

Managing Systems
Development 101

A Guide to Designing Effective
Commercial Products & Systems for
Engineers & Their Bosses/CEOs

James T. Karam

The Technical Manager’s Survival Guides, Volume 2
Marcus Goncalves, Series Editor

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 iii

Table of Contents

Table of Figures...v

Table of Tables ..v

Preface .. vii

Acknowledgments... ix

Introduction ... 1

Chapter 1 Project Systems Engineering 101 ... 5

Design Requirements... 7
Verification & Validation ... 11

Reviews .. 12
Analysis & Similarity ... 15
Test... 16

Barbie® Dolls ... 18
Change Management... 19
Third Time’s the Charm.. 20

Chapter 2 Program Planning 101 ... 23

Noah’s Principle & Earned Value ... 32
Scheduling Morality .. 42
Management Reserve .. 44

Chapter 3 System Evolution ... 47

Bid & Proposal.. 47
Architect for Fault Tolerance .. 50
Make It Work, then Robust. Only Then, Make It Better. 52
Branching is a Necessary Pain .. 53
Numbers are Better than Judgment ... 54
Customers Need Managing Too .. 55
Closing Out... 56

Chapter 4 Often Forgotten Programming 101.. 57

Chapter 5 User Interface Design 101 ... 63

Clickable Mockups, Often in Lieu of Specs.. 64
Admittedly Biased Design Practices .. 65

Chapter 6 Presentations 101.. 73

Chapter 7 Find & Flush the Full In-Boxes... 77

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 iv

Chapter 8 Continuous Improvement 101 ... 79
Categorizing Defects .. 80
Engineering Metrics.. 88
Production & Service Metrics ... 90

Chapter 9 Performance Ranking 101 ... 95

Chapter 10 Incentive Criteria 101... 99

Chapter 11 Matrix Organization 101... 103

Chapter 12 Tailor Your Behavior to the Software, not Vice Versa 107

I’ve Never Found the Software that I’d Rather Write than Buy. 108

Closing Thoughts.. 113

Additional Reading.. 115

Index ... 119

About the Author... 123

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 v

Table of Figures

Figure 1.1 Key System Engineering Elements.. 6
Figure 1.2 Decomposition Hierarchy ... 8
Figure 2.1 Ditch Digging Project Plan.. 24
Figure 2.2 Estimating with Factors .. 31
Figure 2.3 CPI Likelihood .. 34
Figure 2.4 Cumulative Earned Value... 36
Figure 2.5 Earned Value Indices ... 37
Figure 2.6 Incremental Earned Value.. 39
Figure 2.7 Integrated Earned Value Status ... 41
Figure 5.1 GUI Illustration.. 66
Figure 6.1 Horse Charts .. 76
Figure 7.1 Full In-boxes... 78
Figure 8.1 Bug Quantity... 89
Figure 8.2 Bug Aging... 89
Figure 8.3 Work In Progress (WIP) Defects .. 91
Figure 8.4 Install Defects... 92
Figure 8.5 Mature Product Post Install Defects..................................... 92
Figure 8.6 New Product Post Install Defects... 93
Figure 9.1 Merit Pay versus Rank ... 98
Figure 10.1 Individual Performance Incentive 100
Figure 10.2 Group Performance Incentive .. 101

Table of Tables

Table 2.1 Project Planning Granularity.. 25
Table 8.1 Defect Severity Classes .. 81
Table 8.2 Defect Urgency Codes .. 85
Table 8.3 Known Issues .. 87
Table 11.1 Boss Duality in a Matrix ... 103

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 vii

Preface

I have had the good fortune to be associated with the development of
large-scale systems for over forty years. These are products that are
developed by more than one team, working in parallel, which must be
interfaced and integrated together. The point is not so much their
physical size but the need to manage and integrate multiple efforts
simultaneously. Experience suggests that a single good lead engineer
can indeed keep a design all in his head and direct a handful or so of
engineers. While that works for many games, web applications, and IT
projects, it does not work for systems. There are just too many people
involved, in more than one team, and often not even co-located.

I was particularly blessed to start my career as an R&D officer in the
United States Air Force (USAF) in the timeframe when systems
engineering was being formalized well by the Department of Defense
(DOD), and the Air Force in particular, based on their good and bad
experiences in the late fifties fielding Intercontinental Ballistic Missiles
(ICBM’s). As I moved out from aerospace into commercial
developments, there was a learning curve on my part regarding how
much of those aerospace processes and formalism were relevant in this
seemingly different arena. I soon concluded that those processes were
key for any successful system development. Only the formalism was
negotiable or tailorable.

I frequently found myself resurrecting some common threads of advice
and direction as I moved among several industries and company
organization types. It did not seem to matter what we were making, or
whether it was a large multi-national corporation or one with the founder
still in sole control. The engineering management issues were eerily the
same. I would pull out an earlier presentation or document, tweak a logo
and a bit of text, and influence a new set of staff. This book is a heavily
edited and expanded compilation of those lessons re-taught over the
years.

You will find the advice is invariably basic, hence the titles ending in
“101”. The management problems encountered were because of a
failure to understand or enforce those basics, and their enforcement is
not easy. In effect, experience says that your focus should always
remain on these basics.

I have intentionally tried to make this book easy to browse using a
somewhat unique style that evolved over the years. Most chapters use
a bold-type opening sentence in each paragraph. You can get the key
assertions by just skimming them. Those claims are elaborated in the

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 viii

rest of the paragraph. If the reader is familiar with systems engineering
terminology, that is probably sufficient. If not, I have often followed with
subsequent indented paragraphs that elaborate further.

This book is likely most valuable to young engineers who are moving out
of their academic specialty into engineering or project management,
about which they probably were taught very little that was practical. And,
yes, I shoulder some of that blame myself since there is a stint of
teaching graduate engineering school on my resume’. The book is also
intentionally succinct. While we usually explain our rationale, rather than
just assert, our intent is to provide the reader with cogent advice that
they can quickly absorb and effectively apply. As such, it should also
serve as a useful quick reminder to more senior professionals, typically
when they have been given a broadening assignment that forces them
into new professional terrain.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 ix

Acknowledgments

David Lapczynski and Dr. Milton Franke were invaluable in their
insightful review and comment on several drafts of this book. Dave is
the COO at Cubic Transportation Systems and was a great last boss as
well as a good friend. At his behest, I would like to beat a dead horse
and re-emphasize the importance of detailed, resourced schedules for
managing projects or product developments. Milt was, in effect, my first
boss as he was my major professor on my Masters thesis at the Air
Force Institute of Technology, where he still actively teaches, and is
likewise a life-long friend. I was blessed with working with many true
professionals all of my career, but none better than these at the start and
end.

I mainly want to thank my wife Alicia for enduring almost thirty years of
marriage while retaining such a gracious and loving spirit. She is my
best friend of all.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

1

Introduction

So, are you a young engineer that has been asked to become a lead for
a team of specialists to work on a product or project that requires many
different skills or even several teams? Have you been a lead engineer
but have now been asked to be a manager of your department? Have
you shown both the inclination and the capability to broaden out of your
specialty to become a project or product development chief engineer or
manager? Have you managed projects or departments and now you
have been asked to manage those managers? In all these cases, you
are confronting topics daily that they never taught you in school as you
find yourself involved with managing the engineering of what are called
“systems”.

Managing the development of large-scale systems can be both fun and
satisfying. The U.S. Department of Defense (DOD), notably the Air
Force (USAF), codified the methodology of such management in the late
fifties and sixties in MIL-STD 499 and its ilk. They took their lessons
learned from fielding Intercontinental Ballistic Missiles and the like, both
good and bad, and embodied them in processes that continued to
mature. Many engineers spent at least some of their career in
aerospace and this systems culture. However, since “peace broke out”
in the early nineties, this opportunity for systems on-the-job training
(OJT) has substantially diminished.

This book addresses many of the key topics you will face in your
expanded responsibilities. There are good textbooks on the topic of
systems engineering, but most still focus primarily on the very large
systems of systems typical of aerospace and defense. Further, as
textbooks, they tend to focus understandably on the generic processes
involved, primarily regarding the earlier phases of development.
Regardless, several are cited in a closing section as candidates for
additional reading. Instead, this book focuses on specific practical
advice to use when executing those processes in commercial
environments. In effect, our focus is on the practical mechanics of
management. As such, it can also provide an incisive refresher of useful
tricks of the trade even for professionals in aerospace.

While large commercial systems also existed, they were mostly the
domain of mainframe computer developers until the eighties with its
advent of the ubiquitous personal computer (PC). Then the nineties saw
the introduction of the World Wide Web (WWW) and a plethora of
personal and business software applications of all sizes. Further, PCs
became so powerful that many, if not most, applications that used to
require large computers or, more commonly, highly specialized and

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 2

customized electronic hardware could now run on these relatively cheap
machines.

Almost every capital goods industry saw their hardware commoditized to
some degree with their products’ functionality provided mostly by
software. This commoditization of hardware was a watershed event as it
meant that software development would become a critical asset (or
heartache) for most every industry and product. Moreover, large
systems were routinely created using a collection of PCs, some evident
and some embedded, but PCs nonetheless. So, where did developers
learn to put such commercial systems together? Folklore said that
aerospace processes were gross overkill with an excessive focus on
paperwork.

In addition to the regulated industries like nuclear and medical
equipment that had done so previously, most companies in all industries
formalized their system development processes in response to the
pragmatically mandatory need to get themselves certified to the ISO-
9000 quality standard in the nineties. Many made the mistake of over-
promising, particularly with respect to the paperwork, since they
proposed to behave like they thought someone might have expected,
rather than what they had always done. Either they drowned in their
own paperwork, or, more commonly, quickly lapsed into old habits and
prayed an auditor would not show soon. (The proper solution was to edit
the procedures and processes to reflect what was reasonable.
Generally, auditors do not tell you what you should do, but only if you are
complying with what you said you should do.)

As one who stumbled through some of those choices, my conclusion
quickly became that, while one should tailor the formalism in a
commercial environment, systems are systems, and the aerospace
system engineering process basics remain the key to success
anywhere. While somewhat facetious, the section titles typically end in
“101” because the basics are where your problems, and their solution,
lie.

Chapter 1 starts with a review of the key elements of the project systems
engineering process. While still the way of life in aerospace and
defense, many engineers in commercial enterprises lack exposure to
even the terminology of systems development. This initial chapter
provides that context along with practical advice regarding execution.
Project/program planning is addressed in Chapter 2, as these plans, in
effect, become the internal contracts between the various development
groups and their management and customers. In fact, it is hard to even
claim that one is a manager without a plan, much less actually manage,
rather than just react. This section ends with Chapter 3 discussing

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Introduction

 3

several topics to consider pragmatically during the various phases of a
program or product’s lifecycle or evolution, notably at the beginning and
at the end of a project.

The next chapters address some of the key mechanics of managing
systems development. Since software is such a dominant part of any
system nowadays, we start Chapter 4 with a set of very basic design
practices that seem to be ignored or forgotten by developers. These
topics were taught in school, probably in their introductory courses, and
staff usually resent being reminded. However, they recur so often that
they should remain your focus. Chapter 5 recommends using clickable
mockups to facilitate timely development of graphical user interfaces
(GUIs) in products. While admitting that they represent just one
particular religious bias, we also include an example of GUI design
practice rules. We said “religious” because, like many other issues,
there is no technical right or wrong involved, just a preference.
Nevertheless, the benefit arises to your team because you state your
belief, almost independent of its specifics.

Chapter 6 moves away from managing software to using software to
make presentations. Every manager is also, some would say mostly, a
salesperson. While presentation style would seem to be the ultimate
religious preference, we recommend that you become a zealot. Very
simple rules are recommended, and they work. Chapter 7 implores and
explains how to find and empty all the full in-boxes in your span of
control. Nothing you can do will improve responsiveness more. Then,
the process of Continuous Improvement is advocated and explained in
Chapter 8, with practical examples from all operational departments.

The next set of chapters address people-related topics since people are
your means to success. Chapters 9, 10, and 11 address performance
ranking, incentive criteria, and matrix organizational structures,
respectively. These provide a succinct practical guide to these topics
whose mechanics are rarely dealt with, except by osmosis.

Finally, Chapter 12 offers success in improving your productivity with
tools, provided you adapt your behavior to them, not vice versa.

Closing remarks refresh our key advice. Candidates for additional
reading conclude the text.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

5

Chapter 1 Project Systems Engineering 101

Systems engineering is nothing new but rather a methodical perspective
to organizing sound engineering practice in an auditable manner, even
when only self-audited. As shown in Figure 1.1, one can group
engineering activities into five main categories: requirements,
implementation, verification, validation, and record/evolve. While
reasonable professional practice in any case, members of regulated
industries must document all such activities to enable external audit of
their effectiveness and integrity.

This chapter presents an overarching design process perspective and
terminology, particularly for those readers with minimal exposure to
aerospace and defense. Interspersed throughout are pragmatic
guidelines and recommended detailed practices. The design process
presented is a classical “linear” or “waterfall” scheme, which admittedly
has lost its cachet, particularly among academics and large-scale
systems of systems practitioners. However, it still represents the
foundational basics that will be central to your commercial success. One
would typically formalize a procedure and associated internal forms for
each box shown in Figure 1.1, e.g., as part of an ISO-9000 certification.

Administratively, the first step in the systems engineering process is the
formal authorization of a project/product. Part of that authorization is
typically a project plan, which also provides a summary of resources
required and schedules. A subsequent chapter discusses planning in
more detail. Engineering has likely been involved with a project or
product even earlier than this formal authorization event, typically
spending sales and/or marketing budget supporting their development of
draft specifications, conceptual prototypes, focus group mockups, and
the like. However, most companies understandably require a formal
authorization event before any non-trivial sums are spent, usually
whenever budgeted funds are first provided directly to engineering.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 6

Figure 1.1 Key System Engineering Elements

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Project Systems Engineering 101

 7

Design Requirements

Functional requirements start the systems engineering technical
process. Functional requirements have a “black box” perspective.
That is, one should not be able to ascertain anything about a particular
implementation. “Form, fit and function” (F-cubed) is another
common descriptor. As this term implies, a functional specification
addresses the inputs, outputs, transfer functions, environments, shape,
other physical interfaces, signals and/or commands, other software or
electronic interfaces, and the like.

“Black box” is a common technical slang that implies the
viewer is unable to see inside the box. As such, all one can
see is how the box behaves in processing its inputs to produce
its outputs, just the functional perspective we need in these
specifications. For completeness, “white box” means you can
see all the internal details. This term is commonly used to
describe software testing where one has had access to the
creator’s source code.

“That’s a solution, not a requirement” is probably the most
common remark you will have to make when reviewing
specifications. Again, it seems to be part of the engineering
psyche as it is independent of industry and even experience.
Since these functional specifications (or design requirements
documents, or whatever your company’s nomenclature) are
often contractual, it is in your self-interest as the developer to
retain as much design freedom as possible.

Commercial customers love to specify solutions also.
Gently push back and recast as a requirement.

Ambiguity in a specification is always to the buyer’s advantage.
Instead, as a developer, you need as much functional specifics as you
can possibly define. Naive staffs seem to think that if requirements are
vague or silent, then they get to define what was meant after the fact.
Just the opposite is true and is the major cause of feature-creep that has
killed many projects, or at least made them painful for the developers.
Remember, if the buyer does not believe that you could easily convince
a third party that you were in compliance, they retain the ultimate control
because they have yet to pay for your product or services. The Golden
Rule, “Whoever has the gold, rules”, only applies if they believe they
would win in court.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 8

This functional specification is the key contract you are
making with your bosses or your customer. Developing
these is not an easy proposition, and it is so tempting in the
honeymoon phase of a project to give in to expediency and get
on with the fun of making something. There has even been a
recent culture arise in the software community to rationalize
that defining requirements in advance is so difficult that one
should not even try, but instead should just iterate a design to
success. It is hard, but you will invariably rue the day that you
did not do it. It can be done. People have been doing it for
years in aerospace and other industries. Moreover, the painful
experience with iteration is that it is often a code word for
“throw it away and start over”. Most such projects will not
survive.

Functional requirements are then typically decomposed. Most
systems in practice must be implemented with an interacting
combination of several peer black boxes. Thus, it is common practice to
develop functional requirements for each of these subordinate entities.
Notice that this is still a black box perspective, but the requirements have
been allocated from the superior entity. Note also that while each
subordinate only addresses a subset of the superior’s requirements, the
mere task of decomposition introduces new inputs, outputs, and
environments for the subordinate. Each has to interface to its peers,
and invariably each has an environment that may be somewhat more
stringent that the superior. For example, a printed circuit board is
typically exposed to temperatures that are worse than the overall due to
peer heating.

Figure 1.2 Decomposition Hierarchy

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Project Systems Engineering 101

 9

Defining some terminology used in Figure 1.2, a subsystem is
simply a subordinate system, typically separately specified,
developed, and verified by an independent group. A
subassembly is just a collection of components, typically that
cannot function stand-alone. A component is just a piece part,
e.g., a resistor, a connector, a chassis, whatever. Note that
each level of assembly can be a mixture of all of these types.

Decomposition is the black magic in system design. Do
you split things into, say, four or seven subsystems? There is
no right answer, but the best advice is to keep interfaces as
simple as possible. The trick is to minimize the amount of
information that one has to pass among subsystems. In this
era of cheap computing, try to make each subsystem as self-
contained and self-sufficient as possible. Resist the temptation
to pass along information just because you can.

Most of the showstopper development issues that
subsequently surface will be due to a failure to
understand fully or, worse, to agreements to disagree on
these internal interfaces. Bugs are typically fixed in days,
but interface incompatibilities take weeks or months to resolve.
Managing interfaces between subsystems commonly uses
dedicated design documentation. Historically called Interface
Control Drawings (ICDs), their content is often managed by
Interface Control Working Groups (ICWG’s) made up of
participants from both sides of the interface as well as usually
some representatives responsible for the overall system. Most
commercial projects do not spend enough time on this activity.
The extreme formalism and dedicated staff of aerospace is
probably not warranted, but appropriate definition and
documentation is essential.

Functional specifications are the criteria for subsequent design
verification. This design verification is often called “qualification”.
These functional specifications enable an independent party to develop
qualification test plans and procedures including pass/fail criteria. Such
is often required in parallel with the actual design implementation since
test planning, fixtures, procedures, and software may be a non-trivial
development within themselves. Further, the black box view of such
tests invariably brings out missing or incomplete features overlooked
when one just tests the integrity of a specific solution.

The top system-level functional specification is the criteria for
formal design validation. Regulators invariably require such validation

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 10

by someone other than the system’s developers. By definition,
validation is a demonstration by a second party to confirm the objectives
of a verification performed by the development team. While this
seemingly duplicates the developer’s verification at the system level, the
difference in perspective, usually based on an independently developed
test plan/procedure, is worthwhile.

Lower-level functional specifications are the basis for procurement
of design services. While desirable as the basis for design verification,
such specifications are mandatory if one is to procure a non-catalog
design from an outside entity. Note that if one does not produce such
lower level functional specifications for internally designed entities, one
must instead perform the simultaneous verification of several unverified
peers at some higher level of assembly that does have such a functional
specification. If a design has any significant complexity, trying to resolve
defects and errors among unverified components is quite time
consuming and sometimes impossible due to ambiguities.

Lower-level specifications are also essential if reuse of the
subsystem is anticipated. If you are developing systems by
tailoring somewhat standardized subsystems, you particularly
need a detailed definition of what they currently do so you will
know how to reasonably define and charge for any needed
bells and whistles for each new customer application.

Product specifications are the basis for procurement of production
copies of the qualified designs. These specifications fully define the
requirements for production articles. As such, they are no longer a black
box view but describe the chosen solution in detail. These may not
need to be separate documents if the drawings and other technical data
fully describe the characteristics needed to produce and verify.
However, it is also common practice to collect the non-bill of material
and non-construction information in a textual document.

Specifications that define the solution are what most
engineers find comfortable to write, probably because they
are written after the fact when more is known. Unfortunately,
such does not provide any guarantee that the real functional
requirements have been met. It just describes what they built.

Product specifications are invariably written in terms of
tolerances, whereas functional specifications are written
as bounds. For example, a product specification might say
the item weighs 24 ± ¼ pound whereas the functional
specification would say it needs to weigh less than or equal to
25 pounds.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Project Systems Engineering 101

 11

Product Specifications are the basis for verifying the integrity of
production articles. This production verification is often called
“acceptance”. Note particularly that this is not re-verifying the design,
but rather its continuing production execution. As such, acceptance
inspections and tests are designed solely to verify errors in production:
cold solder joints, mis-oriented or missing components, weak insulation,
etc. For example, acceptance testing at end user operating
environments may well be too benign to induce the stresses needed to
weed out weak components and assembly shortcomings. However, as
with qualification, if product specifications do not exist, one must defer
the acceptance of an entity to some higher level of assembly that is
specified and verifiable. Deferring such testing may lead to higher
overall costs of production. One historical rule of thumb is that it costs a
factor of four more to discover and fix a defect at the each higher level of
assembly.

“Fail early” is a useful mantra to adopt. There is often a
tendency to defer substantial testing since it sounds like you
would save money by not duplicating a test at each higher
level of assembly. For example, one will encounter companies
who did not want to pay for substantial supplier test fixtures
and time. How they could then hold their suppliers
accountable for quality is beyond me. This mantra is likewise
applicable for qualification testing as well. The sooner you find
a bug, the cheaper it is to fix.

You can save a lot of money by not duplicating functional
tests per se as a part of acceptance. Remember, your
primary objective in an acceptance test is to find errors that are
unique to this particular serial number. It is often reasonable to
use selective functional tests to detect defects in production
and assembly as such may very well be the most expedient
screening mechanism, but the objective is different.

