicate a marked curved trend, then it is

likely that a linear regression model is inappropriate for the data. It should be noted

in passing that such plots may reveal one or more unusually large residuals. Such

points are called outliers, which may represent data input errors or they may reflect

special cases that should be investigated further. Outliers are individual data points

that do not fit the trend set by the balance of the data. One rule-of-thumb definition

Fig. 1.1 Linear regression: statistics

6 1 Multivariate Regression
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Fig. 1.3 Heteroscedastic residuals
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of an outlier is any residual that lies more than three standardized units from the

regression line (although �2 standardized units does appear in the literature).

Remember that the vertical axis in Figs. 1.2 and 1.3 has been standardized, so

such plots offer a visual method of detecting outliers more than three standardized

units from the regression line.

There are available statistical tests to obtain quantitative measures of model

inadequacies due to violation of the homoscedasticity assumption. If hetero-

scedasticity is suspected, then efforts should be made to counter the problem.

One method is to transform the X and Y variables. For example, suppose in the

bivariate case that the standard deviation of the residuals increases in direct

proportion to the values of X. Such heteroscedasticity may be eliminated by

dividing each value of Y by the corresponding value of X. A regression equation

is then calculated using 1/X as the independent variable (in place of X) and Y/X as

the dependent variable (in place of Y). For multivariate problems, the situation is

more complex if heteroscedasticity is present. The method of weighted least
squares (WLS) has been devised to tackle the problem by calculating the absolute

value of the unstandardized residuals. WLS is available in IBM SPSS Statistics

under the Linear Regression screen.

1.1.3 Normality of the Residuals

The linear regression model requires that the residuals should be normally distrib-

uted. This is required for hypothesis testing and confidence intervals. Small depar-

tures from normality do not affect the regression model greatly, but gross

departures are potentially more serious. Furthermore, if the residuals come from a

distribution with thicker or heavier tails than the normal, the least squares fit may be

sensitive to a small subset of the data. Heavy-tailed residual distributions often

involve outliers that “pull” the least squares line in their direction.

The normality assumption may be examined graphically via a histogram or

normal probability plot of the residuals. A formal statistical test is available via

the Shapiro-Wilks test available in the IBM SPSS Statistics Explore routine. These

were all discussed in Chap. 7 (Bivariate Correlation and Regression) in Quantitative

Analysis with IBM SPSS Statistics: A Guide for Business and Finance.

1.1.4 Independence of the Residuals

Some applications of regression involve dependent and regressor variables that

have a natural, sequential order over time. Such time series models are common in

economics, business and some fields of engineering. Linear regression models

assume that the residuals are independent or uncorrelated. Such an assumption

for time series data is often not applicable, for example the value of an economic

8 1 Multivariate Regression
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variable in 1 month is often related to its value in the previous month(s). Variables

such as seasonal influences and consumer population size are essentially synony-

mous with the variable time. Such a lack of independence is called temporal
autocorrelation. It may be noted that autocorrelation may occur over space. For

example, crop output in one region may be correlated with such outputs in

neighbouring regions due to similar growing conditions. This is spatial
autocorrelation.

Figure 1.4 exhibits positive temporal autocorrelation of the residuals; Fig. 1.5

shows negative temporal autocorrelation, which is uncommon in economic or

business-related data. Such plots offer visual inspection about the presence or

otherwise of autocorrelation.

In the case of positive autocorrelation, unusually large numbers of residuals with

the same sign tend to cluster together. Negative autocorrelation is suggested by

rapid changes in sign of the residuals. Positive autocorrelation causes estimates of

the population variance of the residuals to be substantial underestimates. Such

estimates are central in various test of hypotheses and in the estimation of confi-

dence intervals, so it is in these areas that autocorrelation causes difficulties. In the

instance of positive autocorrelation, confidence intervals for the population regres-

sion coefficients are deflated. One approach to overcoming the problem of auto-

correlation is the Cochrane-Orcutt procedure discussed later in this chapter.

There are formal statistical tests for the detection of autocorrelation. Perhaps the

best known is the Durbin-Watson (D-W) test, which is available in IBM SPSS
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Fig. 1.4 Positively correlated residuals
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Statistics. The D-W test is usually applied to detect positive autocorrelation, since

most regression problems involving time series data have the potential to exhibit

this phenomenon. The population autocorrelation is denoted by ρ and the D-W test

examines the null hypothesis that ρ ¼ 0 versus the alternative that ρ > 0.

Denoting the residual at time t as et, the D-W test statistic is:

d ¼
P

et � et�1ð Þ2
P

e2t

where the et, t ¼ 1, 2, . . ..., n are the residuals from an ordinary least squares

analysis. Statistical tables are available for the significance of the d statistic. These

tables contain a lower bound for d, denoted by dL and an upper bound for d, denoted

by dU. The decision procedure is as follows:

• If d < dL reject H0: ρ ¼ 0 in favour of H1

• If d > dU, do not reject H0: ρ ¼ 0

• If dL < d < dU, then the test is inconclusive.

Clearly, small values of d suggest that H0: ρ ¼ 0 should be rejected because

positive autocorrelation indicates that successive residual terms are of similar

magnitude and the differences in the residuals will consequently be small.

As stated, situations where negative autocorrelation is present are rare. However,

if a test is required for negative autocorrelation, one can use the statistic (d), where d
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is the D-W statistic previously defined. The decision rule for H0: ρ ¼ 0 versus H1:

ρ > 0 is the same as that used for testing for positive autocorrelation.

1.2 Selecting the Regression Equation

We are trying to establish a linear regression equation for a dependent or response

variable Y in terms of “independent” or predictor variables X1, X2, X3, . . . etc. Two
opposing criteria for selecting a relevant equation are usually involved. They are:

1. To make the equation useful for predictive purposes, we should want our model

to include as many Xi as possible so that reliable fitted values can be determined.

2. Due to the costs involved in obtaining information on a large number of Xi and

subsequently monitoring them, we would like the equation to include as few Xi

as possible.

The compromise between these extremes is usually what is called selecting the
best regression equation. There is no unique statistical procedure for doing this and
personal judgment will be a necessary part of any of the statistical methods

involved. There are several procedures available for selecting the best regression

equation. They do not necessarily lead to the same solution when applied to the

same problem, although for many problems they will achieve the same answer.

The forward selection procedure inserts the Xi until the regression equation is

satisfactory. As each Xi is entered into the regression equation, the coefficient of

determination (called the multiple correlation coefficient in the multivariate case) is

computed. The first Xi entered into the regression is the one that will generate the

largest coefficient of determination. The second Xi entered will be the variable that

engenders the largest increase in the coefficient of determination etc. At some stage,

the increase in the value of the coefficient of determination will not be significant.

(A partial F test is used to examine whether a particular variable has taken up a

significant amount of variation over that removed by variables already in the

equation).

The backward selection procedure is an attempt to achieve a similar conclusion

working from the other direction (i.e. to remove variables until the regression is

satisfactory). A regression containing all the Xi is initially computed. A (partial F)

test is conducted for every Xi as though it were the last variable to enter the

regression equation. Variables are eliminated if they do not explain significant

amounts of variation in Y. In spite of its name, the stepwise selection procedure

is, in fact, an improved version of the forward selection procedure. The improve-

ment involves the re-examination at every stage of the regression of the variables

incorporated into the model at previous stages.

A variable which may have been the best single variable to enter at an earlier

stage may, at a later stage, be superfluous because of the relationship between it and

other variables now in the regression.

1.2 Selecting the Regression Equation 11



A judgment is made on the contribution made by each variable as though it had

been the most recent variable entered, irrespective of its actual point of entry into

the model. Any variable that provides a non-significant contribution is removed

from the model. This process is continued until no more variables are admitted to

the equation and no more are rejected. Stepwise is thus a combination of forward

and backward selection. Lastly, there is the enter selection procedure. This process

simply enters all the Xi in one block. Naturally, this latter method provides no

information about the relative importance or otherwise of the Xi.

1.3 Multivariate Regression in IBM SPSS Statistics

A study was undertaken concerning workloads in 17 hospitals at various sites

around England. The data are contained in the IBM SPSS Statistics file NHS.

SAV associated with this chapter and the file includes the following regressor

variables:

X1 – mean daily patient load,

X2 – monthly X-ray exposures,

X3 – monthly occupied bed days,

X4 – eligible population in the area (000’s) and
X5 – average length of patient’s stay (days).

The dependent variable (Y) is the number of hours per month devoted to patient

care. The researchers hypothesised that the regressor variables above result in the

need for manpower in a hospital installation. Multivariate regression was applied

using the stepwise selection procedure as a precursor to running the multivariate

regression; it is worthwhile to examine the Pearsonian correlations between the five

regressor variables to indicate whether multicollinearity may be a problem. As

indicated in Part 1, correlation routines are accessed by clicking:

Analyze

Correlate

Bivariate . . .

from the IBM SPSS Statistics Data Editor. This gives rise to the Bivariate corre-
lations dialogue box, in which X1 to X5 inclusive are entered into the ‘Variables’
box. The results of Fig. 1.6 are produced. The results show that several pairs of the

Xi are significantly correlated and may, therefore, create a multicollinearity prob-

lem should such pairs appear together in the final regression model.

For example X1 and X2, r ¼ 0.908, X1 and X4, r ¼ 0.935 are two such pairs

whose correlations are significantly different from zero. For convenience, IBM

SPSS Statistics places stars besides significant correlations. Noting these results, or

at least the significant ones, we proceed with our multivariate regression which is

accessed via:
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Analyze

Regression

Linear...

The Linear Regression dialogue box of Fig. 1.7 is generated. (In passing, the

user might note the button in the bottom left hand corner labelled WLS>>. This

refers to weighted least squares mentioned previously). The Y variable is entered

into the ‘Dependent’ box and the five Xi enter the ‘Independent(s)’ box. In the

‘Method’ box, we select the stepwise procedure from the four options. Click the

Statistics. . . button to generate the Linear Regression: Statistics dialogue box of

Fig. 1.8. Selecting collinearity diagnostics is always a sensible option. Also selected

in Fig. 1.8 are confidence intervals for the population regression coefficients, the

Durbin-Watson statistic to test for autocorrelation and a request to print out outliers

which a three standard deviations or more from the regression.

It should be noted that autocorrelation is not so much a consideration here, as the

hospital data are recorded over neither time nor space (the D-W option is mentioned

for information). Click the Continue button to return to Fig. 1.7.

Click the Plots button to produce the Linear Regression: Plots dialogue box of

Fig. 1.9. I have selected to construct a plot of the standardized residuals (*ZRESID)

against the standardized predicted values (*ZPRED), in order to assess the homo-

scedasticity assumption. Also requested is a histogram of the residuals to assess the

normality assumption. Click the Continue button to return to Fig. 1.7.

Click the Save button to produce the Linear Regression: Save dialogue box of

Fig. 1.10. I have chosen to save the standardized and unstandardized residuals and
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Fig. 1.6 Correlations between the regressor variables

1.3 Multivariate Regression in IBM SPSS Statistics 13



Fig. 1.7 The linear regression dialogue box

Fig. 1.8 The linear regression: statistics dialogue box
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predicted values. These four new variables will be added to the existing IBM SPSS

Statistics data file. Click the Continue button to return to Fig. 1.7 and then the OK

button to operationalise.

Figure 1.11 illustrates part of the IBM SPSS Statistics output for the hospital

data. Under the heading ‘Variables Entered/Removed’, we see that the stepwise

procedure entered X3 and the first step and then X2 at the second step. Therefore,

X1, X4 and X5 do not make significant contributions to explaining variation in

Y. Hence, the monthly man-hours is primarily determined by the monthly occupied

bed days and the monthly X-ray exposures. Under the heading ‘Model Summary’,
we see that the multiple regression coefficient for a model involving just these two

regressors is a healthy 98.4%. Despite the significant correlation between X3 and X2

evident in Fig. 1.6, the variance inflation factors (VIF) found under the heading

‘Coefficients’ are 6.475 <10.

Our rule of thumb suggests that multicollinearity is not a problem here. In

passing, the D-W statistic is found under the heading ‘Model Summary’ and here

has numerical value 2.618. From statistical tables, with two regressors in our model

and n ¼ 17 readings, dL ¼ 1.015 and dU ¼ 1.536. Since our observed value of

d> dU, we do not reject the hypothesis of zero autocorrelation. However, it may be

recalled that autocorrelation is not a consideration here.

The equation of regression is found under the heading ‘Coefficients’ and is:

Fig. 1.9 The linear regression: plots dialogue box
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Y
⏞ ¼ 54:154þ 0:9X3 þ 0:061X2:

Both gradients are positive, as expected. Our sample gradients are denoted by bi
and based on the values of the bi, we may wish to make inferences about their

population equivalents. In particular, it is possible to test the null hypothesis:

Fig. 1.10 The linear regression: save dialogue box
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H0: a particular population gradient β ¼ 0.

The test statistic for this is: b/standard error of which is distributed as a t statistic.

For example, from the ‘Coefficients’ heading of Fig. 1.11, we may wish to test:

H0: the population gradient of X3 is zero, i.e. β3 ¼ 0, versus

H1: β3 6¼0.

From Fig. 1.11, the test statistic has a numerical value 0.9/0.099¼ 9.09 as shown

and using the above formula. This test statistic is highly significant (p ¼ 0.000), so

we reject the null hypothesis in favour of the alternative hypothesis. A similar

conclusion is reached for the population gradient of X2, which supports the stepwise

procedure of introducing these two regressors. Under the headings ‘Lower Bound’
and ‘Upper Bound’ (for model 2), we see that a 95% confidence interval for β3 is:

P 0:687 < β3 < 1:113ð Þ ¼ 0:95

and as expected from the hypothesis test, the value of zero for this gradient is not

included in the above interval.

Figure 1.12 is a histogram of the residuals. It suggests that the residuals may not

be normally distributed as is required, but the deviation from normality is not so
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Fig. 1.11 Part of the output from the stepwise regression procedure
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marked as to be a problem. Figure 1.13 is the plot of the standardized residuals

against the standardized predicted values. The residuals appear to exhibit a reason-

ably constant spread from left to right of this diagram, so the homoscedasticity

assumption seems to be satisfactory. Figure 1.14 plots the residuals case by case and

we note here (as well as in Fig. 1.13) that there are no outliers beyond �3 standard

deviations from the regression.

Note that four new variables have been added to the data file. PRE_1 are the

unstandardized predicted values of Y, RES_1 are the unstandardized residuals,

ZPR_1 are the standardized predicted values and ZRE_1 are the standardized

residuals. It is possible to construct the multiple line chart of Fig. 1.15, by plotting

PRE_1 against Y. (The underscore XXX_1 means that this refers to the first

regression run during this session). This diagram reinforces the general adequacy

of the fit, which we expected from such a high multiple correlation coefficient.

It may be noted that if the enter procedure is used (i.e. all five regressors are

entered en bloc), the equation of regression is:

Fig. 1.12 A histogram of the regression residuals
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Y
⏞ ¼ 2418:461� 73:31X1 � :00:8X2 þ 3:44X3 þ 10:757X4 � 161:622X5:

This model is unacceptable from the multicollinearity standpoint, in that the

VIF’s associated with X1, X3 and X4 were found to be respectively 9542.0, 9992.7

and 23.3. One cannot consider models with all or combinations of these three

variables included. The gradients associated with X1 (mean daily patient load)

and X4 (eligible population in the area) in this model are negative, which makes

little sense in the context of this problem and the sign of these gradients is doubtless

due to multicollinearity.

1.4 The Cochrane-Orcutt Procedure for Tackling
Autocorrelation

The effects of autocorrelation have already been alluded to. Ordinary least squares

estimates of the regression coefficients are no longer minimum variance estimates.

Hence, hypothesis tests and confidence intervals like those shown in the previous

subsection become unreliable. To overcome the problem the researcher may turn to

a model that specifically incorporates the autocorrelation structure.

Fig. 1.13 A plot of standardized residuals against predicted values
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Autocorrelation may result from the omission of significant regressors. If these

regressors can be identified and incorporated in the model, the autocorrelation

problem may be eliminated. However, there may be a real time dependency in

the residuals, so the researcher has to turn to a number of estimation procedures

available for this purpose. A widely used method for tackling autocorrelation is due

to Cochrane and Orcutt (C-O).
Consider the simple linear regression model with first order autocorrelated

errors. This phrase simply means that the residuals at time t are autocorrelated

with the residuals at time (t � 1) i.e.

et ¼ ρet�1 þ at

where et is the error at time t, at is an error at time t that is independent of et and ρ is a
measure of the autocorrelation (ρ lying between�1 andþ1 inclusive). Both et and at
are assumed to have means of zero. Assume a simple regression model of the form:
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Fig. 1.14 A case by case analysis of the standardized residuals
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yt ¼ b0 þ b1xt þ et::::: ð1:1Þ

The logic behind the C-O procedure is to transform the response variable so that:

Yt ¼ yt � ρ yt�1

and using Eq. (1.1),

Yt ¼ b0 þ b1xt þ et � ρ b0 þ b1xt�1 þ et�1ð Þ
Yt ¼ b0 1� ρð Þ þ b1 xt � ρxt�1ð Þ þ et � ρet�1

Yt ¼ β0 þ β1Xt þ at::::: ð1:2Þ

where β0 ¼ b0(1�ρ), β1 ¼ b1, Xt ¼ xt�ρxt�1 and at ¼ et�ρet�1. Note that the error

terms at in this (reparametrized) model of Eq. (1.2) are independent variables.

Essentially speaking, Eq. (1.1) does not take into account of autocorrelation;

Eq. (1.2) does. By transforming the regressor and response variables, we have

generated a model that satisfies the usual regression assumptions and ordinary

least squares may be applied to Eq. (1.2). The value of the autocorrelation

25,000
Unstandardized Predicted
Value
monthly no. of hours
devoted to care

20,000

15,000

10,000

5,000

0

1 2 3 4 5 6 7 8

Case Number

V
al

u
e

9 10 11 12 13 14 15 16 17

Fig. 1.15 A plot of observed versus predicted values
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coefficient, ρ, is estimated by regressing et on et�1. The estimated value of ρ is

simply the gradient of this latter regression.

The data in the IBM SPSS Statistics file COLGATE.SAV involve the percentage

market share (MKTSHARE) for a particular brand of toothpaste (Yt) and the dollar

selling price (PRICEPND) per pound (Xt) for 20 consecutive months. We wish to

build a regression model relating share of market in period t to the selling price in

the same period.

Using ordinary least squares, the fitted model is:

MKTSHARE ¼ 38:91� 24:29∗ PRICEPND,

but the residual plot of Fig. 1.16 is suggestive of positive temporal autocorrelation.

This is confirmed by the Durbin-Watson statistic d¼ 1.136 which is compared with

the 5% critical levels for n ¼ 20, of dL ¼ 1.20 and dU ¼ 1.41.

The C-O procedure is, therefore, used to estimate the model parameters. In

recent versions of IBM SPSS Statistics, this is achieved by writing IBM SPSS

syntax. The form of the appropriate syntax is:

AREG VARIABLES = dependent series name WITH independent series

names

Fig. 1.16 A plot of the regression residuals over time
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/METHOD = CO

/RHO = value

/MXITER = number

The user may specify the numerical value to be used as the initial ρ value during
the iteration procedure. The default is ρ¼ 0 if this command is omitted. MXITER

allows the user to specify the maximum number of iterations the procedure is

allowed to cycle through in calculating estimates. The default is 10 iterations if

this command is omitted.

To type in syntax, the user has to access the IBM SPSS Syntax Editor of

Fig. 1.17, which is achieved via:

File

New

Syntax

And type

AREG VARIABLES = mktshare WITH pricepnd

Fig. 1.17 The SPSS syntax editor
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/METHOD = CO

/RHO = 0

/MXITER = 20

Then click on

Run

All

As shown in Fig. 1.18. This will generates the output of Fig. 1.19 in the SPSS

Viewer.

The estimated value of ρ is 0.413. The equation of regression obtained from the

C-O procedure is:

MKTSHARE ¼ 38:75� 24:12PRICEPND,

and the estimate of the gradient differs only slightly from that obtained via least

squares and presented earlier. The Durbin-Watson statistic for the above

Fig. 1.18 The C-O procedure in IBM SPSS syntax
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transformed model is d¼ 1.89 and comparing this with the appropriate table values

we fail to reject the null hypothesis that the residuals are uncorrelated. Therefore,

the Cochrane-Orcutt method has eliminated the original autocorrelation problem.
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Fig. 1.19 Output from the Cochrane-Orcutt procedure
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Chapter 2

Other Useful Topics in Regression

Once the user has grasped the fundamentals of multivariate linear regression, there

are several related techniques that have application in business-orientated or socio-

economic fields and which are described in this and the next chapter. Problems

involving a binary (or dichotomous) response variable are common in any field

where the researcher wishes to predict the presence or absence of a characteristic or

outcome based upon a set of predictor variables. An example that is often cited is

the presence or otherwise of coronary heart disease (binary, response variable)

being dependent on smoking habits, diet, alcohol use and levels of exercise.

Whether a person is accepted for a bank loan could depend on their income,

employment history, monthly out-goings, amount of other loans etc. Problems

involving a binary response variable may be examined by binary logistic regression
as described in the first section of this chapter (2.1). The section that follows

(2.2) briefly describes the method of Multinomial Logistic Regression which is

similar to Logistic Regression, save that it is more general in that the response

variable is not restricted to two categories.

The variables incorporated as predictors into our regression studies so far are

quantitative; they have a well-defined scale of measurement. Sometimes, it is

necessary to use qualitative or categorical variables as predictors in the regression.
Examples of such categorical variables are employment status (employed or not),

industrial shift worked (day, evening or night), sex (male or female) etc. Such

variables have no natural scale of measurement. They are represented in statistical

analyses by codes (e.g. male coded as ‘0’ and female coded as ‘1’) as discussed in

the first volume of this guide. It is perfectly reasonable to postulate that a response

variable might be related to a mix of quantitative and qualitative variables. For

example, an employee’s present salary might depend on age, gender, previous

experience and level of education. Such problems are examined by Dummy Regres-
sion illustrated in the Sect. 2.3 while Sect. 2.4 discusses functional forms of

regression models.
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2.1 Binary Logistic Regression

The standard regression model assumes that the dependent variable, Y, is measured

quantitatively. The independent (or regressor) variables, Xi, may be measured

quantitatively or qualitatively. (A dummy regressor is an example of a variable

that is measured qualitatively). Binary logistic models apply to situations where the

dependent variable is dichotomous in nature, taking a 0 or 1 value. For example,

the dependent variable, Y, could be whether or not a person is unemployed

(“employed”¼ 1, “unemployed”¼ 0). The regressors could include X1 the average

national wage rate, X2 the individual’s education, X3 the national unemployment

rate, X4 family income etc. The question arises as to how we handle models

involving dichotomous dependent variables.

2.1.1 The Linear Probability Model (LPM)

To fix ideas, consider the following simple model:

bY ¼ β1 þ β2X

where X is family income (£ 000’s) and Y is dichotomous, such that Y ¼ 1 if the

family owns a house and Y ¼ 0 if the family does not own a house. Models such as

the above which express the dichotomous Y as a linear function of the regressor

variable(s) X are called linear probability models. However, there are problems

with the assumptions that underpin regression when applying ordinary least squares

to linear probability models.

