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A completely revised and updated edition of a bestseller, Maintenance, Replacement, and 
Reliability: Theory and Applications, Second Edition supplies the tools needed for making 
data-driven physical asset management decisions. The well-received first edition quickly 
became a mainstay for professors, students, and professionals, with its clear presentation 
of concepts immediately applicable to real-life situations. However, research is ongoing and 
relentless—in only a few short years, much has changed.

See What’s New in the Second Edition:
New Topics
•	 The role of maintenance in sustainability issues
•	 PAS 55, a framework for optimizing management assets
•	 Data management issues, including cases where data are unavailable or sparse
•	 How candidates for component replacement can be prioritized using the Jack-knife         

diagram

New Appendices
•	 Maximum Likelihood Estimated (MLE)
•	 Markov chains and knowledge elicitation procedures based on a Bayesian approach 

to parameter estimation
•	 E-learning materials now supplement two previous appendices (Statistics Primer and       

Weibull Analysis)
•	 Updated the appendix List of Applications of Maintenance Decision Optimization    

Models

Firmly based on the results of real-world research in physical asset management, the book 
focuses on data-driven tools for asset management decisions. It provides a solid theoretical 
foundation for various tools (mathematical models) that, in turn, can be used to optimize a 
variety of key maintenance/replacement/reliability decisions. It presents cases that illustrate 
the application of these tools in a variety of settings, such as food processing, petrochemi-
cal, steel and pharmaceutical industries, as well as the military, mining, and transportation 
(land and air) sectors.

Based on the authors’ experience, the second edition maintains the format that made the 
previous edition so popular. It covers theories and methodologies grounded in the real 
world. Simply stated, no other book available addresses the range of methodologies asso-
ciated with, or focusing on, tools to ensure that asset management decisions are optimized 
over the product’s life cycle. And then presents them in an easily digestable and immedi-
ately applicable way.
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Preface for the First Edition
The purpose of this book is to provide readers with the tools needed for making data-
driven physical asset management decisions. It grew out of lectures given to under-
graduate and postgraduate students of various engineering disciplines or operational 
research, and from continuing professional development courses for managers, pro-
fessionals, and engineers interested in decision analysis of maintenance and asset 
management. The contents have been used to support such courses, conducted by 
both authors individually or together, on numerous occasions in different parts of the 
world over the years. The presentation of the decision models discussed in Chapters 
2 through 5 follows a structure comprising: Statement of Problem, Construction of 
Model, Numerical Example, and Further Comments. In addition, the application 
of each model is illustrated with at least one example—the data in most of these 
illustrative examples have been sanitized to maintain the confidentiality of the com-
panies where the studies were originally undertaken.

This book is solidly based on the results of real-world research in physical asset 
management (PAM), including applications of the models presented in the text. The 
new knowledge thus created is firmly rooted in reality, and it appears for the first 
time in book form. Among the materials included in this book are models relating to 
spare-parts provisioning, condition-based maintenance, and replacement of equip-
ment with varying levels of utilization. The risk of failure, characterized by the haz-
ard function, is an important element in many of the models presented in this book. It 
is determined by fitting a suitable statistical model to life data. As Abernethy states, 
“Weibull analysis is the leading method in the world for fitting life data” (page 1-1, 
The New Weibull Handbook, second edition, Gulf Publishing Company, Houston, 
TX, 1996); Appendix 2 addresses Weibull analysis. This appendix contains a section 
that deals with trend analysis of life data, a vital issue to consider before undertaking 
a Weibull analysis.

To eliminate the tedium of performing the analysis manually, software that imple-
ments many of the procedures and models featured in this book has been developed. 
The educational versions of such software are packaged into MORE (Maintence, 
Optimization, and Reliability Engineering), tools that can be downloaded free from 
the publisher’s Web site at http://www.crcpress.com/product/isbn/9781466554856. 
These software packages include:

•	 OREST (acronym for Optimal Replacement of Equipment in the Short 
Term)—introduced in Chapter 2, Section 2.14

•	 SMS (acronym for Spares Management Software)—introduced in Chapter 
2, Section 2.12.4

•	 PERDEC (acronym for Plant and Equipment Replacement Decisions) and 
AGE/CON (based on the French term L’Age Économique)—introduced in 
Chapter 4, Section 4.7

•	 Workshop Simulator—introduced in Chapter 5, Section 5.4.3
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•	 Crew Size Optimizer—introduced in Chapter 5, Section 5.6.3
•	 WeibullSoft—introduced in Appendix 2, Section A2.6

This book can be used as a textbook for a one-semester senior undergraduate or 
postgraduate course on maintenance decision analysis. Problem sets with answers 
are provided at the end of each chapter that presents the decision tools. Additional 
resources are available to support the use of this book. These include an extensive set of 
PowerPoint slides covering the various chapters and Appendices 1, 2, and 6, and a solu-
tions manual for the problems in the book. Instructors who adopt the book can obtain 
these resources by contacting Susie Carlisle at susie.carlisle@taylorandfrancis.com.

If the book is used as a teaching text, many of the “Further Comments” sections 
should generate sufficient ideas for the reader to specify problems different from 
those given in the text, so that he can then practice the construction of mathematical 
models.

The book can also be used for a 3- to 4-day continuing professional development 
course for maintenance and reliability professionals. Such students may wish to omit 
the details on the formulation of the models and just focus on the “Applications” 
sections. They are advised to delve into the models only when they are prepared to 
invest the time and effort necessary to understand the underpinning theories—to 
borrow a statement articulated by an anonymous high school teacher, “Mathematical 
modeling is not a spectator sport.”

The real-world applications given in Chapters 2 to 5 highlight the practical uses 
of the decision tools presented in this book. Readers interested in exploring the pos-
sibility of applying these tools or their extensions to address specific problems may 
find it useful to refer to the expanded list of applications given in Appendix 7.

With much data becoming available, we often find ourselves in the bewildering 
position of being data rich but information poor. We may have all the raw data we 
will ever need at our fingertips. However, unless we can interpret and use such data 
intelligently, it is of little use. To transform the data into information useful for deci-
sion making, we need the appropriate tools, such as those presented in this book.

The more you do, the more you can do. We suggest that maintenance and reli-
ability professionals apply the knowledge acquired in this book initially to address 
a simple maintenance problem within their organization. In this manner, they can 
gain confidence in using the tools featured in this book, and later apply them in more 
challenging situations.

Andrew K.S. Jardine and Albert H.C. Tsang, 2005
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Preface for the Second Edition
When we produced the first edition of this book in 2006, it was for the purpose of 
providing readers with the tools needed for making evidence-based asset manage-
ment decisions. We certainly succeeded! Colleagues, students, and practicing main-
tenance and reliability engineers have used our ideas in real-life situations and cited 
us in their studies. They have told us how important our book has been to them. 
However, research is ongoing and relentless. In only a few short years, things have 
changed, and we are delighted to have the opportunity to prepare a second edition. 
We want our work to have ongoing relevance to the asset management community. 

There is a developing demand in universities and colleges for courses, including 
graduate programs, in the general areas of Reliability, Maintainability, Enterprise 
Asset Management, Physical Asset Management, and Reliability and Maintainability 
Engineering. We know from talking to reliability and maintenance professionals 
that there is also a burgeoning demand for educational tools that can be used to 
optimize their real-world asset management decisions. Since much of our material 
is based on lectures given to undergraduate and postgraduate students of various 
engineering disciplines or operational research, and on materials used in profes-
sional development courses given to asset management stakeholders such as man-
agers, professionals, and engineers interested in decision analysis of maintenance 
and asset management, we are secure in the knowledge that this second edition has 
continued relevance.

We developed software to implement procedures and models presented in the 
first edition. This software has been regularly updated, and the most recent educa-
tional versions are available free on the publisher’s Web site. In this edition, these 
tools are used in the following applications: optimizing life cycle costing decisions; 
optimizing maintenance tactics such as preventive replacement strategies; optimiz-
ing inspection policies such as predictive maintenance and failure finding intervals; 
and optimizing resource requirements such as establishing maintenance crew sizes.

As the book focuses on tools for asset management decisions that are data driven, 
it provides a solid theoretical foundation for various tools (mathematical models) 
that, in turn, can be used to optimize a variety of key maintenance/replacement/
reliability decisions. The effectiveness of these tools is demonstrated by cases illus-
trating their application in a variety of settings, including food processing, petro-
chemical, steel and pharmaceutical industries, as well as the military, mining, and 
transportation (land and air) sectors. All applications are those in which we have 
been personally involved as consultants/advisors to industry; thus, our theories and 
methodologies are grounded in the real world. Simply stated, no other book on the 
market addresses the range of methodologies associated with, or focusing on, tools to 
ensure that asset management decisions are optimized over their life cycle. 

What is different about this edition? Many parts of the book have been updated, 
and new materials have been added. Chapter 1 has three new sections: (1) the role 
of maintenance in sustainability issues, (2) PAS 55, a framework for optimizing 
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management of assets, and (3) data management issues, including cases where data 
are unavailable or sparse. Chapter 2 now discusses how candidates for component 
replacement can be prioritized using the Jack-knife diagram. Three new appendices 
support the tools introduced in the book: Maximum Likelihood Estimator (MLE), 
Markov chains and knowledge elicitation procedures based on a Bayesian approach 
to parameter estimation. E-learning materials now supplement two previous appen-
dices (Statistics Primer and Weibull Analysis). Finally, we have updated the appen-
dix “List of Applications of Maintenance Decision Optimization Models.” 

The book will be a valuable textbook for undergraduate or postgraduate courses 
on maintenance decision analysis; problem sets with answers are provided at the 
end of each chapter, and additional resources are available, including an extensive 
set of PowerPoint slides and a solutions manual. Instructors who adopt the book can 
obtain these resources from the publisher’s Web site. The book is also appropriate for 
three to four-day continuing professional development courses for maintenance and 
reliability professionals. Outside the classroom, we expect that upper level under-
graduate engineering students and graduate students of management who focus 
on operations management and engineering graduate students addressing issues of 
maintenance and reliability engineering will use the book as a reference, as will 
executives responsible for the construction, management, and disposal of all asset 
classes (such as plant, equipment, and IT assets), consultants responsible for opti-
mizing life cycle decisions for clients and maintenance, and reliability professionals 
within an organization.

We are happy to offer an updated and enhanced version of an important resource 
for thousands of maintenance engineers. 

Andrew K.S. Jardine and Albert H.C. Tsang, 2013
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Abstract
Reliability-centered maintenance (RCM) determines the type of maintenance tac-
tics to be applied to an asset for preserving system function. While it answers the 
question of “What type of maintenance action needs to be taken?” the issue of when 
to perform the recommended maintenance action that will produce the best results 
remains to be addressed. Taking a longer-term perspective, we have to make deci-
sions on asset replacement in the best interests of the organization, and determine 
the resource requirements of asset management that will meet the business needs 
of organizations cost-effectively. This book shows how evidence-based asset man-
agement procedures and tools can be used to address these important optimization 
issues in the organization’s pursuit of excellence in asset management.

A framework that organizes the key areas of maintenance and replacement deci-
sions is presented in the beginning, setting the scene for the range of problems 
covered in the book. This is followed with discussions that highlight the principles 
associated with optimization, model construction, and analysis. The problem areas 
studied include preventive replacement intervals, inspection frequencies, condition-
based maintenance actions, capital equipment replacement, and maintenance 
resource requirements. The models presented are firmly rooted in reality, as they are 
based on the results of real-world research and applications. The relevant statistics, 
Weibull analysis tools, probability theories, knowledge elicitation procedure, and 
time value of money concepts that support formulation of maintenance models are 
given in the appendices.

There is a developing demand in universities, colleges, and professional bod-
ies for courses in the general areas of Reliability/Maintainability/Enterprise Asset 
Management/Physical Asset Management/Reliability and Maintainability Engineer
ing. This book will have a significant role to play in such courses. It will also meet 
the increasing demand of practicing maintenance and reliability professionals for 
knowledge of tools that can be used to optimize their maintenance and reliability 
decisions.
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1 Introduction

The two rules of good modeling:

•	 Clearly define the question to be answered with the model
•	 Make the model no more complex than necessary to answer the question

—John Harte

1.1 � FROM MAINTENANCE MANAGEMENT TO 
PHYSICAL ASSET MANAGEMENT

According to the classic view, the role of maintenance is to fix broken items. Taking 
such a narrow perspective, maintenance activities will be confined to the reactive 
tasks of repair actions or item replacement triggered by failures. Thus, this approach 
is known as reactive maintenance, breakdown maintenance, or corrective mainte-
nance. A more recent view of maintenance is defined by Geraerds (1985) as “all 
activities aimed at keeping an item in, or restoring it to, the physical state considered 
necessary for the fulfillment of its production function.” Obviously, the scope of 
this enlarged view also includes proactive tasks, such as routine servicing and peri-
odic inspection, preventive replacement, and condition monitoring. Depending on 
the deployment of responsibilities within the organization, these maintenance tasks 
may be shared by several departments. For instance, in an organization practicing 
total productive maintenance (TPM), the routine servicing and periodic inspection 
of equipment are handled by the operating personnel, whereas overhauls and major 
repairs are done by the maintenance department (Nakajima 1988). TPM will be dis-
cussed in more detail in Section 1.5.

If the strategic dimension of maintenance is also taken into account, it should 
cover those decisions taken to shape the future maintenance requirements of the 
organization. Equipment replacement decisions and design modifications to enhance 
equipment reliability and maintainability are examples of these activities. The 
Maintenance Engineering Society of Australia (MESA) recognizes this broader per-
spective of maintenance and defines the function as “the engineering decisions and 
associated actions necessary and sufficient for the optimization of specified capabil-
ity.” Capability, in the MESA definition, is the ability to perform a specific action 
within a range of performance levels. The characteristics of capability include func-
tion, capacity, rate, quality, responsiveness, and degradation. The scope of mainte-
nance management, therefore, should cover every stage in the life cycle of technical 
systems (plant, machinery, equipment, and facilities): specification, acquisition, 
planning, operation, performance evaluation, improvement, and disposal (Murray 
et al. 1996). When perceived in this wider context, the maintenance function is also 
known as physical asset management (PAM).
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1.2 � CHALLENGES OF PAM

The business imperative for organizations seeking to achieve performance excel-
lence demands that these organizations continuously enhance their capability to cre-
ate value for customers and improve the cost-effectiveness of their operations. PAM, 
an important support function in businesses with significant investments in plants 
and machinery, plays an important role in meeting this tall order.

The performance demanded of PAM has become more challenging as a result of 
the four developments discussed below.

1.2.1 � Emerging Trends of Operation Strategies

The conventional wisdom of embracing the concept of economy of scale is losing 
followers. An increasing number of organizations have switched to lean manufactur-
ing, just-in-time production, and six-sigma programs. These trends highlight a shift 
of emphasis from volume to quick response, elimination of waste, reduced stock 
holding, and defect prevention. With the elimination of buffers in such demand-
ing environments, breakdowns, speed loss, and erratic process yields will create 
immediate problems in the timely supply of products and services to customers. 
Installation of the right equipment and facilities, optimization of the maintenance of 
these assets, and the effective deployment of staff to perform maintenance activities 
are crucial factors to support these operation strategies.

1.2.2 � Toughening Societal Expectations

There is widespread acceptance, especially in the developed countries, of the need 
to preserve essential services, protect the environment, and safeguard people’s safety 
and health. As a result, a wide range of regulations have been enacted in these coun-
tries to control industrial pollution and prevent accidents in the workplace. Scrap, 
defects, and inefficient use of materials and energy are sources of pollution. They are 
often the result of operating plant and facilities under less than optimal conditions. 
Breakdowns of mission-critical equipment interrupt production. In chemical produc-
tion processes, a common cause of pollution is the waste material produced during 
the start-up period after production interruptions. Apart from producing waste mate-
rial, catastrophic failures of operating plants and machinery are also a major cause of 
outages of basic services, industrial accidents, and health hazards. Keeping facilities 
in optimal condition and preventing critical failures are effective means of managing 
the risks of service interruptions, pollution, and industrial accidents. These are part 
of the core functions of PAM.

1.2.3 � Technological Changes

Technology has always been a major driver of change in diverse fields. It has been 
changing at a breathtaking rate in recent decades, with no signs of slowing down 
in the foreseeable future. Maintenance is inevitably under the influence of rapid 
technological changes. Nondestructive testing, transducers, vibration measurement, 
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thermography, ferrography, and spectroscopy make it possible to perform nonintru-
sive inspection. By applying these technologies, the condition of equipment can be 
monitored continuously or intermittently while it is in operation. This has given birth 
to condition-based maintenance (CBM), an alternative to the classic time-driven 
approach to preventive maintenance.

Power electronics, programmable logic controllers, computer controls, transpon-
ders, and telecommunications systems are used to substitute electromechanical sys-
tems, producing the benefits of improved reliability and flexibility, small size, light 
weight, and low cost. Fly-by-wire technology, utilizing software-controlled elec-
tronic systems, has become a design standard for the current generation of aircraft. 
Flexible manufacturing cells and computer-integrated manufacturing systems are 
gaining acceptance in the manufacturing industry. In some of the major cities, con-
tactless smartcards have gained acceptance as a convenient means of making pay-
ments. In the electric utility industry, automation systems are available to remotely 
identify and deal with faults in the transmission and distribution network. Radio 
frequency identification (RFID) technology can be deployed to track mobile assets 
such as vehicles. Data transmitted to RFID tags from sensors embedded in mission-
critical assets can be used for health monitoring and prognosis.

The deployment of these new technologies is instrumental to enhancing system 
availability, improving cost-effectiveness, and delivering better or innovative ser-
vices to customers. The move presents new challenges to asset management. New 
knowledge has to be acquired to specify and design these new technology-enabled 
systems. New capabilities have to be developed to commission, operate, and main-
tain such new systems. During the phase-in period, interfacing old and new plants 
and equipment is another challenge to be handled by the PAM function (Tsang 2002).

1.2.4 �I ncreased Emphasis on Sustainability

Sustainability is a concept that demands all developments to be sustainable in the 
sense that they “meet the needs of the present without compromising the ability of 
future generations to meet their own needs” (Brundtland Commission Report 1987). 
There are three pillars of sustainability representing environmental, societal, and 
economic demands; these are also known as the triple bottom lines. Sustainability 
is gaining importance in today’s business environment. In response to this busi-
ness imperative, companies realize that solely focusing on operational excellence 
will no longer be sufficient to stay competitive; they need to address sustainability 
demands as business-critical issues. Regulations, social awareness and responsibil-
ity, standards, and corporate citizenship are some of the many forces that are pushing 
companies to become more sustainable. In the manufacturing sector, maintenance 
is becoming a crucial competency in realizing a sustainable society especially 
when considering the entire life cycle of products and assets. As a result, the role 
of PAM has evolved. Companies successful in their sustainability efforts adopt a 
holistic approach to managing their assets, in which PAM is not addressed in isola-
tion, but in the context of the business supported by these assets. Total cost of own-
ership, life cycle performance, energy consumption, asset disposal, and safety are 
all parameters that can be effectively optimized by the application of appropriate 
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methodologies of and tools for PAM. For example, the right maintenance approach 
can add value to the organization by enabling maintenance decision-makers to plan 
interventions that consider sustainability demands. Consequently, the integration of 
factors related to sustainability is increasingly emphasized in PAM. As such, “sus-
tainable” is enshrined as one of the key principles and attributes of successful asset 
management in PAS 55, a framework for the optimized management of physical 
assets, which will be introduced in Section 1.4.

1.3 � IMPROVING PAM

To meet the challenges identified in Section 1.2, organizations need to focus on 
improving the performance of their physical assets. This can be accomplished by 
having a clear strategy, the right people and systems, appropriate tactics, and con-
trolled work through planning and scheduling, maintenance optimization, and pro-
cess reengineering.

1.3.1 �M aintenance Excellence

A survey conducted by the Plant Engineering and Maintenance magazine 
(Robertson and Jones 2004) indicated that maintenance budgets ranged from 2% 
to 90% of the total plant operating budget, with the average being 20.8%. It can be 
reasoned that operations and maintenance represent a major cost item in equipment-
intensive industrial operations. These operations can achieve significant savings in 
operations and maintenance costs by making the right and opportune maintenance 
decisions. Unfortunately, maintenance is often the business process that has not been 
optimized. Instead of being a liability of business operations, achieving excellence 
in maintenance will pay huge dividends through reduced waste and maximized effi-
ciency and productivity, thereby improving the bottom line. Maintenance excellence 
is many things, done well. It happens when:

•	 A plant performs up to its design standards and equipment operates 
smoothly when needed

•	 Maintenance costs are within budget and investment in new assets is 
reasonable

•	 Service levels are high
•	 Turnover of maintenance, repair, and operation materials inventory is fast
•	 Tradespersons are motivated and competent

Most important of all, maintenance excellence is concerned with balancing per-
formance, risks, and the resource inputs to achieve an optimal solution. This is not an 
easy task because much of what happens in an industrial environment is character-
ized by uncertainties.

The structured approach to achieving maintenance excellence is shown in Figure 1.1 
(Campbell 1995). There are three types of goals on the route to maintenance excel-
lence (Campbell et al. 2011), and they are discussed in the sub-sections that follow.
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1.3.1.1 � Strategic
First, you must draw a map and set a course for your destination. The map comprises 
a vision of the asset management performance to be achieved and an assessment 
of the current level of performance; the difference between the two is known as 
the performance gap. The asset management strategy embraced by the organization 
informs the course of action for closing the gap. The resource requirements and time 
frame also need to be considered in developing the action plans. These management 
activities provide leadership for the maintenance effort and are depicted as the first 
layer in Figure 1.1.

1.3.1.2 � Tactical
With the assets in place to support operations, you need a work management system 
(planning and scheduling) and a materials management system to control mainte-
nance processes. Tactics to manage the risk of asset failures are selected. The options 
include time-based maintenance actions, time-based discard, CBM, run-to-failure, 
fault-finding tests, and process or equipment redesign. Data relating to equipment 
histories, warranty, and regulatory requirements, as well as the status of mainte-
nance work orders, must be documented and controlled. Typically, such data are 
managed by a computerized maintenance management system (CMMS) or enter-
prise asset management (EAM) system.

Performance indicators relating to various aspects of the maintenance service 
are tracked to evaluate the performance of asset management (see, e.g., Wireman 
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FIGURE 1.1  Structured approach to achieving maintenance excellence.
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1999). Ideally, the measurement system must be holistic, and apart from providing 
information for process control, it should also influence people’s behavior so that 
their efforts are aligned with the strategic intent of the organization’s asset manage-
ment. The balanced scorecard (Kaplan and Norton 1996) provides such an approach 
to measurement and is developed on the notion that no single measure is sufficient 
to indicate the total performance of a system. It translates the organization’s strategy 
on maintenance into operational measures in multiple dimensions (such as financial, 
safety, users, internal processes, and organizational development) that collectively 
are critical indicators of current achievements as well as powerful drivers and pre-
dictors of future asset performance. Examples of balanced scorecards for measuring 
asset management performance can be found in the work of Niven (1999) and Tsang 
and Brown (1999).

1.3.1.3 � Continuous Improvements
In pursuit of continuous improvement, two complementary methodologies that 
reflect different focuses are available to enhance the reliability (uptime) of physical 
assets. These methodologies are:

•	 Total productive maintenance (TPM)—a people-centered methodology
•	 Reliability-centered maintenance (RCM)—an asset-centered methodology

These are discussed in Sections 1.6 and 1.7, respectively.
Decisions are to be made on when to perform the selected maintenance action and 

how much resources are to be deployed to meet the expected maintenance demands. 
Instead of relying on intuition-based pronouncements, such as the strength of per-
sonalities or the number of complaints received from mechanics, fact-based argu-
ments should be used in making these maintenance decisions. Decisions driven by 
information extracted from data will lead to optimal solutions. Thus, data manage-
ment, featured in level 2 of the structured approach shown in Figure 1.1, plays an 
important role in supporting decision optimization.

1.3.2 � Quantum Leaps

Finally, by engaging the collective wisdom and experience of the entire workforce, 
adopting the best practices that exist within and outside your organization, and 
redesigning the work processes, the organization will set into motion breakthrough 
changes that make quantum leaps in asset management performance. See, for exam-
ple, Campbell (1995) for a detailed discussion of these efforts.

1.4 � PAS 55—A FRAMEWORK FOR OPTIMIZED 
MANAGEMENT OF PHYSICAL ASSETS

Details of what needs to be done in an organization adopting the structural approach 
introduced in Section 1.3 can be found in PAS 55, a Publicly Available Specification, 
the status of which is between Codes of Practice and an ISO Standard. Simply stated, 
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it offers a framework for a holistic and systematic approach to optimizing the man-
agement of physical assets. It is planned to be turned into the ISO 55000 family of 
standards in 2014. PAS 55 has two parts, namely,

•	 PAS 55-1 Asset Management Part 1: Specification for the optimized 
management of physical assets (BSI 2008a). An updated version of this 
document will be turned into ISO 55001: Requirements for good asset man-
agement practices

•	 PAS 55-2 Asset Management Part 2: Guidelines for the application of PAS 
55-1 (BSI 2008b). An updated version of this document will be turned into 
ISO 55002: Interpretation and implementation guidance for an asset man-
agement system

PAS 55-1 specifies the requirements for appropriate and effective processes to be 
found in an organization’s asset management system for physical assets. Following 
the general principles of ISO standards for management systems, it prescribes what 
has to be done, not how to do it. Justifications for the adopted practices must be docu-
mented, and evidence for what is being done must be made available for independent 
audits. As its title implies, PAS 55-2 provides guidance on implementation of PAS 
55-1 compliant asset management systems.

PAS 55 is not sector specific; rather, it is applicable to organizations with any 
type or distribution of physical assets and asset ownership structure. In other words, 
it also applies to organizations with outsourced asset management functions. The 
guiding principles embedded in the requirements include clear organization objec-
tives, good and sustainable alignment of asset investment, utilization, and care for 
these principles. To be successful, asset management must be holistic, systematic, 
systemic, risk-based, optimal and sustainable, implemented in an organization with 
top management commitment, and supported by empowered and competent employ-
ees. Asset management must be holistic in the sense that all elements of the frame-
work must be covered. Excellence in one area does not make up for a gap elsewhere. 
Although the scope of PAS 55 is the management of physical assets, its design should 
consider a broader context with other types of assets, including human, information, 
intangible, and financial assets (BSI 2008b).

1.5 � RELIABILITY THROUGH THE OPERATOR: TPM

TPM is a people-centered methodology that has proven to be effective for optimiz-
ing equipment effectiveness and eliminating breakdowns. It mobilizes the machine 
operators to play an active role in maintenance work by cultivating in these frontline 
workers a sense of ownership of the facilities they operate (Campbell 1995) and 
enlarging their job responsibilities to include routine servicing and minor repair of 
their machines. Through this type of operator participation in maintenance activities, 
TPM aims to eliminate the six big losses of equipment effectiveness (see Table 1.1; 
Nakajima 1988). In the manufacturing sector, 15% to 40% of total manufacturing 
costs are maintenance related. At least 30% of these costs can be eliminated through 
TPM.
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To achieve zero breakdowns, hidden defects in the machine need to be exposed 
and corrected before they have deteriorated to the extent that they will cause the 
machine to break down. This can be accomplished by maintaining equipment in 
good basic conditions through proper cleaning and effective lubrication, restoring 
the condition of deteriorated parts, and enhancing the operation, setup, inspec-
tion, and maintenance skills of operators. Traditionally, these duties fall outside the 
responsibilities of the machine operator, whose role is nothing else but to operate the 
machine; when it breaks down, the operator’s duty is to request maintenance to fix 
it. Thus, TPM involves a restructuring of work relating to equipment maintenance. 
Machine operators are empowered to perform routine inspection, servicing, and 
minor repairs. This concept of operator involvement in enhancing equipment well-
ness is known as autonomous maintenance. It is cultivated through 5S and CLAIR.

5S is a tool for starting the journey toward world-class competitiveness. It is a 
team effort that involves everyone in the organization to create a productive work-
place by keeping it safe, clean, and orderly. 5S stands for:

•	 Sorting
•	 Separate the needed from the not needed
•	 Identify items that you use frequently. Sort, tag, and dispose of the 

unneeded items
•	 Simplifying

•	 A place for everything, and everything in its place
•	 Once you have determined what you need, organize it and standardize 

its use to increase your effectiveness
•	 Systematic cleaning

•	 Making things ready for inspection
•	 Regular cleaning helps to solve problems before they become too serious 

by identifying sources and root causes. Having a clean, well-organized 
workplace also makes work more efficient and more productive—
whether on the production line or in customer service

•	 Standardizing
•	 Create common methods to achieve consistency

•	 Sustaining
•	 Constant maintenance, improvement, and communication

TABLE 1.1
Six Big Losses of Equipment Effectiveness
Breakdowns

Setup and adjustment

Idling and minor stoppages

Reduced speed

Defects in process

Reduced yield
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5S has become a continuous improvement process. Readers interested in 5S imple-
mentation may refer to Hirano (1990).

CLAIR is an acronym for clean, lubricate, adjust, inspect, minor repair. The con-
cept is to have operators work with maintenance toward the common goals of sta-
bilizing equipment conditions and halting accelerated deterioration. The operators 
are empowered to perform the basic tasks of cleaning, checking lubrication, simple 
adjustments, inspections and replacement of parts, minor repairs, and other simple 
maintenance tasks. By providing them with training on equipment functions and 
functional failures, the operators will also prevent failure through early detection 
and treatment of abnormal conditions.

Turning operators into active partners with maintenance and engineering to 
improve the overall performance and reliability of the equipment is a revolution-
ary concept. Thus, training, slogans, and other promotional media—activity boards, 
one-point lessons, photos, cartoons—are typically used to create and sustain the 
cultural change.

Being relieved of the routine tasks of maintenance, the experts in the maintenance 
unit can be deployed to focus on more specialized work, such as major repairs, over-
hauls, tracking and improving equipment performance, and replacement or acquisi-
tion of physical assets. Instead of having to continuously fight fires and attend to 
numerous minor chores, the unit can now devote its resources to addressing strategic 
issues such as the formulation of maintenance strategies, establishment of mainte-
nance management information systems, tracking and introduction of new mainte-
nance technologies, and training and development of production and maintenance 
workers.

A full discussion of TPM is outside the scope of this book. Readers interested in 
the topic can refer to Dillon (1997), Nakajima (1988), Tajiri and Gotoh (1992), and 
Tsang and Chan (2000).

1.6 � RELIABILITY BY DESIGN: RCM

TPM has a strong focus on people and the basics, such as cleaning, tightening, and 
lubricating, for ensuring the well-being of equipment. Its emphasis is on the early 
detection of wear out to prevent in-service failures. RCM is an alternative approach 
to enhancing asset reliability by focusing on design. It asks questions such as: Do 
we have to do maintenance at all? Will a design change eliminate the root cause of 
failure? What kind of maintenance is most likely to meet the organization’s business 
objectives?

RCM is a structured methodology for determining the maintenance requirement 
of a physical asset in its operating context. The asset can be part of a larger system. 
The primary objective of RCM is to preserve system function rather than to keep an 
asset in service. Application of the RCM requires a full understanding of the func-
tions of physical assets and the nature of failures related to these functions. It recog-
nizes that not all failures are created equal, and some failures cannot be prevented 
by overhaul or preventive replacement. Thus, maintenance actions that are not cost-
effective in preserving system function will not be performed.
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RCM can produce the following benefits:

•	 Improve understanding of the equipment—how it fails and the conse-
quences of failure

•	 Clarify the roles that operators and maintainers play in making equipment 
more reliable and less costly to operate

•	 Make the equipment safer, more environmentally friendly, more produc-
tive, more maintainable, and more economical to operate

The following results of RCM applications have been reported in various industry 
sectors (Tsang et al. 2000):

•	 Manufacturing
•	 Reduced routine preventive maintenance requirements by 50% at a 

confectionery plant
•	 Increased availability of beer packaging line by 10% in one year

•	 Utility
•	 Reduced maintenance costs by 30% to 40%
•	 Increased capacity by 2%
•	 Reduced routine maintenance by 50% on 11 kV transformers

•	 Mining
•	 Reduced annual oil filter replacement costs in haul truck fleet by 

$150,000
•	 Reduced haul truck breakdowns by 50%

•	 Military
•	 Ship availability increased from 60% to 70%
•	 Reduced ship maintenance requirements by 50%

The RCM methodology develops the appropriate maintenance tactics using a 
thorough and rigorous decision process, as shown in Figure 1.2.

Step 1: Select and prioritize equipment
	 Production and supporting processes are examined to identify key physical 

assets. These key physical assets are then prioritized according to how criti-
cal they are to operations, cost of downtime, and cost to repair.

Select 
equipment 

(assess 
criticality)

Implement
and refine the 
maintenance 

plan

Select
tactics
using

RCM logic

Identify
failure

effects and 
consequences

Identify 
failure 

modes and 
causes

Define 
functional 

failures

Define 
functions

FIGURE 1.2  RCM process.
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Step 2: Define functions and performance standards
	 The functions of each system selected for RCM analysis need to be defined. 

The functions of equipment are what it does. It is important to note that some 
systems are dormant until some other event occurs, as in safety systems. Each 
function also has a set of operating limits. These parameters define the normal 
operation of the function under a specified operating environment.

Step 3: Define functional failures
	 When the system operates outside its normal parameters, it is considered 

to have failed. Defining functional failures follows from these limits. We 
can experience our systems failing when they are high, low, on, off, open, 
closed, breached, drifting, unsteady, stuck, and so forth. Furthermore, fail-
ures can be total, partial, or intermittent.

Step 4: Identify failure modes/root causes
	 A failure mode is how the system fails to perform its function. A cylinder 

may be stuck in one position because of a lack of lubrication by the hydrau-
lic fluid in use. The functional failure in this case is the failure to provide 
linear motion, but the failure mode is the loss of lubricant properties of 
the hydraulic fluid. It should be noted that a failure may have more than 
one possible root cause. This step identifies the chain of events that happen 
when a failure occurs. These questions are relevant in the analysis: What 
conditions needed to exist? What event was necessary to trigger the failure?

Step 5: Determine failure effects and consequences
	 This step determines what will happen when a functional failure occurs. 

The severity of the failure’s effect on safety, the environment, operation, 
and maintenance is assessed.

The results of analyses made in steps 2 to 5 are documented in a failure mode, effect, 
and criticality analysis* worksheet (Stamatis 2003).

Step 6: Select maintenance tactics
	 Maintenance actions are performed to mitigate functional failures. A deci-

sion logic tree is used to select the appropriate maintenance tactics for the 
various functional failures. Before finalizing the tactic decision, the other 
technically feasible alternatives need to be considered to determine the one 
that is most economical. Figure 1.3 summarizes the RCM logic. If time-
based maintenance intervention or periodic inspection has been selected, 
the frequency of such a task needs to be determined to achieve optimal 
results. This will be discussed in the subsequent chapters of this book.

Step 7: Implement and refine the maintenance plan
	 The maintenance plan developed in step 6 is implemented, and the results 

are reviewed to determine if the plan needs to be refined or modified to 
ensure its effectiveness.

*	Apart from the failure mode, effect, and criticality analysis, there are other methodologies for assess-
ing and managing risks relating to the operation and maintenance of physical assets. These include 
hazard and operability studies (Kletz 1999), fault tree analysis (CAN/CSA-Q636-93 1993), and, in the 
case of the petrochemical industries, risk-based inspection (ASME 2003).
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Implementation of RCM requires the formation of a multidisciplinary team with 
members knowledgeable in the day-to-day operations of the plant and equipment, as 
well as in the details of the equipment itself. This demands at least one operator and 
one maintainer. Members with knowledge of planning and scheduling and overall 
maintenance operations and capabilities are also needed to ensure that the tasks 
are truly doable in the plant environment. Thus, senior-level operations and mainte-
nance representation is also needed. Finally, detailed equipment design knowledge 
is important to the team. This knowledge requirement generates the need for an 
engineer or senior technician/technologist from maintenance or production.

Before the analysis begins, the RCM team should determine the plant baseline 
measures for reliability and availability, as well as the coverage and compliance of a 
proactive maintenance program. These measures will be used later when comparing 
what has been changed and the success it is achieving.

Further discussion of RCM is beyond the scope of this book. Readers interested in 
the topic can refer to SAE JA1011 (1999), Moubray (1997), and Smith and Hinchliffe 
(2004).

1.7 � OPTIMIZING MAINTENANCE AND REPLACEMENT DECISIONS

RCM determines the type of maintenance tactics to be applied to an asset, while it 
answers the question of “What type of maintenance action needs to be taken?” The 
issue of when to perform the recommended maintenance action that will produce 
the best results possible remains to be addressed. Taking a longer-term perspective, 
we have to make decisions on asset replacement in the best interests of the organiza-
tion and determine the resource requirements of the maintenance operation that will 
meet business needs in a cost-effective manner. The optimization of these tactical 
decisions is the important issue addressed in the top of the “continuous improve-
ments” layer of the maintenance excellence pyramid shown in Figure 1.1.

Traditionally, maintenance practitioners in industry are expected to cope with 
maintenance problems without seeking to operate in an optimal manner. For exam-
ple, many preventive maintenance schemes are put into operation with only a slight, 
if any, quantitative approach to the scheme. As a consequence, no one is very sure 
of just what the best frequency of inspection is or what should be inspected, and as a 
result, these schemes are cancelled because it is said that they cost too much. Clearly, 
some form of balance between the frequency of inspection and the returns from it 
is required (e.g., fewer breakdowns because minor faults are detected before they 
result in costly repairs). In the subsequent chapters of this book, we will examine 
various maintenance problem areas, noting the conflicts that ought to be considered 
and illustrating how they can be resolved in a quantitative manner to achieve optimal 
or near-optimal solutions to the problems. Thus, we indicate ways in which mainte-
nance decisions can be optimized, wherein optimization is defined as attempting to 
resolve the conflicts of a decision situation in such a way that the variables under the 
control of the decision-maker take the best possible values. Because the qualifier best 
is used, it is necessary to define its meaning in the context of maintenance. This will 
be covered in Section 1.8 of this chapter.
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Asset managers who wish to optimize the life cycle value of the organization’s 
human and physical assets must consider four key decision areas, which are shown 
as columns in Figure 1.4. The first column deals with component replacement; the 
second column deals with inspection activities, including condition monitoring; the 
third column deals with replacement of capital equipment; and the last column cov-
ers decisions concerning resources required for maintenance and their location.

Figure 1.4 forms the framework for Chapters 2 to 5. These chapters are devoted to 
the construction of mathematical models that are appropriate for different problem 
situations. The purpose of these mathematical models is to enable the consequences 
of alternative maintenance decisions to be evaluated fairly rapidly to determine opti-
mal decisions in relation to an objective. The problem areas covered are as follows:

Chapter 2: Component Replacement Decisions
	 This chapter covers the determination of replacement intervals for equip-

ment (the operating costs of which increase with use), the interval between 
preventive replacements of items subject to breakdown (also known as the 
group or block policy), and the preventive replacement age of items subject 
to breakdown.

Chapter 3: Inspection Decisions
	 This chapter covers the determination of inspection frequencies for com-

plex equipment used continuously, fault-finding intervals for protective 
devices, and CBM decisions.

Database (CMM/EAM/ERP System)

Optimizing Equipment Maintenance and Replacement Decisions

Component 
Replacement

Inspection 
Procedures

Capital Equipment 
Replacement

Resource 
Requirements

1. Economic life
a) Constant annual 

utilization
b) Varying annual 

utilization
c) Technological 

improvement
2. Repair vs replace
3. Software: PERDEC      

& AGE/CON

1. Workshop machines/ 
Crew sizes

2. Right sizing 
equipment
a) Own equipment
b) Contracting out 

peaks in demand
3. Lease/Buy
4. Software: workshop 

simulator and crew 
size optimizer

1. Best preventive 
replacement time
a) Deterministic 

performance 
deterioration

b) Replace only on 
failure

c) Constant interval
d) Age-based

2. Spare parts 
provisioning

3. Repairable systems
4. Glasser’s graphs
5. Software: SMS and 

OREST

1. Inspection frequency 
for a system
a) Profit 

maximization
b) Availability 

maximization
2. A, B, C, D Class 

inspection intervals
3. FFI’s for protective 

devices
4. Condition-based 

maintenance 
5. Blended health 

monitoring and age 
replacement

6. Software: EXAKT

Stochastic processes
(for CBM Optimization)

Probability and statistics 
(Weibull analysis

including software 
WeibullSoft)

Time value of money 
(Discounted cash flow)

Queuing theory 
simulation

FIGURE 1.4  Key areas of maintenance and replacement decisions.
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Chapter 4: Capital Equipment Replacement Decisions
	 This chapter is concerned with determining the replacement intervals for 

capital equipment (the utilization pattern of which is fixed), replacement 
intervals for capital equipment (the utilization pattern of which is variable), 
and replacement policy for capital equipment taking into account techno-
logical improvements.

Chapter 5: Maintenance Resource Requirements
	 This chapter discusses problems relating to the determination of the mix 

of equipment to be installed in a maintenance workshop, the right size and 
composition of a maintenance crew, the extent of use of subcontracting 
opportunities, and lease or buy decisions.

In Chapters 2 to 5, we use a common format to present each decision optimization 
model. First, we provide a statement of the decision problem. A model that represents 
the essence of the decision problem is then presented. This is followed by a numeri-
cal example to illustrate the use of this model. To avoid unnecessary complications in 
developing the analytical model, various assumptions are made that, in practice, may 
not be applicable in some situations. Because the assumptions used in constructing the 
model are clearly stated, it is hoped that the reader will then be able to extend the simple 
model to fit specific problems. To this end, we provide comments on further extension of 
the model to represent more details of the reality, if deemed necessary. For each model, 
with a few exceptions, we also provide one or more real-world application examples.

Some of these decision optimization models are made available as software pro-
grams that can be downloaded from the publisher’s web site. In such cases, use of 
the software program in decision analysis is explained with at least one illustrative 
example.

Appendices 1 through 6 are included in the book to give a brief introduction to cer-
tain basic concepts and tools that must be understood before we can proceed to deter-
mine optimal maintenance procedures. Because uncertainty abounds in the area of 
maintenance (e.g., uncertainty about when equipment will fail), knowledge of statistics 
and probability is required. An introduction to relevant statistics is given in Appendix 1. 
Modeling the risk of failure is a crucial step in optimizing replacement of components 
that are subject to failure. Weibull analysis, a powerful tool for modeling such risks, 
is introduced in Appendix 2. Maximum likelihood estimator is another widely used 
approach to estimating distribution parameters, but it involves computationally intensive 
operations. This approach is introduced in Appendix 3. Appendix 4 introduces Markov 
chains, which is an important tool used in creating the decision model for optimization 
of condition-based maintenance decisions. The concept of knowledge elicitation used for 
estimating the parameter of a distribution when data are sparse is presented in Appendix 
5. Appendix 6 deals with the present value concept. When making replacement decisions 
for capital equipment, we take account of the fact that the value of a sum of money to be 
spent or received in the future is less than that if it is spent or received now. The present 
value concept is used to cover this fact. Although applications of the tools featured in 
each chapter are highlighted in Chapters 2 to 5, an expanded list of such applications is 
provided in Appendix 7. It serves to illustrate the breadth of actual applications that use 
the models or procedures presented in the book, or their extensions.
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Optimizing maintenance and replacement decisions needs good quality and 
timely data. This need is depicted as the foundation of the framework shown in 
Figure 1.4. Such data are typically maintained in the database of the CMMS, EAM, 
or enterprise resource planning (ERP). Readers interested in discussions of CMMS, 
EAM, and ERP in the context of PAM are referred to articles published on Web sites 
such as www.plant-maintenance​.com and www.reliabilityweb.com.

1.8 � THE QUANTITATIVE APPROACH

The primary purpose of using any quantitative discipline, such as industrial engi-
neering, operational research, or systems analysis, is to assist management in deci-
sion making by using known facts more effectively, by increasing the proportion of 
factual knowledge, and by reducing reliance on subjective judgment.

In the context of maintenance decision making, it is often found that very little 
factual knowledge is available. Although abundant data may have been captured in 
the organization’s CMMS, EAM, or ERP, asset managers may not know the data-
mining technique to extract useful knowledge from such data. This type of informa-
tion is absolutely necessary for the development of optimal maintenance procedures. 
Appendix 2 introduces one such data-mining technique; it turns failure data into 
knowledge of the risk of failure of various assets.

There is keen interest in evidence-based maintenance decisions rather than the 
use of gut feeling or indiscriminately following the manufacturer’s recommenda-
tions. It is hoped that this book will go some way toward reducing the proportion of 
subjective judgment in maintenance decision making.

As an early example of quantitative decision making in maintenance, which high-
lights the importance of selecting the correct objectives, we refer to a study under-
taken during the Second World War by an operational research group of the Royal 
Air Force (Crowther and Whiddington 1963).

The specific problem was that performance of maintenance on Coastal Command 
aircraft was measured in terms of serviceability, the target of which was 75%. 
Serviceability was the ratio of the number of aircraft on the ground available to fly, 
plus those flying, to the total number of aircraft. Although a 75% serviceability rate 
was considered highly desirable, Coastal Command was also asked to get more fly-
ing time from aircraft. The Coastal Command Operational Research Section was 
called in to examine the problem. The section examined one cycle of operation of 
an aircraft and established that the aircraft could be in one of three possible states:

•	 Flying
•	 In maintenance
•	 Available to fly

Serviceability, S, which was the criterion of maintenance performance, was:

	
S

F A
F A M

= +
+ +
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where F, A, and M are the average times that an aircraft spent in the flying, avail-
able to fly, and maintenance states, respectively. Further examination of the problem 
revealed that for every hour spent flying, two hours were required for maintenance. 
Using this information, it is possible to determine that to achieve a target of 75% 
serviceability, only 12.5% of an aircraft’s time is spent flying, with 25% being spent 
on maintenance and 62.5% in an available state. However, if the serviceability is 
reduced to one-third, then one-third of the aircraft’s time is spent flying, with two-
thirds of its time being spent in maintenance and 0% in the available state.

Thus, simply by aiming for a serviceability of one-third, the flying hours could 
be considerably increased. Clearly, in the scenario in which the Coastal Command 
aircraft were operating, the accepted objective of maintenance, namely, high ser-
viceability, was wrong. However, for other scenarios, such as the case in which air-
craft are called on only in emergencies, a high serviceability objective may well be 
relevant.

As a result of the above analysis, instructions were given that, whenever possible, 
aircraft should be in the flying state, thus more than doubling the amount of flying 
time after making such changes in the maintenance objective.

1.8.1 �S etting Objectives

One of the first steps in the use of quantitative techniques in maintenance is to deter-
mine the objective of the study. Once the objective is determined, whether to maxi-
mize profit/unit time, minimize downtime/unit time, maximize the availability of 
protective devices subject to budgetary constraints, and so on, an evaluative math-
ematical model can be constructed that enables management to determine the best 
way to operate the system to achieve the required objective.

In the planned flying–planned maintenance study referred to previously, Coastal 
Command’s original maintenance objective was to achieve a serviceability rate of 
75%, but the study made it clear that this was the wrong objective, and what they 
should have been aiming for was a serviceability of one-third to achieve more flying 
hours.

The study also mentioned that a high serviceability rate was perhaps relevant to 
aircraft called on only in an emergency. This stresses the point that the objective 
a system is operated to achieve may change with changes in circumstances. In the 
context of maintenance procedures, the way in which equipment is maintained when 
it is already operating at full capacity may well be different from the way it should 
be maintained during an economic slump.

In Chapters 2 to 5, the models of various maintenance problems are constructed 
in such a way that the maintenance procedures that are geared to enable profits to be 
maximized, total maintenance costs to be minimized, and so forth, can be identified. 
However, it must be emphasized that when determining optimal maintenance proce-
dures, care must be taken to ensure that the objective being pursued is appropriate. 
For example, it will not be suitable for the asset management department to pursue a 
policy designed to minimize the downtime of equipment if the organization requires 
a policy designed to maximize profit (as in the midst of an economic slump). The 
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two policies may in fact be identical, but this is not necessarily so. This point will be 
demonstrated by an example in Section 3.3.

1.8.2 �M odels

One of the main tools in the scientific approach to management decision making 
is that of building an evaluative model, usually mathematical, whereby a variety 
of alternative decisions can be assessed. Any model is simply a representation of 
the system under study. In the application of quantitative techniques to manage-
ment problems, the type of model used is frequently a symbolic model in which the 
components of the system are represented by symbols, and the relationships of these 
components are described by mathematical equations.

To illustrate this model-building approach, we will examine a maintenance stores 
problem that, although simplified, will illustrate two of the most important aspects 
of the use of models: the construction of a model of the problem being studied and 
its solution.

A Stores Problem

A stores controller wishes to know how many items to order each time the stock 
level of an item reaches zero. The system is illustrated in Figure 1.5.

The conflict in this problem is that the more items the controller orders at any 
time, the more the ordering costs will decrease because fewer orders will have 
to be placed, but the stockholding costs will increase. These conflicting costs are 
illustrated in Figure 1.6.

The stores controller wants to determine the order quantity that minimizes 
the total cost. This total cost can be plotted, as shown in Figure 1.6, and used 
to solve the problem. In this particular case, the total cost is minimized when 
the order quantity is at the intersection of the holding cost curve and the 
ordering cost curve. However, this should not be generalized; for example, 
see Figure 1.8. A much more rapid solution to the problem, however, may be 

Time

St
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k 
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Order

Q

FIGURE 1.5  Stores problem.
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obtained by constructing a mathematical model. The following parameters can 
be defined:

D	 total annual demand
Q	 order quantity
Co	ordering cost per order
Ch	stockholding cost per item per year

Optimal Order Quantity

Total cost per year of ordering and holding stock 

	 = Ordering cost per year + stockholding cost per year	
Since

	

Ordering cost/year

Number of orders placed per= yyear ordering cost per order×

= DC
Q

o

Stockholding cost/year

Average number of items= iin stock per year (assuming linear decrease of stock)

stockholding cost per item per year×

= 1
2

QQCh

Optimal order 
quantity

Total cost

Holding cost

Ordering cost

Co
st

s/
un

it 
tim

e

Order quantity

FIGURE 1.6  Optimal order quantity.
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Therefore, the total cost per year, which is a function of the order quantity, and 
denoted C(Q), is

	
C Q

DC
Q

QC
( ) = +o h

2
	 (1.1)

Equation 1.1 is a mathematical model of the problem relating order quantity Q 
to total cost C(Q).

The stores controller wants the number of items to order to minimize the total 
cost, that is, to minimize the right-hand side of Equation 1.1. The answer comes by 
differentiating the equation with respect to Q, the order quantity, and equating the 
derivative to zero as follows:

	

d
d

o hC Q
Q

DC
Q

C( ) = − + =2 2
0

Therefore,

	

DC
Q

Co h
2 2

=

	
Q

DC
C

∗ = 2 o

h

	 (1.2)

Because the values of D, Co, and Ch are known, their substitution into Equation 
1.2 gives Q*, the optimal value of Q. Strictly speaking, we should check that the 
value of Q* obtained from Equation 1.2 is a minimum and not a maximum. The 
interested reader can check that this is the case by taking the second derivative of 
C(Q) and noting that the result is positive. In fact, in this particular case, the opti-
mal order quantity equalizes the average holding and ordering costs.

From Equation 1.2, we can find that by optimizing the order quantity, the total 
cost per year is minimized, and its value is

	
C Q DC C( )∗ = o h

For example, let D = 1000 items, Co = $5.00, and Ch = $0.25:

	
Q∗ = × × =2 1000 5

0 25
200

.
items

Thus, each time the stock level reaches zero, the stores controller should order 
200 items to minimize the total cost per year of ordering and holding stock.

Note that various assumptions have been made in the inventory model pre-
sented that, in practice, may not be realistic. For example, no consideration has 



21Introduction

been given to the possibility of quantity discounts, the possible lead time between 
placing an order and its receipt, the fact that demand may not be linear, or the fact 
that demand may not be known with certainty. The purpose of the above model is 
simply to illustrate the construction and solution of a model for a particular prob-
lem. If the reader is interested in the stock control aspects of maintenance stores, 
see Nahmias (1997).

1.8.3 �O btaining Solutions from Models

In the stores problem of the previous section, two methods for solving a mathemati-
cal model were demonstrated: an analytical procedure and a numerical procedure.

The calculus solution was an illustration of an analytical technique in which no 
particular set of values of the control variable (amount of stock to order) was consid-
ered, but we proceeded straight to the solution given by Equation 1.2.

In the numerical procedure, solutions for various values of the control variables 
were evaluated to identify the best results, that is, it is a trial-and-error procedure. 
The graphical solution of Figure 1.6 is equivalent to inserting different values of Q 
into the model (Equation 1.1) and plotting the total cost curve to identify the optimal 
value of Q.

In general, analytical procedures are preferred to numerical ones, but because 
of problem complexity, in many cases, they are impracticable or even impossible to 
use. In many of the maintenance problems examined in this book, the solution to the 
mathematical model will be obtained by using numerical procedures. These are pri-
marily graphical procedures, but iterative procedures and simulation are also used.

Perhaps one of the main advantages of graphical solutions is that they often 
enable management to clearly see the effect of implementing a maintenance policy 
that deviates from the optimum identified through solving the model. Also, it may be 
possible to plot the effects of different maintenance policies together, thus illustrat-
ing the relative effects of the policies. To illustrate this point, Chapter 2 includes the 
analyses of two different replacement procedures:

	 1.	Replacement of items at fixed intervals of time
	 2.	Replacement of items based on the length of time they are actually in use

Intuitively, one might feel that procedure 2 would be preferable because it is based on 
usage of the item (thus preventing an almost new item from being replaced shortly after 
its installation subsequent to a previous failure, as would happen with procedure 1).

For these different maintenance policies, which can be adopted for the same 
equipment, models can be constructed, as is done in Chapter 2 and, for each pol-
icy, the optimal procedure can be determined. However, by using a graphical solu-
tion procedure, the maintenance cost of each policy can be plotted, as illustrated in 
Figure 1.7, and the maintenance manager can see exactly the effect of the alternative 
policies on total cost. It may well be the case that from a data collection point of 
view, one policy involves considerably less work than the other, yet they may have 
almost the same minimum total cost. This is illustrated in Figure 1.7, in which the 
minimum total costs are about the same for procedures 1 and 2.



22 Maintenance, Replacement, and Reliability

Of course, for different costs, breakdown distributions, failure and preventive replace-
ment times, and so on, the minimum total costs and replacement intervals may differ 
greatly between different replacement policies. The point is that a graphical illustration 
of the solutions often assists the manager to determine the policy to be adopted. Also, 
such a method of presenting a solution is often more acceptable than a statement such 
as “policy x is the best,” which may be presented along with complicated mathematics.

Further comments about the benefits of curve plotting are given in Section 2.2.4 
in relation to the problem of determining the optimal replacement interval for equip-
ment, the operating cost of which increases with use.

One of the developments in numerical procedures made possible by comput-
ers is simulation. An application of this procedure will be illustrated in a problem 
in Chapter 5, which relates to determining the optimal number of machines to be 
installed in a workshop.

1.8.4 �M aintenance Control and Mathematical Models

The primary function of maintenance is to control the condition of assets. Some of 
the problems associated with this include the determination of:

•	 Inspection frequencies
•	 Overhaul intervals, i.e., part of a preventive maintenance policy
•	 Whether to do repairs, i.e., having a breakdown maintenance policy or not
•	 Replacement rules for components
•	 Replacement rules for capital equipment—perhaps taking account of tech-

nological changes
•	 Whether equipment should be modified
•	 The size of the maintenance crew
•	 Composition of machines in a workshop
•	 Rules for the provision of spares
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Appendix 7 provides a list of real-world applications of maintenance decision 
optimization models in different industries.

Problems within these areas can be classified as being deterministic or probabilis-
tic. Deterministic ones are those in which the consequences of a maintenance action are 
assumed to be nonrandom. For example, after an overhaul, the future trend in operating 
costs is known. A probabilistic problem is one in which the outcome of the maintenance 
action is random. For example, after equipment repair, the time to next failure is uncertain.

To solve any of the previously mentioned problems, there are often many alterna-
tive decisions. For example, for an item subject to sudden failure, we may have to 
decide whether to replace it while it is in an operating state, or only upon its failure; 
whether to replace similar components in groups when only one has failed; and so 
on. Thus, the function of the asset management department is, to a large extent, con-
cerned with determining the effect of various decisions to control the condition of 
assets on meeting the objectives of the organization.

As indicated previously, many control actions are open to the maintenance man-
ager. The effect of these actions should not be looked at solely from their effect on 
the asset management department because the consequences of such actions may 
seriously affect other units of the organization, such as production or operations.

To illustrate the possible interactions of the asset management function in other 
departments, consider the effect of the decision to perform repairs only and not to do 
any preventive maintenance, such as overhauls. This decision may well reduce the 
budget for asset management, but it may also cause considerable production or opera-
tion downtime. To take account of interactions, sophisticated techniques are frequently 
required, and this is where the use of mathematical models can assist the maintenance 
manager and reduce the tension that often occurs between maintenance and operations.

Figure 1.8 illustrates the type of approach taken by using a mathematical model 
to determine the optimal frequency of overhauling a piece of the plant by balancing 
the input (maintenance cost) of the maintenance policy against its output (reduction 
in downtime).

The above example is very simple and, in practice, we have to consider many 
factors in the context of even a single maintenance decision. For example, if the 
objective of a maintenance decision is to minimize total costs—lowest cost 
optimization—the costs of the component or asset, labor, lost production, and per-
haps even customer dissatisfaction from delayed deliveries are all to be considered. 
Where equipment or component wear-out is a factor, the lowest possible cost is usu-
ally achieved by replacing machine parts late enough to get good service out of them, 
but early enough for an acceptable rate of on-the-job failures (to attain a zero rate, 
we would probably have to replace parts every day). In another scenario in which 
availability is to be maximized, we have to get the right balance between taking 
equipment out of service for preventive maintenance and suffering outages due to 
breakdowns. If safety is the most important factor, we might optimize for the safest 
possible solution, but with an acceptable effect on cost. If profit is to be optimized, 
we would take into account not only cost but also the effect on revenues through 
greater customer satisfaction (better profits) or delayed deliveries (lower profits).

The example shown in Figure 1.8 should suffice to show that the quantitative 
approach taken in this book is concerned with determining appropriate maintenance 
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decisions by studying the mathematical and statistical relationships between the 
decisions to be made and the consequences of these decisions. The foregoing com-
ments about the use of models for analyzing maintenance problems are very brief, 
but they will be elaborated upon in the subsequent chapters of this book.

1.9 � DATA REQUIREMENTS FOR MODELING

Data are essential inputs for building decision models that support evidence-based 
asset management. It must be recognized that mathematical models by themselves 
do not guarantee that the right decisions will be made if the data used do not have the 
required quality. A discussion on data requirements for model creation in the context 
of maintenance optimization is presented in Tsang et al. (2006).

When data are unavailable or sparse, creating a model that characterizes the risk 
of failure can still be achieved through knowledge elicitation by interviewing the 
asset’s domain experts. The related methodology, as well as an illustrative example, 
is provided in Appendix 5.
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2 Component 
Replacement Decisions

The squeaking wheel doesn’t always get the grease. Sometimes it gets replaced.