Verification & Validation

Verification can be by inspection, analysis, similarity, or test. What
is important is that one confirms the integrity of the design and of the
product. While qualification testing is common, it may be unnecessary if
the design is very similar to another previously verified or if well
established analysis techniques are applicable. Acceptance is usually
by inspection or test.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 12

Regardless of the method, documented evidence of the activity is
essential. Prettiness is not the issue. Handwritten notes in an
engineering notebook or memo for the record are perfectly adequate.
However, compiling such evidence for regulatory audits may be more of
a burden than producing them originally in a more organizable or fileable
form. Said another way, do not over-promise the form of documentation,
but rather focus on its organized retention and accessibility.

Reviews

Design reviews are one of the most common forms of verification
by inspection. These do not have to be formal meetings with all
stakeholders present in a single room. Simple peer reviews are much
more common, such as a software code walkthrough or an engineer’s
check of a drawing made by another designer. Walk around “desk
review and signoff” is also common. The main requirement for an
activity to constitute a review is the involvement of at least one party who
has no direct responsibility for the design under review. There is at least
an implicit requirement that this independent reviewer is competent,
typically an objective peer or a functional (not project) supervisor. In
addition, some evidence of resulting action items (or the lack thereof) is
minimally required. These can be as simple as annotations on a sign-off
sheet. Meetings that are more complex will also typically involve
minutes capturing any presented materials and summarizing the key
discussions of the review. Nevertheless, in very complex programs,
there are at least five formal reviews, sometimes called SDR, PDR,
CDR, FCA, and PCA. (Note that this aerospace terminology has
evolved, but the process basics are the same.)

If there is only one feature of aerospace system practice
that you can adopt, it should be design reviews. The most
notable results from reviews invariably arise more from
differences in perspective than from simply detecting mistakes.
Aerospace has the advantage of a culture of smart customers
performing excruciatingly formal reviews. The real reviews
were the internal dry runs, in order to make sure your
development team was not embarrassed by these customer
reviews. The dry runs were often rather brutal and demanding,
but it was not personal. The main point is that these internal
reviews invariably produced substantial observations. They
are worth the effort. However, do not confuse these reviews
with customer reviews where you are trying to prove the
system will work. In these internal reviews, you are trying to
prove that they will not.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Project Systems Engineering 101

 13

The most difficult part of establishing meaningful design
reviews is establishing the premise that this feedback is
professional, not personal. Many commercial developers,
particularly software programmers, just cannot accept this
concept. They view themselves as the expert, so it is
particularly egregious to have management involved. One
may lose as much as ¼ of the staff when establishing this
practice, even when the reviews are mainly by peers, but have
no regrets or hesitation. If they cannot explain and defend
their design, they will never be useful contributors to large-
scale systems.

A military concept called “completed staff work” provides
a sound basis for such reviews. One commonly encounters
engineers mostly wanting to describe their chosen solution.
The most effective question in a review is usually “why?” The
idea behind completed staff work is that you should prepare 3
to 5 alternative solutions, evaluate their pros and cons, and
explain your recommendation’s rationale. There are three
keys here: a.) more than one solution, b.) your
recommendation, and c.) its rationale. When your bosses
choose an alternative, it is invariably because of a difference in
perspective, not that they did not listen or that you were wrong.
The only time you should feel a bit embarrassed is if they
come up with an alternative that you did not even consider.

A System Design Review’s (SDR) objective is to concur on the
system’s top-level functional specification. Typically, conceptual
designs and results from feasibility studies are also reviewed to develop
confidence that at least one viable solution exists so that it is prudent to
initiate preliminary design.

A Preliminary Design Review’s (PDR) objective is to concur on the
decomposed functional requirements. As the name implies,
preliminary designs and/or the results of prototypes as well as initial risk
management activities are also typically reviewed. However, one is only
approving the hierarchy of functional specifications as to their
appropriateness, consistency, and completeness. In effect, you are
approving that it is prudent to begin detailed design activities.

Focusing a PDR onto the specifications, rather than onto
drawings, Graphical User Interfaces (GUIs), and the like, will
probably be the hardest culture shift in a commercial
environment. If you thought writing those truly functional
specifications was difficult, getting your customers to
understand that those specifications are what they should be

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 14

controlling is even harder. However, you will both be the better
for it. You will have more design leeway, and they will have
more control over what they really should be controlling.
Moreover, you will both have a legitimate basis for declaring
victory.

A Critical Design Review’s (CDR) objective is to concur on the
design outputs: detailed design drawings, bills of materials, product
specifications, test fixtures, software source code, and the
like…everything needed to procure and produce articles representative
of production that are suitable for use in qualification activities.

A Functional Configuration Audit’s (FCA) objective is to concur on
qualification. All evidence of the inspection, analysis, similarity, and
test activities are methodically assessed to confirm that all functional
requirements have been met. A traceability matrix is often used to
document completeness, although any methodical process may be used
to assure it is prudent to release the design outputs for volume
production.

Traceability matrices are often impractical given today’s
software design practices. In the old days, most design
used something called “functional decomposition”. The result
was that you could indeed trace a single high-level function
down into a single location in the software tree. One of many
problems with this approach is that it leads to excessive
(almost?) redundant code. Nowadays, there typically will be
several low level functions distributed throughout the system
needed to provide a single high-level response. A matrix that
is attempting to make a simple two-dimensional mapping of a
requirement to some low level test has lost its relevance.

A Production Configuration Audit’s (PCA) objective is to concur on
manufacturability. The suitability of procurement documents,
production tools, work instructions, acceptance test procedures, and the
like are confirmed to result in components, subassemblies, subsystems,
and systems that are fully compliant and consistent with the design
outputs that were previously qualified.

Regulatory entities, like the FDA, usually leave it to the discretion of
management to determine the number and timing of formal design
reviews. Typically, these would be specified as elements of each project
plan. While it is theoretically possible to run a very simple project with
no formal reviews, any project must somehow demonstrate that it has
met the objectives of all five of the formal reviews cited above.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Project Systems Engineering 101

 15

Analysis & Similarity

Technical analyses are a second broad class of design verification
activities. All the classical types of engineering analyses may be
involved: stress calculations, circuit timings, state diagrams, cost
estimates, tolerance stack-ups, statistical assessment of clinical data,
etc. When one’s confidence in the accuracy and precision of the
analysis method is combined with its predicted margin, often such
analysis is adequately prudent verification. That is, no further testing is
required.

Risk analysis is a special subclass of verification and is particularly
important in medical devices. One must methodically assess the
product as to the likelihood and to the severity of occurrence for hazards
and risks under all reasonably foreseeable circumstances, both for
normal and unplanned usage. Typical tools include Fault Tree Analysis
(FTA) and Failure Mode and Effects Analysis (FMEA).

For those risks deemed unacceptable, specific risk mitigation
actions must be planned, executed, and verified. Except for the
simpler projects that can incorporate these elements as part of the total
project planning, separate risk mitigation plans and verification are
usually provided to insure the requisite focus on safety related matters.

Compliance of the design outputs with company practices must
also be verified. Examples include compliance with coding style
standards, derating criteria, drawing style and dimensioning practices,
software design practices that assure extensibility and serviceability, etc.
These would typically be invoked by inference and verified by inspection;
these are not usually cited explicitly in functional specifications.
Regardless, one must be careful to invoke them explicitly in design
procurements.

Well-documented design practices are particularly helpful
in guiding younger or newer staff. It is very worthwhile to try
to capture some of the folklore and experience of your
company. Lessons learned cannot be leveraged unless
captured and taught. Later chapters include several examples.

Qualification may also be simply determined by an assessment of
similarity to an existing qualified design. Typically by inspection and
analysis, one must confirm both the technical similarity of the two
designs and the qualified and satisfactory usage status of the existing
design.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 16

While common in aerospace, qualifying by similarity is not
that common commercially. Such can save a lot of time and
money.

Test

Test is often erroneously used as a synonym for verification. In
fact, testing is only mandatory for validation. Verification is often more
effectively and efficiently performed by inspection, analysis, or similarity.
For example, it is usually more difficult, if not impossible, to cause
hardware and software to represent the limits of tolerance or fault
conditions. As such, practical considerations invariably lead to a
combination of tests, each of which only addresses a subset of the
environmental and functional requirements. Normally, testing is a last
resort that only addresses those specific issues where one lacks
confidence in the relevance or thoroughness of the other verification
methods.

Test to a plan, not just until you are tired. Those functional
specifications discussed earlier provide the missing basis for the test
plan. The problem with just allowing the developers to test their own
design is not that they are prone to cheat, but rather that they are
meticulous in testing for all the conditions that they made provisions for
in their design… but not necessarily the underlying requirements.

Corner coverage requires balance. Besides the practical
difficulty in forcing good hardware to its theoretical tolerance
limits, one must also be careful not to simultaneously force all
inputs to their extremes. Otherwise, you are testing for a set of
circumstances that will be both highly unlikely to ever occur
and very expensive to create. Just make sure the
combinations of variations are reasonable. Said another way,
test for so-called three-sigma cases, not nine-sigma.

Automated test tools, particularly for GUIs, are worth the
effort. These tools facilitate the thoroughness needed,
particularly for exception conditions. Your staff can
concentrate on adding exceptions, rather than boringly, and
thus sometimes sloppily, repeating inputs day after day.

Testing with emulators has its limits. When a team has
gone to the extra effort to develop or use emulators of their
peers, it can also be difficult to get them to let go and start
interfacing to the real thing. Timing issues and real data
dynamics will have unanticipated consequences. Exception

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Project Systems Engineering 101

 17

conditions are also difficult because they often must be
emulated, since it is difficult to force real hardware to its limit
conditions, but emulations will invariably also be somewhat
incomplete.

You will always regret trying to test more than one
untested item at a time. Finger pointing arises to a fine art
when neither party can prove that their component meets its
requirements, particularly with respect to interfaces.

Oversights in test planning are only a problem if you do not learn
from them. Despite your best efforts, you will still have defects and
bugs escape your factory into the field. No one is omniscient enough to
anticipate all exception conditions. Just make sure that every bug found
in the field leads to a corresponding change in your test procedures.
That is, not only fix the bug, but also fix the test that let the bug escape.

Test to break it, not demonstrate it. Most customer-witnessed testing
would be more appropriately labeled as demonstrations, except for the
social stigma that would accrue. However, the precursor internal tests
should be both ruthless and thorough. Said another way, the
demonstrations show that one has met the customer-specified
requirements, while your internal testing should be focused on exception
and off-nominal conditions to surface more subtle failure modes and
mechanisms.

Test early and every step of the way. Where feasible, one should test
at each level of assembly, working your way up from the bottom to the
top system level. At each level of assembly, over time, one likewise
works up the organizational structure. For example, the individual
developer or assembler performs some type of unit testing before
passing it on, usually to a device level test, then to an Engineering
integration test, and eventually to an independent test group. In turn, as
noted earlier, validation is then simply an independent test at the system
level by yet another independent group.

Keep Engineering responsible for the initial integration testing, at
least of complex systems. There is probably no better learning
experience for all engineers, young or old. They also need to remain
accountable for making their designs work. Unfortunately, some like to
try to leave this supposed clean-up activity to others. They will never
learn to detect and accommodate exception conditions without this
experience. One means to enforce this is by requiring Engineering
budgets for original design to include passing these initial Engineering
integration tests. That is, they cannot begin to spend the typical bug
fixing or sustaining engineering budgetary accounts until passing this

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 18

milestone. One means of lessening their objections is to give them a
free pass on any bugs that they find and fix at this stage, i.e., do not start
counting bugs in your publicized metrics until they handover their design
to an independent test group.

To reemphasize, testing usually should be a last resort and should
focus on exception conditions. Developers invariably focus on
proving that their system can indeed work. Unfortunately, it is often just
under their point design conditions. Most of the real world problems,
and, therefore typically more than half of most production software,
relates to gracefully handling error and off-nominal design conditions.

Barbie® Dolls

Most product-based capital goods industries are Barbie® doll
businesses. That is, you get what ever you can for the doll, but you
make all your profits from the clothes. In capital goods, the “clothes” are
replacement parts and service contracts. As such, development
activities should also focus on minimizing the costs associated with
servicing a system. With today’s technology, it is relatively inexpensive
to capture error codes in non-volatile memory so that your service staff
can find and pass on what the device thought was wrong as it was dying.
Otherwise, you will be faced with the historical issue of could not
duplicates (CNDs), retest O.K.’s (RTOKs), and no trouble found (NTFs)
back from your field staff as they repaired by remove and replace (R&R).
In fairness, R&R is about all that they can do without good error capture
and built-in diagnostics.

One should rarely buy a hardware maintenance
agreement. As long as there are no moving parts in the
product, most products today are very reliable. You can
reasonably gamble and only buy hardware maintenance
agreements when it becomes obvious that you bought a
lemon, or being more polite, an overly complex piece of
hardware. Such commonly occurs when one is an early
adopter. Otherwise, just pay time and material for Service.
While suppliers will often contend that they cannot guarantee
response times to non-contract buyers, they will invariably
respond as quickly as they can… which is all they will do even
with a contract.

At least you get new features with a software maintenance
contract. Yes, you also get the bug fixes that perhaps you
were due anyway, but the new features are usually worthwhile.
If you find your supplier fails to add substantial new

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Project Systems Engineering 101

 19

functionality, then drop their contract, but also do not expect
them to answer their phone when you call with a problem.
Their first words will invariably be, “Which version are you
running? Oh, then please bring yourself current and call back
if the problem still exists.”

Many vendors use the defacto industry-pricing model of about
20% of the software’s list price per year. In fact, the primary
reason for software list prices even to exist is to set the price of
the annual maintenance fee. You will find that almost every
hardware vendor will discount his or her original associated
software purchase price to whatever is needed to be the
winning bidder, including giving it away for free. However, they
will rarely negotiate their software maintenance prices since,
unlike hardware, these are rarely cash cows. As noted
elsewhere, the good news about software is that you can
change it. The bad news is that the market makes you change
it to stay competitive.

Consider offering to buy “used” hardware if it is the end of
a quarter, or, better yet, the end of the supplier’s fiscal year.
We were actually delivered new hardware almost every time.
This appears to be simply a ploy by suppliers to bypass their
“favored nation” purchasing agreements with large customers.
Those agreements typically have the supplier promising never
to sell the same product for less to another customer without
offering a credit to the “favored” customer.

Change Management

If you are in the system development business, the Barbie® doll’s
clothes are contract changes. With any reasonable complexity, there
is little historical precedent for assuming your basic contract will be
profitable. It is not an issue of whether you will overrun Engineering,
only about how much. Details will follow later in the discussion of earned
value. So, how does one do profitable development? The answer is in
your contract’s changes clause.

Detailed original specifications are the key to changes. Remember,
you have to have something specific to change from.

Usually, a superior document prevails when addressing conflicts,
but a subordinate document prevails regarding interpretation. That
is why we stressed the importance of including as much detail as

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 20

possible in subordinate functional specifications. For example, if your
lower level specification says your system has such and such behavior,
when your customer comes back with a request for doing it some other
way that is nicer or better or whatever, as long as your specified method
is a way that meets the top-level specification, you have a legitimate
claim for a change.

Be fair, but do not be a pushover. We are not advocating that you
“get well with changes” as the saying goes, but we are also saying that
one should not feel guilty about making the customer pay for his feature
creep. There will be feature creep.

Third Time’s the Charm

Experience suggests that it takes three attempts to get a product
right, particularly if it is software intensive. Many do not realize that
there was a Windows version 1 and a Windows v2. All that most are
likely to remember is Windows v3.1. Digital Research’s GEM was
originally much better and had most of the initial market share for
graphical user interfaces (GUIs) on PCs. However, Microsoft had the
resources (admittedly because of their cash cow, MS-DOS) to listen to
the marketplace and evolve the product to a market winner. Moreover,
despite all the latter day whining, Microsoft’s dominance of the word
processor and spreadsheet market was indeed because they created a
better mousetrap. In the early days, many bought Apple Macintosh’s in
order to get access to Microsoft’s new What You See Is What You Get
(WYSIWYG) Word and Excel applications.

The first version of anything rarely involves inputs from real
customers. They are primarily based either on wish lists from the
company’s Marketing department or are some bootleg demo out of
Engineering that Marketing thinks must be ready for production as it
understandably is in everyone’s interest to get something to market
quickly.

Strongly fend off any attempt to put a demo into production, even
as an initial product. Demos are just that, particularly if they were
developed for a big industry trade show. Primarily they lack the
exception handling code needed, but unfortunately, such is typically
much more than half of the code in a real product.

First products primarily get everyone useful feedback from real
users. It is not just about the GUIs, but mainly about what features are
really used and need enhancing and which are bells and whistles that
can be allowed to wither on the vine for a while. In addition, you will be

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Project Systems Engineering 101

 21

inundated with exception conditions that your developers never
considered. The first hardware designs also are invariably not cost
effective to produce, from both a manufacturability and testability
perspective. They did not realize it, but these first customers were really
just beta testers.

Mainly, the second products are producible, profitable, and reliable.
These second products then get feedback from enough end users to
create a third, robust set of features that can dominate a market,
assuming good execution. They also usually include first attempts at
user configurability to try to get the developers out of the expense of
customizations, or to assuage customer pleas.

As an aside, when developing these second designs, one will
invariably find that the dominant effect on manufacturing costs
is piece parts count. Use manufacturing technologies that
minimize them. The dominant effect on electronic reliability is
invariably parts’ temperature, since reliability is a function of
the fourth power of junction temperature. Derate your parts,
and run them cold.

Finally, if you have been listening to customers, the third time is a
market winner.

Incumbents know their marketplace, so they can skip steps. While
it would be nice to think that they only needed one step, their first
attempts are still often not very producible, because they tend to be
dominated by engineering, and/or they tend to lack configurability, using
the excuse of a rush to market.

Incumbents know the myriad exception conditions experienced in
their applications. More than the functionality seen by end-users,
these exceptions are the unique lessons learned that they could
leverage to maintain their market edge.

Incumbents disappeared from the market mainly because they
could not let go of building specialized hardware. The problem was
not being a Smith-Corona failing to recognize the advent of word
processors that would displace their typewriters. The problem was being
a Wang or a Prime who would not introduce versions of their application
running on a PC until it was too late. They, and many others of their ilk,
had dominant market share, but they just never learned to compete with
themselves. If you do not learn to compete with yourself, then someone
else will.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 22

The large dashed arrow in Figure 1.1 recognizes the inherent
iterative loop in the overall development process just discussed.
Therefore, our “linear” or “waterfall” process was implicitly iterative,
assuming the first version was enough of a commercial success to justify
another loop, based on feedback from the first pass through the design
process. The process is considered a waterfall because, conceptually,
each step is completed before the next is begun. In practice, there is
always some overlap and even iteration backwards as needed, e.g.,
when architectural problems are encountered.

More elaborate system engineering process models were evolving
by the eighties, such as the “spiral” developed by Boehm and the “Vee”
developed by Forsberg and Mooz. These elaborations tend to primarily
apply to systems of systems, typified by aerospace and defense, where
multiple iterations occur over many years before a “production” article
emerges. Similar iterative design schemes have arisen in the software
development community. As an admitted overstatement, these schemes
seem to advocate that requirements are so hard to determine that one
should just make a reasonable first cut and then iterate your way to
success. In effect, they seem to rationalize a build-and-redesign, rather
than a design-driven-by-requirements process.

Regardless, while most projects tend to implement in phases, the
author has never seen anyone successfully architect and design in
phases. To be applicable to commercial systems, one then will have to
be very cautious of these other development strategies to assure that a
sellable, useful product will result from each iteration. Again, following
the theme of staying focused on the basics, the simple waterfall model
presented herein will invariably suffice as a laudable objective.

In conclusion, the top-level functional requirements specification, the
design outputs needed to support production, evidence of validation, and
evidence of risk management are about the only mandatory items for
any project, large or small. Each project manager has the prerogative to
define which of these elements are suitable to combine for their specific
development. For example, SDRs are often combined with PDRs for
routine projects. Regardless, all of these objectives must be
demonstrably met. It is only their form that is subject to
management judgment.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

23

Chapter 2 Program Planning 101

The crime of management is not being late or overrun; it is not
knowing. According to Merriam-Webster, to manage is “to handle or
direct with a degree of skill: as a: to make and keep compliant”. Thus, to
manage, one has to have a plan, i.e., something to which one can
attempt to keep things compliant.

Most projects of any substance warrant a legitimate
schedule that is appropriately resourced. Nowadays, most
teams use Microsoft Project® as their planning tool. There are
other tools around; Primavera® is notable for its more
thorough tools for dealing with shared resources in a multi-
project environment, but, as with other areas, Microsoft has
evolved sufficient functionality into Project® that it drove most
historical but higher-price providers out of the market.

This chapter assumes some familiarity with the
terminology of formal planning tools. However, we will
digress for a while to establish some of the basic concepts for
those that have so far avoided this practice. The most useful
view of a schedule is called a tracking Gantt. Figure 2.1 shows
an example of a simple plan.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 24

Figure 2.1 Ditch Digging Project Plan

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Program Planning 101

 25

Let us define some basic terminology. Summary tasks are just
that; their span encompasses their subordinate tasks. In the
old days, the subordinates were often called “hammocks”,
hopefully for self-evident reasons. Tasks are linked in various
ways: finish-to-start (FS, which is the most common but often
unrealistic), start-to-start (SS, typically with a lag that you
define), or finish-to-finish (FF, again usually with some lag). A
task is “critical” if it lies on the path through the schedule that
has the longest overall duration. Split’s occur typically when
one has to pull some resource off a task so that no work can
be done for some interval. Milestones are events with no
duration or resources, typically used to report to senior
management. Deadlines, unlike milestones, do not move with
changes in your plan. A baseline is just a snapshot of your
original plan to which you can compare your actual
performance.

One manages starts, not finishes. You react to finishes. Having a
plan will not mean that your need to react disappears, but your fire drills
will at least be different, and most should not be a surprise. As such,
when monitoring a program, pay much more attention to how one is
achieving planned starts since you will rarely see tasks that take less
time than originally planned. By focusing on starts, you are achieving
several weeks of a head start on any associated difficulties.