(a) The residuals are not normally distributed. To see this:

Residual ¼ Y� bY ¼ Y� β1 � β2X

When Y ¼ 1, Residual ¼ 1� β1 � β2X

When Y ¼ 0, Residual ¼ �β1 � β2X:

Consequently, the residuals cannot follow the normal distribution. (In fact, they

are binomially distributed).

(b) It can no longer be maintained that the residuals are homoscedastic. It can be

shown that the variance of the residuals depends on the value taken by X and is

thus not homoscedastic.

(c) Consider the data in Fig. 2.1. Suppose a variable Y pertaining to home owner-

ship is defined as above. When regression is applied to this LPM, we would

obtain a result that:
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bY ¼ �0:874þ 0:098 INCOMEð Þ

LPM’s want to treat bY like a probability. For example if for a particular income

level, bY ¼ 0.93, then we would guess that that family would be a home owner since

the obtained result is closer to Y ¼ 1 than it is to Y ¼ 0. However and continuing

this theme, if a family had an income of £12,000 (i.e. X ¼ 12 in the LPM), then the

predicted value of Y would be negative i.e. we would have negative probabilities.

Indeed, it is possible to have an income level that coincides with a probability of

home ownership in excess of 1. Consequently, the linear probability model is not

recommended when the dependent variable is dichotomous.

Fig. 2.1 Home ownership and income (£ 000’s)
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(d) The value of the coefficient of determination as a measure of goodness of fit

becomes questionable. Corresponding to a given value of income (X), Y is

either 0 or 1. Therefore, all values of Y will either lie along the X-axis or along

the line corresponding to Y ¼ 1 (see Fig. 2.2). Consequently, no linear

probability model is expected to fit such a scatter well. The coefficient of

determination is likely to be much lower than 100% for such models (even if

the model is constrained to lie between Y ¼ 0 and Y ¼ 1).

There are ways to overcome some of the problems associated with the linear

probability model. However, there remains a fundamental problem that is not very

attractive because the model assumes that Y (or probability) increases linearly

with X. This implies that the impact of X remains constant throughout. Thus, in

the home ownership example, we find that as X increases by a unit (£1000), the

probability of home ownership increases by 0.098. This is the case whether income

is £8000, £80,000 or £800,000. This seems patently unrealistic. At a very low

income, a family will not own a house. At a sufficiently high income say X*, people

will be most likely to own a house. Beyond X*, income will have little effect on

the probability of owning a home. Thus at both ends of the income distribution, the

probability of owning a home will be virtually unaffected by a small increase

in X. The probability of owning a home is nonlinearly related to income.

1.0

.8

.6

.4

.2

0.0

X

Y

Fig. 2.2 Regression line when Y is dichotomous
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2.1.2 The Logit Model

Now consider the following representation for home ownership, in which P repre-

sents the probability that a family owns a home i.e. P(Y ¼ 1):

P ¼ 1

1þ exp� β1 þ β2Xð Þ . . . :: ð2:1Þ

in which exp.� (X)¼ eX. Equation (2.1) is called the logistic distribution function,
which is plotted below.

As shown in Fig. 2.3, Eq. (2.1) permits P to range only between 0 and 1, thus solving

one of the problems associatedwith the linear probability model. If P is the probability

of owning a home, then (1 � P) is the probability of not owning a home and:

1�P ¼ 1� 1

1þ exp� β1 þ β2Xð Þ ¼
1þ exp� β1 þ β2Xð Þ � 1

1þ exp� β1 þ β2Xð Þ

¼ exp� β1 þ β2Xð Þ
1þ exp� β1 þ β2Xð Þ ¼

1=
exp β1þβ2Xð Þ

1þ 1=
exp β1þβ2Xð Þ

¼
1=
exp β1þβ2Xð Þ

exp β1þβ2Xð Þþ1=exp β1þβ2Xð Þ

¼ 1

1þ exp β1 þ β2Xð Þ . . . ::

ð2:2Þ
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Fig. 2.3 A plot of the logistic distribution function
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Therefore, using Eqs. (2.1) and (2.2), we can write:

P

1� P
¼ 1

1þ exp� β1 þ β2Xð Þ: 1þ exp β1 þ β2Xð Þ½ �

P

1� P
¼ 1

exp β1þβ2Xð Þþ1½ ��
exp β1þβ2Xð Þ

: 1þ exp β1 þ β2Xð Þ½ �

P

1� P
¼ exp β1 þ β2Xð Þ

and taking natural logarithms (i.e. base e):

ln
P

1� P

� �
¼ ln exp β1 þ β2Xð Þ½ �

ln
P

1� p

� �
¼ β1 þ β2X . . . ::

ð2:3Þ

because ln(eX) ¼ Xlne ¼ X.

The left hand side of Eq. (2.3) is called the logit and the whole equation is called
the logit model. The left hand side is the logarithm of the probability that a family

owns a home against the probability that it does not. This is called the logarithm of
the odds ratio. Naturally the logit model of Eq. (2.3) may be extended to the

multivariate case:

ln
P

1� p

� �
¼ β0 þ β1X1 þ β2X2 þ β3X3 þ . . . . . .

2.1.3 Applying the Logit Model

The logit model of Eq. (2.3), where X is income (in £000’s), was applied to the data
in Fig. 2.1. (Computer packages use a method called “maximum likelihood” to

generate the logit coefficients). The resultant model was:

ln
bP

1� bP
 !

¼ �1:6587þ 0:0792 INCOMEð Þ . . . :: ð2:4Þ

The first family in Fig. 2.1 had an income of £8000 (X ¼ 8). Inserting this value

of X into Eq. (2.4):
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ln
bP

1� bP
 !

¼ �1:0251, whereby
bP

1� bP ¼ e�1:0251 ¼ 0:3588:

Hence, bP ¼ 0:3588� 0:3588bP
1:3588bP ¼ 0:3588bP ¼ 0:2641:

The logit model estimates that there is a probability of 0.2641 that this family

owns its home. It is possible to compute the change in probability of owning a home

associated with a one unit (£1000) increase in income for this family who currently

earn £8000. The change in probability is given by:

bβ2:bP 1� bP� �
¼ 0:0792ð Þ∗ 0:2641ð Þ∗ 0:7359ð Þ ¼ 0:0139:

If this family’s income increases by £1000, there is an extra 1.39% chance that

they will become a house owner. This extra probability is not constant, but varies

with income level. The former was a disadvantage of the linear probability model.

2.1.4 The Logistic Model in IBM SPSS Statistics

An early, classic application of the logit model was in examining the choice of

fertiliser used by Philippine farmers. The data are in the IBM SPSS Statistics data

file called FERTILISER.SAV. The dependent variable to be explained is FERUSE

– a binary variable equal to one if fertiliser is used and equal to zero otherwise. The

explanatory variables are:

• CREDIT – the amount of credit (per hectare) held by the farmer,

• DMARKET – the distance of the farm to the nearest market,

• HOURMEET – no. of hours the farmer spent with an agricultural expert,

• IRSTAT – a dummy variable ¼ 1 if irrigation is used, ¼ 0 otherwise and

• OWNER – a dummy variable ¼ 1 if the farmer owns the land, ¼ 0 otherwise.

(There is an extra variable in this file called QFER, which records the amount of

fertiliser used if the farmer indeed uses it). Four hundred and ninety one farms were

examined. Binary logistic regression is accessed via:

Analyze

Regression

Binary logistic. . .

which generates the Logistic Regression dialogue box of Fig. 2.4.
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The binary variable FERUSE is the Dependent variable and the five independent

variables above are called Covariates in the context of logistic regression. Note that

in the ‘Method’ box, the user can choose the Enter method (all independent vari-

ables entered simultaneously, Forward selection or Backward removal).

Clicking the Save. . . button generates the Logistic Regression: Save dialogue

box of Fig. 2.5. This dialogue box permits the user to save the probabilities of group

membership. If that probability is in excess of 0.5, the associated case is classified

as being a member of the group that is coded as ‘1’; if that probability is less than

0.5, the case is deemed to be a member of the group coded as ‘0’. Standardized and
unstandardized residuals can also be added to the active data file.

Clicking the Options. . . button in Fig. 2.4 produces the dialogue box of Fig. 2.6,
where the Hosmer-Lemeshow test of model adequacy should be selected. This is

discussed below. Note that a cut-off probability (Classification cutoff) of 0.5 is

selected in Fig. 2.6: if the probability is above 0.5 group ‘1’ membership is

predicted and vice versa. Upon clicking the Continue and OK buttons, the results

from the logistic regression are generated. Figure 2.7 presents the results for the first

six farmers in the data file.

Based on the logistic analysis using the five covariates listed on page 33, the first

farmer has a probability of 0.23519 of being in the group coded as ‘1’ i.e. a fertilizer
user. This probability appears under the heading PRE_1. Since this probability is

less than 0.5, the logistic model predicts that the farmer will not be a fertilizer user

and therefore allocates him to the group coded as ‘0’, shown under the heading

PGR_1. Examination of the FERUSE variable shows that he is indeed a group ‘0’
member i.e. a non-fertilizer user. The second framer has a probability of 0.22654 of

Fig. 2.4 The logistic regression dialogue box
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Fig. 2.5 The logistic

regression: save dialogue

box

Fig. 2.6 The logistic regression: options dialogue box
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being a fertilizer user and he is correctly classified. However, the fourth framer has

a probability of 0.84800 of being a fertilizer and he is incorrectly classified under

the heading PGR_1 as a group ‘1’member whereas he is a FREUSE¼ ‘0’member.

Figure 2.8 presents part of the output presented in the IBM SPSS STATISTICS

Viewer. Via forward entry, the covariates are entered in the order of their impor-

tance. At step 1, the most important determinant of fertilizer usage is whether or not

the farmer uses irrigation (IRSTAT). If the farmer was forward-thinking in using

irrigation, he was also forward-thinking in applying chemical fertilizer. At step five,

all the covariates are in the model and are significant (at p < 0.05). Note that the

frictional force of distance has a negative impact on fertilizer use as exemplified by

the negative coefficient attached to the variable DMARKET.

From Fig. 3.7, the equation of the logistic model is:

ln
P

1� p

� �
¼ �1:155þ 0:557 OWNERð Þ þ 1:480 IRSTATð Þ þ . . . ::

þ 0:0004 CREDITð Þ,

from which the probabilities of group membership may be computed. For example,

if for one particular farmer, HOURMEET ¼ 30, DMARKET ¼ 6, CREDIT ¼ 200,

IRSTAT ¼ 1 and OWNER ¼ 1, then from the above equation:

ln
P

1� p

� �
¼ 1:507,

P

1� P
¼ e1:507 ¼ 4:513

P ¼ 4:513� 4:513P

5:513P ¼ 4:513

whereby P ¼ 0:819:

There is an over 80% chance that this particular farmer is a fertiliser user.

Assessment of the logistic model’s forecasting adequacy may be made by

Fig. 2.7 The first six cases in the active data file
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examining the ‘Classification Table’ of Fig. 3.8 and which is part of the output in

the IBM SPSS Statistics Viewer. At step 5 in the above table, 266 farmers are in the

dependent variable ¼ 0 category i.e. the FERUSE ¼ 0 group – they do not use

fertilizer. One hundred and eighty three of these farmers were predicted by the

logistic model to have a probability of fertilizer use below the cut-off probability of

0.5. Hence, 183 (68.80%) of the farmers in the FERUSE ¼ 0 group were predicted

correctly. Therefore, 31.20% of the FERUSE ¼ 0 group were incorrectly classified

by the logistic model (Figs. 2.9 and 2.10).

Similarly, there were 225 farmers observed to be in the dependent variable ¼
1 category i.e. FERUSE ¼ 1.159 (70.67%) farmers had probabilities above the

cut-off point of 0.5 and were consequently correctly classified. Overall, 342 farmers

(183 þ 159) have been correctly classified into their FERUSE ¼ 0 or FERUSE ¼
1 groups. This is an overall success rate of 342 out of 491 farmers or 69.7%.

irstat 1.601
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Fig. 2.8 Variables in the final logistic model
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Beside the Classification Table, another assessment of the adequacy of the logit

model is the Hosmer-Lemeshow (HL) goodness of fit test. The HL test has as its

null H0: the model adequately predicts group membership and the null is rejected if

the associated level of significance is less than 5% or 0.05. In the above example, it

is found that HL ¼ 7.156 with significance 0.520, so the null would not be rejected

and the logistic model deemed an adequate representation for the data.

Predicted

Classification Tablea

FERUSE A binary variable
equal to 1 if fertiliser is used- 0

otherwise

FERUSE A binary variable
equal to 1 if fertiliser is 
used- 0 otherwise

FERUSE A binary variable
equal to 1 if fertiliser is 
used- 0 otherwise

FERUSE A binary variable
equal to 1 if fertiliser is 
used- 0 otherwise

FERUSE A binary variable
equal to 1 if fertiliser is 
used- 0 otherwise

FERUSE A binary variable
equal to 1 if fertiliser is 
used- 0 otherwise

Percentage
Correct0 1

179 87

66 159

67.3

70.7

68.8

66.5

72.0

69.0

66.2

72.9

69.2

65.8
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0

0

0
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a. The cut value is .500

Step 1

Step 2
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Step 5 

1
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1

1

Fig. 2.9 The classification table associated with logistic regression
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Fig. 2.10 The Hosmer-

Lemeshow test
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2.1.5 A Financial Application of the Logistic Model

The logistic model was first in Finance to predict the probability that a given firm

will be a merger target. The code ‘1’ is used if a firm was a merger target and ‘0’ if it
was not. The subsequent logistic model can presented as follows:

ln
P

1� p

� �
¼ β1 þ β2 PAYOUTð Þ þ β3 TURNOVð Þ þ β4 SIZEð Þ þ β5 LEVð Þ

þ β6 VOLð Þ

where:

PAYOUT ¼ payout ratio (dividend/earnings),

TURNOV ¼ asset turnover (sales/total asset),

SIZE ¼ market value of equity,

LEV ¼ leverage ratio (long-term debt/total assets) and

VOL ¼ trading volume in the year of acquisition.

β2, β4 and β5are expected to be negative and β6 to be positive while β3 to be

positive or negative. Based on a sample of 24 merged firms (coded as ‘1’) and
43 non-merged firms (coded as ‘0’), the results shown in Table 2.1 were obtained:

The estimated coefficients had the expected signs and all but two were statisti-

cally significantly different from zero. The results, for example, illustrate that the

higher the turnover and the larger the size, the lower are the odds of the firm being a

takeover target. On the other hand, the higher the trading volume, the greater the

odds of being a merger candidate, for high-volume firms may imply lower acqui-

sition transaction costs due to marketability. Based on these analyses, we conclude

that one of the important factors affecting the firm’s attractiveness is the inability of
managers to generate sales per unit of assets. Moreover, low turnover must be

accompanied by any one or a combination of low payout, low financial leverage,

high trading volume and smallness in aggregate market value in order to produce a

high probability of merger.

Table 2.1 Logistic estimate

results for the Dietrich and

Sorenson study

Variable Coefficient Standard error t-value

PAYOUT �0.74 0.29 �2.51**

TURNOV �11.64 3.86 �3.01**

SIZE �5.74 2.39 �2.40**

LEV �1.33 0.97 �1.37

VOL 2.55 1.58 1.62

Intercept �10.84 3.40 �3.20**

** Significant at p < 0.01
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2.2 Multinomial Logistic Regression

Now we consider situations in which the response variable has more than the two

categories of the binary case. Variables with more than two categories are called

polychotomous rather than dichotomous. Such situations are analysed by multino-

mial logistic regression which is very similar to the binary logistic regression of the

previous section, save that it is more general since the dependent or response

variable is not restricted to two categories. For example, a survey of opinions

about a proposed road improvement scheme could produce responses (Y) of

“against” (code ‘0’, say), “undecided” (code ‘1’) or “in favour” (code ‘2’). Multi-

nomial logistic regression could be used to see if Y might depend on the resident’s
proximity to the road (X1), the resident’s age (X2), whether or not the resident has

children (a categorical variable X3) etc. As another example, in a Marketing

scenario, a firm might be examining consumer attitudes towards several types of

product packaging (the polychotomous response variable). Such attitudes may well

depend on consumers’ income levels, their age, purchase purpose etc. I do not

propose presenting an example on multinomial regression in IBM SPSS Statistics

as it is so similar to the binary example, plus it does require a deeper statistical

knowledge for the fullest use of the method.

Suffice it to say, that multinomial logistic regression is accessed via:

Analyze

Regression

Multinomial logistic...

which gives ride to the Multinomial Logistic Regression dialogue box of

Fig. 2.11. In the example of attitudes to the road scheme, OPINION is the depen-

dent variable. The dialogue box of Fig. 2.11 requires ‘Factors’ and/or ‘Covariates’.
Covariates are simply the quantitative variables (continuous measurement) in the

analysis, such as LOCATION the distance of the resident from the road. Factors are

categorical variables like CHILDREN – whether or not the resident has children.

Such a categorical variable might be coded as ‘0’ and ‘1’. The analysis proceeds as
in the binary case. Predicted probabilities, group membership, raw and standardized

residuals and goodness of fit statistics may be generated and/or saved.

2.3 Dummy Regression

Dummy variables are most commonly used when a researcher wants to insert

nominal scale categorical variables into a regression equation. A set of dummy

variables is created by treating each category of a categorical variable as a separate

variable and assisting arbitrary scores for all cases depending on their presence or

absence in each category. Suppose that an engineer wishes to relate the effective
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life time (Y) of a cutting tool used on a lathe to lathe speed in revolutions per minute

(X1) and the type of cutting tool used (X2). This second variable is categorical and

has two levels, tool types A and B. We may invoke a dummy variable X2 with the

codes:

X2 ¼ 0 if the observation is from tool type A

X2 ¼ 1 if the observation is from tool type B

The choice of ‘0’ and ‘1’ to identify the levels of qualitative variable is arbitrary.
We thus have a model of the form:

Y ¼ b0 þ b1X1 þ b2X2 þ e

Where e represents the error term. To interpret the coefficients in the model,

consider first tool type A, for which X2 ¼ 0. The regression model becomes:

Y ¼ b0 þ b1X1 þ e

Fig. 2.11 The multinomial logistic regression dialogue box
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The relationship between tool life and lathe speed for tool type A is a straight

line with intercept b0 and gradient b1. For tool type B, X2 ¼ 1 and the regression

model is:

Y ¼ b0 þ b1X1 þ b2 þ e

Y ¼ b0 þ b2ð Þ þ b1X1 þþe

That is, for tool type B, the relationship between tool life and lathe speed is a

straight line with gradient b1, but with intercept (b0 þ b2). These two responses

describe two parallel regression lines with different intercepts.

One may generalise this approach to qualitative factors with any number of

levels. Suppose there were three tool types, then two dummy variables are

necessary:

X2 X3

0 0 If the observation is from tool type A

1 0 If the observation is from tool type B

0 1 If the observation is from tool type C

And the regression model is:

Y ¼ b0 þ b1X1 þ b2X2 þ b3X3 þ e

Generally, a qualitative categorical variable with L levels is represented by

(L � 1) dummy variables, each taking on the values 0 and 1.

The file TOOLLIFE.SAV contains data about the lifetimes of the cutting tools

(LIFETIME), the lathe (SPEED) and the type of cutting tool (TYPE). Figure 2.12

presents a scatterplot of the lifetimes of the two types of tool. This is created by

selecting:

Graphs

Legacy dialogs

Scatter/Dot

Simple Scatter

In the Scatterplot dialogue box, we want the two tool types plotted with different

symbols, so under the heading ‘Set Markers By’ enter the variable TYPE. Inspec-
tion of the scatter diagram indicates that two different regression lines are required

to model adequately these data, with the intercepts depending on the type of tool

used. The dummy variable is coded as before, X2 ¼ 0 if it is a type A tool and X2 ¼
1 if it is type B. The equation of regression is obtained in the usual manner:

Analyse

Regression

Linear
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The least squares fit using the Enter selection method is shown in Fig. 2.13 and is:

TOOLLIFE
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{

¼ 52:146� 0:024∗ SPEEDþ 14:957∗TYPE,

With r2 ¼ 0.900. The t statistics show that both regression coefficients are

significantly different from zero. The negative coefficient associated with the

variable SPEED makes sense, in that we expect TOOLLIFE to decrease as

SPEED increases. The parameter (14.957) associated with TYPE is the change in

mean TOOLLIFE resulting from a change from tool type A to tool type B. A 95%

confidence interval could be selected for the equivalent population coefficient and it

would be found to be:

11:879 < β2 < 18:035
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Fig. 2.12 Scatterplot of tool life by tool type
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A plot of the residuals against the fitted values (both standardized) is shown in

Fig. 2.14. These two variables were saved as part of the dummy regression

procedure and the scatterplot constructed. The type B residuals in Fig. 2.14 exhibit

slightly more scatter than those of type A, implying that there may be a mild

inequality of variance problem. The normal probability plot revealed no model

inadequacy in this respect.

Since two different regression lines are used to model the relationship between

tool life and lathe speed, we could initially fit two separate straight line models

instead of a single model with a dummy variable. However, the single-model

approach is preferred because the analyst has only one equation to work with

instead of two, a much simpler practical result. Furthermore, since both straight

lines are assumed to have the same gradient, it makes sense to combine the data

from both types to produce a single estimate of this common parameter. This

approach also gives one estimate of the common residual variance, σ2.
Suppose that we expect the regression lines relating tool life to lathe speed to

differ in both intercept and gradient. It is possible to model this situation with a

single regression equation by using dummy variables. The model is:

TOOLLIFE ¼ b0 þ b1
∗ SPEEDþ b2

∗ TYPEþ b3
∗ SPEED∗ TYPE

We observe that a cross product term between lathe speed and the dummy

variable (SPEED*TYPE) has been added to the model. To interpret the coefficient

b3 for this model, first consider a type A tool for which TYPE ¼ 0, then the above

model becomes:

Model R

1

Model

1 (Constant)

speed

type

a. Dependent Variable: toolife

52.416

-.024

14.957

Unstandardized Coefficients

B Std.Error Beta

Standardized
Coefficients

4.917

.005

1.459

-.433

.845

10.659

-5.257

10.254

.000

.000

.000

Sig.t

a. Predictors: (Constant), type, speed

R Square

Model Summary

.885 .871

Coefficientsa

Std.Error of
the Estimate

3.261

Adjusted R
Square

.941a

Fig. 2.13 Part of the output from dummy regression
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TOOLLIFE ¼ b0 þ b1
∗ SPEED,

A line with intercept b0 and gradient b1. For tool type B, TYPE ¼ 1 and our

model becomes:

TOOLLIFE ¼ b0 þ b2ð Þ þ b1 þ b3ð Þ∗ SPEED

A line with intercept now of (b0+b2) and gradient now of (b1 +b3). Hence, the
parameter b2 reflects the change in intercept associated with changing from tool

type A to tool type B and b3 indicates the change in gradient associated with

changing from tool type A to tool type B. Fitting this model is equivalent to fitting

two separate regression equations. An advantage to the use of the dummy variable

is that tests of hypotheses may be performed directly. For example, to test whether

two regression lines have the same intercept but possibly different gradients, then

by reference to the above equation, we should examine:

3.00000

RESIDUALS AGAINST PREDICTED VALUES

2.00000

1.00000

.00000

-1.00000

-2.00000

-2.00000 -1.00000

S
ta

n
d

ar
d

iz
ed

 R
es

id
u

al

Standardized Predicted Value
.00000 1.00000 2.00000

0
1

type

Fig. 2.14 A plot of residuals against predicted values
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H0 : β2 ¼ 0

H1 : β2 6¼ 0

To test that the two regression lines have a common gradient, but possibly

different intercepts, the hypotheses are:

H0 : β3 ¼ 0

H1 : β3 6¼ 0

It is simple matter to compute the cross product term (variable name

CROSSPRO, say) ¼ SPEED.TYPE via:

Transform

Compute

Which generate the Compute Variable dialogue box of Fig. 2.15.