—Vic Gold

2.1 � INTRODUCTION

The goal of this chapter is to present models that can be used to optimize compo-
nent replacement decisions. The interest in this decision area is because a common 
approach to improving the reliability of a system, or complex equipment, is through 
preventive replacement of critical components within the system. Thus, it is neces-
sary to be able to identify which components should be considered for preventive 
replacement, and which should be left to run until they fail. If the component is a 
candidate for preventive replacement, then the subsequent question to be answered 
is: What is the best time? The primary goal addressed in this chapter is that of mak-
ing a system more reliable through preventive replacement. In the context of the 
framework of the decision areas addressed in this book, we are addressing column 1 
of the framework, as highlighted in Figure 2.1.

Replacement problems (and maintenance problems in general) can be classified 
as either deterministic or probabilistic (stochastic).

Deterministic problems are those in which the timing and outcome of the replace-
ment action are assumed to be known with certainty. For example, we may have an 
item that is not subject to failure but whose operating cost increases with use. To 
reduce this operating cost, a replacement can be performed. After the replacement, 
the trend in operation cost is known. This deterministic trend in costs is illustrated 
in Figure 2.2.

Examples of component replacement problems that can be treated with a deter-
ministic model are provided in Table 2.1.

Probabilistic problems are those in which the timing and outcome of the replace-
ment action depend on chance. In the simplest situation, the equipment may be 
described as being good or failed. The probability law describing changes from 
good to failed may be described by the distribution of time between completion of 
the replacement action and failure. As described in Appendix 1, the time to fail-
ure is a random variable whose distribution may be termed the equipment’s failure 
distribution.

Examples of component replacement problems that can be analyzed using a sto-
chastic model are provided in Table 2.2.
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The determination of replacement decisions for probabilistically failing equip-
ment involves a problem of decision making with one main source of uncertainty: it 
is impossible to predict with certainty when a failure will occur, or more generally, 
when the transition from one state of the equipment to another will occur. A further 
source of uncertainty is that it may be impossible to determine the state of equip-
ment, either good, failed, or somewhere in between, unless definite maintenance 
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action is taken, such as inspection. This aspect of uncertainty is highly relevant to 
equipment, often termed protective devices, used in emergency situations. An exam-
ple of such a protective device is a pressure safety valve in an oil and gas field—if it 
is dormant, waiting to come into service when an unacceptable pressure level occurs. 
Its condition can only be determined through an inspection. These problems will be 
covered in Chapter 3.

In the probabilistic problems of this chapter, we will assume that there are only 
two possible conditions of the equipment, good and failed, and that the condition is 
always known. This is not unreasonable because, for example, with continuously 
operating equipment producing some form of goods, we will soon know when the 
equipment has reached the failed state because items may be produced outside speci-
fied tolerance limits or the equipment may cease to function.

In determining when to perform a replacement, we are interested in the sequence 
of times at which the replacement actions should take place. Any sequence of times is 
a replacement policy, but what we are interested in determining are optimal replace-
ment policies, that is, ones that maximize or minimize some criterion, such as profit, 
total cost, and downtime, or ensure that a specified safety or environmental criterion 
is not exceeded.

In many of the models of component replacement problems presented in this 
chapter, it will be assumed (which applies in many cases) that the replacement action 
returns the equipment to the “as new” condition, thus continuing to provide exactly 

TABLE 2.1
Examples of Replaceable Components That Deteriorate Deterministically
Fuel filter (automobile): as the filter ages the rate of fuel consumption increases

V-belt on autowrapper used in candy plant to wrap tablets: productivity decreases as V-belt slackens

Brake and clutch module on stamping press: productivity decreases as module ages

Paper mill felt: productivity decreases as felt ages

Molds for glass production: productivity decreases as molds age

TABLE 2.2
Examples of Stochastically Failing Components
Lightbulbs

Displacement diaphragms on a food packaging line

Air conditioning (a/c) charge adapter nose seal on a/c evacuate and fill equipment in auto 
manufacturing

Top and bottom guide apron cylinders in a steel mill

Fuel injectors on the main propulsion diesel engine onboard a ship
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the same services as the equipment that has just been replaced when it was new. By 
making this assumption, we are implying that various costs, failure distributions, 
and so on used in the analysis do not change from one replacement to the next. An 
exception to this assumption will be problems in which the item being replaced is not 
replaced by one that can be considered statistically as good as new. If this is the case, 
we are often dealing with a repairable component: such problems will be addressed 
in Section 2.9.3.

Throughout this chapter, maintenance actions such as overhaul and repair can 
be considered to be equivalent to replacement, provided it is reasonable to assume 
that such actions also return equipment to the as-new condition. In practice, this is 
often a reasonable assumption, and hence the following models can often be used to 
analyze overhaul/repair problems. If it is not reasonable to make such an assumption, 
then the models introduced in Section 2.9.3, along with the model associated with 
condition-based maintenance in Chapter 3, may help.

Section 2.2 addresses a common deterministic component replacement problem. 
Stochastic problems are covered in Sections 2.3 through 2.9.

2.2 � OPTIMAL REPLACEMENT TIMES FOR EQUIPMENT 
WHOSE OPERATING COST INCREASES WITH USE

2.2.1 �S tatement of the Problem

Some equipment operates with excellent efficiency when it is new, but as it ages, its 
performance deteriorates. An example is the air filter in an automobile. When new, 
there is good gasoline consumption, but as the air filter gets dirty, the gasoline con-
sumption per kilometer increases. The question then is: When in the increasing cost 
trend is it economically justifiable to replace the air filter, thus reducing the operating 
cost of the automobile? In general, replacements cost money in terms of materials 
and wages, and a balance is required between the money spent on replacements and 
savings obtained by reducing the operating cost. Thus, we wish to determine an 
optimal replacement policy that will minimize the sum of operating and replacement 
costs per unit time.

When dealing with optimization problems, in general, we wish to optimize some 
measure of performance over a long period. In many situations, this is equivalent 
to optimizing the measure of performance per unit time. This approach is easier to 
deal with mathematically when compared to developing a model for optimizing a 
measure of performance over a finite horizon.

The cost conflicts and associated optimization problems are illustrated in Figure 
2.3. It should be stressed that this class of problem can be called short-term deter-
ministic because the magnitude of the interval between replacements is weeks or 
months, rather than years. If the interval between replacements was measured in 
years, then the fact that money changes in value over time would need to be taken 
into account in the analysis. Such problems can be called long-term replacement and 
are dealt with in Chapter 4.
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2.2.2 �C onstruction of the Model

	 1.	c(t) is the operating cost per unit time at time t after replacement.
	 2.	Cr is the total cost of a replacement.
	 3.	The replacement policy is to perform replacements at intervals of length tr. 

The policy is illustrated in Figure 2.4.
	 4.	The objective is to determine the optimal interval between replacements to 

minimize the total cost of operation and replacement per unit time.

The total cost per unit time C(tr), for replacement at time tr, is:

	 C(tr) = total cost in interval (0, tr)/length of interval	
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This is a model of the problem relating replacement interval tr to total cost per unit 
time C(tr), and development of the model is illustrated graphically in Figure 2.5.

The optimal replacement interval tr is that value of tr that minimizes the right-
hand side of Equation 2.1, which can be shown by calculus to occur when

	 c(tr) = C(tr).	

Thus, the optimal replacement time is when the current operating cost rate is equal 
to the average total cost per unit time. In other words, the optimal time to replace is 
when the marginal cost is equivalent to the average cost.

In fact, if the trend in operating costs is linear, c(t) = a + bt, then the optimal 
replacement interval t* is

	
t

C
b

∗ = 2 r .
	

To use the equation c(tr) = C(tr) requires that the trend in operating costs be an 
increasing function, which in practice is a very reasonable assumption. If that is 
not the case, and as time progresses, the operating cost of a component becomes 
lower, then Equation 2.1 needs to be solved using classic calculus (if the cost trend is 
simple); otherwise, a numerical solution will be required.

If the trend in operating costs is not continuous, but discrete, then the optimal 
replacement time is when the next period’s operating cost is equal to or greater than 
the current average cost of replacement to that time. In other words, replace when the 
marginal operating cost is greater than the average cost to date.
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FIGURE 2.5  Model development: short-term deterministic.
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2.2.3 �N umerical Example

	 1.	The trend in operating cost for an item is of the form

	 c(t) = A – B exp[–kt]

	 where A = $100, B = $80, and k = 0.21/week.
		  This trend is illustrated in Figure 2.6. Note that A − B ≥ 0 may be inter-

preted as the operating cost per unit time if no deterioration occurs. k is a 
constant describing the rate of deterioration.

	 2.	Cr, the total cost of a replacement, is $100.
		  Thus,

	 C t
t

t t

t

( ) ( exp[ . ])r
r

d
r

= − − +
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		  In this case, an analytical solution (closed form) using the result c(tr) = 
C(tr) cannot be obtained. A numerical solution is required, or discrete time 
can be used. An evaluation of the above model for different values of tr is 
given in Table 2.3, indicating that the optimal value of tr is at 5 weeks.
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FIGURE 2.6  Exponential trend in operating costs.

TABLE 2.3
Optimal Replacement Age
tr 1 2 3 4 5 6 7

C(tr) 127.8 84.7 74.0 70.9 70.5 71.5 72.5
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2.2.4 �F urther Comments

In the construction of the model in this section, the time required to produce a 
replacement has not been included. This replacement time, Tr, can be accommodated 
without difficulty. See Figure 2.7 and Equation 2.2 for the appropriate model:
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(2.2)

In practice, it is often not unreasonable to disregard the replacement time because 
it is usually small when compared with the interval between the replacements. Any 
costs, such as production losses incurred due to the duration of the replacement, need 
to be incorporated into the cost of the replacement action.

Models have now been developed whereby, for particular assumptions, the opti-
mal interval between replacements can be obtained. In practice, there may be con-
siderable difficulty in scheduling replacements to occur at their optimal time, or in 
obtaining the values of some of the parameters required for the analysis. To further 
assist the engineer in deciding what an appropriate replacement policy should be, it 
is usually useful to plot the total cost/unit time curve (Figure 2.8). The advantage 
of the curve is that, along with giving the optimal value of tr, it shows the form of 
the total cost around the optimum. If the curve is fairly flat around the optimum, 
it is not really very important that the engineer should plan for the replacements 
to occur exactly at the optimum, thus giving some leeway in scheduling the work. 
Thus, in Figure 2.8, a replacement interval (tr) with a value somewhere between 3.5 
and 6 weeks does not greatly influence the total cost. Of course, if the total cost 
curve is not fairly flat around the optimum but rising rapidly on both sides, then the 
optimal interval should be adhered to if at all possible.

If there is uncertainty about the value of the particular parameter required in the 
analysis—say, we are not sure what the replacement cost is—then evaluation of the 
total cost curve for various values of the uncertain parameter, and noting the effect 
of this variation on the optimal solution, often goes a long way toward deciding what 
policy should be adopted and if the particular parameter is important from a solu-
tion viewpoint. For example, changing the value of Cr in Equation 2.1 may produce 

Replacement

One replacement cycle
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FIGURE 2.7  Replacement cycle.
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curves similar to Figure 2.9, which demonstrate, in this instance, that although Cr is 
varied, it does not greatly influence the optimal values of tr. In fact, there is an over-
lap, which indicates a good solution independent of the true value of Cr (provided 
this value is within the bounds specified by the two curves). If changes in Cr drasti-
cally altered the solution from the point of replacement interval and minimal total 
cost, then it would be clear that a careful study would be required to identify the true 
value of Cr to be used when solving the model. (For example, does Cr include only 
material and labor costs? Or does it include lost production costs? Or costs associated 
with having to use a less efficient plant, overtime, or contractors, etc., to make up for 
losses incurred resulting from the replacement?) The decision that can be taken (in 
this case regarding the interval between replacements) essentially may remain con-
stant within the uncertainty region checked by sensitivity. This does not necessarily 
mean that the true total costs will have more or less the same numerical value within 
the overlap region. From a decision-making point of view, however, this does not 
matter because it is the interval between replacements that is under the control of the 
decision maker. The total costs are a consequence of the decision taken.
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FIGURE 2.8  Form of total cost curve.
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Thus, sensitivity checking gives guidance on what information is important from 
a decision-making viewpoint and, consequently, what information should be gath-
ered in a data collection scheme. The statement “garbage in = garbage out,” which 
is frequently made with reference to data requirements of quantitative techniques, 
is also demonstrated to be not necessarily correct. The validity of the “garbage in = 
garbage out” statement does depend on the sensitivity of the solution to particular 
garbage. Note, therefore, that garbage in does not necessarily equal garbage out, and 
so our information requirements for the use of quantitative techniques may not be as 
severe as is often claimed.

2.2.5 �A pplications

2.2.5.1 � Replacing the Air Filter in an Automobile
What is the economic replacement time for the air filter in an automobile?

The purchase price of an air filter is $80. The automobile driver travels 2,000 km/
month. Gasoline costs $0.75/L. When the air filter is new, then during the first month 
of operation, the automobile’s performance is 15 km/L; thus, the first month’s oper-
ating cost is $100.00. As the filter ages, there is a deterioration in the number of 
kilometers that can be driven using 1 L of gasoline. The deterioration trend is given 
in Table 2.4.

Using Equation 2.1, in discrete form, we obtain Table 2.5, from which we see that 
the optimal replacement age is 4 months, and the associated cost per month is $131.88. 
The associated graph of cost per month versus time is provided in Figure 2.10, which 
includes a calculation showing the use of the optimizing criterion c(t) = C(tr) when 
the trend in operating cost is discretized.

Therefore, replace at the end of month 4 because next period’s operations and 
maintenance cost, c(t = 5), is greater than the average cost to date ($131.88).

TABLE 2.4
Deteriorating Trend in Distance Traveled
Age (months) 1 2 3 4 5

km/L 15 14 13 12 10

TABLE 2.5
Optimal Filter Change-Out Time

T (month) c(t) ($) C(t) ($/month)

1 100.00 (100 + 80)/1 = 180

2 107.13 (100 + 107.13 + 80)/2 = 143.57

3 115.38 (100 + 107.13 + 115.38 + 80)/3 = 134.17

4 125.00 (100 + 107.13 + 115.38 + 125 + 80)/4 = 131.88

5 150.00 (100 + 107.13 + 115.38 + 125 + 150 + 80)/5 = 135.50
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2.2.5.2 � Overhauling a Boiler Plant
The replacement problem we have been discussing is similar to a problem associ-
ated with a boiler plant. Through use, the heat transfer surfaces within the boiler 
become less efficient, and to increase their efficiency, they can be cleaned. Cleaning 
thus increases the rate of heat transfer, and less fuel is required to produce a given 
amount of steam. However, due to deterioration of other parts of the boiler plant, the 
trend in operating cost is not constant after each cleaning operation (equivalent to a 
replacement), but follows a trend similar to that of Figure 2.11. Thus, k illustrated in 
Figure 2.6 is no longer constant, but varies from replacement to replacement. That is, 
the trend in operating cost after each replacement depends on the amount of steam 
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produced up to the date of the replacement. A detailed study of this problem is given 
by Davidson (1970), who analyzes it using a dynamic programming model.

2.3 � STOCHASTIC PREVENTIVE REPLACEMENT: 
SOME INTRODUCTORY COMMENTS

Before proceeding with the development of component replacement models, it is 
important to note that preventive replacement actions, that is, actions taken before 
equipment reaches a failed state, require two necessary conditions.

	 1.	The total cost of the replacement must be greater after failure than before 
(if cost is the appropriate criterion; otherwise, an appropriate criterion, 
such as downtime, is substituted in place of cost). This may be caused by 
a greater loss of production because replacement after failure is unplanned 
or failure of one piece of the plant may cause damage to other equipment. 
For example, replacement of a piston ring in an automobile engine before 
failure of the ring may only involve the cost of a piston ring plus a labor 
charge, whereas after failure, its replacement cost may also include the cost 
of a cylinder rebore.

	 2.	The hazard rate of the equipment must be increasing. To illustrate this point, 
we may consider equipment with a constant hazard rate. That is, failures 
occur according to the negative exponential distribution or, equivalently, the 
Weibull distribution, in which the shape parameter β = 1.0. When this is the 
case, replacement before failure does not affect the probability that the equip-
ment will fail in the next instant, given that it is good now. Consequently, 
money and time are wasted if preventive replacement is applied to equip-
ment that fails according to the negative exponential distribution. Obviously, 
when equipment fails according to the hyperexponential distribution or the 
Weibull distribution whose β value is less than 1.0, its hazard rate is decreas-
ing and again component preventive replacement should not be applied. 
Examples of components in which a decreasing hazard rate has been identi-
fied include quartz crystals, medium-quality and high-quality resistors, and 
capacitors and solid-state devices such as semiconductors and integrated cir-
cuits (Technical and Engineering Aids to Management 1976).

In practice, it is useful to appreciate that the hazard rate of equipment must be 
increasing before preventive replacement is worthwhile. Very often, when equipment 
frequently breaks down, the immediate reaction of the maintenance professional is 
that the level of preventive replacement should be increased. If the failure distribution 
of the components being replaced had been identified through conducting a Weibull 
analysis (Appendix 2), it would be clear whether such preventive replacement was 
applicable. It may well be that the appropriate procedure is to allow the item to fail 
before performing a replacement, and this decision can be made simply by obtaining 
statistics relevant to the equipment and does not involve the construction and solution 
of a model to analyze the problem. If improved system reliability is required, then a 
redesign is required. This may include introducing redundant components.
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Note, however, that preventive maintenance of a general nature, which does not 
return equipment to the as-new condition, may be appropriate for equipment that 
is subject to a constant hazard rate. Determination of the best level of such preven-
tive work will be covered in Chapter 3 in a problem relating to determination of 
the optimal frequency of inspection and associated minor maintenance of complex 
equipment.

2.4 � OPTIMAL PREVENTIVE REPLACEMENT INTERVAL 
OF ITEMS SUBJECT TO BREAKDOWN (ALSO 
KNOWN AS THE GROUP OR BLOCK POLICY)

2.4.1 �S tatement of the Problem

An item, sometimes termed a line replaceable unit or part, is subject to sudden fail-
ure, and when failure occurs, the item has to be replaced. Because failure is unex-
pected, it is not unreasonable to assume that a failure replacement is more costly 
than a preventive replacement. For example, a preventive replacement is planned 
and arrangements are made to perform it without unnecessary delays, or perhaps 
a failure may cause damage to other equipment. To reduce the number of failures, 
preventive replacements can be scheduled to occur at specified intervals. However, 
a balance is required between the amount spent on the preventive replacements and 
their resulting benefits, that is, reduced failure replacements. The conflicting cost 
consequences and their resolution by identifying the total cost curve are illustrated 
in Figure 2.12.

Optimal value of tp

tp

Total cost per week
C(tp )

Failure replacement
cost/week

Preventive replacement
cost/week

$/
W

ee
k

Preventive replacement cost conflicts

FIGURE 2.12  Optimal replacement time.



40 Maintenance, Replacement, and Reliability

In this section, we will assume, not unreasonably, that we are dealing with a 
long period over which the equipment is to be operated and the intervals between 
the preventive replacements are relatively short. When this is the case, we need to 
consider only one cycle of operation and develop a model for one cycle. If the inter-
val between the preventive replacements is long, it would be necessary to use a dis-
counting approach, and the series of cycles would have to be included in the model 
(Chapter 4) to take into account the time value of money.

The replacement policy is one in which preventive replacements occur at fixed 
intervals of time; failure replacements occur whenever necessary. We want to deter-
mine the optimal interval between the preventive replacements to minimize the total 
expected cost of replacing the equipment per unit time.

2.4.2 �C onstruction of the Model

	 1.	Cp is the total cost of a preventive replacement.
	 2.	Cf is the total cost of a failure replacement.
	 3.	 f(t) is the probability density function of the item’s failure times.
	 4.	The replacement policy is to perform preventive replacements at constant 

intervals of length tp, irrespective of the age of the item, and failure replace-
ments occur as many times as required in interval (0, tp). The policy is 
illustrated in Figure 2.13.

	 5.	The objective is to determine the optimal interval between preventive 
replacements to minimize the total expected replacement cost per unit time.

The total expected cost per unit time for preventive replacement at intervals of 
length tp denoted C(tp) is

	 C(tp) = total expected cost in interval (0, tp)/length of interval

	

Total expected cost in interval

cost of a preve

p( , )0  

=

t

nntive replacement expected cost of failure replacem+ eents

p f p= +C C H t( )

where H(tp) is the expected number of failures in interval (0, tp).

Failure replacements

Preventive replacement

One cycle
tp0

FIGURE 2.13  Replacement cycle: constant-interval policy.



41Component Replacement Decisions

Therefore,

	
C t

C C H t

t
( )

( )
p

p f p

p

=
+

.
	

(2.3)

This is a model of the problem relating replacement interval tp to total cost C(tp).
Differentiating the right-hand side of Equation 2.3 with respect to tp and equating 

it to zero gives the optimized result:

	 tp h(tp) – H(tp) = Cp/Cf

where h(tp) is the derivative of H(tp) and is termed the renewal density: 

h t t H t
t

( ) ( )d p
0

p

=∫ . See Section 2.4.3 for the derivation of H(t).

A numerical solution to Equation 2.3 will be illustrated by an example in Section 
2.4.4. Before proceeding with the example, we will illustrate a procedure to deter-
mine H(tp), the expected number of failures in an interval of length tp.

2.4.3 �D etermination of H(t)

2.4.3.1 � Renewal Theory Approach
With reference to Figure 2.14, we may define the following terms:

N(t) is the number of failures in interval (0, t).
H(t) is the expected number of failures in interval (0, t) = E[N(t)], where E[·] 

denotes expectation.
t1, t2, etc., are the intervals between failures.
Sr is the time up to the rth failure = t1 + t2 + … + tr

Now the probability of N(t) = r is the probability that t lies between the rth and 
(r + 1)th failure. This is obtained as follows:

N(t)

Sr

t1 t2 t3 tr + 1

r + 1tr3210

FIGURE 2.14  Establishing H(t).
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	 P[N(t) < r] = 1 − Fr(t)

where Fr(t) is the cumulative distribution function of Sr:

	 P[N(t) > r] = Fr+1(t).

Now,

	 P[N(t) < r] + P[N(t) = r] + P[N(t) > r] = 1.

Therefore,

	 P[N(t) = r] = Fr(t) − Fr+1(t).

The expected value of N(t) is then

	 H t rP N t r r F t F t
r

r r

r

( ) [ ( ) ] [ ( ) ( )]= = = −
=

∞

+
=

∞

∑ ∑
0

1

0 	

	 H t F tr

r

( ) ( )=
=

∞

∑
1

.	 (2.4)

On taking Laplace transforms* of both sides of Equation 2.4, we get

	
H s

f s
s f s

∗ =
∗

− ∗( )
( )

[ ( )]1
.
	

(2.5)

The problem is then to determine H(t) from H*(s). This is done by determining 
f(t) from f*(s), a process termed inversion. Inversion is usually done by reference to 
tables giving Laplace transforms of functions and giving f(t) corresponding to com-
mon forms of f*(s).

*	 If f(t) is the probability density function of a nonnegative random variable T, the Laplace transform 

f*(s) is defined by f s E sT st f t t*( ) exp[ ] exp[ ] ( )= − = −
∞

∫ d
0

. The main importance of Laplace transforms 

in renewal theory is associated with the sums of independent random variables. For further details of 
renewal theory, see Cox (1962).
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Example

If f(t) = λe–λt, then from the tables, f*(s) = λ/(λ + s). From Equation 2.5,

	 H s
s

s s
s∗ = +

− +
=( )

/( )
[ /( )]

/
λ λ
λ λ

λ
1

2.
	

From the tables, the function corresponding to 1/s2 is t, and so

	 H(t) = λt.	

In practice, H*(s) can only be inverted in simple cases. However, if t is large 
(tending to infinity),

	 H t
t

( ) ≈ + −
µ

σ µ
µ

2 2

22
	 (2.6)

where μ and σ2 are the mean and variance of f(t), respectively.

Example

An item fails according to the normal distribution with μ = 5, σ2 = 1. If the interval 
between preventive replacements is t = 1000 weeks, then from Equation 2.6,

	 H( ) .1000
1000

5
1 25

50
199 5≈ + − =  failures.

	

Of course, we do not expect to get large numbers of failures between preven-
tive replacements (if we do, we are not doing preventive replacement), and so 
Equation 2.6 is not appropriate and therefore we need to use Equation 2.5. To 
avoid possible difficulties of inverting H*(s), a discrete approach is usually adopted 
to determine H(t).

2.4.3.2 � Discrete Approach
Figure 2.15 illustrates the case in which there are 4 weeks between preventive 
replacements. Then, H(4) is the expected number of failures in interval (0, 4), start-
ing with new equipment.

10 2 3 4

Preventive replacementNew equipment

FIGURE 2.15  Establishing H(t): discrete approach.



44 Maintenance, Replacement, and Reliability

When we start at time zero, the first failure (if there is one) will occur during 
either the first, second, third, or fourth week of operation. Keeping this fact in mind, 
we get the following:

H(4)	 = �number of expected failures that occur in interval (0, 4) when the first 
failure occurs in the first week × probability of the first failure occuring 
in interval (0, 1)

		  + �Number of expected failures that occur in interval (0, 4) when the first 
failure occurs in the second week × probability of the first failure occur-
ing in interval (1, 2)

		  + �Number of expected failures that occur in interval (0, 4) when the first 
failure occurs in the third week × probability of the first failure occuring 
in interval (2, 3)

		  + �Number of expected failures that occur in interval (0, 4) when the first 
failure occurs in the fourth week × probability of the first failure occuring 
in interval (3, 4)

Assume that not more than one failure can occur in any weekly interval. This is 
not restrictive because the length of each interval can be made as short as desired. If 
this is the case, then

Number of expected failures that occur in interval (0, 4) when the first failure 
occurs in the first week
		  = the failure that occured in the first week
		  + the expected number of failures in the remaining 3 weeks
		  = 1 + H(3)

Note that we use H(3) because we have new equipment as a result of replacing the 
failed component in the first week, and we have 3 weeks to go before the preventive 
replacement occurs. By definition, the expected number of failures in the remaining 
3 weeks, starting with the new equipment, is H(3).

The probability of the first failure occurring in the first week = f t t( )d
0

1

∫ . Similarly, 

in consequence of the first failure occurring in the second, third, or fourth weeks,

	

H H f t t H f t t

H

( ) [ ( )] ( ) [ ( )] ( )
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1 1

1

2

0

1

= + + +

+ +

∫∫ d d

))] ( ) [ ( )] ( )f t t H f t td d+ + ∫∫ 1 0
3

4

2

3

.

	

Obviously, H(0) = 0. That is, with zero weeks to go, the expected number of failures 
is zero.
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Tidying up the above equation, we get
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with H(0) = 0.
In general,
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(2.7)

with H(0) = 0.
Equation 2.7 is termed a recurrence relation. Because we know that H(0) = 0, we 

can get H(1), then H(2), then H(3), and so on, from Equation 2.7.

Example

Assume f t t( ) ,= ≤ ≤1
6

0 6. This is illustrated in Figure 2.16 and is termed a uniform 

or rectangular distribution. We want to determine the expected number of failures 
if preventive replacements occur every 2 weeks.

In this case, we want H(2). From Equation 2.7,
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f(t)

f (t) = 1/6

60
t

FIGURE 2.16  Uniform distribution.
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Now,

	 H(0) = 0	
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∫ d from Equation 2.7
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2.4.4 �N umerical Example

Given Cp = $5, Cf = $10, we want to determine the optimal replacement interval for 
equipment subject to the replacement strategy of Section 2.4. Failures occur accord-
ing to the normal distribution with a mean of 5 weeks and a standard deviation of 1 
week (Figure 2.17). From Equation 2.3, we have:

	 C t
H t

t
( )

( )
p

p

p

=
+5 10

.
	

Values of C(tp) for various values of tp are given in Table 2.6, from which it is seen 
that the optimal replacement policy is to perform preventive replacements every 4 
weeks.

Sample calculation for tp = 2 weeks:

	 H(2) = [1 + H(1)] [Φ(–4) – Φ(–5)] + [1 + H(0)] [Φ(–3) – Φ(–4)]	

N(5, 1)

0 1 5 0

N(0, 1)

–4

FIGURE 2.17  Use of the normal distribution.
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(see Appendix 1 for guidance on reading the table of the standardized normal 
distribution).

From the tables, Φ(−4) ≈ 0 and Φ(−5) ≈ 0, and now

	

Φ Φ( ) ( ) . .

( )

( ) [ ( )

− − − = − =
=
= +

3 4 0 00135 0 0 00135

0 0

1 1 0

H

H H ]]

( ) ( ) ( ) . .

× =
= + × + + × =

0 0

2 1 0 0 1 0 0 00135 0 00135H .
	

Therefore,

	 C(2) = (5 + 10 × 0.00135)/2 = $2.51/week.

2.4.5 �F urther Comments

In this example, no account was taken of the time required to perform failure and 
preventive replacements because they were considered to be very short (hours or 
days), compared with the mean time between replacement of an item, which may be 
measured in weeks or months. When necessary, the replacement durations can be 
incorporated into the replacement model, as is required when the goal is the minimi-
zation of total downtime or, equivalently, the maximization of item availability. This 
will be presented in Section 2.6. Of course, any costs that are incurred due to the 
replacement stoppages need to be included as part of Cp, the total cost of a preventive 
replacement, and Cf, the total cost of a failure replacement.

In this section, when establishing the optimal preventive replacement interval, we 
use the term time. In practice, what we measure is one indicator that is used to moni-
tor the health of an item. Calendar time is perfectly acceptable if an item’s utilization 
is constant, but if that is not the case, a better variable to measure the working age 
of the item needs to be used, such as operating hours, weight of material processed, 
cycles of operation, and so on. The key issue with component preventive replacement 
that is being addressed in this chapter is that only one variable is being used to esti-
mate the health of the item as described by its probability of failure. Later in Chapter 
3, when we deal with condition-based maintenance, we will estimate the health of 
an item by taking into account not only age but also measurements that are acquired 
at the time of condition monitoring.

TABLE 2.6
Optimal Preventive Replacement Interval
tp 1 2 3 4 5 6

C(tp) 5.00 2.51 1.74 1.65 2.00 2.24
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Chapter 1 discussed the methodology of reliability-centered maintenance. It 
should be noted that one of the maintenance tactics that results from employing 
reliability-centered maintenance is termed the time-based discard decision. This 
section has presented a model that can be used to establish the optimal time-
based discard decision if the goal is a constant-interval preventive replacement 
policy.

2.4.6 �A n Application: Optimal Replacement Interval 
for a Left-Hand Steering Clutch

In an open-pit mining operation, the current policy was to replace the left-hand 
steering clutch on a piece of mobile equipment only when it failed. In this appli-
cation, there was a fleet of six identical machines, all operating in the same envi-
ronment. The fleet had experienced seven failures. When the study was being 
undertaken, all six machines were operating in the mine site. To increase the 
sample size, data on the present ages of the clutches on the six currently operating 
machines were obtained, and thus the data available for analysis included seven 
failures and six suspensions. Using the procedure described in Appendix 2 for 
blending together failure and suspension data, the Weibull shape parameter β was 
estimated at 1.79, and the mean time to failure was estimated at 6500 h. This indi-
cates that there is an increasing probability of the clutch failing as it ages because 
β is greater than 1.0.

Determining the optimal preventive replacement age to minimize total cost 
requires that the costs be obtained. In this case, the total cost of a preventive replace-
ment was obtained by adding the cost of labor (16 h—two people each at 8 h), 
parts, and equipment out-of-service cost (8 h). The cost of a failure replacement was 
obtained from adding the labor cost (24 h—two people at 12 h), parts, and equipment 
out-of-service cost (12 h).

Although the cost consequence associated with a failure replacement was greater 
than that for a preventive replacement, it was not sufficiently large to warrant chang-
ing the current policy of replace-only-on-failure. But at least the mining operation 
had an evidence-based decision. As the maintenance superintendent later said, “A 
run-to-failure policy was a surprising conclusion since the clutch was exhibiting 
wear-out characteristics. However, the economic considerations did not justify pre-
ventive replacement according to a fixed-time maintenance policy.”

2.5 � OPTIMAL PREVENTIVE REPLACEMENT AGE OF 
AN ITEM SUBJECT TO BREAKDOWN

2.5.1 �S tatement of the Problem

This problem is similar to that of Section 2.4, except that instead of making preven-
tive replacements at fixed intervals, with the possibility of performing a preven-
tive replacement shortly after a failure replacement, the time at which the preventive 
replacement occurs depends on the age of the item. When failures occur, failure 
replacements are made. When this occurs, the time clock is reset to zero, and the 
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preventive replacement occurs only when the item has been in use for the specified 
period.

Again, the problem is to balance the cost of the preventive replacements against 
their benefits, and we do this by determining the optimal preventive replacement age 
for the item to minimize the total expected cost of replacements per unit time.

2.5.2 �C onstruction of the Model

	 1.	Cp is the total cost of a preventive replacement.
	 2.	Cf is the total cost of a failure replacement.
	 3.	 f(t) is the probability density function of the failure times of the item.
	 4.	The replacement policy is to perform a preventive replacement when the 

item has reached a specified age, tp, plus failure replacements when neces-
sary. This policy is illustrated in Figure 2.18.

	 5.	The objective is to determine the optimal replacement age of the item to 
minimize the total expected replacement cost per unit time.

In this problem, there are two possible cycles of operation: one cycle being deter-
mined by the item reaching its planned replacement age, tp, and the other being 
determined by the equipment ceasing to operate due to a failure occurring before the 
planned replacement time. These two possible cycles are illustrated in Figure 2.19.

The total expected replacement cost per unit time, C(tp), is

	
C t( )p

Total expected replacement cost per cycle=
EExpected cycle length 	

Note that we are obtaining the expected cost per unit time as a ratio of two expecta-
tions. This is acceptable in many replacement problems because it has been shown 
(Smith 1955) that

	
lim

( )
t

K t

t→∞
= Expected cost per cycle

Expected cyclle length 	

Failure 
replacement

Preventive 
replacement

Failure 
replacement

Preventive 
replacement

Time

tptp

0

FIGURE 2.18  Replacement cycles: age-based policy.
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where K(t) is the cumulative expected cost due to a series of cycles in an interval 
(0, t). K(t)/t is the expected cost per unit time.

	

Total expected replacement cost per cycle

cost= oof a preventive cycle probability of a prevent× iive cycle

cost of a failure cycle probability+ × oof a failure cycle

p p f p= + × −C R t C R t( ) [ ( )]1
	

Remember, if f(t) is as illustrated in Figure 2.20, then the probability of a preventive 
cycle is equivalent to the probability of failure occurring after time tp, that is, equiva-
lent to the shaded area, which is denoted as R(tp) (refer to Appendix 1 for a discussion 
of the reliability function).

The probability of a failure cycle is the probability of a failure occurring before 
time tp, which is the unshaded area of Figure 2.20. Because the area under the curve 
equals unity, then the unshaded area is [1 – R(tp)].

Preventive 
replacement

Operation

Cycle 1 tp
0

Cycle 2

Operation

M(tP)

Failure 
replacement

or

FIGURE 2.19  Possible replacement cycles: age-based replacement.

t
tp0

f (t)

FIGURE 2.20  Item failure distribution.
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Expected cycle length

length of a preventive cy= ccle probability of a preventive cycle

expected

×
+ length of a failure cycle probability of a fa× iilure cycle

(expected length of a faip p= × +t R t( ) llure cycle) p× −[ ( )]1 R t
	

To determine the expected length of a failure cycle, consider Figure 2.21. The 

mean time to failure of the complete distribution is tf t t( ) d
−∞

∞

∫ , which for the nor-

mal distribution is equivalent to the mode (peak) of the distribution. If a preventive 
replacement occurs at time tp, then the mean time to failure is the mean of the shaded 
portion of Figure 2.21 because the unshaded area is an impossible region for failures. 

The mean of the shaded area is tf t t

R t

t

( )
( )
d

p

p

1−
−∞
∫ , denoted as M(tp). Therefore,

	 Expected cycle length = tp × R(tp) + M(tp) × [1 − R(tp)]	

	

C t
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( ) [ ( )]

( ) ( ) [ (p
p p f p

p p p

=
× + × −

× + × −
1

1 ttp )]
.

	

(2.8)

This is now a model of the problem relating replacement age tp to total expected 
replacement cost per unit time.

f(t)

0 Mean tp
t

M(tp)

FIGURE 2.21  Estimating the mean of a truncated distribution.
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Note that there is no simple solution to Equation 2.8, as there is for the constant-
interval model, Equation 2.3. However, Equation 2.8 can be simplified to

	

C t
C R t C R t

t R t tf t t

( )
( ) [ ( )]

( ) ( )

p
p p f p

p p d

p
=

× + × −

× +
−∞

1
3

∫∫
.

	

2.5.3 �N umerical Example

Using the data of the example in Section 2.4.4, determine the optimal replacement 
age of the equipment. Equation 2.8 becomes

	

C t
R t R t

t R t tf t t

t
( )

( ) [ ( )]

( ) ( )

p
p p

p p d

p
=

× + × −

× +
−∞
∫

5 10 1
.

	

For various values of tp, the corresponding values of C(tp) are given in Table 2.7, 
from which it is seen that the optimal replacement age is 4 weeks.

Sample calculation for tp = 3 weeks:

Equation 2.8 becomes

	 C
R R

R tf t t

( )
( ) [ ( )]

( ) ( )

3
5 3 10 1 3

3 3

3
= × + × −

× +
−∞
∫ d

	

	
R( ) ( )

.

3 1 2

0 9772

= − −
=

Φ 	 (see Figure 2.22)

Therefore,

	 [1 – R(3)] = 1 – 0.9772 = 0.0228

TABLE 2.7
Optimal Preventive Replacement Age
tp 1 2 3 4 5 6

C(tp) 5.00 2.50 1.70 1.50 1.63 1.87
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and through integrating by parts we get
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t
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where ϕ(t) and Φ(t) are the ordinate and cumulative distribution functions, respec-
tively, at t of the standardized normal distribution, whose mean is 0 and standard 
deviation is 1.

When σ = 1, μ = 5, then

	 tf t t( ) . .d = − −




+ −




= − + ×φ 3 5

1
5

3 5
1

0 0540 5 0 0Φ 2228 0 0600

3

=
−∞
∫ .

	

where 0.0540 and 0.0228 are obtained from Appendices 8 and 9, respectively.
Therefore,

	 C( )
. .

. .
$ .3

5 0 9772 10 0 0228
3 0 9772 0 0600

1 70= × + ×
× +

= perr week.
	

2.5.4 �F urther Comments

As was the case for the example in Section 2.4, no account has been taken of the time 
required to make a failure replacement or a preventive replacement. When neces-
sary, the replacement times can be accommodated in the model. Section 2.6 presents 
a model that will include the times required to make either a failure or a preventive 
replacement.

N(5, 1)

R(3)

3 5 –2 0

N(0, 1)

=

FIGURE 2.22  Calculating the probabilities for age replacement policy.
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2.5.5 �A n Application: Optimal Bearing Replacement Age

A critical bearing in a shaker machine in a foundry was replaced only upon failure 
(Jardine 1979). It was known that the cost consequence of a failure was about twice 
the cost of replacing the bearing under preventive conditions. Data on the most recent 
six failure ages were known (Figure 2.23), and from that small sample size, a Weibull 
analysis was undertaken to estimate the failure distribution. Best estimates using the 
criterion of maximum likelihood for the shape parameter (β) and the characteristic 
life (η) were 2.97 and 17.55 weeks, respectively. Using the age replacement model 
(Equation 2.8), the optimal preventive replacement age was identified as 14 weeks. 
Figure 2.24 is a graph of the total cost as a function of different replacement ages.

Two points are worth mentioning about this application.

	 1.	Presenting the optimal solution to management graphically, as in Figure 
2.24, is of value so that management can clearly see the effect of devi-
ating from the mathematical optimal preventive replacement age. From 
Figure 2.24, it is clear that a very acceptable solution is to plan to replace 
the bearing somewhere between the ages of 10 and 14 weeks. Postponing 
the preventive replacement age past 14 weeks is seen to quickly drive up the 

12 23 9 13 19

Today

FIGURE 2.23  Historical bearing failure times.
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FIGURE 2.24  Establishing the optimal preventive replacement age of a bearing.
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cost function due to the combination of risk and economics. Conversely, 
preventively replacing earlier than 10 weeks is seen as overmaintenance.

	 2.	This application was one in which the sample size was small (only five 
failures). Although it is possible to obtain best estimates of the Weibull 
parameters—in this case (β = 2.97)—it is also possible to place a con-
fidence interval on the parameters. In the case of component preventive 
replacement, we want to be quite confident that the confidence interval for 
β does not include 1.0, because if it did, it would mean that failures could 
be occurring strictly randomly, and the best replacement policy would be 
to replace-only-on-failure. Establishing confidence intervals for Weibull 
parameters is presented in Section A2.4.

2.6 � OPTIMAL PREVENTIVE REPLACEMENT AGE OF 
AN ITEM SUBJECT TO BREAKDOWN, TAKING 
ACCOUNT OF THE TIMES REQUIRED TO CARRY 
OUT FAILURE AND PREVENTIVE REPLACEMENTS

2.6.1 �S tatement of the Problem

The problem definition is identical to Section 2.5, except that instead of assuming 
that the failure and preventive replacements are made instantaneously, account is 
taken of the time required to make these replacements.

The optimal preventive replacement age of the item is again taken as that age 
which minimizes the total expected cost of replacements per unit time.

2.6.2 �C onstruction of the Model

	 1.	Cp is the total cost of a preventive replacement.
	 2.	Cf is the total cost of a failure replacement.
	 3.	Tp is the mean time required to make a preventive replacement.
	 4.	Tf is the mean time required to make a failure replacement.
	 5.	 f(t) is the probability density function of the failure times of the item.
	 6.	M(tp) is the mean time to failure when preventive replacement occurs at age tp.
	 7.	The replacement policy is to perform a preventive replacement once the 

item has reached a specified age, tp, plus failure replacements when neces-
sary. This policy is illustrated in Figure 2.25.

	 8.	The objective is to determine the optimal preventive replacement age of the 
item to minimize the total expected replacement cost per unit time.

As was the case for the problem in Section 2.4, there are two possible cycles of 
operation, and they are illustrated in Figure 2.26.

The total expected replacement cost per unit time, denoted C(tp), is

	
C t( )p

Total expected replacement cost per cycle=
EExpected cycle length 	
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Total expected replacement cost per cycle (Section 2.5) 

	  = Cp × R(tp) + Cf [1 − R(tp)]

	

Expected cycle length

length of a preventive cy= ccle probability of a preventive cycle

expected

×
+ length of a failure cycle probability of a fa× iilure cycle

p p p p f p= + + + −( ) ( ) [ ( ) ][ ( )]t T R t M t T R t1

	

	

C t
C R t C R t

t T R t M t T
( )

( ) [ ( )]

( ) ( ) [ ( )p
p p f p

p p p p f

=
+ −

+ + +
1

]][ ( )]1− R tp

.	 (2.9)

This is a model of the problem relating preventive replacement age, tp, to the total 
expected replacement cost per unit time.

2.6.3 �N umerical Example

For the data of Section 2.5, namely, Cp = $5, Cf = $10, f(t) = N(5, 1), and replace-
ment times of Tp and Tf = 0.5 week, determine the optimal replacement age of the 
equipment.

Failure
replacement

Preventive
replacement

Failure
replacement

t

TfTptp

0

Tf

FIGURE 2.25  Age-based policy, including duration of a replacement.

 

Operation

Preventive
replacement

Cycle 1

Tp

tp + Tp

or
Operation

Failure
replacement

Cycle 2

Tf

M(tp ) + Tf

FIGURE 2.26  Age-based replacement cycles, including replacement durations.
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Because, M t

tf t t

R t

t

( )
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( )p
p

d

p

=
−

−∞
∫
1

, Equation 2.9 becomes
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R t R t

t R t tf t t
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( ) [ ( )]

( . ) ( ) ( )

p
p p

p p d

=
× + × −

+ +
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R tp

.

	

For various values of tp, the corresponding values of C(tp) are given in Table 2.8, 
from which it is seen that the optimal preventive replacement age is 4 weeks.

Sample calculation for tp = 3 weeks:

Equation 2.9 becomes

	

C
R R

R R
( )

( ) [ ( )]
. ( ) . . [

3
5 3 10 1 3

3 5 3 0 0600 0 5 1
= × + × −

× + + × − (( )]

. .
. . . . .

3

5 0 9772 10 0 0228
3 5 0 9772 0 06 0 5 0 0

= × + ×
× + + × 2228

5 1140 3 4916=

=

. / .

$1.46 per week 	

2.7 � OPTIMAL PREVENTIVE REPLACEMENT INTERVAL 
OR AGE OF AN ITEM SUBJECT TO BREAKDOWN: 
MINIMIZATION OF DOWNTIME

2.7.1 �S tatement of the Problem

The objective of the problems in Sections 2.4 through 2.6 is to minimize total cost 
per unit time. In some cases, say, due to difficulties in determining costs or the desire 
to get maximum throughput or utilization of equipment, the replacement policy 
required may be one that minimizes total downtime per unit time or, equivalently, 
maximizes availability. The problem in this section is to determine the best times at 

TABLE 2.8
Optimal Preventive Replacement Age Including 
Replacement Times
tp 1 2 3 4 5 6

C(tp) 3.34 2.00 1.46 1.34 1.47 1.70
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which replacements should occur to minimize total downtime per unit time. As the 
preventive replacement frequency increases, there is an increase in downtime due to 
these replacements, but a consequence of this is a reduction of downtime due to failure 
replacements, and we wish to get the best balance between them.

2.7.2 �C onstruction of the Models

	 1.	Tf is the mean downtime required to make a failure replacement.
	 2.	Tp is the mean downtime required to make a preventive replacement.
	 3.	 f(t) is the probability density function of the failure times of the item.

2.7.2.1 � Model 1: Determination of Optimal Preventive Replacement Interval
	 4.	The objective is to determine the optimal replacement interval, tp, between 

preventive replacements to minimize total downtime per unit time. The 
policy is illustrated in Figure 2.27.

		  The total downtime per unit time, for preventive replacement at time tp, 
denoted as D(tp), is:

	
D t( )p

Expected downtime due to failures downtim=   + ee due topreventive replacement
Cycle length

 

	

	 Downtime due to failures = number of failures in interval (0, tp) × time 
required to make a failure replacement = H(tp) × Tf

	 Downtime due to preventive replacement = Tp

		  Therefore,

	

D t
H t T T

t T
( )

( )
p

p f p

p p

=
+

+
.

	

(2.10)

		  This is a model of the problem relating replacement interval tp to total 
downtime D(tp).

Failure
replacements

Tf Tf

tp

One cycle

Preventive
replacement

Tp

FIGURE 2.27  Downtime minimization: optimal interval.
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2.7.2.2 � Model 2: Determination of Optimal Preventive Replacement Age
	 5.	The objective is to determine the optimal age, tp, at which preventive 

replacements should occur such that total downtime per unit time is mini-
mized. The policy was illustrated earlier in Figure 2.26, from which it was 
seen that there are two possible cycles of operation.

		  The total downtime per unit time for preventive replacements once the 
item becomes of age tp is:

	 D(tp) = (total expected downtime/cycle)/expected cycle length	

	 Total expected downtime/cycle = downtime due to a preventive cycle 
× probability of a preventive cycle + downtime due to a failure cycle 
× probability of a failure cycle = TpR(tp) + Tf [1 − R(tp)]

	 Expected cycle length (Section 2.5.2) = (tp + Tp) R(tp) + [M(tp) + Tf] [1 − R(tp)]

		  Therefore,

	

D t
T R t T R t

t T R t M t T
( )

( ) [ ( )]

( ) ( ) [ ( )p
p p f p

p p p p f

=
+ −

+ + +
1

]][ ( )]1− R tp

.

	

(2.11)

		  This is a model of the problem relating replacement age to total downtime.

2.7.3 �N umerical Examples

Let Tf = 0.07 week, Tp = 0.035 week, and f(t) = N(5, 1).

2.7.3.1 � Model 1: Replacement Interval
From Equation 2.10, we have:

	
D t

H t

t
( )

( ) . .

.p
p

p

=
× +
+
0 07 0 035

0 035
.
	

Table 2.9 gives values of D(tp) for various values of tp. Here, it can be seen that the 
optimal replacement interval is tp = 4 weeks.

TABLE 2.9
Optimal Preventive Replacement Interval: Downtime Minimization
tp 1 2 3 4 5 6

D(tp) 0.0338 0.0173 0.0121 0.0114 0.0139 0.0156
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Sample calculation for tp = 2:

Equation 2.10 becomes

	
D

H
( )

( ) . .
.

2
2 0 07 0 035

2 0 035
= × +

+ 	

	 H(2) = 0.00135 (from Section 2.4.4)

Therefore,

	 D(2) = 0.0173 weeks

2.7.3.2 � Model 2: Replacement Age

From Equation 2.11, we have:
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(2.12)

Then, Equation 2.12 becomes

	

D t
R t R t

t R t t

( )
. ( ) . [ ( )]

( . ) ( )

p
p p

p p

=
+ −

+ +

0 035 0 07 1

0 035 ff t t R t

tp

( ) . [ ( )]d p

−∞
∫ + −0 07 1

.

	

(2.13)

Inserting different values of tp into Equation 2.13, Table 2.10 can be constructed, 
from which it is clear that the optimal replacement age is 4 weeks.

Sample calculation for tp = 3:

Equation 2.11 becomes

	 D
R R

R t t

( )
. ( ) . [ ( )]

( . ) ( ) ( )

3
0 035 3 0 07 1 3

3 0 035 3

= + × −

+ + f ddt R
−∞
∫ + × −
3

0 07 1 3. [ ( )]

.

	

TABLE 2.10
Optimal Preventive Replacement Age: Downtime Minimization
tp 1 2 3 4 5 6

D(tp) 0.0338 0.0172 0.0118 0.0102 0.0113 0.0129
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From Section 2.5.3,

	 R R t t t( ) . ( ) . ( ) .3 0 9772 1 3 0 0228 0 0600

3

= − = =
−∞
∫ f d .

	

Therefore,

	 D(3) = 0.0118 weeks.

2.7.4 �F urther Comments

With reference to model 1, provided that the time required for a failure replace-
ment is small relative to the intervals being considered for preventive replacement 
(e.g., 0.07 as opposed to 4), it is reasonable to use the H(T) formulation of Section 
2.4.3 to determine the expected number of failures in interval (0, tp). Strictly speak-
ing, account should be taken of the fact that the time available between preventive 
replacements for failure to occur is reduced due to downtime incurred while making 
failure replacements.

Note also that although the replacement interval and replacement age to minimize 
downtime are both 4 weeks, the age-based policy gives a reduction in downtime of 
10.5% for the figures used in the example when compared with the interval-based 
policy.

2.7.5 �A pplications

2.7.5.1 � Replacement of Sugar Refinery Cloths
The practice in a refinery was to replace certain critical components in a centri-
fuge only when they failed (Jardine and Kirkham 1973). The goal was to identify 
an optimal change-out time for several components, including the cloth, such that 
machine availability was maximized. As mentioned in Section 2.3, one of the 
requirements for preventive replacement to be worthwhile is that the probability 
of an item failing in service must be increasing as the item ages. In this study, 
when the failure statistics were analyzed (there were 229 failure intervals avail-
able for analysis), the Weibull shape parameter, β, was equal to 1.0. Thus, in this 
case, the downtime minimization model was not required, and the conclusion was 
that the best replacement policy was to continue replacing the cloths only when 
they failed.

In practice, we can ask the question: Why are cloths failing “strictly” randomly? 
In other words, the conditional probability of a new cloth failing is the same as that 
of an old one. If this question is addressed, perhaps a design or a change in operating 
procedures may be made. In the case described, the decision was made to continue 
using the same type of cloth and to continue with past practice, namely, to replace 
the item only upon failure.
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2.7.5.2 � Replacement of Sugar Feeds in a Sugar Refinery
In the study discussed above, another component examined was the sugar feed 
(Jardine and Kirkham 1973). Again, the policy in place was to replace the feed once 
it reached a defined failed state, and the goal was to establish an optimal preventive 
replacement time (either age or interval) such that the sugar feed downtime was 
minimized or, equivalently, availability was maximized. When the failure statistics 
were analyzed in this case, the Weibull shape parameter took the value 0.8. This 
was somewhat of a surprise because it indicated a high probability of sugar feed 
failure shortly after installation, compared with later in the life of the feed. Again, 
the question can be asked: Why? In this case, one possible reason is poor-quality 
installation process for the part, and perhaps with additional training, the installer 
could improve the installation. A worthwhile consideration when dealing with the 
statistical analysis of data, especially if a surprise is observed, is to look behind the 
statistics. Perhaps there has been an error in data acquisition. In this study, the data 
were carefully examined and there was no reason to reject the conclusion: there is a 
higher risk of failure early in the life of the feed and, as it ages, the risk of failure is 
reduced. Thus, the optimal policy is to replace the feed only when it fails.

2.8 � GROUP REPLACEMENT: OPTIMAL INTERVAL BETWEEN 
GROUP REPLACEMENTS OF ITEMS SUBJECT TO FAILURE— 
THE LAMP REPLACEMENT PROBLEM

It is sometimes worthwhile to replace similar items in groups rather than singly 
because the cost of replacing an item under group replacement conditions may be 
lower; that is, there are economies of scale. Perhaps the classic example of this sort 
of situation is the maintenance of street lamps. Bearing in mind the cost of trans-
porting a lighting department’s maintenance staff to a single street lamp failure and 
discounts associated with bulk purchase of lamps, it may be economically justifiable 
to replace all the lamps on a street rather than only the failed ones.

This particular type of problem is virtually identical to that of Section 2.4, except 
that here we are dealing with a group of identical items rather than single items.

2.8.1 �S tatement of the Problem

A large number of similar items are subject to failure. Whenever an item fails, it is 
replaced by a new item—we do not assume group replacement (i.e., replacing all items 
at the same time) in such conditions. There is also the possibility that group replacement 
can be performed at fixed intervals of time. The cost of replacing an item under group 
replacement conditions is assumed to be less than that for failure replacement. The more 
frequently group replacement is performed, the less failure replacements will occur, but 
a balance is required between the money spent on group replacements and the reduction 
of failure replacements.

The model developed for this problem is based on the assumption that the replace-
ment policy is to perform group replacements at fixed intervals of time, with fail-
ure replacements being performed as necessary. We wish to determine the optimal 



63Component Replacement Decisions

interval between the group replacements to minimize the total expected cost of 
replacement per unit time.

2.8.2 �C onstruction of the Model

	 1.	Cg is the cost of replacing one item under conditions of group replacement.
	 2.	Cf is the cost of a failure replacement.
	 3.	 f(t) is the probability density function of the failure times of the items.
	 4.	N is the total number of items in the group.
	 5.	The replacement policy is to perform group replacement at constant inter-

vals of length, tp, with failure replacements performed as many times as 
required in interval (0, tp). The policy is illustrated in Figure 2.28.

	 6.	The objective is to determine the optimal interval between group replace-
ments to minimize the total expected replacement cost per unit time.

The total expected replacement cost per unit time for group replacement at time 
tp, denoted as C(tp), is

	
C t

t
( )p

pTotal expected cost in interval (0, )

In
=

tterval length
.
	

Total expected cost in interval (0, tp) = cost of group replacement at time tp + 
expected cost of failure replacements in interval (0, tp) = NCg + NH(tp)Cf, where 
H(tp) is the expected number of times one item fails in interval (0, tp). The method of 
determining H(tp) is given in Section 2.4.3. Therefore,

	

C t
NC NH t C

t
( )

( )
p

g p f

p

=
+

.	 (2.14)

This is a model of the group replacement problem relating replacement interval tp to 
total cost.

0

Failure replacements Group replacement

One cycle

tp

FIGURE 2.28  Group replacement.
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2.8.3 �N umerical Example

Using the data given in the example of Section 2.4.4, namely,

	 1.	Cost of a failure replacement = $10
	 2.	Cost of a replacement under group replacement conditions = $5
	 3.	 f(t) = N(5, 1)

and assuming that there are 100 items in the group, Table 2.11 can be constructed. 
It gives values of C(tp), the total replacement cost per unit time, for various values 
of tp, the group replacement interval, from which it is seen that the optimal interval 
between group replacements is 4 weeks.

Sample calculation for tp = 2 weeks:

Equation 2.14 becomes

	 C(2) = [100 × 5 + 100 × H(2) × 10]/2

	 H(2) = 0.00135	 (from example in Section 2.4.4).

Therefore,

	 C(2) = [500 + 1.4]/2 = $251.

2.8.4 �F urther Comments

As noted before the problem statement of this section, the optimal group replacement 
interval for the above example is identical to the optimal preventive replacement 
interval for a single item, as given in Section 2.4. The minimum total replacement cost 
for group replacement is the same as that for a single unit, multiplied by the number 
of items in the group.

2.8.5 �A n Application: Optimal Replacement Interval for 
a Group of 40 Valves in a Compressor

A group of 40 valves are presently replaced every 9000 h on a compressor in the oil 
and gas industry. Examination of the company maintenance database indicates that 
in these 9000-h intervals, there is occasionally a valve failure, and when this occurs, 
the defective valve is replaced.

TABLE 2.11
Cost of Group Replacement per Unit Time
tp 1 2 3 4 5 6

C(tp) 500 251 174 165 200 224
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From this data source, it is possible to estimate the failure distribution of a valve 
in that operating environment as being Weibull with parameters as follows: shape 
(β) = 2, location (γ) = 3600 hours, characteristic life (η) = 138,118 hours, and mean 
time to failure (μ) = 126,000 hours.

The cost associated with compressor failure due to a valve problem is estimated at 
$94,024, and for preventive replacement of the group of 40 valves, it is $24,256.

Using the constant-interval model, Equation 2.3, the optimal change-out time for the 
valve is identified as 84,000 hours with an associated cost of $0.66/hour, compared with 
the cost under the current policy of $2.65/hour. Thus, there is a cost reduction of 76%.

However, given the limited data that were available for analysis, we may not imme-
diately jump to adopt the replacement interval of 84,000 hours. The analysis reveals 
that the total cost curve is quite flat around the optimal replacement interval, and 
furthermore, by doubling the current replacement interval to 18,000 hours, a very 
substantial savings could be expected compared with the present practice because the 
cost per hour would be reduced to $1.41/hour, realizing a savings of 47%.

2.9 � FURTHER REPLACEMENT MODELS

Three additional classes of component replacement models are outlined for the inter-
ested reader. In each case, the level of mathematics used is of a slightly higher order 
than that of the models developed in this book.

2.9.1 �M ultistage Replacement

A multistage replacement strategy may be relevant in the situation in which there is 
a group of similar items that can be divided into subgroups dependent on the cost of 
replacing an item upon its failure.

For example, some items may be more expensive to replace than others due to 
failure in a key position having expensive repercussions.