In the example, even though the administrator started getting
permits per the plan, a day was actually wasted since the
engineer finished early. The administrator also was late
ordering the custom fittings, but that does not affect the overall
schedule because that task is not “critical”.

Use varying granularity of detail. Constant granularity plans are
invariably wasted efforts. Future fine-grain details are overtaken by
events (OBE). Coarse near-term plans preclude detecting and resolving
resource conflicts. Some guidelines include:

Table 2.1 Project Planning Granularity

Interval Resources Granularity

now + 3 months name man-days (md)
3-9 months skill man-weeks (mw)
remainder dept man-months (mm)
…where quantities should range from two to twenty, but typically from
five to ten.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 26

Customers often demand constant granularity, but push
back hard. You will notice in the example that the summary
tasks are not resourced since they have been expanded.
However, in the early phases of a larger project, the plan
would mostly consist of such summary tasks (that is, these are
mostly not yet expanded into finer granularity) which have
been resourced grossly per the table above.

Create a “rolling wave” of detail. This simply means that once a
month or so, you will need to add another month’s worth of detail for the
near- and for the mid-term. These are only guidelines. Depending on
what you are decomposing, it may make sense to do a couple of months
on some jobs and to wait on others. Judgment is still required.

First, re-plan uncompleted work. Unfortunately, you will invariably be
resource-bound in the near-term. Further, at least some of the
incomplete work will invariably remain on your critical path. Thus, you
will need to address this work first.

Re-plan with no-earlier-than (NET) start dates and/or “resource”
links. Both Microsoft Project® and Primavera® will automatically
reschedule un-started work to start from today. More commonly, you will
be resource bound. The easiest way to handle near-term resource
conflicts is to artificially link tasks that you have assigned to the same
resource. Then they will all re-schedule themselves.

In the example, the finish-to-start link between filling the ditch
and re-sod is such a resource link; it is the result of having only
one laborer available. If you had more resources, this really
should be a finish-to-finish link with a small lag, for example, as
we did when we added a second plumber to be able to install
the fittings in parallel with the first plumber who was still laying
pipe.

Do not schedule more than two simultaneous tasks per resource.
Most tasks have times where one is waiting on others, or for a better
idea, or whatever. Thus, most individuals can handle two tasks at once.
A few can handle more, and some can only handle one. Regardless,
you should seriously question any plan that routinely has the same
resources doing more than two tasks at a time.

Never, never ever hit the automatic resource-leveling
button. Only you or your managers know which staff are
interchangeable, just how productive each is, etc. This is now

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Program Planning 101

 27

less critical since the latest planning software versions have an
undo button, but it remains good advice.

Settle for leveling your resources so that the person-hours
per month start with a one. While ideally you would shoot for
about 150 person-hours each month, you will find most of the
benefit results when you get everyone somewhere between
101 and 199. Let the 90/10 rule work for you, i.e., you will
invariably get 90% of a result for 10% of the effort. You will
find that this is difficult enough, and you need to be spending
most of your time on making the plan happen, not just making
the plan.

Usually, decompose using a hammock. Hammocked tasks are
simply a set of subtasks (at least one of) whose start is linked to the
parent’s start and which ends with (at least one) link to the finish of the
parent. Doing so allows you to retain visibility into your baseline plan.
You can collapse the sub-tasks and the original plan appears
unchanged, even though there invariably are some other useful links
coming out of the sub-tasks that were not present previously.

Microsoft Project® calls these hammock parents “summaries”.
You will notice in the example that we actually start digging the
ditch before the summary “prep” task is complete. That is
because Project® automatically makes a finish-to-finish link
from the latest sub-task to the summary. Elsewhere we
physically linked “clean-up” with “work”. Otherwise, we would
have to stay on top of which of the “work” sub-tasks was latest.

Beware of the student syndrome. Many staff members likely are
overtaxed and will invariably delay working earnestly on a specific task
until the deadline is imminent. This is one reason why 20 person-day
tasks should be the exception. Further, long tasks are inappropriate for
the 50-50 rule discussed later.

That is probably why we have already lost a day of schedule in
the example. It means you will always be facing the quandary
of balancing realism with challenge, as it is easy for someone
to prove that he or she can be late.

“Vertical waterfalls” are particularly suspicious. These arise
when several linked tasks are supposedly going to complete
on almost the same day. This rarely happens, since you are
rather good if the first actually occurs. All the rest will dribble
to the right.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 28

Throw every resource you can at the critical path. Nothing
dominates cost as much as overall project duration. The fact is that
work for the entire team will invariably expand to fill the time allowed, so
the old saw is true…time is money.

Let us say this again, throw every resource you can at the
critical path.

Be careful to start as many non-critical tasks as you can. Avoid
falling into the trap of starting jobs as late as possible. Forget that such
a start-date type even exists. One or more of them will also get in
trouble and become critical as well.

There are several date constraint types: no earlier than, no
later than, as early as possible, as late as possible, must occur
on. It is strongly recommended that you also avoid the latter.
It is fine to set a deadline that will show on the plan, but
deadlines are not constraints, just objectives.

Tasks should mainly be expressed in terms of outputs, products, or
functions…not skills or phasing. These can be drawings, GUI screens,
PC net lists, specifications, design reviews, etc.

A common, but essentially untrackable, engineering task list
will say things like conceptual design, preliminary design,
detailed design, etc. Those managers are praying that
someone will let them get away with managing a level-of-effort,
say, six EE’s for the month of June.

There are legitimate levels of effort (LOE), but often they just mask an
inability to plan.

Other Direct Costs (ODC) need to be scheduled as well. Do not
forget design tools and long lead items. Material and travel are often
rather spiky in demands, not LOE.

The 90/10 rule applies to planning also. Do not polish the apple. You
will get 90% of the result with 10% of the effort. Just make sure you
have reconciled your main resource conflicts and have applied all the
resources practical onto your critical path.

Nothing said so far is changing your baseline program plan. That
is, you will be re-estimating when you believe tasks and hammocked
sub-tasks will occur, but you are not rescheduling when they were
planned in the baseline. Typically, programs may be so overtaken by
events that a semi- or annual re-baselining is prudent.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Program Planning 101

 29

Good plans minimize finish-to-start links. Few things in the real
world have a finish-to-start relationship. Start-to-start and finish-to-finish
links with lags are much more realistic and will radically reduce an
overall schedule. As in our example, you do not have to finish digging a
ditch before you start laying pipe, although you cannot finish until you do.
In engineering, staff rarely waits to start a detail design until a
specification is approved or a preliminary design review is held.
However, it surely would be good practice to have at least a draft
specification available before proceeding and a signed specification
before release to manufacture.

Good plans have many vertical lines. Common practice is mostly
horizontal, excruciating detail in long strings of tasks linked finish to start.
These invariably represent a functional department detailing out internal
tasks over which they already have maximum visibility and control.
Vertical lines commonly represent dependencies between groups, which
is where one invariably loses weeks on a schedule, versus the days lost
on horizontal tasks. Particularly as you move to engineering that is more
concurrent, these vertical lines indicate commitments and/or
opportunities for feedback. Further, vertical dependencies to customer
actions/events are invariably the basis for legitimate claims… if
reasonably documented (say, in your program plan?).

Project plans should start with proposal plans. Perhaps a bit of a
digression, but a program’s resource estimates and schedules are much
more believable in a proposal if they actually are linked together using a
program-planning tool. It is very questionable how anyone could have
confidence in their proposal estimates without time phasing their
proposed resources and thus defining their schedules.

Proposal plans do not need unbelievable detail. Using our earlier
groundrules, one would expect most proposal tasks and events to be in
terms of person-months, not person-hours, days, or even weeks. Tens
of pages of spreadsheet detail that is not time-phased or linked to a
defendable basis-of-estimate (BOE) seem specious. Where feasible,
one can use prior project actuals and some scaling rules for most new
development proposals. Some companies get very fancy using
parametric estimating tools, but those are usually more amenable for
estimating factory and service tasks.

Engineering estimates should mostly be scaled from prior
experience. For example, product design estimates can start with a
drawing tree from the most similar, recent product. Each element of that
tree is then marked up with “not applicable”, essentially “usable”, needs
“modification”, as well as identifying titles/descriptions for totally “new”

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 30

drawings. Then one uses person-hours per drawing category factor for
each of the “tweak”, “modify”, and “new” drawings to capture the bulk of
the mechanical design costs (not just the drafting time). That is, you are
scaling your actual historical cost experience as the basis of estimating
your new costs. Similarly, one can take all the computer screen-shots
from a similar prior job; mark up and identify those needing “tweak”,
“modify”, and “new”; and then use a person-hour per screen to define the
specification, coding, test, and integration of new software. (Note that
we are not proposing lines of code for the software BOE. History has
shown it to be an unsuitable measure since it is more a function of style,
than function.) Even if one cannot base the category person-hour
factors on detailed, auditable history, these basis-of-estimate
discussions will at least be on a much more meaningful level than purely
judgmental extraneous detail.

The remainder can be factored from these direct estimates or are
LOE. Most major development activities have some meaningful product
indicators: person-hours per drawing, per GUI screen, per whatever.
Others may legitimately be LOE’s, such as program managers (although
not necessarily full time for the entire program period). As an example of
the remainder, it is commonly found that configuration management was
xx percentage of hardware engineering and yy percentage of software.

As a real world example, Figure 2.2 illustrates the excellent
correlation between a Systems Engineering group, labeled
non-variant specific (NVS), and the underlying Engineering
groups, labeled variant specific (VS) that they supported. VS
groups would include mechanical design, electrical design,
software programming, etc., that is, groups that have many
discrete, clearly defined engineering products. The data
compares the person-hours expended each month by the VS
and NVS groups over a 5-year period. In this case, the fixed-
cost term, the LOE, is seen to be 900 hours per month with a
variable factor of 56%. So this group would be estimated as
an LOE plus 56% of the loading in your plan for the directly
estimated Engineering groups that produce drawings,
software, etc.

The R2 = 0.83 shown on Figure 2.2 is more correctly σ² which
is the correlation coefficient for the fit. Anything above 0.5 is
often usable, with something above 0.8 being a good practical
fit. Experience also suggests that you will have enough cost
data scatter that you should settle for simple curve fits. One
should mainly try linear fits on either linear, log, or semi-log
axes. This type of cost correlation has been found to estimate

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Program Planning 101

 31

well for technical support groups like configuration
management, drawing check, drawing release, etc.

Figure 2.2 Estimating with Factors

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 32

These are “will cost” estimates, not “should cost”, and that is just
fine. Back in the sixties and seventies, the U. S. government
procurement staff attempted to determine what something “should cost”.
Supposedly, this contrived but magically efficient contractor could be
used as a benchmark to judge bid submissions. Having worked on both
sides of that negotiating table, both the contractors and government
should be quite happy with solid estimates for what something “will cost”.
The competitive process itself will drive down the price more than
sufficiently. If anything, contractors will kid themselves regarding their
costs in order to win a bid. The only place “should cost” should enter the
picture is if the procurement is with a sole source. Even then, just use
the bidder’s own history to determine his “will cost” using the methods
outlined above.

Noah’s Principle & Earned Value

Predicting rain doesn’t count, building arks does. When you are
called on to present your status, remember it is not sufficient to be a
reporter. What your bosses are looking for is a summary of your
proposed corrective actions to recover or, at least, to reduce the
hemorrhaging.

“Earned value” is a key management tool. Unfortunately, it requires a
rather detailed project cost accounting system that is often not available
in commercial companies. The idea is that you compare your cost and
schedule for actually doing the work with your baseline plan. Most
companies do not have a mechanism to collect costs on a task-by-task
basis, although some do so at various summary levels. By the way, that
is another reason to use the Microsoft Project® summary task feature.
Earned value lets us distinguish true status. That is, not just what was
spent, but what you have to show for it. As such, it is well worth the
effort to work with your finance department to get access to whatever
information can be made relevant.

Simply comparing expenses-to-date with budget-to-date can be
grossly misleading. In earned value terminology, you would be
comparing the actual cost of the work performed (ACWP) to the
budgeted cost of the work scheduled (BCWS). Hopefully, restating the
issue this way makes the problem apparent, i.e., you are comparing an
apple to an orange. Somehow, you need to know how much work
actually was done, that is, you need a third piece of information called
the budgeted cost of the work performed (BCWP).

Otherwise, you could have a manager who is underrunning
his/her budget (ACWP < BCWS) because he/she is far behind

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Program Planning 101

 33

schedule (BCWP << BCWS), but whose productivity is terrible
(ACWP >> BCWP). Likewise, you could have another
manager, who is way ahead of schedule (BCWP >> BCWS)
and is very productive (ACWP < BCWP), but is likely
overrunning his budget (ACWP > BCWS). To uncouple
productivity issues from schedule, some indicators have been
found helpful.

There are two key indicators from earned value calculations: CPI
and SPI. Cost Performance Indicator (CPI) is the ratio of the budgeted
cost of the work performed (BCWP) to the actual cost of the work
performed (ACWP). Schedule Performance Indicator (SPI) is the ratio of
the budgeted cost of the work performed (BCWP) to the budgeted cost
of the work scheduled (BCWS). CPI is what one should mainly care
about because SPI shortfalls can usually be made up just by adding
resources.

The budgeted cost of the work performed (BCWP) is unfortunately
difficult to obtain from most commercial enterprise financial
systems. However, it remains the key to earned value, so do not give
up so easily. You will invariably have to settle for reconciliation at fairly
high levels, e.g., at the department/skill levels where the existing
financial systems track the actual costs of the work performed (ACWP)
and the budgeted cost of the work scheduled (BCWS). You can obtain
BCWP from your planning software, e.g., Project® or Primavera® or the
like. Formal certified earned value systems require that these all be
linked in an auditable manner, but most commercial companies just will
not bother to do so. However, they will usually allow costs and budgets
to be tracked by major project. You can calculate practical indicators
from this existing data, which will be invaluable in assessing your true
status. Remember, the crime of management is not overrunning, it is
not knowing where you really stand.

You will rarely find an Engineering CPI greater than one. Most good
programs will overrun with a CPI in the 0.9-ish range, with the typical
complex project running in the 0.8 range, and not just a few poor
programs with a CPI of 0.5 or less. (For the record, projects that the
author managed were mostly good, with a few typical.) Figure 2.3
shows the likelihood of achieving a given CPI based on 81 major
defense programs in the period 1950-1980. This is a recast version of
the work by Norm Augustine in Augustine’s Laws, published by the AIAA
in 1997 as his Figure 48 on page 247 of his 6

th
 edition. It includes both

development and production costs corrected for quantity changes and
inflation. Since production cost estimates are invariably no worse than
development costs, this chart still provides a useful indicator for

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 34

development and is quite consistent with the author’s personal
experience. This does not mean that one should accept this
performance as immutable, but it is indicative of what you will face in the
real world. These programs were run and executed by good
professionals using the best tools at the time. No panacea has been
found in the meantime. In fact, due to the prevalence of software
nowadays, one could argue that your chances are worse.

Figure 2.3 CPI Likelihood

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Program Planning 101

 35

Look for trends in incremental CPI and SPI, not cumulative.
The problem is that once you are well into a program, cumulative
indices are dominated by your entire history. As such, your recent
performance is masked. Instead, plot monthly incremental
values.

Use the 50/50 rule to claim earned value. Percent completion
estimating is a mostly academic but time-consuming exercise in practice
because the percent complete invariably equals the percent planned
until 90%, where it sits until the task is done. Instead, simply claim 50%
of the value when you start and the remaining 50% when you are
complete. For some reason, staffs do not seem to kid themselves nearly
as much regarding whether they have started or finished. Moreover, it is
a lot less work to track. Finally, as long as you followed our task
duration advice (nothing < 2 or > 20), it provides just as good of an
overall view of progress. Besides, we want to motivate legitimate task
starts for all the reasons discussed earlier.

Update your status weekly. Otherwise, the plan quickly becomes just
a cartoon for management. Monthly is still adequate for substantial
replanning like adding granularity, but start and finish status and
resource assignment adjustments need to be timely.

Figures 2.4 to 2.7 are representative examples of the earned value
status of a program. In Figure 2.4, cumulative person-hour results run
from the bottom left to the top right. The original baseline plan (BCWS)
is shown as a long-dashed line with no symbols. Actuals to date
(ACWP) are shown as a solid line with no symbol; while the budgeted
cost of the work performed (BCWP) to-date is shown as a short-dashed
line with circular symbols. The current plan for the future is also shown
as a solid line with no symbols since it does not overlap ACWP in time.
Figure 2.5 similarly shows the cumulative and incremental CPI and SPI
earned value indicators to date.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 36

Figure 2.4 Cumulative Earned Value

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Program Planning 101

 37

Figure 2.5 Earned Value Indices

The overall Cost Performance Index (CPI) is quite good, i.e., CPI =
BCWP/ACWP = 35250/36900 = 0.96, but it has recently been worse,
running in the 0.8 to 0.9 range. This manager is projecting a small
overrun, i.e., a final CPI = 75150/73100 = 0.95, but he/she is unlikely to
achieve that at the current pace. For completeness, the overall current
Schedule Performance Index (SPI) = BCWP/BCWS = 35250/44250 =
0.80, although recently it has been running in the 0.5 range. As noted
earlier, incremental indices are more indicative of recent performance.

Regardless, a low SPI is not necessarily a problem because it is
apparent that the intent of the current plan is to delay the program. Such
can occur to match the available work force resources, or often to
accommodate some other project’s delays, say if this project assumed
the other was taking the lead on some key development. As a
management survival hint, try to minimize being the first to do anything.
Remember that in the system business, your main value added is
making the combination of constituents perform a useful task, not
inventing a new constituent. Getting the combination to work is hard
enough. Unnecessary invention just adds unnecessary heartache.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 38

Statistical Total at Completion (STAC) is probably a worst case for any
program because it assumes that no one can do anything to improve his
or her performance to date. It just extrapolates the current individual
task CPI’s to the end of the contract. It is only conservative in that it also
assumes they will not have worse CPI’s for individual tasks than
currently. On the other hand, one will rarely see a program that ever did
the remaining work for less than originally budgeted. Thus, one should
be very suspicious of any manager who predicts they are going to get
back on budget by magically doing the to-go work with an incremental
CPI greater than 1.0. Said another way, one should be suspicious if the
managers claimed that they could get well in the remaining interval. The
best he or she is liable to do is hold to his current variance of 1650
hours. Alternatively, if they say there is nothing they can do but meet the
statistical TAC, and let the overrun grow to 9700 hours, then he/she is
not really trying.

In the example, even though the overall values look pretty good, there
must be some tasks having substantial to-go effort with currently very
poor CPI’s, since the statistical total at completion (STAC) is much
larger, projecting a final CPI of 71450/82800 = 0.85. If one were to
guess, looking at the time phasing of the program, one would suspect
they are just beginning testing in earnest, with probably a very poor CPI
on very little test work to date. For example, they have probably only
drafted test plans and are having difficulty getting them reviewed and
completed. If so, one could almost believe that project manager,
assuming he/she can keep their monthly CPI closer to 1.0.

For those who prefer absolute values instead of indices, the current cost
variance (CV) is only 1650 hours in the hole, out of 44250. The
manager is projecting that to worsen by another 400 hours for the
remainder of the project. Similarly, the current schedule variance (SV) is
9000 hours in the hole. By definition, the schedule variance is zero at
completion.

Figure 2.6 shows the incremental person-hours per month for various
categories, using the same graphic styles as on the cumulative curves.
These monthly values are much more indicative of how the project
staffing levels compare to their plan. One would need extraordinary
eyesight and mental acuity to be able to derive these values from the
cumulative curves. In this example, it is clear that a conscious decision
has been made to hold the staffing levels to about 2000 hours per month
and to slip the schedule accordingly.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Program Planning 101

 39

Figure 2.6 Incremental Earned Value

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 40

By the way, the spikes in the actuals are invariably an artifice of data
collection, such as whether it was a 4 or 5-week accounting month or
whenever staff got around to updating their progress. Likewise, the
spikes in the planning are often because of some milestones where a
multitude of tasks are anticipated to complete, followed by a spell of
noses to the grindstone. If your bosses are bothered by this noise, or
worry unnecessarily about its consequences, then it is common to use
two-month running averages to smooth them. Such also indicates that
weekly results should rarely be consulted, as they are mostly noise, not
data, and definitely not information.

In practice, all these curves are typically combined into a single chart as
in Figure 2.7 for discussions at a monthly project management review,
but this combination can be rather daunting at first view.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Program Planning 101

 41

Figure 2.7 Integrated Earned Value Status

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 42

Use budgeted labor rates, not actual dollars, when assessing
earned value. This example intentionally discussed earned value in
terms of person-hours, not dollars, since project managers can only
control hours, not rates. However, most senior managers prefer to
express everything in terms of dollars. If so, then one should assess a
project manager’s cost control in terms of the project’s originally
budgeted average labor rates, and, of course, other direct project costs
such as material, travel, and the like. This is often called the
“performance variance”.

Average labor rates should be used because project managers
cannot control who is assigned to their program. When companies
use actual payroll costs to track earned value, one always hears from
the managers who complain that they have been saddled with more
expensive personnel… although that also tends to mean that they are
benefiting from more experienced and most efficient staff. Conversely,
you will never hear from the managers who are benefiting from the dollar
cushions in earned value provided by assigned staff that earns less than
the average.

Know your resources! If your financial system will not allow
the use of average rates, then make sure you know what each
resource is costing you. Note that your more expensive staff
members are also likely to be more efficient, so do not make
the mistake of blindly trying to obtain the cheapest resources in
an attempt to save budget. Such would mainly just adversely
affect your schedule.

Rate variances are invariably the responsibility of managers
outside of the project team, i.e., senior functional departmental
management. Labor rates tend to be dominated by the overall business
activity in each major department and their elected capital investments.
As such, these are rarely controlled by the middle managers determining
the success of any one project.

Performance and rate variance can always be added to provide a
total cost variance, if desired. However, their separation presents a
clearer picture to senior management regarding appropriate
responsibility for management and control.