Operationalising, the new variable CROSSPRO is added to the working file as

shown in Fig. 2.16. Part of the results of running the dummy regression with the

cross product term are shown in Fig. 2.17.

Fig. 2.15 Computation pf the cross-product term
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2.4 Functional Forms of Regression Models

Several classes of model occur in finance, business and economics that are not

linear in form. Such models can, however, be transformed into linear ones and

ordinary least squares (OLS) applied. To understand these, it is necessary to remind

ourselves of the following laws of logarithms that are valid regardless of the base

used:

Fig. 2.16 The new data file

Model R R Square

a. Predictors: (Constant), crosspro, speed, type

Coefficientsa

Model Summary

Adjusted R
Square

Std. Error of
the Estimate

3.314.867.888.942a1

Model

a. Dependent Variable: toolife

1 (Constant) 48.908 7.176

-.373

6.815

Sig.tBetaB Std.Error

Standardized
CoefficientsUnstandardized Coefficients 95.0% Confidence Interval for B

Lower Bound Upper Bound

crosspro

type

speed -.021

21.642

-.006
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Fig. 2.17 Part of the output for dummy regression with a cross product term
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(a) log(XY) ¼ logX þ logY

(b) log(X/Y) ¼ logX � logY

(c) log(X)n ¼ n.logX

In the above, X and Y are assumed to be positive and n is some constant.

Consider the data in Fig. 2.18 below which presents average annual coffee

consumption (Y; cups per day) in the London area in relation to average annual

retail price (X; £ per lb.).

The data are in the file COFFEE.SAV. These data were subjected to bivariate

regression analysis and the results obtained are presented below in Fig. 2.19.

The two variable regression model is thus of the form bY ¼ 4:171� 0:48 xwhich
indicates that if the average retail price increases by a pound, then the average

consumption of coffee would reduce by nearly half a cup. The coefficient of

determination indicated that about 66% of the variation in average daily coffee

consumption is explained by a linear relationship with the retail price of coffee.

Fig. 2.18 Raw data
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2.4.1 The Power Model

Figure 2.20 casts grave doubt as to whether the relationship between these two

variables is a linear one. In fact, a more suitable model for the raw data in Fig. 2.18

bY ¼ β1X
β2 . . . :: ð2:5Þ

Model

1

a. Dependent Variable: y

x

(Constant)

Unstandardized Coefficients

B

4.171

-.480

Std.Error

.233

.114

Beta

-.814

17.935

-4.206

.000

.002

Coefficientsa

Standardized
Coefficients

t Sig.

Fig. 2.19 Bivariate regression results
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Fig. 2.20 A plot of average annual coffee consumption against average price
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in which β1 and β2 are parameters to be estimated. Eq. (2.5) is referred to as a

power model. Eq. (2.5) may be expressed in a linear form by the simple expedient

of taking natural logarithms (i.e. base e) to derive:

ln Y ¼ ln β1 þ β2 lnX . . . . . . ð2:6Þ

The fact that Eq. (2.6) is in linear form may be shown by letting Y∗¼ ln Y,
α¼ ln β1 and X∗¼ lnX to establish that:

Y∗ ¼ αþ β2X
∗ . . . :: ð2:7Þ

Ordinary least squares may now be used to estimate α and β2 in Eq. (2.7).

Knowing the value of α, we can readily find β1 because α¼ ln β1) β1¼ eα. The
linear Eq. (2.6) is known as a log-log model, a double-log model or perhaps most

commonly, a log-linear model.

How can we assess if Eq. (2.5) is an adequate representation of the data in

Fig. 2.18? If it is and from Eq. (2.6), a plot of lnY against lnX should be linear or

closely so. Figure 2.21 presents this plot, from which it is seen that the plot is not

perfectly linear, but it seems to be more linear than the plot in Fig. 2.20.
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Fig. 2.21 A plot of lnY against lnX
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Regressing lnY against lnX by means of OLS, the results in Fig. 2.22 are

obtained:

The coefficient of determination of the model in Fig. 2.22 is 71.7%. However,
this is not directly comparable with the coefficient of determination obtained for the
bivariate linear model in Fig. 2.19, since the models are different. The power model

of Eq. (2.5) may well be a more adequate representation of the raw data than is the

purely linear model presented in Fig. 2.19.

A very attractive feature of the log-linear model is that the slope coefficient

(or gradient) β2 in Eq. (2.6) measures the elasticity of the variable Y with respect to

variable X. The elasticity of Y with respect to X is defined as the percentage change

in Y for a given (small) percentage change in X. If Y represents the quantity of a

commodity demanded and X is its unit price, then β2 measures what is called the

price elasticity of demand:

Price elasticity of demand ¼ %change in quantity demanded

%change in price

From Fig. 2.22, the results corresponding to Eq. (2.6) are:

LnY ¼ 1:39� 0:331 LnX . . . :: ð2:8Þ

whereby the price elasticity coefficient is about �0.33. This implies that in the face

of a 1% increase in the price of coffee, demand for coffee (as measured by cups of

coffee consumed) decreases on average by 0.33%. When the price elasticity is less

that 1 in absolute terms, we say that the demand for coffee is price inelastic; if the

price elasticity exceeds 1, we say that the demand for coffee is price elastic.

The results in Eq. (2.8) may be used to compute the parameters of the power

model of Eq. (2.5). Comparing Eq. (2.8) with Eq. (2.6), we find that lnβ1 ¼ 1.39

which implies that β1 ¼ e1.39 ¼ 4.014 and that β2¼ � 0.331. Inserting these values

back into the original power model of Eq. (2.5), we establish that:

bY ¼ 4:014X�0:331

Model

(Constant)

LNX

Unstandardized Coefficients

B

1.390 .049

.069-.331 -.847 -4.771

28.489 .000

.001

a. Dependent Variable: LNY

Coefficientsa

Std. Error Beta t Sig.

Standardized
Coefficients

1

Fig. 2.22 Results of regressing lnY against lnX
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This numerical result may be obtained directly in IBM SPSS Statistics by using

the ‘Curve Estimation’ procedure, which is part of that package’s Regression

routine.

The idea of taking a logarithmic transformation may be extended. Consider the

compound interest formula and for simplicity let us suppose annual compounding

for t years:

FV ¼ PV 1þ rð Þt . . . :: ð2:9Þ

in which FV and PV are respectively future and present values of an investment and

r is the annual interest rate. Taking logarithms:

lnFV ¼ lnPV þ t ln 1þ rð Þ,

which is in linear form. This is called a semilog model, because only one variable

(FV) appears in logarithmic form. Again, this model has an important property.

Here, the slope coefficient (or gradient) represents the rate of growth of Y. If the

gradient is negative, we have a rate of decay. Research has shown that the U.S

GDP (in billions of dollars, constant prices) between 1998 and 2015 inclusive is

well approximated by a semilog model. It has been established that:

lnGDP ¼ 9:164þ 0:039t

which suggests that GDP grew at a rate of 3.9% over this period. Note that in 1998,

t ¼ 0, so we estimate that ln GDP ¼ 9.164) GDP ¼ e9.164 ¼ 9547 billion dollars.

2.4.2 The Reciprocal Model

Models of the following type are known as reciprocal models:

Y ¼ β1 þ β2
1

X

� �
. . . :: ð2:10Þ

in which β1 and β2 are parameters to be estimated. The model has the feature that as

X increases indefinitely, the term β2
1
X

� 	
approaches zero, and Y therefore

approaches the limit (or asymptotic value) β1. Reciprocal models have built in

them an asymptote or limit value that the dependent variable will take when the

value of the X variable increases indefinitely.

The shape of the reciprocal model is shown in Fig. 2.23 in which the asymptote

is represented by the horizontal line. In Fig. 2.23, β1 and β2 are both positive,

non-zero. One application of the reciprocal model is the average fixed cost of

production (Y) against levels of output (X). As X increases, Y decreases to a finite

limit.
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An important application of the reciprocal model is the Phillips curve. This is

based on empirical observation by the economist A.W. Phillips of the relationship

between the level of unemployment and the year to year increase or rate of change

in wage rates. (Note that by inference, the rate of change in wages will impact on

the rate of change in commodity prices or inflation). Figure 2.24 presents

U.K. annual increases in wage rates (Y%) against unemployment (X%) from

2000 to 2016 inclusive. The data are available on the book webpage under the

file PHILLIPS.SAV.

Upon regressing Y against 1/X, the results below are obtained (Fig. 2.25):

The reciprocal model obtained is thus:

bY ¼ 1:232þ 5:63 1=Xð Þ . . . :: ð2:11Þ

Inherent in Eq. (2.11) is that as the unemployment rate increases, the % increase

in wages declines. Like any equation, Eq. (2.11) cuts the X-axis when Y ¼ 0,

i.e. 1.232/5.63 ¼ 1/X ¼ 0.2188 ) X ¼ 4.6%. This is the rate of unemployment

consistent with no change in wage rates, which theoretically means stable prices.

This point is called the non-accelerating inflation rate of unemployment

(NAIRU) or the natural rate of unemployment. The fact that the β1 is positive

Asymptote

X

Y

Fig. 2.23 The reciprocal model with asymptote
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means that in theory the wage rate could not decease. As the % unemployed

(X) increases indefinitely, the percentage decrease in wage rates approaches the

asymptote or limit of 1.232% and will, therefore, not be worse than this figure per

year. The figure of 1.232% is called the wage floor.

Fig. 2.24 UK increases in wage rates and unemployment

Model

Unstandardized Coefficients

Std. Error Beta t Sig.

1.232 .292

1.531 .714

4.221 .001

.0033.6785.630

a. Dependent Variable: % increase in wages

B

Coefficientsa

Standardized
Coefficients

(Constant)

RECIP

1

Fig. 2.25 Regression of increases in wage rates against the reciprocal of unemployment
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2.4.3 The Linear Trend Model

Instead of the semilog model where lnY is regressed against time t, some

researchers have advocated the linear trend model wherein Y is regressed against

time t:

Y ¼ β1 þ β2t . . . :: ð2:12Þ

By trend, we mean any sustained upward or downward movement in the

behaviour of a variable. If the slope coefficient or gradient β2 is positive, there is

an upward trend in Y, whereas if β2 is negative there is a downward trend in Y. The
data in Fig. 2.26 present the GDP of the United States in current billions of dollars,

between 1972 and 1991 inclusive. The source is The Economic Report of the
President, January 1993 and the figures are in the file GDPUSA.SAV on the file

server.

Fig. 2.26 United States GDP, 1972–1991
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(The U.S. GDP data of the semilog section were at constant prices). Figure 2.27

presents a plot of these data over time. Note that the time variable, t, in Eq. )2.12) is

given values from 0 to 17 inclusive. Figure 2.27 suggests that the data exhibit a

reasonable trend with a positive gradient. The results of regressing GDP against

time were:

so the derived linear trend model is (Fig. 2.28):
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Fig. 2.27 A plot of U.S.A. GDP over time

Model

1 (Constant)

time

Unstandardized Coefficients

Coefficientsa

B

9212.284 147.713

14.833509.293

a. Dependent Variable: usagdp

.993

62.366 .000

.00034.335

Std. Error Beta t Sig.

Standardized
Coefficients

Fig. 2.28 Regression results for GDP against t
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bY ¼ 9212:284þ 509:293t

Note that an important point is choice between the semilog and linear trend

model depends on whether one is interested in the rate of growth (semilog) or

absolute growth (linear trend model). Again recall that it is not possible to compare

the coefficients of determination between such competing models.
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Chapter 3

The Box-Jenkins Methodology

The Box-Jenkins approach to time series modelling consists of extracting predict-

able movements (or patterns) from the observed data through a series of iterations.

The univariate Box-Jenkins method is purely a forecasting tool; no explanation is

offered in that there are no regressor-type variables. The Box-Jenkins approach

follows a three phase procedure:

– Model identification: a particular category of Box-Jenkins (B-J) model is

identified by using various statistics computed from an analysis of the

historical data.

– Model estimation and verification: once identified, the “best model” is esti-

mated such that the fitted values come as close as possible to capturing the

pattern exhibited by the actual data.

– Forecasting: the final model is used to forecast the time series and to develop

confidence intervals that measure the uncertainty associated with the forecast.

3.1 The Property of Stationarity

Time series data (denoted by Yt) consist of readings on a variable taken at equally

intervals of time. How would one compute the mean of a time series of a specified

length? Calculating the mean of a sequence of observations might appear to be a

trivial problem, as we would just sum all readings and divide by their number.

However, if the series is steadily increasing overtime, i.e. exhibits a trend and we

make decisions based on this mean, we would certainly not, for example, want to

use this parameter as a forecast of the future level of the series. We would also not

use the overall mean to make inferences (e.g. as the centre of confidence intervals)

at time periods at the beginning or end the series. If we regard our gathered series as

but one example of all possible series that could be generated by the same

mechanism, we are further faced with the problem of estimating the mean for
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each time period, as we have a sample only of one item. It is similarly impossible to

estimate the variance at any one time period.

The observed value of a series at particular time should be viewed as a random

value; that is if a new set of data could be obtained under similar conditions, we

would not obtain the identical numerical value. Let us measure at equal intervals the

thickness of wire made on a continuous extraction machine. Such a list of mea-

surements can be interpreted as a realization of wire thickness. If we were repeat-

edly to stop the process, service the machine and to restart the process to obtain new

wires under similar machine conditions, we would be able to obtain new realiza-

tions from the same stochastic process. These realizations could be used to calcu-

late the mean thickness of the wire after 1 min, 2 min etc. The term stochastic
simply means “random” and the term process should be interpreted as the mech-

anism generating data. The problem is that in most situations, we can obtain only

one realization. We cannot, for example, stop the economy, go back to some

arbitrary point and then restart the economic process to observe a new realization.

With a single realization, we cannot estimate with any precision the mean at each

time period t and it is impossible to estimate the variance and autocorrelations.

Therefore, to estimate the mean, variance and autocorrelation parameters of a

stochastic process based on a single realization, the time series analyst must impose

restrictions on how the data can be gathered.

A series that measures the cumulative effect of something is called integrated.
Most of the probability theory of time series is concerned with integrated series that

are stationary. Broadly speaking, a time series is said to be stationary if there is

no systematic change in mean (no trend) over time, if there is no systematic

change in variance and if period variations have been removed.

3.1.1 Trend Differencing

The assumption of no trend returns us to the problem posed at the start of this

section. If there is no trend in the series, we might be willing to assume that the

mean is constant for each time period and that the observed value at each time

period is representative of that mean. The second condition above refers to constant

variance. The variance of a series expresses the degree of variation about the

assumed constant mean and as such gives a measure of uncertainty around this

mean. If the variance is not constant over time, but say increases, it would be

incorrect to believe that we can express the uncertainty around a forecasted mean

level with a variance based on all the data. Most business and economic time series

are non-stationary. Time series analysis often requires one to turn a non-stationary

series into a stationary one in order to apply various aspects of statistical theory.

The first stage in any time series analysis should be to plot the available

observations against time. This is often a very valuable part of any data analysis,

since qualitative features such as trend, seasonality and outliers will usually be

visible if present in the data. Consider Fig. 3.1, which is a plot of a company’s

60 3 The Box-Jenkins Methodology



inventory levels over 81 consecutive weeks (data file STOCK.SAV). A visual

inspection clearly evidences that there is a trend in the data. The time series is

not stationary. To achieve stationarity, the trend has to be eliminated.

Most economic time series are characterized by movements along a trend time

such as in Fig. 3.1. Although there is a general understanding of what a trend is, it is

difficult to give a more precise definition of the term trend than “any systematic

change in the level of a time series”. The difficulty in defining a trend stems from

the fact that what looks like a change in the level in a short series of observations

may turn out not to be a trend when a longer series becomes available, but rather be

part of a cyclical movement.

Box and Jenkins advocated that an integrated time series can have the trend

removed by the method of differencing. The method of differencing consists of

subtracting the values of the observations from one another in some prescribed

time-dependent order. For example, a first order difference transformation is

defined as the difference between the values of two adjacent observations; second

order differencing consists of taking differences of the differenced series; and so on.

Consider the series 1, 3, 5, 7, 9 and 11 which exhibits a constant increase (trend)

of two units from one observation to the next. We now take the first order
differences:
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Fig. 3.1 Stock levels over time
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3� 1 ¼ 2

5� 3 ¼ 2

7� 5 ¼ 2

9� 7 ¼ 2

11� 9 ¼ 2

By taking the first order differences of a series with a linear trend, the trend

disappears. Let us apply the method to a series with a non-linear trend: 1, 6, 15, 28,

45, 66 and 91. The first order differences are 5, 9, 13, 17, 21 and 25. This

differenced series possesses a linear trend with a constant increase of 4. Therefore,

by taking the differences of the differences (i.e. second order differences), we
would obtain a trend-free series. Second order differences, in fact, remove a

quadratic trend; third order differencing removes a cubic trend. It is rare for

economic time series to involve more than second order differencing. Note that

every time that we difference a series, we lose an observation. Due to random

fluctuations in the data, such neat results as above cannot always be obtained.

However and as said, for many economic time series, first or second order

differencing will be sufficient to remove the trend component (called a detrended
series), so that further analysis can proceed. Note that once the trend has been

removed, further differencing will continue to produce a series without a trend.

However, each additional differencing results is one additional data point being

lost. Therefore, such overdifferencing will needlessly complicate the model and

should be avoided.

3.1.2 Seasonal Differencing

A lot of economic time series evidence seasonal patterns that make the time series

non-stationary. Many monthly or quarterly series will exhibit effects which have a

high degree of regularity. The adjustment procedure now to be employed is called

seasonal differencing, in contrast with consecutive differencing discussed in the last
subsection. This involves taking differences among the detrended observations

spaced at four-period intervals i.e. if a quarterly pattern is evident, compute the

differences between the first quarter value of each successive year and similarly the

differences between the second, third and fourth quarters of successive years.

Season differencing of order 1 indicates that we are taking the first differences

among the same quarters in different years. The seasonal adjustment just described

is said to involve a span of 4 periods. A span of 4 implies that a lag of 4 periods is

used in the seasonal differencing operation.
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3.1.3 Homoscedasticity of the Data

The process of differencing attempts to produce stationarity when there is a trend.

When the variance of a time series is thought not to be a constant over time, there

are several data transformations available. Two of the transformations commonly

used are the logarithmic and the square root transform. The logarithmic is partic-

ularly effective when (i) the variance of the series is proportional to the mean level

of the series or (ii) the mean level of the series increases or decreases at a constant

percentage. In that logs and roots of negative values are unreal, such transforms
must precede any differencing that may be required.

3.1.4 Producing a Stationary Time Series in IBM SPSS
Statistics

The problem of non-constant variance in Fig. 3.1 does not appear to be a problem

here. Therefore, no transformation will be used on the Yt. If a log or root transform

of Yt is deemed necessary, then the new variable may be computed via:

Transform

Compute Variable . . .

Some order of differencing is needed for the inventory data of Fig. 3.1. To

generate a new time series containing differenced data, from the Data Editor select:

Transform

Create Time Series . . .

Which produces the Create Time Series dialogue box of Fig. 3.2. The default is

differencing of order 1. Entering the variable STOCK into the ‘New variable’ box
generates a default name of STOCK_1 for the first differences, as shown in Fig. 3.2.

This default may be changed. In the box labelled ‘Name’ type in a new name (say

FIRSTDIF) and click the Change button which has now become black. Our

dialogue box now looks like Fig. 3.3. Click the OK button to operationalize and

the new variable FIRSTDIF is added to the active file as shown in Fig. 3.4.

Differencing causes the first reading for FIRSTDIF to be missing. The rest of the

first order differences are 657 – 682¼� 25, 720 – 657¼ 63 etc. Figure 3.5 is a plot

if the first differences of the variable STOCK over time and the trend does appear to

have been removed and we regard FIRSTDIF to be stationary. (There is a formal

statistical test available called the Dicky-Fuller test to examine if a series is

stationary. This is not available in IBM SPSS Statistics, so it is omitted here).
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Fig. 3.2 The create time series dialogue box

Fig. 3.3 The default variable name change
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Fig. 3.4 The variable FIRSTDIF added to the active file
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Fig. 3.5 A plot of first differences of the variable STOCK



3.2 The ARIMA Model

B-J models are known as Auto Regressive Integrated Moving Average (ARIMA).

The methods used to solve the parameters of ARIMA models require quite a lot of

computation, so for practical use, software is needed. The methods used in identi-

fying, estimating and diagnosing ARIMA models are quite evolved.

The ARIMA procedure is carried out on stationary data. The notation Zt is used
for the stationary data at time t, whereas Yt is the non-stationary datum value at that

time. The ARIMA process considers linear models of the form:

Zt ¼ μþ∅1 Zt�1 þ∅2 Zt�2 þ . . .� θ1et�1 � θ2et�2 � . . .þ et

where Zt ,Zt� 1 are stationary data points; et,et� 1 are present and past forecast

errors and μ ,∅1,∅2 . . . , θ1,θ2. . .are parameters of the model to be estimated.

If a successful model involved only ∅1i.e. was of the form:

Zt ¼ μþ∅1 Zt�1 þ et

The series is said to be governed by a first order autoregressive process, written

AR(1). ∅1 is called the autoregressive parameter and the model above, describes

the effect of a unit change in Zt� 1 on Zt. Similarly the model:

Zt ¼ μþ∅1 Zt�1 þ∅2 Zt�2 þ . . .þ∅p Zt�p þ et

Is called a p-order autoregressive process, written as AR(p). The sum of the

coefficients ∅i , i ¼ 1, 2, . . ., p of an autoregressive process must always be less

than unity.

If a successful model only involved θ1 i.e. was of the form:

Zt ¼ μ� θ1et�1 þ et

Then the time series is said to be governed by a first order moving average

process, written as MA(1). θ1 is called the moving average parameter. Similarly,

the model:

Zt ¼ μ� θ1et�1 � θ2et�2 � . . .� θqet�q þ et

is called a q-order moving average model written as MA(q).