A two-stage replacement strategy is examined in a report by Bartholomew (1963). 
The problem examined is one in which there are N similar items divided into two 
groups, N1 and N2, and the costs of replacement of an item in these groups are C1 
and C2, respectively. The two-stage replacement strategy is illustrated in Figure 2.29.

In Figure 2.29, it is assumed that the cost of replacement in stage 1 is greater than 
that in stage 2. In this case, all failures that occur in stage 2 are replaced by operat-
ing items from stage 1. Vacancies that occur in stage 1, whether caused by failure 
or transfer of operating items to stage 2, are replaced by new items. Although this 
strategy does not reduce the overall steady-state failure rate of the system, it does 
decrease it in stage 1 (where replacement cost is high) and increase it in stage 2 
(where replacement cost is low). In Bartholomew’s article, the conditions are derived 
for two-stage replacement to be preferable to simple replacement (i.e., replacing any 
failure directly with a new item).

A possible application of such a strategy relates to the replacement of tires on 
certain classes of mobile equipment. For example, if a failure occurs in a rear tire 
on a trailer and it is to be replaced, then it is replaced by a tire from one of the front 
wheels of the tractor (prime mover), and the new tire is placed on the tractor wheel.
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The two-stage strategy is extended in an article by Naik and Nair (1965) to cater 
to the possibility of defining several stages in a system, each stage being defined by 
its replacement cost. An application of the two-stage strategy to resource planning is 
given by Robinson (1974).

2.9.2 �O ptional Policies

Frequently, an item ceases to operate not because of its own failure but because there 
is a production stoppage for some reason. When this happens, the maintenance spe-
cialist may have to decide whether to take advantage of the downtime opportunity to 
perform a preventive replacement.

Woodman (1967) discussed this class of problem and constructed a model to cover 
optional policies (so called because the decision on whether to take advantage of the 
downtime opportunity is at the option of the maintenance specialist). Basically, the 
model takes account of the costs of failure replacement, cost of replacement during 
downtime, the failure distribution of the equipment subject to replacement, and the 
frequency with which replacement opportunities occur. Solution of the model results 
in control limits being determined, which enable the specialist to determine whether 
to take advantage of the opportunity, depending on the age of the equipment. This 
policy is illustrated in Figure 2.30. If an equipment failure occurs, it is replaced. 
If a replacement opportunity occurs and the equipment’s age exceeds the control 
limit, a preventive replacement is made; otherwise, the equipment is left during the 
opportunity and allowed to continue operating. Kaspi and Shabtay (2003) present 

New items

Stage 1

N1 items

Cost of replacement 
per item = C1

Failures in stage 1

Transfer of operating items
 in stage 1 to stage 2

Stage 2

N2 items

Cost of replacement 
per item = C2

Failures in stage 2

FIGURE 2.29  Two-stage replacement.
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models using the optional replacement modeling approach for machine tools in a 
manufacturing setting.

2.9.3 �R epairable Systems

Up until now in the chapter, it has been assumed that renewal of the item occurred 
at the time of the maintenance action. If this is not acceptable, then we need models 
applicable to repairable systems. A classic book addressing such problems is that of 
Ascher and Feingold (1984), in which the concept of noncommittal, happy, and sad 
systems is introduced. Figure 2.31 illustrates these system descriptions using the 
five sets of bearing failure data that were first introduced in Section 2.5.5. Before 
proceeding to use the interval and age models presented, it is necessary that the 
failures are what are termed identical and independently distributed, namely, the 
failure distribution of each new item is identical to the previous one, and each failure 
time is independent of the previous one. To check that this is the case, a trend test 
can be made on the chronologically ordered failure times (see the Laplace trend test 
described in Section A2.12 of Appendix 2). Figure 2.31 illustrates that the noncom-
mittal times have no clear trend, whereas that is not the case for the times that are 
presented in the rows identified as “happy” or “sad.” Of course, in practice, trends 
may not be so easy to spot, but care should always be taken before proceeding to do 
a Weibull analysis of data, to ensure that there is no underlying trend of reliability 
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68 Maintenance, Replacement, and Reliability

growth (the happy system) or reliability degradation (the sad system), which is com-
mon with repairable systems. Lhorente et al. (2004) provide an example of a sad 
system. Since the Ascher and Feingold book was published, many research ideas 
on how best to handle the optimization of maintenance decisions associated with 
repairable systems have been published. In this literature, the terms minimal and 
general repair are frequently used. Figure 2.32 illustrates these two terms. Here, it 
is seen that a minimal repair can be thought of as a very minor maintenance action 
(such as replacing a snapped fan belt on an automobile) that returns the equipment/
system to the same state of health that it was in just before the minor maintenance 
action. A general repair improves the system state, whereas a renewal completely 
returns the equipment to the statistically as-good-as-new condition.

The concept of virtual age has been introduced to model repairable system main-
tenance problems. Malik (1978) and Kijima (1989) presented the concept of virtual 
age when modeling repairable systems. Jiang et al. (2001) suggested a repair limit 
using the virtual age concept when deciding what maintenance action should take 
place at the time of a maintenance fault. The approach is illustrated in Figure 2.33. 
Here, it can be seen that the real age (run-time) of an item is on the y-axis at the top 
of the figure and virtual age is on the x-axis. Thus, at the first maintenance interven-
tion, when the equipment is of age X1, the equipment becomes of age V1 after the 
maintenance action. Once the equipment has operated for a further period X2 to 
bring its running age to X1 + X2, another maintenance action occurs that brings the 
equipment’s virtual age to V2.

The key question to be addressed is as follows: When there is the need for a main-
tenance intervention, what action should be taken? Minimal repair, general repair 
(the more money spent on a general repair, the closer the equipment is brought to 
the as-new condition), or complete renewal? To address this question, we can see the 
repair limit concept in Figure 2.33 through the cost on the y-axis on the bottom half 
of the diagram.

r(t)
Minimal repair time

General repair time

Minimal repair time

Renewal time

Time

FIGURE 2.32  Minimal and general repair.
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If the cost estimate for maintenance is between zero and the limit C0, then a mini-
mal repair is made. If the cost is between C0 and the cost boundary, then a general 
repair is made.

In the figure, the cost associated with the first maintenance intervention is C1, so 
a general repair instead of a complete renewal should be made, and consequently, 
the equipment health is improved when compared with its condition prior to repair.

If the cost exceeds the boundary curve, then it implies that a complete renewal 
should take place. Similarly, if the running time of the equipment reaches the bound-
ary for preventive replacement, then a complete renewal is to take place.

In a study on repair versus replacement of transformers (Kallis 2003), it was 
established that a new transformer could be purchased for $150,000. Key compo-
nents experiencing failures were primary and secondary windings, each installed on 
a laminated iron core, internal insulating mediums, and the main tank and bushings. 
Others included the cooling system, off-circuit tap changer, underload tap changer, 
current and potential transformers, and mechanism cabinets.

Optimization of repairable systems requires the identification of the degree of 
improvement in a component’s performance after repair. For windings, it was con-
cluded that the degree of repair was 80%. Thus, changing the core and windings of 
the transformer reduced the age of the transformer by 80%.
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FIGURE 2.33  Optimizing minimal and general repair decisions.
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Thus, if a 20-year-old transformer has its core and windings replaced, the virtual 
age of the transformer would be (20 − 0.8 × 20) = 4 years. Similar degrees of repair 
were investigated for other transformer components. Knowing the cost of the main-
tenance action and comparing it with the cost of a new transformer, an intelligent 
decision can be made about the repair versus replacement alternative.

Research publications dealing with the development of models that can be used 
for the optimization of maintenance decisions for repairable equipment that cannot 
be treated as an item that is always renewed at the maintenance action are provided 
by Lugtigheid et al. (2004, 2005) and Nelson (2003).

2.10 � CASE STUDY ON PROJECT PRIORITIZATION, TREND 
TESTS, WEIBULL ANALYSIS, AND OPTIMIZING 
COMPONENT REPLACEMENT INTERVALS

2.10.1 �I ntroduction

The study was undertaken in an underground mine to establish the optimal change-
out times for four major components (engine, front axle, rear axle, and transmis-
sion) and 695 minor components, called item parts (such as air-conditioning unit and 
alternator) for a fleet of 14 mobile assets.

Work order data related to the underground equipment that had been col-
lected for 3 years were analyzed. The work order data set consisting of approxi-
mately 70,000 rows was extracted from the maintenance information system. 
Data validity and data cleaning issues accounted for much of the effort expended 
in this study.

When the data were “cleaned,” they were analyzed to obtain failure frequency, 
failure downtime, and costs associated with all components. Graphical tools—
Pareto histograms and jackknife scatter plots (Knights 2001)—revealed important 
information about costs and priorities.

After the graphical analyses, reliability trend analysis was undertaken on the 
data. Trend analysis determines whether the failure of a component has a significant 
reliability trend (either growth or deterioration). This verification is a prerequisite, as 
explained in Section 2.9.3, before undertaking Weibull analysis.

With the fitted failure distributions obtained, the optimal preventive replacement 
intervals to minimize the total cost of maintenance (corrective and preventive) of 
these components were calculated.

Applying the optimal preventive replacement policies to the majority of item 
parts yielded a cost saving of 10% to 20%. For many of the rebuilt item parts, “run-
to-failure” was identified as the appropriate replacement policy.

2.10.2 �O ptimal Preventive Replacement Age for Major Components

Establishing optimal change-out times for the four major components (engine, front 
axle, rear axle, and transmission) was quite straightforward using the approach of 
Section 2.5. Given the failure distributions of these components and associated costs 
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of both preventive and failure replacements, the optimal change-out times were iden-
tified to the nearest 1000 hours as:

Engine: 25,000 hours
Front axle: 30,000 hours
Rear axle: 7000 hours
Transmission: 7000 hours

Note that these results should not be generalized, as they are site-specific and depen-
dent on the costs.

2.10.3 �O ptimal Preventive Replacement Age for 
Item Parts (Minor Components)

The major challenge was the number of item parts (a total of 695). A common 
approach to deciding where to start analyzing a large data set is to create a Pareto 
chart that highlights the items causing the most cost or most downtime when they 
fail. Figure 2.34 is the Pareto chart based on downtime for the first 30 item parts out 
of the 695 causing the most downtime. A similar chart can be created for cost.

Part no. 6429024 contributes most to downtime over the 3-year data collection 
period: thus, it may be considered the item part that should be examined first.

Knights (2001), however, points out that a Pareto chart fails to distinguish which 
parts are the most troublesome, taking into account both frequency and duration of 
failures. For example, in Figure 2.34, did part no. 6429024 only fail once during the 
3-year period to result in the total downtime, or was it due to many failures, each of 
short duration? To address this limitation, Knights developed the jackknife diagram. 
Figure 2.35 is a jackknife diagram for the data set depicted in Figure 2.34.

In the jackknife diagram, the axes are logarithmic with failure frequency over the 
data collection period (in this case, 3 years) on the x-axis and the average duration of 
each downtime on the y-axis.

Each item part is plotted on the jackknife diagram; each shows the frequency of 
failure and mean downtime (or mean repair cost) over the 3-year data collection period. 
Items that result in lengthy repairs on each occasion of failure are classified as acute 
problems; failures that recur frequently are considered chronic problems. Thus, we can 
divide the scatter plot into four quadrants as shown in Figure 2.35. The threshold limits 
that define the boundaries of these quadrants can be determined by company policy, or 
they can be values such as mean (or median) frequency and mean (or median) of the 
average duration of each downtime. Diagonal lines with a slope of −1 on the jackknife 
diagram represent constant cumulative downtime (or constant cumulative cost).

The determination of maintenance priorities is influenced by business imperatives. 
When the items under consideration require maximum availability, the opportunity 
cost of lost production will far exceed the direct cost of repair and maintenance. 
In such situations, enhancing reliability should have higher priority than improving 
maintainability; the jackknife diagram shown in Figure 2.36 helps to identify these 
higher priority problems.
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In another scenario, when high availability of items is not critical, or when the 
return from output is low, reducing the direct cost of repair and maintenance will 
become the primary focus of attention. Under such circumstances, dealing with  
maintainability problems should be given higher priority than resolving reliability 
problems; the jackknife diagram shown in Figure 2.37 will identify these higher 
priority problems.

When cost minimization is the top priority, the recommendation is to analyze the 
item parts in the following order: acute and chronic, chronic A, acute, and then the 
rest of the items.

Note that neither of the two item parts identified in the acute and chronic quadrant 
is item 6429024, identified in the Pareto chart (Figure 2.34) as the one that should 
be addressed first. Part 6429024 appears in the chronic A category in Figure 2.35.

For each item part, a trend test was conducted as described in Appendix 2, Section 
A2.12. Whenever a deteriorating trend for an item part was identified, such as that 
illustrated in Figure 2.38, it was rejected for Weibull analysis because the failures 
were not identically and independently distributed (Section 2.9.3). The same decision 
was made for any item part showing a reliability growth trend as illustrated in Figure 
2.39. The optimal preventive replacement ages were obtained only for item parts 
with failures that were identically and independently distributed, that is, when it was 
appropriate to fit a Weibull model to failure data (Figure 2.40).
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2.10.4 �C onclusion for Item Parts

Optimal preventive replacement ages were identified for key item parts along with 
associated cost savings compared with current practices. These cost savings ranged 
from none to slightly less than 50%.

Applying the optimal preventive replacement policies to the majority of item parts 
yielded a cost savings of 10% to 20% compared with current practices.

2.11 � SPARE PARTS PROVISIONING: 
PREVENTIVE REPLACEMENT SPARES

2.11.1 �I ntroduction

In Chapter 1, the concept of modeling was introduced through an example dealing with 
establishing the optimal economic order quantity for an item. That model is appropriate 
for fast-moving consumable spare parts for which there is a steady demand.

If preventive maintenance is being conducted on a regular basis according to either 
the constant-interval or age-based replacement models (Sections 2.4 and 2.5, respec-
tively), then a spare part is required for each preventive replacement; in addition, spare 
parts are required for any failure replacements. The goal of this section is to present a 
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model that can be used to forecast the expected number of spares required over a speci-
fied period, such as a year, for a given preventive replacement policy.

2.11.2 �C onstruction of the Model

tp is the preventive replacement time (either interval or age).
f(t) is the probability density function of the item’s failure times.
T is the planning horizon, typically 1 year.
EN(T, tp) is the expected number of spare parts required over the planning 

horizon, T, when preventive replacement occurs at time tp.

2.11.2.1 � The Constant Interval Model

	

EN number of preventive replacements in ip( , )T t = nnterval

number of failure replacements i

( , )0 T

+ nn interval

/ /p p p

( , )

( )( )

0 T

T t H t T t= +
	

where H  (tp) is defined in Section 2.4.

2.11.2.2 � The Age-Based Preventive Replacement Model

	
EN number of preventive replacements in ip( , )T t = nnterval

number of failure replacements i

( , )0 T

+ nn interval ( , )0 T
	

In this case, the approach to take is to calculate the expected time to replacement (either 
preventive or failure) and divide this time into the planning horizon, T. This gives:

	

EN p
p p p p

( ,  )
( ) ( ) [ ( )]

T t
T

t R t M t R t
=

× + × −1
	

where development of the denominator of the above equation is provided in Section 2.5.2.

2.11.3 �N umerical Example

2.11.3.1 � Constant-Interval Policy
Using the same data as in Section 2.4.4, namely, Cp = $5, Cf = $10, failures occur 
according to a normal distribution with a mean of 5 weeks and standard deviation of 
1 week, and the optimal preventive replacement interval is 4 weeks.

Assuming the planning horizon is 12 months (52 weeks), then the expected num-
ber of replacements will be:

	 EN(52, 4) = 52/4 + 0.16 (52/4) = 15.08 per year.	

If there were 40 similar components in service in a plant, then the expected num-
ber of replacements per year would be 603.20; thus, 604 spares would be needed for 
the fleet over the year.
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2.11.3.2 � Age-Based Policy
Using the same data as in Section 2.5.3, namely, Cp = $5, Cf = $10, failures occur 
according to a normal distribution with a mean of 5 weeks and standard deviation of 
1 week, and the optimal preventive replacement age is 4 weeks.

Again, assuming the planning horizon is 12 months (52 weeks), then the expected 
number of replacements will be:

	 EN p
p p p p

( ,  )
( ) ( ) [ ( )]

T t
T

t R t M t R t
=

× + × −1
	

	 EN(52, 4) = 52/(4 × 0.84 + 3.17 × 0.16) = 52/3.87 = 13.44 per year.

Once more, if there were 40 similar components in a fleet, the expected number of 
replacements per year would be 537.6; thus, 538 spares would be required.

2.11.4 �F urther Comments

Once the demand is forecast, there is the issue of acquiring the expected number 
of replacement parts. There is a large body of literature dealing with the area of 
inventory control, for example, Tersine (1988), in which there are models available 
to assist in establishing an optimal acquisition policy, including the possibility of 
taking advantage of quantity discounts.

2.11.5 �A n Application: Cylinder Head Replacement—
Constant-Interval Policy

A cylinder head for an engine costs $1946, and the policy employed was to replace the 
eight-cylinder heads in an engine as a group at age 9000 h, plus failure replacement as 
necessary during the 9000-h cycle. In the plant, there were 86 similar engines in ser-
vice. Thus, over a 12-month period, there was total component utilization of 8 × 86 × 
8760 = 6,026,880 h worth of work.

Estimating the failure distribution of a cylinder head, and taking the cost conse-
quence of a failure replacement as 10 times that of a preventive replacement, it was 
estimated that with the constant-interval replacement policy, the expected number of 
spare cylinder heads required per year to service the entire fleet was 849 (576 due to 
preventive replacement and 273 due to failure replacement).

2.12 � SPARE PARTS PROVISIONING: INSURANCE SPARES

2.12.1 �I ntroduction

A critical issue in spares management is to establish an appropriate level for insur-
ance (emergency) spares that can be brought into service if a current long-life and 
highly reliable component fails. Such components would include transformers in 
an electrical utility or electric motors in a conveyor system. To maintain a highly 
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reliable service, a few spare units may be kept in stock. The question to be addressed 
in this section is: How many critical spares should be stocked?

To answer the question, it is necessary to specify if the spare part is one that is 
scrapped after failure (a nonrepairable spare) or if it can be repaired and renewed 
after its failure and put back into stock (a repairable spare). And finally, it is neces-
sary to understand the goal. In this section, four criteria will be considered for estab-
lishing the optimal number of both nonrepairable and repairable spares. They are:

	 1.	 Instantaneous reliability—this is the probability that a spare is available at 
any given moment in time. In some literature, this is known as the avail-
ability of stock, fill rate, or point availability in the long run.

	 2.	 Interval reliability—this is the probability of not running out of stock at 
any moment over a specified period, such as 1 year.

	 3.	Cost minimization—this takes into account costs associated with purchas-
ing and stocking spares, and the cost of running out of a spare part.

	 4.	Availability—this is the percentage of nondowntime (uptime) of a system or 
unit in which the downtime is due to a shortage of spare parts.

The detailed mathematical models behind the following analyses are provided in 
Louit et al. (2005).

2.12.2 �C lasses of Components

2.12.2.1 � Nonrepairable Components
With nonrepairable components, when a component fails or has been preventively 
removed, it is immediately replaced by one from the stock (the replacement time is 
assumed to be negligible), and the replaced component is not repaired (i.e., it is dis-
carded; see Figure 2.41). It is assumed that the demand for spares follows a Poisson 
process, which, for emergency parts demand, has found wide application. Several 
references describe models based on this principle (see, e.g., Birolini 1999).

Stock

Time

Failures

FIGURE 2.41  Nonrepairable spares.
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To introduce the mathematics behind the optimization of spare parts requirements, 
consider a group or fleet of m independent components to be used for an interval of length 
T, with the mean time to failure of one component equal to μ and the standard deviation 
σ. Let N(T, m) be the total number of failures in interval [0, T] and S(k, m) the time until 
the kth failure. Then, the probability of having less than k failures in [0, T] is equal to the 
probability that the time until the kth failure is greater than T, that is,

	 Pr(N(T, m) < k) = Pr(S(k, m) > T).	 (2.15)

2.12.2.2 � Normal Distribution Approach
S(k, m) is asymptotically normally distributed with mean μk/m and variance σ2k/m2, 
for large k (Cox 1962), that is,
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where Φ(·) is the cumulative standard normal distribution. In this way, it is possible 
to calculate the required number of spares given a certain desired reliability of stock, 
p. From the equation, Pr(S(k, m) > T) = p, k can be calculated as
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where Zp is obtained from a standard cumulative normal distribution table.

2.12.2.3 � Poisson Distribution Approach
The normal distribution approach described above is valid only when T is large in 
comparison with μ/m. The Poisson distribution can also be used. This approximation 
is also independent of the underlying failure distribution and is valid for a relatively 
small number of components, as the superposition of component failure times con-
verges rapidly to a Poisson process (Cox 1962). If the underlying failure distributions 
are exponential, the number of failures N(T, m) follows exactly the Poisson process, 
for any number of components, m. For a Poisson process,
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(2.18)

where a is the expected number of failures in the interval [0, T]. For one component, 
the expected number of failures in [0, T] is T/μ; thus, for m components, a = mT/μ. 
Now it is possible to calculate k, for which
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The obtained value of k will be the minimum stock level that ensures a reliability 
p (probability of not having a stock-out; that is, there is no demand when there is no 
spare in stock). Note that Equation 2.18 assumes that a is not a very large number.

2.12.2.4 � Repairable Components
The basic ideas associated with identifying optimal stock-holding policies for repair-
able components will be presented through the following example.

A group of m independent components have been in use for a time interval of 
length T, and now one of the components is sent to the repair shop after failure. 
After being repaired, the component is sent back to stock (Figure 2.42). Let s spare 
components be originally placed in stock, so they can instantly replace the failed 
components. It is also assumed that the repair is perfect; that is, the repaired compo-
nent is returned to the as-new state. We will only consider the situation when there is 
no limit on the number of repairs that can be performed simultaneously (unlimited 
repair capacity). An extension to the limited repair capacity problem is discussed by 
Barlow and Proschan (1965, Chapter 5). We are interested in determining the ini-
tial number of spares that should be kept in stock to limit the risk of running out of 
spares. Two situations are considered.

•	 Instantaneous or point reliability—spares are available on demand (we 
must not run out of spares at any given moment).

•	 Interval reliability—spares are available at all moments during a given 
interval of time (we must not run out of spares at any time during a specified 
interval, e.g., for 12 months). This situation is obviously more demanding 
than the instantaneous reliability case.

Failures

Repair 
shop

Repaired units

Stock

Time

FIGURE 2.42  Repairable spares.



82 Maintenance, Replacement, and Reliability

A brief summary of the modeling behind the instantaneous reliability calculation 
follows: the point reliability approach means that we determine the number of spare 
components in such a way that, at any given moment in time, the probability of not 
running out of spares is greater than the required reliability p. Let the average time 
to failure be μ for each of the m components in use. Then, for each component, the 
average rate of failures (i.e., arrivals in the repair facility) is equivalent to 1/μ, and for 
m components, it is equivalent to m/μ. Let the average time to repair be μR, and thus 
the average repair rate for i components is i/μR. Let the number of components on 
repair at time t be M(t). We have to find the probability of not running out of spares 
at t, that is, Pr[M(t) ≤ s].

Analogous to the Poisson approach for nonrepairable components, the probability 
of having less than or equal to s components on repair, for large m, can be calculated 
using the Poisson distribution:
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where a = (μRm)/μ is the expected number of failures arriving during one repair. 
Then, a represents the average number of spares required to cover failures during 
one repair. Now the stock level, s, can be calculated as the smallest value of s such 
that Pr[M(t) ≤ s] ≥ p.

Equation 2.20 can be applied when t is large, that is, in the steady state, if m is 
large, p is large, and a is not large.

A brief summary of the modeling behind the interval reliability calculation fol-
lows: let the number of spares in the system be s, with i units in repair at the begin-
ning of the interval [0, t]. Let p tij

s ( ) be the probability of having exactly j units on 
repair at the end of the interval [0, t] and not having a delay in production because 
of a spares shortage (we may have no spares, but no demand). Note that i and j are 
less than or equal to s. Then, the probability of no delay during interval [0, t], given 
i units on repair at the beginning, is:
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(2.21)

Therefore, we need to calculate the matrix P t p ts
ij
s( ) ( )=  .

This can be done using the transition rates for the states of a Markov process 
representing the number of units on repair at moment t. For example, the rate of 
transition from state i to state j = (i + 1), where i ≤ s is simply the rate at which a new 
failure occurs, that is, (m/μ). (Note that m components are in operation and any one 
of them can fail at moment t.) If Q is the matrix of transition rates for the Markov 
process and Q(s) is that same matrix truncated at s [using only the first (s + 1) rows 
and columns], then we have:

	 P s(t) = exp [tQ(s)].	 (2.22)



83Component Replacement Decisions

Matrix exponentiation is not discussed here; see, for example, Bhat and Miller 
(2002) for details. A summation over the rows of Ps(t) gives the reliabilities for the 
interval [0, t] for each initial number of units in repair, i.

The required number of spares, s, for a given interval reliability, p, can be obtained 
from Equation 2.21 by setting P t pi

s ( ) = . The calculation is numerically intensive and 
requires computer programming (see Section 2.12.4).

2.12.3 �C ost Model

Shortages of spares may lead to extended downtime that can have important cost 
implications for the company. On the other hand, larger stocks imply higher inven-
tory holding costs. Models incorporating acquisition and holding costs for spares and 
cost of downtime due to stock-out are provided in Louit et al. (2005).

In many applications, it is likely that the cost of a component will vary consider-
ably depending on the conditions of procurement. Normally, the cost is lower if there 
is no urgency for receiving the item, whereas it is very likely that premiums apply in 
emergency situations.

With the incorporation of cost considerations, optimization can be performed for 
any of the four criteria described in Section 2.12.1.

2.12.4 �F urther Comments

A software package called Spares Management Software (SMS) has been developed 
based on the models for spare parts demand presented in this chapter. It allows for 
the determination of optimal stocking policies according to the optimization criteria 
stated in Section 2.12.1. This tool has been found to be of great value for companies 
operating in industries characterized by the intensive use of physical assets.

2.12.5 �A n Application: Electric Motors

A total of 62 electric motors were used simultaneously in conveyor belts in a mining 
operation, and the company was interested in determining the optimal number of 
motors to stock. The motors were expensive, and even purchasing one extra motor 
was considered a significant investment (Wong et al. 1997). The answer to this ques-
tion was not unique but depended on the objective of the company, that is, what is to 
be optimized in selecting the stock size. With the problem specifications presented 
in Table 2.12, the prototype software known as Spares Management Software (SMS) 
was used to perform the following exercise.

Results are obtained for assumptions of nonrepairable and repairable spares, as 
shown in Tables 2.13 and 2.14. Note that in the nonrepairable components’ situ-
ation, two cases are considered: (1) strictly random (constant arrival rate; thus, 
there is a Poisson arrival process for failures) and (2) not strictly random (arrival 
rate not constant, but failure distribution given by a mean and standard deviation). 
Also, in the repairable components’ case, unlimited repair capacity was assumed, 
which was realistic due to the number of motors expected to be on simultaneous 
repair.
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Some comments on the results are as follows: in the nonrepairable case, it will be 
noticed that although the required reliability was 95%, the associated reliability in 
each case was higher, 95.61% in one case and 97.63% in the other. The reason for this 
is that the resulting stock level has to be an integer, and for the random failure case, if 
the stock level was set at 47, rather than 48, then the 95% required reliability would 

TABLE 2.12
Example Parameters for the System of Conveyors

Parameter Value

Number of components (motors) in operation 62

Mean time to failure (μ) 3000 days (8 years)

Planning horizon (T)* 1825 days (5 years)

Mean time to repair (μR) 80 days

Cost of one spare component (regular 
procurement)

$15,000

Cost of one spare component (emergency 
procurement)

$75,000

Value of unused spare after 5 years $10,000

Holding cost for one spare $4.11 per day (10% of value of part per annum)

Cost of conveyor’s downtime for a single motor $1000 per day

*	 The planning horizon could be much shorter and may, for example, be close to the mean repair 
time of a component because one may want to ensure with a high probability of not running out of 
stock while a component is being repaired.

TABLE 2.13
Solution for Nonrepairable Spares

Case and Optimization Criteria
Optimal Stock 

Levela
Associated Reliability 

(%)

(i) Random failures

	 95% reliability required 48 95.61

Cost minimization 47 94.02

(ii) Not strictly random failures (1000 days)

95% reliability required 42 97.63

Cost minimization 41 93.80

Note:	 There is then the need to decide how best to acquire the spares over the 5-year planning 
horizon.

a	 Total number of spares required during the planning horizon of 5 years.



85Component Replacement Decisions

not have been achieved. At least 48 items are required, and at 48, the associated reli-
ability is 95.61%.

In the repairable spares example, it will be noticed that to achieve 95% availabil-
ity, the stock level required is zero. The reason for this outcome is due to the repair 
time for a failed motor, 80 days, being very short in comparison to the mean time to 
failure of a motor, 8 years.

2.13 � SOLVING THE CONSTANT-INTERVAL AND AGE-BASED 
MODELS GRAPHICALLY: USE OF GLASSER’S GRAPHS

2.13.1 �I ntroduction

Glasser (1969) wrote an article in which he presented two graphs that can be used to 
quickly identify the optimal preventive replacement time (interval, called block by 
Glasser, or age) of an item, provided the item can be assumed to have failure times 
that can be described by a Weibull distribution, and that the objective is to minimize 
total cost. The graphs are provided in Figures 2.43 and 2.44.

Furthermore, Glasser’s graphs provide an indication of the economic benefits of 
changing the item at the optimal replacement time, as opposed to a run-to-failure 
policy. Because the Weibull is so flexible (Appendix 2), Glasser’s graphs are very 
helpful to quickly identify the best change-out time of an item and establish the 
savings that can result from implementation of the policy. If the economic savings 
are worthwhile, then it may be advantageous to use one of the classic replacement 
models to more precisely determine the economic replacement time. A further bene
fit of using the model is that a very clear picture is provided of the form of the total 
cost curve around the region in which the optimal solution lies. As mentioned earlier 
(Section 2.2.4), this knowledge can be very valuable to management in making a 
final decision. (Use of Glasser’s graphs can only provide two cost points on the total 
cost curve: given the cost of a failure or preventive replacement, the cost associated 
with the optimal replacement time can be calculated, as can the cost associated with 
a replace-only-on-failure (R-o-o-F) policy.)

TABLE 2.14
Solution for Repairable Spares

Case and Optimization Criteria
Optimal Stock 

Level
Associated 

Availability (%)

Random failures

	 95% interval reliability required 7 Not calculated

	 95% instant reliability required 4 Not calculated

	 95% availability required 0 97.40

Cost minimization 6 99.99
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2.13.2 �U sing Glasser’s Graphs

There are three assumptions, none of which is very restrictive.

	 1.	The failure distribution is Weibull and its mean (μ) and standard deviation 
(σ) are known.

	 2.	The ratio of the cost of a failure replacement to that of a preventive replace-
ment is known, namely, Cf/Cp.

	 3.	The objective is total cost minimization.

There are four straightforward steps to the solution procedure.

	 1.	Obtain the cost ratio denoted by k (= Cf/Cp) and mark it on the y-axis of the 
graph.

	 2.	Obtain the ratio υ = μ/σ and mark it on the x-axis.
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FIGURE 2.43  Glasser’s graph: optimal policies under block replacement—Weibull distri-
bution. (Reprinted with permission of ASQ.)



87Component Replacement Decisions

	 3.	Obtain the Z value from the graph. The Z value is obtained by determining 
the intersection of a horizontal line from k and a vertical line from ν, then 
following a solid line to the Z scale that is on the x-axis at the top of the 
graph sheet. Interpolation between two solid lines may be required.

	 4.	The optimal preventive replacement time (interval or age) is obtained from 
solving the equation tp = μ + Zσ.

2.13.3 �N umerical Example

Using the same data used in Section 2.4.4 (interval replacement) and Section 2.5.3 
(age replacement), namely, Cp = $5, Cf = $10, and a normal failure distribution that 
is, f(t) ~ N(5, 1), determine the optimal preventive replacement interval to minimize 
total cost.

Note that although the distribution is specified as normal, the Weibull distribution 
can serve as a good approximation to the normal distribution if β = 3.5. Thus, we can 
proceed to use Glasser’s graph.
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88 Maintenance, Replacement, and Reliability

Solution:

	 1.	k = Cf/Cp = 10/5 = 2
	 2.	ν = μ/σ = 5/1 = 5
	 3.	Z = –1.2
	 4.	 tp = μ + Zσ = 5 + (–1.2) × 1 = 3.8 weeks

This is equivalent to 4.0 weeks if rounded up, which is the same answer obtained in 
Section 2.4.4 (note that in Section 2.4.4, the problem was solved numerically with 
only integer values being used).

2.13.4 �C alculation of the Savings

It will be noticed that on the right-hand side of Glasser’s graphs, there is a ρ scale on 
the y-axis. The ρ value identifies the cost of the optimal policy as a decimal fraction 
of the cost associated with following a R-o-o-F policy.

The ρ value is again obtained from the intersection of a horizontal line from k 
and a vertical line from ν, and then following a dotted line to the right, interpolating 
if required. In this example, ρ is estimated from the graph as 0.85. Therefore, the 
optimal policy of tp = 3.8 weeks costs 85% of an R-o-o-F policy.

Because it is known that Cf = $10, then

	 cost of an R-o-o-F policy = Cf /μ = 10/5 = $2/week

The optimal policy cost is 0.85 × 2 = $1.70 per week, and the savings as a percentage 
is 15%. This is illustrated in Figure 2.45.

R-o-o-F cost = Cf /m = 2.0C(tp)
$/week

1.70

Savings

3.8

0.85*2 = $1.70/week

tp in weeks

FIGURE 2.45  Cost function: Glasser’s graph.
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2.14 � SOLVING THE CONSTANT-INTERVAL AND AGE- BASED 
MODELS USING OREST SOFTWARE

2.14.1 �I ntroduction

Rather than solve the mathematical models for component preventive replacement 
interval or age, from the first principles in the previous section, we have seen how a 
graphical solution can be used. A disadvantage of graphical solutions is the lack of 
precision compared with using a mathematical model. Software with programmed 
models provides a very easy way to solve the models and a high level of accuracy. 
One such package is OREST (Optimal Replacement of Equipment in the Short 
Term), which has been developed based on material in this book.

OREST will take item failure and suspension times (for a definition and descrip-
tion of suspensions, see Section A2.7 of Appendix 2) and will fit a Weibull distribu-
tion to the data. To estimate the parameters of the Weibull distribution, OREST uses 
the approach of median rank regression analysis. It is not the purpose of this book 
to address the various criteria that can be used to estimate distribution parameters 
in detail, but the most common, from an engineer’s perspective, would be to use 
regression analysis (this is the approach presented in Appendix 2), whereas from a 
statistician’s viewpoint, maximum likelihood (see Appendix 3 for a discussion on 
this approach to parameter estimation) would be the preferred criterion. In practice, 
if the data set being analyzed is large, there will be little difference in the parameter 
estimates.

Once the Weibull parameters are estimated, OREST will provide the option of 
establishing the optimal preventive replacement interval or optimal age. OREST 
has a number of other features, such as analyzing for possible trends in data (see 
Section A2.12, Appendix 2) and forecasting the demand for spare parts. The inter-
ested reader is referred to http://www.crcpress.com/product/isbn/9781466554856, in 
which the educational version of OREST can be downloaded for free.

2.14.2 �U sing OREST

We will use the bearing failure data provided in Section 2.5.5, namely, the five fail-
ure times, ordered from the shortest to the longest, which are 9, 12, 13, 19, and 25 
weeks.

Entering these values into OREST provides the Weibull parameter estimates β = 
2.67 and η = 17.57, based on regression analysis. A screen capture of the parameter 
estimation is provided in Table 2.15.

If required, OREST also fits a three-parameter Weibull to the data and the result 
can be compared with the standard two-parameter distribution.

Using the values of β = 2.67 and η = 17.57, we get the cost function depicted in 
Figure 2.46 and the age-based preventive replacement report shown in Table 2.16, 
from which it is seen that the optimal preventive replacement age is 6.39 weeks. 
Although this preventive replacement age might seem small compared with 
the shortest observed failure time of 9 weeks, the Weibull analysis has assumed 
that, in practice, a bearing failure could occur shortly after installation, and so a 



90 Maintenance, Replacement, and Reliability

TABLE 2.15
OREST Weibull Parameter Estimates
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FIGURE 2.46  OREST: cost optimization curve.
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two-parameter Weibull has been used. Furthermore, the consequence of failure is 
quite severe ($1000) compared with the cost of a preventive replacement ($100). If 
required, we could use a three-parameter Weibull and preclude the possibility of the 
occurrence of a short failure time.

Again, it should be stressed that software such as OREST enables many sensitiv-
ity checks to be undertaken, so that we can establish a robust recommendation on the 
optimal change-out time for an item.

2.14.3 �F urther Comments

This section has dipped very briefly into one software package that can be used to opti-
mize the preventive replacement times for a component. Others include WinSMITH 
(www.barringer1.com/wins.htm) and Weibull++ (weibull.reliasoft.com).

PROBLEMS

The following problems are to be solved using the mathematical models

	 1.	The hydraulic pump used for tipping the box in a garbage truck becomes 
less efficient with usage. This results in less productivity in terms of value 

TABLE 2.16
OREST Age-Based Preventive Replacement Report
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of materials moved per month. The average cost of replacing a pump is 
$1200. The trend in productivity is as follows:

	 Month 1 since new  $10,000 worth of material is moved
	 Month 2 since new  $9700 worth of material is moved
	 Month 3 since new  $9400 worth of material is moved
	 Month 4 since new  $8900 worth of material is moved

		  What is the optimal replacement time for the pump to minimize the total 
cost of replacement and lost production?

	 2.	A car rental company has kept records on a particular vehicle component. 
Although failure of the component is random, it is a function of vehicle use. 
Data on 1000 failures have been collected and analyzed, and through using 
a χ2 goodness-of-fit test, the conclusion is reached that the time to failure 
of the component can be described adequately by a uniform distribution. 
Table 2.17 gives the distribution of the expected frequencies of the 1000 
failures.

		  The total cost of a preventive replacement of the component is $100. A 
failure results in a penalty cost being incurred, and in total, the cost of a 
failure replacement is $200. It is reasonable to assume that the times taken 
to carry out either a preventive or failure replacement are negligible.

		  The car rental company wishes to consider implementing a preventive 
replacement policy. The particular policy it is interested in is frequently 
termed an age-based policy; that is, it is one in which preventive replace-
ment occurs only when a component has reached a specific age, say, tp; 
otherwise, a failure replacement is made.

		  Considering tp values of 10,000, 20,000, 30,000, and 40,000 km, which 
one gives the smallest expected total cost per 1000 km? Clearly explain the 
derivation of any model you use and your line of reasoning in reaching a 
conclusion.

	 3.	Truck battery failures have been analyzed, and through using a statisti-
cal goodness-of-fit test, it has been concluded that the battery failures 
can be assumed to follow the expected frequency distribution shown in 
Figure 2.47.

		  It is known that the average cost associated with a battery failure is 
$900 (including spoilage of goods), whereas a preventive replacement can 
be undertaken at a total cost of $300. Given that Cf > Cp, the truck fleet 

TABLE 2.17
Component Failure Frequency Data
Thousands of kilometers to failure 0–10 10–20 20–30 30–40

Expected frequency 250 250 250 250
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operator wishes to consider implementing an age-based replacement policy 
using the following model:

	 C t
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		  What is the optimal preventive replacement age? Consider values of tp = 
5000, 10,000, 15,000, and 20,000 km.

	 4.	 It is known that failure of the pump results in the vehicle being out of ser-
vice for approximately 3 days, whereas the replacement of a pump on a pre-
ventive basis takes an average of half a day. The pump failures are assumed 
to follow a distribution with a probability density function
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		  Using the following model for minimization of total downtime, deter-
mine the optimal preventive replacement age (only consider values of tp = 
2, 4, 6, and 8 months):
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	 5.	Water pump failures from a fleet of transit vehicles have been analyzed, and 
a χ2 goodness-of-fit test allows the hypothesis to be accepted that pumps fail 
according to a uniform distribution in the range of 0 to 20,000 km.

		  It is known that the average unavailability associated with water pump 
failures is 9 days (because of limited personnel), whereas a preventive 
replacement can be undertaken with only 3 days unavailability of a transit 

Expected
frequency

0 5000 10,000 15,000 20,000 Kilometers to failure

FIGURE 2.47  Battery failure data.
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vehicle. Given that Df > Dp, the maintenance officer wishes to implement an 
age-based preventive replacement policy using the following model:
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		  What is the optimal preventive replacement age? Only consider values of 
tp = 5000, 10,000, 15,000, and 20,000 km and show your method of solution.

Problems 6 to 11 are to be solved using Glasser’s graphs (some of these problems 
require that a Weibull analysis be performed on the failure data beforehand).

	 6.	The cumulative probability data of Table 2.18 relates to radiator failure. 
Given that a failure replacement is five times as costly as a preventive 
replacement, what is the optimal preventive replacement interval to mini-
mize total cost per 1000 km?

	 7.	A component gave the times to failure of Table 2.19.
	 If a preventive replacement costs $50 and a failure replacement $500, and 

the objective is to minimize total cost/unit time, what is:

a.	 The optimal age-based preventive replacement policy?
b.	 The optimal constant-interval preventive replacement policy?

	 In each case, state the cost of the optimal policy as a percentage of a replace-
only-on-failure policy.

TABLE 2.18
Radiator Failure Data

Class (K = 103 km) F(t)

0K < 5K 0.0250

5K < 10K 0.0500

10K < 15K 0.0625

15K < 20K 0.1726

20K < 25K 0.2917

25K < 30K 0.3231

30K < 35K 0.3566

35K < 40K 0.3933

40K < 45K 0.4949

45K < 50K 0.5813

50K < 55K 0.5943

55K < 60K

60K < 65K 0.6050

65K < 70K

70K < 75K

75K < 80K 0.9500
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	 8.	The Moose Fleet operator has kept records on a particular vehicle com-
ponent. Although failure of the component is random, it is a function of 
vehicle use. Data have been collected and analyzed, and through using a χ2 
goodness-of-fit test, the conclusion is reached that the time to failure of the 
component can be described adequately by a Weibull distribution having a 
mean of 20,000 km and standard deviation of 1000 km.

		  The total cost of a preventive replacement of the component is $100. A 
failure results in a penalty cost being incurred, and in total, the cost of a 
failure replacement is $200. It is reasonable to assume that the time taken to 
apply either a preventive or failure replacement is negligible.

		  The Moose Fleet operator wishes to consider implementing a preventive 
replacement policy. The particular policy he is interested in is frequently 
termed an age-based policy; that is, it is one in which preventive replace-
ment only occurs when a component has reached a specific age, say, tp; 
otherwise, a failure replacement is made.

		  What is the optimal preventive replacement age and what percentage 
cost saving does it give over a replace-only-on-failure policy?

	 9.	Bearing failure in the blower used in diesel engines in semi tractors has 
been determined as occurring according to a Weibull distribution with a 
mean life of 150,000 km, with a standard deviation of 10,000 km. Failure 
in service of the bearing results in costly repairs, and in total, a failure 
replacement is 10 times as expensive as a preventive replacement.

a.	 Determine the optimal preventive replacement interval (or block pol-
icy) to minimize total cost per kilometer.

b.	 What is the expected cost savings associated with your optimal policy 
over a replace-only-on-failure policy?

c.	 Given that the cost of a failure replacement is $2000, what is the cost 
per kilometer associated with your optimal policy?

	 10.	 Irrespective of the age of a component, the replacement policy to be adopted 
is one in which preventive replacements occur at fixed intervals of time and 
failure replacements take place when necessary.

a.	 Making appropriate assumptions, construct a model that could be used 
to identify a replacement policy such that total cost per unit time is mini-
mized. Very clearly explain each step in the construction of your model.

b.	 Given the following data, solve the model that you construct in (a):
	 The labor and material cost associated with a preventive or failure 

replacement is $50.

TABLE 2.19
Component Failure Times (Hours)
115 80 150 200 130 170 100
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	 The value of production losses associated with a preventive replacement is 
$50, whereas for a failure replacement it is $100.

	 Failure distribution is normal, with a mean of 200 hours and standard devi-
ation of 10 hours.

	 Also, indicate the approximate cost of your optimal policy as a percentage 
of a failure replacement policy.

	 11.	A sugar refinery centrifuge is a complex machine composed of many parts that 
are subject to sudden failure. A particular component, the plough-setting blade, 
is considered to be a candidate for preventive replacement, and you are required 
to determine an optimal replacement policy. The policy you are to consider is 
sometimes termed a block replacement or constant intervals, say, tp, with failure 
replacements taking place when necessary. Determine the optimal policy so 
that total cost per unit time is minimized given the following data:

a.	 The labor and material cost associated with a preventive or failure 
replacement is $200.

b.	 The value of production losses associated with a preventive replace-
ment is $100, whereas that for a failure replacement is $700.

c.	 The failure distribution of the setting blade can be described adequately 
by a Weibull distribution with a mean of 150 hours and a standard devi-
ation of 15 hours.

	 Also, indicate the approximate cost of your optimal policy as a percentage 
of a replace-only-on-failure policy.

The following problems are to be solved using OREST software.
Note that the educational version of OREST restricts the number of observations 
that can be analyzed to six (failures plus suspensions). Also, it requires that the cost 
consequence of a failure replacement be $1000, and for preventive replacement it is 
$100. All the following problems satisfy these constraints.

	 12.	Heavy-duty bearings in a steel forging plant have failed after the number of 
weeks of operation provided in Table 2.20.

a.	 Use OREST to estimate the following Weibull parameters: β, η, and 
mean life.

b.	 The cost of preventive replacement is $100 and the cost of failure 
replacement is $1000. Determine the optimal replacement policy.

c.	 The forge is cleaned and serviced once per week. Preventive replace-
ment of the bearing can be carried out as part of this maintenance activ-
ity. At what age should the bearing be replaced, given that, in addition 
to direct-cost considerations, there is a safety argument for minimizing 
failure.

		  Support your conclusions by giving the cost and the proportions of 
failure replacements for some alternative policies.
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d.	 There are two similar forging plants and each works for 50 weeks per 
year. Estimate the number of replacement parts required per year if 
the policy is preventive replacement at age 6 weeks. How many failure 
replacements will occur per year (steady-state average) under this policy?

	 13.	Records from two heavy-duty dump trucks show that fan belt failures 
occurred at the odometer readings (kilometers, from new) listed in Table 2.21.

		  At present, the odometer readings are 115,680 km for truck 1 and 132,720 
km for truck 2.

a.	 Prepare reliability data in a form suitable for analysis by OREST.
b.	 Determine the following Weibull parameters: shape parameter β, scale 

parameter η, and mean life.
c.	 What type of failure pattern is indicated (early life, random, wear-out)?
d.	 Create the Weibull probability plot. Do you observe any trends, besides 

those given by the parameters?
e.	 The preventive replacement cost is $100, and the failure replacement 

cost is $1000. Determine the optimal preventive replacement age, the 
cost under this policy, and the savings under this policy when compared 
with a policy of replacement-only-on-failure.

f.	 Preventive replacement can only be carried out at odometer readings 
that are multiples of 5000 km. Select an appropriate preventive replace-
ment age. What is the cost ($/km) for this policy? How does this com-
pare with the cost for the optimal policy?

		  Note that the answers to parts (g) and (h), which follows, can also be 
calculated using the material of Section 2.11.

TABLE 2.20
Bearing Failure Times

Age at Failure (Weeks)

8

12

14

16

24

One unfailed at 24 weeks

TABLE 2.21
Fan Belt Failures

Truck 1 Truck 2

51,220 45,380

68,060 103,510
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g.	 If the company has a fleet of 30 similar dump trucks, each of which 
averages 50,000 km per year, estimate the number of replacement fan 
belts that will be needed per year, under the optimal replacement policy.

h.	 If 30 dump trucks average 50,000 km per year, estimate the number 
of in-service fan belt failures that will occur, given that the policy is to 
replace fan belts on a preventive basis at 20,000 km.

	 14.	The cloth filter on a sugar centrifuge is currently replaced on a preventive 
basis if a suitable opportunity occurs and if the cloth has been in use for at 
least 20 hours. The cloth is also replaced on failure.

		  The centrifuge cloth failure data provided in Table 2.22 are available for 
10-h time intervals of cloth life.

a.	 Use OREST to analyze the failures and estimate the following para
meters: shape parameter β, scale parameter η, and mean life.

b.	 Is the current policy correct? What policy do you recommend?
c.	 The company has three centrifuges, each of which runs an average of 

400 hours per month. Estimate the number of replacement cloths required 
per month under the existing and recommended replacement policies.

	 15.	A metropolitan transport company operates a fleet of similar buses. Engine 
failures necessitating replacement have occurred in the kilometer ranges 
shown in Table 2.23, which also shows the number of engines currently 
running in each age range.

a.	 Use OREST to estimate the following parameters: shape parameter β, 
scale parameter η, and mean life.

b.	 From the Weibull probability plot, estimate the 90% reliable life.

TABLE 2.22
Centrifuge Cloth Failures

Age (Hours) Failure Replacement Preventive Replacement

0–9.99 14 0

10–19.99 5 0

20–29.99 2 4

30–39.99 1 8

TABLE 2.23
Bus Engine Failure Data

Age Range (km) Failure Replacement Survivors

0–49,999 2 35

50,000–99,999 8 27

100,000–149,999 33 118
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c.	 From the Weibull failure rate plot, estimate the age at which the instan-
taneous failure rate first exceeds one failure per 100,000 km.

d.	 The cost for failure replacement is known to be roughly 10 times the 
cost for preventive replacement. Use the optimal age replacement pol-
icy to answer the following:
i.	 Determine the optimal replacement policy.
ii.	 Under the optimal replacement policy, how many replacements will 

occur on average per 1,000,000 vehicle-km, and what proportion of 
these will be failure replacements? Note that this can be calculated 
using the material of Section 2.10.

e.	 If the cost of preventive replacement is $1000 and the cost of failure 
replacement is $10,000, what will be the cost per 50,000 km of the fol-
lowing policies?
i.	 Replacement only on failure
ii.	 Preventive replacement as determined in (d)(i).

	 16.	A new type of car has recently been released and is subject to warranty. An 
analysis of warranty claims shows several alternator failures, although as a 
proportion of the whole population, the number is quite small. You are involved 
in the analysis of warranty claims. The engineering manager asks you whether 
the statistical data are suitable for Weibull analysis, and if so, what conclusions 
can be drawn. The available data are provided in Table 2.24.

		  What type of failure is indicated?

a.	 Does this suggest faulty manufacture or a design defect?
b.	 The design department states that its brief called for 90% confidence of 

90% reliability over a 20,000 km warranty period. Do the data avail-
able indicate that this criterion has been met?

		  Note that this can be determined using the material of Section A2.4.
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3 Inspection Decisions

All business proceeds on beliefs, or judgments of probabilities, and not on certainties.

—Charles W. Eliot

3.1 � INTRODUCTION

The goal of this chapter is to present models that can be used to determine optimal 
inspection schedules, that is, the points in time at which the inspection action should 
take place.

The basic purpose behind an inspection is to determine the state of the equip-
ment. Once indicators, such as bearing wear, gauge readings, and quality of the 
product, which are used to describe the state, have been specified, and the inspection 
made to determine the values of these indicators, some further maintenance action 
may be taken, depending on the state identified. When the inspection should take 
place ought to be influenced by the costs of the inspection (which will be related 
to the indicators used to describe the state of the equipment) and the benefits of the 
inspection, such as detection and correction of minor defects before major break-
down occurs.

The primary goal addressed in this chapter is to make a system more reliable 
through inspection. In the context of the framework of the decision areas addressed 
in this book, we are addressing column 2 of the framework, as highlighted in Figure 
3.1. One special class of problem also considered in this chapter is that of ensur-
ing with a high probability that equipment used in emergency circumstances, often 
called protective devices, is available to come into service if the need arises.

Three classes of inspection problems are examined in this chapter:

	 1.	 Inspection frequencies: for equipment that is in continuous operation and 
subject to breakdown

	 2.	 Inspection intervals: for equipment used only in emergency conditions (failure-​
finding intervals)

	 3.	Condition monitoring (CM) of equipment: optimizing condition-based 
maintenance (CBM) decisions

3.2 � OPTIMAL INSPECTION FREQUENCY: 
MAXIMIZATION OF PROFIT

3.2.1 �S tatement of the Problem

Equipment breaks down from time to time, requiring materials and tradespeople to 
repair it. Also, while the equipment is being repaired, there is a loss in production 
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output. To reduce the number of breakdowns, we can periodically inspect the equip-
ment and rectify any minor defects that may otherwise eventually cause complete 
breakdown. These inspections cost money in terms of materials, wages, and loss of 
production due to scheduled downtime.

What we want to determine is an inspection policy that will give us the 
correct balance between the number of inspections and the resulting output, 
such that the profit per unit time from the equipment is maximized over a long 
period.

Such a system is depicted in Figure 3.2, in which it is seen that the complex 
system can fail for many reasons, such as that caused by component 1, component 
2, and so on. Each of these causes of equipment failure could have its own inde-
pendent failure distribution. Of course, it does not need to be a physical component 
that causes the equipment to cease functioning; it could well be a software problem 
that is the cause (mode) of equipment failure. Clearly, as the frequency or intensity 
of inspections increases, there is an expectation that the frequency of equipment/
system failures will be reduced. The challenge is to identify the optimal frequency/
intensity.

Database (CMM/EAM/ERP System)

Optimizing Equipment Maintenance and Replacement Decisions

Component 
Replacement

Inspection 
Procedures

Capital Equipment 
Replacement

Resource 
Requirements

1. Economic life
a) Constant annual 

utilization
b) Varying annual 

utilization
c) Technological 

improvement
2. Repair vs replace
3. Software: PERDEC      

and AGE/CON

1. Workshop machines/ 
crew sizes

2. Right sizing 
equipment
a) Own equipment
b) Contracting out 

peaks in demand
3. Lease / buy
4. Software: workshop 

simulator and crew 
size optimizer

1. Best preventive 
replacement time
a) Deterministic 

performance 
deterioration

b) Replace only on 
failure

c) Constant interval
d) Age-based

2. Spare parts 
provisioning

3. Repairable systems
4. Glasser’s graphs
5. Software: SMS and 

OREST

1. Inspection 
frequency for a 
system
a) Profit 

maximization
b) Availability 

maximization
2. A, B, C, D class 

inspection intervals
3. FFIs for protective 

devices
4. Condition-based 

maintenance 
5. Blended health 

monitoring and age 
replacement

6. Software: EXAKT

Stochastic processes
(for CBM optimization)

Probability and statistics 
(Weibull analysis

including software 
WeibullSoft)

Time value of money 
(Discounted cash flow)

Queuing theory 
simulation

FIGURE 3.1  Inspection decisions.
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3.2.2 �C onstruction of the Model

	 1.	Equipment failures occur according to the exponential distribution with 
mean time to failure (MTTF) = 1/λ, where λ is the mean arrival rate of 
failures. (For example, if the MTTF = 0.5 year, then the mean number of 
failures per year = 1/0.5 = 2, i.e., λ = 2.)

		  Note that it is not unreasonable to make this exponential assumption for 
complex equipment (Drenick 1960).

	 2.	Repair times are exponentially distributed with a mean time of 1/μ.
	 3.	The inspection policy is to perform n inspections per unit time. Inspection 

times are exponentially distributed with a mean time of 1/i.
	 4.	The value of the output in an uninterrupted unit of time has a profit value V 

(e.g., selling price less material cost less production cost). That is, V is the 
profit value per unit time if there are no downtime losses.

	 5.	The average cost of inspection per uninterrupted unit of time is I.
	 6.	The average cost of repairs per uninterrupted unit of time is R.

		  Note that I and R are the costs that would be incurred if inspection or 
repair lasted the whole unit of time. Thus, the actual costs of inspection and 
repair incurred per unit time will be proportions of I and R, respectively.

	 7.	The breakdown rate of the equipment, λ, is a function of n, the frequency of 
inspection per unit time. That is, the breakdowns can be influenced by the 
number of inspections; therefore, λ ≡ λ(n), as illustrated in Figure 3.3.

		  In Figure 3.3, λ(0) is the breakdown rate if no inspection is made, and 
λ(1) is the breakdown rate if one inspection is made per unit time. Thus, 

Failure mode 2

Failure mode 5

Failure mode 1

System failures

Failure mode 3

Failure mode 4

Inspections and
minor maintenance

Decreasing
system
failures

Increasing
inspection
frequency

FIGURE 3.2  System failures.
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from the figure, it can be seen that the effect of performing inspections is to 
increase the MTTF of the equipment.

	 8.	The objective is to choose n to maximize the expected profit per unit 
time from operating the equipment. The basic conflicts are illustrated in 
Figure 3.4.

f (t ) = λ(n)e–λ(n)t

t

λ(0)e–λ(0)t

λ(1)e–λ(1)t

t
1/λ(0) 1/λ(1)

FIGURE 3.3  Breakdown rate as a function of inspection frequency.
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Optimal 
inspection 
frequency

Profit/unit time

Output value lost 
due to inspections

Cost of inspections

Output value lost due to repairs
Cost of repairs

Inspection frequency, n

FIGURE 3.4  Optimal inspection frequency to maximize profit.



105Inspection Decisions

The profit per unit time from operating the equipment will be a function of the 
number of inspections. Therefore, denoting profit per unit time by P(n),

	

P n( ) = value of output per uninterrupted unit of ttime

output value lost due to repairs per unit− time

output value lost due to inspections per− unit time

cost of repairs per unit time

cost

−
− oof inspections per unit time

	

Output value lost due to repairs per unit time

= vvalue of output per uninterrupted unit of time

××
×

number of repairs per unit time

mean time to rrepair

/= V nλ µ( )

Note that λ(n)/μ is the proportion of unit time that a job spends being repaired.

	

Output value lost due to inspections per unit tiime

value of output per uninterrupted unit of= ttime

number of inspections per unit time

mean

×
× ttime to inspect

/= Vn i

	

Cost of repairs per unit time

cost of repairs p= eer uninterrupted unit of time

number of repair× ss per unit time

mean time to repair

/

×
= R nλ µ( )

	

Cost of inspections per unit time

cost of inspe= cctions per uninterrupted unit of time

number o× ff inspections per unit time

mean time to inspe× cct

/= In i

	 P n V
V n Vn

i
R In

i
( )

( ) ( )= − − − −λ
µ

λ
µ

n
	 (3.1)
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This is a model of the problem relating inspection frequency n to profit P(n). To 
get an approximate answer, we assume P(n) to be a continuous function of n, so

	

d
d
P n

n
V n V

i
R n I

i
( ) ( ) ( )= − ′ − − ′ −λ

µ
λ
µ

where ′ =λ λ( ) ( )n
n

n
d
d

. Therefore,

	 0
1= ′ + + +λ

µ
( )

( ) ( )
n

V R
i

V I

	 ′ = − +
+







λ µ
( )n

i
V I
V R

.	 (3.2)

If values of μ, i, V, R, I, and the form of λ(n) are known, the optimal frequency to 
maximize profit per unit time is the value of n that is the solution of Equation 3.2.