Scheduling Morality

No, morality is not something you can schedule, but you are liable to find
yourself questioning your own rather frequently when you make and,

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Program Planning 101

 43

particularly, when you revise schedules. You will have to balance
several dilemmas.

Keep your commitments, as best you can. Remember Noah’s
Principle. The only truth you know is in the past. You can still change or
at least influence your future. Oversights or feature-creep should be
your primary explanations for increases in scope or for delays.

Some things just take time. Some tasks are like gestation periods.
Carefully assess if more resources can really help. Fortunately, most
delays can be offset by adding resources, which is mostly within your
control. Be careful though. If the new resources require training or
orientation, adding resources commonly will slow down progress in the
near term. Nevertheless, particularly for critical path tasks, take the hit,
as you will invariably gain overall.

Stay (barely?) achievable to counter the student syndrome. You
must keep your schedule objectives achievable, albeit requiring a bit of a
stretch. Remember, almost no one ever completes a job early, not
because they are lazy, but because they invariably have other jobs to
also be done. On the other hand, your schedule must remain believable
to the executing staff. Otherwise, they will just pay you lip service. It is
easier on your emotions when senior management acknowledges off-
the-record that you are playing this game, but do so regardless.

Do not make frequent small changes. While you need to keep your
plan current, at least monthly, only a masochist would frequently report
minor overall variances. First, you are liable to be just seeing reporting
noise that will balance out next month. Failing that, there is always a
task or two that can absorb these minor increases or delays in your plan
for a bit. On the other hand, if some external event having major impact
does not occur at least quarterly (and it often will), then fess up. Waiting
longer is not realistic. Be particularly on the lookout for delinquent
customer events, which you should be able to note from your plans if
you have followed our advice encouraging lots of vertical lines.

Decompose, rather than consider it a blank slate. Your summary
tasks are likely more legitimate, particularly if they were based on decent
estimating rationale. As noted above, feature creep or major oversights
should be your main explanations for changes.

Always schedule top-down. The problem with bottoms-up estimates is
that no one ever rounds down. You will commonly find that bottoms-up
estimates almost precisely double what the customer has in the way of
funding, while luckily very few programs overrun that much.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 44

Put all your reserve in one place and manage it. The other problem
with bottoms-up schedules is that everyone has a bit of cushion, and
you, the manager, have none. Reserves will be discussed in more detail
in a minute, but your job is to keep all the individual tasks free of reserve.

Express your own view as the project manager, not your boss’s or
your staff’s. Bosses and customers obviously do not like to hear about
delays or overruns. Your main mitigation strategy will be continually
demonstrating your adaptability in working around these issues as they
occur. Unfortunately, your staff is simultaneously pressuring you to be
more realistic, defined by them to mean relief from meeting the
commitments they made long ago. You should strongly defend them
from feature creep and external changes, but that is about all.

Management Reserve

Any good project manager needs and has a management reserve.
Usually, it is created by holding back five to ten percent of the budget
authorized by management when he/she negotiates the original project
plan with the functional managers. If the latter are smart, they will not
complain because they will be the ones who likely spend it all before the
project is done.

Management reserve is not for covering overruns but for maintaining
the integrity of these internal contracts as features creep. A project
manager has to have some source of funding to authorize tasks and/or
features that no one was omniscient enough to anticipate. Otherwise,
these internal contracts rapidly lose their validity. The project manager
may try to cajole or bully the functional manager to swallow this new task
within existing planning and budget. Even If the latter agrees, they both
are the worse for it since neither will ever really know what it cost them
to do the originally planned tasks. For example, some might claim that
their person-hour per drawing estimating factor is faulty, when the real
problem is that they ended up creating quite a few new drawings that
were unplanned. Alternatively, if the functional manager demurs, these
plans no longer reflect a negotiated agreement and become simply out-
of-date scorecards for both to be beat up by Finance and senior
management.

Feature creep is an unpleasant fact that needs management, and
that requires funding for the staff doing the work. Creep can be
much more than the commonly understood cosmetics, GUIs, and report
formats. The classic case was in the early seventies with the Lockheed
C-5 cargo airplane development. There were several papers written at
the time discussing that project’s substantial overruns. Lockheed

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Program Planning 101

 45

explained it in terms of things that were “known”, were “known to be
unknown”, and the fatal “unknown unknowns”. The latter quickly
became known as the “unk-unks”. Their point was that they had planned
for the first two categories. The “knowns” were mostly just work. The
“known unknowns” had extensive, explicit risk mitigation plans and tasks
in place. However, the unk-unks were their downfall. These led to
substantial additional tasks costing the company dearly. (The best thing
that ever happened to Boeing was probably losing this C-5 competition
and, instead, applying their Air Force funded R&D toward building the
747 commercial airliner.) Actually, the C-5 has turned out to be a rather
good plane once the Air Force gave up on some of their more
aggressive requirements, such as trying to land this monster on a 5000-
foot dirt runway.

Management reserve must be controlled by management, not the
project manager per se. Typically, a manager reports any so-called
management reserve transactions during periodic reviews with senior
management, although some companies require prior approval. Mainly,
they should be looking to assure that this funding is for a legitimate
oversight, not an overrun.

However, the project manager should be measured as if he/she was
expected to spend all the reserve. That is, management reserve is
not potential profit. If senior management behaves as if they consider
this profit, then the project managers will just hide their reserves.
Typically, this is done by squirreling away funds in the accounts that will
be spent last in the project, such as warranty and Customer Service.
Unfortunately, now both the project manager and the Customer Service
manager unofficially have to agree to this practice of hiding reserves or
further budget battles will ensue. Do not make your managers hide their
reserves. Instead, manage them.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

47

Chapter 3 System Evolution

As one journeys through the lifecycle of a system development, some
phases have more issues than others. While one might expect the bulk
of the work to cause the bulk of your problems, such is mainly just hard
work. The trauma, as in life, mainly occurs during the beginning and the
end.

Bid & Proposal

Badly bid jobs are stillborn. No amount of cleverness can fix them.
There are two primary sources for bad bids: fear of losing and optimism
regarding development complexity.

There are worse things in life than losing a bid. Unfortunately,
winning with a bad bid is the primary one. Companies are particularly
fearful when they are the type that mostly lives from one large project to
the next. The assumption is that they must win or substantially reduce
the scope of their company. No one likes big layoffs, so most are willing
to gamble that they will not lose that much on the basic job while
eventually getting well on either changes or long-term service
agreements. Sometimes it works out; often it does not.

If you never lose a bid, you are leaving too much money on the
table. This is sort of a corollary to the prior one as it usually results from
fear. In practice, this also means you are depending on price alone to
win a competition. In reality, there is some basis to that premise since,
despite procurement rules claiming also to weight technical factors, it is
very difficult for a public agency not to select the low bidder, as they
almost have to prove it was technically non-responsive, not just worse.
Therefore, if you never lose, it means you are cutting your prices very
thin. On a development contract, it may still be reasonable to do so,
since winning may assure you many years of parts and service
business; just try not to kid yourself regarding your initial cost risks.

Be honest regarding your capabilities if much development is
required. The other common cause of larger overruns is
underestimating the complexity of development. This is particularly
common when this is a new product for your company. Stated another
way, incumbents can know too much. While that may provide a new
entrant an opportunity, the new entrant should view the bid as a
calculated risk to open up a market.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 48

You can develop new markets, but incumbents have inherent
advantages. Make sure they are either resting on their laurels or
milking their cash cow. In those cases, you actually stand a good
chance of succeeding without a large overrun. Unfortunately, it is still a
big gamble, as there is no evident way for you to know truly that such is
the case.

Avoid building a house of cards with multiple projects sequentially
dependent on each other for developments. Alternatively, at least
recognize that you are greatly compounding your risk, particularly as
regards schedule. You will still likely benefit by reducing the overall
development costs, since you can leverage this multiple usage, but the
price you pay will be delays in the downstream projects.

Cost and price are distinctly different issues. Senior management
will invariably claim that they know the difference, but they will rarely
admit that they know they are buying in. Instead, they may berate you to
accept a “management challenge”. As long as you have sound basis of
estimate, do not do so, but stick to your facts. If not, you probably
deserve your fate.

Overheads are real costs, but allocating them realistically
is not trivial. Overhead is a category of expenses that
accountants use to attempt to address all their costs without
having to actually collect minutia regarding what each staff
person worked on every single minute of the day. For most
salaried staff, it is difficult to get them to report their time on
more than a couple of cost collection or charge numbers per
day (although such is mainly an issue of laziness or disdain
since hourly workers do so routinely).

Allocations are inherently imperfect. A classic example is
the quandary associated with procurement overheads, which
can lead to the classic $1500 toilet seat. Two obvious choices
are to allocate the costs associated with vendor interaction,
catalog research, writing purchase orders, etc. in terms of price
or quantity. If you have ever filled out forms and processed
requests for buying anything, you know there is almost as
much effort buying something costing $25 as something
costing $2500. The key word was “almost”, since there will be
some added effort to buy something costing, say, $250,000. A
common distinction is to create one overhead pool dealing with
purchase of catalog items and another dealing with
subcontracts. Since the latter are custom items, they all tend
to be more expensive. By going to two overhead pools, it is
usually reasonable to allocate costs based simply on the

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

System Evolution

 49

quantity purchased in each pool. Even so, if you use quantity
as the allocation basis, then you will invariably create a $1500
toilet seat.

Some organizations still prefer to allocate based on purchase
price. This leads to the opposite problem where the expensive
items bear almost all the cost burden. Using that scheme
solves the $1500 toilet seat issue but can drastically mislead
managers regarding their true costs, e.g., when considering a
new proposal or when trying to project impacts of future
business alternatives based on “actual history”.

Incremental pricing can be considered to enter new
markets. Incremental pricing attempts to ignore overheads
and estimates the organization’s out-of-pocket costs for a
project. The question that you must carefully ask is whether
you have really captured all the incremental costs, particularly
regarding efforts required by staff normally covered by
overhead pools. If no one else in those groups is going to be
hired because of the project, then ignoring such overheads can
provide a lower bound of what one might bid for a development
contract, typically providing an opportunity for substantial
growth into new markets.

A common variation of incremental pricing is the strategy for
selling commodity items, like PCs. Most customers will
violently object to paying any substantial premium over what
they would pay directly to the manufacturer of a commodity.
For a variety of materials, letting the customer buy them direct
is a practical solution. However, many items like PC may sell
like a commodity, but if you ever run a service department, you
will find that they are far from truly interchangeable. It is
therefore often in a company’s self-interest, typically to
minimize service and support costs, to provide PC’s for sale at
competitive prices. If so, it can be reasonable to demand that
the customer purchase replacements from you so that you can
control the product variation.

Just do not kid yourselves; someone has to pay those
overhead expenses. They are real costs. It is only the
allocation schemes that often make them seem unrealistic.

Almost all staff should charge directly to a specific project
or product. Even if they are lazy or disdainful, as noted
earlier, their judgmental allocation will invariably be more

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 50

realistic than the usual simplistic mathematical allocations
routinely used by finance departments.

Do not ever think you can drive a competitor out of the business by
cutting your prices. All you will do is flush both of the companies’
profits down the toilet. Once a lower price point is set, it is almost
impossible to get it back from customers. Companies with their
founder’s still in control are particularly susceptible to trying this ill-fated
strategy.

Answering four questions are paramount for research proposals.
Back at the Defense Advanced Research Projects Agency (DARPA), we
always looked for these answers before proceeding…

What is the trick? What is unique regarding your approach?
What is going to give you a chance to succeed when others
have had difficulty? Why should we fund your idea instead of
that from any number of other bright, hardworking people?

What is the plan? No one really believes that you will actually
be so lucky as to completely follow the plan, but if you cannot
even lay out a plan, timeline, major tasks, key decision criteria,
etc., you will spend most of your time wallowing around in
mostly Brownian motion trying to start. In addition, without a
plan, it sounds like a proposal to "send money so these bright
people can muck around and try to come up with something
useful”.

Who cares? What customer or user community will
specifically and tangibly benefit from your success, and why is
it important to them?

So what? We will stipulate that you do everything you claim,
so how much money, time, cost, or whatever will the customer
save? Be quantifiably specific, or it is just science for science's
sake.

Architect for Fault Tolerance

Inherent fault tolerance is highly desirable in choosing among
system decomposition alternatives. Precluding single-point failure
modes is a common design criterion in many circumstances, particularly
as it relates to unsafe conditions. Failing that, one can design such that
the device or system will “fail safe”, i.e., if the component or device fails,
it does so in a manner that leaves it in a safe condition. More

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

System Evolution

 51

commonly, some form of redundancy is used when continuous operation
is mandatory. In most commercial practice, we are not talking about
formal fault tolerance, but simply are assuring that no harm is done and
that most failures are masked from the end user.

Simple brute force redundancy is not that simple, as it requires some
means to detect confidently that the primary device has failed as well as
some means to provide the secondary device with all the history or
existing knowledge of the primary device. Simplistic failure detection
schemes can lead to excessive false positives. In turn, fear of false
positives then can lead to schemes that vote, e.g., additional redundancy
or detection mechanisms so that you can more confidently assure that a
failure has actually occurred. Further, simple redundancy literally has
half your capital investment sitting idle most of the time. Worse, it makes
the transition from primary to secondary device into a non-trivial, time-
critical special circumstance.

Load sharing is a more useful fault-tolerant architectural scheme.
As the name implies, load sharing is inherently fault tolerant since the
additional device(s) are routinely performing the same functions as the
primary device. Its complexity results from needing to synchronize
continuously among peers, rather than just upon transition from primary
to secondary. However, once you have done so, fail-over is inherent,
i.e., no special actions are required, and adding additional capacity is
also inherently simple.

Store-and-forward is an architectural scheme to protect against the
commonly occurring loss of communication between subsystems.
Information is retained in multiple locations as it is migrated from its
source up the subsystem hierarchical chain to its final repository. The
idea behind this scheme is that each entity in the hierarchy is then able
to exist and operate on its own if communication with peers and
superiors is temporarily lost. You should always plan on this
communication loss occurring. You just need to be careful that the
source does not actually delete its information until the ultimate recipient
has successfully accepted and processed it.

Federated architectures more easily enforce good design practices.
Federated architectures are made up solely of peers, that is, there is not
any overarching device or software process whose health is needed to
assure the continued health of subordinates. Chapter 4 includes several
strictures, such as the use of messaging and not having to kill a healthy
process in order to revive a sick one, that are inherent in a federated
scheme. It must be admitted that a centralized architecture can also be
designed such that these design rules are also followed. Unfortunately,

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 52

experience also suggests that centralized architectures also make it
easier to cheat, in very non-evident ways.

Do not forget about software single point failure modes. So-called
god processes are just as dangerous as hardware single point failures
and possibly less evident.

Make It Work, then Robust. Only Then, Make It Better.

This is another form of declaring victory. Early on, you need to
decide just what is the minimum functionality that your product needs.
Some people call this “day zero” functionality. Regardless of your
terminology, this is the definition of what you must implement. The
remaining features are more than just frills, but they are not essential.

It is routine to implement requirements in phases, but you will
rarely succeed with designing in phases. That is the main reason the
other features are not just frills. If you do not architecture for them in the
beginning, you are very liable to have to start over, rather than just
iterate your way to success.

After you have “day zero” appearing to work, then focus on making
it solid as a rock. Again, we remind that well over half of production
software relates to handling exception conditions, not to doing what
customers or Marketing thinks they have asked for. Both customers and
Marketing will push you constantly to add those frills. Do not do it. Their
begging quickly turns to regret when the residual bugs surface,
particularly if in front of the customer’s customers.

Note that this is simply robustness in its layman’s connotation,
not the formal design for robustness that rigorously attempts to
desensitize designs to noise and variations by parameter
selection and the like.

Only then, add the frills and do so slowly, so that you never lose
the robustness. Commercial products have the distinct advantage that
the developer has the prerogative of defining, mostly after the fact, just
what the product will do. It is much easier to fend off your own
Marketing department regarding frills. If you are doing contracted
development, you may be forced to work with your customer to accept a
delay in the frills, but as long as “day zero” is solid, they invariably will
agree.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

System Evolution

 53

Branching is a Necessary Pain

Unfortunately, fixing bugs and adding features are at cross-
purposes. When you are fixing bugs, you want to minimize the number
of changes from the mostly robust version that you are trying to improve.
By definition, when you are adding features, you are making changes
that will invariably add new bugs, particularly into the sections of
software code that were not broken before. Branching is a configuration
management scheme to uncouple these issues.

Branching takes the software code base and splits off another version
that starts with the same code as in the main branch. Let us call the
main branch the “bulletproof” branch. Likewise, let us call the split the
“features” branch. You now do your bug fixes in both branches, but you
only add new frills to the features branch. At any point in time, there are
at least three versions of software that a project is dealing with.

The oldest version is often called the ”deployed”, i.e., what
customers are routinely using in the field. There may also be
intermediate versions, commonly called beta. Beta versions
can be considered as a tentative deployed version, usually to a
select customer subset to achieve usage that is more
comprehensive than internal testing. There is nothing like real
customer usage to surface exception conditions.

Next, there is a version that is being system tested internally
for potential deployment. Historically, this was called alpha
software, but that usage has gotten sloppy over the years. For
example, some companies even provide select customers
what they term alpha software, usually implying that it only
contains limited functionality that is known to be buggy. As
discussed later, we strongly recommend that you never deploy
software that is known to be buggy unless you are willing to
disclose all the known issues. On the other hand, there is
nothing wrong with deploying software with missing features,
as long as it is robust.

Finally, there is the version that the developers are trying to
integrate into a system by adding frilly features. This
integration testing is usually done within Engineering, before
handover to the Test department. This is the version that
commonly requires branching. However, since each individual
developer has contended that his software is ready for
integration, this integration build is usually placed under
centralized configuration management control. The latter

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 54

group assures that a third party can successfully and
repeatedly replicate the build. Note that there are even more
versions still under the individual developers’ control where
they are fixing bugs and adding even newer frilly features.

The pain comes when you merge the branches back together. If the
world was perfect, and the developers all truly made the bug fixes in
both the bulletproof and features branches in a timely manner, this would
not be that hard. Unfortunately, with all the developers involved in a
large-scale system, it is hard. The staff working on new features does
not want the bug fixes messing up their new code, even though it is
cleaning up those messy interactions that are needed to merge
successfully. Nevertheless, you have to do it periodically, say at least
monthly. Be ruthless about merging. The longer you wait, the harder it
is to merge. Remember, there are even more frills and fixes coming
down the pike. You must get back to a single baseline to move it
forward into validation and deployment and to provide a stable basis for
the next features branch.

Numbers are Better than Judgment

Everyone has an opinion, and it is often wrong. Company folklore
is even more suspect. Later chapters will discuss topics like full in-
boxes and continuous improvement processes that beg for data. As a
preview, you should ask any group that is deemed non-responsive to
other departments to track their inputs, outputs, and backlog, say, for the
last six months. We have never found one that was not keeping up,
even though they all thought that they were overwhelmed. Similarly,
folklore invariably says that most field defects can only be fixed by
revising the engineering designs. Again, go gather the facts first. You
will instead find that most defects are process failures, which is good
because you can change processes much faster than design.

Variation is a fact of life, particularly in the field. As such, you will
typically have to characterize field performance statistically. Moreover,
you will need to focus on what occurs most frequently or with the highest
cost impact, as you will never have the time or money to work on
everything. Again, you need data, not folklore, to guide you.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

System Evolution

 55

Customers Need Managing Too

It is usually in the customer’s self-interest for you to succeed.
Remember, they selected you, either by bid or by purchase. Thus, if
they are smart, they will work with you as you evolve your system’s
functionality and to close out a project.

Know your customer! Learn their interests and objectives. What do
they primarily need to achieve? What is truly important to them? These
answers will be key when you are working with them to declare victory in
the end game of the project.

Smart customers will also recognize their impacts on your
performance. Yes, they will still whine about your claims for feature
creep and for customer delays, but they will not hold a grudge. They
know you are not a charity.

Some customers, unfortunately, are not smart. You have our
sympathy. These days, at least it is common for them to recognize that
and to hire outside consultants to help. Luckily, most consultants are
smart. Otherwise, your chances of success are not good, even if your
efforts are exemplary. In addition, some consultants seem more
interested in maximizing their billings, which can lead to substantial
delays. Again, establishing clear customer milestones in your project
plans will be key to successful claims.

Some customers are actually mean, but we have likely taught them
to be. In effect, they are still holding every grudge that vendors caused
them to develop over the years.

Make sure that “beneficial use” is prima facie proof of “substantial
completion” in your development contracts. The most specious
behavior of mean customers is to enjoy what is called “beneficial use”
and still refuse to pay. Beneficial use occurs when the customer is
making money or otherwise commercially benefiting from your products.
Most contracts also have a term called “substantial completion” which
gets the supplier ninety percent of his money, i.e., typically his costs. If
they do not want to pay, then they should not use it. (Your management,
legal, or finance departments may still want to make them pay even if
they do not use it, but that is their call.)

However, ultimatums are never a good idea. Remember, there are
two responses to an ultimatum, one of which you will not like. Most
commonly, some program manager tries to pressure his customers
and/or bosses with something like “if you can not fund at least $xxx, then

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 56

you might as well cancel the project”. That manager likely forgot that his
bosses often consider the expenses to date as sunk costs, or may not
realize that other projects have already contributed their fair share of
budget cutbacks, or failed to remember that people higher in the
hierarchy just resent being threatened, or whatever. Remain flexible at
all costs, e.g., any program/project can be stretched out to match any
available funding profile. In fact, if the project had been over-running,
this stretch-out demanded by customers or bosses is likely to be just the
rationalization you needed, since total costs are expected by them to
increase because of stretch-outs.

Closing Out

The only thing harder than starting a project is ending one. It is
probably just as well that you did not get as many staff initially assigned
as you had planned. You only need the architects and departmental
leads for the first two to three months anyway. They need to develop
those functional specifications and project plans discussed earlier before
turning the troops loose to implement them. Otherwise, the troops are
twiddling their thumbs or making false starts… that are sometimes hard
to stop.