Models involving both autoregressive and moving average processes are called

mixed models. If a mixed model contained an autoregressive process of order 1 and

a moving average process of order 2, the n the model is written as ARIMA(1,2) and

would be of the form:

Zt ¼ μþ∅1 Zt�1 � θ1et�1 � θ2et�2 þ et
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When differencing has been used to generate stationarity, the model is said to be

integrated and is written as ARIMA (p,d,q). The middle parameter d is simply the

number of times that the series had to be differenced before stationarity was

achieved. If the (stationary) Zt in the above equation had to be differenced twice

before stationarity was achieved, then that model would be written as ARIMA

(1,2,2).

3.3 Autocorrelation

To identify the model that best describes the time series under consideration, two

sets of statistics are used: autocorrelations (AC) and partial autocorrelations (PAC).

Both measure how much interdependence there is among the observations and take

values that range between �1, depending on the pattern of the relationship. If, for

example, values of the time series that are above the mean value of the series are

immediately followed by values that are below the mean, then both the AC and

PAC will be negative. This is said to be negative autocorrelation.

3.3.1 ACF

AC’s provide us with a numerical measure of the relationship of specific values of a

time series to other values in the time series. That is, they measure the relationship

of a variable to itself over time. AC’s are normally computed for different time lags.

For example, given n readings Z1, Z2 , . . . , Zn, we can form n � 1 pairs of

observations (Z1, Z2), ((Z2, Z3) . . . ((Zn� 1, Zn). Regarding the first observation in

each pair as one variable and the second observation as the second variable, we can

compute the Pearsonian correlation coefficient at, in the example of the data in

Fig. 3.1, a lag of 1 week. This measures correlation between successive readings

and is called the first order autocorrelation coefficient. Similarly, we could com-

pute the correlation between observations at a distance k apart, which is called the

kth. order autocorrelation coefficient.
For example, consider the data:

51, 52, 54, 60, 55, 61, 62, 66, 60, 62, 66 . . .

The first order autocorrelation coefficient is calculated using the standard for-

mula for the Pearsonian coefficient, involving the pairs:

51; 52ð Þ 52; 54ð Þ 54; 60ð Þ 60; 55ð Þ . . .
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The second order autocorrelation coefficient would be computed using the pairs:

51; 54ð Þ 52; 60ð Þ 54; 55ð Þ 60; 61ð Þ . . .

We use the notation that rk is the (auto) correlation between Zt and Zt� k so r4 is
the (auto) correlation between Zt and Zt� 4. When the AC’s are computed for lag

1, lag 2, lag 3 and so and are graphed (rk against k), the result is called the sample
autocorrelation function (ACF) or correlogram. This graph is useful for determin-

ing whether a series is stationary and for identifying a tentative ARIMA model.

(By default, IBM SPSS Statistics produces and ACF up to lag of 16).

If a series is non-stationary by virtue of having an upwards trend, then readings a

few lags apart will be autocorrelated. If the data are stationary, however, the

autocorrelations should all be zero (indicative of random error). This should be a

characteristic of the ACF for stationary data. To test whether or not the autocorre-

lation coefficient is statistically equal to zero, we use, for large samples the t

statistic – and meaningful economic time series should involve large samples.

When the number of readings is reasonably large and to test the hypothesis that

the population autocorrelation coefficient (ρk) at lag k is zero, i.e.:

H0 : ρk ¼ 0 againstH1 : ρk 6¼ 0,

We adopt Bartlett’s method. Bartlett derived that if the above null hypothesis is

true, then the sample autocorrelations at lag k, rk, will be closely normally distrib-

uted with zero mean and a variance of:

Var rkð Þ ¼ n�1 1þ 2 r21 þ r22 þ r23 þ . . .þ r2k�1

� �� �
:

The test statistic is:

rk
SD of rk

Which is distributed as the test statistic with n � 2 degrees of freedom. Given

that the t distribution is asymptotically normal, the boundaries of the critical region

for the above test are usually taken at �1.96 (�2).

For example, suppose for a given set of eight readings, that the autocorrelations

at lags 1 and 2 were respectively r1 ¼ � 0.412 and r2¼ � 0.343 and that we wished

to test if the second order autocorrelation coefficient was significantly different

from zero, i.e.:

H0 : ρ2 ¼ 0 againstH1 : ρ2 6¼ 0

We may compute that:

Var r2ð Þ ¼ 8�1 1þ 2 �0:412ð Þ2
n o

¼ 0:1674 therefore SD of r2 ¼ 0:4092
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The test statistic under H0 becomes:

�0:343� 0ð Þ=0:4092 ¼ �0:838

Which is well distant from the critical region boundary for t (v ¼ 6). We,

therefore, fail to reject H0 and conclude that ρk is zero. It may also be shown that

the first order autocorrelation coefficient is also not significant.

The curved lines of Fig. 3.8 (see page 73) represent 95% confidence limits for

the autocorrelation coefficients, rk, based on Bartlett’s variance formula given by

the Var(rk) equation. These serve as indications as to with autocorrelations are

statistically significant. The first seven such coefficients in Fig. 3.8 exhibit this

characteristic – once more indicative that the non-differenced data are not

stationary.

It should be noted that if the researcher is sure that the time series data are

stationary, then the (rk) in Bartlett’s variance formula are in (theory) zero. This

leads to Quenouille’s formula for the variance of the rk in the instance of stationary
data, that:

Var rkð Þ ¼ n�1

Most computer packages have both Bartlett’s and Quenouille’s variance formu-

lae as available options.

It can be shown that the autocorrelation for an AR(1) model will in theory be:

rk ¼ ∅ k
1

Whenever the series is stationary, it may be shown that the sum of the AR

coefficients:

∅1 þ∅2 þ∅3 . . .

Will be less than one. In the case of an AR(1) model, this implies that∅1 will be

less than one, so the AC’s will be decreasing in absolute value as the lag increases,

i.e. ∅1 >∅2
2 > ∅2

3 > . . . > ∅2
k , which simply says that the relationship weakens

as we go back over time. Further the autocorrelations decline fairly rapidly.

It can be shown that the autocorrelation coefficients for a moving average

process of order 1, MA (1), in theory are:

rk ¼ �θ1
1þ θ21

for k ¼ 1

rk ¼ 0 for k ¼ 2
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3.3.2 PACF

Partial autocorrelation coefficients PAC’s are closely related to the AC’s. They also
take on values between�1 and 1. A diagram of PAC’s against the lag k is called the
partial autocorrelation function (PACF). A partial autocorrelation is the measure of

the relationship between two variables when the effect of other variables has been

removed or held constant. With temporal data, rkk is the partial autocorrelation

between Zt and Zt� k when the effect of the intervening variables Zt� 1, Zt� 2,. . .,
Zt� kþ 1 has been removed. This adjustment is to see if the correlation between Zt
and Zt� k is due to the intervening variables or if indeed there is something else

causing the relationship. As is discussed in the next section, the behavior of the

PAC’s along with the AC’s for a stationary time series is used to identify a tentative

ARIMA model.

The formula for the partial autocorrelation coefficient is quite complex, but

numerical values are computed by available statistical packages. It was shown by

Quenouille that:

Var rkkð Þ ¼ n�1,

So it is possible to examine the hypothesis, such as:

H0 : ρkk ¼ 0 versusH1 : ρkk 6¼ 0

For example, suppose that r33¼ � 0.0318 based on eight readings. This is the

correlation between Zt and Zt� 3 when the effects of Zt� 1 and Zt� 2 have been

removed. The test statistic is again distributed as the t statistic:

rkk
SD of rkk

So� 0.318/0.354 ¼� 0.898 which is not statistically significant. We, therefore,

fail to reject the hypothesis that ρkk is zero. Again, for large n the boundaries of the

critical region are usually taken at �1.96 (�2).

If the data are stationary, then the partial autocorrelations should, in theory, be

zero. The partial autocorrelation coefficients for the (non-differenced) inventory

data of Fig. 3.1 are plotted on the partial autocorrelation function of Fig. 3.9. The

two horizontal lines again represent the 95% confidence interval. Although not

statistically significant, the PAC’s fail to die out, indicating that the data are not

stationary.
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3.3.3 Patterns of the ACF and PACF

It is possible to use the ACF and PACF to recognise patterns that characterise

moving average (MA), autocorrelation (AR) and mixed (ARMA) models, when the

assumption of stationarity has been satisfied. It should be appreciated that we are

focusing on theoretical models, but this does facilitate recognition of similar

patterns in actual time series data. By comparing actual ACF’s and PACF’s to the

theoretical patterns, we shall be able to identify the specific type of B-J model that

will adequately represent the data.

There are general guidelines:

– If the autocorrelations decay and the partial autocorrelations have spikes, the

process can be captured by an AR model, where the order equals the number of

significant spikes. The ACF should show exponentially declining values.

– If the partial autocorrelations decay and the autocorrelations have spikes, the

process is best captured by an MA model, where the order equals the number of

significant spikes. The PACF should show exponentially declining values.

– If both the autocorrelation and partial autocorrelations are characterized by

irregular patterns on the ACF and PACF, the process is best captured by an

ARMA model, where the order equals the number of significant spikes. It may

be necessary to invoke several cycles of the identification-estimation-diagnosis

process.

AC patterns for moving average models are among the easiest to recognise in

practice.

3.3.4 Applying an ARIMA Model

In this section, we apply an ARIMA model to the inventory data that were graphed

in Fig. 3.1. Previous analysis (Fig. 3.5) has suggested that first order differencing

induced stationarity. The parameter d in the ARIMA (p,d,q) model thus take a value

of unity. To estimate appropriate values for the remaining parameters p and q, we

plot the ACF and PACF for the first order differenced data. These plots are

presented respectively in Figs. 3.8 and 3.9. The ACF shows that the only significant

coefficient is associated with a one period lag. (The value of this autocorrelation

coefficient is shown to be � 0.484 later in this section). The PACF has a significant

spike at a lag of 1.

We now need to refer to the characteristics of theoretical models cited earlier.

The fact that arguments could be made for any of the three types of Box-Jenkins

models indicates the difficulty and indeed sometimes subjective nature of the fitting

process. Here, arguments could be made for ARIMA (1, 1,0), ARIMA (0,1,1) and

ARIMA (1,1,1) models, so all will be fitted. The ARIMA (1,1,0) is the same as AR

(1) with first order differencing; the ARIMA (0,1,1) is the same as MA (1) with first
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order differencing. Obviously, there needs to be some method for evaluating

competing models and this will be the subject matter of the next section.

Reconsider the inventory data in the file STOCK.SAV. First order differencing is

thought to have produced stationarity, so the parameter d ¼ 1 in the ARIMA (p,d,q)

models. The ACF and PACF need to be generated to suggest suitable values for the

parameters p and q. In the IBM SPSS Data Editor, click:

Analyze

Forecasting

Autocorrelations

To produce the Autocorrelations dialogue box of Fig. 3.6.

Remember that is the stationary variable FIRSTDIF for which we want ACF and

PACF plots so this variable is entered into the ‘Variables’ box. Both Autocorrela-

tions and partial autocorrelations are the default. Click the Options button to

produce the Autocorrelations: Options dialogue box of Fig. 3.7 and select Bartlett’s
approximation so that we may assess the significance of any correlation coefficients

generated. The default is that coefficients are generated up to 16 lags, which is

sufficient for most practical purposes (Fig. 3.8).

Fig. 3.6 The autocorrelations dialogue box
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The ACF shows that the only significant coefficient is associated with a one

period lag (The value of the autocorrelation coefficient is � 0.484 at this lag, as

shown in the IBM SPSS output that is generated prior to the last two figures). The

Fig. 3.7 The

autocorrelations: options

dialogue box

Coefficient

1.0 Upper Confidence Limit

DIFF(stock,1)

Lag Number

A
C

F

Lower Confidence Limit

0.5

-0.5

-1.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.0

Fig. 3.8 The ACF plot
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PACF has a significant spike at lag 1. We now need to refer to the characteristics of

theoretical ARIMA model and compare them with our observed ACF and PCF

plots. Arguments could be made for ARIMA (1,1,0), ARIMA (0,1,1) and ARIMA

(1,1,1). Many text books contain theoretical ACF and PACF plots for a variety of

ARIMA (p,d,q) models. This is a typical situation when several competing models

are feasible. All potential models should be fitted and the next section suggests

criteria by which a “best” model may be selected (Fig. 3.9).

3.4 ARIMA Models in IBM SPSS Statistics

This section illustrates just the fitting of an ARIMA (1,1,1) model. To fit ARIMA

models, click:

Analyse

Forecasting

Create Models . . .
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Fig. 3.9 The PACF plot
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Which produces the ARIMA dialogue box of Fig. 3.10. STOCK is the variable

that we are examining and we set the parameters p ¼ 1, d ¼ 1 and q ¼ 1 under

criteria as shown in Fig. 3.11. Alternatively and to generate the same results, we

could select FIRSTDIF as the variable to be considered and set p ¼ 1, d ¼ 0 and

q¼ 1, since first differencing has already been accomplished. Click the Save button

to produce the ARIMA: Save dialogue box of Fig. 3.12. Here, we select the ‘Add to
file’ option to save such as the predicted values in our working file. I have also

chosen to use this.

ARIMAmodel to forecast the stock level for week 82 as shown in Fig. 3.12. This

forecast will also be added to the working file.

Amongst the IBM SPSS output is the Akaike Information Criterion (AIC) which
takes into account how well the derived model fits the observed time series. The

“best” model under this criterion is the one with the lowest AIC value. Also

produced is the Schwartz Bayesian Criterion (SBC) which performs a similar task

Fig. 3.10 The ARIMA dialogue box
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to the AIC and the model with the minimum SBC is sought. The AIC is generally

for autoregressive models and the SBC is the more general criterion. In the IBM

SPSS output, Standard Error refers to the standard error (or standard deviation) of

the residuals. Again, the smallest value of this measure is sought. The square of this

figure is the variance of the residuals (called residual variance in IBM SPSS). The

ARIMA (1,1,1) has a standard error of residuals of 92.0712. In the IBM SPSS

output and under the heading ‘Variables in the Equation’, we find that our ARIMA

(1,1,1) model is:

Zt ¼ 18:2664� 0:2106 Zt�1 � 0:4023 et�1:

However, study of the coefficients shows that ∅1¼ � 0.2106 (referred to as

AR1 in the output) is not significantly different from zero (t¼ � 1.045, p¼ 0.299).

Also, the moving average term θ1¼ � 0.4023 (referred to as MA in the output) is

not significantly different from zero (t ¼ 2.148, p ¼ 0.035). Therefore, one could

refer to the ARIMA (0,1,1) which has lower standard error, AIC and SBC than does

the ARIMA (1,1,0) model.

Considering the ARIMA (0,1,1) model, it is found that:

Zt ¼ 18:2016� 0:5455 et�1 ð3:1Þ

Fig. 3.11 The ARIMA criteria dialogue box
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And the MA1 coefficient is statistically significant from zero (t ¼ 5.720,

p ¼ 0.000). As one fits a variety of ARIMA models, the predicted values are

given the IBM SPSS variables names FIT_1, FIT_2 etc. Figure 3.13 presents a

plot of the observed and predicted stock levels for the ARIMA (1,1,1) model. Note

that the model fails to capture turning points on time, which is a common charac-

teristic of B-J models in general. It should also be noted that in practice, competing

B-J models may have very little to choose between them in terms of the standard

error, AIC and SBC. Identifying the appropriate order of a mixed model, for

example, can be difficult.

IBM SPSS Statistics was used to fit these competing models. It will be noted that

when fitting the ARIMA (0,1,1) model, forecasted values (FIT_2 – fitted values fir

model 2), residuals or errors (ERR_2 – errors for model 2), along with lower and

upper 95% confidence levels (LCL_2 and UCL_2) were computed and saved. The

original inventory levels are for 81 weeks. The ARIMA models were asked to

generate forecasts of the stock levels for weeks 82 and 83.

Equation 3.1 is used to generate these forecasts. Remembering that first order

differencing was invoked, Zt¼ Yt� Yt� 1, so to forecast the stock level at week 82:

Fig. 3.12 The ARIMA save dialogue box
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Y82 � Y81 ¼ 18:2016�0:5455 ε81

The stock level at week 81 (Y81) was 2057 units and the error in forecast

generated by this ARIMA model at this week (ε81) was � 125.1968 (i.e. this

ARIMA model overestimated the stock level at week 81), whereby:

Y82 ¼ 2057þ 18:2016�ð0:5455Þ ð�125:1968Þ ¼ 2143:496

Similarly,

Y83 � Y82 ¼ 18:2016�0:5455 ε82

We have no error value corresponding to week 82 (ε82), so this is treated as zero
and:

Y83 ¼ 2057þ 18:2016�0 ¼ 2161:698

Figure 3.13 is a plot of the actual and forecasted stock levels from the ARIMA

(0,1,1) model.
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Fig. 3.13 Observed and predicted stock levels
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The Box-Jenkins method is just one procedure available for forecasting. There

can be no doubt that ARIMA models can be constructed to fit a wide variety of

patterns and this can be done with minimum effort as long as a computer is

available. Like all other time series models, ARIMA models suffer limitations.

They generally fail to capture turning points on time and they provide the decision

maker with little explanation. For example, they do not provide information on the

potential impact of policies such as pricing actions or advertising programmes.

However, multivariate Box-Jenkins models partially overcome these problems. As

in the present example, competing ARIMA models may have little to choose

between them. Identifying the appropriate order of a mixed model, for example

can be difficult.

In order to clarify the choice between different univariate time series models,

there have been several ‘competitions’ to compare the forecasting accuracy of

different methods. However, the results of these competitions have not always

been consistent. Given the different analysts and data sets used this is perhaps not

surprising. The Box-Jenkins approach has not been consistently the best. Regres-

sion methods do rather better on average than univariate models, but again, this is

not consistently the case.

A final point is that, although there is an advantage in being able to choose from

the broad class of ARIMA models, there are also dangers in that considerable

experience is need to interpret the ACF and PACF and other indicators. Moreover,

when variation in a series is dominated by trend and seasonality, the effectiveness

of the fitted ARIMA model is mainly determined by the differencing procedure

employed rather than by the identification of the autocorrelation and/or moving

average structures of the differenced series. In some situations, a large expenditure

of time and effort can be justified and then the Box-Jenkins approach is worth

considering. However, for routine sales forecasting, simple methods are more likely

to be understood by managers and workers who have to utilize or implement the

results.

Whilst noting that the Box-Jenkins approach has been one of the most influential

developments in time series analysis, Box-Jenkins models are only worth consid-

ering when the following conditions are satisfied:

– The analyst is competent to implement it

– The objectives justify the complexity and

– The variation in the series is not dominated by trend and seasonality
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Chapter 4

Exponential Smoothing and Naı̈ve Models

4.1 Exponential Smoothing Models

Exponential smoothing models are amongst the most widely used time series

models in the fields of economics, finance and general business analysis. The

essence of these models is that new forecasts are derived by adjusting the previous

forecast to reflect its forecast error. In this way, the forecaster can continually revise

the forecast based on previous experiences. Exponential smoothing models have

the advantage of requiring retention of only a limited amount of data. They can also

be created with simple spreadsheet programmes. However, such is their importance

that they are part of general statistical software, such as IBM SPSS Statistics.

The simplest model is the single parameter exponential smoothing model. Here,
the forecast for the next and all subsequent periods is determined by adjusting the

current-period forecast by a proportion of the difference between the forecast and

the actual value. If recent forecasts have proven accurate, it seems reasonable to

base subsequent forecasts on these estimates. Conversely, if recent predictions have

been subject to large errors, new forecasts should take this into consideration.

In symbols, the single parameter model may be written as:

bYtþ1 ¼ bYt þ α Yt � bYt

� �
. . . :: ð4:1Þ

where bYt is the forecasted value of a variable at time t, Yt is the observed value of

that variable at time t and α is the smoothing parameter that has to be estimated and

0� α� 1.

Consider the data in Fig. 4.1 (INVENTORY.SAV) which represent a company’s
monthly stock levels for a particular product (variable name LEVEL) from January

2012 to December 2014 inclusive. The data are graphed in Fig. 4.2.

The single parameter exponential smoothing model of Eq. (4.1) is fitted by

clicking:
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A. Aljandali, Multivariate Methods and Forecasting with IBM® SPSS® Statistics,
Statistics and Econometrics for Finance, DOI 10.1007/978-3-319-56481-4_4

81



Analyze

Forecasting

Create Time Series

Method: Exponential Smoothing

which generates the Exponential Smoothing dialogue box of Fig. 4.3. Clicking

the Criteria button will open the dialogue box in Fig. 4.4, under which various

model types are listed and which are summarised below:

• Simple. This model is appropriate for series in which there is no trend or

seasonality. Its only smoothing parameter is level. Simple exponential smooth-

ing is most similar to an ARIMA model with zero orders of autoregression, one

order of differencing, one order of moving average, and no constant.

• Holt’s linear trend. This model is appropriate for series in which there is a

linear trend and no seasonality. Its smoothing parameters are level and trend,

Fig. 4.1 A company’s monthly stock levels over time
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Fig. 4.2 A plot of stock levels over time
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which are not constrained by each other’s values. Holt’s model is more general

than Brown’s model but may take longer to compute for large series. Holt’s
exponential smoothing is most similar to an ARIMA model with zero orders of

autoregression, two orders of differencing, and two orders of moving average.

• Brown’s linear trend. This model is appropriate for series in which there is a

linear trend and no seasonality. Its smoothing parameters are level and trend,

which are assumed to be equal. Brown’s model is therefore a special case of

Holt’s model. Brown’s exponential smoothing is most similar to an ARIMA

model with zero orders of autoregression, two orders of differencing, and two

orders of moving average, with the coefficient for the second order of moving

average equal to the square of one-half of the coefficient for the first order.

• Damped trend. This model is appropriate for series with a linear trend that is

dying out and with no seasonality. Its smoothing parameters are level, trend, and

damping trend. Damped exponential smoothing is most similar to an ARIMA

model with 1 order of autoregression, 1 order of differencing, and 2 orders of

moving average.

• Simple seasonal. This model is appropriate for series with no trend and a

seasonal effect that is constant over time. Its smoothing parameters are level

and season. Simple seasonal exponential smoothing is most similar to

an ARIMA model with zero orders of autoregression, one order of differencing,

one order of seasonal differencing, and orders 1, p, and p þ 1 of moving

average, where p is the number of periods in a seasonal interval (for monthly

data, p ¼ 12).

Fig. 4.4 The exponential smoothing: parameters dialogue box

84 4 Exponential Smoothing and Naı̈ve Models



• Winters’ additive. This model is appropriate for series with a linear trend and a

seasonal effect that does not depend on the level of the series. Its smoothing

parameters are level, trend, and season. Winters’ additive exponential smoothing

is most similar to an ARIMA model with zero orders of autoregression, one

order of differencing, one order of seasonal differencing, and p þ 1 orders of

moving average, where p is the number of periods in a seasonal interval (for

monthly data, p ¼ 12).

• Winters’multiplicative. This model is appropriate for series with a linear trend

and a seasonal effect that depends on the level of the series. Its smoothing

parameters are level, trend, and season. Winters’ multiplicative exponential

smoothing is not similar to any ARIMA model.

The variable name LEVEL is entered in the appropriate box and the Simple

model is chosen (i.e. single parameter). Clicking the Save button in Fig. 4.5

generates the Exponential Smoothing: Save dialogue box.