3.2.3 �N umerical Example

Assume that the breakdown rate varies inversely with the number of inspections, that 
is, λ(n) = k/n, which gives

	 λ′(n) = −k/n2.	 (3.3)

Note that the constant k can be interpreted as the arrival rate of breakdowns per unit 
time when one inspection is made per unit time.

Substituting Equation 3.3 into Equation 3.2, the optimal value of n is

	

n
ik V R

V I
= +

+




µ

.

Let

Average number of breakdowns per month, k, when one inspection is made 
per month = 3

Mean time to perform a repair, 1/μ = 24 hours = 0.033 month
Mean time to perform an inspection, 1/i = 8 hours = 0.011 month
Value of output per uninterrupted month, V = $30,000
Cost of repair per uninterrupted month, R = $250
Cost of inspection per uninterrupted month, I = $125

	

n = × +
+






=3 0 033

0 011
30 000 250
30 000 125

3 006
.

.
,
,

.

Thus, the optimal number of inspections per month to maximum profit is 3.
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Substitution of n = 3 into Equation 3.1 will, of course, give the expected profit per 
unit time resulting from this policy. Insertion of other values of n into Equation 3.1 
will give the expected profit resulting from other inspection policies. Comparisons 
can be made with the savings of the optimal policy over other possibilities, and over 
the policy currently adopted for the equipment.

3.2.4 �F urther Comments

The goal was to develop a model that related inspection frequency to profit. The way 
in which the model was developed was such that had the goal been to establish the 
optimal inspection frequency to minimize total cost, the same result would have 
been obtained. It should be noted, however, that not all solutions that aim at maxi-
mizing profit result in the same answer as those that aim at minimizing cost.

The most important point to note from this problem is that it is concerned with 
identifying the best level of preventive maintenance (in the form of inspections and 
consequent minor overhauls and replacements) when the failure rate of equipment is 
constant. With complex equipment, the failure distribution is exponential, although 
some individual components of the equipment may exhibit wear-out characteristics. 
The effect of the inspections is that certain potential component failures will be 
identified that, if left neglected, would cause the equipment as a whole to fail. If 
they are attended to, components will still cause equipment failure, and the overall 
failure distribution of the equipment will in most cases remain exponential, but at a 
reduced rate of failure. Figure 3.5 illustrates that the effect of performing inspections 
is to reduce the level of the failure rate. In effect, the problem is to identify the best 
failure rate.

The assumption implied in the inspection problem is that the depth (or level) of 
inspection was specified (e.g., perform online monitoring of specified signals or open 
up equipment and take measurements x, y, and z; compare with standards; renew or 
do not renew components). There may also be the problem of identifying the best 
level of inspection. The greater the depth, the greater the inspection cost, but there is 
perhaps a greater chance that potential failures will be detected. In this case, a bal-
ance is required between the costs of the various possible levels of inspection and the 
resulting benefits, such as reduced downtime due to failures. This class of problem 
was originally presented in White et al. (1969).

r (t )

Inspection0

1

2

n
t

FIGURE 3.5  Effect on system failure rate of inspection frequency.



108 Maintenance, Replacement, and Reliability

Before leaving this problem, it is worth noting that in practice, relating the failure 
rate of the equipment to the frequency of inspection may be difficult. One method of 
attack is for a company to conduct experiments with its own equipment. Alternatively, 
if several companies have the same type of equipment doing much of the same type 
of work, collaboration among the companies may result in determining how the fail-
ure rate is influenced by various inspection policies. Yet another approach would 
be to simulate different inspection frequencies. Doing this would require a detailed 
understanding of the various ways in which the equipment could fail, and knowing 
the duration of the many symptoms that would indicate impending failure. Christer 
(1973) initially described this duration as lapse time; later, Christer and Waller (1984) 
described it as delay time. Moubray (1997) termed it the P–F interval.

3.3 � OPTIMAL INSPECTION FREQUENCY: 
MINIMIZATION OF DOWNTIME

3.3.1 �S tatement of the Problem

The problem of this section is analogous to that of Section 3.2.1: equipment breaks 
down from time to time, and to reduce the breakdowns, inspections and consequent 
minor modifications can be made. The decision now, however, is to determine the 
inspection policy that minimizes the total downtime per unit time incurred due to 
breakdowns and inspections, rather than to determine the policy that maximizes 
profit per unit time. Figure 3.6 illustrates the problem.

3.3.2 �C onstruction of the Model

	 1.	 f(t), λ(n), n, 1/μ, and 1/i are defined in Section 3.2.2.
	 2.	The objective is to choose n to minimize total downtime per unit time.

The total downtime per unit time will be a function of the inspection frequency, 
n, denoted as D(n). Therefore,

Optimal
frequency

Inspection frequency (n)

Total downtime D(n)

Downtime due to

Downtime due to inspection
and minor maintenance

system failures

To
ta

l d
ow

nt
im

e/
U

ni
t t

im
e (

D
)

FIGURE 3.6  Optimal inspection frequency: minimizing downtime.
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D n( ) = downtime incurred due to repairs per unit ttime

downtime incurred due to inspection per+ uunit time

= +λ
µ
( )n n

i

	 (3.4)

Equation 3.4 is a model of the problem relating inspection frequency n to total down-
time D(n).

3.3.3 �N umerical Example

Using the data of the example of Section 3.2.3 and assuming D(n) to be a continuous 
function of n,

	
D n

n n

i
( )

( )= +λ
µ

	 (from Equation 3.4).

Now, λ′(n) = −k/n2, and therefore,

	
′ = − + =D n

k

n i
( )

2

1
0

µ
.

Thus,

	
n

ki= = × =
µ

3 0 033
0 011

.
.

three inspections/month.

3.3.4 �F urther Comments

It will be noted that the optimal inspection frequency to minimize downtime for the 
above example is the same as when it is required to maximize profit (Section 3.2.3). 
This is not always the case. The models used to determine the frequencies are differ-
ent (Equations 3.1 and 3.4), and it is only because of the specific cost figures used in 
the previous example that the solutions are identical for both examples.

Note also that if the problem of this section had been to determine the optimal 
inspection frequency to maximize availability, this would be equivalent to minimiz-
ing downtime (because availability/unit time = 1 – downtime/unit time). Thus, in the 
above example, in which the optimal value of n = 3, the minimum total downtime 
per month is (from Equation 3.4)

	
D( ) . .3

3
3

0 033 3 0 011= × + × = 0.066 month

	 Maximum availability = (1 – 0.066) month ≡ 93.4%.
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3.3.5 �A n Application: Optimal Vehicle Fleet Inspection Schedule

Montreal transit operates one of the largest bus fleets in North America, with approx-
imately 2000 buses in its fleet. Buses, like most equipment, both fixed and mobile, 
are often subject to a series of inspections; some are at the discretion of the operator, 
whereas others may be statutory. The policy in Montreal was to inspect its buses at 
5000-km intervals, at which an A, B, C, or D depth of inspection took place. The 
policy is illustrated in Table 3.1. The question to be addressed was: What is the best 
inspection interval to maximize the availability of the bus fleet?

Although the policy (depicted in Table 3.1) was in practice, buses sometimes were 
inspected before a 5000-km interval had elapsed, and others were delayed. Because 
of that fact, it was possible to identify the relationship between the rate at which 
buses had defects requiring repair and different inspection intervals. In terms of the 
three alternatives identified in Section 3.2.4 of how to establish this relationship, 
the approach taken in this study could be considered experimental. Although a real 
experiment did not occur because different intervals were being used in practice, 
the conclusion can be considered to have resulted from an experiment (Jardine and 
Hassounah 1990).

TABLE 3.1
Bus Inspection Policy

Kilometers (1000)

Inspection Type

A B C D

5 X

10 X

15 X

20 X

25 X

30 X

35 X

40 X

45 X

50 X

55 X

60 X

65 X

70 X

75 X

80 X

Total 8 4 3 1 Σ = 16
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Figure 3.7 shows the relationship between the mean time to the breakdown of a 
bus—due to any cause—and the inspection interval. Thus, for a policy of conduct-
ing inspections at multiples of 7500 km, the mean distance traveled by a bus before 
a defect is reported was found to be 3000 km.

Using a slight modification of the model presented in Section 3.3.2, the total 
downtime curve was established (Figure 3.8), from which it is seen that minimum 
downtime or maximum availability occurs when the inspection policy is set at 8000 
km. Note, however, that the curve is fairly flat within the region 5000 to 8000 km, 
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and the final outcome was to keep the prevailing inspection policy of scheduling 
inspections at multiples of 5000 km rather than resetting the interval to 8000 km. Of 
course, had there been a significant benefit in increasing the interval, this may have 
justified a change in policy.

Jia and Christer (2003) have presented an inspection interval-modeling case study 
that makes a comparison with the policy that would be set using the methodology of 
reliability-centered maintenance (RCM).

3.4 � OPTIMAL INSPECTION INTERVAL TO MAXIMIZE THE 
AVAILABILITY OF EQUIPMENT USED IN EMERGENCY 
CONDITIONS, SUCH AS A PROTECTIVE DEVICE

3.4.1 �S tatement of the Problem

Equipment such as fire extinguishers and many military weapons are stored for use 
in an emergency. If the equipment can deteriorate while in storage, there is a risk 
that it will not function when it is called into use. To reduce the probability that 
equipment will be inoperable when required, inspections can be made, sometimes 
termed proof-checking, and if equipment is found to be in a failed state, it can be 
repaired or replaced, thus returning it to the as-new condition. Inspection and repair 
or replacement take time, and the problem is to determine the best interval between 
inspections to maximize the proportion of time that the equipment is in the available 
state. Table 3.2 provides a list of such items, often called protective devices.

The topic of this section is to establish the optimal inspection interval for protec-
tive devices, and this interval is called the failure-finding interval (FFI). The RCM 
methodology addresses this form of maintenance. Moubray (1997, 172) has said:

Failure-finding applies only to hidden or unrevealed failures. Hidden failures in turn 
only affect protective devices.

If RCM is correctly applied to almost any modern, complex industrial system, it 
is not unusual to find that up to 40% of failure modes fall into the hidden category. 

TABLE 3.2
Examples of Protective Devices
Fire hydrant on city street

Standby diesel generator for runway lights

Full-face oxygen mask in aircraft cockpit

Automatic transfer switches for emergency power supply

Methane gas detector in underground coal mine

Protective relays in electrical distribution

Fire suppression system on vehicle

Hotbox detector on railway car

Eyewash station in chemical plant

Refrigerant leakage detector system in chiller plant

Life raft on ship
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Furthermore, up to 80% of these failure modes require failure finding, so up to one 
third of the tasks generated by comprehensive, correctly applied maintenance strategy 
development programs are failure-finding tasks.

A more troubling finding is that at the time of writing, many existing maintenance 
programs provide for fewer than one third of protective devices to receive attention at 
all (and then at inappropriate intervals)….

This lack of awareness and attention means that most of the protective devices in 
industry—our last line of protection when things go wrong—are maintained poorly 
or not at all.

This situation is completely untenable.

Clearly, the optimization of FFIs is an important maintenance decision topic.

3.4.2 �C onstruction of the Model

	 1.	 f(t) is the density function of the time to failure of the equipment.
	 2.	Ti is the time required to carry out an inspection. It is assumed that 

after the inspection, if no major faults are found requiring repair or 
complete equipment replacement, the equipment is in the as-new state. 
This may be as a result of minor modifications being made during the 
inspection.

	 3.	Tr is the time required to make a repair or replacement. After the repair or 
replacement, it is assumed that the equipment is in the as-new state.

	 4.	The objective is to determine the interval ti between inspections to maxi-
mize availability per unit time.

Figure 3.9 illustrates the two possible cycles of operation.
The availability per unit time will be a function of the inspection interval ti. This 

is denoted as A(ti)

	 A(ti) = expected availability per cycle/expected cycle length

The uptime in a good cycle is equivalent to ti because no failure is detected at the 
inspection. If a failure is detected, then the uptime of the failed cycle can be taken as 
the MTTF of the equipment, given that inspection takes place at ti.

Thus, the expected uptime per cycle is

Inspect
Ti

0
ti

Cycle 1

Good cycle

0

Inspect
Ti Tr

ti

Failed cycle

Cycle 2

FIGURE 3.9  Maximizing availability.
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This is a model of the problem relating inspection interval ti to availability per unit 
time A(ti).

3.4.3 �N umerical Example

	 1.	The time to failure of equipment is normally distributed with a mean of 5 
months and a standard deviation of 1 month.

	 2.	Ti = 0.25 month.
	 3.	Tr = 0.50 month.

Equation 3.5 becomes

	 A t

t R t tf t t

t R t
i

i i

t

i i

i

( )

( ) ( )

. . ( )
=

+

+ + − 

∫ d
0

0 25 0 50 1 
.

Table 3.3 results from evaluating the right-hand side of Equation 3.5 for various 
values of ti. The optimal inspection interval to maximize availability is seen to be 3 
months. Figure 3.10 shows the result graphically. From a practical decision-making 
perspective, graphical representations are very helpful to management in making the 
final decision.

TABLE 3.3
Inspection Interval versus Availability

ti 1 2 3 4 5 6

A(ti) 0.8000 0.8905 0.9173 0.9047 0.8366 0.7371
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Sample calculation:
When ti = 3 months,
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	 (see Section 2.5.3)

Therefore, Equation 3.5 becomes
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0 9173= × +

+ +
= .

3.4.4 �F urther Comments

A crucial assumption in the model of this section is that the equipment can be 
assumed to be as good as new after inspection if no repair or replacement takes 
place. In practice, this may be reasonable, and it will certainly be the case if the fail-
ure distribution of the equipment is exponential (because the conditional probability 
remains constant).
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FIGURE 3.10  Optimal inspection interval.
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If the as-new assumption is not realistic and the failure distribution has an increas-
ing failure rate, then rather than having inspections at constant intervals, it may be 
advisable to increase the inspection frequency as the equipment gets older. Such 
problems are discussed by Jiang and Jardine (2005).

Rather than having a single protective device in place, we can increase protection 
through redundancy. A discussion of various forms of redundancy (active, m-out-
of-n, standby, parallel, or triple active redundancy) is presented in O’Connor and 
Kleyner (2012).

3.4.5 � Exponential Failure Distribution and Negligible Time Required 
to Perform Inspections and Repairs/Replacements

It is not unreasonable to expect protective devices to be highly reliable with the risk 
of failure to be very low and strictly random. Nor is it unreasonable to assume that 
the time required to inspect a protective device is very short (measured in minutes 
or hours) when compared with the optimal FFI (measured in months/years). If in 
the availability maximization model of Equation 3.5, we let f(t) = exponential with 
MTTF = 1/λ, Ti = Tr = 0, then Equation 3.5 can be reduced to:

	
A t

t
i

i( ) = −1
2
λ

.

Simplifying the notation, if we let

FFI	 = the inspection interval (ti)
A	 = availability of the protective device, given an FFI
M 	= MTTF = 1/λ

then we get the result

	 A
M

= −




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1
2
FFI

.	 (3.6)

3.4.6 �A n Application: Pressure Safety Valves in an Oil and Gas Field

There are 1000 safety valves in service in an oil and gas field. The present practice is 
to inspect them annually. During the inspection visit, 10% of the valves are found to be 
defective. The duration of the inspection is 1 h. It takes an additional hour to replace 
each defective valve.

What is valve availability for different inspection intervals? To estimate the 
MTTF of a valve, we can use the ratio of the total testing time and the number of 
failures. Thus, 1000 valves have been in service for 1 year, and during that year, 100 
fail (10%). Therefore,

	 MTTF is estimated from 1000/100 = 10 years (520 weeks).
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Because the inspection and replacement times are very short compared with the 
12-month period (8760 hours), it is reasonable to assume that these times are zero. 
If we further assume that the valves fail exponentially, we can estimate valve avail-
ability from Equation 3.6.

Table 3.4 provides the expected availabilities obtained from different FFIs. Thus, 
it is seen that the current practice of inspecting the valves annually (every 52 weeks) 
provides an availability level of 95%. If an availability of 99.5% is required, the FFI 
would be 5 weeks. Figure 3.11 provides a graphical representation of the relationship 
between availability and the FFI.

TABLE 3.4
FFIs for Pressure Safety Valve

Failure-Finding Interval (Weeks) Pressure Valve Availability (%)

1 99.9

5 99.5

10 99.0

15 98.6

21 98.1

52 95.0

104 90.0
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FIGURE 3.11  Availability versus FFI.
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3.5 � OPTIMIZING CBM DECISIONS

3.5.1 �I ntroduction

In Chapter 2, we examined the optimization of change-out times for components sub-
ject to failure and estimated the probability of an item failing in service as a function of 
its age. A major disadvantage of the time-based replacement decision is that some use-
ful life is still left in an item that has been replaced preventatively. However, taking into 
account the consequence of failure, it is often justified to undertake preventive replace-
ments. On the other hand, if the item is an expensive one, such as a vehicle’s transmis-
sion, rather than an inexpensive bearing, it would be worthwhile to inspect it regularly 
before removing it from service. Through this CM, it may be possible to obtain a better 
understanding of the health of the item, and thus intervene with an appropriate mainte-
nance action just before failure, thereby increasing the useful life of the item.

The most common form of inspection is “low tech,” such as visual inspection, 
but for expensive items that have a long life, two common “high-tech” tools used for 
CM are oil analysis and vibration monitoring. Moubray (1997), in his book, devotes 
an appendix to identifying various forms of CM, including dynamic, particle, and 
chemical monitoring. O’Hanlon (2003) has stated that “world class companies often 
devote up to 50% of their entire maintenance resources to condition monitoring and 
the planned work that is required as a result of the findings.” Clearly, CM is a key 
maintenance tactic in many organizations.

Although much research and product development in the area of CBM focuses on 
designing tools and signal processing to remove noise from the signals, the focus of 
this section of the book is to examine what might be thought of as the final step in 
the CBM process—optimizing the decision-making step.

Jardine (2002) provides an overview of the following procedures being used to 
assist organizations in making smart CBM decisions: physics of failure, trending, 
expert systems, neural networks, and optimization models. Possibly the most com-
mon approach to understanding the health of equipment is through plotting vari-
ous measurements and comparing them with specified standards. This procedure 
is illustrated in Figure 3.12, where measurements of iron deposits in an oil sample 
are plotted on the y-axis and compared with warning and alarm limits. The mainte-
nance professional takes remedial action if it is deemed appropriate. Many software 
vendors addressing the needs of maintenance have packages available to assist in 
trending CM measurements, with the goal of predicting failure.

A consequence observed when such an approach is undertaken is that the main-
tenance professional is often too conservative in interpreting the measurements. In 
work undertaken by Anderson et al. (1982), it was observed that 50% of the aircraft 
engines that were removed before the end of life for which they were designed (due to 
information obtained through sampling of engine oil) were identified by the engine 
manufacturer as being in a fit state to remain on the four-engine aircraft. Christer 
(1999) observed the same point, when he reported that since CM of gearboxes was 
introduced, gearbox failures within an organization had decreased by 90%. As 
Christer said, “This is a notable accolade for CM.” He also reported that when recon-
ditioning “defective” gearboxes, in 50% of the cases, there was no evident gearbox 
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fault. He concluded, “Seemingly, CM can be at the same time very effective, and 
rather inefficient.”

Clearly, there is a need to focus attention on the optimization of CM procedures. 
In this section, we will present an approach for estimating the hazard (conditional 
probability of failure) that combines the age of equipment and CM data using a 
proportional hazards model (PHM). We will then examine the optimization of the 
CBM decision by combining the hazard calculation with the economic consequences 
of both preventive maintenance, including complete replacement, and equipment 
failure.

3.5.2  The Proportional Hazards Model

A valuable statistical procedure for estimating the risk of equipment failing when it 
is subject to CM is the proportional hazards model (PHM) (Cox 1972). A PHM can 
take various forms, but all combine a baseline hazard function with a component 
that takes into account covariates that are used to improve the prediction of failure. 
The particular form used in this section is known as a Weibull PHM, a PHM with a 
Weibull baseline expressed as
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where h[t, Z(t)] is the (instantaneous) conditional probability of failure at time t, 
given the values of z1(t), z2(t),…zm(t).

Each zi(t) in Equation 3.7 (i = 1, 2,…m) represents a monitored condition data vari-
able at the time of inspection, t, such as the iron (in parts per million) or the vibration 
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amplitude at the second harmonic of shaft rotation. These condition data are called 
covariates. The γi values are the covariate parameters that, along with the Zi values, 
indicate the degree of influence each covariate has on the hazard function.

The model consists of two parts: the first part is a baseline hazard function that 

takes into account the age of the equipment at the time of inspection, β
η η

β
t





−1

, while 

the second part, exp[γ1z1(t) + γ2z2(t) +⋯+γmzm(t)], takes into account the variables 
that may be thought of as the key risk factors used to monitor the health of equipment 
and their associated weights.

In the study by Anderson et al. (1982), the form of the hazard model for the air-
craft engines was
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where z1(t) is iron (Fe) concentration and z2(t) is chromium (Cr) concentration in 
parts per million, and t is the age of the aircraft engine in flying hours at the time 
of inspection. Because β = 4.47, we know that the age of the aircraft engine is an 
influencing factor in estimating the hazard rate of the engine; η = 24,100 hours is the 
scale parameter of the Weibull PHM.* The values 0.41 and 0.98 are weights given 
to the iron and chromium measurements when calculating the hazard rate. They 
are estimated from the data that are analyzed and may be different for engines of 
different types, and may depend on their operating environment.

The procedure to estimate the values of β, η, and the weights, along with 
determining the CM variables to be included in the model, is discussed in a number 
of books and articles, including those by Vlok et al. (2002) and Kalbfleisch and 
Prentice (2002).

Standard statistical software such as SAS and S-Plus have routines to fit a PHM—
both parametric, such as the Weibull PHM, and nonparametric.

3.5.3 �B lending Hazard and Economics: Optimizing the CBM Decision

Makis and Jardine (1992) presented an approach to identify the optimal interpreta-
tion of CM signals. The approach is illustrated graphically in Figures 3.13 and 3.14.

Figure 3.13 illustrates that given a set of CM measurements (the data plot), it is 
possible to convert the measurements to the equivalent hazard estimate (the risk 
plot). This conversion is achieved by using a PHM.

Once we have a method of monitoring an equipment’s hazard value, the next ques-
tion is: What should we do about it to make an optimal maintenance decision? The 
answer is illustrated in Figure 3.14. There, it can be seen that one possibility is to ignore 
risk (see the risk plot graph in Figure 3.13). If risk information is ignored, the equip-
ment will be used until it fails, and only then will it be maintained (for the time being, 

*	Note that η in this case does not take the interpretation that 63.2% of failures occur before this time, 
which would be the case if the hazard was not influenced by covariates.
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FIGURE 3.13  Calculating hazard from CM measurements.
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assume that the maintenance action is equivalent to a replacement, as is the case of 
some complex equipment, such as aircraft engines, in which after maintenance the 
engines are “relifed” and have the same guarantees as a new engine). The cost associ-
ated with this decision (ignoring risk) is the cost of a failure replacement divided by 
the MTTF of the equipment. Thus, we obtain the cost of replacing only upon failure, 
as identified in the cost plot. As the risk level (threshold) is reduced, there will be more 
preventive replacement actions and fewer failure replacements. Assuming that the cost 
of a failure replacement is greater than the cost of a preventive replacement, a cost func-
tion as illustrated on the cost plot will be obtained. Thus, it is possible to identify the 
optimal hazard level at which the equipment should be replaced: if the hazard rate is 
greater than the threshold value, preventive replacement should take place; otherwise, 
operations can continue as normal.

In the Makis and Jardine (1992) article, it was shown that the expected average 
cost per unit time, Φ(d), is a function of the threshold risk level, d, and is given by

	 Φ( )
[ ( )] ( ) ( )

( )
d

C Q d C K Q d
W d

= − + +1
	 (3.8)

where C is the preventive replacement cost and C + K the failure replacement cost. 
Q(d) represents the probability that failure replacement will occur at hazard level d. 
W(d) is the expected time until replacement, either preventive or at failure.

The optimal risk, d*, is the value that minimizes the right-hand side of Equation 
3.8, and the optimal decision is then to replace the item whenever the estimated 
hazard, h[t, Z(t)], calculated upon completion of the CM inspection at t, exceeds d*.

3.5.4 �A pplications

The topic of optimizing CBM decisions has been an active research thrust at the 
University of Toronto that has been conducted for some years in partnership with 
a number of companies, many with global operations (www.mie.utoronto​.ca). As a 
consequence, pilot studies have been undertaken and published in the open litera-
ture. Brief summaries of three of these studies, each utilizing a different form of 
CM, are given in the following sections.

3.5.4.1 � Food Processing: Use of Vibration Monitoring
A company undertook regular vibration monitoring of critical shear pump bear-
ings. At each inspection, 21 measurements were provided by an accelerometer. Using 
the theory described in the previous section, and its embedding in software called 
EXAKT (see Section 3.5.6), it was established that among the 21 vibration measure-
ments, only 3 were key to characterizing the bearing failures: velocity in the axial 
direction in both the first and second bandwidths and velocity in the vertical direc-
tion in the first bandwidth.

In the plant, the economic consequence of a bearing failure was 9.5 times greater 
than the case when the bearing was replaced on a preventive basis. Taking account of 
risk as obtained from the PHM and the costs, it was clear that by following the optimi-
zation approach, total cost could be reduced by an estimated 35% (Jardine et al. 1999).
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3.5.4.2 � Coal Mining: Use of Oil Analysis
Electric wheel motors on a fleet of haul trucks in an open-pit mining operation were 
subject to oil sampling on a regular basis. Twelve measurements resulted from each 
inspection. These were compared with warning and action limits to decide whether 
the wheel motor should be preventively removed. These measurements were Al, Cr, 
Ca, Fe, Ni, Ti, Pb, Si, Sn, Visc 40, Visc 100, and sediment.

After applying a PHM to the data set, only two key risk factors were identified: 
iron (Fe) and sediment measurements—oil analysis measurements that were highly 
correlated to the risk of the wheel motor failing due to the failure modes being moni-
tored through oil analysis. The cost consequence of a wheel motor failure was esti-
mated as being three times the cost of replacing it preventively, and the economic 
benefit of following the optimal replacement strategy was an estimated cost reduc-
tion of 22% (Jardine et al. 2001).

3.5.4.3 � Transportation: Use of Visual Inspection
Traction motor ball bearings on trains were inspected at regular intervals to deter-
mine the color of the grease; it could be in one of four states: light gray, gray, dark 
gray, or black. Depending on the color of the grease and knowing the next inspec-
tion time, a decision was made to either replace the ball bearings or leave them 
in service. As a result of building a PHM relating the hazard of a bearing failing 
before the next planned inspection, a decision was made to dramatically reduce the 
interval between checks from 3.5 years to 1 year. Before the study was undertaken, 
the transportation organization was suffering, on average, nine train stoppages per 
year. The expected number with a reduced inspection interval was estimated at one 
per year. The year after the study, the transportation system identified two system 
failures due to a ball bearing defect. The overall economic benefit was identified as 
a reduction in total cost of 55%. It should be mentioned that this included the cost 
of additional inspectors and took into account the reduction in passenger disruption. 
More specifically, a notional cost reflecting the financial impact of passenger delays 
was determined.

3.5.5 �F urther Comments

Additional case studies dealing with the optimization of CBM decisions in a variety of 
sectors using the optimization approach presented in this section are those by Willets 
et al. (2001), for pulp and paper; Vlok et al. (2002), for coal plants; Jardine et al. (2003), 
for nuclear plant refueling; Lin et al. (2003), for military land armored vehicle; Monnot 
et al. (2004), for construction industry backhoes; Jefferis et al. (2004), for marine diesel 
engines; and Chevalier et al. (2004), for turbines in a nuclear plant.

Reviewing the above-referenced CBM optimization studies that address the smart 
interpretation of CM signals, it is clear that more CM data than are really necessary 
are usually acquired by an organization. In these studies, it has often been possible 
to obtain a good understanding of the most important CM measurements associated 
with identifying the risk of equipment failing. This is achieved through a careful 
analysis of the data acquired by the CM specialists, along with information con-
tained in work orders.
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A side benefit of homing in on the key measurement as a result of the optimization 
approach is that it may be possible to reduce the number of measurements taken at 
the time of CM. However, care needs to be taken if measurements are discontinued 
because the PHM is applicable to the operating environment from which the data 
were acquired. If the operating environment changes, for example, due to a change 
in maintenance or operating practices, perhaps the identified risk factors will no 
longer hold true.

Nevertheless, in a communication, Kingsbury (1999) stated that, in the context 
of discussions with United Space Alliance, the maintenance contractors for the US 
Shuttle program,

… should emphasize the ability (of the CBM approach presented) to allow them to 
select the signals they monitor and eliminate unnecessary transducers and signal trans-
mission or telemetry requirements. That translates into reduced weight in the orbiter 
and less signal bandwidth taken up with equipment health monitoring telemetry.

A common concern raised about the use of formal statistical methods in CBM is 
the view that to estimate the failure distribution of an item, time-to-failure data are 
required. The point is that if CM is effective, then no failure will be observed, and 
so formal statistical procedures are impracticable. It is clear that the goal of CM is to 
spot when an item is about to fail, and then be proactive and take preventive action, 
thus preventing the failure. However, careful analysis of several sets of data has 
demonstrated that whereas the item is removed before failure, the removal is often 
premature and much of the useful life of the item is wasted.

To elaborate, in a study of Pratt & Whitney engines on the Boeing 707 (Anderson 
et al. 1982), although most engines (42 of 50) in the sample survived their design life, 
among the 50 examined, 8 had been removed before the end of their design life due 
to readings from oil analysis and sent to Pratt & Whitney for engine overhaul. Of the 
eight, the maintenance reports indicated that four were good removals, but the other 
four were premature removals (i.e., only 50% of the removals were good removals). 
In fact, this reality is what prompted the early work on the possible use of the statisti-
cal procedure of PHM as an attempt to get a good handle on the real risk of an item 
subject to CM failing.

In a study reported by Wiseman (2001) on the optimization of CBM decisions 
relating to wheel motors in a mining company, no catastrophic failure of wheel 
motors was recorded.

Clearly, the purpose of CM is to mitigate the consequences of failures. However, 
in the context of optimization, one is always examining tradeoffs. So while the 
outcome of CM may result in a substantial reduction in the number of failures that 
may have been experienced before the implementation of CM, perhaps down to 
zero, we could ask this question: Is this reduction economically justifiable?

Unquestionably, CM does substantially improve plant reliability, but it has been 
observed that there are often significant premature removals due to the misinterpre-
tation of signals that emanate from various forms of CM. In the wheel motor study 
(Wiseman 2001), there were many CM records associated with the 138 wheel motors 
in a fleet of haul trucks in an open pit mine. Oil analysis was used to monitor the 
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health of the wheel motors, and rules were used to decide when the wheel motor 
should be removed. No wheel motor was removed due to unexpected failure while 
in operation; 94 wheel motors were removed due to CM readings. Upon examining 
the maintenance reports associated with the rebuilds, it was identified that 32 of the 
motors could be classified as failures, that is, had been removed shortly before one 
might have expected a failure. The other 62 could be classified as premature remov-
als; they had useful life left in them and could have safely been left in service. So 
when building the PHM for wheel motors, the 32 good removals were treated as 
failures and the other 62 as suspensions.

A final observation: In the RCM literature, many comments have been made 
about the fact that when a study was undertaken on civil aircraft (Moubray 1997), 
most failures of equipment could be described by a hazard (risk of failure, sometimes 
called conditional probability of failure) that was constant. At the time of the study 
referred to by Moubray, only the time to failure was measured. For complex items, it is 
to be expected that the hazard will be constant because failures can arise from many 
different causes, thus appearing completely randomly following a Poisson process. 
For example, in the petrochemical industry, wherein simulation was used to establish 
maintenance crew sizes and shift patterns, β of the fitted Weibull distribution was 1 for 
items, including cement makeup system, halogenator, coagulator, baler, conveyors, 
wrapper, crusher, and so on, and therefore hazard is constant (Saint-Martin 1985). In 
a 25-year-old thermal generating station in which simulation was used to establish 
how best to improve plant performance through refurbishment, β of the fitted Weibull 
distribution was found to be 1 for pulverizers, gas system, waterwalls, economizer, 
turbines, transformer, circulating pumps, and so forth (Concannon et al. 1990).

It should be noted that in the two previous examples, the risk of failure was only 
estimated on the basis of one key measurement—working age. In the case of the pet-
rochemical plant, it was output in tons. For the power station, it was operating hours.

However, as can be observed from this section, if other measurements in addition 
to age are being obtained and used in the hazard rate calculation using the PHM, the 
age of an item may well be identified as having an influence on its hazard rate.

Referring to Chapter 2, if the item being examined is a line replaceable unit—one 
in which the only maintenance action taken is equivalent to the renewal of the item, 
either preventively or on failure—and the hazard rate is constant, then age has no 
influence on the hazard function and the optimal replacement time is infinity, that is, 
replace-only-on-failure.

3.5.6 �S oftware for CBM Optimization

To take advantage of the theory described in Section 3.5.3, a software package named 
EXAKT (www.omdec.com) was developed. As explained by Wiseman (2004), 
“EXAKT takes processed signals, correlates them with past failure and potential 
failure events. Using modeling, it subsequently provides failure risk and residual life 
estimates tuned to the economic considerations and the availability requirements for 
that asset in its current operating context.”

Table 3.5 illustrates CM data that EXAKT requires if the CM tool is vibration 
monitoring, such as equipment identification number; age of item at inspection; 
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vibration measurements, such as overall acceleration; velocity in the vertical direc-
tion, first bandwidth; velocity in the vertical direction, second bandwidth; and so 
forth. In addition, event data are required. This is information about when equipment 
went into service and when it came out of service, and whether removal was preven-
tive or upon failure. It is also information about any maintenance interventions that 
took place between installation and removal of the equipment, which may affect the 
interpretation of the CM data, such as the events listed in Table 3.6. A sample of the 
vibration analysis event data for the example illustrated in this section is provided in 
Table 3.7, in which the working age is in days.

TABLE 3.6
Different Forms of Event Data
1. An oil change

2. A rotor balance

3. A shaft/coupling alignment

4. A soft foot correction

5. Tightening, calibration, and minor adjustments that affect the condition data

6. A filter replacement

TABLE 3.5
Vibration-Monitoring Data
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3.5.6.1 � Event Data
An event that provides useful information for CBM optimization can be any one of 
the following types:

	 1.	A beginning event. This indicates the start of a history (a history includes 
all events from installation to removal of an item), and is designated by B.

	 2.	A failure event, designated by EF (ending with failure).
	 3.	A preventive replacement, designated by ES (ending by suspension).

An occurrence during a history that affects the condition data is also informative. 
Some examples are listed in Table 3.6.

Data from Tables 3.5 and 3.7 (only parts of the complete tables are shown here) 
are used to obtain the PHM. The same data are used to estimate the probability of 
going from one state of the vibration measurement to another state during a speci-
fied interval, known as a transition probability, which is then used in combination 
with cost data to obtain the optimal decision figure (Banjevic et al. 2001). Table 3.8 
is an example of the transition probability matrix for the vibration measurement 
“velocity in the axial direction, first bandwidth” when the interval for the transition 
is specified as 30 days. Thus, if velocity is in the range of 0.15 to 0.22 today, there is a 
probability of 0.3779 that the equipment will be in the same state 30 days from now. 
Similarly, the table can be used to determine the probability of the equipment being 
in a failure state in 30 days’ time is 0.1997. Transition probabilities are provided for 
all possible combinations of states.

A transition probability matrix is a tool that can be used to model the probabi-
listic behavior of a process in terms of transitions from a present state to a future 
state. A stochastic process that has finite states is known as a Markov chain. In the 

TABLE 3.7
Vibration Analysis Event Data
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example given in Table 3.8, the states of vibration being monitored are very smooth, 
smooth, rough, very rough, and failure. A discussion on Markov chains is provided 
in Appendix 4.

Finally, using the PHM, transition probabilities, and the costs associated with 
preventive and failure replacement, the graph that can be used for decision making 
is obtained (Figure 3.15).

FIGURE 3.15  Optimizing the CBM decision.

TABLE 3.8
Transition Probability Matrix

0
to 0.1

0 to 0.1

VEL#1A

0.1 to 0.15

0.15 to 0.22

0.22 to 0.37

Above 0.37Failure

Very rough

Rough

Smooth

Very smooth

0.1
to 0.15

0.15
to 0.22

0.22
to 0.37

Above
0.37

0.5754 0.2242 0.1452
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0.0405
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0.0521

0.0147

0.0760

0.1997

0.5069

0.9277

0.2498

0.1376

0.0474

0.0027

0.2059

0.0554

0.0129

0.0005



129Inspection Decisions

Thus, whenever an inspection is made, the values of the key risk factors are 
obtained. In this case, the key risk factors are velocity in the axial direction, first 
bandwidth; velocity in the axial direction, second bandwidth; and velocity in the ver-
tical direction, first bandwidth. These measurements are multiplied by their weight-
ing factors, 5.8312, 36.552, and 24.053, respectively, and then added to give a z value, 
which is marked on the y-axis. The x-axis shows the age of the item (a bearing in this 
example) at the time of inspection. The position of the point on the graph indicates 
the optimal decision. If the point is in the lightly shaded area, the recommendation 
is to continue operating—with reference to the risk plot in Figure 3.15, the hazard is 
below the optimal level. If the intersection is in the dark-shaded area, the recommen-
dation is to replace—in this case, the hazard is greater than the optimal risk level. If 
the intersection lies in the clear area, it indicates that the optimal change-out time is 
between two inspections.

On the Web site, www.banak-inc.com, there is a detailed explanation of EXAKT. 
The chapter “Interpretation of Inspection Data Emanating from Equipment Condition 
Monitoring Tools: Method and Software” in Mathematical and Statistical Methods 
in Reliability (Jardine and Banjevic 2005) provides an overview of the theory and 
application of the CBM optimization approach presented in this section.

PROBLEMS

	 1.	The current maintenance policy being adopted for a complex transfer 
machine in continuous operation is that inspections are made once every 
4 weeks. Any potential defects that are detected during this inspection and 
that may cause breakdown of the machine are rectified at the same time. In 
between these inspections, the machine can break down, and if it does so, 
it is repaired immediately. As a result of the current inspection policy, the 
mean time between breakdowns is 8 weeks.

		  It is known that the breakdown rate of the machine can be influenced 
by the weekly inspection frequency, n, and associated minor maintenance 
undertaken after the inspection, and is of the form λ(n) = K/n, where λ(n) is 
the mean rate of breakdowns per week for an inspection frequency of n per 
week.

		  Each breakdown takes an average of 1/4 week to rectify, whereas the 
time required to inspect and make minor changes is 1/8 week.

	 a.	 Construct a mathematical model that could be used to determine the 
optimal inspection frequency to maximize the availability of the trans-
fer machine.

	 b.	 Using the model constructed in (a) along with the data given in the 
problem statement, determine the optimal inspection frequency. Also, 
provide the availability associated with this frequency.

	 2.	An industrial machine consists of two parts, part A and part B. Each part has 
its own rate of breakdown, and whenever either of the two parts breaks down, 
the entire machine will be stopped for repair. Each breakdown takes an 
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average of 3 days to rectify. At inspections, both parts A and B are inspected, 
and in total, the inspection takes 1.5 days to complete. Any potential defects 
that are detected during these inspections and that may cause breakdown of 
the machine are rectified at the time. It is known that the breakdown rates of 
parts A and B are influenced by the inspection frequency, n, and associated 
minor maintenance work, and they are of the form listed in the following:

	
Part A:  =λ1

1( )n
K
n

	
PartB:  =λ2

2( )n
K

n

	 where λ1(n) and λ2(n) are the mean rates of breakdowns per month for parts 
A and B, respectively, when an inspection frequency of n per month applies.

		  The current maintenance policy being adopted for the machine in con-
tinuous operation is that inspections are made once a month. As a result of 
this policy, the mean time between machine breakdowns is 2 months.

	 a.	 Construct a mathematical model that could be used to determine the opti-
mal inspection frequency to maximize the availability of the machine.

	 b.	 Using the model constructed in (a) along with the data given in the 
problem statement, determine the optimal inspection frequency. Also, 
provide the availability associated with this frequency.

	 c.	 Find the value of K1 given that K2 = 0.1 (the calculations have to consider 
a month as a unit of time).

	 3.	Consider the pumps shown in Figure 3.16. The duty pump (pump B) delivers 
water into a tank (tank Y) from which the water is drawn at a rate of 800 L/
min to cool a reactor that works continuously 24 hours a day, 7 days a week. 

Pumps can deliver up to 1000 L of cooling 
water per minute

Duty 
pump B

Standby
pump CX

Y

Off take from tank: 800
 L/min

FIGURE 3.16  Cooling water supply system.
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The duty pump is switched on by one float switch when the level in tank Y 
decreases to 120,000 L, and is switched off by another when the level reaches 
240,000 L. A third switch is located just below the low-level switch of the duty 
pump. This switch is designed both to sound an alarm in the control room if 
the water level reaches it and to switch on the standby pump (pump C). If the 
tank runs dry, which happens when the standby pump is in a failed state while 
it is required to pump the cooling water, the reactor has to be shut down. If it is 
not shut down, there will be no cooling water for the reactor, which means that 
there is a high probability of a catastrophic failure. The probability of having 
an explosion when no cooling water is circulating in the reactor and before the 
operators shut down the reactor is 10%. According to governmental regulations, 
the plant has to ensure that the probability of having such an explosion in 
each year does not exceed 10−8. The mean time between failures for the duty 
pump is 24 months. The standby pump can fail while it is idle with the rate 
of one failure every 120 months. Currently, the operators turn on the standby 
pump every few months to check whether it is still capable of working. The 
maintenance department has done some calculations based on the information 
provided and concluded that in order not to breach governmental regulations, 
the standby pump has to have an availability of higher than (1 − 2 × 10−5).

	 a.	 Determine the mean time between each inspection of the standby pump 
to provide the availability suggested by the maintenance department.

	 b.	 Is your answer to part (a) feasible? Why? If the answer is no, make some 
suggestions on how you can reach such availability.

	 c.	 In fact, the calculation done by the maintenance department is wrong. 
Calculate the correct availability required for the standby pump 
(Figure 3.16).

		  (Thanks to Dr. A. Zuashkiani who developed this problem.)

	 4.	Rather than basing component hazard rate predictions solely on accumulated 
utilization, it may be possible to use concomitant information to improve pre-
dictions. The following model, derived from Cox’s PHM, includes explana-
tory variables z1 and z2, along with cumulative operating hours, t, to predict 
the instantaneous hazard rate, h(t), for wheel motors of a haul truck.

	
h t z z

t
e, ,

.
, ,

.

( .
1 2

1 891

0 0022 891
23 360 23 360

( ) = 





7742 0 00005391 2z z+ . )

	 where
z1 = �iron concentration in parts per million from a spectroscopic oil analysis 

program analysis
z2 = sediment reading from test to measure suspended solids

	 a.	 Given the following inspection data from three wheel motors (Table 3.9), 
what is your estimate of the current hazard rate for each motor?
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	 b.	 You are asked to submit a report to mine maintenance regarding the 
hazard value for motor 1. How might you explain the value you have 
obtained, and what maintenance action would you recommend given 
that a maintenance stoppage is scheduled in 10 days?

	 c.	 How would you interpret the number 2.891 in the hazard model?

	 5.	A company monitors the gearboxes on vehicles by attaching a wireless sen-
sor to each gearbox to take vibration readings. The vibration signals are 
then analyzed by a digital signal processing toolbox. Two condition indica-
tors showing the health of the gearbox, CI1 and CI2, are extracted from 
each vibration signal. After running the previously mentioned CM on a fleet 
of vehicles, the company has accumulated a certain amount of data. Now 
the company manager asks you to apply EXAKT to the data.

	 a.	 The first step for you would be to collect and prepare the data. What are 
the two main sources of data required by EXAKT?

	 b.	 Now you have obtained the right data and have properly prepared it. 
You want to establish a PHM for the gearboxes. The usual way for mod-
eling is to include both indicators in the PHM.

	 i.	 If you find one of them, CI1, is significant and the other, CI2, is not, 
how would you proceed with the modeling? What would you do if 
both CI1 and CI2 are not significant?

	 ii.	 If you find that the shape parameter is not significant (i.e., β = 1), 
how would you proceed? What does it really mean when you say 
the shape parameter is not significant?

	 c.	 Assume that the final PHM you get is

	
h t

t
( ,

, ,
e

.

CI2)
5.4184=





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



10 319 10 319

4 4184

xxp( . )0 3884CI2

	 where h(t, CI2) is the hazard rate and t is the operation hours.
		  Given the following data from the three gearboxes, estimate the haz-

ard rate of each gearbox (Table 3.10).
	 d.	 You are asked to submit a report regarding the hazard rate of gearbox 

1. How might you explain the value you have obtained and what main-
tenance action would you recommend within the next 48 hours?

TABLE 3.9
Inspection Data from Three Wheel Motors

Wheel Motor No. Age (Hours) Iron (ppm) Sediment Measurement

1 11,770 5 6.0

2 11,660 2 6.0

3 8460 12 2.4

Note:  ppm, parts per million.
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4 Capital Equipment 
Replacement Decisions

First weigh the considerations, then take the risks.

—Helmuth von Moltke

4.1 � INTRODUCTION

The goal of this chapter is to present models that can be used to determine optimal 
replacement decisions associated with capital equipment by addressing life cycle 
costing (LCC) decisions, or its complement, life cycle profit (LCP), sometimes 
termed whole-life costing (WLC). Capital equipment problems tend to be treated 
deterministically, and that is the approach taken in this chapter.

In the context of the framework of the decision areas examined in this book, we 
are addressing column 3 of the framework, as highlighted in Figure 4.1.

Four classes of problems will be considered in this chapter:

	 1.	Establishing the economic life of equipment that is essentially utilized 
steadily each year

	 2.	Establishing the economic life of equipment that has a planned varying 
utilization, such as using new equipment for base load operations and using 
older equipment to meet peak demands

	 3.	Deciding whether to replace present equipment with technologically supe-
rior equipment, and if so, when

	 4.	Deciding on the best action: repair (rebuild) versus replace

The basic issue to be addressed in each case is illustrated in Figure 4.2.
From Figure 4.2, we can see that as the replacement age of an item increases, the 

operations and maintenance (O&M) costs per unit time will increase, whereas the 
ownership cost will decrease. In simple terms, the ownership cost is the purchase 
price of an asset minus its resale value at the time of replacement, divided by the 
replacement age. There may be additional costs incurred, associated with the utiliza-
tion of an item, that are independent of the age at which the asset is replaced. These 
are identified as the fixed costs. The economic life (optimum replacement age) is 
then that time at which the total cost, in terms of its equivalent annual cost (EAC)—
see Appendix 6—is at its minimum value.

It will be noted from examination of Figure 4.2 that the fixed costs will not affect 
the economic life decision, so they can be omitted from the analysis. However, when 
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Database (CMM/EAM/ERP System)

Optimizing Equipment Maintenance and Replacement Decisions
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FIGURE 4.1  Capital equipment replacement decisions.
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FIGURE 4.2  Classic economic life conflicts.
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finalizing budget requirements for replacing assets at the end of their economic life, 
it is necessary to remember to include the fixed costs. They are part of the budget.

4.2 � OPTIMAL REPLACEMENT INTERVAL FOR CAPITAL 
EQUIPMENT: MINIMIZATION OF TOTAL COST

4.2.1 S tatement of the Problem

Through use, equipment deteriorates and this deterioration may be measured by 
an increase in the O&M costs. Eventually, the O&M costs will reach a stage in 
which it becomes economically justifiable to replace the equipment. What we wish 
to determine is an optimal replacement policy that minimizes the total discounted 
costs derived from operating, maintaining, and disposing of the equipment over a 
long period. It will be assumed that equipment is replaced by an identical item, thus 
returning the equipment to the as-new condition after replacement. (This restric-
tion will be relaxed in the problem of Section 4.5 when dealing with technological 
improvement.) Furthermore, it is assumed that the trends in O&M costs after each 
replacement will remain identical. Because the equipment is being operated over a 
long period, the replacement policy will be periodic, and so we will determine the 
optimal replacement interval.

4.2.2 �C onstruction of the Model

	 1.	A is the acquisition cost of the capital equipment.
	 2.	Ci is the operation and maintenance cost in the ith period from new, assumed 

to be paid at the end of the period, i = 1, 2,…, n.
	 3.	Si is the resale value of the equipment at the end of the ith period of opera-

tion, i = 1, 2,…, n.
	 4.	r is the discount factor (for details, see Appendix 6).
	 5.	n is the age in periods (such as years) of the equipment when replaced.
	 6.	C(n) is the total discounted cost of operating, maintaining, and replacing 

the equipment (with identical equipment) over a long period, with replace-
ments occurring at intervals of n periods.

	 7.	The objective is to determine the optimal interval between replacements to 
minimize total discounted costs, C(n).

The replacement policy is illustrated in Figure 4.3.
Consider the first cycle of operation: the total discounted cost up to the end of the 

first cycle of operation, with equipment already purchased and installed, is

	

C n C r C r C r C r Ar S r

C r r A

n
n n

n
n

i
i n

1 1
1

2
2

3
3( )

(

= + + + + + −

= + −



SSn

i

n

).
=
∑

1 	



138 Maintenance, Replacement, and Reliability

For the second cycle, the total cost discounted from the start of the second cycle is

	 C n C r r A Si
i n

n

i

n

2

1

( ) ( )= + −
=
∑ .

	

Similarly, the total costs of the third cycle, fourth cycle, and so forth, discounted 
back to the start of their respective cycles, can be obtained.

The total discounted costs, when discounting is calculated at the start of the oper-
ation, time 0, is

	 C(n) = C1(n) + C2(n)rn + C3(n)r2n + … + Cn(n)r (n−1)n + …

Because C1(n) = C2(n) = C3(n) = … = Cn(n) = …, we have a geometric progression 
that gives, over an infinite period,
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.	 (4.1)

This model of the problem relates replacement interval n to the total costs.

4.2.3 �N umerical Example

	 1.	Let A = $5000.
	 2.	The estimated O&M costs per year for the next 5 years are shown in 

Table 4.1.

Replace Replace Replace

Cycle 1 Cycle 2 Cycle 3
0 1 2 n n n1 2 1 12n – 1

C C C C C C C C C C1 2 n 1 2 n 1 2 n 1

n – 1 n – 1

FIGURE 4.3  Optimal replacement interval: capital equipment.

TABLE 4.1
Trend in O&M Costs

Year 1 2 3 4 5

Estimated O&M cost ($) 500 1000 2000 3000 4000
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	 3.	The estimated resale values over the next 5 years are shown in Table 4.2.
	 4.	The discount factor r = 0.9.

Evaluation of Equation 4.1 for different values of n provides the data for Table 
4.3, from which it is seen that the best time to replace (in terms of the economic life 
of the equipment) is after the equipment has been used for 2 years with a total dis-
counted cost of $19,421. The best policy will then be to replace that asset at intervals 
of 2 years “forever.” Rather than present the cost associated with an infinite chain of 
replacement, it is more meaningful to provide the EAC.

From Appendix 6, we can determine that EAC = PV × CRF, where PV is the pres-
ent value and CRF is the capital recovery factor. Thus, we get

	 EAC = $19,421 × 0.11 = $2136.

Note that CRF = i because n in the CRF equation is equivalent to infinity due to the 
model that has been used.

A graphical representation is provided in Figure 4.4.

4.2.4 �F urther Comments

In the model developed in the previous section (Equation 4.1), it was assumed that we 
had started with equipment in place and asked the question: When should it be replaced? 
Thus, the first time the acquisition cost of the item is incurred is at the end of the first 
cycle of operation. Furthermore, it was assumed that the O&M costs were incurred at the 
end of the year, and so, for example, first-year costs were discounted by 1 year. Perhaps 
a more realistic assumption is that the purchase price of the asset is incurred at the start 
of the replacement cycle, and that costs in a year are incurred at the start of the year; 
therefore, for example, year 1 costs are not discounted. This is illustrated in Figure 4.5. 
Of course, we could assume that costs are incurred continuously during the year, and 
therefore continuous discounting would be used (Appendix 6). In practice, what is usu-
ally assumed in capital equipment replacement studies is what is depicted in Figure 4.5.

TABLE 4.2
Trend in Resale Values

Year 1 2 3 4 5

Resale value ($) 3000 2000 1000 750 500

TABLE 4.3
Total Discounted Costs

Replacement Time, n 1 2 3 4 5

Total discounted cost, C(n) ($) 22,500 19,421 20,790 21,735 23,701
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Thus, in all replacement studies, we need to be clear when the cash flows occur. 
The model represented by Equation 4.2 reflects the cash flows depicted in Figure 
4.5 and is used in the economic life software PERDEC and AGE/CON, presented in 
Section 4.7. Again, it is the EAC that is calculated:

	 EAC( )n

A C r r S
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i

i
i n
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i

n
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×

−

=
∑ 1

1

1
.	 (4.2)

In the models discussed, it has been assumed that the acquisition cost of equipment 
remains constant. It is also assumed that the trend in maintenance costs is the same 
after each replacement. Because of inflationary trends, this is unlikely, and therefore, 
it may be necessary to modify the model to take account of these facts. As explained 
in Appendix 6, provided an appropriate interest rate is used, inflation effects do not 
need to be incorporated into the model. However, if required, it can be done.

A C C C C
S

1 2 3 n
n

0 1 2 –1n n

Replacement cycle

FIGURE 4.5  Purchase price at start of cycle.

22,500 23,701

21,735

19,421 20,790

Economic life

C
(n

)

Years
1 2 3 4 5

FIGURE 4.4  Total discounted cost versus equipment age.
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In the models for capital equipment replacement, no consideration was given to tax 
allowances that may be available. This is an aspect that is rarely mentioned in replace-
ment studies, but which must be included where relevant. One article that extends the 
models discussed here to consider issues of tax is by Christer and Waller (1987).

It may seem unreasonable that we should sum the terms of the geometric progres-
sion to infinity. This, however, does make the calculations a little easier and ensures 
that all replacement cycles are compared over the same period.

Note that rather than use the model in either Equation 4.1 or Equation 4.2, it is 
possible to just calculate the EAC for different replacement cycles, and this will 
result in the same economic life being identified. The model then is

	 Economic life = Min CA C r r Si
i n

n

i

n
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Note 1: Both Equations 4.1 and 4.2 give the same result for the economic life of 
an asset. However, the EAC will be lower if Equation 4.1 is used.

Note 2: It can be argued that an appropriate model to use is one in which the 
acquisition cost, A, is first introduced at the end of the replacement cycle because 
if an asset is required, it must be purchased; the purchase price can then be consid-
ered a “sunk” cost, and the decision to be made is to establish the economic time to 
replace that item with a new one, taking into account the accumulated O&M costs 
and the purchase price of a new asset.

4.2.5 �A pplications

4.2.5.1 � Mobile Equipment: Vehicle Fleet Replacement
The policy in place in a trucking fleet was to replace the vehicles on a 5-year cycle. The 
question was asked: What is the economic life of the vehicles used in a fleet of 17 units?

The data available included a purchase price of $85,000. Trends in O&M costs, 
resale values, and interest rate for discounting are given in Table 4.4.

Figure 4.6 provides the results, from which it is seen that the economic life is 1 
year, with an EAC of approximately $65,000. (Note that the model used to obtain the 
EACs on Table 4.4 was Equation 4.2.)

TABLE 4.4
Vehicle Fleet Data

Age of Vehicle 
(Years)

O&M Cost 
(in Today’s $)

Rate for Cash Flow 
Discounting (%)

Resale 
Value ($)

1 29,352 10 60,000

2 45,246 10 40,000

3 52,626 10 25,000

4 53,324 10 20,000

5 42,363 10 15,000
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That the economic life was identified as 1 year came as quite a surprise to the 
organization. However, when maintenance problems are addressed from a data-
driven solution perspective, surprises do occur. Intuition and common/past practices 
do not always provide good solutions.

Examination of Figure 4.6 raises some interesting questions, such as by increas-
ing the age at which the vehicle is replaced, would the EAC be lower in year 6 or 
year 7? Why is the economic life 1 year? To answer such questions, it is always 
appropriate to “look behind the statistics.” In this case, there were two reasons why 
the economic life was identified as 1 year:

	 1.	The substantial increase in O&M costs in year 2 compared with year 1
	 2.	The high resale value associated with a 1-year-old vehicle

Before proceeding to implement a 1-year cycle, it is necessary to know if there 
are any concerns about these values. Asking “why” a few times usually gets to the 
root of the underlying cause. In this example, the cause of a 1-year answer was due 
to a large number of warranty claims being accepted in year 1. Also, an estimate 
of $60,000 was provided by the vehicle fleet supplier as a trade-in for a 1-year-old 
vehicle, but will this be the case if the fleet operator changes from the current prac-
tice of replacing the vehicles on a 5-year cycle to a 1-year cycle? If this is done, then 
the supplier will be receiving 17 vehicles every year. Once the supplier realizes the 
implication, there may be a reduction in the estimate of the value of a 1-year-old 
vehicle. If this happens, perhaps the economic life will change. Thus, there is good 
reason for the fleet operator to undertake a sensitivity analysis on the effect of a 
decreased resale value on the economic life of the truck.

Figure 4.6 might suggest that a replacement at year 6 would give a cost less than at 
year 5, and perhaps less than that at year 1. Why is the EAC decreasing? Is it because 
of a major maintenance action in year 3, and benefits are being realized in years 
4 and 5? This may be a possible answer. In the study, however, the reason for the 
decreasing EAC is that given the established practice of replacing the vehicles on a 
5-year cycle, any avoidable maintenance cost in year 5 was not incurred. If a decision 
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FIGURE 4.6  Vehicle fleet economic life.
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was made to increase the life past 5 years, additional maintenance costs would be 
incurred in years 4 and 5.

4.2.5.2 � Fixed Equipment: Internal Combustion Engine
The organization in question was planning to purchase four new combustion engines and 
wanted to know what their expected economic life might be. In addition, there was an 
alternative engine that could be purchased, so the question became: What is the best buy?

The data for engine A included a purchase and installation cost of $19 million. O&M 
costs were estimated for the next 15 years by judicious use of the manufacturer’s data 
along with data contained in a database used by the oil and gas industry. Much sensitivity 
checking was undertaken to obtain a robust trend in O&M costs. Similarly, an estimate 
of the trend in resale values was obtained—and for specialized equipment, that resale 
value may be a scrap value or could even be zero, no matter when the asset is replaced. If 
that is the case, then Si = 0 for all replacement ages. The interest rate appropriate for dis-
counting was provided by the company. Calculating the EAC for the 15 years for which 
data were available gave Figure 4.7, from which it is seen that the EAC is still declining, 
and no minimum has been identified. However, we can conclude that we are close to the 
minimum, and at 15 years, the EAC is $5.36 million.