Getting staff off your project is much harder than getting them
assigned originally. You would think that this was not a problem as
long as the company has other projects in the pipeline, but it is. Again, a
product- or output-based project plan is your best tool. It is hard for
them to justify their charging if they are doing something other than
producing the products that you requested.

Be careful when you are finishing development but not yet into full
production. That is the riskiest time for any project as it is the last time
to kill it practically. Management has endured most of the pain, but
those costs are considered sunk. Now, they are facing substantial
additional investment in production and service, by both the company
and its customers, so it is their last chance to turn back.

Declaring victory is usually required. At some point, the frills must
stop, even for a contracted development. Bugs will still need to be fixed,
but even those will need to be prioritized. Commonly, several will
require you to treat a symptom rather than fix the underlying problem,
either because you cannot replicate it or because its architectural impact
is too extensive.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

57

Chapter 4 Often Forgotten Programming 101

Much, if not most, of the functionality in products today is provided by
software, some evident, some embedded. As such, you will spend a
disproportionate amount of your time finding and correcting software
defects in your new developments. A much better approach is to
preemptively attack this issue by developing, promulgating, and
enforcing documented software design guidelines. Some companies
literally have hundreds of pages of such guidance, but one has to
wonder if it is more to impress the ISO-9000 auditors than to help the
staff. We recommend that you again stick with the basics, two to five
pages at most that your staff might periodically reread, and focus on the
poor practices that cause the most schedule delays.

Internal software design guidelines should focus on architectural
and design issues, rather than style or format. While the latter offer
some improvement in reusability and maintainability, one will rarely
encounter a time that they cause large program delays. On the other
hand, failing to comply with the following groundrules will resurface
painfully and frequently in most organizations that are developing
software as part of a system project or product. They are listed in order
of pain or payoff, depending on your perspective.

Several staff will resent your hammering home these groundrules,
but do it anyway…, repeatedly. The responses are along the lines of
“Who is this new boss that is nagging us about these simple rules?
Everyone knows them.” Yes, but everyone also seems to violate them
far too frequently. This list has changed very little over the last twenty
years.

1) Do not embed text, parameters, flag conditions, etc. in source

code. There is no such thing as a constant (except maybe π and e).
Always use setup or “ini” or database files as the source of configuration
data.

Configurability of your application is your only hope in
controlling costs. Design and technology is constantly
evolving. Market forces are just too strong. The good news
about software is that it is easily changeable. The bad news is
that the market continually forces you to change it. You either
incur substantial costs doing customizations or make the code
configurable so that someone other than developers can adapt
it to the customers needs.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 58

Even if it is a purportedly small change, retesting for
unanticipated side effects is costly… whether you do it now
or later when the side effect shows up in the field because you
“saved” costs by limiting retest. It is just too easy to delete,
say, a brace in your C++ code by mistake.

You will need at least four levels of access to
configuration parameters: developer, production, customer
service, and end-user. A simple hierarchical password access
mechanism is usually adequate.

Regardless of the access level, you will need a
configuration application, not just a file editor. Even my
experts (and they really were) have made several disastrous
mistakes editing in a live system. This configuration
application mainly provides some validity checking of entries
and logs who made what change from where and when.
These logs are a godsend when digging out of a problem, as
too many seem to have selective memories when faced with a
downed system. Since everyone can make a mistake, it is
also helpful if this application offers the option to revert to using
some saved defaults.

Embedding text was the first no-no in the list for good
reason. While commonly found as error messages, discussed
later in Rule #4, most products today are made for
international usage. If you have ever tried to translate
embedded text, you will adopt this rule quickly. Text is also
difficult to accommodate in fixed-length display fields because
the length of text for the same meaning varies greatly. For
example, German is usually notably longer than is the
corresponding English. Double-byte languages, like Arabic or
Chinese can also create issues.

2) All logs, files, databases, etc. will be circular, ping-ponged, or
otherwise bounded. Recovering cleanly from a full disk is almost
impossible. Unbounded log files invariably run wild at the most
inopportune time. Experience in a variety of industries suggests this is
likely to occur about once per quarter.

3) All processes must be able to be independently started and
shut down without any assumption regarding the state of any other
process. For example, never have to kill a good process to recover a
sick one. Even though we suggested the use of “ini” files in rule #1, we
are not a big fan because many applications are written to refer to the

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Often Forgotten Programming 101

 59

“ini” file only upon startup. Such is still much better than embedding the
values in source code, but killing healthy processes can make things
difficult, particularly in real-time systems. As you would expect, this rule
increases geometrically in practical importance as the number of
simultaneous independent processes increases.

4) Each and every possible error or exception condition should
have a unique error code ID. The code should be passed rather than
the text to be logged or displayed. Text should always be pulled at the
last minute from a table or resource dynamic link library (dll). The text
should also be unique (no generic “system error” messages) and should
generally display the code, a description, and the suggested action by
the user: close and reopen app, reboot, call service, whatever.

This rule is mainly for the benefit of the developers, not
end users. Debugging a system is hard work. Why tie one of
your own hands behind your back? You have already gone to
a lot of work and have myriad “if/then/else” tests coded. Why
have those all return the same error message, particularly if
they are often also silent about key parameter states? While
production, customer service, and even end-users will also
benefit, the original developer most needs this to get through
initial integration.

As a side note, avoid strict equality tests, even on
integers. This one shows up about once a year when some
counter jumps, initially inexplicably, and then a mess occurs
because that loop is now unbounded.

5) It is the sender/creator’s responsibility (not the receiver’s) to
assure that data is valid, such as being of proper type and within
usable range. (While it is understood that the receiver will probably also
do so with debug statements to get through initial integration, these
should be able to be turned off easily from an ini file once the senders do
their job.)

a.) Data should never be able to kill a process. Every process
should keep going regardless. Post an error message, but never
halt. Use a default, a bound, whatever, but keep going. While it
may seem efficient to halt upon an error, doing so turns any attempt
at integration into a time-wasting serial, rather than parallel,
process.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 60

6) Never use time to imply sequence. If you need to insure or know
sequence, use an explicit sequence number. Remember time can and
will go backward, usually in the most awkward circumstance, unless you
happen to be the master clock.

a.) As a corollary, all machines should only run on GMT/UMT.
Only displays and reports that humans see should use local time,
but that is just a matter of display. You will only have to recover
from a single daylight savings time switch to understand this rule.

7) Processes should not communicate through global or shared
memory. Use messaging. In the old days of limited memory and CPU
speed, this was a more common problem, but it makes integration
extremely difficult, as it leaves no record of who did what to any
parameter.

8) When cutting back requirements, do not implement just one if N
is required. At least do two.

9) All data should be passed as pairs of the variable/field name
and the value. Do not make any assumptions regarding field order,
location, type, or size. The latter should be in setup files anyway. (In
truth, this is the only rule that you will sometimes concede, but its
benefits remain, so it stays on the list.) It is understandable how this
practice arose in the old days of slow computers and limited memory,
but you will only have to go through one substantial database
restructuring on a live system to understand these benefits. Such
restructuring is almost impossible without shutting down the system, and
many systems like broadcast cannot allow you to shut them down.

10) Do not use TBD or be silent on a functional trait. If you do, you
are saying that you are indifferent to the value and, thus, someone else
can decide it arbitrarily. Such is rarely found to be the case. To-be-
determined (TBD) entries are often a good clue that you are dealing with
agreements to disagree that can lead to interminable integration delays.
At best, they indicate indecision regarding the design.

What matters is making a timely choice among items on
any short list of alternatives and getting on with it. The
choice almost does not matter. By definition, all items on a
short list meet your basic needs. If there are several good

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Often Forgotten Programming 101

 61

approaches, just pick one. The differences are more like
religious preferences, not technical. For example, in the old
days, there was much debate about whether to choose
WordPerfect or MS Word (or even WordStar in its day). It did
not matter as they all easily produced very nice
correspondence. Not unexpectedly, formal user preference
studies invariably show that people prefer the one with which
they were most familiar.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

63

Chapter 5 User Interface Design 101

Graphical User Interfaces (GUIs) are also now an integral part of most
products. Their design involves a mixture of artistic and stylistic
preference combined with technical traits that ease the product’s usage
by beginners while still allowing proficient users access to all the bells
and whistles your product provides.

GUI design should be viewed as a religious preference, not
technical. Digital Equipment Corporation (DEC) staff first acquainted
the author with this perspective of religious bias in engineering. There
are still quite legitimate advantages and disadvantages with many of the
design choices you have to make, but do not carry on like there truly is a
right and a wrong way. They are mostly just different ways.

For the younger reader, DEC totally dominated the mini-
computer market with their VAX’s in the seventies and
eighties. This perspective arose in a DEC presentation in the
eighties comparing the benefits of the three dominate
networking protocols at that time: CSMA/CD (best known as
Ethernet or IEEE 802.3), GM’s MAP (token bus or IEEE
802.4), and IBM’s Token Ring (IEEE 802.5). Even though
DEC was solely in the Ethernet camp, their point was that each
had its strengths and weaknesses and all could be used to
create quite useful networks, ergo it really comes down to a
religious preference. The author was biased in favor of MAP,
but Ethernet won out solely for economic reasons (see, to this
day, the bias remains). By the late eighties, one could buy
Ethernet adapters for 1/10 the cost of the others.

As a further digression, the problem with Ethernet is that you
cannot guarantee delivery of any message within any finite
specified time. At the somewhat slow networking speeds of
the day, such uncertainty greatly complicated real-time control
of machinery. With time, sheer overall speed increases
reduced this problem from a practical perspective, and the
adapters’ recurring cost advantage made worthwhile the one-
time investment into more elaborate machine exception
handling.

However, it is important that you express your beliefs. Internal GUI
standards are still quite helpful, almost irrespective of their content.
Engineers are lousy artists but love to play with graphics. They routinely
waste a lot of time playing rather poorly with the cosmetics. You are
doing everyone a favor by establishing a project or company standard

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 64

that takes many of these choices off the table. Such usually also has the
benefit of providing an overall corporate family “look and feel” that can
be evangelized commercially by your Marketing staff.

Clickable Mockups, Often in Lieu of Specs

A picture is truly worth a thousand words. We now recommend
foregoing written specifications to define the needed functionality of any
product whose primary user interface is graphical. Instead, use a tool
like Adobe/Macromedia’s Dreamweaver® to develop a static prototypical
representation of the functionality. It is static in that the representative
data in dropdowns, tables, and the like do not change, unlike the varying
data in the real product. However, these “clickable mockups” are
dynamic in that they support full user interaction with the screens, links,
dropdowns, error conditions, etc. Said another way, these are not
cartoons or pictures or PowerPoint slides, but they are a fully working
“website”. It is just that their data never changes.

Prototyping is relatively fast and is best done by somewhat artistic
staff, usually not engineers or programmers. One-hundred-screen
prototypes can be drafted, reviewed, and refined in two weeks or so, at
least internal to your company. All of the cosmetic choices are settled in
this process. Nevertheless, Engineering should be heavily involved in
these GUI design reviews to assure that the mockup is efficient to
implement. There are invariably a few alternatives to achieve the same
functional objective that are more efficient than are those in the draft.

Clickable mockups substantially shorten schedules by allowing
several subsequent processes to occur in parallel. When done, the
mockups are given simultaneously to engineering, test, and
marketing/customers. Engineering’s direction is simply “Make these
truly dynamic. Don’t waste any time thinking about the cosmetics or
content.” One no longer has to wait for Engineering to almost finish
product development before one can see how the product will behave.
Testers can use the mockups to train their automated test software,
which is a non-trivial, time-consuming process. Marketing and/or
customers can use the mockups to show others how the product will
behave. They may also have to obtain further approvals, but tweaking
the mockups is much easier than waiting for and then changing the full
product software.

Mockups set a baseline against feature creep. If you are building a
custom product, you now have a solid basis for subsequent claims for
changes… and there will be changes. Remember, we are talking here

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

User Interface Design 101

 65

about religious preferences and cosmetics. Failing to solidify such
baselines is a major cause of project overruns.

Admittedly Biased Design Practices

Figure 5.1 illustrates a GUI design that implements many of the design
rules that follow. Recall, the main point is that you should codify your
own beliefs, but the listed practices can serve as a starting point for your
consideration. As but one example, despite the current abuse by
internet advertisers, these rules strongly recommend the use of pop-up
or daughter windows so that a user does not lose their context when
performing a subordinate action.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 66

Figure 5.1 GUI Illustration

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

User Interface Design 101

 67

Arrangement:

1. Maximize horizontal real estate for use with tables and graphs,
such as placing hot-link menu tabs at the top of the page rather than
on the left margin.

a. Most, if not all, screens should retain the top-level menu
choices as hot links.

2. Avoid action buttons only located at the bottom of a screen.
Such would require scrolling through an entire list that may be quite
long. Duplicates are fine, to avoid having to scroll back to the top.

3. Do not move the user to even a daughter/pop-up screen just to
make other navigation choices. Provide all the relevant
navigation choices on the initial screen.

4. When returning more than a single result, err on the side of
presenting more information rather than less.

5. List/Table views will be common.
a. Just do not require routine horizontal scrolling.
b. Minimalism invariably forces the user to more database

queries.

6. Make most confirming or administrative actions occur within a
secondary daughter/pop-up window.

a. Avoids the user losing his or her context which will often be
a table or list view

b. Avoids having to re-access the database to repaint the table,
unless the secondary action invalidates some currently
displayed field.

c. That this behavior may restrict users to modern versions of
browsers is OK.

7. Provide a “printer-friendly”, non-graphics mode where relevant,
to facilitate users with slow modems or handhelds.

Actions:

8. Do not make a user confirm any non-destructive action. For

example, avoid repainting the same new user data for confirmation
even though it is subsequently easily editable.

9. However, do provide a visual cue of success.

10. Do make a user confirm any truly destructive action, such as if
you really were doing a “delete”, rather than a “hide”.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 68

11. Avoid destructive actions, almost at all costs. Instead, allow at
least someone in the hierarchy to edit anything and provide
hide/unhide modes. Normally, destructive actions are limited to
privileged users like customer support or development staff, but
even they make mistakes.

12. Avoid mandatory fields unless they really are. These typically
should be unique and a primary database key.

Behavior:

13. Each record in a list view should provide hot-links to obvious

individual views: each device, each end-user, each sensor, each
whatever.

a. These individual views should invariably be presented in a
daughter window/screen so the context is not lost.

b. Each individual view would then contain appropriate action
buttons to modify, graph, hide, add new, whatever.

c. Paging (first, previous, next, last) should be avoided, almost
at all cost. It just will not scale up.

14. List/Table views containing data should contain a mechanism
to select one or more parameters for graphing. However, see
the following extensive style discussions regarding graphs.

15. List/Table views containing data should also include a
mechanism to change: parameters (e.g., rainfall or temperature);
units (e.g., inches or feet); period (e.g., current month, year to date,
last 12 months, etc., but primarily including a “custom” choice of start
and end date); function displayed (e.g., current/last, cumulative,
extrapolated, mean, median, mode, max, min, whatever), and
resolution displayed (e.g., number of decimals).

a. One implementation could be to click on the heading but
then spawn a daughter window offering to sort or to change
the displayed values since sorting on data is not that
common.

b. It would be highly desirable to retain these display choices
on a per end user basis. Database retention is probably
needed for true persistence, but using cookies is an
acceptable expedient since the user would only have to
repeat the selection process when they change machines.

16. Every List/Table view should have a button offering to
download that view as an Excel spreadsheet.

a. This provides the ultimate cop-out when users ask for even
fancier features than one currently has.

b. However, it does imply that one provides list views rather
than just individual views.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

User Interface Design 101

 69

17. Administrative entry screens should usually have a user-
settable choice of clearing and/or closing after a submit.

a. “Clear” needs to be a choice when the default behavior is to
retain the submitted fields because many (such as contact
name, address, city, state, zip, and country) are likely not
going to change for the next entry. Otherwise, it is a pain
when one does need to change everything.

b. “Close” needs to be a choice for when the user is done, that
is, they neither want to “clear” nor simply modify a few fields
of the prior submit.

c. One should auto-populate city and state based on zip code,
or at least validate them.

18. Avoid auto-generating passwords for users. They will not
remember them and will write them down which is an even greater
security risk.

a. If needed, let them suggest, and have your software enforce
good password practices, such as length minimums, no
dictionary words, at least one non-alpha character,
whatever.

b. If socially allowable, prompt users periodically to change
their passwords by checking their password’s age.
Changing is about the most robust security protection.

Search & Sort:

19. Provide a customer-definable descriptive field for each device

or configurable entity. These will invariably be their primary sort
and search fields. It would be nice if we could enforce their
uniqueness, but…

a. It’s hard to do, even for a single user
b. The only benefit to the user is that such avoids having to

pick from a subsequent list/table.

20. Most query screens should offer at least a couple of query
fields that support simple standard “*” and “?” wildcards. One
such field will invariably be the user-definable descriptive field
discussed above.

a. If blanks are left in all the query fields, a table should be
provided that lists all the devices accessible by that user.

b. Warn if a list is overly long and/or offer to split the list into
pages of a user selectable length.

21. List/Table views should have sortable fields/columns invoked
typically by just clicking once on the field heading, with a subsequent
click on the same heading reversing the sort order.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 70

a. It is highly desirable to allow the users to select a multiple
column sort, probably using a daughter screen to select
which column to sort on first, which is second, etc.

Cosmetics

22. Confirm that each combination of colors, fonts, and fills will still

distinguish intended differences when printed on a grayscale
printer.

23. Always combine a color change with some distinguishable
difference in font or fill. Remember, about 8% of males (including
two of the author’s CEOs), as well as up to 1% of females, are
colorblind.

24. Do not use underline as a visual cue except for its standard
usage of denoting a hot-link.

25. Hide or gray-out any link that is not accessible for the current
class of user or that is not yet functioning.

26. Provide a visual cue that an action button was successfully
pressed. Moving to or presenting another page is sufficient, but a
simple screen repaint of the current page is not.

a. Change the button’s color and fill pattern for a noticeable
duration, put up some temporary “successfully submitted”
text, whatever.

b. If one has to create a subordinate screen to achieve this, try
to make it automatically disappear after some fixed duration
so that an “OK” is not required. However, include a “close
this window” link as well for those who would rather click
than wait.

c. Regardless, make the subordinate confirming window a
secondary or daughter screen so that the context of the
action button is not lost.

27. Time should be handled internally only as GMT but should
invariably be displayed in local time.

a. Date formats should offer a choice regarding display, such
as month/day/year, year/month/day, etc. There are several
local conventions internationally.

b. Provide a user choice regarding the resolution and format of
date and time. Four-year display fields as well as seconds
and fractions thereof are not usually meaningful and take up
valuable screen space.

28. Use of commas and periods as numerical and decimal
separators again should be a local user-specified convention.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

User Interface Design 101

 71

29. Avoid embedding text into graphics since they are a bear to
translate.

a. Instead, try to develop a unique graphic for each class of
action.

b. Use international symbology rather than text. You can put
the text explanation into a help screen.

30. On-screen hints are helpful but should also be placed into
“help” with more clarifying details.

Semantics

31. Do not use the term “delete” unless you really mean it. Instead,
use “hide”, “de-activate”, “close”, or whatever is appropriate.

32. Do not use the term “ID” when you really mean a name. “ID”
usually implies some non-real-world-meaningful alphanumeric code.

Graphs

33. Units must be displayed on any graph for each plotted
parameter.

a. If relevant, offer at least a second y-axis.
b. It is OK to require the user to make sure their selected

parameters will display reasonably on a single y-axis.
i. At least warn them if the various ranges are

grossly inconsistent
ii. More simply, one could offer a logarithmic y-axis

for those users who can understand them.
c. If practical, offer cumulative/stacked as well as the

independent parameter plots. However, recall this requires
a check that the requested parameters for stacking all have
the same units.

34. History line graphs should be plotted against a single time axis.
This often implies that one will normally be using x-y plots since the
data will often not be available at consistent time intervals.

a. The user can select the period, typically by selecting the
period displayed in the source table that is being graphed.
One should then adjust the scale of the time plot to
reasonably display on a landscape printable page.

b. If the user wants multiple pages or other fancier stuff, let
them use the “download an Excel-compatible version of this
table” button.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 72

35. Bar graphs can be used to plot sequential histories, for example,
where the x-axis represents independent events taken at
inconsistent time intervals.

Speed:

36. Responsiveness is paramount to a satisfactory user
experience. A handful of seconds should be the goal for the
maximum wait for any single database query screen to load.

a. Limit the spatial and, particularly, the color depth resolution
of all graphics, such as no more than monitor resolution of,
say, 96 pixels per inch, and preferably only 256 colors.

b. As noted earlier, offer a “printer-friendly” text-only version for
users with slow modems.

c. As noted earlier, warn the user when one anticipates the
database query to take more than 2-3 seconds and/or the
list to be more than, say 50 entries, corresponding to a
single printed page. Offer the option of a refining query
and/or a paged presentation. You are not likely showing
ads; so do not limit the lists to an artificially low number of
entries. Eventually, the number of entries per page should
be user-settable.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

73

Chapter 6 Presentations 101

Become a religious zealot with respect to presentation style. While
these recommendations may seem to be just preferences, they were
painfully acquired, and they work. Most result from extensive briefings of
generals and admirals in the Pentagon. That environment is unlike
anything you will likely encounter outside of aerospace, but the resulting
habits apply everywhere.

Allow yourself no less than two minutes a slide, preferably three.
Divide the amount of time for your presentation by this factor and
determine the number of points you will be able to make. The result will
be 20 to 30 slides or claims per hour.

You will always encounter people who say that they have
simple slides and can go through many more than that in an
hour. If they actually can, it is usually because they are
showing some sequence that they are impractically asking
their audience to keep in their mind. Alternatively, the slides
are not truly significant to the overall presentation.