Fig. 4.5 The exponential smoothing: save dialogue box
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The dialogue box of Fig. 4.5 permits the user to add the forecasted values from

the optimal single parameter smoothing model (variable name Predicted) and the

associated residuals or errors (variable name NResidual) to the data file. It also

permits forecasting and in Fig. 4.6, a forecast for September 2005 has been

requested. The latter is also added to the active data file. Upon running the

procedure, the results of Fig. 4.7 are produced. The predicted value for September

2015 is 7593 units of stock. The single parameter model can be very accurate, but

only for short term forecasting. Also, it does not fit the data well if there is a trend or

seasonality present. However, there are other parameters that take these factors into

account. A parameter γ is used if a trend is present and a parameter δ is used if

seasonality is present. (The latter requires a minimum of four seasons of data).

Figure 4.8 plots the observed and forecasted stock level data and it is evident that

although our model is optimal in terms of the single parameter, it probably require

their parameters to be incorporated.

Fig. 4.6 The exponential smoothing: options dialogue box
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Fig. 4.7 The active data file with forecasted and predicted values, plus residuals
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Fig. 4.8 A plot of observed and predicted stock levels
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4.2 The Naı̈ve Models

Models that have become known as Naı̈ve 1 and Naı̈ve 2 can be included under the

heading of time series models. The Naı̈ve 1 or no change model assumes that a

forecast of the series at a particular period equals the actual value at the last period

available i.e. bYtþ1 ¼ Yt for annual data. This simply says that the forecast for 2017

should equal the actual value for 2016. For monthly data, the subscript changes tobYtþ12 ¼ Yt; this says that the forecast for June 2017 should equal the actual value for

June 2016. For quarterly data, bYtþ4 ¼ Yt, which says that the forecast for Q1 2017

should equal the actual value for Q1 2016. The Naı̈ve 1 model is often included in

forecasting studies since it acts as a yardstick with which other models, like

ARIMA or the exponential smoothing class of models may be compared. Impor-

tantly, there is the suggestion that this model outperforms more formal forecasting

methods in many cases.

The Naı̈ve 2 model assumes that the growth rate in the previous period applies to

the generation of forecasts for the current period. For annual data, the model is:

bYtþ1 ¼ Yt 1þ Yt � Yt�1

Yt�1

� �
. . . :: ð4:2Þ

For example, if Y2016¼ 80 and Y2015¼ 60, then the quantity Yt�Yt�1

Yt�1

h i
¼ 0:33,

indicating a growth rate of 33% from 2015 to 2016. Consequently, the forecast for

2017 would equal the value for 2016 plus this growth rate. The subscripts for the

Naı̈ve 2 model change as previously described for annual and quarterly data. The

observation recorded one time period ago is called a lag of 1 time period. Lagged
values are readily computed in IBM SPSS Statistics via clicking:

Transform

Compute Variable . . .

And then using the inbuilt lag function. The form of the lag function in IBM

SPSS Statistics is lag(variable name, no. of cases). Returning to the inventory data,

if we wish to lag by a year, the lag command is LAG (LEVEL, 12) as shown in the

Compute Variable dialogue box of Fig. 4.9:

The lagged values have been given the variable name LAG12 in Fig. 4.9.

Operationalising the lag command produces the results of Fig. 4.10:

LAG12 for January 2013 is equal to the observed value for January 2012. Here,

the value of the variable LAG12 thus represents the forecasted value for January

2013 under the Naı̈ve 1 model. The residuals (variable name NResidual) are simply

LEVEL – LAG12 and these may be derived via the Compute Variable dialogue box

if Fig. 4.9. The Target Variable in Fig. 4.9 would be RESID; the Numeric Expres-

sion would be LEVEL – LAG12, which generates the results of Fig. 4.11:
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Our data file has insufficient readings to run the Naı̈ve 2 model, since for

monthly data and from Eq. (4.2),

bYtþ12 ¼ Yt 1þ Yt � Yt�12

Yt�12

� �
:

Therefore, consider the data in the file EARNINGS.SAV on the file server,

which contains an estimation of UK monthly earnings (variable name EARNINGS)

from tourism (£million) from January 2014 to April 2017 inclusive. To apply the

Naı̈ve 2 model, we need to create variables lagged 12 months and lagged 24 months.

For example and from Eq. (4.2), the forecasted value for May 2017 will equal:

bY May2017 ¼ YMay2016 1þ Y May2017 � Y May2016
Y May2016

� �

Two variables that I have named LAG12 and LAG24 have to be created in

Fig. 4.12 which indicates that there is a large amount of data loss when applying the

Naı̈ve 2 model to monthly data. From Fig. 4.12, we shall lose all data prior to

Fig. 4.9 The compute variable dialogue box
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January 2016. We can now compute the forecasted values from the Naı̈ve 2 model.

I have called the forecasted values YHAT, which is given by:

YHAT ¼ LAG12 1þ LAG12� LAG24

LAG24

� �

and the residuals may be computed as:

RESID ¼ EARNINGS� YHAT

as shown in Fig. 4.13. The reader can plot the two forecasts, Naives 1 and 2 on a

graph (Fig. 4.15) by following the instructions in Fig. 4.14.

Fig. 4.10 Lagged values of the variable LEVEL
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Fig. 4.11 Computation of the residuals from the Naı̈ve 1 model

Fig. 4.12 Creation of LAG12 and LAG24
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Fig. 4.13 Forecasted and residual values from the Naı̈ve 2 model

Fig. 4.14 Define graphs with multiple lines, Naı̈ve 1 and 2
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Part II

Multivariate Methods



Chapter 5

Factor Analysis

The objective of factor analysis is to extract underlying “factors” that explain the

correlations among a set of variables. It essentially summarises a large number of

variables with a smaller set of derived variables. For example, in a survey, many

variables relating to consumption of products might be expressed as a function of

just three factors related to ‘product quality’, ‘product utility’ and ‘product price’.
Factor analysis seeks to identify these underlying (and not directly observable)

dimensions.

The major assumption of factor analysis is that observed correlations between

variables can be used to explain complex phenomena. For example, in terms of

product evaluation, suppose that consumers had to rate a household product on a

series of variables, amongst which were ‘value for money’, ‘long lasting’, ‘better
than rival products’ and ‘child proof’. A 1 to 5 rating scale could be employed to

measure these variables. If it is found that scores on these four variables are highly

inter-correlated, it could be due to their sharing and reflecting the factor of ‘product
quality’. While it is possible that all the variables in a study significantly contribute

to a specific factor, the researcher hopes that it is only a subset for the purpose of

interpreting the factor. We require factors to be meaningful, simple and

interpretable.

In general, let X1, X2, . . ., Xk be k variables that have been measured in a study

over a reasonable large number of cases. Let Fj be the jth factor that underlies the

data set, then we may say that:

Fj ¼ Wj1X1 þWj2X2 þ . . .þWjkXk,

Where the Wji are weights known as factor score coefficients, facto weights or
factor loadings. The larger is a particular coefficient, the more associated variable

contributes to that factor. Collecting together all the variables that contribute most

to the factor (i.e. they possess the highest factor score coefficients) will hopefully

enable one to label or name the factor.
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5.1 The Correlation Matrix

The derivation of the inter-correlations between all the variables in a study is a

useful first step in factor analysis. During the factor analysis procedure, IBM SPSS

Statistics computes the inter-correlations between all pairs of variables. Note that

the level of measurement should be such that the Pearsonian correlation coefficient

is an acceptable summary statistic. If the correlations between variables are small, it

is unlikely that they share common factors.

To illustrate the link between variable inter-correlations and factor analysis, I

shall use a data file that contains aspects of educational provision in 10 London

boroughs in the early 2000s. The appropriate data file is LONDON EDUCATION.

SAV. The seven variables examined are:

X1 – pupil-teacher ratio in primary schools,

X2 – expenditure/1000 persons on primary school teachers,

X3 – expenditure/1000 persons on secondary school teachers,

X4 – expenditure/1000 persons on non-teaching staff,

X5 – administrative costs/1000 persons,

X6 – net expenditure/1000 persons on secondary education and.

X7 – net expenditure/1000 persons on tertiary education.

It may be recalled that the IBM SPSS Correlations procedure is accessed by:

Analyse

Correlate

Bivariate. . .

The inter-correlations between the seven study variables are shown in Fig. 5.1.

Note that X1 and X2 are significantly correlated with each other; so too are the pairs

X3 with X6 and X4 with X7. Possibly these three significant inter-correlations

indicate that each pair of variables share common factors. It should be noted that

the user may request the correlation matrix of Fig. 5.1 during the IBM SPSS Factor

Analysis procedure, rather than via the IBM SPSS Correlations procedure above.

5.2 The Terminology and Logic of Factor Analysis

By definition, the correlation matrix of Fig. 5.1 has a leading diagonal (top left to

bottom right) of 1’s. If the off-leading diagonal elements were zero, then there

would be no inter-correlations to suggest any underlying factors. A matrix with

leading diagonal elements of 1 and off-diagonal elements of zero is called an

identity matrix. If the correlation matrix is an identity matrix then the application

of factor analysis is inappropriate. Bartlett’s test of sphericity tests:
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H0 : the correlation matrix is an identity matrix,

and has an associated statistic that is closely distributed as chi-square. If the

significance associated with Bartlett’s statistic is less than 0.05, then we reject the

above null hypothesis and may fruitfully continue with factor analysis. Similarly

available is the Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy. As a
rule of thumb, if the KMO statistic is greater than or equal to 0.6, then the user may

proceed with factor analysis.

Prior to application of factor analysis, all the study variables are standardized to

have zero mean and unit variance. In the example of the London boroughs’
educational data, there are thus 7 units of variance in the study, 7 Xi each having

a variance of 1. As discussed in the previous section, linear functions of the study

variables, here X1 to X7,are derived by the factor analysis procedure. The first factor

that is derived (or extracted) is the combination that accounts for the largest amount

of the 7 units of variance in the data set. The second factor accounts for the second

largest amount of variance in the sample and so on. Technically, it is possible to

extract as many factors as there are variables in the study.
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Fig. 5.1 Inter-correlations between study variables
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As part of the output, each study variable has associated with it a quantity called

the communality. The communality of each variable is the proportion (expressed in

decimal form) of variance in each variable that is explained by all the factors thus

far derived. For example, if a study generated three underlying factors and the

communality associated with a particular variable is 0.96, then 96% of the variance

in that variable is explained by the three extracted factors.

The amount of variance in the entire sample that is explained by each factor is

referred to as an eigenvalue in the context of factor analysis. For example, if the first

extracted factor in a study has an eigenvalue of 8.0 and there are 20 variables in that

study (i.e. a total of 20 units of variance), then this first factor explains

8/20 ¼ 40.0% of the variation in the whole sample. A conventional criterion is

that only factors with eigenvalues in excess of 1 are significant. (Factors with

eigenvalues or explained variances of less than 1 are no better than a single

variable). At this point, it is best to examine these measures for the London

borough’s data.
The IBM SPSS Factor Analysis procedure is accessed via:

Analyse

Dimension Reduction

Factor. . .

Which gives rise to the Factor Analysis dialogue box of Fig. 5.2. The variables
X1 to X7 inclusive are entered into the ‘Variables’ box. At this point, simply click

the OK button to operationalise, but in later sections, use will be made of the

buttons at the bottom of the dialogue box of Fig. 5.2. In Fig. 5.3, under the heading

Fig. 5.2 The factor analysis dialogue box
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‘Extraction of sum of squared loadings’, (the only heading to be considered here)

we find the eigenvalues given under the ‘Total’ column. There are four factors with

eigenvalues in excess of unity.

The first factor has an eigenvalue of 2.587, which represents 2.587/7¼ 36.957%

of the variation in the whole sample. The second factor has an eigenvalue of 1.764,

representing 1.764/7 ¼ 25.2% of the variation in the whole sample. Hence the first

two factors explain a cumulative total of 36.957% þ 25.2% ¼ 62.157% of the

variation in the sample. All four of the significant extracted factors explain a

cumulative total of 81.704% of all the variation in the sample, which is a healthy

total. About 18% of the variance in the sample is not explained by the variables

being members of the four extracted factors.

Figure 5.4 presents the communalities (under the heading ‘Extraction’) associ-
ated with the seven study variables. 96.9% of the variation in X1 is explained by the

four, extracted factors.
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5.3 Rotation and the Naming of Factors

Although there are four factors underlying our study, at present we do not know

what these factors represent. We need to name them. Part of the IBM SPSS

Statistics output will be present the factor loadings mentioned in the introduction.

These loadings are the correlations between each variable and the factor under

consideration. Variables with a large loading on a factor are closely related to that

factor. In our present example, each variable will have three loadings – one for each

extracted factor. To name a factor, we select only those variables that have a high

loading on that factor and use the names of these variables to derive an overall

phrase of English to represent them. The factors should be named parsimoniously.

Often, however, it can be difficult to decide whether a variable has a high enough

loading on a particular factor, or indeed to which factor it may be appropriately

ascribed.

Consider Fig. 5.5, which shows the loadings of four variables on two extracted

factors. Note the negative loadings are possible; a variable may be negatively

correlated with a factor. To simplify allocating the variables to the factors, we

may if desired, rotate the axes of Fig. 5.5. Imagine rotating the axes through 45�

clockwise. Then the first variable would have a high loading on factor 2, but low

loading on factor 1. If the axes are rotated so as to preserve the right angle between

them, the rotation is called orthogonal; if the user is happy for a rotation to produce
axes that are not mutually perpendicular, then the rotation is said to be oblique.
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Fig. 5.5 Loadings of four variables on two factors
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There are several methods of rotation available in IBM SPSS Statistics. Perhaps

the most commonly used is the varimax rotation. This rotation minimises the

number of variables that have high loadings on each factor and like all rotations,

it simplifies the interpretation of the factors. The use of a rotation should be

encouraged as it invariably assists interpretation.

Figure 5.2 presented the Factor Analysis dialogue box. At the bottom of this box,

click the Rotation button to generate the factor analysis; Rotation dialogue box of

Fig. 5.6. Of the available options, Varimax has been chosen in this dialogue box.

Upon returning to the dialogue box of Fig. 5.2 the output of Fig. 5.7 is produced.

At the top of Fig. 5.5 under the heading ‘Component Matrix’ are the unrotated

factor loadings for the seven variables on the three factors. (The factors are referred

to as “components” here). Beneath this are the factor loadings after the Varimax

rotation has been employed. It is these latter loadings that are used for the purpose

of naming the four factors.

Variables X1 and X2 have the highest loadings on the first factor. Referring back

to the list of variables on page 98, this is a factor that stresses boroughs with low

pupil-teacher ratios (X1 and note that it is negative loading) tending to spend

relatively high amounts per 1000 inhabitants on primary school teachers (X2). We

could subjectively name this factor as ‘level of provision of teaching resources in

primary schools’. Recall that in the original correlation matrix of Fig. 5.1, these two

variables were significantly and strongly negatively correlated. A majority of the

variance in these two variables (as per their communalities) is doubtless explained

by their being members of factor 1.

Turning to the second factor, variables X6, X3 and X5 have the highest loadings.

(Where to draw the line is a subjective matter that should be made within the

Fig. 5.6 The factor

analysis: rotation dialogue

box
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context of what makes sense in the study at hand). This factor reflects boroughs with

low net expenditure on secondary education as a whole, having relatively high

expenditure on secondary teaching staff and relatively high administrative costs.

This second factor could be labelled ‘high expenditure on administrative and
teaching staff at the expense of other aspects of educational provision’. The third

factor shows that variables X4 and X7 have the highest loadings. This factor reflects

boroughs with relatively high expenditures on non-teaching staff and tertiary

education. It could be labelled ‘expenditure on ancillary staff and tertiary education
at the expense of primary and secondary education’.
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It must be stressed that the naming of factors is a subjective exercise and an

elements of common sense is involved within the problem context.

5.4 Factor Scores in IBM SPSS Statistics

A useful, final phase of factor analysis is to obtain factor scores. These reflect how
much a particular case (here, the boroughs) possess the characteristic of an

extracted factor. The factor scores may be saved in the working file for further

analysis. There are three types of factor score in IBM SPSS Statistics, the Anderson-
Rubin, Bartlett and regression factor scores. All of these have a zero mean; in

addition the Anderson-Rubin factor scores have a variance of one. The larger the

factor score in a positive/negative sense, the more/less that case possess the

characteristic of that factor. Factor scores are generated for each case on each

extracted factor.

At the bottom of the Factor Analysis dialogue box of Fig. 5.2, click the Scores

button to produce the Factor Analysis: Factor Scores dialogue box of Fig. 5.8. The
Anderson-Rubin method of generating factor scores has been selected and the

resultant scores are to be added to the working file, as shown in Fig. 5.9. On the

first factor, boroughs numbered 1, 6 and 13 have relatively high scores; they tend to

possess the characteristic of that factor. Boroughs numbered 3, 12 and 16 have

relatively large negative scores, indicating that they do not possess the character-

istics of the first factor. On factor two, borough 5 has a large positive score and

borough 11 a relatively large negative score. Further analysis could involve

recoding the factor scores into ‘high’, ‘medium’ and ‘low’, e.g. by assigning one

third of the boroughs into each group. If one knew which political party ran each

Fig. 5.8 The factor

analysis: factor scores

dialogue box
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borough, it would be possible to form a contingency table and to test whether the

magnitude of the factor scores depended or not on the political party involved.

Contingency analysis and the ci-square are covered in the first volume of this guide.

Fig. 5.9 Factor scores added to the active file
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Chapter 6

Discriminant Analysis

Based on a collection of variables, such as annual income, age, marital status etc.,

discriminant analysis seeks to distinguish among several mutually exclusive

groups, such as good and bad credit risks. The available data are values for cases

whose group membership is known i.e. individuals who have already proven to be

good or bad credit risks. Discriminant analysis enables us to:

– Identify which of the collected variables are important for distinguishing among

groups and

– Develop a procedure for predicting group membership for new cases whose

group membership is presently undetermined.

6.1 The Methodology of Discriminant Analysis

Discriminant analysis produces linear combinations of the independent

(or predictor) variables and uses them as a basis for classifying cases into one of

a series of mutually exclusive groups. For discriminant analysis to be “optimal” in

the sense that the probability of a misclassification is minimized, the variables

should be samples from normal populations. However, there is evidence that even

in the case of dichotomous predictor variables (e.g. of the “yes/no” type), discrim-

inant analysis often performs adequately.

In discriminant analysis (and indeed other multivariate statistical procedures like

factor analysis), the emphasis is on analysing the variables together. By considering

variables together, we are able to incorporate important information about their

relationships. In discriminant analysis, a linear combination of the predictor vari-

ables is formed (called a linear discriminant function) and serves as a basis for

assigning cases to groups. The linear discriminant function is:
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D ¼ b0 þ b1X1 þ b2X2 þ . . .þ bpXp,

Where the Xi are values of the predictor variables and the bi are coefficients

estimated from the data. If this linear function is to distinguish between groups of

good and bad credit risks for example, these groups should differ in their D scores,

which are referred to as discriminant scores. Hence, the bi are computed so that the

values of the discriminant function differ as much as possible between the groups.

The bi are called the discriminant function coefficients. IBM SPSS Statistics reports

the bi in standardized form i.e. all the predictor variables are initially standardized

to have a zero mean and unit variance. Using the D scores, IBM SPSS Statistics

computes the probabilities of each case belonging to the various groups in the study.

It should be noted that only one discriminant function is needed to distinguish

between two groups, two discriminate functions to distinguish between three

groups etc.

Discriminant analysis produces three statistics that assess the adequacy of any

discrimination achieved. The square of the canonical correlation represents the

proportion of total variance in the discriminant function scores explained by

differences between the groups. It is akin to the coefficient of determination in

regression. Eigenvalues are also computed. (Here, they represent the ratio of the

between groups sum of squares and the within groups sum of squares). Large

eigenvalues indicate “good” linear discriminant functions. Finally, Wilks’ Lambda

(λ) is the proportion of total variance in the discriminant scores explained by

differences among groups. It might be noted that:

Canonical correlationð Þ2 þ λ ¼ 1

6.2 Discriminant Analysis in IBM SPSS Statistics

The data in the IBM SPSS file LIBRARY.SAV relate to library provision in

London’s outer boroughs. The variable POPN is the population of each borough,

coded as ‘0’ or ‘1’ according to whether the population is respectively below or

above the mean outer London population figure. The remaining variables are:

X1 – no. of library staff,

X2 – number of library points,

X3 – reference books (000’s),
X4 – total books held (000’s),
X5 – no. of serials subscribed to,

X6 – expenditure per 1000 inhabitants on books,

X7 – expenditure per 1000 inhabitants on newspapers and.

X8 – total expenditure per 1000 inhabitants.

The variable POPN represents the groups in this example. There is however, no

need for discriminant analysis to be restricted to just two groups. X1 and X8 are the
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predictor variables. Discriminant is used here to see if aspects of library provision

as exemplified by the predictor variables, can be used to estimate whether or not a

borough has a relatively large or small population. Conversely, one can examine

variables that discriminate library provision on boroughs of relatively low and high

population.

The IBM SPSS Discriminant Analysis procedure is accessed via:

Analyse

Classify

Discriminant. . .

Giving rise to theDiscriminant Analysis dialogue box of Fig. 6.1. The ‘Grouping
Variable’ is POPN and the ‘Independents’ are X1 to X8. Note that the variable POPN

has two question marks besides it, since IBM SPSS requires the codes used for the

groups to be stated. Click the Define Range button to generate the Discriminant
Analysis: Define Ranges dialogue box of Fig. 6.2, in which the codes of 0 and 1 are
entered as appropriate.

Fig. 6.1 The discriminant analysis dialogue box x

Fig. 6.2 The discriminant

analysis: define ranges

dialogue box
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Returning to the Discriminant Analysis dialogue box of Fig. 6.1, permits some

control over the output displayed. Clicking the Classify button at the bottom of this

dialogue box gives rise the Discriminant Analysis: Classification dialogue box of
Fig. 6.3. Under the heading ‘Prior probabilities’, I have selected the option that the

pre-analysis (prior) probabilities of group membership should be computed from

the size of the groups and determine group memberships. These values are used in

the process of classifying cases. Under the heading ‘Display’, the choice “casewise
results” will present codes for the actual group membership and the code for the

predicted group. Probabilities of group membership and the discriminant scores for

each case in the analysis. Also under this heading, selection of the “summary table”

will show the numbers of cases correctly and incorrectly classified by the discrim-

inant analysis. This table is called the confusion matrix. Under the heading ‘Plots’, I
have chosen “separate groups”, which will present a histogram of the discriminant

scores for all groups (here two groups) in the study.

6.3 Results of Applying the IBM SPSS Discriminant
Procedure

Figures 6.4, 6.5 and 6.6 present part of the results of running discriminant analysis

on our library provision data. The output is in several parts.

The canonical correlation indicates that a proportion of (.931)2 or .866 of the

variance in the discriminant scores is explained by differences between the groups,

Fig. 6.3 The discriminant analysis: classification dialogue box
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or if you prefer, Wilks’ Lambda indicates that a proportion of .134 is not explained.