The data for engine B included a purchase and installation cost of $14.5 million. 
Similar to engine A, the O&M cost trend and resale value information was obtained, the 
same interest rate was used, and the resulting EAC trend is provided in Figure 4.8, which 
shows a pattern similar to that for engine A. The EAC at 15 years is $3.17 million.

The conclusion is that—for both engines—their economic life is greater than 
15 years, the limit of available data. However, a major benefit of the economic life 
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FIGURE 4.7  EAC trend for combustion engine A.
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analysis is the identification of the fact that, based on the data used, engine B is a bet-
ter buy because its EAC is $2.19 million lower than engine A. Over a 15-year period, 
the total discounted economic benefit is 15 × 2.19 = $32.85 million. The company’s 
plan was to purchase four new combustion engines, so the economic benefit would 
be substantial. The solution was obtained by using a formal data-driven procedure.

4.3 � OPTIMAL REPLACEMENT INTERVAL FOR CAPITAL 
EQUIPMENT: MAXIMIZATION OF DISCOUNTED BENEFITS

4.3.1 �S tatement of the Problem

This problem is similar to that of Section 4.2 except that (1) the objective is to deter-
mine the replacement interval that maximizes the total discounted net benefits 
derived from operating equipment over a long period, and (2) the trend in costs is 
taken to be continuous, rather than discrete.

4.3.2 �C onstruction of the Model

	 1.	b(t) is the net benefit obtained from the equipment at time t. This will be the 
revenue derived from operating the equipment minus the operating costs, 
which may include maintenance costs, fuel costs, and so on. A possible 
form of b(t) is illustrated in Figure 4.9.

	 2.	c(t) is the net cost of replacing equipment of age t. Replacing the equipment 
includes the purchase price plus installation cost, and may also include a 
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FIGURE 4.8  EAC trend for combustion engine B.
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cost for loss of production due to the time required to replace the equip-
ment. These costs are often partially offset by the salvage value of the used 
equipment, which usually depends on the age of the equipment when it is 
replaced. A possible form of c(t) is illustrated in Figure 4.10.

	 3.	Tr is the time required to replace the equipment.
	 4.	 tr is the age of the equipment when replacement commences.
	 5.	 tr + Tr is the replacement cycle, that is, the time from the end of one replace-

ment action to the end of the next replacement action.
	 6.	B(tr) is the total discounted net benefits derived from operating the equip-

ment for periods of length tr over a long time.
	 7.	The objective is to determine the optimum interval between replacements 

to maximize the total discounted net benefits derived from operating and 
maintaining the equipment over a long period.

b(
t)

t

FIGURE 4.9  Net benefit trend.

c(
t)

t

FIGURE 4.10  Trend in net cost of asset replacement.



146 Maintenance, Replacement, and Reliability

B(tr) is the sum of the discounted net benefits from each replacement cycle over 
a long period. For the purposes of the analysis, the period over which replacements 
will occur will be taken as infinity, although in practice this will not be the case.

4.3.2.1 � First Cycle of Operation
Defining B1(tr + Tr) as the total net benefits derived from replacing the equipment at 
age tr, discounted back to their present-day value at the start of the first cycle, we get 
B1(tr + Tr) = benefits received over the first cycle, that is, in interval (0, tr), discounted 
to their present-day value minus the cost of replacing equipment of age tr discounted 
to its present-day value.

This first cycle of operation is illustrated in Figure 4.11.

	 Discounted benefits over the first cycle = b t( ) eexp[ ]−∫ it t

t

d
r

0 	

where i is the relevant interest rate for discounting (see Appendix 6 for continuous 
discounting).

	 Discounted replacement cost = c(tr)exp[–itr ]
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4.3.2.2 � Second Cycle of Operation
Defining B2(tr + Tr) as the total net benefits derived from replacing the equipment at age 
tr, discounted back to their present-day value at the start of the second cycle, we get

	 B t T b t it t c t it

t

2

0

( ) ( ) exp[ ] ( ) exp[ ]r r r rd
r

+ = − − −∫ .

	

Operating cost increases,
 benefits decrease

Time for
 replacement

0 tr tr + Tr

FIGURE 4.11  Replacement cycle.
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What we now want to do is discount B2(tr + Tr) back to the start of the first cycle, 
and this is

	 B t T i t T2 ( ) exp[ ( )]r r r+ − +r .	

4.3.2.3 � Third Cycle of Operation
Defining B3(tr + Tr) as the total net benefits derived from replacing the equipment at age 
tr, discounted back to give their present-day value at the start of the third cycle, we get

	 B t T b t it t c t it

t

3
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( ) ( ) exp[ ] ( ) exp[ ]r r r rd
r

+ = − − −∫ .

	

Discounting B3(tr + Tr) back to the start of the first replacement cycle, we get

	 B3(tr + Tr)exp[−i2(tr + Tr)].

4.3.2.4 � nth Cycle of Operation
Defining Bn(tr + Tr) similar to the others, we get

	 B t T b t it t c t itn

t

( ) ( ) exp[ ] ( ) exp[ ]r r r rd
r

+ = − − −∫
0

,	

which discounted back to the start of the first cycle gives

	 Bn(tr + Tr)exp[−i(n − 1)(tr + Tr)].

The form that the benefits take over the first few cycles of operation is illustrated 
in Figure 4.12.

Cycle 1 Cycle 2 Cycle 3

Be
ne

fit
s b

(t)

0 tr tr trtr  + Tr tr  + Tr tr  + Tr

0 0 0

FIGURE 4.12  Discounted benefits over time.
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Thus, the total discounted net benefit, over a long period, with replacement at age tr, is
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Because B1(tr + Tr) = B2(tr + Tr) = B3(tr + Tr) = …, we can write

	

B t B t T B t T i t T

B t T

( ) ( ) ( )exp[ ( )]

(

r r r r r r r

r

= + + + − +

+ +

1 1

1 rr r r

r r r r

) exp[ ( )]

( )exp[ ( )(

− + +…

+ + − − +

i t T

B t T i n t T

2

11 ))]+…

	 (4.3)

Equation 4.3 is a geometric progression to infinity, which gives
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This is a model of the replacement problem relating the replacement age tr to the 
total discounted net benefits.

Rather than summing the progression to infinity, we could sum the first n terms, 
which gives (see Appendix 6 for formula)
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which results in the same optimal value of tr as would be obtained from Equation 4.4, 
because the numerator in the inserted fractional expression is a constant (see proof of 
Section 4.3.5), although the benefit B(tr) would be reduced by this factor.

4.3.3 �N umerical Example

The benefits derived from operating equipment are of the form b(t) = $32,000e−0.09t 
per year, where t is in years.

	 Cost of replacement ( ) =c t $ , , .15 000 13 600 0 73− −e tt
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The time required to perform a replacement is 1 month. Determine the optimal 
replacement age of the equipment when i is taken as 10% per annum.

Equation 4.4 becomes
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Evaluating Equation 4.6 for various values of tr gives Table 4.5. From the table, it 
is clear that the benefits are maximized when replacement occurs at the end of the 
fourth year of operation.

4.3.4 �F urther Comments

In the example, the time required to carry out a replacement has been included in the 
analysis. In practice, this time can usually be omitted because it is often small com-
pared with the interval between replacements, and so it does not make any notice-
able difference to the optimal replacement interval, whether it is included or not. 
However, all costs associated with the replacement time should be incorporated as 
part of the total cost of replacement.

It may seem unreasonable that we should sum the terms of the geometric progres-
sion to infinity. This, however, does make the calculations a little easier and gives an 
indication of the sort of interval we would expect to have between replacements. A 

TABLE 4.5
Economic Life: Benefit Maximization

tr (Years) 1 2 3 4 5 6 7 8

B(tr) (thousands of dollars) 210 232 238 239 236 232 229 225
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dynamic programming approach assuming a finite planning horizon (White 1969) 
can be applied equally well to capital replacement problems. The difficulty is to 
decide whether the more sophisticated analysis, which costs more to carry out, is 
likely to give a solution that is a significant improvement over the solution obtained 
by using a simpler model.

In practice, of course, new equipment comes on the market and we do not always 
replace equipment with identical equipment. Thus, as time goes on, we need to repeat 
our calculations using, when appropriate, new cost figures and to check whether it is 
necessary to modify the planned replacement interval. The example in Section 4.5 
gives an indication of how technological improvement can be incorporated into a 
model.

4.3.5 �P roof that Optimization over a Long Period Is Not Equivalent 
to Optimization per Unit Time When Discounting Is Included

When dealing with long-term capital equipment replacement decisions, in which the 
time value of money is taken into account, it is necessary to determine the replace-
ment policy to maximize the performance measure (such as profit, cost, benefit, etc.) 
over a long period, and not to maximize performance per unit time, as is the case 
when dealing with the short-term decisions discussed in Chapter 2.

The basic problem is illustrated in Figure 4.13, where T is the period over which 
we wish to optimize tr, the interval between replacements; p(tr) is the performance 
over one interval, which depends on the interval length tr, assumed identical for each 
period of length tr; P is the total discounted performance over period T, which we 
wish to optimize (we will assume that we wish to maximize P); n is the number of 
replacement intervals in period (0, T); and
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Because (1−e−iT ) is constant,
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, which would be the result if discounting were neglected.

4.4 � OPTIMAL REPLACEMENT INTERVAL FOR CAPITAL 
EQUIPMENT WHOSE PLANNED UTILIZATION PATTERN 
IS VARIABLE: MINIMIZATION OF TOTAL COST

4.4.1 �S tatement of the Problem

Equipment when new is highly utilized, for example in base load operations, but as 
it ages, its utilization decreases, perhaps due to being utilized only when there are 
peaks in demand for service. This class of problem is usually applicable to a fleet of 
equipment, such as a transportation fleet, in which new buses may be highly utilized 
to meet base load demand, whereas older buses are used to meet peak demands, such 
as during the rush hour. In this case, when an item is replaced, the new one does not 
do the same work that the old one did, but is put onto base load operations; the ones 
that were highly utilized are less utilized as new units are put into service.

To establish the economic life of such equipment, it is necessary to examine the 
total cost associated with using the fleet to meet a specified demand. A model will be 
developed to establish the economic life of equipment operated in a varying utiliza-
tion scenario such that the total costs to satisfy the demands of a fleet are minimized.

4.4.2 �C onstruction of the Model

	 1.	A is the acquisition cost of the capital equipment.
	 2.	c(t) is the trend in operation and maintenance costs per unit time of equip-

ment of age t; working age t can be measured in terms of utilization such as, 
in the case of vehicles, cumulative kilometers since new.

	 3.	y(x) is the utilization trend/period of the xth equipment to meet the annual 
demand; equipment is ranked from the newest (the first item) to the oldest 
(the Nth item).

	 4.	Si is the resale value of the equipment at the end of the ith period of opera-
tion, i = 1, 2,…, n.

	 5.	r is the discount factor.
	 6.	n is the age in periods (such as years) of the equipment when replaced.
	 7.	N is the fleet size.
	 8.	C(n) is the total discounted cost of operating, maintaining, and replacing 

the equipment (with identical equipment) over a long period with replace-
ments occurring at intervals of n periods.

	 9.	EAC(n) is the equivalent annual cost associated with replacing the equip-
ment at age n periods.
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	 10.	The objective is to determine the optimal interval between replacements to 
minimize total discounted costs, C(n), or equivalently, EAC(n). Note that 
EAC(n) = C(n) × CRF, and CRF = the interest rate used for discounting 
because C(n) is calculated over an infinite period. However, it will be seen 
that in this case, we simply obtain EAC(n) directly.

4.4.2.1 � Consider a Replacement Cycle of n Years
In the steady state, the number or replacements per year will be N/n. Note that most 
organizations wish to operate in a steady state; for example, if there is a fleet of 1000 
buses and they are replaced on a 10-year cycle, then 1000/10 will be replaced each 
year.

Thus, the work undertaken by the newest N/n equipment will be

	 y x x D

N n

( )

/

d =∫ 1

0 	

and the cost of this will be obtained by considering the average distance (in kilome-
ters) travelled by one bus in its first year:

	 c t t C

D N n

( )

/( / )

d =∫ 1

0

1

.

	

In a similar way, the cost for other equipment in subsequent years can be obtained 
as C2, C3, C4,…, Cn.

The EAC associated with a replacement cycle of n years is then
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The optimal replacement age is the value of n that minimizes the right-hand side 
of Equation 4.7.
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4.4.3 �N umerical Example

	 1.	Let A = $100,000, the price of a new vehicle.
	 2.	Let c(t) = 0.302 + 0.723 (t/106)2, where t is the age of the vehicle in cumula-

tive kilometers since new. This is illustrated in Figure 4.14.
	 3.	Let y(x) = 80,000 – 40x km/year, where x is the rank of the vehicle, and x = 

0 for the newest (most utilized) vehicle. This is illustrated in Figure 4.15.
	 4.	The trend in resale values is provided in Table 4.6. Note that in this example, 

it is assumed there is essentially no resale value because it is specialized 
equipment—the resale values are really scrap values, with a 20-year-old 
asset being worth less than the others.

	 5.	The interest rate for discounting is 6%.
	 6.	The fleet size is 2000.

Using the values provided previously in Equation 4.7 enables Figure 4.16 to be 
obtained, from which it is seen that the economic life of the equipment is 13 years 
with an associated EAC of $28,230.

Sample calculation:

When n = 20 years, the trend in utilization year by year is illustrated in Figure 
4.17, from which the cash flows are obtained as depicted in Figure 4.18.

	 1.	The newest 100 buses will travel 7,800,000 km. Each bus travels 78,000 km.

	 Cost per bus = $23,670/year in the first year	

1.2

1.0

1.1

0.9
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0.7
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0.5

0.4

0.3
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0.0
0 200,000 400,000 600,000 800,000 1,000,000

cum km t

$/
km

 c(
t)

c(t) = 0.302 + 0.723 (t/106)2

FIGURE 4.14  Operation and maintenance cost per kilometer.
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FIGURE 4.15  Equipment utilization trend.

TABLE 4.6
Resale Value Trend

Replacement Age (Years) Resale Value ($)

1 2000

2 2000

3 2000

4 2000

5 2000

6 2000

7 2000

8 2000

9 2000

10 2000

11 2000

12 2000

13 2000

14 2000

15 2000

16 2000

17 2000

18 2000

19 2000

20 1000
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	 2.	Similarly, the next 100 buses each travel an average of 74,000 km/year in 
the second year.

	 Cost per bus = $23,080 in the second year	

	

EAC (20) $[100,000 23,670 23,080 (0.943) 1000= + + − ((0.943) ]
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FIGURE 4.16  EAC trend.
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FIGURE 4.17  Calculating O&M costs per year.
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4.4.4 �F urther Comments

The class of problem discussed in this section is typical of those found in many 
transport operations. Below are some examples:

•	 Mass transit fleets in which new units are put into base load operation with 
older units used for peak morning and evening demands.

•	 Haulage fleets undertaking both long-distance and local deliveries—when 
new vehicles are used on long-haul routes initially, and as they age are 
assigned to local delivery work.

•	 Stores with their own fleets of delivery vehicles, in which there may be 
seasonal peaks in demand. The older vehicles in the fleet are retained to 
meet these predictable demands. Because of this unequal utilization, it is 
necessary to evaluate the economic life of the vehicle by viewing the fleet 
as a whole, rather than focusing on the individual vehicle.

In a machine shop with a group of similar machine tools, when a new machine tool 
is acquired, it may become the busiest, with the others being set aside and the oldest 
ones being disposed of. The same strategy may be applied to electrical generating 
stations. When a new station comes on line, it joins the group on base load opera-
tions, with the other coming into service to meet peak demands, such as morning 
and evening. And at some point, one of the older stations will be decommissioned.

4.4.5 �A n Application: Establishing the Economic Life of a Fleet of Buses

A local transit authority wished to establish the economic life of its fleet of 54 con-
ventional buses. The purchase price of a bus was $450,000; the trend in resale values 
was estimated and the interest rate for discounting was also known. The utilization 
trend is shown in Figure 4.19.

Using Equation 4.7, the economic life was calculated to be 13 years with an EAC 
of approximately $120,000. The practice in place within the transit authority was 
to replace a bus when it reached 18 years old. Changing to a replacement age of 

A = $100,000

$23,670 $23,080 S = $1000

Bus
Age19 204321

FIGURE 4.18  Cash flow when replacement age is 20 years.
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13 years provided a useful economic benefit. It also had the benefit that the transit 
authority was seen as operating a newer fleet of buses than previously, but this intan-
gible benefit is not incorporated in the model used.

A similar study conducted for the fleet of 2000 buses in Montreal, Canada, is 
presented in detail in Appendix A of Campbell et al. (2011).

4.5 � OPTIMAL REPLACEMENT POLICY FOR CAPITAL 
EQUIPMENT TAKING INTO ACCOUNT TECHNOLOGICAL 
IMPROVEMENT: FINITE PLANNING HORIZON

4.5.1 �S tatement of the Problem

When determining a replacement policy, there may be equipment on the market that 
is in some way a technological improvement over the equipment currently being 
used. For example, maintenance and operating costs may be lower, throughput may 
be greater, quality of output may be better, and so on. The problem discussed in this 
section is how to determine when, if at all, to take advantage of the technologically 
superior equipment.

It is assumed that there is a fixed period during which equipment will be required, 
and if replacements are made using new equipment, this equipment will remain in 
use until the end of the fixed period. The objective is to determine when to make the 
replacements, if at all, to minimize the total discounted costs of operation, mainte-
nance, and replacement over the planning horizon.

4.5.2 �C onstruction of the Model

	 1.	n is the number of operating periods during which equipment will be 
required.

	 2.	Cp,i is the operation and maintenance costs of the present equipment in the 
ith period from now, payable at time i, i = 1, 2,…, n.
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FIGURE 4.19  Bus utilization trend.



158 Maintenance, Replacement, and Reliability

	 3.	Sp,i is the resale value of the present equipment at the end of the ith period 
from now, i = 1, 2,…, n.

	 4.	A is the acquisition cost of the technologically superior equipment.
	 5.	Ct, j is the operation and maintenance costs of the technologically superior 

equipment in the jth period after its installation and payable at time j, j = 1, 
2,…, n.

	 6.	St, j is the resale value of the technologically superior equipment at the end 
of its jth period of operation, j = 0, 1, 2,…, n. [ j = 0 is included so that we 
can then define St,0 = A. This then enables Ar 0 in the model (see Equation 
4.8) to be cancelled if no change is made.]

		  Note that it is assumed that if a replacement is to be made at all, then it is 
with the technologically superior equipment. This is not unreasonable because 
it may be that the equipment currently in use is no longer on the market.

	 7.	r is the discount factor.
	 8.	The objective is to determine that value of T at which replacement should 

take place with the new equipment, T = 0, 1, 2,…, n. The policy is illustrated 
in Figure 4.20.

The total discounted cost over n periods, with replacement occurring at the end 
of the Tth period, is

C(T ) = discounted maintenance costs for present equipment over period (0, T)
+ discounted maintenance costs for technologically superior equipment over 

period (T, n)
+ discounted acquisition cost of new equipment
− discounted resale value of present equipment at the end of the Tth period
− discounted resale value of technologically superior equipment at the end of 

the nth period = + + + +( )
+ ++
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FIGURE 4.20  Technological improvement: finite planning horizon.
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Therefore,
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This is a model of the problem relating replacement time T to the total discounted 
costs C(T).

4.5.3 �N umerical Example

	 1.	The number of operating periods remaining, n = 6.
	 2.	The estimated operation and maintenance costs Cp,i over the next six peri-

ods for the present equipment are shown in Table 4.7.
	 3.	The estimated trend in resale values of the present equipment payable at the 

end of the period is shown in Table 4.8.
	 4.	The acquisition cost of the technologically superior equipment is A = 

$10,000.
	 5.	The estimated O&M costs Ct, j over the next six periods of the technologi-

cally superior equipment are shown in Table 4.9.
	 6.	The estimated trend in resale value of the technologically improved equip-

ment, payable at the end of its jth period, of operation St,j is shown in 
Table 4.10.

	 7.	The discount factor r = 0.9.

TABLE 4.7
Trend in O&M Costs: Present Equipment

Period (i ) 1 2 3 4 5 6

O&M costs, Cp,i ($) 5000 6000 7000 7500 8000 8500

TABLE 4.8
Trend in Resale Values: Present Equipment

Period (i ) 0 (i.e., now) 1 2 3 4 5 6

Resale value, Sp,i ($) 3000 2000 1000 500 500 500 500

TABLE 4.9
Trend in O&M Costs: Technologically Improved Equipment

Period ( j ) 1 2 3 4 5 6

O&M cost, Ct, j ($) 100 200 500 750 1000 1200
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Evaluation of Equation 4.8 for different values of T gives Table 4.11, from which 
it is seen that the total costs are minimized when T = 0; that is, the technologically 
improved equipment should be installed now and used over the next six periods of 
operation.

Note that if the minimum total cost occurs at T = n (6 in this example), this would 
mean that no replacement would take place and the present equipment would be used 
for the remaining n periods of operation. If the minimum value of C(T) occurs for a 
value of T between 0 and n, then the replacement should occur using the technologi-
cally improved equipment at the end of the Tth period.

Sample calculation (Figure 4.21):

When T = 3,
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TABLE 4.10
Trend in Resale Values: Technologically Improved Equipment

Period (j) 0 1 2 3 4 5 6

Resale value, St,j ($) 10,000 8000 7000 6000 5000 4500 4000

TABLE 4.11
Total Discounted Cost over the Planning Horizon

Replacement Time, T 0 1 2 3 4 5 6

Total discounted costs, C(T) 7211 10,836 14,891 18,649 22,062 25,519 28,359

Replace

0 1 2 T = 3 4 5 6

FIGURE 4.21  Sample calculation.
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4.5.4 �F urther Comments

The example in this section assumes that once the decision was taken to replace 
the old equipment with the technologically improved equipment, no further replace-
ments were made. In some situations, the time during which equipment is required is 
sufficiently long to warrant further replacements. Assuming that we continue to use 
the technologically superior equipment, it is not difficult to determine its economic 
life. Such a problem is covered in Section 4.6.

In addition, when dealing with technologically superior equipment, consideration 
may need to be given to capacity improvement and the effect it may have on the 
planning horizon.

4.5.5 �A n Application: Replacing Current Mining Equipment 
with a Technologically Improved Version

In a mining company, there was an expected future mine life of 8 years, that is, a fixed 
planning horizon. A fleet of current, highly expensive equipment called shovels was in 
use, and under normal circumstances, they would be used throughout the life of the 
mine. However, a new technologically improved shovel came on the market and the deci-
sion had to be made: Should the current equipment be used for the remaining 8 years, or 
should there be a changeover to the technologically superior equipment?

The model described by Equation 4.8 was modified to fit the mining company’s 
goal of optimizing the changeover decision such that profit over the remaining mine 
life was maximized. In addition, the following features were included in the model: 
expected rate of return, depreciation rate, investment tax credit, capital cost allow-
ance, depreciation type, federal, provincial, and mining tax rates, inflation rates, unit 
purchase year and price, unit yearly total O&M costs, unit yearly total production, 
unit yearly salvage values, and proposed replacement unit data. Thus, the model of 
Equation 4.8 was extensively modified, and this will often occur with models pre-
sented in this book. They can be the foundation on which to build a more realistic 
model for the problem under study.

Upon the conclusion of the study, the following comments were made: “The 
equipment replacement system can be used to do the following analyses: compare 
the productivity of individual units with a fleet, find the ‘lemon’ in a fleet of equip-
ment (that is, the poorest-performing asset), calculate the optimum year to replace 
a unit, and, very importantly, use sensitivity testing to see what effect the rate of 
return, taxes, production, and other factors have on replacement timing.” Details of 
the study are provided in Buttimore and Lim (1981).

4.6 � OPTIMAL REPLACEMENT POLICY FOR CAPITAL 
EQUIPMENT TAKING INTO ACCOUNT TECHNOLOGICAL 
IMPROVEMENT: INFINITE PLANNING HORIZON

4.6.1 �S tatement of the Problem

The statement of this replacement problem is virtually identical to that of Section 4.5.1, 
except that once the decision has been taken to replace with the technologically improved 
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equipment, this equipment will continue to be used and a replacement policy (periodic) 
will be required for it. It will be assumed that replacement will continue to be made with 
the technologically improved equipment. Again, we wish to determine the policy that 
minimizes total discounted costs of operation, maintenance, and replacement.

4.6.2 �C onstruction of the Model

	 1.	Cp,i, Sp,i, A, Ct,j, St,j, and r are as defined in Section 4.5.2.
	 2.	The replacement policy is illustrated in Figure 4.22.

The total discounted cost over a long period, with replacement of the present 
equipment at the end of T periods of operation, followed by replacement of the tech-
nologically improved equipment at intervals of length n, is

C(T, n) = costs over interval (0, T) + future costs
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Future costs, discounted to time T, can be obtained by the method described in 
Section 4.2.2 (Equation 4.1), in which the economic life of equipment is calculated. 
We replace Ci with Ct, j and use j as the counter for the summation to obtain
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Therefore, C(n) discounted to time zero is C(n)r T and
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Total discounted costs C(T, n)

Replacements with technologically
improved with technology

0 1 2 T T– ––1 1 1 1 12 2n n n n

nC C C C C C C C Cp, 1 t, 1 t, 2 t, n t, 1 t, 2 t,p, Tp, 2

FIGURE 4.22  Technological improvement: infinite planning horizon.
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This is a model of the problem relating changeover time to technologically 
improved equipment, T, and economic life of new equipment, n, to total discounted 
costs C(T, n).

4.6.3 �N umerical Example

Using the data of the example of Section 4.5.3, we can determine the economic life 
of the technologically improved equipment and the value of C(n) in Equation 4.9. 
The data of Section 4.5.3 give Table 4.12, from which it is seen that the economic life 
is 6 years and the corresponding value of C(n) is $11,792.

Insertion of C(6) = $11,792 and A = $10,000 into Equation 4.10 gives
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	 (4.11)

Given the information in Tables 4.13 and 4.14 for the operation and maintenance 
costs and resale prices for the present equipment, Table 4.15 can be obtained by 
evaluating values of T = 0, 1, 2, and 3 in Equation 4.11. Thus, it is seen that the 
present equipment should be used for one more year and then replaced with the 

TABLE 4.12
Economic Life of Technologically Improved Equipment

Replacement Interval, n 1 2 3 4 5 6

Total discounted cost, C(n) 18,900 14,116 13,035 12,763 12,080 11,792

TABLE 4.13
O&M Cost of Present Equipment

Period, i 1 2 3

O&M cost, Cp,i ($) 1500 3000 4000

TABLE 4.14
Resale Values of Present Equipment

Period, i 0 (i.e., now) 1 2 3

Resale value, Sp,i ($) 2750 2500 1500 1000
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technologically improved equipment, which should itself then be replaced at inter-
vals of 6 years.

Sample calculation:

When n = 3, then Equation 4.9 becomes
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When T = 2, then Equation 4.11 becomes

	 C(2,6) = 1500(0.9) + 3000(0.9)2 − 1500(0.9)2 + 21,792(0.9)2 = $20,217.	

4.6.4 �F urther Comments

Of course, technological improvement is occurring continuously, and perhaps we 
should cater to this in any model used for capital replacement. The real problem 
here is not the construction of the model, but estimating the trends resulting from 
technological improvement, and this can be critical when establishing the economic 
time to replace an asset. On the assumption of exponential trends in benefits, opera-
tion, and replacement costs, Bellman and Dreyfus (1962) constructed a dynamic 
programming model that can be used to cater to technological improvement. They 
then extended the model to include the possibility of replacing old equipment with 
secondhand rather than new equipment.

4.6.5 �A n Application: Repair versus Replace of a Front-End Loader

The model presented in Equation 4.10 can be used to examine the decision to repair (or 
rebuild) and compare this to the decision to completely replace an asset with a new one.

The decision problem is as follows: Should we repair (or rebuild) the asset today 
and then keep it to time T? Or is it cheaper in the long run to replace today, thus mak-
ing the best value for T zero? Which alternative provides the minimum total cost? It 
is assumed in this case that if the equipment is repaired/rebuilt today, it can only be 
rebuilt once—there can be no further life extensions—and then it has to be replaced 
with new equipment. The cash flows associated with the alternative decisions are 
depicted in Figure 4.23.

TABLE 4.15
Optimal Replacement Time

Replacement Time, T 0 (i.e., Now) 1 2 3

Total discounted cost, C(T,5) 19,042 18,713 20,217 21,853
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The estimated cost for rebuilding the equipment was $390,000, and the cost of 
acquiring new equipment, including the costs associated with bringing it into ser-
vice, was $1.1 million. The company made a commitment that if the equipment was 
rebuilt, it would only remain in service for 3 more years, and then a new asset would 
be purchased.

The estimated operation and maintenance costs for the present asset for the next 
3 years, along with the expected trend in resale values, against a new one costing $1.1 
million, are given in Table 4.16. Note that the resale value today is $300,000, but at 
the end of 1 year it was $400,000. The reason for this increased value is that at the 
end of the next year of operation, a rebuild would have taken place, costing $390,000.

In addition to knowing the purchase price of new equipment, estimates were also 
obtained for the ongoing operation and maintenance costs of a new asset, as well as 
estimated resale values. Using Equation 4.1, it was concluded that the economic life 
of the new equipment was 11 years. The EAC was also obtained.

Using Equation 4.10, the results shown in Table 4.17 were obtained, from which it 
can be seen that the smallest EAC is at T = 3 years. However, it is also clear that there 

Today
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FIGURE 4.23  The repair versus replace decision.

TABLE 4.16
Cost Data for Present Equipment
Cp,1 = $138,592 Sp,0 = $300,000

Cp,2 = $238,033 Sp,1 = $400,000

Cp,3 = $282,033 Sp,2 = $350,000

Sp,3 = $325,000

TABLE 4.17
Optimal Repair versus Replace Decision

Changeover Time to New Loader, T

T = 0 T = 1 T = 2 T = 3

Overall EAC ($) 449,074 456,744 444,334 435,237
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is very little difference in the EAC associated with replacing now (T = 0) and that 
associated with rebuilding and replacing in 3 years. This is a classic case in which 
management would undoubtedly draw on additional insights before making a final 
repair/rebuild or replace decision. At the commencement of the study, there were two 
distinct camps: those who believed the most economic decision was to rebuild the 
asset and those who were convinced that the best decision was to replace the asset 
immediately. Once the data were analyzed, it was clear that there really was no real 
economic difference between the two alternatives.

A further comment: in Section 2.2.2, a general rule was presented whereby the 
optimal replacement time is when the current rate of operating cost is equal to the 
average total cost per unit time. A similar rule can be made for the repair/rebuild 
versus replace decision; that is, replace if the EAC for the next period is greater than 
the current EAC. In the engineering economic literature (see, for example, Park et 
al. 2000), this is often termed the challenger problem because the new equipment is 
offering a challenge to the old equipment that is presently in use in that it is demand-
ing to be used and asking for the old asset to be discarded. This rule requires that 
the trend in equipment O&M costs is monotonically nondecreasing; thus, there can 
be no decrease in next year’s O&M costs compared with the current costs. In asset 
management, major maintenance actions are often taken in a year, knowing that 
there will be lower costs in subsequent years. If this is possible, care must be taken 
before applying this rule.

4.7 � SOFTWARE FOR ECONOMIC LIFE OPTIMIZATION

4.7.1 �I ntroduction

Rather than solve the mathematical models for capital equipment from first principles, 
software packages that have the models programmed in provide a very easy way to solve 
the models. Two such packages are PERDEC and AGE/CON (www.banak-inc.com). In 
this section, use will be made of the educational versions of these two packages, which 
can be downloaded free from http://www.crcpress.com/product/isbn/9781466554856.

PERDEC (an acronym for Plant and Equipment Replacement Decisions) is geared 
for use by the fixed plant community; AGE/CON (based on the French term L’Age 
Économique) is designed for use by the fleet community.

Both use the same mathematical models because there is no difference math-
ematically as to whether one is establishing the economic life of a piece of fixed 
equipment (such as a machine) or a piece of mobile equipment (such as a vehicle). 
However, there are slight differences in vocabulary. For example, if PERDEC is 
used, in the opening screen where O&M costs are entered, the column is headed 
“machine(s).” If AGE/CON is used, in the opening screen where O&M costs are 
entered, the column is headed “vehicle(s).”

If PERDEC is used, when “Parameters” are selected and then “Constant annual 
utilization” is selected, the analysis will be described as dealing with “utilization 
of the machine.” If AGE/CON is used, when “Parameters” are selected and then 
“Constant annual utilization” is selected, the analysis will be described as dealing 
with “utilization of the vehicle.”



167Capital Equipment Replacement Decisions

Similar differences can be spotted elsewhere in the software. Fixed equipment 
people do not like to see their equipment called a vehicle, and fleet people do not like 
to have their vehicles called machines.

4.7.2 �U sing PERDEC and AGE/CON

We will use the data provided in Section 4.2.5, namely, the purchase price of $85,000. 
The trend in O&M costs, resale values, and interest rate for discounting are given in 
Table 4.4.

Entering these values into AGE/CON, we get the screen dump of Table 4.18, from 
which it is seen that the economic life is 1 year with an associated EAC of $65,787. 
(The interest rate of 10% is entered after the parameter button is hit, and so is hidden 
in the screen dump.) The EAC graph is provided in Figure 4.24, showing very clearly 
that the economic life is 1 year.

4.7.3 �F urther Comments

This section has dipped very briefly into software packages that can be used to 
optimize replacement of capital equipment. Other packages are available, including 
a life cycle cost worksheet from www.Barringer1.com. One of the major benefits 

TABLE 4.18
Data Entry and AGE/CON Solution
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of using a software package is the ease with which sensitivity analyses can be 
undertaken.

PROBLEMS

The following problems are to be solved using the mathematical models:

	 1.	A new machine tool costs $5000. Its associated trends in operating costs and 
resale value are given in Table 4.19. Determine the optimal replacement inter-
val to minimize total cost per year (assume no interest rate is applicable).

	 2.	Assuming that the interest rate for discounting purposes is i = 8%, com-
pounded annually, determine the optimal replacement age for the machine 
tool data of Problem 1.
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FIGURE 4.24  EAC versus replacement age from AGE/CON.

TABLE 4.19
Trend in Machine Tool Costs

Year Operating Costs ($) Resale Value ($)

1 2500 3000

2 2750 1800

3 3025 1080

4 3330 650

5 3660 400

6 4025 400

7 4425 400

8 4850 400
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	 3.	Parks and recreation equipment used by Moose, Inc., cost $17,000. Its 
trends in operating cost and resale value are given in Table 4.20.

		  Construct a mathematical model that can be used to determine the eco-
nomic replacement age of the equipment.

		  Given that the cost of capital is 10% per annum, what is the economic 
life? Show your calculations.

	 4.	The operating costs of a numerically controlled machine tool seem to be 
becoming excessive, and it has been decided to analyze some data to deter-
mine the economic life of the tool. Given the data of Table 4.21, what is the 
economic life of the machine?

		  State clearly the economic life model used and the method of solution.
	 5.	The acquisition cost of a bus is $100,000. The trend in operating costs can 

be given by the equation

	 $/km = 0.5 + 5 × 10–6 d

	 where d is the number of kilometers traveled from new.
		  A bus travels an average of 80,000 km per year, and it does not depend 

on the bus’s age. The trend in resale value for a bus in its first 5 years of life 
is given in Table 4.22.

TABLE 4.20
Trend in Land Cruiser Costs

Year Operating Costs ($) Resale Value ($)

1 1000 3000

2 1500 1000

3 2500 0

4 2500 0

5 5000 0

6 10,000 0

7 15,000 0

TABLE 4.21
Numerically Controlled  Machine Cost Data
Acquisition cost of a new machine tool $77,000

Operating cost of tool in its first year of life $25,000

Operating cost of tool in its second year of life $35,000

Operating cost of tool in its third year of life $50,000

Operating cost of tool in its fourth year of life $65,000

Scrap value of tool $3000

Interest rate for discounting purposes = 15%
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	 a.	 Making appropriate assumptions, construct a model that could be used 
to determine the economic life of a bus.

	 b.	 Using the model constructed in (a), along with previous data, and taking 
i to be 10% per annum, what is the economic life of a bus?

The following are to be solved using the educational versions of the AGE/CON 
or PERDEC software:

	 6.	Canmade Ltd. wants to determine the optimal replacement age for its tur-
ret side-loaders to minimize total discounted costs. Historical data analysis 
has produced the information (all costs in present-day dollars) contained in 
Table 4.23.

		  The cost of a new turret side-loader is $150,000, and the interest rate for 
discounting purposes is 12% per annum.

		  Find the optimal replacement age for the side-loaders.
	 7.	An automobile rental company has kept records on a particular type of 

vehicle. Historical data are therefore available for 12 of these automobiles, 
which came into service on the same date 4 years ago. The O&M costs are 
provided in Table 4.24.

		  The purchase price today for a new automobile is $32,000, and current 
trade-in values of this type of vehicle are given in Table 4.25.

		  Assume that the interest rate for discounting purposes is 16% per annum and 
that the average inflation rate during the last 4 years has been 9% per annum.

		  Find the optimal replacement age for these automobiles.

TABLE 4.22
Bus Resale Values

Year Resale Value ($)

1 75,000

2 60,000

3 30,000

4 10,000

5 5000

TABLE 4.23
Side-Loader Cost Data

Year
Average Operating and 

Maintenance Cost ($/Year)
Resale Value at 
End of Year ($)

1 16,000 100,000

2 28,000 60,000

3 46,000 50,000

4 70,000 20,000
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	 8.	A new dump truck costs $45,000, and its associated trends in operating cost 
and resale value are given in Table 4.26.

		  Find the optimal replacement age for a dump truck (assume no interest 
rate is applicable).

	 9.	Assuming that the interest rate for discounting purposes is i = 10%, com-
pounded annually, determine the optimal replacement age for the dump 
truck data in question 8.

	 10.	Repeat question 9, this time basing the economic life on after-tax dollars. 
Assume that capital cost allowance is equivalent to 30% and that corpora-
tion tax rate is 50%.

	 11.	A big sports club has its own fleet of eight minibuses. The club has kept 
records for these eight buses, which all came into service on the same date 
4 years ago. The O&M costs are given in Table 4.27.

		  The purchase price today for a new minibus is $70,000, and the current 
trade-in values for this kind of minibus are given in Table 4.28.

		  Due to a general decline in the sports club economy, traveling activi-
ties have become less popular in the last 4 years. As a result, the average 

TABLE 4.24
Rental Automobile O&M Data

Average O&M Costs ($)

4 years ago (first year of vehicle life) 1800

3 years ago (second year of vehicle life) 3400

2 years ago (third year of vehicle life) 6800

Last year (fourth year of vehicle life) 13,700

TABLE 4.25
Rental Automobile Resale Values
1-year-old vehicle $19,000

2-year-old vehicle $12,000

3-year-old vehicle $8000

4-year-old vehicle $4500

TABLE 4.26
Dump Truck Costs

Year Operating Costs ($) Resale Value ($)

1 6000 28,000

2 10,000 18,000

3 15,000 10,000

4 22,000 5000
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utilization of the minibuses has not been constant but is as depicted in Table 
4.29.

		  Assume that the interest rate for discounting purposes is 12% per annum 
and that the average inflation in the last 4 years has been 7% per annum.

		  Assume a future average annual utilization of 10,000 km and find the 
optimal replacement age for these minibuses and the associated EAC. 
Check the effect on the economic life and the associated EAC value of 
these minibuses if they are used for an average of only 8000 km/year.

	 12.	Mosal Ltd. wants to find the optimal replacement age for its forklift trucks. 
Historical data collected over the last 4 years have produced the informa-
tion in Table 4.30 (assume the whole fleet of forklift trucks was new 4 years 
ago).

		  The current trade-in values for the forklift trucks are given in Table 4.31.
		  The price of the new forklift truck is $51,000, and the interest rate for 

discounting purposes is 14% per annum.
		  Find the optimal replacement age and the associated EAC for the forklift 

trucks.

TABLE 4.27
Minibus O&M Costs

Average O&M Costs ($)

4 years ago (first year of bus life) 10,000

3 years ago (second year of bus life) 13,500

2 years ago (third year of bus life) 17,000

Last year (fourth year of bus life) 20,500

TABLE 4.28
Minibus Trade-in Values
1-year-old bus $43,000

2-year-old bus $29,000

3-year-old bus $20,000

4-year-old bus $14,000

TABLE 4.29
Minibus Utilization Pattern

Year Utilization (km)

4 years ago 15,000

3 years ago 13,000

2 years ago 10,000

Last year 7000
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	 13.	Repeat question 12, this time assuming that no resale values are applicable, 
but only a scrap value of $8500.

	 14.	An airline operator has its own fleet of 30 airline baggage-handling trucks. 
The operator has kept good records for the last 4 years, so the data in Table 
4.32 are available.

		  The purchase price today for a new truck is $38,000. The current trade-
in values for a truck are given in Table 4.33.

TABLE 4.30
Forklift Truck Data

Year O&M Inflation (%) Average O&M Cost ($)

4 years ago 6 5100

3 years ago 7 10,300

2 years ago 8 17,100

Last year 7 29,000

TABLE 4.31
Forklift Truck Trade-in Values
1-year-old truck $34,000

2-year-old truck $24,000

3-year-old truck $17,000

4-year-old truck $11,000

TABLE 4.32
Baggage-Handling Truck Data

Year Average O&M Costs ($) Average Utilization of Trucks (km/Year)

4 years ago 6200 4000

3 years ago 7700 8000

2 years ago 13,700 7000

Last year 22,400 7500

TABLE 4.33
Baggage-Handling Truck Trade-in Values
1-year-old truck $25,000

2-year-old truck $17,000

3-year-old truck $10,000

4-year-old truck $4500
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		  Assume that the interest rate for discounting purposes is 14% per annum 
and that the average inflation rate during the last 4 years has been 8% per 
annum.

		  The airline operator is expecting a future average annual utilization of 
7000 km/year for its trucks.

		  Find the optimal replacement age for these trucks.
		  Check the result on the answer when the trend line for the O&M cost is 

changed (i.e., the degree of the fitted polynomial is changed).
	 15.	A company keeps a fleet of eight delivery vehicles to carry its products to 

its customers. The company runs a policy of utilizing its newest vehicles 
during normal demand periods, and using the older ones to meet peak 
demands.

		  Suppose the whole fleet travels 100,000 km/year, and such usage is dis-
tributed among the eight vehicles as shown in Table 4.34.

		  This trend line can be described by the general equation

	 Y = a + bX

	 where Y is the distance traveled (in kilometers) per year and X is the vehicle 
number—vehicle 1 is the most utilized and vehicle 8 is the least utilized.

		  Using the actual figures given previously, it can be shown (using a simple 
software package or simply by plotting the data) that the equation in our 
case would read

	 Y = 26,152 – 3034X

		  A plot of these figures is given in Figure 4.25.

TABLE 4.34
Vehicle Annual Utilization (km/Year)
Vehicle 1 goes 23,300

Vehicle 2 goes 19,234

Vehicle 3 goes 15,876

Vehicle 4 goes 15,134

Vehicle 5 goes 12,689

Vehicle 6 goes 8756

Vehicle 7 goes 3422

Vehicle 8 goes 1589
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		  Now we must figure out the trend for O&M costs.
		  For vehicle 1 (our newest vehicle and the one we utilize the most), the 

following information is available:

Distance traveled last year 23,300 km

O&M costs last year $3150

Cumulative distance on the odometer to the midpoint of last year 32,000 km

		  Thus, the O&M cost per km is $0.14 for vehicle 1. Then, we do the same 
for all eight vehicles. Vehicle 8 (the oldest vehicle and the one we utilize the 
least) may look like this:

Distance traveled last year (already given) 1589

O&M costs last year $765

Cumulative distance on the odometer to the midpoint of last year 120,000 km

		  Thus, the O&M cost per km is $0.48 for vehicle 8.
		  It will be necessary to fit a trend line through these points. It will look 

something like Figure 4.26.
		  Each vehicle has a “dot”—vehicles 1 and 8 are identified on the graph in 

the figure. The straight line is the trend line we have fitted to the dots.
		  The equation we get this time is

	 Z = 0.0164 + 0.00000394T
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FIGURE 4.25  Annual utilization trend.
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	 where Z is the amount of money (in dollars) per kilometer and T is cumula-
tive distance (in kilometers) traveled.

		  The two trend lines obtained are both used as input to AGE/CON.
		  Note that in both cases, we found that a straight (linear) relationship 

existed for Y(X) and Z(T) so that the fitted lines read Y = a + bX and Z = c + 
dT. Often, a polynomial equation will give a better fit to a particular set of 
data. These polynomial equations can be generated by using a software 
package.

		  To continue with our problem, we need some more information: assume 
that a new delivery vehicle costs $40,000. The resale values for this particu-
lar type of vehicle are given in Table 4.35. The interest rate for discounting 
purposes is 13% per annum. Find the optimal replacement age for a deliv-
ery vehicle.

30 60 90 120
Cumulative km (T)–in thousands

Vehicle 1

Vehicle 8
$/

km
 (Z

)

FIGURE 4.26  Trend in O&M costs.

TABLE 4.35
Delivery Vehicle Trade-in Values
1-year-old vehicle $28,000

2-year-old vehicle $20,000

3-year-old vehicle $13,000

4-year-old vehicle $6000
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	 16.	AMERTRUCK keeps good records, and it knows the quarterly costs asso-
ciated with maintaining its vehicles since they entered the fleet. It has 
a fleet of 11 heavily utilized 96,000-kg. tractors, each doing approximately 
32,000 km/quarter.

		  Historical O&M costs have all been inflated to today’s dollars. The aver-
age trend in maintenance costs per quarter and estimated trade-in values 
are given in Table 4.36.

		  The purchase price of a new tractor is $70,000.
		  Find the optimal replacement age for the tractor using interest rates of 

both 16% and 19% per annum (see hint).
		  Hint: Because we are working in quarters, we must convert the annual 

interest rate to an equivalent quarterly rate. This is not done by simply 
dividing the annual interest rate by four, but as follows: if the annual rate is 
16%, then (1 + i)4 = 1.16, where i = interest rate/quarter that is equivalent to 
16% per annum. Therefore, i = 0.0378, or 3.78%.

		  Similarly, when the annual interest rate is 19%, the equivalent quarterly 
rate is determined to be 4.44% per quarter.
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TABLE 4.36
AMERTRUCK Maintenance Costs

Vehicle Age (Quarter) Maintenance Costs per Quarter ($) Trade-in Value ($)

1 1435 57,500

2 2334 40,000

3 3974 30,000

4 6176 19,000
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5 Maintenance Resource 
Requirements

There is one and only one social responsibility of business—to use its resources 
and engage in activities designed to increase its profits so long as it stays within 
the rules of the game.

—Milton Friedman

5.1 � INTRODUCTION

The goal of this chapter is to present models and tools that can be used to determine 
optimal resource requirements to optimize physical asset management resource 
decisions. In the context of the framework of the decision areas addressed in this 
book, we are addressing column 4 of the framework, as highlighted in Figure 5.1.

The two interrelated problem areas (concerning what type of maintenance orga-
nization should be created) that will be considered in this chapter are:

	 1.	Determination of what facilities there should be (e.g., staffing and equip-
ment) within an organization

	 2.	Determination of how these facilities should be used, taking into account 
the possible use of subcontractors (i.e., outside resources)

5.1.1 �F acilities for Maintenance within an Organization

Within an organization, there are generally some maintenance facilities available, 
such as workshops, stores, and tradespeople. In addition, there is usually some form 
of arrangement between the organization and the contractors who are capable of 
performing some or all of the maintenance work required by the organization.

The problem is to determine the best composition of facilities for maintenance. 
An increase in the range of maintenance equipment, such as lathes, increases the 
capital tied up in plants and buildings and requires an increase in staffing. Increases 
in the in-plant facilities, however, will reduce the need to use outside resources such 
as general engineering contractors. In this case, a balance is required between the 
costs associated with using in-plant facilities and the costs of using outside resources. 
A difficult costing problem arises because the cost charged by the outside resource 
has to be considered as well as the cost associated with loss of control of the mainte-
nance work by management. Also, by using outside resources, there is the possibility 
of greater downtime for production equipment, and so a cost must be associated with 
this downtime.
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Also within this area, there is the problem of determining the size of the mainte-
nance crew. The major conflicts arising here are that:

	 1.	As crew size increases, so does its cost
	 2.	As crew size increases, the time that machines are idle, waiting for a mem-

ber of the maintenance crew, decreases
	 3.	Downtime may be reduced because larger crews can be used to repair equipment

5.1.2 � The Combined Use of the Facilities within an 
Organization and Outside Resources

Maintenance work can be performed by either company personnel or contractors, on 
the company’s premises or at the contractors’ premises. Just which of these alterna-
tives are invoked at any particular time will depend on:

	 1.	The nature of the maintenance work required
	 2.	The maintenance facilities available within the company
	 3.	The workload of these facilities
	 4.	The costs associated with the various alternatives

It should be noted that these alternatives are not mutually exclusive because main-
tenance work (e.g., the repair of a piece of equipment or a complete production line) 
can be done by cooperation between the company’s facilities and outside resources.

Database (CMM/EAM/ERP System)
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Component 
Replacement

Inspection 
Procedures

Capital Equipment 
Replacement

Resource 
Requirements

1. Economic life
a) Constant annual 

utilization
b) Varying annual 

utilization
c) Technological 

improvement
2. Repair vs replace
3. Software: PERDEC      

and AGE/CON

1. Workshop machines/ 
crew sizes

2. Right sizing 
equipment
a) Own equipment
b) Contracting out 

peaks in demand
3. Lease/buy
4. Software: workshop 

simulator and crew 
size optimizer

1. Best preventive 
replacement time
a) Deterministic 

performance 
deterioration

b) Replace only on 
failure

c) Constant interval
d) Age-based

2. Spare parts 
provisioning

3. Repairable systems
4. Glasser’s graphs
5. Software: SMS and 

OREST

1. Inspection frequency 
for a system
a) Profit 

maximization
b) Availability 

maximization
2. A, B, C, D class 

inspection intervals
3. FFIs for protective 

devices
4. Condition-based 

maintenance 
5. Blended health 

monitoring and age 
replacement

6. Software: EXAKT

Stochastic processes
(for CBM optimization)

Probability and statistics 
(Weibull analysis

including software 
WeibullSoft)

Time value of money 
(Discounted cash flow)

Queuing theory 
simulation

FIGURE 5.1  Resource requirements.
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5.2 � QUEUING THEORY PRELIMINARIES

If there are not sufficient resources available within an organization for undertaking 
the required maintenance workload, this will be very visible—such as a queue of 
jobs to process (there will be a large backlog) and operations being quite unhappy 
with the service provided by maintenance. There is a branch of mathematics known 
as queuing theory (or waiting-line theory), which deals with problems of congestion, 
in which “customers” arrive at a service facility, perhaps wait in a queue, are served 
by “servers,” and then leave the service facility. These customers may be machines 
requiring repair and waiting for a maintenance crew, or jobs waiting to be processed 
on a workshop machine. Thus, queuing theory is very valuable when tackling prob-
lems in which there is a bottleneck (queue) in a system and we are exploring the 
potential benefit of adding more resources to deliver an improved service.

The problem of Section 5.3 uses results obtained from the mathematical theory 
of queues (or waiting-line theory), so we will first give a brief introduction to the 
relevant aspects of this theory.

For a given service facility (e.g., workshop size, maintenance crew size), what 
is the average time that a job has to wait in a queue?

For a given service facility, what is the average number of jobs in the system 
at any one time?

For a given service facility and given pattern of workload, what is the average 
idle time of the facility?

For a given service facility, what is the probability of a waiting time greater than t?
For a given service facility, what is the probability of one of the servers in the 

facility being idle?

Once this information is obtained, it may be possible to identify the optimal size 
of the service facility to minimize the total cost and downtime incurred due to jobs 
waiting in a queue for service. These basic conflicts are illustrated in Figure 5.2.
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FIGURE 5.2  Optimizing the service facility size.
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5.2.1 � Queuing Systems

Figures 5.3 and 5.4 depict the usual queuing systems we deal with. Figure 5.3 is the 
situation in which there is a single-server facility (i.e., single channel) and only one 
customer can be served at any time. All incoming jobs join a queue, unless the service 
facility is idle, and eventually depart from the system. Figure 5.4 is a multi-channel 
system in which customers join a queue and then go from the queue to the first 
service facility that becomes vacant.

Before analysis of a queuing system can be undertaken, the following information 
must be obtained:

	 1.	The arrival pattern of customers. In this chapter, the arrival pattern will 
be assumed to be random; the interval between the arrivals of jobs at the 
service facility will be negative exponentially distributed. Thus, we are 
dealing with a Poisson process in which the number of arrivals in a speci-
fied period is distributed according to the Poisson distribution. See Section 
A1.3.2 of Appendix 1.

	 2.	The service pattern of the facility. In this chapter, the service distribution is 
assumed to be a negative exponential; the time taken to repair a job in the 
service facility is negative exponentially distributed.

	 3.	The priority rules. In this chapter, the priority rule is that customers are 
served (or begin to receive service) in the order of their arrival.

In practice, the assumptions made in 1 to 3 are often acceptable, although other 
patterns of arrival or service, or priority rule, may be appropriate. When this is the 
case, the general results of queuing theory used in this chapter may not be appli-
cable, and the reader will have to seek guidance in some of the standard references 

Arrivals
Service facility

Departures

FIGURE 5.3  Single-channel queuing system.

Arrivals

Service facility

Departures

FIGURE 5.4  Multichannel queuing system.
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to queuing theory, such as Gross et al. (2010) or Cox and Smith (1961). When dealing 
with complex queuing situations, it is often the case that analytical solutions cannot 
be obtained, and we may resort to simulation. This will be covered in the problem 
of Section 5.4.

5.2.2 � Queuing Theory Results

5.2.2.1 � Single-Channel Queuing System
This type of queuing system has the following characteristics:

Poisson arrivals, negative exponential service, customers served in order of 
their arrival

λ, mean arrival rate of jobs per unit time
1/λ, mean time between arrivals
μ, mean service rate of jobs per unit time (if serving facility is kept busy)

Then, we can calculate the following statistics, which apply in the steady state, 
that is, when the system has settled down:

Mean waiting time of a job in the system, Ws = 1/(μ − λ)
Mean time one job waits in a queue, Wq = ρ/(μ − λ), where ρ is termed the 

traffic intensity, λ/μ

Note that to ensure an infinite queue does not build up, ρ must always be less than 
1. The previous results for Ws and Wq depend on this assumption.

5.2.2.2 � Multichannel Queuing Systems
Although closed-form solutions are available for waiting times, and so forth, in 
certain multichannel systems, with particular arrival and service patterns, they are 
beyond the scope of this book. However, tables and charts are available that enable 
us to directly obtain the quantities we need. Such tables include those of Peck and 
Hazelwood (1958). The chart of Figure 5.5, which is taken from Wilkinson (1953), 
is used to determine the mean waiting time of a job in the system. A similar chart 
appears in Morse (1963), as do charts of other queuing statistics.

5.3 � OPTIMAL NUMBER OF WORKSHOP MACHINES 
TO MEET A FLUCTUATING WORKLOAD

5.3.1 �S tatement of the Problem

From time to time, jobs requiring the use of workshop machines (e.g., lathes) are 
sent from various production facilities within an organization to the maintenance 
workshop. Depending on the workload of the workshop, these jobs will be returned 
to production after some time has elapsed. The problem is to determine the optimal 
number of machines that minimizes the total cost of the system. This cost has two 
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components: the cost of the workshop facilities and the cost of downtime incurred 
due to jobs waiting in the workshop queue and then being repaired.

5.3.2 �C onstruction of the Model

	 1.	The arrival rate of jobs to the workshop requiring work on a lathe is Poisson 
distributed with arrival rate λ.

	 2.	The service time a job requires on a lathe is negative exponentially distrib-
uted with mean 1/μ.

	 3.	The downtime cost per unit time for a job waiting in the system (i.e., being 
served or in the queue) is Cd.
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	 4.	The cost of operation per unit time for one lathe (either operating or idle) is 
Cl.

	 5.	The objective is to determine the optimal number of lathes n to minimize 
the total cost per unit time C(n) of the system:

C(n) = �cost per unit time of the lathes + downtime cost per unit time due to 
jobs being in the system

Cost per unit time of the lathes
= number of lathes × cost per unit time per lathe = nCl

Downtime cost per unit time of jobs being in the system
= average waiting time in the system per job
× arrival rate of jobs in the system per unit time
× downtime cost per unit time per job = WsλCd

	 where Ws = mean waiting time of a job in the system. Hence,

	 C(n) = nC1 + WsλCd	 (5.1)

This is a model of the problem relating the number of machines n to total cost 
C(n).

The problem is depicted in Figure 5.6.

5.3.3 �N umerical Example

Letting λ = 30 jobs/week, μ = 5.5 jobs/week (for one lathe), Cd = $500/week, and 
Cl = $200/week, Equation 5.1 can be evaluated for different numbers of lathes to give 
the results shown in Table 5.1. Thus, it is seen that the optimal number of lathes to 
minimize total cost per week is 8.

Workshop

μ = # jobs/week

Arrivals Departures

1

2

3

n

λ = # jobs/week

Ws

Wq

FIGURE 5.6  Workshop machine system.
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Figure 5.7 illustrates the underlying pattern of downtime and lathe costs that, 
when added together, give the total costs of Table 5.1.

It is also interesting to plot Figure 5.8, which gives the average idle time and busy 
time per week for each lathe for different numbers of lathes. Note that when n = 8, the 
optimal number from a total cost viewpoint, the average idle time of a lathe is 32%; that 
is, utilization is 68%. Therefore, the comment is often made that a high utilization for 
equipment is required, and only then is it being operated efficiently. In some cases, this 
will be so, but we see from this example that if the utilization of a lathe were increased 
from 68% to 91% (which would occur when n = 6), the total cost per week would 
increase from $4570 to $7750. Again, the point can be made that we must be clear in 
our mind about what objective we are trying to achieve in our maintenance decisions.

Sample calculations:

When n = 1 to 5, then ρ λ
µ

=
n

, the traffic intensity, is greater than 1. Thus, an 

infinite queue will eventually build up because work is arriving faster than it can be 

TABLE 5.1
Optimal Number of Lathes

Number of 
Lathes, n

Mean Wait of a Job in the 
System, Ws (Weeks)

Total Cost per 
Week, C(n) ($)

6 0.437 7755

7 0.237 4955

8 0.198 4570

9 0.189 4635

10 0.185 4775

11 0.183 4945

12 0.182 5130
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FIGURE 5.7  Optimal number of lathes.
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processed, and so we consider cases of n at least equal to 6. (Note that the formulas 
apply to the steady state. In practice, an infinite queue cannot be formed.)

From Figure 5.5, when n = 6, ρ = 0.91, then Wqμ = 1.4.