If you have a sequence of graphics that you need the audience
to remember or relate together, montage them all onto a single
slide so that they can listen to you make your point rather than
trying to remember whatever was up three slides earlier. In
the days when presentations used film transparencies, one
would build up a montage using overlays. Doing so still lets
you make your point about each constituent element, but when
you are done, the audience easily envisages your claimed
relationships. Montages are even easier today with electronic

slides, such as by using Microsoft PowerPoint® animation
features.

Write an action title for each of your slides. This is a short sentence
in the active voice describing the claim you want to make. Some people
are offended by action titles. If that is you or your audience, you can use
a bland title and make your sentence the first bullet on your slide, with
everything else subordinate.

Action titles answer the question, “Why are you showing me this
slide?” Unfortunately, that will likely become the most common
question you ask when reviewing draft presentations.

Horse charts are the most offensive. (That is a chart
consisting of a picture of a horse with the title of “Horse”.) The

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 74

most common engineering horse chart is invariably entitled
“schematic”. Another slang term for these is “chamber of
commerce” slides. That is, they are slides with which you can
change your story with differing audiences. Nevertheless, the
real message that horse charts tell your audience is that they
are not worth the effort for you to prepare material specific to
their interests and needs.

For the record, schematics can be a very effective graphic to
support all kinds of claims regarding a design. Just figure out
your main claim as a title; add some bullets or callouts to refer
to the relevant points on the schematic; and you probably have
a good slide.

Find a graphic of some type that will help you explain your claim.
For some reason, audiences tend to believe you more when you have a
picture, photograph, spreadsheet, equations, block diagram, schematic,
graph, etc., and not just words. Anyone can write words. (Of course,
anyone can also plot a graph, but it just seems less likely that one would
go to that bother if it were not true.)

Graphics tend to focus an audience’s attention to the slide
where your claim is burning itself into their brain through their
eyes.

Create three to five “bullets” that explain or otherwise defend your
claim. Bullets are abbreviated sentences, not cryptic speaker’s crib
notes. They need to defend your claim without you saying a word.

Quote, “But, if I put my key messages on the slide, they won’t
listen to me!” They are not listening to you anyway. If you
ever take a teaching course, you will find that people retain
greater than 80% of what they see but less than 20% of what
they hear. You want your claims and messages burning into
their eyes as long as possible.

More importantly, much of the time you will be making the
presentation to someone whom you want to carry your story
forward for you. If all you have provided them are blurbs to
remind yourself, they are unlikely to recall your points at all.

You should not have to say a word to defend your claim if it is a
good slide.

For the types of customers in the Pentagon, cryptic slides will
not even get you in the door. These people are very busy. It

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Presentations 101

 75

is very common to be asked, “Would you like to reschedule in
a month, or settle for ten minutes today?” In those cases, the
style was, “Put your slide up for a few seconds, wait for a
question, or proceed when grunted at.” You were not allowed
to proffer a word (the infamous “speak when spoken to”).
Further, at least one Air Force three-star general would
famously ask that you put up your slides in reverse order. He
knew everyone built up to his or her main claim at the end. If
you had followed this chapter’s advice, you were usually
welcomed back. If you did not, they brusquely terminated the
briefing.

For the record, the author is aware that this portion of our
advice is contrary to that expressed on page 127 of The
Tongue and Quill, Air Force Handbook 33-337, 1 August 2004,
which generally provides excellent guidance on all forms of
communication. Obviously, the author’s Air Force and civilian
experiences have differed. Nevertheless, we agree on much
more than we disagree. As but one example, AFH 33-337
offers the useful guideline of a “7 x 7 rule”, i.e., no more than
seven lines or bullets on a chart with each containing no more
than seven words.

When presenting, do not read the slide back to the audience.
Remember, your bullets and graphics already defended your claim.
Your verbalizations should be tailoring or elaborating your message
based on feedback from your audience.

Figure 6.1 is an example chart demonstrating the recommendations of
this chapter, while belaboring our points regarding horse charts.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 76

Figure 6.1 Horse Charts

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

77

Chapter 7 Find & Flush the Full In-Boxes

You will be amazed about how much good will, increased
responsiveness, and cost savings can result by finding and flushing all
the full in-boxes in your organization. We are not talking about all the
spam in your email in-box, but the old style physical boxes on your desk
where your undone work seems to be piling up. They are everywhere.
You should be suspicious of any task that has the term “processing” in it.
You will find them in Engineering processing bug reports, releasing
drawings, reviewing drawings, assessing failures, etc. You will find them
in Production processing vendor returns, receiving parts, updating
assembly records, etc. You will find them in Customer Service
supporting Material Review of defects, waiting to retest returned parts,
doing over-reads at customer request, etc. You will find them
administratively processing change requests, approving corrective action
reports, etc. They are everywhere.

Groups with full in-boxes are invariably keeping up. They do not
think that they are, but it is easy enough to prove. Just have them track
their daily, weekly, or monthly input, output, and backlog over, say the
last six months. I have yet to find the group whose backlog was
growing. They are just stuck with some large backlog that makes their
department disliked by all as non-responsive.

It seems to be a cultural thing. I do not know if it is satisfying to feel
overburdened, if they think it implies they are busier than others are, if
they get a sense of power by having others always beholden to their
eventual action, or something else. The only explanation I have ever
been offered is that they seem to worry that if their in-box were empty
then somehow such would be wasteful. My response has always been
that I would personally find them something useful to do and that they
are at no risk for putting themselves or their staff out of a job. That is not
a gamble because the data has already shown that that many staff were
needed to keep up with their input. What is wasteful is the time delays
and cost of money that these full in-boxes represent. It is enormous.

Luckily, it is a mostly one-time expense to empty in-boxes. Often
you can do so with overtime, paid if necessary as it is worth it in
improved productivity. Failing that, do not hesitate to hire temporary
staff to flush them. Remember, this one-time expense has continuing
recurring cost and responsiveness benefits.

Figure 7.1 shows a couple of examples from the Operations domain.
“Waiting to Test” represents inventory that has been returned from the
field and is awaiting retest to see if the field failure can be replicated or,

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 78

instead, is part of the typical 30 to 40 percent of returns that “retest OK”
(RTOK). Obviously, one should work on reducing this percentage, but
experience in several industries suggests that only much improved
failure mode capture or other self-test holds out much prospect.
Regardless, failing to retest before returning material to suppliers will just
get your company a well-deserved Chicken Little reputation. “Material
Review” represents inventory that has a known failure but that has not
yet been returned to the supplier or to manufacturing for rework or
refunds. This example starts with over a million dollars of inventory
sitting idle, tying up cash, and slowing feedback from suppliers regarding
failure modes and corrective actions.

Figure 7.1 Full In-boxes

There is no black magic involved, just clear evidence of management
interest and commitment of one–time resources.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

79

Chapter 8 Continuous Improvement 101

Managing the quality of the systems and products you develop will
involve much of your time. There have been myriad quality strategies
over the years, but since the eighties, most everyone has adopted the
continuous improvement principles most effectively espoused by Juran,
Deming, et al that were adopted with a vengeance by most of the
Japanese manufacturers, notably Toyota.

A key premise of continuous improvement is that defects are
mostly management’s fault; we failed to provide the right training, or
tools, or instructions, or guidelines, or whatever. Continuous
Improvement programs work, unlike many of the previous quality
program attempts such as Zero Defects in the sixties and “Do It Right
the First Time” in the seventies. The main difference is that those less
effective programs focused on the person doing the work; they
presumed that defects were invariably the worker’s fault.

Another key premise is that the process is continuing. I recall being
asked by Marketing, “To what percentage will our defects be reduced by
the end of this fiscal year?” My response was, “I don’t know because I
don’t have any control over what are the dominant defects and how
much their elimination will buy us.” On the other side of the coin, I was
asked by a Production manager, “When do we get to stop?” The answer
is, “Never!”

A third premise stresses focus on whatever has the most payoffs.
Prior programs tended to claim that one was going to investigate every
defect down to root cause, something no one ever has the time or
money to do. An early step in any continuous improvement program is
to quantify the frequency of defects. This is not as easy as it might
sound, because what is needed is data in terms of actionable defects.

For example, it is not sufficient to know how many printers of a
particular manufacturer’s model number that you had to
replace last month. Let us say there were 12. If your total
fielded population is 15, you have a big problem; if it is 1500,
probably not. Still, you do not know enough yet, except to
whine ineffectually at your printer supplier. What you really
need to know is the specific failure mode (what some call the
actionable defect), such as did the power light even come on;
did the paper jam, was there a line defect in the printing, was
there a large but local region of smudging, whatever. Now, if
11 of the 12 failed printers had a line defect, you might still
have a big problem, even if you have 1500 fielded.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 80

A fourth premise is that the originator is responsible for assuring
the quality of his or her own work. No one is going to check it for
them; you are no longer going to do incoming inspection, except to kick
and count. However, there is a corollary that they better do their own
inspection, including being given the tools and time to do so. The
solution is not to inspect for them, it is to work reasonably with them to
improve, but to drop them if he or she cannot or will not do their job.

No one ever inspected quality into a product. Not a new saying, but
well worth repeating, over and over. By the way, no one ever tested
quality into a product either.

Categorizing Defects

End-user or devices?

When collecting failure data, your first decision is likely to be whether to
collect information regarding end-user failures or to limit yourself to
device failures. You will also face service returns that do not exhibit any
problems, typically 30-40 percent of your returns. There are many
acronyms for this phenomenon: CND (could not duplicate), RTOK
(retest OK), NTF (no trouble found), etc. If possible, capture the end-
user failure information. You will rarely find customers lying. The
notable exception is that they sometimes fib about changing
configurations, hence the earlier advice regarding logging those events.
At least track their difficulties, even if you do not plan to chase corrective
actions initially. At the minimum, these issues can provide clues where
you need to improve your manuals or help files. More likely, the most
frequent are real problems you just have not yet duplicated in your lab
environments.

Serial-number-specific or model-related?

You should initially treat hardware defects as if they are all model-
number related, not random serial-number-specific defects. Software
defects are rarely, if ever, serial-number-specific. That is, software is
inherently model-number related. However, we are not advocating that
you claim that you are going to make an extensive investigation of every
failed device to determine the root cause. Remember that a root cause
means just that. For example, determining a PC board failed because of
a cold solder joint has not determined its root cause. You have to figure
out why the solder joint was cold. Instead, you will investigate the most
frequently occurring, provide a corrective action, and continue to work

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Continuous Improvement 101

 81

down the list as other issues bubble to the top of the list of most-
frequently-occurring or most-overall-cost-impact.

Hardware, software, and enhancements

It is not uncommon in very large companies to have separate
management systems for hardware defects, software defects, and
product enhancements. However, in many companies, one is usually
happy to get even one change or defect management system working
well, so our advice is to adapt it to handle all “defects”, whether
hardware, software, or enhancements.

Severity and Urgency

The most common mistake in setting up defect classification schemes is
mixing the concepts of severity and urgency. These are totally
independent and need independent assessment. The following
classifications in Tables 8.1 and 8.2 have proved useful over the years:

Table 8.1 Defect Severity Classes

Severity Code Description Example

1 - Safety Problem affects the
safety of the
equipment or users.

Unprotected access to
dangerous electrical
power; inadvertent turn
on of discrete outputs or
moving parts; edges that
cut.

2 - Inoperable Problem renders
equipment
inoperable with no
workaround.

Entire (sub)system (not
just a particular function)
hangs, requires reboot,
will not function at all;
commonly due to
software or to missing
parts because of drawing
misinformation.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 82

Severity Code Description Example

3 - Corrupting Mostly, incorrect
database entries with
no means to fix.

Creates database entries
that are unable to be
corrected by an end-user
through their normal
graphical user interface
(GUI). If the error can be
corrected through some
user interface, then
classify as a 4, incorrect.

4 - Incorrect Incorrect behavior:
equipment works but
one or more
functions are not
right without any
workaround.

Function hangs or
produces incorrect
behavior with no
workaround, i.e.,
inconsistent with our
specifications, brochures,
user manual instructions,
"read me" files; incorrect
parts called out or
installed

4A - Absent Customer
requirement has not
been implemented.

Functionality that is
contractually required,
but is planned to be
missing from the current
version of software or
revision of hardware

5 - Workaround Incorrect behavior:
equipment works but
one or more
functions are not
right. However, a
workaround exists

Function hangs or
produces incorrect
behavior, e.g., a "delete"
button on a screen does
not work, but the
keyboard delete key will
execute the desired
function.

6 - Cosmetic Problem is the result
of some defect in the
appearance of the
equipment.

Misspelled (but not
misleading) text,
inconsistent fonts,
inconsistent surface
finishes, etc. Ugly, but
not misinterpretable.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Continuous Improvement 101

 83

Severity Code Description Example

7 – Internal
Enhancement

A requested
improvement.
However, it is also
deemed within
contract scope.

Not a defect per se, but
functional alternatives
and additions that would
be more convenient, less
confusing, etc.

7A –Contractual
Enhancement

A requested
improvement that is
deemed out of scope
(OOS) to the
contract.

Not a defect per se, but
functional alternatives
and additions that would
be more convenient, less
confusing, etc.

8 – CND (Could
Not Duplicate,
RTOK, NTF)

Defect cannot be
replicated despite
reasonable efforts,
so work put on hold
until more episodes
provide better clues.

Retained in the system to
minimize duplicate AR’s
and to remind all to
continue to look for
recurrence.

Severity is only a function of the character of the defect. As such,
Engineering has the final say on that classification. Be particularly
careful about any defects in the top three categories. There can be a
tendency to label 4’s as 2’s, usually in hopes of getting them fixed
quicker. One should never intentionally field anything with severity 1, 2,
or 3 defects, and should try hard to eliminate any 4’s, but sometimes that
is not feasible. One can remain comfortable with that practice in
conjunction with a policy of disclosure to customers of these ‘known
issues’ as will be discussed later.

Declaring victory is a manager’s best friend, particularly with
software. The 4A subclass was introduced to distinguish between things
that were intended to work in a particular version versus things that were
not scheduled yet, for a variety of reasons. You should always assess
any specification for whichever features are mandatory and which are
just nice to have. One common criterion is that the new version must at
least do what the existing product does, or more likely used-to-do or
was-supposed-to-do. Your project plan should focus initially on this
minimum functionality. If you are in a purely commercial environment
where you can define the product, then typically the next version just has
whatever is working robustly on such and such a day. If you have a
development contract, then things are not as easy, but even then, you

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 84

and your customer can invariably agree on the minimum behavior for
what some call “day zero” functionality.

Enhancements (#7) are not really defects, but you can manage
them the same. You will find you need to retain almost the same types
of information. Moreover, many of your enhancements probably came to
you originally as a purported defect. If you are in an organization that
does contracted development, then sub-class 7A has been found useful
to distinguish enhancements that require the outside customer’s
authorization and funding. While common in aerospace, most small to
medium size companies do not have separate formal mechanisms for
managing configuration changes. Just adapt your defect tracking
systems. It has most of what you need.

Simple breakeven calculations are recommended to
prioritize enhancements. There is extensive business
literature regarding return on investment (ROI) calculations.
Besides requiring a lot more effort, the author’s main problem
with ROI calculations is that their assumptions are too easy to
manipulate to get almost any answer that you want. Instead,
breakeven calculations only require that you estimate the
development cost and the unit cost savings or additional unit
sales that the enhancement will provide.

Most breakeven assessments will simply be based on
selecting the enhancements that have the lowest number of
additional unit sales required. Unfortunately, you will
commonly find that Sales and Marketing departments will not
commit to any additional unit sales as the result of all those
enhancements that they have been so vocally advocating.
Instead, they will invariably argue that they will lose sales if
they are unable to offer them competitively. Likewise, while
still somewhat subjective, it is a bit more straightforward to
assess enhancements that improve reliability or serviceability
as these can be prioritized by simple breakeven calculations in
terms of savings in Service costs.

Be brutal in your classification of a “bug”. “Better” is not a bug.
First, it has to be a problem that appears likely to affect all instances of a
model number, not just a defect related to a specific serial number. The
latter are indeed still defects that may turn out to be more pervasive than
initially evident, but you will invariably have so many examples of the
model-number-related issues to address that it is doubtful you will have
the resources to address apparently random failures. Second, it has to
be strictly non-compliant with the product’s documented requirements.
In many cases, you wrote those requirements. That is one reason you

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Continuous Improvement 101

 85

commonly find “read me” files with software releases. The seller is
simply redefining what the product is required to do. Any use of terms
like easier, nicer, faster, whatever-er is a good clue that this is not a bug.

CND (#8) is also not strictly a severity, but you will need a means of
filtering those from status reports. You could also use the “watch”
urgency classification to be discussed in a bit. Some organizations
cancel these CNDs, but that invariably just leads to myriad re-entries
and re-cancellations. In addition, deleting these defects paints an overly
optimistic picture of reality. One should rarely doubt customers claims,
and then usually to your regret. Keep them around so that one can track
their overall frequency and avoid lots of paper churning. This separate
classification lets everyone know that no one is really working on them
until better evidence becomes available.

Table 8.2 Defect Urgency Codes

Urgency Code Description

1 - Immediate Further development and/or testing, or customer
operations cannot occur until the defect has been
repaired. The defect is usually due to safety or
system-wide shutdown; the system cannot be used
until the repair has been affected. Assigned staff
should immediately stop whatever else they are
doing and work on this problem.

2 - High The defect needs to be resolved in the next
planned build. If your current task has lower
urgency, put it on hold, and do this next

3 - Medium The defect should be resolved in the normal
course of development activities but will be
required prior to project or customer signoff

4 - Low The defect should be repaired as time permits, but
typically before customer retention moneys can be
invoiced

5 - Watch CND defects will be monitored for recurrence, but
not canceled until sufficient additional incidents
provide clues allowing replication

Severity says absolutely nothing about the speed with which a
defect should be fixed; that is defined by urgency. Urgency is set by
program/project or product managers, not engineering. Of course, it is
very likely that they will elect to address the most severe defects first, but
it is quite possible for a cosmetic defect to have a relatively high

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 86

urgency, particularly when a customer’s customer is involved. Said
another way, severity is a technical call while urgency is a programmatic
call.

Your urgency default should be low. Too many program managers
cry wolf by setting urgencies far too high. They will invariably just be
ignored. One useful approach is to require program managers to
authorize fixes with associated budget. If they are not willing to pay for
it, by definition the urgency is low. The downside of this scheme is that
you can end up with extremely mad customers of cheapskate program
managers that you will eventually have to assuage by fixing the defects
anyway.

Violently reject any attempts to save money by not fixing defects. It
will not. That is why there is no “ignore” urgency classification.
Customers talk, particularly in this day of web blogs and “unauthorized”
user forums. Most contracts have some form of payment retention, so
the golden rule will burn you. Nevertheless, you need to prioritize and
schedule fixes, and you can defer enhancements forever until someone
is willing to pay for them.

To clarify further the distinction among severities, the following Table 8.3
is an example “known issues” table. You should be a strong believer in
disclosing known issues to customers. You will hear many counter
arguments, such as you are fueling your competition, scaring your
customers, etc. However, it is also likely that nothing personally makes
you madder than to spend hours with a problem and then have your
supplier’s Customer Service say, “Yea, we already know about that.”
Actually, many customer service departments will not admit it even if
they knew, but that is even more infuriating.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Continuous Improvement 101

 87

Table 8.3 Known Issues

Severity Known Issue Workaround

4

If a reading is out of range,
i.e., <4ma, >20ma, or has a
bad data flag of 22, message
contents are discarded. The
website should present an
exception message such as
out of range high or low.

5

When opening the user page
to edit, the privileges default
to ADMIN no matter what
privilege they had before.

Confirm the User privileges are as
intended before saving.

5

When you create a sensor
type that can be used with a
tank, such as depth or
temperature, the web site
generates a set of tank-
related derived readings,
whether appropriate or not.

Ignore the extra readings.

5

When the reading history
table is pivoted to
horizontal, the unit
conversions do not work.

Pivot the table back to vertical to
change the units being viewed.

6
Fonts on Owner Summary
page are not consistent.

7

Authorized agent page
during Owner's first time
registration does not have a
field for pager E-mail.

Open Edit Agent field to enter pager
E-mail address.

7
Negative values for volume
and mass are displayed on
the asset summary page.

Check the tank and sensor
parameters to ensure they are
defined correctly. A filled depth
reading greater than max height
could also result in negative values.

7

When a session times out
during the start-first time

process and the User clicks
the save button, they will
get a blank screen.

Complete start-first time before the
session times out (approx. 20

minutes). The session time out is
designed for security purposes.

7
Cannot delete an erroneous
name, e.g., for assets,
users, groups, etc.

This is by design. Subsequent
versions will allow hide/unhide. Until
then, when you need to add a "new"
whatever, instead "modify" this
erroneous entry instead.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 88

Engineering Metrics

Figures 8.1 and 8.2 show typical quality metrics for Engineering. Bugs
are considered critical if their severities are 1, 2, 3, or 4, but not 4A, and
severities 7 and 8 are understandably not even in these counts. This
particular product suffered from that syndrome of saving money by
ignoring bugs discussed earlier. Regardless of what Marketing or
Program/Product Management says, you will never get staff serious
about squelching bugs in new releases if they know you will let them
slide when they are old enough. It does not matter if the features are
infrequently used. If it’s wrong, it’s wrong.