The chi square statistic (which is based on Wilks’ Lambda) tests the hypothesis that

in the populations from which the samples are drawn, there is no difference in the

group mean scores on D – the discriminant scores. Adopting the conventional

significance level of 0.05, we here find that this hypothesis is rejected, so our

discriminant analysis may be regarded as successful. Under the heading ‘Functions
at Group Centroids’ we see that the mean discriminant score for the low population

group is 3.237, whereas the mean for the high population group is � 1.766. If new

Summary of Canonical Discriminant Functions
Eigenvalues

Wilks’ Lambda

Standardized
Canonical

Discriminant
Function

Coefficients

Test of Function(s)

1 .134 22.130 8 .005

Wilks’
Lambda

Function

1

x1

x2

x3

x4

x5

x6

x7

x8

-1.313

-0.39

1.101

-.733

.145

.641

.127

.886

Chi-square df Sig.

Function

1

a. First 1 canonical discriminant functions were used in the analysis.

6.477a 100.0 100.0 .931

Eigenvalue % of Variance Cumulative %
Canonical
Correlation

Fig. 6.4 IBM SPSS output from discriminant analysis
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Structure
Matrix

Functions at
Group

Centroids

Function

Function

1POPN

0

1

3.237

-1.766

1

x1

x4

x2

x3

x6

x8

x5

x7

Pooled within-
groups
correlations
between
discriminating
variables and
standardized
canonical
discriminant
functions
Variables
ordered by
absolute size of
correlation within
function

Unstandardized
canonical
discriminant
functions
evaluated at group
means

-.495

-.442

-.351

-.150

.139

.106

-.031

-.008

Fig. 6.4 (continued)
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cases have a discriminant score near � 1.766, they would be classified as high

population boroughs.

The ‘Standardized Canonical Discriminant Function Coefficients’ give us the

equation of the linear discriminant function that is used to generate the discriminant

scores and which could be used to forecast group membership of new cases. The

linear discriminant function is:

D ¼ �1:313X1 � :039X2 þ . . .þ :886X8:

It is tempting to interpret the magnitude of the above coefficients as indicators of

the relative importance of the variables. However, since the variables are corre-

lated, it is not possible to assess the importance of an individual variable. The value

of a coefficient depends on the other variables included in the equation. A better

way to assess the contribution of a variable to the discrimination process is to

examine the correlations between the values (D) of the discriminant function and

the original variables. These correlations are given in the ‘Structure Matrix’ and go

Casewise Statistics

Prior Probabilities for Groups

Highest Group

Case Number

POPN

0

1

Total

.353

.647

1.000

6

11

17

6.000

11.000

17.000

Prior

Cases Used in Analysis

Unweighted Weighted

Second Highest Group

Group Function 1

Squared
Mahalanobis
Distance to

CentroidP(G=g | D=d)

Discriminant
Scores

Actual Group
Predicted

Group

P(D>d | G=g)

P(G=g | D=d)p df

Squared
Mahalanobis
Distance to

Centroid

Original 1 0

0

0

0

0

0

1 .000

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2.396

.348

.903

.726

1.296

2.630

.175

.859

.018

1.655

.332

.007

.255

1.356

.020

1.959

.065

1.000

1.000

1.000

1.000

.998

.978

1.000

1.000

1.000

.999

1.000

1.000

1.000

.999

1.000

1.000

1.000

.122

.555

.342

.394

.255

.105

.676

.354

.894

.198

.564

.931

.613

.244

.888

.162

.799

2

3

4

5

6

7
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9
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13
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15

16
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1

1

1

1

1
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0

0

0

0

0

0

0

0

0

0

.000

.000

.000

.002

.000

.000

.001

.000

.000

.001

.000

.000

.000

.000

.022

.000

4.785

2.647

4.187

4.089

2.099

-2.692

-1.898

-.479

-1.189

-1.852

-.601

-1.906

-3.165

-2.020

-2.271

1.615

-1.347

42.907

19.467
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34.272

14.932

35.156

26.369

13.809

19.588

25.891

14.729

26.452

40.986

27.638

30.334
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21.011

Classification Resultsa
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1

6

a. 100.0% of original grouped cases correctly classified.
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0%
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100.0 100.0
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100.0 100.0
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Fig. 6.4 (continued)

6.3 Results of Applying the IBM SPSS Discriminant Procedure 113



under the awesome title of “pooled within-groups correlations between discrimi-

nating variables and canonical discriminant functions”. The correlations in the

‘Structure Matrix’ are ordered in terms of absolute magnitude. The negative sign

for X1 indicates that small discriminant scores are associated with high numbers of

library staff or if you prefer, large scores are associated with small numbers of such

staff. The signs are arbitrary. The most important variables that discriminate

between the two groups of POPN are X1 – number of library staff, X4 – total

number of books held and X2 – number of library points.

The prior probability for group membership for POPN ¼ 0 is 6/17 ¼ 0.353. The

casewise statistics present actual and predicted group membership. The (squared)

Mahalanobis distance is a measure of how much a case’s values on the

independent variables differ from the average of all cases. A large Mahalanobis

distance identifies a case as having extreme values on one or more of the indepen-

dent variables. For example, although borough number 16 is not misclassified by

the discriminant analysis, it has the largest Mahalanobis distance of 2.923.

Examination of the data file suggests that this due to a particularly high reading

on X4.

At the end of the results in 6.4 is the Confusion Matrix presented under the

heading ‘Classification Results’. This confirms that none of the 17 boroughs, was

-5.0
0.0

0.5

1.0

1.5

2.0

POPN = 0

Mean = 3.24
Std. Dev. = 1.288
N = 6

-2.5 0.0 2.5 5.0

Fig. 6.5 Histogram of discriminant scores for the low population group
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misclassified. 6.5 and 6.6 present histograms of the discriminant function scores for

the two population groups. (The mean discriminant scores are rounded to two

decimal places here).

Clicking the Save button on the Discriminant Analysis dialogue box of Fig. 6.1
produces the Discriminant Analysis: Save dialogue box of Fig. 6.7. This permits the

-5.0
0

1

2

3

-2.5 0.0 2.5 5.0

Mean = -1.77
Std. Dev. = 0.819
N = 11

POPN = 1

Fig. 6.6 Histogram of discriminant scores for the high population group

Fig. 6.7 The discriminant

analysis: save dialogue box

6.3 Results of Applying the IBM SPSS Discriminant Procedure 115



user to save the predicted group membership (IBM SPSS default name DIS_1),

the discriminant scores (DIS1_1) and the probabilities of group membership in the

active file, as shown in Fig. 6.8. The probabilities of group membership have

the default IBM SPSS variable names DIS1_2 for the first group (POPN ¼0) and

DIS2_2 for the second group (POPN ¼1). Of course these latter probabilities must

sum to one.

Fig. 6.8 Results of discriminant analysis added to the working file
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Chapter 7

Multidimension Scaling (MDS)

Suppose you had a map of the locations of several towns. It would be a simple

matter to construct a table (or matrix) of distances between them. Now consider the

reverse problem, where you are given the matrix of distances between the towns

and are asked to reproduce the map. Geometric techniques are available for this

purpose, but considerably more effort would be needed. Essentially, MDS is a

method for solving this reverse problem. However, typical applications of MDS are

more complex than this simple problem would suggest. Firstly, data usually contain

error or noise. Secondly, it is seldom known in advance whether a two-dimensional

map will suffice or whether a map using three, four or even more dimensions is

required.

Generally, MDS is a set of mathematical techniques that enables the researcher

to reveal the “hidden structure” or “underlying dimensionality” in a data set. For

example, in one well known application of MDS, respondents in a national survey

were asked to evaluate actual or potential candidates for the U.S. presidency. The

respondents were not directed as to the criteria by which they should make their

judgements; it was left to each respondent to make their rating based on any factors

they wished.

How similarly did the respondents view the candidates? What identifiable

features could be discerned in these evaluations of the candidates? Can we under-

stand what led respondents to make their decisions? MDS helped answer these

questions by plotting the political candidates on a two dimensional map. The closer

were candidates in this spatial representation, the more similar they were perceived

by the respondents and vice versa. The two axes (called dimensions) of the diagram
were labelled ‘partisanship’ and ‘ideology’ by the researchers. By finding key

differences between political candidates at opposite ends of each dimension, the

researchers could attempt to develop indicators of variables that could be measures

in future elections.

MDS uses proximities between the study objects as input. A proximity is a

number which indicates how similar or dissimilar two objects are thought to be. All

the proximities in a study constitute a (dis)similarity matrix. The chief output of
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MDS is a map as mentioned above, consisting of a geometric representation of the

study objects. Each point on the map corresponds to one of the study objects. The

geometric structure of the map reflects the “hidden structure” in the data and usually

makes the data easier to comprehend. The larger the dissimilarity (or the smaller the

similarity) between two study objects as shown by their proximity value, the further

apart will be these objects on the spatial map.

As an example of the spatial map generated by MDS, consider Fig. 7.1. Five

hypothetical products are involved, a, b, c, d and e. Proximity measures were

obtained by asking respondents to rank each pair of products in terms of how

similar they are perceived to be. There being five products, there are ten (n[n � 1]/

2 ¼ 5.4/2 ¼ 10) pairs, so the ranks are from 1 (say ‘most familiar’) to 10 (‘most

dissimilar’). In marketing applications of MDS, such a ranking task is often

performed by asking respondents to sort cards on which each pair is marked.

Figure 7.1 relates to one consumer’s rankings. The two dimensions are the

“underlying dimensions” that the respondent is deemed to have used to perform

the ranking exercise. Let us assume that the researcher is able to label dimension

1 as say ‘price’ and dimension 2 as ‘quality’. (The method by which the dimensions

are labelled is discussed later). Products a and c are perceived similarly in terms of

‘price’ in that they have high, similar scores on this dimension. However, the latter

two products are perceived quite differently in terms of ‘quality’. None of the five
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Fig. 7.1 A hypothetical MDS perceptual map
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products are close to each other in Fig. 7.1. Therefore, this respondent perceives the

products quite differently in terms of these two factors. Should any of the products

have been close to each other on the spatial map, then they could be regarded as

substitutes. The number of pertinent dimensions to be used in a particular study may

be known to the market researcher from past experience. There are statistics

produced in MDS and which may be used to compare models of competing

dimensionality.

The main thrust of MDS in the field of marketing has been to examine relation-

ships between brands of particular product group. Specifically, MDS has been used

to derive (i) consumer perceptions of the similarity of brands and (ii) consumer

preferences for brands. In this sense, MDS is an extension of the one-dimensional

attitude scales like the semantic differential. Instead of positioning attitudes about

brands on one-dimensional scales, MDS positions brands in an n-dimensional

space, where n is the minimum underlying dimensionality of the relationship.

About 34% of marketing-orientated businesses in the U.S.A. use MDS. Research

has shown that business applications of the technique have covered:

– identification of the salient product attributes perceived by buyers,

– the combinations of product attributes most preferred,

– the products that are viewed as substitutes for each other and those that are

differentiated from each other,

– the viable segments that exist in a market and

– those “holes” in the market that can support a new product venture.

It has been suggested that potential marketing applications would involve

product life-cycle analysis, market segmentation, vendor evaluation, advertising

evaluation, test marketing, salesperson/store image and brand switching research.

7.1 Types of MDS Model and Rationale of MDS

MDS may use just one matrix of proximities as input. For example, if we have

judgements from one consumer about the (dis)similarity between pairs of bottled

beers, we have one matrix. On the other hand, if we have judgements from many car

drivers about the dis(similarities) between pairs of automobiles, then we have many

proximity matrices – one for each driver. If the proximities are measured on a

nominal (rare) or ordinal scale (for example, ranks), we have nonmetric MDS
models. If the proximities involve ratio or interval measurement we have metric

MDS models. The spatial map that is derived from MDS is usually two-or-three-

dimensional Euclidean space, but it may have more dimensions.

The mathematics underlying MDS is highly complex and varies across different

types of MDS model. However, brief aspects may be discussed here. The observed

proximity between object i and object j is denoted by δij. In order to generate the

spatial map, these observed proximities are transformed into scaled distances,
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denoted by dij. The magnitude of the dij should reflect the magnitude of the

observed δij. We may say that:

dij ¼ f δij
� �

,

Where f is a function of some specified type and is discussed below. The

discrepancy between f(δij) and dij is simply:

f δij
� �� dij

The sum of the squares of these discrepancies is:

Xn

i¼1

Xn

j¼1
f δij
� �� dij

� �
2

Next, we divide by a scale factor so as to measure the squared discrepancies

relative to a sensible measuring stick. The scale factor most commonly used is:

Xn

i¼1

Xn

j¼1
dij2

Finally, the square root is taken of the result and is called the f-stress. The larger
is the f-stress, the worse the scaling process reflects the original observed proxim-

ities. If f-stress equals zero, then f(δij) ¼ dij. It should be noted that other stress

measures are referred to later on, especially one called S-stress. They tend to differ

only if the nature of the scale factor used.

The essential feature ofMDS is that we seek that function f which generates scaled

differences, but which has minimum f-stress over all possible functions. Methods for

deriving the function f vary according to the type of MDS model being employed.

7.2 Methods for Obtaining Proximities

In marketing applications of MDS, a simple method for deriving proximity mea-

sures is to have consumers sort the study objects accordingly to perceived similar-

ity. The typical instruction is to place the study objects into mutually exclusive

categories so that objects in the same category are more similar to each other than

those in other categories. A matrix of proximities among the objects can be derived

for the consumer group, by counting the number of times each pair of study objects

is placed into the same category. Similarly, ranking the degrees of similarity

between pairs of study objects is common in marketing, as per the hypothetical

example presented in the introduction.

A very common way to elicit proximities from data that are not proximities

(i.e. inappropriate for MDS in their original form) is to compute some measure of

(dis)similarity between the rows (or columns) of a table. For example, the rows of

120 7 Multidimension Scaling (MDS)



the original table might be various countries and the columns could be measures

such as GNP, energy consumption or unemployment. The most common way to

derive proximities is to compute correlations between the countries. Sometimes the

proximities could be frequencies, like the number of telephone calls between cities,

travel volume or any other form of transaction.

7.3 The Basics of MDS in IBM SPSS Statistics: Flying
Mileages

An example commonly used to illustrate metric MDS is the flying mileages

between Ten American Cities. The relevant data are shown in Fig. 7.2

(AIRMILES.SAV). For example, the flying distance between Atlanta and Denver

is 1196 miles. The cities are the study objects and the mileages are the proximities.

Note that all the diagonal elements are zero. Figure 7.3 shows the IBM SPSS

Multidimensional Scaling dialogue box which accesses the MDS procedure. This

dialogue box is accessed via:

Analyze

Scale

Multidimensional scaling (ALSCAL). . .

The ten cities are the ‘Variables’ under study. Here, the data are already in the

form of a square, symmetric proximity matrix. In such a square, symmetric matrix,

the rows and columns represent the same items – here the ten cities. By clicking the

Model. . .and Options. . .buttons, we obtain the MDS: model dialogue box and the

MDS: options dialogue box of Figs. 7.4 and 7.5 respectively.

Fig. 7.2 Airmiles data
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Fig. 7.3 The MDS dialogue box: data format

Fig. 7.4 The MDS: model dialogue box
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The level of measurement in the current example is ratio (as selected in Fig. 7.4);

the default is ordinal. In the dialogue box of Fig. 7.5, we have requested group plots,

which are presented in Figs. 7.6 and 7.7.

Figures 7.6 and 7.7 were generated in IBM SPSS because we selected group

plots in the dialogue box of Fig. 7.5. In Fig. 7.6, cities that are similar (i.e. short

flying distances, here) are represented by points that are close together, with the

converse being true. The orientation of Fig. 7.6 is arbitrary. The central point about

MDS is that the distances between the points in Fig. 7.6 (referred as dij, representing

the distance between cities i and j) should correspond to the proximities (referred to

as δij, representing here the air miles between cities I and j). A good way to examine

this correspondence is via scatterplot between dij and δij. This is produced in

Fig. 7.8 and is called Shepherd diagram. Each point in Fig. 7.8 corresponds to

one pair (i,j) of study objects. The horizontal axis contains the δij, which have been

standardised, so their units have changed.

The (standardised) dij are plotted on the vertical axis. The standardisation used in

this Shepherd diagram generates a zero vertical axis intercept. Such a good, clean-

cut pattern as Fig. 7.8 is uncommon in practice. Indeed, Fig. 7.8 exhibits a virtually

perfect fit i.e. no scatter because the data have essentially no error, because we have

Fig. 7.5 The MDS: options

dialogue box
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properly assumed that the data are at the ratio level of measurement and we have

correctly used an MDS model with two and only two relevant dimensions.

It remains to label the two axes in Fig. 7.6. This is a subjective matter. The most

common way of interpreting the dimensions in such as Fig. 7.8 is to look at the

study objects opposite extremes of the two axes. In this simple example, the vertical

axis would be labelled ‘north-south’ as Seattle and Miami are the most northerly

and southerly towns in the analysis. Similarly, the horizontal axis would be labelled

‘west-east’. Figure 7.7 presents the non-graphical output from the IBM SPSS

Statistics multidimensional scaling routine.

This MDS run terminated after one iteration. IBM SPSS Statistics reports

Young’s S-stress statistic as 0.00469. Like f-stress, S-stress is a measure of fit

ranging from 1 (worst possible fit) and 0 (perfect fit). This statistic measures the

correspondence between the squared distances δij² and the squared scaled distances

dij
² produced by MDS. Kruskal’s stress index of 0.00443 measures the correspon-

dence between the just δij and the dij and again we seek values close to zero. The

squared correlation (RSQ) is the coefficient of determination between the δij and the
dij and from Fig. 7.7 it was apparent that an RSQ value close to unity would result.

The following rule of thumb has been offered for the interpretation of the value

of S-stress:
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Fig. 7.6 MDS plot of intercity flying mileages
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– If S-stress � .25, very good fit

– If .25 < S-stress � .5, good fit,

– If .05 < S-stress � .10, relatively good fit and

– If S-stress > .1, poor fit.

It might be noted that if we used MDS not on the actual flying miles in Fig. 8.2,

but rather on the ranks of these mileages, then we would be performing a

non-metric MDS.

Fig. 7.7 IBM SPSS statistics output for the airmiles data (AIRMILES.SAV)
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7.4 An Example of Nonmetric MDS in IBM SPSS
Statistics: Perceptions of Car Models

An example of nonmetric MDS often cited in marketing is the measurement of

consumers’ perceptions of similarity and their preferences for 11 competing Amer-

ican car models. Consumers were asked to rank order the degrees of similarity

between all 55 (n[n� 1]/2¼ 11*10/2¼ 55) combination of cars. The combinations

were presented on cards. The data are in the file CARS.SAV.

Being ranks, the proximity data are ordinal, so this option must be selected from

the MDS: Model dialogue box. The results for one particular consumer are

presented in Figs. 7.9 and 7.10. By examining the location of the car makes relative

to the axes, dimension 1 was labelled ‘high luxuriousness – low luxuriousness’
from left to right. Dimension 2 was labelled ‘high sportiness-low sportiness’ from
top to bottom of this axis. This spatial map represents the perceptual space of this

particular consumer. The positioning of car makes relative to each seems to yield

competitive segments, for example, Mercedes and BMW are similarly perceived by

this individual. The stress and RSQ measures in Fig. 7.10 are indicative of the

goodness of fit derived from this model. In studies such as this, it is common to

include an extra hypothetical product into the study objects. Here, it would be “my

Fig. 7.8 Scatterplot of raw data versus distances
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ideal car”. These are called ideal points in marketing and would be included in the

ranking procedure. For example, a consumer who likes big, luxury cars would

probably have this ideal point near to the Lincoln and Cadillac. When each

consumer’s ideal point is positioned in space, the market researcher can look for

clustering of ideal points which can be used to predict market shares.

7.5 Methods of Computing Proximities

There are several competing methods for computing proximities according to

whether the data are interval, frequencies or binary. Remember that proximity is

a measure of how similar or dissimilar two objects are. The default for interval data

is the Euclidean distance as used with the airlines example. In the MDS: Model
dialogue box there is the option to create measures from the data. Selecting this

option generates the MDS: Create Measure dialogue box of Fig. 7.11.
Suppose a study involves two variables X and Y with the following values:

Xi : 4 7 9 4 3

Yi : 3 7 12 3 5
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Fig. 7.9 MDS map for a consumer’s perceptions of car makes
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The following proximity measures are available for interval data:

(a) Euclidean distance which is the default for interval data:

Dist X;Yð Þ ¼ 4� 3ð Þ2 þ 7� 7ð Þ2 þ . . .þ 3� 5ð Þ2
n o0:5

¼ 15ð Þ0:5 ¼ 3:87

Fig. 7.10 Output for MDS of car make similarities
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(b) Squared Euclidean distance:

DistðX,YÞ ¼ ð4� 3Þ2 þ ð7� 7Þ2 þ � � � þ ð3� 5Þ2 ¼ 15

(c) City block or Manhattan distance, which uses absolute values:

Dist X;Yð Þ ¼ 4� 3j j þ 7� 7j j þ . . .þ 3� 5j j ¼ 7

Figure 7.12 is an MDS map of the inter-city airmiles data employing the city

block distance measure. The map naturally suggests that this is a totally inappro-

priate way of conceiving of distance in this instance.

(a) The Chebychev distance measure is simply the maximum absolute difference

between the values for the items:

Dist X;Yð Þ ¼ 9� 12j j ¼ 3

Fig. 7.11 The MDS: create measure dialogue box

7.5 Methods of Computing Proximities 129



(b) The Minkowski distance measure between two items in the pth. root of the sum

of the absolute differences to the pth. power between the values for the items:

Dist X;Yð Þ ¼
X

i
Xi � Yij jp

n o1�p

And the user may specify a value for p. The default is p ¼ 2.

7.6 Weighted Multidimensional Scaling in IBM SPSS,
INDSCAL

The analyses so far have involved one matrix of proximities. This simplest form of

MDS is called classical multidimensional scaling (CMDS). CMDS was extended to

allow for more than one matrix of proximities. This is naturally important, as

researchers will tend to have more than one such matrix, especially in the marketing

context, where panels of consumers are questioned about similarities. Replicated

multidimensional scaling (RMDS) was the first development that permitted more

than one matrix. However, RMDS is of limited use in the marketing context,
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because it assumes that all data matrices are the same, save for error. The matrices

are replicates of each other with no systematic differences. Most market research

studies assume and search for interpersonal differences in consumer attitudes and

cognition. UnderWMDS, several matrices can be assumed to differ from each other

without the assumption that such differences are solely due to error. It should be

noted that the WMDS model is also known as INDSCAL (individual scaling
Euclidean distance model).

Suppose sampled consumers were individually asked to judge how similar were

pairs of competing retail stores were similar. There is a total of 15 stores in the

study. The name of each was written on a card. The experimenter selected one store

– called the standard – and asked the respondent to select that store from the

remaining 14 stores which was most similar to the standard. The selected store is

removed and the respondent now asked which of the remaining 13 stores is most

similar to the standard. This method is repeated until all the 14 non-standard stores

were exhausted. The store that is deemed most similar to the standard is ranked as

1, the next most similar as 2 etc.