Therefore,

	 Mean waiting time in a queue Wq = 1.4/5.5 = 0.255 week

Hence,

	 Ws = Wq + mean service time = 0.255 + 0.182 = 0.437 week

From Equation 5.1,

	 C(6) = 6 × $200 + 0.437 × 30 × $500 = 1200 + 6555 = $7755

To calculate the average busy time per week for one lathe:

	 Average busy time per week = average number of jobs 	
	 to be processed on a lathe per week

	
× = ×average time of one job on a lathe

λ
µn
1

Therefore,

	
Average idle time per week = −1

λ
µn
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FIGURE 5.8  Lathe utilization statistics.
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When n = 6, λ = 30, μ = 5.5, then

	
Average busy time per week for one lathe =

×
30

6 5.55
0 91= .

	 Average idle time per week for one lathe = 1 − 0.91 = 0.09

Note that ρ, the traffic intensity, is equivalent to the average busy time per week.

5.3.4 �F urther Comments

The goal of the model in this section was to optimize the number of servers (lathes) 
such that total cost was minimized. In practice, in many such problems, the cost of 
the resource is not too difficult to quantify, such as the cost of additional lathes, but 
a difficult costing problem may arise when associating a cost with the improvement 
of service with an increased level of a resource. In this section, the cost benefit of 
reducing the waiting time of jobs in the workshop system is evaluated as more lathes 
are added. Because of this difficulty, the analysis sometimes stops at identifying the 
quality of service, such as average throughput rate, for a given level of the resource. 
The final resource level decision is then made by management who select an appro-
priate compromise between resource cost and service level provided.

The method of tackling the lathe problem in this section could also be adopted 
to determine the optimal size of a maintenance crew. In that case, the number of 
tradespeople in the crew corresponds to the number of machines in the lathe group. 
One such a study is Carruthers et al. (1970).

In the problem in this section, it was assumed that all the machines were the 
same, and any machine could be used equally well for any job requiring lathe work. 
This may not be the case. For example, within a group of lathes, there may be small, 
medium, and large lathes. Certain incoming jobs may be done equally well on any 
of the lathes, but others may only be processed on, say, a large lathe. This sort of 
problem will be discussed and analyzed in more detail in Section 5.4.

Furthermore, in this section, it was assumed that all of the workload was processed on 
workshop machines that were internal to the organization. In many situations, advantage 
can be taken of subcontractors to do some of the work during busy periods. The approach 
used in Section 5.6 to determine the optimal size of a maintenance crew, taking account 
of subcontracting opportunities, can, in particular cases, be used to determine the opti-
mal number of workshop machines where subcontracting opportunities occur.

5.3.5 �A pplications

5.3.5.1 � Optimizing the Backlog
In a plant, there was a crew of plumbers and the goal was to establish the optimal 
number of plumbers to ensure that the backlog of work (jobs in the queue) did not 
exceed a specified number or, equivalently, did not result in a job waiting longer than a 
specified average amount of time before a plumber was dispatched to attend to the job.
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Knowing the average arrival rate of jobs per week, ensuring that the arrivals could 
be described as arriving according to a Poisson distribution (which was the case here 
because plumbing jobs occurred in many areas of the plant), and that the service 
times could be described by an exponential distribution (which was the case because 
most jobs were small ones, with only a few taking a long time to complete a repair), 
means that Wilkinson’s queuing chart shown in Figure 5.5 can be used to estimate 
the average queuing times for different maintenance crew sizes. Figure 5.9 illustrates 
the problem. A final crew size decision is then made by management specifying an 
acceptable waiting time in the queue for an incoming plumbing job. The final results 
of the study are provided in Table 5.2.

5.3.5.2 � Crew Size Optimization
A company had two maintenance crews with responsibility to handle a task called 
pulley replacement. The mean arrival rate of pulleys per month to the two teams was 
125; the average capacity per month of each team was 102 jobs per month. Hours 
available for a team to work in a month were 213.

As the arrival rate was 125 per month and the capacity of one team was 102 per 
month, clearly, at least two teams were required. And with two teams, it was estimated 
using Wilkinson’s chart (Figure 5.5) that the average utilization of a team was 61%, and 

Wq = time work order is in queue

Ws = time work order is in the system

Notifications 
entered into 

an ERP
system

Work 
orders 
closed

Plumber

Plumber

Plumber

Model:

FIGURE 5.9  Backlog optimization.

TABLE 5.2
Service Level Provided by Plumbers

Number of 
Plumbers, n

Mean Time of a Work Order in 
the Queue, Wq (% of a Week)

Mean Time of a Work Order in 
the System, Ws (% of a Week)

3 0.080 0.147

4 0.026 0.093

5 0.004 0.071

6 0.002 0.069
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the average waiting time for a pulley replacement request to be attended to was 1 hour. A 
decision was made to maintain the two teams and not explore the addition of a new team.

In this study, the cost per month of a maintenance team and the cost of lost pro-
duction for 1 month were known; thus, had it been necessary, a formal optimization 
calculation could have been conducted.

5.4 � OPTIMAL MIX OF TWO CLASSES OF SIMILAR 
EQUIPMENT (SUCH AS MEDIUM/LARGE LATHES) 
TO MEET A FLUCTUATING WORKLOAD

5.4.1 �S tatement of the Problem

The problem in this section is an extension of the problem in Section 5.3, which 
dealt with the optimal number of identical workshop machines to meet a fluctuating 
demand.

Specifically, in this section, we assume that there is a class of machines—lathes 
used in the workshop—that can be divided into medium and large lathes. Jobs requir-
ing lathe work can then be divided into those that require processing on a medium 
lathe, those that require a large lathe, and those that can be processed equally well on 
either. The service times of jobs on medium and large lathes differ, as do the operat-
ing costs of the lathes.

For a given workload pattern, the problem is to determine the optimal mix of 
medium/large lathes to minimize the total cost per unit time of the lathes and down-
time costs associated with jobs waiting in a queue or being processed.

5.4.2 �C onstruction of the Model

Figure 5.10 illustrates the queuing system for the problem. Thus, it is seen that lathe-
requiring work arriving at the lathes can be divided into work that requires the use of:

λ Arrivals

Large jobs

Medium jobs plus 
Medium/large jobs

Medium lathes
µm

µl

Large lathes

Departures

FIGURE 5.10  Workshop system for two classes of equipment.
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	 1.	A medium lathe (operating cost low)
	 2.	A large lathe (operating cost high)
	 3.	Either a medium or large lathe

To approach this system analytically is not practicable due to the complexity of 
the mathematics involved. Simulation, however, is a convenient alternative and is 
readily understandable. We will now introduce this procedure.

Simulation basically consists of four steps:

	 1.	Determine the logic of the system being analyzed and represent it with a 
flowchart.

	 2.	Obtain the information necessary to work through the flowchart.
	 3.	Simulate the operation of the system for different alternatives by using the 

data obtained in step 2 and working through the logic specified in step 1. 
The simulation can be done manually or by computer.

	 4.	Evaluate the consequences obtained in step 3, and so identify the best alternative.

5.4.2.1 � Logic Flowchart
Because, in practice, most jobs that can be processed on a medium lathe can also 
be processed on a large lathe, we consider a two-queue system: one queue at the 
medium lathes, composed of all jobs requiring at least a medium lathe, and one 
queue at the large lathes, composed of all jobs requiring only a large lathe.

Whenever a medium lathe becomes vacant, it takes the first job in the medium/
large queue and processes it. If there is no queue at the medium lathes, then the 
medium lathes are idle.

Whenever a large lathe becomes vacant, it takes the first job in the large lathes 
queue. If there is no queue at the large lathes, then, if possible, a job is transferred 
from the medium/large queue to the large lathe. The logic of the system is illustrated 
in the flowchart of Figure 5.11.

5.4.2.2 � Obtaining Necessary Information and Constructing the Model
We shall suppose that observations of the system have been made and that the fol-
lowing distributions have been obtained:

	 1.	The arrival of jobs to the lathe system is a Poisson process, with an arrival 
rate of λ per unit time. Thus, the interarrival distribution of jobs will be 
negative exponential with a mean interval 1/λ.

	 2.	The probability that an incoming job joins the queue at the medium lathes 
is p; hence, the probability that the job joins the large lathe queue is (1 − p).

	 3.	The service times for jobs on the medium and large lathes are negative exponen-
tially distributed, with mean service rates of μm and μl per unit time, respectively.

	 4.	The downtime cost per unit time for a job waiting in a queue or being pro-
cessed is Cd.

	 5.	The cost of operation per unit time for one medium lathe is Cm, and for one 
large lathe it is Cl.
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The objective is to determine the optimal number of medium (nm) and large (nl) 
lathes to minimize the total cost per unit time C(nm, nl) associated with the lathes and 
downtime costs of jobs being in the workshop for repair:

C(nm, nl) = cost per unit time for medium lathes
+ cost per unit time for large lathes
+ downtime cost per unit time for jobs waiting

or being processed in the medium lathe system
+ downtime cost per unit time for jobs waiting

or being processed in the large lathe system

Job enters lathe system
 (therefore require arrival 

distribution of jobs)

Is job for medium
or large lathe queue?
 (therefore require 

split of jobs)

Medium lathe queue Large lathe queue

Is a
medium lathe

vacant?
No

No

Yes

Is a
large lathe 

vacant?

Is a
large lathe 

vacant?

No

Yes

Yes
Put job on 
large lathe

Put job on 
medium lathe

How long is job on large lathe? 
(therefore require service time
 distribution of jobs on large 

lathes)

How long is job on medium lathe? 
(therefore require service time

 distribution of jobs on medium
 lathes)

Departure of job from lathe system

FIGURE 5.11  Flowchart of system structure.
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Cost per unit time for medium lathes = nmCm

Cost per unit time for large lathes = nlCl

	 Downtime cost per unit time for jobs waiting
	 or being processed in medium system

= mean waiting time in system for one job
× arrival rate of jobs to system
× downtime cost per unit time per job

= Ws,m × λ × p × p(nm, n1) × Cd

Note that the probability that a job enters the medium system is p × p(nm, nl), 
where p(nm, nl) is the probability that an incoming job that is allocated to the 
medium/large queue is processed on a medium lathe. This processing probability 
is dependent on the number of medium and large lathes. Then, the probability 
that a job initially allocated to the medium/large queue is transferred to the large 
system is 1 − p(nm, nl).

Similarly,

	 Downtime cost per unit time for jobs waiting
	 or being processed in large system

	 = Ws,1{λ × (1 − p) + λ × p × [1 − p(nm, n1)]}Cd

where λ × p × [1 − p(nm, n1)] is the mean number of jobs transferred from the medium/
large queue to be processed on a large lathe. Therefore,

	

C n n n C n C W p p n n C

W

( ,  ) ( ,  )m l m m l l s,m m l d

s,l

= + + × × × ×

+

λ

λ ×× − + × × −{ }×( ) [ ( ,  )]1 1p p p n n Cλ m l d 	 (5.2)

This is a model of the problem relating the mix of lathes to the expected total cost. 
(Note that both Ws,m and Ws,l are functions of nm and nl.)

The major problem in solving this model is the determination of the waiting times 
in the medium and large systems for different mixes of lathes and the corresponding 
processing probabilities p(nm, nl). This is obtained by simulation in the following 
example.

5.4.3 �N umerical Example

	 1.	The number of jobs arriving at the lathe section per day is Poisson distrib-
uted, with a mean arrival rate of 10 per day. The cumulative distribution 
function for this is given in Figure 5.12.

	 2.	The probability that an incoming job joins the queue at the medium lathes 
is 0.8.
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	 3.	The service distribution for jobs on a medium lathe is negative exponential, 
with a mean service rate for the lathe of two per day. The cumulative distri-
bution function for this is given in Figure 5.13.

	 4.	The service time distribution for jobs on a large lathe is negative exponen-
tial, with a mean service rate for the lathe of one per day. The cumulative 
distribution function for this is given in Figure 5.14.

	 5.	The downtime cost per job Cd is $1 per day.
	 6.	The costs of operation Cm and Cl are $7 and $10 per day, respectively.
	 7.	The queuing times for jobs at the medium and large lathes are obtained by 

simulation as follows.
		  First, we must assume a certain number of medium and large lathes. 

We might estimate this as follows: there are 10 jobs per day, on average, 
arriving at the lathes. Eighty percent require processing on a medium lathe. 
Therefore, eight jobs per day, on average, require a medium lathe, and two 
jobs per day require a large lathe. A medium lathe can process, on average, 
two jobs per day. A large lathe can process, on average, one job per day.

1.0

F(t)
0.5

0
0 0.1 0.2 0.3 0.4 0.5

t, interval between arrivals

F(t) = 1 – e–10t

FIGURE 5.12  Cumulative distribution function: job arrivals.

1.0

F(t)
0.5

0
0 0.5 1.0

t, service time
1.5 2.0 2.5

F(t)=1 – e–2t

FIGURE 5.13  Cumulative distribution function: service times on medium lathes.
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Let us assume that we have four medium lathes and three large lathes. Note that 
if we only had two large lathes, which might seem sufficient, the traffic intensity of 
the system ρ would be 1. As we have seen (sample calculation of Section 5.3.3), this 
would lead to infinite waiting times.

With reference to the logic flowchart (Figure 5.11):

	 1.	Assume job 1 arrives at the lathe at time 0.
	 2.	Select a number between 00 and 99 from a table of random sampling num-

bers (see Table 5.3 for an extract). If it is lower than 80, the job goes to the 
medium queue; otherwise, it goes to the large queue. Taking the first two-
digit number in Table 5.3, we get 20; therefore, job 1 goes to the medium 
lathes.

	 3.	Select another number from Table 5.3. This number is now used to deter-
mine the duration of job 1 on a medium lathe. The next two-digit number 
in row 1 is 17. This is taken as 0.17 and is marked on the y-axis of Figure 
5.13. Drawing a horizontal line from 0.17 until it cuts the F(t) curve, then 

1.0

F(t)
0.5

0
0 1.0 2.0 3.0

t, service time

F(t) = 1 – e–t

4.0 5.0

FIGURE 5.14  Cumulative distribution function: service times on large lathes.

TABLE 5.3
Random Numbers
20 17 42 28 23 17 59 66 38 61 02 10 86 10 51 55 92 52 44 25

74 49 04 49 03 04 10 33 53 70 11 54 48 63 94 60 94 49 57 38

94 70 49 31 38 67 23 42 29 65 40 88 78 71 37 18 48 64 06 57

22 15 78 15 69 84 32 52 32 54 15 12 54 02 01 37 38 37 12 93

93 29 12 18 27 30 30 55 91 87 50 57 58 51 49 26 12 53 96 40

45 04 77 97 36 14 99 45 52 95 69 85 03 83 51 87 85 56 22 37

44 91 99 49 89 39 94 60 48 49 06 77 64 72 59 26 08 51 25 57

16 23 91 02 19 96 47 59 89 65 27 84 30 92 63 37 26 24 23 66

04 50 65 04 65 65 82 42 70 51 55 04 61 47 88 83 99 34 82 37

32 70 17 72 03 61 66 26 24 71 22 77 88 33 17 78 08 92 73 49
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dropping a vertical line, gives a service time of 0.10 day as being equivalent 
to a random number of 17.

		  Note that in this example, the random sampling numbers are taken to 
be in the range 0.005 to 0.995 in steps of 0.01 to preclude the possibility 
of a zero or infinite service time being specified. The extract of random 
sampling numbers is taken from Lindley and Miller (1964). Each digit is an 
independent sample from a population in which the digits 0 to 9 are equally 
likely; that is, each has a probability of 1/10.

		  Thus, a random number of 17 is equivalent to F(t) = 0.175. Therefore, 
0.175 = 1 − e−2t, and therefore t = 0.10 day. This procedure is known as 
Monte Carlo simulation (Law 2007).

	 4.	As there are no other jobs in the system, we can put job 1 straight onto a 
medium lathe, say, m1, the first medium lathe, for 0.1 day.

		  All the previous information is given in the first row of Table 5.4.
	 5.	We now have to generate the arrival of another job. To do this, we select 

another random number, in this case, 42 from the top row of Table 5.3. 
Marking 0.42 on the y-axis of Figure 5.12, we get an equivalent interval 
between job 1 and job 2 of 0.06 day from the x-axis.

Proceeding as indicated in steps 2 to 4 above, the second row of Table 5.4 can be 
completed. The interval between the arrivals of job 2 and job 3 can be obtained as 
indicated in step 5 above, and row 3 of Table 5.4 can be completed according to steps 
2 to 4 above. Similarly, rows 4 to 7 of the table can be completed.

Clearly, the construction of a table such as Table 5.4 by hand is tedious. However, 
if we proceeded as above, we would eventually generate sufficient jobs to obtain the 
average waiting time (from columns 6 and 7) for jobs in the medium or large lathe 
systems when there are four medium and three large lathes and the probability p(4, 
3) of jobs being processed on the medium lathes (from columns 4 and 5). To reduce 
the tedium and speed up the calculations, it is usually possible to take advantage 
of one of the many simulation packages that are available such as Arena, Flexsim, 
Micro Saint, ProModel, SIMUL8, and Witness,. A common feature of these simula-
tion packages is the ability to use animation to show the dynamic behavior of the 
modeled system during a simulation run. With this capability, the number of jobs 
waiting to be processed by medium lathes, for example, can be shown graphically 
instead of indicated by a number. This helps the user to validate the model and to 
understand the behavior of the model more easily.

The simulation model presented in Section 5.4.2 is implemented in the Workshop 
Simulator software that can be downloaded from http://www.crcpress.com/product/
isbn/9781466554856. The results of a simulation run after entering the data of this 
numerical example into the software are shown in Figure 5.15.

Using the Workshop Simulator software or one of the other simulation packages 
introduced above, the average results of several simulations can be obtained as listed 
in Table 5.5, which gives the mean waiting time results for the data used in the con-
struction of Table 5.4 and the processing probability p(4, 3).

Table 5.6 gives the appropriate mean waiting times and processing probabilities 
for other feasible combinations of the number of medium and large lathes, that is, 
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ones that result in a steady state. Once the waiting times and probabilities have been 
determined, solutions to the model can be obtained (Equation 5.2). Table 5.7 gives 
the various total costs per day, and it is seen that the optimal mix is five medium and 
three large lathes.

Sample calculation:

When nm = 4, nl = 3, p = 0.8, and λ = 10, from the simulation we obtain Ws,m = 0.79 
days and Ws,l = 1.08 days. These are the mean times that jobs processed on medium 
and large lathes spend in the system.

FIGURE 5.15  Input and output of a simulation run of the Workshop Simulator software.

TABLE 5.5
Mean Waiting Times and Processing Probability, p(4, 3)

nm = 4 Ws,m = 0.79 p(4, 3) = 0.82

nl = 3 Ws,l = 1.08
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The probability that a job that is allocated to the medium/large queue on entry to 
the system is processed on a medium lathe, p(4, 3), is obtained as 0.82. Therefore, the 
probability that a job is switched from the medium/large queue to be processed on a 
large lathe is 1 − 0.82 = 0.18. We therefore obtain

	 C(4,3) = 4 × 7 + 3 × 10 + 0.79 × (10 × 0.8 × 0.82) × 1 + 1.08 ×

	 (10 × 0.2 + 10 × 0.8 × 0.18) × 1 = $66.90 per day

Note that for each combination of medium and large lathes, four simulation runs 
were made on the computer to obtain the waiting time statistics. Each run was equiv-
alent to 2 months of operation.

TABLE 5.6
Mean Waiting Times and Processing 
Probabilities for Other Combinations of Lathes
nm = 5 Ws,m = 0.58 p(5, 3) = 0.89

nl = 3 Ws,l = 0.98

nm = 6 Ws,m = 0.54 p(6, 3) = 0.94

nl = 3 Ws,l = 1.08

nm = 4 Ws,m = 0.48 p(4, 4) = 0.82

nl = 4 Ws,l = 0.87

nm = 5 Ws,m = 0.55 p(5, 4) = 0.85

nl = 4 Ws,l = 0.83

nm = 6 Ws,m = 0.52 p(6, 4) = 0.90

nl = 4 Ws,l = 0.87

TABLE 5.7
Optimal Mix of Lathes

(nm, nl) C(nm, nl)

nm = 4, nl = 3 66.88

nm = 5, nl = 3 71.97

nm = 6, nl = 3 78.74

nm = 4, nl = 4 75.04

nm = 5, nl = 4 81.40

nm = 6, nl = 4 88.15
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5.4.4 �F urther Comments

Simulation is a very useful procedure for tackling complex (and not so complex) 
queuing problems. The reader interested in a fairly complete discussion of the sub-
ject is referred to Law (2007) or Banks et al. (2010).

In the model, it was assumed that the processing time for a job that could be done 
on a medium lathe, but was switched to a large lathe, could be taken from the same 
service time distribution as a job requiring processing on a large lathe. This may be 
realistic because medium jobs may require longer setting up times on a large lathe 
and thus offset the increased speed of doing the job on the larger lathe. However, if 
this assumption is not acceptable, the model must be modified. Also, in the model, 
it was implied that the operating cost of a lathe was constant and independent of 
whether the lathe was being used. Removal of these assumptions is not difficult, but 
a more complicated model would result than the one discussed in this section.

It will be appreciated that in the construction of Table 5.7, the appropriate mixes 
of medium and large lathes to use in the simulation were obtained on a subjective 
basis—through careful thought about the consequences resulting from previously 
tried combinations. Thus, it is obvious that the use of simulation may result in the 
optimum being missed because it is often not feasible to attempt to evaluate all pos-
sible alternatives. In practice, however, this is usually not a severe restriction.

Another problem with simulation is deciding just how long a simulation run 
should last and how many runs should be made because it is only after a sufficiently 
large number of sufficiently long runs that the steady state is reached and averages 
can be calculated and used in a model. Discussion of the cutoff point, and other 
aspects of experimental design are covered in the textbooks referred to at the begin-
ning of this section.

For simple problems, a hand simulation may be worthwhile, and if this is done, 
tables of random numbers will be required. Table 5.3 is an extract of such tables that 
appear in many books of statistical tables. Tables of random numbers consist of a 
sequence of the digits 0, 1,…, 9, having the property that any position in the sequence 
has an equal probability of containing any one of these 10 digits. Such sequences can 
be broken down into sub-sequences of n digits having the same property. Suppose 
it is necessary to draw an item at random from a population of 1000 items. If these 
items are imagined to carry labels with numbers ranging from 000 to 999, selecting 
an item at random is then equivalent to selecting a three-digit number at random. 
This condition is satisfied by entering the table at any point and selecting the item 
corresponding to that number in the table. Repetition of this process allows a random 
sample of any desired size to be selected provided that the three-digit numbers taken 
from the table are accepted every time in the same sequence. It should be noted that 
the same functionality as tables of random numbers is provided by the RND function 
on most calculators. Each time it is pressed, it generates a different pseudorandom 
number uniformly distributed over the range 0 to 1.

Conversion of random sampling numbers to random variables (such as that done 
in the simulation example of Section 5.4.3) is done via the appropriate cumulative 
distribution function of the variable. Once a random sampling number is obtained 
(from the tables), the corresponding value of the random variable is read off the 
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distribution function (see Section 5.4.3). In the example, two-digit random sampling 
numbers were used (in the range of 00 to 99) and then assumed to be in the range of 
0.005 to 0.995 in steps of 0.01.

Although the example in this section deals specifically with the determination of the 
optimal mix of lathes in a workshop, the approach is applicable to other maintenance 
problems. For example, a problem that frequently occurs is the necessity of determin-
ing the appropriate skills to have available in a maintenance team and the number of 
craftspeople possessing these skills. Certain jobs can be tackled equally well by any 
member of a team, whereas others require specialists. The different classes of skills 
that can be defined will almost certainly exceed two, but even so, the optimal mix of 
these skills can be determined in a manner similar to that described in this section.

Finally, in the model, it has been assumed that downtime cost could be obtained. 
As is often the case, this is a difficult costing problem, and so the analysis of such a 
problem may stop at determining the consequences in terms of waiting times for dif-
ferent mixes of lathes, with management then deciding which alternative described 
in prefers on the basis of the calculated waiting times.

5.4.5 �A pplications

5.4.5.1 � Establishing the Optimal Number of Lathes in a Steel Mill
Within an integrated steel mill, there was a need to deliver an improved service 
level to operations. The present practice was to plan to process small jobs on small 
lathes and large jobs on large lathes. However, if a large lathe became vacant, and 
there was a queue of jobs waiting for processing on a small lathe, the workshop 
planner would transfer a small job and have it processed on a large lathe. It was 
not feasible to transfer a large job and process it on a small lathe. Only transfers 
upward were possible.

The lathe section consisted of eight lathes, and Figure 5.16 shows the initial per-
spective of the lathe system: it consisted of two classes of lathes, one termed large 
and the other medium.

Arrivals

p

(1 – p)

Large lathes

µlµlµl

µmµmµm

Medium lathes

Departures

FIGURE 5.16  Initial perspective of lathe system.
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As data were acquired, it became clear that the system was more complex than 
initially defined, and an improved understanding of the lathe system is depicted in 
Figure 5.17. After further data collection and analysis over a 22-week period, it was 
apparent that the system could be represented by Figure 5.18, in which various sta-
tistics are provided.

It will be noted in Figure 5.18 that the simulation allowed the possibility of a small 
job (one that could be processed on lathes 5, 6, 7, or 8) being processed on the largest 

Incoming 
jobs

Departing 
jobs

Large lathes

Small lathes

Medium lathes1

2
3
4

5
6
7
8

FIGURE 5.17  Second view of lathe system.
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p = 4.90
Σ = 36
λ = 1.64

p = 10.1
Σ = 74
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p = 24

Σ = 11.4
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Σ = 151

Σ = 14

Σ = 128

Representation of maintenance workshop

p = percentage of jobs going along branch; Σ = total number of jobs going along branch in 22 weeks;
λ = arrival rate of jobs/week during 22-week period; μ = service rate of jobs/week during 22-week period

FIGURE 5.18  Final view of lathe system.
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lathe, lathe 1. In practice, this may not be feasible, and if not, the simulation model 
needs to block such a transfer. In the study described, this was not necessary, and 
when later examining the simulation statistics, it was noted that no simulation run 
included a small lathe job processed on the largest lathe.

Once a simulation model is built, it has to be tested and verified (for details, see 
Law (2007) or Banks et al. (2010)) before alternative system configurations can be 
evaluated. Once the system illustrated by Figure 5.18 had been tested and verified, 
the final results given in Table 5.8 were obtained.

Insights obtained by the performance statistics given in Table 5.8 (columns 3 and 4) 
can be used to assist management in deciding on the best combination of lathes to have 
in its operation. Note again that no formal optimization has taken place. There is simply 
an explanation of the expected consequences associated with alternative configurations; 
management will consider the costs of the alternatives, and possibly the way the work will 
be distributed among the different lathe groupings, before a final decision is made.

5.4.5.2 � Balancing Maintenance Cost and Reliability 
in Thermal Generating Station

A thermal generating station was 25 years old and a decision was made to spend a 
substantial amount of money on replacement equipment to improve the reliability of 
the station. The station was brought into service to meet peak electricity demands, 
but because of the age of its equipment, it occasionally could not meet the demands 
placed on it.

Within the electrical utility, there were a number of alternative suggestions on 
how to best spend the allocated $300 million, such as to replace pulverizers or to 

TABLE 5.8
Evaluation of Alternative Lathe Combinations

Situation
Lathe 
No.

Idle Time as a Percentage 
of Hours Available (%)

Mean Wait of Jobs in 
Queue (Days)

Existing state 1 26.4 6.55

2 15.4 5.25

3 15.5 9.37

4 15.7 8.10

5–8 2.0 5.11

Additional small machine 1 44.6 2.95

2 38.8 1.65

3 43.0 1.97

4 36.4 2.45

5–8 +1 2.0 2.83

Additional type 4 machine 1 44.6 2.95

2 42.2 1.49

3 39.4 2.56

4 + 1 12.6 2.46

5–8 20.8 1.77
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replace transformers. A decision was made to build a simulation model of the plant 
and evaluate the various suggestions. Later, a course of action was implemented. 
Figure 5.19 is a representation of the generating station used in the simulation, from 
which it can be seen that there are eight generating units.

Before evaluating the alternatives, it is necessary to validate the simulation model, 
and this is done by comparing historical key performance indicators with results 
obtained from the simulation. Once an acceptably similar set of values is obtained, 
the simulation of alternative system designs can commence. New operating cost esti-
mates and equipment failure statistics are used for equipment that is planned to be 
replaced. Much sensitivity checking is undertaken, with the goal being not so much 
to get absolute values of the expected future value of key performance indicators, 
as to discriminate among the alternatives being evaluated. Table 5.9 illustrates the 
validation of the simulation model.

Further details are provided in Concannon et al. (1990).

FIGURE 5.19  Generating station simulation schematic.

TABLE 5.9
Simulation Model Validation

Actual Results Simulation Results

Energy produced (MW) 3763 4098

Total operating time (hours) 22,089 19,623

Equivalent FO (hours) 7235 5064

CAWN (%) 87.20 91.80

DAFOR 25.70 23.70

FO occurrences 351 298

Quite similar

Note:	 Results compared with actual data for previous year. FO, forced outages; 
CAWN, capacity available when needed; DAFOR, derating adjusted forced 
outage rate.
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5.5 � RIGHTSIZING A FLEET OF EQUIPMENT: AN APPLICATION

A given workload must be completed by a fleet of owner-operated equipment. The 
work can be undertaken by a small fleet that is highly utilized and whose operation 
and maintenance costs will be high, or a larger fleet that is not so highly utilized 
and whose operations and maintenance (O&M) costs will be lower, and thus the 
economic life will be greater than the highly utilized equipment. What is the best 
alternative?

Because the solution to this resource requirement problem will draw on the eco-
nomic life model of Section 4.2.4 (Equation 4.2), sections on “Construction of Model” 
and “Numerical Example” are not included. Only the application is presented.

5.5.1 �A n Application: Fleet Size in an Open-Pit Mine

The demand in an open-pit mining operation was to use a fleet of a specified size of 
haul trucks to deliver 108,000 hours of work to a mill to provide the required tonnage 
per year. There are 8760 hours in a year, and so the workload was judged to be able 
to be undertaken by:

Alternative 1: 16 trucks each delivering 7000 hours per year
Alternative 2: 18 trucks each delivering 6000 hours per year
Alternative 3: 22 trucks each delivering 5000 hours per year

The trend in O&M costs for the trucks is given in Figure 5.20. Knowing this 
trend, the O&M costs for a truck undertaking H hours per year are:
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FIGURE 5.20  Trend in truck O&M costs.
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The estimated resale values were also obtained for trucks undertaking 7000, 
6000, and 5000 work hours per year. Along with the interest rate appropriate for 
discounting, the economic life and associated equivalent annual costs (EACs) were  
obtained for alternatives 1 to 3. These are provided in Table 5.10. Although the EAC 
is smallest for an annual utilization of 5000 hours, if this is used as the basis of estab-
lishing fleet size, 22 trucks will be required. Thus, in this class of problem, it is clear 
that what is important is not the economic life of an individual truck but the fleet as 
a whole that needs to be optimized. (The same issue arose in Chapter 4 when estab-
lishing the economic life of a given fleet whose utilization varied as it aged—Section 
4.4.) Examination of Table 5.10 indicates that the optimal fleet size is 18, with each 
truck delivering 6000 hours of work per year.

5.6 � OPTIMAL SIZE OF A MAINTENANCE WORKFORCE 
TO MEET A FLUCTUATING WORKLOAD, TAKING 
ACCOUNT OF SUBCONTRACTING OPPORTUNITIES

5.6.1 �S tatement of the Problem

The workload for the maintenance crew is specified at the beginning of a period, 
say, a week. By the end of the week, all the workload must be completed. The size 
of the workforce is fixed; thus, there is a fixed number of staff available per week. 
If demand at the beginning of the week requires fewer staff than the fixed capacity, 
no subcontracting takes place. However, if the demand is greater than the capacity, 
the excess workload will be subcontracted to an alternative service deliverer, to be 
returned by the end of the week.

Two sorts of costs are incurred:

	 1.	Fixed cost depending on the size of the workforce
	 2.	Variable cost depending on the mix of internal and external workload

As the fixed cost is increased by increasing the size of the workforce, there 
is less chance of subcontracting being necessary. However, there may frequently 
be occasions when fixed costs will be incurred, yet demand may be low, that is, 
considerable underutilization of the workforce. The problem is to determine the 
optimal size of the workforce to meet a fluctuating demand to minimize expected 
total cost per unit time.

TABLE 5.10
Fleet Size Optimization

Fleet Size
Economic 
Life (Years) EAC ($)

Total Annual Fleet 
Cost ($)

16 5 506,102 8,097,632

18 5 444,174 7,995,132 (min)

22 6 381,299 8,388,578
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5.6.2 �C onstruction of the Model

	 1.	The demand per unit time is distributed according to a probability density 
function f(r), where r is the number of jobs.

	 2.	The average number of jobs processed per person per unit time is m.
	 3.	The total capacity of the workforce per unit time is mn, where n is the main-

tenance crew size.
	 4.	The average cost of processing one job by the workforce is Cw.
	 5.	The average cost of processing one job by the subcontractor is Cs.
	 6.	The fixed cost per crew member per unit time is Cf.

The basic conflicts of this problem are illustrated in Figure 5.21, from which it is 
seen that the expected total cost per unit time C(n) is:

C(n) = fixed cost per unit time
+ variable internal processing cost per unit time
+ variable subcontracting processing cost per unit time

	 Fixed cost per unit time = size of workforce × fixed cost per crew member = nCf

	

Variable internal processing

cost per unit time
        =

average number of jobs processed internaally

per unit time cost per job×

Now, the number of jobs processed internally per unit time will be:

	 1.	Equal to the capacity when demand is greater than capacity
	 2.	Equal to the demand when demand is less than or equal to capacity

Co
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 maintenance
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Total cost/unit time
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Internal processing 
cost/unit time

Level of maintenance resource

Alternative service 
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FIGURE 5.21  Optimal contracting-out decision.
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When 2 occurs, the average number of jobs subcontracted is
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This is a model of the problem relating workforce size n to total cost per unit time 
C(n).

On condition that Cs > Cw, a closed-form solution of Equation 5.3 exists, and it is 
the value of n that satisfies the following equation:
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An example that applies to Equation 5.4 is given in Section 5.6.5.
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5.6.3 �N umerical Example

	 1.	 It is assumed that the demand distribution of jobs per week can be repre-
sented by a rectangular distribution having the range of 30 to 70, that is, 
f(r) = 1/40, 30 ≤ r ≤ 70, f(r) = 0 elsewhere.

	 2.	m = 10 jobs per week, Cw = $2, Cs = $10, and Cf = $40.

Equation 5.3 becomes

	

C n n n r
r
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Table 5.11, which gives the values of C(n) for all possible values of n, indicates 
that for the costs used in the example, the optimal solution is to have a maintenance 
crew of five.

Sample calculation:

When n = 5,
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Note that using the closed-form solution given by Equation 5.4, we first find:
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TABLE 5.11
Optimal Crew Size

n 0 1 2 3 4 5 6 7

C(n) 500 460 420 380 350 340 350 380
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and then obtain

	
R n n( )

( )
. ; ,10
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0 5 5=
−

= =thus .

The decision model presented in Section 5.6.2 is implemented in the Crew Size 
Optimizer software that can be downloaded from http://www.crcpress.com/product/
isbn/9781466554856. Figure 5.22 shows the results of analysis produced by this soft-
ware given the data of this numerical example.

Pressing the “Analyze” button on the “Input and Output” screen of the software 
will produce what is shown in Figure 5.23, which presents, in graphical and tabular 
forms, the costs for different sizes of the workforce.

5.6.4 �F urther Comments

In the construction of the model of this section, it was assumed that all jobs requir-
ing attention at the start of the week had to be completed by the end of the week. In 
practice, this requirement would not be necessary if jobs could be carried over from 
one week to another, that is, backlogged. The inclusion of this condition would result 
in a model that is more complicated than that using Equation 5.3.

FIGURE 5.22  Input and output screen of the Crew Size Optimizer software.
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5.6.5 �A n Example: Number of Vehicles to Have in a Fleet 
(Such as a Courier Fleet)

If the demand per day of deliveries by a company is described by Figure 5.24, and all 
deliveries have to be completed the same day, we can define:

f = fixed cost to the company for one vehicle per day
h = rental cost of one vehicle per day
v = variable cost per day for using one owned vehicle
N = number of vehicles owned by the company
m = number of deliveries per day per vehicle

Using the closed-form solution given by Equation 5.4, the optimal number of 
vehicles to own, N*, must satisfy the following equation:

	
R mN

f
h m

( *) =
−( )ν

.	 (5.5)

This is illustrated graphically in Figure 5.24, in which the right-hand side of 
Equation 5.5 is given by the shaded area when m = 1.

FIGURE 5.23  Crew Size Optimizer: results of analysis.
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5.7 � THE LEASE OR BUY DECISION

5.7.1 �S tatement of the Problem

The next example is taken from Theusen (1992), in which the following point is 
made: “The economic advantage of owning or leasing can be determined by evaluat-
ing the after-tax cash flow that is associated with each of the options.” The problem 
presented by Theusen follows.

A vehicle, when purchased, has a first cost (the acquisition cost) of $10,000, and 
it is estimated that its annual operating expenses for the next 4 years will be $3000 
per year, payable at the end of each year. The vehicle’s salvage value at the end of 
the fourth year is estimated to be $2000. Straight-line depreciation is to be applied. 
The effective tax rate for the firm is 45%, and the minimum attractive rate of return 
(MARR) is 15%. (This is the same as the inflation-free interest rate discussed in 
Appendix 6.)

The following three alternatives are to be evaluated:

	 1.	Purchase the vehicle, using retained earnings
	 2.	Purchase the vehicle, using borrowed funds
	 3.	Lease the vehicle

Which is the best alternative?

5.7.2 �S olution of the Problem

5.7.2.1 � Use of Retained Earnings
The cash flows, before tax, associated with this alternative are given in Figure 5.25.

Optimal number
 of vehicles

0 10 20 30 40 50 60 70 80 90
Demand/day, n

f(n)

FIGURE 5.24  Delivery demand distribution.
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Because $2000/year depreciation is allowed, the effective cost in years 1 to 4 
is $3000 for operating, plus $2000 for depreciation, giving a total of $5000. But 
because we can write off this cost against taxes, our tax savings amounts to $5000 × 
(0.45) = $2250, and the next cost is $3000 − $2250 = $750 per year. The after-tax 
cash flow picture is shown in Figure 5.26.

Using the standard discounting approach as described in Appendix 6 and used in 
Chapter 3, when the interest rate to be used for discounting is 15%, the EAC associ-
ated with the cash flows of Figure 5.26 is $3852.

5.7.2.2 � Use of Borrowed Funds
When funds are borrowed, the interest to be repaid by the borrower can be deducted 
as an expense before taxes are calculated. Assuming $10,000 is borrowed at a cost 
of 18% and that, for the first 3 years of the loan, only interest will be repaid, with 
the principal and last year’s interest paid at the end of the fourth year, the cash flows 
(before tax) are as depicted in Figure 5.27.

Because tax is at 45%, the tax savings amounts to 45% of $4800 = $2160. A fur-
ther tax saving is due because of the $2000 depreciation allowance ($2000 × 0.45 = 
$900). Thus, the total tax benefit = $3060. The after-tax cash flow picture is shown 
in Figure 5.28. Note that $4800 − $3060 = $1740 and $10,000 + $4800 − $2000 − 
$3060 = $9740.

YR1 YR2 YR3 YR4

$10,000 $3000 $3000 $3000 $3000

$2000
salvage

Operating
cost

FIGURE 5.25  Use of retained earnings: before-tax cash flows.

YR1 YR2 YR3 YR4

$10,000 $750 $750 $750 – $1250

750
– 2000

FIGURE 5.26  Use of retained earnings: after-tax cash flows.
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Again, using the standard discounting approach described in Appendix 6 and 
used in Chapter 3, when the interest rate to be used for discounting is 15%, the EAC 
associated with the cash flows of Figure 5.28 is $3342. In fact, borrowed funds are 
cheaper as long as the after-tax cost of borrowing [(1 − 0.45) × 18% = 9.9%] remains 
less than the after-tax MARR (i.e., 15%).

5.7.2.3 � Leasing
If the vehicle is leased by the borrower, no depreciation for tax purposes is allowed. 
Assuming that the lease requires yearly payments of $2900, with the lessee also pay-
ing the $3000 operating cost, the cash flows before tax considerations are given in 
Figure 5.29. Taking tax benefits into account of 0.45 × $5900 = $2655, the after-tax 
cash flows are given in Figure 5.30. Note that $5900 − $2655 = $3245.

YR1 YR2 YR3 YR40

$4800 $4800 $4800 $4800

$10,000
Loan 
repayment

$2000
Salvage 
value

FIGURE 5.27  Use of borrowed funds: before-tax cash flows.

YR1 YR2 YR3 YR40

$1740 $1740 $1740 $9740

FIGURE 5.28  Use of borrowed funds: after-tax cash flows.

YR1 YR2 YR3 YR40

$5900 $5900 $5900 $5900

FIGURE 5.29  Leasing: before-tax cash flows.
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Again, discounting the cash flows of Figure 5.29 using i = 15%, the EAC is 
obtained as $3245.

5.7.2.4 � Conclusion
The best alternative is to lease because $3254 is lower than the cost associated with 
purchasing the vehicle, using either retained earnings or borrowed funds.

5.7.3 �F urther Comments

It must be noted that the conclusion for this example should not be generalized. Each 
individual lease/buy decision should be carefully evaluated using data relevant to the 
particular situation being analyzed. In addition, great care needs to be taken when 
evaluating alternatives on an after-tax basis to ensure that all the appropriate tax rul-
ings are applied. Lending organizations often have customized software available to 
undertake the lease/buy evaluation.

PROBLEMS

	 1.	Within an integrated steel mill, there is a need to establish the optimal num-
ber of small lathes such that total cost per week is minimized.

		  It is known that lathe-requiring jobs arrive at the maintenance shop 
according to a Poisson process, with a mean arrival rate of 25 jobs per 
week. Taking into account the productivity characteristics of the lathes, it is 
known that an appropriate estimate of the mean time to process one job is 
exponentially distributed with a mean time of 1/7 week.

		  Work tied up in the workshop while waiting for processing or being pro-
cessed costs $10,000 per week, and the total cost per week for one lathe, 
including operator and overhead, is $5000.

		  Establish the optimal number of lathes such that the total cost associated 
with the lathes and duration associated with the turnaround time of jobs in 
the workshop is minimized.

	 2.	Suppose you have to decide on the number of crew members to hire for 
the provisioning of maintenance services. The wage of each crew member 
is Cw per week, and the cost of completing one maintenance job by the 
in-house crew is Cr. In cases where the service demand exceeds in-house 

YR1 YR2 YR3 YR40

$3245 $3245 $3245 $3245

FIGURE 5.30  Leasing: after-tax cash flows.
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capacity, the unmet demand will be contracted out. Two contracting options 
are available: option 1, at a fixed unit cost of C1 > Cr; option 2, at a variable 
unit cost of C2(N) that depends on the number of jobs to be contracted out.

		  Let the probability density function of the weekly service demand be 
f(N).

		  An in-house crew member can process an average of m jobs per week.
	 (a)	 Given the above information, construct an appropriate decision model.
	 (b)	 Use the model to determine the optimal crew size when
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Appendix 1: Statistics Primer

Once the equipment enters service a whole new set of information will come to 
light, and from this point on the maintenance program will evolve on the basis 
of data from actual operating experience. This process will continue through-
out the service life of the equipment, so that at every stage maintenance deci-
sions are based, not as an estimate of what reliability is likely to be, but on the 
specific reliability characteristics that can be determined at the time.

—F.S. Nowlan and H. Heap

A1.1  INTRODUCTION

Decisions relating to probabilistic maintenance problems, such as deciding when to 
perform preventive maintenance on equipment that is subject to breakdown, require 
information about when the equipment will reach a failed state. The engineer never 
knows exactly when the transition of the equipment from a good to a failed state will 
occur, but it is usually possible to obtain information about the probability of this transi-
tion occurring at any particular time. When optimal maintenance decisions are being 
determined, knowledge of statistics is required to deal with such probabilistic problems.

A1.2  RELATIVE FREQUENCY HISTOGRAM

If we think of a number of similar pieces of equipment that are subject to breakdown, 
we would not expect each of them to fail after the same number of operating hours. 
By noting the running time to failure of each item of equipment, it is possible to draw 
a histogram in which the area associated with any time interval shows the relative 
frequency of breakdown occurring in these intervals. This is illustrated in Figure A1.1. 
(In Appendix 2, we will deal with situations in which very few observations are avail-
able to construct a histogram because the sample size is small.)

If we now wish to determine the probability of a failure occurring between times 
ti–1 and ti, we simply multiply the ordinate y by the interval (ti–1, ti). Further examina-
tion of Figure A1.1 will reveal that the probability of a failure occurring between 
t0 and tn, where t0 and tn are the earliest and latest times, respectively, at which the 
equipment has failed, is unity. That is, we are certain of the failure occurring in the 
interval (t0, tn), and the area of the histogram is equivalent to 1.

A1.3  PROBABILITY DENSITY FUNCTION

In maintenance studies, we tend to use probability density functions (pdf) rather than 
relative frequency histograms. This is because (1) the variable to be modeled, such as 
time to failure, is a continuous variable, (2) these functions are easier to manipulate, 
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and (3) it should give a clearer understanding of the true failure distribution. Pdfs 
are similar to relative frequency histograms except that a continuous curve is used 
instead of bars, as shown in Figure A1.2. The equation of the curve of the pdf is 
denoted by f (t).

For example, if we have f (t) = 0.5 exp (–0.5t), we get a curve of the shape of Figure 
A1.3. This is a pdf of an exponential distribution. Similar to the area under a relative 
frequency histogram, the area under the probability density curve is also equivalent to 1.

Referring back to Figure A1.2, the probability (risk) of a failure occurring between 
times ti and tj is the area of the shaded portion of the curve. Resorting to our knowl-
edge of calculus, this area is the integral between ti and tj of f (t), namely,
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FIGURE A1.1  Histogram of time to failure.
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FIGURE A1.2  Probability density function.
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The probability of a failure occurring between times t0 and ∞ is then

	 f t t
t

( )d =
∞

∫ 1

0

.

	

Needless to say, the failure characteristics of different items of equipment are likely 
to be different from each other. Even the failure characteristics of identical equipment 
may not be the same if they are operating in different environments. There are a number 
of well-known pdfs that have been found in practice to describe the failure characteris-
tics of equipment; some are illustrated in Figure A1.4.
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FIGURE A1.3  A pdf of exponential distribution.
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FIGURE A1.4  Common probability density functions.
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A1.3.1 H yperexponential

When equipment has a failure time that can be very short or very long, its failure dis-
tribution can often be represented by the hyperexponential distribution. Some com-
puters have been found to fail according to this distribution. In the hyperexponential 
distribution, the short times to failure occur more often than in the negative exponen-
tial distribution, and similarly, the long times to failure occur more frequently than 
in the exponential case.

The density function of the hyperexponential distribution is

	 f(t) = 2k2λexp[−2kλt] + 2(1 − k)2λexp[−2(1 − k)λt]

for t ≥ 0 with 0 < k ≤ 0.5, where λ is the arrival rate of breakdowns and k is a param-
eter of the distribution.

A1.3.2  Exponential

The exponential distribution is one that arises in practice wherein failure of the 
equipment can be caused by failure of any one of a number of components of which 
the equipment is comprised. It is also characteristic of equipment subject to failure 
due to random causes, such as sudden excessive loading. The distribution is found to 
be typical for many electronic components and complex industrial plants.

The density function of the exponential distribution is

	 f(t) = λexp[−λt]  for t ≥ 0	

where λ is the arrival rate of breakdowns, and 1/λ is the mean of the distribution.
A probability function closely related to the exponential distribution is the Poisson 

distribution. If the time between failures of an item follows an exponential distribu-
tion, the arrival of failures is described as a Poisson process. The probability of 
observing n failures during the time interval [0, t], Pn(t), can be determined by the 
Poisson distribution, which has the following form:

	 P t
t t

n
t nn

n

( )
( ) exp( )

!
= − ≥λ λ

for and is a non-ne0 ggative integer
	

where λ is the mean arrival rate of failures.

A1.3.3 N ormal

The normal (or Gaussian) distribution applies, for instance, when a random outcome 
(such as time to failure) is the additive effect of a large number of small and indepen-
dent random variations. When this is true for the time to failure, the failure distribu-
tion is a bell-shaped normal function.
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In practice, the lifetime of light bulbs and the time until the first failure of bus 
engines have been found to follow a normal distribution.

The density function of the normal distribution is

	 f t
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where μ is the mean and σ the standard deviation of the distribution.
Note that for the normal distribution,
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In practice, however, if the mean of the normal distribution, μ, is considerably 
removed from the origin t = 0 and the variance, σ2, is not too large, then it is accept-
able to use the normal distribution as an approximation to the real situation. A rough 
and ready rule would be that the mean μ should be greater than 3.5 σ because, for 
this case, there would be a less than 1 in 4000 chance of the distribution giving a 
negative failure time.

A1.3.4 W eibull

The Weibull distribution fits a large number of failure characteristics of equipment. 
One of the original articles on the application of the Weibull distribution to equip-
ment failure times was related to electron tubes.

The density function of the two-parameter Weibull distribution is
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where ή is the scale parameter (also known as the characteristic life), β is the shape 
parameter, and ή and β are positive. When β = 1, the two-parameter Weibull is equiv-
alent to the exponential distribution; when β = 2, it becomes the Rayleigh distribu-
tion. The Weibull approximates a normal distribution when, for example, β = 3.44. A 
detailed discussion of the Weibull distribution is given in Appendix 2.

Before leaving pdfs, it should be noted that there are other distributions relevant to 
maintenance studies, including, for example, the gamma, Erlang, and lognormal. For 
the density functions of these distributions, and many others, the reader may refer to 
Forbes et al. (2010).
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A1.4  CUMULATIVE DISTRIBUTION FUNCTION

In maintenance studies, we are often interested in the probability of a failure occur-
ring before some specified time, say, t. This probability can be obtained from the 
relevant pdf as follows:

	 Probability of failure before time dt f t t

t

= ∫ ( )
0 	

The integral f t t

t

( )d
0
∫  is denoted by F(t) and is termed the cumulative distribution 

function. As t approaches infinity, F(t) tends to 1.
The form of F(t) for the four density functions described in Section A1.3 is illus-

trated in Figure A1.5. F(t) of a normal function can be obtained from the standard 
normal distribution table. This is explained in Table A1.1.
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A1.5  RELIABILITY FUNCTION

A function complementary to the cumulative distribution function is the reliability 
function, also known as the survival function. It is determined from the probability 
that the equipment will survive at least to some specified time, t. The reliability func-
tion is denoted by R(t) and is defined as

	 R t f t t
t

( ) ( )=
∞

∫ d

	

and, of course, R(t) is also equivalent to 1 – F(t). As t tends to infinity, R(t) tends to zero.
The form of the reliability function for the four density functions described in 

A1.3 is illustrated in Figure A1.6.
Consider an item that is operational at time t1 when a mission starts. We may 

wish to determine the probability of the item surviving the mission of duration t. The 
required measure can be expressed in the usual notation of conditional probability as
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where T is time to failure.
If the failure time follows an exponential distribution, as shown in Figure A1.7, 

Equation A1.1 will become
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TABLE A1.1
Standard Normal Distribution Table

The cumulative distribution function, F(t), of a normal function with mean = μ and standard 
deviation = σ can be determined from the standard normal distribution table given in Appendix 9, 
which tabulates the value of 1 – Φ(z), where z [= (t – μ)/σ] is a standardized normal variable and Φ(z) 
is the cumulative distribution function of the standard normal distribution. Thus, the table provides 
the probability that the standardized normal variable chosen at random is greater than a specified 
value of z.

The normal distribution being symmetrical about its mean, Φ(–z) = 1 – Φ(z). Thus, only the 
probability for z ≥ 0 is tabulated.
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Thus, for operational items with failure times that are exponentially distributed, 
R(t1 + t | t1) = R(t). In other words, their chance of survival (or conversely, their risk 
of failure) in the next instance is independent of their current age. This memoryless 
property is unique to the exponential distribution, the only continuous distribution 
with this feature.

A1.6  HAZARD RATE

A statistical characteristic of equipment frequently used in replacement studies is 
the hazard rate.

To introduce the hazard rate, consider a test in which a large number of identi-
cal components are put into operation and the time to failure of each component is 
noted. An estimate of the hazard rate of a component at any point in time may be 
thought of as the ratio of a number of items that failed in an interval of time (say, 1 
week) to the number of items in the original population that were operational at the 
start of the interval. Thus, the hazard rate of an item at time t is the probability that 

1.00

0.80

0.60

0.40

0.20

0.00
0 10 20 30 40

λ = 0.1
κ = 0.25

(a) A hyper exponential function

(a) Hyper exponential function:

1.00

0.80

0.60

0.40

0.20

0.00
0 10 20 30 40

λ = 0.1

(b) An exponential function

(b) Exponential function:

1.00

0.80

0.60

0.40

0.20

0.00
0 10 20 30 40

μ = 10
σ = 2

(c) A normal function

(c) Normal function:

1.00

0.80

0.60

0.40

0.20

0.00
0 10 20 30 40

η = 10
β = 2

(d) A Weibull function

(d) Weibull function:

R(
t)

R(
t)

t t

t t

R(
t)

R(
t)

 [ ] [ ]tkktkktR λλ )1(2exp)1(2exp)( −−−+−=
 [ ]ttR λ−= exp)(

dtttR
t
∫
∞ −−=

2

2
1exp

2
1)(

σ
µ

πσ

−=
β

η
ttR exp)( ( (

( (

FIGURE A1.6  Reliability functions.



227Appendix 1

the item will fail in the next interval of time given that it is good at the start of the 
interval; that is, it is a conditional probability.

Specifically, letting h(t)δt be the probability that an item fails during a short 
interval δt, given that it has survived to time t, the usual notation for conditional 
probability may be written as

	 P(A|B) = probability of event A occurring once it is known that B has occurred	
= h(t)δt

f (T )
f (T ) = λ exp(–λT)

R(t1) = exp(–λt1)
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FIGURE A1.7  Exponential distribution: reliability at t1 (a), and reliability at t1 + t, given that 
the item is operational at t1 (b).
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where A is the event “failure occurs in interval δt” and B is the event “no failure has 
occurred up to time t.”
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where P(A and B) is the probability of both events A and B occurring and
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Therefore, the hazard rate in interval δt is
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If Equation A1.2 is divided through by δt, and δt → 0, this gives h t
f t
F t

( )
( )

( )
=

−1
, 

where h(t) is termed hazard rate, also known as instantaneous failure rate.
The form of the hazard rate for the distributions discussed in Section A1.3 is 

illustrated in Figure A1.8.
An interesting point to note about the hyperexponential distribution is that as 

time increases, the hazard rate decreases. This may be interpreted as an improve-
ment in the equipment over time and may be the case with equipment that requires 
small adjustments after an overhaul or replacement to get it completely operational. 
Equipment that work hardens over time can also be modeled by this distribution.

When the hazard rate increases with time, such as for the normal distribution, it 
indicates an aging or wear-out effect.

With the exponential distribution, the hazard rate is constant. This failure pattern can 
be the result of completely random events such as sudden stresses and extreme conditions. 

It also applies to the steady-state condition of complex equipment that fails when 
any one of a number of independent constituent components breaks, or when any one 
of a number of failure modes occurs.
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Before leaving this aspect, it is interesting to note the form, illustrated in Figure 
A1.9, that the hazard rate sometimes takes with complex equipment. For obvious 
reasons, such a pattern is often referred to as the bathtub curve.

The bathtub curve may be interpreted as the aggregated effect of three categories 
of failures: quality failures, stress-related failures, and wear-out failures.

Regions A, B, and C of Figure A1.9 are labeled as

A = a running-in period
B = normal operation in which failures that occur are predominantly due to 

chance
C = deterioration, i.e., due to wear-out
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A common problem in maintenance is to determine the most appropriate policy to 
adopt when equipment is in one of the regions A, B, and C. If the only form of main-
tenance possible is replacement, either on a preventive basis or because of failure, 
then in regions A and B no preventive replacements should be applied because such 
replacements will not reduce the risk of equipment failure. If preventive replacements 
are made in regions A and B, maintenance effort is being wasted. Unfortunately, this 
is often the case in practice because it is often mistakenly assumed that as equipment 
ages, the risk of failure will increase. In region C, preventive replacement will reduce 
the risk of equipment failure in the future, and just when these preventive replace-
ments should occur will be influenced by the relative costs or other relevant impact 
factors, such as downtime of preventive and failure replacements. Such replacement 
problems are covered in Chapter 2.

When maintenance policies are more general than replacement only, such as 
including an overhaul that may not return the equipment to a statistically as-good-as-
new condition, then preventive maintenance may be worthwhile in all three regions. 
Such policies are discussed in Chapter 3.

A1.7  THE ACCOMPANYING E-LEARNING MATERIALS

The contents of this appendix and some other extra topics are packaged into a set of 
e-learning materials called “Introduction to Reliability Engineering,” which can be 
downloaded from http://www.crcpress.com/product/isbn/9781466554856.

PROBLEMS

	 1.	The failure times for a model 555 rifle has demonstrated a normal pdf with μ = 
100 hours and σ = 10 hours. Find the reliability of such a rifle for a mission 
time of 104 hours and the hazard rate of one of these rifles at age 105 hours.

h(t)

Region A

Quality
 failures

Region B

Stress related failure

Region C

t

Wearout 
failures

FIGURE A1.9  Bathtub curve.
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	 2.	A computer has a constant error rate of one error for every 17 days of con-
tinuous operation. What is the computer’s reliability to correctly solve a 
problem that requires 5 hours of operation? 25 hours of operation?

	 3.	The failure times of JP29M transmitting tubes have a Weibull distribution 
with β = 2 and η = 1000 hours. Find the reliability of one of these tubes for 
a mission time of 100 hours and the hazard rate associated with one that has 
operated successfully for 100 hours.

	 4.	Jackleg drill failures have been analyzed, and the failure distribution is 
found to be uniform within the interval 0 to 2000 hours of operation. That 
is, the pdf of the failure distribution has a constant value within the speci-
fied interval and 0 elsewhere. What is the probability of a drill continuing 
to operate satisfactorily for a project period of 20 hours given that the drill 
had already been used for 1200 hours?

	 5.	Failure times of a type GLN microwave tube have been observed to follow 
a normal distribution with μ = 5000 hours and σ = 1000 hours.

		  Find the reliability of such a tube for a mission time of 4100 hours and the 
hazard rate of one of these tubes at age 4400 hours.

	 6.	A component’s constant hazard rate is 20 failures/106 hours.
		  Write down its failure density function and sketch its form.
		  Write down its hazard rate function and sketch its form.
		  Write down its reliability function for mission t and sketch its form.
		  Write down its reliability function for a mission t, starting the mission at age T.
	 7.	Truck water pump failures have been analyzed and it was found, by using a 

statistical goodness-of-fit test, that the pump failure times can be described 
adequately by the uniform distribution shown in Figure A1.10. Given this 
failure pattern, plot to scale:

f(t), the probability density function
R(t), the reliability function
h(t), the hazard rate function

0

50

5000 10,000 15,000 20,000 Kilometers to failure

Frequency

FIGURE A1.10  Water pump failure pattern.
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Appendix 2: Weibull Analysis

Weibull analysis is the world’s most popular method of analyzing and predict-
ing failures and malfunctions of all types. The method identifies the category 
of failure: infant mortality, random, or wear out. Weibull analysis provides the 
quantitative information needed for making RCM decisions, which are often 
made from a qualitative approach.