However, be careful that you are measuring what is truly important
because your staff will modify their behavior to make themselves look
good in your metrics. One classic example of what not to measure was
“lines of code per time period per developer”. While conceived as a
measure of individual productivity, all it commonly led to was a lot of
cosmetic code content with minimal value. In fact, efficient programmers
were disadvantaged. Trying to develop individual metrics is usually a
bad idea, not because there is not a difference between programmers,
but because there are other factors that invariably have greater
influence. Another ill-fated attempt was to measure defects per time
period per programmer. Invariably, your best programmers will measure
as the worst… simply because you always assign them the toughest
tasks. Now, if there was an easy measure for “how long does it take a
programmer to fix a bug after it is found and they are allowed to work on
it”, your good programmers will invariably shine on that one. If you need
to grade your programmers, just sit through several of their design
reviews. It will become quite evident who considered appropriate
alternatives, who was efficient in implementation, who was methodical
and thorough regarding exception handling, who follows your company
design practices, etc.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Continuous Improvement 101

 89

Figure 8.1 Bug Quantity

Figure 8.2 Bug Aging

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 90

Medians, rather an averages or maximums, are the best indicator of
the age of defects. Averages are dominated by maximums, and you
will often have some very old bugs, although hopefully not as bad as this
example. Again, the focus should be on severity, not age alone.
Regardless, given comparable urgency, one should work on the old
one’s first. As noted before, you should also ignore anyone who claims
that critical bugs have low urgency.

In these examples in Figures 8.1 and 8.2 of a mature hardware system
product, over one third of the bugs were both critical and over three
years old. This mature product was getting updates about twice a year.
Once focus was applied, in the next release the median age of critical
bugs dropped from years to a few months. A couple more releases
cleared out the rest along with addressing some of those less critical as
well. One side effect of this focus on the critical bugs is that the overall
median age increased a bit, but that is less of a concern as it can simply
be fixed with more resources if desired. One should also note that these
illustrate the typical behavior of each release causing a relatively large
drop followed by a slow growth in quantity until the next release. Despite
your best efforts, the slow growth usually is the result of new bugs
introduced along with the new features and fixes in the release.

Production & Service Metrics

Pareto is your friend. Quality professionals seem to love to use the
term “Pareto analysis”. You have done it all your life. It simply means to
rank order your items and attack the most frequently occurring first.

The 80/20 (90/10?) rule is a Pareto corollary. You will get 80 to 90
percent of a result from 20 to10 percent of the effort if you focus on the
primary causes… and such is usually quite sufficient.

You will invariably have to develop some standard error codes.
When you first try to develop some quantified failure history, particularly
from the field, you will find that your service staff has very creative ways
of describing the same failure mode in radically different terminology.
This assumes you have gotten through the initial obstacle and gotten
them to record something other than the parts that they removed and
replaced (R&R). You can have senior staff review these field reports
and manually categorize them initially, but that is rather inefficient and
somewhat judgmental. Regardless, if you have to, do so and get the
Pareto process started.

You will need to normalize the raw occurrence data to determine
the dominant failure rates on a product-by-product basis. You can

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Continuous Improvement 101

 91

use monthly production quantity to normalize Work-In-Progress (WIP)
defects, monthly install quantity to normalize install defects, and total
fielded population to normalize post-install rates. Figures 8.3-8.6
illustrate some typical production and service quality metrics, again for
sophisticated hardware system products. Note that one can average
more than one defect per system, so it unfortunately is not uncommon to
have more than 100% defects per system.

Figure 8.3 Work In Progress (WIP) Defects

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 92

Figure 8.4 Install Defects

Figure 8.5 Mature Product Post Install Defects

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Continuous Improvement 101

 93

Figure 8.6 New Product Post Install Defects

It is difficult to affect the post-install defect rate of mature products,
as shown in Figure 8.5. They “sorta are what they are”. R&D
investments to reduce the dominant failure modes are usually better
spent on the next version of the product. About all you can do is to try to
make the new product’s key parts backward compatible. It is usually not
easy. Sometimes the dominant defects are truthfully cosmetic or due to
overly sensitive error reporting, but it is often hard to convince customers
of that. So, use software to mask these types of defects, as they
legitimately have no effect on customer function. For example, in many
applications, a sensor defect of a few pixels or even a single line will
have no practical effect on the calculated result, so it is perfectly
legitimate to also mask those defects from a user display.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 94

Most field defects are the result of failures in practice or process,
rather than design. That is lucky for us, because design takes much
longer to fix. So, what are some practical steps in developing corrective
actions for the items currently on the top of your ranked list of defects?

Pareto Step 1: Eliminate the opportunity for error by eliminating
the task. Examples include cloning so-called gold disks instead of
manually installing operating systems, application software, and
configuration files; quitting double-checking printers and monitors if you
do not change them at all; and building products into finished goods that
are “vanilla”, that is, not customer or site specific.

Pareto Step 2: Move the task to where it is not time-critical. Errors
often result when staff are rushed, such as at the end of any fiscal
quarter at most commercial companies. For the uninitiated, it is not
uncommon for ¼ of a fiscal quarter’s shipments to occur in the last week
of the quarter. In addition, for some reason, the bulk of service calls
occur in the last couple of hours in a day. Examples include creating
country-specific destination kits and common symptom-specific service
kits that can be prepared in advance of need.

Pareto Step 3: Define a new tool or aid. Examples include product-
specific accessory boxes so missing items are clearly visible and the use
of torque wrenches in lieu of “finger-tight”.

Pareto Step 4: Quantifiably determine what makes some workers
better than others. Invariably, they are better because they have
personally developed some different practice, skill, or knack that you can
then transfer to the others by training.

Pareto Step 5: Clarify or create better work instructions. For
example, production and service staff can have their own configuration
and test screens built into products.

Pareto Step 6: Retrain the staff. I hate to even list this. In many
places, it is the most commonly claimed corrective action, but it is mostly
an admission of management failure to determine root cause.

Revisiting the example metrics, Figures 8.3 and 8.4 demonstrate that
this continuous improvement process works for WIP and install defects,
even on mature products, as they correspond to the same product
shown in Figure 8.5. As you would expect, Figure 8.6 shows it even has
benefits post-install on newer products.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

95

Chapter 9 Performance Ranking 101

While it is expected in most companies to “pay for performance”, the
issue becomes what does one use as an equitable measurement
standard? I first encountered the scheme of staff ranking at General
Dynamics. In those days, we successfully merged the rankings of a two
thousand-person Engineering group. I am particularly comfortable with
both its equity and effectiveness. The key is that each person is
assessed with respect to what is expected of someone of that specialty
in his/her labor grade.

As a slight aside, ranking first became critical in academia
during the Vietnam era. Until then, the median grade point
average (GPA) for undergraduates at most colleges was in the
2.7-2.8 range with the top ten percent having a GPA above,
say 3.2. Vietnam-era grades became substantially inflated,
probably to keep students out of the draft, such that post-
Vietnam the median GPAs were in the 3.2 range with the top
10% above a 4.0. So, how did you decide whom to accept into
graduate programs when you had candidates that were both
pre- and post-Vietnam? You ignored GPAs and looked at their
class rank. Rank does not change with grade inflation.

The analogy to grades in personnel matters is ratings:
exceptional, outstanding, typical, whatever your particular
Human Resources department has called them. These have a
tendency to inflate as well. It is worthwhile to note that we now
have at least two generations of staff that have all been told
their entire life that they were above average. You can see
that is going to create a problem, even with engineers who
intellectually know that half of any group must be below
average by definition. I once had an Engineering manager tell
me that something was wrong with any system that required
you to tell half your staff that they were below average.

When the author went to school, a “C” was a good grade.
Most of your staff now consider that an “F”. Nevertheless,
you are also trapped with the reality that you have to pay half
of your staff below the average. Moreover, accept as a fact
that everyone knows the average pay increase each year in
your company. As such, I have stuck with my story of “‘C’ is a
good grade” and focus instead on assuring equity by using
ranking. The alternative is to tell them with ratings that they
are above average while paying them inconsistently.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 96

Ranking is one of the primary mechanisms to assure program and
product managers have comparable influence with functional
managers regarding the rating and merit increases of all staff. The
process starts with each functional department manager ranking his staff
from top to bottom. The key step is an integrated ranking meeting where
both engineering and program managers will merge these departmental
lists. You can facilitate this process by distributing index cards and data
to your managers that contains the name, department, title, and labor
grade of each of your staff. The departmental managers can then
annotate their staff ranking onto the cards so that everyone doing the
ranking knows how each originally assessed a given skill set. Merging
the departments will usually take about half a day. You might have a
neutral HR person serve as facilitator for this process. The main
objective is to assure the free and open feedback among these peers.

You will encounter both hard and easy graders, so you will collectively
be moving other manager’s staff around to assure equity. About the only
problem will be a very few staff where there will invariably be dramatic
differences in viewpoint between the functional and project managers.
These can go both directions. What you need to assure is that all are
forthright with each other and subsequently to include some of these
expressed specifics in that individual’s review, irrespective of where they
are finally ranked by the group.

When the ranking process is complete, some equity crosschecks
need to be performed. Ideally, one looks for each labor grade, each
project/product, and each supervisor group to have someone near the
top, someone near the bottom, and an average ranking near 50%. The
results will not be perfect, but any residual inequities should be real,
such as a particular project that has been shortchanged. These may be
a bit of a revelation, and you should strongly reconsider the related
assignments.

Based on the rankings, you then need to decide where to draw the
line between the performance ratings. This is not unlike the job of a
teacher deciding where to draw the line between the A’s, B’s, C’s, etc. It
depends on the number of rating classifications within your company. In
a company with theoretically five ratings, you would expect the top group
to end near the 20

th
 percentile, the next near the 50th, with the bottom

somewhere in the 80’s. Anyone that belongs in the fifth category should
have been put on a corrective action program long ago.

It has also been found useful to identify “key” and “high-potential”
employees, perhaps about 10-20% of your staff. Key staff typically
possesses unique experience that is unable to be reasonably hired,
learned in a year, taught in schools, etc. Classically, this code is used

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Performance Ranking 101

 97

by HR and senior management to make sure key staff are somewhat
protected from extreme acts. Hi-Pot’s are defined as having at least two
promotions left in their career. These are your future, so their reviews
should be carefully assessed to make sure they are being groomed, sent
for training, and the like.

Now, you can estimate an equitable merit increase by using a
simple straight-line relationship with ranking. Someone ranked at
the 50

th
 percentile would nominally deserve a raise equal to the pool

average. The person at the top should get double the average, and the
person at the bottom gets zero. However, it is not quite that simple
because one also needs to consider “penetration”. That is, how does
what the person currently makes compare to his peers in the same
department in the same labor grade?

One can then take the estimate based purely on performance and either
increase or decrease it, say, by forty percent of the pool average if one
were 0% or 100% penetrated, respectively. For example, using a pool
average of 5%, the person at the top of the ranking would get 10% if
they were currently making the average salary for their labor grade in
their department. If they were 100% penetrated, they would get 8%,
while if they were grossly underpaid compared to their peers and only
making the range minimum, they would get 12%. If they were ranked as
the middle performer, they would get 7%, 5%, or 3% if they were
penetrated 0%, 50%, and 100%, respectively. Next, the estimated merit
recommendations are clipped at the bottom typically so the smallest
raise allowed is 1 to 2% for salaried staff or, say, $0.25 for hourly staff.
Figure 9.1 shows a typical result with the desired effect of clearly paying
for performance.

Finally, these mathematical estimate guidelines are just that,
estimates. Management judgment will still need to be applied to lead to
meaningful rounded raises, to somewhat offset penetration issues that
are justified, such as remote staff in high cost areas, and the like.
However, one should not deviate very much without reassessing either
the person’s labor grade or ranking. It is sometime rather painful to pay
for performance. Nevertheless, it is absolutely necessary if you are
clearly to reward those who are making the most contribution to your
company’s success.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 98

Figure 9.1 Merit Pay versus Rank

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

99

Chapter 10 Incentive Criteria 101

As you progress upward in responsibility and labor grade within an
organization, you will often encounter some incentive or bonus plans.
Initially, you will not have much say in its details, but eventually you may.
Most companies have some sort of quantified incentive criteria so that it
is not just viewed as a beauty pageant or teacher’s pet. I recommend
three classes of objective measures: individual financial success, overall
division success, and mid-term improvements. Each class needs a
target value, preferably with scaled awards ranging from zero to, say
150% of target.

Individual Financial Success: Most staff has a clear, direct budgetary
(cost and schedule) responsibility for a specific
program(s)/project(s)/contract(s), product, or functional department.
Some will supervise those with direct responsibility. Supervisors’
objectives can simply be a weighted average of the incentives earned by
subordinates. Meaningful quantified objectives for those directly
responsible for execution are thus the key to this incentive strategy.
Objectives are being rolled up, rather than flowed down. This is a bit
unusual, but improves ownership in the results.

An annualized Cost Performance Index (CPI), excluding rate variances,
is proposed as the most meaningful indicator of individual cost control.
Recall, CPI is simply the ratio of the Budgeted Cost of Work Performed
to the Actual Cost of Work Performed, or CPI = BCWP/ACWP. Use of
an annual measure lets each staff member start the year with a clean
slate. Rate variances are excluded since most staff can only directly
control person-hours and other direct costs (ODC). Other members of
management are held accountable for rates and indirect costs. One
should also note that this strategy has the benefit of penalizing the
holding of excessive funds in management reserve or the working of
unplanned activities since such would limit everyone’s performance.
You cannot get credit for the work unless it is planned and budgeted.

Figure 10.1 is an example incentive formula. An obvious question is
“Why consider just meeting budget worthy of a more than target
payout?” The answer is that you will never see a program with
substantial development and initial shakedown ever come in under
budget, even with the best of teams and management. Obviously, such
execution performance on basic contracts mandates that you make sure
that your enhancement and service activities must provide offsetting
additional profits. Another obvious question is “What about schedule
performance?” Such invariably reflects rather quickly into cost. In

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 100

addition, if you recall from the earlier discussions in Chapter 2, a poor
Schedule Performance Indicator (SPI) can sometimes be intentional.

Figure 10.1 Individual Performance Incentive

Overall Division Success: Unfortunately, if each staff focused solely
on their individual cost performance, it could have very detrimental
effects on the company overall, whether characterized as sub-
optimizing, fiefdoms, or other undesirable descriptors. You must equally
make sure that your staff’s efforts provide the support and consideration
of the needs of their internal customers and peers. For example, if some
staff provided earlier test software that did not depend on end user
features but only checked hardware functionality, your production staff
could save substantial carrying costs and improve the division’s
profitability, although the effort obviously represents costs to an
engineering and program manager.

The second objective simply measures your Division’s profitability versus
the fiscal year business plan that is committed to Corporate. Figure 10.2
shows an example formula. Note that the payout is faster for profits
above the 100% target than the decreases for profits below. However,
one must also note that it is not uncommon that if you fail to reach even,
in the example, 70% of plan, then all bonuses, not just this measure, can
become inapplicable.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Incentive Criteria 101

 101

Figure 10.2 Group Performance Incentive

Mid-Term Improvements: Focusing solely on either of these near-term
financial measures could also lead to myopic behavior by failing to invest
in efforts providing longer-term efficiencies. Thus, engineering
management objectives needs a third class indicative of support for
peers and improved practices. In effect, you need to motivate them to
invest in activity this year that will mainly have benefits in the years
thereafter. By the nature of your staff’s roles, these are of necessity
specific to their individual areas of contribution. As such, one might ask
them to define them for themselves. The ground-rules can be relatively
simple: the results must be achievable in the year and must be worded
in a manner assessable objectively by a third party. Obviously, you
should expect them to focus on items that have high payoff and
represent non-trivial or non-routine efforts. You should advise them to
select several to improve their chances for maximizing their incentives,
since these typically will be of the form of yes or no regarding
achievement.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 102

Some examples could include:

Support for other functions:
a. Reduce spare part numbers on yy product by xx percent
b. Reduce manufacturing costs on yy product by xx

percent
c. Reduce part count on yy product by xx percent
d. Create built-in test hardware points with xx percent

coverage or test software independent of end user
functionality on xx product

e. Reduce average response time in processing whatever
paperwork by xx

f. Redesign out the top xx customer support failure modes
on product yy

g. Redesign as needed to improve MCBF by xx percent

Support for improved practices:
h. Create, document, and implement formal hardware de-

rating criteria
i. Create, document, and implement software design

practices
j. Create, document, and implement GUI design

guidelines
k. Create, document, and implement appropriate quality

metrics for engineering
l. Develop parametric estimating tools and/or factors so

that proposals can be planned and man-loaded based
on high-level technical parameters rather than
excruciating and questionable bottoms-up details.

My recommendation is that you give equal weight to each of these
three classes of measure: individual, group, and mid-term.
However, that will depend on your company’s culture. Most U.S.
companies focus on the first class, most Japanese companies focus on
the second, and when I was working as a functional manager, I needed
some hook to get staff to work on the third. Do not worry; there is not a
wrong answer. These are all a bonus after all. Just be careful that you
really intend to emphasize whatever you finally choose.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

103

Chapter 11 Matrix Organization 101

A matrix organizational structure’s key feature is shared
responsibilities in order to provide management the checks and
balances needed to assure simultaneously meeting both the short and
mid-term objectives needed for profitable growth. Matrix organizations
are very common in aerospace, but much less so in commercial entities.
In effect, all staff has two bosses: a program/product manager and a
functional manager. Examples of the latter are managers of electrical
engineering, software development, mechanical design, etc. It is called
a matrix because this duality of bosses is usually shown as a matrix:

Table 11.1 Boss Duality in a Matrix

 Functional

Mgr A
Functional

Mgr B
Functional

Mgr C
Etc.

Program Mgr 1
Program Mgr 2
Program Mgr 3 Skill B

working on
Program 3

Etc.

Product Mgr 1 Skill C
working on
Product 1

Product Mgr 2 Skill A
working on
Product 2

Product Mgr 3
Etc. Etc.

In practice, most programs and products employ several staff of a given
skill set, so that it is only the “lead” for that skill which has two bosses.
Most staff members just take direction from their functional lead person.

Companies in the business of delivering complex systems composed of
somewhat common products found that dedicated program or
dedicated functional organizational structures led to behaviors that
were contrary to the company’s well being. So, where does the
conflict come from? Program managers are expected to deliver systems
to their customers at the least cost and time to maximize the company’s
short-term profitability. Functional managers are to assure the

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 104

timeliness and quality of their staff’s contributions and the continuing
professional development of their staff.

Left to their own devices, program managers can be tempted to
parochially retain key staff far beyond their needs, precluding their
professional growth. They will rarely spend one penny extra on their
design in order to make sure it is easily adapted for subsequent usage
by others. They can be swayed by staff to adopt the development
environment de jour, even if that means they will not easily be able to
make use of other staff that is unfamiliar with their unique choice. On
the other hand, functional managers have been known to want to employ
every new technology coming down the pike and can be more enamored
with sophistication and complexity to demonstrate their prowess, rather
than cost effectiveness.

A matrix structure addresses these conflicting overall perspectives
by turning them into a continuing series of minor skirmishes. Let
us consider that management has to continually answer four questions:
what, when, who, and how, while dealing with two resources: $’s and
people. In a matrix, program and product managers are responsible for
“what” and “when” and control the dollars. Functional managers are
responsible for “who” and “how” and control the staff. In effect, neither
can do anything useful without the consent of the other. The ensuing
agreement is documented in a jointly negotiated program plan, such as
in Microsoft Project® or in Primavera®, as discussed extensively in
Chapter 2.

Keeping these internal contracts current is absolutely critical to
keeping each other informed and enabling each to do their
respective jobs. It is equally important that both parties continually
renegotiate in good faith and not agree to disagree. The latter leads to
meaningless plans that are, at best, poor financial scorecards of both
their failures. Instead, these plans should serve as the mutually pro-
active means to communicate actions and status with themselves and
with senior management. These contracts, embodied in plans, are the
key to achieving the balance of objectives that a matrix can provide.
Such planning is the key to being managers, rather than reacting as fire
drill monitors.

Program managers, in most companies, would be delivering
systems by tailoring and/or configuring products that were
developed by product managers spending R&D funds. Product
managers typically get those funds by negotiating a specification and
budget with senior management. Senior management in effect forces
this subcontracting to occur by usually insisting that program managers
make use of internal products. Just as program managers, product

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Matrix Organization 101

 105

managers negotiate for staff and tasks from functional managers, except
they are spending company R&D dollars rather than customer funds.

Note that the product manager’s role also fits on the program
rather than functional side of the matrix. That is, they control the
what, when, and dollars, with the objective of simultaneously addressing
the product needs of all the program managers while minimizing overall
development costs and risks. In effect, their primary role is to find and
enhance the common core among all the program requirements and to
architecture their products such that the various unique traits can be
accommodated with minimal added effort. Particularly with respect to
software, one would have to be an extreme masochist even to
contemplate having separate developments for each project. A
“product” approach is also central to reasonable factory production
efficiencies and benefits all programs by acquiring meaningful field
feedback that can improve ongoing production for subsequent
customers. Remember, these products are usually non-trivial
subsystems unto themselves that need good definition and focused
management reconciling the demands of multiple customers, internal
and external.

Collocation of a project team is beneficial, irrespective of your
organizational structure. Several studies have shown that interaction
and communication frequency is inversely proportional to the physical
distance between staff members’ offices, i.e., they talk more often if they
are closer. In addition, collocation provides more pragmatic, day-to-day
control to project management, even in environments where formal
control is more functional. It is much easier to achieve esprit de corps,
ownership, and a sense of urgency in a project or matrix structure, but
collocation aids regardless.

Even in matrix organizations, over time you will see the pendulum
of power vacillate from one side of the matrix to the other. Again,
there is no right answer, but a matrix has its merits.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

107

Chapter 12 Tailor Your Behavior to the
Software, not Vice Versa

While generally a good practice overall, I will argue vociferously that
such is the only path to success when adopting enterprise-wide systems,
such as MRP, or ERP, or Configuration Control, etc. I have been around
several unsuccessful attempts to adopt systems from SAP, but I am sure
the problem is not unique to that vendor. Rather, it is from their
approach. These providers generally tout that their system is so
adaptable that it can be configured so that you do not have to change
your existing behaviors. What they fail to emphasize is that you have to
configure every little nit and lice of your behaviors. For the companies
that I was exposed to, this generally meant dedicating at least one senior
member of every department for something on the order of a year. This
is a huge expense and does not even count the fees for the external
implementation consultants with which this staff is interfacing.