Ideally, this task should be repeated until all stores have acted as the standard,

but in a market research survey, this may not be possible. The standard is conven-

tionally entered as a zero in the data matrix for WMDS. If the task has been

completed will all 15 stores acting as the standard, the input data matrix for the

first respondent would be like:

Shop 1 Shop2 Shop3 Shop14 Shop15

Comparison 1 0 2 1 . . . 10 11

Comparison 2 7 5 8 . . . 0 2

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

Comparison 15 1 3 0 . . . 9 10

At the first comparison, store number 1 was the standard and store 3 was

perceived as being most similar to it. Store 2 was the next most similar. At the

second comparison, store 14 acted as the standard.

Suppose (for simplicity) that three consumers have performed the above task

with all 15 stores acting as the standard. The data input data matrix has 45 rows

(3 respondents X 15 standards) and 15 columns (no. of stores). Our data are no

longer square symmetric as in previous analyses. In the MDS dialogue box of

Fig. 7.3, we turn to the ‘Distances’ box and the option:

• Data are distances

And by clicking the Shape. . .button, we derive the Multidimensional Scaling:

Shape of Data dialogue box of Fig. 7.13. Here, we choose:

• Rectangular

7.6 Weighted Multidimensional Scaling in IBM SPSS, INDSCAL 131



And the number of rows per respondent is 15. IBM SPSS Statistics now knows

that with 45 rows, there are three respondents.

Next we turn to the MDS: Model dialogue box of Fig. 7.4. Our ranked data are

ordinal. Under the heading ‘Scaling Model’ box of Fig. 7.4, INDSCAL is accessed

by choosing the option:

• Individual Differences Euclidean Model

We now turn the ‘Conditionality’ box of Fig. 7.4. When the values in a row are

ranked only relative to other values in the same row, we say that the data are now
conditional. We thus select:

• Row

Suppose that the marketing practitioner is satisfied that consumers perceive

similarities (and dissimilarities) between these stores in terms of three dimensions

only (say, ‘price’, ‘quality’ and ‘range of choice’). We select this option under the

heading ‘Dimensions’ in the dialogue box. The MDS: Model dialogue box should
now appear as in Fig. 7.14.

The MDS map would now be in three dimensions. Where INDSCAL differs

from both classical and replicated MDS in that weights are produced for each

subject. These weights measure the importance of each dimension to the subject. If

an individual’s weight on a particular dimension is large, near to its maximum of

1, then that dimension is relatively important; if the weight for a dimension is near

its minimum of 0, then that dimension is relatively unimportant.

The weirdness index (WI) helps to interpret these weights. WI varies between

0 and 1 and indicates how unusual or (weird) each respondent’s weights are relative
to the mean weights of all respondents.

– A respondent with weights proportional to the mean weights has WI of zero.

Such a respondent is a typical respondent.

– A respondent with one large weight and many low weights has aWI close to one.

Such a respondent is dissimilar to the rest.

Fig. 7.13 The

multidimensional scaling:

shape of data dialogue box
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Fig. 7.14 The MDS: model dialogue box for the store perception data
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Chapter 8

Hierchical Log-linear Analysis

We have already seen in Part 1 of this guide how to examine two-way classifications

in contingency tables via the chi-square statistic. As further variables are added

to cross-classification tables, the number of cells rapidly increases and it is

difficult to unravel the associations between the variables by examining only

the cell entries. Although the traditional chi-square approach often provides an

insight about the relationships among variables, it:

– Confuses the relationship between a pair of categorical variables with the

relationship when other variables are present,

– Does not allow for the simultaneous examination of these pairwise relationships

and

– Ignores the possibility of three-variable and higher-order interactions among the

variables.

Hierarchical log-linear analysis is deigned to solve these more complex

problems.

8.1 The Logic and Terminology of Log-linear Analysis

One objective of log-linear analysis is to assess if variables are associated

(or dependent) or whether they are not associated (or independent). For simplicity,

the logic and terminology of log-linear analysis will be introduced in the context of

only two variables. It should be appreciated, however, that the prime utility of

log-linear analysis lies in the multi-variate context, which is illustrated later. The

underlying logic of two-way contingency table analysis involves the multiplication

law of probability under the null hypothesis that the two variables are independent.

If two variables A and B are independent, then elementary probability theory states

that P(A) and (b) ¼ P(A).P(B). Log-linear analysis attempts to use the logic of

multiple regression models which are additive. However, the additive property can
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be ascribed to the above probability law by taking natural logarithms (base e)

i.e. lnP (A and B) ¼ lnP(A) + lnP(B).

The frequency table overleaf was derived from a study that examined factors that

influenced the amount of effort put into comparing alternatives by consumers in the

retail environment. Two factors that might influence consumer effort are the degree

of interest in the purchase (IBM SPSS variable name INTEREST) in the purchase

and the level of risk (RISK) attached to the purchase by the consumer. Before

considering the influences or otherwise of these two variables upon consumer

effort, is it possible that they themselves are associated? For example, do consumers

who regard this particular purchase of ‘high interest’, therefore also regard it as one
of ‘high risk’? Both variables in the above table have been coded as 1 for “high”,

2 for “medium” and 3 for “low”. A chi-square statistic of 3.0462, df¼ 4, p¼ 0.5501

indicates that we do not reject the hypothesis that INTEREST and RISK are

themselves independent.

Interest

Risk 1 2 3 Total

1 13 12 12 37

2 20 17 14 51

3 17 19 26 62

Total 50 48 52 150

Using log-linear model, the number of cases in each cell of the above table can

be expressed as the sum of the “effects” of RISK and INTEREST and any

interaction between the two. This is simply saying that the observed frequencies

in any cell are due to scores (“effects”) on the two variables and any interaction

between them. To obtain a log-linear model, the natural logs of the above cell

frequencies are used:

Interest

Risk 1 2 3 Mean

1 2.565 2.485 2.485 2.512

2 2.998 2.833 2.639 2.823

3 2.833 2.944 3.258 3.012

Total 2.799 2.754 2.794 2.782

In general for a two-way situation, the log of the observed frequency in the ith

row and the jth column is given by:

LnFij ¼ μþ ϑA
i þ ϑB

j þ ϑAB
ij . . . ð8:1Þ

Where Fij are the observed frequencies in the cell, ϑA
i is the effect of the ith

category of variable A, ϑB
j is the effect of the jth category of variable B and ϑAB

ij is

the interaction effect for the ith category of variable A and the jth category of

variable B. The quantity μ is the grand mean of the logs of all the observed
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frequencies. Equation 8.1 is called the saturated model, in that it contains all single
variable effects and all possible interactions.

Using Eq. 8.1, the log-linear model for the first cell (top left hand corner) is:

Ln 13ð Þ ¼ μþ ϑRISK¼1 þ ϑINTEREST¼1 þ ϑRISK¼1
INTEREST¼1 . . . ð8:2Þ

Thirteen is the observed frequency in this cell. The term μ is the grand mean of

the entire table, here 2.782. The ϑ parameters represent the increments or decre-

ments from μ for particular combinations of values of row and column variables.

Each category of the row and column variables has an associated ϑ .ϑRISK¼ 1

indicates the “effect” of being in the first (or “low”) category of risk. This effect

is computed as:

ϑðRISK¼1Þ ¼ mean of logs in the“RISK ¼ 1” cells� grand mean

¼ 2:512� 2:782 ¼ �:270

The ϑ parameter for one category of a variable is just the mean log of the

frequencies in a particular category minus the grand mean, so another example:

ϑðINTEREST¼1Þ ¼ mean of the logs in the“INTEREST ¼ 1” cells� grand mean

¼ 2:799� 2:782 ¼ :017

Positive values of ϑ occur when the mean number of cases in a row or column is

larger than the overall grand mean.

Consider the interaction effect in Eq. 8.1. Rearranging:

ϑRISK¼1
INTEREST¼1 ¼ LnðFijÞ�ðμþ ϑRISK¼1 þ ϑINTEREST¼1Þ,

¼ lnð13Þ � �ð2:782�0:270þ 0:017Þ ¼ 0:036

Hence, it is possible to compute the ϑ parameters for the ain effects and their

interactions:

Main effects:

ϑRISK¼1 ¼ 2:512�2:782 ¼ �0:270

ϑRISK¼2 ¼ 2:823�2:782 ¼ 0:041

ϑRISK¼3 ¼ 30:12�2:782 ¼ 0:230

ϑINTEREST¼1 ¼ 2:799�2:782 ¼ 0:017

ϑINTEREST¼2 ¼ 2:754�2:782 ¼ �0:028

ϑINTEREST¼3 ¼ 2:794�2:782 ¼ 0:012
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Interaction effects:

ϑRISK¼1
INTEREST¼1 ¼ 2:565�ð2:782�0:270þ 0:017Þ ¼ 0:036

ϑRISK¼1
INTEREST¼2 ¼ 2:485�ð2:872�0:270�0:028Þ ¼ 0:001

ϑRISK¼1
INTEREST¼3 ¼ 2:485�ð2:782�0:0270þ 0:012Þ ¼ �0:039

ϑRISK¼2
INTEREST¼1 ¼ 2:998�ð2:782þ 0:041þ 0:017Þ ¼ 0:158

ϑRISK¼2
INTEREST¼2 ¼ 2:833�ð2:782þ 0:041�0:028Þ ¼ 0:038

ϑRISK¼2
INTEREST¼3 ¼ 2:639�ð2:782þ 0:041þ 0:012Þ ¼ �0:196

ϑRISK¼3
INTEREST¼1 ¼ 2:833�ð2:782þ 0:230þ 0:017Þ ¼ �0:196

ϑRISK¼3
INTEREST¼2 ¼ 2:944�ð2:782þ 0:0230�0:028Þ ¼ �0:040

ϑRISK¼3
INTEREST¼3 ¼ 3:258�ð2:782þ 0:230þ 0:012Þ ¼ 0:234

It will be found that knowing some of the ϑ, we automatically know others. For

example, allowing for decimal rounding error:

ϑRISK¼1 þ ϑRISK¼2 þ ϑRISK¼3 ¼ 0

Similarly for the categories of INTEREST.

Also for the interactions, there are zero sums, such as:

∑ϑRISK¼ 1 for INTEREST ¼ 1, 2 and 3 is zero and

∑ϑINTEREST¼ 2 for RISK ¼ 1, 2 and 3 is zero.

IBM SPSS Statistics reports the minimum number of ϑ values that are sufficient

to derive the rest.

8.2 IBM SPSS Statistics Commands for the Saturated

Model

I shall use the data in the contingency table of the previous section, involving the

variables INTEREST and RISK to illustrate aspects of log-linear analysis in IBM

SPSS. The data are to be found in the IBM SPSS file CONSUMER.SAV. It is

necessary to understand application and interpretation of the saturated model or

Eq. 8.1, before performing more advanced, multi-variate log-linear analyses. The

IBM SPSS hierarchical loginear procedure is accessed by clicking:

Analyse

Loglinear

Model Selection. . .
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Which produces the Model Selection Loglinear Analysis dialogue box of 8.1.

The ‘Factors’ in this analysis are just the two variables RISK and INTEREST. The

Define Ranges button will become active and must be clicked. It is necessary to

define the minimum code (here ‘1’) and the maximum code (here ‘3’) employed for

the factors. Under the heading ‘Model Building’, the main effects and interaction

terms are entered into the model in a single step when the saturated model is being

analysed. Clicking the Model button generates the Loglinear Analysis: Model
dialogue box of Fig. 8.1 and it will be seen that the saturated model is the default.

Clicking the Options button on the dialogue box of Fig. 8.2 produces the Loglinear
Analysis: Options dialogue box of Fig. 8.3. In this latter dialogue box, I have

requested the frequencies and residuals to be displayed. Under the heading ‘Display
for Saturated Model’, I have requested the parameter estimates, whose numerical

values were computed at the bottom of page 142. Also in this dialogue box and

under the heading ‘Model Criteria’ I have set the value of a quantity called “delta”
to be zero, rather than its default value of 0.5. There are problems in all forms of

contingency table analysis if any of the cells contain zero frequencies (e.g. ln0 does

not exist). Therefore and by default, IBM SPSS Statistics adds 0.5 (and calls this

quantity “delta”) to each cell frequency in case this problem arises. However, we

know here that this will be unnecessary, hence the user’s recalibration of delta in

this instance.

Fig. 8.1 The loglinear analysis: model dialogue box
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Fig. 8.2 The model selection loglinear analysis dialogue box

Fig. 8.3 The loglinear

analysis: options dialogue

box
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The IBM SPSS output for the log-linear analysis of the saturated model is

presented in Fig. 8.4. The observed (OBS) frequencies are simply those presented

on page 142 and which could be readily generated from the IBM SPSS Crosstabs

procedure. Recall that the saturated log-linear model includes all possible main

effects and interactions. The saturated model reproduces the observed cell frequen-

cies exactly, so the expected (EXP) and observed cell counts are equal. We shall

later consider models that do not exactly reproduce cell counts.

A test of the hypothesis that a particular model adequately fits the observed data

can be based on the familiar Pearsonian chi-square statistic. An alternative statistic

is the likelihood ratio chi-square, but for large samples, the two are equivalent. The

advantage of the likelihood-ratio chi-square (as will be seen later) is that it can be

partitioned into interpretable parts. The saturated model always has chi-square

statistics of zero (p¼ 1.0). This naturally means that the saturated model adequately

fits the data, since chi-square is not the critical region; it always fits perfectly.

(Of course the residuals and their standardised counterparts are zero for the

saturated model).

In Fig. 8.4 and under the heading ‘Estimates for Parameters’ are the values of the
ϑ coefficients computed in Sect. 8.2. The notation RISK*INTEREST refers to the

interaction between these two factors. The parameters for this interaction corre-

spond to the order of presentation of the OBS and EXP frequencies. Parameter

1 corresponds to RISK ¼ 1, INTEREST ¼ 1; parameter 2 to RISK ¼ 1, INTER-

EST ¼ 2. There is no need to report the parameter value of RISK ¼ 1, INTER-

EST ¼ 3 in Fig. 8.4, since these three parameters sum to zero. Parameter 3 for this

interaction is for RISK ¼ 2, INTEREST ¼ 1; parameter 4 is for RISK ¼ 2,

INTEREST ¼ 2. Again there is no need for the third parameter to be reported.

The parameters for RISK ¼ 3, INTEREST ¼ 1, 2 and 3 may be derived from those

already obtained. Turning to the main effects, parameters for RISK ¼ 1 and

RISK ¼ 2 (and similarly for INTEREST) are reported and the third such parameter

may be derived knowing that their sum is zero.

The Z-values in Fig. 8.4 are the ϑ divided by their standard deviations (here

called standard error, Std Err) and they are thus standard normally distributed.

Adopting a conventional significance level of 5%, any parameter coefficient

beyond � 1.96 suggests rejection of H0: that the particular ϑ value is zero. The

Z-value for low RISK is negative and significant. This suggests that the total of

37 cases in the category RISK ¼ 1 is significantly smaller than the total of cases in

the other two RISK categories. Ninety five percentage confidence intervals for the

parameters ϑ are also presented in Fig. 8.4. Other aspects of the log-linear output

are discussed in ensuing sections.
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8.3 The Independence Model

Representing an observed frequency table by a saturated log-linear model does not

result in a simple, particularly meaningful description of the relationship between

variables, especially when there are more than two of them. Possibly, parameters

with small values could be removed from the saturated model to create simpler

models. To illustrate the general procedure for fitting a model that does not contain

all possible parameters (called an unsaturated model), consider the familiar inde-

pendence hypothesis for the two-way contingency table. If variables are indepen-

dent, they can be represented by a log-linear model that does not have an interaction
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term. For example, if variables A and B are independent and with reference to

Eq. 8.1, then the independence model may be written as:

Ln cFij

� �

¼ μþþϑA
i þ ϑB

i þ . . . ð8:3Þ

Being an unsaturated model, the Fij are no longer exact, but are estimated, hence

the “hat” (^) notation. The unsaturated model of Eq. 8.3 consists of only main

effects, so we do not want the interaction term of the saturated model. The

difference this time is in the selection of options in the Loglinear Analysis: model

dialogue box of Fig. 8.1. At the top of this dialogue box we wish to customise our

model rather than select the default saturated model, so select the option ‘Custom’.
In the box titled ‘Build term (s)’, select the option ‘Main effects’ rather than the

default ‘Interactions’. The variables RISK and INTEREST are entered into the

‘Generating Class’ box and the dialogue box appears as in Fig. 8.5. The IBM SPSS

output from this unsaturated model is presented in Fig. 8.6.

The Pearsonian chi-square statistic in Fig. 8.6 is the same as that stated on page

141 and which would be derived from the IBM SPSS Crosstabs procedure. Recall

that the chi-square statistics in Fig. 8.6 test the hypothesis that our model (here

without interaction effects) fits the data adequately. As the significance levels are in

excess of 0.05, we fail to reject this hypothesis and the independence model is not

rejected. Hence, RISK and INTEREST are independent and there is no need for the

interaction term.

Fig. 8.5 The loglinear analysis: model dialogue box for main effects only
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The residuals also indicate the adequacy or otherwise of the model fit. They

should be small in value and exhibit no discernible pattern. To this end, it is easiest

to examine the standardised residuals and values beyond 1.96 are extreme. There

are no such residuals in Fig. 8.6. The standardised residuals should be normally

distributed if the model is adequate. Derivation of a normal probability plot is an

option in the Loglinear Analysis: Options dialogue box of Figs. 8.3 and 8.7 presents
this diagram, which suggests no serious departure from normality. The user could

plot the standardised residuals against the observed or expected frequencies and

there should be no discernible pattern present if the residuals are random.

8.4 Hierarchical Models

The interaction between RISK and INTEREST in the previous sections is called a

2-way interaction. Higher order interactions may be part of the study. For example,

if a consumer regarded a particular purchase as interesting and shopped under a

high degree of time pressure, then (s)he might attach a high element of risk to the

buying process. This would be a 3-way interaction. In a hierarchical model, if a

term exists for the interaction of a set of variables, then there must be lower-order

terms for all possible combinations for these variables. For a three variable model,
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if the user includes the 3-way interaction ϑABC, then the terms ϑA, ϑB ,ϑC, ϑAB, ϑAC

and ϑBC must also be included. This 3-way interaction is used when the researcher

believes that the variables A, B and C are mutually dependent in some way. To

describe a hierarchical model, one customises the model by simply entering all the

pertinent variables into the box entitled ‘Generating Class’ in the Loglinear Anal-
ysis: Model dialogue box and under the heading ‘Build Term(s)’ choose the default
‘Interactions’. In the above 3-way interaction model, A* B*C would imply that ϑ
parameters for A*B, A*C, B*C, A, B and C will be computed and reported as well.

However, many different models are possible for a set of variables. The selected

model should fit the data, the substantially interpretable and as simple (parsimoni-

ous) as possible. For example high-order interactions are often difficult to interpret.

In order to derive a parsimonious model, one could fit the saturated model and

examine standardised values for the ϑ parameters. Another strategy is to test

systematically the contribution to the model made by terms of a particular order.

For example, one could fit a model with interaction terms then a model with fixed

effects only. The change in the chi-square statistic between the two models is

attributable to the interaction terms.

The hierarchical procedure is illustrated by introducing two further variables

into the previous study and which are found in the file CONSUMER.SAV. These
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two variables were also deemed in the study to influence the extent of consumer

comparison shopping i.e. the effort consumers place in the purchase process. The

first variable is the time pressure (IBM SPSS variable named TIME) under which

consumers shop and the second variable is the status (STATUS) that consumers

attach to the particular purchase. The latter two variables are coded from ‘1’ to ‘3’
exactly as for RISK and INTEREST. We shall employ hierarchical log-linear

analysis to establish any significant relationships between combinations of RISK,

INTEREST, TIME and STATUS that determine the observed frequencies in each

class of these four factors.

Partitioning the chi-square statistic can be a useful first step in identifying a

“best”, parsimonious model between the study variables. With four variables, we

have 81 (3 � 3 � 3 � 3) cells in our frequency table, so it is necessary to let delta

equal to its default value of 0.5, in that there may well be zero frequencies in some

cells. Setting delta is performed in the Loglinear Analysis: Options dialogue box. If
we run the saturated model, it is now necessary to discuss that part of the IBM SPSS

output obtained in Fig. 8.8. Under the heading ‘K-way and higher order effects, the
first line is a test of the hypothesis that the fourth order interaction is zero (there

being no higher order interaction). Both the likelihood ratio and Pearson chi-square

statistics reject these hypotheses (p¼ 0.0). The second line tests the hypothesis that

third AND fourth order interactions are zero. Again both test to reject this hypoth-

esis (P < 0.05). We may use the fact that chi-square is additive and subtractive in

terms of its numerical value and degrees of freedom. The chi-square for fourth order

interactions is 0.000 with df ¼ 16; that for third AND fourth order interactions is

0.000, df ¼ 48. Therefore, the chi-square statistic for the hypothesis that just third

interactions are zero is 0.000 – 0.000 ¼ 0.000 with df ¼ 48 – 16 ¼ 32. Test results

for such individual effects are presented under the heading ‘K-way effects’ in

Fig. 8.8. The likelihood ratio results suggest that main effects (K ¼ 1) and second

order interactions are significantly different from zero; the Pearsonian results

suggest that main effects, second and third order interactions are significantly

different from zero. Both approaches agree that any fourth order interaction is not

significant.

The results in Fig. 8.8 under the heading ‘Partial Associations’ provide an

indication of the collective importance of effects of various orders. They do not,

however, test individual terms. That is, although the overall hypothesis of second

order interaction effects are zero may be rejected, that does not mean that every

third order effect is present. One approach is to fit two models differing only in the

presence of the effect to be tested and test the differences in the two chi-square

statistics for significance. This difference in chi-square statistics is called the

partial chi-square. Partial chi-squares are based on the likelihood ratio

chi-square.

Overall, we know that second order interaction effects are significantly different

from zero. Examination of the partial chi-squares shows that of the possible 2-way
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effects, RISK*TIME and INTEREST*TIME only are significant. These two pairs

contribute most of the overall significance. None of the 3-way combinations are

significantly different from zero. Hence, it appears that the study can be represented

parsimoniously by a model that includes just the above 2-way interactions and

being hierarchical, the individual variable main effects (RISK, TIME and INTER-

EST) must be included too.

Goodness-of-Fit Tests

K-Way and Higher-Order Effects

Partial Associations

Chi-Square

Chi-Square

Likelihood Ratio

Likelihood Ratio

K
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b. Tests that k-way effects are zero.
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Fig. 8.8 IBM SPSS for the 4-way loglinear model
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8.5 Backward Elimination

The above process is useful for showing the logical of hierarchical log-linear

analysis and an approach to obtaining a significant and at the same time, parsimo-

nious model. However, as in regression analysis, another way to arrive at a “best”

model is by using variable selection procedures. Forward selection adds effects to

the model, while backwards elimination starts off with the saturated model and

removes effects that do not satisfy the criterion for remaining in the model. Since

backward elimination appears to be the better procedure for model selection, this is

the approach available in IBM SPSS.

The initial model for backward elimination need to be saturated. Indeed, pre-

ceding analysis suggests that we need never consider a possible 4-way interaction.