—Paul Barringer

A2.1 � WEIBULL DISTRIBUTION

The Weibull distribution is named after Waloddi Weibull (1887–1979), who found 
that, in general, distributions of data on product life can be modeled by a function of 
the following form:
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The three parameters of a Weibull distribution are β (the shape parameter), γ (the 
location parameter), and η (the scale parameter). β and η are greater than 0.

Consider the case when γ = 0 (which is usually the case when dealing with com-
ponent preventive replacement—see Chapter 2) and η is kept constant; Weibull dis-
tributions for β = 0.5, 1, 2.5, 3.44, and 5 are shown in Figure A2.1.

A2.1.1 �S hape Parameter

The β value determines the shape of the distribution. When β < 1, the Weibull distribu-
tion has a hyperbolic shape with f(0) = ∞. When β = 1, it becomes an exponential func-
tion. When β exceeds 1, it is a unimodal function in which skewness changes from left 
to right as the value of β increases. When β ≈ 3.44, the Weibull distribution approxi-
mates the symmetrical normal function. Hence, β is termed the shape parameter.

The hazard rate, h(t), of the Weibull distribution is of the following form:
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Clearly, h(t) varies with the value of the independent variable t, as shown in 
Figure A2.2. In particular, when β < 1, h(t) is a decreasing function of t. When β = 1, 
h(t) does not vary with t; h(t) becomes an increasing function of t when β > 1.

A2.1.2 �S cale Parameter

Figure A2.3 shows two Weibull distributions, both with identical γ and β values, but 
different in their η values. Although both share the same shape, the spread of these 
distributions is proportional to the η value. Hence, η is termed the scale parameter.

β = 5

β = 3.44

β = 2.5

β = 1

β = 0.5

γ = 0
η is kept constant

0
0

t

f(t
)

FIGURE A2.1  Two-parameter Weibull functions.
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FIGURE A2.2  Hazard rate of Weibull distribution.
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The cumulative distribution function, F(t), of the Weibull distribution is:
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When t − γ = η, F(t) = 1 − exp(−1), or approximately 63.2%, for all values of β. 
Thus, η is also known as the characteristic life of the Weibull distribution.

A2.1.3 �L ocation Parameter

By definition, the probability density function of the Weibull distribution is zero for 
t ≤ γ. That is, there is no risk of failure before γ, which is therefore termed the location 
parameter or the failure-free period of the distribution.

In practice, γ may be negative, in which case the equipment may have undergone 
a run-in process or had been in use prior to t = 0 (Figure A2.4).

A2.1.4 �F itting a Distribution Model to Sample Data

Maintenance decision analysis often requires the use of the failure time distribution 
of equipment, which may not be known. There may, however, be a set of observa-
tions of failure times available from historical records. We might wish to find the 
Weibull distribution that fits the observations, and to assess the goodness of the fit.

γ = 0
β = 2.5
η = 10

γ = 0
β = 2.5
η = 15

0
0

t

f(t
)

FIGURE A2.3  Two Weibull distributions with identical location and shape parameters but 
different scale parameters.
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If data in the form of historical records are not available, a specific test or series of 
tests needs to be made to obtain a set of observations, that is, sample data. A sample 
is characterized by its size and by the method by which it is selected. The purpose 
of obtaining the sample is to enable inferences to be drawn about properties of the 
population from which it is drawn.

These comments have been made in the context of identifying failure distribu-
tions from sample data. Similar points can be made about estimating trend lines 
from sample data, such as the trend in equipment operating costs.

Techniques available for identifying probability distributions from a sample are 
discussed in the subsequent sections of this appendix.

A2.2 � WEIBULL PAPER

The form of the cumulative distribution function, F(t), of a Weibull distribution for 
γ = 0 is
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With simple manipulation, this equation can be transformed into the linear 
expression
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FIGURE A2.4  A Weibull distribution with γ > 0.
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Thus, a plot of ln ln
( )

1
1−





F t

 versus ln t will give a straight line when t is gener-

ated from a Weibull distribution with γ = 0. Special graph paper, known as Weibull 
paper, with the vertical axis in ln ln scale and the horizontal axis in ln scale, makes 
it possible to plot F(t) and t directly. Figure A2.5 shows a two-cycle Weibull paper—
paper with an abscissa scale that spreads over a range of 102 units of the life value 
(Nelson 1967).
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FIGURE A2.5  Two-cycle Weibull paper.
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A2.3 � WEIBULL PLOT

A2.3.1 � Estimating the Cumulative Percentage of Failure, F(t)

Plotting failure data on Weibull paper involves the estimation of F(ti) for every 
observed failure time ti. Consider five failures at 2, 7, 13, 19, and 27 cycles. Let i 
denote the rank of an observation when data are sorted in ascending order. In this 
example, i = 1 for 2 cycles and i = 5 for 27 cycles. Using i/n as an estimate, the values 
of F(ti) for the sampled data are 20%, 40%, 60%, 80%, and 100%, respectively. That 
is, 100% of the items are expected to fail at 27 cycles. Obviously, the F(ti) values thus 
determined are pessimistic estimates.

A better estimate of F(ti) is to use the median rank table given in Appendix 11. 
The determination of median ranks is explained in Table A2.1. The first row of a 
median rank table shows the sample size n, and the first column indicates the rank 
number i. For a sample of five observations, the values of F(ti) are 12.9%, 31.4%, 
50.0%, 68.6%, and 87.1%. Using this method, the chance of these estimates being 
optimistic is equal to that of them being pessimistic.

For sample sizes greater than 12 but less than 100, Benard’s approximation for the 
median rank is adequate as an estimate of F(ti):
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TABLE A2.1
Median Ranks
The median rank is the solution for F(t) in the following equation:
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where i is the ranked-order number of our observation and n is the sample size. The left-hand side of 
Equation AT2.1 evaluates the probability of observing i or more failures at time t in n observations.

Example:
Suppose we have observed 10 items and the median rank of the third-ranked failure at time t is to be 
determined. In this case, i = 3, n = 10, we solve for F(t) in Equation AT2.1.
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Thus, the median rank of the third-ranked failure is 0.25857.
Solving for F(t) in Equation AT2.1 involves the use of cumulative binomial probability tables (Murdoch 

and Barnes 1970). This can be a tedious process. However, it can be simplified by using the median 
ranks table in Appendix 11.
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For sample sizes greater than 100, the effects of small sample bias are insignifi-
cant and F(ti) may be estimated from the expression for mean ranks:

	
F t

i
ni( ) ≈
+1

The median rank, mean rank, 5% rank, and 95% rank are parameters of the rank 
distribution. The concept of rank distribution is explained using a simulator in the 
WeibullSoft package, which can be downloaded from the Web site http://www.​
crcpress.com/product/isbn/9781466554856.

A2.3.2 � Estimating the Parameters

The procedure for fitting a Weibull distribution to a data set of failure times is 
explained with the use of a worked example relating to lamp failures. Because there 
are numerous failure observations in the example, data are grouped into a number 
of nonoverlapping intervals of failure time, as shown in Table A2.2. The cumulative 
probability of failure F(ti) for the end of each time interval is equal to the cumulative 

TABLE A2.2
Lamp Failure Data

End of Time Interval, ti Cumulative Probability, F(ti) (%)

<04 5

<08 14

<12 20

<16 25

<20 32

<24 38

<28 46

<32 48

<36 54

<40 60

<44 64

<48 66

<52

<56

<60 78

<64

<68

<72

<76

<80 86
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number of failures observed up to the end of the interval divided by the original num-
ber of lamps in the sample. A Weibull plot of the data set is given in Figure A2.6, in 
which the value of F(ti) is plotted at the time corresponding to the end of the interval 
(ti) because it is the cumulative value for the interval [0, ti].

If we can fit a straight line through the Weibull plot, such as the case shown in 
Figure A2.6, the Weibull distribution with γ = 0 can be used as the model of the data 
set. We can then proceed to estimate the other parameters of the distribution from 
the plot.

From the estimation point on the top left-hand corner of the Weibull paper, we 
draw a line perpendicular to the fitted line. The intersection between the perpen-
dicular line and the β̂ scale beneath the estimation point gives the estimated value of 
β. The value of t at which the fitted line cuts F(t) = 63.2% (the η estimation line on 
Weibull paper) is an estimate of η.

^
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FIGURE A2.6  Weibull plot of lamp failure data.



241Appendix 2

Although a Weibull distribution is completely defined by the values of its γ, β, 
and η parameters, we may also wish to determine its mean value μ. It can also be 
determined from the Weibull plot, from the intersection of the perpendicular line 
and the Pμ scale beneath the estimation point of the Weibull paper. In the example 
given in Figure A2.6, Pμ = 60%. Thus, the estimated value of the distribution mean 
is 40 hours, the time at which the cumulative probability of failure is 60%.

Both the mean μ and standard deviation σ of the Weibull distribution can also be 
determined analytically using the following expressions:
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Values of the gamma function, Γ(z), for z = 1 to 2 are given in Appendix 10.

A2.3.3 �N onlinear Plot

Consider the following example: 20 randomly selected motors were put on a life 
test program. At the end of the test, 12 of these motors failed and their failure times 
were recorded. The failure times of the other eight motors that survived the test (i.e., 
ti > 2325 hours) are regarded as censored data.* Table A2.3 tabulates the observed 
failure times sorted in ascending order, along with their median ranks.

A Weibull plot of these results is shown in Figure A2.7. Because the plot is a 
curve, we have to use a three-parameter Weibull distribution to model the data set. 
The curvature of the plot suggests that the location parameter γ of the fitted distri-
bution is >0. Obviously, γ must be less than or equal to the shortest failure time, t1. 
Finding the correct value of γ will produce a linear plot.

We can find γ by trial and error. Let a trial value of gamma be γ̂, subtracting different 
values of γ̂ (0 ≤ γ̂ ≤ t1) from every ti until we obtain a straight line for the plot of (ti − γ̂ ) 
versus F(ti) on Weibull paper. In this example, a good straight line can be obtained 
for γ̂ = 375 hours. The adjusted failure times, (ti − γ̂), are tabulated in Table A2.4. The 
Weibull plot of the adjusted data is a straight line, as shown in Figure A2.8.

Summarizing the results, the parameters of the fitted distribution are γ = 375 
hours, β = 1.32, and η = 2120 hours. The probability density function of the fitted 
distribution is shown in Figure A2.9.

*	Censored data are defined in Section A2.7.
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TABLE A2.3
Motor Failure Data

Failure 
Number, i Time of Failure, ti

Median Ranks, N = 20, 
F(ti) (%)

1 550 3.406

2 720 8.251

3 880 13.147

4 1020 18.055

5 1180 22.967

6 1330 27.880

7 1490 32.795

8 1610 37.710

9 1750 42.626

10 1920 47.542

11 2150 52.458

12 2325 57.374

13–20 Censored dataa

a	 Censored data are defined in Section A2.7.
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FIGURE A2.7  Weibull plot of motor failure data.
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TABLE A2.4
Adjusted Motor Failure Data, ti −− γ̂γ
Failure 
Number, i

Adjusted Failure 
Data, ti −− γ̂γ

Median Ranks, N = 20, 
F(ti) (%)

1 175 3.406

2 345 8.251

3 505 13.147

4 645 18.055

5 805 22.967

6 955 27.880

7 1115 32.795

8 1235 37.710

9 1375 42.626

10 1545 47.542

11 1775 52.458

12 1950 57.374

13–20 Censored data
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FIGURE A2.8  Weibull plot of adjusted motor failure data.
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Apart from the trial-and-error approach, there is a more direct way to obtain the 
γ value. It is a graphical method involving the following steps:

	 1.	Select two endpoints of the Weibull plot that cover the entire set of failure 
data. Let a and c be the projections of these endpoints on the F(t) axis, as 
shown in Figure A2.10.

	 2.	Bisect the distance between a and c. Let b be the midpoint.

(
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“η” = 2495
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FIGURE A2.9  Probability density function of motor failure time.
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FIGURE A2.10  A nonlinear Weibull plot.
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	 3.	Let the projections of a, b, and c on the t-axis be t1, t2, and t3, respectively.
	 4.	The location parameter γ can be estimated from the following equation:
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We will now use the graphical method to find the location parameter. From the 
Weibull plot of Figure A2.11, we have t1 = 500 hours, t2 = 933 hours, and t3 = 2500 hours.

Using the equation

	

ˆ ( )( )
( ) ( )

ˆ (

γ

γ

= − − −
− − −

= −

t
t t t t

t t t t2
3 2 2 1

3 2 2 1

933
2500 −− −

− − −

=

933 933 500
2500 933 933 500

335

)( )
( ) ( )

h

Item: motor
99.9

99

90
80
70

50
40
30
20

10

5

2
1

.5

.2

.1
100 1000 10,000

t1 t2

Age (h)

t3

63.2

a

b

c

FIGURE A2.11  Weibull plot of motor failure time: estimation of γ.
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A2.4 � CONFIDENCE INTERVAL OF A WEIBULL PLOT

We now analyze failure data to estimate measures of reliability such as F(t) from the 
Weibull plot. For more security, we will determine a confidence interval on our esti-
mation of F(t). Suppose we want to find a (1 − α) confidence interval for F(t), in which 
α is the risk we are willing to accept that the interval we find does not contain the 
true F(t). For example, when we establish a 90% confidence interval for F(t), it means 
that we are 90% confident that the real F(t) is contained in the confidence interval.

To build the confidence interval, we need to use 5% and 95% ranks. Tables of 5% 
and 95% ranks are given in Appendices 12 and 13. The procedure for determining 
the 90% confidence limits on F(t) of a failure time is illustrated in Figure A2.12.

There is an alternative procedure for constructing the confidence interval, as 
shown in Figure A2.13. In this alternative procedure, the three points correspond-
ing to the 5%, 50%, and 95% ranks of a given failure time t are plotted on a vertical 
line rather than a horizontal line (O’Connor and Kleyner 2012). With this procedure, 
however, we often cannot determine the lower bound for the confidence interval of 
the B10 life without extrapolation if the size of the data set used to create the Weibull 
plot is small (the B10 life will be introduced in Section A2.5). The procedure illus-
trated in Figure A2.12 does not have this problem.

Example

We tested 10 electrical batteries for 9 hours. At the end of the test, two were still 
working. Here are the times when the other eight failed: 1.25, 2.40, 3.20, 4.50, 
5.00, 6.50, 7.00, and 8.25 hours.

F(t)

Time

Weibull plot

Median rank of the ith failure time

A point determined from 95% rank

5% rank of the ith failure time

Time of the ith failure

95% rank of the ith failure time

A point determined from 5% rank

FIGURE A2.12  Determining confidence interval of a Weibull plot: method 1.
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The data for establishing the 90% confidence interval on the estimate of F(t) 
are given in Table A2.5.

Using the procedure explained in Figure A2.12, the Weibull plot with the 90% 
confidence interval is shown in Figure A2.14, from which we can say with 90% 
confidence that at t = 4.5 hours, the cumulative distribution function F(t) will have 
a value between 16% and 64%. In other words, after 4.5 hours, in 90% of similar 
tests, between 16% and 64% of the batteries will have stopped working.

If we want a 90% confidence interval on the reliability R(t) at time 4.5 hours, 
we take the complement of the limits on the confidence interval for F(t), that is, 
(100 − 64, 100 − 16). In other words, we are 90% confident that reliability at time 
t = 4.5 hours is between 36% and 84%. Or we can say that we are 95% confident 
that the reliability after 4.5 hours of operation will not be less than 36%.

F(t)

Time

Weibull plot

Median rank of t5 

5% rank of t5 

In this example, the data set 
consists of 5 failure times: t1 to t5

95% rank of t5

t5t4t3t2t1

FIGURE A2.13  Determining confidence interval of a Weibull plot: method 2.

TABLE A2.5
Battery Failure Data: Median, 5%, and 95% Ranks

Failure No. ti Median Ranks 5% Ranks 95% Ranks

1 1.25 6.697 0.512 25.887

2 2.40 16.226 3.677 39.416

3 3.20 25.857 8.726 50.690

4 4.50 35.510 15.003 60.662

5 5.00 45.169 22.244 69.646

6 6.50 54.831 30.354 77.756

7 7.00 64.490 39.338 84.997

8 8.25 74.142 49.310 91.274

Appendix used 11 12 13
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A2.5 � Bq LIFE

The Bq life of an item is the time at which q% of the population will have failed. To 
illustrate, let us take the example in Section A2.4. From Figure A2.15, we obtain the 
following results.

The point estimate of B20 life is 2.72 hours. The 90% confidence interval on the B20 
life is between 1.1 and 5.0 hours. B10 is often quoted in the specification of bearing life.

A2.6 � KOLMOGOROV–SMIRNOV GOODNESS-OF-FIT TEST

The Kolmogorov–Smirnov (K-S) test is an appropriate tool to determine if a hypoth-
esized distribution fits a data set. The test can be used for small as well as large sam-
ple sizes. It is limited, though, to the evaluation of hypothesized distributions that are 
continuous and completely specified; for example, t is exponentially distributed with 
λ = 10, or t is generated from a Weibull distribution with γ = 0, β = 2, and η = 2150.

The K-S procedure tests the hypothesis that the cumulative distribution function, 
F0(t), is F(t). A random sample of size n is drawn from a continuous distribution F(t). Let 
the sample cumulative distribution function be ˆ ( )F t , and it is estimated by median rank 
(for small n) or mean rank (for large n). ˆ ( )F t  is then compared with the hypothesized 
F(t). If ˆ ( )F t  deviates too much from F(t), the hypothesis that F0(t) = F(t) is rejected.

Suppose we want to test the hypothesis at a significance level of α; this means that 
we are willing to accept α as the risk of wrongly rejecting the hypothesis, that is, 
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FIGURE A2.14  Weibull plot of battery failure time: 90% confidence interval of F(t).
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F0(t) = F(t), when it is true. This is known as type I error in statistical tests. Reducing 
the significance level, α, without increasing the sample size at the same time will 
increase another type of risk—the risk of wrongly accepting the hypothesis when it 
is not true; this is known as a type II error. The significance level used represents a 
tradeoff between the cost of sampling and the risk of making wrong decisions from 
the test. Typical values of significance level are 1%, 2%, 5%, 10%, and 20%.

The K-S test statistic is d F t F t
i

i i= −max ( ) ˆ ( ) .

When the hypothesis that F0(t) = F(t) is true, d has a distribution that is a function 
of n but which is independent of F0(t). The hypothesis that F0(t) = F(t) is rejected at the 
α level of significance whenever d > dα. The values of dα are given in Appendix 14.

In principle, the differences between ˆ ( )F ti  and F(ti) must be examined for all ti. 
In reality, these differences need to be examined only at the jump points of F(t). The 
jump points occur at the observed values of the random variables. At each jump 
point, ti, the two differences F t F ti i( ) ˆ ( )−  and F t F ti i( ) ˆ ( )− −1  must be obtained (see 
Figure A2.16). For a random sample of size n, the maximum absolute deviation, d, 
must be among these 2n differences. Hence,

	
d F t F t F t F t

i
i i i i= − −( )−max ( ) ˆ ( ) , ( ) ˆ ( )1
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FIGURE A2.15  Weibull plot of battery failure time: 90% confidence interval of B20.
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Hypothesized distribution

ti–1 ti
t

F(t)

F(ti ) – F(t i–1)

F(ti ) – F(ti )

F(t )i 

F(ti )

F(ti–1)

^

^

^

^

FIGURE A2.16  K-S goodness-of-fit test.

FIGURE A2.17  Screen dump of WeibullSoft.
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Example

We have tested five items to failure and the failure times are 2, 5, 6, 8, and 10 hours.
Using the WeibullSoft package, which can be downloaded from the Web site 

http://www.crcpress.com/product/isbn/9781466554856, the estimated parameters 
of the Weibull distribution that fits the data set are determined to be γ = 0, β = 1.64, 
and η = 7.36 hours.

Figure A2.17 is a screen dump of the output of the package when the data 
set is analyzed. Hitting the “goodness-of-fit test (K-S test)” button causes the K-S 
test summary window to pop up. The window indicates that the test statistic d 
is equivalent to 0.283, and the critical value dα is equivalent to 0.51 at the 10% 
significance level. Because d < dα, the fitted Weibull distribution is not rejected as 
a model of the data set.

The calculations involved in the test are shown in Table A2.6.

A2.7 � ANALYZING FAILURE DATA WITH SUSPENSIONS

In practice, not every item that is observed is tested to failure. The test may be ter-
minated for reasons other than failure, such as breakdown of the test rig, losing track 
of a test item, quarantining of the test site, or reaching the predetermined time limit 
for the test.

When we have only partial information about an item’s lifetime, the information 
is known as censored or suspended data. Suspended data will not cause complica-
tions in Weibull analysis if all of them are longer than the observed failure times. 
However, we need to use a special procedure to handle them when some of the fail-
ure times are longer than one or more of the suspension times. In the latter case, sus-
pended data are handled by assigning an average order number to each failure time.

Suppose we test four items, with results shown in Table A2.7. The information 
shows that the first failure happened at 43 hours. At 55 hours, an item was removed 
from the test before its failure (it was suspended). Two more failures occurred at 74 
and 98 hours, respectively.

TABLE A2.6
K-S Test: Determining the Test Statistic, d

ti F(ti)a ˆ( )F ti
b F t F ti i( ) ˆ( )−− F t F ti i( ) ˆ( )−− −−1 d

2 0.111 0.129 0.018 0.018

5 0.412 0.314 0.098 0.283 0.283
6 0.511 0.500 0.011 0.197 0.197

8 0.682 0.686 0.004 0.182 0.182

10 0.809 0.871 0.062 0.123 0.123

Note:	 Maximum d = 0.283.
a	

F t
t

i
i( ) exp

.

.

= − −


















1
7 36

1 64

.

b	 ˆ ( )F ti  is obtained from the median rank table for n = 5.
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If the suspended item had continued to failure, one of the following outcomes 
shown in Table A2.8 would have resulted. It is noted that the suspended item could 
have failed in any one of the positions indicated in Table A2.8, which would produce 
a particular ordering of the failure times. The average position or order number will 
be assigned to each failure time for plotting.

In this example, the first observed failure time will always be in the first position. 
Thus, it has the order number m = 1. As for the second failure time, there are two pos-
sibilities that it could have an order number m = 2, and one possibility that it would 
have an order number m = 3. Thus, the average order number is

	
m = + × =3 2 2

3
2 33. .

The mean order number of the third failure determined by similar analysis was 
found to be 3.67.

We can use these mean order numbers to calculate the median rank. For exam-
ple, using Benard’s approximation, the median rank for the second failure time (F2) 
would be

	

2 33 0 3
4 0 4

0 461
. .

.
.

−
+

= .

TABLE A2.7
Data with a Suspended Item

Failure or Suspension Hours on Test

Failure (F1) 43

Suspension (S1) 55

Failure (F2) 74

Failure (F3) 98

TABLE A2.8
Three Scenarios for Failure of the 
Suspended Item

Case I Case II Case III

F1 F1 F1

S1 → F F2 F2

F2 S1 → F F3

F3 F3 S1 → F
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Alternatively, the median rank for a noninteger order number can be obtained 
from the median rank table for sample size n = 4 by interpolation.

For this example, the data for plotting on Weibull paper are shown in Table A2.9; 
obviously, using the previously discussed procedure to find the mean positions of 
failure times, when there are multiple suspensions, is cumbersome. Fortunately, the 
mean order numbers of failure times intermixed with suspension can be determined 
by using the following formula:

	
m m

n m
ki i

i

i

= + + −
+−

−
1

11
1

( )
	 (A2.1)

where mi = current mean order number, mi−1 = previous mean order number, n = total 
sample size for failure and censorings, and ki = number of items at risk just prior to 
the failure or suspension under consideration.

The following example illustrates the use of Equation A2.1.

Example

In a life test program, these failure times were recorded at 31, 39, 57, 65, 70, 105, 
and 110 hours.

The other items in the sample were removed at the following times without 
failure (suspension times): 64, 75, 76, 87, 88, 84, 101, 109, and 130 hours.

Even though this sample has 16 items, only 7 failures were observed. To pre-
pare for a Weibull analysis, the data set is reorganized as shown in Table A2.10.

The mean order numbers for the fourth to seventh failures have to be 
determined.

Consider the fourth failure (F4), number of survivors prior to the event, k4 = 12. 
Applying Equation A2.1 gives the mean order number for F4 as

	
m m

n m
k4 3

3

4

1
1

3
16 1 3

1 12
3 1 08 4 08= + + −

+
= + + −

+
= + =( ) ( )

. . .

Because there is no suspension between F4 and F5, the same increment of 1.08 
can be applied to determine m5. Thus, m5 = m4 + 1.08 = 4.08 + 1.08 = 5.16.

TABLE A2.9
Data with Suspended Item

Hours to Failure Mean Order Median Rank

43 1.00 0.159

74 2.33 0.461

98 3.67 0.766
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TABLE A2.10
Test Data with Multiple Suspensions

Failure Time, ti Suspension Time, si Mean Order No., mi

F1 31 1

F2 39 2

F3 57 3

64

F4 65 ?

F5 70 ?

75

76

84

87

88

101

F6 105 ?

109

F7 110 ?

130

TABLE A2.11
Test Data with Multiple Suspensions: Determining the Median, 5%, and 
95% Ranks

Failure 
Time, 

ti

Suspension 
Time, 

si

No. 
Survivors, 

ki

Mean 
Order 
No., mi

Median 
Rank 
(%)

Benard’s 
Approximate 

(%)
5% 

Rank
95% 
Rank

F1 31 16 1 4.24 4.27 0.32 17.08

F2 39 15 2 10.27 10.37 2.27 26.40

F3 57 14 3 16.37 16.46 5.32 34.38

64 (13)

F4 65 12 4.08 22.96 23.05 9.36 42.20

F5 70 11 5.16 29.57 29.63 13.94 49.46

75 (10)

76 (9)

84 (8)

87 (7)

88 (6)

102 (5)

F6 105 4 7.53 44.07 44.09 25.42 63.95

109 (3)

F7 110 2 10.69 63.40 63.35 43.29 80.71

130 (1)
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The mean order numbers for F6 and F7 are calculated in a similar manner. The 
data for the Weibull analysis are given in Table A2.11.

The median ranks as well as the confidence limits are obtained from the 
median rank, 5% rank, and 95% rank tables (Appendices 11, 12, and 13, respec-
tively) by interpolation, with sample size n = 16. The Weibull plot of the data is 
shown in Figure A2.18.

A2.8 � ANALYZING GROUPED FAILURE DATA 
WITH MULTIPLE SUSPENSIONS

When there are abundant failure data on an item, we can group the information into 
separate classes to ease processing.

Suppose the length of each class interval is W. Within an individual class, it could 
have many failures and suspensions (see Figure A2.19).

We can estimate the hazard rate at the center of the class to be

	
h t

F
A W

( ) =
V

where AV is the average number of items we had in the class interval, that is,

	
A

A A F C
V = + − −( )

2
.

1
1

10 100 1000

0.1

0.01
Time to failure, t

F(
t)

FIGURE A2.18  Weibull plot of the failure data given in Table A2.11.
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When the average hazard rate for each class interval is known, the cumulative 
distribution function can be estimated by the formula F(t) = 1 − exp[−H(t)], where 
H(t) is the cumulative hazard function:

	

H t h t t

t

( ) ( )= ∫ d
0

.

Because we are working with grouped data, the cumulative hazard function takes 
the form

	
H t h t W( ) ( )= ⋅∑ .

Example

We will study the failure data of a sugar feeder given in the first four columns of 
Table A2.12. The other columns of the table are calculations for estimating F(t) for 
individual class intervals.

Figure A2.20 illustrates the calculation for the first class interval (refer to data 
shown in Table A2.12).

Now that we have the values of F(t) for the end of each class interval, we can 
plot the data on Weibull paper. The value of F(t) must be plotted at the time cor-
responding to the end of the interval because it is the cumulative value for the 
whole interval. To plot F(t) at the midpoint of the interval is wrong because it 
underestimates the Weibull distribution.

Figure A2.21 shows the Weibull plot of the sugar feeder failure data.

A2.9 � ANALYZING COMPETING FAILURE DATA

When equipment can fail in more than one way, each of these ways of failure is 
known as a failure mode. For example, random voltage spikes, which cause failure 

A F C A–F–C

W

A is the number of operating items at the beginning of the class interval
F is the number of failures in the class interval
C is the number of suspensions in the class interval

FIGURE A2.19  Data in a class interval.
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by overloading the windings, and wear-out failure of bearings are two different fail-
ure modes of an electric motor. Because the multiple failure modes are competing 
with each other to be the event that causes equipment failure, they are known as 
competing failure modes of the equipment. The failure time distribution of one fail-
ure mode may differ from that of another failure mode. Thus, we need to analyze the 
failure data one failure mode at a time.

Consider a case in which there are two failure modes, A and B. The time-to-
failure data for each failure mode and suspension data are available. We have to 
apply the following data analysis procedure for determining the failure distribution:

•	 Perform a Weibull plot for failure mode A, treating failures due to failure 
mode B as suspensions

•	 Superimpose a second Weibull plot for failure mode B, treating failures due 
to failure mode A as suspensions

TABLE A2.12
Sugar Feeder Failure Data with Multiple Suspensions

Class, W Weeks F C A AV h(t)W H(t) = Σh(t)W F(t) = 1 – exp[−H(t)]

0 < 1 9 5 89 82.0 0.110 0.110 0.104

1 < 2 16 1 75 66.5 0.241 0.350 0.296

2 < 3 9 2 58 52.5 0.171 0.522 0.407

3 < 4 7 2 47 42.5 0.165 0.686 0.497

4 < 5 2 5 38 34.5 0.058 0.744 0.525

5 < 6 2 12 31 24.0 0.083 0.828 0.563

6 < 7 3 0 17 15.5 0.194 1.021 0.640

7 < 8 2 1 14 12.5 0.160 1.181 0.693

8 < 9 2 0 11 10.0 0.200 1.381 0.749

9 < 10 0 2 9 8.0

10 < 11 0 0 7 7.0

11 < 12 1 1 7 6.0 0.167 1.548 0.787

12 < 13 0 0 5 5.0

13 < 14 1 1 5 4.0 0.250 1.798 0.834

14 < 15 1 2 3 1.5 0.667 2.465 0.915

Subtotal 55 34

Total number of items observed = 55 + 34 = 89.

89 F = 9 C = 5 75

1
h(t) · W = 9

(89 + (89–9–5))/2
9

82
0.110= =

0

FIGURE A2.20  Data in the first class interval.
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•	 Let FA(t) and FB(t) be the cumulative distribution function for modes A and 
B, respectively; the cumulative distribution function of equipment failure is

	 FA(t) + FB(t) − FA(t) × FB(t).

This can be derived from the fact that neither mode A nor mode B failure has 
occurred by time t if equipment is reliable at t.

See Figure A2.22 for an illustration of the Weibull plots.
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FIGURE A2.21  Weibull plot of the sugar feeder failure data.
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A2.10 � HAZARD PLOT

For a Weibull distribution with γ = 0, the hazard rate (also known as instantaneous 
failure rate) is

	
h t

t
( ) =












−
β
η η

β 1

.

Thus, the cumulative hazard function is H t h t t
t

t

( ) ( )= =




∫ d

η

β

0

	
∴ = +ln( )

ln[ ( )]
ln( )t

H t
β

η .

This relationship provides the basis for construction of the Weibull hazard paper, 
which is basically a log–log paper. Figure A2.23 shows a two-cycle hazard paper for 
Weibull distributions. The slope of the plot would be 1/β. When H(t) = 100%, t = η.

F(t)

Modes 
combined

FA(t) + FB(t) – FA(t) × FB(t)

Mode B

FA(t)

FB(t)

Mode A

t

FIGURE A2.22  Weibull plots of competing failure mode data.
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Instead of plotting the cumulative proportion of items failed, as in the Weibull 
plot, we now plot the cumulative hazard function, using hazard papers. The plotting 
procedure is as follows:

	 1.	Tabulate the times to failure in ascending order.
	 2.	For each failure time, ti, calculate its hazard interval:

	 ΔH(ti) = 1/(number of items remaining after
	 the previous failure or censoring).

	 3.	For each failure time, calculate the cumulative hazard function:

	 H(ti) = ΔH(t1) + ΔH(t2) + … + ΔH(ti−1) + ΔH(ti).

	 4.	Plot the cumulative hazard against failure time on the chosen hazard paper. 
If we can fit a straight line through the hazard plot, the Weibull distribution 
with γ = 0 can be used as a model of the data set. We can then proceed to 
estimate the other parameters of the distribution from the plot.

	 5.	From the estimation point located at the intersection of 1.5% cumulative 
hazard on the x-axis and the value of 20 time units on the y-axis, draw a line 
parallel to the fitted line. The value at which the fitted line intersects with 
the shape parameter scale above the graph gives the estimated value of β.

Cumulative hazard %
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FIGURE A2.23  Two-cycle hazard paper for Weibull distributions.
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	 6.	The value of t that corresponds to 100% cumulative hazard on the fitted line 
is an estimate of η.

Example

To construct the hazard plot for the data set given in the example in Table A2.11, 
we prepare the data shown in Table A2.13.

Figure A2.24 is the hazard plot of this data set. The parameters of the fitted 
Weibull distribution are γ = 0, β = 2.09, and η = 108.8 hours.

Obviously, the hazard plotting technique has particular advantages when deal-
ing with censored or multifailure mode data. For example, in the latter case, one 
tabulation may then be used rather than a separate tabulation for each failure 
mode.

A limitation of hazard plotting is that we cannot construct a confidence interval 
of the plot.

A2.10.1 �N onlinear Plot

As with the Weibull probability paper, the Weibull hazard paper is based on the 
two-parameter Weibull distribution, and a nonzero value of failure-free life, γ, will 
result in a curved cumulative hazard line. A value for γ can be derived by following 
a procedure similar to that for the Weibull plot, except that equal length divisions are 
measured off on the horizontal (cumulative hazard) axis instead of on the vertical 
axis, as in the case of the Weibull plot (see Figure A2.25).

TABLE A2.13
Data for a Hazard Plot

Item 
Number

No. 
Survivors

Event 
Time

Failure/
Suspension

Δ Hazard 
(%)

Cumulative 
Hazard (%)

1 16 31 F 6.25 6.25

2 15 39 F 6.67 12.92

3 14 57 F 7.14 20.06

4 13 64 S

5 12 65 F 8.33 28.39

6 11 70 F 9.09 37.48

7 10 75 S

8 9 76 S

9 8 84 S

10 7 87 S

11 6 88 S

12 5 102 S

13 4 105 F 25.00 62.48

14 3 109 S

15 2 110 F 50.00 112.48

16 1 130 S
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γ will be estimated by the following expression:

	
ˆ ( )( )

( ) ( )
γ = − − −

− − −
t

t t t t
t t t t2

3 2 2 1

3 2 2 1

A2.11 � OTHER APPROACHES TO WEIBULL ANALYSIS

The techniques for Weibull analysis presented in this appendix are based on the 
regression approach. There are, however, other approaches for Weibull analysis, such 
as those based on the maximum likelihood criterion or the maximum model accu-
racy criterion. For details of the maximum likelihood and maximum model accu-
racy estimation methods, see Appendix 3 and Ang and Hastings (1994), respectively. 
Using different approaches for the analysis will give different Weibull models that fit 
a given data set. Nevertheless, there will be little difference in the fitted model when 
the data set being analyzed is large.

A2.12 � ANALYZING TRENDS OF FAILURE DATA

A Weibull analysis involves fitting a probability distribution to a set of failure data. 
It is assumed that the process generating the failure times is stable. This means, 

Cumulative hazard %

Fa
ilu

re
 ti

m
e

Shape parameter

Probability, %1
1
9
8
7
6
5
4

3

2

1
9
8
7
6
5
4
3

2

1
1 10 100 1000

0 1 2 3

10 20 30 40 50 60 70 80 90 99 99.999.99

Weibull hazard × 2 logarithmic cycles

Estimation
point

η = 108.8

β = 2.09

FIGURE A2.24  Hazard plot of data shown in Table A2.13.
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statistically speaking, that all the failure times observed are independently and iden-
tically distributed (iid). In reality, this condition may not apply, as in the case of fail-
ure times observed from maintenance records of repairable systems. For example, 
design modifications and improvements made on the equipment in successive life 
cycles may have the effect of progressively reducing the frequency of failure. In 
another scenario, imperfect repair or increasing severity of usage in successive life 
cycles may produce a trend of increasing frequency of failure. Conducting a Weibull 
analysis on time-between-failure data of these cases is inappropriate because the 
failure distribution varies from one life cycle to another. The Laplace trend test 
described in the following paragraphs can be used to detect the existence of trends in 
a data set of successive event times.

Let ti denote the running time of a repairable item at its ith failure, where 
i = 1, …, n; let N(tn) be the total number of failures observed to time tn, and the obser-
vation terminates at time T when the item is in the operational state. In other words, 
the failure times are obtained from a time-terminated test. Figure A2.26 shows the 
notations used.

Using the Laplace trend test to determine if the failure events are iid, the test 
statistic for time-terminated data is

	
u N t

t

T N tn

i

n

n

=
⋅

−










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

∑
12 0 51( )
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. .	 (A2.2)
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FIGURE A2.25  Nonlinear hazard plot.



264 Appendix 2

If the failure times are iid, u is normally distributed with mean = 0 and standard 
deviation = 1.

When u is significantly small (negative), we reject the null hypothesis of iid, with 
the data indicating that there is reliability growth. When u is significantly large 
(positive), we reject the null hypothesis of iid, with the data indicating that there is 
reliability deterioration.

If we are satisfied that the failure times are iid, Weibull analysis can be performed 
on the interfailure times (ti − ti−1) where i = 1 to n.

In the case where the observation terminates at a failure event, say, tn, we have a 
set of failure-terminated data. The test statistic for failure-terminated data is

	
u N t

t

t N tn
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n n
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. .	 (A2.3)

Example

Machine H fails at the following running times (hours): 15, 42, 74, 117, 168, 233, 
and 410.
Machine S fails at the following running times (hours): 177, 242, 293, 336, 368, 
395, and 410.
Analyze the data and explain the operating behavior of machines H and S.

A2.12.1 �M achine H

The running times at failure of machine H are displayed graphically in Figure A2.27.
This is a set of failure-terminated data. Hence, the test statistic u is calculated 

using Equation A2.3:
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FIGURE A2.26  Time-terminated test data.
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At a significance level α of 5%, the lower bound of the test statistic for a two-sided 
test, ucrit.1 = −1.96. Because u is less than ucrit.1, we can reject the null hypothesis of iid 
at α = 5% and accept the alternate hypothesis that there is reliability growth. Thus, 
it is not appropriate to perform a Weibull analysis on, or to fit any other probability 
distribution to, the data set for the purpose of modeling the failure time distribution.

A2.12.2 �M achine S

The set of interfailure times generated from machine S is identical to that of machine 
H, except that the sequence is reversed. The running times at failure of machine H 
are displayed graphically in Figure A2.28.

Using Equation A2.3, we get
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FIGURE A2.27  Failure data of machine H.
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At a significance level α of 5%, the upper bound of the test statistic for a two-sided 
test, ucrit.2 = +1.96. Because u is greater than ucrit.2, we can reject the null hypothesis 
of iid at α = 5% and accept the alternate hypothesis that there is reliability deteriora-
tion. Thus, it is not appropriate to perform a Weibull analysis on, or to fit any other 
probability distribution to, the data set for the purpose of modeling the failure time 
distribution.

A2.13 � THE ACCOMPANYING E-LEARNING MATERIALS

The contents of this appendix are packaged into a set of e-learning materials called 
“Weibull Analysis,” that which can be downloaded from http://www.crcpress.com/
product/isbn/9781466554856. Soft copy of the statistical tables and graph papers 
used in Weibull analysis can be found in this set of materials.

PROBLEMS

	 1.	Use a Weibull probability paper to determine the parameters of the dis-
tribution of the clutch assembly failure data shown in Table A2.14. Also, 
determine the mean life of the assembly.

	 2.	Use a Weibull probability paper and the failure data relating to brake pedal 
bushes shown in Table A2.15 to determine the reliability characteristics of 
the bushes.

5938636333922427710

65 51 43 32 27 15177

410
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45040035030025020015010050
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A sad system

FIGURE A2.28  Failure data of machine S.
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TABLE A2.14
Clutch Assembly Failure Data

Class Interval 
(in km, K = 103) No. Failures

0K < 5K 8

5K < 10K 12

10K < 15K 15

15K < 20K 15

20K < 25K 12

25K < 30K 12

30K < 35K 7

35K < 40K 6

40K < 45K 5

45K < 50K 3

50K < 55K 2

55K < 60K 1

60K < 65K 1

65K < 70K 1

Total 100

TABLE A2.15
Brake Pedal Bush Failure Data

Utilization before Failure 
(in km, K = 103)

Frequency of 
Failures

0K < 5K 0

5K < 10K 2

10K < 15K 2

15K < 20K 4

20K < 25K 4

25K < 30K 5

30K < 35K 6

35K < 40K 6

40K < 45K 7

45K < 50K 5

50K < 55K 7

55K < 60K 8

60K < 65K 4

65K < 70K 6

70K < 75K 4

75K < 80K 6

> 80K 24

Total 100
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	 3.	The Michyear Tire Company uses four-cylinder, 4-ton payload delivery 
vehicles. These vehicles run approximately 150 km per day within a 50-km 
radius base. There is a suspicion that water pump failures are at an unac-
ceptably high level, and the failure data, as shown in Table A2.16, have been 
obtained.

		  Use a Weibull probability paper to analyze these data. Using the shape 
parameter and the characteristic life from your analysis, sketch the shape 
of the associated probability density function, marking on this sketch the 
mean time-to-failure of the pumps.

		  Do you think that preventive replacement of the water pumps may be a 
worthwhile replacement strategy? Give reasons for your answer.

	 4.	The starter motor failure data shown in Table A2.17 include suspensions. 
Use a Weibull probability paper to determine the reliability characteristics 
of the motor.

	 5.	A sample of 75 power transistors in germanium is tested and the data col-
lected are given in Table A2.18.

		  Graph the failure rate function from t = 0 to 10,000 hours.
		  What kind of failure do you suspect we have? What would you suggest 

to improve the reliability?

TABLE A2.16
Water Pump Failure Data

End of Time Interval, t 
(in km, K = 103)

Cumulative 
Probability F(t) (%)

<5K 0.00

<10K 3.08

<15K 7.96

<20K 11.40

<25K 13.19

<30K 18.67

<35K 24.21

<40K 26.13

<45K 28.33

<50K 30.00

<55K 31.20

<60K 34.92

<65K 42.00

<70K 46.00

<75K 63.25
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	 6.	The data in Table A2.19 represent the cycles to failure of a small electrical 
appliance.

	 a.	 Make a graph of the cumulative failure rate function and estimate the 
parameters of the Weibull distribution.

	 b.	 From the graph, find R(1000 cycles | 3000 cycles).

TABLE A2.17
Starter Motor Failure Data

Class Interval 
(K = 1000 km)

No. 
Failures Number of Suspensions

0K < 5K 1 0

5K < 10K 1 2

10K < 15K 2 3

15K < 20K 5 2

20K < 25K 1 0

25K < 30K 3 5

30K < 35K 1 1

35K < 40K 1 4

40K < 45K 0 6

45K < 50K 1 2

50K < 55K 1 5

55K < 60K 0 6

60K < 65K 1 6

TABLE A2.18
Power Transistor Test Data

Age to Failure 
Interval (Hours) No. Failures

0–250 17

250–500 8

500–750 1

750–1000 1

1000–2000 0

2000–3000 5

3000–4000 3

4000–5000 4

5000–6000 3

6000–7000 2
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	 7.	A diesel engine was monitored onboard a ship over a period of 10 years, and 
Figure A2.29 indicates the failure pattern of the engine. It is assumed that after 
each failure, the engine is returned to the as-new condition by maintenance.

		  At time = 10 years, you are asked to analyze the failure statistics and 
give an estimate of the Weibull parameters β and η. Assume γ = 0 and com-
ment generally on the engine’s performance. Specifically, you must answer 
the following questions:

	 a.	 Using a Weibull probability paper, what are your best estimates of β and η?
	 b.	 Judge whether or not your sample data can be represented by a Weibull 

distribution by using the K-S goodness-of-fit test.

TABLE A2.19
Failure Data of an Electrical Appliance

Time in Cycles Event

1430 1 censored

1624 1 censored

1877 1 censored

2615 1 censored

3075 1 censored

3174 1 censored

3264 1 censored

3424 1 censored

3508–4161 16 censored

4552–4589 12 censored

1015 1 failure

1493 1 failure

1680 1 failure

2961 1 failure

2974 1 failure

3009 1 failure

3244 1 failure

3462 1 failure

4246 1 failure

Engine 
new

Failures

8 26 64 87 106 120
Time (months)

FIGURE A2.29  Engine failure pattern.
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Problems 8 to 10 require the use of the WeibullSoft package, which can be down-
loaded from http://www.crcpress.com/product/isbn/9781466554856.

	 8.	You are given a set of failure data for heavy-duty bearings in a steel forging 
plant with failure times (in hours) given in Table A2.20.

	 Fit a two-parameter Weibull model to the data set.

	 a.	 What are the two parameters used in this analysis, and what are their 
values? What do these parameters represent?

	 b.	 What are the values for μ and σ?
	 c.	 At 10% significance level, can it be accepted that the chosen distribu-

tion fits the data?
	 d.	 What is the probability that the bearings will fail before time 3000?
	 e.	 What is the B10 life of these bearings?

	 Now, fit a three-parameter Weibull model to the data set.

	 f.	 What is the value of the third parameter in this analysis? What does this 
parameter represent?

	 g.	 What are the values of μ and σ in this distribution?

	 9.	The service life of certain fan belts has been monitored and recorded, with 
times (in weeks) given in Table A2.21 (F = failure, S = suspension).

	 a.	 How many data points will be plotted in the Weibull analysis? Why?
	 b.	 What are the values of d and dα for a goodness-of-fit test in the Weibull 

analysis? Will you reject the hypothesis at a 10% significance level that 
the two-parameter Weibull distribution determined by the package is a 
model of the data set?

	 c.	 Fit a three-parameter Weibull model to the data set. Give the values of 
β, η, γ, μ, and σ of the model.

TABLE A2.20
Bearing Failure Data
2082 1717 2263 3945 5093 2751 3065 12456 1340 7062

TABLE A2.21
Fan Belt Failure Data
174(F) 124(F) 106(F) 153(F) 160(F) 167(F) 112(F) 194(F) 181(F) 136(S)
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	 10.	Table A2.22 lists the failure data for the lifetime of a certain lightbulb (in 
hours).

	 a.	 In the three-parameter analysis, what does F(t − γ) represent? What is 
the value of F(t − γ) for t = 5000?

	 b.	 What is the point estimate of t when F(t − γ) is 20%? Determine the 
90% confidence interval of t.

	 11.	A component installed in a photocopying machine experienced frequent 
failures. Failure records in cumulative copies at which failures of this com-
ponent occurred are listed in Table A2.23.

	 a.	 Perform an appropriate statistical test to detect the existence of a trend 
in the failure times of this component. Use a significance level of 5%.

		  What is the implication of the findings from the test?
	 b.	 Use a graphical method to determine the parameters of the model that 

fits the failure data. Sketch the probability density function and hazard 
rate function of the fitted model.

		  If the component is to be at least 90% reliable at 5000 copies, does it 
meet this design objective?

	 12.	A bearing may fail in one of two modes: ball failure or inner race failure. 
Data from a bearing life study program conducted on a sample of 10 units 
are given in Table A2.24.

		  Suppose you are going to use a graphical method for data analysis. Show 
how you would process the data to determine the distribution of hours to 
failure for the two modes of bearing failure.

		  Use a suitable probability paper to produce a plot of the above data set. 
Use the information obtained from the plot to estimate the reliability of the 
bearing after 100 h of usage. State any assumption(s) used in your analysis.

TABLE A2.22
Lightbulb Failure Data
3129 1593 7427 8968 4019 5188 7239 3662 2876 5817

TABLE A2.23
Photocopying Failure Data
12,204 21,384 26,909 33,912 38,232 Current cumulative copies = 40,500
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TABLE A2.24
Bearing Failure Data

Specimen 
Number

Hours to 
Failure

Failure 
Mode

1 8 Ball

2 50 Ball

3 102 Ball

4 224 Ball

5 22 Ball

6 140 Ball

7 120 Inner race

8 20 Inner race

9 300 Inner race

10 90 Inner race
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Appendix 3: Maximum 
Likelihood Estimator

High expectations are the key to everything.

—Sam Walton

A3.1 � THE METHOD

Apart from the regression approach introduced in Appendix 2, the likelihood func-
tion is another widely used tool for estimating the parameters of a probability dis-
tribution. The procedure involves the development of a likelihood function for the 
observations and obtaining its logarithmic expression. This expression is differen-
tiated with respect to the parameters, and the resulting equations are set to zero. 
These equations are then solved simultaneously to obtain the best estimates of the 
parameters that maximize the likelihood function. (It should be noted that it is not 
necessary in all cases to obtain the logarithmic expression of the likelihood function; 
the likelihood function itself can be maximized.)

Let the probability density function (pdf) of the distribution be f(x,θ), in which θ 
is the parameter we wish to estimate.

Consider the sample of size n, {x1, x2,… xn} drawn from the population.
The probability of drawing this specific sample from all possible samples of size 

n is
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The solution for θ is known as the maximum likelihood estimator of the param-
eter. This procedure is valid for use as a method for estimating the parameter of any 
distribution that maximizes the probability of occurrence of the sample results. It 
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can be generalized to distributions with two or more parameters, in which case we 
have to solve a system of two or more equations.

A3.2 � MAXIMUM LIKELIHOOD ESTIMATOR FOR PARAMETERS 
OF AN EXPONENTIAL DISTRIBUTION

The pdf of the exponential distribution with parameter λ is

	 f(x, λ) = λe−λx.

The pdf of n observations x1, x2,…, xn is

	 f x e i ni
xi( , ) , ,...,λ λ λ= =− 1 2 .

The likelihood function L(λ;x1, x2,…, xn) is
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The natural logarithm of the likelihood function is
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The “best” estimate of λ is obtained by solving the above equation, that is,

	 λ̂ =

=
∑

n
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.	 (A3.3)

A3.3 � APPLICATION TO LIFE TESTING

If we are interested in estimating characteristic life, θ, we may choose a sample of r 
items and wait for all items to fail, or we may choose a sample of n items (n > r) and 
terminate the test after r of these have failed.
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The estimated parameter will have the same precision in either case. However, 
the latter test has a definite advantage over the former because the average waiting 
time for r out of n units to fail is less than the average waiting time for r failures out 
of r units.

For the truncated test, the likelihood function is the joint probability of r indepen-
dent items failing and m (= n – r) independent items not failing,
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where i is an index for failed items and j is an index for nonfailed items.
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For the case of useful life, hazard rate λ is constant and θ is the reciprocal of λ.
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Solving
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where Tr = total test hours for all units (failed and nonfailed).
For items operating in the useful life period, a large value of cumulative test time 

is needed to estimate λ. The large cumulative test time can be obtained by one of 
two approaches:

	 a.	To observe a small number of items for a long time
	 b.	To observe a large number of items for a shorter time
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A3.4 � MAXIMUM LIKELIHOOD ESTIMATOR FOR 
PARAMETERS OF A WEIBULL DISTRIBUTION

The maximum likelihood estimator for parameters of a Weibull distribution can be 
obtained using the method described in Section A3.1, by solving a system of two 
nonlinear equations for the two-parameter Weibull distribution. For more details on 
these estimators, see Lawless (2003).
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Appendix 4: Markov Chains

I decided not to let my past rule my future so I decided to change my present 
in order to open up my future.

—Ana M. Guzman

A4.1 � DEFINING A MARKOV CHAIN

A Markov chain is a finite-state stochastic process in which the future probabilistic 
behavior of the process depends only on the present state. The two key concepts of 
a Markov chain are the state of the system and the state transitions that the system 
may undergo. Figure A4.1 shows the transitions possible for a given system that can 
be in one of five states at the beginning of, say, each week.

Suppose each possible transition from state i (at the start of the week) to state j (at 
the end of the week) occurs with a probability, pij , called a one-step transition prob-
ability. We then have the transition matrix:
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Let xj be the probability that the system is currently in state j. The current proba-
bilistic behavior of the system can be represented by the probability vector, a matrix 
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The probabilistic behavior of the system after a one-step transition, that is, in 
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If the same transition matrix completely describes the probabilistic behavior of such 
a system for all future one-step transitions, such a system is called a Markov chain 
with stationary transition probabilities, or a homogeneous Markov chain.

A4.2 � N-STEP TRANSITION PROBABILITIES

If we are in state i today, we may want to know the probability of being in state j in n 
weeks, that is, after n transitions. We denote this n-step transition probability as pij

n( ).
Obviously, p pij ij

( )1 = , and

	

p p pij ik kj

k

k r
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1

=
=

=
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The right-hand side of Equation A4.2 is the scalar product of row i of the one-step 
transition matrix P with column j of the P matrix. That is, pij

( )2  is just the ijth element 
of the square of the P matrix, that is, P2. Similarly, pij

n( ) is the ijth element of the nth 
power of P, that is, Pn.

States of vibration signal from a bearing 

1: Very smooth

2: Smooth

3: Rough 

4: Very rough 

5: Failure   

1 2 4 3 5

FIGURE A4.1  Transition diagram of a Markov chain.
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A4.3 � LIMITING STATE PROBABILITIES

If P is the one-step transition matrix of a Markov chain, then Pn approaches a unique 
limiting matrix as n tends to infinity. This is always the case when all transition 
probabilities have non-zero values. However, if some elements of P have zero value, 
it may not work.

Thus, limiting state probabilities represent the probabilities of finding the system 
in each state after a significantly large number of transitions have occurred, so that 
the memory of the initial state is more or less lost. The EXAKT software uses the 
limiting state probabilities to calculate the remaining useful life of an item to reach 
the “red (replace immediately) zone.”

A4.4 � MEAN FIRST-PASSAGE TIMES

We may want to know how long it will take for the Markov chain to reach a particu-
lar state for the first time, given that it started in some other state. This is the mean 
first-passage time, for example, the expected time to go from the “smooth” state to 
the “rough” state for the first time.

A4.5 � FITTING A MARKOV CHAIN MODEL

There are three issues when we have to fit a Markov chain to a given data set:

•	 What are the states of the Markov chain?
•	 What are the transition probabilities for these states?
•	 Are these transition probabilities stationary?

Although one or more human experts are involved in classifying the states of the 
Markov chain, the analytical work of determining the transition probabilities and 
stationarity of the transition matrix is handled by the EXAKT software.

TABLE A4.1
Transition Probability Matrix

0
to 0.1

0 to 0.1

VEL#1A

0.1 to 0.15

0.15 to 0.22

0.22 to 0.37

Above 0.37Failure

Very rough

Rough

Smooth

Very smooth

0.1
to 0.15

0.15
to 0.22

0.22
to 0.37

Above
0.37

0.5754 0.2242 0.1452

0.3309

0.3779

0.1904

0.0170

0.0405

0.1374

0.2294

0.2424

0.0521

0.0147

0.0760

0.1997

0.5069

0.9277

0.2498

0.1376

0.0474

0.0027

0.2059

0.0554

0.0129

0.0005
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A4.6 � MARKOV CHAINS WITH REWARDS

Given the initial state of a system, it is possible to establish an optimal decision 
policy and calculate the expected benefits from operating the system over a future 
period. The policy is achieved by taking actions at decision opportunities such as 
when inspection results are known, thus affecting the future state of the system.

REFERENCE

Winston, W.L. 2004. Operations Research: Applications and Algorithms, 4th ed., Belmont, 
CA: Thomson Brooks/Cole.
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Appendix 5: 
Knowledge Elicitation

Knowledge is of two kinds. We know a subject ourselves, or we know where 
we can find information upon it.

—Samuel Johnson

A5.1  INTRODUCTION

When data are unavailable or sparse, we can still create a model that characterizes 
the reliability behavior of an asset. This can be achieved by extracting insights from 
domain experts. The knowledge elicitation process asks experts to make judgments 
on, for example, the risk of failure in case A as compared with case B, a technique 
known as “case analysis and comparison.” This method results in a set of inequali-
ties, which, in turn, define a feasible space for the parameters that must be estimated.

A5.2  KNOWLEDGE ELICITATION

The process of eliciting knowledge from an expert is illustrated by estimating β and 
η, the two parameters of the Weibull distribution. The example presented in this sec-
tion is taken from a presentation given by Zuashkiani (2011).

Suppose there is a need to estimate the lifetime distribution of a transformer. The 
expert is asked the following question, called Statement 1 (S1):

Out of 100 new transformers, how many will fail before 70 years? Please provide 
your best estimate of the upper and lower bounds of the number that will fail before 
70 years.

The expert responds: between 60 and 75. This is illustrated in Figure A5.1.

Mathematically, we have

	 0.60 ≤ F(70) ≤ 0.75

Thus, S1 is

	 0 60 1
70

0 75. exp .≤ − −

















≤

η

β
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Another question might be:

Out of 100 new transformers, how many will fail before 60 years? Please provide 
your best estimate of the upper and lower bounds of the number that will fail before 
60 years.

The expert responds: between 40 and 60. This is illustrated in Figure A5.2.

Mathematically, we have

	 0.40 ≤ F(60) ≤ 0.60

Thus, Statement 2 (S2) is

	 0 40 1
60

0 60. exp .≤ − −

















≤

η

β

	

0.60 ≤ F(70) ≤ 0.75

TimeAge = 70 years

f (t)

FIGURE A5.1  Estimate of F(t) when t = 70 years.

Time

f (t)

Age = 60 years

0.40 ≤ F(60) ≤ 0.60  

FIGURE A5.2  Estimate of F(t) when t = 60 years.
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The next question can be:

Out of 100 70-year-old transformers, how many will fail in the next 15 years? Please 
provide your best estimate of the upper and lower bounds of the number that will fail 
in the next 15 years.

The expert responds: between 70 and 90. This is illustrated graphically in Figures A5.3 
and A5.4.

Mathematically, we obtain

	

R R B( ) ( )

exp exp

70 85

70 85

− =

−

















− −





η η

β














β

	

Time

f (t)

Age = 70 years

70
–R(70) = exp

A R(70)

β

η

=

FIGURE A5.3  Estimate of R(t) when t = 70 years.