Enterprise Resource Planning (ERP) systems are a good thing. If
Finance, Engineering, Production, Service, and Sales are not working to
a common database and tracking system, myriad home grown or
specialized packages are either routinely inconsistent or duplicative at
best. Management spends a fair bit of their energies reconciling
differences between systems, while remaining unable to establish
effective feedback mechanisms.

Find the package that is least painful and adapt your behavior to it.
Notice that I did not say “the best”. I am not sure what that even means.
With my automatic controls background, I am very harsh with the
common abuse of the term “optimum”, which is the fancy semantics for
“best”. The one thing you learn quickly in automatic control courses is
that there are as many optimums as there are optimization criteria.
Therefore, my response is always, “Best in what sense?” Most cannot
answer. Those that try quickly realize that there are many, often
conflicting, criteria that they are trying to meet.

You should invariably be quite happy to find any solution. By the
way, this statement applies in general. You will rarely have the
resources to bother with “best”.

Any of the software packages you consider will add substantial
new functions that will benefit daily. Even if they did not provide
missing functionality, which they do, just eliminating multiple entries of
almost the same data and the associated attempts at reconciliation is
worth the pain of modifying your behavior.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 108

Configuring is needed, but avoid customizations, almost at any cost
in behavior change. It is not even the cost of doing the customizing that
is the problem, although that can be large as noted earlier. The real
problem comes in a few months when your vendor releases his next
upgrade with many new features that you were not even smart enough
to know you were missing. However, the upgrade invariably stomps on
your older custom features, so you again have the added expense of
more customizations, or, worse, you forego the upgrade. The latter is a
bad choice as the vendor understandably will eventually not even
support older versions, and you have lost all the benefits of buying from
a third party. They will keep providing substantial productivity-enhancing
features due to their wide customer base. Internal systems just cannot
keep up with this features race. Pick your favorite horse and ride them.

I’ve Never Found the Software that I’d Rather Write than
Buy.

Buy almost any tools and middleware that you can. You will be
assured by your staff that they can write it from scratch quicker than
learning and using the tool, but do not ever believe them. By the way,
they will tell you the same thing when they are asked to modify, fix, or
enhance the software that another employee wrote. Again, ignore them.
That existing code has stood the rigors of substantial internal tests and
end use. It may mean a bit more hours of coding, but you will save
overall.

Remember when you are down to a short list of choices, what
matters is that you choose and get on with it. As such, what follows
is a list of tools that I have found useful, but just consider them
examples. They all have competitors that you should evaluate in the
light of your own religious preferences.

Make sure you buy software maintenance. That does not preclude
use of open source tools like Apache®, Tomcat®, MySQL®, and the like
as most of the usage leaders have companies like Covalent that provide
on-call support. However, it is important that you keep these tools
current. Most understandably respond to a bug fix request with a
demand that you update to their current version, as they have often fixed
it in the interim.

The main reason to buy, rather than write, is that you would never
keep up in the features race, even if you could match them originally.
Typically, these new features, along with bug fixes, come with software
maintenance contracts. Nowadays, I do not think anyone would be

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Tailor Your Behavior to the Software, not Vice Versa

 109

stupid enough to write his or her own database program, but I had to
fend that off several times.

Recommended Tools

GUI Prototyping: Adobe/Macromedia’s Dreamweaver® has already
been mentioned several times.

List/Table Middleware: Actuate’s Formula One® is an excellent servlet
that literally provides an Excel clone embedded into your Java
applications, replete with graphing, sorting, math, etc.

Specialized Routines: Make it a habit to do an internet search for
applets, servlets, and that ilk whenever your staff needs to do something
outside your company’s special knowledge. I have commonly used
them for communication protocols, time setting, automated backup, file
transfer, etc. They may be small in scope but, as always, they include
tons of unique exception conditions handling that your staff does not
need to learn the hard way.

Simplified English Checker: Boeing provides a tool that enforces this
aerospace standard, but it should be considered by anyone producing
manuals or help screens, particularly if you anticipate translation.
“Simplified English” has a greatly restricted vocabulary and enforces
readability. (My text would never pass.) A notable feature is that there
is one and only one word available for a given action. For example,
mixed usage of stop, halt, quit, end, etc. can be very confusing when you
want to translate, or even in English for users who are searching for
hidden meanings in your semantics.

3-D Parametric Computer-Aided-Design (CAD): I prefer SolidWorks®
(because I am cheap), but PTC’s Pro-Engineer® remains quite good.
Alibre® is an even more affordable parametric solids package. These
tools may require you to adapt your configuration management and
documentation practices to accommodate the fact that it is now really the
solid model that requires control, not any particular view. Regardless,
the parametric flexibility for changes is worth it.

Database: Oracle® seems to be the defacto leader, which I have used
many times successfully. Microsoft keeps trying by enhancing Sybase’s
SQL Server®. As an aside, do not pay any attention to software list
prices, provided that you build systems where both vendors remain
viable options.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 110

Report Writer: Business Objects’ Crystal Reports® seems to be the
market leader, although there are several others that are worthwhile. I
would particularly suggest that you focus on enabling end users to
dynamically define reports on the fly with the cosmetics of their
choosing. You will never keep up with their demands. Your job should
be to assure that the database has the underlying information that they
need.

You will also need a set of internal standardized reports to
uncouple problems in the reports from problems in
generating the source data. Otherwise, your poor report
staff will be deemed guilty until they prove their innocence
when trying to debug and integrate new system features. It is
an undue burden on them and wastes schedule that should be
spent solving the real problems.

Automated GUI Testers: Emperix’s e-Test Suite® has been effective.
Its greatest payoff results from confidence that the testing is thorough
and consistent, not just its speed. Without such a tool, people tend to
test until they are tired. In particular, they get lax in testing all the
exception conditions because they rarely encounter a problem, at least
recently. The key feature you want to look for in these tools is that they
actually interpret the underlying HTML code, rather than depend on
matching localized bitmaps. The first generation of testers mostly did
the latter and thus was sensitive to the slightest change in screen layout.
As such, it was almost impossible to keep your test scripts current with
an evolving or tailorable product.

Lint and Leak Detectors: IBM Rational’s Purify® is a super code
quality checker. You should run it, or a competitor, on any code before
you even spend much time testing. It goes without saying that coders
need to fix any errors and memory leaks, but I wish I had a nickel for
every developer who said, “It’s just a warning”. You will be amazed how
much more robust your application becomes when you make all those
warnings go away.

Profilers: IBM Rational’s Quantify® is a good profiler as is Quest’s
JProbe®. IBM is bundling Purify®, Quantify®, and a code coverage
checker as Purify Plus®.

Regardless, I have long ago given up trying to find anyone who
can predict database performance in advance for a new
application. That is, they can extrapolate an existing app fairly
well, but they cannot estimate a new one. And, I have spent a
fortune trying. My conclusion is that you mainly build the
application with the flexibility and configurability you need, and

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Tailor Your Behavior to the Software, not Vice Versa

 111

then profile it. These are tools that let you know where you are
spending the most amount of time, the second most amount of
time, etc. You then restructure the top 5 to 10 culprits to speed
things up. If that is not fast enough, then throw hardware at it.
For the record, I have never had an instance where the
developer correctly guessed where his application was
spending the most time. They usually were in the top five, but
never the first.

As a corollary, so-called load testing is imperative as early as
possible since you will not be able to estimate performance.
Be particularly careful not to be too simplistic in your data, e.g.,
do not just duplicate the same data record thousands of times.
Be sure you vary all the data fields so that the processing is
duly loaded.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

113

Closing Thoughts

Recapping some of my favorite advice…

That’s a solution, not a requirement.

Ambiguity in a specification is always to the buyer’s advantage

If there is only one feature of aerospace system practice that you can
adopt, it should be design reviews.

Test to break it, not demonstrate it.

One manages “starts”, not “finishes”. You react to finishes.

Beware of the student syndrome.

Noah’s Principle: Predicting rain doesn’t count, building arks does.

There is no such thing as a constant (except maybe π and e).

GUI design should be viewed as a religious preference, not technical.
However, it is important that you express your beliefs.

Why are you showing me that slide?

Groups with full in-boxes are invariably keeping up. Flush them (the
boxes, not the groups).

Declaring victory (or the contract’s changes clause) is a manager’s best
friend.

Violently reject any attempts to “save money” by not fixing defects

Be brutal in your classification of a “bug”. “Better” is not a bug.

We now have at least two generations of staff that have all been told
their entire lives that they were above average.

Tailor your behavior to the software, not vice versa.

I’ve never found the software that I’d rather write than buy.

When you are down to a short list, what matters is that you choose and
get on with it.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

115

Additional Reading

Augustine’s Laws, Norman R. Augustine, 6th Edition, 1997, American
Institute of Aeronautics and Astronautics, Inc, New York, NY. This book
is always my first reading recommendation for any new program or
product manager, whether in aerospace or not. Commercial
bureaucracies are very similar, and politics is politics, whether national
or corporate. Mostly a well-edited compilation of short articles originally
published in the AIAA’s monthly member magazine, the content is both
insightful and hilarious. As but one more notable observation, Figure 31
on page 153 of the 6

th
 edition shows the excellent correlation (over one

hundred data points from various programs) of the fit between the
estimated time-to-go and the actual time-to-go. This scheduling “fantasy
factor” was found to equal 1.33, which is, not unexpectedly, rather close
to the median overrun… further proof that time is money.

First, Break All the Rules: What the World’s Greatest Managers Do
Differently, Marcus Buckingham & Curt Coffman, 1999, Simon &
Schuster, New York, NY. My favorite book on managing personnel,
based on over 80,000 interviews by Gallup, the authors explain why one
should not try to “fix” people but, instead, focus on their strengths and
match those to your needs.

The Engineering Design of Systems: Models and Methods, Dennis M.
Buede, 2000, John Wiley & Sons, Inc., New York, NY. This text focuses
on applying the rigor of formal modeling tools and processes to systems
development. A descendant of Structured Analysis and Design
Techniques (SADT), IDEF0 (Integrated Definition of Function Modeling)
is explained and advocated for the formal capture, evaluation, and
analysis of requirements. Such modeling techniques should be
particularly useful where, as in aerospace and defense, a very
technically astute team (typically representing the buyer) is responsible
for the independent verification and validation of systems whose
elements and subsystems are developed by others. As a side note,
there is an emerging development of an open standard systems
engineering modeling language, called SysML (see www.sysml.org),
which is a formal subset of the more widely known Unified Modeling
Language 2 (UML2) that enjoys increasing usage in the software
engineering community.

Product Design and Development, Karl T. Ulrich & Steven D. Eppinger,
3

rd
 Edition, 2003, McGraw-Hill, New York, NY. This book focuses on the

design process for commercial products, so it is a good starting point if
your focus is on the engineering of systems, rather than systems
engineering. Each chapter contains an illustrative case study, each from

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 116

a different industry having a variety of complexity, although
predominately mechanical products. Most of the content concerns the
processes involved in evolving to the most appropriate design approach,
rather than the mechanics of design implementation. Notably, Chapter
13 is a good introduction to formal design for robustness.

Project Management: a Systems Approach to Planning, Scheduling, and
Controlling, Harold Kerzner, 9

th
 Edition, 2006, John Wiley & Sons, inc.,

New York, NY. This text extensively elaborates on the organizational
and personnel issues discussed in the present Chapter 11 as well as
generically addressing the planning aspects of Chapter 2. Its final
chapter on applying Goldratt’s Critical Chain process to project
scheduling is particularly noteworthy of consideration. If you have not
yet made the move to formal project management and organization, this
text will get you started on the issues and solutions involved.

Systems Engineering and Analysis, Benjamin S. Blanchard & Wolter J.
Fabrycky, 4

th
 Edition, 2006, Pearson Prentice-Hall, Upper Saddle River,

NJ. If your interest is in systems engineering, rather than in the
engineering of systems, this is the text with which you should start. A
systems engineer can be viewed as the surrogate for the external and
internal customers of engineering. They first work with external
customers to assure appropriate and effective requirements and then
develop and assess alternative solutions. This text provides a good
overview of the analytic tools used to perform formal analytic trade-offs
among these alternatives. Systems engineers also assure due
consideration is given to a full life-cycle consideration by engineering, in
effect, by representing downstream internal customers such as
production and service. As such, the text provides both insight and the
associated analytic tools related to what are commonly called the
“-illities”: reliability, maintainability, usability, serviceability, producibility,
and affordability.

The Art of Systems Architecting, Mark Mair & Eberhardt Rechtin, 2

nd

Edition, 2000, CRC Press, Boca Raton, FL. Recall our comment in
Chapter 1 regarding the “black magic” of systems decomposition. This
book provides helpful insights into that process by advocating that
system developments require the full spectrum of skills of both architects
and engineers, directly analogous to the roles played by both for
centuries in the civil structure arena. The authors stress that a system
architect’s role involves art as much as science, but they provide the
reader with explicit heuristics or guidelines that are broadly applicable.
Almost 200 are included in their Appendix A after substantial explanation
and elaboration in the main body. They also do an excellent job of
explaining the rationale behind the differences between classical
functional decomposition and modern layered object-oriented software,

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Additional Reading

 117

particularly as it affects system modeling and design. If your focus is
mainly early in the systems development process by representing and
articulating the client’s interests, this is an excellent place to start.

The Quality Improvement Process, James F. Riley & Joseph M. Juran,
1999 (excerpted from Juran’s Quality Handbook), McGraw-Hill, New
York, NY. You will find the section entitled “The Remedial Journey”
particularly helpful in providing tools and guidance in assessing root
causes related to apparent worker errors. Besides these mechanics,
this book mainly guides you in the processes and practices needed to
establish an effective quality improvement program.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Index

 119

Index

5

50/50 rule, 35

7

7 x 7 rule, 75

9

90/10 rule, 27, 28, 90

A

acceptance, 11
action title, 73
actual cost of the work performed

(ACWP), 33
allocations, 48
ambiguity, 7
Augustine’s Laws, 33, 115
authorization, 5
automated test, 16, 110

B

Barbie® doll, 18
baseline, 25
beneficial use, 55
bids, stillborn, 47
black box, 7
black magic, 9, 116
boss duality, 103
bottoms-up estimates, 43
bounded logs, 58
bounds, vs. tolerances, 10
branching, 53
break it, 17
breakeven calculations, 84
brute force redundancy, 51
budgeted cost of the work

performed (BCWP), 33
budgeted cost of the work

scheduled (BCWS), 33
bug (not better), 84
bulletproof branch, 53
bullets, 74

C

changes clause, 19
Chicken Little, 78
clickable mockups, 64
closing out, 56
CND (could not duplicate), 18, 80
collocation, 105
company practices, 15
completed staff work, 13
configurability, 57
configuration application, 58
continuous improvement, 79, 117
Cost Performance Indicator (CPI),

33
cost variance (CV), 38
cost versus price, 48
crime of management, 23
Critical Chain, Goldratt’s, 116
Critical Design Review (CDR), 14
critical path, 28
critical task, 25
Crystal Reports®, 110
customer-definable descriptive

field, 69
customers, 55

D

date constraint, 28
day zero, 52
deadline, 25
declaring victory, 52, 56, 83
Defense Advanced Research

Projects Agency (DARPA), 50
design requirements documents, 7
design reviews, 12
destructive actions, 68
Dreamweaver®, 64, 109

E

earned value, 32
emulators, 16
enhancements, 84
Enterprise Resource Planning

(ERP), 107

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 120

estimating factors, 30
e-Test Suite®, 110
Ethernet, 63
exception conditions, 16, 18, 21,

52, 59, 109, 110

F

fail early, 11
Failure Mode and Effects Analysis,

15
fault tolerance, 50
Fault Tree Analysis, 15
FDA, 14
feature creep, 7, 20, 43, 44, 55, 64
features branch, 53
federated architectures, 51
finger pointing, 17
finish-to-finish, 25
finish-to-start, 25
First, Break All the Rules, 115
folklore, 15, 54
Formula One®, 109
full in-boxes, 77
Functional Configuration Audit

(FCA), 14
functional decomposition, 8, 116
functional requirements, 7

G

Gallup, 115
gestation periods, 43
GMT/UMT, 60, 70
god processes, 52
granularity, varying, 25
Graphical User Interface (GUI)

design, 63

H

hammock, 27
hardware maintenance, 18
high-potential staff, 97
horse charts, 73
house of cards, 48

I

IDEF0 (Integrated Definition of
Function Modeling), 115

-illities, 116

incentive criteria, 99
incremental pricing, 49
incumbents, 21, 48
interfaces, 9
ISO-9000, 2, 57

J

JProbe®, 110
Juran, 79, 117

K

key staff, 96
known issues, 86

L

labor rates
average, 42
budgeted, 42

leaving money on the table, 47
levels of effort (LOE), 28
load sharing, 51
look and feel, 64

M

management reserve, 44
mandatory fields, 68
matrix organizational structure, 103
medians, 90
mid-term improvements, 101
milestone, 25

N

Noah's Principle, 32, 43
NTF (no trouble found), 18, 80

O

omniscient, 17
open source, 108
Oracle®, 109
other direct costs (ODC), 28
overheads, 48
overrun, 19, 23, 33, 43, 44, 47, 65,

115

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Index

 121

P

Parametric 3-D Computer-Aided-
Design (CAD, 109

Pareto analysis, 90
penetration, 97
performance variance, 42
post-install, 93
Preliminary Design Review (PDR),

13
presentations, 73
Primavera®, 23
Product Design and Development,

115
product specifications, 10
Production Configuration Audit

(PCA), 14
Project Management: a Systems

Approach, 116
Project®, Microsoft, 23
proposal plans, 29
Purify®, 110

Q

qualification, 9
quality metrics, 88
Quantify®, 110

R

R&R (remove and replace), 18
rate variance, 42
religious preference, 63
resource

bound, 26
leveling, 26
link, 26

reuse, 10
risk

analysis, 15
mitigation, 15, 45

rolling wave, 26
RTOK (retest OK), 18, 80

S

Schedule Performance Indicator
(SPI), 33

schedule variance (SV), 38
severity, 81
should cost, 32

similarity, 15
Simplified English, 109
simultaneous tasks, 26
software design guidelines, 57
software maintenance, 18
solution, not a requirement, 7
specification

functional, 7
product, 10
top-level, 13

split, 25
SQL Server®, 109
staff ranking, 95
start-to-start, 25
Statistical Total at Completion

(STAC), 38
store-and-forward, 51
student syndrome, 27, 43
subordinate prevails, 19
substantial completion, 55
SysML (systems engineering

modeling language), 115
System Design Review (SDR), 13
Systems Engineering and Analysis,

116

T

TBD, 60
technical analyses, 15
test, 16
The Art of Systems Architecting,

116
The Engineering Design of

Systems, 115
The Quality Improvement Process,

117
The Remedial Journey, 117
tolerances, vs. bounds, 10
traceability matrices, 14
tracking Gantt chart, 23

U

ultimatums, 55
Unified Modeling Language 2

(UML2), 115
unique error code ID, 59
unk-unks, 45
urgency, 85
used hardware, 19

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 122

V

validation, 9
verification, 11
vertical waterfalls, 27

W

white box, 7
will cost, 32
WIP (work-in-progress), 91

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

123

About the Author

James T. Karam, Jr. obtained his B.S. in Mechanical Engineering from
the University of Arkansas in 1964 and his M.S. in Aerospace
Engineering from the Air Force Institute of Technology (AFIT) at Wright-
Patterson AFB, OH in 1966. He started his professional career as an
R&D officer in the U.S. Air Force, serving for 14 years. His first
assignment was as a Development Engineer at the Air Force Plant
Representatives Office at Lockheed Missiles and Space Company
developing military satellite systems. After obtaining his PhD from
Purdue University in 1972 specializing in automatic control, he returned
to AFIT, becoming an Associate Professor. He then became a Program
Manager at the Defense Advanced Research Projects Agency (DARPA)
where he conceived and executed three major advanced cruise missile
technology thrusts.

In 1978, Jim joined General Dynamics Convair Division, soon becoming
their Director of Systems Engineering; then Program Director for a
version of the Tomahawk Cruise Missile; and then the Director of the All-
Up-Round Systems Engineering and Integration Agent, providing
technical direction for the design baselines of all 44 contractors of all
Tomahawk variants.

In 1984, Jim joined Philips Medical Systems, Inc. as their Director of
Engineering developing advanced image processing products for Digital
Subtraction Angiography and Computed Radiography. Returning to
aerospace in 1987, Jim became VP, San Diego Operations for the
Advanced Systems Division (ASD) of United Technologies Corporation
(UTC). Among other products, ASD developed the payloads for
Northrop’s Tri-Service Standoff Attack Missile (TSSAM).

When peace broke out in the nineties, Jim rejoined the commercial world
as VP, Systems Engineering of Sony Corporation of America’s Business
& Professional Products Group where his team developed DirecTV’s
Broadcast Control Subsystem and non-linear, disk-based video servers.
He then became VP of Operations for Lunar Corporation where he had
cradle-to-grave responsibility for all product-related activities of this bone
densitometry market leader.

Jim then gambled as VP, Operations with Cybersensor, Inc, a dot-com
startup providing remote monitoring of high-value assets such as
pipeline compressors. Rejoining the real world, Jim ended his employed
career as the Sr. VP, Engineering and Program Management for Cubic
Transportations Systems, refreshing the entire product line of the

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

 124

dominant supplier of automated fare collection systems for transit
agencies worldwide.

While academically an ME, most would guess that Jim was an EE. Jim
just stayed a student and let his staff teach him. Lately, he has most
enjoyed returning the favor as a mentor to those of his staff who are
becoming the new leaders. This book is just another step in that
direction.

Since 2005, Jim has semi-retired to Weeki Wachee, FL with his lovely
wife Alicia. He volunteers with the Service Corps of Retired Executives
(SCORE) helping entrepreneurs to start up and run small businesses.
More details, both professional and personal, may be found at his
consulting website, www.karam.com.

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Downloaded From: http://ebooks.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/books/802582/ on 04/17/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