To operationalise backward elimination, the user simply selects this option in the

Model Selection Loglinear Analysis dialogue box. Every step in the elimination

process is reported, but in most instances, we are only interested in the k-way

effects that remain in the final step as shown in Fig. 8.9. As expected, the 2-way

interactions RISK*TIME and INTEREST*TIME remain.

The chi-square goodness of fit statistics indicate that we do not reject the

hypothesis that this model is an adequate fir for the data. For brevity, just the

Z-scores associated with the ϑ coefficients for the RISK*TIME interaction

are reported. All the Z-scores are statistically significant and study of their sign in

the study context would explain why this 2-way interaction is significant. A plot of

the residuals should be generated for this model to assess further its adequacy.
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Parameter Estimates

Step Summary
Backward Elimination Statistics

Goodness-of-Fit Tests
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Fig. 8.9 Part of the results from backward elimination
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Part III

Research Methods



Chapter 9

Testing for Dependence

9.1 Introduction

There are many business-related research projects in which a major focus would be

whether two, non-metric variables are dependent upon each other or not. For

example, in market research analyses, it is common to test whether factors such

as consumer attitudes (e.g. classified as “favorable”, “unfavorable” or “neutral”),

consumer behavior or expenditure patterns depend on a series of socio-economic

variables such as age, income, family structure, religion, gender etc. In a financial

context, we may wish to examine whether today’s movements in shares (classified

as “up”, “down” or “stationary”) depend upon past movements in exchange rates

(classified as “up”, “down” or “stationary”). In such instances, we have recourse to

Pearson’s chi-squared (χ2) test of independence, which may be applied even at

the nominal level of measurement.

As an illustration, banks and financial institutions have become increasingly

aware that customers’ perceptions of various forms of service quality

(SERVQUAL) have an impact on the organization’s ability to retain/expand its

business. This statement is all but true given the daily challenges banks are

presented with because of the continuous technology improvements. A recent

study shows that customers are more likely to use internet banking rather than go

physically to their respective branch. Consequently, the SERVQUAL literature has

been increasing rapidly over the last two decades, both in the commercial and

academic sectors.

A survey has been conducted to assess customers’ satisfaction with a particular

bank’s credit facilities. Levels of satisfaction (IBM SPSS variable name

LEVELSAT) are coded as 1 “dissatisfied”, 2 “neutral/undecided” and 3 “satisfied”.

Research is conducted to see if levels of satisfaction depend on the customer’s
affluence, measured in terms of how much the customer deposits per month

(DEPOSIT), which is coded as 1 “less than £50000, 2 “£500 up to £250000 and
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3 “more than £250000. Three thousand four hundred and two customers responded to

a survey and the data are available in the file SERVQUAL.SAV

The first part of the analysis of (in) dependency involves generating what is

called a crosstabulation or contingency table of the results, shown below

(Table 9.1):

Out of a total of 2242 customers, 560 deposited less than £1500 per month and

were “dissatisfied” with the bank’s credit facilities. Five hundred and sixty is called
the observed frequency. Generally, the contingency table suggests that the more

an individual deposits the more he is likely to be satisfied with the credit facilities

on offer. This would imply that LEVELSAT and DEPOSIT are mutually

dependent.

This chi-squared test has the null hypothesis H0: the two study variables, levels

of satisfaction and amount of monthly deposit, are independent. In most research,

we will want to reject the null in favour of the alternative that a dependency exists.

Remember that all statistical tests are conducted under the assumption that the

null is true. Consider the top left hand corner cell in the above contingency table.

By the multiplication law of probability and via the statistical independence

assumed under the null:

P(customer deposits < £1500 AND is dissatisfied) ¼
P(customer deposits < £1500).P(customer is dissatisfied) ¼
(749 / 2242) * (1050/2242) using the associated row and column totals in the

contingency table.

Consequently, under the null hypothesis, the expected frequency of customers

who deposit < £1500 and who are dissatisfied with the credit facilities is (749 /

2242) * (1050/2242) * 2242 ¼ 346.5 – it seems that this expected frequency (Ei)

derived under the assumption that the null is true, is quite dissimilar to the observed

frequency (Oi) of 560, suggesting that we may have to reject the null. We need to

compute the expected frequencies for all nine cells in the contingency table and

compare them with their associated observed frequencies before we make a final

conclusion about the null. From the above arithmetic it may be noted that there is a

quick way to compute the expected frequencies via:

Ei ¼ rowtotalð Þ columntotalð Þ
n

where n is the total number of observations in the contingency table, here 3042.

Table 9.1 Contingency table

Level of satisfaction

Monthly deposit Dissatisfied Neutral/undecided Satisfied Total

Less than £1500 560 111 78 749

£1500 up to £5000 216 490 107 813

More than £5000 274 306 100 680

Total 1050 907 285 2242
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The further apart are the nine observed frequencies and their expected counter-

parts, the less likely is the null to be true. The differences between the Oi and the Ei

form the basis for the chi squared test statistic which is:

X

i

Oi � Eið Þ2
Ei

2χ2

where the number of degrees of freedom is given by ν ¼ (no. of rows � 1).(no. of

columns � 1), so here, ν ¼ 4.

9.2 Chi-Square in IBM SPSS Statistics

Naturally, IBM SPSS Statistics performs all of the above arithmetic and also

generates the contingency table and expected values if desired. It is always sensible

to select the expected values as an option in order to specify the nature of any

dependency that may exist. In IBM SPSS Statistics, click:

Analyze

Descriptive Statistics

Crosstabs

which produces the Crosstabs dialogue box on Fig. 9.1.

It makes no difference (save for presentation) which variable constitutes the

rows of the contingency table and which forms the columns. Click the Statistics. . .
button in the above dialogue box. There is a wealth of options here, but just the

Chi-Square statistic has been selected as per Fig. 9.2. Click the Cells. . . button on

the Crosstabs dialogue box to obtain the output in Fig. 9.3. And I have selected both

the observed and expected frequencies to be presented in the contingency table.

Note also that unstandardized residuals have been requested. These are simply

the residuals ¼ Oi � Ei.

The standardized residuals permit the user the better method for determining

why any dependency exists, since they remove the problem of the magnitudes of the

frequencies involved e.g. if Oi¼ 10,000 and Ei¼ 9400, the unstandardized residual

is 600, but the standardized residual will probably be low.

Upon running the Crosstabs routine, the following results are obtained (see

below)
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The value of χ2is 411.705 with an associated significance level of 0.000 to three

decimal places. If the significance level is less than 0.05, we reject the null

hypothesis. Consequently, we reject the null here and conclude that satisfaction

levels depend upon the size of the customers’monthly deposits. Examination of the

standardized residuals indicates why such a dependency exists. For example in the

top left hand cell, the unstandardized residual is 560 � 350.8 ¼ 209.2 which has a

standardized value of 11.2. Therefore, we observe significantly more dissatisfied

customers with monthly deposits less than £1500 than we would expect if the null

deposit
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Count
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Fig. 9.1 The Crosstabs dialogue box
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Fig. 9.2 The Crosstabs:

statistics dialogue box

Fig. 9.3 The Crosstabs: cell display dialogue box



was true. Alternatively, examine the top right hand corner cell in which the

standardized residual is �1.8. We observe significantly less satisfied customers

depositing less than £1500 per month than we would expect if the null was correct.

Further examination of the remaining cells in the table will further amplify these

conclusions (Fig. 9.4).

Dissatisified Satisified Total

Countdeposit
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Expected Count

Residual

Std. Residual
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    expected count is 223.32.

Value

1338.803a

1276.677

4 .000

.000

.000
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Fig. 9.4 A Crosstabulation of deposits and levels of satisfaction (Note: If there are three or more

study variables, it is best not to use the chi-squared test of independence. There is a method called

log-linear analysis which is available in IBM SPSS Statistics (please refer to Chap. 8))
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Chapter 10

Testing for Differences Between Groups

10.1 Introduction

The purpose of this chapter is to present methods for examining whether mutually

exclusive groups of objects or people differ in some respect. For example, in

marketing studies, one might wish to see if different consumer age groups have

different expenditure patterns for a particular product or service. One might wish to

see if competing investment portfolios differ in their net returns, whether different

currencies react to economic downturns in different ways over time or if different

types of advertising campaign generate different consumer reactions. All that is

required to apply the methods below is two or more mutually exclusive groups and

some measurable characteristic possessed by all members of each group and which

has the potential to generate differences between the groups.

The following data are percentage changes in price for samples of three types of

shares, between the close of trading on a Monday and the close of trading the

following Tuesday (Table 10.1):

We shall test the Differences between groups:

X that the percentage changes in the populations of the three types of shares

(i.e. the groups) are equal. The alternative hypothesis is that one or more of the

groups differs from the rest.

• If the data (i.e. the % changes in share prices) are deemed to be drawn from

non-normal populations, then the nonparametric Kruskal-Wallis test should

be used.

• If the data are believed to be drawn from normal populations with equal variance,

then the parametric one-way analysis of variance (ANOVA) should be used.

Remember that parametric tests are the more powerful as long as the assump-

tions underlying them are met. Data assumptions need to be tested before deciding

which of the above two tests to use. (Note that neither of the above two tests

requires equal sample sizes, which happens to be the case in Table 10.1).
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10.2 Testing for Population Normality and Equal
Variances

To test the normality and equal variance assumptions via IBM SPSS Statistics, open

the data file and click:

Analyze

Descriptive Statistics

Explore

Which will give rise to Fig. 10.1. The dependent variable is called CHANGE

(i.e. the % changes in share prices) and the factor list should contain the variable

name GROUP (i.e. the three type of share). Click the PLOTS. . . button and select:

Table 10.1 Types of shares * % change in shares

Shares in

Metals (%) Aerospace industries (%) Banks & building societies (%)

0.3 �0.6 �3.1

�1.7 1.8 0.0

�2.0 1.4 2.8

2.6 �2.7 1.6

0.1 �2.0 1.5

Fig. 10.1 The explore dialogue box
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(i) Normality plots with tests and

(ii) ‘Spread versus Level’ with Levene test for untransformed data

These choices are shown in Fig. 10.2:

Normality is tested via the Shapiro-Wilk statistic. The null hypothesis of the

Shapiro-Wilk test is that the particular sample is drawn from a normal population.

The null is rejected if the significance level p < 0.05. As shown in the IBM SPSS

output overleaf, the significance levels associated with each sample are – shares in
metals (p ¼ 0.517), shares in aerospace industries (p ¼ 0.466) and shares in
banks/building societies (p ¼ 0.392), so we conclude that all three samples have

been drawn from normally distributed populations (Figs. 10.3 and 10.4).

Test of homogeneity of variance

Levene

statistic df1 df2 Sig.

Change %change

in share price

Based on mean .124 2 12 .885

Based on median .047 2 12 .954

Based on median and with adjusted df .047 2 8.884 .955

Based on trimmed mean .106 2 12 .900

Fig. 10.2 The explore:

plots dialogue box
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The Levene test examines the null hypothesis that the three samples have been

drawn from populations with equal variance. (This latter property is called homo-

geneity of variance). The Levene statistic ‘based on the mean’ has significance

p ¼ 0.885 as shown below, so we fail to reject the null. Hence, both assumptions

underlying the one-way ANOVA are met. Note that among the various diagrams

produced by the IBM SPSS Statistics Explore routine is the boxplot in Fig. 10.5.

10.3 The One-Way Analysis of Variance (ANOVA)

Having tested the two assumptions underlying the test, we apply the one-way

ANOVA in IBM SPSS Statistics via:

Analyze

Compare Means

One-way ANOVA

and CHANGE is the dependent variable and GROUP is the factor. The null

hypothesis is that the population means from which the three samples have been

drawn are equal. The alternative hypothesis is that one or more of these means

differ. (Note that the null is tested by the F statistic and evidence exists that the

Type of share Statistic

.206 5

5

5

5

5

5

.918 .517

.466

.392

.910

.897

.200*

.200*

.200*

.219

.260

StatisticSig. Sig.df df

Kolmogorov-Smirnova Shapiro-Wilk

Tests of Normality

% Change in share price Metals

aerospace industries

*. This is a lower bound of the true significance.

a.Lilliefors Significance Correction

banks

Fig. 10.3 Test of normality output

Levene 

Statistic df1 df2 Sig.

change  

%Change in 

share price

Based on Mean .124 2 12 .885

Based on Median .047 2 12 .954

Based on Median and 

with adjusted df
.047 2 8.884 .955

Based on trimmed 

mean
.106 2 12 .900

Fig. 10.4 Test of homogeneity of Variance output
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F statistic is particularly sensitive to departures from normality, which is why we

checked this assumption).

If the alternative hypothesis is selected by the test, then we shall need to know

exactly which pair(s) of samples has/have caused the null to be rejected. This is

conducted by means of amultiple comparisons procedure. There are several such

procedures available but perhaps the most widely used is due to Scheffé. Click the

Post Hoc. . . button at the bottom of the one-way ANOVA dialogue box (Fig. 10.6)

and select Scheffé from the alternatives presented under the heading ‘equal vari-
ances assumed’ as shown in Fig. 10.7.

As shown in the output of Fig. 10.8, the one-way ANOVA F statistic has value

0.304 (p¼ 0.743) so we fail to reject the null and conclude that the three population

mean % changes in the three groups of share prices are equal.

If the null had been rejected, we would have used Scheffé’s multiple compari-

sons procedure to locate the differences. The results from this procedure appear

under the heading ‘Post Hoc tests’ in the SPSS output. Given that here we have

failed to reject the null, it is no surprise to see below that changes in no pairs of

shares are significantly different from zero. For example, the difference in sample

means for changes in metal shares and aerospace shares is 0.2800, which is not

significantly different from zero (p ¼ 0.977); the difference in sample means for

changes in metal shares and bank/building society shares is �0.7000 (p ¼ 0.866).

No pair exhibits a significant difference.

2.0

–2.0

–4.0

Type of share

%
C

h
an

g
e 

in
 s

h
ar

e 
p

ri
ce

Box plot

Metals aerospace industries banks

o11

.0

Fig. 10.5 Box plots of type of share * % change in price
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10.4 The Kruskal-Wallis Test

It must be appreciated that the Kruskal-Wallis (KW) test is the less powerful here,

since the assumptions underlying the one-way ANOVA were met. However, this

will not always be the case, so the test is illustrated below. The null hypothesis is

that there is no overall difference between the k ¼ 3 populations from which the

samples have been drawn. Failure to reject the null indicates that the population

means are equal. Rejection of the null implies that the three populations differ in

some respect; it may not be the means. The KW test is accessed via:

Fig. 10.6 The one-way ANOVA box

Fig. 10.7 The one-way ANOVA: post hoc multiple comparisons box
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Analyze

Nonparametric tests

k independent samples

and CHANGE is ‘test variable’ and GROUP is the ‘grouping variable’. IBM
SPSS ranks the sample data – i.e. all 15 readings independently of group member-

ship – from low to high. The logic is that if the three groups are equal, then they will

all receive similar ranked values; if one group has % share price changes that are

much lower than the % changes in the other two groups of shares, then that former

group will receive more low ranked values. The mean of the ranks allocated to each

sample is part of the Kruskal-Wallis output, and they are shown in Fig. 10.9:

The lowest ranks have been allocated to changes in shares for the aerospace

industries. However, as shown below, the KW test statistic has value 0.666

(p ¼ 0.717), so we fail to reject the null. There are no overall differences between

the three populations from which the samples have been drawn, so their mean %

changes in share prices are considered to be equal. Had we rejected the null, we

would have had recourse to the multiple comparisons procedure associated with the

Kruskal-Wallis test.

In this Kruskal-Wallis test, the ranks from 1 to 15 were allocated to the total of

15 share price changes. The sum of the first n integers is n(nþ 1)/2, so a total of 15.

(16)/2 ¼ 120 ranking points were allocated to the three groups. Under the equality

required of the null, each group should have received 120/3 ¼ 40 ranking points.

ANOVA

Multiple Comparisons

Post Hoc Tests

% Change in share price

Sum of
Squares

Between Groups

Within Groups

2.548 2

12

14

1.274

4.193

.304 .743

50.312

52.860

Dependent Variable: %Change in share price

Scheffe

(I) Type of share

Metals

Metals

Metals

aerospace industries

aerospace industries .2800 .977 -3.330 3.890

2.910

3.330

2.630

4.310

4.590

-4.310

-3.890

-4.590

-2.910

-2.630

.866

.977

.866

.756

.756

1.2950

1.2950

1.2950

1.2950

1.2950

1.2950

-.7000

-.2800

-.9800

.7000

.9800aerospace industries

banks

banks

banks

(J) Type of share
Mean

Difference (I-J) Std.Error Sig.

95% Confidence Interval

Lower Bound Upper Bound

Total

df Mean Square F Sig.

Fig. 10.8 Part of the IBM SPSS statistics output: ANOVA & multiple comparisons
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With five share prices in each group, the mean rank should be 40/5 ¼ 8 under the

null. Hence, there are marginally lower % share price change in the aerospace

industry than would be expected under the null and marginally higher % changes

for bank shares. However and overall, the test produces insufficient evidence to

reject the null hypothesis of equality.

Kruskal-Wallis Test

Ranks

Type of share N Mean Rank

%Change in share price Metals

aerospace industries

banks

Total

%Change in
share price

Chi-Square .666

2

.717

a. Kruskal Wallis Test

b. Grouping Variable:
Type of Share

df

Asymp.Sig.

5 7.90

6.90

9.20

5

5

15

Test Statisticsa,b

Fig. 10.9 Kruskal-Wallis test output
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Chapter 11

Current and Constant Prices

11.1 HICP and RPI

Harmonized Indices of Consumer prices (HICP) are constructed in each member

state of the European Union for the purpose of international comparisons of

consumer price inflation. HICP’s are published by Eurostat – The European

Commission’s statistical arm – and have been published monthly since March

1997. They provide cross-country comparisons of inflation on a comparable or

harmonized basis. Before the introduction of the HICP, comparison of inflation

rates across the European Union countries was not possible, due to the different

ways countries computed consumer price indices. Also, the basket of goods covered

by each country was different.

The UK continues to produce the Retail Price Index (RPI). The product coverage

of the HICP and the RPI is to some extent similar. However, a number of RPI goods

are not included in the HICP. These include mortgage repayments, buildings

insurance, estate agents’ fees, council tax, and expenditure by households on

education and health care. Other excluded areas include technically difficult sectors

where differences in national markets make the production of indices difficult. For

example, in the fields of health and education, many goods and services are heavily

subsidized by the state but the extent of such subsidies varies substantially across

Member States of the European Union.

On the other hand, the HICP includes some expenditures not included in the RPI,

for example personal computers and air fares. These and other items are included in

the “all items” HICP since their expenditures exceed one part per thousand of

consumers’ total expenditure – the threshold set by Eurostat – above which items
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have to be included in the computation of the HICP. The HICP covers all private

households, whereas the RPI excludes the top 4% in terms of their income. The RPI

also excludes pensioner households who derive at least 75% of their income from

state benefits.

The RPI annual rate generally exceeds the HICP annual rate. This is mainly

due to the HICP’s exclusion of most housing costs that are included in

the RPI. These housing costs have been rising relatively rapidly over the last few

years.

In terms of their basic usability, there is little to choose between them. Both are

published each month and are subject to minimal revisions – the RPI is by

convention never revised. A key advantage of the RPI is its familiarity and

credibility based on a longer history. Inevitably, it will be some time before the

HICP becomes widely recognised by the public. The HICP’s exclusion of most

elements of owner-occupier housing costs lessens its relevance for some users, but

this must be weighed against the significant difficulties encountered in measuring

such costs appropriately, reflected in the absence of any international consensus in

this area.

Since 2003, the HICP has become known as the CPI (consumer price index).

Different CPI’s are available for particular sectors of the economy such as com-

munications, recreation/culture, transport, alcoholic beverages, tobacco, clothing,

footwear, hotels/cafes/restaurants, water and gas/other fuels. The original HICP

was based on 1996 i.e. 1996 ¼ 100. All series based on 1996 have been

discontinued and a new base was introduced in 2005 ¼ 100. Recently the new

base changed to 2015 ¼ 100. The UK Office of National Statistics makes the CPI

data available in spreadsheet format. The CPI rises less quickly than the RPI

because of the way it is calculated. As mentioned earlier, it also excludes housing

costs and council tax.

The HICP and RPI are not the only indicators published by the Office for

National Statistics in index number form. Among a variety of other indicators,

you will find index numbers relating to gross domestic product, purchasing power

of Sterling, retail sales (value and volume), all shares index and effective exchange

rates.

11.2 Current and Constant Prices

Secondary data sources e.g. data supplied by the UK Office for National Statistics

often report financial data recorded at current prices and at constant prices there-
fore it is important to distinguish between the two. The data file in Fig. 11.1

represents a time series estimate of UK consumers’ expenditure on ciders (£ million,

2008–2017), together with the average price of a litre of cider (£).
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The price indices for cider in Fig. 11.1 use 2008 as the base year (written as

2008 ¼ 100). The price index for 2009 is computed as follows:

Transform

Compute

And by typing the formula below as Numeric expression as per Fig. 11.2:

Pindex ¼ current price=price indexð Þ∗ 100

Consequently, a new variable (Pindex) will be added to the data file as shown in

Fig. 11.3.

The expenditure figures in Fig. 11.1 are said to be recorded at current prices,
which are the actual expenditures at the time of purchase. Despite the annual rises

in expenditures, a moment’s thought should suggest that this increase does not

necessarily imply that consumers are drinking more cider. For example, if in 2018,

cider cost £2 /l and 100 l were consumed, then expenditure that year would be £200.

If in 2001, beer cost £5 /l and only 50 l were consumed, then expenditure that year

would be £250. The reason that expenditure has risen is due to the increase in the

price of the product, not due to an increase in consumption.

When the impact of price changes is removed from a time series, that series is

said to be deflated. The process of deflation can be explained by asking the question
“what would beer expenditure have been in 2009 if prices had not increased from

Fig. 11.1 Current and constant prices data file
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Fig. 11.2 Compute variable dialogue box – Pindex

Fig. 11.3 Price index variable added to the data file
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the base year of 2008?” In 2009, (11,904/1.83) litres (millions) were consumed. At

base year prices, expenditure would have been (11,904/1.83)*1.66 ¼ £10798.2

(million) which is a reduction in expenditure when compared with 2008. This latter

figure is referred to expenditure at constant (or real) prices. Similarly, consider

2010; what would have been the expenditure that year if cider prices had not risen

since the base year? In 2010, (12,888/2.06) litres (millions) were consumed. At base

year prices, expenditure would have been (12,888/2.06)*1.66¼ £10385.5 (million)

– a still further reduction. In the above instance, the constant price, computed as

(12,888/2.06)*1.66, may be written as 12,888 � (2.06/1.66) which indicates that

the relationship between current and constant prices is:

Constant price ¼ current price=price indexð Þ∗ 100

The expenditure data at real prices (variable name REALEXP) has been com-

puted in IBM SPSS Statistics as reported in Fig. 11.4. The expenditure data at

constant and current prices are plotted overleaf in Fig. 11.5. It should be noted

how significant it is to note whether one if referring to constant or current prices.

(Also note that these two values are obviously equal at the base year).

Fig. 11.4 Real expenditures variable added to the data file
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