Time

f(t)

Age = 70 years Age = 85 years

B

FIGURE A5.4  Estimate of probability of failure between 70 and 85 years.
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We now obtain Statement 3 (S3)

	

70 90

70

70 85

% %

%

exp exp

≤ ≤

≤

−





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
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β

β

η
exp

70
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
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≤ 90%

	

With these three statements (inequalities), we search for values of β and η that 
satisfy each of these inequalities. Before doing so, it is necessary to check if these 
statements contradict each other because if they do, no feasible solution for β and η 
can exist. If they are contradictory, we must return to the expert for a revised set of 
consistent responses, or extend this methodology by introducing the uncertainty of 
every statement as described in Zuashkiani et al. (2011).

The search for values of β and η is done by generating random values for these 
parameters by using the Monte Carlo simulation technique (Law 2007) and check-
ing if they satisfy S1, S2, and S3. We assume that the prior distribution for β and η is 
uniform in the area that satisfies these conditions.

Suppose we set β = 2 and η = 80. This gives:

	 S1 0 60 1
70
80

0 75 0 60 0 5
2

: . exp . . .≤ − −

















≤ → ≤ 33 0 75≤ . , which is false

	 S2 0 40 1
60
80

0 60 0 40 0 4
2

: . exp . . .≤ − −

















≤ → ≤ 33 0 60≤ . , which is true

	 S3 0 70 0 90 0 70 0 30 0 90: . . . . .≤ ≤ → ≤ ≤B

A
, which is false

Thus, β = 2 and η = 80 cannot belong to the set of possible solutions because S1 
and S3 are violated.

Let us now try β = 4 and η = 65. This gives:

	 S1 0 60 1
70
65

0 75 0 60 0 7
4

: . exp . . .≤ − −

















≤ → ≤ 44 0 75≤ . , which is true
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	 S2 0 40 1
60
65

0 60 0 40 0 5
4

: . exp . . .≤ − −

















≤ → ≤ 22 0 60≤ . , which is true

	 S 0.70 0.703 0 90 0 79 0 90: . . .≤ ≤ → ≤ ≤B

A
, which is true

Therefore, β = 4 and η = 65 could belong to the set of possible solutions because 
they satisfy the three statements.

By repeating this process, we will find more values of β and η that satisfy all the 
constraints. The best estimates of β and η are obtained by taking the means of these 
feasible values.

The following sample of six combinations of β and η satisfies all statements.

β* η*

4.00 65.0

3.80 68.0

4.40 69.0

5.00 67.0

5.20 68.0

4.70 66.0

Taking averages, we obtain ˆ .β = 4 62 and ˆ .η = 67 6 years.

A5.3  COMBINING EXPERT KNOWLEDGE WITH DATA

If we have data (possibly limited) from which we can estimate β and η, and also have 
estimates for these parameters derived from expert knowledge, we can combine the 
estimates from the two sources to obtain “better” estimates. This combination is 
obtained through the use of Bayesian statistics introduced in Sidebar SA5.

SIDEBAR SA5:  Bayesian Statistics

SA5.1  CONDITIONAL PROBABILITY

Let A and B denote two different events. P(A) and P(B) are the probabilities of event A hap-
pening and that of event B happening, respectively. Conditional probability of event A hap-
pening given that event B has occurred is denoted as P(A|B):

	 P A B
P A B

P B
P A B

P B
P A P B A

P B
( | )

( )
( )

( )
( )

( ) ( | )
(

= = ∩ = ×and
))

	 (SA5.1)

SA5.2  BAYESIAN STATISTICS

An essential element of Bayesian statistics is the revision of probabilities in the light of new 
information.
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Suppose an experiment has n mutually exclusive and collectively exhaustive states, Sj. 
That is,

	

S

P B P S P B S

j

j

n

j j

j

=

=

∴ = ×

1


Ω certain event–

( ) ( ) ( | )
==
∑

1

n

	

Equation SA5.1 can be generalized as

	 P S B
P S P B S

P B
P S P B S

P S P
i

i i i i

j

( | )
( ) ( | )

( )
( ) ( | )

( ) (
= × = ×

× BB S j
j

n

| )
=∑ 1

	 (SA5.2)

Equation SA5.2 is known as the Bayes’ theorem. P(Si ) is the prior probability of being in 
state Si and P(Si|B) is the posterior probability of being in state Si given that event B has hap-
pened (new information is available).

SA5.3 � EXTENSION OF BAYES’ THEOREM FOR 
CONTINUOUS RANDOM VARIABLES

If the state Sj in Equation SA5.2 is a value of a continuous random variable, θ, and event B 
refers to a set of statistical data, y, the equation should be modified to the following form to 
obtain the posterior probability density function of θ:

	 g y
g f y

g f y
( | )

( ) ( | )

( ) ( | )
θ θ θ

θ θ θ
θ

=

∫ d
	 (SA5.3)

A variable that can take a continuous range of values but is subject to chance variation is 
known as a continuous random variable. The unknown hazard rate of an item to be estimated 
is one such variable. We should note that both θ and y in Equation SA5.3 can be multidimen-
sional variables.

SA5.4 � ILLUSTRATIVE EXAMPLE OF ENCODING KNOWLEDGE IN 
THE FORM OF PRIOR PROBABILITY DENSITY FUNCTIONS

Consider the height of the next person who walks into our office. We might have a lot of 
uncertainty about predicting it; however, we could estimate the “typical” height. We could 
also make a statement about the likely range of height. Our belief may change when more 
information is available. For example, if we are told that the next person is a man, our uncer-
tainty will change differently than if we are told that the person is a woman. The same applies 
if we know that the next person coming into our office is a basketball player. The question is 
how to show this uncertainty mathematically. A common method suggests that we choose a 
known distribution function to describe the behavior of the variable of interest, which in this 
case is the height of the next person who walks into our office. Applying the rule of symmetry, 
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some may say that the height should be symmetrically distributed. Some may even consider 
the normal distribution to be a good model for characterizing the uncertainty of the variable, 
which we will call X (height of the person). The normal distribution has two parameters, μ 
and σ, representing the location and the degree of scatter of the variable, respectively, and 
they can be considered elements of a vector. Now we have to estimate the values of μ and σ, 
and quantify our uncertainty about these parameters. For simplicity, assume that σ is known 
and μ is the only unknown parameter. By assigning a value to μ and articulating the uncer-
tainty of this value, we, in fact, assign a distribution function to μ, which is not the normal 
practice of conventional, or non-Bayesian, statistics. In non-Bayesian statistics, we do not 
assign distribution functions to parameters.

If we assume μ is normally distributed, we have to estimate its mean and standard devia-
tion, which we call μ0 and σ0, respectively. These two new parameters are known as hyper-
parameters. Based on our knowledge, we may say that the average height of a person is 
approximately 165 cm. Therefore, μ0 is 165 cm. If asked for opinion on the range of the 
average height, we might answer 150 to 180 cm. This interval can be approximated by 6 × σ0. 

Therefore, σ0
180 150

6
5= − = cm.

To summarize the results so far:

	
X N

N

~ ( , )

~ ( , )

µ σ

µ µ σ0 0165 5= = 	

The same logic works for σ, but more complex mathematics must be involved.
We can say that μ has a normal prior distribution with a mean value of μ0 and a stan-

dard deviation of σ0. This is called an informative prior distribution because it carries some 
information about μ, the parameter of interest. If we reduce σ0, the density function of μ will 
cluster more closely around its mean value of μ0, indicating that we are more confident about 
the value of μ. Conversely, if we increase σ0, the density function of μ will be flatter, sug-
gesting that our knowledge about the location of μ is less certain than in the previous case. 
Asymptotically, if σ0 approaches infinity, it will be equivalent to having almost no knowledge 
about μ. Therefore, we refer to a normal prior distribution with an extremely high standard 
deviation as a noninformative prior distribution.

Let the set of data be y = {(ti, δi)} in which ti denotes event time and δi is a 
dummy variable that indicates the type of the event: δi = 1 if ti is a failure time, 
and δi = 0 if ti is a suspension time. If gθ (β, η) and gθ (β, η|y) denote the prior and 
posterior joint density functions (introduced in Sidebar SA5.3) of θ, respectively, 
then we have

	 g y
g f y

g f y d d
θ

θ

θ

β

β η
β η β η

β η β η β η
( , )

( , ) ( , )

( , ) ( , )
,

=
×

× × ×
η
∫

	 (A5.1)

where f(y|β, η) is the probability density function of the data set when the parameters 
of the distribution have values equal to their prior estimates.
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An approximation of gθ (β, η|y) is given below:
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	 (A5.2)

where βi* and ηj* are values of β and η that satisfy the constraints such as the ones 
specified by S1, S2, and S3. In the example given in Section A5.2, we assume that 
gθ (β, η) is a uniform distribution in the area defined by these inequalities; thus, 
Equation A5.2 reduces to 
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Improved estimates for β and η can now be determined as the mean values of 
these parameters obtained from gθ (β, η|y), or
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Note that a slightly simpler method is to take a random sample (using the Monte 
Carlo technique) from distribution gθ(β i*, η j*|y), similar to the example in Section 
A5.2, as suggested in Section A5.4.

It should be noted that whereas the previous equation illustrates the application of 
the methodology in a two-parameter Weibull distribution, the methodology can be 
extended to other distributions with three or more parameters, such as the propor-
tional hazard model (PHM) introduced in Section 3.5.2.

A5.4  NUMERICAL EXAMPLE

Assume that the prior distribution functions (see SA5.4 in the Sidebar for an illustra-
tive example of the determination of prior distribution functions) for the parameters 
of a proportional hazards distribution with only one covariate are as follows:

	 ln(β) ~ N(1, 0.15) 	 a normal distribution with mean = 1 and standard 		
	 deviation = 0.15,

	 ln(η) ~ N(16,819, 4515),
	 γ1~ N(0.104951, 0.005316)

(that is, β and η follow lognormal distributions).
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It is necessary to determine the joint prior distribution for θ1 = ln(β), θ2 = ln(η), and 
θ3 = γ1. Assuming that these parameters are independent, their joint prior distribution is

	

P g g g g( ) [ln( ), ln( ), ] [ln( )] [ln( )] (θ β η γ β ηθ= = × ×1 1 2 3 γγ
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Now assume that the inspection records for one history that ends with failure are 
given in Table A5.1.

The likelihood of this history will be
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TABLE A5.1
Inspection and Event Data for One History

Age (hours) Iron (ppm) Event

0 0 Beginning

100 10 Inspection

180 26 Inspection

250 30 Inspection

312 37 Inspection

480 46 Inspection

566 51 Inspection

632 55 Inspection

698 72 Inspection

745 94 Failure

Note:	 ppm stands for parts per million (the number of par-
ticles of a given substance for every million particles 
of all substances).
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The above equation follows from the general formula for density func-

tion f y h y h x x
y

( ) ( )exp ( )d| | |θ θ θ= −




∫0
, and PHM for hazard function. 

Furthermore, it is assumed that covariates have a constant value over an inspec-
tion interval, equal to the value at the beginning of the interval. It also uses 
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Therefore, using Equation A5.1, the posterior distribution is calculated as follows:

	 gθ[ln(β), ln(η), γ1|y] = K × gθ[ln(β), ln(η), γ1] × L(y|β, η, γ1)	
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To obtain a sample from such a complex distribution function, numerical methods 
and computer simulation must be used (Gelman et al. 2004). A method that is widely 
used and applied in practice is the Markov chain Monte Carlo method (Brooks and 
Roberts 1998), an extension of the method presented in Section A5.2.

A5.5  APPLICATION EXAMPLES

A5.5.1 C ompressors

The methodology described in this appendix was used to characterize the hazard 
function of failures in the third-stage piston rings of a compressor in a steel mill. 
The hazard function (a proportional hazards model, i.e., PHM) had been success-
fully created two years earlier by using lifetime histories and condition monitoring 
data associated with the piston rings. To test the methodology explained in Section 
A5.2, an expert responsible for the maintenance of the compressor was consulted on 
the risks of piston-ring failure under different scenarios such as those illustrated in 
Table A5.2.

A typical question for the expert is the following:

TABLE A5.2
Scenario Comparisons

Case A Case B

Second-stage discharge gas temperature (°F) 300 310

Third-stage discharge gas temperature (°F) 325 330

Second-stage discharge gas pressure (psi) 140 140

Age (months) 4 4
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Is the risk of failure in case A
•	 Much higher
•	 Slightly higher
•	 About the same 
•	 Slightly lower
•	 Much lower 

than the risk of failure in case B?

The expert was asked to make judgments for approximately 45 comparisons simi-
lar to the one above. The full details of the knowledge elicitation process and build-
ing the hazard model are given in Zuashkiani et al. (2009).

A5.5.2 F leet of Station Transformers

An electricity transmission and distribution company was required to forecast its 
operations and maintenance (O&M) costs for the upkeep of its fleet of transformers. 
Because historical data were sparse, the methodology described in Section A5.3 was 
used to combine knowledge gleaned from experts with the limited historical data to 
establish the expected trend of O&M costs. The details of this application example 
are given in Zuashkiani et al. (2011).

A5.6  FURTHER COMMENTS

When multiple experts are available, we may elicit their opinions using questions 
similar to those in Section A5.2. In such cases, after a group discussion, the experts 
must agree on the upper and lower bounds and on the uncertainties for each inequal-
ity. Obtaining a collective opinion on every question might be problematic because it 
requires the agreement of all those consulted. Other problems that arise in collecting 
opinions in a group setting include groupthink and self-censorship in favor of higher 
ranked or domineering participants. Self-censoring is likely to be more serious when 
experts are from the same company, less so when they are from different companies. 
The Delphi method is a structured process of gathering and refining opinions from a 
group of experts through a series of questionnaires combined with controlled opin-
ion feedback (Adler and Ziglio 1996; IEEE-Std-500-1984). In the elicitation process, 
if the responses are collected by the Delphi method, a group opinion can be reached  
while the sources of the opinions remain anonymous; in addition, the priming effect 
of early opinions expressed in a group does not exist. 
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Appendix 6: Time Value 
of Money—Discounted 
Cash Flow Analysis

The interest rate relevant for a firm’s decision-making is an important subject in 
its own right and is a lively topic of concern among scholars and practitioners 
of finance.

—H.M. Wagner

A6.1 � INTRODUCTION

The purpose of this appendix is to present key aspects of engineering economics that 
are relevant to the discussion of establishing the economic life of capital equipment  
in Chapter 4. See the works of Sullivan et al. (2012) and Park et al. (2012) for a com-
prehensive discussion of engineering economics.

The basic problem is illustrated in Figure A6.1. Because the economic life of 
capital equipment will be measured in years rather than months, as may be the 
case for the component replacement problems in Chapter 2, it is necessary to take 
into account the fact that in the economic life calculation, money changes in value 
over time. There are also concerns about the effect of inflation and tax issues in 
the analysis of capital equipment problems. These matters will be addressed in 
this appendix.

Many maintenance decisions, such as that to replace an expensive piece of plant  
equipment, involve the investment of large sums of money. The costs and benefits 
accruing from the investment will continue for a number of years. As the investment 
of money today influences cash flows in the future, when we are evaluating alterna-
tive investment opportunities, we must remember that the value of an amount of 
money depends on when that amount is due to be paid or received. For example, $100 
received in the future is worth less than $100 received now. To enable comparisons of 
alternative investments, we must convert the value of money that is either to be spent 
or to be received in the future as a result of the investment into its present-day value; 
in other words, we must determine the present value (PV or present worth) of the 
investment decision. The PV criterion summarizes in one numerical index the value 
of a stream of cash flows, even if we consider an infinite series of cash flows,  thereby 
allowing alternative investments to be ranked in order of preference, even though 
with some investment decisions, the uncertainties of future events are so great and 
not easily quantifiable  that any sophisticated analysis is not worthwhile.
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For example, consider Figure A6.2. If an asset is replaced every year (N = 1), 
there is a certain cash flow as depicted in the top figure: A is the purchase price, ci  
is the operations and maintenance costs in the ith year of the asset’s life, and Si is 
the resale (or scrap) value of an asset of age i. However, if the asset is replaced on a 
2- or 3-year cycle, the cash flow will be different, as shown in the middle and bottom 
figures, respectively, in Figure A6.2. Clearly, it is necessary to compare all the pos-
sibilities fairly, and it is for this reason that we often evaluate alternative replacement 
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FIGURE A6.1  Economic life problem.
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FIGURE A6.2  Concept of an asset’s economic life.
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cycles on the basis of their PV (sometimes called total discounted cost or net PV). 
In addition to calculating the PVs associated with alternative streams of cash flow, 
we also need to consider them over the same planning horizon. Alternatively, their 
equivalent annual cost (EAC) should be calculated (see Section A6.5).

A6.2 � PRESENT VALUE FORMULAS

To introduce the PV criterion, consider the following. If a sum of money, say, $1000, 
is deposited in a bank where the compound interest rate on such a deposit is 10% 
per annum, payable annually, then after 1 year, there will be $1100 in the account. If 
this $1100 is left in the account for a further year, there will be $1210 in the account.

In symbolic notation, we are saying that if $L is invested and the relevant interest 
rate is i% per annum, payable annually, after n years the sum S resulting from the 
initial investment is

	
S L

i
n

= +




$ 1

100
.	 (A6.1)

Thus, if L = 1000, i = 10%, and n = 2 years,

	 S = 1000 (1 + 0.1)2 = $1210.

The present-day value of a sum of money to be spent or received in the future is 
obtained by doing the reverse calculation. Namely, if $S is to be spent or received n 
years in the future, and i% is the relevant interest rate, then the PV of $S is

	
PV

/
=

+




$S

i

n
1

1 100
	 (A6.2)

where 
1

1 100+




 =i

r
/

 is termed the discount factor.

Thus, the present-day value of $1210 to be received 2 years from now is

	
PV =

+




 =1210

1
1 0 1

1000
2

.
$

That is, $1000 today is equivalent to $1210 2 years from now, when i = 10% per 
annum.

It has been assumed that the interest rate is paid once per year. In fact, the interest 
rate may be paid weekly, monthly, quarterly, semiannually, and so on, and when this 
is the case, Equations A6.1 and A6.2 are modified as follows:
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If the nominal interest rate* is i% per annum, payable m times per year, then in n 
years the value $S of an initial investment of $L is

	
S L

m

nm

= +




$ 1

i /100
.
	

(A6.3)

Thus, the PV of $S to be spent or received n years in the future is

	

PV
/

=
+













$S
i

m

nm
1

1
100

.	 (A6.4)

It is also possible to assume that the interest rate is paid continuously. This is 
equivalent to letting m in Equation A6.3 tend to infinity. When this is the case,

	
lim $ exp
m

nm

L
i

m
L

in
→∞

+




 =







1
100

100
/

	 (A6.5)

and the appropriate PV formula is

	
PV = −







$ expS
in

100
.	 (A6.6)

In practice, with capital equipment replacement problems, it is customary to 
assume that interest rates are payable once per year, and so Equation A6.2 is used 
in PV calculations. Continuous discounting is sometimes used for its mathematical 
convenience, or because it is thought that it reflects cash flows more accurately. If 
this is the case, Equation A6.6 is used.

It is customary to assume that the interest rate i is given as a decimal, and not in 
percentage terms. Equations A6.2 and A6.6 are then written as

	
PV =

+






$S
i

n
1

1 	
(A6.7)

	 PV = $S exp[−in].	 (A6.8)

*	Sometimes interest is compounded at time intervals shorter than 1 year. However, interest rates are 
typically stated on an annual basis. For example, the interest rate can be 2.5% compounded quarterly. 
In such case, the nominal annual rate of interest is 10%. It should be noted that in this example, the 
actual annual rate of interest is greater than 10%.
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Both of these formulas are used in some of the replacement problems discussed 
in Chapter 4.

An illustration of the sort of problem in which the PV criterion is used is the fol-
lowing (Figure A6.3): if a series of payments S0, S1, S2,…, Sn, illustrated in Figure 
A6.1, are to be made annually over a period of n years, then the PV of such a series is

	
PV = +

+






+
+







+ +
+




S S
i

S
i

S
in0 1

1

2

2
1

1
1

1
1

1
...




n

.	 (A6.9)

If the payments Sj, where j = 0, 1,…, n, are equal, the series of payments is termed 
an annuity and Equation A6.9 becomes

	
PV = +

+





+

+




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+ +
+





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S
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S
i
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1

1
1

1
1

1

2

... 	 (A6.10)

which is a geometric progression, and the sum of n + 1 terms of a geometric progres-
sion gives

	

PV =
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−





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+r

r
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.	 (A6.11)

If the series of payments of Equation A6.10 is assumed to continue over an infinite 
period of time, that is, n → ∞, then from the sum to infinity of a geometric progres-
sion, we get

	
PV =

−
S

r1
.	 (A6.12)

S0 S1 S2 S3 Sn–1 Sn

n–1 n3210

FIGURE A6.3  Cash flows.
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Using continuous discounting, the equivalent expression to Equation A6.9 is

	 PV = S0 + S1 exp[−i] + S2 exp[−2i] + … +Sn exp[−ni].	 (A6.13)

Again, if the S values are equal, we have the sum of n + 1 terms of a geometric 
progression, which gives

	
PV = − − +

− −






S
n i

i

1 1
1
exp[ ( ) ]

exp[ ]
.	 (A6.14)

If the series of payments is assumed to continue over an infinite period, we get

	
PV =

− −
S

i1 exp[ ]
.	 (A6.15)

In all of these formulas, we have assumed that i remains constant over time. If 
this is not a reasonable assumption, Equations A6.9 and A6.13 need to be modified 
slightly; for example, we may let i take the values i1, i2,…, at different periods.

A6.3 � DETERMINATION OF APPROPRIATE INTEREST RATE

In practice, it is necessary to know the appropriate value of interest rate i to use in 
any PV calculation. Difficulties are often encountered when attempting to specify 
this value. If money is borrowed to finance the investment, the value of i used in 
the calculations is the interest rate paid on the borrowed money. If the investment is 
financed by the internal resources of a company, then i is related to the interest rate 
obtained from investments within the company.

A survey of companies in the United States about how the interest rate, also 
known as the discount rate, is calculated, found the following: “31% of the firms used 
the rate of return on new investments … 26% used the weighted average of market 
yields on debt and equity securities … 18% of the firms used the cost of additional 
borrowing … 6% used the rate which keeps the market price of a common stock of 
the firm from falling.”

As Wagner (1969) says, “The interest rate relevant for a firm’s decision making is 
an important subject in its own right and is a lively topic of concern among scholars 
and practitioners of finance.”

As far as the PV criterion is concerned, we will assume that an appropriate value 
of i can be specified. Difficulties associated with uncertainty in i can often be reduced 
by the use of sensitivity analysis, and some comments on this appear in Section 2.2.4.

A6.4 � INFLATION

From an examination of Figure A6.2, it can be seen that the acquisition cost of the 
asset is denoted by the symbol A. Consider the 3-year replacement cycle: in this case, 
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it is suggested that the purchase price remains the same in years 3 and 6 as in year 1. 
Mathematically, A cannot change its value. If inflation is taking place, this is clearly 
not true: the price in year 3 will be the price in year 1 plus the effect of inflation. 
It can be shown that, provided inflation is occurring at a constant rate, the PV of a 
future stream of cash flows is the same regardless of whether the effect of inflation 
is built into the future cash flows. But if nominal dollars are used (dollars having 
the value of the year in which they are spent or received), the interest rate used for 
discounting purposes must take inflation into account and build the effect of infla-
tionary factors into future cash flow estimates.

In practice, most organizations undertake their capital equipment replacement 
analyses using real dollars (dollars having present-day value) and use an inflation-
free or real interest rate for discounting purposes.

A6.5 � EQUIVALENT ANNUAL COST

Equation A6.9 states that if the payments Si are equal, we will have an annuity. When 
calculating the PVs associated with a stream of cash flow associated with purchas-
ing, operating, maintaining, and eventually disposing of an asset—namely, the life 
cycle costs—there are peaks and troughs in the cash flows. They certainly are not 
equal each year. The PV calculation brings all these future cash flows to a single 
number, the PV. For management decision making, it is usually more meaningful to 
present that PV in terms of its EAC, which can be thought of as the annuity value. In 
other words, the EAC smoothes out the peaks and troughs in the various cash flows 
and converts them to an equivalent equal cash flow for each year; it might be thought 
of as the amount of funds an organization is required to put into its budget each year 
to fund the purchase, operation, maintenance, and disposal of an asset according to 
a specified asset replacement policy. The EAC is discussed in Chapter 4. To convert 
the PV to its EAC, the PV is multiplied by the capital recovery factor (CRF):

	
CRF = +

+ −
i i

i

n

n

( )

( )

1

1 1
	 (A6.16)

where i is the interest rate appropriate for discounting (real or interest-free) and n 
is the number of years over which the discounting occurs. This is illustrated in the 
following example.

A6.6 � EXAMPLE: SELECTING AN ALTERNATIVE—​
A ONE-SHOT DECISION

To illustrate the application of the PV criterion and the EAC when deciding which 
is the best from a set of possible investment opportunities, we will consider the fol-
lowing problem.

A subcontractor obtains a contract to maintain specialized equipment for a period 
of 3 years, with no possibility of an extension of this period. To cope with the work, 
the contractor has to purchase a special-purpose machine tool. Given the costs and 
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salvage values shown in Table A6.1 for three equally effective machine tools, which 
one should the contractor purchase? We will assume that the interest rate appropri-
ate for discounting is 11% and that operating costs are paid at the end of the year in 
which they are incurred.

For machine tool A the cash flow is depicted in Figure A6.4.

	 PV = $5000 + $100 + $100 (0.9) + $100 (0.9)2 	
	 + $100 (0.9)3 − $3000 (0.9)3 = $3157	

Recall the discount factor, r = 1/(1 + i). Because i = 11%, then r (as a decimal frac-
tion) = 0.9.

Similarly, for machine tool B,

	 PV = $3000 + $100 + $200 (0.9) + $300 (0.9)2	
	 + $400 (0.9)3 − $1500 (0.9)3 = $2721	

and for machine tool C,

	 PV = $6000 + $100 + $50 (0.9) + $80 (0.9)2	

	 + $100 (0.9)3 − $3500 (0.9)3 = $3731.	

Thus, equipment B should be purchased because it gives the minimum PV of the 
costs, namely, $2721.

Note that if the time value of money had not been taken into account in the evalu-
ation of the three choices, the costs would be given as follows:

Machine tool A: $2400
Machine tool B: $2500
Machine tool C: $2830

TABLE A6.1
Machine Tool Cash Flow

Machine 
Tool

Purchase 
Price ($)

Installation 
Cost ($)

Operating Cost ($)
Salvage 
ValueYear 1 Year 2 Year 3

A 5000 100 100 100 100 3000

B 3000 100 200 300 400 1500

C 6000 100 50 80 100 3500

Note:	 Cost in US dollars × 100.

$5000

$100 $100 $100 $100 $3000

0 1 2 3

FIGURE A6.4  Cash flow for machine tool A.
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And so machine tool A would be selected as the best buy. In practice, organizations 
evaluate alternatives through taking into account the time value of money, such as by 
calculating the PV associated with the various alternatives.

Rather than evaluating the alternatives by providing the PV associated with each 
of them, the EAC could have been calculated. Recall from Section A6.5 that

	 EAC = PV × CRF

where CRF = +
+ −

i i

i

n

n

( )

( )

1

1 1
.

For machine tool A, we had a PV = $3157.
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+ −
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This is illustrated graphically in Figure A6.5. The PV of the annuity of $1291.89 
for 3 years is the same as the original stream of cash flows.

A6.7 � FURTHER COMMENTS

In the above machine tool purchasing example, we see that the same decision on the 
tool to purchase would not have been reached if no account had been taken of the 
time value of money. Note also that many of the figures used in such an analysis will 
be estimates of future costs or returns. Where there is uncertainty about any such 
estimates, or where the PV calculation indicates several equally acceptable choices 
(because their PVs are more or less the same), a sensitivity analysis of some of the 
estimates may provide information to enable an obvious decision to be made. If this 
is not possible, we may invoke other factors, such as familiarity with the supplier, 
availability of spares, and so on, to assist in making the decision. Of course, when 

Graphically, we have
$1291.89 $1291.89 $1291.89

0 1 2 3

FIGURE A6.5  Machine tool A’s EAC.
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estimating future costs and returns, account should be taken of possible increases in 
material costs, wages, and the like (i.e., inflationary factors).

When dealing with capital investment decisions, a criterion other than PV is 
sometimes used. For discussion of such criteria, for example, payback period and 
internal rate of return, the reader is referred to the engineering economics literature, 
such as Park et al. (2012) and Sullivan et al. (2012).
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Appendix 7: List of Applications 
of Maintenance Decision 
Optimization Models

The proof of the pudding is in the eating.

An English idiom

Within each of Chapters 2 to 5, there are sections highlighting applications of the 
theory contained within the chapter. The following is an expanded list of applica-
tions with only the titles provided. The purpose of the list, which is not exhaustive, 
is to illustrate the breadth of applications with which the authors have been associ-
ated that used the models presented in this book, or their extensions. The authors 
have been directly involved in each study, either as an advisor to an organization 
or through supervising undergraduate or postgraduate students as they undertook a 
project as part of their studies. A number of these projects were undertaken by post-
experience students who have taken courses from the authors as part of company 
training programs in the general area of maintenance optimization and reliability 
engineering. As part of the training program, course participants often worked in 
teams and undertook pilot studies applying the ideas contained in this book.

Aluminum and steelmaking
•	 Optimization of nitrogen compressor third-stage piston ring: condition-

based maintenance (CBM) model
•	 Establishing the economic life of mobile equipment (floor sweepers, 

forklift trucks, and General Motors Suburban)
•	 Establishing lathe requirements in a steel mill
•	 Optimal number of nonrepairable fume shafts for a blast furnace
•	 Transformer redundancy study using simulation modeling
•	 Transformer health monitoring using reliability and condition monitor-

ing data
Electrical generation

•	 Reactor coolant pump: CBM model
•	 Optimizing CBM decisions on main rotating equipment using propor-

tional hazards model
•	 Air preheater cleaning
•	 Condition monitoring of hydrodyne seals in a nuclear plant
•	 Maximizing power station reliability subject to a budgetary constraint

Electricity transmission and distribution
•	 Optimal preventive replacement of electronic modules in 110-V DC 

battery chargers
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•	 Optimal preventive replacement of unloader units in air compressors
•	 Optimal preventive replacement of capacitor units in a capacitor bank
•	 Replacement of 400-kV lightning arrestors
•	 Rightsizing of cable joining resources to meet a fluctuating workload, 

taking into account the subcontracting opportunities
•	 Optimizing inspection frequency for an overhead line supervisory 

information system
•	 Optimizing inspection frequency for air compressor systems
•	 Determining the number of cable oil vans to meet service demand
•	 BP2 deionized water pump replacement
•	 Serviceability life expectancy study of built-up roofs
•	 HVDC valve damping equipment failures
•	 Optimal replacement age of fast gas relays
•	 Replacement of fault detector relays
•	 Transformer repair versus replace decision analysis
•	 Optimal number of spare transformers
•	 Economic life of 230-kV oil circuit breakers
•	 Forecasting operations, maintenance, and administration trends for a 

fleet of station transformers
Food-processing industries

•	 Sugar refinery centrifuge component replacement
•	 Condition monitoring of shear pump bearings in a canning plant
•	 Establishing the economic refurbishment time for a seamer in a can-

ning plant
•	 Optimizing allocation of mechanics to different production lines

Military (land, sea, and air)
•	 Oil analysis of marine diesel engines: optimizing CBM decisions (UK)
•	 Optimizing CBM decisions: an application to ship diesel engines 

(Canada)
•	 Aircraft fuel pump replacement policy
•	 Condition monitoring of aircraft engines subject to oil analysis

Mining industry
•	 Optimal inspection frequency for scissor-lift vehicles
•	 Components for preventive replacement of McLean bolters
•	 Optimization of (100 ton locomotive) inspection frequency
•	 Economic life analysis of a loader
•	 Optimizing the availability of mill GIW discharge pumps
•	 Optimizing the availability of smelter converters
•	 Establishing the economic life of a fleet of haul trucks
•	 Steering clutch replacement of a dozer
•	 Spares provisioning of electric motors on conveyor systems
•	 Condition monitoring of engines and transmissions on haul trucks
•	 Condition monitoring of electric wheel motors
•	 Condition monitoring of pump bearings in a coal plant
•	 Shovel replacement in light of technological improvement
•	 Repair versus replacement for a wheel loader
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•	 Optimizing the number of vehicles in a haul truck fleet
•	 Spacer washer replacement of a dump truck gear box
•	 Optimization of preventative maintenance intervals for underground 

equipment (scoops and trucks)
•	 Failure finding interval optimization for pressure safety valves
•	 Performance gap determination for a world class asset management 

system
Oil and gas

•	 Economic life of a combustion engine
•	 Cylinder head replacement
•	 Compressor valve replacement
•	 Pressure safety valve inspection interval
•	 Optimizing number of spare 100-hp motors
•	 CBM optimization of engine pumping unit
•	 Maintenance crew optimization
•	 Condition monitoring of oil well pumping system (casing, sucker rod, 

and pump)
•	 Optimal replacement age of underground gas mains and associated 

repair versus replacement decisions
•	 Purchase/replace/repair decision process for large-diaphragm gas 

meters
Petrochemical industry

•	 Optimizing maintenance crew size and shift patterns
•	 Thorough maintenance assessment of 12 petrochemical plants

Pharmaceutical industry
•	 Failure-finding interval for a compressor: parallel redundant system
•	 Huber washer replacement policy
•	 Work center resource optimization

Pulp and paper industry
•	 Recovery soot blower component replacement strategy: lance tube 

packing failures
•	 Bark hog equipment failure analysis: establishing productive mainte-

nance interval
•	 Tissue machine tail cutter: drive belt replacement policy
•	 Sawmill sawquip line: replacement policy for outfeed press roll bearings
•	 Establishing the economic life of a feller–buncher

Railway systems
•	 Optimizing CBM decisions to reduce in-service failures of traction 

motor ball bearings
•	 Optimal replacement intervals for critical components of platform 

screen doors
Logistics

•	 Forklift truck replacement cycles
•	 Transit bus fleet replacement policy
•	 Establishing the economic life and optimal maintenance policy for a 

fleet of trailers
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•	 Transit bus fleet inspection policy: A, B, C, and D class inspections
•	 Establishing the economic life of a fleet of tractors
•	 Evaluation and improvement of reliability, availability, and maintain-

ability performance of air cargo handling systems
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Appendix 8: Ordinates of the 
Standard Normal Distribution
The table gives ϕ(z) for values of the standardized normal variate, z, in the interval 
0.0 (0.1) 4.0, where

	
φ

π
( )z

z= −





1

2 2

2

exp

	
z

t= − µ
σ

for a normal distribution with mean = μ and standard deviation = σ.

z 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.0 0.3989 0.3970 0.3910 0.3814 0.3683 0.3521 0.3332 0.3123 0.2897 0.2661

1.0 0.2420 0.2179 0.1942 0.1714 0.1497 0.1295 0.1109 0.0940 0.0790 0.0656

2.0 0.0540 0.0440 0.0355 0.0283 0.0224 0.0175 0.0136 0.0104 0.0079 0.0060

3.0 0.0044 0.0033 0.0024 0.0017 0.0012 0.0009 0.0006 0.0004 0.0003 0.0002

4.0 0.0001

Source:	 Murdoch, J., and J.A. Barnes. Statistical Tables for Science, Engineering, Management and 
Business Studies, 2nd ed., Macmillan, New York, 1970. Reproduced with permission from 
Palgrave Macmillan.
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Appendix 9: 
Areas in the Tail of the 
Standard Normal Distribution
The function tabulated is 1 – Φ(z), where Φ(z) is the cumulative distribution function 
of a standardized normal variate, z. Thus,

	

1
1

2 2

2

− = −






∞

∫Φ( ) expz
x

x
z

π
d

is the probability that a standardized normal variate selected at random will be 

greater than a value of z
x= −



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µ
σ

.

1 – Φ(z)

0 z

FIGURE A9.1
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Appendix 10: 
Values of Gamma Function

n Γ(n) n Γ(n) n Γ(n) n Γ(n)

1.00 1.00000 1.25 0.90640 1.50 0.88623 1.75 0.91906

1.01 0.99433 1.26 0.90440 1.51 0.88559 1.76 0.92137

1.02 0.98884 1.27 0.90250 1.52 0.88704 1.77 0.92376

1.03 0.98355 1.28 0.90072 1.53 0.88757 1.78 0.92623

1.04 0.97844 1.29 0.89904 1.54 0.88818 1.79 0.92877

1.05 0.97350 1.30 0.89747 1.55 0.88887 1.80 0.93138

1.06 0.96874 1.31 0.89600 1.56 0.88964 1.81 0.93408

1.07 0.96415 1.32 0.89464 1.57 0.89049 1.82 0.93685

1.08 0.95973 1.33 0.89338 1.58 0.89142 1.83 0.93969

1.09 0.95546 1.34 0.89222 1.59 0.89243 1.84 0.94261

1.10 0.95135 1.35 0.89115 1.60 0.89352 1.85 0.94561

1.11 0.94740 1.36 0.89018 1.61 0.89468 1.86 0.94869

1.12 0.94359 1.37 0.88931 1.62 0.89592 1.87 0.95184

1.13 0.93993 1.38 0.88854 1.63 0.89724 1.88 0.95507

1.14 0.93642 1.39 0.88785 1.64 0.89864 1.89 0.95838

1.15 0.93304 1.40 0.88726 1.65 0.90012 1.90 0.96177

1.16 0.92980 1.41 0.88676 1.66 0.90167 1.91 0.96523

1.17 0.92670 1.42 0.88636 1.67 0.90330 1.92 0.96877

1.18 0.92373 1.43 0.88604 1.68 0.90500 1.93 0.97240

1.19 0.92089 1.44 0.88581 1.69 0.90678 1.94 0.97610

1.20 0.91817 1.45 0.88566 1.70 0.90864 1.95 0.97988

1.21 0.91558 1.46 0.88560 1.71 0.91057 1.96 0.98374

1.22 0.91311 1.47 0.88563 1.72 0.91258 1.97 0.98768

1.23 0.91075 1.48 0.88575 1.73 0.91467 1.98 0.99171

1.24 0.90852 1.49 0.88595 1.74 0.91683 1.99 0.99581
2.00 1.00000
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Γ Γ
Γ

Γ
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( ) ( ) ( )
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( / )

n t e t

n n n

n t=

= − −
=

=

− −
∞

∫ 1

0

1 1

1 1

1 2

d

π

Source:	 Suhir, E., Applied Probability for Engineers and Scientists, McGraw-Hill, New York, 1997, 
p. 555. Reprinted with permission from McGraw-Hill.
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Appendix 11: 
Median Ranks Table
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Median Ranks

Sample Size

j/n 1 2 3 4 5 6 7 8 9 10

1 50.000 29.289 20.630 15.910 12.945 10.910 9.428 8.300 7.412 6.697

2 70.711 50.000 38.573 31.381 26.445 22.849 20.113 17.962 16.226

3 79.370 61.427 50.000 42.141 36.412 32.052 28.624 25.857

4 84.090 68.619 57.859 50.000 44.015 39.308 35.510

5 87.055 73.555 63.588 55.984 50.000 45.169

6 89.090 77.151 67.948 60.691 54.831

7 90.572 79.887 71.376 64.490

8 91.700 82.038 74.142

9 92.587 83.774

10 93.303

Median Ranks

Sample Size

j/n 11 12 13 14 15 16 17 18 19 20

1 6.107 5.613 5.192 4.830 4.516 4.240 3.995 3.778 3.582 3.406

2 14.796 13.598 12.579 11.702 10.940 10.270 9.678 9.151 8.677 8.251

3 23.578 21.669 20.045 18.647 17.432 16.365 15.422 14.581 13.827 13.147

4 32.380 29.758 27.528 25.608 23.939 22.474 21.178 20.024 18.988 18.055

5 41.189 37.853 35.016 32.575 30.452 28.589 26.940 25.471 24.154 22.967

6 50.000 45.951 42.508 39.544 36.967 34.705 32.704 30.921 29.322 27.880

7 58.811 54.049 50.000 46.515 43.483 40.823 38.469 36.371 34.491 32.795

8 67.620 62.147 57.492 53.485 50.000 46.941 44.234 41.823 39.660 37.710

9 76.421 70.242 64.984 60.456 56.517 53.059 50.000 47.274 44.830 42.626

10 85.204 78.331 72.472 67.425 63.033 59.177 55.766 52.726 50.000 47.542

11 93.893 86.402 79.955 74.392 69.548 65.295 61.531 58.177 55.170 52.458

12 94.387 87.421 81.353 76.061 71.411 67.296 63.629 60.340 57.374

13 94.808 88.298 82.568 77.525 73.060 69.079 65.509 62.289

14 95.169 89.060 83.635 78.821 74.529 70.678 67.205

15 95.484 89.730 84.578 79.976 75.846 72.119

16 95.760 90.322 85.419 81.011 77.033

17 96.005 90.849 86.173 81.945

18 96.222 91.322 86.853

19 96.418 91.749

20 96.594

Source:	 Kapur, K.C., and L.R. Lamberson. Reliability in Engineering Design. 1997. Copyright Wiley-
VCH Verlag GmbH & Co. KGaA. (Reproduced with permission of John Wiley & Sons, Inc.)
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Five Percent Ranks

Sample Size

j/n 1 2 3 4 5 6 7 8 9 10

1 5.000 2.532 1.695 1.274 1.021 0.851 0.730 0.639 0.568 0.512

2 22.361 13.535 9.761 7.644 6.285 5.337 4.639 4.102 3.677

3 36.840 24.860 18.925 15.316 12.876 11.111 9.775 8.726

4 47.237 34.259 27.134 22.532 19.290 16.875 15.003

5 54.928 41.820 34.126 28.924 25.137 22.244

6 60.696 47.930 40.031 34.494 30.354

7 65.184 52.932 45.036 39.338

8 68.766 57.086 49.310

9 71.687 60.584

10 74.113

Five Percent Ranks

Sample Size

j/n 11 12 13 14 15 16 17 18 19 20

1 0.465 0.426 0.394 0.366 0.341 0.320 0.301 0.285 0.270 0.256

2 3.332 3.046 2.805 2.600 2.423 2.268 2.132 2.011 1.903 1.806

3 7.882 7.187 6.605 6.110 5.685 5.315 4.990 4.702 4.446 4.217

4 13.507 12.285 11.267 10.405 9.666 9.025 8.464 7.969 7.529 7.135

5 19.958 18.102 16.566 15.272 14.166 13.211 12.377 11.643 10.991 10.408

6 27.125 24.530 22.395 20.607 19.086 17.777 16.636 15.634 14.747 13.955

7 34.981 31.524 28.705 26.358 24.373 22.669 21.191 19.895 18.750 17.731

8 43.563 39.086 35.480 32.503 29.999 27.860 26.011 24.396 22.972 21.707

9 52.991 47.267 42.738 39.041 35.956 33.337 31.083 29.120 27.395 25.865

10 63.564 56.189 50.535 45.999 42.256 39.101 36.401 34.060 32.009 30.195

11 76.160 66.132 58.990 53.434 48.925 45.165 41.970 39.215 36.811 34.693

12 77.908 68.366 61.461 56.022 51.560 47.808 44.595 41.806 39.358

13 79.418 70.327 63.656 58.343 53.945 50.217 47.003 44.197

14 80.736 72.060 65.617 60.436 56.112 52.420 49.218

15 81.896 73.604 67.381 62.332 58.088 54.442

16 82.925 74.988 68.974 64.057 59.897

17 83.843 76.234 70.420 65.634

18 84.668 77.363 71.738

19 85.413 78.389

20 86.089

Source:	 Kapur, K.C., and L.R. Lamberson. Reliability in Engineering Design. 1977. Copyright Wiley-
VCH Verlag GmbH & Co. KGaA. (Reproduced with permission of John Wiley & Sons, Inc.)
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Ninety-Five Percent Ranks

Sample Size

j/n 1 2 3 4 5 6 7 8 9 10

1 95.000 77.639 63.160 52.713 45.072 39.304 34.816 31.234 28.313 25.887

2 97.468 86.465 75.139 65.741 58.180 52.070 47.068 42.914 39.416

3 98.305 90.239 81.075 72.866 65.874 59.969 54.964 50.690

4 98.726 92.356 84.684 77.468 71.076 65.506 60.662

5 98.979 93.715 87.124 80.710 74.863 69.646

6 99.149 94.662 88.889 83.125 77.756

7 99.270 95.361 90.225 84.997

8 99.361 95.898 91.274

9 99.432 96.323

10 99.488

Ninety-Five Percent Ranks

Sample Size

j/n 11 12 13 14 15 16 17 18 19 20

1 23.840 22.092 20.582 19.264 18.104 17.075 16.157 15.332 14.587 13.911

2 36.436 33.868 31.634 29.673 27.940 26.396 25.012 23.766 22.637 21.611

3 47.009 43.811 41.010 38.539 36.344 34.383 32.619 31.026 29.580 28.262

4 56.437 52.733 49.465 46.566 43.978 41.657 39.564 37.668 35.943 34.366

5 65.019 60.914 57.262 54.000 51.075 48.440 46.055 43.888 41.912 40.103

6 72.875 68.476 64.520 60.928 57.744 54.835 52.192 49.783 47.580 45.558

7 80.042 75.470 71.295 67.497 64.043 60.899 58.029 55.404 52.997 50.782

8 86.492 81.898 77.604 73.641 70.001 66.663 63.599 60.784 58.194 55.803

9 92.118 87.715 83.434 79.393 75.627 72.140 68.917 65.940 63.188 60.641

10 96.668 92.813 88.733 84.728 80.913 77.331 73.989 70.880 67.991 65.307

11 99.535 96.954 93.395 89.595 85.834 82.223 78.809 75.604 72.605 69.805

12 99.573 97.195 93.890 90.334 86.789 83.364 80.105 77.028 74.135

13 99.606 97.400 94.315 90.975 87.623 84.366 81.250 78.293

14 99.634 97.577 94.685 91.535 88.357 85.253 82.269

15 99.659 97.732 95.010 92.030 89.009 86.045

16 99.680 97.868 95.297 92.471 89.592

17 99.699 97.989 95.553 92.865

18 99.715 98.097 95.783

19 99.730 98.193

20 99.744

Source:	 Kapur, K.C., and L.R. Lamberson. Reliability in Engineering Design. 1977. Copyright Wiley-
VCH Verlag GmbH & Co. KGaA. (Reproduced with permission  of John Wiley & Sons, Inc.)
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Kolmogorov–Smirnov 
Statistic (dα)
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Critical Values for the Kolmogorov–Smirnov Statistic (dα)

Sample Size (n)

Level of Significance (α )

0.20 0.10 0.05 0.02 0.01

1 0.900 0.950 0.975 0.990 0.995

2 0.684 0.776 0.842 0.900 0.929

3 0.565 0.636 0.708 0.785 0.829

4 0.493 0.565 0.624 0.689 0.734

5 0.447 0.509 0.563 0.627 0.669

6 0.410 0.468 0.519 0.577 0.617

7 0.381 0.436 0.483 0.538 0.576

8 0.358 0.410 0.454 0.507 0.542

9 0.339 0.387 0.430 0.480 0.513

10 0.323 0.369 0.409 0.457 0.489

11 0.308 0.352 0.391 0.437 0.468

12 0.296 0.338 0.375 0.419 0.449

13 0.285 0.325 0.361 0.404 0.432

14 0.275 0.314 0.349 0.390 0.418

15 0.266 0.304 0.338 0.377 0.404

16 0.258 0.295 0.327 0.366 0.392

17 0.250 0.286 0.318 0.355 0.381

18 0.244 0.279 0.309 0.346 0.371

19 0.237 0.271 0.301 0.337 0.361

20 0.232 0.265 0.294 0.329 0.352

21 0.226 0.259 0.287 0.321 0.344

22 0.221 0.253 0.281 0.314 0.337

23 0.216 0.247 0.275 0.307 0.330

24 0.212 0.242 0.269 0.301 0.323

25 0.208 0.238 0.264 0.295 0.317

26 0.204 0.233 0.259 0.290 0.311

27 0.200 0.229 0.254 0.284 0.305

28 0.197 0.225 0.250 0.279 0.300

29 0.193 0.221 0.246 0.275 0.295

30 0.190 0.218 0.242 0.270 0.290

31 0.187 0.214 0.238 0.266 0.285

32 0.184 0.211 0.234 0.262 0.281

33 0.182 0.208 0.231 0.258 0.277

34 0.179 0.205 0.227 0.254 0.273

35 0.177 0.202 0.224 0.251 0.269

36 0.174 0.199 0.221 0.247 0.265

37 0.172 0.196 0.218 0.244 0.262

38 0.170 0.194 0.215 0.241 0.258

39 0.168 0.191 0.213 0.238 0.255

40 0.165 0.189 0.210 0.235 0.252

>40 1 07. n 1 22. n 1 36. n 1 52. n 1 63. n

Source:	 Sheskin, D.J. Handbook of Parametric and Nonparametric Statistical Procedures, 3rd ed., 
Chapman & Hall/CRC, London, 2004. (Reprinted with permission of Chapman & Hall/CRC.)
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Appendix 15: 
Answers to Problems

CHAPTER 2: COMPONENT REPLACEMENT DECISIONS

To be solved using the mathematical models.

	 1.	C(1) = (0 + 1200)/1 = $1200/month
	 C(2) = (300 + 1200)/2 = $750/month
	 C(3) = $700/month (minimum)
	 C(4) = $800/month

	 2.	C(10K) = $14.30/1000 km
	 C(20K) = $10.00/1000 km
	 C(30K) = $9.33/1000 km (minimum)
	 C(40K) = $10.00/1000 km

	 3.	C(tp = 5K) = $0.093/km
	 C(10K) = $0.067/km
	 C(15K) = $0.063/km (minimum)
	 C(20K) = $0.078/km

	 4.	D(2) = 0.94 day/month
	 D(4) = 0.77 day/month (minimum)
	 D(6) = 0.78 day/month
	 D(8) = 0.88 day/month

	 5.	M(tp = 5K) = 2.5K, M(tp = 10K) = 5.0K, etc.
	 D(tp = 5K) = 1.03 days/1000 km
	 D(tp = 10K) = 0.80 day/1000 km
	 D(tp = 15K) = 0.80 day/1000 km
	 D(tp = 20K) = 0.90 day/1000 km

To be solved using Glasser’s graphs.

	 6.	 tp = 31,148 km, ρ = 92%
	 7.	a.	 tp = 60.7 hours, ρ = 36%
	 b.	 tp = 58.1 hours, ρ = 38%
	 8.	 tp = 17,900 km, savings = 40%
	 9.	a.	 tp = 117,000 km
	 b.	 savings = 86%
	 c.	 Replace-only-on-failure cost = $2,000/150,000 km = $0.0133/km

	 Optimal policy cost = 0.14 (0.0133) = $0.0018/km
	 10.	z = −2.3, tp = 177 hours, ρ = 83%
	 11.	z = −2.2, tp = 117 hours, ρ = 45%
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To be solved using the OREST software.

	 12.	a.	 β = 2.42, η = 19.00 weeks, mean life = 16.84 weeks
	 b.	 Preventive replacement at 6.66 weeks

Age 
(Weeks)

Cost 
($/Week)

Failure 
Replacement (%)

3 38.92 1

4 30.31 2

5 27.69 4

6 26.04 6

7 25.86 8

8 26.44 12

	 13.	a.	� Ages (km) at failure are 51,220, 16,840, 45,380, and 58,130. Suspensions 
occur at 47,620 and 29,210. These are obtained by subtracting odometer 
readings from the next higher reading

	 b.	 β = 2.16, η = 54,745 km, mean life = 48,483 km
	 c.	 Wear-out
	 d.	 May be curved, getting steeper, more serious wear-out possible
	 e.	 18,612 km, 0.01 $/km, 0.01 $/km
	 f.	 For 20,000 km, $0.01 $/km
	 g.	 Utilization = 30 × 50,000 = 1,500,000 km/year, spares = 84
	 h.	 For preventive replacement at 20,000 km, expected number of spares 

for failure replacement = 8.34
	 14.	a.	 β = 0.36, η = 31.21 hours, mean life = 136.53 hours
	 b.	 No. Replace only on failure. More cautiously, extend preventive replace-

ment age to, say, 30 hours, and check if there is any wear-out
	 c.	 111, 8.79
	 15.	a.	 β = 2.26, η = 234,067 km, mean life = 207,330 km
	 b.	 86,598 km
	 c.	 240,000 km
	 d.	 i.	 80,439 km
	 ii.	 Thirteen replacements, 8.5% failure replacements
	 e.	 i.	 $2,500
	 ii.	 $500
	 16.	Wear-out, β = 1.64
	 a.	 Design defect
	 b.	 No

CHAPTER 3: INSPECTION DECISIONS

	 1.	a.	 D(n) = λ(n) Tf + nTi

	 b.	 n = 1/4, availability = 93.8%, with k = 1/32
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	 2.	a.	 D(n) = (λ1(n) + λ2(n))Tf + nTi

	 b.	 n = 1, A = 0.9
	 c.	 K1 = 0.4
	 3.	a.	 FFI < 3.46 hours
	 b.	 Not realistic, perhaps add more standby pumps
	 c.	 A > 1 − 2 × 10−7

	 4.	a.	 h = 3.43 × 10−5, n = 1
	 h = 3.35 × 10−5, n = 2
	 h = 1.87 × 10−5, n = 3

	 b.	 The report should comment on the contribution of age to the hazard, 
as compared with that of iron and sediment. Given that the probability 
of failure between now and 10 days later is small (~0.008), the recom-
mendation is likely to be to leave the motor in service unless the conse-
quence of failure is extremely severe

	 c.	 It indicates that age is an important contributor to hazard
	 5.	a.	 CM data and event data
	 b.	 i.	 The insignificant indicator(s) are removed from the model
	 ii.	 When β = 1, we proceed to use the same model, realizing that age 

does influence hazard
	 c.	 h = 0.00194, n = 1

h = 0.000007, n = 2
h = 0.00062, n = 3

	 d.	 The report should comment on the important contribution of CI2 to 
the hazard, as compared with that of age. Because the probability of 
failure between now and 48 hours later is approximately 10%, the rec-
ommendation is to consider carefully the consequence of failure before 
48 hours if the gearbox is not replaced now

CHAPTER 4: CAPITAL EQUIPMENT REPLACEMENT DECISIONS

To be solved using the mathematical models.

	 1.	C(1) = $4500
	 C(2) = $4225
	 C(3) = $4065
	 C(4) = $3989
	 C(5) = $3973 (minimum)
	 C(6) = $3982
	 C(7) = $4045
	 C(8) = $4146

	 2.	n = 6 optimal
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	 3.	r = 0.91
	 EAC(1) = $16,698
	 EAC(2) = $10,558
	 EAC(3) = $8459
	 EAC(4) = $7177
	 EAC(5) = $6824 (minimum)
	 EAC(6) = $7244
	 EAC(7) = $8072

	 4.	C(1) = $110,561
	 C(2) = $75,639
	 C(3) = $68,442
	 C(4) = $67,848 (optimal)

	 5.	Using the model

	

EAC( ) CRF ( )n A C r R r ni
i

n
n

i

n

= + −









×

=
∑

1

	 C(1) = $90,981 (optimal)
	 C(2) = $100,344
	 C(3) = $117,274
	 C(4) = $129,872
	 C(5) = $139,866

To be solved using the educational versions of the AGE/CON or PERDEC software.

	 6.	Year 3, EAC = $79,973
	 7.	Year 3, EAC = $17,461
	 8.	Year 2, EAC = $21,500
	 9.	Year 2, EAC = $26,052
	 10.	Year 3, EAC = $14,926
	 11.	When utilization = 10,000 km, economic life is 4 years with EAC = $35,189

	 When utilization = 8000 km, economic life is 4 years with EAC = $30,068
	 12.	Year 2, EAC = $30,398
	 13.	Year 3, EAC = $33,593
	 14.	Using linear trend Y = 1.40708 + 6.63497e−5x, the economic life is 3 years, 

EAC = $29,925
	 When using a polynomial of order 3, the economic life is 2 years, EAC = 

$28,312
	 15.	Year 4, EAC = $14,235
	 16.	With 16% interest rate, year 3, EAC = $18,134

	 With 19% interest rate, year 3, EAC = $18,524
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CHAPTER 5: MAINTENANCE RESOURCE REQUIREMENTS

	 1.	n = 6 optimal. C(n) = nCl + WsλCd

	 2.	a.	 C n n C T r f r r( ) ( ) ( ) ,= × + ×
∞

∫w d
0

	 where

	

T r
C r r nm

C nm r nm C r nm C r nm

r
( )

,

min ,
=

× ≤

× + −( ) −( ) −( )
r 1 2  >






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	 b.	 n = 6 optimal

APPENDIX 1: STATISTICS PRIMER

	 1.	R(104) = 0.3446, h(105) = 0.1141 per hour
	 2.	R(5) = 0.9878, R(25) = 0.9405
	 3.	R(100) = 0.99, h(100) = 0.0002 per hour
	 4.	P(T > 1,220 | T > 1,200) = 0.975
	 5.	R(4,100) = 0.8159, h(4,400) = 0.000459 failures per hour
	 6. and 7. These problems involve finding the form of functions and sketching 

them.

APPENDIX 2: WEIBULL ANALYSIS

	 1.	β = 1.5, η = 25,000 km, µ = 21,000 km
	 2.	β = 2.0, η = 68,000 km, µ = 60,000 km
	 3.	β = 1.5, η = 94,000 km, µ = 85,000 km
	 4.	β = 1.3, µ = 95,000 km
	 5.	h(t) decreases to approximately 1000 hours and then remains constant. A 

high rate of manufacturer’s built-in failures is possible. This indicates a 
high rate of manufacturing defects

	 6.	β = 1.82, η = 9000 cycles, R(1000 | 3000) = 90.8%
	 7.	β = 2, η = 22.6 months, acceptable according to K-S test
	 8.	a.	 β = 1.54, shape factor; η = 4669 hours, characteristic life
	 b.	 μ = 4202 hours, σ = 2782 hours
	 c.	 Yes, d < dα
	 d.	 40%
	 e.	 1080  hours
	 f.	 γ = 1097 hours, failure-free period
	 g.	 μ = 4246 hours, σ = 3189 hours
	 9.	a.	 9; 136 is a suspension
	 b.	 d = 0.208, dα = 0.388, the hypothesis is not rejected
	 c.	 β = 10.6, η = 355 weeks, γ = −181 weeks, μ = 157 weeks, σ = 38.6 weeks
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	 10.	a.	� γ = 169, the failure-free period. For t = 5000 hours, t − γ = 4831 hours; 
F(t − γ) = 53.2%

	 b.	 For F(t − γ) = 20%, point estimate of t = 2789 hours, 90% confidence 
interval of t is (1469, 4399) hours

	 11.	a.	� Test statistic of Laplace trend test, u = 1.2 < 1.96, critical value of u at 
α = 5%. Thus, no trend in the time between failures is detected

		  Probability plot can be used to model the time-between-failures 
distribution

	 b.	 β = 2.51, η = 8679 copies, γ = 0 copy, μ = 7701 copies, σ = 3383 copies
		  From the Weibull plot, R(5000) = 72%. Thus, the reliability target at 

5000 copies cannot be met
	 12.	R(100) = 42%

		  The two failure modes are assumed to be independent of each other.
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